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CHAPTER 1

Doing, teaching and learning
mathematics

Excellent teachers of mathematics are purposeful in making a positive difference to
the learning outcomes, both cognitive and affective, of the students they teach. They
are sensitive and responsive to all aspects of the context in which they teach. This is
reflected in the learning environments they establish, the lessons they plan, their uses
of technologies and other resources, their teaching practices, and the ways in which
they assess and report on student learning. (Australian Association of Mathematics
Teachers, 2006)

This statement appears in a professional standards framework that describes the unique
knowledge and skills needed to teach mathematics well. It reflects findings from a multi-
tude of research studies that show how students’ mathematics learning and their
dispositions towards mathematics are influenced—for better or for worse—by the teaching
that they experience at school (see Mewborn, 2003 for a review of this research). While it is
sometimes difficult for researchers to untangle the complex relationships that exist
between teaching practices, teacher characteristics and student achievement, it is clear that
teachers do make a difference to student learning.

This chapter discusses what it means to be a teacher of secondary school mathematics
and the requirements and challenges such a career choice entails. We first consider the
mathematical beliefs of teachers and students, as well as students’ perceptions of math-
ematics teachers, reflecting on how teachers communicate powerful messages about the
nature of mathematics and mathematics learning to the students they teach. Next we turn

our attention to the secondary school mathematics classroom by examining recent research
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on mathematics teaching practices, and identify the types of knowledge needed for effective
teaching of mathematics. Finally, we review some of the challenges for mathematics

curriculum and teaching arising from this and other research.

Mathematical beliefs

Whether we are aware of it or not, all of us have our own beliefs about what mathematics is
and why it is important. In summing up findings from research in this area, Barkatsas and
Malone (2005) conclude that ‘mathematics teachers’ beliefs have an impact on their class-
room practice, on the ways they perceive teaching, learning, and assessment, and on the
ways they perceive students’ potential, abilities, dispositions, and capabilities’ (2005, p. 71).
However, the relationship between beliefs and practices is not quite so straightforward as
this, and many researchers would agree that ‘the relationship is not linearly causal in either
direction but rather beliefs and practice develop together and are dialectically related’
(Beswick, 2005, p. 40). Raymond’s (1997) model of the relationships between beliefs and
practices and the factors influencing them is informative in this regard (see Figure 1.1). The
model suggests some of the complexity involved in understanding how beliefs shape, and
are shaped by, teaching practices, and why inconsistencies sometimes exist between the

beliefs that teachers might espouse and those they enact through their practice.

Beliefs about the nature of mathematics

Because teachers communicate their beliefs about mathematics through their classroom

practices, it is important to be aware of one’s beliefs and how they are formed.

REVIEW AND REFLECT : In your own words, write down what you think mathematics
is and why it is important for students to learn mathematics at school. Compare
your thoughts with a fellow student and try to explain why you think this way.

Look for the definition or description of mathematics provided in your local and
national mathematics curriculum documents and by notable mathematicians or
mathematics educators (Gullberg, 1997; Hogan, 2002; Kline, 1979). Compare these
with your own ideas.

Discuss with a partner some of the possible influences on the formation of your
beliefs, using Raymond’s (1997) model as a guide (see Figure 1.1).




Teacher education
program

Past school
experiences

Mathematics
beliefs

@ mmmmsmssmsEssEsEssEsEEEEnnnn

Immediate
classroom situation

Doing, teaching and learning mathematics 5

Social teaching Teacher’s life
norms outside school

Mathematics
teaching practices

Personality traits
of teacher

Early family
experiences

Students’ lives
outside school

ﬁ Indicates strong influence

= = = = = g |ndicates moderate influence

— P Indicates slight influence

Mathematical beliefs: About the nature of mathematics
and mathematics pedagogy

Students’ lives: Home environment, parents’ beliefs
(about children, school and mathematics)

Mathematics teaching practices: Mathematical tasks,
discourse, environment and evaluation

Teacher education program: Mathematics content
courses, field experiences, student teaching

Immediate classroom situation: Students (abilities,
attitudes, and behaviour), time constraints, the
mathematics topic at hand

Past school experiences: Successes in mathematics as
a student, past teachers

Social teaching norms: School philosophy,
administrators, standardised tests, curriculum,
textbook, other teachers, resources

Early family experiences: Parents’ view of mathematics,
parents’ educational background, interaction with
parents (particularly regarding mathematics)

Teacher’s life: Day-to-day occurrences, other sources of
stress

Personality traits: Confidence, creativity, humour,
openness to change

Source: Raymond (1997).

Figure 1.1 Raymond’s model of the relationships between teachers’

mathematical beliefs and their teaching practice

Mathematics and numeracy

In recent years, the idea of ‘numeracy’ has gained prominence in discussions about the

essential knowledge and competencies to be developed by school students for participation
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in contemporary society. This makes it important for mathematics teachers to have a
clear understanding of the nature of numeracy and its relationship with mathematics
(Queensland Board of Teacher Registration, 2005). The term ‘numeracy’ is common in
Australia, New Zealand, Canada and the United Kingdom, but rarely found in America or
other parts of the world, where expressions like ‘quantitative literacy’, ‘mathematical
literacy’ or ‘statistical literacy’ are used. These different names convey different meanings
that may not be interpreted in the same way by all people. For example, some definitions of
quantitative literacy focus on the ability to use quantitative tools for everyday practical
purposes, while mathematical literacy is understood more broadly as the capacity to engage
with mathematics in order to act in the world as an informed and critical citizen (OECD,
2000). The transformative possibilities of a critical mathematical literacy curriculum have
been well documented by Frankenstein (2001) and Gutstein (2003), both of whom advocate
approaches to teaching and learning mathematics for social justice to help their students
interpret and challenge inequities in their own contexts. Thus the meaning of numeracy
extends beyond the use of mathematical skills to incorporate notions of practical purposes,
real-world contexts and critical citizenship.

Throughout the 1990s, there was much discussion about the relationship between

mathematics and numeracy. Steen (2001) offers the following distinction between the two:

Mathematics climbs the ladder of abstraction to see, from sufficient height, common
patterns in seemingly different things. Abstraction is what gives mathematics its
power; it is what enables methods derived in one context to be applied in others. But
abstraction is not the focus of numeracy. Instead, numeracy clings to specifics,
marshalling all relevant aspects of setting and context to reach conclusions . ..
Numeracy is driven by issues that are important to people in their lives and work,
not by future needs of the few who may make professional use of mathematics or

statistics. (2001, pp. 17-18)

These definitions suggest that numeracy is broader than, and different from, the way that

mathematics traditionally has been viewed by schools and society.
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REVIEW AND REFLECT : Revisit your beliefs about the nature of mathematics and
compare these with the distinction between mathematics and numeracy proposed
by Steen (2001).

How is ‘numeracy’ described in your local mathematics curriculum documents?
To what extent does this description incorporate ideas about mathematics being
used for practical purposes, in real-world contexts and for developing critical
citizenship?

Beliefs about mathematics teaching and learning

Just asimportant as mathematics teachers’ beliefs about the nature of mathematics are their
beliefs about mathematics teaching and learning. Beswick (2005) shows the connections
between these types of beliefs by drawing on categories developed by Ernest (1989) and
Van Zoest et al. (1994), as shown in Table 1.1.

Table 1.1 Relationship between beliefs about mathematics, teaching and learning

Beliefs about the nature of Beliefs about mathematics Beliefs about mathematics
mathematics (Ernest, 1989) teaching (Van Zoest et al., 1994) learning (Ernest, 1989)
Instrumentalist: Mathematics Content-focused with an Skill mastery, passive

as a tool kit of facts, rules, skills emphasis on performance reception of knowledge
Platonist: Mathematics as a Content-focused with an Active construction of
static body of absolute and emphasis on understanding understanding

certain knowledge comprising

abstract entities

Problem-solving: Learner-focused Autonomous exploration of own
Mathematics as a dynamic interests
and expanding field of human

creation
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REVIEW AND REFLECT : Researchers usually obtain information about teachers’
mathematical beliefs via questionnaires [e.g. Barkatsas & Malone, 2005; Beswick,
2005; Frid, 2000a; Perry et al., 1999). Obtain a copy of one of these beliefs question-
naires and record your responses. Discuss your answers with a partner in the light of

the classifications in Table 1.1.

Student beliefs

So far, we have given our attention to teachers’ mathematical beliefs, but what do students
believe about the nature of mathematics? A more subtle way to investigate this than to ask

a direct question involves using metaphors for mathematics, such as:

If mathematics was a food, what kind of food would it be?
Ifmathematics was a colour, what colour would it be?

If mathematics was music, what kind of music would it be?

(See Frid, 2001; Ocean & Miller-Reilly, 1997 for more ways of using metaphors for math-
ematics.)

Pre-service teachers who tried this activity with their junior secondary students during
a practice teaching session were surprised, and somewhat disturbed, by the results. If math-
ematics was a food, most students agreed that it would be a green vegetable such as broccoli,
brussels sprouts or zucchini. According to them, these vegetables taste terrible but we have
to eat them because they are good for us, thus implying that mathematics is a necessary but
unpleasant part of their school diet. Others who were more favourably disposed towards
mathematics compared it with bread (a staple food), fruit salad (because it contains a variety
of ingredients) or lasagne (different layers are revealed as you eat it). These responses
perhaps suggest that students had varying perceptions of mathematical knowledge as
either necessary, diverse or sequenced in layers of complexity. Students thought that if
mathematics was a colour it would be either black (depressing, evil), red (the colour of
anger and pain) or brown (boring). The few who admitted to liking mathematics often said

it would be blue because this colour is associated with intelligence or feelings of calm and
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peacefulness. There was more variety in metaphors for mathematics as music. Many
students said that mathematics was like classical music because they found it difficult to
understand; some likened it to heavy metal music because ‘it hurts your brain’; while one
responded that it was like the theme from the movie Jaws—because ‘it creeps up on you’.
Writing in her practice teaching journal, one pre-service teacher lamented: “There was not
one person in the class who admitted to liking maths and compared it with McDonald’s or

Guy Sebastian!’

REVIEW AND REFLECT : Try the mathematical metaphors activity with some
school-aged children and some adults (if possible, with mathematics teachers, non-
mathematics teachers and non-teachers). Analyse the results and compare them
with a partner’s.

Investigating students’ views about mathematics and comparing these with teachers’
beliefs might lead us to reflect on the role of teachers in enriching or limiting students’
perspectives on the nature and value of mathematics, and to consider how students’ dis-
positions towards mathematics might be shaped by their experiences in school mathematics
classrooms. The important message here is that through their words and actions, teachers communicate

their beliefs about what mathematics is to the students they teach.

Perceptions of mathematics teachers

Through their daily experiences in classrooms, students develop long-lasting perceptions
about mathematics and mathematics teachers. Some of these perceptions involve memories
about particular teachers, such as those below, while others are more stereotypical, arising

from students’ experiences over time in many different mathematics classrooms:

I was never very good at maths in primary school. I particularly remember a teacher
who shamed me and ridiculed me in front of the class. That was a shattering experi-
ence, and every time I was asked to answer a mental maths question after that I'd just

freeze. Things did improve, and in my last year of primary school I actually did quite
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well. That led to the next problem, when I got to secondary school and was put in the
A stream class with all the students who were really good at maths, and I constantly
felt like I was swimming against the tide to keep my head up. I didn’t take maths for
my A-levels. I really regret not doing more maths at school, as I still have a big con-
fidence problem with maths and I hate being put on the spot—working behind a till,
to give change—my primary school days come back to haunt me and I still get a

bit panicky.

I always excelled at maths during primary school. I enjoyed recall activities used to
teach the times tables, especially when the teacher timed us with a stopwatch and the
quickest student received a prize. (I used to win a lot!) I couldn’t understand why
other students didn’t feel the same way—but I get it now! Despite this I struggled
with maths in the junior secondary years. I didn’t like my maths teacher very much
because he was intimidating, boring and hard to approach. By Year 10 I was finding
maths easier again so I decided to take senior maths subjects. I had a fantastic teacher
and found maths easier than other subjects as there was more of a focus on under-
standing and application than on memorising content. I graduated from Year 12 with

an A for maths, largely thanks to great maths teaching.

REVIEW AND REFLECT : Write your personal mathematical life history, describing
your experiences of learning mathematics at home, at school and at university,
and recalling the influence of different teachers and other people you may have
encountered. What are your earliest memories of doing mathematics? What have
been your ‘highs’ and ‘lows’? Compare your mathematical life history with a
partner. Together, compile a list of qualities of the best mathematics teachers in

your experience.

To further emphasise the key role that teachers play in influencing students’ dispositions
towards mathematics, we can also explore school students’ perceptions by inviting them

to draw a typical mathematics teacher. A pre-service teacher tackled this task by drawing
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a stick figure on the whiteboard and asking the class to give her instructions on what
additional features to include. The finished drawing, complete with annotations provided

by the class, is reproduced in Figure 1.2.

/ messy hair
4—— round-rimmed glasses

O Je—_

—~ large nose

\ grumpy expression

— long-sleeved business shirt and tie

high pants

Figure 1.2 Secondary school students’ drawing of a typical mathematics teacher

The school students also commented on aspects of a typical mathematics teacher’s
personality, using words such as ‘boring’, ‘old’, ‘depressing’, ‘cranky’ and ‘ugly’. Other pre-
service teachers found that their students produced very similar drawings and described
mathematics teachers in much the same way. Likewise, local and international studies of
students’ images of mathematicians have identified themes such as the foolish mathematician
(lacking common sense or fashion sense), the mathematician who can’t teach (doesn’t know the
material or can’t control the classroom) or even mathematics as coercion (mathematicians as
teachers who use intimidation or threats) (Picker & Berry, 2001; see also Grootenboer, 2001;
Ryan, 1992). While you may not recognise yourself in these drawings or descriptions, the
clear message here is that teachers have the power to engage or alienate students in ways they will remember

for the rest of their lives.
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Mathematics teaching practices: Perspectives on Year 8 classrooms

The preceding discussion has touched on relationships between teachers’ mathematical
beliefs and their mathematics teaching practices, and students’ perceptions of the way
mathematics is taught. Observational research such as that undertaken in the TIMSS 1999
Video Study (Hollingsworth et al., 2003) gives a clearer picture of what actually happens in
mathematics classrooms. This study was funded by the US Department of Education to
describe and compare teaching practices across seven countries—Australia, the Czech
Republic, Hong Kong SAR, Japan, the Netherlands, Switzerland, and the United States.
These were among the 40 countries that participated in the 1995 Third International Math-
ematics and Science Study, an international comparative study of student achievement in
mathematics and science. In the 1995 TIMSS mathematics assessment, US students were
outperformed by students in each of the other six countries, while Japanese students
recorded the highest scores.

The TIMSS 1999 Video Study collected data from 638 Year 8 mathematics lessons across
the seven countries listed above. The Australian sample comprised 87 schools randomly
selected to be proportionally representative of all states, territories and school systems, as
well as metropolitan and country areas. One teacher was randomly selected from each of
these schools and was filmed for one complete Year 8 mathematics lesson. The coding and
analysis of the videotapes was very rigorous and comprehensive, and the study provides us
with detailed information about the distinctive features of Year 8 mathematics lessons in
each country. Some of the main conclusions about the average Year 8§ mathematics lesson
in Australia are summarised below.

One type of analysis considered the procedural complexity of the mathematical problems
presented to students. Low-complexity problems required few decisions or steps by students,
while high-complexity problems required many decisions and contained two or more
sub-problems. In common with all countries except Japan, most problems (77 per cent)
presented in Australian lessons were of low procedural complexity and few (8 per cent) were
of high complexity. Another type of analysis considered the relationships among problems as
a measure of the mathematical coherence of the lesson. Four types of relationships were

classified: repetition, mathematically related, thematically related and unrelated. Three-
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quarters of problems presented in Australian lessons were repetitions of preceding problems
(a higher proportion than for any other country), and only 13 per cent were mathematic-
ally related in that they extended or elaborated a preceding problem (a lower proportion
than for any other country). Problem statements were also analysed to determine the
mathematical processes to be engaged for their solution. ‘Using procedures’ problems could
be solved by applying a procedure or set of procedures involving, for example, number
operations or manipulation of algebraic symbols. ‘Stating concepts’ problems called on
mathematical conventions or examples of mathematical concepts (e.g. ‘Draw the net of an
open rectangular box.”). ‘Making connections’ problems required students to construct
relationships between mathematical ideas, and often to engage in the mathematical reason-
ing processes of conjecturing, generalising and verifying. The analysis found that in
Australia, and in all other countries except Japan, most of the problems presented in lessons
(62 per cent) focused on using procedures. Only 15 per cent of problems in Australian Year 8
lessons involved making connections (compared with 54 per cent in Japan).

Although Australian students perform reasonably well in international comparative
studies of mathematics achievement, the findings of the TIMSS Video Study point to areas
where different methods of teaching might lead to higher achievement. In particular, it
seems that the average Year § mathematics lesson in Australia displays ‘a cluster of features
that together constitute a syndrome of shallow teaching, where students are asked to
follow procedures without reasons’ (Stacey, 2003, p. 119). This study suggests that when
mathematics teachers make choices about pedagogy, lesson organisation, content and how

the content is presented, they need to provide students with:

* more exposure to less repetitive, higher level problems;
* more opportunities to appreciate connections between mathematical ideas; and
* more opportunities to understand the mathematics behind the problems they are

working on.

Increasing the emphasis on challenge, connections and understanding may go some way
towards addressing the sense of alienation experienced by many students in secondary

school mathematics classrooms.
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Knowledge needed for teaching mathematics

Statements of the professional requirements for successful teaching of mathematics, such as
the Standards for Excellence in Teaching Mathematics in Australian Schools (Australian Association of
Mathematics Teachers, 2006), usually identify three domains that structure the professional
work of mathematics teaching: knowledge, attributes and practices. The statement that
opened this chapter described the professional practice of mathematics teachers who make a
positive difference to their students’ learning in terms of an inclusive and supportive
learning environment, coherent planning for learning, teaching approaches that challenge
students’ thinking, and timely and informative assessment and reporting. The attributes of
excellent teachers encompass a belief that all students can learn mathematics, commitment
to lifelong professional learning, and constructive interaction with a range of communities
relevant to their professional work. These teachers also have a strong knowledge base that
includes knowledge of students and their social and cultural contexts, knowledge of the
mathematics appropriate to the level of students they teach, and knowledge of how
students learn mathematics. In this section, we take a closer look at one aspect of the
knowledge base needed for effective teaching of mathematics.

Research on mathematics teachers’ knowledge has largely been concerned with identify-
ing their pedagogical content knowledge (PCK), defined by Shulman (1987) as ‘the blending of
content and pedagogy into an understanding of how particular topics, problems, or issues
are organised, represented, and adapted to the diverse interests and abilities of learners, and
presented for instruction’ (1987, p. 8). The framework developed by Chick et al. (2006)
and reproduced in Table 1.2 incorporates many aspects of PCK that have been identified in

the literature and defines a set of goals for teachers’ learning about teaching mathematics.

Table 1.2. Framework for analysing pedagogical content knowledge

PCK Category Evident when the teacher . ..
Clearly PCK
Teaching strategies Discusses or uses strategies or approaches for

teaching a mathematical concept

Student thinking Discusses or addresses student ways of thinking

about a concept or typical levels of understanding
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Evident when the teacher. ..

Student thinking—misconceptions

Cognitive demands of task

Appropriate and detailed representations of concepts

Knowledge of resources

Curriculum knowledge

Purpose of content knowledge

Content knowledge in a pedagogical context

Profound understanding of

fundamental mathematics

Deconstructing content to key components

Mathematical structure and connections

Procedural knowledge

Methods of solution

Pedagogical knowledge in a content context

Goals for learning

Obtaining and maintaining student focus

Classroom techniques

Discusses or addresses student misconceptions about

a concept
Identifies aspects of the task that affect its complexity

Describes or demonstrates ways to model or illustrate

a concept (can include materials or diagrams)

Discusses/uses resources available to support

teaching
Discusses how topics fit into the curriculum

Discusses reasons for content being included in the

curriculum or how it might be used

Exhibits deep and thorough conceptual understanding

of identified aspects of mathematics

Identifies critical mathematical components within a
concept that are fundamental for understanding and

applying that concept

Makes connections between concepts and topics,

including interdependence of concepts

Displays skills for solving mathematical problems

(conceptual understanding need not be evident)

Demonstrates a method for solving a maths problem

Describes a goal for students’ learning (may or may

not be related to specific mathematics content)
Discusses strategies for engaging students

Discusses generic classroom practices

Source: Based on Chick et al. (2006).
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Current challenges for mathematics teaching

Secondary school mathematics teachers in the twenty-first century face at least two
significant challenges. The first was foreshadowed in 1956 by Ken Cunningham (2006), the
director of the Australian Council for Educational Research (ACER), who argued that
the mathematics curriculum needed to be more relevant because many secondary students
felt alienated in mathematics classrooms. The postwar secondary mathematics curriculum
was designed for the very small number of students who would study mathematics in Year
12 rather than taking into account the needs of all students, irrespective of their likely
career paths and employment prospects. He made a very strong case for what we now
call numeracy, or mathematical literacy, in the secondary mathematics curriculum, and
especially quantitative—or what we now call statistical—Tliteracy.

Steen (2001) recently argued that statistical literacy was very important for active citizen-
ship and democracy, since people need to be able to use and interpret the ever-increasing
amount of information and data available for decision-making in all aspects of life. These
ideas are now more evident in mathematics curricula for all levels of secondary schooling.
They include an emphasis on applying knowledge and problem-solving, and the expecta-
tion that students will conduct investigations of mathematical phenomena in their world.
Statistical literacy is also included throughout secondary school, although not necessarily in
all subjects offered at the senior secondary level (see Chapter 11, on chance and data). There
are now much higher retention rates to the end of secondary school, and schools and
education systems provide a range of senior secondary mathematics subjects to cater for
students. However, students continue to seek relevance in mathematics and teachers find
this a challenging aspect of their work—although it can be very rewarding when successful.
We pay particular attention to this issue in Chapter 3, on making mathematical connec-
tions, as well as in other chapters throughout this text.

A second challenge for mathematics teachers relates to understanding of mathematics.
When revisiting the themes and issues of mathematics in the school curriculum presented
originally by Cunningham, Geoff Masters (2006), a later director of ACER, argued that in
the twenty-first century the issue for mathematics teaching and learning is to help learners
to make sense of mathematics. This involves making connections cognitively between

mathematical concepts, socially through the applications of mathematics, personally by
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building on prior knowledge and linking to personal interests, mathematically with other
ideas and ways of thinking, and historically and culturally through understanding the
development of mathematical ideas and human culture. It is the flexibility, depth and
diversity in thinking mathematically that comes from making sense of situations and
mathematical abstractions which will be important for working mathematically to meet
the social, economic and environmental challenges of the twenty-first century. This chal-
lenge—to promote mathematical understanding—is taken up in the next chapter. It
continues to be evident throughout this book as we discuss the use of particular tools and
teaching strategies, and examine how students develop the facility to use the various

concepts and skills that constitute the field of mathematics.

The structure of this book

The remainder of this book addresses the professional knowledge, professional attributes
and professional practice of secondary school mathematics teachers. It is divided into four
sections. Part II deals with issues around mathematics pedagogy, curriculum and assess-
ment, as well as the role and influence of technologies in mathematics education. Part III
analyses relevant research on students’ learning of specific mathematical content (number,
measurement, geometry and spatial concepts, algebra, chance and data, and calculus) and
identifies implications for effective teaching approaches. Part IV considers equity and diver-
sity in mathematics education in terms of gender, social and cultural issues, and teaching
mathematics to students with diverse learning needs. Part V discusses responsibilities of
secondary mathematics teachers with regard to professional and community engagement

beyond the immediacy of the classroom and school.
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CHAPTER 2

Developing mathematical
understanding

The desire to make sense of what we see, hear and learn is driven by a need to understand,
and knowing whether or not one does understand something is essential for learning.
Research in mathematics classrooms has shown that mathematical thinking and reasoning
are important for the development of conceptual understanding in mathematics. This
chapter looks at the nature of mathematical understanding and what teachers can do to
develop deep understanding of mathematical concepts in their students. We compare two
general theories of learning and consider what they might be able to tell us about math-
ematics learning and teaching. This is followed by a discussion of mathematical thinking,
with specific attention given to mathematical reasoning and problem-solving. The final
part of the chapter considers the role of the teacher in creating a classroom culture of

mathematical inquiry.

What does it mean to understand something in mathematics?

Mathematics syllabuses and curriculum documents in many countries place great emphasis
on building students’ understanding (e.g. Australian Education Council, 1991; National
Council of Teachers of Mathematics, 2000). Most mathematics teachers would claim that

they value learning with understanding, but what exactly does this mean?
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REVIEW AND REFLECT : How do you know when you understand something in
mathematics? Discuss your responses to this question with a peer or in a small
group. Compare with other groups—are there any similarities or differences in your
responses? What kinds of answers do you think secondary school students would
give to this question?

One of the authors of this book asked the question ‘How do you know when you under-
stand something in mathematics?” of over 300 Queensland secondary school mathematics
students in Years 10, 11 and 12. Their responses were grouped into the categories shown in
Table 2.1. The majority of students considered that they understood something in mathe-
matics if they could do the associated problems and get the correct answer. A few described
understanding in affective terms—that is, understanding was accompanied by feelings
of increased confidence, enjoyment or excitement. Only a small proportion of students
associated understanding with knowing why something worked or made sense, and even
fewer referred to the ability to apply their knowledge to unfamiliar problems as evidence of
understanding. Perhaps the most sophisticated kind of response came from students who
knew they understood something when they could explain it to someone else. Our obser-
vations of many secondary mathematics classrooms and interviews with students suggest
that explaining actually does more than allow students to assess their understanding—it is
also a process through which understanding is clarified and refined.

Researchers often describe mathematical understanding in terms of the structure of
an individual’s internal knowledge representations. For example, Hiebert and Carpenter
(1992) define understanding as ‘making connections between ideas, facts, or procedures’
(1992, p. 67), where the extent of understanding is directly related to the characteristics of
the connections. (This definition is much like Category III responses in Table 2.1.)

It is also helpful to distinguish between different kinds of mathematical understanding,
and these are often expressed in the form knowing-|preposition|. For example, Skemp (1987)
describes instrumental understanding as knowing-what to do in order to complete a math-
ematical task, and contrasts this with relational understanding as both knowing-what to do

and knowing-why the particular piece of mathematics works. The actions of students with
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instrumental understanding are driven by the goal of getting the correct answer (see
Category I responses in Table 2.1). Students who learn mathematics as a set of fixed, mini-
mally connected rules whose applicability is limited to a specific range of tasks cannot adapt
their mental structures to solve novel or non-routine problems. On the other hand,
students who have relational understanding construct richly connected conceptual
networks that enable them to apply general mathematical concepts to unfamiliar problem

situations (see Category IV in Table 2.1).

Table 2.1 Evidence of understanding for secondary mathematics students (n=329)

Response category Sample responses Frequency Proportion
| Correct answer When | get it right. 234 0.71

You can do heaps of them without

mistakes.
Il Affective response | get interested. 35 0.11

| feel confident when doing it.

Il Makes sense It fits in with my previous knowledge. 52 0.16
You realise why you use the formula,

what reasons.

IV Application/transfer When | can apply it to something else 27 0.08
outside school.
When | can understand a complex
problem and do all the related problems.

V Explain to others When | can explain it to other people 24 0.07
without confusing myself.

I can explain the theory to other students.

Others have expanded this framework in ways that provide insightful contrasts. Mason

and Spence (1998) identify differences between:

* knowing-that, as in stating something (e.g. the sum of interior angles of a triangle
is 180 degrees);

* knowing-how, as in doing something (e.g. finding the area of a triangle);
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* knowing-why, as in explaining something (e.g. why the algorithm to divide one
fraction by another involves inverting and multiplying); and
* knowing-to, as in seizing the opportunity to use a strategy that comes to mind in

the moment of working on a problem.

They argue that it is possible for students to get into situations where they have understand-
ing in the forms of knowing-that, knowing-how and even knowing-why, but the relevant
knowledge does not come to mind (knowing-to) when it is needed.

It is becoming more commonly acknowledged that mathematical understanding is not an
acquisition or a product, as implied by Hiebert and Carpenter’s (1992) definition, but rather a
continuing process of negotiating meaning, or of attempting to make sense of what one is
learning. Pirie and her colleagues (Pirie & Kieren, 1994; Pirie & Martin, 2000) have attempted to
represent the dynamic and recursive nature of this process by conceptualising growth in
understanding as movement back and forth through a series of nested layers, or levels, each of
which illustrates a particular mode of understanding for a specified person and a specified
topic. Figure 2.1 provides a diagrammatic representation of these levels of understanding.

Primitive knowing describes the starting place for growth of any particular mathematical
understanding. At the second level, image making, learners use previous knowledge in new
ways. Image having involves using a mental construct about the topic without having to do
the activities which brought it about. Property noticing occurs when learners can combine
aspects of images to construct relevant properties. In formalising, the learner abstracts a
quality from the previous image, while observing is a process of reflecting on and coordinating
this formal activity and expressing such coordinations as theorems. Structuring occurs when
learners attempt to think about their formal observations as a theory. Inventising presents the

possibility of breaking away from existing understanding and creating new questions.

School mathematics and inquiry mathematics

When we look at the kind of mathematical errors that students make, it is natural to
assume that these arise because of a lack of understanding. More often, however, ‘errors are
based on systematic rules which are usually distortions of sound procedures’ (Perso, 1992,
p- 12). A classroom example will help to illustrate this point. Figure 2.2 shows the work of

a Year 11 student who was attempting to solve a pair of simultaneous equations as a
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Inventising

Observing

Formalising

Property
noticing

Primitive
knowing

Figure 2.1 Levels of understanding in the Pirie—Kieren theory

homework exercise. Instead of adding the two equations, she subtracted equation (2) from
equation (1) and assumed that this would eliminate y. She then checked her answer (x =8,
y = 6) by substituting into equation (1), and was puzzled to find that she obtained a different
result.

When it was suggested to her that it would be more appropriate to add the equations
instead of subtracting them, she insisted: ‘But this is what the teacher did—we were taught
always to subtract them!” It is unlikely that the teacher really said these words, but this is
how the student had interpreted, and probably over-generalised, the teacher’s advice about
handling simultaneous equations. This example demonstrates that if students simply aim to

reproduce the procedures demonstrated by the teacher without understanding when and
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why these procedures work, they will create their own reasons and rules in a systematic, if

flawed, effort to achieve understanding.

2x +y=10 (1)

x—y=2 (2]
X = 8
Substitute into (2): 8—y=2
y==6

Figure 2.2 A student’s attempt to solve simultaneous equations

In many mathematics classrooms, learning is assumed to involve mastering a pre-
determined body of knowledge and procedures. Likewise, it is assumed that the teacher’s
job is to present the subject-matter in small, easily manageable pieces and to demonstrate
the correct technique or algorithm, after which students work individually on practice
exercises. Richards (1991) has described this as the ‘school mathematics’ culture, where
teaching and learning are structured as information transter or transmission. However, as the
example in Figure 2.2 shows, knowledge cannot be transferred directly from teacher to
learner; instead, learners reinterpret and transform the teacher’s words and actions. In
contrast, in an ‘inquiry mathematics’ culture, students learn to speak and act mathematic-
ally by asking questions, proposing conjectures, and solving new or unfamiliar problems.

In recent years, researchers have been interested in studying the characteristics of these
contrasting classroom cultures and identifying consequences for students’ mathematical
achievement. Boaler (1997a, 1998, 1999, 2000) conducted a highly influential study of
students’ mathematics learning in two English secondary schools, which she called Amber
Hill and Phoenix Park. She chose these schools because their students were similar in terms
of socio-economic and cultural background but their teaching methods were very different.
Mathematics teachers at Amber Hill used traditional teaching methods, consistent with the
‘school mathematics’ culture described above, and assessment was based solely on written
tests in preparation for the national examinations at the end of Year 11. Classrooms here
were quiet and orderly, and students appeared to be motivated and hard-working. Yet,
when interviewed, the students revealed their dislike of mathematics, which for them was

an extremely boring and difficult subject. Also, despite their diligence in listening to the
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teacher and working through textbook exercises, this very passive approach to their work
left them unable to apply their mathematical knowledge to unfamiliar tasks. Boaler said
this was because the students had developed ‘inert knowledge’, which she attributed to
their belief that learning mathematics required memorising set rules, equations and
formulae.

Teaching approaches at Phoenix Park were much more progressive, and mathematics
lessons often quite unstructured. Students worked on open-ended projects for most of the
time, and there was a strong emphasis on meaning and on explaining one’s thinking. The
philosophy here was that students should encounter mathematics in a context that was
realistic and meaningful, and teachers taught new mathematical content when the need
arose as students worked on their projects. Most of the students enjoyed this inquiry math-
ematics approach and found mathematics interesting because it involved thinking and
solving problems.

One of the most important findings of this study concerns the evidence Boaler found of
differences in students’ learning between the two schools. At the beginning of the study,
when the students were in Year 9, there were no significant differences in their mathemati-
cal performance as measured by standardised tests and other questions Boaler devised to
assess aspects of number work. During the study, Boaler used various methods to assess
students’ mathematics learning. One of these was an applied investigation task that
required students to interpret and calculate from the scale plan and model of a house.
Phoenix Park students performed substantially better than Amber Hill students on this task,
which is perhaps not surprising given the former school’s project-based teaching approach.
More significantly, Phoenix Park students achieved just as well as, and sometimes better
than, Amber Hill students on conventional written tests assessing mathematical content
knowledge. Amber Hill students’ greater experience in working textbook exercises did not
help them in formal test situations if the questions required them to do more than simply
reproduce a learned rule or procedure. By comparison, Phoenix Park students were flexible
and adaptive mathematical thinkers who could apply their knowledge to unfamiliar tasks.
This study therefore provides compelling evidence that a ‘school mathematics’ approach
produces only instrumental understanding—knowing-that and knowing-how—while an
‘inquiry mathematics’ approach can generate relational understanding—knowing-why and

knowing-to.



28 MATHEMATICS PEDAGOGY, CURRICULUM and ASSESSMENT

Theories of learning

For teaching to be effective, it must be grounded in what we know about how students
learn. This section outlines the two theories of learning that are currently most influen-
tial in mathematics education: constructivism and sociocultural perspectives. Both of
these theoretical positions have something to say about relationships between social
processes and individuals’ learning (Cobb, 1994), and the theories have intermingled in
recent years (Confrey & Kazak, 2006). Constructivism gives priority to individual con-
struction of mathematical understanding, and sees social interaction as a source of
cognitive conflict that brings about learning through reorganisation of mental structures.
This position contrasts with the sociocultural perspective, which views learning as a
collective process of enculturation into the practices of the mathematical community
(e.g. Lerman, 1996, 2001).

Constructivism

The central claim of constructivism is that learners actively construct knowledge and
personal meanings by connecting their prior knowledge with new knowledge gained
from their own interactions with the world (Davis et al., 1990). The emergence of
constructivism was significantly influenced by the work of Swiss psychologist Jean Piaget
(1954) on theories of cognitive development. Piaget realised that babies, children, adoles-
cents and adults think in ways that are qualitatively different—that is, adults do not
simply know more than children, they know differently. From his observations of
children, Piaget concluded that intellectual development proceeded through a series
of stages as children matured. The age ranges he attached to these stages are no longer
accepted—rfor example, he under-estimated the reasoning capacity of younger children
and over-estimated that of adolescents. We also now know that learners may exhibit
different types of thinking in different contexts and for different topics. Nevertheless,
Piaget’s ideas about stages of development in children’s thinking help us to think about
the kinds of things learners may be able to do that are limited by their age rather than by
their skill.

In mathematics education, constructivism ‘attends to how actions, observations,

patterns and informal experiences can be transformed into stronger and more predictive
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explanatory ideas through encounters with challenging tasks’ (Confrey & Kazak, 2006,
p- 316). In such encounters, cognitive change begins when students experience conflict
with their previous ways of knowing and take action to resolve this perturbation.
Recording and communicating their thinking allow students to reflect on their actions
and the adequacy of their new understanding. In order to participate successfully in a
constructivist classroom, students and teachers have to renegotiate classroom norms
that regulate patterns of interaction and discourse. These include social norms, such as
expectations that students should explain and justify their reasoning, as well as sociomath-
ematical (or discipline-specific) norms—for example, about what counts as an acceptable,
efficient or elegant mathematical solution to a problem (see McClain & Cobb, 2001; Wood
etal., 2006).

Sociocultural perspectives

The term ‘sociocultural’ is used to describe a family of theories whose origins can be traced
to the work of the Russian psychologist Lev Vygotsky in the early twentieth century.
Vygotsky’s work was virtually unknown to the Western world until the 1970s, when English
translations became available (e.g. Vygotsky, 1978). Since then, his ideas have been explored
and extended by many other researchers (see Forman, 2003; Sfard et al., 2001, for reviews of
sociocultural research in mathematics education).

Vygotsky claimed that individual cognition has its origins in social interaction—that
is, memory, concepts and reasoning appear first between people as social processes, and
then within an individual as internal mental processes. He also claimed that mental
processes are mediated by cultural tools—such as language, writing, systems for
counting, algebraic symbol systems, diagrams, drawing tools, physical models, and so
on—and that this mediation transforms people’s thinking by changing the way they
formulate and solve problems. In connection with these ideas, Vygotsky introduced the
notion of the zone of proximal development (ZPD) to explain how a child’s interaction with an
adult or more capable peer might awaken mental functions that have not yet matured.
He defined the ZPD as the distance between a child’s problem-solving capacity when
working alone and when they have the assistance of a more advanced partner, such as a
teacher. The metaphor of scaffolding (introduced by Wood et al., 1976) became associated

with interactions in the ZPD to describe how a teacher structures tasks to allow students
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to participate in joint activities that would otherwise be beyond their reach, and then with-
draws or fades support as students begin to perform more independently.

Vygotsky also drew on his observations of how children learned by playing together
without adult intervention to explain the ZPD in terms of more equal status partnerships.
From an educational perspective, there is learning potential in collaborative group work
where students have incomplete but relatively equal expertise, each partner possessing
some knowledge and skill but requiring the others’ contributions to make progress. This
approach has informed research on collaborative ZPDs in small-group problem-solving in
mathematics education (e.g. Goos et al., 2002).

Contemporary sociocultural theory views learning as increasing participation in a
community of practice (Lave & Wenger, 1991). In mathematics classrooms, this means that
the teacher is responsible for initiating students into a culture of mathematical inquiry
where discussion and collaboration are valued in building a climate of intellectual chal-
lenge. Van Oers (2001) proposes that this process begins with the teacher’s demonstration of
a mathematical attitude—that is, a willingness to deal with mathematical concepts and to
engage in mathematical reasoning according to the accepted values in the community—
and consequently from the teacher’s mathematical expectations about the learners’ activity.
Learners appropriate this mathematical attitude by participating in shared practice struc-

tured by the teacher’s expectations and actions.

A classroom scenario

During his first practicum session, Damien (a pre-service teacher) was assigned to
teach a very challenging Year 10 mathematics class. The students were unmoti-
vated and had a history of poor achievement in mathematics, and there was a
great deal of disruptive behaviour. Damien decided that the best approach was to
use whole-class exposition and questioning in order to maintain order and
control, and he offered very simple tasks to give students some experience of
success. This approach was not successful, as shown by the post-lesson debriefing
notes Damien recorded with the help of his university supervisor, who had

observed the lesson.
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Teacher expectations

Teacher actions

Student actions

e Listen to teacher, copy
example, practise similar
tasks.

* Low-ability class, I will
accept performance

before understanding.

* Whole-class work,
blackboard example,
worksheet for
individual practice.

* Choose simple

exercises.

¢ Confused, few finished
task.

¢ Unwilling to work,
used delaying tactics,
off task, restless.

* Rude to each other

and to teacher.

During the second practicum session, Damien was teaching the same class. In

one lesson he decided to take a different approach by trying a practical activity. He

wanted students to work out for themselves some properties of equilateral and

isosceles triangles—for example, when triangles have equal side lengths, their

angles are also equal. The students had to use rulers and compasses to draw trian-

gles with given side lengths, measure the angles, tabulate their results (as in the

example below) and draw conclusions.

Example

Draw the equilateral triangles with side lengths shown below (AB = BC = AC).

Measure and record the size of the angles for each triangle.

A

Side Angle (degrees)
length

(cm) A B C
5

6.5

9

Not only did this activity allow students to discover mathematical properties for

themselves, it also had the unplanned effect of stimulating peer interaction and

31
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discussion—something that Damien had previously discouraged because he
thought the class would become unruly and difficult to manage. It also gave him
opportunities to listen to students’ conversations and ask questions that moved
their thinking towards generalising relationships between angles and sides. Below

are the debriefing notes for the lesson recorded by Damien and his university

SUPETVISOT.
Teacher expectations Teacher actions Student actions
* Work things out for * Provided investigation | ¢ Shared results,
themselves. task. explained to each
* Learn by doing, ‘hands * Toured room, asked other.
on’. questions of * Asked me questions,
* Raised expectations, individuals and wanted to show me
wanted understanding. groups. their work.
* Cooperative, on task,
excited.

Consider the above two lessons and explain in terms of constructivist theory
why the second lesson was more successful than the first. (Think about challenging
tasks, cognitive conflict, recording of and reflection on new understanding.)

Now use sociocultural perspectives to explain why the second lesson was more

successful than the first. (Think about cultural tools, scaffolding, peer interaction.)

Mathematical thinking

Williams (2002) has developed a framework for describing students’ mathematical
thinking that may prove useful for teachers as they observe the nature of learning occur-
ring in their classrooms. The framework is based on work of Dreyfus et al. (2001), who
view mathematical thinking as abstraction and generalisation. Three categories of student

thinking are identified, at increasing levels of complexity:
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1. recognising: realising that a known mathematical procedure applies in a new situation;

2. building-with: using several previously known mathematical procedures to solve an
unfamiliar problem;

3. constructing: selecting previously known strategies, mathematical ideas and concepts to

integrate when solving an unfamiliar challenging problem.

Williams (2002) added further detail to create a set of nested categories, showing how

students move from analysis to synthesis to evaluation (see Table 2.2).

Angles in polygons
Consider the following task (Williams, 2002, pp. 335-6).
Students were provided with an A3 page containing polygons with three to ten

sides. Students were then asked to work in pairs and were directed to:

* use straight lines to divide each polygon into triangles;

* cut out the triangles for one polygon (at a time);

* tear off each angle of each triangle;

* place the angles around a point and find the sum of all the angles from triangles
for a particular polygon;

* record their findings in a table with headings like ‘number of sides of polygon’

and ‘total of angles’.

Students were shown how to piece the angles together, and instruction was
given about how to tell the size of the total angle by the number of rotations made.
Students were asked to look for a pattern in the table they generated. Once the
pattern was found, the teacher developed a rule, and then the students practised

the rule on other polygons.

* Work with a partner on the ‘Angles in polygons’ task by following the instruc-
tions given to students.

* Discuss with your partner the types of thinking you used to complete the task
(e.g. finding a pattern, using known information). Decide which category of
thinking the task elicits (refer to Table 2.2).

* How could the task be refined or its manner of implementation be changed so
that it calls forth more complex thinking? (Use the examples of thinking in

Table 2.2 as a source of ideas.)
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Table 2.2 Categories of complex mathematical thinking

Complexity of thinking

Examples of thinking

Evaluation

(Constructing)

Continually check for inconsistencies as different aspects of the problem
are explored.

Look for how the new mathematical processes used may be applicable to
other situations.

Recognise new mathematical insights developed may be useful in solution

pathways used to resolve subsequent spontaneous questions.

Synthesis

(Constructing)

Select relevant strategies, ideas and concepts.

Integrate mathematical ideas, concepts and strategies to produce a new
mathematical insight.

Develop a mathematical argument to explain why.

Find and resolve a spontaneous question.

Progressively resolve subsequent spontaneous questions.

Develop a new process to add to problem-solving repertoire.

Evaluative-analysis

(Building-with)

Use a quick method or estimate to check a finding by relating the
mathematics back to the context.

Refer to the context to provide reasons for why a pattern works.

Synthetic-analysis

(Building-with)

Interconnect different solution pathways by considering why two or more
solution pathways may be appropriate to solve the same problem.
Consolidate insights developed through the problem by building-with them

in the development of further insights.

Analysis

(Building-with)

Search for patterns.

Search for alternative solution pathways to solve the same problem.

Work backwards where you have only been taught to solve the question
forwards. For example, find the length of a rectangle when given the width
and the area if previous questions always gave the length and width and
required the student to find the area.

Analyse a situation to find what known mathematical procedures to apply

(analyse to recognise).
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Mathematical thinking is represented in curriculum documents in a variety of ways that
distinguish mathematical processes from mathematical content. Table 2.3 summarises
approaches to specifying ‘process’ aspects of mathematics in curriculum materials provided
for teachers in Australia (Australian Education Council, 1994), the United States (National
Council of Teachers of Mathematics, 2000) and the United Kingdom (Qualifications and
Curriculum Authority, n.d.). Common to all of these curricula are the thinking processes
of reasoning (described in the Australian National Profile as investigating, conjecturing, applying

and verifying) and problem-solving.

Table 2.3 Representation of process aspects of mathematics in curriculum materials

National Profile (Australia) Investigating

Conjecturing

Using problem-solving strategies
Applying and verifying

Using mathematical language

Working in context

NCTM Principles and Standards (USA) Problem-solving
Reasoning and proof
Communication
Connections

Representation

National Curriculum (UK) Problem-solving

Communicating

Reasoning

Mathematical reasoning

Mathematical reasoning involves making, investigating and evaluating conjectures, and
developing mathematical arguments to convince oneself and others that a conjecture is
true. Yackel and Hanna (2003) assert that ‘explanation and justification are key aspects of
students’ mathematical activity in classrooms in which mathematics is constituted as
reasoning’ (2003, p. 229). Students learn to give explanations and justifications when

teachers (a) provide tasks that require them to investigate mathematical relationships (as in
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the example from Williams, 2002, above), and (b) foster a classroom climate where students
are expected to listen to, discuss and question the claims made by others (National Council
of Teachers of Mathematics, 2000).

Consider the following task:

Write down your age. Add 5. Multiply the number you just got by 2. Add 10 to this
number. Multiply this number by 5. Tell me the result. I can tell you your age (by
dropping the final zero from the number from your result and subtracting 10).

Investigate this task with a partner. Why does it work? Formulate a general-
isation to explain why and present your argument to the class. Evaluate any
alternative solutions presented by others (National Council of Teachers of Mathe-
matics, 2000, pp. 56-7).

Mathematical problem-solving

Problem-solving is considered to be integral to all mathematics learning (National Council
of Teachers of Mathematics, 2000), and a great deal of research on mathematical problem-
solving was carried out during the 1980s and 1990s (see Schoenfeld, 1992 for a
comprehensive international review, and Anderson & White, 2004 for information on recent
Australasian research). Since this time, problem-solving has been incorporated into the
aims of mathematics syllabuses and other curriculum documents throughout Australia,
most recently under the heading of “Working Mathematically’. (See Chapter 5 for a discus-
sion of curriculum models based on problem-solving.)

‘Problems’ and ‘problem-solving’ have had many—often contradictory—meanings in
the past (Schoenfeld, 1992). However, a commonly accepted definition is that a task is a
problem if the person attempting it does not know the solution method in advance
(National Council of Teachers of Mathematics, 2000). This means that a particular task
could be a problem for one person but a routine exercise for another, because the
‘problem’ does not lie solely in the task, but rather in the interaction between task

and student.
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Classroom
environment

Beliefs » Affects
Awareness Metacognition Regulation
Knowledge .

& Heuristics
base

Figure 2.3 Factors contributing to successful problem-solving

Figure 2.3 identifies factors contributing to successful problem-solving that were identi-
fied by research in the 1980s and 1990s. The mathematical knowledge base includes intuitive
knowledge, facts and definitions, routine procedures and algorithms, and knowledge about
the rules of mathematical reasoning. Heuristics, general strategies or ‘rules of thumb’ for
making progress with non-routine tasks (e.g. work backwards, look for a pattern, try a
simpler problem), are also an important strategic resource. Metacognition has two com-
ponents: awareness of one’s own mathematical strengths and weaknesses, task demands and
factors affecting task difficulty; and requlation of one’s thinking while working on mathemati-
cal tasks. Regulation involves such activities as planning an overall course of action, selecting
specific strategies, monitoring progress, assessing results, and revising plans and strategies if
necessary. Without effective metacognitive awareness and regulation, students will not be
able to recognise or use their knowledge to help them solve a problem when they get stuck,
and they typically persist with inappropriate strategies that lead nowhere.

Beliefs and affects may enhance or interfere with metacognitive activity. Students’ beliefs
represent their mathematical world-view. Op 't Eynde et al. (2002) propose that ‘students’
mathematics-related beliefs are the implicitly or explicitly held subjective conceptions

students hold to be true about mathematics education, about themselves as mathematicians,
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and about the mathematics class context’ (2002, p. 27). Their beliefs about themselves as
doers of mathematics, and about particular topics, the nature of mathematics in general,
and the mathematics classroom environment contribute to their metacognitive awareness
and influence their metacognitive regulation (Schoenfeld, 1992). Self-beliefs also reinforce
affects, in particular attitudinal traits such as motivation, confidence and willingness to take
risks (McLeod, 1992; McLeod & Adams, 1989). These affective reactions may in turn influ-
ence students’ capacity to maintain task involvement. Variations in the classroom environment
can trigger different types of affective responses, but the classroom context has an even
more important role to play in shaping students’ beliefs (Henningsen & Stein, 1997). We
have seen that teaching which emphasises memorisation, formal procedures and correct
answers at the expense of understanding can lead students to believe that they are meant to
be passive participants, neither capable of, nor responsible for, proposing and defending
ideas of their own (Boaler, 1998; Schoenfeld, 1988).

Holton and Clarke (2006) have discussed the idea of scaffolding—introduced earlier in
connection with teacher—student interaction in the zone of proximal development—as a
means of developing students’ metacognition. They propose that scaffolding questions
posed by the teacher during three stages of problem-solving (listed in Table 2.4) can support
students in becoming aware of and regulating their thinking, and that students can become

self-scaffolding by asking themselves the same questions as the teacher’s support is with-

drawn (the teacher scaffolds and fades).

REVIEW AND REFLECT : Try solving the problem below. Work on your own for a few
minutes to get a feel for the problem, and then work with a partner or in a small
group. Use the scaffolding questions in Table 2.4 to monitor and regulate the
group’s problem-solving attempts.

Divide five dollars amongst eighteen children such that each girl gets two cents
less than each boy.

Most mathematically experienced students attempt an algebraic solution to
this problem, and are surprised to discover that other approaches can be more
productive (see Goos et al., 2000 for an analysis of secondary school students’
solution methods for this task].




Table 2.4 Teacher scaffolding questions during problem-solving
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Getting started

While students are working

After students are finished

What are the important ideas
here?

Can you rephrase the problem in
your own words?

What is this asking us to find?
What information is given?
What conditions apply?

Anyone want to guess the
answer?

Anyone seen a problem like this
before?

What strategy could we use to
get started?

Which one of these ideas should

we pursue?

Tell me what you are doing.
Why did you think of that?
Why are you doing this?
What are you going to do
with the result once you
have it?

Why do you think that that
stage is reasonable?

Why is that idea better than
that one?

You've been trying that idea
for five minutes. Are you
getting anywhere with it?
Do you really understand what
the problem is about?

Can you justify that step?
Are you convinced that bit is
correct?

Can you find a counter-example?

Have you answered the
problem?

Have you considered all the
cases?

Have you checked your solution?
Does it look reasonable?

Is there another solution?

Could you explain your

answer to the class?

Is there another way to solve

the problem?

Could you generalise the problem?
Can you extend the problem

to cover different situations?

Can you make up another similar

problem?

Creating a classroom community of inquiry

It should be clear from the discussion we have presented throughout this chapter that
teachers have a pivotal role to play in developing students’ understanding of mathematics.
We have also seen that an ‘inquiry mathematics’ approach leads to deeper understanding and
more flexible mathematical thinking in students. Much recent research based on construc-
tivist and sociocultural theories has asked how the mathematics classroom can become a
‘community of inquiry’ and what teachers should do to engage students in mathematical
thinking, reasoning and problem-solving. While it is not feasible to give a list of prescriptive
actions or recipes for teachers to follow, researchers have identified characteristics of class-
room communities of mathematical inquiry and the teacher’s role within such classrooms.
A recent study of an Australian secondary school mathematics classroom (Goos, 2004b)

found that key elements of the teacher’s role involved:



40 MATHEMATICS PEDAGOGY, CURRICULUM and ASSESSMENT

* modelling mathematical thinking;
* asking questions that scaffolded students’ thinking;
* structuring students’ social interactions; and

* connecting students’ developing ideas to mathematical language and symbolism.

An example from a Year 11 lesson on matrices about two months into the school year

illustrates this teacher’s actions and the students’ responses (see annotated field notes in

Table 2.5).

Table 2.5 Year 11 mathematics lesson

Annotation Interaction Whiteboard
Scaffolds Treminds Ss ?f pro.cedL.Jre forfindinginver.se 3 1\ /4 b _ 10
students of a 2X2 matrix using simultaneous equations. 5 2)\¢c 4 01
thinking Asks Ss to solve the resulting equations.
Ss provide equations and solution. Jat =1
S5a+ 2c=0
T: So the inverse of <3 1> is ( 2 _1> 3b+d=0
>2) \7Y 3 Sh+2d=1

a=2b=—1,c=—5,d=3

T: Can you check via matrix multiplication that
you do get the identity matrix?

Ss confirm this is so.

Models T: Is it inefficient to do this every time? Ss concur.
mathematical T: Could we find a shortcut? Luke suggests Inverse of <a b) is
thinking reversing the position of a and d, and placing ¢ d
minus signs in front of b and c. ( d —b) )
T elicits symbolic representation and writes on —c al
whiteboard.
Models T: How could we verify this?
mathematical Ss suggest doing another one. T provides
thinking another example; asks students to use ‘Luke’s <2 1> M) ( b= 1)
conjecture’ to write down the hypothetical b 2

inverse and check via matrix multiplication.

Ss do so; they are convinced the method works.
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Annotation Interaction Whiteboard
Scaffolds Ss’ T gives another example for Ss to try.
_— . . . , 4 1) inverse 2 —1)\,
thinking Gradual increase in S talk as they realise Luke’s 3 — | 3 4]
conjecture doesn’t work for this one \ )
(matrix multiplication does not yield the 41 2 -1\ (50
identity matrix). 32/\—3 4 05
Scaffolds Ss’ T reminds Ss they can still find the inverse by % %1
thinking solving simultaneous equations. Ss do so and Inverse is _}) ;‘
verify via matrix multiplication. 55
Scaffolds Ss’ T: How is this related to Luke’s conjecture?
thinking (which is half right]. Ss reply that the first
attempt is too big by a factor of 5, so they need
to divide by 5.
Scaffolds Ss’ T: What did you divide by in the previous 1 =1
. 2 1) inverse [
thinking example? |1 — |-,
Ss realise they could divide by 1. Y
Models T: So the new method (dividing by something]

mathematical

thinking

works. But how do you know what to divide by?
Find a rule that works for these two cases.

Test it on another matrix of your choice.
(Ssdoso.)

T: What is the divisor?

Dean: ad—bc

Mathematical
conventions
and

symbolism

T names ‘this thing’ (ad—bc) as the determinant.

T: Let’s formalise what you've found. What would

a b
| write as the inverse of ( d) ?
c

Alex volunteers the formula, which T writes on
whiteboard.

Rhys: What part of that is the determinant?

T labels ad—bc and writes the symbol and

name ‘del’ on whiteboard.

_
ad —bc\—c

V =ad —bec
del

d —=b

)
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The aim of the lesson was to have the students discover for themselves the algorithm
for finding the inverse of a 2 X 2 matrix <f Z) . The teacher first chose a matrix A with a deter-
minant of 1 and asked the students to find the inverse A1 by using their existing knowledge
of simultaneous equations to solve the matrix equation AA~! = He then elicited students’
conjectures about the general form of the inverse matrix, based on the specific case they had
examined. Since the nature of the example ensured that students would offer <:1 7{1) as the
inverse, the teacher was able to provide a realistic context for students to test this initial
conjecture. A counter-example, whose inverse was found to have the form n<7 i{ 72) , allowed
the students to find a formula for n, which only then was labelled by the teacher as
the determinant.

In a lesson that took place six weeks later, the teacher asked students to develop a method
for finding the angle between two vectors (;) and (?), based on their knowledge of the
formula for the dot product, a- b = |a||b|cosﬁ, encountered for the first time only the
previous day. Now the students were expected to advance their thinking without
the teacher’s scaffolding, and most spontaneously formed small groups and pairs to work
on the task without his assistance for over ten minutes. When the teacher reconvened the
class, he nominated a student (Alex) to come to the whiteboard to present his solution. As
Alex began to calculate the value of <;> : (?), the teacher reminded him that he wanted a
general equation first before any numerical substitution. Other students then began

offering Alex suggestions and hints as to how to proceed:

Adam: Rearrange it, Alex.

Aaron:  Yeah, rearrange it.

Alex: Using . . .2

Aaron:  Using, like, symbols.

Adam:  Look up on the board! (i.e. at the formulaa - b = |a||b|c0519). Just write
down the equation.

Alex: So you work out a dot b using this method—(starts to substitute

numbers again)
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Teacher: Idon’t want to see anything to do with those numbers at all!

Aaron:  Alex, rearrange that equation so you get theta by itself. (Alex begins to
do so.)

Teacher: How’s he going? Is he right? (Chorus from class, ‘Yes’. Alex finishes
rearranging formula to give ¥ = cos™! m ). Alex, that’s great, that’s

spot on!

Here Adam and Aaron appear to be using teacher-like scaffolding strategies to move a peer’s
thinking forward, and they bypass the teacher completely in directing their comments to
the student at the whiteboard.

As the school year progressed, the teacher continued to withdraw his support to pull his
students forward into their zones of proximal development, and students responded by
taking increasing responsibility for their own mathematical thinking. The effect is illus-
trated by the following exchange, which occurred about three months before the end of the
school year. Dylan, a student who had previously displayed a highly instrumental approach
to understanding mathematics (Skemp, 1987), was struggling with a task that asked
students to prove that there is a limit to the area of a Koch snowflake curve. The following
dialogue occurred after Dylan had spent several minutes with his hand raised hoping to

seek the teacher’s assistance:

Dylan:  (Plaintively) I can’t keep going! I want to know why!

Alex: (Looks up, both laugh) Have you got my disease?

Dylan:  Yeah!

Alex: Dylan, wanting to know why!

Dylan:  Me wanting to know why is a first, but I just want to. It’s a proof—you
need to understand it. (Alex resumes work, Dylan still has his hand

raised.)

Dylan’s newfound insistence on ‘knowing why’, rather than glossing over elements of a proof
he did not understand, indicates that he was moving towards fuller participation in the
practices of mathematical inquiry—where being able to reason is essential to understanding.

A similar study carried out in the United States (Hufferd-Ackles et al., 2004) summarises
just how these teacher—student interactions change over time as a community of inquiry
grows (see Table 2.6).
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Table 2.6 Characteristics of a classroom community of mathematical inquiry

Dimension Change

Questioning Shift from teacher as questioner of students to students and teacher as questioners.

Student—student talk and questioning increase, especially ‘Why?’ questions.

Explaining As the teacher asks more probing questions to stimulate student thinking, students

mathematical thinking  increasingly explain and articulate their mathematical ideas.

Source of mathematical  Shift from teacher as source of all mathematical ideas to students’ ideas also
ideas influencing the direction of lessons. The teacher uses student errors as

opportunities for learning.

Responsibility for Students increasingly take responsibility for learning and evaluation of others and
learning self. Mathematical sense becomes the criterion for evaluation. The teacher
encourages student responsibility by asking them questions about their own

and each other’s work.

We should not underestimate the challenges associated with implementing these
teaching approaches in secondary mathematics classrooms. Often it seems that content
coverage and assessment pressures get in the way of developing understanding and mathe-
matical thinking, especially when we are faced with a classroom full of students who have
been socialised, over many years of schooling, into believing that teaching is telling and
learning involves memorisation and practice. Yet the evidence from research convinces us
that an inquiry mathematics approach offering worthwhile tasks and stimulating social

interactions is the most effective way to foster learning with understanding.
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CHAPTER 3

Developing mathematical
connections

Being able to understand the world from a mathematical perspective is what we hope
to facilitate for our students as secondary school teachers of mathematics. To this end,
all students need to build a cohesive and comprehensive picture of mathematics by estab-

lishing and appreciating how:

* the mathematics they are doing in secondary school connects with and builds on
the mathematical concepts and skills they started constructing and developing in
the primary years;

* the mathematics they do in their mathematics classes connects across other
curriculum areas which they study, such as geography, science and health, and
physical education; and

e various connections within mathematics itself are established.

Teachers of mathematics have many opportunities for forming and strengthening these

connections through ensuring explicit connections are made:

* among content topics across lessons;
* among content within lessons;
* through mathematical applications; and

* through mathematical modelling to the world around them.
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Connections across the middle years

The transition from primary to secondary school appears to be an ongoing problem, despite
many transitions programs being implemented over the years. For example, when baseline
data for the Middle Years Numeracy Research (MYNR) Project in Victoria were collected in
1999, researchers noted a significant drop in performance in numeracy tasks from Year 6
(the last year of primary school) to Year 7 (the first year of secondary school) in urban
schools (Siemon et al., 2001). They also noted that teachers in Years 5-9 classes could expect
a range of up to seven years in numeracy-related performance, echoing similar findings in
international comparison studies.

To overcome difficulties associated with this transition into the lower secondary school,
it was recommended that classroom teaching strategies involve the regular and systematic
use of open-ended questions, mathematical games, authentic problems, and extended
investigation to enhance students’ mathematics learning and capacity to apply what they
know. In addition, teachers should focus on the connections within mathematics, across
tasks and topics, and explicitly develop students’ strategies for making connections.
Teachers who model the making of such connections themselves are on the road to begin-
ning this process.

Teachers need to actively engage all students in conversations and texts that encourage
reflection on their learning, and explanation and justification of their thinking. Simply
engaging students by doing does not ensure mathematical learning occurs: there must be a
focus on meaning and on ensuring that students are attending to what matters and how it
matters mathematically (Mason, 2004). Highly atomised, topic-based approaches tend to
mask the ‘big ideas’ of middle years mathematics (that is, place value and multiplicative
thinking, see Chapter 7) and ‘crowd the curriculum’ (Siemon et al., 2001). Merely ‘getting
learners to do tasks in mathematics lessons is not sufficient to ensure that they make math-
ematical sense of what they are doing’ (Mason, 2004, p. 79). Even supplementing this by
discussion is not sufficient to ensure mathematical learning if learners are focusing their
energies and attention elsewhere (Mason, 2004). Thus learning activities need to be designed
or chosen so they are appropriate to learners’ needs and interests; however, the teacher also
needs to work at actively gaining and focusing students’ attention on the relevant aspects of

the task at hand.
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The MYNR Project researchers used data collected from student responses to rich assess-
ment tasks to develop an emergent numeracy profile. This profile can be used to select
learning materials and structured, numeracy-specific teaching across the middle years. The
major discriminating factors distinguishing performance at different levels in the profile

were:

¢ students’ understanding of, and capacity to apply, rational number ideas;

* metacognitive activity—namely, monitoring of cognitive goals (indicative of con-
ceptual understanding of the situation/task) and monitoring cognitive actions
(indicative of procedural management of the solution attempt); and

* the extent to which students could deal with patterns.

Chapters 7 to 11 give a brief overview of the extent of the relevant content areas covered
in the primary school years to help you facilitate students’ transition from primary school;
however, it would also be worthwhile to consult curriculum documents relevant to the

middle years in your state or territory.

Connections across curriculum areas

Until recently, formal cross-curricular cooperation in Australian secondary schools was
limited to some attempts at the lower secondary levels. Use of mathematics in other subject
areas does occur (e.g. in chemistry or geography), but when a mathematical problem is set
in, say, a physical education context, the motivation to do this usually emanates from the
mathematics classroom and there is no formal arrangement where the physical education
teacher and the mathematics teacher cooperate in writing a cross-curricular unit to serve as
the basis for both the next mathematics unit and the next physical education unit. Thus
subject disciplines protect their time allocation in the curriculum and their territory.

At the lower secondary level, interdisciplinary projects are a possibility for formal cross-
curricular cooperation (see Goos & Askin, 2005). However, there has to be a payoff between
the amount of mathematics applied or learnt through these projects and the time devoted
to them in an already decreasing time allocation to mathematics classes. With this in mind,

mathematics needs to be the anchor subject to ensure that a significant amount and depth
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of mathematics is involved. (Integrated curriculum models are discussed and illustrated

further in Chapter 5.)

Connecting content across lessons

According to Lampert (2001, p. 179):

In school, students will connect what they learn in one lesson to what they learn in
the next lesson in one way or another. The teacher can work to deliberately structure
the making of connections to enable the study of substantial and productive relation-
ships in the content. If the teacher can make the conceptual connections among
lessons obvious, students will have the opportunity to study aspects of the content
that are not easily contained in single lessons. They will be able to study the kinds of

ideas that make a subject coherent across separate topics.

Lampert suggests that a suitable context be selected as a basis for generative problems which
act as a thread connecting the mathematical content from one lesson to the next. This
context can be a unifying real-world situation—such as back problems resulting from
improper lifting techniques as a connecting thread for several lessons on dynamics at the
senior secondary level—or it can be a mathematical context—such as an investigation into
the patterns and algebra of square numbers as an over-arching context for teaching mathe-
matical notions such as powers and Pythagoras’ Theorem at the lower secondary level.
Connecting content across lessons is similar to the task of selecting problems that will
allow connections across content within a single lesson, but it is a more substantial task, as
the teacher needs to be able to anticipate and identify the mathematics within the situation
that will allow the same context to be sustained across several lessons. The problems need to
be developed or selected in a way that will allow the focusing of students’ attention on
significant mathematical ideas and the important relationships among the mathematical
concepts contained within them. The problem of designing a roller-coaster ride, for
example, can be used as the basis for a generative theme for the study of functions in Year 11.
Designing the ride using functions to model the track, and possibly other aspects of the ride,
is the ultimate goal; however, along the way students build an understanding of a variety of
functions, their transformations, key features, gradient functions, and various mathemat-

ical and technological tools for working with functions.
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Making connections in lessons

The use of open questions in the mathematics classroom is often advocated to foster the
development of students’ higher order thinking. However, Herbel-Eisenmann and Brey-
fogle (2005) point out that ‘merely using open questions is not sufficient’ (2005, p. 484). This
is especially true if the goal is to have students develop connections in a lesson that lead to
an interconnected web of mathematical knowledge (Noss & Hoyles, 1996), rather than the
students being ‘funnelled’ into the teacher’s or textbook writer’s way of thinking. Three
ways in which teachers may assist students to develop connections in a lesson are explored
here in three different classroom scenarios about a task, Shot on goal (see box). These methods

include triadic dialogue, funnelling and focusing.

Shot on goal

You have become a strategy adviser to a group of new soccer recruits. Your task is to
educate them about the positions on the field that maximise their chance of
scoring. This means that when a player is dribbling the ball down the field, running
parallel to the sideline, where is the position that allows this player to have the
maximum amount of the goal exposed for a shot on the goal?

Initially you will assume the player is running on the wing (i.e. close to the
sideline) and is not running in the goal-to-goal corridor (i.e. running from one goal
mouth to the other). Find the position for the maximum goal opening if the run
line is a given distance from the near post. (Relevant field dimensions and a diagram
of a soccer field as well as guiding questions are provided.)

Source: (Adapted from Galbraith et al., 2007, p. 135)

Scenario 1: Triadic dialogue

The common use of triadic dialogue (Initiation—Response—Feedback) in many classrooms is
well documented. The following exchange between a teacher and Year 9 students working

on the Shot on goal task is typical of the type of questioning associated with triadic dialogue:

Teacher: Now the question says: ‘Find the angle of the shot on the run

line 20 metres from the goal line.” See if you can find where that
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20 metres should be put. [Pause| Has anyone worked out where
that 20 metres belongs? [Initiation]|

Mary: Itis AB. [Response]

Teacher: Good. Thank you very much. [Feedback]| Is that in agreement
with everybody else? [Initiation]

Several students: Uhuh. [Response|

Teacher: Good. Now that’s the first thing we need to do. [Feedback]

Source: Extract from RITEMATHS project classroom transcript (2005).

Scenario 2: Funnelling

In an effort to avoid such restricted patterns of interaction, but at the same time stay in
control of the direction of the lesson, teachers commonly engage in funnelling (Herbel-
Eisenmann & Breyfogle, 2005). This technique often gives the impression that students are
making the connections in a lesson for themselves, but this is not in fact the case, as demon-
strated by the following example of a different teacher using Shot on goal in the context of

hockey with a Year 9 class.

This is the fourth lesson the class has spent on the task. The teacher drew the
following diagram on the whiteboard before the students entered the room, and as

a class they decided the formula shown would find the shot angle.

R 15 F 3.7 N

20

Shot angle = ZNPF
= /RPN — ZRPF
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Teacher:

Ben:
Teacher:
Ben:
Teacher:

Mat:
Teacher:

Mat:
Teacher:
Abdi:
Teacher:
Mat:
Teacher:
Mel:
Sue:
Teacher:

Now, has anyone worked out where that [the formula] goes in terms
of LISTs? Which LIST would that formula be in? [referring to LISTs in
the graphics calculator used for storing and manipulating data]

The last one.

The last one. We don’t write it in that form but why is it in the last one?
Because it is the last step?

Because this is the [pause| last step. This is: “The answer is’ step, isn’t it?
|The teacher writes in large capital letters and circles ANSWER IS then
draws a four column table representing LISTs on the whiteboard with
the second and third columns headed L2, 13.| So could anyone suggest
what should be in this one [second column| and that one [third
column|if you are going to get there [fourth columnl]? [Spiro raises his
hand.| What should be in LIST 2 and LIST 3 if you want LIST 4t [Waves
at students| No, I am not going to ask you. My question was this: What
do I put here and here if I want angle NPF there [pointing to the last
column of the table he has drawn|?

RPF and RPN.

I want to put RPF there [writes on board with an arrow to column 2]
and I want to put [writes RPN on board with an arrow to column 3|,
agree?

Yeah.

How then do I calculate LIST 42

You take LIST 2 from [stops|.

I heard starters, someone?

LIST 3 from LIST 2.

So LIST 4is LIST 3 minus LIST 2, agree? [Doesn’t detect the error.|

Yes.

But what numbers do you put in LIST 2?

Yes, that’s an issue. Now we have to find out this question: How do I
find the angle in LIST 2 [writes ‘Find 12’.] How do I calculate, this is,
there’s 4 |writes ‘L4” above NPF| That’s in LIST 2 [writes 2" above RPF.



Spiro:
Teacher:
Spiro:
Teacher:
Spiro:
Teacher:

Sue and Spiro:
Teacher:

Sue and Spiro:
Teacher:
Students:
Teacher:
Students:
Teacher:

Mel:
Teacher:

Fatima:
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That’s in LIST 3 |writes ‘3’ above RPN|. How do I calculate angle
RPF [writes angle below L2.]? Yes?

Using tan.

Using tan, so what did you use? I will call this A |indicating Z RPF|.
Tan A equals 15 over 20. A equals 207",

Angle A equals [waits|?

Tan~'. No, no, 157,

OK, I am going to ask this question: Which is the number that
changes all the time? Is it the 20 or the 15 that continues to change
as the runner moves [drawing their attention to the shot spot on
the diagram by writing ‘(Runner)’ beside P|?

The 20.

The 20 moves. So sometimes this could be 20, next time it could be
[waits]?

15.

And then?

10.

And then?

3.

Or it could go 1 and 2 and 3 and 4 and 5. Where are these—1, 2, 3,
4—coming from? Of course, positions along the line, aren’t they
|drawing various dots down the run line, RP, from R|?

Yes.

So how can I get this formula [pointing to A = tanﬂ(%)] which is
really good for one case, this case [pointing to the board| to a
general formula so that it works for all these different points?
Fatima?

Ijust thought of 15 divided by LIST 1.

[The transcript continues with the teacher ‘funnelling’ students towards develop-

ing a corresponding formula for the tan of ZRPN.]

Source: Extract from RITEMATHS project classroom transcript, SOG lesson 4 (2005).
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Funnelling results in the classroom discussion converging to the thinking pattern of the
teacher. However, funnelling can also be used to scaffold students along a predetermined
path of solution and connection-making. In these circumstances, the teacher needs to make
students aware of the metacognitive purpose of the questions asked and explicitly encour-
age students to start asking themselves these same questions. As students take responsibility
for doing this, the teacher then fades the scaffolding. In the above exchange, the teacher’s
goal was to make sure all the students could ‘code it up’ (set up the problem) on their
graphics calculators, and the teacher’s funnelling was directed at bringing the class to this

point.

Scenario 3: Focusing

Herbel-Eisenmann and Breyfogle (2005) suggest using a third questioning technique,
‘focusing’, to develop students’ own connection-making. Here the teacher listens to
students’ responses and guides the discussion on the basis of the students’ thinking, not on
the basis of how the teacher would necessarily solve the task. The following transcript is
from the same classroom introduced above; however, it is taken from the first lesson when
students were beginning the hockey version of the Shot on goal task. The teacher facilitated
the students’ coming to know which angle was the focus of the task through focusing ques-
tions during a whole-class discussion when three students attempted to draw the relevant

angle on the whiteboard at the front of the room.

They began with a diagram showing a goal box on the goal line and a run line

perpendicular to this line.

Teacher: ~ Now, next part. Where do those lines go? Would someone like to come
out and show where they think they have to hit? Dave?
Abdi: Is it like the best spot?



Teacher:

Teacher:
Dave:

Teacher:
Spiro:
Ben:
Teacher:

Spiro:
Teacher:

Dave:

Spiro:
Dave:
Teacher:
Mel:
Teacher:
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Not the best spot but where he can hit the ball and still get it in.
[Dave has drawn lines from a spot on the run line to the near post and

the far post.|

Explain.

Ah, well, you can still hit that post [pointing to far goal post| and it will
still go in and you can still hit the inside of that post [pointing to near
goal post| and it will most likely go in.

OK, is there a second person would like to come out?

There is no wall around the field, is there?

There is a goalie.

Come on Spiro [holding out whiteboard pen| First debate was that’s a
solution [pointing to Dave’s diagram|. What are you going to do—
agree with the first speaker or are you going to change it?

I'am not going to agree. Hit it off the wall. Is there another wall?
What wall are you referring to?

|Spiro draws a line down the side of the field diagram. |

There is no wall. [Spiro shades the diagram on the whiteboard to
indicate a wall down the side of the field.]

That wall there.

Spiro, this is a gutter—there is no wall.

OK, now, so you are going to bounce it off the wall?

That was my idea.

Can you show me the paths that would be allowed for you?
|Spiro draws a trajectory from the shot spot to the wall then into the

goal ]
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Teacher:
Mel:
Teacher:
Mel:

Third speaker.

All right. OK, what if mine is the same as that one?

OK, yours is the same as that one. I'll give you a different coloured pen.
What will I do? [Draws an angled trajectory showing the ball bouncing
off the wall but lower down.| That’s about right.

Teacher:

Mel
Teacher:

Mike:
Teacher:

Now, where are my hockey players? Robyn? How many people play
hockey? Robyn, as a judge of these things . . .

[Interrupting|: I didn’t mean it to be that angle.

As a judge of these, which ones would you accept in a hockey game?
Mel’s? Spiro’st Dave’s?

Is there a wall there or not? [General laughter|

Is there a wall or is there not? OK, when you play hockey on a field, is

there a wall there?



Fay:
Teacher:
Cate:
Teacher:
Jo:
Teacher:

Students:
Spiro:
Teacher:
Spiro:
Cate:
Teacher:

Teacher:
Cate:

Abdi:
Teacher:
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No.

If there was a wall there, would it be inside the field or outside the field?
Outside.

Therefore, if you hit the wall it would be . . . [waits|?

It would be out.

It would be out so [walks to diagram on whiteboard] . .. Do you think
the second one and third one are acceptable hits?

Nooo!

|Clapping| All right then. I agree with Dave.

Then you agree with Dave. Why do you agree with Dave?

Because it is a straight line hit until at least it is in.

[ have a better solution.

OK, let’s hear the better solution. [Hands pen to Cate who goes out to
whiteboard.| Could you listen, please. Yeah, go for it. |Cate draws a large

dot at each goal post then a thick line across the goal mouth.|

- -

Explain to me your better solution.

Ah, because Dave said you could hit the two poles but you can hit the
ball between the poles, anywhere from this post to that post.

[Almost disdainfully| But you have got a goalie!

No, just forget that. They broke their leg over here. So what you are

saying is: It’s not just two lines? [Shades in between the two lines. |

| ]
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Dave: That’s what I meant.

Mel: That was what I was going to ask.

Teacher: What were you going to ask?

Mel: Whether Dave just meant the lines or between the lines as well.

Teacher: OK, if it is that case, which angle are we being asked to find for the best
angle? Where is the best angle? Where is this angle that is the shot on
goal angle? Would you draw it quickly freehand in the exercise book?

Source: Extract from RITEMATHS project classroom transcript, SOG lesson 1 (2005).

In this approach, students have to articulate their thinking so others can understand
what they mean. It also allows the teacher to see more clearly what students are thinking
and what connection-making they are doing for themselves. It is obvious from this tran-
script that the teacher values student thinking, and that students are encouraged to
contribute. The teacher asks clarifying questions and restates aspects of the solution to keep attention
focused on the discriminating aspects of the particular student’s solution. However, for this to be
used effectively, the teacher must be able to see the essence of a mathematical task and, on a

moment-by-moment basis, the essence of a task solution proffered by a student.

REVIEW AND REFLECT : Re-read the dialogue above. Note when the teacher is
asking clarifying questions and restating aspects of a particular solution.

Reflect on the merits or otherwise of the teacher allowing the students this
amount of time to come to an understanding of where the best angle might be for
the shot on goal.

REVIEW AND REFLECT : When observing classes, look at what happens after the
first question is posed. What interaction follows? Reflect on how you can pose
questions or ensure students pose questions for others so that all students engage

in mathematical thinking and make connections for themselves.
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Connections through mathematical applications

Curriculum documents often advocate making connections to the real world through
the use of mathematical applications for teaching and assessing (e.g. BOSNSW, 2002; QBSSS,
2001) as a means of motivating and engaging students, as well as illustrating the usefulness
of mathematics to describe and analyse real-world situations. Galbraith (1987) categorises
as applications ‘the problem type questions typical of the teaching and examining tradition’
(1987, p. 6). He sees these as serving an important—if limited—function in ‘requiring
translation, interpretation, and the successful use of relevant mathematics’ (1987, p. 6). The
limitation comes from the closed nature of the task: “The situation is carefully described,
relevant data are provided, and the student knows that each datum must be used in finding
the solution. Assumptions needed to define the outcome ... are explicitly provided.
(1987, p. 6).

The underlying assumption in selecting application examples for the classroom is that
mathematical awareness and understanding are fostered through an active engagement in
finding and applying solutions to real-life problems that fall within the sphere of students’
personal understanding. Teachers’ knowledge of students’ interests is therefore crucial in
bringing such tasks to the classroom, unless teachers allow students to pose their own
problems or the teacher chooses open tasks where the students have freedom to choose
their own pathway and pose questions of interest to themselves in solving the task.

Unfortunately, for pragmatic reasons, application problems are often presented in the
classroom with more reduced task contexts rather than a highly lifelike ones. There appear
to be three levels of embedding of context that characterise these problems. These have

been termed border, wrapper and tapestry problems (Stillman, 1998).

Border problems

For border problems, the context is merely a border around the mathematics (see Figure 3.1).
Here the supposed connection to the real world is superfluous. The mathematics and
context are in fact entirely separate, and the mathematics can easily be disembedded—once
itis realised that this is all the task entails—as the context does not obscure the mathematics

at all.
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CONTEXT

CONTEXT
1X31INOJ

CONTEXT
CONTEXT

CONTEXT
.
1X31NOJ

CONTEXT

Figure 3.1 Context as border

However, these types of problems are deceptively difficult for students, particularly in
the lower secondary years, as their form is not as transparent to many students as to the
adult who wrote them. In the Microwave ovens problem in the box below, the connection of
the mathematics to microwave ovens is merely window dressing for the mathematical task
of equating the two equations and solving for t. There is no motivation for why you would
need to do this in a real-life context. Giving an answer as a number with years written after
itis also no indication that a student is working within the context and making connections

to the real world outside the classroom.

Microwave ovens

The number of radioactive emissions from a certain faulty microwave oven is given
by N; = 64(0.5)" at t years from the time of use. The number of emissions from a
second faulty microwave is given by N, = 4'%(0.0625)' at t years from the first time of
use. Find out when both microwaves will emit the same number of radioactive
emissions.

Source: Stillman (2002).
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Wrapper problems

In wrapper problems, the mathematics is hidden within the context but the two can be sepa-
rated by unwrapping the mathematics (see Figure 3.2). The context can, in a sense, be
thrown away as the mathematics is all that is needed to solve the problem. The more
diligent problem-solver may pick up the wrapper after a mathematical solution is reached
to check that it makes sense. However, the presence of the context does make the un-
wrapping of such problems quite challenging for some students. The box on page 62 shows

an example of a wrapper problem, Road construction.

the maths » @
Do the
maths

Maybe pick

CONTEXT

Throw wrapper
. up wrapper
aside .
to verify
result

Figure 3.2 Context as wrapper
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Road construction

A new traffic lane (minimum width 6 metres) is to be added to a section of highway
which passes through a cutting. To construct the new lane, engineers need to
excavate an existing earth bank at the side of the roadway, which is inclined at 25° to
the horizontal. This will make the inclination steeper. Local council regulations will
not allow slopes greater than 40° due to the potential for erosion. Decide whether
the new traffic lane can be excavated without expensive resumption of properties
at the top of the bank, which is 7 metres above the road surface.

Source: Galbraith & Stillman (2001, p. 306).

REVIEW AND REFLECT : Read through the Road construction problem again. Give
possible reasons why it took some students just six to eight minutes to solve
whilst others took eighteen to 25 minutes. It would be helpful to look at the
different ways in which you could draw a diagram for the task.

Tapestry problems

In tapestry problems, the context and the mathematics are entwined or intermingled and the
solution process proceeds by continually referring back to the context to check you are on
track. There is always the sense that the two are very much interrelated. The upper bound
of these applications are actually true modelling problems such as the task in the box below,

Drying out.

Drying out

There are many lakes in Australia that are dry for most of the time, only filling for
short periods immediately after rain. Lake Eyre in South Australia is an example of
one of these normally dry lakes. When a dry lake bed is filled with water, how
rapidly will the lake empty?

Source: Henry & McAuliffe (1994, pp. 41-48).
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Over-use of border and wrapper problems leads to a rather impoverished view of appli-
cations of mathematics, and certainly does not foster the modes of thought associated with
the modelling of real-world situations. The teacher whose interview transcript appears

below elaborates on this issue.

Teacher: If you are going to use context, then it should always be true to
context. | mean we always set conditions anyway.

Interviewer: What do you mean you set conditions?

Teacher: Well, there is always the opportunity to set conditions. So if you are
going to give a contextualised question and you are going to give a
formula or function like that why not set the conditions so they
can make it more realistic. So that you have realised the limitations
within the question but you are saying: ‘Hey, wait a minute. This is
maths. It does apply to the context but the maths can overwhelm
the context in some ways. We have considered that. Here are the
conditions to make it more realistic.’ In that one [referring to a task
about the height of a tree producing cabinet timber being modelled
by a cubic function|, rule out the negative. It is considered, then,
that maths can go beyond reality.

Interviewer: You don’t think it gives them the message that you are just
required to do these things and therefore you have tried to stick
them in a context but the context is something that is irrelevant?

Teacher: Kids believe that because it is considered the norm of mathematics.
They believe they will get questions that may not make sense to
them but they know it has to be mathematical.

Interviewer: Where would they develop that idea from?

Teacher: Going through school, right through from junior |high school|.
Right through . .. Context is just a coat that they wear.

Source: Stillman (2002).

In Chapter 14, we discuss the influence of socioeconomic status on students’ interpreta-

tion of the context of such problems. In particular, there is evidence that students from low
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socioeconomic backgrounds rely too heavily on personal experience of contexts and find it

difficult to ‘unwrap the mathematics’.

REVIEW AND REFLECT : In small groups, examine the application tasks in a math-
ematics textbook. Categorise them as border, wrapper or tapestry problems. Report

your findings to your peers.

Applications problems in the secondary setting can provide a useful bridge between the
contextualised practice problems of the past and full-blown modelling tasks. In the busy
classroom, it is frequently not possible to explore and model real situations. Often the situa-
tion is simplified to make it more approachable with regard to the skill level of students, so
the ‘real situation’ that is being modelled is ‘pseudo-real’ at best. However, reducing the
realism may prevent students from posing and asking questions, making simplifying
assumptions, generating and selecting variables, and formulating the mathematical model

themselves.

REVIEW AND REFLECT : Re-read the Drying out problem above. White (n.d.)
restated the problem as: ‘Find how long it takes the lake to become dry again. We
expect the answer to be in days.’

In groups, brainstorm the problem. Generate a list of variables involved. Select
from these those that will be considered in an initial model of the situation.

Read the article by White, discussing the suggested classroom techniques for
carrying out this modelling task.

Connections through mathematical modelling

As Kaiser and Sriraman (2006) show, there is wide variation in what is meant by the term
‘modelling’ in mathematics education. This causes difficulties for teachers, students and

assessors when modelling is expected to form a significant part of the curriculum. One
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interpretation sees a role for mathematical modelling primarily for the purpose of motivat-
ing, developing and illustrating the relevance of particular mathematical content (e.g.
Zbiek & Conner, 2006). Alternatively, mathematical modelling can be seen as an approach
in which the modelling process is driven by the desire to obtain a mathematically produc-
tive outcome for a problem with genuine real-world motivation (e.g. Galbraith & Stillman,
2006; Pollak, 1997; Stillman, 2006). At times this is directly feasible, while at other times the
descriptor ‘life-like’ is more accurate. The point is that the solution to such a problem must
take seriously the context outside the mathematics classroom, within which the problem is
located, in evaluating its appropriateness and value (see Galbraith et al., 2006). The learning
goal is to support the students’ development of modelling competencies as modelling itself
is considered to be content.

In the latter view, mathematical modelling involves more than just application
problems. It is a process that students work through, and the techniques and meta-
knowledge about applying mathematics gained in this process are as important as the
eventual solution. Many secondary textbooks take the approach of mathematical theory
followed by examples, purely mathematical practice exercises and then the mathematics
just covered embedded in contextualised problems. According to Blum and Kaiser (1984),
‘when we start with situations which have already been idealized, the resulting mathemat-
isation appears almost compulsory, which is practically a falsification of any genuine process
of modelbuilding’ (1984, p. 213). Applications problems of this nature circumvent the
modelling process to a large extent. A purely applications approach does not engender the
cultivation of the metaknowledge about applying mathematical processes which accom-
panies the modes of thought associated with modelling real-world situations. Two
motivations for adopting a modelling approach at the senior secondary level are the impact
of technology such as graphics and CAS calculators (discussed in Chapter 4) and the oppor-
tunity modelling affords of making mathematics relevant through connections to the real
world. This approach to modelling has been adopted in curriculum documents in some

states, as the following interview with a Queensland teacher indicates.

Interviewer: Where did the motivation for introducing applications and mathe-
matical modelling into the upper secondary school curriculum in

the mid- to late 1980s come from?
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Teacher:

Interviewer:

Teacher:

Up until that time it was just Maths I and Maths II and Maths in
Society which was very traditional and very abstract whereas the
new A, B and C syllabus was all about providing real-life opportuni-
ties for the kids to be able to see the relevance of mathematics,
I suppose, and to apply the mathematics rather than just drawing
a graph. And I suppose the other side of it was the technology . ..
I think that has been a big driving thing, the fact that you have the
technology that you can then explore real-life situations and
the kids can actually get down and get dirty in the mathematics
rather than everything being really nice and neat. Because up until
that stage, like in the old syllabus, because they didn’t have that
facility, everything was always pretty much nice. You used to spend
adouble period drawing a graph [laughs|. What is even scarier is that
there are still some schools who do that, but that is another story.
Why was the introduction of applications and modelling con-
sidered to be a valuable initiative at the senior secondary level?

One of the big things between the old syllabuses . . . and the new
ones ... the kids were always asking: “Why do we do this? What’s the
point of all this? Where am I ever going to use this? ... The old
syllabus was very much content driven whereas the new syllabus
and, even down the track and as I understand it more and more, it’s
more about understanding concepts and how the concepts relate to
each other. And mathematical modelling allows you to build the
understanding of the concepts. The content is important and you
need the content but it is the application of that content in a way
that is meaningful and the kids can make sense of that. So thereis a
purpose for it. There is a relevance to the mathematics that they are
doing and the kids can see that. Nowadays, unless the kids can see a
reason for doing something they just park up [refuse to budge|. You
will get the small handful of kids who will just jump through any
hoop that you give them but the vast majority of kids, unless there

is a reason for doing it, they just won’t engage.

Source: Extract from CCiSM project interview (2005).
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The modelling process

Although application problems can require the problem to be translated into a suitable
representation, a mathematical model formulated and relevant mathematics used success-
fully in solving the problem and validating the solution, there are important aspects of
modelling that are omitted in this process. These are crucial to the modelling task and
vital for students to develop their own repertoire of modelling techniques. Treilibs et al.
(1980-81) and Klaoudatos (1994) have argued that modelling ability is different from
conventional mathematics ability, and their research showed that facility with conven-
tional mathematics was no indication of students’ modelling ability. Students who are
very successful at conventional mathematics are often the most resistant to change from
traditional pedagogy to a modelling approach (Clatworthy & Galbraith, 1989). Clatworthy
comments in an interview that ‘you become so locked into being successful in the standard
mode of mathematics that you become too scared and too tight mentally to look at the
processes that are involved in modelling’ (1989, p. 102).

With most modelling situations (e.g. the ‘Mad Cow’ disease example below), the task
is not so constrained that only a limited number of possible mathematical models can be
used in the solution, as is the case with applications problems. The process of defining the
real-world problem in such a way as to allow it to be explored and investigated is crucial to
modelling. Questions need to be asked about what has to be known and what tools are
available to try to solve the problem. Specific assumptions made in reducing the problem to
a manageable mathematical model must be identified. Decisions have to be made about
which variables are important and which can initially be ignored in simplifying the
problem. The modellers make these decisions—they are not made for them, as happens in
applications problems. Also, when the particular problem has been solved by the modeller,
the validation process requires testing with a different data set from that used in the model
development. The model may need modification if there are inconsistencies with empirical
test data or if it is felt that the simplifying assumptions have produced a model that is
too unrealistic or undesirable to be useful. The modeller is thus required to explore
the strengths and weaknesses of the model, clearly communicating any limitations to

possible users.
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really is quite messy (Clements, 1989). In reality, following a sequential modelling cycle

refined model of the situation may be a long way from what really happens. The phases of
the process are all interconnected and a particular mode of attack can lead directly from

one phase to any other phase. Some sense of this complexity is necessary if students are to develop the meta-
p y p iplexity Y 4
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‘Mad Cow’ disease

CJD (Creutzfeldt-Jakob disease) is a fatal brain disease of humans first classified in
the 1920s. In 1996, doctors in the United Kingdom reported a variant of the disease,
vCJD. Research since suggests that vCJD is the result of exposure to the agent that
causes the cattle disease commonly called ‘Mad Cow’ disease. Parts of the brain are
destroyed—hence the name. This is caused by abnormal versions of agents called
prions which build up over time as they are resistant to the body’s normal mecha-
nisms for breaking them down. They can join together into sheets (or fibrils) that
destroy the nervous tissue around them. It is also possible that the presence of
abnormal prions increases the probability that further ones will be produced. The
height of mad cow disease in the United Kingdom was the mid-1980s. The first cases
of vCJD occurred in the mid-1990s. Once symptoms are displayed, the sufferer
generally survives around two years.

By 4 August 2006, there had been a total of 156 definite and probable recorded
deaths of vCJD in the United Kingdom. In 2001, Lawson and Tabor reported that
the Government Chief Medical Officer was still saying that the final toll was likely
to be between ‘hundreds and hundreds of thousands’. Is it possible that there really
is this number of sleepers out there in the general population who are infected with
vCJD but who are yet to display the symptoms?

Source: Adapted from Lawson & Tabor (2001).

Although several simple sequential cycle frameworks of the modelling process (e.g.

White, n.d.—see Figure 3.3) have been developed, when the process is studied holistically it

from analysis of the real-world situation through several iterations of the cycle to develop a

knowledge associated with modelling.
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Source: White (n.d., p. 8).
Figure 3.3 The modelling process

REVIEW AND REFLECT : Work in small groups on the ‘Mad Cow’ disease modelling
problem presented above. Statistics on CJD in the United Kingdom are available
from <www.dh.gov.uk/PublicationsAndStatistics/Statistics/fs/en>. Reflect on the
processes you used in the light of the modelling cycle developed by White (n.d.).
How adequately does it describe the complexity of your thinking?

Modellers need to be continually aware of the connections between the situation being
modelled and the mathematical activity taking place, with some validation of the partially
complete model occurring at each stage. In essence, validation then becomes a regulatory or
controlling activity (i.e. it is metacognitive—see Chapter 2), affecting the whole modelling
process. Recent research (e.g. Galbraith & Stillman, 2006; MaaB, 2006) confirms the presence
of this metacognitive activity, even when students are beginning modellers in Year 9.

Figure 3.4 shows how this regulatory mechanism monitors the modelling processes
throughout the solution. It is still possible to follow the cycle sequentially as before, but
now deviating or backtracking via the regulatory mechanism and bringing into play a
continual process of reconsidering possible assumptions, strategies, actions and their results

in terms of other components in the modelling activity are highlighted. The links between


http://www.dh.gov.uk/PublicationsAndStatistics/Statistics/fs/en
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the problem context and the regulatory mechanism are thicker to show the importance of
carrying out this reconsideration in terms of the original problem specification. Connec-
tions between the real world and the mathematical world are continually being made to
lessen the sense of separation present in other frameworks. This separation often reinforces
the notion that context is at best a wrapper for the mathematics, leading to failure by many
students to make the connections and use the context as a means of monitoring the

solution process throughout (Stillman, 2002).

REAL WORLD REAL/MATHS LINKS MATHS WORLD
Specify the Makg Formulate Fhe
p| assumptions p| mathematical
real problem .
in model problem
A A
A4
REGULATORY
MECHANISM
Validate processes
and products
A
h 4 h 4
Communicate: Solve the
Interpret the .
use modelto |« . < mathematical
. . solution
explain, predict, model
decide, design,
desist...

Source: Stillman (1998, p. 245).

Figure 3.4 Mathematical modelling framework incorporating

regulatory mechanism

Modelling sub-skills

As modelling ability differs from conventional mathematical ability, it is imperative that the
component skills that characterise modelling competency (MaaB, 2006) be fostered in the
classroom, both by being the focus of particular instruction and through application in

modelling tasks. The sub-skills include:
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* formulating the specific question to be answered mathematically;

* specifying assumptions associated with mathematical concepts or the modelling
context;

* identifying important variables or factors;

* modelling different aspects of objects;

* modelling different aspects of situations;

* generating relationships;

* selecting relationships;

* making estimates;

* validating results;

* interpreting results.

Tasks that focus on the development of specific sub-skills can be developed from discus-
sions of solutions to modelling tasks such as Drying out (White, n.d.) or Modelling comparative
Olympic performance (Galbraith, 1996). In his analysis, Galbraith provides examples of making

four distinct types of assumptions, those associated with:

* mathematical concepts (e.g. a shot in shot put can be treated as a free projectile);

* mathematical detail (e.g. the range of a projectile varies only slowly with the
angle of projection);

* the modelling context (e.g. 172 centimetres is a representative height for a female
hurdler); and

* major leaps in the solution process (e.g. 10 per cent is a reasonable estimate to

compensate for air resistance).

The journal Teaching Mathematics and Its Applications, is a prolific source of such examples that
can be adapted and modified for teaching of specific sub-skills.

Often the same object can be modelled by a variety of models, depending on the situa-
tion being investigated. A person, for example, could be modelled by a cylinder with a
particular diameter and height if we wanted to know how much space had already been
taken up in heaven, or alternatively by a rectangle if we were considering legal specifications
for the size of entrance and exit doors which may or may not be rectangular. Here is an

example from Stacey (1991) of a task to develop students’ formulation skills.
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Developing formulation skills
Match the models with the appropriate situations.

Models of the Earth Situations being investigated

A. Stationary point a. Eclipse of the moon

B. Stationary straight line b. Driving with a road map around

Melbourne

C. Stationary plane c. Propagation of earthquakes

D. Point revolving around sun d. Aball thrown through the air

E. Circle (or disc) e. Eclipse of sun

F.  Sphere filled with layers of f. Calculating how far you can look out
material to sea from a cliff

g. Sending a probe to intercept Halley’s

comet

Construct a similar task where a variety of different models are appropriate for
something (e.g. a person) when different situations are being investigated (e.g. an

opinion poll or hurdling).

REVIEW AND REFLECT : As a beginning teacher, it is useful for you to both be able
to make resources suitable for your students and other teachers to use, and to
familarise yourself with the applications of mathematics in different workplaces.
Gather information or data about the use of mathematics in the workplace by
visiting a commercial or industrial site. From this information, develop a resource
designed by you for students in Year 9 or Year 10 addressing topics in the mathe-
matics curriculum guides for your state. Incorporate technology use into your
resource where practical and appropriate. Provide teacher notes and solutions to

student tasks.
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Conclusion

In this chapter, we have endeavoured to highlight ways to facilitate students’ ability to
understand the world from a mathematical perspective. In particular, we have looked at
developing connections across the transition from the primary to lower secondary years,
from their mathematics classrooms to doing mathematics in other curriculum areas
and making connections within mathematics itself. In later chapters, these ideas will be

explored further.
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CHAPTER 4

Effective use of technologies
in mathematics education

In 1999, the state, territory and Australian government Ministers of Education agreed on a
set of goals for schooling in Australia in the twenty-first century. Along with expectations
that students will develop high standards of knowledge and skills in the key learning areas,
including mathematics, they specified eight general goals for learning, one of which was for
students to ‘be confident, creative and productive users of new technologies, particularly
information and communication technologies [ICTs|, and understand the impact of those
technologies on society’ (Ministerial Council on Education, Employment, Training and
Youth Affairs, 1999). As a consequence, most state and territory education authorities now
regard facility with ICTs as one of the essential capabilities that young people should acquire
in order to participate successfully in contemporary social, economic and cultural life (e.g.
Department of Education and the Arts, Queensland, 2004; Department of Education and
Children’s Services, South Australia, 2001; Victorian Curriculum and Assessment Author-
ity, 2004b).

In the 1990s, mathematics curriculum policy in Australia began to promote the use of
technology to aid students’ learning and understanding of mathematics (Australian Educa-
tion Council, 1990). The intent of this national policy framework is reflected in the various
state and territory mathematics curriculum statements and syllabuses that permit, encour-
age or expect the use of technologies such as computers, graphics calculators or calculators
with computer algebra systems (CAS). The mathematics teaching profession in Australia
also recognises that teachers need knowledge of a range of technologies, and that excellent

mathematics teachers are able to use technologies to make ‘a positive difference to the
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learning outcomes, both cognitive and affective, of the students they teach’ (Australian
Association of Mathematics Teachers, 2006).

Technologies currently used in secondary school mathematics education include
mathematics-specific hardware (e.g. hand-held graphics calculators and CAS calculators),
mathematics-specific software (e.g. graphing, statistics and dynamic geometry software),
general-purpose software (e.g. spreadsheets) and the internet. The continuing development
of new hardware and software, and the emergence of new technologies such as interactive
whiteboards and personal digital assistants (PDAs), make this an exciting time to be a
mathematics teacher. To become effective users of technology in mathematics education,
however, teachers need to make informed decisions about how and why to integrate differ-
ent types of technology into their classroom practice in order to support students’ learning
of mathematics. We begin this chapter by identifying and illustrating ways in which
technology can enhance student learning, and then discuss some of the implications
of technology use for mathematics curriculum, pedagogy and assessment. The chapter
concludes by considering some problems and challenges in creating technology-rich class-

room learning environments.

REVIEW AND REFLECT : Before reading any further, record your own views about
learning mathematics with technology. Do you think secondary students should be
allowed to use scientific and graphics calculators when learning mathematics? Are
computers a useful learning tool? What might be some benefits and disadvantages
in teaching and learning mathematics with technology? Then ask other adults
(teachers and non-teachers, if possible] and some school students what they
think. Discuss your views and findings with other pre-service teachers in your
class.

Potential benefits of learning mathematics with technology

Education researchers recognise the potential for mathematics learning to be transformed
by the availability of technology resources such as computers, graphics calculators and the
internet (see Arnold, 2004; Burrill et al., 2002; Forster et al., 2004; Goos & Cretchley, 2004 for
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reviews of recent research). In Australia and internationally, teacher organisations encour-
age the use of technologies as natural media for mathematics learning. For example, the
Australian Association of Mathematics Teachers’ (1996) policy statement on the use of
calculators and computers recommends that ‘all students have ready access to appropriate
technology as a means both to support and extend their mathematics learning experiences’
(see National Council of Teachers of Mathematics 2000 for a US perspective). Issues specific
to the use of graphics calculators were discussed at a special conference organised by AAMT,
where it was agreed that teaching with graphics calculators enhances students’ learning by
encouraging an understanding of mathematics as richly connected concepts (Australian
Association of Mathematics Teachers, 2000; Morony & Stephens, 2000). Let us explore some

of the specific ways in which technology affords learning opportunities in mathematics.

Learning from instant feedback

Learning is assisted by the instant feedback that technology can provide. Figure 4.1 shows
how using a spreadsheet to investigate the effect of compound interest on saving allows
students to experiment with different interest rates, initial investments and monthly
deposits by changing these amounts or formulae and observing how the dependent values

are modified.

Figure 4.1 Spreadsheet for investigating compound interest
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Using a spreadsheet

1. Use Excel software to reproduce the spreadsheet shown in Figure 4.1. The
spreadsheet shows the monthly balance in a savings account where a person
has invested $3000 at 5 per cent interest, compounding monthly, and adds
$100 per month to the account. Design a task with instructions for students that
will lead them through an investigation of the effects of changing the principal,
interest rate or amount of monthly savings. Include activities that would help
students develop knowledge of compound interest needed for the spreadsheet
investigation.

2. Spreadsheets are an important tool for investigating many topics within
financial mathematics, such as budgeting, investing, borrowing money, and
calculating income tax. Identify the financial mathematics topics in your local
mathematics curriculum documents. Select one topic and devise an application

or modelling task (see Chapter 3) that makes use of spreadsheets.

Observing patterns

Technology can also help students to understand patterns, such as those related to linear
functions where there is a constant rate of change. For example, when asked to compare
mobile phone company charge rates (see the box below), students might make a table of
values for minutes and costs for each company, enter these into their graphics calculator and
plot the points. They might then describe the two patterns verbally, write equations for the
costs, and check these equations by plotting them on the same axes as the points originally

graphed.

Comparison of mobile phone company charge rates

Phones-R-Us is a new mobile phone company that offers phone services for $15.00
per month plus $0.10 for each minute used to make calls. Long-established market
leader Telecorp has no monthly fee but charges $0.45 per minute for calls.
Compare the two companies’ charges for the time used each month. If you are

currently a Telecorp subscriber, should you change to Phones-R-Us?
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No. minutes 0 10 20 30 40 50 60
Phones-R-Us $15.00 $16.00 $17.00 $18.00 $19.00 $20.00 $21.00
Telecorp $0.00 $4.50 $9.00 $13.50 $18.00 $22.50 $27.00
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Devise a graphics calculator task similar to the mobile phone investigation that will
allow students to explore linear functions as models of real-world situations. (See
Geiger, McKinlay & O’Brien, 1997, 1999 and Goos, 2002 for examples.)

Making connections between multiple representations

Technology makes it possible for students to see connections between multiple representa-
tions of a concept and to gain insights into abstract entities such as functions. Graphing
software or graphics calculators can be used to explore families of functions represented
symbolically, graphically and numerically (in tables) much more quickly, and with much

less chance of error, than if this task was done by hand (as in Figure 4.2).
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Figure 4.2 Symbolic, graphical and numerical representations of the

family of functions represented by y = x* * ¢
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Working with dynamic images

Technology supports inductive thinking by allowing students to quickly generate and
explore a large number of examples, and make conjectures about patterns and relation-
ships. This process is greatly enhanced when students work with dynamic images or use
interactive tools that can change the appearance of the mathematical objects on screen.
Figure 4.3 illustrates how scrollbars inserted in an Excel spreadsheet can be used to vary the
parameters in equations describing trigonometric functions and draw conclusions about
related changes in amplitude, period, phase shift and vertical displacement of the related

graphs.

Figure 4.3 Excel spreadsheet with scrollbars for investigating properties

of trigonometric functions

Dynamic geometry software provides tools for constructing geometric objects in two or
three dimensions and then manipulating these objects—for example, by ‘dragging’
vertices—to identify invariant properties. An example is provided in Figure 4.4, which

shows the results of generating many examples of triangles and calculating the sum of their
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internal angles. The internet also offers many useful sites where students can work with
dynamic images of various kinds. Figure 4.5 shows a segment of a virtual manipulative
website that enables students to interact with visual objects to develop an understanding of

symmetry, transformations and other spatial concepts.

Figure 44 Dynamic geometry software screen display for investigating

the angle sum of triangles

REVIEW AND REFLECT : Prepare an investigation of facial symmetry using digital
photographs and image manipulation software such as Adobe Photoshop, Paint
Shop Pro, scanning software, or good quality drawing software (see Todd Edwards,
2004, for an example of an investigation). Discuss any issues you may need to
consider in using photographs of teachers, students or celebrities whose images
can be found on the internet.
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Source: National Library of Virtual Manipulatives, <www.matti.usu.edu/nlvm>.

Figure 4.5 Exploring rotation

Exploring simulated or authentic data

With access to technology, students are no longer limited to working with simple data sets
contrived by the teacher or textbook to make calculation easier. Computer software or
graphics calculator programs can be used to simulate random phenomena, such as tossing
coins and rolling dice, or to construct randomising devices like a spinner with sectors of the

same (or different) area (Figure 4.6).

Figure 4.6 A spreadsheet simulation of a spinner


http://www.matti.usu.edu/nlvm

82 MATHEMATICS PEDAGOGY, CURRICULUM and ASSESSMENT

REVIEW AND REFLECT : Find out how to generate random numbers using a
spreadsheet or graphics calculator and investigate ways of using these functions

to generate random data for different situations.

An enormous range of authentic data sets is now available from internet sites. The
Australian Bureau of Statistics website at <www.abs.gov.au> offers data sets and other
education resources suitable for secondary mathematics classrooms. Students can collect
their own data through this website via the CensusAtSchool project, which encourages
students to respond to questions of interest about themselves and then investigate samples
of the response data from the total population of responses received Australia wide.
Figure 4.7 shows some of the questions asked in the 2003 CensusAtSchool. Each question
is linked to a page displaying the corresponding table of results and spreadsheets that can

be downloaded for further analysis.

Figure 4.7 Some questions asked in the 2003 CensusAtSchool

Data collection becomes even more realistic when students use data-logging equipment,
such as motion detectors and probes that measure temperature, light intensity, pH,

dissolved oxygen, heart rate and the frequency of sound waves, to investigate physical


http://www.abs.gov.au
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phenomena and the mathematical relationships that describe them. Using these tech-
nologies, students can discover that the rate at which hot water cools can be modelled by an
exponential function and the motion of a pendulum by a trigonometric function (see
Figure 4.8a and 4.8b). The instruction booklets that come with data loggers usually provide
examples of classroom activities, worksheets for students, sample solutions to the questions
asked, and suggestions for making connections with other curriculum areas. Other

resources can be found on calculator company websites (URLs are listed at the end of

this chapter).
LLtiLe DCH) Fi
A
=0 W=MEHR n=n Y=.E4H
Figure 4.8a Modelling cooling with Figure 4.8b Modelling periodic motion
an exponential function with a trigonometric function

Digital photographs and movies also help bring into the mathematics classroom real-
world situations that can be analysed with the aid of commercially available software or free
software downloadable from the internet (see Hyde, 2004; and Pierce et al., 2005 for a list of
sites). Data relevant to students’ lives can be captured from pictures or movies to study a
wide range of mathematics concepts, such as functions, ratio, similarity and transform-

ations, Pythagoras’ Theorem, calculus, and concepts of position, velocity and acceleration.

Visualisation

A common characteristic of each of the above applications of technology is the opportunity
for learners to visualise mathematical concepts. Students can observe changes in numbers, see
patterns, and view images of geometric figures, relationships and data. Visualisation as a

means of learning mathematics has gained more prominence through the use of technology,
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and visual reasoning has become more widely acknowledged as acceptable practice for
mathematicians in the mathematical discovery process (Borba & Villarreal, 2005). Teachers
may take it for granted that students are adept at visualisation and that visual images will
help them to understand. However, not all students have highly developed visualisation
skills, so teachers may need to direct students’ attention to the important elements of the
image. Because students may misinterpret an image and hold on to their misconceptions,
teachers also need to scaffold students’ use of visualisation and interpretation. Some
examples of difficulties or misconceptions that may arise in these learning environments or
the ways in which teachers may scaffold learning are provided in Chapters 9, 10 and 11 in the
contexts of geometry, algebra, and chance and data. Visualisation and the use of visual

reasoning are discussed in Chapter 9.

REVIEW AND REFLECT : Use a digital camera to take photographs of a bridge in

your local community or search the internet to obtain pictures of well-known

bridges (e.g. Sydney Harbour Bridge, Story Bridge, Golden Gate Bridge ).

* Print the images and use ‘by hand’ methods to find a function that models the
main arch of the bridge.

 Download one of the free programs listed in the articles by Hyde (2004] and
Pierce et al. (2005) and use this software to find a function that models the
same bridge.

* Compare the functions you obtained by the two different methods, commenting
on any similarities or differences. Discuss with fellow students any advantages

and disadvantages of the ‘by hand’ and technology methods you used.

Finding and sharing mathematics

In previous sections, the internet has been represented as a library of resources for lesson
preparation and classroom activities. However, teachers often have little time to search for
ideas or information, or they may lack confidence in evaluating what they find on the
internet. For this reason, it is helpful to have a list of a few well-established sites recom-
mended for secondary mathematics teaching, such as those we have already mentioned in

this chapter. Others worth adding to your list are:
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* the NRICH site, which operates like an online mathematics magazine:
<http://nrich.maths.org.uk>;

* the St Andrews History of Mathematics site, which includes biographies of mathe-
maticians as well as historical material: <www-groups.dcs.st-and.ac.uk/~history>;

* the Math Forum site, which offers problems, puzzles, online mentoring and

teacher discussion areas: <www.mathforum.org>.

(See Dengate, 2001 and Herrera, 2001 for information on additional recommended sites; and
Handal et al., 2005 for a practical approach to evaluating online mathematics resources.)
The internet is also a networking tool that makes it possible for many people to collab-
orate and combine their efforts to solve mathematical problems. An example is the Noon
Observation Project, which invited students from around the world to investigate the
geometric method used by Eratosthenes to estimate the circumference of the earth. This
required measurements made at different geographic locations of the length of a shadow
cast by a metre rule. Students measured the shadow at high noon at their own location,
used this to work out the Earth’s circumference, and submitted their data via the project’s

internet site (<www.ed.uiuc.edu/noon-project>).

REVIEW AND REFLECT : Do some research on approaches to evaluating the
educational worth of internet sites (e.g. see Handal et al., 2005). Design an evalua-
tion form and use it to evaluate some of the sites mentioned in this chapter.

Technology and curriculum

The introduction of new technologies into mathematics education inevitably raises ques-
tions about the kinds of knowledge and skills that are valued and worth keeping in the
curriculum, and those that could perhaps be de-emphasised. However, this is not a new
phenomenon. For example, manipulation of base ten logarithms, once taught as a labour-
saving technique that enabled students to perform operations on large numbers,
disappeared from the junior secondary curriculum when scientific calculators became

widely available in schools in the mid-1970s.


http://nrich.maths.org.uk
http://www.mathforum.org
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REVIEW AND REFLECT : Technology needs to be used intelligently with text
resources, whether or not these resources have been designed with technology in
mind.

Many modern mathematics textbooks come with CDs and websites offering
technology-based classroom activities. Evaluate some of these resources in the
light of the potential benefits of learning mathematics with technology outlined
above. To what extent do the CDs and websites add value to the textbook?

Some schools may still be using older textbooks that do not explicitly support
the integration of technology into mathematics education. Select a chapter from an
older textbook and design appropriate technology-based activities to supplement
or replace the existing text-based exercises and activities.

REVIEW AND REFLECT : Complete the following quiz (adapted from McKinlay,
2000]) by indicating your preference along the continuum at the right of each state-
ment.

Junior secondary mathematics students should be allowed to use digital tech-
nology (a graphics calculator, CAS calculator or computer software) to:

Never Always
Graph linear functions < -
Graph quadratic functions < >

Find the roots of quadratic equations

A
Y

Perform linear regression

\
(

Perform quadratic regression

|
Y

Calculate the mean of a set of raw data

A
Y

Calculate the mean from a frequency table

A
Y

Calculate the median of a set of raw data

\
/

Calculate the median from a frequency table <
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Never Always

Construct a histogram < >

Ly

Write and run simple programs

A

Download programs from the internet

A

L.
’

Expand and simplify algebraic expressions

A

Factorise algebraic expressions

A

Solve equations

/
Y

Draw geometric shapes

A
Y

Verify geometric properties or relationships

Y

Calculate with number including fractions

\
(

Measure angles and other attributes of <
geometric figures

Compare and discuss your responses with your group. How did individuals justify
their opinions about student use of digital technology?

Recent discussions amongst Australian mathematics educators converge on the view that
curricula must continue to focus on important areas of mathematics while emphasising
mathematical communication and reasoning, and that good curriculum design should take
advantage of all kinds of technology as tools for learning (Morony & Stephens, 2000). While
technology should not drive curriculum, it can certainly influence what mathematics is

taught. There are three ways in which this might happen.

What can be omitted?

Some skills and procedures that can be performed using technology may require less
emphasis, become optional or become redundant—especially if, in the past, they were the
only methods available. For example, knowing how to manually complete the square is no
longer the only way for pre-calculus students to find the turning point of a quadratic
(Figure 4.9a) and finding logarithmic solutions to exponential equations might not be

considered essential when they can be obtained graphically (Figure 4.9b).
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Figure 4.9a Finding the turning point of a Figure 4.9b Solving the equation
quadratic function 5000 X (0.758)* =1

Kissane (2001) has argued that, in a CAS environment, the traditional focus on teaching
students how to manipulate expressions and solve equations algebraically should give way
to a greater emphasis on helping students to express relationships algebraically, formulate

equations and interpret the solutions.

What can be added?

In some cases, the curriculum can be extended to remove previous limitations—for
example, having access to graphics calculators or computer software makes it possible to
work with non-integer coefficients for quadratics, combinations of functions and large data
sets. New approaches can also be introduced to tackle tasks that would not otherwise be
accessible to students: curves can be fitted to real data, iterative procedures can provide
scope for numerical analysis of problems not amenable to algebraic methods, and financial
scenarios can be investigated using the graphics calculator’s time-value-money module.
Opportunities arise to investigate more complex application and modelling problems that
demand consideration of assumptions, decisions about the appropriate degree of accuracy,

and evaluation of the validity of models.

How can the sequencing or treatment of topics be changed?

Access to graphics calculators makes it possible to use graphical approaches to build under-
standing before moving into analytical work, such as in solving systems of simultaneous
equations. Before learning the standard algebraic solution techniques, students can first gain
experience in drawing the graphs of two straight lines and finding their point of intersection,

thus reinforcing the key concept that there is only one point whose coordinates satisfy both



Effective use of technologies in mathematics education 89

equations simultaneously. Similarly, graphical treatment of simple optimisation
problems—such as finding the maximum area of a rectangle with fixed perimeter—makes
these ideas accessible to junior secondary students without the need to invoke calculus

concepts (see the box below).

Finding the maximum area of a rectangle with fixed perimeter
I have 20 m of wire with which to fence a rectangular garden. What are the dimen-
sions of the largest area that can be enclosed?

l

b+ =10

, b= 10— 1
A=1Xb
= (10 — I)

A graphics calculator can be used to generate data on lengths and corresponding
breadths and areas (Screen 1). The relationship between area and length is repre-
sented via a scatterplot (Screen 2) and the area function is plotted over these points
(Screen 3). The maximum area is found by tracing along the curve or querying the

calculator directly (Screen 4).
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Although we have argued that the use of technology can have a positive effect on students’
learning of mathematics, teachers also need to recognise that the features and functionalities
built into new technologies can influence the curriculum in unanticipated and perhaps un-
desirable ways. To illustrate this point, consider the capacity of graphics calculators to fit
regression model equations to data stored in lists and to calculate the corresponding
R-squared values as a measure of goodness of fit (as in the cooling curve example shown in

Figure 4.8a). Students who simply try out a range of regression models and use only the
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R-squared value to determine the most appropriate model are relying on the calculator’s
‘black box’ algorithms rather than mathematical reasoning, and they risk choosing a model
that does not make sense (e.g. one that predicts a cup of hot water will boil after cooling).
Without skilful teacher intervention, these easily accessible calculator functions can encourage
students to take a purely empirical approach without learning how to justify their reasoning.
Taking an even broader perspective on curriculum design, it is important for control of the
curriculum to remain in the hands of educators rather than being unduly influenced by
commercial interests or entities that produce educational resources. (Issues regarding

curriculum content and curriculum decision-making are explored further in Chapter 5.)

Technology and pedagogy

Many research studies have investigated the effects of technology usage on students’ math-
ematical achievements and attitudes and their understanding of mathematical concepts,
but less is known about how students actually use technology to learn mathematics in
specific classroom contexts or about how the availability of technology has affected teaching
approaches. In this section, we draw on our research in Australian secondary school mathe-
matics classrooms to describe various modes of working with technology by using the
metaphors of technology as master, servant, partner and extension of self (Goos et al., 2000, 2003).

Teachers and students can see technology as a master if their knowledge and competence
are limited to a narrow range of operations. In fact, students can become dependent on the
technology if their lack of mathematical understanding prevents them from evaluating
the accuracy of the output generated by the calculator or computer. As one student
commented: ‘Sometimes you learn a technique using technology that you don’t really
understand, and then you don’t grasp the concept.’

The way in which technology could prove the master for teachers became clear during
observations of one of the research project classrooms. This teacher admitted very little
expertise with using a graphics calculator, to the extent that he regularly called on a student
‘expert’ to demonstrate calculator procedures via the overhead projection panel. While
the teacher lacked confidence in the use of technology, he nevertheless retained tight
control of the lesson agenda through the medium of the student presenter, often providing
the mathematical commentary and explanations accompanying the student’s silent

punching of the calculator keys. Because of syllabus and research project expectations, this
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teacher felt obliged to include technology-based learning activities in his lessons; however,
his own lack of knowledge and experience in this area made him reluctant to allow students
to use technology other than to reproduce the demonstrated keystrokes.

Technology is a servant if used by teachers or students only as a fast, reliable replacement for
pen and paper calculations. For example, students in our research project commented that
technology helped with large and repetitive calculations, allowed them to calculate more
quickly and efficiently, reduced calculation errors, and was useful in checking answers. From
the teacher’s perspective, technology is a servant if it simply supports preferred teaching
methods—for example, if the overhead projection panel is used as an electronic chalkboard
that provides a medium for the teacher to demonstrate calculator operations to the class. We
observed a more creative approach in one of the research project classrooms during a Year 11
lesson on matrix transformations. Students were supplied with the worksheet in Figure 4.10,
and the teacher physically demonstrated the results of several matrix transformations using

transparent grid paper, plastic cut-out polygons and the overhead projector.

Place a plastic polygon on the grid so that each vertex lies on
A(2,4) an integer coordinate position. This shape can be manipulated
to any number of integer positions.

D(4,3 .
(4.3) Consider each vertex as a vector;

/ e.g.A(2,4) can be thought of as a = <Z>

B[1|,1] C(4,1)

From the list of 2 X 2 matrices below choose one. Apply this matrix to the vertex vectors and reposition your polygon to
the new coordinates. Try to identify what each matrix transformation does geometrically. Follow up by trying to identify
from the arithmetic elements of the matrices why your polygons were transformed in the way they were.

(5 e (28) e (2 0)o-(27)

1 - 13 -1 -\3 -1 V3
\/5\/5 2 2 2 2 2 2
E=1 1 1 [F=|v8 1 [6=|\v38 -1 H=|3 1
>\~ 2 2 2 2 2 2

Figure 4.10 Matrix transformation task
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Students then investigated further with their own polygons and grid paper by recording
the coordinates of the vertices before and after transformation, with the graphics calculator
taking care of the matrix calculations so that conjectures on the geometric meaning of the
transformations could be formulated and tested. Here the technology became an intelligent
servant that complemented the effective features of more conventional instruction.

Technology is a partner if it increases the power that students exercise over their learning by
providing access to new kinds of tasks or new ways of approaching existing tasks. This may
involve using technology to facilitate understanding or to explore different perspectives.
Students participating in our research have commented that ‘by displaying things in differ-
ent ways [technology| can help you to understand things more easily’, and that ‘technology
may help you approach problems differently in the sense that you can visualise functions’.

Technology can also act as a partner by mediating mathematical discussions in the class-
room—for example, when teachers and students use the overhead projection panel to
present and examine alternative mathematical conjectures. This is illustrated by the
practice we observed in one classroom of inviting students to compare and evaluate graphics

calculator programs they had written to simplify routine calculations, such as finding the

a d
angle between two three-dimensional vectors r = <b> and r, = (e using the formula
. j‘

C

o r-r, . ad + be + f
’19 = COS |r|”rz‘ — COS \/az+ P+ [z\/dz+ (,2+f2 .

The teacher provided only minimal instruction in basic programming techniques and
expected individual students to consult more knowledgeable peers for assistance. Volun-
teers then demonstrated their programs via the overhead projection panel and examined

the wide variation in command lines that peers had produced (see Figure 4.11 for examples).

FROGREAM: AMHG FROGREAM: DO0GE FROGRAM: WVECTOR
{Fromet. H:B.C.0. i0ise "FIRST VEC tC1rHome
E:F TOR"N FOgLPut oS, 2. "WED
ooz 10 CARO+E+E+C tPromet & TOR MACHIHE"
#Fa - TCCHEHBEHCE D iPromFt. ¥ POuLPutC3. 4, "30
COE+EE+F 2222 tPromet. 2 O z20"2
H iA*A sInFut M

HEEY = tIf M=Z:Goto A

Figure 4.11 Different student programs for finding angle between vectors
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This public inspection of student work also revealed programming errors that were
challenged and subsequently corrected by other members of the class. When interviewed
after the lesson, students commented that programming helped them to develop a more
thorough understanding of the underlying mathematical concepts, especially when there
were opportunities to compare programs written by different people.

Technology becomes an extension of self when seamlessly incorporated into the user’s
pedagogical or mathematical repertoire, such as through the integration of a variety of
technology resources into course planning and the everyday practices of the mathematics
classroom. For students, this is a mind-expanding experience that accords them the
freedom to explore at will. They explained this by saying that ‘technology allows you
to expand ideas and to do the work your own way’, and ‘it allows you to explore and go
off in your own direction’. We observed such sophisticated use by teacher and students in
alesson involving use of iterative methods to find the approximate roots of a cubic equation.
Students worked through a task where they constructed spreadsheets to investigate
whether or not the iteration process converged on a solution (as in Figure 4.12), with
some also deciding to use function-plotting software to create an alternative, graphical

representation of the problem.

A | B C D E

1 | x*3—8x—8=0rearranged as x=x"3/8—1 | x F(x)

2 —-1.5 —1.421875

3 | x F(x) —1.421875 —1.35933065
4 | —15 —(1/8)*((A4)"3)-1 —1.35933065 —1.31396797
5 =B4 =(1/8)*((A5)"3)-1 —1.31396797 —1.28357265
6 =B5 —1.28357265 —1.26434517
’ —1.26434517 —1.25264282
8 —1.25264282 —1.24569243
9 —1.24569243 —1.24162534
10 —1.24162534 —1.23926640
11 —1.23926640 —1.23790525
12 —1.23790525 —1.237122°21

Figure 4.12 Spreadsheet method for solving equation
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This was a challenging task, and few students found all three roots of the equation. When
one group of students did so, the teacher made a spur-of-the-moment decision to ask them
to present their solution to the whole class via a laptop computer and data projector. With
no time for rehearsal, the students shared the tasks of operating the computer keyboard,
data projector remote control (which permitted scrolling and zooming independently of
the computer) and laser pen, while coordinating their explanations and answering ques-
tions from their peers. Mathematical and communications technologies were smoothly
incorporated into their unfolding argument, and were used to link numerical and graphical
representations of the equation-solving task, and to clarify and elaborate on points raised by
fellow students and the teacher.

These examples show that introducing new mathematical and communication tech-
nologies into classrooms can change the ways that knowledge is produced. Implicit in these
changes are a number of challenges for teachers, the most obvious of which involves
becoming familiar with the technology itself. While this is important, some attention also
needs to be given to the inherent mathematical and pedagogical challenges in technology-
rich classrooms if the goal of a problem-solving and investigative learning environment is to
be realised. For example, placing graphics calculators in the hands of students gives them
the power and freedom to explore mathematical territory that may be unfamiliar to the
teacher, and for many teachers this challenge to their mathematical expertise and authority
is something to be avoided rather than embraced. Perhaps the most significant challenge for
teachers lies in sharing control of the technology with students and orchestrating the

resulting classroom discussion.

Technology and assessment

Reasons for looking closely at the connection between technology and assessment were
foreshadowed by the AAMT (1996) Statement on the Use of Calculators and Computers for Mathematics
in Australian Schools, which noted that: ‘Assessment practice should reflect good teaching
practice. The use of technological resources as integral aids to learning assumes their inclu-
sion in the assessment process.’” (1996, p. 5) This means that if technology is available for
learning mathematics, then it must also be available to students when their understanding
is being assessed. In practice, most recent developments in assessment policy have been
concerned with access to and use of graphics calculators and CAS calculators in high-stakes

assessment in the senior secondary years (Years 11 and 12).
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In states with external examinations that assume access to graphics calculators, there
has been a great deal of interest in the nature of assessment items—especially with respect
to how these items may have changed since graphics calculators were introduced, the
extent to which they require use of technology, and how technology might affect the
solution method. Mueller and Forster (2000) analysed the Western Australia Tertiary
Entrance calculus examination before and after government-mandated implementation of
graphics calculators and found that the percentage of algorithmic, procedurally oriented
questions declined but there was an increase in the number of applications questions where
technology could take care of complex calculations. In Victoria, Flynn and colleagues
(Flynn & Asp, 2002; Flynn & McCrae, 2001) have investigated the impact of permitting CAS
calculators on the kind of questions asked in the Victorian Certificate of Education exami-
nations. Queensland has a long history of school-based assessment and teacher ownership
of curriculum, and thus there is greater diversity of practice in technology use.

Researchers have also been interested in investigating differences between levels of calcu-
lator use in assessment. Kissane et al. (1994) distinguished between three choices that could
be made regarding calculator use in formal assessment: required (assumes all students have
access); allowed (some students will not have access); or disallowed. They later developed a
typology of student use of graphics calculators in examinations and within courses, shown
in Table 4.1, which can be used to design examinations that capitalise on the capabilities of

this technology.

Table 4.1 Atypology of expected use of graphics calculators in assessment

Calculator use is expected
1. Students are explicitly advised or even told to use graphics calculators.
2. Alternatives to graphics calculators are very inefficient.
3. Graphics calculators are used as scientific calculators only.
Calculator is used by some students, but not by others
4. Use and non-use of graphics calculators are both suitable.
Calculator use is not expected
5. Exact answers are required.
6. Symbolic answers are required.
7. Written explanations of reasoning are required.
8. Task involves extracting the mathematics from a situation or representing a situation mathematically.
9. Graphics calculator use is inefficient.

10. Task requires that a representation of a graphics calculator screen will be interpreted.
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REVIEW AND REFLECT :

* Find out about policies regarding use of technology for assessment in the
senior secondary mathematics subjects taught in your state or territory. For
which subjects is technology use required, allowed or disallowed? For what kind
of assessment tasks is technology use required, allowed or disallowed? What
kind of technology is covered by these policies?

* Use the typology provided in Table 4.1 to analyse a Year 11 or Year 12 mathe-
matics examination paper. Comment on the balance you find between the three
types of technology use expected.

* Investigate recent research on the impact of CAS technology on mathematics
assessment. Compare the schemes for classifying examination questions
reported by Flynn and Asp (2001) with the typology provided in Table 4.1
(which was devised for graphics calculators without CAS capabilities). Use
Flynn and Asp’s scheme to analyse an examination paper that permits the use
of CAS.

* Find out about schools’ policies on the use of technology for assessment in
junior secondary mathematics. How is students’ work in mathematics expected
to contribute to their learning about technology? Conduct an inquiry at your
school and compare your findings with those of your pre-service colleagues.

The requirement for students to use graphics calculators—including those with CAS
capabilities—in formal assessment tasks has given rise to many other issues beyond that of
level of use discussed above. One issue concerns our expectations as to what students should
record to ‘show their working’ with a calculator (Ball & Stacey, 2003). A list of keystrokes is
usually not very helpful, so what might be a reasonable alternative? This is really a question
about the forms of mathematical representation and communication we value and want
our students to demonstrate. One approach is to require students to show enough work so
that the reasoning processes can be followed throughout the solution (US College Board,
2007). In practice, this means that students must show the mathematical set-up (e.g. the
equation to be solved or graphed, the derivative to be evaluated) and steps that lead to the

solution, in addition to results produced by the calculator.
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Another issue emerges from studies of CAS calculators and their symbolic manipulation
capabilities (e.g. Ball & Stacey, 2005b; Flynn & Asp, 2002) that have shown how different
brands and models produce different intermediate results and make different solution
pathways possible. Assessment in these circumstances becomes problematic because of the

uncertainties and inconsistencies in the mathematical capacities that are being assessed.

Challenges in creating technology-rich mathematics learning environments

So far we have painted a very positive picture of technology use in mathematics classrooms
in terms of benefits for student learning and innovative teaching approaches. Yet there are
many challenges in creating technology-rich mathematics learning environments. Research
in this area has identified a range of factors that influence whether and how mathematics
teachers use technology: their skill and previous experience in using technology; time and
opportunities to learn (pre-service education, professional development); access to hardware
and software in the school; availability of appropriate teaching materials; technical support;
curriculum and assessment requirements; institutional culture; knowledge of how to inte-
grate technology into mathematics teaching; and beliefs about mathematics and how it is
learned (Fine & Fleener, 1994; Manoucherhri, 1999; Simonsen & Dick, 1997; Walen et al.,
2003). We can classify these factors as being related to the teacher’s knowledge and beliefs, the
professional context or sources of assistance, as shown in Table 4.2. Let us consider each of these cate-
gories in turn, and identify implications for you as a mathematics teacher. (We will return to

these categories in Chapter 17 when we examine professional learning and development.)

Table 4.2 Factors influencing technology use in mathematics education

Knowledge and beliefs Skill/experience in working with technology
Pedagogical knowledge (technology integration)
General pedagogical beliefs

Professional context Access to hardware, software, teaching materials
Technical support
Curriculum and assessment requirements

Students perceived abilities, motivation, behaviour)

Sources of assistance Pre-service education (university program)
Practicum and beginning teaching experience

Professional development
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Many studies have demonstrated close links between teachers’ knowledge and beliefs about
learning, their pedagogical practices and their orientation towards technology. Teachers
with a transmission view of mathematics learning tend to display teacher-centred practices
and to use technology mainly for calculation, while those with constructivist beliefs take a
more learner-centred approach and use technology for concept-development. You might
like to revisit your responses to the quiz in the section on Technology and curriculum
(above), as these reflect your own pedagogical knowledge and beliefs.

Factors related to sources of assistance are very relevant to your experience as a pre-service
teacher, but because technology changes so rapidly you will need to continually update
your knowledge throughout your teaching career. Professional development on tech-
nology in mathematics education is offered by mathematics teacher associations and
through journals, websites and conferences (see Chapter 17 for more information).

Often it seems that the teaching context plays an overriding role in supporting or
hindering teachers’ efforts to create technology-rich learning environments. We have
already discussed the impact of curriculum and assessment policies on teachers’ and
students’ use of hand-held technologies. By mandating, permitting or prohibiting hand-
held technologies in different mathematics subjects, these policies can also influence which
students get to use technology. For example, it is common to find higher use amongst
senior secondary classes taking advanced mathematics subjects because this is required by
the relevant syllabuses. On the other hand, younger students and those enrolled in lower
status mathematics subjects that do not lead to tertiary study are often disadvantaged
because access to technology is not given a priority by the school for these classes.

From a practical point of view, gaining access to technology resources for the classes you
teach is likely to be a significant challenge for you as a mathematics teacher. Many of our
current and former pre-service students have discovered that computer laboratories are
often booked out by non-mathematics classes, that few classrooms are equipped with
computers or data projectors, and that there are not enough class sets of graphics cal-
culators. In these circumstances, you need to be realistic about what is possible and
concentrate on what you can do with the resources you have. Alejandre (2005) has identified
some common situations faced by mathematics teachers who want to incorporate tech-
nology into their classroom practice, and she makes the following suggestions on how to

make the best of them.
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If you have one computer (desktop or laptop) in your classroom, without internet access, you can use the

computer:

If you have one computer (desktop or laptop) in your classroom, with internet access, you can use the
computer in much the same way as described above, but its reference capacities are now

expanded because you can give students access to the type of mathematical websites we

as a reference station—ask a student to check some facts related to the task that
the class is completing by using CD-ROMs;

to accompany and enhance a mathematical investigation lesson—organise a task
where students have to collect data (e.g. to investigate the relationship between
their height and their arm span) and then enter it into a spreadsheet that can be
used to summarise and analyse trends across the whole class;

as one of several stations or task centres within a classroom ‘menu’—arrange the

classroom so students work in groups of three or four on each activity.

discussed earlier in the chapter.

If you have one computer (desktop or laptop) in your classroom and a data projector or some other kind

of display, you can use the computer:

L]

to introduce or reinforce concepts by displaying and manipulating dynamic
images and objects, such as drawings, diagrams or graphs, that you might other-
wise have presented via an overhead projector or the whiteboard;

to introduce work the students will have to do when they go to the computer

laboratory.

If you have a cluster of four to six computers in your classroom, you can use the computers:

as a reference area—if students are working on a task in small groups, one student
from each group could go to the computers to search for information to help
them complete the task (as there are likely to be more than four to six groups, this

strategy could also accommodate pairs of students at each computer);
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* as stations or task centres offering different technology-based activities through

which groups of students rotate.

If you have no computer in your classroom and have to book a computer laboratory, be sure
to have a back-up plan in case unforeseen problems occur. You may find it easier to use

graphics calculators, which can perform many of the functions of mathematical software.

REVIEW AND REFLECT : Work with a partner to develop a corresponding list of

suggestions for teachers who have limited or uncertain access to graphics calcula-

tors, such as in schools where students are not required to buy a calculator or

where there is no calculator hire scheme. What strategies can you suggest in the

following circumstances?

* You have to book a class set of graphics calculators for each lesson in which you
plan to use them, and there are several class sets in the school.

* There are only one or two class sets of graphics calculators, and they are
usually reserved for the senior classes.

* There are no graphics calculators in the school, but you have your own calcula-
tor and a display (overhead projector panel).

* There are no class sets of graphics calculators, but you have managed to find
about ten in working order.

* There are a couple of class sets of old-model graphics calculators.

Conclusion

Early recommendations about preparation for teaching with technology assumed that
teachers needed only general technological literacy. We now recognise that knowing how
to use computers and other forms of technology is not the same as knowing how to teach
effectively with technology, since pedagogical content knowledge is required to integrate
technology into the curriculum in specific subject domains, such as mathematics. Pedagog-
ical content knowledge, which enables teachers to create mathematical representations

that connect students with the subject-matter, is at the heart of teaching effectively with
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technology, and is embodied in such metaphors for technology as master, servant, partner and
extension of self that we introduced in this chapter. The opportunities that teachers provide for
technology-enriched student learning are also affected by ways in which they draw on their
own knowledge and beliefs about the role of technology in mathematics education, and by
how they interpret aspects of their teaching contexts that support or hinder their use of

technology.
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CHAPTER 5

Mathematics curriculum
models

Ever since the formation of public education systems in the Australian colonies in the 1870s,
the official curriculum has been state-based rather than a national curriculum prescribed
by a central authority. Under the Australian constitution, education remains the responsi-
bility of state and territory governments rather than the federal government. This means
that, in principle, each state and territory is free to determine its own curriculum, despite
attempts by the Commonwealth in the late twentieth and early twenty-first centuries to
engineer a national approach to curriculum collaboration. Because of the extent of curricu-
lum variation around Australia, it is beyond the scope of this chapter to explore the content
and structure of secondary school mathematics curricula in each state and territory, nor is
this the place to discuss general theories of curriculum development and change. Instead,
we focus on some of the ‘big ideas’ behind curriculum decision-making in the context of
Australian mathematics education. The first part of the chapter lays the groundwork by
introducing some fundamental curriculum concepts. Next we consider how decisions are
made about what mathematics should be taught in secondary schools, and we provide a
brief historical overview of mathematics curriculum development in Australia. Finally, we

describe different models for organising the secondary school mathematics curriculum.

Curriculum concepts

‘Curriculum’ can be defined in many ways, with some definitions referring only to educa-
tional intentions and others to the reality of what actually happens in schools. For example,

some people would say that a curriculum is a plan for learning (the intention), while others
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would see curriculum as the set of all educational experiences offered to students by teachers
and schools (the reality). Stenhouse (1975) brought these two ideas together in his definition
of curriculum as ‘an attempt to communicate the essential principles and features of an
educational proposal in such a form that it is open to critical scrutiny and capable of effective
translation into practice’ (1975, p. 4). ‘Curriculum’ can also be represented in different ways

according to the perspectives of the various participants in curricular activities:

* The intended curriculum represents the vision laid out by the curriculum designers
in written curriculum documents and materials.

* The implemented curriculum represents teachers’ interpretation of the formal
written documents and the way they enact this in the classroom.

* The attained curriculum represents the learning experiences as perceived by

students as well as what students actually learn.

Because educational intentions rarely match educational realities, it is almost inevitable
that there will be gaps between the curriculum that is intended by its designers, imple-
mented by teachers and attained by students.

A curriculum also has a number of components that address the purpose, content,
organisation and assessment of student learning. Van den Akker (2003) provides the follow-

ing list of essential curriculum components and the questions they address:

* Rationale: What educational purposes and principles underpin the curriculum?

*  Aims and objectives: Towards which specific learning goals are students working?

*  Content: What are students learning and how is this sequenced?

*  Learning activities: How are students learning?

*  Teacher role: How is the teacher facilitating learning?

*  Materials and resources: With what are students learning?

* Grouping: How are students allocated to various learning pathways and how are
they organised for learning within the classroom?

*  Location: What are the social and physical characteristics of the learning environment?

* Time: How much time is available for specific topics and learning tasks?

e Assessment: How do we know how far learning has progressed?
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The relevance of these individual components will vary according to whether curriculum
planning and implementation take place at the level of the education system, the school
or the classroom. For example, system-level curriculum documents usually give most
attention to the rationale, aims and objectives, and content, and often provide suggestions
for content sequencing and time allocation. At the classroom level, the individual teacher
is typically most concerned with learning activities, teacher role, and materials and
resources. All ten components need to be coherently and systematically addressed by
subject departments or teams of teachers involved in school-level curriculum planning and
implementation. It is also important to maintain a close alignment and balance between all
components, even though the process of curriculum change may emphasise only some
specific components at a particular time (e.g. through the introduction of new learning

gO&lS, or new content, or new assessment approaches).

What mathematics should we teach, and why?

Education is concerned with selecting and making available to the next generation those
aspects of culture—knowledge, skills, beliefs, values, customs—thought by our society to
be most worthwhile. However, people can vary in their opinions as to what constitutes

worthwhile curriculum content.

REVIEW AND REFLECT : What mathematics do you think that all students should
know and be able to use after ten years of schooling? Make a list of what you
consider to be the mathematical topics, concepts, skills and ways of thinking that
are critical for students to succeed in further education, training, employment and
adult life beyond Year 10. Be prepared to give reasons to support your selection.

In pairs or small groups, compare your list with other pre-service teachers.
Comment on reasons for any similarities and differences between your lists.

Compare your list with the published curriculum document for mathematics to

Year 10 in your own state or territory, noting similarities and differences.
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Democratic access to powerful mathematical ideas

The above task challenges teachers to justify their selection of ‘essential’ mathematics.
Curriculum choices need to be founded on an understanding of why mathematics is impor-
tant, especially in these times of rapid social, economic and scientific change. The National
Statement on Mathematics for Australian Schools (Australian Education Council, 1991) gives four
reasons why everyone—not only the select few—mneeds to understand and be able to use
mathematics. First, mathematics is used in daily living, whether this involves managing our
home lives (measuring quantities for cooking, gardening, sewing, carrying out maintenance,
or repairs to buildings or vehicles), our personal finances (spending, saving, budgeting,
taking out loans, planning for retirement) or our leisure activities (travelling, reading maps,
playing games). Second, mathematics is necessary for intelligent participation in civic life. Often
this requires interpreting data in order to make informed decisions about economic, social,
political, health or environmental issues. Third, mathematics is used at work. Although a high
level of mathematics is needed in certain professions (e.g. engineering, science, information
technology, economics), a foundation of mathematical knowledge underpins a very wide
range of careers in industry, trades, communication, design, planning and agriculture.
Finally, mathematics is part of our cultural heritage—it is one of humankind’s greatest intellectual
and cultural achievements, and deserves to be part of a liberal education for all.

Another way of looking at the question of what mathematics to teach, and why, comes
from those who argue that it is a fundamental human right for all students to have demo-
cratic access to powerful mathematical ideas (Malloy, 2002). In the United States, this ideal
was exemplified by publication of the National Council of Teachers of Mathematics Curricu-
lum and Evaluation Standards for School Mathematics (NCTM, 1989), and by the early 1990s many
countries around the world had developed strong national programs that emphasised the
breadth and connectedness of mathematical content and the processes of mathematical
thinking. The components of ‘powerful mathematical ideas’ emphasised by these programs
are reflected in the second version of the NCTM’s curriculum guidelines, the Principles and
Standards for School Mathematics (NCTM, 2000). This document outlines curriculum stan-
dards—statements of what mathematics teaching should enable students to know and
do—for mathematical content in the areas of number, algebra, geometry, measurement,

and data analysis and probability, and for the mathematical processes of problem-solving,
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reasoning and proof, connections, communication and representation. But what is meant by
‘democratic access’ to these ideas? Malloy (2002) proposes that the literature on democratic
education identifies four distinguishing characteristics that provide a rationale for demo-
cratic access to the curriculum. First, a problem-solving curriculum should develop students’ ability
to draw on their mathematical knowledge to solve problems of personal and social rele-
vance. Second, inclusivity and rights should be promoted by presenting mathematics from
multiple perspectives that affirm the worth of individuals and groups from diverse back-
grounds. Third, there should be equal participation in decisions that affect students’ lives, so that
students use the classroom as a forum for public discussion of their own and others’ ideas.
Fourth, students should experience equal encouragement for success through access to materials
that develop critical habits of mind and engage them actively in learning mathematics. Many
of these ideas are discussed in more detail in Part IV of this book (Chapters 13, 14 and 15),

where we examine issues of equity and diversity in teaching mathematics to all students.

Who makes curriculum decisions?

Van den Akker (2003) proposes that decisions about what to include in the mathematics
curriculum (and what to exclude from it) may be influenced by three major orientations or
their respective proponents (see Figure 5.1). The first of these orientations is represented by
mathematics as an academic discipline that has its own cultural heritage, so curriculum
choices from this orientation are based on claims about the structure of the discipline and
what counts as essential mathematical knowledge. For example, we might argue that an
understanding of functions is essential because this is fundamental to the study of mathe-
matical relationships and representations. The second orientation takes account of societal
claims about relevant problems and issues, and curriculum choices from this orientation
may be influenced, for example, by the needs of employers in the commercial, technical,
financial and industrial sectors for workers who can apply mathematics to practical tasks
and problems. A third orientation takes the learners’ perspective in emphasising curricu-
lum content and learning experiences that are personally meaningful, challenging and
intrinsically motivating. From this orientation, curriculum choices might reflect a desire to
help learners become confident and critical users of mathematics in their everyday lives.

The rationale of a mathematics curriculum may reflect all of these orientations. In practice,
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however, curriculum decisions often involve compromises to accommodate the interests of

their various proponents.

Figure 5.1 Sources of influence on mathematics curriculum content

There are many potential stakeholders involved in developing mathematics curricula in
Australia. The following list is adapted from Harris and Marsh (2003, p. 19):

* Ministers for Education (state and territory, federal);

* federal agencies such as the Department of Education, Science and Training;
* Department of Education senior officers (state and territory);

* Catholic Education senior officers (state and territory);

* independent school senior officers (state and territory);

* curriculum and assessment authorities (state and territory);

* teachers’ unions (state and territory, federal);

* school councils;

* principals;

* teachers;

* parent organisations;

¢ students;

* university academics (mathematicians, mathematics educators);
* employers;

* business organisations;
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* mathematics teacher professional associations (such as the Australian Association
of Mathematics Teachers) and mathematics education research organisations (the
Mathematics Education Research Group of Australasia);

* textbook writers and publishers;

* the Curriculum Corporation;

¢ the Australian Council for Educational Research;

¢ the media;

¢ educational consultants; and

* lobby groups.

The level of influence and activity of these potential stakeholders varies over time and in
different contexts. Harris and Marsh (2005) argue that their roles can be understood
by examining a high-control model of curriculum decision-making which, although
developed several decades ago (Rogers & Shoemaker, 1971), is consistent with the current
emphasis on top-down accountability in education systems. This is known as the
authority—innovation—decision-making model, where stakeholders are divided into a
superordinate group that makes the major decisions in initiating and directing the curricu-
lum development process, and a subordinate group that implements the decisions made by
the higher status group. The functions of these two groups are represented by Figure 5.2.

While the authority—innovation—decision-making model is useful in alerting us to the
typically hierarchical nature of curriculum decision-making, it nevertheless under-
estimates the agency of teachers by overlooking the significant power that teachers have in
implementing (or rejecting) change, and in participating in the change process through
their membership of professional associations, teacher unions, school clusters and subject
departments. Harris and Marsh (2005) suggest that the most important aspect of agency is
that of translation: teachers exert significant agency in translating the intended curriculum
into the implemented curriculum. The authority—innovation—decision-making model is
also limited in that it recognises only the system contexts of curriculum—education
departments and curriculum and assessment authorities, universities, textbook publishers,
schools—but not the broader social and cultural context of curriculum change—repre-
sented by parents, students and employers—and the roles of the media and lobby groups in

publicising and diffusing concerns about curriculum content and standards.
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Figure 5.2 Superordinate and subordinate functions in curriculum

development and implementation

REVIEW AND REFLECT : Find out how mathematics curriculum decisions are
made in your state or territory. What is the role of the local curriculum and assess-
ment authority? What is its relationship to the state/territory education
department and the Catholic and independent schools sectors? What formal roles
do teachers, parents, teacher unions, business organisations and university
academics play in mathematics curriculum development?

Conduct a media survey over a semester to identify news items about mathe-
matics education. What views are expressed about mathematics curricula? By

whom? To what extent are these views critical or supportive of current curricula?
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Historical overview of mathematics curriculum development in Australia

School mathematics in Australia has been shaped by a range of forces since European settle-
ment in 1788. Clements et al. (1989) have argued that colonialism was the major influence
on mathematics education over the first 200 years, in that both the colonial power and
those who were being colonised accepted without question that mathematics curricula and
teaching methods should replicate British models. In England, the three main classes of
society had access to different types of education: elite public schools were provided for
children of the aristocracy, grammar schools and public schools for children of the middle
and professional classes, and charity schools for children of lower social class families.
This pattern strongly influenced the development of school and university mathematics
education in Australia.

In early colonial times in Australia (1788 to the mid-1850s), almost all children were of
convict or lower social class origins, and primary schools adopted curricula very similar to
those used in charity schools in England. Children were taught reading, writing and arith-
metic, with boys additionally being offered training in agriculture and the mechanical arts
and girls receiving instruction in needlework. The scope of arithmetic, mirroring that
taught in English schools, was limited to the four operations, vulgar fractions, an under-
standing of proportion, and simple applications of these skills to practical tasks. As the
non-convict population grew, there was a corresponding increase in demand for education
suited to children of the wealthy and the middle class. Schools established in response to
this demand adopted curricula almost identical to the public and grammar schools in
England, which emphasised the classics (Greek and Latin) and mathematics (formal algebra
and Euclidean geometry) in order to prepare the sons of the upper and middle classes for
entry to English universities.

In later colonial times (mid-1850s to Federation), the newly established universities in
the Australian colonies exerted a significant influence on school mathematics curricula
through their control of matriculation and public examinations. Again, the colonial influ-
ence was evident—for example, when the Universities of Sydney and Melbourne were
founded in 1851 and 1853 respectively, they adopted academic programs comparable to
those offered by Oxford and Cambridge in order to claim equivalent status with these elite

English institutions, and their entrance examinations were almost identical to those set
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in England in requiring candidates to pass in Greek, Latin, Euclidean geometry, algebra,
arithmetic and English. Preparing students for these examinations became the overriding
goal of secondary schools and, because the examination questions were narrow in scope and
rewarded rote learning, the mathematics teaching in secondary schools was oriented
towards reproduction of learned facts and procedures. It is important to note, however, that
during this time period fewer than 2 per cent of all Australian children attended secondary
school, so most of the population had no access to mathematics education beyond the
rudiments of arithmetic.

Despite the impetus for social and political reform brought on by Federation in 1901,
mathematics education in Australia in the first half of the twentieth century continued to
mimic English curriculum models, and the mathematics taught in schools remained
largely unaffected by developments in the field of mathematics. This stagnation is reflected
in the use, until at least the 1950s, of secondary school arithmetic, algebra and geometry
textbooks published in England at the beginning of the twentieth century. Mathematics
teaching was still formal and rigid, emphasising memorisation and drilling in routine skills
in preparation for written examinations. Although the new Australian constitution had
given responsibility for education to the states, mathematics curricula in schools across
Australia still depended on English ideas and hence were remarkably similar.

The ‘New Mathematics’ movement of the 1960s brought an end to curriculum inertia
(Pitman, 1989). The Soviet launch of Sputnik 1 in 1957 and the reaction to this perceived
military threat by non-communist Western nations—and especially the United States—
provided the political context for major curriculum reform, resulting in the allocation of
vast amounts of funding to curriculum development projects in the physical sciences and
mathematics in order to prepare better scientists and engineers and thus re-establish
military superiority over the communist bloc countries. The intellectual foundations
for the ‘New Mathematics’ movement lay in the work of the Bourbakists in France, who
redefined mathematics in terms of abstract notions of sets, functions, axioms and formal
logic. Translation of this view into school mathematics curricula was supported by univer-
sity mathematicians and mediated by mathematics educators who saw connections
between formal mathematical structures and prevailing cognitive developmental theories
of learning. Secondary mathematics curricula in Australia, as in many other countries,

changed to reflect a new view of mathematical knowledge based on axiomatic structures of
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formal logic. However, in practice, neither students nor teachers were able to cope with
such abstract ideas, and by the mid-1970s evidence was also emerging that the ‘New Mathe-
matics’ curriculum not only failed to prepare students adequately for tertiary mathematics,
but also left children without fundamental arithmetical skills.

Mathematics curriculum initiatives in Australia in the 1980s were influenced by:

* concerns that young people were unable to apply their mathematical knowledge
and skills in real-world situations;

* advances in technology (computers, calculators) that made it possible to reduce
the emphasis on pen and paper computation;

* economic changes that led to the demise of old industries and creation of new
ones that needed new types of workers; and

¢ calls for development of a core mathematics curriculum accessible to all children

(Pitman, 1989).

The formalism of ‘New Mathematics’ was replaced by a focus on mathematics as problem-
solving, and the desire to achieve a better balance between equity and quality in
mathematics education. These were the goals that drove many international, national and
state-based mathematics curriculum development projects in the 1980s. Perhaps the best-
known Australian initiative was the Mathematics Curriculum and Teaching Program
(MCTP), which identified, documented and disseminated examples of good practice
amongst mathematics teachers to encourage them to model their own practice on ‘what
worked’ successfully in other classrooms (Lovitt & Clarke, 1988).

In this brief historical overview, it is possible to trace the effect of academic mathematics
and mathematicians, changing social, political and economic conditions, and concerns for
equity and relevance in the curriculum—the three broad orientations claimed by van den
Akker (2003) to be the major influences on curriculum decision-making. Since the late
1980s, however, curriculum development in Australia has been a highly politicised issue
because of unresolved tensions between the states” and territories’ constitutional autonomy
in education matters and the Commonwealth’s desire for a national curriculum to achieve
greater consistency between state-based education systems (see Marsh, 1994 and Reid, 2005

for analyses of the politics of national curriculum collaboration).
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The Commonwealth began funding school education in 1963, and from this time until
1988 exerted only indirect influence on school curricula via funding for curriculum projects
and resource development. More direct Commonwealth intervention began in 1988 when
John Dawkins, Commonwealth Minister for Employment, Education and Training, issued a
policy statement arguing for a single national curriculum framework that could be adapted
by the states and territories to inform local syllabus development. The following year, the
Australian Education Council-—comprising Commonwealth and state Ministers of Educa-
tion—announced the Hobart Declaration that endorsed agreed national goals for schooling
and launched the process of national collaborative curriculum development. By 1991, the
curriculum had been organised into eight Learning Areas (now known as Key Learning
Areas, or KLAs), and teams of writers were commissioned to produce Statements and Profiles
for each Learning Area. The Profiles described what students were expected to know and do,
and thus marked a shift from the conventional curriculum focus on content to be taught,
or ‘inputs’, towards the desired ‘outcomes’ for student learning. Within each Profile, the
outcomes were arranged into content and process strands in a sequence that depicted
progressive growth of student understanding. In mathematics, the content strands were
number, space, measurement, algebra, and chance and data, and the process strand was
labelled “Working Mathematically’ (Australian Education Council, 1994). By the time the
national curriculum framework was submitted to the Australian Education Council
meeting of June 1993, the political complexions of the state governments had changed and
this, together with intensive lobbying by mathematics academics and others in the mathe-
matics education community who were critical of the new curriculum, led ministers to
vote to defer acceptance of the Statements and Profiles. Ultimately, the national curriculum
documents were referred back to the states and territories for determination of the extent,
nature and timing of any implementation.

This failed attempt at a national curriculum nevertheless provided a common frame-
work that was adopted or adapted during the 1990s by all states and territories to produce
outcomes-based curricula in the Key Learning Areas. In 2003, the prospect of national
curriculum collaboration emerged once again when Brendan Nelson, Commonwealth
Minister for Education, Science and Training, issued a strong call for removal of inconsisten-
cies between state and territory curricula, school starting ages and Year 12 assessment

procedures. Interestingly, however, the feeling amongst experts in curriculum theory is



114 MATHEMATICS PEDAGOGY, CURRICULUM and ASSESSMENT

that any new attempt at national curriculum collaboration will fail unless it recognises the
political realities of Australia’s federal system, articulates a clear rationale and conceptual
base that does not rely solely on claims about consistency, economic efficiencies or national
identity, and engages the professional community to build a genuine constituency of
support (Reid, 2005). At the time of writing, it remains to be seen whether these require-

ments will be met by the latest attempt to design a national curriculum.

How can the mathematics curriculum be organised?

The introduction of Key Learning Areas has had a significant impact on curriculum organi-
sation to Year 10 in all Australian states and territories. More recently, however, there has
been a move towards identifying the essential capabilities—knowledge, skills, understand-
ings and dispositions—that students need to develop within and across the KLAs. These
so-called ‘essential learnings’ provide an alternative framework for organising both discipli-
nary and interdisciplinary learning in the junior secondary school. In the senior secondary
years, however, a range of mathematics subjects is typically offered to cater for the differing

post-secondary pathways that students may follow.

REVIEW AND REFLECT : Visit your state or territory curriculum authority website
and investigate the organisation of the mathematics curriculum in the junior and
senior secondary years:

* |dentify the extent to which the ten curriculum components listed by van den
Akker (2003) are represented in these curriculum documents. Are there any
differences in emphasis between the compulsory and post-compulsory years
of schooling?

* What type of framework is used to organise the curriculum to Year 10?

* What mathematics subjects are offered in Years 11 and 12? What is the rationale
for each of these subjects, and who are the intended clientele? How does the
mathematical content differ in these subjects? What are the consequences of
differentiated content? (For example, is it possible for students to switch from one
subject to another? How do subjects prepare students for different post-school
destinations?) How much flexibility are teachers allowed in selecting content?
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Process-driven curriculum models

In the previous section, we traced the historical development of mathematics curriculum
in Australia, noting how the emphasis shifted over time from mathematical content and
skills to mathematical structures and, by the 1980s, to mathematical processes. The call by
the National Council of Teachers of Mathematics in the United States for problem-solving
to be the guiding principle for mathematics education in the 1980s (NCTM, 1980) became
the catalyst for process-driven curriculum development in Australia, leading to problem-
solving and applications achieving new prominence in mathematics curricula in almost
every part of Australia (Stacey & Groves, 1984).

During the 1980s, several curriculum development projects across Australia focused on
problem-solving, applications or modelling. In South Australia, Gaffney and Treilibs (1982)
developed mathematical modelling curriculum materials focusing on real-life problems,
while in Western Australia the Curriculum Branch of the Education Department (1984)
developed materials for an Applying Mathematics course. Several projects were also
underway in Victoria. The Reality In Mathematics Education (RIME) Teacher Development
Project was attempting to improve the quality and relevance of mathematics teaching in
Years 7-10 through active investigation of mathematical and real-world situations (Lowe,
1984). In 1985, the Mathematics Curriculum and Teaching Program (Lovitt et al., 1986)
began to develop and trial sample applications lessons for Years 9 and 10 as well as the
primary classroom, and in early 1986 the Australian Academy of Science decided to trans-
form its Mathematics at Work series (Treilibs, 1980—81) into two volumes (Lowe, 1988, 1991b)
with an emphasis on applications and mathematical modelling for the senior secondary
level. In Queensland, Clatworthy and Galbraith (1987) began a mathematical modelling
course at a senior secondary college, where the modelling component was conducted in
parallel with conventional topics taught and tested using a traditional format.

By the early 1990s, senior secondary mathematics curricula Australia were undergoing
major revision in almost every state and territory to make mathematics more accessible to
all students and increase the emphasis on problem-solving, investigation and modelling
(Stephens, 1990). Attempts to introduce formal school-based or external assessment of
these mathematical processes—whether through examinations, centrally set common

tasks, problems selected from a common bank, or projects and extended investigations
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developed at the school level-—have met with varying degrees of success. Concerns over
teacher and student workload and the authenticity of student work completed under non-
supervised conditions, combined with the extent and pace of change, have threatened the
integrity and sustainability of these process-driven curriculum models in some parts of

Australia (Stillman, 2001, 2007).

REVIEW AND REFLECT : How are the process aspects of mathematics conceptu-
alised by senior secondary mathematics curricula in your local jurisdiction? To
what extent are problem-solving, applications, modelling and investigations repre-
sented in these documents? What advice is provided about how to teach these
processes?

What kinds of tasks are used to assess these processes? Under what con-
ditions do students complete these assessment tasks?

Discuss your findings with peers in the light of the concerns about curriculum
sustainability raised by Stillman (2001, 2007).

REVIEW AND REFLECT : Do a library search to obtain some of the process-driven
curriculum resources developed in the 1980s (e.g. R.I.M.E., MCTP, Mathematics at
Work), or find out whether local schools have these resources. Select one and
evaluate its relevance to the current senior secondary mathematics curriculum in

your state or territory.

Outcome-based curriculum models

Curriculum documents for Years 1 to 10 in Australia typically represent an outcome-based
approach and are often organised around the eight Key Learning Areas that were defined in
the national curriculum collaboration process described in the previous section. United
States educator William Spady is considered to be the first and most influential advocate of

outcome-based education (OBE), and various versions of outcome-based curriculum
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models have been adopted internationally—in the United States, Canada, South Africa,
New Zealand and the United Kingdom, as well as Australia. Spady (1993) has defined an
outcome as ‘a culminating demonstration of learning’ (1993, p. 4)—that is, the result
of learning that we would like students to demonstrate at the end of significant learning
experiences. Such an approach requires us to identify the desired outcomes of learning and
to align teaching and assessment towards these outcomes.

Spady and Marshall (1991) describe three forms of outcome-based education: traditional,
transitional and transformational. In the traditional form of OBE, the curriculum remains
unchanged and outcomes are written to reflect the knowledge and skills of traditional
school subjects, often at the level of a topic or unit. The Australian mathematics curricu-
lum profile (Australian Education Council, 1994) is an example of this approach. In contrast,
transformational OBE starts by identifying exit or culminating outcomes that focus on adult life
roles, and is thus concerned with students’ success after they leave school rather than the
knowledge and skills they acquire as they become more proficient in mathematics (or any
other school subject). The scope of transitional OBE lies between the other two forms: exit
outcomes are not reflective of life roles but nevertheless describe the broad knowledge,
competencies and dispositions to be demonstrated when students graduate from school. In
this approach, the subject-matter becomes the vehicle for cultivating higher order
thinking. Many curriculum documents to Year 10 in Australia now attempt to address some
combination of traditional, transitional and transformational approaches to outcome-based

education.

REVIEW AND REFLECT : Analyse the mathematics curriculum documents in your
own state or territory to identify evidence of traditional, transitional, and trans-
formational approaches to OBE. Traditional outcomes are subject-specific and
describe what students should know and do. Transitional outcomes may still fit
within school subject boundaries but refer to broadly specified expectations for
higher order thinking and positive dispositions. Transformational outcomes are
generic, future-oriented and cross-curricular (i.e. they may be the same across all
Key Learning Areas).
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Spady articulated four principles of outcome-based education: clarity of focus; expanded
opportunities to learn; high expectations; and designing down the curriculum. ‘Clarity of
focus” means that teachers constantly need to be mindful of the learning outcomes they
want students to achieve, and to make these expected outcomes explicit for their students.
Closely related to this is ‘designing down the curriculum’, whereby all curriculum
planning begins from a clear definition of the significant learning outcomes students are to
demonstrate by the end of their schooling; all instructional decisions are then made by
working back from this broadly expressed desired end-result. These decisions should also
provide students with ‘expanded opportunities to learn’—a principle based on the belief
that ‘all students can learn and succeed, but not on the same day and in the same way’
(Spady & Marshall, 1991, p. 67). Teachers need to provide students with many opportunities
to succeed and demonstrate their learning, rather than simply ‘covering the content’ at the
same rate for the whole class. Finally, having ‘high expectations’ for all students does not
imply that students are equally academically able, but that all deserve to be engaged with an
intellectually challenging curriculum that stretches them to produce their best possible
performance. This is why Australian curriculum documents to Year 10 specify the same
learning outcomes for all students, rather than different outcomes that might encourage a
lowering of expectations for some students.

Clearly, the four principles outlined by Spady present teachers and schools with many
challenges. In a traditional time-based curriculum, the teacher presents a course in a fixed
timeframe even though some students learn more quickly—or slowly—than others.
Because an outcome-based curriculum acknowledges that students learn in different ways
and at different rates, teachers will need to devise flexible strategies for working with the
whole class, groups within the class and individuals. Although it is not necessary to offer
different activities to students who have reached different levels of understanding, some
thought should be given to selecting or designing tasks that can be accessed by all students.
(See Chapter 15 for further discussion and examples of differentiated curriculum planning
and implementation in heterogeneous, or ‘mixed ability’, mathematics classes.)

In outcome-based mathematics curriculum documents, the learning outcomes for each
strand or segment or dimension (terms vary between states and territories) are arranged in
a series of levels that depict progressive growth of student understanding. Because the series
assumes a continuum of growth, the levels are nested so that each higher level subsumes

the outcomes of the lower level (as in Figure 5.3). The outcomes at each level should be



Mathematics curriculum models 119

qualitatively different from those above and below, and the sequence should describe how

students’ thinking changes from one level to the next.

Figure 5.3 Nested sequence of outcomes

REVIEW AND REFLECT : Obtain a photocopy of the level-by-level outcome state-
ments for one of the content strands (or equivalent] of your local outcome-based
mathematics curriculum document. Cut up the page(s] so that each outcome
statement is on a separate piece of paper. Work with colleagues to reassemble the
statements in a continuum that reflects your understanding of how students’
thinking changes as they learn. Discuss reasons for positioning the outcomes in
the sequence you decide. Compare your sequence with the original curriculum

document and resolve any differences.

The national mathematics curriculum Profile (Australian Education Council, 1994)
included a single process strand, entitled “Working Mathematically’, which was organised

into the following substrands:

* investigating;

* conjecturing;

* using problem-solving strategies;
* applying and verifying;

* using mathematical language;

* working in context.
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However, each state and territory has reorganised (and sometimes renamed) the “Working
Mathematically’ strand according to its own curriculum design. In her review of the role of
problem-solving in contemporary mathematics curriculum documents, Stacey (2005)
notes that ‘there is not strong agreement on how the process strand for mathematics is
constituted, and consequently on what are the key aspects to teach and to assess’ (2005,
p- 345). Her analysis also points to the different and somewhat unsatisfactory ways in which
outcome-based curriculum documents describe expectations for development or progress
in learning in the process area. Little is known about the characteristics of student growth
with regard to mathematical processes, and this is an area where more research is needed to

inform curriculum design.

REVIEW AND REFLECT :

1. Compare the organisation of process strands in the Australian national mathe-
matics curriculum Profile, the NCTM’s Principles and Standards, and your local
outcome-based mathematics curriculum for the junior secondary years (see
below). Refer to the relevant descriptions of the substrands provided in these
documents to identify similarities and differences between the conceptualisation
of ‘problem solving’, ‘working mathematically’ and ‘mathematical processes’.

NCTM Principles and National mathematics Local mathematics
Standards (USA) Profile (Australia) curriculum
(state/territory)
Problem-solving Investigating
Reasoning and proof Conjecturing
Communication Using problem-solving strategies
Connections Applying and verifying
Representation Using mathematical language
Working in context

2. Compare the relative emphases on mathematical processes in the junior and
senior mathematics curricula in your state or territory. How similar or different is
the conceptualisation of ‘processes’ in these curricula? Discuss with your peers
any implications for continuity in curriculum planning across the secondary
school years.
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Integrated curriculum models

In Chapter 3, we saw that recent moves to reform mathematics curricula and teaching
approaches have aimed to make mathematics more meaningful for students by highlight-
ing links between mathematical topics, investigating mathematical applications in the real
world, and valuing connections between mathematics and other curriculum areas.
Curriculum integration is often proposed as a means of helping students to develop richly
connected knowledge and to recognise how this knowledge is used in real-world contexts,
and secondary schools are beginning to develop numeracy policies that demonstrate inte-
grated approaches across the curriculum. However, we need to be clear about what is meant
by ‘integration’, whether integrating separate discipline areas is desirable, and if so how this

might be achieved in practice.

REVIEW AND REFLECT : Investigate the extent to which the mathematics curricu-
lum for junior and senior secondary subjects in your state or territory encourages
cross-curricular connections. What guidelines—if any—are provided for teachers
to plan and implement integrated curriculum units?

Approaches to curriculum integration differ according to the type of connections made
between subject areas (see Wallace et al., 2001). At one extreme is a subject-centred
approach; at the other is full curriculum integration where knowledge from relevant disci-
plines is brought to bear on problem-solving situations (Woodbury, 1998). In between lie a
variety of interdisciplinary approaches that connect subject areas in different ways—tfor
example, by planning separate subjects around a common theme or problem, or by
unifying some subjects into a single course taught by two or more teachers. Huntley (1998)
discusses these variations in terms of three broad categories. She describes an intradisciplinary
curriculum as one that focuses on a single discipline. An interdisciplinary curriculum still has
its focus on one discipline, but uses other disciplines to support the content of the first
domain (e.g. by establishing relevance or context). In an integrated curriculum, disciplinary
boundaries dissolve completely as concepts and methods of inquiry from one discipline are

infused into others.
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Considering integration of mathematics and science, Huntley (1998) proposes a con-
tinuum to clarify the degree of overlap or coordination between these disciplines during
instruction (see Figure 5.4). For example, she defines a ‘mathematics with science’ course as
one teaching mathematical topics (represented by the circle filled with horizontal lines)
under the cover of a science context (circle filled with vertical lines). On the other hand, in
a ‘mathematics and science’ course, the two disciplines interact and support each other
in ways that result in students learning more than just the mathematics and science

content (circles overlap completely to form a new pattern).

TTTS
[ \
( )
{ ]
Mathematics for Mathematics Mathematics Science with Science for the
the sake of with science and science mathematics sake of sicence
mathematics (interdisciplinary) (integrated) (interdisciplinary) (intradisciplinary)

(intradisciplinary)

Figure 5.4 Mathematics/science integration continuum

Previous research has identified many factors that may hinder or facilitate the design and
implementation of integrated curricula (e.g. see Frykholm & Meyer, 2002; Huntley, 1998;
Woodbury, 1998). These factors operate at several levels of influence, as depicted in
Figure 5.5. Beyond the school, we must consider the influence of education systems on
curriculum content and assessment of student achievement, as well as parental and
community attitudes (see Chapter 16). School cultures can inhibit interdisciplinary collab-
oration, especially in secondary schools where departments are usually organised around
subject specialisations. Schools also need to provide administrative support to teachers
by allowing adequate time for conceptualising and designing integrated programs and
scheduling joint planning time so teachers can work in teams. Inflexible timetabling of
teachers and classes, and inefficient allocation of rooms and other facilities can also make it
difficult to offer genuinely integrated learning experiences.

However, teachers themselves are the key because teachers’ disciplinary knowledge and
beliefs, their assumptions about how curricula should be organised, and their knowledge

of alternative curriculum models can either facilitate or limit their ability to pursue an
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Figure 5.5 Issues in curriculum integration

integrated approach. Mathematics teachers’ reservations about curriculum integration are
often expressed as fears that the mathematics curriculum will be watered down, or that
specialist mathematics teachers will no longer be required if integrated programs are intro-
duced. Both of these fears rest on the assumption that generalist teachers, working as
individuals, will be expected to teach cross-disciplinary units. On the contrary, however, an
intellectually challenging integrated curriculum requires the contribution and collaboration
of teachers from both disciplines, and mathematics expertise becomes more rather than less
important in these circumstances. Teachers who are committed to curriculum integration
must then address important questions about their goals for integration, which disciplines
to bring together, how relationships between disciplines are to be coordinated, selection of
content, depth of treatment, instructional approaches and assessment of student learning.
Some of these issues have been investigated by Australian researchers and teachers who
are interested in curriculum integration in secondary schools. Goos and Mills (2001; see also
Goos, 2001) designed a project that brought together pre-service mathematics and history
teachers to prepare integrated curriculum units for junior secondary students that would
meet learning outcome requirements of both the mathematics and Studies of Society and

Environment (SOSE) syllabuses in Queensland. The full list of curriculum units developed
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by the pre-service teachers in the first year of the project is shown in Table 5.1, together with
an outline of the history/SOSE and mathematics subject-matter dealt with by each. The
culmination of each curriculum unit was to be an assessment task with real-world value
and use that would allow junior secondary students to demonstrate the mathematics and

SOSE knowledge and skills they had developed through their integrated studies. Some of

the more imaginative assessment tasks are shown in Table 5.2.

Table 5.1 Integrated curriculum units: Topics and subject-matter

Topic

History/SOSE content

Mathematics content

Pyramids of Egypt

Dating the pyramids

Political/social structure of ancient Egypt

Ratio and proportion

Plane and 3D shapes

Geography of Egypt Measurement (length, area,
Religious/burial practices and beliefs volume, angle, time, mass)
Pyramid construction methods Statistics

Australian postwar Postwar immigration and population analysis Percentage

immigration policies

The end of the ‘White Australia’ policy

Cultural diversity

Ratio and proportion
Statistics

Australian federal

elections and opinion

polling

Australian system of government and elections
Manipulation of statistics by media and
political bias in newspapers

Comparing the 1993 and 1998 elections

Data collection (sampling,
surveys)

Graphical representations
of data

The Mediaeval plagues

English society 1348-1500
Case study: the Black Death

Social impact and aftermath

Statistics (data collection,
representation, analysis

and prediction)

Archaeology: Investigation
of a fifteenth century

Cossack site

Excavation of a mock site
Determining physical characteristics and

age of the Cossack

Algebra and functions
Ratio and proportion

Measurement

The Space Race Early space exploration and Apollo 13 mission Trigonometry
Politics and the Strategic Defence Initiative Geometry on a sphere
China Geography, history, politics, culture and Percentages, fractions,

population

decimals
Scale drawings, time lines

Statistics
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Table 5.2 Integrated curriculum units: Assessment tasks

Topic

Assessment task

Pyramids of Egypt

You have been declared Pharaoh of Egypt! As a monument to your reign,
you choose to build a pyramid in your honour. Determine resources

required, list environmental impacts, forecast problems that may occur,
and construct a scale model of your pyramid. Conduct a feasibility study

and report on your findings.

Australian federal elections and

opinion polling

Write an article to be published in the Australian Government Weekly.
Analyse the issues in a specific election, including the use of statistics

and opinion polls.

Australian postwar

immigration policies

A new Minister for Immigration has plans to reinstate the ‘White
Australia’ policy. Your advisory committee is to prepare him a briefing

report on this decision.

The Mediaeval plagues

Create a twenty-minute TV current affairs or documentary program on
the impact of the plagues on English society, OR ‘What would we do if it

happened again?’

The project analysed the benefits and difficulties experienced by the pre-service teachers

and identified implications for collaboration between teachers across different subject areas.

These included uncertainty about the extent of integration that was possible and desirable,

organisational constraints involving subject timetabling and allocation of resources, and the

challenges of working with teacher colleagues who held different pedagogical as well as

epistemological beliefs (see Figure 5.5).

REVIEW AND REFLECT : Do a library search of professional journals and books to
locate other examples of integrated curriculum units. For example, see Goos and
Askin (2005]), House and Coxford (1995) and McGraw (2003].

Conclusion

In this chapter, we have looked at mathematics curriculum development and curriculum

models from an international and national perspective and identified some of the historical,
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social and political forces that shape curriculum change. Curriculum is not simply a
‘product’, created by ‘experts’ and handed over to teachers for classroom implementation;
instead, curriculum decision-making is a dynamic process in which teachers can play a

significant role within and beyond the classroom.
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CHAPTER 6

Assessing mathematics
learning

Assessment involves collecting and interpreting evidence of students’ learning, using this
evidence to make judgments about the quality of learning, and communicating these judg-
ments to different audiences. ‘Assessment in mathematics has political, ideological and
cultural aspects, as well as educational aspects’ (Galbraith, 1995, p. 274). Assessment is political,
as it brings the issue of power into the teaching and learning environment. In our publicly
funded education system, schools are held accountable to the community through the assess-
ment of their students. Governments use assessment data to inform curriculum policy and
direct resources to programs and schools, sometimes according to ideology. Governments are
also responsive to parental concerns about the quality of feedback received through school
reports and the equity or otherwise of assessment practices. At the time of writing this book,
there is a debate about a national curriculum for Australia and, with respect to mathematics,
the efficacy of a common curriculum and assessment for Year 12 is part of this debate. Accord-
ing to Stephens et al. (1994), changing assessment requirements and methods at Year 12 level
impact content and assessment at all levels of secondary schooling, so controlling assessment
exercises power over mathematics curriculum and teaching more broadly. Changing the
conditions in high-stakes assessment at the end of secondary schooling also has equity impli-
cations for the community (Teese, 2000). In the school setting, teachers argue more ardently
about how to assess students than about how to teach students, for example, the concept of
variable. In the classroom, teachers have the power to set expectations and make judgments.
Teachers determine who is good at mathematics and who is not, place students in particular

class groups and so determine who ‘lives their dream’ and who does not.
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Clarke (1988) has claimed that, ‘irrespective of the purposes we might have for assess-
ment, it is through our assessment that we communicate most clearly to students which
activities and learning outcomes we value. It is important, therefore, that our assessment be
comprehensive, and give recognition to all valued learning experiences’ (1988, p. 1). Assess-
ment is part of the learning process. Students reflect on their work and use metacognitive
skills to self-correct and direct their problem-solving. Feedback from teachers assists them
to focus on what matters, and the skills and concepts that need their attention. Teacher
feedback also provides information about students’ mathematical strengths and hence the
knowledge and skills that they can draw upon and build on for future learning. The data
teachers gather through various forms of assessment are used to develop teaching and
learning programs that best meet students’ needs.

In this chapter, we draw on Australian examples and research to discuss the educational
aspects of assessment and methods used in mathematics. We invite you to inquire into the

political, ideological and cultural dimensions of assessment in mathematics as well.

Purposes of assessment

According to D.J. Clarke (1996), the fundamental purposes of assessment are ‘to model, to
monitor and to inform’ (1996, p. 328). A regime of assessment employed by an educational
system is thus seen as valid and reliable depending on the extent to which it: (a) provides
‘an effective model of valued performance in mathematics and an effective model of
educational practice’; (b) monitors ‘these valued performances’ by providing all students
with sufficient ‘opportunities to display their capabilities in forms that can be documented’;
and (c) informs the actions of stakeholders, such as students, teachers, parents/carers,
employers, subsequent educational providers (e.g. TAFE or universities), systems and
governments. Assessment is ongoing over the years of secondary schooling.

Formative assessment provides feedback to students, parents and teachers about achievement
throughout the secondary years. Formative assessment has the purposes of advancing
students’ learning and informing teachers’ instructional decisions (Even, 2005). It may
occur throughout a teaching cycle using informal methods such as classroom questioning
and observation as well as various formal methods such as tests, assignments, and problem-

solving tasks and investigations.
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Summative assessment is used to indicate the achievement status or level of performance of a
student. This usually occurs on completion of a unit or course of study. Teachers normally
follow the curriculum and assessment guidelines for mathematics in their jurisdiction
when undertaking this form of assessment. Significantly, summative assessment also
provides the information necessary for certification of achievement at the end of a course of
study—for example, the New South Wales Higher School Certificate, the ACT Year 12
Certificate or the Western Australian Certificate of Education.

In addition to relatively local state-based systemic regimes of assessment, there are both
national and international achievement testing regimes at the secondary level that are of
interest to secondary mathematics teachers. Both literacy and numeracy achievement are
reported through various state-specific standardised testing systems (e.g. the Assessment
Improvement Monitor [AIM] test at Year 7 level in Victoria which includes national bench-
marked numeracy items) to inform the annual National Report on Schooling in Australia. Some
states and territories (e.g. Tasmania and the ACT) have also been monitoring numeracy
against the national benchmarks at Year 9 level. Common national tests of numeracy at
both Year 7 and Year 9 level were trialled in 2006 and were due to be implemented in 2008.
The purpose of state and territory numeracy testing is to monitor student progress over
time. Schools and their communities are able to compare their students’ achievements with
national benchmarks and with students in other states and territories. The national assess-
ment program allows comparison across Australia, and so it is a system of accountability for

meeting priorities set by state governments and the federal government.

REVIEW AND REFLECT : Research the results of national/state testing of students

in a secondary school with which you are familiar. Interview the mathematics

coordinator, curriculum coordinator and/mathematics teachers.

* Whois provided with results of these tests and how does this happen?

* How do the school, mathematics faculty and mathematics teachers use these
results to inform the school and classroom mathematics program?

e What changes to curriculum have been made to the school program in an
attempt to improve the school’s performance?

* What changes have been made to the teaching of mathematics to improve

students’ performance?
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Australia and New Zealand also participate in international comparison studies such as
Trends in International Mathematics and Science Study 2002/03 (TIMSS) (see Thomson & Fleming,
2004) and the OECD’s Programme for International Student Assessment (PISA) (see Turner, 2007).
Australia participates in TIMSS ostensibly to build a comprehensive picture of trends in, and
patterns of, achievement in mathematics and science for students in Years 4 and § in
comparison to other participating countries. TIMMS is conducted by the International
Association for the Evaluation of Educational Achievement (IEA) and is administered every
four years. PISA, on the other hand, is designed to measure the ‘mathematical literacy’ of
fifteen-year-old students in Organisation for Economic Cooperation and Development
(OECD) member countries at the end of compulsory schooling. Mathematical literacy is
defined as ‘the capacity to identity, to understand the role that mathematics plays in the
world, to make well-founded mathematical judgements and to engage in mathematics, in
ways that meet the needs of an individual’s current and future life as a constructive,
concerned and reflective citizen’ (OECD, 1999, p. 41). The emphasis in PISA is on ‘mathe-
matical knowledge put into functional use in a multitude of different situations and
contexts’ (OECD, 1999). These situations are classified as: (1) student’s ‘personal life’;
(2) ‘school life’; (3) ‘work and sports’; (4) ‘local community and society as encountered in
daily life’; and (5) ‘scientific contexts’ (1999, p. 50). Outcomes from TIMSS and PISA studies
are discussed throughout this book.

Aligning assessment with curriculum and teaching

Different assessment approaches are underpinned by different theories of learning. Written
tests or examinations in a limited timeframe follow behaviourist theories of learning. On
the other hand, as Shepard (2001) points out in her comprehensive overview of the role of
classroom assessment in teaching and learning, contemporary assessment is based on
constructivist and sociocultural theories of learning. For example, authentic performance
assessment (Lajoie, 1992) is underpinned by constructivist principles. In such assessments,
students work on complex extended tasks where they make ‘arguments which describe
conjectures, strategies, and justifications’ (Romberg, 1993, p. 109) investigated or used
during the task. As these different theories of learning are based on different understandings

of what learning is and what constitutes demonstration of understanding (see Chapter 2), it
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is imperative that teachers are aware of the learning theories on which the assessment

instruments or assessment methods being used are founded (see, for example, Romberg,
1993).

Evidence-based judgment models

Evidence of student learning can be interpreted in different ways. For example, is student
knowledge measured in some way or is it inferred from observations of performance? In
objective tests, measures are derived from counting the number of correct items or aggre-
gating marks allocated for various parts of items that are correct. In other forms of
assessment, such as the report of a mathematical investigation, numbers (e.g. 20 out of 25)
may be assigned according to a global judgment about the quality of the report as a whole
or by aggregating marks allocated for successful completion of various predetermined
requirements of the assessment piece that can involve local judgments of quality. The two
most common frameworks used for interpreting the results of the assessment are norm-

referencing and criterion-referencing.

Norm-referenced judgment models

Norm-referencing compares student performance to that of other students on the same or
similar tasks. Students are ranked from lowest to highest performance, and grades are then
awarded based on some predetermined distribution. Grades thus have relative rather than
absolute meaning, making it difficult to detect changes in achievement patterns over time.
Sadler (1987) also notes that this system of grading ‘may in fact be used as a means of dis-
tributing “merit” in such a way as to artificially create (and maintain) a shortage of high
grades’ (1987, p. 192).

Criterion-referenced judgment models

Criterion-referencing, on the other hand, judges scores or performances in relation to a set
of absolutes—an external, predetermined set of criteria. If a student meets all criteria for a
particular grade, then that grade must be awarded no matter how many other students
have also met the criteria. However, as Sadler (1996) points out, this often does not occur in

practice due to confusion between criteria and standards. Sadler clarifies the distinction
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between the terms in an assessment context: ‘By CRITERION is meant a property or charac-
teristic by which the quality of something may be judged. By a STANDARD is meant a
definite level of achievement aspired to or attained.” (1996, p. 2)

Standards-referenced judgment models

As a further alternative to the above, Sadler (1987) developed the concept and operational
principles for an assessment system described as ‘standards-referenced assessment’ which
was introduced within the school-based secondary school assessment program in Queens-
land and is the current approach for the new Higher School Certificate (Tognolini, 2000)
and the Mathematics Years 7—10 Syllabus (Board of Studies NSW, 2003) in New South Wales.
There are four basic methods of specifying and publicly declaring standards: by using
numerical cut-offs; tacit knowledge; exemplars; or verbal descriptors. Numerical cut-offs
have the appeal of being simple and appearing to signify sharp boundaries. On a criterion
designated ‘mathematical techniques’, for example, the boundaries for standards could be
set at 85 per cent, 70 per cent, 50 per cent, 25 per cent. A result on a test in the range 70 per
cent to less than 85 per cent is then graded as being at a B standard. Tacit (or mental)
standards can be used as the basis of post-assessment moderation by consensus of teachers
or by a district moderator. Such standards are not articulated, but reside in the heads of
the assessors. In contrast, standards-referenced assessment can be strengthened by using
a combination of exemplars of student work and verbal descriptions. ‘Exemplars are key
examples chosen so as to be typical of designated levels of quality or competence’ (Sadler,
1996, p. 200). These can be annotated to show the context in which the example was
produced, the qualities that the example displays to show how it meets a particular level
of quality, and what additional characteristic(s) it would need to be designated to be at
the next level. Exemplars are provided by various authorities using standards-referenced
assessment (see, for example, Assessment for Learning in a Standards-referenced Framework—DMathematics
CD-ROM available from <http://shop.bos.nsw.edu.au>). Verbal descriptors of standards
are statements of the properties that characterise the designated level of quality. The
example in Figure 6.1 is for Stage 4 of the New South Wales Mathematics Years 7—10 Syllabus.
Here descriptors of standards are given to distinguish three levels of performance on

the task.


http://shop.bos.nsw.edu.au

Assessing mathematics learning 133

Activity: Diagonals of a Quadrilateral

If the diagonals of a quadrilateral bisect each other, what type of quadrilateral could it be?
Give reasons for your answer and illustrate by drawing diagrams.
Is there more than one type of quadrilateral in which the diagonals bisect each other?
What conclusions can you make?

Criteria for assessing learning
Students will be assessed on their ability to:
* Demonstrate knowledge and understanding of the nature of different quadrilaterals,
 Draw a valid conclusion about the diagonals of quadrilaterals.
e Communicate mathematical ideas.

Guidelines for marking

Range  Students in this range

High Identify and accurately draw different types of special quadrilaterals:
trapezium, parallelogram, rectangle, rhombus, square, Kite.
Make a valid conclusion about the bisection of diagonals for the
different types of quadrilaterals.

Satisfactory  ldentify and accurately draw at least two special quadrilaterals.
Identify some quadrilaterals for which the diagonals bisect each other.

Progressing  Identify and draw one quadrilateral for which the diagonals bisect each
other.

Figure 6.1 Verbal descriptors of standards exemplar, Mathematics Stage 4
(NSW Mathematics Years 7—10 Syllabus, Board of Studies NSW)

REVIEW AND REFLECT : Gather and analyse assessment materials used by math-

ematics teachers in your secondary school. Collect materials used for different year

levels (junior and senior mathematics) and different types of assessment tasks.

* What theories of mathematics learning are reflected in the design of the math-
ematics tasks used?

¢ What judgment models does the mathematics faculty use?

* Choose one assessment task. Make recommendations for improving the task for

measuring student achievement using the assessment guidelines in your state.
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Competency-based assessment is ‘a special case of standards based assessment where the
proficiency continuum has been reduced to a simple dichotomy, “competent” versus “not
competent”, with only one “standard” (Maxwell, 1997, p. 72). Competencies are used in

vocational education.

Developmental-based assessment

Developmental-based Assessment (DBA) has been developed and trialled in secondary
mathematics classrooms by Pegg and his team in rural New South Wales (Pegg & Panizzon,
2004). The impetus for teachers using DBA techniques ‘arose directly from changing assess-
ment practices required to satisfy the requirements of new syllabus documents introduced
into New South Wales for mathematics and science in 2000” (Pegg et al., 2003, p. 4). This
form of assessment relies on teachers interpreting students’ responses within a framework
of cognitive developmental growth, namely, Biggs and Collis’s SOLO (Structure of the
Observed Learning Outcome) model (1991), but incorporating more recent developments
in SOLO (Pegg, 2003). This model proposes five modes of thinking: sensorimotor; ikonic;
concrete symbolic; formal; and post-formal. According to Collis (1994), the level of the
response of an individual to a problem involving thinking is determined first by ‘the mode
of functioning, determined by the nature and level of the elements and operations to be
utilised and secondly, the complexity of the structure of the response within the mode’
(1994, p. 338). The structure of a response represents the learning cycle (unistructural,

multistructural to relational) within a mode (see Table 6.1).

Table 6.1 SOLO taxonomy

Response level Meaning

Unistructural Responses use single elements of the task, often with contradictions between them.
Multistructural Responses use multiple elements of the task.

Relational Responses create connections among elements of the task to form an integrated whole.

Teachers (or the students themselves) can then use this framework to ‘place learners
along a developmental continuum’ (Pegg et al., 2003, p. 4). The framework is a source of

‘advice to the teacher on possible pathways for future teaching endeavours’ (2003, p. 4).
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It has also proven invaluable in helping teachers realise how limiting many of the questions
they were asking students were in providing insight into the degree of understanding held
by students (Pegg & Panizon, 2004, p. 441). The use of extended response items worded so
students had opportunities to reach relational solutions became more of a feature of the
teachers’ assessment practices once they became aware of these limitations. The theoretical

framework also provides a justification for qualitative teacher judgments.

Collecting and interpreting evidence of student learning

Secondary mathematics teachers use a wide range of assessment methods, though it would be
fair to say that tests and exams predominate (Cooney et al., 1993; Watt, 2005). Watt (2005, p. 21)
makes a case for using ‘alternative methods of assessment that are able to effectively assess the
range of students’ mathematical abilities’ in an effective assessment plan to overcome issues
such as differences in learner characteristics leading to some students being differentially
advantaged by particular assessment forms (Leder et al., 1999); effective sampling across the
breadth of content, techniques and processes of mathematics; and current emphases on
assessing mathematics in context and higher order processes. Different forms of assessment
are also useful for the different purposes of assessment, and the different stages of learning a
new topic. Assessment tasks in themselves should be worthwhile learning activities for
students. A representative collection suggested in a variety of mathematics curriculum docu-

ments from various Australian states includes those shown in Table 6.2.

Table 6.2 Assessment tasks

* Rich tasks (the New Basics) — an experiment or survey

* Rich assessment tasks a mathematical investigation

e Concept maps a field activity

¢ Student self-assessment — aproject

e Teachers’ questions during lessons * Subject examinations

* Open-ended questions ¢ Practical tasks such as measurement activities
e Debates e Extended analysis tasks

e Journals * Extended modelling and problem-solving tasks
* Topic tests e Portfolios

e Reports (written, oral, multimedia or * Diagnostic tests

combinations of these) on
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Cooney et al. (1993) point out that it must be ‘understood that new forms of assessment
reflect a different and more fundamental vision of what it means to know mathematics’
(1993, p. 274). As these researchers found, teachers will not use alternative forms of assess-
ment if ‘these tasks do not reflect their own understanding of mathematics’, if the intrinsic
value of these types of assessments escapes them, or if the outcomes measured by the tasks
are not what the teachers value, regardless of whether or not they are explicitly stated in
curriculum documents (Cooney et al., 1993, p. 247). Ayres and McCormick (2006) reported
instances of similar findings from a survey of General Mathematics teachers in New South
Wales conducted soon after changes to the New South Wales syllabuses in 2000. The
researchers viewed these changes as threatening the relevance of teachers’ existing subject
knowledge base and reducing the relevance of many of their past skills in assessment.

Watt (2005), investigating assessment methods used by mathematics teachers in a selec-
tion of Sydney metropolitan secondary schools, found the main assessment technique the
teachers reported using was written tests/exams with ‘satisfaction with the written test as
accurately portraying student capabilities [increasing| with school year’ (2005, p. 37). A
major reason for teachers’ avoidance of alternative assessments in Watt’s study, despite these
being suggested in the New South Wales syllabuses for many years, was a perception that
such methods were too subjective and thus unreliable. Watt suggests that one means of
ensuring teachers take alternative assessment seriously is to require a range of alternative
assessment methods to be implemented. Some states (e.g. Queensland) have required this
for some time, even at the senior secondary level, but others are now emphasising a
new agenda in assessment—particularly those engaged in an outcome-based approach
to teaching and learning where teachers are required to use standards-based criterion
referencing when reporting students’ achievement.

Advice regarding the use of these forms of assessments, particularly when they are
contributing to exit scores or exit levels from a course of study, varies in terms of whether or
not the assessment must be done under fully supervised conditions in class or in unsuper-
vised conditions in the students’ own time. Advice about the extent to which authorship
needs to be verified by teachers also varies.

In the remainder of this section, we describe a selection of methods of assessment includ-
ing informal assessment (classroom questions, student self-assessment), alternative
assessment (open-ended questions, rich assessment tasks, performance assessment) and

traditional assessment instruments (tests).
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Teacher classroom questions

Teacher questions that serve the purpose of determining what students know or under-
stand are part of the normal interactions in the classroom. They scaffold students’ learning
and focus their attention on what matters when problem-solving, for example (see the
lesson scenarios in Chapters 2 and 3). During independent or group work, the teacher circu-
lates, monitoring progress and assisting students individually or in small groups. The
questions used should require students to explain what they are doing and how they found
their solution so the teacher can gauge their level of understanding and the sophistication
of the solution process that they are using: What have you found? How did you get your
solution? Why do you think that method will work? These kinds of questions should also be
used during classroom discussion of problem-solving approaches or solutions to problems.
In this situation, the questions should also focus on comparing strategies and solutions, and
students justifying their approach as well as explaining it: Have we found all the possible
solutions? How do you know? Are everyone’s results the same or different? Why/why not?
The DVD Assessment for learning: Aspects of strategic questioning (Curriculum Corporation, 2006)
has practical advice and examples of strategic questioning.

When interacting with students who are experiencing difficulty with a task, the tempta-
tion is to explain the process again. A better approach is to find out what they understand by
asking them to restate the problem or explain the process they are using. Teachers may also
need to probe understanding of prerequisite skills for the particular task using a series of

closed or open questions.

Self-assessment tasks

‘How would he know? He never asks me.” This response was given by a student to a
researcher asking for comment on what the student’s mathematics teacher knew about the
student’s mathematics work. This response highlights the importance of teachers talking
to students in order to form a productive relationship to facilitate their learning. This
student’s response also suggests that a teacher’s judgment about a student’s strengths,
weaknesses and needs may be quite different from that of the student. Many mathematics
teachers understand the role of students’ awareness of their own strengths and weaknesses
for providing motivation and direction for their learning and have included student self-

assessment methods in their practice. The IMPACT procedure (see Chapter 17) is one
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example that teachers can use to gather general information about students’ perceptions
of their learning and progress. Other approaches include self-assessment questionnaires
(e.g. KWL chart—see Figure 6.2), graphic organisers or checklists about particular

mathematics topics.

KWL Chart: Topic

Know about Want to learn about Have learned about

Figure 6.2 KWL chart

Open-ended questions

* The volume of a rectangular prism is 32 cubic units. What could be the dimensions of
this prism?

* The average age of three people is eighteen years. If one person is twelve years old,
what could be the age of the other two people?

* The gradient of a straight line is —3. Sketch four different straight-line graphs with
a gradient of —3.

* Find ten fractions between one-sixth and one-third.

Open-ended questions such as these are very useful as catalysts for learning activities
(Sullivan & Clarke, 1991), and also as items in assessment instruments. There are multiple
solutions and methods for solving them, so they are particularly useful in all classrooms as
students have different levels of skill and understanding of concepts. They can be used to find
out what students know about a concept when beginning a topic, investigating a concept,
applying a skill, or ascertaining students’ understanding or skills at the end of a teaching
sequence. Since there are multiple solutions and methods for finding solutions to these kinds
of questions, a student’s solution and method of solution may be located on the continuum

of standards used in state curriculum and assessment documents (where these apply).
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Rich assessment tasks [RATs ]

Plummer (1999), writing within the context of quality assessment for the revised School
Certificate for New South Wales secondary schools, considers assessment tasks to be rich ‘if
they provide assessment information across a range of course outcomes within one task,
optimising students’ expression of their learning’ (1999, p. 15) and thus reducing the need

for additional assessment. According to Plummer, rich assessment tasks:

* explicitly describe the expectations of the task to the learner;

* engage the learner;

* connect naturally with what has been taught;

* provide opportunities for students to make a start;

* are learning activities;

* provide opportunities for students to demonstrate subject knowledge, skills and
understandings;

* focus on the critical areas of learning within a subject; and

* assist teachers to determine the specific help which students may require in

content areas (Plummer, 1999, p. 15).

Importantly with RATs, individual students access these tasks at their own knowledge and

skill level and pursue the task in widely differing ways (Gough, 2006).

Performance assessment

In performance assessment, ‘the teacher observes and makes a judgment about the
student’s demonstration of a skill or competency in creating a product, constructing a
response, or making a presentation’ (McMillan, 2004, p. 198). These tasks can be highly
structured teacher-directed assignments or semi-structured or more open tasks in which
students are required to define the goals of the task, the method of investigation and means
of reporting. Cognitive research and practical experience suggest that in worthwhile

performance-based tasks:

* students perform, create, construct, produce, or do something;

* deep understanding and/or reasoning skills are needed and assessed;
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* sustained work is involved—often days and weeks;
* students are asked to explain, justify and defend;
* performance is directly observable;
* engaging ideas of importance and substance are involved;
* trained professional judgments are required for scoring;
¢ multiple criteria and standards are pre-specified and public;
* thereis nosingle ‘correct’ answer;
* if authentic (i.e. the task is similar to that encountered in real-life contexts), the
performance is grounded in real-world contexts and constraints.
(McMillan, 2004, p. 199)

Examples of performance tasks are shown in the following box.

Examples of performance tasks

* Carparks: Redesign the school carpark to improve its efficiency, capacity and
safety.

*  Soft drink cans: Design an aluminium soft drink can that holds an appropriate
volume and is attractive, easy to handle and store, and economical to manu-
facture.

*  Excursion: Plan and estimate costs for an excursion for your class to a local place
of interest.

*  Game: Design a board game, including the playing board and a clear set of rules.

*  Vacation: Plan and develop a budget for a vacation trip for a group of four people
to a location within Australia or to another country.

Source: Adapted from Clarke (1997, p. 33).

Tests

Tests and examinations are individual tasks normally undertaken in a defined time period
under supervised conditions with any access to information and resources (e.g. ‘open book”)
clearly defined. They can be oral, written or electronic. Tests can also be taken in unsuper-

vised conditions (e.g. ‘take-home’ exams). Items or questions in tests should follow the
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content and activities of mathematics lessons, and students should have access to the
resources that have been used during learning. If students have been using technology such
as a graphics calculator, then assessment conditions should allow access to these tools so
that their understanding and skills can be assessed comprehensively.

A variety of question and item types are used in mathematics tests, including multiple-
choice, short-answer, extended multi-step analysis and problem-solving questions.
Questions can be closed or more open, with students required to do some analysis or
problem-solving. Examples of questions can be found in past examination papers, state,
national and international tests and research articles, as well as in teacher resources (e.g.
Beesey et al., 2001). Advice on designing different types of test questions abounds in most
classroom assessment texts (e.g. McMillan, 2004). When selecting questions and items for
the test, it is important to be aware of the common errors or misconceptions that students
may display. As these can be masked by the phrasing of questions or use of particular
examples, teachers should include more than one question about a concept to gather more
comprehensive information. Before being administered, the test as a whole needs to be eval-
uated globally (see Gronlund & Linn, 1990, p. 245 for a checklist of pointers in appraising
a test).

Commercial textbook electronic resources often provide item banks and templates for
constructing tests. These can be very useful, but it is important to check that the structure
and language of these questions are consistent with the teaching and learning activities used
in lessons.

As well as ensuring that the test is consistent with the content of teaching, it is also
necessary to select items and structure these items so as to gauge the diversity of under-
standing, levels of mathematical thinking and performance. This involves more than
including simple and difficult questions or questions relating to different standards in the
curriculum. Items testing higher order thinking and relational thinking must be included,
as proposed in the SOLO taxonomy (Biggs & Collis, 1991). Kastberg (2003) illustrates how
Bloom’s Taxonomy can be used for designing mathematics tests, and includes algebra
examples for each of the levels of thinking in this taxonomy (knowledge, comprehension,
application, analysis, synthesis and evaluation).

Involving students in designing the test is a very useful and successful assessment

strategy. Students are asked to construct questions for the test, with the teacher either
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providing guidelines or leaving the requirements open-ended. Students’” questions provide
insight into the depth and breadth of their knowledge and level of thinking, as well as the
skills and understanding revealed in the answers they provide for their question. Using their

questions in the test is also affirming for students.

Assessment items

Below are two different items for assessing chance and data. The first is a multiple-
choice item and the second an extended individual written task. Both items
appeared in Victorian Year 7 AIM tests (VCAA, 2001, 2004a). The extended response
example shown relies on responses to a previous item (Part B) which asked students

to identify (a) multiples of 3 and 5 and (b) prime numbers from 3 to 33.

Multiple choice item: Shade one bubble.

A box contains 5 green balls, 4 white balls, 3 black balls and 3 red balls.
One ball is picked out without looking.

What is the probability that the ball is green?

1 1 1 1
2O 2O 1O O

Extended task: Dartboard (Part C)
Use your answers from Part B to help complete the following task.

Below is a picture of a carnival dartboard with blank cards.

L]
L]
L]
L]

Your task is to fill in the dartboard by writing one number only on each card, using

the following five rules.
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Rule 1: Only numbers from 3 to 33 may be used and each number may only be used
once.

Rule 2: The chance of hitting a number which is a multiple of both 3 and 5 will be
one in eight.

Rule 3: The chance of hitting a number which is a factor of 12 will be one in four.
Rule 4: The chance of hitting a prime number is the same as hitting a non-prime
number.

Rule 5: The chance of hitting a single digit number will be one in four.

Compare these items.

* What could you find out about your students” knowledge of chance and data
when using each of these items?

* Identify the mathematical learning outcomes assessed by each of these two
items.

e What are the limitations, or weaknesses, in each of these items?

* In what situations, and for what purposes, would you use multiple-choice items

and extended response items in a mathematics test?
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REVIEW AND REFLECT : Consider the different forms of assessment listed and

discussed above.

* Write a list of advantages and disadvantages for each form of assessment.

* |dentify the most appropriate purpose for which this form of assessment could
be used.

* Which of these forms of assessment are used in your secondary school and
why?

* To what extent and how do the conditions and policy of the school and state
assessment authority limit a teacher’s choice of assessment?
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Preparing assessment tasks for students

The Australian Curriculum, Assessment and Certification Authorities (ACACA) have
drawn up guidelines for both quality and equity in assessment. These are reproduced in the
box below. They should be borne in mind when making decisions about the type of assess-

ment task to use, designing and constructing tasks or tests, and selecting items and questions

for assessment purposes.

Guidelines for assessment quality and equity

L.

An assessment item should assess what the item writer intends it to assess and

only what on face value it purports to assess.

. Students should not, unless there is a specific and justifiable reason for doing so,

have to decode some hidden instructions or clues on how to answer an assess-
ment item.

Specialist language or jargon in an assessment item should only be used to aid
clarity and accuracy and if that specialist language is an integral part of the
teaching and learning in that subject.

The reproduction of gender, socioeconomic, ethnic or other cultural stereo-
types should only be used in assessment items after careful consideration as to its
necessity.

To allow students to demonstrate their command of what the item is supposed
to assess, the item should be presented clearly through an appropriate choice of
layout, cues, visual design, format and choice of words, and state its require-
ments explicitly and directly.

The use of background material and requirement of assumed knowledge in an
assessment item should only be used when the item writer can reasonably

presume all students have ready access to these.

. Assessment criteria should be explicit, clear, unambiguous and declared in

advance.
The criteria should allow students to identify appropriate ways to demonstrate

command of the required knowledge and skills.

. The criteria should also allow the marker to recognise, where appropriate,

different ways in which a student may demonstrate command of the required

knowledge and skills.

Source: ACACA (1996).
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REVIEW AND REFLECT : Discuss these principles and the equity issues con-
cerning assessment. Why is this important?
Using these guidelines, write a critical reflection on an assessment task that you

have collected from your secondary school or designed and used in your teaching.

Once an assessment task has been found, modified or designed, it is important to ensure
that student responses provide useful evidence of their learning. Typical quality assurance
steps to ensure this happens are summarised in the flow chart in Figure 6.3. (See Bush &

Greer, 1999, for more information on preparing assessment tasks.)

Strengthening the consistency of teacher judgments

Teachers have always had complete autonomy when it comes to using assessment for form-
ative purposes. The position varies with relation to summative assessment, especially for
high-stakes assessment that is instrumental in determining which students win sought-
after places at high-status tertiary institutions. Since the 1980s, school-based assessment has
risen in prominence as either a replacement for, or an adjunct to, external public examin-
ations at the end of secondary schooling. School-based assessment relies on teachers’ ability
to make assessment judgments that are consistent across students and tasks, and consistent
with the judgments made by other teachers within and outside the school. Morgan and
Watson (2002) note that interpretive assessment judgments are ‘influenced by the resources
individual teachers bring to the assessment task’ (2002, p. 103), and that this may lead to
inequity when different interpretations are made of students’ achievements. However, the
difficulties of being able to make a sound judgment based on equitable practices should not
be a reason for doing nothing, as a range of strategies is available for strengthening the
consistency of teacher judgments. Two such strategies—moderation and the use of

rubrics—are discussed below.

Moderation

In some states and territories (e.g. Queensland and the ACT) teachers’ voices are given high

status and ‘teachers’ qualitative judgments’ are considered an important component of
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What am | trying to
find out about
students’ learning

Why is this
important?

Professional \ /Books, media,
journals Look for an websites
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Other / \ Classroom

teachers conversations
v
Type of task Design assessment Setting (individual?
. . ?

(open-ended task and setting group? how to
performance?) present to students?)

Look at successful
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Ask another
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students to make
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do? their learning? context?

v

Modify task

and rubric
v

Give task to Record student

students P reactions, questions,
comments

Source: (Adapted from Bush & Greer, 1999)

Figure 6.3 Flowchart for preparing an assessment task for students

teachers’ professionalism underpinning school-based assessment systems (Sadler, 1987,

p- 193). In Queensland, for example, teachers—the people most familiar with students’
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achievements in a subject’—assess student performance in senior secondary education;
however, these teacher judgments ‘must be able to stand up to scrutiny by expert prac-
titioners external to the school’ (Queensland Studies Authority, 2006). An externally
moderated entirely school-based assessment system is used. The expert practitioners are
practising teachers from other schools and tertiary educators. In the Australian Capital
Territory, on the other hand, unit grades for ACT Board of Senior Secondary Studies
accredited courses are reviewed and verified by structured, consensus-based peer review
involving teachers from a range of ACT colleges (ACT BSSS, 2006).

Rubrics

Assessment rubrics are tools for rating the quality of student performance that identity the
anticipated evidence that will be used for making judgments. They are used for all types of
assessment. Publishing these rubrics for students along with the assessment task makes the
expectations of the task explicit for students, and encourages students to be self-directed
and reflective in their learning.

Generic, or holistic, rubrics can apply to a broad spectrum of tasks. Holistic rubrics
commonly use general descriptors for levels of performance such as exemplary, excellent,
good, satisfactory, not satisfactory. The example in Table 6.3 illustrates how teachers might

use assessment judgments to inform their teaching.

Table 6.3 Everyday rubric grading

E Excellent example Meets or exceeds expectations.
Complete, clear communication.
Clear understanding.

Any error is trivial.

M Meets expectations Understanding is evident.
Needs some revision or expansion, but written comments are enough.

No additional teaching needed.

R Needs revision Partial understanding is evident, but significant gap(s) remain.

Needs more work/teaching/communication.

F Fragmentary Clearly misunderstands.

Insubstantial attempt made.

Source: Stutzman & Race (2004, p. 36).
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Task-specific rubrics apply to a specific task. The rubric in Table 6.4 and the following box
was used in the Middle Years Numeracy Research Project (Siemon, 2002) for an algebraic
problem-solving task involving the use of inverse relationships, simple ratios, division and

application in a familiar context.

Medicine doses
Occasionally, medical staff need to calculate the child dose of a particular medicine,

using the stated dose for adults. The rule used is as follows:

Child dose = Adult dose X 25

A. If the adult dose for a particular medicine is 15 mL, what would be the appro-
priate dose for a six-year-old child?

B. A nurse uses the formula to work out the dose for an eight-year-old boy. She
correctly calculates it as 6 mL. What was the adult dose?

C. At what age would the adult dose be the same as the child dose? Explain your

reasoning.

Table 6.4 Task and rubric for medicine doses

Descriptor Score
A No response or incorrect 0
Information from formula used but incorrect or incomplete calculation 1
Correct (5 mL), appropriate use of formula or recognition of proportion 2
B Incorrect or no response 0
Fraction component identified but incomplete, e.g. recorded as 6 divided by 6+12 1
. 6 . .
Fraction correct ( 5 ) but not interpreted appropriate to context 2
Fraction given as % 3
( No response or incorrect 0
Information from formula used but incorrect or incomplete calculation 1
Correct (20 mL), appropriate use of formula 2

Source: Beesey et al. (2001); Siemon, (2002).
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Multiple analytic rubrics describe levels of performance for individual aspects of
performance that could stand alone. These rubrics include scoring systems for test or exam
tasks, as well as for performance and problem-solving tasks. An example of an analytic
rubric is provided in Table 6.5. It was developed by the Mathematics Association of Victoria
for its Maths Talent Quest (2006), which is an open-ended mathematical performance task
involving students in mathematical inquiry, investigation and problem-solving. Students
are able to present their entry in a variety of formats. The rubric used for competition
judging has descriptors and scores for communication, understanding, originality and pres-

entation. Table 6.5 shows the descriptors for only the communication category.

Table 6.5 Rubric for communication category judging and scoring criteria for Maths Talent Quest

Sub-category High Score | Medium Score |Low Score | Not evident Score
A The approach | 4 The approach | 3 The approach |2 Thereareno |0
Approach to to the to the to the aims and
the investigation investigation investigation goals given
investigation is explicit is often clear and aims and and the
with aims with aims, goals are approach to
and goals, a goals, a plan stated. and planning
thorough for solving for the
plan for and with investigation
solving and conclusions is unclear.
conclusions stated. Conclusions
clearly stated. were unclear
or not stated.
B Precise and 4 Mathematical | 3 Some 2 No 0
Use of appropriate terminology mathematical mathematical
mathematical | mathematical and notation terminology terminology
terminology terminology in the and notation and notation
and notation solution is to is used or
is used to used to share communicate everyday,
support ideas. is used. familiar
mathematical language to
thinking and communicate
communicate ideas is used.
ideas.
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Table 6.5 continued

Sub-category High Score | Medium Score |Low Score | Not evident Score
C Explanations | 4 Explanations |3 Explanations | 2 Does not 0
Clear and with clear with detail are explain the
detailed and effective are mostly incomplete solution or
explanations detail of how given about or ineffective the

and why how and why as to why the explanation

solutions most solution cannot be

were made solutions makes sense. understood

or given. were made. orrelated to

the
investigation.

D The diary or 4 The diary or 3 The diary or 2 There is no 0
Use of diary learning learning learning diary or
or learning journalis an journal gives journal learning
journal explicit, some offers very journal.

reflective explanation little

account of of the explanation

the mathematical of the

processing thinking and mathematical

and inquiry learning thinking and

inthe involved. learning

investigation. involved.

Source: MAV (20006).

The ACT Board of Senior Secondary Studies (2006) provides the following advice on how

to develop a rubric:

1. Decide on the focus and purpose of the rubric.

2. Decide on the type of rubric required to assess the task/s.

3. Decide on the criteria needed to assess the task/s using the course framework.

Ask what are the cognitive and performance components required in the task/s.

4. Make sure there are not too many criteria to ensure clarity of expectations.
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Brainstorm the characteristics of student responses at different levels based on
previous evidence.

Develop descriptors for each performance level that: (a) describe unique char-
acteristics; and (b) use unbiased and unambiguous language (no comparative
language).

Align the rubric descriptors with the grade descriptor language and expectations
for each standard A—FE in the Course Framework.

Check that the rubric: (a) defines a continuum of quality; (b) focuses on the
same criteria; (c) validly discriminates performance levels; and (d) can be reliably
rated.

Test your rubric against actual samples of student work.

Share your rubric with students.
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REVIEW AND REFLECT : Comment on the strengths and weaknesses of the
sample rubrics for making judgments about students’ performance.

Collect other examples of assessment rubrics from schools, the internet or

other teachers’ references (e.g. Bush & Greer, 1999). Select a rubric and explain

why it would be useful for assessment in your mathematics teaching.

A. Watson (2006, p. 153) argues that assessment should focus on what mathe-

maticians do when inquiring and constructing meaning. She proposes the

following verbs for some of these actions:

exemplifying specialising completing
deleting correcting comparing
sorting organising changing
reversing varying generalising
conjecturing explaining justifying
verifying convincing refuting

Use a selection of these or other verbs that describe what mathematicians do to

design an assessment rubric for a non-routine problem-solving task.
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Recording, profiling and reporting
Recording

Keeping records of students’ progress and achievement is a teaching responsibility and an
important part of the process of providing feedback to students and informing parents
and other teachers. These data are also critical for evaluating one’s own performance as a
teacher of mathematics and helping make decisions about the focus of lessons and suitable
learning activities for students.

Recording of student performance can take many forms. For example, teachers may
wish to allocate marks in relation to the criteria for assessing learning in the Diagonals of a

Quadrilateral activity in Figure 6.1. This could be recorded as in Figure 6.4.

Name: Maria

Activity: Diagonals of a Quadrilateral Class: 8F
Date: 28/7/07

Criteria Performance

Demonstrates knowledge and understanding of the nature of different quadrilaterals 4/5

Draws a valid conclusion about the diagonals of quadrilaterals 2/2

Communicates mathematical ideas 3/3

Figure 6.4 Recording feedback and assessment using scores

Alternatively, the teacher may have used and recorded holistic judgments (see

Figure 6.5) informed by the marking guidelines for various standards.

Class: 8F
Activity: Diagonals of a Quadrilateral Date: 28/7/07
Student Level of Performance
Progressing Satisfactory High
Alan v
Barry v
Colleen v
Gloria v
Helen C v
Helen F v
Maria v
Peter v
Phil v
Tass v

Figure 6.5 Recording assessment using holistic judgments
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Spreadsheets and electronic records provided online or commercially can be especially
useful for analysing data. When selecting or designing these forms of records, it is important
to ensure that the format is flexible enough for the diversity of assessment activities used
and that it will produce summative assessment data appropriate for the mode of reporting

required by the school.

Reporting

We need to know the audience (student, teacher, parent, administrator) and take the

audience into account in both how and what we report. Modes of reporting include:

* written reports (either paper or electronic);
* interviews with parents or carers and/or students;
* culminating performances or presentations;

¢ student folios.

REVIEW AND REFLECT : Consult your local curriculum and assessment authority
website and determine the regulations with regards to assessment and reporting.

Find out about one secondary school’s reporting policy, process and require-
ments. Share your findings with your pre-service colleagues and discuss the

merits of different formats and approaches.

Parents and carers of students in Years 7 and 9 participating in state and territory
numeracy assessments receive individual reports that show where the results place a
student’s achievement in relation to the national numeracy benchmarks and in comparison
to other students in the year level. State and territory results from the international
mathematics assessment programs such as TIMSS and PISA can be found in specific inter-
national and national reports, some of which are available from websites such as

<www.acer.edu.au> and <www.pisa.oecd.org>. Summaries of the results are provided


http://www.acer.edu.au
http://www.pisa.oecd.org
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in the annual National Report on Schooling in Australia, which is available on the Ministerial
Council on Education, Employment, Training and Youth Affairs (MCEETYA) website,

<www.mceetya.edu.au>.

Conclusion

In this chapter, we have discussed the purpose and methods of assessing students’ mathe-
matical learning. It is clear that monitoring student progress and discussing understanding
and achievement are critical for students’ learning, and that mathematics teachers use
many different methods to gather information about students’ understanding and skills.
This information should inform teachers’ decisions about further teaching and learning
activities for the current focus or future topics. Given the advantages and disadvantages of
the various assessment and reporting methods discussed in this chapter, it is important for

teachers to be able to justify the practices that they use.

REVIEW AND REFLECT : Read the following quote from a Queensland teacher:

Like, it's like marks, | mean most maths teachers in Knowledge and Pro-
cedures want to use marks. Why? What’s a mark? What does a half a mark
or a mark here or there mean? And yet they insist on using marks to grade
kids and the only real reason is because it is easy. The same as exams, what
do exams tell you? The only time, the only reason exams are any good are
for teachers for marking. They are not good for kids, they are not good for
developing understanding, so what's the point? (Extract from CCiSM project

interview, 2005)

* Discuss this teacher’s beliefs about assessment.
* Write a statement explaining your beliefs about mathematics assessment and

the practice that you will use when teaching mathematics.
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CHAPTER 7

Teaching and learning
number

When students begin secondary school, they have already had many years of school and life
experiences with number. Most students strongly associate mathematics with numbers and
readily appreciate the application of number to real problems. In secondary school, asin the
primary years, number concepts and skills are needed for all other mathematics domains. By
the end of primary schooling, students have learned the underpinning concepts of whole
numbers and fractions, and the skills to operate with numbers and think mathematically to
solve problems. However, for most students, their understanding of these concepts and
facility with operations is unlikely to be secure. At the beginning of secondary school, there
is a diverse range of competencies and strategies used by students and the mathematical skills
and achievement of far too many students actually decline in their first year of secondary
school (Siemon et al., 2001). As their secondary mathematics teacher, you need to begin
by finding out what your students know for each topic in number. With this knowledge,
you can then pay attention to consolidating their understanding and build on their knowl-
edge to develop more efficient strategies, improve skills, operate with the full range of
numbers in our number system and use effective strategies for more complex problem-
solving situations.

In this chapter, we will assist you to ‘unpack’ some of the key number concepts and
describe teaching approaches that both connect with students’ primary experiences of
learning, and support mathematical understanding and skill development. We will focus on
concepts and skills that are important for mathematical literacy and success in senior

secondary mathematics at the expense of discussing particular topics in senior secondary
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mathematics, such as complex numbers or matrices. These include: place value with
decimals; fractions; mental computation; multiplicative thinking (including operations
with fractions and decimals); proportional thinking (including percentage); exponential
thinking; irrational numbers; and integers. Of course, students taking vocational mathe-
matics subjects in senior secondary mathematics will revisit many of the topics discussed in
this chapter to solve problems for particular contexts. Since it is important for secondary
teachers to understand the development of concepts and mathematical thinking over the
long term of a child’s mathematical education, we will first present an overview of students’

number learning in primary school.

Number in the primary years

Primary teachers use a range of materials and learning aids to assist children’s learning of
number (Booker et al., 2004). These concrete materials enable students to visualise concepts
in multiple ways. The materials are important for connecting mathematical symbols and
language with concepts. Initially, young children count by rote, then they use one-to-
one correspondence and touch objects to count by ones and count all when adding. In
the early years, primary teachers then build more efficient strategies for addition using the
part—part—whole concept of number, counting on from largest number, doubles, near-
doubles and building to ten to establish addition and subtraction facts (Department of
Education and Training, NSW, 1998; Wright, 1998). You may observe that some secondary
students who are not proficient still use counting on by ones (counting on fingers or with
tally marks) for addition.

Children begin to understand fractions and decimals in context and model these using
materials in primary school, normally from Year 2 or 3. They continue to need to use
concrete materials in early secondary school to assist them to understand equivalence of
fractions and decimals, to compare and order fractions and decimals, and to understand
operations with fractions and decimals. For example, Figure 7.1 shows a fraction wall made
of fraction strips, and children can use this wall to find equivalent fractions and play a game
to practise finding equivalent fractions.

In the upper primary school, children extend their knowledge of the ‘Base 10" number
system to include large numbers and decimal fractions. Through a range of application tasks,

they develop a sense of very large and very small numbers and learn to compare them,
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Figure 7.1 A fraction wall showing % = %

though these concepts may not be consolidated for many students commencing secondary

school. Children commonly explore the concept of a million through problems such as:

How long would it take one person to hand out one million pamphlets if you walked

door to door in Sydney?

Developing number sense and skills with all types of numbers continues during second-
ary schooling, and it is important to continue the process of developing the language, and
symbolic and visual representations of whole numbers, fractions and decimals using the

concrete materials and learning aids commenced in primary school.

Number in the secondary years

In the secondary years, students consolidate and extend their number sense for solving
problems and making judgments (McIntosh et al., 1997). Students with number sense are

able to:
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* calculate mentally;

* use approximate values to estimate;

* understand the connections and relationships between numbers and use them
when calculating;

* have a sense of the size of a number in relation to other numbers;

* switch between equivalent representations of numbers; and

* assess the reasonableness of a solution when solving problems.

Students in secondary school also learn about other types, or sets, of numbers:

* integers (positive and negative number);

* rational numbers (numbers that can be expressed as a vulgar fraction);

* irrational numbers (numbers that cannot be expressed as a vulgar fraction);
¢ real numbers (the set of rational, irrational numbers and zero); and

* for some students, complex numbers.

Recent Australian research and results of international studies of mathematics achieve-
ment shed light on common misconceptions and the concepts and types of number
problems that cause the most difficulty for secondary students. A large study of students in
the middle years of school—that is, Years 5-8—in Victoria found that many students had
difficulty with:

* explaining and justifying mathematical thinking;

* reading, manipulating and using common fractions, decimals, ratio, proportion
and formulae;

* thinking multiplicatively;

* generalising simple patterns; and

* interpreting results in context (Siemon et al., 2001).

Furthermore, there was a considerable range of achievement levels for students in a single-
year level, up to seven years of schooling. Other researchers have observed weaknesses in

number knowledge and skills, including mental computation (Callingham & McIntosh,
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2002), comparing decimals (Moloney & Stacey, 1997; Steinle et al., 2002), and ratio and
proportion (Dole et al., 1997).

In the Third International Mathematics and Science Study, thirteen-year-old Australian
students on average performed better than the international average for the sections on the
test dealing with number and measurement (Lokan et al., 1996). However, there were some
items on which Australian students performed particularly poorly (more than 10 per cent
below the international average); and these included multiplication and division of
decimals, division of fractions and items requiring operations with two or more fractions.

Siemon and colleagues (2001) recommended that teachers in the middle years focus the
speaking and listening among students and teachers in mathematics classrooms on building
meaning and making connections between ideas. This is because asking students to repre-
sent concepts in multiple ways, to explain their reasoning and to justify their reasoning,
contributes to concept and skill development. We will now discuss the teaching and
learning of foundation number topics in secondary school. You will need to use some
particular approaches for students who are well behind their peers. These are discussed in

Chapter 15.

Place value

Understanding the value of digits according to their place in a number is the basis of
counting and comparing all numbers. Children in the primary years learn that the values
are structured on multiples of 10 (Base 10 number system), that zero is a place-holder, and
that the decimal point is a marker that separates the whole elements from fractional
elements of the number. In other cultures, a comma is sometimes used instead of a full
stop. With the aid of a place value chart (see Figure 7.2), saying aloud the place value when
reading decimal numbers will help students who have difficulty comparing decimals. For
example, the number 31.265 should be read as thirty-one wholes and two tenths, six
hundredths and five thousandths, or thirty-one wholes and two hundred and sixty-five
thousandths, and not as thirty-one point two six five. This approach will also help students
to interpret large numbers that are common in the media—for example, $3.6 billion—and
be aware that the scientific notation is 3.6 X 10°. Number expanders are useful for renaming,
and learning is enhanced when students make their own number expander for decimals
(see Booker et al., 2004).
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Tens | Ones | Tenths |Hundredths Thousandths

3 | le | 2 | 6 | 5
Figure 7.2 Place value chart

Moloney and Stacey (1997) found that only 75 per cent of Year 10 students could
compare decimals with 80 per cent accuracy; higher proportions of students make errors in
the earlier secondary grades. Students also have difficulty relating their everyday use of

decimals to school mathematics (Irwin, 2001).

REVIEW AND REFLECT : For each pair of decimal numbers, circle the one that is
LARGER.

4.08 4.7 0.216
3.72 5.736
Student A Student B

The above table shows responses from two students in research conducted by

Steinle et al. (2002) for three items.

* Analyse these two students’ responses. How is their thinking similar and/or
different? Comment on their level of skill.

* Write a pair of decimal numbers that Student A would be likely to compare
incorrectly, but Student B would compare correctly.

¢ Write another pair of decimals Student B would be likely to compare incorrectly
while Student A would compare correctly.

* How could you show these students that their thinking is incorrect?
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Misconceptions arise for a number of reasons. Steinle and colleagues (2002) observed two
main persistent misconceptions among a number of others. One is the ‘Tonger is larger’
fallacy. Students who think longer is larger are using ‘whole-number thinking’ (also preva-
lent as the source of misconceptions with fractions). The ‘shorter is larger’ fallacy often
occurs after students are introduced to negative integers, and these students have difficulty
placing decimals smaller than one on a number line labelled with integers. These students
seem to think that decimal numbers are below zero or negative (Irwin, 2001). Linear attrib-
ute blocks that show students the value of digits in decimal numbers, together with
open-ended investigations, games and application problems related to familiar contexts for

students, improve students’ knowledge of decimals (Irwin, 2001; Steinle et al., 2002).

REVIEW AND REFLECT : Develop a set of materials and tasks that would be
suitable to use with the students whose responses are recorded above:

* Find out about and make some linear attribute blocks (Steinle et al., 2002).

¢ Make a number expander for decimals with four decimal places.

* Search for games and other resources for teaching decimal place value.

Fractions

While students have been learning about fractions since the early years of schooling,
conceptual understandings and operations with fractions are difficult for many students in
secondary school (Brown & Quinlan, 2006; Callingham & Mclntosh, 2002; Oliver, 2005;
Pearn & Stephens, 2004; Siemon et al., 2001). A focus on rules without understanding of frac-
tions and the persistence of whole-number thinking are sources of many misconceptions
and errors in students’ work (Gould, 2005; Pearn & Stephens, 2004).

Many students understand a fraction to be part of a whole rather than seeing a fraction
as also meaning a part of a collection and the operation of division (Gould, 2005). Students
at risk in secondary schools do not accurately illustrate equal parts when drawing models of
proper fractions, especially when trying to use circles, and many students have difficulty

modelling improper fractions using a number line (Gould et al., 2006; Pearn & Stephens,
2004).
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REVIEW AND REFLECT : The two tasks below require students to place fractions
on a number line, but the second is more difficult. Propose an explanation for this
difference.

1. Puta cross where you think % would be on this number line.

I I
0 1

2. Putacross where you think 1 would be on this number line.

| |
0 4
3

Students also need to understand that % means 5 — 6—that is, 5 divided by 6 or 5 shared
between 6. Consider the problem and three typical solutions shown in Figure 7.3.

While many students will place cuts in the pizzas to show that each family would get %
of a pizza, either by slicing each pizza into six pieces or by slicing % off each pizza, one or
two students in your class will probably slice three pizzas in half and two into thirds to give
aresult of % + % . These students use an Ancient Egyptian notion of fractions with numer-
ators only represented by 1 unconsciously in this real-life situation. Capable students could
be challenged to design similar problems and show that a fraction can be represented by a
sum of other fractions with numerators of 1. (Note that the Ancient Egyptians used only
one fraction with a numerator other than 1 and that was %)

Making sense of fractions also means that students are able to compare fractions and find
equivalent representations of fractions. Fractions modelled using paper-folding to create area
models, such as fraction strips and rectangles, and fraction walls made of multiple fraction
strips, can be used for open-ended investigations such as ‘find ten fractions that are equivalent
to % > or ‘find ten fractions between % and %’ (see Figure 7.1). Formalising these investigations
through discussion of the findings enables students to appreciate that equivalent fractions are

formed when multiplying or dividing by one @ X % = % and % - % = %)
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Six families want to share five rectangular pizzas. How would you cut the pizzas

so that each family has an equal amount?

1 5 1 1
e ® 23

Figure 7.3 Three solutions for 5~ 6

Some students use whole-number thinking when comparing fractions with unlike
denominators. For example, a student may argue that % is larger than 110 because there is only
one difference between the numerator and the denominator in this fraction (Pearn &
Stephens, 2004). These students perceive fractions as two whole numbers. To develop their
fraction sense, students need to be able to visualise fractions that are near 0 or 1 or some other
common fraction, such as % Having a mental image of fractions with the same numerator
becoming smaller and smaller as the denominator increases will assist students who are

whole-number thinkers. Students can then check their reasoning by finding equivalent
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fractions. For these reasons, it is not wise to approach the teaching of comparing and adding

. . . 1. . . c + ) .
fractions using the cross-multiplication algorithm (% +5= ad 77 hc) before finding out

about students’ conceptual understanding of fractions. The learning sequence should
proceed by first modelling using materials and number lines, then estimating, and deriving

algorithms with a well-designed investigation (Brown & Quinn, 2006; Oliver, 2005).

REVIEW AND REFLECT : The following two problems encourage students to use

visual images and estimation:

Picture these two sets of fractions in your mind.

4 4 4 ¥ 6 15
10 47 8 100 7 16

* Order the fractions in each set from smallest to largest. Explain the visual
images, or number sense that you used to order these fractions.

e Use four of these digits: 1, 3, 4, 5, 6 or 7 [only once], to create a sum of two
fractions that is less than but as close as possible to 1. (Try writing these digits
on small square pieces of paper so that you can try digits in different places
using estimation to find a solution.)

U, u
=+ 5 <t

e Document your thinking processes. In a group, share and compare your
strategies and discuss why you chose particular ways to solve these problems.
Discuss the mental pictures of fractions, the fraction concepts and the skills
that you used.

* Use these problems with a group of secondary students, assess the students’
understanding of fractions and report your findings.

* Prepare a set of learning activities to address any misconceptions that you
observe. Include multiple representations of fractions and games for practice

(see Oliver, 2005 for an example).
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Mental computation

Mental computation is the ability to use number facts and number sense to solve operations
without the aid of computational tools, or pen and paper. It is more than automatic recall,
though knowledge of the basic number facts for addition, subtraction, multiplication and
division is needed for efficient thinking strategies. Mental computation has received a lot of
attention in mathematics curriculum documents since the early 1990s. The emphasis
resulted from research that showed that adults used mental strategies and computational
tools such as calculators more often than pen and paper algorithms to estimate and cal-
culate with accuracy (e.g. Northcote & Mclntosh, 1999). Teaching materials have been
developed for the primary and middle years, but secondary textbook writers have paid scant
attention to the continuing development of efficient mental computation strategies with
whole numbers, fractions, decimals and percentages.

Some students seem to develop very flexible ways of thinking with number in spite of
an absence of structured learning opportunities in the classroom. Callingham and
MclIntosh (2002), in their study of students from Year 3 to Year 10, found that students’
mental computation competence ‘drops sharply between Years 6 and 7 (2002, p. 159).
Forty per cent of Year 7 students were not yet competent with table facts and inverses,
adding and subtracting two-digit numbers, multiplying two-digit numbers by a single-
digit number, or halving even two-digit numbers. Year 7 students also made errors adding
and subtracting decimals to one decimal place, adding halves and quarters beyond one,
subtracting familiar unit fractions from one, and finding a half, a quarter or 25 per cent
of two- or three-digit numbers. McIntosh (2002) further explains that many students’
mental computation errors with whole numbers were procedural, whereas the errors
made with decimals, fractions and percentages were because students did not understand
the concept.

Students who use efficient mental strategies demonstrate understanding of the field
laws (illustrated in Figure 7.4) and the order of operations to partition numbers and/or

reorganise the sequence of thinking, and so lighten the cognitive load.
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REVIEW AND REFLECT :

57
76

Ess

Kang

for each.

be applied.

1. The scores for a football match are shown on the television screen as:

How far behind is Essendon?
2. There are 24 lollies in a packet of Mintchocs. If | have eight packets of Mintchocs,
how many lollies are there altogether?

* Solve these two problems mentally and then document your thinking process

* In a group, share and compare your strategies and discuss why you chose
particular ways to solve the problem. Discuss the field laws that you used for
each mental strategy (see below).

* Use a number line to model the subtraction strategies.

* Consider other similar problems and document a range of strategies that could

Commutative

3+4=4+3
3X4=4X3
3—4#4-3
R+4#3+12

Identity elements

8+0=38
8—0=38
8X1=38
8+1=8

Associative Distributive
(5+6)+8=5+(6+8) 35+6=(30X6)+(5X%X6)
(P—=3)—2#7—-(3—2) 48 -4 =40+ 4)+ (8 +4)

(5X2)X4=5X(2X4)
(20 +5)+~2#20+ (5+2)
Inverse elements
7+(=7)=0

1

4XT:1

Figure 7.4 Field laws

Not surprisingly, mental computation with fractions, decimals and percentages is more

cognitively demanding than for whole numbers. Watson and Callingham (2004) found that

students first use mental strategies with simple fractions, decimals with the same number of
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places and common percentages, and take some years to develop strategies for finding
percentages of a number, such as 90 per cent or 15 per cent. Unfortunately, many secondary
mathematics textbooks just don’t give students opportunities to do mental computations
and develop these skills. And sadly, the secrets of the field laws are often kept from students
with the least developed number skills when teachers persist with requiring these students
to spend more time on pen and paper written algorithms rather than on developing
number sense and mental strategies. There are, however, lots of opportunities to include
practice in mental computation and it is vital to be aware of the importance of teaching and
practising mental strategies and to take these opportunities when they arise—for example,
calculating the missing angles in a triangle using mental computation with the whole class
as an oral activity rather than asking the students to write equations for the exercise. Online
quiz and test programs often also encourage the use of mental strategies.

Lessons in mental computation based on students sharing strategies with the whole
group validate everyone’s thinking as effective, demonstrate more efficient strategies, give
ownership of ideas to students, recognise that there is more than one way to work some-

thing out, and illustrate that different ways are used for different numbers.

REVIEW AND REFLECT :

* Find out what mental strategies secondary students use. Use the sample
problems above and make up one each for addition and division, then interview
some students in a school. Record their thinking strategies and compare with
the findings of colleagues.

* Plana mental computation lesson for whole numbers, fractions or decimals that
is appropriate for the students you interviewed (see McIntosh & Dole, 2004, for
examples).

Multiplicative thinking

Automatic recall of multiplication facts is not secure for 40 per cent of Year 7 students
(Callingham & Mclntosh, 2002). Furthermore, thinking multiplicatively is more than

remembering multiplication facts. Understanding multiplication, the language that is used
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in the structure of multiplication problems, its connections to other operations, and the
field laws that govern the operation are foundation concepts for many other concepts and
skills in secondary mathematics: proportional reasoning, ratio, exponential reasoning,
transforming algebraic expressions, and functions that define proportional relationships in
data. Weaknesses in secondary students’ multiplicative thinking lead to poor understanding
of ratio and proportion: ‘The essence of proportional reasoning lies in understanding the
multiplicative structure of proportional situations . .. for example, 4 in relation to 8 as
multiplying by 2 rather than adding 4.” (Shield & Dole, 2002, p. 609)

Arrays are commonly used in primary classrooms to help children learn multiplication
facts (Booker et al., 2004; Young-Loveridge, 2005). They illustrate the commutative, associa-
tive and distributive laws for multiplication (see Figure 7.5), and help students to make sense
of the multiplication of fractions and decimals. Arrays of algebra blocks can be used to
model the distributive law in algebra, so illustration using whole numbers facilitates algebra

learning (Leigh-Lancaster & Leigh-Lancaster, 2002).

< ? >
A
¢ % 0 | [3]
14 ]
21
28 20 200 60
8
35
42
& 2 20 6
8 16 24 | 32 | 40 | 48 56
v
4+——5—pe4t—2 —>p
§X7=7X8 22X 13=(20+2) (10 + 3)
=(5%X8)]+(2X8) =20X10+20X3+2X10+2X3
=200+60+20+6
=286

Figure 7.5 Arrays illustrating the distributive law for multiplication
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Multiplication of fractions and decimals

When using calculators to investigate the multiplication and division of decimal numbers
students are usually surprised to find that multiplication by a number less than one results
in a smaller number and that division results in a larger number. Students need multiple
approaches and representations, such as paper folding to make linear and rectangular
area models for multiplying fractions and decimals so that they understand where the
algorithms and rules come from. For example, to make sixths using a strip of paper, you
need to fold it into thirds and then fold it in half again. Students arrive at this process

intuitively (see Figure 7.6).

1
L L L
3 3 3
1 1 1 1 1 1
6 6 6 6 6
) . 1
From the first folds, 1 = 3 =3
L L_ 1 T S S N &
Fromthesecondfold,?of?— 6 ,thatis, > X 3% .0Or 3 2 = 5

Figure 7.6 Paper folding into sixths

Folding paper in this way shows that multiplying fractions makes a smaller fraction and
that the numerators are multiplied and the denominators are multiplied. It also illustrates
that multiplication by a fraction is the same as division by the reciprocal of the fraction, in

. [ 1
this case a whole number 7 ~ 2 = 37 X 5.

Figure 7.7 illustrates an array for multiplying decimals and shows that tenths multiplied

by tenths equal hundredths. In addition to deriving the procedure for multiplying decimals,

you should also teach students to estimate and check solutions using problems such as:

The decimal point is not working on the calculator, where does it go in these solutions?
534.6x0.545=291357
49.05%X6.044=2964582
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04 4 tenths
4 X 0.6 X 6 tenths
10 0.24 24 hundredths

A
v

Figure 7.7 0.4 X 0.6 = 0.24

Division by fractions and decimals

Division is usually introduced to primary children as ‘shared between’, the partition
meaning of division. But they also need to understand division as ‘how many groups of’, the
quotition or measurement meaning of division. Otherwise, students have difficulty
thinking about dividing by fractions, for example, understanding what 9 = ‘17 means (Gould,
2005). The fraction strips discussed above can be used to illustrate the division algorithm for

fractions. Having made the strips we can ask: ‘How many thirds in a sixth?

1
2

| —
| =

This is the same as three ‘lots’ of sixths—that is, % X3 = % . And so dividing by a fraction is
the same as multiplying by its reciprocal.

When students solve fraction division problems placed in a context, they make sense of
the problem and generate a strategy for solving it (Gould, 2005). Context suggests particular
interpretations, and hence strategies and reasoning for solving problems (Sinicrope et al.,
2002). Capable students may discover the strategy for finding a whole given a part (that is,

finding the unit rate) or finding the missing factor using an area model for division that
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enables division by fractions to make sense (Flores, 2002; Pagni, 1998; Sinicrope et al., 2002).

Example problems are shown in the following table. The sharing or unit rate uses the

notion of proportion.

Table 7.1 Division of fraction problem types

Quotition or measurement

Sharing or unit rate

Missing factor

Context If I need % cup of flour to If it takes me % hour to If I have % square metre
make a cake, and | have paint 2% doors, how many of material and the length
2% cups of flour, how doors can | paintinone hour?  of one side is % metre,
many cakes can | make for what is the length of the
the fete? other side?

Guiding How many groups of 3 3.25=1:00 ix[d=3

questionor in 2% ?

expression

REVIEW AND REFLECT :

* Search for materials and resources, including online interactive resources, to
develop students’ understanding of multiplication and division by fractions.

* Search for activities to use in practising the estimation of solutions.

* Search for contexts and applications of division by fractions or decimals and
design investigation or problem-solving tasks for students.

Proportional thinking

Proportional thinking involves making sense of quantitative relationships and comparing

quantities that have a multiplicative relationship (Cai & Sun, 2002; Shield & Dole, 2002).

Ratio and proportion are used in many real situations, and they underpin and connect

many mathematical ideas in secondary school mathematics. Learning about ratio, propor-

tion and percentages provides lots of opportunities for engaging students in authentic tasks

and problem-solving. Many measurement and geometry concepts rely on proportional
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understanding, such as scales and scale factors, relationships between attributes of shapes
(for example, pi, m and the Golden Ratio, &), speed and trigonometry. Understanding
proportional relationships as directly or inversely proportional is necessary for developing
function sense (Cai & Sun, 2002). The concepts of direct proportion and inverse proportion,
gradient and slope, and non-linear relationships all rely on understanding the multiplica-
tive structure of proportion.

Students make errors when working on ratio and proportion problems when they don’t
recognise the multiplicative relationship and use additive or absolute differences, or when
they apply taught algorithms inaccurately (Cai & Sun, 2002; Shield & Dole, 2002). Interpret-
ing worded problems is also difficult for students (De Bock et al., 2005; Siemon et al., 2001).
Students need to make sense of the problem rather than just apply a procedure. Although
problems may share similar structural features, careful interpretation is needed to discern

the difference between a multiplicative relationship and an additive relationship:

1. In the shop, four packs of pencils cost $8. The teacher wants to buy a pack for every
pupil. She needs 24 packs. How much must she pay?
2. Today Bert becomes two years old and Leslie becomes six years old. When Bert is

twelve years old, how old will Leslie be?

Teachers need to emphasise the multiplicative structure of ratio and proportion, as some
textbooks neglect this concept when defining and giving examples of ratio and proportion
(Shield & Dole, 2002).

There are three general types of proportional reasoning problems: comparing two parts
of a whole (for example, the ratio of boys to girls in a class); comparing rates or densities (for
example, kilometres per hour); and scaling problems (Shield & Dole, 2002). A number of
strategies can be used to solve ratio and proportion problems. These include finding the unit
rate, using equivalent fractions, and using a scale factor (or size changing). Visual models that
support proportional reasoning include the double number line (or proportional number
line) and ratio tables (Dole, 1999; Gravemeijer et al., 2005). Ratio tables are pairs of rows in a
multiplication table. These models, or tools, enable students to see situations when pro-
portional reasoning is and is not justified and they provide students with the opportunity

of reinventing for themselves the cross-multiply and divide algorithm generally used for
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proportion problems. These two different models are illustrated in Figures 7.8 and 7.9

respectively for the following problem:

Monica and Kim were riding from Echuca to Heathcote in the Great Victorian Bike
Ride. After one and a half hours, they passed a sign post which showed that they had
ridden 30 kilometres and that they still had 45 kilometres to ride. Monica said, “We're
doing well.’

Why did she say this? How long would it take them to reach Heathcote?

Zhr thr 1+ hr 25 hr 3hr

15km 20km 30km 45 km 60 km

Figure 7.8 A double number line

time 1% hr %hr 1 hr 3min

distance 30 km 10 km 1 km 45 km

Figure 7.9 A ratio table

REVIEW AND REFLECT : How do these models help to solve the problem above?

Discuss with your peers.

Ratios that are equivalent are proportional. Application tasks and projects using scales—
such as scale drawing, model building and using maps and plans—provide opportunities
for students to develop this concept. Spreadsheets are very useful for investigating propor-
tional relationships. In a spreadsheet, the concept of proportion can be presented

dynamically, as a sequence of constant ratios obtained by applying the same rule to



178 TEACHING and learning MATHEMATICAL CONTENT

numerous pairs of numbers or quantities that have been gathered from investigations of real
or mathematical contexts (Friedlander & Arcavi, 2005). Two examples, one about 7 and the
other trigonometry, are included in Chapter 8. Other exemplary tasks that involve students
actively collecting data to investigate proportion include ‘Planets’ (Maths300), Triple Jump Ratio
(D.M. Clarke, 1996), The Murdered Mammoth Mystery (Goos, 2002) and The Baby and the Heatwave
(see Chapter 13).

Percentage

Per cent is a particular type of ratio, and is normally introduced in primary school as a
special fraction, where models are used to show meaning and equivalence and apply pro-
cedures for switching between fractions, decimals and percentage. While we encounter
percentages such as 8% per cent interest and 0.05 BAC, converting these percentages to
fractions or decimals is difficult for students because many students think that percentages
are less than one and can only be hundredths. You should approach the teaching of percent-
age by modelling percentages with visual materials, including estimation tasks and using
application problems drawn from contexts that are familiar to and engaging for students.
Students who have established concepts and skills with equivalent fractions are already
familiar with processes that can be used to solve many percentage problems. Students
should be encouraged to automatically recall common conversions from percentages to
fractions or decimals.

Calculating the percentage of an amount is typically presented in textbooks as a pro-
cedure to learn and memorise rather than one to make sense of, and to make connections
with fractions and proportional thinking. For simple calculations of per cent as shown in
Figure 7.10, students should use mental computation and explore the function of the
percentage key on a calculator. Capable students should be encouraged to develop mental
strategies for calculating percentages, such as 11 per cent and 15 per cent.

Ratio, proportion and percentage are important in senior secondary vocational mathe-
matics, such as business mathematics subjects. Online interactive learning objects and
commercial ready reckoners are relevant and useful resources for students’ investigation of

applications in the workplace.
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Written algorithm
(typical textbook example)

Mental computation

Calculator operation

20% of 35
20 | 3%
X

20

’
T

N oeER R

20% of 35

of 35

N Lnlr—\

20% of 35

= [ B [
=7

Figure 7.10 Procedures for finding the percentage of amounts

REVIEW AND REFLECT : In Chapter 3 we discussed approaches for making
connections between lessons that would build connections within mathematics
and between mathematics and the real world. One of these approaches was to use
a mathematical or real-world context for planning a sequence of lessons.

e Construct a concept map about proportion that includes mathematical
concepts and real and mathematical contexts and applications.

* Using proportion as a mathematical theme, choose mathematical or real
context(s) and search for or design a series of investigations or problem-solving
tasks for an extended period of mathematics study. Consider how you could use
technology in these lessons. (See the Grade 7 Curriculum Focal Points (NCTM)
for some ideas about integrating within mathematics.)

Exponential thinking

The operation of repeating multiplication is known as raising a number by a power, or

exponentiation—for example, 2 X 2 X 2 X 2 X 2 is expressed as 2°. The inverse operation is

finding the root. Clearly, multiplicative thinking is critical for developing an intuitive

understanding of exponentiation (Munoz & Mullet, 1998). Using and understanding
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exponentiation, and its inverse, are important for solving a range of problems in measure-
ment and geometry and series of numbers generated by repeated multiplication have
many real applications for describing relationships. Students first encounter these ideas
when exploring the multiplication facts represented by square arrays, and when finding
the volume of cubes. These experiences provide students with concrete representations of
square and cubic numbers (for example, 5* = 25 and 3° = 27), but expressions where the
exponent is larger than three are abstractions. Solving problems based on exponential
series, such as the one below, provides opportunities for students to investigate powers
greater than three. Such problems are typically used for generating patterns in early

algebra activities.

Aunty Sue has offered to give an allowance to her niece/nephew for the next five
years.

They can choose one of the following scenarios:

e $500in the first year and then an extra $100 extra in each subsequent year;
e $100in the first year and then half as much more in each subsequent year;

* $20in the first year and then double the amount each subsequent year.

Which offer should they choose? What if the offer was extended to ten years?

Using spreadsheets or graphics calculators to generate tables of values to solve these
types of problems provides a type of graphic organiser to support students’ understanding
(Ives & Hoy, 2003), show the difference between additive, multiplicative and exponential
operations, and avoid or challenge misconceptions suchas3>=3+3+3+ 3+ 3 0r3 X3,
Graphing exponential series (that is, functions) provides a visual representation so that
the students can see the relative magnitude of these numbers (Munoz & Mullet, 1998).

Also challenging for students are the ideas of negative and zero exponents. Ives and Hoy
(2003) recommend using a graphic organiser in the form of a table so that students investi-
gate the pattern of numbers to discover that a” = 1 and that a™> = 1/a? (see Figure 7.11). Once
again, a graph of the exponential function provides a visual representation to reinforce this

learning. (Teaching and learning function concepts are discussed further in Chapter 10.)
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1
= A
2°5=064 27 %=p4
1
2°=32 27°=132
1
Dividing by two 2t=16 2*=16 Continue dividing by
or halvin 4 two or halvin
g 2 =8 23=Tg g
1
2=4 2=
1
vy 2i=2 21=7
20=1

Figure 7.11 Graphic organiser for index numbers

REVIEW AND REFLECT : Discuss ways of generating the results with students for

the graphic organiser shown above.

e What doesiit mean to find the square root of a number?

 Whydoes\/x = x*?

* Evaluate \/32 without using a calculator. You may need to do some research to
find methods for evaluating square roots.

Operating with numbers and algebraic symbols expressed in exponential form is a focus
for number learning that underpins abstract thinking and reasoning in algebra. Errors in
algebraic reasoning in senior secondary mathematics are often attributed to errors or
misconceptions when operating with expressions in exponential form (Barnes, n.d.; Gough,

2001). Some common errors include:

. Rigp=g
o VX2=4
e 3233=05

o a’?Xb>=ab’
e 32=9

o 4x2= %xz

* (3a)t=3at

o (az)s =
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A procedural approach that emphasises memorising index laws contributes to these
errors (Barnes, n.d.). Using expansion to evaluate and simplify such expressions improves

student performance and leads to discovery and ownership of these laws by students.

Integers

On the surface, this topic provides secondary teachers with an opportunity to teach
students something new about numbers. However, many students have already encoun-
tered negative numbers; even very young children can describe ‘underground numbers’,
and most curricula require primary students to be able to model negative numbers using
number lines and explore various contexts in order to develop a concept of negative
number. It is important, therefore, to commence with finding out about your learners, even
when teaching new topics. What do they know about integers? Where do they encounter
them in real situations?

Number lines and materials such as algebra blocks (Algebra Experience Materials, AEM)
are used to model integers and the addition and subtraction algorithms (Leigh-Lancaster &
Leigh-Lancaster, 2002). Walking forwards and backwards along number lines will assist
students to realise that subtraction of negative numbers is the same as adding positive
numbers (see ‘Walk the Plank’, Maths300).

Multiplication and division by negative integers is more complex, and senior students
continue to make errors when applying the distributive law in algebra (Gough, 2001).
Clausen-May (2005) recommends using arrays to show the multiplication of negative
numbers. The array in Figure 7.12 shows a mental computation strategy using the idea of
compensation when applying the distributive law and illustrates the rule for multiplying

negative numbers.

Irrational number

Surds are likely to be students’ introduction to irrational numbers, even though they will
have been using pi (1) in measurement contexts or have explored digit patterns in decimal
numbers to find those that never repeat. They will encounter surds when applying
Pythagoras’ Theorem and evaluating square roots to find the length of the hypotenuse of

a right-angled triangle. However, because calculators give decimal answers to a given
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20 -

V=

18 X 19

=(20—2)(20 — 1)

= (20X 2) + (20 X —1)+ (—2 X 20) + (—2 X —1)
=400—20—40+2

When subtracting the tens by ones, 2 ones too many have
been taken away so you need to add 2 ones back on
(m2x—-1=2)

20

Py I

Figure 7.12 18 X 19 illustrating multiplying negative integers

number of places, students may not appreciate that there is anything special about
irrational numbers. Irrational numbers cannot be measured as quantities accurately, cannot
be expressed as a fraction, and have an infinite non-repeating digit pattern when expressed
as a decimal. CAS calculators use rational and irrational number notation (see Figure 7.13),
so these tools may be used to explore irrational numbers and to generate algorithms for

operating with irrational numbers.

I‘ (£33 | Fev l F3-| Fyv | FS l Fév | 'I
Tools|At3¢bralCalc|Other|PrImiDjCIcan Up)
52/3+1.5 1376
m2e S E
312 {6
e =
(0.6

MAIN RAD EXACT FUNC 4/30

Source: Ball & Stacey (2005a).

Figure 7.13 Arithmetic calculations on CAS calculator

Arnold (2001) argues that students have difficulty with irrational numbers because they

are defined by what they are not. He proposes that we should focus students’ attention on
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what irrational numbers are by exploring visual images of the most common and beautiful
irrationals, T, \/5 and the Golden Ratio, ¢ ([1= \6]/2) Using compass and ruler, or with
the aid of geometric software tools or CAS, students can explore contexts such as spirals and
Golden Rectangles to make more sense of irrational numbers (Stacey & Price, 2005).
A simple geometric construction of a right-angled isosceles triangle (1, 1, 2) illustrates
the irrational number and is the basis for constructing a logarithmic spiral (shown in

Figure 7.14). Simplifying the surds for each hypotenuse in the spiral generates a geometric

series with the common ratio of \/5 (\/5, \/g =2, \/g = 2\/5, \/E = 4, \/3—2 = 4\/5, )

/2

a2

Figure 7.14 Right-angled isosceles triangle construction for a logarithmic spiral

REVIEW AND REFLECT : The learning cycle described by Frid (2000b] (see Figure
7.15] requires teachers to begin planning their teaching about a topic by finding out
about their students’ prior knowledge and using this information to plan a series
of learning experiences that includes investigation, formalisation, practice and

application.
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* Prepare a learning cycle for exponential number, irrational number or integers.

e Use technology (calculator, spreadsheet or CAS], a graphics organiser or concrete
materials for the investigation task.

e Explain how you would formalise these laws with students following their
investigation.

* Find or design a game for students to practise operations with these numbers.

* Include a problem-solving task.

Getting to know
your students

Application Investigation

Practice Formalisation

Figure 7.15 Learning cycle

Conclusion

In this chapter, we have shown that there are many places in which mathematical ideas are
connected across domains. The concepts and skills discussed, together with confidence in
thinking mathematically, will enable students to use these ideas in a range of vocations and
in senior secondary mathematics. We have argued that knowing your students is important
for developing a learning program that meets their needs, and using concrete materials
and visual representations and estimation activities builds on students’ understandings and
addresses their misconceptions. We have also recommended using investigations that are
interesting for students, and that engage them in reinventing algorithms, so that operating

with numbers is meaningful for them.
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CHAPTER 8

Teaching and learning
measurement

Teaching and learning measurement concepts and skills provide opportunities for learners
to connect mathematics concepts and skills across all fields of mathematics. Furthermore,
investigating, solving and modelling measurement problems derived from real-world situa-
tions that connect with students’ interests enables mathematics to ‘come to life’ for
students. It is essential that students go outside the classroom and into the community to
develop the ‘hands on’ and practical skills of estimating and measuring, as well as the social
skills for working cooperatively on problems and projects with real applications.

Asis the case for number, students entering secondary school will have developed many of
the underpinning concepts and skills in measurement; however, these understandings may
not be secure for many students. In this chapter, we will focus on the measurement concepts
and skills that are important for mathematical literacy and success in senior secondary math-
ematics, and that are also routinely included in vocational mathematics subjects in senior
secondary mathematics. We begin the chapter by providing some background on children’s
measurement learning in primary school and outlining the challenges for students in second-
ary school. The particular topics and skills discussed include: estimating and measuring;
perimeter and circumference; area and volume; Pythagoras’ Theorem; and trigonometry.
Finally, we discuss teaching approaches for integrating and making connections between
measurement and other fields of mathematics, and provide examples of problems to engage
students in problem-solving and working mathematically on measurement.

In the National Consistency in Curriculum Outcomes Statements of Learning and

Professional Elaborations for Mathematics (MCEETYA, 2006) and in some state curricula,
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chance and data are included in the field of measurement. Given the special importance of
statistical or quantitative literacy for active citizenship, and the diversity of senior mathe-
matics courses with respect to this area of mathematics, the teaching and learning of chance

and data are discussed in a separate chapter (Chapter 11).

Measurement in the primary years

Young children begin to measure using direct comparison. They place objects beside each
other to see which is bigger or longer and they heft objects to see which is heavier. When
objects cannot be placed beside each other, they use informal units to compare the size
of objects. They cover surfaces with informal units or squares to develop a sense of area.
Situations are created to show that informal units cannot be used for accurate or reliable
comparisons, and so the idea of standard units is introduced. The experience of estimating
and measuring enables primary students to develop a sense of the size of units and begin to
appreciate the importance of accuracy when measuring.

Understanding the area of rectangles is enhanced when children use concrete materials
arranged in arrays to discover the rule for finding area and when they make layers of arrays
to discover the formula for volume of rectangular prisms (Mitchelmore, 1995). However,
some junior secondary students may have been taught these formulae too soon and still
need further experiences of measuring area and volume using arrays of materials.

Understanding angle is challenging for primary children, since many students do not
identify the physical experience of turning—the definition used in mathematics—as an
angle (Mitchelmore & White, 1998, 2000). Furthermore, they do not recognise the similarity
of the everyday representations of angles they observe: turn, meeting, slope, corner, bend,
direction and an opening. Understanding of angle is not established for many students

entering secondary school.

Measurement in the secondary years

Measurement enables us to describe and compare attributes of objects or events in space and
time, and to use measurement to solve real problems—including the design and construc-
tion of objects and events. The attributes include length, angle, mass, capacity, temperature,
time, area, surface area, volume, speed and density. In the secondary years, students

continue to develop measurement sense related to these attributes. They develop more
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sophisticated strategies for estimating measurements, understand that all units are
composed of units of length, mass and/or time, and appreciate that, in real contexts, units of
measurement are selected for the purpose of the measurement and not just according to
the relative size of the attribute. They explore and use relationships between attributes
and units of measurement to calculate measurements of regular and irregular shapes and
objects, and composite attributes such as speed and density. The shapes and objects include
polygons, regular curved regions, irregular closed shapes and regions, regular and irregular
polyhedra, regular solids with curved faces (spheres and cones) and irregular solids.

Developing measurement sense also means that students understand the structure of
the system of measurement units and can move flexibly between these units when solving
problems in context; a strong foundation in the decimal place value system and multiplica-
tion and division by multiples of ten is therefore needed. You can expect that, given the
number of students who continue to make errors when comparing and calculating with
decimals, finding equivalent units of measurement—especially for area and volume—will
need attention in the secondary classroom. You will find that the real context of measure-
ment will assist students to make sense of decimals, but you need to focus on the structure
of number and units of measurement and on developing students’ multiplicative thinking
rather than teaching tricks for converting units, such as moving decimal points (see
Chapter 7).

Only students who have consolidated these skills, and who demonstrate an understand-
ing of attributes measured using composite units—such as speed and density—will be able
to demonstrate flexible thinking when solving problems and choosing and calculating
equivalent composite units (for example, km/hour and gm/cm?*). Understanding the rela-
tionship between units of measurement in the metric system (thatis, 1 L of water at sea level
on the equator has a mass of 1 kg and takes up 1000 cm?® of space) is also necessary for solving
arange of real problems.

As mentioned above, some students will enter secondary school without a secure
concept of angle in a range of situations. White and Mitchelmore (2002) reported that up to
one-third of junior secondary students found it difficult to identify an angle when one or
both of the lines had to be imagined, and used features such as the length of the lines that
meet, their orientation or the length of the radius marking the angles when making a

judgment about an angle.
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In the Third International Mathematics and Science Study (TIMSS), Australian students
performed poorly on the measurement item about the area of a parallelogram and problem-
solving items involving area and perimeter (Lokan et al., 1996). Students continue to be
confused by the meaning and definition of capacity and volume throughout secondary
school. Generally, they will not have met the concept of surface area in a formal sense when
entering secondary school, and geometric understanding of the properties of solids and nets
as representations of surface area needs to be developed first. A common misconception
among students is the assumption of a linear proportional relationship for scaling area and

volume (Van Dooren et al., 2005).

Estimating and measuring

Measuring involves counting units that uniquely apply to particular attributes (e.g. degrees
to measure temperature), using tools of measurement (e.g. scales, stopwatch, clinometers
and thermometers) and using relationships to calculate measurements of other attributes
such as speed, volume, circumference and density. Students should be encouraged to
estimate before measuring and calculating.

We estimate measurements as part of everyday activities, such as how long it will take to
reach a destination and how much butter to use in a recipe. Estimation plays a key role in
the working lives of people in a range of occupations. Students need many different experi-
ences of estimating and measuring in order to internalise benchmarks for measuring
length, mass, angle, time, area, volume and temperature, to improve the accuracy of their
estimations, as well as to develop strategies for making estimates (see Lovitt & Clarke, 1988).
They should gather and analyse data about their estimations. Teachers can help scaffold this
skill by asking students to explain and justify the strategies and benchmarks that they use
when estimating. Particular strategies for estimating can be explored through problem-
solving tasks, especially for irregular shapes and solids.

Students need to go out of the classroom to experience and explore measurement in
context, to estimate and to measure. They should conduct investigations to find out how
various tradespeople and professionals make estimations of things that are central to their
work. These may include ‘rules of thumb’ that involve more than one step to arrive at an

estimate. They should use measurement tools of the real world, not just the mathematics
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and science classroom (e.g. tape measures, pressure gauges and theodolites). Online tools
for converting units between systems of measurement can be investigated and used by
students, particularly vocational students who may regularly need to work with imperial
units.

Particular attention needs to be given to developing estimating and measuring angles.
Mitchelmore and White (2000) recommend that students develop a language to describe
various real situations of angles, have experiences where they compare and discover the
similarity of these situations, and use informal units to estimate and measure angles. As well
as providing experiences in the real world with tools, there are various internet sites and
digital interactive learning objects that enable students to practise estimating angles (see

‘Estimating Angles’, Maths300).

Perimeter and circumference

Using open-ended tasks and real problems, students can develop strategies for finding
the perimeter of closed regions, and so avoid confusing formulae for perimeter and area.

Consider, for example, the following problems:

1. Draw, or make on a geo-board, a rectangle with a perimeter of 18 units. Draw and
make another rectangle with a perimeter of 18 units. Find a third rectangle.
* How did you find these rectangles?
* Formalise the process you followed by writing a rule to find the dimensions of

arectangle with a given perimeter.

2. How long does it take to run around a hectare?

3. You need to build a new pen for a pet lamb. You have 12 metres of fencing wire and
you can use the side of a building as one side of the pen. What are the dimensions

of the pen that will give us the largest area for the pet lamb?

Learning about perimeter should not, however, be restricted to rectangles, but rather
include problems with other polygons and irregular shapes.
Investigating the circumference of a circle provides a mathematical and real context for

learning about proportion, and is often students’ first formal encounter with an irrational



192 TEACHING and learning MATHEMATICAL CONTENT

number, that is, pi (7). A teacher with whom one of the authors of this book recently
worked decided to conduct a whole-class investigation into circumference using technology
when she discovered that students in her Year 9 class still had many misconceptions about pi
(one being that pies were round and that was the association between pi and circles). For this
investigation, the students measured many different circular objects and entered the meas-
urements of the diameter and circumference into a spreadsheet. The teacher had prepared
the spreadsheet with the whole class using her laptop computer and a data projector, and
included a column for the ratio of the circumference and diameter. As each student entered
the measurements of their circular object, the ratio was displayed for all to see. The average
ratio was also displayed. The teacher explained that ‘the big drama was when you hit enter
and it calculated pi [the ratio|. There was lots of competition. Could they get to 3.14? How
close?” She noticed that the students appreciated the need for accurate measurements and
went back and measured their object again. They ‘would come back and say “My diameter
was out by about 2 mm, will that change my answer?”” This investigation enabled the
students to appreciate the need for accuracy when measuring and to see the dynamic calcu-
lations of the ratio of circumference and diameter and observe convergence of the average
ratio to a constant. By making this investigation a whole-class activity rather than an indi-
vidual one, the teacher ensured that the inaccuracies in measurement which often occur in

an investigation like this did not hinder students’ ‘discovery’ of this constant.

Area and volume

Students can develop a sense of ownership or agency if they reinvent formulae for finding
the area of different polygons. Paper-folding, drawings or construction of triangles circum-
scribed in rectangles on paper or on geo-boards, or drawings using dynamic geometry
software, are alternative environments for investigating the area of triangles (Burns & Brade,
2003; Frid, 2000a). Similarly, students can derive the formulae for finding the area of quadri-
laterals and other polygons.

Understanding of volume should be developed through the use of materials to derive
the formulae of prisms and cylinders as area of the base times the height (see Figure 8.1).
Furthermore, students can discover the relationship between the volume of a prism and a

pyramid with the same base (and similarly a cylinder and cone with the same base) to derive



Teaching and learning measurement 193

the formulae for the volume of pyramids and cones. Following this investigative approach,
along with solving problems about irregular shapes and solids, develops students’ skills in

reasoning and their capacity for flexible thinking and problem-solving.

Figure 8.1 Representing volume (volume = area X height)

REVIEW AND REFLECT : Derive the formula for the area of a triangle. Show that the
formula works for a right-angled triangle, an acute-angled triangle and an
obtuse-angled triangle (see Frid, 2000b).

Research and discuss different methods for deriving the area of a circle,

quadrilaterals, other polygons and the volume of a pyramid and a cone.

When solving area and volume problems, students often make errors when the dimen-
sions of shapes and solids are given in different units. They need to pay attention to the units
given in each problem, and to think about which unit to use when calculating. Students
who do not have a strong conceptual understanding of area and volume and the units of

measurement, or who have poor multiplicative skills, will have difficulty converting square
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units (such as 40 000 cm? = 4 m?) and cubic units of measurement. They need visual models
of units for area and volume for successful conversion.

Problems based on a real context may also reveal poor conceptual understanding or
reliance on applying a given formula without due consideration of the context. Consider

the following problem.

Cans in a box
How many jam tins can be placed in this cardboard box if they have a diameter of

8 cm and are 11 cm high?

33cm

B

40cm

Procedural thinkers—that is, students who rely on applying procedures rather than
using conceptual understanding—are likely to solve this problem by calculating the
volume of a can using the formula for volume of a cylinder and calculating the volume of
the box, then dividing the volume of the box by the volume of the can to find the answer.
There are many opportunities for students to make errors following this method, and their
final solution may not make sense. Redefining the dimensions of the box according to the
diameter and height of the can is a more efficient method of solving this problem. Using
concrete materials may assist some students to solve these types of authentic problems for
area and volume, and strengthen their understanding.

Problems of scale in area and volume are a persistent difficulty for students throughout

secondary schooling. Consider the following multiple-choice question:
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Which of these pipes will fill a pool the fastest?
. one pipe with a diameter of 60 cm;

a
b. two pipes each of diameter 30 cm;

s

three pipes each of diameter 20 cm;

(o

. all the same.

Students assume a linear relationship in scaling up problems—that is, if you double the
dimensions of a rectangle or rectangular prism, or radius of a circle or sphere, then you will
double the area and double the volume. To overcome this misconception, students need
experiences with concrete materials, along with diagrams, to be convinced that area and
volume increase exponentially when the dimensions are increased (Van Dooren et al., 2005).
Real problems (e.g. Baby and the heatwave, Chapter 13) provide a personal connection for
students to appreciate the concept of scale and enlargement and the effect on the dimen-

sions, area, surface area and volume of shapes and solids.

REVIEW AND REFLECT : Try the two problems Cans in a box and Filling a pool with

a group of students. Ask them to explain and justify their solution. Analyse their

responses.

* What strategy did they use to solve each of these problems?

* What conceptual understanding of area, volume and scaling was evident or not
evident?

* How could you improve their understanding or problem-solving skills?

Pythagoras’ Theorem

The study of triangles led to many significant theorems in mathematics. These theorems
and their applications constitute an important part of secondary measurement, geometry
and algebra learning. As for other content in measurement, students should rediscover this
theorem and generate informal proofs through guided investigations (see Lovitt & Clarke,
1988). Concrete materials and various technologies, including Java applets and templates

available on the internet and dynamic geometry software, are useful (see Chapters 4 and 9).
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REVIEW AND REFLECT :

* Search teaching resources, including internet sites, for suitable materials and
learning activities for proving Pythagoras’ Theorem. Prepare a lesson.

* AVictorian secondary teacher asked his students to use different technologies
to solve the following problem involving the application of Pythagoras’ Theorem
(Noura, 2005). They used a spreadsheet (Excel], a graphics calculator, dynamic
geometry software (Geometer’s Sketchpad) and classical geometry.

We need to establish a single exit (E] from a freeway to serve two towns,
Melford (M) and Extown (C]}, which are located 1 km and 2 km from the freeway
respectively (see Figure 8.2). The road MEC should be of minimum length in
order to minimise the cost of the roads. Where should the exit (E) be placed?

< 4km »| Line of
______________________________ proposed
freeway
1 km
2 km
Melford
Extown

Source: Swan, K. et al. (1997). Nelson Maths 9: Maths for CSFII. Melbourne: Nelson, p. 86.

Figure 8.2 The freeway problem

* Work in a small group to solve this problem using one of the technologies listed
above. Each group should choose a different technology.

* Present and discuss the solution processes used in each group. What under-
standings of the problem and mathematics are demonstrated? In what way may
the skills and understandings vary according to the technology used, if at all?

e Prepare an assessment rubric to use with students for this task. (Refer to
Chapter 6 for examples.)
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Trigonometry

Quinlan (2004) recommends that students should work from the concrete to the abstract,
and from the particular to the general, when being introduced to new topics in mathe-
matics. He illustrated this approach to learning about trigonometry by setting Year 10
students the task of finding the height of the wall in a classroom using two different set
squares (45—45-90 and 30—60-90), straws and rulers, and tape measures. The teacher guided
the students’ investigation by drawing their attention to similar triangles and ratios of the
sides. Moving from the particular to the general can be achieved through further inves-
tigation of similar triangles. The teacher generated interest in trigonometry by involving
students physically in this measurement problem.

Dynamic geometry software provides instant and accurate feedback for students as they
conduct an investigation of similar triangles or the unit circle. Students need to be able to
construct shapes that retain their geometric properties when sides and vertices are dragged
(drag-resistant constructions), and to use the calculation and tabulation features of the
software. Figure 8.3 shows the results of an investigation of similar triangles using Geometer’s

Sketchpad. It is also possible to tabulate the ratio for different angles.

m £CAB = 30.11° C —

_ _ _ m AB
mAB = 3.33cm m Z/.CAB m AB m AC —

_ m AC
mAC = 3.85cm

— 30.11° | 2.75cm | 3.18cm | 0.87
mAB _ 5
— =08 3041° | 2.96cm | 343cm | 087
m AC

A B 30.41° | 3.10cm | 3.58cm | 087

Figure 8.3 Cosine 30.11°

Some teachers, however, prefer the unit circle in order to introduce trigonometric func-
tions. Trigonometry walk (Lovitt & Clarke, 1988) is a physical outdoor investigation of the unit
circle, and the dynamic software products include a pre-made sketch for a unit circle inves-

tigation. Kendall and Stacey (1999) conducted a teaching experiment to compare the unit
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circle method with the similar triangles method to establish the trigonometric ratios—that
is, the sine, cosine and tangent of an angle in a right-angle triangle—with Year 10 students.
They found that the students in the class who learned trigonometry using similar triangles
and the SOHCAHTOA mnemonic for the ratios to calculate sine, cosine and tangent
(S= %; Cc= %; T= %) achieved better results in the topic test than students in the unit

circle class.

Making connections, problem-solving and modelling

Solving measurement problems provides a context for many number concepts and skills,
including multiplicative, proportional and exponential thinking. It needs to be based on
secure geometric understanding of shapes and objects, and provides an opportunity to use
algebraic thinking. An approach to teaching that makes these connections explicit and inte-
grates learning in these fields will enable students to make connections with and between
mathematics and real-world problems (see Chapter 3). Teachers should design lessons in
which students work collaboratively in groups on investigations, problem-solving and

modelling tasks such as:

* How far away does an on-coming car have to be before it is safe to cross the road?
(Lovitt & Clarke, 1988).

* How much rainwater could you collect from the roof of your home if you have
4 mm of rainfall? How much could you collect in a year? What size water tank
should you purchase for your home?

* Make a cylinder by rolling an A4 piece of paper lengthways. Make another by
rolling an A4 piece of paper widthways. Which cylinder has the largest volume?
(‘Measuring cylinders’, Maths300).

* What if watermelons were ‘square’? Would you get more or less flesh?

Problems that involve exploring relationships between distance and time, area and
perimeter, and surface area and volume, lay the foundations for applications of rates of

change and differential and integral calculus in later secondary years.
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REVIEW AND REFLECT : In a group, choose an object, setting, context or theme of
interest to you. Brainstorm issues and problems related to this theme. Identify the
issues or problems that could be investigated or modelled using mathematics.
Conduct a search for information to use for an investigation. Design a lesson, series
of lessons or a project on learning and applying measurement concepts and skills.

Conclusion

In this chapter, we have discussed some of the issues and approaches for teaching measure-
ment in secondary schools. We have seen there are many places in which mathematical
ideas are connected across fields and are applied in a range of vocations and real settings.
Estimating and measuring in real settings, and investigating and problem-solving in groups,

will enhance engagement and learning in this field of mathematics.
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CHAPTER 9

Teaching and learning geometry
and spatial concepts

Geometry is regarded as one of the original and essential aspects of mathematics. Kline
(1979) has argued that knowledge and understanding of geometry—especially shape and
location—is more fundamental than number. Objects in our world cannot exist without
shape, but can be described without number. Without spatial sense we would get lost all the
time. The place of geometry in the school curriculum is more profound. As Johnston-
Wilder and Mason (2005) argue, the development of geometric reasoning is important for

all learners:

The significant contribution to all learners’ development available through geometri-
cal thinking is to develop the power to imagine, to discern elements that are not
shown, to ‘see’ a dynamic, as something is permitted to change, and to recognise that
there are facts which must be true, relationships which may sometimes hold and
relationships which can never hold. These facts and relationships are encountered
and justified in the Spartan world of geometrical diagrams, but apply to the material
world. Architects, engineers, scientists and artists must have taken them into account

in their professional activities. (2005, p. 211)

Geometry learning is currently included in curriculum statements in Australian states
as, or along with, ‘space’ and ‘spatial sense’. The concepts and skills of location, such as
maps, as well as lines, planes and angles and two- and three-dimensional shapes generally

form part of these curriculum statements. Measurement concepts traditionally associated
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with geometry, such as Pythagoras’ Theorem and trigonometry, are usually documented
separately in measurement curricula in Australia. In recent years, there has been a shift of
emphasis in geometry curricula around the world from Euclidean geometry to transfor-
mation geometry (Johnston-Wilder & Mason, 2005), though the amount of classroom time
devoted to geometry varies within Australia and elsewhere. There are many connections
between geometry and other mathematics concepts, so there are opportunities for teachers
and learners to integrate thinking and learning through the study of geometry. For
example, proportion is central to the concept of similarity, and understanding the proper-
ties of geometric shapes underpins learning about area and volume. Geometry also provides
an important context in which to develop visual thinking and reasoning used in all fields
of mathematics.

A constructivist approach in which students solve problems, explore geometric figures
and reflect upon changes made to figures enables students to experience the surprising
relationships in geometry and discover these relationships for themselves (Johnston-Wilder
& Mason, 2005). Geometry provides a language to describe and interpret reality and a struc-
ture to organise it, and teachers should use real contexts to motivate students and establish
a link between school learning and everyday learning (Bartolini Bussi & Boero, 1998; Jones,
1998). Students should be encouraged to use a range of geometric tools for drawing,
making, constructing, problem-solving and communicating. These should include
pen-and-paper drawing tools, virtual tools such as dynamic geometry software and
programming environments (e.g. MicroWorlds), and the vocational tools of carpenters, dress
designers, cartographers, draftspersons and surveyors.

In this chapter, we will discuss some of the difficulties encountered by students in
this area of mathematics, as well as teaching and learning geometric thinking, spatial
concepts and skills. The concepts and skills discussed are not a complete list of topics but are

indicative of the breadth of geometry learning in secondary schools.

Geometry and spatial concepts in the primary years

For children, spatial sense and visual skills are needed for mathematics learning. Touching
and visualising objects and materials often arranged in basic geometric structures are
powerful means of establishing the abstract concepts of number in the primary years of

schooling. For example, the rectangular arrangement of materials is used to model



202 TEACHING and learning MATHEMATICAL CONTENT

numbers to ten, multiplication and fractions. Visual-spatial skills are needed for measure-
ment, including estimation. Geometry learning in the primary years includes the
development of language for shape and location that is essential for modelling, visualising
and communicating in all areas of mathematics—for example, in, between, under, beside,
near, left and right. Geometric learning also involves visualising, drawing, making, commu-
nicating and problem-solving about two- and three-dimensional shapes.

Van Hiele’s (1986) levels of geometric thinking have informed the development of the
geometry curriculum, especially as it relates to Euclidean geometry, through primary and

secondary schooling:

* Level I: Recognition—children are able to recognise and name basic shapes.

* Level 2: Analysis—children are able to describe attributes or properties of the basic
shapes and sort, classify and make them.

* Level 3: Ordering—students begin to establish relationships between the properties
of shapes. They are able to identify families of shapes, and make conjectures and
simple deductions.

* Level 4: Deduction—the idea of a minimum number of properties for definitions is
grasped. Students recognise relationships between properties and make logical
arguments about properties

* Level 5: Rigour—students form chains of reasoning and justify their thinking.

The curriculum documents in Australia assume that students entering secondary
school are thinking geometrically at level 3 of Van Hiele’s framework. However, many
of these students will not have established the analysis level of thinking (level 2). Some
will not recognise the congruency of shapes that have been rotated. For example, students
may call a square a ‘diamond’ if it is orientated so that the vertices point to the top
and bottom of a page rather than one side being horizontal with the base of the page
(Pugalee et al., 2002).

Geometry and spatial concepts in the secondary years

In secondary school, students continue to develop their spatial sense, visual thinking and
reasoning. In the intended curricula, they investigate properties and relationships of two-

dimensional and three-dimensional shapes including closed curves, polygons and
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polyhedra. Invariance—that is, a relationship or property that stays the same and does not
change when some change is permitted—is a key aspect of geometric thinking (Johnston-
Wilder & Mason, 2005). When students investigate transformations, they deepen their
understanding of congruence and symmetry and the properties of shapes. In the senior secondary
years, depending on the state and country, students use vectors and matrices to describe
and investigate transformations (see classroom scenario in Chapter 2). Students explore and
apply the concepts of similarity by scaling, stretching and shrinking shapes. They interpret
and draw plans using multiple points of view and they solve problems by constructing,
referring to known properties and using chains of reasoning.

Students’ spatial sense and location skills are developed through the interpretation of
maps, the use of scales, giving and following directions using compass points, drawing and
analysing network diagrams to determine critical paths and shortest routes. They use
Cartesian, polar, spherical and navigational systems to investigate and solve problems about
location and spatial relationships. In vocational post-compulsory mathematics subjects,
these concepts are explored through practical applications and problems.

The actual—that is, implemented—geometry curriculum varies within Australia, and
the lack of emphasis and attention to key concepts and reasoning may explain Australian
students’ relatively poor performance in recent international studies of mathematics
performance (TIMSS and PISA) (Thomson & Fleming, 2004; Thomson et al., 2004). Relative
to their performance in other areas of the mathematics curriculum, geometry and spatial
reasoning constitute the weakest area for Australian students. These studies also reveal
that geometry and spatial reasoning was also the only area of the mathematics curriculum
for Australian students in which boys’ performance was significantly better than girls’
(Thomson et al., 2004). These gender differences have a long history in Australia and else-
where (see Chapter 13), and studies continue to find evidence that gender differences in
spatial skills contribute to gender difference in other areas of mathematics (Casey et al.,
2001), so considerable attention still needs to be given to closing this gender gap in Australia.

The relative weakness of Australian secondary students in geometry and spatial reason-
ing has not been given sufficient attention by Australian researchers in recent years.
International studies indicate that, while visualisation is enjoying a renaissance in mathe-
matics—Ilargely through the use of technology—little pedagogical effort has been given to

developing visual reasoning (Herskowitz, 1998). Herskowitz is concerned that some teachers
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may be making the assumption that people are born with visual thinking skills, and so do
not give attention to developing this skill.

Students in the junior secondary years will often identify shapes and solids according to
what they look like rather than checking properties (Clements & Battista, 1992). The use of
technology—in particular, dynamic geometry software—has drawn attention to the need
to make the distinction between a drawing and a figure as some students are inclined to
draw and check shapes with these tools ‘by eye’ rather than construct and check using
properties (Hoyles & Jones, 1998; Laborde, 1998; Mackerell & Johnston-Wilder, 2005).
Furthermore, students’ experiences have often been limited to regular polygons, so they do
not recognise irregular or concave polygons or irregular or oblique prisms, pyramids and
cylinders. For example, students do not recognise that this shape > > is a hexagon. For
many students, defining shapes does not mean that they understand the properties or can
classify shapes and solids by property (for example, 90° rotational symmetry). Visualisation
of transformations—especially rotational symmetry—is difficult for some students

(Wesslen & Fernanez, 2005).

Geometric thinking

According to Duval (1998), geometric thinking involves three kinds of cognitive processes:
visualisation, construction and reasoning. Johnston-Wilder and Mason (2005) also give
importance to language and points of view—that is, the importance of talking and commu-
nicating to establish meaning and to develop reasoning. Geometric modelling involves
creating spatial representations to model mathematical situations and needs both visual and

geometric reasoning (Pugalee et al., 2002).

Visualisation

Visualisation is a two-way process between a person’s mind and an external medium (Borba
& Villarreal, 2005). On the one hand, it involves the ability to interpret and understand
figural information, such as seeing and recognising a shape or attribute of a figure or object
(for example, parallel lines), and interpreting a map or graph of a function. It also involves
the creation of images from abstract ideas, such as imagining an ellipse or imagining how

objects appear from different perspectives, how objects are positioned in relation to each
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other, how two-dimensional representations are related to three-dimensional objects, and
predicting appearances of objects after transformations (Pugalee et al., 2002). These images
can be mental or created with the aid of paper and pencil, or technology.

In everyday life, we visualise three-dimensional objects and spatial relationships—for
example, we interpret diagrams for assembling furniture and machines, we interpret plans
and elevations for constructing buildings, we interpret patterns for constructing garments
and packages, we use visual projection to create some styles of visual art, and we interpret
maps to travel to particular locations. These are excellent contexts for student activities.

Difficulties in visual interpretation begin for students when they do not discern the same
details of figures and objects as the teacher or other students. Johnston-Wilder and Mason
(2005) recommend three teaching strategies to enhance students’ visualisation and geomet-
ric reasoning: ‘say what you see’; ‘same and different’; and ‘how many different’. For the first
strategy, when considering a figure the teacher invites each student to ‘say what you see’
(see Figure 9.1). As each student says what he or she sees, the student or the teacher points
to this detail. By sharing these multiple views of the figure, attention will be drawn to details
that may otherwise be overlooked, and discussion can then proceed to focus on the detail

that is most important for the problem being considered.

REVIEW AND REFLECT :

A

Source: Johnston-Wilder and Mason (2005, p. 36).

Figure 9.1 ‘Say what you see’

* In your group, consider each figure in Figure 9.1. Take it in turns to ‘say what
you see’. Reflect on your different responses and how they relate to geometric
concepts.
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* Reproduce each of the figures in Figure 9.1 on separate cards. For each card, ask
some secondary students to ‘say what you see’. Record their responses.
Compare their interpretations of these figures and assess their understanding
of geometric concepts.

* Use these cards with pairs of secondary students. Ask one student to describe
one figure to the other so that they can draw it without looking. Ask each pair of
students to write a self-assessment about their interpretations and drawings.
You could use these stimulus questions: What did you do well? What did you

learn? What do you need to improve?

There are many contexts in which ‘what is the same and what is different’ is useful for
developing visualisation and geometric reasoning—for example, establishing relationships
between shapes, such as the families of quadrilaterals, and establishing the concepts of simi-
larity and congruence through transformation. Figure 9.2 includes two-dimensional
representations of a three-dimensional shape. You might ask ‘what is the same and what is
different” about these representations. In Figure 9.2, a cube is represented using different
drawing techniques such as isometric and perspective drawing. Some of these depictions
preserve parallel lines and some preserve equal lengths. Some are more familiar, yet we

need to be able to recognise each as a representation of a cube.

Source: Adapted from Johnston-Wilder and Mason (2005, p. 59).
Figure 9.2 Many cubes

‘How many different figures’ activities are also useful for establishing attributes of
geometric shapes and concepts of congruence. Students can be challenged to find different
shapes within shapes or to make shapes with given shapes. A range of materials is useful for

these types of activities—for example, commercially produced geometric materials such as
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Multi-link blocks, Polyhedra, commercial games such as Tangrams, Soma Cubes, Kaleidoscope, as

well as geo-boards and paper for paper-folding (Burnett et al., 2005). Objects in everyday life

are also very useful for these types of activity.

REVIEW AND REFLECT : The design on the walls of the buildings in Federation
Square is made using right-angled triangles with sides in the ratio 1:2:1/5 .

Figure 9.3 Federation Square, Melbourne

* How many different shapes are made using two congruent right-angled
triangles on the Federation Square buildings?
* Describe the properties of the shapes formed.

Cut out any two congruent right-angled triangles and place them together along
equal edges.

e Are different shapes possible other than those shown on the buildings in
Federation Square?

* What if the triangles are scalene, isosceles, equilateral or obtuse-angled?

* Discuss with colleagues the possible learning outcomes for students.

Actually handling objects and materials is very helpful for developing geometric ideas

and visualisation (Clements & Battista, 1992). In these tasks, students are challenged to

determine what is the same and different about the possibilities that they consider. Teachers

should encourage students to articulate these differences and justify their findings.

Imagining—that is, creating mental images and predicting change—is an important

component of visualisation, and necessary for the development of reasoning (Borba &

Villarreal, 2005; Johnston-Wilder & Mason, 2005). Imagining a construction, for example,



208 TEACHING and learning MATHEMATICAL CONTENT

REVIEW AND REFLECT : The Maths300 website (membership required for access)
includes a number of problems that support the development of visualisation and
geometric reasoning in three dimensions—for example, Four-cube houses (rotation
of solids and isometric drawing), Cube nets (nets of solids and congruence of nets)
and Building views (lateral, front and plan views of solids].

* Complete and analyse each of these, or similar, tasks: How do these tasks
enhance students’ visualisation skills? What geometric concepts are explored in
these tasks? How do these tasks enhance the geometric reasoning of students?

* Prepare an assessment rubric for these tasks (see Chapter 6).

* Plan a follow-up task that would enable students to establish further the

relevance of geometric concepts in a real-world context.

requires you to use relationships and properties, and hence to reason using this knowledge.
Imagining cross-sections of three-dimensional shapes and transformations of three-
dimensional shapes is especially challenging, and students need to test their conjectures using

actual materials. In the problem depicted below, plasticine or cheese would be useful.

Slicing a cube

Imagine slicing through a cube with a single plane. Two of the many possibilities are
shown in Figure 9.4, giving cut faces of a triangle and a rectangle. What would the
missing portions of the cubes look like? How many different polygons can be

formed as the cut face of a cube?

Source: Johnston-Wilder and Mason (2005, p. 63).
Figure 9.4 Slicing a cube
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Language and communicating

There are many new terms for students to learn and use in geometry—mnot only the names
of shapes, but also terms given to properties in geometry. One amusing example of confu-
sion for some students is the idea of ‘left-angled’ triangles that some teachers have observed
among secondary students (see Figure 9.5). However, students can be confused about the
meaning of mathematical language—especially when the same term is used to mean some-
thing different in another context. For example, what does ‘corresponding’ mean in a

definition of ‘congruent’ shapes?

Figure 9.5 A right-angled or ‘left-angled’ triangle?

Failure to pay attention to language in geometry can obstruct students’ learning, as the
following example shows. Students in a Year 9 class were given a worksheet that required
them to use dynamic geometry to investigate exterior angles of polygons. A series of instruc-
tions on a worksheet (Rasmussen et al., 1995) required students to begin this task by
constructing a pentagon with exterior angles (see Figure 9.6), then asked them to measure the

angles before dragging the figure and forming a conjecture about the sum of exterior angles.

m £/ FAG = 60.05°
m £ GBH = 75.93°
m £ HCl = 78.78"
m /IDJ = 55.10°
m £ JEF = 90.14°

Conjecture:

Figure 9.6 Sum of exterior anglesin a polygon
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Ellen, one of the high-achieving students in the class, expressed her frustration:

Are you enjoying this maths thing? [Reads from the sheet| ‘Move parts of the
pentagon to see if the sum changes. Make sure the pentagon remains convex.” How
are we meant to know what to do when we don’t even know what the words mean?

Convex? Conjucture [conjecture|?

It is important to ensure that students know the meaning of terms in an investigation. In
this case, the teacher needed to discuss the requirements of the task with the students
before they began the investigation.

Discussion of concepts is important for developing meaning and geometric reasoning.
Johnston-Wilder and Mason (2005) argue that a transmission model of teaching leaves
some students trying to guess what is in the teacher’s mind. A more successful approach
involves collaboration among students about problems and discussion with students of the
mathematical ideas and the terms used to describe, explain or make conjectures about
these ideas, where students are challenged to consider alternative points of view in order
to clarify the meaning of their ideas and to reach a common and shared meaning of
these ideas.

The following episode, taken from the same lesson about exterior angles (see Figure 9.6),
illustrates collaboration among students and the importance of language. It also illustrates
the strategy ‘do—talk—record’ for investigations. In this episode, three boys discussed their
results. Che had completed the task for homework and Lawrie asked him what he had

written for the conjecture:

Lawrie: ~ What do you do here, what did you write?

Che: Um, I wrote, um, I found out that all the angles equal up to 360
degrees.

Lawrie: ~ Not matter what shape as long as its perimeter ... [interrupted|.

Che: I found it for all pol, polygons or something like that equals up to ...
[interrupted|.

Darren:  The hexagon equals up to ... [interrupted].

Che: It’s not a hexagon. Do control later on. No, no you don’t. You go to

calculator. Where’s your calculator?
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Lawrie: I already calculated it. [Points to the result on the screen.|
Che: Yeah, well there you go. You done it all. Now you just write there
[points to the screen| that all the angles equal up to 360 degrees. That’s

your conjuncture. [Waves his hands as if to say ‘or whatever itis’.]

In their discussion, the boys argued about the name of the shape and the constraints to be
included in their conjecture. They also use ‘equal up’ instead of ‘equals’ or ‘adds up’ (see

Chapter 10 for more about this inaccurate use of language).

Construction

Construction in geometry is the process of using tools to build models so that actions
on these models result in expected observations (Duval, 1998). In the real world, it is not
sufficient for builders to construct by eye or use insufficient criteria. For example, to ensure
that their building is rectangular, builders do not rely on measuring the length of the sides
only; they also measure the length of diagonals. They do this because they need to check
that the walls will be constructed at right angles. Instead of measuring the angles, they
measure the diagonals, because having diagonals of equal length is the necessary criterion to
ensure that the parallelogram is a rectangle. The same requirements apply in geometry. It is
important to distinguish between a drawing and figure. A figure is a theoretical object that
is constructed using geometric properties (Hoyles & Jones, 1998).

Compass and straight edge are the traditional tools for constructing in geometry. Paper-
folding is also useful (Burnett et al., 2005; Coad, 2006; Lowe, 1991a). Dynamic geometry
software (Autograph, Geometer’s Sketchpad, Cabri Geometre 1I and Cabri3D) and programming
languages such as Logo and Microworlds are powerful tools for construction and the develop-
ment of geometric reasoning. Coad (2006) argues that paper-folding should be used in
conjunction with dynamic geometry software. Students enjoy paper-folding, and he
wonders whether students will generate better understanding of geometric concepts
through well-designed paper-folding activities (see Figure 9.7).

Certainly teachers need to be aware that students sometimes use the software tool to
draw shapes ‘by eye’ or ‘freehand’ rather than using the geometer’s tools embedded in the
menus of the software to construct shapes (Hoyles & Jones, 1998; Mackrell & Johnston-
Wilder, 2005; Vincent & McCrae, 1999). The shapes that they create ‘by eye’ do not stay intact
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Mark a point in the centre of a
page about 4 cm from the
bottom. Fold the bottom edge
of the paper so that it touches
the point. Make another fold
by starting from a different
point along the bottom of the
page. Repeat a number of

times.

A parabola is a locus of points
equidistant from a point and a

line.

Figure 9.7 Folding paper to form tangents to a parabola

as squares or rectangles—for example, when sides or vertices are dragged. Their learning
may therefore be limited because they can’t then use the dynamic aspects of the software
for investigating these shapes. See, for example, the isosceles triangles constructed using

Geometers Sketchpad shown in Figure 9.8.

Angle(AJF) = 45°
Angle(JFA) = 45°

Angle(FAJ) = 90°

lan’s drawing

+ + +

Isosceles Triangle

Construction using
N perpendicular
bisector

m/IKL = 56°
m ZLIK = 67°
mZZKLl = 56" °

Ben’s drawing

Figure 9.8 Isosceles triangles constructed using Geometer’s Sketchpad
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lan was satisfied when his drawing looked like an isosceles triangle. The teacher had to
remind him to check by measuring the angles or sides. Ben used the grid tool, and so used
line-symmetry in the construction of his isosceles triangle. In the third example, the
‘perpendicular bisector’ tool was used. To construct the isosceles triangle, a perpendicular
line is constructed (CE) after drawing a line for one side of the triangle (AB). Then two equal
sides can be constructed from the end of side to the perpendicular line (AD and BD) to
form the third vertex. These examples show that teachers need to assist students to dis-
tinguish between drawing ‘by eye’ and constructing shapes using the software tools.
Familiarity with the software will improve students’ knowledge and skills with using the
software, but these may need to be built up over a period of time. Initially teachers could
provide pre-constructed shapes for students to use for investigations (Mackrell & Johnston-
Wilder, 2005; Vincent & McCrae, 1999). Mackrell and Johnston-Wilder (2005) recommend

using pre-constructed shapes or files:

* in the early stages of learning to use the software;

* when students are at the stage of recognising the shapes and properties but do not
understand the relationship between them (van Hiele, level 2—see earlier in
chapter);

* when it is not necessary for students to be able to construct the shape for the
learning objectives to be achieved; or

* when the construction is too complex for students to achieve in the context of

the lesson.

Students should be encouraged to construct:

* when they have skills and confidence with the software;

* when they have some idea of the relationship between properties and understand
that these properties need to be embedded in the shape;

* when the process of constructing the shape leads to learning outcomes planned
for the lesson;

* when the construction provides a worthwhile challenge for the student; and

* for open-ended tasks.
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Reasoning

The main functions of reasoning are considered to be to understand, to explain and to
convince (Hershkowitz, 1998). This means that teachers need to create a safe and supportive
environment for talking, listening, questioning, challenging and convincing. Students need to
be invited to make conjectures—that is, to make an assertion that something is reasonable or
a property holds. They also need to be praised for making modifications to their conjectures
following experimentation or challenging questions from peers. According to Johnston-
Wilder and Mason (2005), mathematical thinking will flourish in such environments.
Sometimes, explanations of relationships just seem obvious or intuitive. Jones (1998)
argues that intuitive reasoning precedes formal reasoning. Noticing elements and relation-
ships can be developed into a chain of reasoning. According to Jones, intuitions are theories

or coherent systems that support reaching a conclusion.

REVIEW AND REFLECT : You are given two intersecting straight lines and a point P
marked on one of them. Show how to construct, using a straight edge and
compass, a circle that is tangent to both lines and that has the point P as its point of
tangency to one of the lines (see Figure 9.9).

Source: Jones (1998, pp. 80-81).

Figure 9.9 Construct a circle that is tangent to two lines

¢ Work with another person and use dynamic geometry software to solve this
problem.

* What processes did you follow? What strategies did you try? What knowledge
did you use?

¢ Explain your reasoning—that is, justify your solution.
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Jones recorded the following discussion between students about this problem:

Subject CR says: ‘Well, the tangent is perpendicular to the line of radius, isn’t it?’ so
they constructed a perpendicular line through P and constrained the centre of the
circle to lie on this perpendicular. Then subject CR suggested that they construct a
perpendicular line to the lower of the two intersecting lines and move it into the
correct place. At this point, TC wonders if the centre of the circle lies on the bisector
of the angle between the two intersecting lines. With that, the problem was solved.
(Jones, 1998, p. 81)

Hershkowitz (1998, p. 30) argues that ‘reasoning processes are now considered as a variety
of actions that pupils take in order to communicate with, and explain to others, as well as
to themselves, what they see, what they discover, and what they think and conclude’.
Problems and investigations using paper-folding or dynamic geometry provide opportuni-

ties for students to communicate, explain, convince and develop the skills for proof.

Aspects of geometry curricula

Lines, planes and angles

In Chapter 8, we discussed the difficulties that some junior secondary students have with
identifying angles. With respect to geometry, the concepts of co-interior, alternate and
corresponding angles are often introduced to secondary students in textbooks using a series
of definitions and exercises. A more engaging way to introduce students to these concepts is
through investigation. Paper-folding, pen and paper constructions and dynamic geometry
are suitable tools for these constructions and suitable investigations can be found in various

resources (e.g. Vincent, 2000; Rasmussen et al., 1995).

REVIEW AND REFLECT : Develop or find an activity for investigating angle proper-
ties involving parallel lines using a dynamic geometry tool. Consider whether this
task should involve construction by the students or use of a template.
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The difficulties that some students have with angles became clear to James, a pre-
service teacher, in a geometry lesson when students investigated the geometry of the
Leaning Tower of Pisa. The students had been learning about the different types of angles.
He decided that an investigation would show how these angles and relationships could
be used for a real-world problem. For this task, the students worked in small groups
and had to predict how long it would take for the Leaning Tower of Pisa to fall over
after measuring the current lean of the tower from a photograph. James had gathered
information from the internet to develop the materials for the task. He prepared a
sequence of questions and an assessment rubric to guide the students in their investig-
ation. He demonstrated and explained an experiment for them to find the angle at which
a cylinder would topple over (see Figure 9.10), though he did not include a diagram of this

experiment on the worksheet.

Place a cylinder on an inclined plane
with a rough surface and measure the
angle at which it topples over.

Measure this
angle /\Q

Source: <www.kidsnewsroom.org/images/100299/pisa.jpg>

Figure 9.10 Leaning Tower of Pisa and experiment

Afterwards, James and his university supervisor discussed the lesson, and the students’
problem-solving strategies and understanding of angle. They noted that some students had
difficulty identifying the angle to measure on the photograph of the Leaning Tower of Pisa.
The students did not know whether to measure the deviation from the vertical or the hori-
zontal. It was also not clear that they understood why the angle that they were measuring

in the experiment related to the angle at which the tower leaned.


http://www.kidsnewsroom.org/images/100299/pisa.jpg
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REVIEW AND REFLECT :

* What would you prepare for students if you were going to use the Leaning Tower
of Pisa investigation in your classroom? Why?

* Design an assessment rubric for an authentic geometric problem that you
would use in the classroom. Explain and justify your rubric according to the
curriculum and models for assessing performance tasks in mathematics.
(Refer to Chapter 6.)

Visualising angles between planes in three-dimensional objects is especially difficult
for students. Students need experiences of physical models of these objects and virtual
models are also useful (for example, 3D-XplorMath, Autograph, Cabri3D, Working Mathematically:
Space).

Properties and relationships of two- and three-dimensional figures

The features of the boundaries, surfaces and interiors of two- and three-dimensional figures
(closed curves, polygons and polyhedra) constitute a body of mathematical knowledge.
Through investigation of these features and classification of shapes, students develop an
understanding of uniqueness—that is, the information that is necessary and adequate for
defining a shape and a class of shapes. It is in this part of the curriculum that students
learn about Pythagoras” Theorem, the Golden Ratio, and other ‘classics” of mathematics.
Students will apply their knowledge of shapes in many other areas of mathematics and in
practical situations. In this section, we have chosen to focus on quadrilaterals to illustrate
three different approaches that can be used for investigating properties of figures.

The first approach is analytic and uses dynamic geometry software. Students are provided
with a pre-constructed file of a shape and asked to analyse the features by ‘dragging’ vertices
or sides (Rasmussen et al., 1995; Vincent, 2000). In the example shown in Figure 9.11
students use a pre-constructed file of a quadrilateral (ABDC) with an interior quadrilateral
constructed from midpoints. They drag the vertices, or sides (in Figure 9.11, vertex A) to
investigate the interior quadrilateral. They use the measure tools to form and test a con-

jecture about the interior quadrilateral.
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Figure 9.11 Midpoint quadrilaterals formed by dragging vertex A of a quadrilateral

Mackrell and Johnston-Wilder (2005) stress the importance of the questions that
teachers use to scaffold students’ learning for such investigations. Well-designed activities
will draw students’ attention to the aspects of the figure that are invariant (do not change)
when it is ‘dragged’. “What is happening to the figure?” may produce descriptive accounts of
a figure, but teachers need to use a more concise question: ‘What stays the same and what
changes? This question leads students to look carefully to find the elements of the figure
that do not change—that is, the essential properties of the shape. It also invites students to
explain and perhaps to justify. ‘If I change this, what else changes and what stays the same?’
questions are useful for whole-class discussions of a projected figure.

Using dynamic geometry software or an expressive tool (such as turtle geometry with
Logo or MicroWorlds) to construct shapes is the second approach for investigating the properties
of shapes. David Leigh-Lancaster (2004) provides a dynamic geometry example. For this
investigation, students start with two line segments of different lengths that intersect and

construct a quadrilateral using these line segments as the diagonals (see Figure 9.12).

Figure 9.12 Constructing quadrilaterals from diagonals
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Students are then invited to move one of these line segments and observe ‘what stays the
same and what changes’. A more structured approach to this task would be to pose a series
of ‘Whatif . . .?’ questions—for example, ‘What if the intersecting lines bisect each other? or
‘What if the intersecting lines are at right-angles?” Teachers are not limited to computer-
based activities for these investigations; for example, Lowe (1991a) and Antje Leigh-Lancaster
(2004) suggest paper-folding activities. For one of these activities, students predict how to
cut a piece of paper that has been folded twice at right angles in order to produce a

rhombus, square, rectangle and octagon (Figure 9.13).

Second fold

Cut along dotted line

First fold

Figure 9.13 Cutting folded paper to construct quadrilaterals

A third approach is through the use of rich tasks or real problems. Rich tasks represent the
ways in which the knowledge and skills are used in the real world, address a range of
outcomes in the one task, are open-ended, and encourage students to disclose their own
understanding of what they have learned (Clarke, n.d.). The shape we're in (Department of
Education, Queensland, 2004) is one example. For this task, students investigate the math-
ematical concepts of one container, one domestic object, one mechanical device and an
object from nature. They also have to investigate the consequences—mathematically and
practically—of changing the object in some way. Vincent (2005) includes structured
investigations of the geometric features of buildings and objects in central Melbourne.
Various places that provide a context for investigations are regularly described in The
Australian Mathematics Teacher—tor example, the parabola formed by the cable on the
Golden Gate Bridge (Brinkworth & Scott, 2002). Pierce et al. (2005) describe how students
can use digital photography in combination with dynamic geometry software to investi-

gate geometric features of nature, architectural features and mechanical objects.
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REVIEW AND REFLECT : Work in a team to prepare a unit of work for a topic
concerning the characteristics and properties of a particular polygon, closed curve,
polyhedron or conic section.

Use the learning cycle model for the unit (Frid, 200043, see Chapter 7).
Document learning objectives and include assessment tasks to use at the
beginning and end of the learning cycle.

Use technology or concrete materials for investigations.

Explain how you would formalise these characteristics and properties with
students following their investigation.

Find, or design, tasks for students to apply these characteristics or properties to
a real-world context.

Isometric transformations

Transformations that keep shapes the same—that is, congruent—are called ‘isometries’.
(Isometric means same measure.) They include reflecting (flipping), translating (sliding) and
rotating (turning). According to Wesslen and Fernanez (2005), there are two key ideas about
isometric transformations. The first is that only one transformation is needed to map one
shape on to a congruent figure. The second is that two transformations are the same as
making one other transformation. (A reflection followed by a translation is sometimes called
a glide.) Some students have difficulties or misconceptions regarding transformations
(Wesslen & Fernanez, 2005). They don’t realise that translating a shape with reference to one
point (for example, on a point on one edge) is the same as translating with reference to
another point (on another edge). Also, students are not confident rotating a shape where the

centre of the rotation is not on the edge of the shape or in the centre of the shape—that is,

they think that for all rotations the figure must stay on the same spot (see Figure 9.14).

Figure 9.14 Rotation about the centre, the edge and a point not on the centre
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Paper-folding and digital technology resources are useful media for developing students’
understanding of transformations and addressing these misconceptions. Students can use
technology to move (transform) one shape on to another (Johnston-Wilder & Mason, 2005;
Vincent, 2000; Wesslen & Fernanez, 2005). Some computer-based games and interactive
learning materials are available (for example, from The Learning Federation and the
National Library of Virtual Manipulatives) and drawing tools in word processing software or
pre-constructed figures using dynamic geometry software may be used. Students will need
instruction on how to use the transformation menu in these tools. You may notice differ-
ences in learning preferences for media or resources among your students. Since different
students will find different media easier to use, it is important to incorporate a variety of

media and tools to support their learning.

REVIEW AND REFLECT : An A4 sheet of paper has been folded in half lengthways
and in half again. A hole-punch tool has been used to make two holes in the folded
piece of paper, as shown in Figure 9.15.

Second fold ——p <4— First fold

Figure 9.15 Transformation using folded paper and a hole punch

* Draw a rectangle to represent the unfolded piece of A4 paper and mark where
you predict the holes will be when the paper is unfolded.

* Work with a partner and fold the paper in different ways; use a hole-punch and
predict the placement of the holes.

 Design some other paper-folding tasks about reflection (see Johnston-Wilder &
Mason, 2005].

* Investigate technology-based activities for isometric transformations.
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Students learn about the properties of shapes through investigations of transformations.
They also develop further understanding of congruence through explorations of tiling
patterns and tessellation. They can be challenged to find which two-dimensional and three-
dimensional shapes tessellate or find different tiling patterns using one or two shapes (see,

for example, Figure 9.16).

Figure 9.16 Cairo tiling (pentagons)

For these explorations, students should be encouraged to describe the transformation
used to create the tessellation and form conjectures about the properties of shapes, includ-
ing irregular shapes that tessellate. Simply working with physical objects may not achieve
the desired learning; students need to imagine in order to understand (Johnston-Wilder &
Mason, 2005). Again, attracting attention to particular features and relationships is impor-
tant for developing students’ thinking.

Analysis, construction or rich tasks are suitable activities for teachers to use. Famous or
well-known buildings may be the source of rich tasks, especially for unusual tiling patterns
(see Eppstein, n.d. for examples). The particular tiling pattern of an irregular pentagon,
shown in Figure 9.16, is called the Cairo tessellation because it appears in a famous mosque
in Cairo. The buildings in Federation Square in Melbourne (see Figure 9.3 above) show an
example of Pinwheel Aperiodic Tiling (Bourke, 2002; Vincent, 2005). This tiling pattern,
made with right-angled triangles in the ratio 1:2: \/5, can be constructed through a series of
iterations. Five triangles can be transformed to make a similar right-angled triangle, and so
on. Itis aperiodic tiling because the tiling pattern is not repeated within a region bounded by

a parallelogram.
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Non-isometric transformations

The tracking of transformations through a third dimension illustrates a different relation-
ship between two-dimensional and three-dimensional shapes from that developed through
a study of boundaries and nets. Drawing tools in word processing software can be used to
show translations of two-dimensional shapes in the plane (x,y) through a third dimension
(z) to create prisms and cylinders (see Figure 9.2). Three-dimensional dynamic geometry
(Autograph, Cabri3D) permits rotations, reflections and translations to create three-
dimensional figures. For example, a right cylinder can be constructed by rotating a

rectangle around a line in the plane of the rectangle (see Figure 9.17).
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Figure 9.17 Cylinder created by rotation of rectangle

Transformations that change distances between points in a shape produce different
figures. Such transformations include dilation (or scaling), squeezing and stretching, and
shearing. Dilating (or scaling) a figure uniformly in all directions produces similar figures.
For dilations, students need to use proportional thinking and explore the ratios of the
distances between points on the projected figures to answer the questions and determine
scale factors. Contexts for studying dilation or scaling and similar figures include scale
drawings and perspective drawing.

Trigonometry is a specific example of similar right-angled triangles (see Chapter 8). The
focus in trigonometry is the constant ratio of the lengths of sides of similar right-angled
triangles (and the pattern in the ratio of sides for different right-angled triangles as illus-
trated using a unit circle) rather than the ratio of corresponding sides of similar figures to
show scale factors.

Dilating or scaling a figure non-uniformly does not produce similar figures. This occurs
when you squeeze or stretch a figure by using different scale factors for the distances
between points of a shape. So, for example, the length of one side of a parallelogram is

stretched by one factor but the length of the other sides is stretched by a different factor. To
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illustrate this concept, project an image of a shape using an overhead projector that is not
parallel with the screen (Lowe, 1991a). Students can investigate ‘what stays the same and
what is different?” when shapes are squeezed or stretched.

Shearing of a polygon occurs when one line is invariant and every other point moves in
proportion to the distance away from that line. So shearing a square produces a parallel-
ogram with the same height (GHCD in Figure 9.18). This not the same as a square being
pushed over (EFCD in Figure 9.18). It is stretched as well.

A B A G B H
[ e — O O
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D C D o

Figure 9.18 Pushed-over square (EFCD) and sheared square (GHCD)

Truncations of three-dimensional shapes are another type of transformation. Trun-
cations occur when you slice off a section of a solid (see Figure 9.4). Students can investigate
the solids produced when regular polyhedra are truncated using physical materials or

dynamic geometry (for example, 3D-XplorMath or Cabri3D).

REVIEW AND REFLECT : Recall the task in Figure 9.4: cutting the vertex (corner)
off a cube. The cut was made at an equal length on the three edges of the cube that
met at the vertex. Now imagine cutting off each vertex of the cube.

e What shape do you imagine the remaining object to be? Make one of these
shapes yourself.

* Now imagine cutting bigger and bigger slices from each vertex until the slices
meet in the middle of each edge. What shape is left on the face of the cube?
Make this polyhedron using 3D construction materials or modelling clay.
Construct a net for this polyhedron. Find out what this polyhedron is called.

* Now use a dynamic geometry software to model this truncation.




Teaching and learning geometry and spatial concepts 225

Location and spatial reasoning

Rich tasks are suitable contexts for location and spatial reasoning. “To find their way, people
have to take on board the links between the orientation of their body, that of the plan and
that of real space, and sometimes the orientation of persons they are asking their way from.’
(Berthelot & Salin, 1998, p. 75) To extend students’ spatial reasoning, using either coordinate
systems or directions and distances, they need to have experiences of unfamiliar situa-
tions—that is, places and buildings of which they have no mental images. Excursions and
school camps are therefore ideal contexts for developing spatial reasoning. With the
required levels of legal supervision, students should be provided opportunities to plan
and/or follow routes on various types of maps: road maps using Cartesian systems, public
transport maps using network diagrams, and topographical maps showing geographical
features. See, for example, an investigation of the London Underground (Brinkworth &
Scott, 2001). These tasks also involve the development of location and spatial language and
communication skills.

In the junior secondary years, Cartesian coordinate systems and geometry are the focus
of students’ learning and in the senior secondary years polar, spherical and navigational
systems of spatial reasoning are developed (Day et al., 2001). Spherical geometry begins with
a study of coordinates using latitude and longitude. Using a cross-sectional view of the
globe, students consider problems of calculating distances on the surface of the globe
between places with the same longitude and then places with the same latitude. Hence
students encounter the meaning of a nautical mile and apply the spherical cosine rule to
solve these problems (see, for example, Figure 9.19).

Interesting investigations of invariance are encountered when considering the mapping
of the globe (map projection)—that is, transforming a spherical grid onto a rectangular
grid for two-dimensional maps. Wilkins and Hicks (2001) discuss three commonly used map
projections (Mercator, Robinson and Mollweide). Each of these map projections has
preserved or distorted different properties of the spherical geometry: the distance between
points, area, direction or shape or a combination of these. The problem that they pose for
students is to calculate the area of the oceans on the earth for each of these maps. Johnston-

Wilder and Mason (2005) propose a different approach to the problem of map projection.
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Carnarvon (24°53’S, 113°40'E, in Western Australia and Bundaberg, (24°52'S, 152°21"E) in Queensland are on
opposite sides of Australia at approximately the same latitude (25°S). How far west is Carnarvon from Bundaberg?

Find angular separation between Carnarvon and Bundaberg:
Angular separation = 152°21" — 11340’

= 3841’

= 2321’

AB and AC are radii of the earth (R] and DC is the radius of the 25°S
parallel (r).
In AACD cos 25° = r/R
=r = Rcos25’
= 0.9063R

Since 1’ of arcat 0°S = 1 nautical mile, distance = 2321 X 0.9063 n miles
2104 miles

= 2104 X 1852 m

= 3897 km

Source: Hodgson and Leigh-Lancaster (1990, p. 471).

Figure 9.19 Distance at the same latitude

They use a longitudinal cross-section of a globe to illustrate three possible projections of
the globe: gnomic, stereographic and orthographic. The implications of map projections
for navigation provide a rich source for problem-solving tasks. For example, Hodgson and
Leigh-Lancaster (1990) pose a series of navigation problems to illustrate the difficulties of
charting a course using Mercator maps.

Network analysis is a relatively new area of school mathematics arising from the field of
operations research and graph theory. A network diagram or graph is shown in Figure 9.20.
Networks diagrams are constructed of points (vertices or nodes) and links (lines or edges)
used to show connections between places on a map or nodes on a network (such as the
internet). In some states, students begin to solve network problems, such as finding the
shortest route, in the junior secondary years. Network analysis is included in some senior

and vocational mathematics subjects.
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J

Figure 9.20 Network diagram or graph

REVIEW AND REFLECT :

* Use amap on the internet or Google Earth to find your home.

* Investigate different coordinate systems, map projections or network diagrams,
and teaching materials for these location contexts and topics for learning (see
Farmer, 2005; Faulkner, 2004; Hekimoglu, 2005 for senior secondary
examples).

* Find or develop a rich task using topographical maps, network diagrams or
Cartesian, polar or spherical coordinate systems.

* Identify the learning outcomes for mathematics and for other disciplines and

generic skills in the case of junior secondary mathematics.

Vectors

Vectors and matrices can be used to describe and investigate transformations and to solve a
range of geometric problems involving magnitude and direction, with particular applica-
tion to physics (Day et al., 2001). These topics are included in some senior secondary
curricula. It is often assumed that students taking advanced senior mathematics subjects
understand mathematics, but this is not necessarily the case, and the study of vectors
illustrates some of the difficulties students encounter when their mathematical thinking

is based on operational or procedural knowledge (Forster, 2000a, 2000b). Researchers and



228 TEACHING and learning MATHEMATICAL CONTENT

experienced mathematics teachers agree that vectors are best introduced through problems
based in a real-world context (Forster, 2000a, 2000b; McMullin, 1999; Nissen, 2000).
Certainly, there are some interesting contexts that could replace the more predictable
physics and navigation examples, including amusement park rides (McMullin, 1999) and
cave exploration (Vacher & Mylroie, 2001). However, there is no consistent view on whether
students are likely to have more success in solving problems using geometric, trigono-
metric or Cartesian component methods. There is some evidence that the use of graphics
calculators can support the development of students’ conceptual understanding of vectors
(Forster, 2000b; Goos et al., 2000). In both these studies, students also worked with concrete
aids and/or pen and paper diagrams. In the problem illustrated in Figure 4.10 in Chapter 4,
the teacher used transparent grid paper, cut-out polygons and an overhead projector to
demonstrate the matrix transformation problem. The students used the same materials

to explore the problem and a graphics calculator for the matrix calculations.

Conclusion

Too often, the geometry curriculum in secondary schools is implemented as a series of
disconnected topics or ‘fun’ activities without careful consideration of the need to develop
geometric thinking, connection of geometric ideas, and their application to real problems
for students. Geometry lessons should connect with prior knowledge and engage students
in creative thinking and problem-solving. Imagining and prediction are an important part
of this process. Students should be encouraged to imagine a figure before sketching it, to
sketch it before constructing it, and to make a conjecture about what will happen when

investigating and problem-solving.
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CHAPTER 10

Teaching and learning
algebra

Perhaps more than any other area of school mathematics, the study of algebra is
bound to change dramatically with the infusion of currently available and emerging
technology. What was once the inviolable domain of paper-and-pencil manipulative
algebra is now within the easy reach of school-level computing technology. This
technology demands new visions of school algebra that shift the emphasis away from
symbolic manipulation toward conceptual understanding, symbol sense, and mathe-
matical modelling. (Heid, 1995, p. 1)

Algebra—particularly when interpreted as symbolic manipulation—has an image problem
in secondary schooling, with many adults seeing it as the beginnings of their downward
slide in school mathematics. Such mind-numbing activity is seen as having little relevance
to everyday life, creating widespread disenchantment in mathematics classrooms in a
context where increasing numbers of students complete secondary schooling (Stacey &
Chick, 2004, p. 2). To combat this, Stacey and Chick suggest that algebra needs to be recon-
ceptualised as a topic of relevance to students in such a way that they are able to recognise
this relevance and immediate purpose for themselves.

There is a plethora of current approaches to the teaching of algebra: the generalisation
approach (Lee, 1996; Mason, 1996; Mason et al., 2005); the problem-solving approach involv-
ing word problems (Bednarz, 2001; Bell, 1996); the functional approach (Yerushalmy, 2000;
Yerushalmy & Gilead, 1999); the language approach (Padula et al., 2001, 2002); the modelling
of physical and mathematical phenomena approach (Arzarello & Robutti, 2003; Borba &
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Schefter, 2003; Rasmussen & Nemirovsky, 2003); and the historical approach (van Amerom,
2002; V. Katz, 2006; Puig & Rojano, 2004; Radford & Grenier, 1996). It would be only fair to
say, however, that a balanced approach in the classroom would involve some of these
approaches at different times as the various approaches highlight the fundamental concepts
of algebra in different ways.

In this chapter, we provide an overview of how early algebraic ideas are fostered in the
primary school, identify the core ideas in school algebra, illustrate approaches to facilitate
students’ transition from arithmetical to algebraic thinking, briefly highlight language
difficulties associated with translation of word problems, and look at generational and
transformational activities in algebra. This is followed by a major focus on functions,

and then finally the use of computer algebra systems and algebra.

Early algebraic ideas fostered in the primary years

Currently, in the majority of curriculum contexts, the introduction of algebra begins in late
primary school or the beginning of secondary school. As Kieran (2006) points out, even
though algebra and arithmetic share the same signs and symbols, ‘many conceptual adjust-
ments are required of the beginning algebra student as these signs and symbols shift in
meaning from those commonly held in arithmetic’ (2006, p. 13). Warren (2003), in a study of
Year 7 and 8 students in Queensland, found that many students are leaving primary school
with limited notions of mathematical structure and arithmetic operations as general
processes—a dubious foundation for secondary school mathematics courses introducing
algebra. Calls to include algebra in the early primary school curriculum have not fallen
entirely on deaf ears, as the National Council of Teachers of Mathematics NCTM] in the
United States has endorsed the early introduction of algebra recommending algebraic activ-
ities be nurtured from kindergarten and algebraic notation be introduced between Years 3
and 5 (NCTM, 2000). Proponents of early algebra inclusion in the lower years of primary
school (e.g. Carpenter & Levi, 2000; Lins & Kaput, 2004) do not see arithmetic and algebra as
distinct, arguing that ‘a deep understanding of arithmetic requires certain mathematical
generalizations’ (Schliemann et al., 2007, p. 8) and algebraic notation facilitates young
children’s expression of such mathematical generalisations—just as it does for adolescents

and adults. In the particular approach adopted by Schliemann and colleagues, for example,
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algebra is seen as a generalised arithmetic of numbers and quantities. Their approach
encompasses ‘a move from thinking about relations among particular numbers and
measures toward thinking about relations among sets of numbers and measures, from
computing numerical answers to describing relations among variables’ (2007, p. 10).
Research findings from their studies in conjunction with other colleagues have shown that
children as young as seven understand the equality principle of algebra, and children in
Year 3 can develop consistent notations to deal with relationships involving known and

unknown quantities.

Core algebraic ideas

Kieran (2004) presents a model for conceptualising what she sees as the principal activities of
school algebra—mnamely, generational, transformational and global[meta-level activities. The genera-
tional activities involve forming expressions and equations—the objects of algebra. The
underlying objects of equations and expressions are variables and unknowns. Transforma-
tional or rule-based activities include such processes as collecting like terms and solving
equations. A great deal of transformational activity concerns equivalent forms and relies on
well-developed notions of equivalence. Global/meta-level activities involve algebra as a tool
in problem-solving, modelling, noticing structure, studying change, generalising, analysing
relationships, justifying and proving. According to Kieran (2004), these higher level activities
cannot be separated from the generational or transformational activities without the
purpose of learning algebra being lost. Thus algebraic thinking depends on the development

of several core ideas, not the least of which are equivalence and variable (Knuth et al., 2005).

Equivalence

Kieran (1992, p. 398) sees ‘a conception of the symmetric and transitive character of equality’
as one of the necessary ‘requirements for generating and adequately interpreting structural
representations such as equations’. It is therefore imperative that students view the equal
sign in algebra as a relational symbol indicating that two expressions are equivalent rather
than as an operational symbol indicating that they should ‘do the sum’. Typical responses to

«w—>m

the question ‘Explain the meaning of the sign’, provided by a Victorian teacher’s Year 8

class, illustrate these respective viewpoints:
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The = sign is used in equations to show that whatever is on the right of the ‘=’ sign is

equal to whatever is on the left of the ‘="sign e.g. 499 =7X 7,3 +3 =5+ 1 etc.

The ‘=’ sign specifies that you are coming to the conclusion of a sum of something

e.g. 3 X2 = 6. = means you are going to have a total. (Baroudi, 2006, p. 28)

Much previous research has shown that many students hold an operational view of the
equal sign (e.g. Falkner et al., 1999; Rittle-Johnson & Alibali, 1999), and this extends well into
secondary school (McNeil & Alibali, 2005). Recently, Knuth and colleagues (2005, 2006)
investigated sixth, seventh and eighth grade students’ interpretations of the equal sign, their
understanding of the preservation of the equivalence relation in the process of solving
an equation, and the relation between students’ equal sign understanding and their
performance in solving algebraic equations. Three of the tasks used in these studies are

shown in Figure 10.1.

Task 1: Interpreting the equal sign.
The following question asks about this statement:
3+4=7
7

a) The arrow above points to a symbol. What is the name of the symbol?
b) What does the symbol mean?

c) Can the symbol mean anything else? If yes, please explain.

Task 2: Using the concept of mathematical equivalence.
Is the number that goes in the [] the same number in the following two equations? Explain your reasoning,
2X[]1+15=31 2X([]+15-9=31-9

Task 3: Equation solving.
What value of m will make the following number sentence true?
4m + 10 =70

Source: Knuth et al. (2005, p. 70; 2006, p. 301).

Figure 10.1 Equivalence tasks
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Knuth et al. (2005) found that students’ views of the equal sign increased in sophistica-
tion from operational to relational as they progressed through the middle years; however,
the majority of students at each level held an operational view with the percentage holding
a relational view rising to only 46 per cent in Year 8. In Knuth et al. (2006), although there
was a slight rise in the proportion of students exhibiting a relational view from Year 6 to
Year 7, this fell away again in Year 8—this time to 31 per cent. These results are of some
concern, as it was also reported by Knuth et al. (2005) that students who had a relational
view of the equal sign outperformed their peers on the equation-solving task which requires
use of mathematical equivalence. Knuth et al. (2006) conclude that ‘a relational view of the
equal sign is necessary not only to meaningfully generate and interpret equations but also
to meaningfully operate on equations’ (2006, p. 309). Thus spending time in Years 7 and 8
on ensuring students develop understanding of the equal sign indicating equivalence rather
than as an operational symbol may pay dividends in better algebra performance, par-

ticularly in transformational activities.

Variable

Variables provide the algebraic tool for expressing generalisations in mathematics. The
notion of variable is fundamentally different from the concept of unknown. An unknown is
a number that does not vary, whereas a variable denotes a quantity, the value of which can
change. An often-quoted study in the United Kingdom by Kiichemann (1978) highlights
some of the many difficulties thirteen- to fifteen-year-old students have with the inter-
pretation of literal symbols. Most students in Kiichemann’s study considered the symbols as
objects. Few students considered them to be specific unknowns, and even fewer saw them as
generalised numbers or variables. A worrying aspect of these students’ misunderstanding of
literal symbols was the potential for carryover of these misunderstandings into symbolising
relationships in problems. When Knuth et al. (2005) investigated sixth, seventh and eighth
grade students’ interpretation of a literal symbol and use of the concept of a variable, their
results were not as pessimistic as those of Kiichemann. The two tasks used in this part of

their study are shown in Figure 10.2.
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Task 4: Interpreting literal symbol.
The following question is about this expression:
2n+3

The arrow above points to a symbol. What does the symbol stand for?
Task 5: Using the variable concept.

Can you tell which is larger, 3n orn + 67 Please explain your answer.

Source: Knuth et al. (2005, p. 70).

Figure 10.2 Tasks investigating the notion of variable

The most common meaning that students at all grade levels provided for nin Task 4 was
that it was a variable, with the percentages of correct responses ranging from just below
30 per centin Year 6 to just over 75 per centin Year 8.

In Task 5, an acceptable justified response would be: ‘No, because n is not a definite
number. If n was 1, 3n would be 3 and # + 6 would be 7 so 3n < n + 6. On the other hand, if
nwas 10, 3n would be 30 and n + 6 would be 16 so 3n > n + 6. You cannot tell which is larger
unless you know the value of #n” Only 11 per cent of Year 6, 51 per cent of Year 7 and 60 per
cent of Year 8 students provided a justification based on a variable interpretation of the literal
symbol. Students who provided a variable interpretaion were more likely than their peers to
correctly respond ‘can’t tell’, and to provide correct justifications for Task 5 with the propor-
tion who responded correctly increasing with the year levels. Different problem contexts did
appear to activate different aspects of students’ knowledge, as 20 per cent of the students who
provided a correct justification on Task 5 did not provide a variable interpretation for Task 4.
Overall, it would appear that students’ improved understanding of variable (as compared
with Kiichemann’s results) was associated with better performance on the problem task.
However, students’ knowledge of the concept of variable may take some time to stabilise, as

the Year 6 students’ increased performance on Task 4 was not matched on Task 5.

REVIEW AND REFLECT : Use the five tasks from these last two sections to investigate
the understanding of equivalence and variables of a lower secondary student.
Compare your findings with those obtained by other pre-service teachers in your class.
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The transition to algebraic thinking

Schliemann and colleagues (2007) see these difficulties for students beginning algebra as
arising from teaching and learning experiences in arithmetic, not from their cognitive

development. For them, the sources are threefold:

1. the use of restricted arithmetical word problem sets which focus on change
problems (e.g. Joe has some marbles. He won three marbles. Now he has five
marbles. How many marbles did Joe have at the start?), de-emphasising com-
parisons problems (e.g. There are eight riders but only three horses. How many
riders won’t get a horse?) and missing addend problems (e.g. Col has seven
blue shirts and some brown shirts. She has eleven shirts altogether. How many
brown shirts does Col have?);

2. the use of notation as a means of recording computation rather than as a descrip-
tion of what is known about the problem; and

3. focusing on computing particular values rather than on relations among sets.

As mentioned earlier, these researchers advocate the introduction of algebraic concepts and
notation into the early primary years, and a different focus in arithmetic to address the
difficulties highlighted above. However, several different approaches have been proposed
by other researchers to facilitate students’ transitions from arithmetical thinking to

algebraic thinking.

An historical approach to transition

An historical analysis of Medieval Italian algebra by Radford (1995) has inspired a three-
phase teaching sequence developed by Radford and Grenier (1996), designed to facilitate
the difficult conceptual shift from solving concrete problems using words and numbers
to the more abstract problem of using letters to designate unknown quantities. The four-
teenth century Italian mathematician Antonio de Mazzinghi explained the concept of
unknown as a ‘hidden’ quantity, and it was thought that this notion would be a suitable
means of helping students understand the role of letters as representing unknowns. In the

first teaching phase, students were asked to solve word problems using manipulatives that
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embodied the notion of hidden quantity. A hidden number of lollies in a bag or a hidden
number of hockey cards in an envelope were used to represent the unknowns in the
problems. The teaching sequence was structured to allow students to master the two
algebraic operations associated with the solutions of equations in the ancient text Hisab
al-jabr w’al-mugabala (Calculation by Restoration and Reduction), by ninth century Arab mathemati-
cian al-Kahwarizmi. Al-jabr, or restoration, was the operation of adding equal terms to both
sides of an equation so as to remove negative quantities—or, less frequently, multiplying
both sides of an equation by a particular number to remove fractions. Al-mugqabala, or reduc-
tion, was the process of reducing positive quantities by subtracting equal quantities from both
sides. (See Joseph, 1991 for a discussion of Arab algebra.) In the second phase of the teaching
sequence, the manipulatives were replaced by drawings while in the third phase students
used letters in place of the drawings of unknown quantities. Today, we know this method as

the balance method of solving equations.

A generalisation and word problem-solving approach to transition

Bednarz (2001) used a problem-solving context involving word problems to stimulate the
emergence and development of algebraic procedures with thirteen to eighteen-year-old
students who, at the beginning of the teaching sequences, displayed learning difficulties
in mathematics. Three teaching sequences were developed where the letters used had
different meanings, such as a generalised number in number pattern formulae and an
unknown quantity in word problem-solving. The first sequence was designed to ensure that
students understood the importance of a transition to algebra in a context of generalisation.
This sequence involved the representation of number patterns by verbal descriptions,
followed by a shift to symbolism. In the second teaching sequence, the students focused
on arithmetical comparison word problems. The final sequence dealt with the solution of
algebraic problems (see box below) focusing on mathematical generalisation and com-
parisons. In this sequence there was a starting situation for students to reflect on the choice
of a generator, the writing of a verbal statement to account for how a quantity might be
calculated and the changing of one of the quantities in the situation to reflect on its impact
so students could see the applicability of the verbal description to a whole class of problems

and also to reflect on the status of the numbers in the situation (i.e. were they generators or
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parameters). The problems were then solved using the verbal description students had
generated. The relations in these problems were then made more complex and finally there

was extension to other problems.

Generalisation problem: The warehouse

(The starting situation) A son, hired by his father to do an inventory, left him the
following message: ‘Three types of articles were counted. There are two times
more rackets than balls, and three times more hockey sticks than rackets.’

Do you think the father can get by with this message his son left him in order
to find what is in the warehouse?

(The situation) Construct a verbal description of how you might calculate the
number of articles in the warehouse.

(The problem) There are two times more rackets than balls and three times
more hockey sticks than rackets. If there are 270 articles in the warehouse, can
you find the number of balls, rackets and hockey sticks?

(Another more complex problem) There are three more rackets than balls
and four times more hockey sticks than rackets. If there are 255 articles in the

warehouse, how many balls, rackets and hockey sticks are there?

Source: Adapted from Bednarz (2001, pp. 74-6).

Students simultaneously used various modes of representation: (a) written natural
language descriptions (e.g. ball plus ball plus 3 plus ball X 4 plus 12 equals number of
articles); (b) iconic representations of quantities (e.g. drawings of two tennis rackets multi-
plied by 3 equated to drawings of 6 hockey sticks); and (¢) an intermediary symbolic form of
expression (e.g. H = number of hockey sticks, R = number of rackets R X 3 = H). These
proved to be important transitional tools in finding solutions which Bednarz (2001) saw
as ‘fundamental components of the transition to an algebraic reasoning and of the
construction of a meaning surrounding algebraic symbolism and notation’ (2001, p. 76).
Classroom discussion and validation were also essential in explaining students’ writing

conventions and reasoning processes during this construction of meaning.
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A quasi-variables approach to transition

A third contrasting approach is suggested by Fujii and Stephens (2001), who propose the use
of quasi-variables as a bridge between arithmetical and algebraic thinking which students
need to cross frequently during their formative algebra years. Quasi-variables appear ‘in a
number sentence or group of number sentences that indicate an underlying mathematical
relationship which remains true whatever the numbers used are’ (2001, p. 259). The number
sentence 57 —47 + 47 = 57 belongs to the class of algebraic equations of the typea—b + b= a,
which is true for all values of a and b. Fujii and Stephens claim that working with quasi-
variables assists students in identifying and discussing ‘algebraic generalisations long before
they learn formal algebraic notation’ (2001, p. 260). They focus on developing the concept of
variable rather than the concept of an unknown. At the secondary level, there are many
opportunities for using numerical expressions to signify variable quantitative relationships
and to foster algebraic generalisation. We will look at an example from geometry involving

shared diameters of semi-circles (see box below).

Quasi-variable problem: Shared diameters of semi-circles
(a) Draw a semicircle of diameter 60 units. Divide the diameter equally into
three. Use these divisions to draw three touching semi-circles of diameter one
third of the diameter of the large semi-circle.
* Write a number sentence to compare the length of the arc of the large
semi-circle to the total length of the arcs of the three smaller semi-circles.
* If there were four semi-circles dividing the diameter of the large semi-
circle in the same manner, write a number sentence to show the total
length of the arcs of the four smaller semi-circles.
e If there were ten small semi-circles, write a number sentence to show the
total length of the arcs of the ten smaller semi-circles.
* Look at the four number sentences that you have written. In your
own words, describe what you notice.
(b) Now repeat for a large semi-circle with a diameter length of your own
choosing. Compare your results with those of other students. In your

own words, describe what you notice.
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In part (a) of the above example, it is expected that students look across their series of
number sentences to notice that, regardless of the number of identical smaller semi-circles
used, the total sum of their arcs is equal to the length of the arc of the large semi-circle.
These quasi-variable relationships allow students to understand the general relationship of
the type % X 314 + 2 X n = 942 where n is the number of identical small semi-circles.
The immediate goal is not for students to write this formally, but to be able to articulate the
relationship in their own words.

In part (b), by considering other cases for the length of the diameter of the large semi-
circle, students are helped to see the relationship holds for all semi-circles. There are many
other topics (e.g. Pythagoras’ Theorem with properties of tangents to circles) where the use
of uncalculated numerical expressions as quasi-variables in number sentences can be used in
this way to discover underlying relationships.

Fujii and Stephens (2001) are of the opinion that the introduction of variables should not
wait until students have been taught formal algebraic notation. Many situations in number
and geometry are fertile ground for using quasi-variables to deepen students’ understanding
of algebraic thinking and to facilitate their transition from working with unknowns to
variables. However, the emphasis needs to be on looking for the relationships rather than

calculating.

REVIEW AND REFLECT : Design your own set of number tasks and one geometry
task involving the use of quasi-variables to facilitate the understanding of variables

by a lower secondary student.

Translation difficulties: Reversal error

According to Drouhard and Teppo (2004, p. 238), ‘algebraic thought is made overt through
the three components of natural language, symbolic writings, and compound representa-
tions’. By ‘compound representations’, they mean illustrative elements of such classroom
artefacts as textbooks which consist of symbolic writings such as numerals, drawings and
natural language for labels and explanations. ‘Acquiring a mastery of these components,

however, is not straight forward’, as the work of Padula et al. (2001) illustrates.
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REVIEW AND REFLECT : Select a junior secondary mathematics textbook series

and examine the approach taken to teaching algebra. Also examine the algebra

component of your local mathematics curriculum for the junior secondary years.

¢ Which approach to introducing algebra is taken in the series?

* What assumptions about the transition to algebraic thinking are evident in the
textbooks? In the curriculum document?

* How do the textbooks deal with the concepts of equivalence and variable?

* What methods of equation-solving are included?

* To what extent are the ideas and teaching sequences presented in the textbooks
and curriculum document consistent with the research discussed above?

* In what ways, and with what resources, would you need to modify or supple-
ment the material in each textbook?

Padula and colleagues (2001) conducted an informal study of secondary students’
ability to translate what appear to be simple word problem statements into equations. The
results reported for 26 Year 9 girls show that this is not an easy task for students at this level,
echoing earlier research results from MacGregor (1990) and others. The questions related to

the three sentences that students had to translate were as follows:

4a ‘The number of animals is equal to ten times the number of zookeepers.” Write this
sentence in your own words.

4b Now use a for ‘the number of zookeepers’ and write an equation for: “The number
of animals is equal to ten times the number of zookeepers.” Hint: don’t forget the equal

sign.

5a ‘“There are seven times as many toys as children.” Write this sentence in your own
words.

5b Now use t for ‘the number of toys’ and ¢ for ‘the number of children’ and write an
equation for: ‘There are seven times as many toys as children.” Hint: don’t forget the

equal sign.
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6a ‘For every bus there are twenty passengers.” Write this sentence in your own words.
6b Now use b for ‘the number of buses’ and p for ‘the number of passengers’ and write
an equation for: ‘For every bus there are twenty passengers.” Hint: don’t forget the

equal sign. (Padula et al., 2001, p. 33)

REVIEW AND REFLECT : Examine these tasks in your groups. Give possible
reasons why the most number of correct equations were generated for 5b whilst
fewer than half the students could generate correct equations for the other two

sentences.

Generational activities: Expressing generality

Generational activities involve forming expressions and equations—the objects of algebra.
Algebraic notations can be used to express the generality we see in situations or to enable
us, at times, to see generalisations we did not perceive before. Algebraic expressions (e.g.
5n + 3) are the building blocks for the representations that we use for these expressions
of generality. ‘Expressing generality’ has thus become a term given status in Australasian
curriculum documents (e.g. Australian Education Council, 1991) when structuring the
elements of the algebra curriculum. Generalisation as an approach to teaching algebra,
particularly in the early phases in the lower secondary years, was given impetus in the
Australasian region by the release of an Australian edition of the influential book Routes
to/Roots of Algebra (Mason et al., 1987). Other resources have followed (e.g. ‘Access to
Algebra’, Maths300), which have kept up the momentum of the approach. Recently,
Mason and colleagues have released another book (Mason et al., 2005), which continues
with this approach and is a ready source of activities.

One of the most important sources of generalisation is number patterns. The use of large
numbers that are not easily computable (see the box below) is seen by Zazkis (2001) as a
catalyst for young learners to become aware of generality as it takes their focus away from

completing operations.



Teaching and learning algebra 243

Generalising from number patterns

Complete the next one in this sequence of number sentences:
(4+3)X(4-3)=4-9

(5+3)X(5-3)=5-9

(6+3)x(6-3)=6"-9

What would be the following number sentence?
What would be the number sentence that starts (59 . . .2
What would be the number sentence that starts (1234567 . . .2

Other sources of situations for expressing generality are diagrams and pictures. A typical
introductory task would be to find a general rule for describing the number of tiles required
to make cross patterns of varying size with tiles (see Figure 10.3). Students first express the
rule in their own words (e.g. number of tiles is equal to four times arm length in tiles plus 1)

and later in symbols (e.g. n =4/ + 1).

Figure 10.3 Generalising from geometric patterns

Transformational activities in algebra

Secondary school textbooks usually place their major emphasis in algebra chapters on
explication of the process of using the rules for manipulating algebraic expressions
(e.g. collecting like terms) and equations (e.g. backtracking, balancing and transposing),
followed by practice to develop automaticity rather than on conceptual notions underlying

these rules or the structural features of the expressions and equations that are being
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manipulated (Kieran, 2004). Concrete materials can often be used to model these processes.
For example, Algebra Experience Materials provide a geometric model for expansion and
factorisation of related expressions (Leigh-Lancaster & Leigh-Lancaster, 2002).

Rapid advances in technology have impinged on what students of today and in the future
will need to know in order to live and work in a world equipped with technology. To be fully
able to take their place as informed citizens of tomorrow ‘students no longer need a high level
of technical skill’ with respect to algebraic methods, ‘but the need for fundamental under-
standing is not diminished’ (Ball & Stacey, 2001, p. 55). As an example, Ball and Stacey (2001)
look at the area of equation-solving, pointing out that the use of electronic technologies such
as computers and hand-held devices with spreadsheets and graphing software has already
increased the efficacy of numerical and graphical techniques in secondary school classrooms
(see Chapters 4 and 12 for examples), and also in workplaces. They list new elements of math-

ematical literacy for solving equations in such technological environments as:

*  recognition that a range of equation-solving methods are available and reasonable
including graphical and numerical methods;

. techniques for efficiently setting up and searching tables and lists;

. being able to choose an appropriate viewing window for a graph;

*  appreciating there may be multiple solutions for an equation and knowing approx-
imately where these might be;

*  notsuccumbing to the pseudo-accuracy that technology gives. (Ball & Stacey, 2001)

Using technologies with computer algebra systems (CAS) which allow symbolic manip-
ulation enables students to find exact solutions to algebraic equations, including those

containing parameters (see Figure 10.4).
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Figure 10.4 Solving equations in a computer algebra environment
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Rather than such technologies signalling the demise of the teaching of algebra in
secondary classrooms, Pierce and Stacey (2001) point out that they necessitate the develop-
ment of what they term ‘algebraic insight’. Algebraic knowledge is needed to decide which
techniques are appropriate, enter expressions in a form the system can handle, monitor
the solution process for possible errors and interpret output in conventional format. The
solving of the equation a" = a® for n as shown in Figure 10.4 is correct, but requires a knowl-
edge of logarithms to realise that the answer is n = 3 or what action you might take next
with the calculator to arrive at such an answer.

Using the example of equation-solving, Ball and Stacey (2001) list the following

elements as essential for mathematical literacy in a CAS environment:

* understanding basic equation-solving operations of using balancing, inverse
operations and the null factor law;

* manipulation skills to modify an equation before input or recognise non-standard
forms in calculator output as equivalent;

* ability to identify the form of an equation or set of equations;

* knowing the nature of the solutions of equations of various forms.

Neither of these lists gives a sense that transformative activities in algebra are being
devalued; however, the current emphases within the implemented curriculum certainly
appear to need rethinking and refocusing to support our growing reliance on technological
environments. As pointed out earlier, many transformational activities rely on, and
promote, the development of notions of equivalent forms, and this development is as

important today as it ever was.

The ascendency of the function concept

Kieran and Yerushalmy (2004) point out that ‘construction of the function concept . . . is
now widely considered to be part of the knowledge of algebra’ (2004, p. 115). Yerushalmy
and Schwartz (1993, p. 41) see function as ‘the fundamental object of algebra’, imploring
that ‘it ought to be present in a variety of representations in algebra teaching and learning
from the outset’ in the instructional sequence of algebra. Many researchers espouse the
importance of the function concept in secondary school mathematics. As Heid (1995)

points out:
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REVIEW AND REFLECT : Here are a number of solutions to the equation x* — 2x =
— 1 presented by Year 10 learners to their class.

Explain clearly which of these solutions is correct/incorrect and why.

Explain how you would communicate the strengths, limitations or errors in each

of these solutions to the students.

What questions could you ask Clara to assist her to understand and be able to

formulate a more general response?

Jim:

Jen:

Mark:

Val:

Carla:

x = 1 because x¥*—2x = — 1, thenx’* = 2x— 1 and x =m

x can’t be 0 because we get 0 = \/— 1

X can't be negative because we get the square root of a negative

x = 1 works because we get 1 = 1 and no other number bigger than 1

works.

x = 1 because if x> —2x = —1,thenx(x—2) = —landsox = —1or
x —2 = — 1, which leaves us with x = 1 (because x = — 1 does not hold
true)

x = 1 because if xX*—2x = — 1, then x*— 2x + 1 = 0 and this factorises

toget (x—1)(x—1) =0;sox = 1.

x = 1.ldrew the graphy = —1 and y = x* — 2x. They intersect in only
one place, atx = 1.

x = 1. | substituted a range of values for x in the equation and 1 is the

only one that works.

Source: Adapted from Adler & Davis (2000, p. 273).

The language of technology quite naturally depends on the concepts of variable and

function. But the concepts of variable and function in a technological world are

much richer than those found in current school textbooks or in the minds of today’s

students. The search for variable values that satisfy equations need no longer be the

unquestioned and primary goals of beginning algebra. (1995, p. 1)
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In a technological world, both functions and variables take on new meanings as they are
no longer seen as mere abstract notions in the classroom—especially in the context of
exploring real-world phenomena. ‘Variables represent quantities that change, and algebra
is the study of relationships among these changing quantities. What was the search for
fixed values that fit statically defined relationships is now the dynamic exploration of math-

ematical relationships.” (Heid, 1995, p. 1)

REVIEW AND REFLECT : With other students, draw a concept map of your under-
standing of function as developed through secondary school. Make sure you label
object and procedural links (e.g. a link from ‘graph of function’ to ‘gradient’ could be
labelled as ‘graph of function’ HAS A ‘gradient’ [an object link] or IS USED TO FIND a
‘gradient at a point’ [a procedural link]).

Compare your completed maps to those of two secondary students and an
expert in the paper by Williams (1998).

Functions are ‘multi-faceted” (Lloyd & Wilson, 1998, p. 250) and cannot be fully under-
stood within a single representation environment. Being able to make links between

representations (Figure 10.5) is crucial to the underlying concepts of functions (Even, 1998).

Numerical

Algebraic « P Graphical
Figure 10.5 Function representations and the links to be developed between these
Function-graphing technologies provide students with the opportunities to make these

links and to develop rich conceptual schemas but students do not necessarily make the links

merely by using technology. When taking a multiple representation approach to teaching
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function, it is often pointed out that students should do tasks or teachers provide teaching
examples that necessitate linking across the various representations of functions. However,
even with the best-designed tasks, there is always a place for teacher monitoring and
possible intervention. Arcarvi (2003) reports how students do not always notice what an
expert would expect in a graphing software environment, such as what the multiplier does
or the common y-intercept in a series of graphs of the form y = ax + 1 (see Figure 10.6).
Instead, they can notice irrelevancies (such as the graphs starting at the bottom of the
screen) which are ‘automatically dismissed or unnoticed by the expert’s vision’ (2003,

p.232).

Figure 10.6 The family of graphs y = ax + 1 in the multiple representation

environment (View3) of the TI-SmartView
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REVIEW AND REFLECT : Design three tasks which would require students to link
across representations. Set at least one of these tasks in a real-world context. The
tasks should be targeted for Year 11 where the students have covered the appropri-
ate topics re functions. See Graphic algebra: Explorations with a function grapher
(Asp et al., 1995), Navigating through algebra in grades 9—-12 (Burke et al., 2001},
or Developing thinking in algebra (Mason et al., 2005) for starter ideas.

For each task, indicate which representations (e.g., algebraic [A] and graphical
[G]) and links (e.g., from algebraic to graphical [A — G]) you would expect solvers
of the task to be able to use.

Families of functions

Functions-based approaches to algebra in secondary schools often focus on polynomial and
rational functions, but emphasis is placed on the explicit study of just a few of the families
within these, such as linear, quadratic, cubic and, to a lesser extent, quartic functions. In
addition, exponential and trigonometric functions are often studied. From time to time, other
functions are suggested (e.g. the Lambert W function—see Stewart, 2006), but these are yet to
gain a toehold in Australian curricula. Unfortunately, this study of functions is fragmented
over the years of secondary schooling, and often students develop deep understanding of
particular aspects of one family of functions but fail to transfer this knowledge to other
families.

The easy creation of graphs in a technological environment allows a large number to be
observed and provides easy access to myriad function types. In addition, observing multiple
views of a single function can—though does not necessarily—add to the development of a
broad ‘concept image’ (Vinner & Dreyfus, 1989, p. 356) of the prototypical graphical repre-
sentation of a particular function type. For example, the graphical representation of a cubic
function has three possible ‘shapes’ (Figure 10.7), based on the number of stationary points.

However, when using graphing technology, only a portion of the graph can be seen—
hence a cubic function can also appear linear (with positive, negative or zero gradient) if the
viewing window of the technological tool is focused ‘closely’ on a part of the graph. An

understanding of the effect of changes of scale, including where each axis has a different
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Figure 10.7 Possible shapes for graphs of cubic functions

scale (Zaslavsky et al., 2002), is essential for successful graphing technology use, and also
helps further develop students’ concept images for functions. A student’s concept image is
‘the set of all the mental pictures associated in the student’s mind with the concept name,
together with all the properties characterizing them’ (Vinner & Dreyfus, 1989, p. 356). Using
technology is one way to broaden students’ experiences with the function concept (Zbiek &
Heid, 2001), and some of the concept image held by students working in a technological
environment will have formed as a result of being taught in such an environment and being
active users of the technology (see Brown & Stillman, 2006; Schwarz & Hershkowitz, 1999).
As Hershkowitz and Kieran (2001) point out in their report of a case study of Year 10
students using multiple representation and regression tools on graphing calculators, the
crucial pedagogical questions for teachers are: ‘How much should the tool be used? and, ‘In
what way should the tool be used?” The properties of the software and the tasks for which

they are used can lead to the formation of different knowledge.

Manipulating functions as entities

Hand-held function graphers allow the function to be entered and modified via the algebraic
(e.g.y = f(x) = ¥*) and numeric representations (e.g. a list of ordered pairs), and the resultant

graphical representation can be viewed but not directly manipulated (see Figure 10.8).
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Figure 10.8 Algebraic transformation with resulting numerical and graphical
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However, on computer programs such as Function Probe (Confrey, 1992), TI-Nspire CAS
(Texas-Instruments, 2006), and new generation calculators such as TI-Nspire, graphs can
also be manipulated enactively by translating, stretching and reflecting (see Figure 10.9).
The graph is treated as a single object to be transformed. Enactive representations are those
to which human actions give a sense of change (Tall, 1996). Such technology highlights
difficulties in linking enactive and symbolic representations (i.e. the algebraic form of the
function) as an observed horizontal shift to the right by a constant, say + 2, changes the
entered function, say, y = f(x) = x* to y = f(x—2) = (x—2) Shifting the graph to the right is
equivalent to shifting the domain to the left and the latter is reflected in the mathematical

notation, a source of confusion for some students.

1(x)=(x-2)2

Using direct
manipulation

O] Pointer tool to dilate or

A Documentt - TiHpire CAS [Trial Version]
S e
LIJEBV 90N BB R s - M rotate graph as an object

Figure 10.9 Translation and dilation of function using a function

as object manipulator

REVIEW AND REFLECT : Examine the chapters on functions in a senior secondary
mathematics textbook series. To what extent are the ideas and tasks presented in
these chapters consistent with the research findings discussed above?
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Computer Algebra Systems (CAS) and algebra

Computer Algebra Systems (CAS) have untapped potential for changing the teaching and
learning of algebra and the doing of mathematics, but what directions and forms this will
take are still unanswered questions (Thomas et al., 2004). From an algebra perspective, the
algebraic thinking that underpins the use of CAS in secondary classrooms is of paramount
importance, whether CAS be a supplement to other technologies within the classroom or
the first choice of technology. Pierce and Stacey’s (2001) notion of algebraic insight being the
subset of symbol sense that enables effective use of CAS in the solution of a formulated
mathematical problem is useful in considering what the implications of the ready availabil-
ity of CAS in secondary classrooms might be for change in emphasis in the implemented
algebra curriculum. Algebraic insight has two components—algebraic expectation and the

ability to link representations:

The term algebraic expectation is used here to name the thinking process which takes
place when an experienced mathematician ponders the result they expect to obtain
as the outcome of some algebraic process. Skill in algebraic expectation will allow a
student to scan CAS output for likely errors, recognise equivalent expressions and
make sense of long complicated results ... Algebraic expectation ... [involves]
noticing conventions, structure and key features of an expression that determine

features which may be expected in the solution. (Pierce & Stacey, 2001, p. 420)

Algebraic expectation involves: (1) recognition of conventions (e.g. the meaning of opera-
tors and letters for parameters and variable names and the order of operations) and basic
properties (e.g. the non-commutativity of the division operation); (2) identification of struc-
ture (e.g. objects, strategic groups of components or simple factors); and (3) identification of
key features (e.g. form, dominant term and being able to link form to type of solution). If a

student is solving a quadratic equation of the form ax> + bx+ c=0, for example, an expected

—bE Vb —4ac
2a

possible form of the answer should be x = . Thus, when an equation like the

one shown in Figure 10.10 is solved, it should be expected that the non-standard form

-5 =105
—— and

of the output (from a by-hand perspective) should be equivalent to x = ——;

=5 +°\0s
x = r
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Solue (23" 2+45x-10=0, %)
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Figure 10.10 Algebraic insight needed to interpret unfamiliar form of solution

If algebraic expectation resulting from the symbolic representation is linked to the
graphical and numerical representations, more algebraic insight is gained (Pierce & Stacey,
2001). This ability to link representations in a CAS environment is two-fold. First, it involves
linking of symbolic and graphical representations (e.g. linking form to shape and linking
key features to likely position and to intercepts and asymptotes). Second, there is the
linking of symbolic and numerical representations (e.g. linking number patterns to form
and linking key features to a suitable increment for the table or to critical intervals of
the table).

The algebraic insight framework provides a structure for teachers to think about the
algebraic thinking their students need to develop in using CAS. It highlights which areas of
the algebra curriculum still need emphasis in teaching, and in formative and summative

assessment.

Conclusion

As Kendal and Stacey (2004) point out, algebra is a very large content area—far too large to
fit into the school curriculum or a chapter in a text such as this, for that matter. Choices
and focuses have had to be made selectively. However, we must not lose sight of the
fact that algebra is ‘a rich field with many possibilities for applications and for addressing
meta-mathematical goals, such as learning about problem solving, or axiomatics, or
mathematical structure, or the benefits of an organised approach. Again this means that

choices can and must be made.” (2004, p. 345)
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CHAPTER 11

Teaching and learning
chance and data

Citizens today need to negotiate immense amounts of information and uncertainty in a
complex society. Over the past decade, the school curriculum has responded dramatically to
educate the public to be more critical consumers of information. Other factors have also
played a part. Economic demands require workers to manage data-intensive problems in
probabilistic processes. New technologies increase accessibility to large data sets and complex
situations. Technology enables visual approaches to analysis which were once too technical
for non-statisticians. Finally, an explosion of cognitive and classroom research in probability
and statistics is changing the school curriculum (Burrill & Elliott, 2006; J. Watson, 20065
Garfield & Ben-Zvi, in press). Overwhelmingly, these influences argue for new learning
environments emphasising a more inquiry-based approach to teaching chance and data.

Both chance and data use uncertainty and randomness. Chance topics—or prob-
ability—measure uncertainty while data-based or statistical processes examine patterns of
variability in aggregating uncertain outcomes. Chance and data topics are usually taught
in mathematics, but there are important differences that teachers need to know between
mathematics and statistics. In mathematics, a major goal is to identify invariant properties
and processes that generalise across different contexts, whereas statistics is consumed with
understanding variation within a context. Statistical conclusions can be contentious and
interpretive, requiring students to develop skills of building convincing arguments
supported with data-based evidence.

Chance and data provide natural opportunities to integrate other topics in mathematics.

For example, data can be used to teach functions through modelling and curve fitting, or
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areas of unusual shapes can be estimated using randomisation (Figure 11.1). Using contexts
from science, social studies, or health and physical education are ideal ways to integrate

chance and data with other subject areas.

Figure 11.1 Estimating unusual areas—the area of the figure can be
estimated by calculating the proportion of random pointsin the

rectangle that fall inside the figure

In primary school, learners examine randomness using coins and dice, organise data
with graphs, and engage in statistical investigations by surveying classmates. During the
secondary years, students extend these experiences with more complex situations, and link
probabilistic and data-based phenomena via simulations.

At the heart of statistics is the ability to investigate: to formulate and test hunches, justify
conjectures with evidence, and make inferences with a convincing argument. In this
chapter, we discuss how teachers can develop students’ probabilistic and statistical reason-
ing by engaging them in investigations using chance and data. We introduce a
framework—statistical literacy, statistical reasoning and statistical thinking—for building
different types of statistical skills (Garfield & Ben-Zvi, in press). Briefly, statistical literacy is
aimed at creating ‘statistically literate consumers of claims made in wider social contexts’
(J. Watson, 2006, p. 23), developing students’ ability to critique statistical information
encountered in the media and daily life. Statistical reasoning is the ways in which people use
statistical tools in the context of understanding a particular phenomenon, and statistical
thinking includes the dispositions and skills needed to undertake statistical investigations in
order to create, question and evaluate the processes and evidence used to make statistical

claims. These levels are hierarchical in their increasing cognitive demands; however, rather
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than teaching them in this order, we recommend embedding teaching statistical literacy

and reasoning in the process of developing students’ statistical thinking.

Chance and data in the primary years

Until recently, students’ main exposure to chance and data in the primary years was
through collecting data on coin tosses or rolls of the dice to introduce tallying and elemen-
tary probability; data handling was limited to constructing bar charts or reading
information in a graph or table. Over the past decade, however, shifts towards teaching
higher order thinking have inspired the introduction of concepts like informal inference
and statistical investigations early in the primary years, embedding skills like graph inter-
pretation within mathematical investigations, and postponing teaching calculations of

averages (mean, median and mode) to the end of the primary years.

Chance in the primary years

Research documents that young children often hold deterministic beliefs about randomness.
For example, children’s ideas of destiny, personal preference, ‘lucky’ outcomes or unrealistic
causes can influence their ability to conceptualise chance events. Teaching basic combinatorics
(counting)—generating all possible outcomes of throwing two dice, or listing ways that three
shirts and four pants can be combined into an outfit—can build ideas about sample space
and promote systematic thinking vital for theoretical probability. The language of chance
developed in primary school also assists students to begin to connect measures of likelihood

with events—for example, expressing a certain outcome as having a probability of 1.

Data in the primary years

An important shift in the primary years is moving students from a focus on individual data
points (‘Kym watches sixteen hours of TV per week”) towards holistic descriptions of data to
characterise a group (‘Most of my classmates watch between ten and fifteen hours of TV per
week’). While most children can calculate an average by the end of primary school, few
consider applying an average as representative of a group in problem situations. Konold and
Pollatsek (2002) argue that, by focusing early on the concept of data as a combination of

signal (central tendency) and noise (variation), students build more robust understandings
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of average. In contrast, if students learn algorithmic approaches early (‘add ’em up and

divide’), they see average only procedurally, and this can hinder later development.

Connecting chance and data in the primary years

One of the main connections made between chance and data concepts in the primary
grades is through linking experimental and theoretical probabilities. Although this is
possible through games of chance, students also need experience with outcomes that are
not equally likely to counter an intuition that if an event has two outcomes then the prob-
ability of each must be one-half. Concepts can be developed informally by performing
empirical probability experiments, such as observing that in repeating independent trials,
the relative frequency of an event approaches its theoretical probability. Connecting relative
frequency proportions with likelihood in real-world events is another approach that
provides opportunities to build informal concepts of sampling—for example, how would
one estimate the proportion of the population with Type O blood, and how might hospitals

use this information to plan surgery?

Challenges in understanding chance and data

Research has identified a range of challenges students experience in understanding and using
chance and data concepts as they move into the secondary years. These are related to ideas
about randomness, the relative emphasis on conceptual versus procedural knowledge, the
nature of statistical investigations, the need to view data from a global perspective rather than
as a set of points, difficulties with graph interpretation, and the effect of real-life contexts on

students’ understanding of variability. Each of these challenges is discussed below.

Intuition about randomness

Students’ thinking about randomness is initially deterministic in nature; intuitions about
randomness develop through experience and instruction (Batanero & Serrano, 1999). Miscon-
ceptions decrease with age in problems that are clearly probabilistic in nature (e.g. outcome of
rolling a die), but not necessarily in problems that are set in a real-life context. Even with
statistical training, students have difficulty letting go of strong personal beliefs; they

frequently respond to teaching that opposes their intuition by holding dual beliefs (Fischbein
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& Schnarch, 1997; Pfannkuch & Brown, 1996). A significant challenge in teaching probability
and statistics is to pursue a gradual process of building students’ intuition before jumping to
what may appear to be more efficient formulas and procedures (Watson, 2005b). Even in
secondary school, students should be encouraged to work with manipulatives or concrete
materials to assist them in building intuitions about probability and data. Collecting their own
data and working with simulations may also help with personal beliefs about randomness that

run counter to statistical principles—for example, the belief in a *hot hand’ in basketball.

Procedural knowledge

Research has clearly shown that computational and rote learning can shut down learners’
meaning-making in mathematics (e.g. Boaler, 1997a; Schoenfeld, 1991). For example,
teaching students how to calculate a probability or a mean before they build a strong and
flexible conceptual understanding of these ideas can undermine their ability to build these
notions later on. Plenty of research has pointed out that, while students are able to calculate
averages, few students choose to make use of an average in applied problems—for example,
when comparing two data sets (Gal et al., 1990; Watson & Moritz, 1999). For this reason,
teachers are encouraged to hold off teaching students to calculate the mean until late in the
primary years, after they have had multiple informal experiences developing and utilising
concepts of central tendency. Similarly, if students are taught specific graphing skills before
they develop a conceptual understanding of the purpose and utility of graphs to organise
and display information, this conceptual understanding can be impaired. Instead, teachers
are encouraged to provide students with repeated experiences handling and organising raw
data to try to make meaning through sorting, stacking and ordering the data to communi-
cate patterns. (A wonderful and classic publication that showcases humorous examples of

misuses of averages and graphs is Darrell Huft’s (1954) book How to lie with statistics.)

Statistical investigations

Most students manage concepts of statistical literacy fairly well, but struggle with the
higher order thinking skills required for statistical thinking. For example, several
researchers have noted the difficulty students have in creating questions that can be
addressed using statistics (Marshall et al., 2002; Confrey & Makar, 2002). Often questions

are too narrowfrequiring simple yes—no answers—or too broad—mnot measurable or
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requiring data that are impractical to collect. Frequently, once they do collect and analyse
their data, students find it challenging to connect their conclusions back to the question
being investigated (Hancock et al., 1992). Most of the time in school is spent in the analysis
phase, which is the least challenging part of the statistical investigation cycle (described in
more detail later in the chapter). If students’ experiences with statistics are imbalanced
towards too much time on the calculations and procedures in the data analysis stage, this
can reinforce a dichotomous view of statistics. In a dichotomous view, students perceive
statistics as a field that responds to even complex questions with a definitive yes or no answer
instead of a field primarily concerned with seeking evidence and one in which responses to
questions must be tempered by articulating uncertainty. Developing students’ statistical
thinking involves a concerted effort by teachers to counter this dichotomous perspective of

statistics by immersing students in all aspects of the statistical investigation cycle.

Aggregate perspective of data

A major goal in elementary data analysis is to encourage students to move from a focus on
seeing data as a set of individual points towards a more global, aggregate view of data where
students see a distribution as an entire entity. For example, in Figure 11.2, the quality of
36 brands of peanut butter was rated. By comparing the ratings of ‘Natural’ peanut butter (no
additional additives or sugar) with ‘Regular’ peanut butter, students who see data as individ-
ual points may conclude that Regular brands of peanut butter are higher in quality because
the highest rating went to a Regular brand. However, a student with a global perspective of
data would likely conclude that Natural brands are higher in quality because the bulk of the
Natural brand data is higher than the bulk of the data in the Regular brands. Additionally,

students may discuss whether Natural or Regular brands are more consistent in quality.

Natural O (@] (@] 8 8 O O§O
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Oualltg
Source: Finzer (2005).
Figure 11.2 Comparing the quality of brands of peanut butter
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Interpreting graphs

In interpreting graphs, one of the major difficulties students have is that, rather than seeing
a graph as a purposeful tool, they focus too much on learning the features of graphs. In
research with secondary students in New Zealand, Pfannkuch and her colleagues
(Pfannkuch et al., 2004) found that students frequently struggled to use appropriate
features of graphs as evidence. Although students did learn the properties well, they lacked
understanding of the utility of the graphs in applications. For example, when comparing the
weather in two cities, many of the students in their study used the range of the data or
compared upper with lower quartiles when this information was not evidence for which
city had the hotter weather. The problem was that when students were learning about box
plots, instruction focused on learning features of a box plot (e.g. locating the median, quar-
tiles, five-number summary or interquartile range) rather than using the box plots as
evidence for a particular reason. As a result, students didn’t see the purpose in using the box
plot and focused on what they presumed their teacher wanted—identifying properties.
Similar problems are often evident when students use software to generate different
types of graph without making considered decisions about which type of graph is most

appropriate for representing the data.

Integrating contextual knowledge

The context within which chance and data topics are taught can affect students’ understand-
ing. It is a misconception that learning about randomness within probabilistic contexts (e.g.
dice, coins) will transfer to understanding of randomness in real-life contexts. Research has
shown that tolerating randomness in deeply contextual problems is much more challenging.
(See example on p. 262.)

Several studies have shown that students interpret the variability in two problems very
differently, even though the two situations are structurally identical (Makar & Canada,
2005; Ptannkuch & Brown, 1996). In the first example, most students interpret the lack of
Is, 2s and 6s as expected in such a small number of rolls of the die. The interpretation
of randomness in the second problem was quite different, however. Note that, in the New
Zealand context, the presence of abnormalities in six regions with similar populations
is equivalent to six possible outcomes of the die, if each region is thought of as representing
a particular outcome on the roll of a die. In this context, however, students often inter-

preted the unevenness of the random outcomes to be influenced by contextual
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REVIEW AND REFLECT : Discuss the following two problems with a partner.

Compare your solutions with others in the class.

Dice problem
A six-sided die is thrown seven times resulting in the following outcome: 3, 3, 3, 4,
4,5, 5 (order is not important]. Do you think there is evidence to suspect that the

die is unfair? Why or why not?

Media problem

Every year in New Zealand, approximately seven 0
children are born with a limb missing. Last year the

children born with this abnormality were located in New 3
Zealand as shown on the map below. Note that the

population in each region below is approximately equal. 2

A group of families in the central regions has filed a

legal case claiming the incidence in their region is

unusually high. Do the data support their claim? Why or D

why not?

information, such as a potential chemical plant in one of the central regions of the country.
One research project reported that two-thirds of the subjects (secondary pre-service math-
ematics and science teachers) in the study attributed the imbalance of outcomes in the dice
problem to the randomness expected from such a small sample whereas only one-sixth of

them recognised this in the New Zealand problem (Makar, 2004).

Chance and data in the secondary curriculum

Although chance and data are generally taught as distinct topics in primary school, by the
secondary years they begin to merge with only some computational aspects of probability
taught independently of statistics. For this reason, the emphasis in this chapter is on statistical
reasoning processes, all of which involve basic concepts in probability and probabilistic

thinking.
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Probability

Only a few topics in the chance strand are taught separately from data at the secondary
level. All of these have to do with deductive probability concepts—that is, those in which
probabilities are calculated based on other known values. In particular, topics such as
calculations of compound events (addition, multiplication and conditional rules),
marginal probabilities in two-way tables, independent and mutually exclusive events,
expected values, counting principles, and sampling with and without replacement are
taught at the secondary level. Students find probability a challenging topic, particularly if
the emphasis is on isolating the calculations from a meaningful purpose. Therefore, when
teaching probability, it is important for students to try to visualise the sample space.
Graphic organisers such as a Venn diagram, tree diagram or two-way table often help

clarify subtleties in problem:s.

REVIEW AND REFLECT : How could you use a graphic organiser to help students
see the difference between the probabilities of the following two events (adapted
from J. Watson, 2006 ):

e Arandomly chosen man is a ‘lefty’ (left-handed]).

* Arandomly chosen ‘lefty’ is male.

With a partner, come up with three more examples of events that can be repre-
sented with graphic organisers. What observations do you have about the kinds of

problems that lend themselves to using graphic organisers?

REVIEW AND REFLECT : Investigate the meaning of the term ‘false positive’ in
medical screening tests in relation to probability. (For example, even if a person
has a positive result in an HIV screening test, it’s unlikely that they have the

virus.)
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REVIEW AND REFLECT : Punnett squares (see Figure 11.3) are used in genetics

to determine the likelihood of genetic traits being passed from one generation to

the next.

* Do some internet research to find out how Punnett squares work.

* Discuss with a partner the appropriateness of this application for junior and
senior secondary school students.

* Create a set of questions using Punnett squares to help students understand
the list of probability topics in the paragraph above. (You may want to include

grandparents in your example for looking at compound events.)

Male parent
T t
T T Tt
Female parent
t t7 tt

Figure 11.3 A Punnett square showing the offspring of two pea plants,

both heterozygous, with one dominant gene for tall plants

REVIEWAND REFLECT : Itis always important to let students know how the math-
ematics they are learning is used in people’s work. Make a list of professions that
rely heavily on probability (an actuary is one example] and find out how they use
probability in their work. Give an example and/or explain how these professions
use probability in ways that secondary students will understand.

Although probability is an important concept in the chance and data strand, at the
secondary level most chance concepts are taught in conjunction with statistics. This is
largely because, while probability can help us to work out expected values and theoretical

probabilities, most applications of probability involve empirical probabilities with data.
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One reason for this is that, in using probability, we may not pick up the subtleties in
the context that could influence whether variables are independent. We need statistics to
help us decide whether our theoretical probabilities appear to be justified in an applied
setting where variation adds a new level of uncertainty to problems. In new areas, where
probabilities are often changing or unknown (such as in weather forecasting), data are
used to generate probability estimates from empirical results. The real power of statistics
lies in making predictions through statistical inference, a concept heavily influenced by

probability theory.

Statistical literacy: Consuming statistical information

Statistical literacy, although based on concepts currently in the school curriculum,
goes beyond them to be embodied in a complex construct that weaves together
literacy skills, critical thinking, contextual understanding, and motivation to be

involved in decision-making. (J. Watson, 2006, p. 3)

Statistical literacy is a powerful tool that citizens need to interpret statistical information
and critique statistical claims found in everyday contexts. At a content level, statistical
literacy may only require that students be able to read and interpret graphs and tables,
and understand fundamental ideas of average, variation, sampling and chance. Statistical
literacy, however, extends beyond content to include the ability to debate and judge data-
based information and claims. Jane Watson (2006) proposes six levels of appreciation
of aspects of statistical literacy, from idiosyncratic to critical mathematical. These levels
incorporate increasingly complex understandings of the context of a problem, sampling
issues, data representations, the meanings of average, variation, chance and inference, and
mathematical content (Watson, 2005a; J. Watson, 2006; Watson & Callingham, 2003).
Students have developed most of their basic statistical literacy skills during primary
school, and this understanding is refined and deepened as they apply these skills to increas-
ingly complex real-life problems. With the advent of powerful technologies accessible to
school-age students for visualising and calculating large data sets (such as Excel, Fathom,
Tinkerplots), less time need be spent on specifics of graph construction and hence the focus

can be shifted to the more challenging and engaging process of utilising graphs, tables and
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summary values. The difficulties students have with constructing and interpreting graphs
or calculating appropriate summary statistics and probabilities are likely due to teaching
which focuses more on attributes and calculations than on their utility and purpose as tools
for communication and analysis (Pfannkuch et al., 2005). We therefore move on to the

teaching of statistical reasoning.

REVIEW AND REFLECT : Numeracy in the News (http://ink.news.com.au/
mercury/mathguys/mercindx.htm) is a website for teachers in Australia, with
newspaper articles and discussion questions that integrate literacy and numeracy
with everyday events reported in the media. Most of the articles involve statistical
literacy. Explore the site and some of the articles and activities posted. Work with a
partner to find a current article that could be used to discuss statistical ideas with
students and write a set of discussion questions for the article like those posted on

the website.

Statistical reasoning: Utilising statistical information

Statistical reasoning is ‘the way people reason with statistical ideas and make sense of statis-
tical information’ (Ben-Zvi & Garfield, 2004, p. 7). The main focus is on how people utilise
data, graphs and statistical information in the context of understanding a particular
phenomenon, and how they integrate and explain probabilistic and statistical ideas within
applied situations. This involves a higher level of cognitive demand and mathematical
content than statistical literacy. This section focuses on Exploratory Data Analysis, devel-
oped by John Tukey (1977) to support ‘data sleuthing’ in descriptive statistics. Within this
tradition, we will look at univariate (one variable) statistics as well as bivariate (two vari-
ables) statistics. Finally, we will look at the reasoning students use to integrate probability
and statistics.

Exploratory Data Analysis (EDA) is ‘about looking at data to see what it seems to say’
(Tukey, 1977, p. v). It focuses on visual impressions of data as partial descriptions and

supports attempts to ‘look beneath them for new insights. Its concern is with appearance,
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not with confirmation.” Using an EDA approach to learning statistics encourages students
to be ‘statistical sleuths’. Although the processes involved in EDA support the develop-
ment of statistical thinking, it is primarily a tool of descriptive statistics (describing the
data in front of you), not statistical inference (making generalisations from a sample
of data to a larger population or process). Here we will look at univariate statistics
(one variable) and the more powerful tools of covariation (relationships between two

or more variables).

Univariate descriptive statistics

Univariate statistics is the description of the distribution of a single variable. The impor-
tant aspects of working with univariate statistics are to focus on qualities of the
distribution as an entity and the potential of descriptive statistics to describe and predict
phenomena. In the CensusAtSchool program (Australian Bureau of Statistics, 2006),
school students are surveyed and data are collected about multiple variables—for
example, the number of hours of sleep. Figure 11.4 shows a box plot with a sample of
50 students from across Australia in Years 7-10 showing the number of hours of sleep they
reported getting on a typical school night. In this sample, we can say that about half of the
students slept between 8.5 and 10 hours at night and only a few of these students got less

than 6.5 hours of sleep.

Source: ABS (2006).
Figure 11.4 Hours of sleep of Years 7-10 students

The limitation of working with a single variable is that it is very easy to lose sight of the

purpose of describing the particular variable. In this example, it may be of use to have a feel
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for the number of hours of sleep students report, but if too much time is spent decoding
graphs, students lose sight of the purpose of their interpretation and which statistics
might be useful to report as evidence in a particular situation. It would be more useful to
look at relationships in variables by investigating their covariation. For example, did the
amount of sleep differ between students in Year 7 compared with students in Year 10? Or is
there a relationship between the amount of sleep students have and how much exercise

they do?

Covariation

Covariation is the comparison of relationships between variables. There are three distinct
kinds of covariation that secondary students study depending on the types of variables being
compared. When two numerical variables are compared (such as height vs armspan),
students work with scatterplots to observe trends in the data. When two categorical vari-
ables are compared (such as whether accident victims wore seatbelts compared with the
category of their injury), then association of the variables is investigated through the use of
two-way tables and comparison of marginal probabilities. Finally, when one variable is
numerical and the other is categorical, students use stacked graphs such as box plots or
dot plots to compare the numerical data for each group. An example of each of these is
given below.

The first type of covariation compares numerical data. For example, when archaeologists
find human bones at a dig site, they use data that compares the length of the bones to
heights of individuals, thus allowing them to predict the likely height of the person. The
task below shows how students can participate in such an investigation by collecting this
data themselves.

Another type of covariation examines associations between two categorical variables.
Students will likely have some experience with representing categorical variables in two-
way tables in primary school (Table 11.1), but may not have used them as a tool to
investigate association. Because secondary students are more comfortable with proportional
reasoning, they can begin to appreciate the power of proportions in working with unequal-

sized groups.
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Comparing numerical data

Secondary school students were told that an archaeologist had discovered a
human femur measuring 41 cm. They collected data on the lengths of their own
femurs (measuring from the middle of the kneecap to the hip bone) and their
heights, and produced the graph shown in Figure 11.5. Identify different tech-
niques for predicting the height of the individual whose femur was found by
the archaeologist. Discuss the appropriateness of using regression versus non-

regression techniques with junior and senior secondary students.
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Figure 11.5 Association between lengths of femur bones and heights in humans

Categorical variables

Table 11.1 Association between where UK citizens live and whether they smoke

Smoke?
Yes No Overall
Live in London? Yes 5 25 30
No 64 206 270
Overall 69 231 300
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A random sample of 300 residents from the United Kingdom is split according to
whether or not they smoke (Table 11.1).

Do the data suggest that those living in London are more or less likely to
smoke than those who live elsewhere in the United Kingdom? How is this
problem similar to and different from establishing the concept of independence in
probability? Can we use the formula for independence to help us decide whether

these variables appear to be related?

Comparing groups has been found to be one of the most effective approaches for
supporting students’ understanding of statistical concepts. Because some learners find it
difficult to move away from focusing on individual points in a distribution, group compar-

isons can be a way to support aggregate thlnkmg

Comparing groups
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Figure 11.6 Spring temperatures for Perth (left), disaggregated by month (right)

With a partner, discuss the usefulness of the two graphs in Figure 11.6 for
describing spring temperatures in Perth.
Discuss your interpretations of the graph on the right, noting any compar-

isons you make between the months. In which graph were your interpretations
richer? Why?



Teaching and learning chance anddata 271

The graph of the spring temperature for Perth (Figure 11.6, left) may be useful to describe
the overall spring temperature, but it may also be difficult for students to know which
aspects of the distribution to focus on. On the other hand, by comparing the temperatures
by month (Figure 11.6, right), there is a more natural tendency to focus on interesting
aspects of the distribution—for example, comparing how the median temperature changes
in each month, giving a reason to look at the centre. There is a distinctive difference in vari-
ability as well, noting that the temperatures in September appear to be more consistent than
in November, giving a reason to focus on aspects of variability. Finally, in all three distributions
the data appear to be skewed to the right somewhat, meaning that higher temperatures are

less likely within the monthly range than lower temperatures.

REVIEW AND REFLECT : Use data from the CensusAtSchool website to devise a
set of tasks that illustrates each of the types of comparison outlined above
(comparing numerical data, covariation between two categorical variables and

comparing groups).

Combining probability and statistics

Simulations, whether manual or technological, are wonderful teaching tools that can
be used to build reasoning about the interaction between probability and statistics. For
example, theoretical probabilities can be estimated by conducting empirical experiments, as

illustrated by the example below.

Conducting empirical experiments
A family has four children. What is the probability that all four are girls? How
common is it to have an even split between boys and girls?

Work in groups of three to tackle this task by generating a list of 100 families
with four children. One person generates random four-digit numbers using a
graphics calculator and the second person by using the list provided below, where
an even number represents a female and an odd number represents a male. The
third person conducts a manual simulation using coins, with heads representing
females and tails representing males. Each person is to predict, then calculate, the

empirical and theoretical probabilities of a family having two girls and two boys.
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8964 8980 8093 5700 9531 6583 2680 2073 9480 2305 7918 8964 9808 9357 0845
2857 3513 8492 7826 7205 8671 4737 1522 0245 8697 2817 5221 9933 3689 2857
1407 3219 7389 9449 3743 3869 9967 6561 8568 8246 3115 4476 3475 9677 5654
7708 3740 0808 1393 7186 9698 9039 3129 4005 5176 9320 5222 7934 3220 5584
2277 3114 6911 3179 5559 0602 2061 2463 9173 2185 0966 6861 6773 9625 2628
2498 0654 4380 6536 0104 3471 7474 0857 0411 8525 7688 3727 7891 4668 8287
1263 4538 0665 6872 5648 5747 3306 8592 4513 5373 5235 6948 6462 6011 0108
4117 1872 7920 5900 3837 9097 0148 6428 0367 6885 7459 2427 9355 2148 3253
7589 2333 7300 63848 6784 4262 6646 5005 1333 6718 4138 4289 8752 9920 5183
2626 1016 1979 6818 2007 1471 3374 4121 0389 2012 7549 6245 0253 6509 9555

* How close were your empirical and theoretical results?

* How can you explain the difference in outcomes?

* In your group, compare the three approaches used to generate the list of
families and discuss the advantages and disadvantages of each for classroom
implementation.

* Extend this investigation to generate and answer your own questions (e.g.
‘What is the likelihood of getting consecutive siblings with the same gender?’).

* How could you adapt this problem for different age levels?

Statistical thinking: Creating statistical information

Statistical thinking involves an understanding of why and how statistical investiga-
tions are conducted and the ‘big ideas’ that underlie statistical investigations.
(Ben-Zvi & Garfield, 2004, p. 7)

The ‘big ideas’ of statistics involve understanding the nature and omnipresence of variation,
how samples can be used to make inferences to populations, the utility of models to
simulate random processes, the centrality of the context of a problem in drawing conclu-
sions, and engagement with the process and limitations of a statistical investigation from

problem conception to critiquing of outcomes. Statistical thinking entails a higher level of
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cognitive demand than either statistical reasoning or statistical literacy. It includes both
the knowledge and dispositions required to understand the underlying concepts of statisti-
cal investigations. A model of statistical thinking developed by researchers in New Zealand
looks at both the investigative processes that engender statistical thinking and the kinds
of dispositions critical to statistical thinking (Shaughnessy & Pfannkuch, 2002; Wild &
Pfannkuch, 1999). Three critical aspects of statistical thinking will be discussed in this
section: dispositions critical to statistical thinking; the statistical investigation cycle; and informal
statistical inference. In the process of developing and supporting students’ statistical thinking,
there is an added benefit of simultaneously deepening their statistical reasoning and

literacy skills.

Dispositions for statistical thinking
Developing students’ statistical thinking is an ongoing process requiring a classroom
culture that encourages risk, collaboration, reflection and open debate. Wild and

Pfannkuch list the following dispositions as critical to statistical thinking (1999, p. 233):

* scepticism—the ability to worry about potential pitfalls in reasoning or lack of justi-
fication for assumptions and claims;

* imagination—the realisation that statistics requires creativity often surprises people;
however, understanding core leverages and dynamics of a problem, seeing a
problem from multiple viewpoints, and generating possible explanations are
deeply imaginative processes;

* curiosity and awareness—triggering and reacting to internal questions asking why;

* openness to ideas that challenge preconceptions—registering and considering new ideas,
particularly when information conflicts with assumptions;

* a propensity to seek deeper meaning—Ilooking beyond initial and superficial impressions,
being prepared to dig deeper;

*  being logical—being able to construct a valid, coherent and reasoned argument;

* engagement—intense interest heightens sensitivity and observation skills, and back-
ground knowledge of the context is one key to eliciting engagement;

* perseverance—trying new approaches, sticking with a problem when obstacles are

encountered, and managing ambiguity all require perseverance.
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In addition, Wild and Pfannkuch (1999) identify several types of thinking unique to

statistics:

*  recognition of the need for date—the understanding that personal experience and anec-
dotal evidence are inadequate for making decisions, leading to a desire to collect data;

* transnumeration—the process of finding ways of collecting data (through measure-
ment or categories) that capture meaningful aspects of the phenomenon under
investigation (in mathematics, this is similar to the process of mathematising a
problem). Transnumeration also includes looking at several different represent-
ations or ways of organising and summarising data that give insight. This aspect of
statistical thinking is where the creative insight lends particular power to statistics
as a tool to understand the world;

*  consideration of variatior—statistics empowers one to be able to manage uncertainty, or
variation, in data. If there were no variation, there would be no reason to do statistics.
The ability to ‘see variation’ is absolutely fundamental to understanding statistics;

* reasoning with statistical models (aggregate-based reasoning)—this process develops more
formally when students look at experimental design, but it can be included early
when thinking about distributions as representing outputs of a process, as in
considering why heights tend to follow a bell-shaped distribution. Models are used
to think about statistical processes;

* integrating the statistical and contextual—statistics is meant to be strongly grounded in
the context of the problem under investigation. Therefore, students need to be
able to integrate statistical and contextual information fluidly. The context allows
the data analysis to constantly check with meaning-making to generate con-

jectures, explain causes and seek further meaning in the data.

Statistical investigation cycle

Statistical investigation is part of an information gathering and learning process
which is undertaken to seek meaning from and to learn more about observed
phenomena as well as to inform decisions and actions. The ultimate goal of statistical
investigation is to learn more about a real world situation and to expand the body of

contextual knowledge. (Australian Bureau of Statistics, 2006)
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Source: <\V\N\V.CEHSUS&tSChOOl.OK’g.DZ>.

Figure 11.7 The statistical investigation cycle

The statistical investigation cycle (Figure 11.7) is a process for using data to learn about
phenomena which models the practice used by statisticians in solving problems (Wild &
Pfannkuch, 1999). Statistical investigations require a different kind of thinking from that
used in mathematical problem-solving, and are ‘mastered only over an extended period
and depend on thoughtful instructional support and repeated opportunities for practice
and use’ (Lehrer & Schauble, 2000, p. 114). In addition, the first experience with statistical
investigations can be frustrating for students and teachers alike because of the difficulty
dealing with the multiple uncertainties encountered. Because statistical inquiry often
generates more questions than it answers as the inquirer digs deeper into the data, the
process is considered to be cyclic, sometimes stopping in the middle of a cycle to generate a
new one if new questions are deemed to provide better insight or answer questions more
efficiently as the inquirer gains deeper understanding of the problem at hand. This process

can leave the learner a little overwhelmed at times, particularly in early experiences.
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There are five steps involved in a statistical investigation: problem, plan, data, analysis,

and conclusion (PPDAC).

* Problem. What is the question that is being investigated? Students must have an
understanding of the context being investigated in order to come up with ques-
tions that make sense. Although it may seem trivial, generating measurable
questions and conjectures has been shown to be extremely challenging for
students (Marshall et al., 2002). Unfortunately, most learning experiences in
statistics skip this critical step. Until students conduct their own investigations and
gain multiple experiences working with data, they tend to either ask questions
that are too simple (requiring a ‘yes’ or ‘no’” answer), questions for which data is
not available or practical, or questions which are not measurable and generally
cannot be answered using data (Confrey & Makar, 2002). Those inexperienced
with data often believe that data analysis provides definitive answers to complex
questions. Therefore, one of the goals of the statistical investigation cycle is to
provide students with sufficient experience with data to break the black-and-white
or overly relativistic mentality that statistics can ‘prove’ anything.

* Plan. Once the question under investigation is generated, students plan their inves-
tigation. This includes deciding what data will be useful in answering the question,
finding out more about the situation to aid in understanding the data, and logis-
tics of how the data will be collected and recorded. It is advisable for students to
collect pilot data to check whether their data collection plan is viable. In upper
secondary school, this may also include an appropriate experimental design
needed to answer the question. Again, this step is often overlooked in school but
includes multiple opportunities to discuss and gain insight into statistics.

* Data. Once a plan is in place, students collect and record their data. Often, during
this process, there are ambiguities in data categories that require further discus-
sion. For example, in an investigation of whether older classmates had healthier
lunches at school than younger ones, the student investigators realised there was a
dispute as to whether items such as cheese and muesli bars should be classified as
‘healthy’. The data stage also includes clarifying and ‘cleaning’ data to prepare it
for analysis, such as deciding what to do about missing or omitted values as well as

scrutinising outliers in the data.
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* Analysis. The stage most commonly practised in school is the analysis phase of an
investigation. This involves organising and summarising the data, and digging into
the data to find meaning, investigating hunches that develop, following leads, and
seeking to explain patterns observed. A goal during this stage is to answer the
question being posed, but often new questions arise during this process and
the inquirer goes back to collect more data or refine their original question based
on a better understanding of the data. Often students realise that the data they
have collected doesn’t actually answer their original question. There is also
difficulty—particularly if the investigation cycle is taught as a rote process—in
seeing the analysis stage as an opportunity to generate evidence for the question
under investigation (Hancock et al., 1992; Marshall et al., 2002).

*  Conclusion. The conclusion stage is where final decisions are made about the inter-
pretation of results and analysis, including inferences made to larger processes.
Although this will often include communicating findings to address (completely
or partially) the question initially posed, it is meant to include other elements,
such as additional information that was learned during the investigation cycle
about the phenomenon under study, limitations to the conclusions drawn, and

ideas for potential further investigations based on what was learned.

REVIEW AND REFLECT : Design a statistical investigation that engages students

in all five steps as outlined in this section; discuss potential areas of difficulty

students may have and how these difficulties can be addressed. Use your local

mathematics curriculum document to identify strands or topics that are incor-

porated in your investigation. Here are some ideas:

* Find out the school’s ‘top ten’ most popular songs.

* Investigate the sleep habits of students in your school—compare weekdays and
weekends.

e How many hours in a week do students study (or watch TV, use a computer,
spend outdoors)? Note: look at the data distributions, not just averages!

* Check online for ideas from your local curriculum authority or mathematics

teachers’ organisations.
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Informal statistical inference
Statistical inference is the process of making a generalisation, with a level of uncertainty, to
a population or mechanism based on sample data. Although formal hypothesis testing is
not always part of the secondary mathematics curriculum, basic concepts of statistical infer-
ence should be taught during the school years. Research has shown that formal statistical
inference (such as tests of significance and confidence intervals for population parameters)
is very difficult for students to learn when they first encounter the topic in university
(Gardner & Hudson, 1999). Developing a strong conceptual basis behind inference in school
through less formal means can ease this difficulty. Building on work from primary school,
junior secondary mathematics can use data with greater sophistication to make more
subtle interpretations about the population from which data were collected. A benefit of
focusing on inference is that it helps to refocus learning on the purpose behind the statistics—
understanding the context; it makes little sense to draw inferences without bringing in the
context. After all, statistics is meant to provide a set of tools to gain insight into a context
through the use of data.

Statistical inference differs from descriptive statistics, where the given data are described and
interpretations are made only about the given data. The following example (see box)
demonstrates the distinction. Remember that, ideally, informal statistical inferences should

be carried out within a statistical investigation cycle.

Statistical inference
Data were collected on the ages of 100 couples when they got married. A graph is

given in Figure 11.8 with the means of each group marked.
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Source: Rossman, Chance & Locke (2001).

Figure 11.8 A comparison of the ages of 100 couples getting married
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One could use descriptive statistics to describe this sample by making state-
ments such as “The mean age of the husbands was 33 years and the mean age of
the wives was 31’. Or, ‘On average, the men in the sample were two years older
than their wives’, or *4 per cent of the women in this sample getting married were
in their teens’. However, any generalisation made to all married couples
(assuming this is a representative sample)—such as ‘From this sample, one can
hypothesise that husbands tend to be older than their wives'—would be an infer-
ential statement, the validity of which would likely need further analysis

(formally or informally).

This is an important distinction, as the power of statistics lies in the ability to draw infer-
ences about phenomena based on appropriately drawn samples. Descriptive statistics, while
it does allow us to gain insight into patterns found in data, is limited to describing the data

at hand. Of course, descriptive statistics forms the backbone of inferential statistics.

REVIEW AND REFLECT : A poll of 50 randomly chosen voters is taken to estimate
how a local community will vote on a referendum to ban pets from the local park.
Results of the poll are given in Figure 11.9.
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Figure 11.9 Random sample of 50 voters—22 in favour, 28 against
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* Do you think the referendum will pass based on this poll? How sure are you?

* Use your response and the poll results to write one descriptive and one inferen-
tial statement about the data.

* Make up your own example to help students understand the difference between
descriptive and inferential statistics.

* Compare your responses with a partner.

In the later secondary years, sampling distributions can be introduced to give an idea of
how multiple samples can be used to provide more precise estimates of population parame-
ters. The tools for inference draw on and extend earlier concepts related to probability,
centre, variability and distribution. Sampling distributions present a number of conceptual
challenges for students. In descriptive statistics, the data points generally represent a single
measurement. Sampling distributions, however, are made up of a collection of data where

each point represents an entire sample.

Conclusion

Teaching chance and data provides many opportunities to implement the mathematical
pedagogies and practices outlined in the chapters in Part II of this book. Problems in proba-
bility and statistics naturally incorporate context, and hence provide teachers with multiple
opportunities to connect students’ learning in school with those encountered in real life. By
simultaneously developing students’ statistical literacy, reasoning and thinking practices,
teachers can prepare students for consuming, utilising and creating statistical information

throughout their lives.
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CHAPTER 12

Teaching and learning
calculus

The ever-present temptation in teaching and learning mathematics is to succumb to the
pressure to develop fluency and automaticity in techniques over the building of relational
understanding of the underlying concepts and procedures and the ability to apply these
concepts in a wide variety of task contexts (both real-world and purely mathematical).
Nowhere is it more important to resist this temptation than in introductory calculus.
Derivatives and differentiation and integrals and integration are central concepts and proce-
dures, with very important underpinning notions which begin their formation in other
areas of mathematics. Derivatives and differentiation link to the notion of gradient of a
function which links to rates of change and so ratios of differences. Integrals and integration
link to the notion of area under a curve which links to summation. According to Tall (1996),

there is a:

spectrum of possible approaches to the calculus, from real-world calculus in which
intuitions can be built enactively using visuo-spatial representations, through the
numeric, symbolic and graphic representations in elementary calculus and on to
the formal definition—theorem—proof-illustration approach of analysis which is as

much concerned with existence of solutions as their actual construction. (1996, p. 294)

Recently, Tall (2004, 2006) proposed a categorisation of cognitive growth into three distinct
but interacting developments which he calls worlds: the conceptual-embodied world growing out

of our perceptions of the world; the proceptual-symbolic world of symbols which we use for
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calculation and manipulation; and the formal-axiomatic world based on properties expressed in
terms of formal definitions that are used as axioms to specify mathematical structures.

Procept is the term used by Gray and Tall (1994) to name the combination of process
(e.g. differentiation) and the concept (e.g. derivative) produced by the process which may
both be evoked by the same symbol (e.g. E% ). In introductory calculus, three procepts are
important:function, incorporating the notion of change; derivative, incorporating the notion of
rate of change; and integral, which incorporates the notion of cumulative growth. This area of study,
then, becomes a study of the doing and undoing of the processes involved with these procepts.

Tall (1996) takes the perspective that the building of concepts at the heart of introduc-
tory calculus should be grounded in enactive experiences of the conceptual-embodied
world which ‘provide an intuitive basis . . . built with numeric, symbolic and visual repre-
sentations’ (1996, p. 293). The concept of derivative, for example, is best approached initially
through an embodied activity. Tall and Watson (2001) suggest that an appropriate introduc-
tory activity is to base ‘the idea of “rate of change” on “local straightness” of the graph,
actually seeing the gradient of the graph change as one moves one’s eye along the graph from
left to right’ (2001, p. 1). This activity provides a sequential process for sketching the gradient
function of a graph.

The formal definitions and theorems of mathematical analysis belong to the formal-
axiomatic world, and Tall (1996) sees these as requiring ‘subtly different cognitive qualities’
from those required in conceptual-embodied or proceptual-symbolic worlds, which are far
better suited to introductory calculus. His theory suggests there is ‘a fundamental fault-line
in “calculus” courses which attempt to build on formal definitions and theorems from the
beginning’ (1996, p. 293).

Researchers such as Vinner (1989) claim that students tend to use algebraic representa-
tions and methods when solving calculus questions, avoiding the visual methods that
would be expected to be associated with the conceptual-embodied world; however, research
by Tall and Watson (2001) suggests this may be an artefact of the teaching and assessment
the students have received, and the way they were encouraged to construct their knowl-
edge. In their study of the manner in which students build up meaning to sketch the
gradient graph of a given function, one teacher privileged ‘a visual-enactive approach’,
whereby she followed the shape of graphs in the air with her hand, encouraging her
students to follow her lead—thus building a physical sense of the changing gradient. Visual
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and symbolic ideas were deliberately linked by the teacher. The students of this teacher out-
performed the other students in the study who were taught by other teachers using a more
traditional approach to graph sketching and development of gradient of these graphs.

In this chapter, we will examine the background students require for successful learning
of calculus, key steps in the introduction of the calculus, and obstacles to learning that have
been identified by researchers. Key notions in the teaching of differentiation and integration
will then be addressed. In keeping with the tremendous changes that have been enabled
in teaching by the advent of electronic technologies in classrooms of high mathematical

capability, there is a focus on technology in addressing difficulties and introducing key ideas.

Background required for successful learning of the calculus

Representational diversity, fluency and versatility

Modern technology supports three (external) representations of function: the numerical
representation (through tables of values); the graphical representation, and the algebraic repre-
sentation (especially with the capability of computer algebra systems). The image digitiser
GridPic (Visser, 2004), for example, allows photographs to be imported into the program
then overlaid with a Cartesian coordinate grid where students can click on points on
the image to collect a set of points (listed in a table of values) which form the basis for
generating a graphical model of things of interest in the image such as the Gothic arch in
Figure 12.1. By selecting a quartic polynomial from a number of options, students can use
various strategies to refine the parameters of an algebraic model for the graph that best fits
the points. The ability to establish meaningful links between representational forms and
with the concept being represented—which Lesh (2000) calls representational fluency—is
‘at the heart of what it means to understand many of the more important underlying
mathematical constructs’ (2000, p. 180) in areas such as calculus.

Heid’s (1988) work on student understanding of differentiation, for example, has shown
that students who were exposed to meanings and concepts using a multiple representation
approach for twelve weeks (2 X 75 minutes weekly) before a three-week diet of skill work,
performed better than students taught in the reverse order. However, others such as Kendal
and Stacey (2003) question the wisdom of such an approach, in the limited time available in

an upper secondary curriculum, based on results from a teaching experiment involving the
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Figure 12.1 Use of GridPic to fit a quartic function to a Gothic arch

introduction of differential calculus over 22 lessons of 45 minutes each to two Year 11 classes.
Even though both classes had access to CAS calculators, ‘only the most capable students
developed an appreciation of the concept of derivative across all three representations and
about half demonstrated mastery in at least two representations’ (2003, p. 38). Again, as in
the Tall and Watson (2001) study, there is the question of whether or not teacher emphases
and promotion of different representations and use of technology may have contributed to
this finding. Aspinwall and Miller (2001) suggest that having students engage in mathemat-
ical writing in response to prompts intended to inform the teacher about students’
understanding of fundamental concepts in calculus can help students to make connections
among different representations.

With rapid advances in the field of technology impinging on what happens in the math-
ematics classroom, it is important that students develop ‘representational diversity’ as well
as ‘representational fluency’ because different technologies emphasise different aspects of a

situation (Lesh, 2003). Both of these abilities are ‘critical abilities for success outside of
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school’ (2003, p. 48), as well as during their study of elementary calculus. Stewart and
Thomas use the more expansive term ‘representational versatility’ to encompass ‘the need
for both conceptual and procedural interactions with any given representation and the
power of visualisation in the use of representations’ (2006, p. 488), as well as representational
fluency. Thus one of the first prerequisites for the beginning calculus student is a well-
rounded multiple representation understanding of function (see Chapter 10)—which will,
of course, be developed further as elementary calculus ideas are developed. These under-
standings can, and should, be developed through tasks at the lower secondary level

encompassing the use of multiple representations (see Figure 12.2).

Figure 12.2 Students linking numerical and diagrammatic representations

in a real-world task

The study of change

From an early age, children recognise examples of change in their environment and describe
change in qualitative terms such as a bucket becoming heavier as it fills with water or a pile
of potato chips becoming smaller as more are eaten. They notice that the bucket becomes
heavier more quickly as the tap is turned on further, but that the rate at which vegetables

disappear from a dinner plate does not change if you continue to eat just as slowly as you
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can. They become aware that some changes are increasing, others decreasing and yet
others change at the same rate. By measuring and comparing quantities, children learn
to quantify change and about the predictability of some change situations and the
randomness of others.

Several important ideas are embedded in change situations, and these need to be

addressed explicitly in the lower secondary years to lay a foundation for calculus:

* Change in one quantity may or may not be related to change in another quantity.
* The rate at which the change is occurring may be constant or may vary.

* How quickly or slowly the variation in the change occurs is important.

Change can be represented in many different ways (e.g. verbally, in a table, diagramatically,
graphically).

A graph shows the relationship of one quantity to another with the shape giving insight
into the nature of the change. Although there have been many opportunities in the pre-
calculus years to focus on interpreting and drawing graphs, as preparation for calculus it
is important that students focus on global properties of graphs, such as whether a graph is
increasing or decreasing, whether this is happening steadily, or where it is increasing/
decreasing quickly or slowly. Sketching graphs of relationships (especially motion)
described in words, interpreting graphs in this global sense, and matching graphs to situ-
ations described in words (see box below for examples)—unot just drawing graphs from
algebraic formulae—provide a firm foundation for rate of change. Excellent examples of
such tasks are provided in Barnes (1991) and The Language of Functions and Graphs from the Shell
Centre (198)).

Examples of describing relationships verbally and graphically

From graph to story

Australian Open Tennis Championship. Centre Court in Rod Laver Arena is used
for important matches which draw large crowds during the Open. Draw a graph
showing how the number of people in the stands varies during the evening

program. Write a brief story explaining the changes shown in the graph.
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From story to graphs

Petrol theft. Non-payments by customers at self-service petrol bowsers were high
at the beginning of the year when petrol prices were high because of high
consumption overseas in a cold northern winter. These thefts dropped slowly
during the next six months, then a fire at the refinery resulted in a 20 cent
increase in petrol prices overnight and the thefts suddenly doubled. They stayed
high for the next three months as petrol prices remained high while the refinery
was repaired and after that gradually decreased as petrol prices dropped again.
Draw a graph to illustrate the number of these petrol thefts over the time period.

If you drew a graph of the petrol prices over the same period, how would it differ?

Matching graphs to story

Aeroplane landing. An aeroplane coming in to land at an airport has been put into
a holding pattern while it waits to land. It is circling at a constant height and a
fixed speed. At a particular moment, the pilot is informed it is safe to land and to
taxi some distance to the allocated airport terminal gate to disembark passengers.
Which graph in Figure 12.3 models most realistically the relationship between the
speed of the aeroplane and the distance it travels to the disembarkment bridge at
the terminal gate? Explain your choice. If none of the models is realistic, draw

your own version and explain it fully.
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Figure 12.3 Aeroplane speed models
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Representing motion with graphs

The use of motion-sensing devices such as a data logger with students in the lower second-
ary years, in conjunction with distance—time graphs, is a valuable way of gaining a
qualitative sense of the link between gradient and velocity. The following example (Figure
12.4) illustrates how walking or running rates can be used to explore rates of change,
although students themselves could be asked to collect their own data using a motion-
sensing device. Interpreting the area under a simple velocity—time graph as distance

travelled can similarly be considered as preparation for the notion of integration.

On the weekend | was fortunate to see an emu running back and forth along a fence line.
Luckily | had both my Calculator-Based-Ranger (CBR) and graphics calculator with me, and was able to collect
some data for today’s lesson.
For the first run along the fence:
Initial distance from the CBR: 0.54 metres. Total time: 8.87 seconds.
Final distance: 4.71 metres.
Here are some of the data | collected on the first run.
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Was the emu running towards me or away from me? How do we know?
The rate at which the distance is changing with time is the emu’s speed.

Is the emu running at a constant or variable speed? How do we know?

What was the emu’s average speed for the first run? How do we know?
I collected four sets of data as the emu ran up and down the fence. | have drawn Distance (D)-Time (T) graphs
of the emu running up and down the fence line with my calculator. The scale marks were set to 1 for all graphs.
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Unfortunately, | have forgotten which graph matches which data set. Which graph best represents the data for
the first run? How do we know?
Describe in words and with sample data a situation for the emu running to match the remaining three graphs.

In particular focus on the rate of change of distance run with time.

Figure 12.4 The running emu
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REVIEW AND REFLECT : Devise a task for Year 10 students using a motion sensor
that allows them to explore rates of change and velocity—time graphs.

Slope of secants

Asiala and colleagues (1997) theorise, based on empirical evidence, that in order for students
to follow a graphical path in constructing a schema for the concept of the derivative, the
first step is ‘the action of connecting two points on a curve to form a chord which is a
portion of the secant through the two points together with the action of computing the
slope of the secant line through the points’ (1997, p. 426). Again, technology can help
students interiorise these actions to a single process as the points get ‘closer and closer’
together—the second step on the graphical path to derivative. GridPic, for example, can be
used to draw the tangent at a point, say (—3.5, 0.9) (see Figure 12.5) by selecting the straight
line option and refining choices of values for parameters in y = ax + b. The picture can then
be turned off to remove extraneous detail and the slopes of secants to a series of points
approaching (-3.5, 0.9) can be computed and used to draw secants through these points and
(=3.5,0.9) as shown in Figure 12.6.

Figure 12.5 Use of GridPic to draw a tangent to the curve at the point (-3.5, 0.9)
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Figure 12.6 Use of GridPic to draw secants approaching the tangent
to the curve at the point (=3.5, 0.9)

Rates of change

One of the key properties of any function is how it changes (or even whether it changes).
This is referred to as the rate of change of the function. Rate of change is a very powerful
tool, and one of the key concepts of calculus. Students need many early experiences with
constant (e.g. stacking plastic cups, see Figure 12.7) and non-constant rates of changes (e.g.
shortest path problems, see Figures 12.8 and 12.9) and being asked to distinguish between

these, using information from all three representations.
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Figure 12.7 Constant rate of change of height of a stack of plastic cups, per cup
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Figure 12.8 Varying rate of change of total distance run with station distance

The key question being asked is: How does the rate at which the y values are changing compare with the
rate at which the x values are changing? Distinguishing between change (i.e. Ax or Ay) and rate
of change (i.e. A%) causes problems for students. They have difficulty understanding the
difference between a difference and a ratio of differences.

In the following exchange, for example, the students are trying to answer a question
about the rate at which the total distance travelled by a runner is changing as the runner
traverses a field via one of eighteen equally spaced drink stations along one side of the field
(Figure 12.9). The runner must travel via only one drink station after entering through one

gate and leaving via a second gate.

F[ Gate 1

Arunner’s path Gate 2

| I—
—

18'stations at 10 metre intervals

A < 240 metres » B

Figure 12.9 Task diagram



Thomas:

Andrea:

Thomas:

Andrea:

Thomas:

Andrea:

Thomas:

Andrea:
Maddie:

Andrea:

Thomas:

Andrea:

Teaching and learning calculus

Does the total distance change at the same rate as you travel via station
l,or2or3or4...?
Yes.
No it doesn’t. No it doesn’t.
Total distance so it does.
It says, ‘Does the rate change? Look, it means if you go from 1 to2 . ..
No.

. isit the same as going from 2 to 3?
No, does the total distance at the same rate?
[leaning towards the others| It is the amount, so it is increasing and
decreasing.
It means if you are running at 5 km/h, does it stay the same? No it
doesn’t stay the same.
Does the total distance run change? I need to concentrate on this.
lusing scale plan and pointing to different drink stations| Does your
total run, whether you go to that, to that, to that and to that change,
if you are running at, if everyone is running at 5 km an hour, will it

change? Yes, it will because the totals are different.

Source: Extract from RITEMATHS project (2006).

293

Maddie wrote as her answer: ‘No, because it is a parabolar [sic| graph. The rate decreases

then increases again once it has reached its lowest point.” In the follow-up interview,

Thomas said he was still confused about which change it was, but when he was told he was

considering the ‘change as you go from one station to the next’ he immediately said: ‘Yeah,

it does change. In between 1 and 2 there’s a difference [meaning in the total distance run)|.

I think it is 4.9 and then it slowly decreases and then it increases again,” and indicated a

varying gap with his fingers.
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REVIEW AND REFLECT : After reading about the above situation, state what you
know about each person’s understanding of rate of change.
What questions could you ask that would give you the best information about the

true understanding of rate of change in this situation for each individual?

REVIEW AND REFLECT : Devise a practical task for Year 9 students that will allow
them to explore the differences between constant and varying rates of change.
(See Navigating Through Algebra for examples.)

Key steps in the introduction of differential calculus

A suggested sequence for the introduction of differential calculus is as follows:

1.

ok LN

Rates of change examples using motion detectors to look at positive, negative and
zero constant rate examples and variable rate examples.

Constant rate of change — linear graph — rate of change = gradient.

Variable rate of change — non-linear graph.

Motion (distance—time) graphs.

Average rate of change calculated numerically and graphically: to show it is the
gradient of secant.

Instantaneous rate of change as successive numerical approximations using a spread-
sheet or Lists in a graphics or CAS calculator and graphically to show it is the
gradient of the limiting secant and use of local straightness to show it is
the gradient of the tangent.

Calculating instantaneous rate of change by drawing the tangent by hand, and calculating
the gradient or using a function grapher (e.g. use Draw Tangent with a graphics

calculator and then find the gradient—see Figure 12.10, or use nDeriv pointwise).
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Figure 12.10 Using Draw Tangent and a judicious choice of window

8. Drawing of gradient functions. This can be a sketch using the ‘ruler as tangent’ approach
deducing from global and local properties (i.e. where the gradient is positive the
gradient function will be above the x-axis, where the gradient is negative it will be
below the x-axis, and where the gradient is zero the gradient function will inter-
cept the x-axis). On the graphics calculator, nDeriv can also be used to draw the
gradient function (Figure 12.11), but this does not have the power of the previous

activity.

'fyH=n[l-zri'.'l:'|'1.-H.-H:I

[ b
H=0 =-16

Figure 12.11 Use of numerical derivative to sketch gradient function

of fx) = (x—2)*(x+5)

Velocity—time graphs

Finding the formula for the gradient function can be done using the difference quotient with
a graphics calculator by entering any function as Y, and setting Y, as Y, = (Y (X + h) =Y (X))/h
with a suitably small value of h. Students can then make links between the graph of a
function, the graph ofits gradient function and use their knowledge of functions to find the

formula of the gradient function. By making links between the graphical and algebraic
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representations of a function and its gradient function, students can ‘discover’ rules of

differentiation for functions and families of functions.

REVIEW AND REFLECT :

* Make up a set of cards with various functions with which you, but not
necessarily secondary school students, would be familiar—for example:

fIx) =2(x + 4)? =3,f[x) = — x5 f[x) =Zx +5.2¢, f[x) = 3cos 2x.
Keep these functions hidden.

 Everyone enter Y, = (Y (X + h] — Y (X])/h into the function window of a
graphics calculator.

e (Choose and enter a value for h, such as 0.001.

* In pairs, each person selects a card and enters this function into Y of the
function window of their partner’s graphics calculator without the partner
seeing.

* Individually, graph Y, and Y in a suitable viewing window of your calculator
without viewing Y in your function window. Using your knowledge of functions,
identify the algebraic function of the gradient function of the unknown function.

* When you think you have identified the function graphically, use the Table to
check. If you are correct, use different coloured pens (e.g. red for Y, and green
forY,] to draw your function and its gradient function for display on the wall.

* As a group, discuss what knowledge and understandings secondary students
would be drawing on when they were conjecturing relationships between
functions and their gradient functions when completing a similar task, but with

afunction suchasy = x*.

Obstacles to learning calculus

Several obstacles lie in wait for the unwary student of calculus. Many of these difficulties
that students encounter are analogous to those faced by mathematicians in the past as

particular concepts in the calculus evolved. The formal definition of a limit, for example,
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was not developed until the 1820s, around a century and a half after the basic concepts of
the calculus were independently invented by Newton in 166566 and Leibniz in 1676. In the
intervening years, mathematicians had to be content with imprecise definitions reflecting

the status quo for upper secondary students today.

Difficulties with limits

The limit concept is a sophisticated idea which is difficult to understand even at the tertiary
level, and problems at this level are attributed to intuitive views of limits coming from
secondary schooling (Przenioslo, 2004). There is also confusion caused by the everyday use
of the word ‘limit’ (Monaghan, 1991). Students may have heard or seen such terms as height
limits on traffic passing under bridges, legal blood alcohol limits for drivers or speed limits
for traffic. These are all boundary values that must not be exceeded. This view of limit can
constrain students’ thoughts about functions and ‘prevent them from understanding that
functions can, for example, oscillate over and under the limit value and still tend to that
limit’ (Juter, 2003, p. 78).

The limit concept can be dealt with explicitly by considering expressions such as
limh_)()“—w’}%z_‘\Z . Informally, the limit can be considered at an intuitive level by considering
what occurs as 1— () when h is varied dynamically. For h 7 ( the rational expression
simplifies to 2x + h, and as h ‘tends to zero’, this expression visibly becomes 2x as is seen in

Figure 12.12 when the symbolic facilities of a CAS calculator are used.

7511':1-"1;&:’--:I-:F-z}f:]nE:Jrlr-r';i-.lulcu—rasn'u;-l 7511’:1-11;&:’-.;I-:F-z}f:]nE:Jrlr-r';i-.|ul.;u-r.fn'u;-l 1-';i;sIn1;3»-u]ca?iT:InErxv[rr?r'nlnlthrasr.'u»I
2 _ 2 v
" Define g=(x+h% "ulh=.1 2ok 1] mulh= -1
Dong  [mu|h=.01 2.0x+.01 mu|kh=-.1
wy[h=1. 2x+1  lmg|h=.001 2.0x+.001 my|h=-.01
"ylh=.1 20x+.1 fmyg|h=1.e4  Z.ow+.0001 jwg|h=-.001
o Th=0. 1]
[z EEGEZACT _FUHL il TN T VTS TN T T AV

Figure 12.12 Finding the limit informally using a CAS calculator
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This is confirmed graphically using the graphing facility with the graphs approaching
the line y = 2x from above and below (Figure 12.13).
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Figure 12.13 Finding the limit informally using a CAS calculator

Cottrill and colleagues (1996, p. 190) take ‘the position that the formal concept of limit is
not a static one as is commonly believed, but instead is a very complex schema with impor-
tant dynamic aspects and requires students to have constructed strong conceptions of
quantification’. They conclude that ‘the difficulty in moving to a more formal conception of
limit is at least partially a result of insufficient development of a strong dynamic concep-
tion’. Even the mathematical language used presents problems, as terms such as ‘tends to’
or ‘approaches’ suggest that limits are not attainable (Juter, 2005). Confusion between the
limiting process and the attaining of a limit can lead to students simultaneously holding quite
different conceptions in theoretical, as opposed to problem, situations (Juter, 2005; Williams,
2001). There are thus incompatibilities in seeing limits as a process and as an object. Many of
the difficulties students experience with other concepts such as continuity, differentiability
and integration can be related to their difficulties with limits, according to Tall (1992, 1996)
and Williams (2001).

Misconceptions with tangents

The description of the derivative as the gradient of the graph at a point is another cause of
misconceptions. This is because the notion of tangency in many students’ concept images
(Tall & Vinner, 1981) is related to the special case of tangent to a circle. The notion of
a tangent touching at a single point and not crossing the curve is held in opposition to the
notion of a secant cutting in two points. Giraldo et al. (2002) point out that ‘this leads to
a narrowing of the concept image of a tangent that is not consistent with the notion of

tangent in infinitesimal calculus’ (2002, p. 38).
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Another misconception concerned with tangent is related to the ‘disappearing chord’
focus that students often take when the common textbook (Figure 12.14) and teacher expla-
nation of the gradient at a point on a curve is used (Ryan, 1991; Tall, 1985). In Figure 12.14,
the key idea to be accessed is what happens in the limiting process as Q moves closer to P
along the curve, namely the secant (i.e. the extended chord) through P and Q becomes the
tangent at the point P. Many students focus on the chord PQ (especially if this is being used
instead of, or as, the secant as in Swedosh et al., 2006), which actually tends to zero length as
the points become closer together. Other students see this as a static diagram and do not
have the desired image when told to ‘imagine that we move Q closer and closer to P’,
according to Tall (1985).

y4 y = fx)

0(a+h,fla+h])
Secant
/ Tangent at P
P (a, f(a))
0 >
a ath X

Figure 12.14 Common textbook diagram for gradient at a point

Confusions with notation

There is quite an array of new notation that is associated with the study of calculus at the
secondary level that students are expected to be able to give sense to and to use meaning-
fully, namely, flx + h),f'(x),y', D\f(x), Z—: % (f(x)), Ox, Ax, J.f(x)dx) to name but a few. Some
textbook authors such as Barnes (1991) restrict notation for the derivative, for example,
initially to f'(x) and y' deliberately leaving the introduction of the Leibniz notation of j—l until
later in the development of calculus. The extent to which teachers have the freedom to do

this is dependent on the requirements of the intended curriculum and how closely these are
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followed, and the extent to which they use technological tools which use such notation as

ly . . .
% There are many sources of confusion here, so we will deal with only a couple. Students

looking at
lims\‘_)“% = :11%
can think of 0y tends to dy and 8x tends to dx so they think of dy and dx as very small non-
zero numbers. However, this conflicts with their being told that % is a single symbol and
cannot be treated as a fraction or that % is an operator. Further conflicts arise when they
meet the chain rule, such as fi—‘\ = % . %, and are told that they cannot cancel the dus as du
does not have a separate meaning but in anti-differentiation they must write dx in Jf(x)dx as
dx means ‘with respect to x".
As alluded to above, the advent of calculators that are capable of carrying out numerical
and symbolic differentiation and integration has meant that particular notations are being
privileged and there is the increased cognitive load of learning new notation, the required

inputs and what these mean, and in some cases the interpretation of output in non-

standard mathematical forms. Consider the task,

f(x) =3x*+ 2x — 1find [ (—2.7)

Once the function has been entered in the function menu as Y, = A+ 2x—1,a graphics
calculator (see Figure 12.15), for example, can be used to find this using the numerical deriva-
tive function, nDeriv. This requires the inputs of the function or expression, the independent
variable and the x-value; or use of i% which requires selection of the function using up or down

arrows once the graph screen is displayed and the setting of x = to the required value.

Floti Flotz Flots rler 1oy 3, 20T \ J
SMIB3H K- 2 |
~We=l -14.2
“Na= riberiv(3KI+2k-1, 'I,I
“Ny= s 2 ) L
“Ye= -14.2 7
ST B -y
Y= deldiz-dug

Figure 12.15 Calculator notation for finding gradient at a point
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Approaches to teaching calculus

All of these obstacles come together in the traditional ‘first principles’ approach often
adopted in upper secondary school. Furthermore, White and Mitchelmore (2002) claim that
‘a high school introduction to calculus which focuses on symbolic definitions and manipu-
lations results in an abstract-apart concept of derivative, and students have no sense as to
what calculus is about’ (2002, p. 250). The term ‘abstract-apart’ is used to convey the idea of
‘concepts formed in isolation from the contexts in which they occur’, as opposed to
abstract-general concepts which the learner is able to recognise in a variety of contexts and
to abstract common properties from similarities in a variety of base contexts (2002,
pp. 239—41). Alternatively, an intuitive understanding of instantaneous rates of change
could be developed through familiar situations. This could be followed by the use of a
graphical and numerical approach to the measurement of rates of change with the aid of
technology such as graphics calculators, function-graphing software, animation software
such as JavaMathWorlds (Herbert & Pierce, 2005) or lite applets available on the internet.
These could then be justified, if need be, with first-principles derivations once the concepts
have been established informally.

An investigative approach, such as the one outlined in the excellent series Investigating
Change by Mary Barnes (1991), makes calculus accessible to a wider range of students.
It develops a strong understanding of basic concepts while avoiding known conceptual
obstacles. Both Barnes (2000a) and Williams (2000) give examples of students studying
calculus at Year 11 and 12 level via a class collaboration approach (Williams, 2000, p. 658)
experiencing ‘magical moments’ of excitement as they discover mathematical insights for
themselves.

Recent advances in technology mean that technological approaches to teaching
calculus can no longer be ignored. As computer software and hand-held calculators can
peform most, if not all, of the skills and manipulative procedures that have dominated
calculus areas of study in secondary school in the past, there appear to be three options
for how these might be used: as a tool to perform all the procedures, freeing students
to explore real-world and mathematical applications; as an integral part of a learning
environment to deepen understanding of underlying concepts; and as a mixture of the first

two options.
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Differential calculus

Differentiation

Kendal and Stacey (2003) have taken a systematic approach to trying to identify ‘basic
building blocks of competence in calculus’ (2003, p. 39) with respect to differentiation in the
context of readily available technological tools. They have constructed a Differentiation
Competency Framework guided by consideration of the cognitive demands required
in learning about the concept of derivative (not merely the rules for differentiation).
The framework is fully described in Kendal (2002), so only an overview will be given here.
The focus of the framework is on students’ early understanding of the concept of derivative
in different representations—namely, numerical (N), graphical (G) and symbolic (S). The
framework is meant to help teachers make decisions about which representations need
be emphasised in teaching, now that technology (including CAS) allows us to do so readily;
the pairs of representations to be linked in a given context; and the balance that needs to be

achieved between by-hand and technologically assisted techniques.

Differentiation Competency Framework

As a first step to producing the framework, a concept map of differentiation (see Figure
12.16) was produced, linking these three representations as well as physical representations
of rate of change which link most closely to the numerical representation as shown. Solid
arrows show translations between representations. The heavy dotted lines within a repre-
sentation circle separate situations where the limit has been taken (e.g. gradient of a tangent
at a point) from those where it has not (e.g. gradient of a secant). Differentiating from first
principles is shown as involving all three representations.

Since solving problems involving differentiation requires being able to work with all
its common representations (N, G and S), and translating among these representations
as identified in Figure 12.16, the Differentiation Competency Framework concentrates
on these three external representations. Table 12.1 shows the set of eighteen competencies

provided by the framework that reflect basic understanding of the concept of derivative.
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Real world
examples:
- Rate of growth
- Rate of inflation
e Speed
P Acceleration

Average rate of change

NUMERICAL

X|f(x]|Af(x)/Ax

Instantaneous
rates of change

lim [Af x ]}
Ax—0 AX

Derivative of function

d
= £, £la)

Rules for differentiation

im, [f[x +h) —f[ﬂ
—0 h

Local approximation of curve
by straight line

GRAPHICAL

Gradient of curve [Slope] | FIRST PRINCIPLES |

Derivative is defined as instantaneous
rate of change but illustrated by
gradient of curve and calculated

symbolically

Gradient of tangent at point
Gradient of secant
of curve

Figure 12.16 Kendal and Stacey’s (2003) concept map of differentiation

in numerical, graphical and symbolic representations

The first letter of the symbols used to designate a competency (in italic capitals) indi-
cates the cognitive process needed to produce the output derivative. Formulation (F) is the
process of recognising that a particular differentiation procedure is required, given the data

in a question, and knowing how to calculate it. Interpretation (I) involves the processes of
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Table 12.1 Kendal and Stacey’s Differentiation Competency Framework

Representations associated with differentiation

Input derivative

Output derivative Numerical (N) Graphical (G) Symbolic (S)
Numerical (n) FNn FGn FSn

INn IGn ISn
Graphical (g) FNg FGg FSg

INg IGg ISg
Symbolic (s) FNs FGs FSs

INs IGs ISs

reasoning about the input derivative supplied in the question, or explaining the input
derivative in natural language, or engendering the input derivative with meaning includ-
ing its equivalence to a derivative in a different representation. The second letter (in
capitals, N, G, S) designates the input derivative representation and the third letter (in lower
case, n, g, s) designates the output derivative representation. Thus FGs, for example, repre-
sents formulating (F) a graphical derivative (G) from the data and recognising that
the resultant gradient of a tangent represents the ‘symbolic derivative’ (s). Six of these
competencies (shaded in Table 12.1) occur within a single representation. The remainder
involve translations from one representation to another.

Together, these eighteen competencies produce a way of assessing differentiation in
a comprehensive and balanced manner. They also could be used to structure teachers’
topic development and monitor the learning that results. Kendal and Stacey (2003) have
produced a test of the competencies. Illustrative examples (see box below) show the
utility of the framework for designing questions for assessing students’ understanding

of differentiation.
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Examples of Differentiation Competency Test items

I Sn—Interpretation with translation between Symbolic and numerical represen-
tations: Circle the letter corresponding to your answer: The derivative of the function g(1) is
given by the rule g'(t) = t* — 5t. To find the rate of change of g(t) at t = 4, you
should:

(A) Differentiate 4'(t) and then substitute t = 4.2.

(B) Substitute t =4into g'(1).

(C) Find where g'(1) = 0.

(D) Find the value of g4'(0).

(E) None of the above.

FGg-Formulation within a Graphical representation: Use a graph of

y = x>+ x = 10 to find the gradient of the curve at x = 3.

INs—Interpretation with translation from a Numerical representation to a
symbolic representation: An eagle follows a flight path where its height depends
on the time since it flew out of its nest. The rule for finding the height of the bird
(H in metres) above its nest is a function of H(t) of t, the flight time (in seconds).
Five seconds after takeoff, the 4 kg eagle was observed to be 100 m above its nest

and climbing at the rate of 3 metres per second. What is the value of H'(5)?

Source: Kendal and Stacey (2003).

Representational Framework of Knowing Derivative

Delos Santos and Thomas (2003) have developed a framework which maps students’ dimen-
sions of knowing derivative across their representational preferences (symbolic, graphical,
numeric or tabular). The dimensions of knowing are procedure-oriented process-oriented,

object-oriented, concept-oriented and versatile (see Table 12.2).
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Table 12.2 Delos Santos and Thomas’s Representational Framework of Knowing Derivative

Dimensions

Representations

Symbolic

Graphical

Numeric/Tabular

Procedure-oriented

Manipulate symbols

according to rules.

Calculate from

graphical forms.

Use procedures to
obtain numerical results

from tables.

Process-oriented

Interpret the meaning
of symbolsasa

differentiation process.

Have a pointwise
approach to derivative
of graphs. Can
understand second
derivative as rate of

change of gradient.

Understand and apply
rate of change,
differentiation and
gradient processes in

a tabular setting.

Object-oriented

Operate on the
symbols for derivatives
as objects. Interpret
nth derivatives as

functions.

Interpret derivative
graphs as representing
functions. Operate on

graphs as an entity.

Interpret a table of
values as representing
adiscrete
approximationtoa

continuous function.

Concept-oriented

Relate the differentiation procedures, and processes applicable in one

representation to each other and to relevant concepts.

Make procedural and conceptual connections between corresponding

differentiation procedures, processes and objects in different

representations.

Identify and operate on conceptual objects such as derivative and function

presented in different representational forms.

Versatile

Have sufficiently well-formed differentiation procedure, process, object and
concept oriented knowledge to be able to identify and use appropriate objects,
processes and procedures in their various representational manifestations.
Choose appropriate representational system perspectives to solve a
differentiation problem. Move seamlessly and fluently between the chosen

perspectives as required.
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Using this framework, delos Santos and Thomas (2003, 2005) analysed the changes in
thinking and understanding of target students from Form 7 (eighteen years of age) from
four New Zealand schools. Students were involved in an eight-week study of derivative

using TI-83 graphics calculators.

REVIEW AND REFLECT : Concept maps prepared by students are considered by

many (e.g. delos Santos & Thomas, 2005; Williams, 1998] ‘to be an externalisation

of conceptual schemas’ (delos Santos & Thomas, 2005, p. 378) and as such a useful
tool to tap into students’ current conceptual schemas and changes in these over
time.

* Ask two senior secondary students to draw a concept map of their under-
standing of derivative. Emphasise that it is important for object and procedural
links in the concept maps to be labelled (e.g. a link from, say, ‘derivative’ to ‘rate
of change’ should be clearly labelled as meaning ‘derivative IS A rate of change’
or ‘derivative IS USED TO FIND a rate of change’).

e Use either Kendal and Stacey’s Differentiation Competency Framework (2003)
or delos Santos and Thomas's (2003) Representational Framework of Knowing
Derivative to compare and contrast the students’ concept maps.

* What insights have the concept maps given into the students’ apparent under-

standing of derivative?

Developing rules of differentiation

Once the notion of a derivative has been established, the rules for differentiation can be
developed using an investigative approach involving the graphical representation and
gradient functions or pattern searching with the algebraic representation. Both of these
could be done by hand or with technology. In Figure 12.17, the rule for the derivative of
the sum or difference of two functions is developed through a graphical approach using the
difference quotient and a graphics calculator. In Figure 12.18 an algebraic pattern searching

approach is used to find the product rule which is verified using CAS.
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d
4 £ = 9]
(a) Using your graphics calculator, graph y = x2, xe[ —5, 5] and its gradient function theny = x,x €[ —5, 5]
and its gradient function as shown. Set h to 0.001.
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N = H=-2 y=-3,880 ~N S | =1

What are the derivatives of f (x) = x*and g (x) = x?
(b) Using your graphics calculator, graph y = x® + x, xe[ —5, 5] and its gradient function then y = x> — x,
xe[—5, 5] and its gradient function as shown. Set h to 0.001.

Flotl Flotz Flok: E=CCH+HI =Y H Flotl Flotz Flok: Z=C I+ =0 H
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=N =1 2 R |
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wMNe= __,3':'- JI-Ye= A x
N E= 4=z ¥=-z.099 e Fricter S R B

Compare the graphs of the gradient functions of y = x?, xe[—5, 5],y = x> + x,xe[—5,5] andy = x® — x,

x€[—5, 5]. What do you notice?

What do you think is the derivative of f(x) + g(x] = x* + x?

What do you think is the derivative of f(x]) — g(x] = x* — x?

(c) Explainin words the connection between the derivatives in (a) and (b).

(d] Repeat (a]to (b) forf, (x] = x* and g, (x] = 2x using an appropriate viewing window.

(e) Describe in words how you think you could find the derivative of the sum or difference of any two
functions. Write this as a rule.

Use this to predict the derivatives fory = x* — bxand y = x* + 2x. Check your prediction with your calculator.

Modify your rule for finding the derivative of the sum or difference of two functions if need be.

Figure 12.17 Developing a rule for the derivative of the sum or

difference of two functions

Anti-differentiation

Undoing or reversing the process of differentiation is called anti-differentiation. This process
becomes necessary in situations where we know the rate at which something is changing but
not the function itself. One way of doing this is by ‘Guess and check’. You ask: What function could
be differentiated to give this result” If you were given i% = t,apossible candidate would be ()= %12

dy

aswe know y = *, = = 2. However, it could also be that f(1) = %tz +3or f(1) = %tz — 1.

Geometrically, the set of anti-derivatives of 2t represents a family of parabolas given by

1 : .
y = f(t) = 51> + ¢, c€ N. The curves have the same shape and can be obtained from each
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d
9 1 1xgl]
(a) Using a CAS calculator, find derivatives of f(x) = x + Land g(x) = x + 2and h(x]) = (x + 1) [x + 2).

r:'-1lvs[mgsﬁralcrazfc[n:;.'Sr]rrrsilnlcurain'up]
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. . d
Can you see a relationship between 7 h(x) and f(x] and g(x)?

Complete the following table using a CAS calculator.

£ glx] L0 | Ll L hix) = 2 [£(g0)]
x+1 5% A 2 1 1 2 AF 3

x+ 2 5% aF 3

x+ 3 x+ 4

x+1 X— 2

Make a conjecture based on what you see in the table about the relationship between the derivative of a
product of functions and its factors.

Use your conjecture to predict the derivative of h(x) = (2x + 1) [ x + 1). Use the CAS calculator to find the
derivatives as before to check.

"Fil=] Fi» |Fie| F4=| FE | Fbe N " F Fir [Fi~] Fu=] FE | Fb+
Toolz|A13¢bra)Cale|Other|PrIrmib|Clean Up| A13¢bra|Cale|Dther|Pramib|Clan Up|
= < T Iy =

T

RO 21 Dl 0
: MR C 20

If your conjecture is correct, use it to complete the table below; otherwise, complete the table using a CAS
calculator as before writing the derivative for h(x) in terms of its factors as shown in the first row.

£ glx] L0 | Ll L hi) = 2 [£(g0)]
2x+ 1 x+ 1 2 1 4+ 3=2x+ 1+ 2(x+ 1)
x+ 2 % AF 3

x+ 3 x+ 4

x+ 1 xX—2
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Look for a relationship between f(x], g (x), their derivatives and the derivative of the product h(x). Describe in
words how you think you could find the derivative of the product of any two linear functions. Write this as a rule
forwhen f(x) = ax + band g(x) = cx + d. Using a CAS calculator find derivatives of f(x] = ax + band g(x)
= cx + d and h(x) = (ax + b)(cx + d) to check your result.

Fie Fzs JFZie[ Fhe FE FB~ Fi» Fis [Fie] Fyv | FE Fb=
Taols|@ldctrajCalcfDther|FeamiDfclcan UF| Tuol5|R13 sty afCal|DRher [FrIralDfCIcan UF|
LT = Oy
ax
d
e 2—(c-x+d) o
o (3 + b i dx
E\a')x"’b) E N
. o (e x+b)(c x+d)
o —t(c-x+d) cf x -
dx ‘ Z2-3'ccxtad+b-g
ACCatx+b) (Chx+d), %)
PAIN EAD EHACT FLUNC Zlx0 PAIN EHD ERACT FLNC 30

Now continue your exploration for products where the factors are non-linear to see if you can develop a rule
for derivatives of products of any functions. Write this rule in your own words. Predict the derivative for h(x) =
(5x%% + 2)(3x — 9)and check by using your calculator. Modify your rule if necessary. The rule can be expressed
in a general form using &[f[x]g[x]]. See if you can use your rule to work out the derivative. Finally, use your

CAS calculator to check your general rule.

rztﬁlmsrezbvmll:ruﬁ'clnf;.'e'r]rrrs?n|ulc1£:sn'upl v ol Fare fnar o i ue
d -
AR e -/
%[Z fO0)-a(x) + %(g(x)) iy GOFC)-alx) + a';—;(g(x)) Raes
dCELxdkgLxd, 3]
FUNC 1250 ] (AIN EAD EXACT FUNC 1720 ]

Figure 12.18 Developing a rule for the derivative of the product of two functions

other shifting up or down (i.e. translation). To find which particular curve was being targeted,
we would need some more information such as an initial condition.

Another method to find anti-derivatives is to use direction (slope) fields. This can be done
using the differential equation graphing facility of calculators such as the TI-89 Titanium, as
in Figure 12.19. First, the slope field is drawn with no initial condition set. Short line segments
are drawn at points all over the plane. The gradient of each is equal to the value of% at its
midpoint. A diagram like this could be used to draw graphs of functions of the form
y=f(1) = %tz + ¢, c€ N which satisfy %‘, = t. This can be done by hand or by setting initial
conditions as has been done in Figure 12.19 where c is set to —1, 0, 1, 2, 3. Other activities

related to investigating anti-derivatives can be found in Barnes (1991).
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Figure 12.19 Use of slope diagrams to find anti-derivatives

The process of anti-differentiation is also known as integration, and then the anti-derivative
is called an indefinite integral. Using function notation Jf(x)dx denotes the anti-derivative or

integral of f(x) with respect to x. We can obtain rules for indefinite integrals (anti-derivatives)
d

dx

by reversing rules of differentiation, for example, if %[f(k) Fyglx)| = d%f(\) * - 4(x) then the

reverse of this must be ,[ [f(x) £ g(x)|dx = _[ f(x)dx = ,[ g(x)dx .

Integration

The calculus had its origins in two problems, both of which were studied by mathemat-
icians from ancient times. The first, which we have already met, was finding the unique
tangent (if it exists) that can be drawn at a given point on a curve, and this problem led to
the differential calculus. This problem was not solved as a general method for all curves
until the seventeenth century. The second problem involved finding the area bounded by
a given curve. The solution of this problem led to integral calculus. Archimedes solved the
problem for particular curves such as the area of a parabolic segment using the method of
exhaustion, so called because polygons are used to eventually ‘exhaust’ (use up) the area
concerned. This method was the basis of more generalised approaches until Newton and

Leibniz showed how calculus can be used to find the area bounded by the curve.
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In integral calculus, the area of a region bounded by a curve can be found using the
areas of polygons as an approximation. The example below in Figure 12.20 illustrates

the procedure using upper and lower rectangles.

| have just leased an agistment block down by the river for my horses during [y
the drought. | have been able to determine that the side of the block along the
river can be modelled by the function f(x) = (x — 1)° + 3, x € (0,2) where
xis in kilometres. The side of the block opposite the river is 2 kilometres long
and the other two sides are 2 and 4 kilometres in length.

In order to find an approximate area for my block, | can use my graphics
calculator to divide the block into a series of ten rectangles each 200 metres
wide (0.2 km) and sum the areas. To do this | will use this function entered into my calculator as Y, and use the
sequence command to enter x values of the leading vertical side of my rectangles into List 1, followed by the
lengths of the rectangles (given by Y,(L,]] into List 2. | can then use this to draw a histogram. Note: | need to
set the Xscale in the viewing window to the width of my rectangles.

Sed . B Ha B D03l Elotz  Flok: Ll L HOI0 r
1 Off wmin=gl ¢
= =H I_ Ir‘_" i AMEE=E
'-r's(L a1 L b M |7 Ascl=.2
{2 2,488 2.7894 | Hlistili ‘Ymin=E
Fre=:Lz0 Ymax=0
Yecl=1 x
Hres=1 |

The area of each rectangle is the width (0.2 km] multiplied by the length, ETT ]

YS[Ll]. By using SUM | can add up the areas of all the rectangles to determine the
total area enclosed by the rectangles. As the set of rectangles are all lower than

the curve, I will call this sum S, and expect this area of 5.8 km? to be less than the

actual area of land, which | will call A.
To improve my estimate | can repeat my summation process using narrower rectangles (e.g. 100 m, 50 m,

25m, ... wide).
5E~=1( 1 Ha B 192 fy 5E~=|( - ESH Ha B, 330 b
A .1 PR a
'-r's(L1)->Lz {B BS % -9
s2F1 2.488 {2 2.142625 2.2,
5um( 14l z2 U T e I
a o) B a S5.95 %
1

These rectangles are all below the curve | have used to model the river bank. | could have used rectangles
above the curve. This time my estimates, which | will call S as they are the sums of the upper rectangles, will
be too high but will become closer to the actual area as the width of the rectangles is reduced. Thus, S <

A<SU.

L sl 2. W B Pl Eeq<.1x,x,a,19>+ Eq( S s e b ey
1 1
TH .2 .4 .6 W8 L 6.1 .2 .3 .4 {Ei 85 ndk o
WelLi+. 20+l z Welli+. 103z LESrrLz
{2.488 2.784 2,. {2,271 2.488 2.. {2 142625 2.271..
Sumt . Zkle sumC, 1422 i . BSELE D

% - 6.2 - &.1

By continuing this process we could show S, — 6andS; — 6.

Figure 12.20 Using summation to find area bounded by a curve
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This example and procedure could then be linked to the notion of the definite integral

defined as:
b b
J fid = lim Sfx)Ax

provided the limit exists. The integral sign is an elongated S (from the German ‘somme’ for
sum). The notation was introduced by Leibniz. This definition of the definite integral is
called the Riemann Integral after the German mathematician Georg Riemann.

There have been reported student difficulties with this notion of using successive
approximations with more and more rectangles. Schneider (1993), for example, reports that
some students think ‘as long as the rectangles have a thickness, they do not fill up the
surface under the curve, and when they become reduced to lines, their areas are equal to
zero and cannot be added’ (1993, pp. 32-3). Tall (1996) suggests that a figure like that in
Figure 12.21 be used instead.

) A

/ Alx +h) — A(x)
{ f(x) h

A PELEN

a X x+h

v

Figure 12.21 Area bounded by a curve

The Fundamental Theorem of Calculus says that, given an area A(x) from a fixed point a
to a variable point x, A’(x) = f(x). The additional area under the curve from x to x + h is
A(x + h) — A(x). In this figure there is now only one strip which tends towards a rectangle

and it is clear visually that as h — (
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A(x + hZ —A(x) —>f(x)

Students still, however, face the usual obstacles associated with limits that an approxi-
mation becomes an equality in the limiting case. Historically, integral calculus and the
process of integration were developed using this summation approach, not as the undoing
of differentiation—that is, anti-differentiation. It was not until differential calculus was
developed in the seventeenth century that the relationship between these two branches of
calculus became apparent.

Rules for integration can be developed using investigative graphical and algebraic

methods with technology support similar to developing rules for differentiation.

REVIEW AND REFLECT : Examine textbooks from two different textbook series.
Compare the extent to which the authors attempt to address the difficulties that
students are known to have with introductory calculus concepts, and then adopt a

multiple representation approach.

Conclusion

Despite predictions in the 1980s that calculus would wither and die in secondary schools,
calculus and the underpinning concepts of function still hold a central place in most
mathematical subjects in the upper secondary curriculum. With ever-increasing access
to technological tools which are rapidly advancing in their mathematical capabilites for
teaching, learning and doing mathematics, calculus appears to be becoming stronger as

it becomes more accessible to more students because emphases have changed.
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CHAPTER 13

Genderissues in
mathematics learning

You may be wondering why, early in the twenty-first century, we are including a chapter on
gender. Women and men are equal, aren’t they? And in the schools and classrooms around
the world, both girls and boys are studying mathematics to the highest levels, girls are
achieving as well as boys, and girls and boys have similar attitudes towards mathematics.
However, careful reading of the research shows that these beliefs—often portrayed in the
media—are not necessarily the case (Vale et al., 2004). They are certainly not the case in all
countries, at all levels of education, for all types of mathematics, or for all socioeconomic
groups of girls and boys.

Itis important to remember that the debate and research concerning gender equity have
an international context. Indeed, at the beginning of the twenty-first century, two-thirds of
the world’s population who do not have access to, or are excluded from, a basic education
are girls (UNESCO, 2003). In the developed nations, the gap is closing but equity has not yet
been realised (Vale et al., 2004). Globally, of the 27 OECD countries participating in a study
of mathematical literacy for fifteen-year-olds in 2000, boys outperformed girls in all but two
countries, Iceland and New Zealand (McGaw, 2004).

At the turn of the century, the Australian government shifted its policy focus from
improving the education of girls to consider the needs of boys (Parliament of Australia,
2000). For many social researchers, this signalled ‘the end of equality’ (Summers, 2003) and
the advent of more conservative social policies. The final report from this inquiry did
identify teaching strategies appropriate for boys in some fields of study, but it also stated that

‘it is important to remember that while improvements to education outcomes for some
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groups of girls are real they have eluded many other girls’ (Parliament of the Common-
wealth of Australia, 2002, p. 18). We are coming to understand gender issues in mathematics
as both complex and multi-faceted. Ongoing attention to them is needed if we are to
achieve gender justice.

In this chapter, we describe the gender gaps in access to, and outcomes of, mathematics
education, and present some of the explanations for these gaps. We will take an historical
approach to present the explanations of gender differences and the strategies developed and
used by teachers. We explore practices in mathematics classrooms and curricula that affect
the ways boys and girls see themselves as learners of mathematics, with consequent implic-
ations for attitudes, achievement and participation. Current understandings of teaching
and learning practice that promote gender equity in mathematics are presented at the end

of the chapter. We begin the chapter by defining equality and equity.

Definitions of gender equality and gender equity

Fennema (1995) describes three aspects of equality: equal opportunity, equal treatment and

equal outcomes.

Equal opportunity

Equal opportunity is about access. Both girls and boys need to be able to participate in math-
ematics. This involves removing external barriers to girls’ participation in schooling, as
well as barriers constructed by schools, such as streaming or setting policies, and timetable
structures that restrict girls’ access to mathematics learning. It also means providing equal
resources for mathematics learning in terms of learning time, teachers’ time, materials and
equipment, such as computers or hand-held calculators, graphic calculators and computer

algebra systems.

Equal treatment

During the 1980s, researchers were occupied with equal treatment. They began to look
closely at classrooms and discovered that teachers did not interact with girls and boys for
the same amount of time, nor in the same way (Jungwirth, 1991; Leder, 1993). They inter-

acted more often with boys than girls, they were more likely to ask boys higher order
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questions, and their interactions with students were modelled on masculine norms of
communication. This finding showed how girls were excluded from the important learning
opportunities offered by discussion in mathematics lessons.

Researchers also analysed curriculum materials and found that males and females,
and their interests and occupations, were not equally represented in materials and
problems, and were typically represented in gender stereotyped scenarios. A study of text-
books used in secondary schools in Victoria at the turn of the century found that references
to males outnumbered references to females in two out of the three textbooks analysed

(McKimmie, 2002).

REVIEW AND REFLECT : Analyse the content of a current mathematics textbook

for gender bias. Collect and present data on:

¢ the number of males and females as protagonists in problems and examples;

* the number of photographs and drawings of males and females;

 the occupations of males and females in problems (are they stereotyped or
non-stereotyped?}); and

* the race and ethnicity of males and females depicted in the textbook.

Other studies have shown that equal treatment is more complex than the number
and nature of interactions between the teacher and the student. Boaler (1997b, 2002) has
found that particular teaching approaches have different effects on the attitudes and
performance of girls and boys. Vale (2003), Walkerdine (1990), Chapman (2001) and Barnes
(2000b) have examined the norms and behaviours of teachers and students in mathematical
classrooms. Their findings, which are discussed in more detail later in this chapter, show
that the culture of mathematics and mathematics classrooms in the main advantages boys,

and particular groups of boys, and disadvantages girls, and particular groups of girls.

Equal outcomes

Fennema (1995) argues that equal access and equal treatment were not sufficient for gender
equity. The pursuit of equity also involves a commitment to ‘closing the gap’ in outcomes,

where outcomes include mathematical achievement, participation, retention and attitudes.



322 EQUITY and diversity in MATHEMATICS EDUCATION

Equitable practice

More recently educators and researchers have also argued that equal access and equal
treatment are not sufficient to overcome gender gaps and social injustices in schooling
(Anthony & Walshaw, 2007; PCA, 2002; Vale et al., 2004). A variety of approaches are needed

to meet the needs of learners; one single approach will not suit all:

Setting up equitable arrangements for learners means different pedagogical treat-
ment and paying attention to different needs resulting from different home
environments, different mathematical identifications and different perspectives.

(Anthony & Walshaw, 2007, p. 10)

The gender gaps

In this section, we present a summary of the findings from recent studies into gender
differences in achievement, attitude and participation. Researchers are now mindful that
gender gaps in mathematical outcomes may vary for students of different socioeconomic

backgrounds.

Mathematical achievement

Until recently, gender differences in mathematics achievement favoured boys, especially
in secondary education. A trend towards equal outcomes in mathematics achievement
can be seen in studies of gender difference in achievement in developed nations towards
the end of the twentieth century (Lokan et al., 1996, 1997). However, the most recent
review of Australasian studies of performance at the beginning of the twenty-first century
reported inconsistent findings regarding gender differences in mathematics achievement
(Vale et al., 2004).

At the secondary level, the findings varied according to age group, but also for different
studies of the same age group. The trend towards closing the gap and towards girls’ equal or
superior performance is supported by some studies. For example, girls performed better
than boys in a Victorian study of numeracy in the middle years of schooling (Years 5 to 9)

(Siemon et al., 2001). However, the Third International Mathematics and Science Study
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(TIMSS) reported no significant gender differences in mathematics achievement among
Australian thirteen-year-olds (Lokan et al., 1997). Moreover, the Program of International
Assessment (PISA) study of mathematical literacy among fifteen-year-olds also found no
significant gender difference for Australian students, although boys did record higher
performance levels than girls (Lokan et al., 2001). However, gender differences favoured
boys and were significant in an Australian study of mathematics achievement for Year 9
students (Rothman, 2002).

At the post-compulsory level, Leder (2001) reviewed Victorian Year 12 mathematics
results over a number of years and found that the average performance of girls in VCE
mathematics could be regarded as superior to males. Yet Australian Year 12 males
performed better than females in a large international mathematical numeracy test (Mullis
etal., 2000), and Year 12 boys performed better than girls on tasks using graphics calculators
in an advanced mathematics subject in Western Australia (Forster & Mueller, 2001; Haimes,
1999).

Boys are more highly represented than girls among the highest achievers in mathemati-
cal literacy (McGaw, 2004), post-compulsory mathematics (Leder, 2001) and mathematics
competitions (Leder, 2006). Fennema (1995) notes that the learning and participation of
the lowest achieving females has not advanced in spite of the gains made towards equity
in the past twenty years, a phenomenon supported by the recent Parliamentary Inquiry
(PCA, 2002).

The type of mathematics that was being assessed may in part explain the reason for the
inconsistencies in findings from these studies. For example, since girls generally out-
perform boys in literacy, Siemon and colleagues (2001) proposed that the significant
difference in favour of girls may have been due to the increased focus on the language, or
discourse, elements of the middle years numeracy program in their study. The PISA study,
which measured mathematical literacy, also required students to be familiar with the
discourse of mathematics as the tasks were designed to test ability to interpret context and
model situations as well as to test knowledge of content. In this study, boys did significantly
better than girls on the questions that required them to interpret information that was
presented in diagrams (Lokan et al., 2001).

Fennema and Tartre (1985) first identified a gender difference in spatial visualisation,

and these differences are still evident in contemporary studies (Casey et al., 2001). A high
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demand on graphical interpretation was also a characteristic of the problems in which
Year 12 boys performed better than girls when using graphics calculators in the Western
Australian study (Forster & Mueller, 2001, 2002), while girls did better on the algebra-based
questions that did not require the use of graphics calculators.

The type of assessment also appeared to have a major influence on gender differences. In
post-compulsory mathematics, males perform better than females on timed short-answer
questions, while extended problem-solving assignment tasks favour females; this pattern of
gender difference is consistently reported in the literature (Leder, 2001).

Teese (2000) argues that patterns of participation in post-compulsory mathematics by
students from different socioeconomic backgrounds disguise gender differences in mathe-
matics achievement. He found that both boys and girls from high socioeconomic (SES)
backgrounds enrol in less demanding subjects to improve tertiary entrance scores, resulting
in what appears to be more equitable achievement outcomes in the least demanding
subjects.

The question of gender difference in mathematics achievement is thus a complex one. It
depends on the content of the assessment tasks, the nature of mathematics knowledge
and the mathematical skills being assessed, and the conditions under which assessment is
completed. The inconsistencies in gender differences within age groups and across cultural

groups show that the gap in achievement is not explained by sex alone.

Attitudes to mathematics

The various measures of attitudes have played a key role in research in gender and math-
ematics. Attitudes have been investigated in order to explain gender differences in
performance and achievements, but they are an outcome of mathematical learning as
well. Studies by Fennema and Sherman (1977) pioneered research into gender differences
in attitudes, and their research has been replicated in many studies since.

One attitude that Fennema and Sherman initially explored was the idea that students
gender-stereotyped mathematics as masculine or a ‘male domain’. Some recent research

in Australia indicates that this may no longer be the case.
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REVIEW AND REFLECT : For each of the statements below, state whether you
think males (M) or females (F) are more likely to display the particular belief or
behaviour. Use ND if you think there will be no difference.

Item MorForND

Think it is important to understand the work.
Think maths will be important in their adult life.
Are asked more questions by the maths teacher.
Maths teacher thinks they will do well.

Find maths difficult.

Think maths is interesting.

Parents think it is important to do well.

Teachers spend more time with them.

Are good at using computers for learning maths.
Think it is important for their future jobs to be able to use
computers for mathematics learning.

Source: Selected items from Leder and Forgasz (2000) and Forgasz (2002).

Compare your responses with those of other colleagues and with the findings
reported by Leder and Forgasz (2000]) and Forgasz (2002}, summarised below.

Leder and Forgasz (2000) asked students to indicate whether they believed boys or girls
were more likely to display the particular belief or behaviour. They surveyed a large number
of students in Years 7—10 and found that most students did not gender-stereotype mathe-
matics. Students considered mathematics to be important and interesting for both girls and
boys, that parents believed in the importance of mathematics for girls and boys and that
teachers spend the same time with girls and boys in classrooms. Girls were considered more
likely to be good at mathematics, to enjoy it and to think it important to understand the
work. Students also thought that their teacher expected girls to do well. These results,

which have been confirmed by other recent Australian research (Watt, 2000), indicate that
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there has been a shift in beliefs over the past twenty years. However, some male stereotyped
beliefs remain—for example, students believed that teachers asked boys more questions,
and that boys were good at using computers in mathematics, and thought it was important
to do so for their future (Forgasz, 2002).

Fennema and Sherman (1977) also investigated secondary students’ self-reported
attitudes towards mathematics, and here researchers have continued to find gender differ-
ences that favour males. These attitudes include confidence in mathematics, perceived
usefulness of mathematics, perception of ability, interest, persistence, and intention to
continue further study (Bornholt, 2001; Forgasz, 1995; Watt, 2000). However, differences are
diminishing, and in some studies they are not statistically significant. The reasons that
students give for their success or failure have also been researched. Males are more likely
than females to attribute their success to ability, and females more likely than males to
attribute their failure to lack of ability or task difficulty (Leder, 1993).

Australian researchers have also explored attitudes regarding the use of technology in
mathematics (Dix, 1999; Forgasz, 2003; Vale, 2001, 2003; Vale & Leder, 2004). They have found
a gender-stereotyped view that technology in mathematics in general, and computer tech-
nology in particular, is a male domain. Furthermore, students from both the highest and
lowest socioeconomic groups held this gender-stereotyped view more strongly than
students from middle socioeconomic backgrounds. Boys were also more likely to believe
that computers would aid their mathematics learning and to enjoy the use of computers
in mathematics. The positive attitude that boys display toward the use of computers is
more strongly correlated with the aspiration to do well with technology than to excel in
mathematics.

These studies show that, even though students do not stereotype mathematics as a
male domain, boys remain more positive about mathematics and their own mathematical

abilities than girls.

Participation in mathematics

Gender inequities in mathematics are perhaps most obvious in the difference in partici-
pation rates for males and females for some mathematics courses in secondary schools
and in tertiary mathematics courses (Cobbin, 1995; Forgasz, 2006; Teese, 2000). Women'’s

increasing participation in non-traditional tertiary courses, including mathematics, appears
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to have reached a plateau, leaving a large gender gap. In 2000, 51.2 per cent of Australian
males and 20.7 per cent of females studying undergraduate courses were enrolled in courses
classified as either engineering or science.

In Australia in 2000, boys (93.1 per cent) were more likely than girls (82.5 per cent)
to study a mathematics subject in Year 12 (MCEETYA, 2003). Gender differences in partici-
pation in mathematics subjects in Australia that prepare students for tertiary studies are
not improving (Forgasz, 2006) (see Figure 13.1). In 2004, more males than females were

enrolled in an intermediate level mathematics (such as Mathematics [two-unit| in NSW,

REVIEW AND REFLECT :
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Source: Forgasz, 2006.

Figure 13.1 Enrolments in Year 12 intermediate level mathematics

expressed as percentages of Year 12 cohort by gender, Australia,

2000—04

* Compare the participation and trends in enrolment of males and females in
Year 12 ‘intermediate’ level mathematics over time.

* Discuss possible explanations for this trend with colleagues.

¢ Use the internet to locate the enrolment data for Year 12 mathematics subjects
in your state. How do the participation rates for males and females differ

according to the level of difficulty of the mathematics subject?
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Mathematical Methods in Victoria and Applicable Mathematics in Western Australia).
Overall enrolments declined by 5.2 per cent from 2000 to 2005. The decline for females
(8.7 per cent) has been more dramatic than for males (2.1 per cent). Gender differences
in participation are even greater in the most demanding mathematics subjects offered at
Year 12.

Forster and Mueller (2001) proposed that changes to content, and in particular the
emphasis given to the use of technology in mathematically demanding subjects, may
have contributed to the drift away from participation in the calculus subject in Western
Australia, especially by girls. Teese (2000) has shown that the patterns of participation
in mathematics subjects are also strongly influenced by socioeconomic background, and
are sensitive to changes in curriculum and assessment methods in post-compulsory

schooling.

Theories of gender equity and practice

Over the decades, many researchers have sought explanations of gender differences in
mathematics outcomes and identified approaches for gender equity. By tracing the histor-
ical development of gender awareness and theories to explain gender differences, we can
show how current gender equity practice has evolved and what this practice involves. We
have used the historical and theoretical schema of Kaiser and Rogers (1995) and Jungwirth
(2003) to organise the main ideas regarding gender equity in Table 13.1. The dates in the
table are a rough guide to the period in which these ideas and practices were being
explored. The theories recorded in the table are the ideas being proposed to explain
gender differences at the time, and the paradigms refer to the beliefs held by researchers
and educators. The classroom practices—intervention programs, gender-inclusive and
gender-sensitive—summarise the curriculum, materials or teaching approaches that
were being developed and trialled.

In the following sections, we elaborate on each of these theories and classroom practices

by discussing research studies and examples of curriculum and teaching practice.
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Table 13.1 Historical development of theories and practices for gender equity

Period

Theory

Paradigm

Classroom practice

Before 1975

Deficit theory
Women have less talent,
skills and interest for

mathematics than men.

Gender stereotyping
Mathematics is a male

domain.

Traditional
Little awareness and
attention given to

gender difference.

1975-1980s

Deficit theory
Women have less talent,
skills and interest for

mathematics than men.

Liberal progressive
Women are equal to

men if given an
educational environment
to develop talent, skills

and interests.

Intervention programs
Single-sex classrooms
and programs such as
maths camps for girls.
Focus on particular
knowledge and skills for
women, especially spatial
skills.

Equal treatment in

co-educational settings.

1980s-1990s

Difference theory
Women have different
experiences, skills and
interests with respect to

mathematics from men.

Radical feminist
Women’s experience
and knowledge of
mathematics should be
acknowledged and

valued.

Gender-inclusive

Change the curriculum
and classroom practice
so that the things

women and girls know
about and are good at are
included and women and
girls can build on their

strengths.

1990s-2000s

Gender construction
Gender identity and the
distribution of power is
constructed through our
social interactions; this
may change in different

environments.

Post-modern

Gender is learned but
not fixed, and there
are differences among
women and among

men.

Gender-sensitive
Learner-centred
practice so that the
learners’ interests and
needs drive the teaching
and learning program

in a non-violent and

supportive environment.

329
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Intervention programs

Researchers argued that the reason why girls had low self-concept, a lack of mathematical
reasoning skills, including spatial visualisation, and limited knowledge of career opportuni-
ties was because the socialisation of girls denied them appropriate experiences to develop
these skills and attitudes. The examples of socialisation typically include gender-stereotyped
patterns of play, gender stereotyping of roles and careers, and lack of opportunity to engage
in higher order thinking in interactions in the mathematics classroom. So attention was
given to developing curriculum materials and programs to address these deficits in girls’
experience and knowledge, and supported by the liberal progressive ideas that women can
be equal to men in mathematics if given the opportunity to do so.

Curriculum materials were developed to improve girls’ spatial visualisation—for
example, Space to Grow (Whettenhall & O’Reilly, 1989). ‘Girls can do anything’ and ‘Maths
multiplies your choices” were typical of the slogans used in mathematics and careers
programs that were developed specifically for girls (for example, Barnes et al., 1984; Fowler
et al., 1990). They appeared on stickers, badges and in advertising and curriculum materials
about careers. Biographies of eminent female mathematicians were published (e.g.
Kennedy, 1983).

Co-educational schools also implemented single-sex mathematics classes, and these
became the subject of a number of research studies. Forgasz et al. (2000) reviewed these
studies and reported that single-sex interventions, in themselves, did not achieve equity.
Rather, teachers’ beliefs and behaviours were more important. The views of parents about
these programs were conflicting. Some parents were concerned that these programs were
disadvantaging their boys, whereas other parents viewed them as an opportunity to
improve the outcomes for their sons.

Over time, we have come to appreciate that these programs were important for raising
awareness of gender issues in mathematics and were responsible for removing barriers to
access and improving participation rates in mathematics at the end of the last century.

However, intervention programs were not sufficient to achieve gender equity.

Gender-inclusive curriculum

In spite of the advances made as a result of intervention programs, the deficit view of girls

was criticised for making the assumption that there must be something wrong with girls.
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Instead, researchers argued that the curriculum and teachers’ practices explained gender
inequities, in that the content, methods of teaching and assessment practices favoured
males. It was argued that the culture of mathematics itself was a barrier to women and girls
(Burton, 1995). Furthermore, feminist researchers observed that women and men learned
in different ways (Belencky et al., 1986), and so mathematics pedagogy should take into
account these gender differences in ways of learning. In this period, girls’ experiences of
learning and learning preferences were investigated. The findings resulted in attempts to
change the curriculum in ways that would include women and girls.

In Chapter 2, we discussed two different pedagogical approaches investigated by Boaler
(1997a). One classroom followed a traditional approach, the other an inquiry approach
where students worked on projects at their own pace. Boaler also examined the responses of
girls and boys to these approaches and, as a result, argued that the mathematics curriculum
was the cause of girls’ disaffection with mathematics. She found that both boys and girls
preferred the mathematics program that enabled them to work at their own pace, but their
reasoning was different. Boys emphasised speed and accuracy, and saw these as indicators of
success. Girls, on the other hand, valued experiences that allowed them to think, develop
their own ideas and work as a group; they were concerned with achieving understanding.
She argued that boys’ preferences made them more able to adapt to the competitive
environment of a traditional text-based mathematics classroom.

Gender equity policy in Australia has required the use of gender-inclusive curriculum
materials for some time (Australian Education Council, 1993b). Burton (1995) argued that
inclusive mathematics would be humanising and value cultural, social and personal
connections, as well as value different methods of solution and forms of proof and different
ways of thinking.

Teachers have become more aware of gender bias in the content of mathematics curricu-
lum and alternate materials and assessment methods, although traditional practices of
rigidly timed tests still dominate the high-stakes assessment of Year 12 mathematics. Some
of the early efforts to develop inclusive curriculum focused on developing units of work
where the content, language used and methods were consistent with the research on
girls’ preferences. Examples included Investigating Change (Barnes, 1991) and Up, Up and Away
(Vale, 1987). A key feature of these materials was an emphasis on groupwork, discussion and

explanations of concepts, and relating mathematics to real situations. These materials were
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consistent with the development of problem-solving and modelling in mathematics and
constructivist approaches to teaching and learning. One example of inclusive materials that

were developed in the 1980s is provided in the box below.

Baby and the heatwave

It was a February heatwave. Michael Jones was driving to the shops
with his six-month-old son. He parked his car, grabbed the shopping
list, looked at his son who was now asleep and thought: T'1l only be
about twenty minutes, I won’t wake him, I'll leave him in the car.” So
he wound up all the windows, locked the doors and went off to do his
shopping.

A little while later, on returning to the car, he saw someone
smashing in the side window. He ran to the car. “What do you think
you are doing,” he cried, ‘trying to steal my son?’

‘Steal him? said the stranger. T'm trying to save his life.’

Why did the stranger think the baby’s life was endangered? Was he? If so, would
Michael Jones have been as unsafe in the car under the same conditions? To
answer this question you will model a baby’s body and adult’s body to find out

about the relationship between volume and surface area.

Source: Year 11 modelling, Curriculum Branch, Department of Education, Victoria

Gender-sensitive curriculum

Difference theory has been criticised for essentialising women and girls—that is, for
assuming that their interests and preferred ways of learning are homogenous. The use of
real applications in mathematics was thought to be universally attractive for girls, but this
does not accord with the actual preferences of successful female research mathematicians
(Day, 1997). These women were drawn to mathematics because of the creative and intuitive
aspects of the discipline. Some were attracted to the abstract concepts of mathematics, and

others to the applicability of mathematics to problems with social benefit.
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Post-modernist researchers argue that there are multiple masculinities and femininities.
Connell (1996) explains that, where multiple masculinities coexist, there is a hierarchy, and
hegemonic (that is, dominant) masculinity ‘signifies a position of cultural authority
and leadership’ and subordinates women (1996, p. 5). A number of studies have observed
differences among girls and boys in mathematics classrooms (Barnes, 2000b; Chapman, 2001;
Vale, 2002a, 2003). Each of these studies showed how the behaviours of a particular group
of boys dominated the classroom and were supported by the practices of the teacher.

In one classroom where students were using laptop computers regularly in mathemat-
ics, the teacher interpreted one group of boys’ interest and competence with computers as
achievement in mathematics, while other boys and girls felt ‘overpowered’ by them (Vale,
2003). These boys competed for attention in general classroom discussions led by the
teacher, denigrated girls’ and boys” mathematics and computer achievements, took over
other students’ computers to solve the problem or do it for them, and harassed students
verbally and physically. In another classroom, where students were using computers in
small groups, Barnes (2000b) found that the attitude and behaviour of the dominant boys
obstructed the learning of others, including the girls, and limited their capacity to learn in
a small group on collaborative tasks. In the same classroom, another group of boys, who
had the ‘power’ of technical and mathematical competence, could not take advantage
of the cooperative learning environment because of their poor communication skills.
Chapman (2001) shows that ‘triadic dialogue’—that is, the question—answer—feedback
(see Chapter 3 for an example) commonly used in a traditional classroom—advantages the
dominant boys and disadvantages many other boys in the classroom. She advocates that
teachers ought to adopt a ‘language-sensitive approach’ and use a range of literacy strategies
and language representations in mathematics in order to include all boys and girls.

Walden and Walkerdine (1985) argue that girls are often placed in a ‘no-win’ situation
because their success is taken to be achieved in the wrong way—that is, through rote
learning, hard work, perseverance and carefulness rather than natural talent, flexibility and
risk-taking. Girls with these ‘masculine’ attributes are judged, or perceive themselves to be
judged, as not feminine. The following case study (see box) illustrates this point. It is taken
from a study of a mathematics class that worked in a computer laboratory for one of their
mathematics lessons each week (Vale, 2002a). The girls in this class were not homogenous

and had differing attitudes to the use of computers in mathematics. Beckie was one of the
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girls who took risks and interacted with the computers in ways more usually associated
with masculine culture, but she resisted a ‘geek girl’ identity and challenged the passive

‘good girl’ feminine identity.

Beckie

Beckie, the only Year 8 girl in the class who owned a laptop computer, sat with
the boys who owned and brought their laptops to class. She did not, however,
bring her laptop to school but used a PC in the laboratory. She tutored other
students about the software and mathematics, and also collaborated with them
to solve problems they encountered. For example, on one occasion, Beckie
argued with Colin about the order of operations for solving the equation that was
set for their slide show presentation. Instead of allowing them to work it out
together, the teacher intercepted their argument and told them the answer to
silence their noisy debate.

During off-task interactions with other students—and especially with boys—
Beckie exchanged negative personal insults. The teacher monitored and managed
Beckie’s behaviour: ‘Beckie, sit down and do some work.” She was one of two girls
in the class to dominate the requests for assistance by the teacher. She would
interrupt and call out on numerous occasions during the lessons that were
observed. The teacher also held extended interactions with Beckie in which they
argued about the mathematics or the software functions. For example, in the
following episode Beckie wanted to know whether she needed to record on aslide

the next operation in the solution of the equation:

Beckie:  Yeah, is that right?

Teacher:  Yeah, that’s right. Now you do that. Let’s go back and highlight that
little bar there and click on the underline.

Beckie: OK.

Teacher:  Yeah. Is that the first step?

Beckie:  Yep.
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Teacher:  If you want to put something down the bottom, you can write ‘add 5
to both sides’.

Beckie:  But that’s what I did.

Teacher:  No you just write it. Add 5 to both sides.

Beckie was confused by the teacher’s instruction. The teacher emphasised
aesthetics in the presentation and description of the solution process, but Beckie
was concerned with the method of solution and the number of steps to be
included in the slide show.

Beckie appeared to enjoy the lessons and to be confident using computers.
During off-task activity, she accessed and used other software. On three occasions
during one lesson, Beckie praised her own work and sought praise from the
teacher: ‘My presentation’s fantastic sir.” On each of these occasions, there was no
response from the teacher.

Later, during an interview, the teacher revealed that he regarded Beckie as a

low achiever who required more of his attention.

REVIEW AND REFLECT : Why might the teacher have formed these views about
Beckie? How else could the teacher have responded to Beckie’s behaviour and
needs?

The studies discussed in this section have shown that the beliefs of the teacher, the nature
of classroom tasks, the nature of mathematical discourse and the practices of the immediate
working group often place males in an advantageous or privileged position within the math-
ematics classroom and the discipline. Teachers need to be aware of the needs and preferences

of all students and sensitive to between- and within-gender differences.
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Gender equity in practice

The Australian Parliamentary Inquiry into the education of boys in Australia recommended
that ‘the major focus of pre-service and in-service teacher education should be on equip-
ping teachers to meet the needs of all boys and girls’ (PCA, 2002, p. 86). Hence a
learner-centred practice is implied. Given that a range of needs and learning preferences
exist among the boys and girls in the classroom, teachers need to find out about the learners
and to be flexible and use various approaches in their teaching. Also teachers need to be
aware of the learning behaviours that they value and to be explicit about the mathematical
understandings and practices to be learned and demonstrated in the classroom. They also
need to employ effective classroom management strategies to ensure that everyone in the
classroom is supported and valued.

In practice, equity will come about through the adoption of the various practices that
have been developed over time to address gender inequities. Goodell and Parker (2001,
pp- 419-21) list twelve practices for teachers and curriculum designers to follow to create a

‘connected equitable mathematics classroom (CEMC)’:

* All students have access to academically challenging mathematics curricula.

* Students are encouraged to develop confidence in their mathematics ability and
positive attitudes to mathematics.

* Basic skills are developed that will enable students to be mathematically literate in
the world outside school.

* The learning environment encourages students to develop their own voice and
construct their own knowledge.

* Teachers have high expectations of all their students.

* Teachers connect mathematics with the real world.

* Teachers are able to recognise and act on inequities in their classroom.

¢ Teachers use a variety of teaching and assessment practices.

* The curriculum is designed within a social and cultural context, challenges
stereotypes and values the contributions of women and minority groups.

* The curriculum includes real-world problems.

* The curriculum includes a focus on issues of social justice and world problems.

* The curriculum explicitly states equity goals.
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You will notice that these practices draw heavily on the ideas and approaches discussed
in this chapter: intervention strategies to address specific learning needs of students; inclu-
sive practices that relate mathematics to the experiences of girls and boys in the classroom;
and learner-centred practices that build on students’ prior understanding through a range
of inquiry-based activities. In the next chapter, we consider other sociocultural factors in
the learning of mathematics, and discuss equity in this broader social context. We will revisit

these teaching practices and present a model of socially just curriculum.
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CHAPTER 14

Social and cultural issues
in mathematics learning

In Chapter 13 we discussed gender issues and the way that teachers can work towards
gender equity. Mathematics teachers also recognise the diverse social and cultural experi-
ences and identities of students in their classroom. The cultural heritage and social
backgrounds of students are related to advantages (and disadvantages) in schooling, and
hence educational success. The rhetoric of Western countries is that mathematics learning
is to prepare students for active citizenship, but often the reality is that mathematics educa-
tion maintains the social order (Skovsmose & Valero, 2002). Mathematics achievement is a
significant factor affecting success in schooling (Rothman, 2002). In this chapter, we discuss
social and cultural issues and the ways these issues are related to students’ mathematics
learning. Different interpretations are then presented of socially just curriculum and
teaching strategies that enable success in mathematics for all students and reduce the

inequities in our society.

Sociocultural factors and students’ mathematics learning

In this section, we will discuss the relationship between various sociocultural factors
and mathematics participation and achievement. These factors include socioeconomic
status, ethnicity and language spoken at home. We also consider these factors in relation
to the sociocultural norms of the mathematics classroom and practices of mathematics

teachers.
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Socioeconomic status and mathematics achievement

National and international studies of Australian students at different levels of secondary
schooling show that there is a significant relationship between socioeconomic background
and mathematics achievement (Lokan et al., 2001; Rothman, 2002). The findings from the
Program of International Student Assessment (PISA) study, illustrated in Figure 14.1, show
the positive relationship between social background and mathematical literacy for fifteen-
year-old students in Australia and other countries (Thomson et al., 2004). The regression
line for Australia is steeper than for other OECD countries, indicating that socioeconomic
status has a larger effect on mathematical literacy achievement in Australia than in these
other countries. For Australia, the regression line is also straighter, showing that this effect

increases as socioeconomic status rises.
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Figure 14.1 Regression of mathematical literacy on social background by country

Given these results, it is not surprising that participation and achievement in post-
compulsory mathematics in Australia is also related to socioeconomic background.

Analysing Year 12 mathematics results from Victoria, Teese (2000) found that:
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In the urban regions [of Melbourne| where working-class and migrant families are
highly concentrated, every third girl can expect to receive fail grades in the least
demanding mathematics subject. Among boys—whose attraction to mathematics is
even more fatal—failure strikes more than 40 per cent. The better students gravitate
to the mathematics subjects that lead to university. But here too failure awaits them,

one in three. (2000, p. 2)

Social capital is one explanation for the relationship between socioeconomic status and
achievement. This notion embraces not only the availability of economic resources within
the family to support learning (such as internet access from home), but also the cultural
knowledge of education within the family, such as parents’ level of education—including
level of mathematics learning—and other community and cultural connections of the
family that support academic success. Teese found that, as mathematics curriculum
changed over the years, students of low socioeconomic status (SES) were also disadvantaged
because of lower levels of experience and qualifications among their post-compulsory
mathematics teachers. He also found that, over time, just as low SES students started to
improve their relative performance in mathematics, a curriculum change restored the
socioeconomic class differences in achievement.

Cooper and Dunne (2000) investigated how socioeconomic status influenced students’
learning outcomes in mathematics. They analysed the responses of students to ‘real-world’
worded problems. They found that, on average, students from a working-class background
scored lower on these problems than other students. They observed that working-class
students often used their personal experiences of these ‘real’ problems when providing
solutions. For example, when solving a problem about a bus timetable schedule, some
working-class students explained that the bus didn’t run on a Saturday at that time.
Middle-class students, on the other hand, recognised that the context of the problem was
irrelevant to the solution (i.e. a ‘wrapper problem’—see Chapter 3), and were able to
interpret the problem and provide the correct solution. As discussed in Chapter 3, teachers
therefore need to be careful in selecting problems, and they need to assist students’

interpretation of problems and focus their attention on the mathematical ideas.
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McGaw (2004) and others have argued that the learning of marginalised students is not
prioritised in Western developed countries. Commenting on the findings from the PISA

study, he says:

Australia has celebrated its high average performance and noted the problems of its
15-year-olds from socially disadvantaged backgrounds but does not appear to have
addressed the causes of its inequitable results in any systematic way. There is a
tendency in Australia to dismiss attempts to redress inequities in education as likely
to result in ‘dumbing down’ of the system . .. ‘Leveling up’ is clearly an alternative.

(2004, p. 10).

Indigenous students

While the gap in participation and achievement between Indigenous students and
non-Indigenous students was closing at the turn of the century, it remains wide. In 1996,
only 54 per cent of Indigenous students participated in secondary schooling, compared with
84 per cent of non-Indigenous students. Only 32 per cent of Indigenous students who
commence secondary schooling complete Year 12, compared with 73 per cent of non-
Indigenous students (Buckskin, 2000). Participation rates in secondary schooling for
Indigenous students vary across Australia. While many Indigenous people live in highly
populated locations, the reality for Indigenous students living in remote communities
is that they must leave home if they want a secondary education. Data from the PISA
study, which tested fifteen-year-old students, showed that the mathematical literacy of
Australian Indigenous students was significantly lower than non-Indigenous, although
some Indigenous students performed at the highest level (Lokan et al., 2001). The geo-
graphic isolation of Indigenous students does not explain these results.

Unfortunately, many Indigenous students experience school differently from non-
Indigenous students. They may be stereotyped and marginalised in classrooms by teachers,

by teaching practices, by the curriculum and by the culture of schooling (see box).
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Che: A case study

Che, a Koori student, was a member of a multi-ethnic Year 9 class, and the only
Indigenous student in an urban government school. The class was studying
geometry and the students used their laptop computers and The Geometer’s Sketchpad
during five lessons in the period that I observed the class. Che showed a lot of
interest in the computer-based mathematics lessons. He collaborated with other
students to learn how to use the animate function in the software and discover
some mathematical ideas. Like other students in the class, Che was sometimes
off-task. He used the computer to do things other than the set mathematics
task, and sometimes moved around the room to talk to other students. On one
of these occasions, he collaborated with other students to load other software
(Microworlds) from one laptop to another. In the following extract of the transcript
of the lesson about the sum of exterior angles in polygons, Che discussed the
results of the guided investigation with two other students, Lawrie and Darren.
They had been following instructions for this investigation from a worksheet.
Che was the first student to complete the task. He had completed the task for

homework, and Lawrie asked him what he wrote for the conjecture:

Che: I done all that. I done all the way to here.

Lawrie:  What do you do here, what did you write?

Che: Um, I wrote, um, I found out that all the angles equal up to 360
degrees.

Lawrie:  Not matter what shape as long as its perimeter . . .

Che: I found it for all pol . . . polygons or something like that equalsup to . . .

Darren:  The hexagon equalsup to . ..

Che: It’s not a hexagon. Do control later on. No, no you don’t. You go to
calculator. Where’s your calculator?

Lawrie:  Ialready calculated it (points to the result on the screen).

Che: Yeah, well there you go. You done it all. Now you just write there
(points to the screen) that all the angles equal up to 360 degrees. That’s

your conjuncture (sic). (Waves his hands as if to say ‘or whatever itis’.)
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Lawrie: ~ Where’s the text box?
Darren: (At the same time) Conjuncture.

Che: You go (he points to the tool bar) text box.

In a subsequent lesson, students were constructing a series of geometric
shapes. Some students constructed by eye and did not measure lengths or angles.
Those who did measure angles tended to erase incorrect line segments and try
again. No students were observed using the parallel line tool in the construct
menu. Che was the only student who used the drag facility to make changes to

his shapes.

REVIEW AND REFLECT :

* Discuss this case with colleagues.

* What surprises you about this case? How is this case similar to, or different
from, your knowledge or expectations of Indigenous students?

* Interactions between the student and the teacher have not been included in this
case. What do you think would be the likely content of the interactions between
Che and the teacher? What feedback would you give Che?

e What advice would you give a pre-service teacher colleague who was teaching
Che?

Language and language background

With the exception of Indigenous students, mathematical achievement is not related to
cultural background or language spoken at home (Lokan et al., 2001). Differences within
and between cultures with regard to socioeconomic status and study habits explain more of
the variation in achievement than does non-English language background. Nevertheless,
we know that language plays an important role in mathematics learning, and so we can
expect that, when teachers and learners do not share the same language or culture or

system of reasoning, mathematical learning will be impeded (Ellerton & Clarkson, 1996).
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In Chapter 2, we indicated that language and communication are important aspects of
constructivist and sociocultural theories of learning, and in Chapter 3 we showed how
language is important for establishing meaning in mathematics and making connections
between concepts, symbols and real situations.

Even though language background is not related to achievement, the vocabulary and
grammar in problems and textbooks can be difficult for students whose first language is
not English, and especially for students who are recent migrants to Australia and still
learning the language. MacGregor and Moore (1991) explain that the language of counting,
measuring and comparing, the meaning of articles and prepositions, and the verb ‘to be’
are particularly difficult. Furthermore, some problem-solving tasks and investigations
place a high level of demand on comprehension and writing skills. Students need to be
able to formulate conjectures, explain and justify their methods of solution, and pose
mathematical problems. These skills are especially demanding for students whose first

language is not English.

REVIEW AND REFLECT : Consider the following problem.

Emma wants to buy a car for $28 000. She plans to pay a deposit and
makes equal monthly payments over four years. If she pays a deposit of
$3000 how much will her monthly payments be?

e Compare your interpretation of this problem with that of a colleague. What diffi-
culties do you think students would have with the language in this problem?
Rewrite this problem so that it could more easily be interpreted.

* Compare and discuss the vocabulary and structure of the language used in the
explanations, examples and problems of two different textbooks for the same

mathematical topic.

Sociocultural norms and teachers’ practices

The sociocultural norms of the classroom refer to the language, styles of communication
and classroom rules used by teachers and learners that convey meanings about mathemat-

ics, whatitis and how it is practised. In Chapter 3, we discussed the different approaches that
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teachers use to control or direct the discussion of mathematics. A number of researchers
have observed the kinds of questions and styles of communication that include or exclude
students (e.g. see Chapman, 2001). In the previous chapter about gender, we discussed the
way that language and the nature of interactions in the classroom can exclude particular
girls and boys. Similarly, sociocultural norms may exclude particular cultural or ethnic
groups. For example, students whose first language is not English may be reluctant to
respond to questions in a public forum or contribute to discussion in small-group tasks.
Furthermore, a teacher may not accept a method of solution that is commonly used and
taught in another country.

The assessment of students” work is another element of teachers’ practice that may
unconsciously be influenced by the sociocultural background of students. Morgan and
Watson (2002) conducted a study of teachers’ assessment of students’ mathematical learning
in informal classroom assessment and formal written responses to mathematical problems
in high-stakes assessment tasks. They found that teachers often based their evaluation of
students’ work on surface features of the work and their prior expectations of students. As a
consequence, teachers awarded low grades to work that was produced by students from

socially disadvantaged backgrounds and of whom they had low expectations.

REVIEW AND REFLECT : Observe a teaching episode and write a record of the

teachers’ questions and students’ reactions and response. Alternatively, videotape

(or audiotape] one of your teaching episodes. Use the following prompts to reflect

on the sociocultural norms and inclusion of students in this lesson:

* What were the rules (explicit or implicit) for engagement in this lesson?

* Who participated and who did not participate?

* What language knowledge did students need in order to participate?

e What types of questions were used?

* How did the teacher control the discussion?

* How do you think the students felt about their inclusion or exclusion?

* What would you change about this teaching episode and how would you
manage the discussion? Why?
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Equity and social justice

Teachers of the most disadvantaged students are often acutely aware of the difficulties they
face. Sometimes these students are from a non-Western cultural background, they may be
Indigenous and/or English is not the language spoken at home. Perhaps they are refugees
with interrupted schooling. Almost certainly, the most marginalised students are also from
low-income families. A mathematics teacher in a school with many students from dis-
advantaged backgrounds recently described the way in which these sociocultural factors

affected her students’ mathematics learning:

I always use the analogy that we’re all running the same race in the end, but our kids
are jumping hurdles. Some kids are running flat races. If you’re at |a private school in
an affluent suburb|, you’ve got a pretty easy hundred metre run. Our kids tend to fall
because they’re jumping over stuff. So to me the school has to make up for that, so
[social justice is| about taking away those hurdles. (Mathematics teacher, western

suburbs school, Melbourne)

This teacher believed it was the school’s and teachers’ responsibility to ‘pre-empt what the
barriers are going to be and teach kids how to go round them, go over them, or knock ’em

down’.

REVIEW AND REFLECT : What does equity and social justice mean to you?
Discuss with your colleagues in a small group and write a definition upon which
you can all agree.

In the Adelaide Declaration on National Goals for Schooling in the Twenty-First
Century (MCEETYA, 1999), the governments of Australia agreed that all students should be
numerate and literate. Particular reference to the needs of Indigenous students was included

in the statement:

Aboriginal and Torres Strait Islander students [should| have equitable access to, and
opportunities in schooling so that their learning outcomes improve and, over time,

match those of other students.
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In Chapter 13, we defined equal opportunity, equal treatment, equal outcomes and equity.
Equitable practice concerns paying attention to the different needs of students and teaching
to these needs. Equity and social justice, therefore, do not mean equal treatment, but must
embrace fairness and mutual respect in response to difference. A secondary mathematics

teacher explained it this way:

If you are fair to everyone and if you are just to everyone then they respect you ...
|The students| should have a feeling that they are in a very just society and that in the
classroom they should find justice everywhere. (Mathematics teacher, western

suburbs, Melbourne)

Social justice is about ‘closing the gap’, ‘levelling up’ and empowering students. Teaching
mathematics well gives students access to knowledge of mathematics, and the power and
success in society that this elicits. That is, learners are empowered by their mathematical
literacy so that they can function effectively and critically as citizens of a democratic society,
and be agents in their own use and learning of mathematics (Steen, n.d.). Skovmose and
Valero (2002) argue that teachers should use mathematical contexts of social significance to
teach students about decision-making.

The following sections of this chapter examine the approaches that teachers have taken
for ‘closing the gap’ or ‘levelling up’. We will show that teaching mathematics well involves
making connections between mathematics and real situations so that students can use

mathematics to understand and improve their position in society.

Approaches to equity and social justice

Teachers have developed a number of different approaches for taking into account the social
and cultural factors influencing the performance of disadvantaged students, and to resolve
the conflict between their experiences of mathematics outside and inside the classroom.
Bishop (1994) provides a framework with which to describe and discuss these different
approaches, which he calls assimilation, accommodation, amalgamation and appropriation. For each of
these approaches, Bishop summarises the assumptions about the role of culture in deter-
mining the mathematics curriculum, the nature of the curriculum, teaching approach

and the language of instruction. Using the curriculum headings from his framework (see



348 EQUITY and diversity in MATHEMATICS EDUCATION

Table 14.1), each approach is described and examples are provided in the remainder of this

chapter. We have included a separate discussion on teaching Indigenous students.

Table 14.1 Approaches to social justice

Approach Assumption Curriculum Teaching Language
Traditional No issues Traditional No modification English
Assimilation Student’s culture Multicultural: Caring approach English plus ESL

should be useful

for examples

Some cultural

contexts included

with some group

work

teaching

Accommodation

Student’s culture
should influence

education

Ethnomathematics:

Restructured
according to child’s

culture

Modified to style
preferred by

students

English language
support and
acceptance of
home language in

the classroom

Amalgamation

Cultures adults
share
significantly in

education

Democratic (or
critical):

Jointly organised
by teachers and

community

Shared or team
teaching,

bi-cultural teaching

Bi-lingual

Source: Adapted from Bishop (1994).

Multicultural curriculum

Characteristic of a multicultural approach is a caring environment and the use of contexts
and problems with cultural significance to students. Strategies to support the learning and
use of English in mathematics are also important to the multicultural approach.

Knowing one’s students is an expectation for quality in mathematics teaching (Australian
Association of Mathematics Teachers, 2006). In a multicultural classroom, teachers need to
know about students’ prior mathematics knowledge and skills, and also their language
knowledge. Getting to know students also enables teachers to make connections to contexts
that have meaning for them. Equally important is some understanding of the values and
attitudes that the students have about learning, and learning mathematics in particular. If

they have had some schooling in other countries, they may have different expectations
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about how a mathematics lesson should be conducted. Students may also be accustomed to
presenting solutions to problems in a different way. These differences need to be celebrated
rather than minimised in a mathematics classroom, as they illustrate the richness of mathe-
matical knowledge and the flexibility involved in making sense of mathematics.

It is important not to stereotype students of particular ethnicities. Knowing one’s
students enables teachers to remain sensitive to their needs and to engage them more
effectively in the mathematics lesson. Teachers are thus able to select problems and contexts
that are more engaging for students, as well as select content and tasks that address their
mathematical learning needs.

Furthermore, mathematics may have a very rich history in students’ cultures. Investi-
gating the origins and historical development of mathematical ideas and algorithms is one
way of including and valuing the mathematics of various cultures. It also enables teachers
to challenge the Eurocentric historical record of mathematics (Shan & Bailey, 1994). For
example, the Chinese had documented Pythagorean triples long before Pythagoras, and the

earliest known proof appears in an ancient Indian text.

REVIEW AND REFLECT : In their book, Multiple factors: Classroom mathematics
for equality and justice, Shan and Bailey (1994) document a number of examples
of non-Western mathematics—for example, the number patterns of Shakuntala
Devi and the Chinese Triangle (known in Western culture as Pascal’s triangle).

* Use the internet to investigate the history of a mathematical idea from a non-
European country (for example, Hindu arithmetic, Babylonian methods of
multiplication, the Chinese Triangle, ‘Al-jabr’).

* Develop student materials for a mathematical investigation that includes the
use of material from the internet.

MacGregor and Moore (1991) provide advice on designing teaching and assessment
materials for students whose first language is not English. They advise that teachers should
read the materials with students and make sure that terms and instructions are understood.
Teachers should also train students in techniques for completing assignments, problem-

solving tasks and investigations, including the writing styles and formats. Student work
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from previous years can provide invaluable examples for students. They emphasise the need
to teach vocabulary (such as parallelogram or domain) and terms that inform processes to be
followed (such as evaluate, simplify and factorise). Key mathematical terms should be written
down and visible, not just spoken. They also recommend that teachers assist students to
comprehend and interpret word problems and diagrams. MacGregor and Moore document
strategies and activities for developing mathematical language, based on the practices of

teachers of English as a second language. Some examples include:

* labelling exercises using key terms on cards;

* true/false exercises for mathematical statements written in words;

* cloze exercises where sentences are completed using a list of words (see Figure 14.2);

* problem reconstruction, where steps in the solution process are written separately
on cards using symbols and words and students arrange both sets of cards to show
the solution process;

* mix-and-match cards—for example, cards to match graphs with written descrip-
tions of their features, or mathematical vocabulary and their meaning; and

* cooperative learning problems, where clues or pieces of information about the
problem are written on separate cards, and distributed among a group of students
who have to share their information by reading and explaining and not showing,

to solve the problem together (see Gould, 1993).

Fill the blanks by choosing the correct words from the list.
Word list: dilated reflected rotated translated vertically horizontally

The basic parabola y = x?is shown in each picture as a reference.

&

-2.00 2.00 .00 6.00 has been

The graph of the basic parabola

3 units

-2.00 and 2 units

Source: MacGregor and Moore (1991, p. 89).
Figure 14.2 Cloze task
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REVIEW AND REFLECT : Use the strategies suggested by MacGregor and Moore
above to design a set of language-support activities for a mathematics topic.

Ethnomathematics

The essence of ethnomathematics is that mathematical knowledge is culturally developed.
Mathematics has developed differently in different cultures and throughout history accord-
ing to ‘the techniques, modes, arts, and styles of explaining, understanding, learning about,
land| coping with the reality in different natural and cultural environments’ (D’Ambrosio,
1998). Ethnomathematics has been investigated from three approaches: the mathematical
knowledge of traditional cultures; the mathematical knowledge in non-Western societies;
and the mathematical knowledge of different groups in society (Bishop, 1994). An ethno-
mathematics curriculum differs from multicultural curricula because it is reconstructed
from cultural knowledge rather than just including some examples.

When teaching students from a particular cultural group, studying the mathematics of
their culture can give them a sense of ownership and provide a bridge to Western mathe-
matics. Barton (2001) argues that it is important for Indigenous students to understand the
quantity, relationship and space (QRS) system of their own culture in order to appreciate
and understand another system—that is, the dominant system of Western mathematics.
This involves teachers working with communities to understand their mathematical
thinking and how it is involved in the things that are important in their culture. Harris
(1991) documents some of the traditional knowledge of Indigenous Australians, such as
the art of the Western Desert people, their kinship systems and spatial awareness. However,
a school-based curriculum that includes examples from traditional culture runs the risk
of not only trivialising the mathematics but, more importantly, embarrassing the students
from ethnic minorities because they are made to feel primitive rather than engaging
their interest and valuing their culture (Lerman, 1994). So this approach needs to be used
judiciously in a multicultural classroom. Examples of non-Western mathematics were
present in the previous section. Approaches for teaching Australian Indigenous students are

discussed in the next section.
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Indigenous students

Mathematics educators who have worked closely with Indigenous people in Australia all
make the point that it is important not to stereotype or essentialise Indigenous students—
that is, think that all Indigenous students are the same (Matthews et al., 2003; Matthews
et al., 2005). In order to teach Indigenous students, teachers need to learn about Indigenous
people, their culture and their ways of knowing, and to examine their own attitudes, beliefs
and values about mathematics (Perso, 2003). These principles apply to teachers of Indig-
enous students in urban and regional Australia as well as in remote communities.

Thelma Perso (2003), who conducted a study into ‘the gap’ between Indigenous and non-

Indigenous student achievement in mathematics and numeracy tests, argued:

I now believe that the notion of ‘closing the gap’is arrogant and misguided. It carries
with it a sense of ‘let’s do what we can to make these people like us—in other words,
this closing of the gap is about Western society remaining constant and Aboriginal
society moving along the continuum to join it.

My personal view is that, until we as a society can view ‘closing the gap’ as being
one of both groups—Aboriginal and non-Aboriginal-—moving closer together and
learning from each other, little will be accomplished in this area. There is a need for
teachers in our schools to move beyond ‘tolerance’ to ‘respect’. This will only occur if
teachers learn to understand the Aboriginal children (and children of other minority

groups) that they teach. (2003, pp. vii—viii)

Perso proposes that three aspects of practice need to be included and synchronised for the
effective learning of Indigenous students: Indigenous people and their culture; the mathe-
matical understandings of Indigenous students; and explicit teaching of mathematics.
Cultural inclusion is clearly important for enhancing the learning of Indigenous
students. Peter Buckskin (2000) explains that the principle of inclusion involves flexibility,
participation of Indigenous people in educational management and delivery, teaching
Indigenous languages, and increasing the cultural relevance of mathematics curriculum.
He argues that flexibility in content, pedagogy and credentialling is important for Indig-
enous students who are a minority in the classroom, who have had unsuccessful or

damaging experiences of school, or who live in remote communities or in communities
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with high mortality rates. Formal involvement of Indigenous people in the school as
teachers or tutors or mentors, and Elders passing on their knowledge, has improved the
educational outcomes of students.

Jan McCarthy (2002) describes a Year 10 numeracy project, Where in the world is Spinifex Longi-
folious? She was teaching at Tennant Creek, a small town in the Northern Territory, in a
school where half the students were Indigenous. After asking her students to tell her what
they thought was missing from their mathematics lessons, she concluded: “We needed
something outdoors, involving technology, that would foster working in teams, something
that supported and extended students’ literacy skills development, that would make them
aware of other cultures around them and that would keep them amused (2002, p. 25)". The
unit that she designed required the active involvement of Indigenous women from the local
Tennant Creek community, respect for Indigenous knowledge of medicine, and was based

on the needs and interests of the students. The project is outlined in the box below.

Where in the world is Spinifex Longifolious?

The desired outcomes for the project were:

1. Students will identify the position of and best route to locations of local bush
medicines.
The project involved learning to navigate with a hand-held global positioning system (GPS) and
then using the information from the unit to produce both formal and informal (mud) maps.

2. Using appropriate hardware and software, students will produce an inform-
ation package that will communicate the results to different audiences.
This was suitably vague so as to give the students the opportunity to produce a package with which
they were comfortable. Some of the options would be to produce a web-based presentation, a
pictorial presentation, a highly literate or formal presentation and some students would produce an
audio commentary.

3. The package will include charts, scale maps, diagrams, transcripts, photo-

graphs and video footage.

Source: McCarthy (2002, p. 25).
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Peter Buckskin (2000) recommends that teachers adopt particular practices when
teaching Indigenous students. These include working with smaller class sizes, small groups,
or individually with some Indigenous students, ensuring that grouping and withdrawal
practices allow Indigenous students to re-enter the mainstream classroom, and encour-
aging students to work cooperatively.

When working with Indigenous students, explicit teaching of mathematics involves
paying attention to language, building bridges with their cultural context, and modelling
and explaining mathematics. As many Indigenous students—especially in remote commu-
nities—have a non-English-speaking background or use Aboriginal English in their
community, teachers need to carefully explain the language of mathematical symbols
and concepts. Furthermore, some Western mathematics ideas are not consistent with the
cultural knowledge of Indigenous students, and the contexts of mathematical problems
may not be familiar to them. Teachers therefore need to provide a context for a mathemat-
ical task, such as measuring or estimating, so that the purpose of learning the mathematics
is clear (Perso, 2003). On the other hand, the spatial concepts of Indigenous students may be
well advanced (Harris, 1991), as Indigenous people tend to use cardinal direction and land-
marks very effectively for location and orientation, and spatial awareness is developed in
children from a young age. Even so, the mathematics teacher needs to build bridges
between the students’ cultural use of spatial location and orientation and the Western,
textbook meanings of these concepts.

Modelling and explaining with concrete materials is important. Teachers also find that
games—especially those that are familiar and played in their community—are especially
engaging for students. For example, students could be taught to play purposeful mathe-
matical games (e.g. see Swan, 1997), or teachers could learn the intricacies of Indigenous
students’ card games to gain some insight into their mathematics. Similarly, problem-
solving tasks, such as Maths300 tasks (Curriculum Corporation), some of which also include
computer simulations of problems, have been used very successfully with Indigenous

students (Improving Outcomes in Numeracy: The INISSS Project).

Democratic or critical curriculum

In Chapter 2 we described Boaler’s (1997a) research on a project approach to teaching and

learning mathematics. The students in this classroom completed mathematical investigations
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of phenomena or topics that were connected to their experiences and environment. In
various countries around the world, teachers have adopted this method of teaching mathe-
matics to engage students and enable them to develop and use mathematical knowledge to
solve problems that they will encounter at school, at work and in the community (Boaler,
1997a, 2002; Borba & Villarreal, 2005; Franklin, 1997, 2001; Gutstein, 2003; Ladson-Billings,
1995; Skovmose & Valero, 2002).

Gutstein (2003) found that using mathematics to examine social issues in the commu-
nity, including racism and discrimination, can be particularly empowering for marginalised
students. He used projects in his middle years classroom to gather data about issues of
personal and social relevance to his students, such as teenage pregnancy and local housing
programs (see Gutstein & Peterson, 2006 for an excellent collection of teaching resources
based on this work). Some other examples are provided in Table 14. 2. The content of math-
ematical inquiry consistent with a democratic or critical curriculum approach contributes

to the development of critical mathematical literacy for active citizenship.

Table 14.2 Mathematics problems of personal or social relevance

Maths and booze

If you were planning to drive to and from a party and stay from 8.00 p.m. to 1.00 a.m., what number, capacity
and strength of alcoholic drinks could you drink in that time and have a blood alcohol content [BAC) below 0.05
any time after leaving the party? Explain. Show your working. lllustrate your BAC level over the time period in

a graph.

Home loan interest rates
Some political commentators claimed that the strong campaign on interest rates conducted by the Coalition
parties was responsible for their success in the 2004 federal election. Why do interest rates have such a strong
influence on election outcomes?

Investigate the effect of interest rates on weekly payments for home loans. Compare the proportion of

average weekly income paid in home loan repayments over the last fifteen years.

Frankenstein (1997, 2001) is another US educator who has taught mathematics for social
justice at the college level for many years. Her students are mainly working-class adults

who failed to achieve success in secondary school mathematics. She defines her curriculum
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goals in terms of developing students’ ability to pose mathematical questions in order to
deepen their appreciation of social issues and to challenge people’s perceptions of those
issues. One of the real-world issues investigated by Frankenstein’s students involves
challenging official interpretations of the unemployment rate. We have adapted this
investigation by providing recent data from the Australian Bureau of Statistics in Table 14.3.

The ABS uses the following definitions in determining the unemployment rate:

* Employed: persons aged fifteen years and over who worked for any length of time
during the reference week for pay, profit, commission, payment in kind or
without pay in a family business, or who had a job but were not at work.

*  Unemployed: persons aged fifteen years and over who were not employed during the
reference week, but who had actively looked for work and were available to start
work.

*  Labour force: all persons aged fifteen years and over who, during the reference week,
were employed or unemployed.

*  Marginally attached to the labour force: people who wanted to work and were either
actively looking for work but not available to start work in the reference week,
or people available to start work within four weeks but not actively looking for
work.

* Discouraged jobseekers: people who were marginally attached to the labour force,
wanted to work and who were available to start work within four weeks but whose
main reason for not taking active steps to find work was that they believed they
would not be able to find a job for reasons of age, language or ethnicity, schooling,
training, skills or experience, no jobs in their locality or line of work, or they
considered that there were no jobs at all available.

*  Unemployment rate: the number of unemployed expressed as a proportion of the
labour force.

* Participation rate: the labour force expressed as a percentage of the civilian

population.
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Table 14.3 Civilian population aged 15—-69 years, labour force status, September 2004

Males Females Persons
'000s '000s '000s
Civilian population aged 15-69 years 6,989.9 70814 14,071.3
Persons in the labour force 5,631.6 4,600.5 10,232.1
Employed 5,3211 4,348.5 9,669.6
Unemployed 310.5 252.0 562.5
Persons not in the labour force 1,358.3 2,480.8 3,839.2
With marginal attachment to the labour force 269.5 585.8 855.3
Wanted to work and were actively looking for work 28.9 36.5 65.4
Were available to start work within four weeks 204 26.3 46.6
Were not available to start work within four weeks 8.6 10.2 18.8
Wanted to work but were not actively looking for work
and were available to start work within four weeks 240.6 549.3 789.9
Discouraged jobseekers 284 536 82.0
Other 212.2 495.8 707.9
Without marginal attachment to the labour force 1,088.9 1,895.0 2,983.9
Wanted to work but were not actively looking for work
and were not available to start work within four weeks 120.4 213.0 3334
Did not want to work 857.8 1,618.3 2,476.1
Permanently unable to work 110.7 63.7 1744

Source: Persons Not in the Labour Force, Australia, September 2004 ( Yearbook Australia 2006, 6220.0).

REVIEW AND REFLECT :

1. Calculate the participation rate and unemployment rate using Table 14.3 and the
official definitions provided above.

2. In your opinion, which groups listed in Table 14.3 should be considered un-
employed? Why? Which should be considered as part of the labour force? Why?

3. Given your selections from Question 2, recalculate the participation and un-
employment rates and compare your answers with those obtained in Question 1.
Explain how changes in the numerator and denominator affected the answers.
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An important aspect of the democratic approach is student involvement in making
decisions about their learning, as illustrated in the Where in the world is Spinifex Longifolious?
example above. Typically, the teacher involves the students in making decisions about the
topic for the project and the selection of a problem, or works through a process of invest-
igation with the students to generate and pose a problem for solving. The teacher may
negotiate with the students the means for conducting the project, and in this way students
will learn about the process of mathematical inquiry—including problem-solving,
research and mathematical reasoning. They will also discuss with students their expec-
tations, the assessment criteria and the ways in which to demonstrate their mathematical
understanding.

Teachers who use this approach observe that their students show improved engagement
with their mathematics learning. Use of projects or extended problems can produce equit-
able outcomes (Boaler, 2002). Boaler, who studied teachers using this approach in the
United Kingdom and the United States, found that successful teachers—that is, teachers
who produce equitable outcomes—use particular practices in conjunction with this

approach. These practices include:

* discussing the problems or project thoroughly with students when they are
introduced so that the vocabulary and meaning of the problem or inquiry is
understood;

* encouraging students to explain and justify their thinking; and

* making real-world contexts accessible to students—that is, recognising that girls
and boys from different social, cultural and linguistic backgrounds encounter

contexts differently, and taking this into account when explaining the problem.

REVIEW AND REFLECT : Work in a group to develop an open-ended investigation
or design a problem about a social issue that is relevant to a group of students.

Identify the resources and materials needed and design an assessment rubric.
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Conclusion

To enable social justice in mathematics learning and teaching, education policy and mathe-
matics curricula must recognise the needs of the most marginalised members of the
community, and resources must flow to groups of social disadvantage. Teaching and
learning approaches should enable learners to be empowered through mathematical
literacy and to develop agency as mathematicians. This requires teachers to be reflective and
reformist.

The model described below draws together the ideas that have been discussed in this
chapter. Perhaps the most familiar model currently in use in Australia is the Productive
Pedagogies framework (Hayes et al., 2000), which forms the basis for the New Basics curricu-
lum in Queensland. Other states in Australia have also developed policies for teaching
and learning with a social justice goal. We propose that there are six main attributes of an

equitable classroom:

* Equal access. This concept includes access to the classroom, resources and materials,
and also to the discourse of the mathematics lesson—that is, the language and
norms of mathematical practice and thinking—such that no one feels left out or
marginalised in the classroom.

*  Connected learning. The teaching and learning program builds on prior knowledge
and experiences of students. The program is negotiated with them, and the
contexts of mathematical applications and investigations are socially, culturally
and politically relevant and empowering for them.

¢ Collaborative methods. The practices of the classroom recognise the importance of
discussion and social interaction for the learning of mathematics. Hence collabor-
ative tasks and practices are valued, and students are encouraged to share their
knowledge and skills and to explain their thinking.

*  Supportive environments. Teachers construct an environment based on the belief that
everyone can learn mathematics and establish classroom norms so that students
feel safe, free from abuse and respected. They make explicit their expectations for
mathematical thinking and practices, and they model and scaffold mathematical

thinking in the classroom.



360 EQUITY and diversity in MATHEMATICS EDUCATION

* Intellectual quality. Teachers in equitable classrooms have high expectations of their
students and engage them in meaningful mathematical thinking. Through the
mathematical skills and concepts that they learn, students are empowered to
use mathematics in ways that enable them to participate effectively in school,
work and the community.

*  Respect for difference. Materials, problems and tasks reflect the gender, cultural and
social diversity of the students in the classroom. The materials are free of gender
and cultural bias. They are relevant and respectful of the students’ interests, and
teachers understand that the real contexts of mathematical problems may be
experienced differently by girls and boys and by students from varying social and

cultural backgrounds.
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CHAPTER 15

Teaching students with diverse
learning needs

In the previous two chapters, we discussed catering for the diverse interests and needs of
students in mathematics classrooms from the point of view of gender, and of socioeconomic
and cultural factors. In this chapter, we consider what is probably the most vexatious issue
and the most difficult task for teachers of mathematics: teaching students with diverse
mathematical knowledge and skills. Teachers can expect students’ mathematics achieve-
ment to span seven years of schooling in their junior secondary classrooms (Siemon et al.,
2001) and we know that students at both ends of the achievement spectrum (low achievers
and high achievers) are at risk of under-achieving (Diezmann et al., 2003). Teachers most
readily recognise the classroom management problems that arise, and the subsequent
impact on the learning of students, when not everyone is engaged. Of equal concern is the
sense we have of failing our students when we don’t cater for their needs.

Often mathematics teachers talk about teaching a ‘mixed-ability’ class. However, using
the term ‘ability’ to describe differences among students is contentious since it implies differ-
ences in potential to learn. Our focus in this chapter is on the belief—held by excellent
teachers of mathematics—that all students can learn mathematics (Australian Association
of Mathematics Teachers, 2006). We will discuss the meaning of terms used to describe
students with different learning needs (students with mathematics learning difficulties and
those with mathematical talent), methods used to identify these students and their needs,
and approaches and programs designed for these students. While we pay particular atten-
tion to teaching strategies that are effective for students with learning difficulties and those

with mathematical talent, these strategies can and should be integrated into the practice of
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teachers with mathematics classes that include students with a range of learning needs.
Finally, we examine the practice of ‘streaming’ students, and consider alternative approaches

for organising the learning of students with diverse needs.

Students with learning difficulties in mathematics
Defining and identifying students with learning difficulties

Teachers and schools use various terms to identify students who have difficulty learning
mathematics. These terms include ‘students with learning difficulties’, ‘students with
learning disabilities’, ‘low-achieving students’, ‘students at risk of failure’, ‘students at
educational risk” and ‘students with special needs’ (Louden et al., 2000).

Students with learning difficulties in mathematics are generally understood to be those
students who require extra assistance with mathematics due to their lack of, or failure to
use, mathematical knowledge and skills. In some schools, this term is used to describe
students who are performing below, or well below, the average level for students of their age
(Van Kraayenoord & Elkins, 2004; Louden et al., 2000). Students with learning difficulties
may also be described as ‘maths-phobic’, as they dislike and dread mathematics, experience
anxiety in mathematics classrooms and have difficulty establishing trust with their mathe-
matics teachers (Ocean & Miller-Reilly, 1997).

Westwood (2003) makes a distinction between students with learning difficulties and the
much smaller proportion of students (about 3 per cent) with learning disabilities in mathe-
matics, sometimes called dyscalculia. These students exhibit chronic problems in mastering
the basic skills in mathematics, and their difficulties cannot be traced to any lack of intelli-
gence, sensory impairment, cultural or linguistic disadvantage or inadequate teaching. It is
beyond the scope of this book to consider the special needs of these students, although some
educators argue that the strategies we can use for students with dyscalculia are similar to
the strategies we can use for students with learning difficulties.

Between 10 and 30 per cent of primary students have difficulty learning mathematics
(Rohl et al., 2000). A Victorian study revealed that approximately 9 per cent of Year 8
students and 8 per cent of Year 9 students were assessed as performing at or below the
standard expected for Year 4 students (Siemon et al., 2001). A further 11 per cent of Year 8
students and 10 per cent of Year 9 students were achieving below the standard expected for

Year 6 students.
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Students with learning difficulties typically have under-developed knowledge, or gaps
or misunderstandings in mathematical concepts and skills, poor motivation (including lack
of persistence), problems recalling information and facts, difficulties in recalling and using
problem-solving strategies, limited vocabulary and low levels of metacognition—that is,
the students do not recognise that they have a problem with their learning and attribute
their failure to a lack of ability (Chan & Dally, 2000; Kroesbergen & van Luit, 2003;

Westwood, 2003). Their mathematics work is likely to indicate:

* reliance on inefficient counting strategies for computation, such as counting on by
ones using fingers or tally marks (a strategy used by students in the early primary
years prior to learning basic facts);

* lack of partitioning (or decomposition) strategies for computation—that is,
students have not extended facts from basic facts (e.g. have not developed knowl-
edge of pairs of numbers that total 100);

* poor understanding of the structure of the number system—that is, place value
of large numbers and decimals;

* that their knowledge of multiplication is limited to a repeated addition concept,
and does not include the use of the commutative and distributive law for deriving
number facts and mental computation;

* that their knowledge of division is limited to sharing by ones and does not include
understanding of quotition; and

* poor understanding of fractions (for example, students do not use equal partition-
ing when representing fractions) (Anthony & Walshaw, 2002; Hopkins, 2000;
McIntosh, 2002; Department of Education and Training, New South Wales, 2002;
Perry & Howard, 2001; Siemon et al., 2001; Vale, 2002b, 2004).

These difficulties with number concepts and skills contribute to the problems that students
experience when applying number to measurement and developing algebra skills. Further-
more, while inefficient computational strategies can often result in the correct answer,
students have expended so much effort in completing the trivial computational tasks that
they are unable to progress to more advanced concepts or complete multi-step or complex

problems (Department of Education and Training, New South Wales, 2002).
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Some recent research on the learning difficulties of children in the early years has
underlined the importance of structural understanding (Mulligan et al., 2006). These
findings suggest that, unless children have developed spatial and patterning skills, they
will have difficulty using the visual and concrete aids used to introduce students to number,
measurement, geometry and algebra concepts during the primary years. A lack of spatial
and patterning skills may have significance for upper primary and junior secondary
students experiencing difficulties in mathematics that have not yet been explored by
researchers.

While some children begin school with very limited experiences of mathematical
concepts and learning in their early childhood, and so start schooling a long way behind
other students, many of the causes of learning difficulties in mathematics can be attributed
to insufficient or inappropriate instruction (Carroll, 2006; Westwood, 2003; A. Watson, 2006).
We know that the achievement gap between the lowest and highest achievers widens
during secondary schooling, and that inappropriate teaching and curriculum contribute
to this widening gap. The following set of learning obstacles for students applies in both

primary and secondary classrooms:

* The curriculum proceeds too quickly and students are not ready to assimilate new
concepts and procedures.

¢ The teacher’s language when explaining concepts or asking questions does not
match the students’ level of comprehension.

* Abstract concepts are introduced too early without the support of concrete
materials, visual aids or real-life examples.

* Concrete or visual aids may have been removed too soon or created confusion
rather than clarity.

* Mathematical investigations and experiential learning are not followed up with
carefully structured activities for consolidating concepts and skills.

* Students with reading difficulties are given pure arithmetic or algebra exercises
only, and are neither presented with nor taught how to solve worded and non-
routine problems.

* There is an emphasis on teaching of procedures and tricks which are rapidly

forgotten because they do not enable meaningful learning.
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* Mathematics is taught in a linear sequence with inadequate time devoted to each
topic, and to revisiting and reviewing of concepts and processes at regular
intervals.

* There is insufficient guided practice.

* There is too little corrective feedback (Chan & Dally, 2000; Siemon & Virgona,
2002; Westwood, 2003).

Diagnostic tools

A variety of assessment tools have been developed to assist teachers to identify the particular
misconceptions and needs of students who have difficulties with mathematics. These
include pen-and-paper diagnostic tests, clinical interviews and rich assessment tasks. The
use of metaphors (see examples in Chapter 1) is also helpful, not only to find out students’
attitude to mathematics, but in providing teachers with information about students’
preferred approach to learning mathematics (Ocean & O’Reilly, 1997).

Pen-and-paper diagnostic tests such as the Progressive Achievement Test in Mathematics
(Australian Council for Educational Research, 1997) assess content and procedural knowl-
edge and assist teachers to construct a student profile. Clinical interview instruments,
such as the Counting On Intensive Assessment Interview (Department of Education and Training,
New South Wales, 2002), Initial Clinical Assessment Procedure Mathematics Tasks—Upper Primary
(Hunting et al., 1995), and the Middle Years Numeracy Intervention Interview (Vale, n.d.) allow
teachers to probe students’ thinking by inviting them to express their ideas verbally
in one-to-one or conferencing interactions. An example of an item and the criteria
for recording the student’s response are provided in Figure 15.1. Clinical interviews are
used to find out how students think about and solve a problem and whether they use
inefficient strategies, rather than only focusing on right or wrong answers and procedural
errors.

To find out about students’ problem-solving strategies and their understanding of
mathematical concepts in context, it is necessary to use application and problem-solving
tasks (e.g. see Medicine doses in Chapter 4 of Beesey et al., 2001). When analysing students’

mathematical work, teachers should find out whether these errors are:
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Worded problem: Subtraction $50 — $32.95 =

Instruction Recording sheet
‘Read the problem and work out the answer.’ uses written decomposition algorithm
uses written equal addition algorithm
mentally subtracts hundreds then tens then ones

adds on to find the difference (+ 5c + $7)

O 0O 0O ogo

other (specify):

How much change would you get from $50 if you bought a
shirt for $32.95?

‘Explain how you worked out your answer.’

If the student is not able to work it out mentally, tell them
that they can use pen and paper.

Figure 15.1 Sample clinical interview item

* random or repetitive, and in what circumstances they occur;

* general or conceptual errors, or errors relating to particular cases;

* based on weak recording skills, or misuse of equipment;

* based on inappropriate generalisation, or using rules adapted from elsewhere;
* based on unhelpful images of the concept;

* based on faulty memory (A. Watson, 2006, p. 65).

Watson (2006) reminds us to be careful about the judgments we make when assessing
students. As we noted above, poor instruction is often the cause of students’ learning
difficulties, so we must not ‘blame the victim’ and assume that they have ‘low ability’.
A range of assessment tools and information from a number of sources, such as the
student’s previous teachers in primary and secondary school and other education specialists
in the school, will provide teachers with the best insight into the needs of students who have
difficulty learning mathematics. With the information gathered from diagnostic assess-
ment, it is possible to plan learning activities to improve students’ mathematics learning

and achievement.
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REVIEW AND REFLECT :

Three Year 7 students were shown a flashcard with the fraction % written on it and
asked to ‘Draw a diagram to show what this card means’ and then to ‘Explain your
diagram in words’. Copies of drawings produced by three students are shown in
Figure 15.2.

Figure 15.2 Three students’ drawings of %

Student A Student B Student C

* How do you think they would have explained their diagram?

* Inwhat way are these representations similar and different?

e What do their representations suggest about how each of these students thinks
about and understands fractions?

e What other questions would you like to ask these students to find out what they

know about fractions and how to represent them?

Teaching students with learning difficulties

In some primary schools learners were seen to be deficient but curable, and they did
return to mainstream classes. In secondary schools, learners are more likely to be

seen as deficient and incurable. (A. Watson, 2006, p. 65)

Teachers neglect students who struggle with mathematics because, in our communityj, it is

acceptable ‘not to be good at’ mathematics (Carroll, 2006). Unfortunately, teachers—both
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primary and secondary—contribute to this cultural belief because they also accept that
some children will not be able to do mathematics (Milton, 2000; A. Watson, 2006). Teachers
sometimes use the notion of different learning styles—especially the multiple intelli-
gences literature (Gardiner, 1993)—to justify this belief, rather than developing a balanced
learning program that builds on students’ strengths or preferences while also addressing

their weaknesses.

Intervention programs

Targeted intervention early in schooling and for a relatively short period has proved to be
effective for primary school children with learning difficulties. However, there is no agree-
ment on the relative merits of ‘in-class’ or withdrawal programs for students (Carroll, 2006).
Fewer resources have been devoted to the development of intervention programs for
students in the middle years or in junior secondary school, although some do exist.

QuickSmart (Pegg et al., 2005) is a withdrawal program for students in the middle years,
conducted with pairs of students with similar learning difficulties. The program runs for
five 30-minute sessions over 25 weeks. The focus of the program is on learning basic facts
and extended basic facts with whole numbers for the four operations, and the objective is to
improve the speed and accuracy of automatic recall of these facts. Each 30-minute session
has four components: revision of the previous session; guided practice activities featuring
overt self-talk and the modelling of strategies to develop and extend basic facts; discussion
and practice of strategies for memory and retrieval; and specially targeted games or work-
sheet timed activities.

The Middle Years Numeracy Intervention Program (Vale, 2002b, 2004) also focuses on the develop-
ment of number facts and extended number facts. However, the objective here is to apply
these known facts to mental computation rather than merely focusing on speed of auto-
matic recall. Each session involves revision, modelling of mental computation strategies
for arithmetic in real contexts, and a selection of guided practice, open-ended problems to
extend number facts and number sense or problem-solving activities (for example, Four-arm
tiles and Multo from the Maths300 website).

Middle years students in withdrawal programs have been found to enjoy skill-building
activities, and have improved and developed mastery of basic skills (Pegg et al., 2003; Perry &
Howard, 2002). However, withdrawal programs often do not include applications for real-

world contexts that enhance mathematical literacy (Dole, 2003). Dole argues that
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application problems provide the motivation for students to learn basic skills, and students
with learning difficulties need support to develop and communicate mathematically using
multiple representations (e.g. see Clausen-May, 2005).

Stephens (2000) also criticises withdrawal programs as an intervention method, arguing
that such programs remove the classroom teacher from the picture and hinder their ability
to monitor students with learning difficulties and provide adequate follow-up and support
during mainstream classes. He also claims that withdrawal programs undervalue the
contribution that the classroom teacher can make in detecting and overcoming difficulties
in the classroom. Another problem occurs when staff allocated the task of teaching
students in these withdrawal programs are not appropriately trained or do not like
teaching students with learning difficulties (Walshaw & Siber, 2005). It is surprising how
often pre-service teachers are assigned the role of providing additional support or con-
ducting intervention programs during practicum experience when it would be far more

appropriate for the experienced teacher of mathematics to take on this role.

REVIEW AND REFLECT :

* Investigate an intervention program—for example:

— Counting On (Department of Education and Training, New South Wales);
— QuickSmart (SIMMER, University of New England];

— another published intervention program;

— an electronic tutorial program; or

— anintervention program used by your school.

* For whom is this program designed? How are students selected for the
program? How is the intervention program related to the mainstream mathe-
matics class and program?

* Note the objectives, structure, content, materials and teaching approaches used
in the program. Comment on the strengths and weaknesses of the program.

* Comepile an annotated portfolio of resources that you could use with students
with learning difficulties. The annotations could include reflection on your
experience of trialing these resources.
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Teaching strategies for students with learning difficulties
Students with learning difficulties have traditionally been excluded from learning mathe-
matics or had limited access to the domain of mathematics (Diezmann et al., 2004; Dole,
2003; A. Watson, 2006). Diezmann and colleagues (2004) argue that there has been a shift
in approach from the medical model of diagnosis and remediation towards making the
curriculum accessible to all by designing effective pedagogies.

The following ten teaching strategies have been useful for primary school-aged children
with learning difficulties, and are equally appropriate for implementation with secondary

students by teachers in heterogeneous classrooms (Steele, 2004).

* Use advance organisers about the purpose of the lesson.

* Provide additional review of prerequisite skills and knowledge needed.

* Prioritise frequent teaching and review of major concepts.

* Teach generalisations and applications to real-life situations.

* Model sequential procedures at a slow pace and with extra clues.

* Present new skills using concrete materials, then pictures, and finally abstract
explanation.

* Provide additional practice in small steps with sufficient guidance.

* Ensure instructions are clear before starting independent practice.

¢ Teach students to keep track of their progress with charts and graphs.

¢ Check for error patterns when providing guidance.

When students experience difficulties in mathematics, teachers too often re-teach the
whole process or procedure or do the exercise for them. This fails to help the student
identify the exact point of difficulty and overcome the problem. Westwood (2003) stresses
the importance of probing students’ thinking when checking for errors, monitoring

progress and providing feedback. He proposes the following four-point process:

1. Why did the student get this item wrong?

2. Can he or she carry out the process if allowed to use concrete aids or a com-
putational tool?

3. Can he or she explain to me what to do?

4. Ask the student to work through the item step by step. At what point does the
student misunderstand? (Westwood, 2003, p. 189)
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Sullivan and colleagues (2006) stress the importance of anticipating potential difficulties
that students may have with problem-solving tasks and open-ended questions. They
found that successful teachers plan and use ‘enabling prompts’ in their classrooms. These

prompts, prepared in advance by the teacher:

* reduce the required number of steps (e.g. make the problem simpler or provide a
drawing);

* reduce the required number of variables (e.g. make the problem simpler);

* simplify the modes of representing results (e.g. provide a recording format);

* reduce the written elements in recording (e.g. provide alternative medium for
recording);

* make the problem more concrete (e.g. provide materials or drawings of represen-
tations);

¢ reduce the size of the numbers involved;

* simplify the language; or

¢ reduce the physical demands of manipulatives (2006, pp. 502-3).

Westwood (2003) proposes that teachers use a mnemonic to assist students in problem-

solving tasks (see Figure 15.3).

R = Read the problem carefully.

A = Attend to the key words that may suggest the process to use.
V = Visualise the problem, and perhaps make a sketch or diagram.
E = Estimate the possible answer.

Then:

C = Choose the numbers to use.

C = Calculate the answer.

C = Check the answer against your estimate.

Source: C. Westwood (2003, p. 200).

Figure 15.3 The RAVE CCC mnemonic for problem-solving
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Watson’s (2006) approach with low-achieving students is to prompt discussion of mathe-
matical investigations to promote exemplification, symbolisation and structure. She

provides the following examples of questions that she uses in the classroom:

‘What is the same or different about . . .7’ (encouraging learners to give attention to

pattern and classification)

‘Describe what happens in general’ (nudging learners through generalisation

towards abstraction)

‘Can you give me an example from your own experience . . .7 (prompting exempli-

fication)
‘Can you show me one which does not work?' (prompting counter-exemplification)

‘Show me ... or “Tell me . .’ (eliciting information about images and other aspects

of their understanding)

‘Can you show me this using a diagram/letters/numbers/graphs? (prompting flexible

use of representations)

‘If this is an answer, what might the question be?’ (shifting the focus on to structures

rather than answers) (A. Watson, 2006, p. 109)

Ocean and Miller-Reilly (1997) propose a connected knowing model for teaching
students with learning difficulties. Their model focuses on developing confidence, encour-
aging students to discuss their ideas, and providing first-hand experience through the use of

materials. They recommend that teachers:

Discover and affirm what the student already knows, respect the students’ existing
ideas . . . ask students for explanations even when they are right, so that question-
asking does not become synonymous with doubt, assume the students have reasons

for their opinions and listen to them, and ask for details (p. 19).
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The strategies that we have presented in this section will be effective not only for
students with learning difficulties but also for the broad range of students in mainstream

classrooms that we sometimes refer to as those ‘in the middle’.

Students with mathematical talent

Defining and identifying students with mathematical talent

Students who are capable of high-level performance in mathematics are described as
‘gifted’, ‘mathematically talented students’, ‘highly able students’, ‘promising students’
and students with ‘a mathematical cast of mind’ (Gagne, 2003, cited in Moss et al., 2005).
Researchers have estimated that between 10 and 15 per cent of the student population is
gifted (Gagne, 2003, in Moss et al., 2003). The Australian Senate Inquiry into the Education
of Gifted and Talented Children reported that often teachers think the gifted or talented
students are the high achievers, and they fail to identify gifted and talented students among
the under-achievers, divergent thinkers, visual-spatial learners and children who mask
their ability (Collins, 2001). It is important to realise that gifted or talented girls and
boys have diverse cultural characteristics: they may live in a family of low socioeconomic
status, be an Indigenous person, have a physical disability or live in a geographically
isolated place.

Attempts to define ‘giftedness’ need to go beyond notions of general intellectual ability
or specific academic aptitude. Mathematically talented students also demonstrate creative
and divergent thinking skills, demonstrated through responses that display fluency (a large
number of responses), flexibility (a variety of representations and the ability to readily
change between these), originality (unusual or uncommon responses) and elaboration
(embellishment or expansion of ideas). Additionally, they may display the following
cognitive behaviours (Williams, 1993, cited in Moss et al., 2005):

* risk-taking—willingness to try different or difficult things;
* curiosity—ability to seek alternatives and study in depth;
* complexity—capacity to explore and discover;

* imagination—power to visualise or conceive symbolically.
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In mathematics, these attributes are normally manifested through the approach to and
strategies used on non-routine problems or modelling tasks (Neiderer & Irwin, 2001;
Sriraman, 2003). Talented mathematics students take longer to orientate themselves to the
problem and understand the problem situation than other students. They develop a plan
that is more general. They use mathematical reasoning rather than the application of
routine algorithms, draw on many strategies and, depending on the characteristics of the
problem, will begin with simpler cases to control the variability, or systematically explore a
large number of possibilities for open-ended problems. These students seek to form general-
isations—that is, they look for similarities, structures and relationships by abstracting from
the content of the problem. Studies have also shown that students with mathematical

talent have strong spatial-visualisation skills (Diezmann et al., 2004).

Assessment tools

Unfortunately, there is no readily available assessment tool that teachers can use to identify
gifted or talented mathematics students. Routine mathematical problems and standard
mathematics tests (such as the Progressive Achievement Test in Mathematics, Australian Council for
Educational Research, 1997) do not enable students to display the creative and reasoning
skills listed above, and teachers’ assessments of students’ mathematical talent have also been
found to be unreliable (Neiderer et al., 2003). Assessment should include challenging
problem-solving tasks and analysis of students’ spatial ability (Diezmann et al., 2004).

The Australian Mathematics Competition (AMC, Australian Mathematics Trust) provides an
opportunity for students from Years 3 to 12 to engage with a range of mathematical
problems, including problems that are challenging for the most able students. Results from
this competition indicate the suitability of curriculum content for students with different
mathematical abilities. Leder (2006) analysed the results for the items that were common to
papers for more than one secondary year level in the AMC. She was able to identify different
types of problems. For one group of items, performance steadily improved over the sec-
ondary year levels, with most of the top 2 per cent of students already able to complete this
problem in Year 7. A second group of items could be correctly solved by about half the top
2 per cent of students irrespective of the year level. An example of these two kinds of
problems and a description of the level of thinking needed to solve these problems are
shown in Table 15.1.
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Table 15.1 Items from the Australian Mathematics Competition

Category of item

Example item Level of thinking required

Solved correctly by top 2 per cent
of Year 7 students;

performance by all students
improved with higher grade

level

Seven consecutive integers Sequential multi-step problem.
are listed. The sum of the

smallest three is 33. What is

the sum of the largest three?

(A) 39; (B) 37; (C) 42; (D) 45

Solved by most of top 2 per cent
of students irrespective of grade
level; little improvement in
performance by all students
with higher grade level

A3 X3 squareis divided into Alot of integration and
nine 1 X 1 unit squares. sythnesis of information
Different integers from 1 t0 9 required.

are written into these unit
squares. Consider the pairs of
numbers in squares sharing a
common edge. What is the
largest number of pairs

where one number is a factor

of the other number?

(A) 7;(B) 8;(C) 9; (D) 10; (E] 12.

Source: Leder (2006).

Studies of the highest performing students in mathematics have consistently reported a

gender difference in favour of males. One of the significant findings of Leder’s (2006) study

was that, in the Australian Mathematics Competition, boys outnumber girls three to one in the top

2 per cent of students. Explanations for gender differences in achievement were discussed in

Chapter 13. Teachers need to ensure that they do not apply gender stereotyped attributes

for ‘high-achieving girls’ and ‘high-achieving boys” when assessing students to identify

students with mathematical talent.

Teaching mathematically talented students

|Gifted| children have special needs in the educational system; for many their needs

are not met; and many suffer underachievement, boredom, frustration, and psycho-

logical distress as a result . .. The common belief that the gifted do not need special

help because they will succeed anyway is contradicted by many studies of under-

achievement and demotivation among gifted children. (Collins, 2001, p. xiii)
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REVIEW AND REFLECT : Complete the two problems in Table 15.1. Record all
your thinking and working. Share your approach, strategies and solution with your
peers. Compare your approaches with respect to the four phases of problem-
solving:

* orientation (understanding the problem];

* organisation (setting goals and planning);

 execution carrying out the plan}; and

* verification (evaluating and reflecting on your solution).

Identify any instances of creative and divergent thinking (fluency, flexibility, etc.).
To what extent were you able to generalise during the process of finding a solution
to these problems?

In our community, there are negative attitudes about people who are talented or gifted
mathematically, and unfortunately little attention is given to their needs (Collins, 2001;
Diezmann, et al., 2004). Important for the development of mathematical talent is the
provision of immediate and long-term extrinsic rewards, together with enjoyment when
doing mathematics and support from teachers and the school (Csikszentmihalyi et al.,
1997). Parents also play an important role as motivator, mathematics content adviser,
resource provider, monitor and learning counsellor to their gifted and talented children
(Bicknell, 2006).

In spite of the lack of attention to mathematically talented students, structured
programs of various kinds have been designed and used to develop autonomy, self-reliance
and social skills. These programs, organised by schools, mathematical organisations or
education systems, include selective schools (such as the selective high schools in New
South Wales), accelerated class groups of mathematically talented students within a
comprehensive school (such as the Students with High Intellectual Potential, or SHIP, classes in
South Australian secondary schools), enrichment programs typically involving part-time
withdrawal from mainstream classes for gifted students, and a differentiated curriculum

to cater for students with diverse learning needs in a heterogeneous mathematics class.
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We consider enrichment and accelerated programs below in the context of provision for
talented students, and differentiated curriculum later in the chapter when discussing

responses to diversity.

Enrichment programs

Enrichment programs often involve one-off activities, or a withdrawal program for a
defined period of time, conducted by the school or mathematics associations at the local,
state or national level. They include competitions, after-school and holiday programs, and
mathematics camps or activities, often conducted in cooperation with university mathe-
matics departments. In some cases, withdrawal programs for individuals or small groups of
students are delivered online, especially to cater for gifted and talented students in isolated
locations (e.g. see Clarke & Bana, 2001).

Some withdrawal enrichment programs have been criticised as time wasting and trivial,
designed to occupy the highest achieving students while the rest of the class catches up
(Collins, 2001). Enriching mathematical activities involving problem-solving and appli-
cation are appropriate tasks for talented students, but these tasks should be part of the
curriculum for all mathematics students, not just the gifted and talented. The Australian
Senate Inquiry into the Education of Gifted and Talented Students concluded that ad hoc
enrichment activities were insufficient, and that gifted and talented students needed a
differentiated curriculum (Collins, 2001). Provided that they are emotionally and socially

ready, these students also benefit from accelerated programs.

Accelerated programs

Accelerated programs enable students to complete the required curriculum in a shorter
time span—for example, they might complete the work normally covered in three years of
the mathematics curriculum in only two years. Students in an accelerated class program
work on a different curriculum, one or more years ahead of the students at the same age.
Diezmann and colleagues (2004) acknowledge that there had been little research on the
short-term and long-term effects of accelerated programs for students in Australasia.
Students in the ‘top’ group, or an accelerated program, may simply be experiencing a
mainstream curriculum of the next year level, rather than having their mathematical

understanding and thinking challenged with higher order tasks.
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The curriculum for talented students in accelerated programs (and other differentiated
curriculum programs) should involve more advanced content, delivered at a faster rate,
and activities that require higher order, abstract thinking and the connection of mathe-
matical ideas in ways that would not normally be expected of students at that particular
age level (Anthony et al., 2002; Diezmann et al., 2004; Landvogt et al., 2001; Moss et al.,
2005). Challenging tasks involve complexity, and creative and critical thinking; they may
also be open-ended and require group interaction and real-world deadlines for real-world
problems and audiences. Suitable tasks involving mathematical reasoning, conjecture and
verification or proof can be found in a variety of resources (e.g. Fisher, 1982; Holton, 1998;

Maths 300).

Teaching strategies for talented students

Teachers should not assume that gifted and talented students will enjoy all mathematics
tasks and work productively in mathematics lessons. These students still need instruction,
but it needs to move quickly without unwanted repetition. Nor should teachers suppose
that gifted and talented students will want to collaborate with peers, because these
students usually see no benefit in working with others on exercises or trivial and routine
application problems. They are more likely to collaborate and use higher order thinking
skills when working on challenging problems (Diezmann et al., 2004). However, higher
order thinking does not come automatically, even among gifted students, and the use of
mathematical argument to explain and justify a solution is often preceded by the use
of more pragmatic reasoning, such as trial and error, and systematic reasoning, such as the
organisation of information, data or strategy (Lee, 2005). Interaction with other students in
a small-group setting is crucial for advancing to these sophisticated levels of mathematical
thinking, and discussion with other students also provides an opportunity to understand
why verification and proof are needed in mathematics. Teachers are responsible for helping
all students develop the social skills required for collaboration, and this is especially
relevant in the light of Barnes’s (2000b) observation that some talented mathematics
students do not have the language skills to take advantage of collaborative learning

settings.
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REVIEW AND REFLECT : Investigate an enrichment or accelerated program for
gifted and talented mathematics students—for example, the Australian Mathematics
Competition, the Young Australian Mathematical Challenge, the International
Mathematics Olympiade, the Mathematics Talent (uest, or other competition or
program for talented students. (Australian Association of Mathematics Teachers,
<www.aamt.edu.au>, Australian Mathematics Trust, <www.amt.canberra. edu.au>)

* For whom is this program designed? How are students selected for the
program? How is it related to the mainstream mathematics program?

* Note the objectives, structure, content, materials and teaching approaches
used in the program. Comment on the strengths and weaknesses of the
program for gifted and talented students.

* Comepile an annotated portfolio of resources that you could use with gifted and
talented students of mathematics. The annotations could include reflection on

your experience of trialling these resources.

Responding to the diverse needs of students

Streaming

Some schools choose to respond to the diversity of students’ mathematical achievement by
implementing a streaming policy—that is, sorting students into mathematics class groups
according to mathematics achievement. (Different terms are used to describe such policies
in other countries—for example, ‘setting’ in the United Kingdom and ‘tracking’ in the
United States.) Rarely do these policies provide for and enable students to move between
groups once the groups have been set (Zevenbergen, 2001). Often the sorting of students
in their first year of secondary schooling is based on the results of a single written mathe-
matics test. Because a single ‘snapshot’ of student achievement using one instrument does
not provide a complete picture of a student’s understanding and achievement in mathe-

matics, some students will be inappropriately allocated to groups.
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Tate and Rousseau (2002) reviewed the use of streaming in the United States and found a
wide achievement gap between students in the lowest and highest streams. This happens
because teachers have different expectations—and therefore goals—for students in the high-
and low-achieving groups, and consequently they offer different and more intellectually
demanding learning experiences to the higher stream students while tending to set routine
computational tasks for studentsin the lower stream. Hence streaming of students in this way
is reinforcing, rather than removing, existing achievement differences between top and
bottom streamed students (Bartholomew, 2003; A. Watson, 2006; Zevenbergen, 2001, 2003a).

Because streaming can deny low-achieving students access to a rich and challenging
mathematics curriculum in the junior secondary years, they gain only limited experience of
the mathematical content needed in a range of higher education and vocational education
programs beyond secondary schooling. Accelerated programs for talented students, unless
designed and conducted along the principles outlined above, may become just another
form of streaming that excludes capable mathematics students from successfully com-
pleting the required curriculum for their year level, and from continuing participation and

success in mathematics.

REVIEW AND REFLECT : Research the policy and practice of streaming in a
secondary school by scrutinising relevant school policy and planning documents
(including the school website], observing lessons for students in different groups
in the same year level, and interviewing the teachers.

Policy and planning

* What is the school’s rationale for streaming?

* How does it work? What information does the school use to assign students to
groups? What is the policy and practice about movement between groups?

* What is the curriculum for the different groups and what resources do they use?

Lesson observation
¢ Compare the content, teaching and learning activities, and student engagement

and learning, in the different classes.

Teacher interviews
* What are the teachers’ attitudes to streaming and expectations of their students?
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Differentiated heterogeneous mathematics classrooms

A heterogeneous classroom is more commonly known as a ‘mixed’ or ‘mixed-ability’ class-
room, comprising students in the same age cohort and year level. A differentiated
curriculum for a heterogeneous class has multiple learning programs and different
approaches and activities for the students to meet their particular needs, interests and
preferred ways of learning (Clausen-May, 2005; Moss et al., 2005; Tomlinson, 1999, 2003,
2005). Differentiated curriculum may include various pathways, perhaps involving choice of
activities for students, different tasks or levels of depth and engagement for students,
various models and representations for working with mathematical ideas, various tools for
aiding mathematical work and learning, or various media for recording and reporting
mathematical learning.

Teachers can use a number of models to develop and deliver differentiated curriculum
(Moss et al., 2005):

* compacted curriculum for gifted and talented students;

¢ tiered instruction, in the form of a series of activities hierarchical in nature and
complexity offered to students at the level appropriate for their needs;

* individual contracts, which involve students working independently on a program
with defined targets and varying levels of guidance from the teacher;

* independent study or research projects, enabling students to develop independent
learning and research skills;

* paired or small-group work, with students working together to investigate math-
ematical concepts and solve problems, and the teacher offering slower instruction
and more guidance to the group of students with learning difficulties;

* negotiated curriculum, in which students participate in defining their topic,

setting their challenge and determining the way they will present their work.

Figure 15.4 illustrates one secondary school’s use of a tiered instruction model for a Year 7
mathematics topic. The number of stars represents the level of challenge. The teachers work
as a team in an open plan area with all the Year 7 classes. Each lesson includes a ten-minute
session of explicit teaching of a skill or concept for all students and independent, paired or
small-group work. Teachers also conduct ten-minute clinics for small groups of students to
consolidate or teach mathematical skills, individual and group learning skills, and informa-

tion and communication technology skills (for example, there is a clinic on ‘Choosing a
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clinic that helps my learning’). The underlined tasks in the topic menu are compulsory for

all students, and the teacher assists students to choose among the remaining tasks.

Polygon mobile construction Exercise 2.04 gn 1-10 Platonic Solids rich task page 49
p.39 (3D shapes) (Polygons)
(3D shapes) Exercise 11.05qn 1-4 Orienteering Adventure
Hands on/ Taylors Lakes mapping Taylors Lakes mapping (Compass directions,
(Coordinates/scale) (Coordinates/scale) coordinates, scale and
games Batty Lizards Batty Lizards distance)
(Semi-regular tessellations) (Semi-regular tessellations) Taylors Lakes mapping
Numeracy game Numeracy game (Coordinates /scale)
Batty Lizard
(Semi-regular tessellations)
Plot plans and silhouettes What's the point What's the point
(2D and 3D structures) (Coordinates) (Coordinates)
What's the point Planet Hop 2 Planet Hop 3
o1 (Coordinates) (Coordinates) (Coordinates)
Planet Hop 1 Building Houses 47 Building Houses 8-10
(Coordinates) (3D shapes) (3D shapes)
Building Houses
(3D shapes)
Tangrams
Describe that shape Welcome to Springfield Ratio and Proportion—Difficult
Worksheet (3D shapes) (Ratio/coordinates) ratio problem.
Name that shape Ratio Problems (Ratio)
(3D shapes) (Ratio)
Exercise 12.01 on 1-4 Exercise 12.01 on 5-7 Review Chapter 2 on 11-13
Text tasks (Ratio) (Ratio) Exercise 12.02 on 5-9
Exercise 2.02 on 1 Exercise 12.02 on 1-4 (Proportion)
(2D shapes) (Proportion) Page 367 on 7
Exercise 12.06 1-3 (Ratio)
Summarise notes p.40
Homework Shape Riddle
Spelling Championship
Puzzling Pantry Problem
Who is Escher?
Vocab Challenge

Source: N. Claxton & J. Postema, Taylors Lakes Secondary College.

Figure 15.4 A tiered curriculum
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In a mainstream classroom, students with diverse learning needs—at either end of the
spectrum—may at first resist differentiated curriculum. The teacher needs to prepare all
students, and to explain that the curriculum and expectations are designed to meet the
needs of each student. For gifted and talented students, the principle of ‘different’, not
‘extra’, work should apply for small-group and individual work. Mentoring programs
involving older students can be used to support differentiated classrooms, and staff
resources committed to withdrawal and intervention programs can be redeployed to assist
with classroom activities.

Studies of classroom organisation do not show that one form of classroom organisation is
best for all. Rather, employing a range of organisational settings is most effective, since differ-
ent arrangements will suit particular students at different stages of their learning or for
specific mathematical tasks. The teacher’s role is important in each of these organisational

settings. As Walshaw and Anthony (2006) explain, quality teaching provides a space for:

the individual, partnerships, small groups and whole class arrangements . . . [All]
students need some time alone to think and work quietly away from the demands of
agroup ... Teachers who make a difference to all learners work at establishing a web
of relationships within the classroom community. They do this to encourage active
participation, taking into account the different purposes of, and roles within, the
particular social arrangements they establish for their students. Organisational struc-
tures are established with a view towards the potential of those arrangements in
developing students’ mathematical competencies and identities and in providing
other positive outcomes for students in particular contexts. But more signifi-
cantly . .. the effective teacher constantly monitors, reflects upon, and makes
necessary changes to, those arrangements on the basis of their inclusiveness and

effectiveness for the classroom community (p. 533).

REVIEW AND REFLECT : Plan a lesson or unit of work for a mathematics class that

is known to you comprising students with diverse needs.

¢ Choose an appropriate model to engage and cater for their diverse needs.

 Explain how the lesson(s) and activities will engage all students in mathemati-
cal activity to improve skills, challenge their intellect, build knowledge, generate
understanding and achieve success in mathematics.
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Conclusion

In Chapter 14, we presented a model of an equitable mathematics classroom. The principles
and practices described there involved equal access, connected learning, collaborative
methods, supportive environments, intellectual quality and respect for difference. In this
chapter we have shown that these principles do not imply that all students do the same
work. They should be used as guidelines to plan differentiated curriculum for teaching

students with different learning needs.
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CHAPTER 16

Working with parents
and communities

Mathematics teachers who are doing their job well know that their responsibility extends
beyond the mathematics classroom and the school to include interaction with other
professionals, students’ families and the community surrounding the school, and advocacy
for mathematics and its learning in the wider community. This chapter looks more closely
at the nature of educational partnerships between schools, parents and communities that
support students’ mathematics learning. We begin by examining parental and community
attitudes towards mathematics, and ways in which mismatches between home and school
cultures can create barriers to partnerships. Next we outline a theoretical framework
for comparing school-centred, family-centred and community-centred perspectives on
mathematics education partnerships, and explore its implications for extending the often-
limited ways in which schools and teachers view their interactions with parents. The final
part of the chapter offers some guidelines for working productively with parents and

communities.

Parental and community attitudes towards mathematics

It often seems to teachers that parental and community attitudes towards mathematics are
at odds with contemporary views about mathematics learning and effective teaching prac-
tices (such as those presented in this book), or that many parents are simply uninterested

in becoming involved in their children’s schooling.
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REVIEW AND REFLECT : Read the following pairs of quotes and discuss your

immediate reaction with a peer or small group.

(A1) School Principal: Our parents here now still want these rows of
algorithms and closed tasks and what we do here is catering for the
differing abilities of our children ... and we’ve had teachers very rudely
spoken to by parents about ‘Who designed these?—it was a maths
homework task to do with looking at snowfalls and look at the weather
map you know, ‘Who designed this—stupid! We want REAL maths, we
want real maths.” (Goos et al., 2004)

(A2] Parent: | don't feel that [the teachers and administration are]
always ready to listen to ideas that we might have ... think [it’s]
because they're trained, they’ve done their degrees and they know what
they're doing about that kind of thing. Sometimes some of them feel that
we're not qualified to offer that kind of advice. (Mills & Gale, 2004,
p. 275)
kekskskksk

(B1) Teacher: The students come from families that really don’t care
about school. Most of them are dropouts themselves, so school has no
place in their lives. Many of the kids will say that their parents hated
school and were no good at maths, so they believe it is their gene pool.
(Zevenbergen, 2003b, p. 141)

(B2] Parent: | don’'t know why [other parents don’t get involved]. | don’t
know whether it's their own experience at [secondary] school was
pretty horrible when they were kids, but they do seem to be a lot less
willing to be involved in the [secondary] school than they are with the
primary school. (Mills & Gale, 2004, p. 272)

kskskskksk
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(C1) Employer: Young people do not seem to have the ability to calculate
[mentally] things like we used to. They need to use a calculator to work
out change when the cash register does not work. They do not know
when the change they are giving is incorrect. (Zevenbergen, 2004,
p. 108)

(C2) Trainee draftsman: The boss went ape at me the other day. He just
bought this new computer software package and had it installed. |
started playing with it and he told me | have to wait till the expert from
the company came or | might crash the computer. As if! He has got no
idea and the company is ripping him off as it is pretty basic. | had it going
in no time. (Zevenbergen, 2004, p. 112)

According to the AAMT (2006) Standards, excellent teachers of mathematics are
‘positive advocates for mathematics and its learning in the school and the wider
community. They ensure effective interaction with families including provision of
information about students’ learning and progress.” How might such a teacher
respond to the people who made the comments quoted above?

Cairney (2000) suggests that educators and parents (and, we might add, employers) need
to go beyond the kind of deficit views of each other illustrated in the quotes provided above.
He defines two types of deficit views in relationships between the school and the home. The
first—the family deficit view—perceives the homes of children from diverse social and cultural
backgrounds as providing limited learning environments and placing little value on educa-
tion (quote Bl). The second—the educational inadequacy view—suggests that differential
achievements are largely due to the failure of school to develop students’ skills (quotes A1,
C1). Cairney argues that neither of these two explanations is helpful because deficit views
fail to recognise that much of the variability in student achievement reflects discrepancies,
not deficiencies, between school resources, teaching approaches and the cultural practices

of the home.
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The roles of parents and communities in educational partnerships

When considering the nature of parents’ involvement in their children’s schooling, it is
important for teachers to understand the variety of different family types and the major
social changes affecting families and young people’s home environments. Families are
becoming more diverse in their composition, their ways of living and their cultural back-
grounds (Australian Bureau of Statistics, 2000). Although the ‘nuclear family’, consisting
of two biological parents and their children, is still the most common family model, a
significant proportion of Australian children under eighteen live with only one of their
natural parents, in step- or blended families, or in extended and same-sex parent families.

Funkhouser and Gonzales (1997) argue that developing effective partnerships with
families requires a shift from policies and practices oriented to the typical (middle-class,
monocultural, ‘nuclear’) family to those that are inclusive of greater social and cultural
heterogeneity. The recognition of parental diversity can help overcome barriers to partner-
ships, such as the construction of ‘good’ and ‘bad’ parents (Crozier, 2000). Often this
conception is based on the socioeconomic status of parents. Some people claim that low-
income and single parents are uninterested in school and unsupportive of children’s
learning, which implies that the academic achievement of children is directly influenced
by the socioeconomic status of the family. While low-income or single-parent status can
create additional constraints on parental involvement, researchers who analysed parent
participation policies found that poor parents and single mothers valued education as much
as other parents (Reay, 1998). Further, the researchers suggest that it is too simplistic to
blame low-income parents for not helping their children with homework. They point
out that parents who have not had much formal education themselves, and those from
non-English-speaking backgrounds, often do not know how to help with school work
(McNamara et al., 2000; Pena, 2000).

Sarason (1995) argues that the present governance structures of schools can also limit
the nature and scope of parental involvement. Parents are usually invited by schools only
when it is necessary, and staff of some schools want parents to be involved only in specific
ways and at times determined by the staff. In the United States, Peressini (1998) found that
accepted roles for parents ranged from spectator to partner and from the deterrent to

catalyst of mathematics education reforms. Immigrant parents—particularly those lacking
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English language skills and social support networks—face real challenges in engaging with
their children’s schooling if they have limited understanding of the curriculum and organ-
isation of schools in the host country and limited knowledge of the invisible structures of
power embedded in school cultures (Pérez Carreén et al., 2005).

Communities can become involved in the education of children and young people by
offering a wide range of resources that are valuable to schools and the families they serve.
These resources include people who volunteer their time in the school, organisations that
offer enrichment opportunities, businesses that offer career-related information and work-
place experiences, and agencies that provide various social services for students and families.
However, in any of these types of collaborations, teaching and learning must be a central
focus, and community involvement must not be activated only when the students are
in trouble (Epstein, 2001).

Communities are powerful learning environments, creating potential for young
people’s development as they engage in social practices with others. This approach to
learning suggests that teachers need to understand their students’ communities and
acknowledge the learning that takes place there (Saxe, 2002). Drawing on communities’
funds of knowledge can capitalise on the diverse cultures often found in mathematics class-
rooms, and overcome any mismatch between students’ home environments and the
culture of school (Peressini, 1997).

The Values in Mathematics Project, conducted by researchers at Monash University (Bishop,
2001; Fitzsimons et al., 2001) supports these ideas. These researchers have examined teachers’
awareness of what values they teach in their mathematics instruction, how this teaching
takes place and, perhaps most importantly, what values students are learning from their
mathematics teachers. All mathematics teaching practices—planning curriculum,
choosing textbooks, assigning homework, and so on—embed sociocultural values. Because
mathematics teaching is a form of cultural induction, teachers must be aware of cultural
difference in the classroom.

Not all students’ cultural communities share the same values, and this has implications
for how students and their families might respond to unfamiliar teaching practices. Wong
and Veloo (2001) highlighted the potential for mismatches in cultural values when they
examined how national ideologies have been incorporated into school curricula in Brunei,

Malaysia and Singapore. In these countries, respect for authority and for one’s elders



392 PROFESSIONAL and community ENGAGEMENT

contributes to social cohesion, and teachers are traditionally held in high esteem. A strongly
hierarchical social structure places the teacher in an authoritative position, so it is not
surprising to find that whole-class teaching is common, with students sitting in neat rows
paying careful attention to the teacher’s explanations at the blackboard. Given these differ-
ences in cultural norms, teachers in Australian classrooms must be sensitive to values they
teach in a class in which some students do not share the mainstream culture. Such students
may feel uncomfortable—for example, in explaining their ideas to others. Thus the class-

room approach should focus on the notion of difference, rather than deficit, in learning.

REVIEW AND REFLECT : List any examples of parent and community partici-
pation in students’ mathematics education you observed during your practice
teaching, or experienced during your own schooling. What roles were parents and
community members or organisations expected to play? Who initiated these inter-
actions or relationships? What value did the students, parents and communities
gain from these interactions? What barriers to partnerships were evident? Discuss
and compare your experiences with a peer or in a small group. If you have few or
no experiences of parent or community participation to share, consider why this

may be so.

Why are partnerships important for mathematics education?

The arguments presented above may well apply to teaching in all school subjects, not just
mathematics. However, there are good reasons why mathematics teachers in particular
need to be aware of issues affecting parent and community participation in the mathema-
tical education of young people.

Many adults have developed negative attitudes towards mathematics as a result of their
experiences at school (Ewing, 2004), and this in turn can have a detrimental effect on their
children’s attitudes (Horne, 1998).

Because of recent changes in mathematics curricula, teaching methods, and assessment,
many parents are unfamiliar with current classroom practices (e.g. emphasising collabor-
ative groupwork, use of manipulatives and technology), and may question or criticise the

approaches taken by the teacher (Peressini, 1998).
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Common perceptions of mathematics as consisting only of number and computation
can lead to distorted views about which aspects of mathematics are important in the work-
place, often expressed as criticism about the use of calculators eroding mental computation
abilities (Zevenbergen, 2004).

Families from different cultural backgrounds may have expectations regarding mathe-
matical content, teaching and assessment methods that differ from those now common in
Australian classrooms, and these parents may be accustomed to playing different roles in
supporting their children’s mathematics learning in the home setting (Cai, 2003).

Another important reason why mathematics teachers need to engage with parents and
community members relates to the current emphasis on numeracy education in Australia.
Numeracy has become a high priority for national and state/territory governments, and
policies formulated to address this area typically capitalise on the need to build partnerships
with homes and communities to support numeracy learning (e.g. DETYA, 2000a, 2000b).
This position on partnerships is consistent with the definition of numeracy proposed
by leading Australian mathematics educators: ‘to be numerate is to use mathematics
effectively to meet the general demands of life at home, in paid work, and for participation in
community and civic life’ (DEETYA, 1997, p. 15, emphasis added). Such an approach to numeracy
implies that it is the responsibility of all members of society—schools, families and com-
munities—to ensure that young people gain not only mathematical knowledge and
skills, but also a repertoire of problem-solving and decision-making strategies needed for
intelligent citizenship in a rapidly changing world.

However, while government policies aim to encourage schools to develop partnerships
with families and communities in their local educational contexts, there are often discrep-
ancies between the rhetoric of policy documents and the practice of family and community
involvement in education. For example, a recent national research project investigating
home—school-community partnerships that support primary school children’s numeracy
development found only limited evidence of parents and communities taking a leading role
in shaping numeracy education partnerships (Goos, 2004a). It was also clear that most
participants in the study held a narrow view of numeracy as school mathematics or
‘number’ learning, and this meant that the rich variety of numeracy learning opportunities
in everyday (non-school) settings often remained invisible to teachers, parents and com-

munity members. Nevertheless, one significant and consistent finding from this project
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concerned the central role of teachers in either enabling or hindering the formation of
partnerships. To develop good relationships with students’ parents and communities, it is
vital for teachers to have a clear understanding of the nature of ‘partnerships’ and how the

participants view their roles.

REVIEW AND REFLECT : Search the website of your state or territory’s Education

Department for information and policies on partnerships or networks involving

parents and communities. In discussion with peers, decide how well you think this

information:

* addresses the importance of positive attitudes towards mathematics;

* explains current mathematics teaching and assessment practices;

* presents a broad view of mathematics that extends beyond number and cal-
culation;

¢ acknowledges the diverse cultural backgrounds and educational experiences of

Australian families.

Stakeholder perspectives on partnerships

Epstein (1995) defines home—school-community partnerships as exemplifying a relation-
ship between ‘three major contexts in which students live and grow’ (1995, p. 702). In
Figure 16.1 we have represented this relationship as a network with student learning at
its centre. We will use this model to analyse different kinds of activities described in the
literature on home, school and community connections, to investigate these activities
in practice, and to consider how teachers and schools might use these ideas to improve
relations with parents and communities.

Some activities take place at the school and represent a typical vision of parental involve-
ment from the perspective of the school (parental attendance at school open days,
parent—teacher conferences, and so on). Other activities take place in the home and can
represent either parents’ response to school initiatives (such as checking that homework

is done) or their response to the demands of larger social practices and cultural values
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Home

Student
learning

School Community

Figure 16.1 Network model for home—school-community partnerships

(e.g. involvement driven by parent aspirations for a child’s education and well-being). Yet
other activities represent community-centred connections between home and school,
ranging from informal ties to formal partnerships (e.g. sponsorship of mathematics compe-
titions, provision of work experience placements). Therefore, we can classify these links as
being school-centred, home-centred or community-centred according to the different

perspectives of the stakeholders (Goos, 2004a; Goos et al., 2004).

School-centred perspectives on partnerships

Epstein (1995) has defined six dimensions of home—school partnerships: parenting, commu-
nicating, volunteering, learning at home, decision-making and collaborating with the
community.

Parenting refers to the support provided to families to develop parenting skills that
prepare children for school and to build positive home conditions that support learning.
This type of involvement is most often outside the classroom teacher’s realm and is usually
not a component of a mathematics teacher’s parent-involvement strategies unless the focus
is specifically on creating supportive environments for doing homework in mathematics.

Communicating involves establishing effective forms of interaction between school and

home. This type of connection is perhaps the most common way in which teachers have
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traditionally involved families of students in education, and is especially needed in situations
when parents feel uncomfortable in school, do not speak English well or come from differ-
ent cultural backgrounds from teachers. Teachers can set up effective communication with
parents by publishing mathematics newsletters, establishing networks of families to share
information about their children’s mathematics education, organising back-to-school
nights at the start of the school year, offering formal and informal teacher—parent confer-
ences and workshops, sending home mathematics portfolios, and telephoning or visiting
families regularly to understand the cultural background and experiences of students and
families (Barber et al., 2000; Miedel & Reynolds, 1999).

The most common way of communicating with students’ parents and families is via
telephone. Teachers often dread phoning home because it means telling parents about
problems with their child’s academic work, classroom behaviour or attendance. To initiate
positive relationships with parents, it is better to take a proactive approach by calling parents
before problems arise. One beginning teacher of mathematics described how she developed
an index card system to keep track of these telephone calls (Brader-Araje, 2004). This
systematic approach proved to be useful for several reasons. First, it provided evidence to
address problems in meetings with parents and the school administration. Second, tele-
phone calls often headed off potential problems because the teacher was able to discuss
concerns before they escalated. Finally, the system ensured that parents received positive
feedback about their child’s successes, and demonstrated to them that the teacher
genuinely cared about all of her students.

Volunteering expresses parents’ and families’ support for school programs by working with
students on learning activities in classrooms, and participating in other activities outside the
classroom or outside the school. While encouraging parents to become active in the mathe-
matics classroom is a powerful way of helping them understand the changes in their
children’s mathematics education, this type of participation is probably more common in
primary than secondary schools. Nevertheless, parents can be encouraged to volunteer
their time and expertise in many other ways, such as through acting as guest speakers about
their jobs and career opportunities in mathematics, excursion chaperones, and tutors or
mentors to students.

Learning at home can involve parents in monitoring and assisting their children with

homework and other mathematical activities, and this might be the most common way
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that parents expect to be involved in mathematics education. However, as mathematical
content and pedagogy continue to develop and change, parents may find themselves on
unfamiliar ground when they attempt to work with their children on school mathematics
tasks. Organising and offering activities that are meant to be completed by both the
parent and the student can make parents’ efforts to be involved at home more productive
(Ehnebuske, 1998).

Decision-making refers to parents’ participation in school decisions and advocacy activities
through curriculum committees, school councils and Parents’ and Citizens’ (P&C) associ-
ations (Horne, 1998). Involvement in decision-making is viewed by many to be the most
empowering and productive type of parental involvement; however, it is also the most
challenging type to organise and implement. This situation is particularly true for mathe-
matics education because the mathematics community has made great efforts to enhance
its professional status, and parental involvement in decision-making activities may be
perceived as challenging the professional position of mathematics teachers and educators.
Nevertheless, Horne argues, ‘the involvement of parents in these roles can mean that the
school becomes more responsive to the needs and culture of the local community’ (1998,
p. 117). This is especially important for Indigenous communities, where cultural negotia-
tion can make explicit the hidden values and processes of the school while at the same
time valuing the community’s knowledge and the goals it holds for its children (Meaney
& Fairhall, 2003).

Collaborating with the community reflects the increasing interest of many schools in making
connections with local businesses, higher education institutions and community-based
agencies. For example, schools might solicit financial or material support from the business
community to provide computers, mathematics software, calculators, manipulatives and
other materials for hands-on activities. Schools can also be involved in raising community
awareness of the importance of all students developing numeracy abilities by participating
in National Literacy and Numeracy Week or mathematics carnivals and Olympiades in
which students showcase their achievements and demonstrate mathematics projects and
activities. Schools can approach local universities to become involved in such events by
providing intellectual and material support for teachers of mathematics, or by working

directly with students on enrichment activities.
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REVIEW AND REFLECT :

* Parents often ask how they can help their children with mathematics at home. It
is not necessary for parents to be expert in the mathematical content being
taught; instead, the best way they can help is by asking leading questions
that build students’ confidence and encourage mathematical thinking and com-
munication. Design a handout to distribute to parents at the beginning of the
school year, or at the first parent—teacher evening, with suggestions on how to
help their child with mathematics learning at home. Include sample questions
they could ask to help their child get started on a problem, represent and
organise the information, deal with obstacles when they are ‘stuck’, and reflect
on their solution. (See Mirra, 2004 for examples.)

* Work with a group of colleagues to design a mathematics newsletter to send
home to parents of classes you teach. You could include items such as a
description of topics the classes have been studying, together with information
about their historical development or relevance to everyday life or careers;
examples of the types of mathematical activities and problems that students
have worked on in different subjects and year levels; simple projects or data
collection activities that students and their families could work on together;
information about mathematics competitions or other extra-curricular activi-
ties; and articles that explain the philosophy of the classroom (e.g. use of
calculators or groupwork]).

* Search the internet to find mathematics activities offered through National
Literacy and Numeracy Week (<www.literacyandnumeracy.gov.au>). Design a
week of school-based activities that develop family and community awareness
of the importance of numeracy.

Family-centred perspectives on partnerships

We can also ask how families see their roles in connecting with schools and communities to
support their children’s mathematics education. Although there has been much less work

undertaken from this family-centred perspective, we can identify the following six categories:


http://www.literacyandnumeracy.gov.au
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* creating supportive learning environments at home;

* parental support for the child;

* parents as role models for the value of education;

* home practices that support numeracy development;

* parent-directed activities that connect children to out-of-school opportunities for
numeracy development;

* parent—child discussions and interactions about school-related issues and activities
(James et al., 2001; Jordan et al., 2001; Y. Katz, 2000).

Creating supportive learning environments at home includes the supervision and structure that
parents give children to support their education—for example, by providing time and space
for homework and limiting the time spent watching television and playing computer games.

Parental support for the child includes emotional and academic support, and the expression of
parental aspirations and expectations regarding a child’s current school performance.
Research in this area shows that parents’ educational aspirations are stable, high and certain
over the pre-primary and primary years of schooling, but expectations can become lower,
less stable and subject to considerably more uncertainty by the start of secondary school.

Parents as role models for the value of education refers to ways in which parents can model why
school is important and share their own experiences that reinforce the value of education.
Literature that describes this dimension of family involvement in children’s education is
rich in examples of the traditional (middle-class) mediation of educational values. It also
shows that the vast majority of marginalised families fall into the ‘uninvolved’ category, and
hence parents are represented as uncaring and as failing to provide a positive model for their
children. Current research into practices of disadvantaged families illustrates that parents
often engage in activities that are outside conventional understanding of involvement. For
example, they may show the value of education to their children through the medium of
hard work, thus teaching ‘real-life’ lessons that such work is both difficult and without
adequate compensation and that without education they may end up working in a similar
type of job (Lopez, 2001).

Home practices that support numeracy development refer to such activities as parents doing
problem-solving tasks and engaging in mathematical games. Studies in this area typically
highlight the role that parents play in their children’s early numeracy and literacy learning

prior to school entry and in the primary school years, and less attention has been given to
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the numeracy learning opportunities available for secondary school-aged children in the
everyday activities of families and communities (such as budgeting, shopping, scheduling,
playing sport, travelling, measuring or building things).

Parent-directed activities that connect children to out-of-school opportunities for numeracy development may
involve private tutoring, enrolment in different enrichment programs run by after-school
and church organisations, museums and libraries, and community schools that teach
migrant children about their home culture and language. Studies show that parents with
higher levels of education (and predominantly mothers) are more likely to initiate these
kinds of connections.

Parent—child discussions and interactions about school-related issues and activities involve
parents in asking their children what mathematics they learned in school that day. Very
often this kind of discussion drives parental activism with regard to their involvement in
school policies, representing and advocating for the interests and needs of their children.
Interesting cultural differences have been found in the ways that parents interact with their
children about their mathematics learning at school—for example, Lapointe and
colleagues (1992) note that Chinese parents are more likely than US parents to ask their
children about their mathematics classes than to help them with homework, while the

reverse is true for US parents.

REVIEW AND REFLECT : As part of the Australian government’s Numeracy

Research and Development Initiative, the Western Australian Department of Educa-

tion and Murdoch University were engaged to develop a poster and three brochures

aimed at promoting the importance of numeracy to parents. Brochures titled

‘Numeracy: families working it out together, the opportunities are everywhere’

were produced to illustrate numeracy learning opportunities for families with

children in the early, middle, and later primary years.

* Download the brochures from either <www.dest.gov.au/sectors/school_education/
publications_resources> or <www.gu.edu.au/school/cls/clearinghouse>.
Design a corresponding brochure for families of lower secondary students or a
poster that could be displayed in classrooms.

* Find out about mathematics enrichment programs in your local area run by

after-school organisations, museums and libraries, and community schools.
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Community-centred perspectives on partnerships

Analysing numeracy learning in communities is very complex because of the multiple
communities (social, cultural, religious, economic) in which a young person may partici-
pate. The literature in this area suggests the following ways in which communities may

form educational partnerships with schools and families (Jordan et al., 2001; Keith, 1999):

* community-driven school reform and curricular enrichment efforts;
* business—school partnerships;

* university—school partnerships;

* community service learning programs;

* after-school programs;

* more extended programs that target family numeracy.

Community-driven school reform and curricular enrichment efforts use community resources to
overcome the view of the school as the sole transmitter of knowledge. Horne (1998) illus-
trates this dimension of community—school connections in schools where Mathematics
Task Centres operate, involving parents and community members as mathematics tutors.

Business—school partnerships may provide schools with resources, expertise and volunteers.
Peressini (1998) argues that resources provided to schools should not be limited to financial
help only—for example, local businesses can supply teachers with such resources as restau-
rant menus and grocery flyers to develop classroom mathematics tasks in lifelike contexts.
Organisations may also establish partnerships with schools so that students can spend a day
at the particular business and observe how mathematics is applied in the real world.

University—school partnerships may provide expertise, resources and professional development
to schools while schools participate in research studies or other collaborative projects.
These partnerships can serve as a catalyst for mathematics educational reform where
resources and expertise for change are lacking.

Community service learning programs link academic content with activities that allow students to
contribute to the well-being of the community. Through service learning, the community
enriches the students’ education by providing real-world learning opportunities outside the
classroom; simultaneously, the students and school contribute to the community as they

perform needed service for individuals, organisations and wider community purposes.
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After-school programs provide help with homework, or remedial and enrichment learning
activities. Many community after-school programs also fulfil parents’ needs for childcare
and other social services.

More extended programs that target family numeracy are exemplified by the Family Mathematics
Program, which originated in the United States but also flourished in Australia (Horne,
1998). These programs place parents and their children together in workshops with stimulat-
ing joint activities to learn and use at home. Trainers include other parents, school personnel
and volunteers from community organisations. Studies show that most parents who have
participated in Family Maths Programs engage in more learning activities at home with their
children, and that more student participants enjoy mathematics classes. Schools, too, have
changed their approach to communication with parents after being involved in offering
such programs. The fact that these programs are more common in primary than secondary
schools suggests that teachers may see less need to involve parents in mathematics education

as their children get older and begin to study more specialised mathematical topics.

How can families and communities contribute to young people’s
mathematics education?

The Australian Education Council (1993a) has published guidelines for parents and the
community explaining why mathematics is important and why school mathematics is
changing. These guidelines also describe the active role that families can take in their

children’s mathematics education by:

* encouraging their children to talk about what they are doing in mathematics at
school;

¢ listening carefully and with interest to the explanations of their children about
mathematics;

* reassuring and encouraging their children when they face difficulties;

* taking opportunities to practise leisure mathematics learning in the home and the
community (for example, playing games requiring strategies);

* engaging children in discussions about the useful aspects of mathematics at home

and at work;
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REVIEW AND REFLECT :

» Search the internet for information about the Family Maths Program and sample
activities families can work on together. Browse the National Council of Teachers
of Mathematics Figure This! website, which offers mathematical challenges for
families of middle years students (<www.figurethis.org>).

* Find out what kind of involvement local businesses and community organis-
ations have in providing resources or expertise to your school’s mathematics
department, or work/service placements for mathematics students. What
benefits do the teachers, students, and businesses and community organis-
ations see in these arrangements?

* Investigate the role of Homework Centres in providing after-school support for
Australian Indigenous students and Pacific Island students in New Zealand.

Refer to the Whole of School Intervention Strategy supported by the Department of
Education, Science and Training (<www.dest.gov.au/sectors/indigenous_education/
programmes_funding/whole_of_school_intervention_strategg.htm>] and the
Pacific Islands School Community Parent Liaison Project Case Study
(<www.minedu.govt.nz/index.cfm?layout=document&documentid=10720&index
id=6191&indexparentid=5871#P23_240>).

 talking to their teachers about their child’s progress in mathematical develop-
ment and recognising what is a reasonable expectation of their performance;
* participating in school-based family mathematics evenings;

* seeking information about the school’s mathematics curriculum (1993a,

pp. 12-13).

Members of the broader community can also enhance the learning of mathematics

in schools by:

* talking about how mathematics is used in their particular fields;

* being involved in discussions about the school curriculum;


http://www.figurethis.org
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* being prepared to have an active role within the school (for example, talking and
working with groups of students both at the school and outside school, or helping
to devise materials and activities that have a local application);

* participating in work experience programs, community placements and other
outside-school experience programs for students;

* explaining, discussing and providing training in areas which have specialised
mathematical needs;

* becoming informed about specific mathematics problems and school practices;

* developing informed expectations of individual students’ capacities (1993a, p. 13).

Conclusion

When teachers and schools work with families and communities to enhance young people’s
mathematics learning, we would warn against inferring that the term partnership implies
there should be similar contributions from, and roles for, all participants. This is especially
important when considering the roles of parents and teachers in educational partnerships.
While research has found plenty of evidence that parents genuinely care about their
children’s education, it is equally clear that not all parents want to be actively involved in all
aspects of schooling, and many see their role primarily as a supportive one. Perhaps the
most productive way forward is to focus on what each participant—parent, teacher,
community member—can bring to the partnership that will make best use of their diverse

expertise, backgrounds and interests in supporting students’ learning.
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CHAPTER 17

Continuing professional
learning

The idea of lifelong learning is highly relevant to teachers’ professional lives. Graduation
from a pre-service teacher education program is an important moment in your teaching
career, but this does not mark the end of professional growth as a teacher. Qualified
professionals are expected to take responsibility for their own continuing development as
mathematics teachers. This requires a shift in the common view of professional development
from a one-shot, short-term experience towards a commitment to long-term, incremental
improvement. In this chapter, we discuss approaches to career-long professional learning
and development that bring together critical self-reflection and collaborative interaction
with others. These approaches are interpreted in the context of beginning teachers’ pro-
fessional socialisation and development of a professional identity. We also explore the
professional standards framework developed by the Australian Association of Mathematics

Teachers to consider issues involved in planning for continuing professional learning.

Dimensions of professional practice

A significant concern in contemporary professional development programs is the need to
foster teachers’ reflection on their practice so they continue to learn about themselves as
teachers and their students as learners. However, professional development activities can do
more than promote the growth of individual teachers’ knowledge about their practice by
also encouraging collegiality amongst groups of teachers within and beyond their schools.

For example, in telling the story of a mathematics teacher and her struggle for professional
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growth throughout her career, Krainer (2001) comments on the transition of the group of
teachers with whom she worked ‘from an assembly of lone fighters to a network of critical friends’
(2001, p. 287, original emphasis). This change highlights what Krainer refers to as the four
dimensions of teachers’ professional practice: action, reflection, autonomy and networking.
While each of these dimensions is important, he explains that it is necessary to achieve a
balance between action and reflection, and also between autonomy and networking. Krainer claims
that the practice of most teachers and schools does not achieve this balance: there is a lot of
action and autonomy (hence the ‘lone fighters’), and not much reflection and networking
(as in ‘critical friends”). Thus promoting the latter practices represents a powerful interven-
tion strategy for the further development of teachers. In the following sections, we discuss
the meanings of ‘reflection’ and ‘networking’, and consider how mathematics teachers can

become reflective individuals within a networked professional community.

Becoming a reflective teacher of mathematics

Pre-service teachers are routinely urged to ‘reflect’ on their lessons, but what does this really
mean? Artzt and Armour-Thomas (2002) describe reflection as thinking about teaching
before, during and after enactment of a lesson. Because the purpose of reflection is to
evaluate the effectiveness of one’s teaching in order to bring about improvement, it is
important that reflection involves analysis rather than description, and uses information
from a variety of sources instead of relying only on introspection. Sources of data for reflec-
tion include the teacher’s own self-analysis of lessons, comments made by students and

feedback from colleagues.

Self-analysis of lessons

In Chapter 2, we presented a classroom scenario involving Damien, a pre-service teacher,
and his Year 10 mathematics class. Damien’s post-lesson debriefing notes—the reflections
he recorded during an interview with his university supervisor—illustrate a framework for
self-analysis of lessons. The prompt for self-analysis was a reflection card similar to that shown
in Figure 17.1. The rows correspond to important lesson features for the students in
the classroom: engagement and involvement; learning processes; progress made during the

lesson; and the social context in which they learned. The columns refer to a selected set of
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lesson features of importance to a pre-service or beginning teacher: expectations and actions
concerned with teaching approaches; and student actions that the teacher noticed during
the lesson as a form of immediate feedback. The reflection card was designed for use in a
research project where a mentor, such as a university supervisor or supervising teacher,
elicited the pre-service teacher’s reflections in each of the cells (Goos, 1999). However, the
reflection card can also be used independently for lesson self-analysis. This is not a strategy
that needs to be applied to every lesson taught. Instead, it may be helpful to either decide on
a regular schedule for reflection on lessons (e.g. once per fortnight) or select a sequence of

lessons with a particular class that might present specific challenges.

Lesson features

Student learning Teacher expectations Teacher actions Student actions

Engagement and
involvement

e attitude tolearning

Learning process

e how students learn

Progress

e how well students learn

Social context

e social environment
for learning

Figure 17.1 Reflection card

REVIEW AND REFLECT : Before a lesson, record your expectations in the first
column of the reflection card by responding to the following questions (adapted
from Artzt & Armour-Thomas, 2002):

Engagement and involvement
What do you know about your students in terms of their prior knowledge, achieve-
ments and experiences, attitudes and interests? How will you use your knowledge

of students to engage them in the lesson?




Continuing professional learning 409

Learning process

What pedagogical approaches might be suitable for this topic and this class? How
have you decided which approach to use? What resources and modes of represent-
ation (symbols, diagrams, manipulatives, technology) have you considered? What
forms of teacher—student and student—student interaction have you planned?

Progress

What do you know about the mathematical content of the lesson? What is the level
of difficulty? How should tasks be sequenced? How does the content connect with
the mathematics students have already learned and with content to be taught in
future? What difficulties do you anticipate the students might have and how have
you prepared for these?

Social context
How will you establish a positive social and intellectual climate? What adminis-
trative and organisational routines will be important in this lesson?

After the lesson, record the actions you took to ensure students were engaged
in the lesson (engagement and involvement), to help them learn in the ways you
envisaged (learning process), to help them achieve the progress you wanted
(progress), and to establish a productive learning environment (social context).

Also record the student actions you observed in each of these areas. That is,
how did you know that the students were (or were not) engaged, that they were (or
were not) learning in the ways you had expected, that they were (or were not)
making the progress you anticipated, that the learning environment was (or was
not) as you desired?

Your self-analysis concludes by answering the following questions:

* Do you think your expectations for this lesson were appropriate ? Why/why not?

* Do you think that your actions were consistent with your expectations?
Why/why not? If not, what could you have done differently?

* What actions do you plan on taking in future lessons as a result of your
reflection?
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Feedback from students

Students can also provide valuable feedback on the effectiveness of your teaching. Good
teachers monitor their students for informal feedback during lessons, such as by noticing
students’ level of interest and understanding, and adjust their teaching actions accordingly.
More formal feedback can also be obtained from students through the use of surveys or

questionnaires.

REVIEW AND REFLECT : Close to the end of his first semester of secondary
mathematics teaching, a beginning teacher emailed fellow graduates with the
following request:

I want to get some feedback from my students about how they perceive
my teaching strengths and weaknesses. Does anyone have a question-
naire that they have used or can you suggest some questions that
[ could ask?

What advice would you give him? What questions would you suggest he ask his
students? Why do you suggest these questions?

One of the authors of this book recalls seeking feedback from a class by designing a
survey based on the needs students expressed in the first lesson of the year. In this lesson,
the teacher wanted to establish her expectations of students, but decided first to ask them
what they needed from her in order to develop the idea that teacher—student relationships
should be based on mutual respect and involve mutual obligations. She asked students to

complete the sentence ‘I need a teacher who . . .’ Their responses included:

* explains things simply;

* Ican getalong well with;

* treats me like a human being;

* helps when needed;

* isunderstanding;

* Ican have a joke with;

* makes class interesting and fun;

e teaches!
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* Isencouraging;
* tolerates ‘dumb’ questions;

* allows students to help each other.

The teacher recorded these responses because they corresponded closely to her own
personal goals, and at the end of Term 1 she administered a survey that asked students to
rate the extent to which she had demonstrated these qualities, using a five-point scale
ranging from ‘Never’ to ‘Always’. Not surprisingly, students were impressed that the
teacher had taken their opinions seriously and had tried to meet their expectations.

Teachers can also seek regular written feedback from students to help identify difficulties
they may be experiencing, and thus plan more effective methods of instruction. The
IMPACT procedure (Clarke, 1988) provides a way of discovering students’ concerns and
opinions by administering a simple questionnaire during class (see Figure 17.2). Administra-
tion should be regular (e.g. once per fortnight), and students’ responses can be stored in a
class folder in order to identify trends. Teachers have found this procedure very useful, butits
success depends on respecting the confidentiality of student responses and acting on these

responses where appropriate to improve students’ experiences of learning mathematics.

Class:
Teacher: ... ..
Date: .

Write down the two most important things you have learnt in maths during the past month.
Write down at least one sort of problem which you have continued to find difficult.
What would you most like more help with?

How do you feel in maths classes at the moment? (Circle the words that apply to you.)

a) Interested b) Relaxed c) Worried
d) Successful e) Confused f) Clever
g) Happy h) Bored i) Rushed

j) Write down one word of YOUr OWN ...
What is the biggest worry affecting your work in maths at the moment?

How could we improve maths classes?

Figure 17.2 The IMPACT procedure
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REVIEW AND REFLECT : Below are some sample student responses using the
IMPACT procedure.

What is the biggest worry affecting your work in maths at the moment?
Homework, because at home hardly anyone knows what to do because it is just
as new to them as it is to me.

Write down at least one sort of problem which you have continued to find
difficult.

Algebra a bit, because | don’t understand why we don’t just use numbers. It
would be simpler.

How do you feel in maths classes at the moment?

Bored. Angry. (If you're wondering why I'm angry, it’s because | don’t like being
bored.)

How could we improve maths classes?

By using some other method of learning instead of these boring textbooks.

Have less work and more learning.

What information do these comments provide about the students’ concerns and
classroom learning experiences? If you were the teacher, what actions would you

take to follow up on these comments?

Feedback from colleagues

Beginning teachers of mathematics and other teachers who lack formal qualifications in
mathematics education often find it helpful to work with a mentor—a trusted colleague
who is willing to observe lessons and to be observed in his or her classroom, to share
resources, and to help less experienced teachers to develop their own teaching style
(Zagorski, 2004). Observing lessons taught by others remains a powerful way to learn about
teaching throughout your career. The relationship between observer and observed need not
be hierarchical (e.g. expert and novice), and teachers who are equally experienced but still

consider themselves learners will benefit from mutual observations and sharing of practice

(Tanner & Jones, 2000).
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In preparing to be observed, it is important to be specific about the kind of feedback desired
for the particular lesson and how this feedback can contribute to achieving longer term goals
for improving practice. The reflection card shown in Figure 17.1 and the reflective questions
that accompany it can help the beginning teacher identify lesson objectives, pedagogical
strategies and anticipated problems, and can also provide a focus for post-lesson discussion
with the mentor. This discussion could explore options for developing specific teaching

strategies or for finding solutions to problems experienced with a particular group of students.

REVIEW AND REFLECT : Zagorski (2004, p. 6] lists the following qualities to look
forin a mentor:

* aknowledgeable teacher who is committed to the profession;

* a teacher who has a positive attitude toward the school, colleagues and
students, and is willing to share his or her own struggles and frustrations,
avoiding the naysayer who constantly complains in staff meetings;

* ateacherwhois accepting of beginning teachers, showing empathy and accept-
ance without judgment;

* a teacher who continuously searches for better answers and more effective
solutions to problems rather than believes that he or she already has the only
right answer to every question and the best solution to every problem;

* a teacher who leads and attends workshops and who reads or writes for pro-
fessional journals;

* anopen, caring, and friendly individual who has good communication skills;

* someone who shares your teaching style, philosophy, grade level or subject area;

* ateacherwhois following the path you want to follow, someone with whom you
can relate and with whom you share mutual respect;

* someone who is aware of his or her own biases and opinions, and encourages

you to listen to advice but also to form your own opinions.
Discuss this list of qualities with a partner and rank them in order of importance to
you. Add any other qualities you agree are important. Compare your list with those
produced by others in your class.
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Collaborative professional learning

Collaboration is regarded as central to all professional learning (Loucks-Horsley et al.,
2003). Collaborative structures can bring together teachers within a school or across
schools to work towards a common learning goal. Professional networks and action
research are two common ways of engaging teachers in collaborative professional

learning experiences.

Professional networks and action research

Loucks-Horsley et al. (2003) define a professional network as ‘an organised professional
community that has a common theme or purpose’ (2003, p. 146). Networks typically bring
together teachers and other educators across school boundaries—for example, through
school—university partnerships, school clusters (including those that link primary and
secondary schools), mathematics teacher associations or partnerships with community
organisations. Often these networks are formed for specific purposes, such as to improve
teaching of particular subject-matter or to support particular school or curricular reforms.
For example, mathematics teachers from secondary schools in a geographically defined
district might form a network in order to investigate effective ways to implement a new
curriculum. A challenge for networks is to keep members engaged, connected and
informed, and electronic communication methods such as email lists and websites are
increasingly used for this purpose.

Action research is another form of practice-based collaborative inquiry that provides
teachers with opportunities for deep analysis and reflection on critical questions they face
in their work. Action research is ‘an ongoing process of systematic study in which teachers
examine their own teaching and students’ learning through descriptive reporting, purpose-
ful conversation, collegial sharing, and critical reflection for the purpose of improving
classroom practice’ (Miller & Pine, 1990, cited in Loucks-Horsley et al., 2003, p. 162). Although
there are many different forms of action research, this approach is often considered to have

the following key elements:
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* Teachers contribute to or formulate their own questions, and collect the data to
answer these questions (e.g. by observing or videotaping lessons, interviewing
students or teachers, conducting surveys, collecting student work).

* Teachers use an action research cycle, comprising planning, observing, acting and
reflecting.

* Teachers are linked with sources of knowledge and stimulation from outside their
schools, such as professional associations or university researchers.

* Teachers work collaboratively.

* Learning from research is documented and shared.

REVIEW AND REFLECT : Browse the reports of action research projects carried
out in South Australian schools as part of the Strategic Directions for Science and
Mathematics initiative: <www.scimas.sa.edu.au/scimas/pages/Projects/p4213>.

Choose one project and look for evidence of the key elements of action research
listed above. What benefits and hindrances were experienced by teachers and

students in this project?

Working in professional communities

In recent years, there has been much interest in the idea of teacher professional communi-
ties as a means of supporting teacher networks that promote continuing inquiry into
practice. Secada and Adajian (1997) define four characteristics of such communities: a
shared sense of purpose in committing to common educational values and goals for student
learning; coordinated effort to improve students’ mathematics learning by examining
curriculum across grade levels and by accessing parental support and community
resources; collaborative professional learning to improve mathematics teaching practices;
and collective control over important decisions affecting the mathematics program. Math-
ematics teacher professional communities with these characteristics can support
experienced teachers learning to teach in new ways so they continually improve their

practice (Stein et al., 1998).


http://www.scimas.sa.edu.au/scimas/pages/Projects/p4213
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REVIEW AND REFLECT : Discuss your own professional experience in terms of the
four characteristics of teacher professional communities outlined above. To what
extent are these present or absent in your school, and how does this affect form-

ation of a professional community of mathematics teachers?

Understanding professional socialisation

Not only is learning to teach a lifelong process, but teachers also learn from experience in
many different contexts. It can be challenging for beginning teachers to reconcile what
they learn about teaching from their own schooling, the university pre-service program
and practicum sessions, and initial professional experiences—especially if these produce
conflicting images of mathematics teaching. This challenge is often associated with the
perceived gap between the decontextualised knowledge provided by university-based
teacher education and the practical realities of classroom teaching. As a result, many begin-
ning teachers find it difficult to implement innovative approaches they may have learned
about during their pre-service program while trying to cope with the demands of the early
years of full-time teaching. It is common for beginning teachers to give up their innovative
ideas in the struggle to survive, and instead conform to institutional norms of traditional
practices. Teachers at later stages of their careers may experience similar challenges if they
are required to implement new teaching approaches, curricula or assessment techniques.
Instead of viewing teachers as being passively moulded by the forces of professional
socialisation and reliant on short-term coping strategies for survival, we prefer to take the
view that they can take action to shape their own development. To show what this might
look like, we present a theoretical model for teachers’ learning (more fully discussed by

Goos, 2005), illustrated by a case study of a beginning teacher.

A theory of teacher learning and development

Researchers have identified a range of factors that influence teacher learning and develop-
ment. Rather than considering each separately, it is helpful to organise these factors into

three ‘zones of influence’. The first zone represents teacher knowledge and beliefs, and represents
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the potential for development. This zone includes teachers’ disciplinary knowledge, pedagogical
content knowledge (knowledge of how to represent concepts and to use examples and
analogies, as described by Shulman, 1986), and beliefs about their discipline and how it
is best taught and learned. The second zone represents the professional context, which
defines the teaching actions allowed. Elements of the context may include curriculum and
assessment requirements, access to resources, organisational structures and cultures,
and teacher perceptions of student background, ability and motivation. The third zone
represents the sources of assistance available to teachers in promoting specific teaching actions,
such as that offered by a pre-service teacher education course, supervised practicum
experience, professional colleagues and mentors in the school, or formal professional
development activities.

To understand teacher learning, we need to investigate relationships between these
three zones (represented by the overlapping circles in Figure 17.3). Professional learning is
most effective when teachers experience enough challenge to disturb the balance between
their existing beliefs and practices, but also enough support to think through the dis-
sonance experienced and either develop a new repertoire of practice or a new way of

interpreting their context that fits with their new understanding.

Teacher knowledge
and beliefs Professional context

Sources of assistance

)

Figure 17.3 Relationships between the three ‘zones of influence

in teacher learning
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A case study of learning to teach

The case study in the box below illustrates how the ‘three zone’” model can be used to

understand the professional socialisation of beginning teachers.

Adam’s pre-service practicum

Adam was enrolled in a pre-service course that emphasised technology as a peda-
gogical resource. His practicum placement was in a large suburban school that
had recently received funding to refurbish the mathematics classrooms and buy
technology resources. All senior students had their own graphics calculators, and
there were also sufficient class sets of these calculators for use by junior classes.
Some of these changes had been made in response to new senior mathematics
syllabuses that mandated the use of computers or graphics calculators in
teaching and assessment programs.

Adam had previously worked as a software designer. Although he had not
used a graphics calculator before starting the pre-service course, he quickly
became familiar with its capabilities and incorporated this and other tech-
nologies into his mathematics lessons, with the encouragement of his
supervising teacher. However, at this stage Adam had only ever used technology
in his teaching, or observed its use by other teachers, as a tool for saving time in
plotting graphs and performing complicated calculations, or for checking work
done first by hand.

Table 17.1 identifies relevant aspects of Adam’s knowledge and beliefs, professional
context and sources of assistance, and indicates that all of these were likely to positively
influence his professional socialisation and learning. Adam’s practicum experi-
ence could be represented by the relationships (overlap) between the zones

shown in Figure 17.3 (above).
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Table 17.1 Adam’s practicum experience

Knowledge and beliefs

v Skilled/experienced in using technology
v Student-centred pedagogical beliefs

v Developing pedagogical content knowledge regarding technology integration

Professional context

v Syllabuses mandated use of technology

v Access to well-equipped classrooms, computers and graphics calculators

Sources of assistance

v Pre-service course emphasised technology

v Supervising teacher encouraged use of technology

Adam’s first year of teaching

After graduation, Adam was employed by the same school where he had
completed his practicum. Although the school environment and mathematics
teaching staff were the same, Adam’s experience of teaching changed dramati-
cally. By now he had developed a much more flexible teaching approach, and he
encouraged students to use their graphics calculators as a learning tool to
explore new mathematical concepts and model real-world situations. However,
he discovered that many of the other mathematics teachers were unenthusiastic
about using technology and favoured very structured lessons that left students
with few opportunities to investigate mathematical ideas for themselves. Because
he disagreed with this approach, conflicting pedagogical beliefs became a source
of friction in the staffroom, and this was often played out in arguments where
Adam was accused of not teaching in the ‘right” way. He realised that as a pre-
service teacher he had not noticed the ‘politics of teaching’ because he had the

luxury of focusing on a small number of classes and his relationship with a single
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supervising teacher. He now found himself in a more complex situation that
required him to defend his instructional decisions while negotiating harmonious
relationships with several colleagues who did not share his beliefs about learning.

Because Adam’s knowledge of technology integration had developed since the
practicum, his knowledge and beliefs are represented by a larger circle in Figure
17.4. However, the extent of overlap between his sources of assistance and the
other two zones has decreased, because his teacher colleagues did not hold views
compatible with either the teaching context (high access to technology) or

Adam’s potential for development.

Knowledge
and beliefs Professional context

Sources of assistance
Figure 174 Adam’s first year of teaching

* How should Adam respond to this situation so that the overlap between the

zones is restored?

Adam realised that this was the way he was comfortable teaching, and he
refused to be drawn into arguments with other teachers. He interpreted his
technology-rich context as affording his preferred teaching approach, and decided
to pay attention only to those sources of assistance within the Mathematics
Department that were consistent with his own beliefs and goals and the

approaches that he experienced in his pre-service course.



Continuing professional learning 421

Adam’s second year of teaching

The following year, Adam was transferred to a different school where there was
limited access to computer laboratories and only one class set of graphics cal-
culators. The students were poorly motivated and unruly, and the school
administration provided little support in managing the learning environment.
None of the mathematics teachers was interested in using technology, and
they preferred the same kind of teacher-centred, textbook-oriented teaching
approaches as Adam’s colleagues in his previous school. His experience as a second-
year teacher is represented by Figure 17.5. The other teachers, through their lack
of interest in technology, promoted approaches that were consistent with this

technology-poor environment, but not with Adam’s own beliefs and aspirations.

Knowledge
and beliefs Professional context

Sources of assistance

Figure 17.5 Adam’s second year of teaching

* What actions might Adam take to increase the overlap between the three

zones?

Because no other teacher wanted to use the class set of graphics calculators,
Adam found he had unlimited access to the calculators for all of his classes. In
other words, reinterpreting the context increased its overlap with his own beliefs

and goals. He also joined the mathematics teachers’ professional association and
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started to attend their professional development workshops and conferences.
This brought him into contact with many other like-minded teachers and ideas
for developing his teaching, and made available new sources of assistance that

met his need for professional growth.

REVIEW AND REFLECT : Analyse your own professional experience using the
approach illustrated above. Begin by creating a table like Table 17.1 to list aspects of
your knowledge and beliefs, professional context and sources of assistance. Use
this information to draw a diagram like those in Figures 174 and 17.5. Describe the
relationships between the three zones. What action could you take to reinterpret
your teaching context or seek assistance from other sources in order to increase
the degree of alighment between them?

Compare your analysis and zone diagram with that of a peer who has pro-

fessional experience in a different school.

Planning for continuing professional learning

There is no doubt that mathematics teachers need to know mathematics and constantly
update their mathematical knowledge, especially when curriculum change brings new
topics into school mathematics. However, mathematical content knowledge alone is not
enough. Many professional development activities in mathematics education combine two
core kinds of teacher knowledge—mathematical knowledge and pedagogical content knowledge—by
immersing teachers in situations that require both mathematical and pedagogical problem-
solving, thus encouraging teachers to reflect on their practice and on their own
understanding of the mathematics they teach (Zaslavsky et al., 2003).

Research on the effectiveness of professional development programs concludes that the
following five features are significant (Little, 1988; Putnam & Borko, 1997; Wilson & Berne,

1999). Effective professional development:
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* isongoing and provides adequate time and follow-up support;

* s collaborative and aims to connect participants in learning communities;

* focuses on student learning and student-centred approaches to teaching;

* treats teachers as professionals who are active learners and takes into considera-
tion individual teachers’ contexts;

* enhances pedagogical content knowledge for teaching.

In Australia, teacher registration authorities are moving towards requiring evidence
of continuing professional learning by teachers to maintain their registration. Instead of
participating randomly in professional development activities to comply with renewal
of registration policies, it is better to create a longer term plan for career development and
seek out professional learning opportunities with the characteristics described above to
help achieve desired goals. Frameworks that set out professional standards for teaching

can lay the groundwork for this plan by specifying what teachers should know, understand
and be able to do.

REVIEW AND REFLECT :

* Locate the website of your state’s or territory’s teacher registration authority (it
may be a Teacher Registration Board, or a College or Institute of Teachers). Does
renewal of registration require evidence of continuing professional learning
(CPL)? What forms of CPL are recognised or approved? What kind of evidence is
accepted?

* Find out whether your teacher registration authority has developed a profes-
sional standards framework for teaching. What domains or elements of practice
are identified? Are there separate standards for graduate teachers and regis-
tered teachers? If so, how do they differ?

Unlike the generic standards developed by teacher registration authorities, the profes-
sional standards published by the Australian Association of Mathematics Teachers (2006)
relate to the specialised work of teaching mathematics, describe characteristics of best

teaching practice rather than competence, and provide a framework for teachers’ career-long
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professional growth. The Standards for Excellence in Teaching Mathematics in Australian Schools were
collaboratively developed by mathematics teachers and researchers from Monash Univer-
sity to describe what mathematics teachers who are doing their job well should know and

do. The AAMT Standards are arranged into the three domains shown in Table 17.2.

Table 17.2. Domains of the AAMT Standards

Domain 1 Domain 2 Domain 3
Professional knowledge Professional attributes Professional practice
1.1 Knowledge of students 2.1 Personal attributes 3.1 The learning
1.2 Knowledge of 2.2 Personal professional environment
mathematics development 3.2 Planning for learning
1.3 Knowledge of students’ 2.3 Community 3.3 Teachingin action
learning of mathematics responsibilities 3.4 Assessment

Teachers can use the standards statements for each of these domains, and the elabora-
tions in the Standards document itself, to audit their professional knowledge, attributes and
practice, and identify areas for further development. The domains and their related stan-
dards also provide a way of organising a professional portfolio that can be maintained and
updated throughout your teaching career. A portfolio is more than a scrapbook of lesson
plans and classroom artefacts; instead, it assembles evidence of professional learning in the
form of annotated materials that relate explicitly to a professional standards framework
(Campbell, 2004; Reese, 2004). Annotations should explain why each item was selected for
inclusion and how each item is linked to one or more elements of the portfolio’s organising
framework. For example, one reason for including a particular lesson plan might be that use
of collaborative learning strategies and a task that applied mathematics to a real-world
problem succeeded in engaging students who had previously showed little interest in
learning. The annotations could explain how this lesson provides evidence of knowledge of
students (AAMT Standard 1.1), knowledge of students’ learning of mathematics (AAMT
Standard 1.3), and planning for learning (AAMT Standard 3.2). Some thought also needs to
be given to the format of the portfolio to ensure that the contents are appropriately indexed
and cross-referenced, even when the materials included in the portfolio change over time to

reflect continuing development as a teacher. Electronic portfolios have several advantages
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in this regard: they are portable rather than bulky, easy to modify, and the contents can be
hyperlinked to the organising framework in multiple ways to illustrate the richness of

professional experience.

REVIEW AND REFLECT : Download the AAMT Standards from <www.aamt.edu.au/
standards> and read the elaborations for each domain and standard. Discuss
with peers how you could select material for inclusion in a professional portfolio
organised around the Standards. Materials could include: annotated lesson plans
and student work samples; teaching resources you have created or selected
together with an indication of their purpose and effectiveness; sample pages from
websites used in your teaching; photographs of your classroom or of student work;
feedback from students and colleagues on your teaching; messages from parents;
journal articles and other samples of professional reading; evidence of par-
ticipation in professional development activities and how this influenced your
teaching.

Make a list of materials you have already collected in your pre-service course
and classify these as providing evidence against one or more of the ten standards.
Identify any standards for which you presently have little evidence of accomplish-
ment: these represent opportunities for planning further professional learning.

Conclusion

A range of professional development opportunities is available specifically for mathematics
teachers. Joining the local mathematics teachers’ professional association provides access to
journals, newsletters, workshops, and information about new curricula and assessment
policies. (Details of state- and territory-based associations affiliated with the Australian
Association of Mathematics Teachers can be found on the AAMT website.) Annual confer-
ences organised by these professional associations offer a wide choice of sessions for teachers
of mathematics across all levels of schooling, as well as opportunities to interact with
colleagues from other schools. Professional journals and resource books published by these

associations are also an excellent source of practical teaching ideas and summaries of
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research findings that can be used to improve students’ learning. As knowledge is con-
tinually changing, it is also worth considering postgraduate study to keep abreast of
developments in mathematics education and to explore areas of interest in greater depth
than is possible in a pre-service program. Finally, participation in university-based research
and teacher development projects can be an energising experience that encourages teachers
to analyse and reflect on their own practice and students’ learning. Many of the examples of
practice we present in this book have come from projects where we have worked in partner-
ship with teachers interested in trying out new approaches. Involvement in research
grounded in classrooms allowed them to develop their personal professional knowledge
while contributing to knowledge about mathematics teaching and learning more generally
through publication of journal articles and presentation of conference papers. Taking
this path has introduced many teachers to the exciting world of education research, and

reinforced their commitment to lifelong learning.
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covariation 26871
creating statistical information 2723
data in primary years 2578
data-logging equipment 823
graph interpretation 261
integrating contextual knowledge 2612
intuition about randomness 258—9
primary years 2578
probability 2635, 271-2
procedural knowledge 259
secondary curriculum 262-80
statistical inference, informal 278—80
statistical information, utilising 266
statistical investigations 259—60, 274—7
statistical literacy 2656
statistical thinking, dispositions for 273—4
statistics and mathematics, distinction 255
technologies 255
topic integration 2556
univariate descriptive statistics 267—8
classroom environment 38
classroom practice see also mathematics teaching
practices
impact of mathematical beliefs 4
integration of technologies 75
technology and 75, 90—4, 98—100
classroom scenarios 50—8
cognitive development 28-9, 111, 134, 2823
communities see parents and communities, Working
with
Computer Algebra Systems (CAS) calculators 63, 74,
75,94-7, 95, 183, 244, 2523, 284, 285
congruence 203
constructivism 289, 130

curriculum concepts 102—4 see also mathematics
curriculum

data see chance and data

data-logging equipment 823

decimals 160, 163, 173—5

derivatives 282, 283, 305—7

differential calculus see calculus

differentiation 282, 302—3, 307—8

division 163

dynamic geometry software 79-81, 21113, 218

education in Australia 110, 111, 113, 393
educational partnerships 390—402
equations 237, 243, 244, 245

estimating and measuring 1901
Euclidean geometry 110, 111, 201, 202
exponential thinking 179-82

focusing 54-8
fractions 160, 161, 1658, 173—5
function
calculus 286, 2914
change of 291
concept as object of algebra 245-9
exponential 83, 249
families of 78, 249—50
introductory calculus 283
linear 78
trigonometric 79, 83, 249
funnelling 51—4

gender issues 319-37
attitudes to mathematics 324—6
computer usage 333
definitions 3202
differences in performance 203, 375
equal opportunity 320
equal outcomes 321
equal treatment 3201
equitable practice 322
gender equity in practice 3367
gender gaps 320, 3228
gender-inclusive curriculum 330-2
gender-sensitive curriculum 332—5
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intervention programs 330
mathematical achievement 322—4
nature of classroom tasks 335
participation in mathematics 326—8
spatial visualisation 323
stereotyping 3256
teacher beliefs 335
technology use 326
theories of gender equity and practice 328-35
geometry and spatial concepts 111, 200-28
concepts, discussion of 210
construction 211-13
contexts for student activities 205
curriculum 203, 21517
do-talk-record strategy 210
dynamic geometry software 79-81, 21113, 218
Euclidean 201
gender differences in performance 203
geometric reasoning 200
geometric tools 201, 211, 221
international studies of performance 203
invariance 203, 225
isometric transformations 220—2
language and communicating 20911
lines, planes and angles 215-17
location and spatial reasoning 2257
materials for activities 206—7
network analysis 226, 227
non-isometric transformations 223—4
primary years 2012
properties and relationships of figures 21720
reasoning 214-15
rich tasks/real problems 219, 222, 225
secondary years 202—4
terms, understanding of 209, 210
transformations 201, 220—4
vectors 2278
visual-spatial skills 202, 204-8, 323, 374
gifted and talented students 3739
graphics calculators 65, 75, 76, 78, 81, 88-9, 947
graphing software 248, 249-50
graphs in calculus 287-9, 295-6

Indigenous students 3413, 346, 352—4
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inquiry mathematics 247, 39—44

integers 182, 183

integrals 282, 283

integrated curriculum models 121-5 see also

mathematics curriculum

approaches to 121
design factors 122
implementation factors 122
integrated curriculum 121
interdisciplinary curriculum 121
intradisciplinary curriculum 121
issues in curriculum integration 123
mathematics and science 122
research 123—4
school cultures 122
teachers and 1223
topics and subject-matter 1245

integration 282, 311—14

internet 73, 80, 82, 845

irrational number 182—5

isometries 220

Key Learning Areas (KLAs) 113, 114

language in learning 343—4
learning 28-32
assessment see mathematics learning, assessment
of
constructivism 289, 130
outcomes 113
practical activities, use of 312
sociocultural perspectives 29-30, 130
learning difficulties in mathematics
clinical interviews 365—6
defining and identifying students with 3625
diagnostic tools 3657
examples of classroom questions 372
intervention programs 368—9
learning disabilities, distinction 362
learning obstacles 364—5
primary students 362
RAVE CCC mnemonic for problem-solving 371
research findings 364
structural understanding, importance of 364
teaching strategies 3703
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teaching students with 36773
lines, planes and angles 215-17
location, concepts and skills 200, 2257

mathematical application problems 59—64
mathematical beliefs 4
nature of mathematics 4
relationship between practices and 45
student beliefs 89, 37—8
teaching and learning 6
mathematical connections 46—73
classroom scenario 50—8
connecting content across lessons 49
curriculum areas, across 48—9
focusing 54-8
funnelling 51—4
making connections in lessons 50
mathematical applications, through 59-64
mathematical modelling, through 64-72
meaning 46
measurement 198
middle years 478
over-use of border and wrapper problems 63
real world context 65—6
teachers and 46
technology, use of 78
triadic dialogue 501
mathematical language 209
mathematical literacy 6, 16, 159, 187, 245, 319, 323,
341
mathematical modelling 6472
contextualised problems 65
example of 68
formulation skills of students 72
meaning of term 645
measurement 198
metacognitive activity 69
process of 67—70
real-world problems 67, 68
solutions to modelling task 71
sub-skills 702
validation 69
mathematical problems
awareness 37
definition 36

factors contributing to successful
problem-solving 37
heuristics 37
knowledge base 37
measurement 198
metacognition 37
problem-solving component of learning 36—9
procedural complexity 12
processes for solving 13
regulation 37
relationship among 12—13
mathematical reasoning 35-6, 2145
mathematical symbols 160, 231
mathematical talent, students with
accelerated programs 3778
assessment tools 374—5
defining and identifying 373—4
enrichment programs 377
teaching 375-9
teaching strategies for 3789
mathematical thinking
categories of student thinking 32-3
complexity of 34
development in students 33—5
open questions 47, 50
problem-solving 36-9
reasoning 35—6
mathematics
definition 4, 111
numeracy 5—7
parental and community attitudes towards
3879
school mathematics 247
student beliefs on nature of 89, 378
understanding of see mathematics,
understanding of
mathematics curriculum 16
cross-curricular connections 48—9
differentiated 381-3
mathematical applications 59, 656
mathematical modelling 64, 65-6
models 10226
multicultural 34850
process aspects of mathematics in 35
technology, use of 74, 85-90
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attained 103

authority-innovation-decision-making model 108

classroom level 104

content 104-6
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curriculum concepts 102—4

decision-makers 1069

democratic access to powerful mathematical
ideas 105—6

equal encouragement for success 106

equal participation 106

essential components 103—4

historical overview of development in Australia
110—-14

implemented 103

inclusivity and rights 106

integrated 1215

intended 103

intent or reality 102—3

Key Learning Areas 114, 116

national curriculum 112, 113—14, 127

1980s initiatives 112

organisation of 114-25

outcome-based 11620

problem-solving 106, 112, 115

process-driven 115-16

stakeholders in development 1078

state and territory determination of 102

system-level documents 104

teachers’ role 108

mathematics learning, assessment of 127-54

aligning with curriculum and teaching 130—1

alternative methods 133, 136

approaches 130

aspects or 127

assessment data, use of 127

assessment items for tests 142—3

assessment tasks 135

authentic performance assessment 130

collecting and interpreting evidence of student
learning 13543

comparison studies 130

competency-based assessment 134

consistency of teacher judgments 145-51
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criterion-referenced judgment models 1312

development of rubric 150—1

developmental-based assessment (DBA) 1345

everyday rubric grading 147

evidence-based judgment models 131-5

exemplars 133

flowchart for preparing assessment task for
students 146

formative assessment 128

guidelines for assessment quality and equity 144

IMPACT procedure 137

moderation of school-based assessment systems
1457

multiple analytic rubrics 14950

national and international achievement testing
regimes 129

norm-referenced judgment model 131

open-ended questions 138

performance assessment 139—40

performance tasks, examples of 140

preparing assessment tasks for students 1445

purposes of assessment 128—30

recording students’ progress 1523

reporting 153—4

rich assessment tasks (RATs) 139

rubrics 147-51

self-assessment tasks 1378

standards-referenced judgment models 132—4

Structure of the Observed Learning Outcome
(SOLO) 134

summative assessment 129

task-specific rubrics 148

teacher autonomy 145

teacher classroom questions 137

tests and exams 1353, 1403

Year 12 127

mathematics teachers

becoming a reflective teacher of mathematics
407-15

continuing professional learning 40626

feedback from colleagues 412—13

feedback from students 410—12

IMPACT procedure 411

knowledge needed for teaching 1415, 74

learning and development 41622
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perceptions of 911

planning for continuing professional learning
422-5

role in developing students’ understanding 39—4

self-analysis of lessons 407—9

problem-solving 198

Pythagoras’ Theorem 1956, 201, 217
real-world situations 187

secondary years 188—90
trigonometry 197-8, 201

technologies 745, 90, 97100 mental computation 16971
working with parents and communities middle years 47-8, 368
387404 mixed ability classes 3813
mathematics teaching modelling see mathematical modelling
current challenges 1617 multiplication 163
effectiveness of 410
factors influencing technology use in 97100
feedback from students 410—12
inquiry mathematics culture 267
knowledge needed for 14-15
school mathematics culture 267

national assessment program 129

national benchmarks 129

National Council of Teachers of Mathematics
(NCTM) 76, 1056, 115, 231

national curriculum framework 113—14

mathematics teaching practices network analysis 226, 227

characteristics of best teaching practice 423 New Mathematics movement 111—12

knowledge needed for teaching mathematics non-isometric transformations 223—4

14-15 number 15985
mismatches in cultural values 3912 achievement level range 162
addition 160

common student misconceptions 162, 165

perspectives on Year 8 classrooms 12—13
sociocultural values 391

technology, working with 90—4 competencies and strategies 159
mathematics, understanding of 16—17 concepts and skills 159

decimals 160

difficulties 162

division by fractions and decimals 1745

constructivism 289, 130
continuing process, as 24
definition 21—4
developing 21-44 division of fraction problem types 175
evidence of 23
framework 23—4

levels of, 24

Pirie—Kieren theory 24-5

errors in mental computation 169

exponential thinking 17982

field laws 170

fractions 160, 165—8

role of teachers 39 integers 182

sociocultural perspectives 29-30, 63—4, 130 irrational number 182—5
types of 22-3

matrices 40—4, 203

measurement 18799

mental computation 169—71
multiplication 163, 172, 173—4
multiplicative thinking 171-2, 179
angle, understanding 188, 189 percentage 1789
area and volume 1925 place value 1635
estimating and measuring 190—1 primary years, in 160—1
proportional thinking 175-8, 201
secondary years, in 161-3
subtraction 160

surds 182

making connections 198

modelling 198

perimeter and circumference 191-2
primary years 188
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numeracy 57, 16, 47, 129, 322, 393

outcome-based curriculum models 11620

parents and communities, working with
collaborating with the community 397
communicating 3956
decision-making 397
educational partnerships 390402
family and community contribution to
mathematics education 402—4
family-centred perspectives on partnerships
398—400
government policies 393
learning at home 396—7
parental and community attitudes towards
mathematics 387—90
parenting 395
school-centred perspectives on partnerships
395-8
stakeholder perspectives on partnerships
394402
teachers’ responsibilities 387
volunteering 396
pedagogical content knowledge 1415, 1001
percentage 178—9
perimeter and circumference 1912
personal digital assistants 75
place value 1635
primary to secondary school transition 47
probability and statistics 255, 263-5, 2712
procedural thinkers 194
professional development and learning
becoming a reflective teacher of mathematics
407—-14
collaborative professional learning 414—15
opportunities and resources 425—6
planning for continued professional learning
422-25
professional networks and action research
414—15
professional practice, dimensions of 406—7
teacher learning and development 41622
understanding professional socialisation 41622
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Programme fbr International Student Assessment (PISA) 130,
323, 339, 341
proportional thinking 175-8
public education systems 102, 127
Pythagoras’ Theorem 1956, 201, 217

ratios 175-8
reasoning 35—6, 21415

scaffolding learning 29-30, 389, 54, 84
secants, slope of 290—1
shapes, properties of 203, 204
simultaneous equations 24-5
social and cultural issues
approaches to equity and social justice 347-58
democratic or critical curriculum 354—8
equitable classroom model 35960
equity and social justice 346—7
ethnomathematics 351
Indigenous students 3413, 346, 352—4
language and language background 343—4
mathematical language 350
mathematics problems of personal or social
relevance 355
multicultural curriculum 34850
problem selection 340
real-world issues 356—7
social capital 340
sociocultural norms and teachers’ practices
344-5
socioeconomic status and mathematics
achievement 339—41
student involvement in learning 358
sociocultural perspectives 2930, 63—4, 130
spreadsheets 76, 77,79, 81, 93
statistical literacy 16, 256, 2657, 27280
streaming 379-80
students
beliefs on nature of mathematics 89, 37—8
feedback from 410—12
perceptions of mathematics teachers 9—11
students with diverse learning needs
accelerated programs 3778
achievement spectrum 361
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classroom management problems 361
classroom organisation 383
defining and identifying students with learning
difficulties 362—5
defining and identifying students with
mathematical talent 373—4
diagnostic tools 3657
differentiated heterogeneous mathematics
classrooms 3813
enrichment programs 377
learning difficulties in mathematics 362—73
responding to diverse needs of students 37983
streaming 37980
students with mathematical talent 3739
teaching students with learning difficulties
36773
tiered curriculum 382
subtraction 160
symmetry 203

teachers see mathematics teachers
teaching see mathematics teaching
teaching practices see mathematics teaching
practices
technologies
access to resources 98
algebra 244
assessment and 94—7
benefits of learning mathematics with 75-85
calculators see calculators
chance and data 255
classroom practices and 98—100
curriculum and 85-90
dependence on 90
drawbacks 89—90
dynamic images, working with 7981
effect on curriculum 878
effective use of 74—101
extension of curriculum through 88
functions and variables 246—9

goal of learning and use of 74

graphing software 24850
impact of 656
instant feedback, learning from 767
integration into classroom practice 75
interactive whiteboards 75
internet 75, 84—5
mathematics-specific hardware 75
mathematics-specific software 75
multiple representations, making connections
between 78
observing patterns 778
online mathematical resources 845
partner in teaching, as 923
pedagogy and 90—4
personal digital assistants 75
sequencing or treatment of topics, effect on 88-90
simulated or authentic data, exploring 813
sources of assistance 98
spreadsheets 767, 81, 79, 81, 93
teaching context 98
technology-rich learning environments 97-100
types of 75
visualisation 83—4, 203
working with 90—4
tests and exams 1403
tiling patterns and tessellation 222
transformations 203, 220—4, 2278, 243—5
Trends in International Mathematics and Science
Study (TIMSS) 12—13, 130, 163, 190, 203, 3223
trigonometry 197-8, 201, 223

understanding of mathematics see mathematics,
understanding of

variables, concept of 2345
vectors 2278
visual reasoning 84, 203, 2048

Year 11 mathematics lesson 40—4

zone of proximal development (ZPD) 29-30
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