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Series Editor’s Preface

Leone Burton

With this book, Multiple Perspective on Mathematics Teaching and Learning, we
begin anew venturein the publishing of mathematicseducation literature. Itisvery
appropriatethat this, thefirst book in the seriesInter national Perspectiveson Math-
ematics Education, should appear in the year 2000 and alsointhe year of the Ninth
International Congressof Mathematical Education, agatheringthatisonly held ev-
ery 4years. | hopethisserieswill accomplish anumber of thingsfor the current and
potential community of mathematics educators. One is to offer a book, per year,
that will bethematized to anissueof current concern, siting and justifying that issue
with respect to the field of mathematics education asawhole. Another isto build a
library of booksthat, through thethemeswhich aretheir foci, provideavaluablere-
source. A third is to celebrate the internationality of the field and, through this,
build connections between researchers and practitionersin very different contexts,
underlining their similaritiesand their differences. | also hope the bookswill open
and project afuture perspectiverather than simply reflecting apast, evenif that past
has been creative. Finaly, it is my hope that the books in this series will, them-
selves, act as mechanismsfor communicating an approach to mathematics educa-
tion that is eclectic and embracing, respectful and engaging, reflective and,
ultimately, educational .

Each book contains an opening chapter that synthesizes and summarizes its
themein order to provide an entry point for new researchersaswell asconciseover-
view for anyone already interested. Thefocusisforward looking. Thefirst chapter
should make avail able useful material to support those undertaking coursesin re-
search in mathematics education prior to starting some personal research.

The chapters contained in each book have been gathered by itseditor(s) froman
international search and reflect the globality of thefield. In my view, too many pre-
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viously published mathematics education coll ections have been rooted in asingle,
or limited number of, country’ s experiences and | hoped that this serieswill break
that pattern. Not only isthis an undertaking that should be of benefit to readers by
making availablethe complexity of thethemewhen viewed from very different na-
tional perspectives, but also, | hope, it will provide publishing opportunitiesfor au-
thorswho, in the past, have found it difficult to make their voices heard. As series
editor, | would like to make clear my personal commitment to this endeavour. |
hopeto be ableto pair colleaguesfrom rich countries advantaged by resources and
research writing know-how with those in poorer countrieswhere research is diffi-
cult and often unsupported so that, jointly, they can achieve apublication rooted in
the data collection of one, contextualized and supported into the rich range of re-
sources availableto the other. | call upon anyonewho isinterested in being part of
this new and challenging publishing endeavour to contact me, indicating their in-
terests (as editor of a proposed volume, as first author with aresearch question to
pursue, as second author interested in aquestion and in working collaboratively, or
asapair or team proposing ajoint piece of research or writing).

Weareoftentoldthat weliveininteresting times. | suspect that some colleagues
might replace the word “interesting” with other words that are less positive. How-
ever, inthefield of mathematicseducation, | think we can observe an expansion and
adeepening of approachesto what isamost complex areaof enquiry. Such an effect
is certainly provocative and consequently stimulating. Looking back to the work
that was donein the 1970s and 1980sis informative for appreciating the impact of
this process. Indeed, as new foci within mathematics education open, we some-
times see similar pathways being trodden as the content of mathematics becomes
the primary interest, then the interactions between that content and the learner or
the teacher, or both, expand that interest until, eventually, the mathematicsis seen
as being one part of a leaning environment that is both multicontextual and
multi perspectival, both sociocultural and personal. Thisbook isan excellent exam-
ple of thislatter position. It makes very clear that its purpose is to surface a social
perspective on mathematics education but, at no time, does it suggest asingle ap-
proach. Indeed, Jo Boaler, the editor, pointsout that |earning must be viewed as sit-
uated in, and of, theworld and that it isthe flow out and back that both defines and
affects the complexity of the learning and the consequent difficulties facing the
learner and the teacher. She does not need to apologize, therefore, for including
chaptersthat have a“world” orientation from which the mathematics educator can
move into more specific problematic questions, aswell as chaptersthat beginin a
particular mathematics classroom in order to frame an approach outwards to the
world. But theauthorsin thisbook are oriented toward abetter futurefor learnersof
mathematics rather than incremental changes that may or may not influence the
discipline of mathematics, of mathematics education, or the classrooms in which
learning is meant to happen.

To current or prospective teachers of mathematics, research has important and
sometimes profound thingsto say. Asresearchers, teachers of mathematics can of-
fer revelations on classroom practices, which are ignored at the peril of learning.
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However, tensions exist between the communities of mathematicians, mathemat-
icseducators, and practitioners. | very much hopethat thisserieswill helptobuilda
necessary bridge between these communities so that we can move toward aworld
where the learning of mathematics is no longer seen as boring or difficult, but as
necessary to effective citizenry as the learning of any other discursive tool.
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Introduction: Intricacies of
Knowledge, Practice, and
Theory

Jo Boaler

Itisinteresting to reflect upon the originsof edited collections. Usually they havea
common subject—such as teacher education (Darling-Hammond & Sykes, 1999)
or social justicewithin mathematicseducation (Keitel, 1998)—and frequently they
emergefrom conferences (Chaiklin & Lave, 1993; Greeno & Goldman, 1998). The
chaptersin thisbook have neither acommon focus nor acommon origin, but they
share something that isimportant. The book was prompted by ageneral invitation
from the series editor, Leone Burton, sent out to an electronic listing. It asked for
proposals for edited collections that would appear as part of an annual, interna-
tional series on mathematics education. This book isthefirst of that series. At the
time | read the invitation in 1998, it seemed that mathematics education had
reached aturning point and | wanted to capture arange of ideasthat illustrated the
shift that wastaking place. Stephen Lerman’s chapter, “ The Social Turnin Mathe-
matics Education,” reflects on and describesin itstitle, the significant change that
was—andis—occurring. But now, somemonthson, | am struck by adiversification
of ideasin mathematicseducation, that extendsfurther than the social turntowhich
Lermanrefers. | offer abrief analysishereof thisintriguing and important phenom-
enon, and what it may mean for mathematics education, asthe introduction to this
book.

“Itisanexcitingtimeto be an educational researcher” isastatement | haveheard
0N numerous occasions over the past few years, particularly from those who have
beenimportant playersin recent decadesof educational research. Thesourceof this
excitement istherecognition that knowledge, onceregarded asthe property of indi-
viduals and the bastion of psychologists, may not simply be used in different set-
tings, but emerge as a function of the settings, people, activities, and goals. The
implications of this apparently subtle difference are profound and they are only
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gradually being realized in the educational academy. One of the consequences of
theideathat knowledgeissocialy situated is an expansion and combination of the
disciplinesthat are brought to bear on educational problems. For if knowledgeisre-
garded as distributed among people, systems, and environments, then analyses of
teaching and learning should no longer rely solely on psychological representa
tionsof themind at work. They need also to recognize that learnersfunction aspart
of broader worldsthat are socially and culturally constituted; that they have affilia-
tions as learners that intersect with ethnic, gendered, and other identities (Butler,
1993); that they arelocated within classrooms, schools, and communities; and that
the practices in these settings co-determine their knowledge. It is no surprise then
that anthropological, sociological, philosophical, political, and other disciplines
that have been only minimally represented in mathematics education research in
the past, are now being employed to produce broad and powerful analyses of math-
ematics teaching and learning. Any understanding of learning as participation in
different communities of practice will be deeply enriched by the use of multiple
perspectives. This book does not attempt to draw from all the disciplinesthat are
gaining currency in the field of mathematics education, but the authors variously
employ sociological, psychological, anthropological, political, sociocultural, and
mathematical perspectives to produce new knowledge in the field.

Although the idea that knowledge is socially shared and that learning may be
represented as participation in social practice has brought new vigor to the educa
tional community; it has also brought tensions, confusions, and dilemmas. | will
expand on these as they raise issues of some considerable importance to the theo-
ries and practices of teaching and learning. In describing my understanding of the
tensions and misconceptions that surround situated theory, | must acknowledge a
huge debt to my colleague Jim Greeno. Hiscomprehensive analysis of these, which
appeared in Educational Researcher in the early months of 1997, has greatly in-
formed my thinking, along with many of our conversations. But | shall attempt to
rephrase some of hisideasrather than ssimply reference hiswork, as both tensions
and misconceptions prevail some years after Greeno’'s examination of these.

Evidence of the conflict that surroundsthe situative challenge to previous mod-
elsof cognition is provided by the dedication of two consecutive issues of Educa-
tional Researcher to the debate. Anecdotally, many of uswho are interested in the
ideas can probably also attest to frosty receptions, claimsthat situated theories are
faddish, and concern from colleaguesthat situated perspectivesarefar too extreme.
A major and recent publication within mathematics education—" Mathematics Ed-
ucation as a Research Domain: A Search for Identity” —reported the results of a
study group of the International Commission on Mathematical Instruction (ICMI),
that included some of the most significant researchers in mathematics education
from around the world (Sierpinska & Kilpatrick, 1998). Situated perspectives are
raised and promptly dismissed in theintroduction to the book (although they recur
in later chapters). The reason for their dismissal as a significant contributor to our
field is attributed to a particular member of the study group who argued that “the
idea of situated cognitionistrivial: All knowledgeis, of course, situated, contex-
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tual. But, hesaid, itisnot alwayssituated in real-life situations: Thereisan impor-
tant part of mathematics that has to be learned not in authentic but in artificial
situations’ (Sierpinska & Kilpatrick, 1998, p. 12). Thisidea communicates a cen-
tral misconception about situated theory. Others include the equivaence that is
drawn between situated perspectives and certain teaching approaches, group and
project work being the most common, and the confusion between constructivist
and situated theories. Theselatter two combinewhen inquirersask, how issituated
teaching significantly different from constructivist teaching? Greeno (1997) dem-
onstrated that Anderson, Reder, and Simon’ s(1996) challengesto the situated per-
spective were all based on misconceptions about situated ideas, and | would put
these different questions in the same category. But if situated perspectives are to
extend knowledge and enhance opportunities for learning, it isimportant that we
move beyond such misconceptions to appreciate the additional insights that situ-
ated perspectives may bring.

Anderson, Reder, and Simon raised the following (paraphrased) objections to
situated theories—statementswith which many woul d undoubtedly concur: Not all
action is situationally grounded; some knowledge does transfer between tasks;
training by abstraction isvalid; and instruction need not take place in complex, so-
cial environments (1996). As Greeno stated in his response (1997), situated theo-
ries do not imply that knowledge is not transferable, nor that all teaching should
take placein “ complex, social environments.” What isfundamental to the situated
perspectiveisan ideathat knowledgeis co-produced in settings, and is not the pre-
serve of individual minds. Situated perspectives suggest that when people develop
and use knowledge, they do so through their interactions with broader social sys-
tems. This may mean they arelearning from abook (written by others) or teacher,
or engaginginindividual reflection of somesocially producedideas. But thediffer-
ent activities in which learners engage co-produce their knowledge, so that when
studentslearn algorithms through the mani pul ation of abstract procedures, they do
not only learn the algorithms, they learn aparticular set of practices and associated
beliefs. Students often find it difficult to use school-learned methods in
out-of-school situations because the situations and the practices they require have
changed. Situated perspectivesturn attention away fromindividual mindsand cog-
nitive schemata, so that successis not focused on individual attributes, but on the
waysinwhich those attributes play out in interaction with the world. Thisis not to
say that knowledge cannot be transferred to new situations, only that it is inade-
guate to focus on knowledge alone, outside of the practices of its production and
use.

To give apractical illustration of the distinction that should be drawn between
situated perspectivesand particul ar teaching approaches, | will refer back to astudy
| conducted of students learning mathematics through very different teaching
methods (Boaler, 1997, 1998, 1999). One of the two schools in the study taught
mathematics through abstract procedure repetition; the other through mathemati-
cal project work. The students in the project-based school were more able to use
school-learned mathematicsin different settings, than the studentswho had learned
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in a more procedural way. Some people have suggested that the learning of the
“procedural” studentswas more situated, asit appeared to be tied to the situations
inwhichit waslearned. Thisisnot the case—all learning issituated, and greater or
lesser degrees are unavailable—but the project-based students engaged in particu-
lar practices, of discussion and procedure adaptation and application, for example,
that were represented in nonschool situations. This does not mean that pro-
ject-based approaches are more consistent with situated theory. What may be con-
cludedisthat project-based approaches are more effectiveif practices of procedure
adaptation and othersinwhich studentsregul arly engage aspart of project work are
valued goal s of mathematicseducation. Thosewho support abstract procedure rep-
etition asthe most efficient way tolearn mathematics (Becker & Jacob, 2000) over-
look thefact that studentsare not only learning an efficient set of procedures, but an
esoteric set of practicesthat are not well represented outside of mathematics class-
rooms (Boaler, 2000).

Theargumentsin the preceding paragraphsdo not imply that abstract procedure
repetition should not play a part in learning mathematics. One of the concerns of
Andersonet al., aswell asthoseinthel CMI study group, wasthat situated perspec-
tives render such approaches obsolete. They do not, and Greeno deals with this
point well:

In the situative perspective, use of abstract representationsisan aspect of social prac-
tice, and abstract representations can contribute to meaningful learning only if their
meanings are understood. To the extent that instruction presents abstract representa-
tionsinisolation from their meanings, the outcome can be that studentslearn aset of
mechanical rulesthat can support their successful performanceontestsrequiringonly
manipulation of the notations, not meaningful use of therepresentations. On the other
hand, it is perfectly consistent with the situative perspective that abstract representa-
tions can facilitate learning when students share the interpretive conventions that are
intended in their use. (1997, p. 13).

Inmy own study, some of the studentswho had |earned through the repetition of ab-
stract procedures devel oped an understanding of the procedures asthey engagedin
practices of mathematical reflection, but many did not, although they learned to
manipulate the proceduresin class. More work is needed to understand the poten-
tial of abstract and procedural approaches for the encouragement of mathematical
knowledge and practice that is generalizable.

| hopeto have demonstrated that thereisno direct link between situated perspec-
tivesand teaching approaches, and that situated ideasdo not deny that knowledgeis
transferred, only that practices of knowledge production are irrelevant to the pro-
cess. In 1999, Cobb al so addressed the problem of trandlating constructs of general
theoretical perspectivesintoinstructional prescriptions, referring to such processes
as category errors (Cobb and Bowers, 1999). But what of the differences between
situated and constructivist theories? Are they just different versions of the same
idea? Or are the differences between the two more fundamental and profound? The
central tenet of constructivism is that individuals actively construct their own
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knowledge, rather than passively absorbing it from others (Phillips, 1995). Al-
though most followers of constructivist theory acknowledge that individuals do so
ininteraction with thesocial world, adivisionismaintained between theindividual
andtheworld. Thiscreateswhat L ave hasdescribed asa“ boundary betweenthein-

dividual (and thus the ‘cognitive’) and some version of the World ‘out there
(1993b, p. 64). By contrast, situated perspectives recommend:

adecentered view of the locus and meaning of learning, in which learning is recog-
nized asasocial phenomenon constituted in the experienced, lived-in world, through
| egitimate peripheral participationin ongoing social practice; the process of changing
knowledgeable skill is subsumed in processes of changing identity in and through
membership in acommunity of practitioners; and mastery isan organizational, rela-
tional characteristic of communities of practice. (Lave, 1993b, p. 64).

Constructivist and situated perspectivesaretheoretically and practically distinct
by virtue of the fact that situated theories treat relations among people, activities,
and settings “asthey are given in socia practice, whichisitself viewed asasingle
theoretical entity” (Lave, 1993a, p. 7, origina italics). In theoretical terms,
constructivism positsaview of learning astheindividual mind beinginfluenced by
the social world, whereas situated theories propose that learning is a social phe-
nomenon constituted intheworld. In practical terms, astudent may be giventhe op-
portunity to “construct” their own understanding in a mathematics class, by, for
example, thinking about a procedure or using it to solve aproblem. But if they are
not engaging in practices of discussion, procedure adaptation or modeling, over
time, they will only be moving along a trajectory of procedure use and they will
construct their identities in relation to that. They will not “develop mastery” of
practices of procedure discussion or adaptation, nor will they develop identities as
people who adapt and discuss mathematical procedures. The differences between
the identities and sets of practicesthat are developed for studentsin these two sce-
narios may or may not matter, depending on their future uses of mathematics, but
they exist. Situated perspectives add insights into student competency and know-
ing, that relate to the identities students devel op as learners and their practices of
participation. Constructivist theories do not address these aspects of learning.

Perhapsthe most important discussion of situated theory concernsthedilemmas
faced by researchers who take it seriously. In Alan Schoenfeld's presidential ad-
dress to the American Educational Research Association (1999), he described a
schism “between ‘fundamentally cognitive’ and ‘fundamentally socia’ studies of
human thought and action” (p. 5) and talked about the crucial need for frameworks,
perspectives, and methods that acknowledge both the social and individual aspects
of learning. Thisisclearly going to beanimportant task for educational researchers
over the next few years, particularly those of usin mathematics education who rec-
ognizetheimportance of both the social and individual dimensionsof learning. For
although representations of learning astrajectoriesof participation within commu-
nitiesof practice may givedifferentinsightsfrom previousrepresentationsof learn-
ing that are solely cognitive, they |eave unexplained the subjectivity and regulation
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of individual swithin those practices. Thiswas part of thereason that | chosetheti-
tle“Multiple Perspectives on Mathematics Teaching and Learning” for this book,
rather than “ Social Perspectives,” astherealization that learning isat any onetime
bothindividual and social requiresthat previously devel oped perspectivesthat give
primacy to one or the other need to be adapted or combined (Rogoff, 1995).

Many of the authors represented in this book are doing important work in this
area, producing accounts of teaching and learning that are complexly nuanced to
represent educational practices as events that are simultaneously individual and
interactional. In Chapter 2, Stephen Lerman considers the developmentsthat have
led up to the current interest in social theories of |earning within mathematics edu-
cation, taking uson ajourney of thework that hasbeen formativein thisprocess. In
doing so heidentifiesasimilar challengeto that raised by Schoenfeld: how may re-
searchers understand learning as a socially constituted endeavor while simulta-
neously recognizing that individual differences matter? Lerman engages this
tension directly, reviewing anumber of theoriesthat provide accountsof individual
differencesin social practices. But acknowledgment of the different waysinwhich
practices of participation have animpact on different people al so raisestheissue of
power relations that are differentially distributed across learners. In an interesting
analytical move he raises the importance of sociological theories to account for
these—thus acknowledging the individua differences within socia accounts of
learning and employing sociologica analyses to account for broader patterns of
difference acrossindividuals.

Lave and Wenger’ s theories have been widely adopted in education, despite the
fact that the authors never claimed to offer such applicability. Indeed Lave has
rarely addressed schoolingin her many analysesof learning. But thefact that her re-
flections have been so hugely liberating and generative may rest on the direction of
her work, which does not ook outward from institutions of education and the cul-
ture of the United States, but rather inward from other cultures in the world and
other situationsfor learning. Through studiesof tailorsin Vai and Gola, Lavefound
apprenticeship to be an extremely powerful form of learning and set out to consider
why. The representations that resulted from her work have helped educational re-
searchers view and understand aspects of |earning that other perspectives did not.
But there are, asmight be expected, limitationsto her modelswhen they are moved
between contexts, which Lerman describes. Aspart of hisreview of thefield he of-
fers adaptations of Lave'sideas to help increase the fit with formal institutions of
education and acknowledgethe diversity of individualsor groupsof learners, when
theunit of analysisisonecommunity of practice. Heal so offersacomparative anal -
ysis of the theories of Lave, Piaget, and Vygotsky and draws out components of
each to providewhat he proposes as amore compl ete representation of learning, as
“mind-in-society-in-mind.” Stephen Lerman’s chapter servesasan introduction to
many of the theoretical and practical issues that play out in the remainder of the
book.

In Chapter 3, Paul Cobb describes the ways in which he and his colleagues are
designing research and instruction to understand and account for the social and in-
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dividual nature of learning. Thisis ahighly important piece of writing that exam-
ines the impact of situated accounts of learning for theory, practice, and research.
The work of Cobb and his colleagues, through Purdue and Vanderbuilt Univer-
sities, iswell known throughout the United States and beyond, particularly for the
waysin which they have understood and acted on constructivist theoriesin the de-
sign of mathematics teaching environments. In this chapter, Cobb describes their
gradual adoption “of an increasingly strong situated perspective’ and the signifi-
cant impact thisishaving on their work. This change was not driven by theory, but
by the practicalities of classrooms; in particular, the need for an analytical frame-
work that considered the classroom as awhole, with al its complexly related fac-
tors. Rather than focusing on instructional materials, as has been the tradition in
educational research, Cobb describes their attention to classroom norms—mathe-
matical and socia—and the nature of students’ activity with classroom materials.
He combines a social perspective that gives insights into the norms of the class-
roomwith apsychological perspectiveonindividual student reasoning and partici-
pation. Thisis achieved through integrated cycles of design and analysis. Cobb’s
description of hisand his colleagueswork, and the waysin which classrooms may
be understood as places of |earning that are both social and individual, will be gen-
erativefor other researchers attempting to understand the multidimensional nature
of learning. Cobb also providesaclear illustration of thewaysinwhichlearningis
situated for studentsand recommendswaysin which thisrealization should change
educational practices.

Situated and other socia accounts of learning are not the only significant devel-
opments to be influencing the theory and practice of (mathematics) education at
thistime. Other changesin theway researchersarethinking about research and the-
ory are having aprofound impact onthefield. These changes sharethe characteris-
tic of challenging long-held dualisms (Bredo, 1994), not only between the social
and psychological—and between mind and world—but between theory and re-
search, research and practice, and researchers and practitioners. In the past there
were clear, assumed directions between theory and research and between research
and practice. It was assumed that theory would be examined, from which hypothe-
seswould arise, which would betested in the field. Resultswould then be commu-
nicated to practitionerswho would apply them to their practice. This conception of
the educational research enterprise is changing in multiple waysin the face of in-
creasing evidencethat it is neither functional nor effective. One of the assumed di-
rections that is being challenged is that from theory to research. Increasingly
researchers are recognizing that classrooms are multifaceted environmentsthat do
not lend themsel ves to examination from single or predetermined theoretical per-
spectives. Different methods are therefore being employed in an attempt to repre-
sent what Stephen Ball (1995) hastermed the“ mobile, complex, ad hoc, messy and
fleeting qualities of lived experience” (p. 6). Stephen Ball (1995) and Miles (1982)
both warn of the danger of reducing the complexity of experience and striving to-
ward atheory that it “all makes sense” (Miles, 1982, p. 126). Asan alternative, re-
searchers are choosing to immerse themselves in educational settings to try to
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understand the issuesthat are important to the settings before choosing an analyti-
cal lens. This does not mean that previously developed theories are not important;
they are till taken into educational settingsand considered—theoriesareanintrin-
sic part of any researcher’ s history, so things could not be any other way. But re-
searchers are devel oping increasing sensitivity to the people and settingsin which
they work, enabling theoriesto emerge from these different settingsthat have more
ecological validity. Inthe new generation of mathematics education research, prac-
ticeisdriving research and ultimately theory, asillustrated by anumber of chapters
in this book.

Deborah Ball’s work exemplifies the shift toward analytical examinations that
are grounded in practice and that are productive of theory (Ball & Cohen, 1999).
She and Hyman Bass collectively demonstrate in Chapter 4 that a perspective that
takes serioudly the fact that mathematics teaching and learning is at once socially
constructed and mathematical has considerable analytical potential for under-
standing the distance between traditional programs of teacher preparation and the
demands of mathematicsteaching. Ball and Bassillustrate the use of a perspective
that differs from more generic theories of learning, such as constructivism or situ-
ated cognition, asit takes the discipline and practice of mathematics as an anal yti-
cal lens. This subject-specific focus builds on theories about teaching and learning,
asthey describein aseparate publication (Ball & Bass, 2000), when they set out the
following three commitments:

1. Totreat the discipline of mathematics with integrity
2. To give serious respect to children’s mathematical ideas

3. To see mathematics as a collective intellectual endeavor situated within commu-
nity

The authors analyze mathematics teaching and learning, as it occursin class-
rooms, in order to describe, define, and characterize aspects of teacher knowing
that support sophisticated mathematical reasoning. In so doing, Ball and Bass, like
Cobb in the preceding chapter, prioritize the activity system of the classroom over
individual aspects of the system, such as curricular materials or predefined lists of
teacher knowledge. Whereas Cobb examinesthe system to understand and support
student learning, Ball and Bassfocustheir analysison the nature of teacher knowl-
edge that is required by practice. One of their central assumptionsin doing so is
consonant with situated theory—tests of teacher knowledge as demonstrated out-
side of classroom interactions cannot tell uswhat situated analyses of practice can.
Ball and Bass a so challenge the assumption that examinations of curriculum may
lead to sufficient understanding of the mathematics knowledge that teachers re-
quire. They show through their work that examinations of practice, and of curricu-
lum being enacted in classrooms, give greater insightsinto the extent and nature of
knowledge that teachers require.

A simple consideration of the capabilities required by effective mathematics
teachers may suggest constructing a list of mathematics content knowledge on
which to test teachers (characterizing the latest initiative of the teacher training
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agency inthe United Kingdom; The Guardian, January 21, 2000); amore sophisti-
cated and educationally sensitive consideration may produce an additional list of
pedagogical content knowledge (Shulman, 1986). Ball and Bass sanalysisof prac-
tice suggests another kind of knowledge that is simultaneously mathematical and
socia and that may proveto becritical inthe design of teacher education programs.
That thisform of knowledgehasnot previously beenidentified or incorporated into
programs of teacher education, but emerges with clarity from their analysis, is
credit to the analytical power of practice and the sophisticated theorizing that Ball
and Bass derive from it.

The chapters by Lerman, Cobb, and Ball and Bass al engage with questions of
knowledge—and all produce critical insightsinto the social nature of student and
teacher knowledge as it emerges in practice. In describing their research studies,
Cobb, and Ball and Bass, illustrate that important intuitions may be gained by
studying classroom systems and identifying influential components of the system,
such asteacher interactions or student discussions. Theresearchers employ differ-
ent analytical lensesto make sense of these, but they do not gointo thedifferent set-
tings with particular hypotheses that they expect to test out. Instead, they go into
settings with conjectures about the means of supporting teaching and learning and
ways to analyze these, that are viewed as malleable, interpretive intentions. As
Cobb has written (personal communication), “the alternative to the standard para-
digm is not completely free emergence. One has a starting point for one's own
learning trajectory, but it is nothing more than this. A starting point, rather than
somethingtobe proventrueor false” Analysesemergefromthe practicesof differ-
ent settings and are defined by the issues that pertain there.

In highlighting theimportance of practice and reflection, | do not wish to down-
play the importance of theory in educational research. | agree with Stephen Ball’s
concern for the deintellectualization of educational research (1995). Theory, for
him, isnot “simply critical. In order to go beyond the accidents and contingencies
which enfold us, it is necessary to start from another position and begin from what
is normally excluded. Theory provides this possibility, the possibility of
disidentification—the effect of working ‘on and against’ prevailing practices of
ideological subjection” (1995, p. 267). If theory ispredetermined at the outset of re-
search, itsrelevanceto the eventsthat take placein educational settings must surely
bequestionable. Alternatively, if it isadopted asameans of understanding the mul-
tiple aspects of classrooms, as Cobb describes, or the salient aspects of discourse,
as Ball and Bass describe, then it may indeed be atool of exploration.

Inthe subsequent three chaptersthefocusturnsto classroom studiesof students,
inparticular student trajectoriesof participation and therolesand identitiesthey de-
velop as they engage in the practice of school mathematics. Students in the three
studies variously describe themselves as“ dumb” (Stevens) “mates’ (Barnes) and
“creative people” (Boaler and Greeno) and the authors explore the ways that these
identities intersect with the students' developing knowledge of mathematics.
Stevensand Barnes, in Chapters 5 and 6 respectively, continue the use of grounded
analyses of practice, through complex representations of learning within groups.
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Both authors captured the work of studentson videotape and combined analyses of
thesewith other forms of evidence, producing stark illustrations of therelationship
between social interactions and mathemati cs knowledge. Stevensand Barnes both
offer the group astheir unit of analysis, rather than individual s or classes, adding a
great deal tothefield of mathematicseducation. Wehavefew examples(Barron, in
press) of analyses of the way knowledge developsin what isincreasingly aperva
sive form of mathematics instruction.

In Chapter 5, Reed Stevens reports on an ethnographic study of a group of stu-
dents working on an architecture design project. He uses an interactional perspec-
tive to explore the group relations as students work on emergent and assigned
mathematics problems. The study gives a clear illustration of an important fact:
classroom conversations about mathematics are simultaneous reflections of social
relationships and mathematics knowledge. Although we may regard that fact as
self-evident, we have few examples to draw on that document the ways in which
student interactions and mathematics knowledge co-develop. Stevens took per-
sonal relationships seriously, and hisknowledge of these proved to be key to under-
standing the mathematical learning of the students. Stevens produces a detailed
analysis of aparticular practice that enables him to analyze:

» Thetypes of interactions that occur in groups
* Thetypes of mathematical work that constitute problem solving
» The positioning of students in relation to emergent and assigned problems

« Thepotential rolethat teachersmay play in maximizing understanding as students
work in groups

Thesetheoretical and practical insightsextend well beyond the particular problems
onwhichthe studentswereworking or the particul ar interactions of theteacher and
students Stevens studied. Thisistestament to the detail of hiswork and the“social
and epistemological complexity” that he captures.

In Chapter 6, Mary Barnesreportson astudy that iscomplementary initsanaly-
sis, despitethefact shealso takesthe group asthemainfocal point. Barnesalso em-
ployed videotape to capture the interactions that took place during collaborative
groupwork inamathematicsclass, but her aimwasto understand thewaysinwhich
gender relations influence the emergence of mathematics knowledge. Barnes
therefore focuses on the subgroups within the class and the common structure they
shared. Like Stevens's work, the complexity of Barnes's analysis of interactions
within the class enables her to focus within and outside the group, communicating
insightsintotheroleof individual saswell asthe broader context of the classroom.

It is interesting to note that there are at least three levels of analysis evident
withinthisand other chapters: that which derivesfrom raw data, that which derives
from theory, and that which ismore contemplative, deriving from Barnes'stimeon
the project and the filter of many years' experience of theory and practice, within
and outside mathematics education. Thesedifferent levelsof analysisarecritical in
Barnes'sreport, as she uncovers the hegemonic relations that are a product of and
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produce small group interactions. Gendered relations have a pervasive impact on
mathematics discourse; they are frequently enacted in opposition to teachers’ in-
tentions, and they position students in ways that are often unproductive. Despite
their influence, the gendered relations that contribute toward knowledge produc-
tion are not well understood by teachers or researchers of mathematics education.
Barnes, like Stevens, concludesthe chapter with anumber of recommendationsfor
teachers. Theseareattainableand highly convincing owing to thedetail of theanal -
ysis and the ecological validity of the account. Both Stevens and Barnes produce
significant findingsand both acknowl edgethat their insights derived from the priv-
ileged position of being able to study small groups, as teachers engaged with the
mathematical work of the whole class.

In Chapter 7, Jim Greeno and | explore students’ positioning in the different
“figured worlds’ (Holland, Lachicotte, Skinner, & Cain, 1998, p. 49) of didactic
and collaborative mathematics environments, as revealed by their reportsin inter-
views. We employ both anthropological and psychological lenses to consider the
formsof knowing and parti ci pati on to which students gained accessin mathematics
classroomsand thewaysthat theseintersected with their devel opingidentities. No-
tionsof identity havetraditionally beenregarded asindividual and relatively stable,
but they have recently been presented as aproduct of individual understanding and
community participation (Wenger, 1998). Such a construct brings together socio-
logical and psychological theories of learning, capturing the relationship between
individual knowledge and beliefs and the broader communities in which knowl-
edge and beliefs are developed and used. As Wenger (1998) proposes, “learning
transforms who we are and what we can do, it is an experience of identity. It isnot
just an accumulation of skills and information, but a process of becoming—to be-
come acertain person or, conversely, to avoid becoming acertain person” (p. 215).
Such theories attempt to provide for the cultural systems, structures, and rules that
shape existence, aswell asthe agency of individualswho are active participantsin
such systems.

The studentswe interviewed suggested that success and participation in mathe-
matics classrooms rests less on cognitive “ability” than on identification with par-
ticular pedagogical practices. It was unsurprising, but salient, that students in
interviews did not describe themselvesin cognitiveterms, but in terms of their dif-
ferentidentitiesas people. Steele(1997) has proposed that studentsneed toidentify
with academic successand with mathematics, asasubject, in order to be successful
mathematics students, but theinterviewswe conducted suggested that students ne-
gotiated their identification with the pedagogical practices of the mathematics
classroom and these practices could not be separated from their notions of “mathe-
matics.” Many of the students valued opportunitiesto be thinking, creative agents,
which they regarded asinconsi stent with didactic pedagogical practices. In conclu-
sion, we relate the students’ reports of their experiences in class to the work of
mathematicians. We argue that traditional practices limit students' understanding
and perception of mathematics to the elements of mathematical thinking in which
thehuman agentisrelatively passive. By relating pedagogy to the students’ concep-
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tions of self, we hope to extend the debates that occur around teaching methods.
Opponents of collaborative teaching methods frequently argue that they are inef-
fective because they take the focus away from standard algorithms (Wu, 1999). In
such arguments, teaching methods are compared to mathematics knowledge as
though the two are alternative outcomes. But knowledge and methods are neither
aternatives nor separate entities. They are both deeply embedded in practice and
agorithms cannot be considered asindependent entities that somehow stand apart
from the practicesof their production. Analyses of classroom methods need to take
account, not only of what studentsknow, but of how they know it, and how they po-
sition themselves in relation to that knowing.

Mathematics education is practiced within a social and political domain, and
egalitarian achievement practices may depend on greater acknowledgement of that
fact. Thelast three chapters of the book take asociological focus, recognizing that
thereisan urgent need for mathematics educatorsto extend our gaze outside of the
mathematics classroom to the framing politics and practices that shape what goes
on there. In Chapter 8, Robyn Zevenbergen explores the different ways in which
classrooms | egitimate certain forms of language, thought, and behavior above oth-
ers. Thismakesthe degree of continuity in practices between home and school ex-
tremely important. Such an areaisarelatively new, unexplored, and uncomfortable
domain for mathematicseducators, partly because we seethe practicesof homesas
out of our sphere of influence. But Zevenbergen makes an important point on this
i ssue—understanding the importance of home-school discontinuities should con-
tribute not toward adiscourse of deficit, but instead, toward increased awareness of
ways in which classrooms can be made more conducive for learning for wider
groups of students. Zevenbergen uses theories devel oped in the domains of sociol-
ogy and sociolinguisticsto consider the events of mathematics classrooms and the
content of mathemati cs assessments and the ways that these position students dif-
ferently. In evaluating theimportance of language, and exploring theimportance of
vocabulary, semantics and lexical density, Zevenbergen aso parallels the argu-
ments of other authorsin this book in their focus on pedagogy and practice. Lan-
guage, like pedagogy, isnot just amedium for thedelivery of content, itiscentral to
what islearned.

In addition to analysis of the language demands of mathematics assessments,
and the impact of these on the achievement of indigenous students, Zevenbergen
provides analysis of classroom interactions. She shows the ways in which work-
ing-class students are excluded from learning through their noncompliance with
the preferred norms of classroom participation—norms that are largely implicit
and unspoken. In documenting and analyzing the processesthat produce and repro-
duce social inequalitiesin mathematics classrooms, Zevenbergen addresses one of
the most important issuesfor our field. By representing teaching asacultural event,
she shows the subtle ways in which aspects of curriculum, pedagogy, and assess-
ment exclude groups of students, and she hel psusunderstand how practicesmay be
changed in order that they become more equitable.
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In Chapter 9, Candia Morgan maintains afocus on assessment, asking a broad
and generative question: how could things be different? She does not attend to the
detail of different assessmentsthat are produced, questioning their validity or reli-
ability. Instead, she embarks on a bigger, more unusual enterprise—to
problemati ze the notion of assessment and its place within mathematics education.
To do this, she questions the assumptions that underpin the research and practices
of assessment. For example, do individuals possess knowledge that is sufficiently
stable and intransigent to be measurable? Does education need a process, the pri-
mary purpose of which isto differentiate between students? And do good assess-
ments improve possibilities for teaching? Morgan deconstructs the foundation on
which thediscourse of assessment rests, before describing thewaysinwhich a® so-
cial” agendafor assessment may be different. Morgan’s analysisis both important
and controversial. She positsthat asocial perspective on assessment must question
“who benefits and who is disadvantaged” and how “ assessment processes and sys-
tems act to benefit or disadvantage individuals and groups.” Zevenbergen's analy-
sis in the previous chapter would clearly play a useful role in such an endeavor.
Morgan correctly recognizes that the majority of research in mathematics educa-
tion has been driven by an aim to produce better assessments, and highlights the
need for discussions and questions that are fundamentally different.

Part of thereason that the“ mathwars” have been so devastating for mathematics
educatorsin the United States, and that traditionalists have been able to hijack re-
forms with such apparent ease, is our ignorance of the broader stage on which
mathematics is played out. Michael Apple's chapter takes us there, in a consider-
ation of the social agendasthat have animpact on policy. Hischapter doesnot focus
upon mathematics education per se, but the political insights he provides are ex-
tremely important for our community. Thearbitrary division between mathematics
education and the broader sociopolitical context that ismaintainedin our field was
epitomized for me by arecent incident at a conference. At the annual international
meeting of the Pyschology of Mathematics Education (PME) group, held in
Stellanbosch, South Africa, afew of us gathered together to discussthe “social as-
pectsof mathematicseducation” aspart of aworking group of that name. I nevitably
perhaps, in such a setting (post-Apartheid South Africa) discussions turned to the
broader political agenda, and the waysin which mathematics education, aswell as
the practices of academics, may contribute toward inequality. After some minutes
of increasing frustration, one participant jumped up and said that he had had
enough—nhe had come here to discuss mathematics education, not politics—and
left the room. | had some understanding of his perspective, at the same time recog-
nizing that such single-mindednessis no longer tenable, if it ever was.

Asmathematicseducators, we are generally fascinated by eventsin classrooms,
and we are drawn into debates about the most effective way to introduce Pythago-
ras stheorem or thevariety of activitiesthat generate sumsof squares. Thisiswhere
our interest lies, but a so where we feel we can have an influence. Broader social
and political movements, such as modernization, may appear too far out of reachto
be the site of our interest or work. But the traditional focus of mathematics educa-
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tors on issues of pedagogy and mathematics has resulted in an insularity and
particularism that has left us wide open to the agenda of the conservatives. Thisis
particularly dangerous at the present time as conservative politics have gained a
powerful hold on most nationsacrosstheworld. |ndeed, wewould bewell servedto
pay attention to research that has considered the rel ationship between theform and
content of curriculum and the distribution of power (see, for example, Bernstein,
1975; Apple, 1979, 1993, 1996; Whitty, 1985). Conservativelobby groups are of -
ten organized and wealthy, and they extend their financial support to those who op-
pose reform based mathematics teaching. When a group of research
mathematiciansin the United Stateswanted to protest about the Department of Ed-
ucation’s support of reform-based teaching programs, they were supported by a
wealthy conservative who funded full -page adverti sementsin the Washington Post
and Los Angeles Times. The advertisements denigrated the recommendations of
educators, and demonstrated ablatant disregard for communication or relationship
building, aswell asthefinancial resources on which traditionalists may draw. But
these events should not be viewed in isolation. In the same way that we strive to
consider learning in its broader context when we work as researchers, so must we
consider the movements of traditionalists and other anti-reformers in their wider
context. Many political commentators have argued that conservative groups have
been able to gain power through the highjacking of other lobby groups agendas
and through the appopriation of their discourse. By understanding the broader so-
cial and political movements that are affecting change in mathematics education,
we may understand the fears and strategies of anti-reform parents and politicians
and find more appropriate ways to address them.

In Chapter 10, Michael Apple enables us to construct such an understanding,
through his analysis of “conservative modernization” at work in education. He
achieves many thingsin thischapter, one of them being to locate the current reform
movement initspolitical context, which, he argues, is structured by neoliberal and
neoconservative movements. Apple describes an alliance of conservative modern-
ization that has a particular set of ideological commitments—within which educa-
tionisfirmly placed. Thisincludesacommitment to“that eloquent fiction,” thefree
market. Appleillustrates what this does and could mean, through his analysis of
eventsin England, where a new market structure is determining educational prac-
ticesinmultipleand profound ways (Gewirtz, Ball, & Bowe, 1995). Theissuesthat
Appleraisesin relation to the U.K. context have import beyond the United King-
dom asthey can be seen in most Western countriesin theworld. Apple provides a
careful documentation and analysis of such movements, which must surely be a
first step in achieving an educational vision that is more democratic. He considers
the dominant view that progressive school practices are widespread and that they
have eradicated the practices of an idealized past. Research results have not played
alargepartinthispublic debate, whichisaclear and sensible strategy for thosetry-
ing to achieve a particular agendathat runs counter to research evidence. Nor have
anti-reformers needed to refer to research, as Apple notes—they have merely pre-
sented their arguments as commonsense or “basic.” Such ideas have flooded the
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discourse of mathematics education with nontraditional teaching methods being
described as the converse. The “mathematically correct” website, which is the
sourceof inspiration and organization for many anti-reformersinthe United States,
provides an ideal illustration of this linguistic move. Their ideas are defined as
“correct” while nontraditional teaching methods are defined as“fuzzy,” “trendy,”
or “mushy.” Such linguistic moves are simple and effective in capturing public
opinion and are part of the practices that require greater understanding by mathe-
matics educators.

In considering the hidden effectsof neoliberal reform recommendationsthrougha
detailed consideration of various events that have transpired in the name of educa-
tiona reformin England, Michael Appledocumentsanimportant and subtle shiftin
emphasis. My own experiencein England would concur with hisobservation that the
focus of education has moved—from what schools can do for students, to what stu-
dentscan dofor schools. Asschool sare put under increasing pressureto performand
accountability measures are applied, students become seen as commodities—with
equity implications too obvious to be stated here. Apple, like other authors in this
book, documentsthe subtlewaysinwhich children of less affluent parents are disad-
vantaged in England and other education markets, with the education system serving
to reproduce, rather than ameliorate, financial privilege.

Michael Apple reflects on the complexity of the world of education and, like
other authorsin the book, does not produce asimple analysisof discrimination, but
describes the “complex interplay of forces and influences” He ends his chapter
with animportant warning—by conducting research and scholarly analyseson the
conservative agenda, including studying, for example, assessments, markets, and
national curricula, we frame educational issues in their terms. This reduces the
space for thinking about aternatives, and the way things could be. | placed this
chapter at the end of the book because its focus is broadest and if changes do not
take place at the level Apple describes, then the practices and intentions of mathe-
matics educators may amount to very little.

| hope that the collection of chaptersin thisbook providesalively and interest-
ing addition to our field. In composing this edited volume, | deliberately avoided
the more typical array of short chapters, choosing instead to let the authors deal
with complex issuesin substantive ways. In bringing thisintroduction to aclose, |
would simply note that the different chaptersin this book do not shareasinglefo-
cus; indeed, they span awiderange of issuesthat areimportant for mathematicsed-
ucation—including teaching, learning, language, assessment, groupwork, and
policy. But what they do shareisacommitment to complex, multidisciplinary rep-
resentations of the phenomena they seek to understand and explain, producing
analyses of practice that have significant importance for the theories and practices
of mathematics education.
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The Social Turn in Mathematics
Education Research

Sephen Lerman

INTRODUCTION

Inthisintroductory chapter, my task isto givean account of thegrowth of interestin
social elementsinvolved inteaching and learning mathematicsover recent years, to
account for that growth, and to give an overview of the main areas of research that
make up the current intellectual climate in the “academy” of mathematics educa-
tion, from the perspective of the social. Thefirst task involves looking at the rela-
tionship between mathematics education and its surrounding disciplines. The
second task, accounting for the growth of social theories, is partly an archaeology
and partly a personal view of how and why the concerns of researchers and many
teachers have moved from largely cognitive explanatory theoriesto agreater inter-
est in social theories. Thethird task, giving an overview of current ideas, occupies
themajor part of thischapter. Inthat overview, | do not pretend that | have managed
toincorporate all thework that isgoing on currently that positionsitself in the“ so-
cial.” That would require much more space and timethanisavailable. Instead, | try
to identify what | see asthe main directions, their common perspectives, and their
differences, and propose a synthesis.

KNOWLEDGE PRODUCTION IN MATHEMATICS
EDUCATION

Thefield of knowledge production in the community of mathematics education re-
search, aswith other curriculum domains, gazesfor the most part on the mathemat-
ics classroom as its empirical field, although aso on other sites of learning and
social practices defined as mathematical by observers (Hoyles, Noss, & Pozzi,
1999). Researchersin mathematics education draw on arange of disciplinesfor ex-
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planations, analyses, and curriculum designs. The process of adopting theoretical
frameworks into a field has been defined by Bernstein (1996) as
recontextualization, as different theories become adapted and applied, allowing
space for the play of ideologiesin the process. Prescribing teaching strategies and
the ordering of curriculum content on the basis of Piaget’ s psychological studiesis
a prime example of recontextualization. Psychologists, sociologists, mathemati-
cians, and othersmight thereforel ook at work in mathematicseducation and at edu-
cational studies, in general, as derivative. At the same time, however, we should
also look on the process as knowledge production, in that new formulations and
frameworks emerge in dialectical interaction with the empirical field (Brown &
Dowling, 1998) and are therefore produced in the educational context. The devel-
opment of radical constructivism as afield in mathematics education research on
the basis of Piaget’s work is an example of what is more appropriately seen as
knowledge production. The adaptation of the ideas of radical constructivism, or
any other theoretical framework, into pedagogy, however, is a process of
recontextualization where the play of ideologies is often quite overt.

| propose that there are three levels of knowledge. At thefirst level are the sur-
rounding (sometimes called foundation) disciplines of psychology, sociology, phi-
losophy, anthropology, (in our case) mathematics, and perhaps others. At the
second level are mathematics education and other curriculum areas of educational
research. At the third level are curriculum and classroom practice. The process of
recontextualization takes place in the movement and adaptation of ideas from one
level to the next. One could usethisframework to examine changesin practice that
are prompted by research findings. In the late 1970sin the United Kingdom, ama-
jor study of concept hierarchies in school mathematics influenced the content of
both textbooks and government curriculum documents (Hart, 1981). Thiswould be
acase of recontextualization fromthe secondtothethirdlevel. Itisnot useful, how-
ever, to examine changesin thefield of mathematics education as aconsegquence of
changes in, say, mainstream psychology or mathematics. For this reason one
should call work at the second level knowledge production, not recontextualization
(Bernstein, 1996). Educational research hasmore of ahorizontal relationshiptothe
domains | have described as being at thefirst level, rather than ahierarchical rela-
tionship to them. This chapter is concerned mainly with knowledge production in
the field of mathematics education, not with recontextualization into pedagogy. |
suggest that there hasbeen aturn to social theoriesin thefield of mathematics edu-
cation and examine the reasons why.

The range of disciplines on which we draw, which should be seen as resources
for knowledge production, iswide and one might ask why thisisso. | do not mean
to imply that mathematics education is different to other fields of knowledge pro-
duction in educational research: all fields have their similarities and overlapping
ideas and each field has its unique features.

Educational research islocated in aknowledge-producing community. . . . Of course,
communitieswill display agreat deal of variation in their cohesiveness, the strength
of their “disciplinary matrix,” and theflexibility of the proceduresby whichthey vali-
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date knowledge claims. Education as afield of research and theorizing is not firmly
rooted in any singledisciplinary matrix and therefore probably liesat theweak end of
the spectrum, although | think this need not in itself be seen as aweakness. (Scott &
Usher, 1996, p. 34)

Few areas of educational research are “home grown” (curriculum studies may
be one of the few), and it is typical for all communitiesin educational thought to
draw on other disciplines. The mathematics education research community seems
particularly cohesive and active, asevidenced for instance by thefact that the math-
ematics education group is now the largest division in the American Educational
Research Association. The procedures for validating knowledge claims that have
emerged in recent decades, including peer review of journa articles, conference
papers, research grant applications, and doctoral thesis examinations, are becom-
ing moreflexible and the criteriamore varied. The numbers of journalsand confer-
ences are increasing, and one can expect that the devel opment of on-linejournals,
and perhaps videoconferencing too, will accelerate the increasing flexibility. A
framework for asystematic analysis of the productions of the mathematics educa-
tion community has been sketched asthefirst stagein aprogram to map the elabo-
ration of pedagogical modes over time (Lerman & Tsatsaroni, 1998).

Themathemati cseducation research community appearsto be particularly open
to drawing on other disciplines, for at least four reasons. First, mathematics as a
body of knowledge and asaset of social practices hasbeen and remains of particu-
lar interest to other disciplines such as psychol ogy, sociol ogy, and anthropol ogy as
it presents particularly interesting challengesto their work. It isnot surprising that
oneof themajor challengesfor Piaget wasto account for the devel opment of logical
reasoning, nor that Piaget’s account of knowledge schemata used group theory as
its fundamental structure. Similarly, it is not surprising that Scribner, Cole, Lave,
Saxe, Pinxten, and others found the study of mathematical practices of great inter-
est in their anthropological and cross-cultural studies. Second, mathematics has
stood asexemplar of truth and rationality sinceancient times, giving it aunique sta-
tusinmost world culturesand inintellectual communities. That status may account
for mathematics being seen asamarker of general intellectual capacity rather than
simply aptitude at mathematics. Its symbolic power certainly lays mathematics
open to criticisms of its gendered and Eurocentric character, creating through its
discursive practicesthe reasoning logical norm (Walkerdine, 1988). Third, mathe-
maticshasplayed alarge part indiversecultural practices(Joseph, 1991), including
religious life, music, pattern, design, and decoration. It appears all around when
one choosesto apply amathematical gaze (Lerman, 1998b). Finaly, thereistheap-
parent power of mathematics such that its use can enable the building of skyscrap-
ers, bridges, space exploration, economic theories, “smart” bombs, and so on; |
should stop as the list descends into ignominy.

Until about 15 years ago, mathematics education tended to draw on mathemat-
icsitself, or psychology, asdisciplinesfor the production of knowledgeinthefield
(Kilpatrick, 1992). Analyses of mathematical concepts provided a framework for
curriculum design and enabled the study of the development of children’s under-
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standing asthe building of higher order concepts from their analysisinto more ba-
sic building blocks. Behaviorism supplied the psychological rationale both for the
building blocks metaphor for the acquisition of mathematical knowledge and for
the pedagogical strategiesof drill and practice, and positiveand negativereinforce-
ment. Piagetian psychology called for historical analyses of mathematical (and
other) concepts, based on the assumption that theindividua’ sdevelopment replays
that of the species (ontogeny replicates phylogeny). It was argued that identifying
historical and epistemological obstacles would reveal pedagogical obstacles
(Piaget & Garcia, 1989; for acritique seeLerman, 1999; Radford, 1997; Rogers, in
press). Thisagain emphasized theimportance of mathematical conceptsfor educa-
tion. Intermsof psychology, theinfluences of Piaget and the neo-Piagetian radical
congtructivistsaretoo well known to requiredocumentation here, and | would refer
in particular to the detailed studies of children’s thinking (e.g., Steffe, von
Glasersfeld, Richards, & Cobb 1983; Sowder, J., Armstrong, Lamon, Simon,
Sowder, L., & Thompson, 1998). Both the di sciplines of mathematicsand psychol-
ogy have high statusin universities, and | ocating mathematics education within ei-
ther group is seen as vital in some countries in terms of its status and therefore
funding and respectability. Psychology has well-established research methodolo-
gies and procedures on which mathematics education has fruitfully drawn. Evi-
dence can be seen, for instance, in the proceedings of the International Group for
the Psychology of Mathematics Education (PME) over the past 22 yearsand inthe
Journal for Research in Mathematics Education (JRME).

Interest in the implications of the philosophy of mathematics, for mathematics
education research was given impetus by L akatos's Proofs and Refutations (1976),
partly, | suspect, because of the style of the book, which isaclassroom conversation
between teacher and students. M ore important, though, isthe humanistic image of
mathematicsit presents, asaquasiempiricist enterprise of the community of math-
ematiciansover timerather than amonotonically increasing body of certain knowl-
edge. The book by Davis and Hersh (1981) which was inspired by Lakatos has
become a classic in the community, but others (Kitcher, 1983; Restivo, van
Bendegem, & Fischer, 1993; Tymoczko, 1986) have become equally influential. A
number of researchers (Confrey, 1981; Dawson, 1969; Ernest, 1985, 1991,
Lerman, 1983; Nickson, 1981; Rogers, 1978) have studied aspects of teaching and
learning mathematics from the humanistic, quasiempirical point of view. That
mathematical certainty has been questioned in the absolutism/fallibilism dichot-
omy isnot duedirectly to L akatos as he never subscribed to that view. With Popper,
L akatos considered knowledge to be advancing toward greater verisimilitude, but
identifying the process of knowledge growth astaking placethrough refutati on, not
indubitabl e deduction, rai sed thetheoretical possibility that all knowledgemight be
challenged by a future counterexample. In mathematics education the absolut-
ist/fallibilist dichotomy has been used as arational e for teaching through problem
solving and as a challenge to the traditional mathematical pedagogy of transmis-
sion of facts. Fallibilism’s potential challenge to mathematical certainty hasledto
mathematical activity being identified by itsheuristics, but toamuch greater extent
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in the mathematics education community than among mathematicians (Burton,
1999b; Hanna, 1996). Thisis another illustration of the recontextualizing process
fromthefield of production of mathematics education knowledge, driven perhaps
by democratic tendencies for pedagogy among some schoolteachers.

Although thereis a substantial body of literature in social studies of scientific
knowledge, there has been much less written about mathematical knowledge, al-
though Bloor (e.g., 1976) isan early exception and Rotman’s (1988) and Restivo’s
(1992) work morerecent. Science education research draws heavily on social stud-
ies of scientific knowledge: in mathematics education, that resource is still in an
early stage.

THEORIES OF THE “SOCIAL”

Studiesin epistemology, ontology, knowledge, and knowledge acquisition tend to
focus on how the individual acquires knowledge and on the status of that knowl-
edge in relation to reality. Theoretical frameworks for interpreting the social ori-
gins of knowledge and consciousness began to appear in the mathematics
education literaturetoward the end of the 1980s. Shiftsin perspectivesor thedevel-
opment of new paradigms in academic communities are the result of aconcatena-
tion of factors within and around the community. In thetitleto this chapter, | have
called these devel opments the social turn in mathematics education research. This
isnot to imply that other theories, mathematical, Piagetian, radical constructivist,
or philosophical have ignored social factors (Lerman, 2000; Steffe & Thompson,
2000). Indeed, in the preceding discussion | have suggested that the phil osophical
orientation was coincident with ahumanistic, democratic concern by teachersand
researchers at that time. Elsewhere (Lerman, 1998d, p. 335), | have discussed
Piaget’sand von Glasersfeld’semphasison socia interactionsasproviding amajor
source of disequilibrium. Thesocial turnisintended to signal something different;
namely, the emergenceinto the mathemati cs education research community of the-
ories that see meaning, thinking, and reasoning as products of socia activity. This
goesbeyond theideathat social interactions provide aspark that generates or stim-
ulatesanindividua’sinternal meaning-making activity. A major challengefor the-
oriesfrom the social turnisto account for individual cognition and difference, and
toincorporatethe substantial body of research on mathematical cognition, as prod-
ucts of social activity.

In making the social turn the focus of this chapter, | have created my object of
study. It becomestempting, then, to pin down the emergence of that objectintime,
although in a“playful” sense. The year 1988 saw the appearance of several texts
that have become significant in the social turn in mathematics education research.
Jean Lave'shook, Cognitionin Practice (1988), challenged cognitivism and trans-
fer theory in mathematicslearning. In that book she described studies of the* math-
ematical” practices of grocery shoppers and dieters, which raised fundamental
guestions about mathematical practices in out-of-school practices being seen as
merely the application of school techniques. The strategies and decision-making
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procedures that people used in those situations had to be seen as situated within,
and asproductsof, those social situations. Further, the process of learning the strat-
egies and decision-making procedures in the community of dieters, for example,
should be seen as part of who oneis“becoming” in that practice. TerezinhaNunes
(Carraher, 1988) gave aplenary addressat PME in Hungary, reporting on thework
of her group, in which she identified differences between street mathematics and
school mathematics. For exampl e, she demonstrated that theformer isoral, thelat-
ter written, and that street mathematics“isatool for solving problemsin meaning-
ful situations” (p. 18). That students who traditionally fail in school mathematics
were seen to be successful in street situations made the challenge to knowledge as
decontextualized schemata more powerful. Valerie Walkerdine' s Mastery of Rea-
son (1988) located meaningsin practices, not asindependent of them, and demon-
strated that the notion of a“child” is a product of a discursive practice, which is
produced in language and particular social practices. Her Foucauldian analysis of
classroom mathematics placed issues of power and the social construction of iden-
tity and meanings on the agenda. Alan Bishop’'s Mathematical Enculturation
(1988b) gaveacross-cultural view of mathematical practicesand attempted togive
someuniversal parametersfor their analysis. In the sameyear Bishop was editor of
aspecial issueof Educational Studiesin Mathematicson cultural aspectsof mathe-
matics education. These writers, and others, had published some of their work be-
fore 1988, but the coincidence of these major publications leads me to emphasize
that year. Itisclear that the community had to bereceptiveto theseideasfor themto
gain purchase. In that same year, one day of the Sixth International Congress on
Mathematical Educationin Hungary, called“Day 5,” was devoted to Mathematics,
Education, and Society, the result of the efforts of Alan Bishop and colleaguesto
bring social and cultural issuesto the attention of theinternational mathematics ed-
ucation community. In 1986, aresearch group had been set up in the United King-
dom by Marilyn Nickson and myself called the group for “Research into Social
Perspectives of Mathematics Education” (Nickson & Lerman, 1992). These are
just two indicators of the receptivity of the mainstream community. It has to be
said, though, that the receptivity of the mathematics education community to social
theories was due more to political concerns that inequalitiesin society were rein-
forced and reproduced by differential successin school mathematics, than social
theories of learning. Ethnomathematics, which was introduced as a new direction
by Ubiritan D’ Ambrosio at the Fifth International Congress on Mathematical Edu-
cation in Adelaide in 1984 (D’ Ambrosio, 1984), was a key element in the papers
presented on Day 5 four years|ater, and can also be said to have played alarge part
in creating an environment that was receptive to the social turn.

The other key element in current sociocultural theories in mathematics educa-
tion isthework of Vygotsky and his colleagues, but it isalittle harder to trace the
beginnings of Vygotskian influences in mathematics education. Forman (in press)
reminds us that Vygotsky’s work only became available to the world community
with destalinization in the Soviet Union at the end of the 1950s and only slowly and
gradually were trand ations made available. The impact of hisrevolutionary ideas
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took time to emerge, Bruner and Wertsch being particularly important figuresin
that process (see Bruner, 1986; Wertsch, 1981). The significant differences be-
tween Vygotsky’ stheories, and those of Piaget whichwere, and still are, dominant,
took even longer to reach recognition. People working in thefield of education for
children and adultswith special needs(e.g., Donaldson, 1978; Feuerstein, 1980), in
studies of self-regulation, and in language development took to Vygotsky’ s theo-
riesat an early stage. Cole, Engestrom, and others, including Lave, influenced by
activity theory (Cole, 1996; Cole, Engestrom, & Vasquez, 1997), drew partly on
studies of mathematical practices. However, the significance of Vygotsky’ swork
only cameto be appreciated by the mai nstream mathemati cs education community
much more recently.

Theevidence | have found of Vygotsky’swork becoming known within mathe-
matics education suggests, again, that the late 1980s may be seen as something of a
marker. From a search without the aid of electronic means, it appearsthat the first
mention of Vygotsky in references:

1. In PME proceedings was Crawford (1988)

2. InEducational Sudiesin Mathematicsin areview of Wertsch (1981) by Crawford
(1985), but the first mention in an article was Bishop (1988b)

3. Inthejournal For the Learning of Mathematics was Cobb (1989)

4. Inthe Journal for Research in Mathematics Education was English (1993)

5. Inthe Journal of Mathematical Behavior was Schmittau (1993)

The socia turn in mathematics education has devel oped from, | suggest, three
main disciplines or resources. anthropology (from, e.g., Lave); sociology (from,
e.g., Walkerdine); and cultural psychology (from, e.g., Nunes; Crawford). Each
contains a number of streams, of course, and each has a number of influences. |
have proposed (L erman, 1998d) that there are some common themesand | will try
to indicate later how these can be brought together into afruitful and coherent re-
search direction by aconsideration of the unit of analysisfor research in mathemat-
ics education. For now it suffices to consider the person-acting-in-social-practice,
not person or their knowing on their own. | frame this discussion by looking at as-
pectsof situated theory, with critiques opening spacesfor elaborationsfrom sociol-
ogy and from cultural or discursive psychology.

SITUATED KNOWING

Situated theories have generated great interest and received much critical attention
inrecent years (e.g., Andersen, Reder, & Simon, 1997; Greeno, 1997; Kirshner &
Whitson, 1997; Watson, 1998). Lave and Wenger (also Lave, 1988; Lave, 1997;
Lave & Wenger, 1991; Wenger, 1998) have given radically different meanings to
knowledge, learning, transfer, and identity. Lave's studies of the acquisition of
mathematical competence within tailoring apprenticeshipsin West Africaled her
to argue that knowledge is located in particular forms of situated experience, not
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simply in mental contents. Knowledge has to be understood relationally, between
people and settings: it is about competencein life settings. One of the consequences
of this argument is that the notion of transfer of knowledge, present as
decontextualized mental objectsinthemindsof individuals, from onesituationto an-
other, becomes perhaps untenable but at the very least requires reformulation. That
argument seems to create special problems for mathematics education. Perceptions
of mathematicsasadisciplineare predicated onincreasing abstraction and generality
acrossapplications, and mathematical modelingis precisely theapplication of appar-
ently decontextualized knowledge to amost any situation. Widely held perceptions
of child development and of the acquisition of mathematical knowledge also are
predicated on a move from the concrete to the abstract, whereby decontextualized
mental schemataare constructed and can beused formally, at the appropriate stage of
intellectual devel opment. But these are not serious challengesto situated theory. The
various subfields of the professional practice of mathematicians can be seen as par-
ticular social practices. To apply amathematical gaze onto asituation and to identify
and extract factors and featuresto mathematicsisthe practice of mathematical mod-
eling. It hasits mastersand images of mastery, itsapprenticeship procedures, itslan-
guage, and its goals, just like any other socia practice. Learning to “transfer”
mathematicsacrosspracticesisthe practice. Thebelief that themathematicsfoundin
practices by the gaze of the mathematical modeller isan ontologically real feature of
those practicesis perhaps an extrablock to seeing modeling asasocial practice (see
Restivo, 1992, for examples of sociological, practice-based accounts of the devel op-
ment of abstract mathematical structures).

The practices of the school mathematics classroom are certainly very different
to the practices of mathematicians, or those who use “mathematics’ in the work-
place, at | east because school mathematicsis not the chosen practice of studentsin
classrooms. We can say, however, that learning to read mathematical tasksin class-
room problems, which gives the appearance of decontextualized thinking, isagain
aparticular feature of the practice of school mathematicsfor the “ successful” stu-
dents (Dowling, 1998). It is effected by an apprenticeship into the practices of
classroom mathematicsthat carry cultural capital (Bourdieu, 1979). The agents of
the apprenticeship are the teacher and the texts, but also the acceptance or acquies-
cence of those students who become apprenticed.

Inthenext three sections| examine aspectsof situated theory: theneed for acon-
sideration of how subjectivitiesare produced in practices, asargued by Walkerdine
and others; the particular nature of the practices of the mathematics classroom and
theimplicationsit hasfor notions of apprenticeship; and the problem of a suitable
mechanismin Lave'stheory of learning (1996, p. 156). In the concluding section, |
discussthe unit of analysisfor the study of individualsin social practices, in an at-
tempt to bring the critiques together into a synthesis of the social turn.

Subj ectivity—Regulation in Practices

A community of practiceisanintrinsic condition for the existence of knowledge, not
least because it provides the interpretive support necessary for making sense of its
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heritage. Thus, participation in the cultural practiceinwhich any knowledge existsis
an epistemologica principle of learning. The socia structure of this practice, its
power relations, and its conditions for legitimacy define possibilities for learning
(i.e., for legitimate peripheral participation). (Lave & Wenger, 1991, p. 98)

Walkerdine (1997) suggests that what ismissing in Lave's analysis of the sub-
jectin practicesissubjectivity, theregulation of individual swithin practices. Inthe
move away from the notion of an individual transferring decontextualized know!-
edgefrom onepracticeto another, to thenotion of knowledge andidentity being sit-
uated in specific practices, Lave'swork might seem to suggest that all individuals
are subjected to those practicesin the same way. There appearsto beagoal for the
learning which is characteristic of the practice, and apprenticeship into it is mono-
lithic in its application. However, Walkerdine shows how the notion of “child” is
produced in the practices of educational psychology (1988; see aso Burman,
1994), differentially positioning those who conform—uwhite boisterous males, and
those who do not—nonwhite people, girls, quiet boys, and so on. Significations
matter, they are not neutral meanings: situating meanings in practices must also
take into account how those significations matter differently to different people.
Practices should be seen, therefore, as discursive formations within which what
counts asvalid knowledge is produced and within which what constitutes success-
ful participationisalso produced. Nonconformity isconsequently not just afeature
of the way that an individual might react as a consegquence of her or hisgoalsina
practice or previous network of experiences. The practiceitself producestheinsid-
ersand outsiders. Analysisof apprenticeshipin particular workplace settings might
appear not to reveal differing subjectivities produced in the practice. Women and
people of ethnicities other than the majority might not choose to become tailors,
and those becoming excluded may be forced to leave or may choose to see them-
selves as not suited to that job or identity. In fact, in recent decades the entrance of
women and people of color into high-powered workplace situations that were
al-white male domains has highlighted the subtle and not so subtle waysin which
those situations have excluded others by virtue of the manner in which those
workplaces and their practices are constituted.

Theclassroom, being asite of acomplex of practices, requiresacareful consid-
eration of subjectivities. Onekind of analysis has been offered by Evans (1993), in
which hearguesthat Foucault’ swork onthearchitecture of knowledge capturesthe
way inwhich individual sare constructed by and within those practi ces. Evans sug-
geststhat discursive practices are not clearly bounded, they are continually chang-
ing, and one moves from one discursive practice to another through chains of
signification. In aseries of interviews, he asked mathematical questions set in dif-
ferent social contextsandidentified the discursive practicethat wascalled up by the
guestion in its context, for a particular person. He criticizes the smplistic notion
that giving real-world contexts for mathematical concepts provides“meaning” for
students—a“meaning” that supposedly existsin some absolute sense and isillus-
trated by or modeled in that real world context. He identifies school mathematics
practice as one of arange of practices that might be called up for an individual.
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When that happens, if theinterviewee was successful at school, she or he might fo-
cus on the mathematical calculation required and answer correctly; more fre-
quently theidentity called up would be one of low confidence and lack of success.
In another analysis of the production of subjectivitiesthrough the discursive prac-
tices of the mathematics classroom, Morgan (1998) analyzed the written produc-
tions of school students in their mathematics lessons according to the ways in
which the teachers framed the task through their use of official discourse (what is
expected by examiners), practical discourse (whether it can be understood by
nonmathematicians), or professional discourse (what mathematicians might ex-
pect).

Much sociology of education presents macro-theories about social movements
and the reproduction of disadvantage in schools. Walkerdine's and Evans's ac-
counts draw on sociological theories of poststructuralism, which describe the
emergence of discursive practices, the production and maintenance of elitesinand
through those practices, and the techniques and technologies whereby power and
knowledge are produced. Their work enables the use of Foucault's theory to look
into specific practices at the micro-level of the mathematics classroom. Dowling's
(1998) sociology of mathematics education owes its origins to Bernstein (e.g.,
1996), who offers a language for the description of the pedagogical mechanism
through which education reproduces social inequality as positioningsin the class-
room. Dowling carried out a study of a series of four parallel school mathematics
texts that are written according to the authors' assumptions of the potentialities of
different abilities. He demonstrates how thetextsarein fact productive of those dif-
fering potentialities, and how the assumptions of ability coincidewith the different
modes of thinking produced in the stratification of society according to social class,
identified through different forms of language. Cooper and Dunne (1998) also use
Bernstein’s theory to demonstrate how questions set in everyday contexts in na-
tional mathematicstests in the United Kingdom disadvantage working-class chil-
dren. In another use of sociological theories in mathematics education, Brown
(1997) draws on the work of Habermas to develop a theory in which individual
learners reconcile their constructions with the framing of the socially determined
code of the mathematics teacher.

In general, sociology providesresourcesfor identifying the macro-social issues
that bear on schooling but not always for making links between them and the mi-
cro-social issues that concern us in relation to the classroom. | have argued else-
where (Lerman, 1998c) that studying individual children or groups of children can
be seen as momentsin the zoom of alensin which the other, temporarily out of fo-
cus, images must a so be part of the analysis. Specifically, Walkerdine brings sub-
jectivity into the study of subject-in-social-practice and | go along with her (and
Agre, 1997) inseeing it asanecessary element. Individual trgjectoriesin the devel-
opment of identitiesin social practices arise as a consequence of our identitiesin
the overlapping practices in which each of us functions but also emerge from the
different positionsinwhich practices constitute the parti cipants. We can capturethe
regulation of discursive practices by talking of the practice-in-person asthe unit of
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identity, aswell asthe person-in-practice. | returnto the question of theunit of anal-
ysislater in this discussion.

The Practices of the Mathematics Classroom

A community of practiceisaset of relations among persons, activity, and the world,
over time and in relation with other tangential and overlapping communities of prac-
tices. (Lave & Wenger, 1991, p. 98)

The classroom is clearly a site of many overlapping practices. Whereas the
mathematics teacher’s goal may be to initiate learnersinto (what she or he inter-
prets as) mathematical ways of thinking and acting, learners’ goalsarelikely to be
quite different. We must therefore ask how we can extend the notion of apprentice-
ship to incorporate the mismatch of goals. If we areto extend the valuable insights
of the notion of communities of practice into the field of knowledge productionin
mathematics education, the nature of those goals and of the classroom practices
must be analyzed, and | turn to thistask here. First, the way in which what consti-
tutes“ school mathematics’ is produced requires some examination, in termsof the
play of values and ideology. Second, the range of goals of the participants, both
those present (teacher and students) and those physically absent (state, community,
media, school) must beelaborated. At the very least we must ask, who or whereare
the masters in these multiple practices?

School Mathematics

Bernstein’swork over anumber of decades has focused on how power and con-
trol are manifested in pedagogical relations. In particular, he haslooked at how the
boundaries between discourses, such asthose of the secondary school curriculum,
are defined—what he calls the classification rules—and how control is effected
within each discourse—theframing rules. Asaprinciple, pedagogical discourseis
the process of moving a practice from its original site, whereit is effective in one
sense, to the pedagogical sitewhereit isused for other reasons; thisisthe principle
of recontextualization. In relation to work practices, he offers the example of car-
pentry which wastransformed into woodwork (in U.K. schools), and now formsan
element of design and technology. School woodwork isnot carpentry asit isinevi-
tably separated from all the social el ements, needs, goals, and so on, which are part
of thework practice of carpentry and cannot be part of the school practice of wood-
work. Similarly, school physicsisnot physics, and school mathematicsisnot math-
ematics. Bernstein argues that recontextualization or transformation opensaspace
in which ideology aways plays. In the transformation to pedagogy, values are al-
ways inherent, in selection, ordering, and pacing.

In relation to mathematics, those values may include preparation for specific
workplaces, but thisislikely to be at the later stages of school for asmall minority
of students, at least in the United Kingdom. Other European countries have very
different attitudes to vocational education. The school mathematics curriculum
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may include specific mathematics for everyday life—shopping, paying taxes, in-
vesting savings, bank accounts, and pensions—but again these issueswill become
meaningful to students at the later stages of schooling. The content of amathemat-
ics curriculum which isto provide the skills necessary for either or both of these
contexts would be very limited. In any case, the problems of transfer and
contextualization of knowledge suggest that theteaching of these skillsintheclass-
room for use el sewherewould be highly problematic. For themost part, curriculum
isdriven by aview of education that may be (1) an authoritarian view (Ball, 1993),
the incul cation of an agreed selection of culturally valued knowledge and a set of
moral valuesand waysof behaving; (2) aneoliberal view (Apple, 1998), producing
citizens prepared for useful, wealth-producing livesin ademocratic society; (3) a
more old-liberal agenda (Hirst, 1974) of enabling children to become educated
people able to fulfil their lives to the best of their abilities; or (4) a more radical
agenda (Freire, 1985) of preparing people to critique and change the society in
which they engage. It may also be driven merely by inertia. Schools asinstitutions
arethere, they occupy children all day while some parentsand guardianswork, and
the mathematics curriculum, in terms of topic content, remainsvery similar to that
of 50 years ago. Whatever the ideologica and value-laden intentions for teaching
on the part of the school, community, or state, the teacher has her or his goalstoo,
which may or may not align with theinstitutional intentions. Initiatives such asthe
National Council of Teachers of Mathematics (NCTM) standards in the United
States or the National Numeracy Strategy in the United Kingdom (to take two ex-
ampleswith very different orientations) provide yet other sets of valuesthat regu-
|ate the teacher’ s behavior.

The mathematical practiceswithin aclass or school, the way in which they are
classified and framed, the state/community/school valuesthat are represented and
reproduced, and the teacher's own goals and motives, form the complex back-
ground to be taken into account by the research community (see Boaler, 1997, for
an exemplary study of different school practices). Accordingto Lave, mathematics
itself should be seen not as an abstract mathematical task but as something deeply
bound up in socially organized activities and systems of meaning within acommu-
nity. Nor, for that matter, should it be seen asasingle practice. Burton (1999b) has
found that mathematiciansidentify themselvesby their subfield, asstatistician, ap-
plied mathematician, mathematical modeller, or topologist. In relation to school
mathematics one must be aware of the particular nature of theidentities produced.
Boaler (1997) has shown how different approachesto school mathematics produce
different identities as school mathematicians. She suggests also that the identities
produced in one of thetwo schoolsin her study, Phoenix Park school, which used a
mathematics curriculum built around problem solving, overlap with students
mathematical practices outside of school, but there is less evidence for this as
Boaler relies on students' accounts, given in school, of such overlap. Boaer uses
both Bernstein’sanalysisin termsof classification and framing and L ave’scommu-
nities of practice as resources to explain her findings. Recently Boaler (1999) has
talked of the particular practices of the two schools as offering constraints and
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affordances (Greeno & MMAP, 1998) asaway of interpreting the students' behav-
iors, which resulted in them working to succeed, in the distinct terms of each
school.

In summary, as researchers we need to examine the background that framesthe
mathematical practicesin the classroom, irrespective of their allegiances (reform,
authoritarian, or other), and draw on the resources offered by Lave, Walkerdine,
Greeno, and others to study the ways that school mathematical identities are pro-
duced. In the next part | examine accounts that incorporate individual trajectories
through those social practices (Confrey, 1995).

Participants’ Goals

Lemke and others point to the paths of particular peopl€’s|earning by referring
toindividual trajectories (Lemke, 1997). People cometo participatein social prac-
tices from an individual set of sociocultural experiences. Individuality, in this
sense, “is the uniqueness of each person’s collection of multiple subjectivities,
through the many overlapping and separate identities of gender, ethnicity, class,
Size, age, etc., to say nothing of the ‘unknowable’ elements of the unconscious’
(Lerman, 1998c, p. 77). Lemke (1997) refersto the ecosocial system inwhich peo-
ple function, and Engestrom and Cole (1997) refer to the under-researched resis-
tanceof someactorsin activities. Moreimportant to studentsthan |earning what the
teacher hasto offer are aspectsof their peer interactions such asgender roles, ethnic
stereotypes, body shape and size, abilities valued by peers, relationship to school
life, and others (McLaughlin, 1994). The ways in which individuals want to see
themselves developing, perhaps as the classroom fool, perhaps as attractive to
someone else in the classroom, perhaps as gaining praise and attention from the
teacher or indirectly from their parents, leads to particular goals in the classroom
and therefore particular ways of behaving and to different thingsbeing learned, cer-
tainly different from what the teacher may wish for the learners (Boaler, 2000).
Winbourne (1999; see also Winbourne & Watson, 1998) hasgiven an account of in-
dividual children’s mathematical (and other) activities that set the children in the
context of the multiple social and cultural practices in which they are positioned
and that influence who they are at different times in the mathematics (and every
other) classroom. Santos and Matos (1998) analyze the knowledge devel opment of
students in terms that take account of their social relations. Brodie (1995) and
Lerman (in press @) offer similar analyses from different perspectives.

All these accounts give social originsto the individual trgjectories that clearly
manifest in the classroom (Wenger, 1998). The origins of individual meanings be-
ing located in sociocultural tools roots individuality or voice in its proper frame-
work. It is not the individualism of private worldviews, which has dominated the
debate around subjectivity and voice in recent decades, but power/knowledge as
constituted in discourses. Discourses that dominate in the classroom, and every-
whereelsefor that matter, distribute powerlessnessand powerfulnessthrough posi-
tioning subjects (Evans, in press). Walkerdine's (1989, p. 143) report of a
classroom incident in which the emergence of a sexist discourse bestows power on
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5-year-old boys, over their experienced teacher, dramatically illustratesthe signif-
icance of afocus on discourse, not on individuals. In some research on children’s
interpretations of bigger and smaller, Redmond (1992) found some similar evi-
dence of meanings being located in practices.

These two were happy to compare two objects put in front of them and tell me why
they had chosen the one they had. However when | allocated the multilinks to them
(the girl had 8 the boy had 5) to make atower . . . and | asked them who had thetaller
one, the girl answered correctly but the boy insisted that he did. Up to this point the
boy had been putting the objectstogether and comparing them. Hewould not do soon
this occasion and when | asked him how we could find out whose tower wasthetaller
hebecamevery angry. | asked himwhy hethought that histower wastaller and hejust
replied “Because|T IS Hewould go no further than thisand seemed to bealmost on
the verge of tears. (p. 24)

Many teachersstruggleto find waysto enableindividual expressionintheclass-
room, including expressing mathematical ideas, confronting the paradox of teach-
ers giving emancipation to students from their authoritative position. But this can
fruitfully be seen as a diaectic, whereby al participants in an activity manifest
powerfulness and powerlessness at different times, including the teacher. When
those articulations are given expression, and not denied asin some interpretations
of critical pedagogy (L erman, 1998a), shiftsin relations between participants, and
crucialy between participants and learning, can occur (Ellsworth, 1989; Walcott,
1994).

Learning is predicated on one person learning from another, more knowledge-
able, or desired, person, in Lave' stermsthe master. As Lave has pointed out, there
are many overlapping practicesin any one practice. Thisis particularly the casein
the classroom as not many students’ goals are aligned with the teacher’s and very
few wish to become teachers of mathematics.

Models of Mastery

Lave and Wenger's (1991) notion of mastery was not focused on school class-
rooms (see also Wenger, 1998) but clearly offers valuableinsights that require de-
velopment if we wish to use them in the formation of appropriate theoretical
frameworks. Learning seen asincreasing participation in practices, the gradual at-
tainment of mastery, isarich description of identity development, which has been
shown to be appropriate to at |east some aspects of the classroom (Lave, 1996).

Classroom practicesincludethose overlapping identities produced inrelationto
the mathematics, such as abilities, asin Walkerdine’s and Dowling's analyses, and
purposes for mathematics. For instance, purposes may include minimum certifica-
tion for continuing study, a key to careers and further education and training
courses, or markers of recognition of general intellectual potential. Classroom
mathematics practices also produce the more specific identities as, for example,
good at number but not algebra, competitive or collaborative in performance, and
soon. Thecomplex of classroom practicesal so coversthoseoutside of theintention
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of theteacher, asdiscussed earlier, particularly inrelationto peers, and most impor-
tantly the differential regulation of different students within those practices. The
teacher may perform therole of “master” for some studentsin relation to some as-
pects of what we might call the mathematical identities produced, most often spe-
cifically the mastery leading to further study of mathematics, athough we are
referring here to mastery in terms of school mathematics. But the teacher will not
stand as the master for most of the students for most of the classroom social prac-
ticesthat are important for them. How, then, might we extend Lave and Wenger’s
notion?

| suggest that it may be fruitful to refer to multiple models of mastery offeredin
the complex of classroom practices. Expertise/mastery may berepresented inaper-
son or not, hence model's, and those masters may be present in the classroom or not.
In terms of what can be called role models, other students might perform many of
theroles that students may desire to emulate. The teacher’s personal styleis often
reported as having been asignificant factor in peopl €' sidentification with, or rejec-
tion of, aspects of schooling, including mathematics. In relation to people absent
from the classroom, parents’ stories of, for instance, their ability or lack inrelation
to mathematics, can function as modelsfor a student and a sibling or valued other
similarly. So, too, images of who students want to become can act as models, per-
hapsincluding mediapersonalities. Thisidentifiesthe need for more complex stud-
ies of individual trajectoriesin the classroom, perhaps through narrative accounts
(Burton, 1999a; Santos & Matos, 1998; Winbourne, 1999), examining who arethe
models and what are the practices that are important to individual students.

A Mechanism for Learning

Lavearguesthat earning may be represented asincreasing participationin com-
munities of practice (Lave, 1996). Shewritesthat shefindsthefollowing threefea-
tures of atheory of learning to be “aliberating analytical tool” (1996, p. 156) for
discussing learning as social practice:

1. Telos: thatis, adirection of movement or change of learning (not the same asgoal
directed activity),

2. Subject-world relation: ageneral specification of relations between subjects and
the social world (not necessarily to be construed as learners and things
to-be-learned),

3. Learning mechanisms: ways by which learning comes about. (p. 156)

Shearguesthat thetelosof her two case studies, thetailors' apprenticesand legal
learningin Egypt inthe 19th century, isto become mastersof tailoring or law and to
become respected participants of the everyday life of their communities. The pre-
ceding discussions, concerning recontextualization, the multiple practices at play
in the mathematics classroom, regulation, and the need for an analysis that offers
multiple models of mastery, suggests that we might need to refer to teloi, and the
plural subjects-worlds relations aswell asregulative processes. Here | wish to ad-
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dress Lave' sthird feature, that of learning mechanisms. Whatever mechanism is
used, whether it is used as an explanatory framework or as an ontological state-
ment, it must take account of the differences between workplace apprenticeships
and the classroom, as well as be able to account for both. In the classroom, the
teacher intendsto teach: thisisher or hisfunction, however itisinterpreted and re-
alized. The difference to the situation of the master tailor is quite dramatic.

In many placesin her writing Lave (e.g., 1997) proposes that one should focus
on learning and make a separation of it from teaching. Lave is referring here to
school teaching as the culture of acquisition, offering compartmentalized knowl-
edge, and learning at a distance, drawing, that is, on the notion of transfer (pp.
27-28). | suspect many teachers and certainly most, if not all, in the mathematics
education research community would subscribe to a move away from that view of
teaching. In looking at a (sociocultural) mechanism for learning, however, the
teacher hasto be placed firmly into the picture. Herel will turnto Vygotsky’swork,
as his mechanism for learning captures at least some of the features called for by
Lave and others.

Vygotsky provided amechanism for learning with four key elements: the prior-
ity of the intersubjective; internalization; mediation; and the zone of proximal de-
velopment.

« “Every functioninthechild's cultural devel opment appearstwice: first, on the so-
cial level, and later, on the individual level; first, between people
(interpsychological), and theninside (intrapsychological). . . . All the higher func-
tions originate as actual relations between human individuals’ (Vygotsky, 1978,
p. 57).

* “Theprocessof internalizationisnot thetransferal of an external to apre-existing,
internal ‘ plane of consciousness'; it isthe processin which this plane is formed”
(Leont’ev, 1981, p. 57).

e “Human action typically employs ‘mediational means' such as tools and lan-
guage, and that these mediational means shapetheactionsin essential ways. . . the
relationship between action and mediational means is so fundamental that it is
more appropriate, when referring to the agent involved, to speak of ‘individ-
ual(s)-acting with mediational means' than to speak simply of ‘individual(s)’”
(Wertsch, 1991, p. 12).

* “Weproposethat an essential feature of learningisthat it createsthe zone of proxi-
mal development; that is, learning awakens avariety of developmental processes
that are able to interact only when the child isinteracting with peoplein his envi-
ronment and in collaboration with his peers’ (Vygotsky, 1978, p. 90).

Central to all thesefeatures of Vygotsky’s mechanism for learning istherole of
the teacher, although in various guises. It may be a more informed peer; a parent
who has no explicit intention to teach; amaster creating, together with the appren-
tice, azoneof proximal development; atext, aproduction of the culturefromwhich
onecanlearn; or indeed ateacher whoseexplicit intentionisto enablethe student to
do something, be someone, or know something that he or she could not do, could
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not be, or did not know. All human development is led by learning from others,
from the culture that precedes us.

Vygotsky's theories have been a huge stimulus to research in all kinds of do-
mains of education (e.g., Cole, 1996; Cole & Wertsch, 1996; Forman, Minick, &
Stone, 1993; Wertsch, 1997, to name just a few recent works) and this includes
mathematics education (for a review that relates to reform-related research, see
Forman, in press; see also Lerman, 1998c, 1998d) and some, hopefully productive
controversy (Lerman, 1996; Lerman, 2000; Steffe & Thompson, 2000). Recent
work on discourse studies (Forman, in press, Forman & Larreamendy-Joerns, in
press; Krummheuer, 1995), dynamic assessment (Brown & Ferrara, 1985;) and
learninginthe zpd (Lerman, in pressa; Meira& Lerman, 1999) arejust someillus-
trations of the continuing interest in developing Vygotskian theories.

To what extent, though, does Vygotsky’s perspective provide the mechanism to
which Lave refers? Where Piaget offers equilibration as the mechanism for learn-
ing, Vygotsky proposes the zone of proximal development. For Lave, learning is
transformation through increasing participation in social practices, and a mecha-
nism for learning would need to take account of the goals of theindividual in join-
ing, or being coerced into joining, the social practice, and the specificities of the
practiceintermsof situated meanings and situated ways of being. The mechanism
would need to take account of thefactorsthat contributeto theindividual trajectory
through the practice, including what an individual brings to a practicein terms of
their prior network of experiences, and the regulating effects of the practice.
Vygotsky was not directly concerned with socia practices. At thetime of the Rus-
sian revolution the singular discourse of dialectical materialism, and the drive for
progress from afeudal society to communism did not allow for the availability of
other theoretical resources. Hisearly death in 1934, at the age of 38, precluded any
engagement with more relativistic social theories. However, Vygotsky’s psychol-
ogy isacultural psychology (Cole, 1996; Daniels, 1993) and it opens up spacesfor
different analyses than those that appeared during Vygotsky’slife.

Vygotsky'swork is generally taken to be about the individual learning in a so-
cial context, but | have suggested in this section that histheories makeit clear that
the zpd offersmorethan that. First, in that consciousnessisaproduct of communi-
cation, which always takes place in a historicaly, culturally and geographically
specific location, individuality has to be seen as emerging in socia practice(s).
Vygotsky's personal history as amember of a discriminated-against minority, the
Jews, whose culture is carried in specific languages (Hebrew and Yiddish) and
practices, which is obviously about identity, was akey factor in forming his think-
ing about development (Kozulin, 1990; Van der Veer & Valsiner, 1991). Second, |
havearguedthat all learningisfrom others, and asaconsequence meaningssignify,
they describe the world as it is seen through the eyes of those sociocultural prac-
tices. Inhisdiscussion of inner speech, Vygotsky makesit clear that it isthe process
of the development of internal controls, metacognition, that is, the internalization
of the adult. Again, these are mechanisms that are located in social contexts.
Finally, the zpd is a product of the learning activity (Davydov, 1988), not a fixed
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“field” that the child bringswith her or himto alearning situation. The zpdisthere-
fore aproduct of the previous network of experiences of theindividuals, including
the teacher, the goal s of teacher and learners, and the specificity of the learning it-
self. Individual trajectories are therefore key elementsin the emergence (or not) of
zpds (Meira& Lerman, 1999).

Infact, Lave suggests that the need for learning mechanisms* disappear(s) into
practice. Mainly, people are becoming kinds of persons’ (1996, p. 157). The pro-
cess of accounting for “becoming kinds of persons’ till calls for a mechanism,
however, and | am proposing here that internalization through semiotic mediation
in the zpd is a suitable candidate.

CONCLUSION: UNIT OF ANALYSIS

Perhaps the greatest challenge for research in mathematics education (and educa-
tion or socia sciencesin general) from perspectivesthat can be described as being
within the social turn isto devel op accounts that bring together agency, individual
trajectories (Apple, 1991), and the cultural, historical, and social origins of the
ways people think, behave, reason, and understand the world. Any such analysis
must not ignoreeither: it should not reduceindividual functioningto social and cul-
tural determinism nor place the source of meaning making intheindividual. In or-
der to develop such accounts, researchers can choose to begin from the
development of theindividual and explaintheinfluencesof culture, or fromthecul-
tural and explain individuality and agency (Gone, Miller, & Rappaport, 1999). |
have argued herefor thelatter. Inmy review | haveused L ave and Wenger’ssituated
theories as afoundation and attempted to open spaces, through critique, for the de-
velopment of their theoriesfor our needsin mathematics education research. | have
argued for consideration of theregulating effects of discursive practices. | havedis-
cussed the multiple practices at play in the mathematics classroom, most of which
arenot theintention of theteacher. Asaresult, thenotionsof mastery and legitimate
peripheral participation need careful analysisin order to extend them to the class-
room, and | have suggested that narrative methods of research are proving to be
most fruitful in research. | have suggested that Vygotsky’s notion of the zone of
proximal development, when set within adiscursive and cultural psychology that
wasnhot fully availableto him, intermsof intellectual resources, during hislifetime,
can perhaps provide the mechanism of learning to study the process of people“be-
coming kinds of persons.”

Thestudy of themindisaway of understanding the phenomenathat arisewhen differ-
ent sociocultural discourses are integrated within an identifiable human individual
situated in relation to those discourses. (Harré & Gillett, 1994, p. 22)

Individuality and agency, then, emerge asthe product of each person’sprior net-
work of social and cultural experiences, and their goalsand needs, inrelation to the
social practicesinwhich they function. | proposed the metaphor of azoom lensfor
research, whereby what one chooses as the object of study becomes:
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A moment in socio-cultural studies, asaparticular focusing of alens, asagazewhich
is as much aware of what is not being looked at, asof what is. . . . Draw back in the
zoom, and the researcher looks at education in a particular society, at whole schools,
or whole classrooms; zoom back in and one focuses on some children, or someinter-
actions. The point is that research must find a way to take account of the other ele-
ments which come into focus throughout the zoom, wherever one chooses to stop.”
(Lerman, 1998c, p. 67)

But the object of study itself needs to take account of all the dimensions of hu-
man life, not afragment such ascognition, or emotion. VVygotsky searched for aunit
of analysisthat could unify culture, cognition, affect, goals, and needs (Zinchenko,
1985). According to Minick (1987), Vygotsky moved from “the ‘instrumental act’
and the* higher mental functions' . . . tothe emergence of ‘ psychological systems'”
(p. 24) and then to histhird and final formulation, that “ the analysis of the develop-
ment of word meaning must be carried out in connection with the analysis of word
in communication” (p. 26). Further on, Minick said “In 1933 and 1934 Vygotsky
began to reemphasi ze the central function of word meaning as ameans of commu-
nication, asacritical component of social practice” (p. 26). Minick pointed out (p.
18) that there is a continuity among these three stages and that they should be seen
asdevel opments, each stageincorporating the other and extendingit. Inthe second
stage, Vygotsky and Luriahad carried out their seminal study (Luria, 1976) onthe
effects of language development on the higher mental functions, a classic piece of
research (Brown & Dowling, 1998) and characteristic of Vygotsky's approach in
that stage. What was missing was “the child’s practical activity” (Minick, 1987, p.
26), and in the third stage he argued for the importance of incorporating goals and
needs into the unit of analysis.

Of course, by “relationship” Vygotsky meant here not a passive relationship of per-
ceiving or processingincoming stimuli, but arel ationship defined by the child’sneeds
and goals, arelationship defined by theformsof social practicethat “relate” the child
to an objective environment and define what the environment meansfor the child. (p.
32)

The defining and prior element is the social practice, that the child’s goals and
needsareacrucial factor inthelearning process, and that what the environment sig-
nifiesis also defined by the social practice, not by the child. Minick stated that by
this formulation:

Vygotsky was making some significant strides toward the realization of the goal that
he had established in 1924 and 1925, the goal of atheoretical perspective that would
alow aunified analysis of behavior and consciousness while recognizing the unique
socio-historical nature of the human mind. (p. 33)

Thefirst part of aunit of analysisis provided by Lave'swork and incorporates
Vygotsky'sgoal, that of person-in-activity. Vygotsky’s book title, Mind in Society
(1978), isof the same essence. | have argued in thischapter for atheory of teaching
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and learning mathematics that incorporates Lave and Wenger’s communities of
practice notion with the regulative features of discursive practices and the conse-
guences of the multiple practices that manifest in the classroom. | want, therefore,
to extend theunit of person-in-activity toincorporate these bodies of work. Whena
person stepsinto apractice, sheor hehasalready changed. Theperson hasan orien-
tation toward the practice, or hasgoal sthat haveled the person to the practice, even
if she or he leaves the practice after a short time. One can express that change by
noting that the practice has becomein the person. In order to incorporate these de-
velopments, | want to suggest that the unit of analysis be extended to per-
son-in-practice-in-person or, to give credit to Vygotsky, mind-in-society-in-mind
(Slonimsky, personal communication, September 1999).

Finally, I want to propose a task for the reader, first suggested by Slonimsky
(personal communication, September 1999), to search for a suitable metaphor for
mind-in-society-in-mind. Thesearchisaproductiveactivity, inthat proposing met-
aphorsand working with them to locate meaningsin the two domainslinked by the
metaphor devel opsthe potentialities of the meaning and use of, in this case, the no-
tion mind-in-society-in-mind. By way of afirst attempt, | offer theimage of ashoot
on the side of agrowing plant. What isrequired for asuitable metaphor is, at |east,
that the metaphorical referent has a history (development of the plant to that point,
genetic material), that it allows for an individual trajectory (one cannot predict its
growth), and that it allows for experiences of overlapping practices (other plants
taking nutrients, perhaps awall or fences that alter the growth).

Research that works with person-in-practice, or mind-in-society, as a unit of
analysis, such as activity theory (Coleet al., 1997) and some of thework on devel-
opment inthe zone of proximal development, would need to hold afocuson agency
and the regulating effects of the practice(s). The notion of mind-in-society-in-mind
isyet further indication of the extent of the contextualization of human activity.
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The Importance of a Situated
View of Learning to the Design
of Research and Instruction

Paul Cobb

INTRODUCTION

My purpose in this chapter isto illustrate the situated approach that | and my col-
leagues! take in our work as mathematics educators and instructional designers.
Thetype of research that we conduct involvesclassroom teaching or design experi-
ments of up to a year in duration. In these experiments, the teacher is a full member
ofthe research team that collectively assumes responsibility for supporting the stu-
dents’ mathematical learning. One of our primary motivations when conducting a
design experiment is to explore the prospects for reform at the classroom level by
investigating what might be possible for students’ learning in particular mathemat-
ical domains. To this end, we develop, test, and revise sequences of instructional
activities and associated resources, such as computer-based tools, while the experi-
ment is in progress. These ongoing modifications are informed by the analyses of
classroom events that we discuss in debriefing meetings held after every classroom
session. As it transpires, this daily cycle of planning, instruction, and analysis is
highly consistent with the practices of skilled teachers whose overriding goal is to
nurture their students’ development of relatively deep mathematical understand-
ings (cf. Ball, 1993; Franke et al., 1998; Lampert, 1990; Simon, 1995; Stigler &
Hiebert, 1999). As a consequence, the implications of this type of research are usu-
ally realized relatively quickly because the findings are grounded in the reality of
learning and teaching in school classrooms.

When we began conducting design experiments 13 years ago, we initially fol-
lowed a constructivist psychological approach that involved focusing almost ex-
clusively on individual students’ mathematical activity and reasoning. However,
we have gradually adopted an increasingly strong situated perspective as we have
addressed the concrete questions and issues that have arisen in the course of our
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classroom-based work. It is important to stress that we did not consciously decide
to take a situated approach to the problems of mathematics learning and teaching in
what might be termed a top-down manner. Instead, our shift in theoretical orienta-
tion has been highly pragmatic. I take a similarly pragmatic approach in the first of
the four major sections of this chapter by framing a recent design experiment as a
paradigm case in which to illustrate how I and my colleagues view students’ mathe-
matical learning as situated with respect to the means by which it is supported in the
classroom. In doing so, I also argue that the classroom in which we conducted this
experiment can be viewed as a classroom activity system that was specifically de-
signed to produce mathematical learning. In the second part of the chapter, I high-
light the central features of the design experiment methodology to illustrate that it is
well suited to the task of testing and improving classroom activity systems, and
thus the mathematical learning of the participating students. Given our goals as
mathematics educators and instructional designers, a thoroughgoing situated per-
spective that highlights systems as well as individuals can therefore be viewed as a
strength rather than a weakness. My focus shifts in the third major section of the
chapter to the interpretive approach that we use when making sense of classroom
events. To provide direction for this discussion, I begin by outlining three criteria
that an approach appropriate for our purposes should satisfy. I then describe in
some detail the general theoretical orientation that has emerged in the course of our
work in classrooms. My intent in doing so is to clarify how we have drawn on ideas
from arange of different paradigms by adapting them to our purposes. This theoret-
ical overview then serves as a backdrop against which to outline the specific frame-
work that we use to organize classroom analyses. Finally, in the last section of the
chapter, I step back to consider the usefulness of interpretive approaches of this
type. In doing so, I consider their pragmatic value and then focus on their explana-
tory power, contrasting them with more traditional interpretive schemes that in-
volve the manipulation and control of independent variables.

SUPPORTING STUDENTS’ MATHEMATICAL LEARNING

The design experiment that I use to illustrate the sense in which I and my colleagues
view students’ mathematical learning as situated was conducted in an American sev-
enth-grade classroom and focused on statistical data analysis. I first give an overview
of the experiment and then discuss four aspects of the classroom learning environ-
ment that proved critical in supporting the students’ mathematical development:

¢ The instructional tasks
e The structure of classroom activities
* The computer-based tools the students used

¢ The classroom discourse
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Background to the Design Experiment

In preparing for the 10—week experiment, the researchers conducted interviews
and whole-class performance assessments with a group of seventh graders from the
same school in which we planned to work. These assessments indicated that data
analysis for most of these students involved “doing something with the numbers”
(McGatha, Cobb, & McClain, 1999). In other words, they did not view data as mea-
sures of aspects or features of a situation that had been generated in order to under-
stand a phenomenon or make a judgment (e.g., the points that a player scores in a
series of basketball games as a measure of her skill at the game). In a very real
sense, rather than analyzing data, the students were simply manipulating numbers
in a relatively procedural manner. Further, when the students compared two data
sets (e.g., the points scored by two basketball players in a series of games), they typ-
ically calculated the means without considering whether this was useful given the
question or issue at hand. In the case of the points scored by the two basketball play-
ers, for example, the approach of simply calculating the means would not necessar-
ily be a good way to select a player for an important game because it ignores
possible differences in the range and variability of the players’ scores (e.g., the
player with a slightly lower mean might be much more consistent). I should stress
that in interpreting these findings, we did not view ourselves as documenting a psy-
chological stage in seventh graders’ reasoning about data. Instead, we were docu-
menting the consequences of the students’ prior instruction in statistics. They had,
for example, previously studied measures of center (i.e., mean, mode, and median)
as well as several types of statistical graphs (e.g., bar graphs, histograms, and pie
charts). Our assessments therefore told us something about not just the content but
the quality of that prior instruction. They indicate, for example, that classroom ac-
tivities had emphasized calculational procedures and conventions for drawing
graphs rather than the creation and manipulation of graphs to detect trends and pat-
terns in the data. This view of the students’ reasoning as situated with respect to
prior instruction proved useful in that it enabled us to clarify the starting points for
the design experiment. For example, we concluded from the assessments that our
immediate goal was not one of merely remediating certain competencies and skills.
Instead, the challenge was to influence the students’ beliefs about what it means to
do statistics in school. In doing so, it would be essential that they actually begin to
analyze data in order to address a significant question rather than simply manipu-
late numbers and draw specific types of graphs.

The students’ reasoning in these initial assessments contrasts sharply with the
ways in which they analyzed data at the end of the 10—week experiment. As an il-
lustration, in one instructional activity, the students compared two treatment proto-
cols for patients with acquired immunodeficiency syndrome (AIDS) by analyzing
the T-cell counts of people who had enrolled in one of the two protocols. Their task
was to assess whether a new experimental protocol in which 46 people had enrolled
was more successful in raising T-cell counts than a standard protocol in which 186
people had enrolled. The data the students analyzed is shown in Figure 1 as it was
displayed in the second of the two computer-based minitools that they used.
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Figure 1.
The AIDS protocol data partitioned at T-cell counts of 525.
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All 29 students in the class concluded from their analyses that the experimental
treatment protocol was more effective. Nonetheless, the subsequent whole-class
discussion lasted for over an hour and focused on both the adequacy of the reports
the students had written for a chief medical officer and the soundness of their argu-
ments. For example, one group of students had partitioned the two data sets at
T-cell counts of 525 by using one of the options on the minitool as shown in Figure
1. In the course of the discussion, it became clear that the choice of 525 was not ar-
bitrary. Instead, they had observed that what they referred to as the “hill” in the ex-
perimental treatment data was above 525 whereas the “hill” in the standard
treatment data was below 525. It was also apparent from the discussion that both
they and the other students who contributed to the discussion reasoned about the
display shown in Figure 1 in terms of relative rather than absolute frequencies (i.e.,
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they focused on the proportion rather than the absolute number of the patients in
each treatment protocol whose T-cell counts were above and below 525). This was
indicated by explanations in which students argued that the majority of the T-cell
counts in the experimental treatment were above 525 but the majority of the T-cell
counts in the traditional treatment were below 525.

This analysis was one of the most elementary that the students produced on this
task. As a point of comparison, another group of students had hidden the individual
data points and had used a second option on the computer minitool to partition the
two data sets into four groups, each of which contained one-fourth of the data
points (see Figure 2). In this option, 25 percent of the data in each data set are lo-
cated in each of the four intervals bounded by the vertical bars (similar to a
box-and-whiskers graph). As one student explained, these graphs show that the ex-
perimental treatment is more effective because the T-cell counts of 75 percent of
the patients in this treatment were above 550 whereas the T-cell counts of only 25
percent of the patients who had enrolled in the standard treatment were above 550.
This student’s argument was representative in that he, like the other students who
contributed to the discussion, was actually reasoning about data rather than at-
tempting to recall procedures for manipulating numerical values.

As we have reported elsewhere, we also conducted individual interviews with
the students at the end of the experiment (Cobb, 1999; McClain, Cobb, &

Figure 2.
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Gravemeijer, in press). The analysis of these interviews corroborates our class-
room observations and indicates that a significant majority of the students came to
reason about data in relatively sophisticated ways. In this regard, Konold,
Pollatsek, Well, and Gagnon (1996) argue that a focus on the rate of occurrence
(i.e., the proportion) of data within a range of values (e.g., above or below T-cell
counts of 525) is at the heart of what they term a statistical perspective. As discus-
sions in the latter part of the experiment involved a concern for the proportion of
data within various ranges of values, the students appeared to be developing this
statistical perspective. It is also worth noting that the following school year we con-
ducted a second design experiment with some of the same students that focused on
statistical covariation. Our observations during the first part of this experiment in-
dicate that there had been no regression in the students’ reasoning about data during
the 9—month gap between the two experiments (Cobb, McClain, & Gravemeijer,
2000).

This brief overview of the experiment gives some indication of how the stu-
dents’ reasoning about data changed during the 10—week experiment. To illustrate
how their development was situated with respect to the classroom learning envi-
ronment, [ focus next on the process of change and the means by which it was sup-
ported and organized.

Instructional Tasks

In preparing for the design experiment, we took account of the profound
changes in the discipline of statistics that have been fueled by the development of
computer-based data analysis tools. The statistics that most of us studied in college
emphasized the formulation and testing of hypotheses (e.g., performing a t-test to
investigate whether the difference between the means of experimental and control
groups is due to chance variation or whether it might reflect more general differ-
ences in the treatments). In this approach, the way in which the data are to be ana-
lyzed has to be stated before they are even inspected. In contrast, statisticians now
use computer-based tools to search for trends and patterns in data in a previously
forbidden post hoc manner (Cobb, 1997). This process of “data snooping,” which is
called exploratory data analysis (EDA), complements traditional computational
methods with new techniques that involve creating and manipulating graphical
representations of data (Moore, 1996). Biehler and Steinbring (1991) use the meta-
phor of detective work to characterize EDA in that the purpose is to search for evi-
dence whereas traditional methods of statistical inference play the role of the jury
that decides on the basis of evidence. As they make clear, this exploratory orienta-
tion is central to data analysis and constitutes an important instructional goal in its
own right. From this, my colleagues and I concluded that it would be essential for
students’ activity in the design experiment classroom to be imbued with the spirit
of genuine data analysis from the outset. This in turn implied that the instructional
tasks should all involve analyzing realistic data sets for a purpose that the students
considered reasonable. As a consequence, the tasks we developed involved analyz-
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ing either (1) a single data set to understand a phenomenon, or (2) comparing two
data sets to make a decision or judgment. The example of the two AIDS treatment
protocols illustrates the second of the two types of instructional tasks.

In terminology consistent with a situated perspective, our concern that the stu-
dents’ activity should involve the genuine spirit of data analysis highlights the im-
portance of considering the overall goal or motive of their activity in the classroom
(cf. Leont’ev, 1978). Our view that the motive for doing statistics should be to
search for trends and patterns in data had concrete implications for our instructional
design. Their learning was therefore situated with respect to this general motive
which served to orient the way in which they approached specific instructional ac-
tivities (cf. Saxe, 1991). It is also worth observing that the changes I have noted in
statistics as a discipline illustrate a contention that is central to all situated view-
points, namely, that the use of new tools does not merely amplify an activity by
making it more efficient but can change the very nature of the activity (cf. Dérfler,
1993; Pea, 1993; Wertsch, del Rio, & Alvarez, 1995). It was only as desktop com-
puters became commonplace that the general approach of EDA originally pro-
posed by Tukey (1977) became feasible, and this in turn led to the further
development of data analysis methods. In this case, the changes were in the activi-
ties of an entire disciplinary community. As we will see, this core assumption of sit-
uated approaches to mathematical learning also has implications for instructional
design in which the goal is to support and organize changes in the activities of class-
room communities.

The Structure of Classroom Activities

A second major design decision that we made when preparing for the teaching
experiment stemmed from our concern that statistics should actually involve ana-
lyzing data rather than merely manipulating numbers. To this end, we developed an
approach in which the teacher talked through the data generation process with the
students. These conversations often involved protracted discussions during which
the teacher and students together framed the particular phenomenon under investi-
gation (e.g., AIDS), clarified its significance (e.g., the importance of developing
more effective treatments), delineated relevant aspects of the situation that should
be measured (e.g., T-cell counts), and considered how they might be measured
(e.g., taking blood samples). The teacher then introduced the data the students were
to analyze as being produced by this process. The resulting structure of classroom
activities, which often spanned two or more class sessions, was therefore (1) a
whole-class discussion of the data creation process, (2) individual or small-group
activity in which the students worked at computers to analyze data, and (3) a
whole-class discussion of the students’ analyses.

In outlining this activity structure, we conjectured that as a consequence of par-
ticipating in discussions of the data creation process, the data would come to have a
history for the students such that it reflected the interests and purposes for which it
was generated (cf. Latour, 1987; Lehrer & Romberg, 1996; Roth, 1997). As it tran-
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spired, this conjecture proved to be well founded. For example, we have clear indi-
cations that within a week of the beginning of the design experiment, doing
statistics in the project classroom actually involved analyzing data (Cobb, 1999;
McClain, et al., in press). In addition, changes in the way that the students contrib-
uted to discussions of the data creation process as the experiment progressed indi-
cate that there was a gradual handover of responsibility from the teacher to the
students (Tzou, 2000). Initially, the teacher had to take an extremely proactive role.
However, later in the experiment, the students increasingly initiated shifts in these
discussions in the course of which they raised concerns about the need to control
extraneous variables and about sampling methods. These contributions suggest
that most if not all the students had developed some awareness that the legitimacy
of the conclusions drawn from data depends crucially on the data generation pro-
cess (cf. Cobb & Moore, 1997). We should stress that the teacher did not attempt to
teach the students how to generate sound data directly. Instead, she subtly guided
the emergence of a classroom culture in which a premium was placed on the devel-
opment of data-based arguments. It was against this background that the students
gradually became able to anticipate the implications of the data generation process
for the conclusions that they would be able to draw from data. Thus, the students’
learning appeared to be situated with respect to their participation in the conversa-
tions that the teacher orchestrated about the data generation process.

Tool Use

As I have noted, the use of computer-based tools to create and manipulate
graphical representations of data is central to EDA. In the design experiment, the
students used two computer minitools that were explicitly designed as means of
supporting the development of their reasoning. We conjectured that as the students
used these minitools, they would come to reason about data in increasingly sophis-
ticated ways. I described the second of these tools when I discussed students’ anal-
yses of the AIDS treatment data. The interface for the first minitool is shown in
Figure 3. This minitool enabled the students to order, partition, and otherwise orga-
nize sets of up to 40 data points in a relatively immediate way. When data are en-
tered, each individual data point is inscribed as a horizontal bar. The students could
select the color of each bar to be either pink or green, thus enabling them to enter
and compare two data sets. In addition, they could sort the data both by size and by
color. Our choice of this relatively elementary way of inscribing individual data
values reflected our goal of ensuring the students were actually analyzing data. To
this end, the initial data sets the students analyzed were also selected so that the
measurements made when generating the data had a sense of linearity and thus lent
themselves to being inscribed as horizontal bars. For example, Figure 3 shows data
that were generated to compare how long two different brands of batteries last.
Each bar shows a single case. In this instance, the case is the life span of one of the
10 batteries of each brand that was tested. The students’ task was to assess the rela-
tive merits of the two brands. As I have indicated, the choice of this inscription to-
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gether with the approach of talking through the data creation process proved to be
effective in that the students began to actually reason about data shortly after this
minitool was introduced.

In addition to the options I have described thus far, the students could use a value
tool to find the value of any data point by dragging a vertical red bar along the hori-
zontal axis as shown in Figure 3. Further, they could find the number of data points
in any horizontal interval by using a range tool (see Figure 3). Our intent in devel-
oping the value tool was to provide the students with a way of “eyeballing” the cen-
ter or balance point of a set of data points. However, the students used it to partition
data sets and to find the value of specific data points. In the case of the range tool,
our intent was to provide the students with a means of investigating the
“spreadoutness” of data sets. Although the students used the range tool in this way
to some extent, they also used it to isolate the data points within a particular inter-
val. As the students used these two options, they began to reason about (1) the
range, and maximum and minimum values of data sets, (2) the number of data
points above or below a particular value or within a specified interval, and (3) the
median and its relation to the mean. Against this background, the teacher intro-
duced the second minitool in which data points were inscribed as dots in an axis
plot (see Figure 1).

Our intention in designing the second minitool was to build on the ways of rea-
soning about data that the students had developed as they used the first minitool.
For example, the dots at the end of the bars in the first minitool have, in effect, been

Figure 3.
Thefirst computer minitool.
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collapsed down onto the axis in the second minitool. The teacher, in fact, intro-
duced this new way of inscribing data by first showing a data set inscribed as hori-
zontal bars, then removing the bars to leave only the dots, and finally transposing
the dots onto the horizontal axis. As we had hoped, the students were able to use the
second minitool to analyze data almost immediately and it was apparent that the
axis plot inscription signified a set of data values rather than merely a collection of
dots spaced along a line. In our view, it was not possible to explain this develop-
ment solely in terms of the teacher’s careful introduction of the new minitool. In-
stead, we had to consider what the students learned as they used the first minitool. |
can tease out this learning by focusing on the students’ reasoning as they compared
data sets in terms of the number of data points either within a particular interval or
above or below a particular value. In the case of the battery data, for example, the
first student who explained her reasoning said that she had focused on the 10 high-
est data values (i.e., those bounded by the range tool as shown in Figure 3). She
went on to note that 7 of the 10 longest-lasting batteries were of one brand and con-
cluded that this brand was better. Assisted by the teacher, another student chal-
lenged her argument by observing that the next four longest lasting batteries were
of the other brand and that if they were included, there would be seven batteries of
each brand in the highest 14. Against this background, the next student said that he
had partitioned the data at 80 hours as shown by the value tool in Figure 3. He then
argued that some of the batteries of one brand were below 80 hours whereas all
those of the other brand lasted more than 80 hours. He judged this latter brand to be
superior because, as he put it, he wanted a consistent battery.

The crucial point to note is that in making these arguments, the students were fo-
cusing on the location of the dots at the end of the bars with respect to the axis. In
other words, a subtle but important shift occurred as the students used the first
minitool (cf. Meira, 1998). Originally, the individual data values were represented
by the lengths of the bars. However, in the very process of using the minitool, these
values came to be signified by the endpoints of the bars. As a consequence, the stu-
dents could readily understand the teacher’s explanation when she introduced the
second minitool by collapsing dots down onto the axis. Further, as the options in
this new minitool involved partitioning data sets in various ways, students could
use it immediately because they had routinely partitioned data sets when they used
range and value options of the first minitool.

It is almost impossible to deduce this significant step in the students’ learning by
inspecting the physical characteristics of the first minitool. As a basic design prin-
ciple, we do not, in fact, attempt to build the mathematics we want students to learn
into tools and then hope that they might come to see it in some mysterious and un-
explained way. Instead, when designing tools, we focus squarely on how students
might actually use the tools and what they might learn as they do so. This emphasis
on the nature of students’ activity with tools rather than on the tools in and of them-
selves illustrates a further way in which their learning was viewed as situated. More
generally, the contention that the tools students use profoundly influence not only
the process of their learning but also its products, the types of mathematical reason-
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ing that they develop, is not merely a theoretical commitment for us. Instead, itis a
basic feature of the world in which we work as we attempt to support students’
mathematical learning in classrooms. Students’ use of the tools we develop serves
as a primary means of supporting their development along learning trajectories that
aim at significant mathematical ideas. In the case of the statistics design experi-
ment, the significant idea that emerged as the students used the second minitool
was that of data sets as wholistic distributions which had shape and structure rather
than as amorphous collections of individual data points (Cobb, 1999; McClain et
al., in press). Had the design of the two minitools been significantly different, it is
doubtful that this idea would have become routine in the project classroom.

Classroom Discourse

The most important feature of the classroom environment that I have over-
looked to this point is that of the classroom discourse—the ways in which the
teacher and students talked about data. As the situatedness of students’ learning
with respect to classroom discourse has been discussed by a number of researchers
in some detail (e.g., Dorfler, in press; Ernest, 1994; Forman, 1996; Lampert &
Cobb, in press; O’ Connor, 1998; Sfard, in press; Walkerdine, 1988; Wertsch &
Toma, 1995), I will restrict my focus to two characteristics that relate specifically to
mathematical learning. The first of these concerns the norms or standards for what
counts as an acceptable mathematical explanation whereas the second deals more
directly with what might colloquially be termed the content of whole-class discus-
sions.

Earlier, I noted that the overall motive for doing statistics in the project class-
room was to identify trends and patterns in data. However, explanations in which
students indicated such a pattern were not necessarily treated as legitimate. I can il-
lustrate this point by returning to the students’ analyses of the battery data. Recall
that the first student who explained her reasoning argued that one of the brands was
better because 7 of the 10 longest-lasting batteries were of that brand. During the
ensuing discussion, it became apparent that her decision to focus on the 10 rather
than, say, the 14 longest-lasting batteries was relatively arbitrary. In contrast, the
next student who presented an analysis explained that he had partitioned the data at
80 hours because he wanted a consistent battery that lasted at least 80 hours. In do-
ing so, he clarified why the way in which he had organized the data was relevant
with respect to the question at hand, that of deciding which of the two brands was
superior.

As the classroom discussion continued, the obligation to give a justification of
this type became increasingly explicit. For example, a third student compared the
two analyses by commenting that although 7 of the 10 longest-lasting batteries
were of one brand, the two lowest batteries were also of that brand and “if you were
using the batteries for something important, you could end up with one of those bad
batteries.” As a consequence of exchanges such as this, the teacher and students es-
tablished relatively early in the design experiment that to be acceptable, an argu-
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ment had to justify why the way in which the data had been structured was relevant
to the question under investigation. The students’ learning was situated with re-
spect to this norm in that their participation in its continual regeneration served to
constrain the way in which they approached data. It is also worth noting that, in the
process, the students were inducted into an important disciplinary norm, namely
that the appropriateness of the statistics used when conducting an analysis has to be
justified with respect to the question at hand.

In switching the focus now from the general characteristics of mathematical ex-
planations to the substance of what the teacher and students talked about, it is help-
ful if T outline the approach we took when planning for the whole-class discussions.
Typically, while the students were analyzing data at the computers, the teacher and
a second member of the research team circulated around the classroom to gain a
sense of the various ways in which the students were organizing and reasoning
about the data. Toward the end of the small-group work, they then conferred briefly
to develop conjectures about mathematically significant issues that might emerge
as topics of conversation in the subsequent whole-class discussion. Their intent
was to capitalize on the students’ reasoning by identifying data analyses that, when
compared and contrasted, might give rise to substantive mathematical conversa-
tions. In the discussion of the battery data, for example, the issue of justifying the
way in which the data had been structured emerged from the contrast between the
two analyses. In the case of the AIDS data, a sequence of four analyses was selected
so that the issue of reasoning proportionally about data came to the fore.

This opportunistic approach to instructional planning clearly takes account of
the diversity in students’ reasoning. However, it should also be apparent that our in-
tent in including whole-class discussions in the classroom activity structure was
not simply to provide the students with an occasion to share their reasoning. In-
stead, our overriding concern was with the quality of discussions as social events in
which the students participated. In our view, the value of such discussion is suspect
unless mathematically significant issues that advance the instructional agenda be-
come explicit topics of conversation. Conversely, students’ participation in sub-
stantive discussions can serve as a primary means of supporting their induction into
the values, beliefs, and ways of knowing of the discipline. It is in this sense that I
and my colleagues view students’ mathematical learning as situated with respect to
the culture in which it takes place. In our work as instructional designers, our imme-
diate focus is on the culture of the classroom, which encompasses general norms of
participation, such as those for argumentation, as well as the specific mathematical
issues that are judged to be worthy of serious discussion.

The Classroom Activity System

I began the discussion of the statistics teaching experiment by demonstrating
that the students’ learning was reasonably impressive and then went on to tease out
the various means by which that learning was supported and organized. In doing so,
I clarified that both the process and the products of that learning can be viewed as
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situated with respect to these means of support. However, as [ have described these
various means in separate paragraphs, they might at first glance appear to be a
largely independent collection of factors that influence learning. It is therefore im-
portant to emphasize that they are, in fact, highly interrelated. For example, the in-
structional tasks as they were actually realized in the classroom depended on:

* The overall motive for doing statistics (i.e., to identify patterns in data that are rel-
evant to the question or issue at hand)

e The structure of classroom activities (e.g., talking through the data creation pro-
cess)

e The computer minitools that the students used to conduct their analyses

¢ Thenature of the of the classroom discourse (e.g., engaging in discussion in which
mathematically significant issues emerged as topics of conversation)

It is easy to imagine how the instructional tasks would be realized very differ-
ently in a classroom where the overall motive is to apply prescribed methods to
data, or where there are no whole-class discussions and the teacher simply grades
students’ analyses. Given these interdependencies, it is reasonable to view the vari-
ous means of support I have discussed as constituting a single classroom activity
system. The students’ learning in the design experiment classroom can therefore be
viewed as situated with respect to this entire system. Pragmatically, the compre-
hensiveness of this system implies that an approach to instructional design that
takes the situated nature of students’ mathematical reasoning seriously must neces-
sarily extend beyond the traditional focus on curricular materials. The intent is in-
stead to design classroom activity systems such that students develop significant
mathematical ideas as they participate in them and contribute to their evolution.
This in turn indicates the need for methodologies that are well suited to the task of
testing and improving activity systems that are designed to produce such learning.
It will become clear when I discuss such a methodology in the following pages that
part of its strength derives from its treatment of design as a site for the development
of instructional theory.

DESIGN RESEARCH

The example of the statistics experiment provides a useful introduction to the
design experiment methodology. It clarifies, for example, that our goal when con-
ducting an experiment of this type is both to develop sequences of instructional ac-
tivities and associated tools, and to conduct analyses of the process of the students’
learning and the means by which that learning is supported and organized. Re-
search of this type falls under the general heading of design research in that it in-
volves both instructional design and classroom-based research (see also Brown,
1992; Cobb, in press; Confrey & Lachance, in press; Simon, in press). Gravemeijer
(1994a) has written extensively about the first aspect of the design research cycle
shown in Figure 4, instructional design, and clarifies that the research team con-
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ducts an anticipatory thought experiment when preparing for a design experiment.
In doing so, the team formulates a hypothetical learning trajectory that involves
conjectures about both (1) a possible learning route or trajectory that aims at signif-
icant mathematical ideas, and (2) the specific means that might be used to support
and organize learning along the envisioned trajectory (i.e., aspects of the classroom
activity system). As I illustrated when discussing the statistics experiment, these
means of support are construed broadly and extend beyond the resources typically
considered by materials developers. Although instructional planning that considers
the various aspects of the classroom activity system in a comprehensive manner is
unusual in the United States, there are several notable exceptions (e.g., Confrey &
Smith, 1995; Lehrer, Schauble, Carpenter, & Penner, in press; Simon, 1995). In ad-
dition, an encompassing approach of this type is the norm in Japan where members
of professional teaching communities often spend several years teaching and revis-
ing the hypothesized learning trajectories that underpin a sequence of mathematics
lessons (Stigler & Hiebert, 1999).

It is important to stress that the conjectures inherent in a hypothetical learning
trajectory are just that; they are tentative, provisional, eminently revisable conjec-
tures that are tested and revised on a daily basis once the experiment begins. Our
goal when experimenting in a classroom is therefore not to try and demonstrate that
the instructional design formulated at the outset works. Instead, it is to improve the
design by testing and modifying conjectures as informed by ongoing analyses of
both students’ reasoning and the classroom activity system in which it is situated.
As a consequence, although we formulate a hypothetical learning trajectory in ad-
vance and also outline possible types of instructional activities, we develop the spe-
cific instructional activities used in the classroom only a day or two before they are
needed. I mention this to clarify that the methodology is relatively labor-intensive.
Formal design experiments should therefore not be confused with informal explo-
rations in which research assistants are delegated to work in a classroom in a less
principled way.

Figure 4.
The design research cycle.
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My immediate purpose in outlining the methodology that I and my colleagues
use is to highlight what I take to be a defining characteristic of design research, the
tightly integrated cycles of design and analysis. Given our goals as mathematics ed-
ucators, we require a methodology that results in analyses that inform the ongoing
design effort. Gravemeijer (1998) differentiates what he refers to as daily
minicycles from macrocycles that span an entire teaching experiment. This latter,
longer-term cycle involves a retrospective analysis that is conducted once the de-
sign experiment is completed and that can feed forward to guide the formulation of
a revised learning trajectory for follow-up teaching experiments.

My larger purpose in discussing design experiments is to illustrate the value of a
methodological approach in which the process of designing in classrooms serves as
a primary setting for the development of instructional theory. The resulting theory
can therefore be thought of as situated with respect to the activity of supporting stu-
dents’ learning in classrooms. This characteristic of design experiments becomes
apparent once I clarify that the questions and concerns that arise while an experi-
ment is in progress are typically pragmatic and relate directly to the goal of support-
ing the participating students’ learning. In contrast, the intent when conducting a
retrospective analysis of an experiment is to contribute to the development of a do-
main-specific instructional theory (see Figure 5). This theory emerges over the
course of several macrocycles and consists of (1) a demonstrated learning route
that culminates with the emergence of significant mathematical ideas, and (2) sub-
stantiated means of supporting and organizing learning along that trajectory. As
Steffe and Thompson (in press) clarify, it is this theory that makes the results of a
series of design experiments potentially generalizable even though they are empiri-
cally grounded in analyses of only a small number of classrooms. In their terms,
this is generalization by means of an explanatory framework rather than by means
of a representative sample in that the insights and understandings developed and
tested during a series of experiments can inform the interpretation of events and
thus pedagogical planning and decision making in other classrooms.

Design experiments in which the development of theory and the improvement
ofan instructional design co-emerge can be contrasted with an alternative approach
to design that involves the following sequence of steps:

The development of psychological theory
The derivation of principles for design from the psychological theory
The translation of the principles into concrete designs

S e

The assessment of the designs to test whether they work as anticipated

It is, of course, debatable whether this putative sequence is ever strictly adhered
to in practice. Nonetheless, mathematics educators have traditionally looked to
cognitive psychology for guidance and have based designs on theories that specify
developmental routes that apparently unfold independently of the means by which
that development is supported. This is reflected in research reports that are written
so as to imply that the development of an instructional design involves a one-way
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Figureb.
Design minicycles and macrocycles. (Adapted from K. Gravemeijer, 1998.)
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chain of reasoning from cognitive theory to instructional practice. The general ap-
proach is therefore alive in the discourse of mathematics education research, where
it is frequently assumed to be the ideal.

As an initial observation, it is worth noting that the feedback loop from the con-
cluding assessment step to the design principles and cognitive theory is relatively
weak. It is not clear, for example, that these principles and the underlying theory are
open to the results of an unfavorable assessment of a specific design. This is discon-
certing if one takes the view that educational reform should be an ongoing, contin-
ual process of iterative improvement characterized by what Lampert (1990) terms a
zigzag between conjectures and refutations. Beyond this general observation, the
practical feasibility of employing this idealized approach to design in specific
mathematical domains is open to question. In preparing for the statistics design ex-
periment; for example, I and my colleagues conducted a reasonably extensive re-
view of the literature but found only a small number of studies that could guide our
formulation of a hypothetical learning trajectory. There did not even appear to be a
consensus on the overarching statistical ideas that should constitute the potential
endpoints of a learning trajectory. However, rather than waiting for development of
cognitive theory, we drew on the available literature to formulate initial conjectures
about major shifts in students’ statistical reasoning and the means by which these
shifts might be supported. Not surprisingly, a number of these conjectures proved
to be unviable when we began experimenting in the classroom. We therefore began
the process of revising conjectures on line and eventually formulated a new learn-
ing trajectory that was empirically grounded in our work in the classroom. We con-
tend that what we learned about the design of classroom activity systems and the
learning of the students who participate in them by proceeding in this way can con-
tribute to an emerging instructional theory that aims at a significant statistical idea,
that of distribution.
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It is important to note that the lack of an adequate research base is not unique to
statistical data analysis. The same observation applies to areas such as algebra and
geometry which are also undergoing relatively profound changes (Cobb, 1997; Ka-
put, 1994; Lehrer, Jacobson, Kemney, & Strom, 1999). In domains such as these,
the idealized top-down approach to instructional design in which psychological
theory trickles down to instructional practice appears to be untenable. Instead, the
bootstrapping approach integral to design research in which theory and instruc-
tional designs evolve together appears to be more feasible. Some years ago, educa-
tor Freudenthal (1973) argued that psychology should follow instructional design
rather than the reverse. If one heeds Freudenthal’s advice, the limitations of the tra-
ditional type of psychological theory that he had in mind in which a series of devel-
opmental levels or stages are delineated also become apparent. Freudenthal was
pointing to the need for accounts of learning in particular mathematical domains
that are tied to the means by which that learning can be supported. To be sure, he
thought of these means of support primarily in terms of the instructional tasks that
students were to solve. However, if we follow his lead while broadening our view
of the means of support that can be used to organize students’ learning, we arrive at
the view of mathematical learning as situated with respect to the classroom activity
system. [ will return to this issue of the usefulness of a situated perspective on stu-
dents’ mathematical activity once I have discussed the interpretive approach that I
and my colleagues use to make sense of classroom events.

INTERPRETIVE APPROACH

To this point, I have been primarily concerned with the process of design as it oc-
curs both while preparing for an experiment and when actually working in a class-
room. My focus in the remainder of this chapter is on the process by which we make
sense of what is happening in these classrooms. I first discuss three criteria that an
interpretive approach appropriate for our purposes should satisfy and then describe
both our general theoretical orientation and the specific interpretive framework
that we use.

Learning and Teaching Mathematics in Social Context

As we know all too well, classrooms are messy, complex, and sometimes con-
fusing places. One of the concerns that [ and my colleagues have struggled with as
we have worked in classrooms is that of developing an analytical framework that
enables us to come to terms with this complexity so that we can begin to see some
pattern and order in what appear at first glance to be ill-structured events. Our con-
cerns and interests give rise to several criteria that an analytical approach should
satisfy if we are to contribute to reform in mathematics education as an ongoing, it-
erative process of improvement. These criteria include that:

1. It should result in analyses that feed back to inform the improvement of instruc-
tional designs.
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2. Itshould enable us to document the collective mathematical learning of the class-
room community over the extended periods of time spanned by design experi-
ments.

3. It should enable us to document the developing mathematical reasoning of indi-
vidual students as they participate in the practices of the classroom community.

The rationale for the first criterion follows directly from the tightly integrated
cycles of design and analysis that I have discussed at both the micro- and
macro-levels (see Figures 4 and 5). The second criterion, which emphasizes the im-
portance of focusing on the mathematical learning of the classroom community,
stems from the approach we take to instructional design. As I have noted, the de-
signer develops conjectures about an anticipated learning trajectory when prepar-
ing for a design experiment. However, these conjectures cannot be about the
trajectory of each and every student’s learning for the straightforward reason that
there are significant qualitative differences in their mathematical thinking at any
point in time. In my experience, descriptions of planned instructional approaches
written so as to imply that all students will reorganize their thinking in particular
ways at particular points in an instructional sequence involve, at best, questionable
idealizations. For similar reasons, I also find analyses that speak of changes in the
students’ reasoning potentially misleading in that they imply that the students have
all reorganized their activity in the same way. In this regard, I should acknowledge
that I did, in fact, speak in these terms when I described the statistics teaching ex-
periment in the first section of this chapter. Although this might be adequate when
providing a broad overview, it does not provide us with the precision we need to im-
prove our designs. An issue that has arisen for me and my colleagues is therefore
that of clarifying what the envisioned learning trajectories that are central to our
(and others”) work as instructional designers might be about. The resolution we
propose involves viewing a hypothetical learning trajectory as consisting of con-
jectures about the collective mathematical development of the classroom commu-
nity. This proposal, in turn, indicates the need for a theoretical notion or construct
that enables us to talk explicitly about collective mathematical learning and it is for
this reason that we have developed the notion of a classroom mathematical prac-
tice. Cast in these terms, an hypothetical learning trajectory then consists of an en-
visioned sequence of mathematical practices together with the means of supporting
and organizing the emergence of each practice from prior practices.

The last of the three criteria that an interpretive approach should satisfy focuses
on the qualitative differences in individual students’ mathematical reasoning. The
rationale for this criterion is again deeply rooted in our work in classrooms. In par-
ticular, the classroom sessions we conduct during a design experiment are fre-
quently organized so that students initially work either individually or in small
groups before convening for a whole-class discussion of their solutions. During the
discussion of the statistics teaching experiment, | illustrated a strategy for planning
for these discussions that we have found productive in which the teacher and one or
more of the project staff circulate around the classroom to gain a sense of the di-
verse ways in which students are interpreting and solving instructional activities.
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Toward the end of the individual or small-group work, the teacher and project staff
members then confer briefly to prepare for the whole-class discussion. In doing so,
they routinely focus on the qualitative differences in students’ reasoning in order to
develop conjectures about mathematically significant issues that might, with the
teacher’s proactive guidance, emerge as topics of conversation. Given this prag-
matic focus on individual students’ reasoning, we require an analytical approach
that takes account of the diverse ways in which students participate in communal
classroom practices. In the hands of a skillful teacher, this diversity can be a pri-
mary motor of the collective mathematical learning of the classroom community.

In addition to providing a rationale for the three criteria, this discussion clarifies
that I and my colleagues view theoretical constructs as conceptual tools whose de-
velopment reflects particular interests and concerns. From this point of view, the
relevant concern when assessing the value of theoretical constructs is that of
whether they enable us to be more effective in supporting students’ mathematical
learning. It should also be apparent that an interpretive approach that satisfies the
three criteria will characterize students’ mathematical learning in highly situated
terms. However, in doing so, it will take a different cut on the classroom activity
system. The aspects of this system that I discussed when giving an overview of the
statistics experiment dealt with resources (tasks, tools) and with characteristics of
collective activity (the structure of classroom activities, classroom discourse).
What is missing from this picture is an analysis of the process by which increas-
ingly sophisticated mathematical ways of reasoning emerged as the students partic-
ipated in these collective activities by using the tools to complete instructional
tasks. The specific analytical approach that I and my colleagues follow is designed
to address this shortcoming.

General Theoretical Orientation

The interpretive framework that has emerged as we have addressed concrete
problems and issues that have arisen while working in classrooms over the past 13
years involves the coordination of two distinct perspective on classroom activity.
One is a social perspective that is concerned with ways of acting, reasoning, and ar-
guing that are normative in a classroom community. From this perspective, an indi-
vidual student’s reasoning is framed as an act of participation in these normative
activities. The other is a psychological perspective that focuses squarely on the na-
ture of individual students’ reasoning or, in other words, on their particular ways of
participating in communal activities. Thus, whereas the social perspective brings to
the fore normative, taken-as-shared? ways of talking and reasoning, the psychol og-
ical perspective bringsto the fore the diversity in students' ways of participatingin
these taken-as-shared activities. Together, these two perspectivestherefore address
the second and third of thethree criteriathat an analytical approach should satisfy if
it isto be appropriate for our purposes.

Although we have written extensively about the coordination of these perspec-
tivesin the past, we have sometimes been interpreted as advocating the pasting to-
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gether of two epistemologically incompatible theoretical orientations in a
relatively superficial manner (e.g., Lerman, 1996; Waschescio, 1998). It is there-
foreimportant to clarify that wetaketherel ation between the socia and psycholog-
ical perspectivesto be one of reflexivity. Thisis an extremely strong relationship
that does not merely mean that the two perspectives are interdependent. Instead, it
implies that neither perspective exists without the other in that each perspective
constitutesthe background agai nst which mathematical activity isinterpreted from
the other perspective (cf. Mehan & Wood, 1975). For example, normative activi-
ties of the classroom community (social perspective) emerge and are continually
regenerated by the teacher and students as they interpret and respond to each
other’'s actions (psychological perspective). Conversely, the teacher's and stu-
dents’ interpretations and actionsin the classroom (psychological perspective) do
not exist except as acts of participation in communal classroom practices.

We have described and illustrated the specific method we useto analyze thedata
generated during a classroom design experiment in some detail el sewhere (Cobb,
Stephan, McClain, & Gravemeijer, in press). It is, however, worth clarifying that
when we view classroom video recordings, we do not see the classroom commu-
nity asthe discrete, concrete entity in the same way that we seethe teacher and stu-
dentsasdistinct physical beings. Asaconseguence, we cannot observe normative,
taken-as-shared meanings directly any more than we can directly observe the
meaningsthat individual students' mathematical activity hasfor them. Instead, we
develop and test conjectures about both communa mathematical activities (social
perspective) and individual students' reasoning (psychological perspective) aswe
analyze what the teacher and individual students say and do in the classroom. The
distinction between the two interpretative perspectives resides in what might be
termed the grain size with reference to which we characterize what they are doing.
In the case of the psychological perspective, we view the teacher and studentsasa
group of individualswho engage in acts of reasoning asthey interpret and respond
to each other’s actions. In contrast, when we take the social perspective, we view
the teacher and students as members of alocal community who jointly establish
communal normsand practices. Asaconseguence, the coordination isnot between
individual students and the classroom community viewed as separate, sharply de-
fined entities. Instead, the coordination is between two alternative ways of looking
at and making sense of what isgoing onin classrooms. Theresulting analytical ap-
proach brings the diversity in students mathematical reasoning to the fore while
situating that diversity in the social context of their participation in the classroom
activity system. Engestrom (1999), in different terms, describeswhat isinvolvedin
pursuing an analytical approach of thistype.

The analyst constructs the activity system asif looking at it from above [social per-
spective]. At the sametime, the analyst must select asubject, amember (or better yet,
multipledifferent members) of thelocal activity [system], through whoseeyesandin-
terpretationstheactivity [ system] isconstructed [ psychol ogical perspective]. (p. 10)
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In terms of intellectual lineage, the social perspective draws inspiration from
sociocultural theory (e.g., Cole, 1996; Lave, 1988; Rogoff, in press) and from
ethnomethodol ogy and symbolic interactionism (Blumer, 1969) asthey have been
adapted to problems and issues in mathematics education (cf. Bauersfeld,
Krummheuer, & Voigt, 1988). The lineage of the psychological perspective can be
traced to both constructivism (Piaget, 1970; Steffe & Kieren, 1994; Thompson,
1991) and to distributed accounts of intelligence (e.g., Hutchins, 1995; Pea, 1993).
Giventhisrelatively comprehensivelist of intellectual sources, | should clarify that
our goal has not been not to achieve some grand theoretical synthesis. Instead, our
focus has been pragmatic and has centered on supporting and organizing students’
mathematical learning. As a consequence, in drawing on the theoretical sources|
havelisted, we have appropriated and modified ideasto suit our purposes. The pro-
cess by whichwehave devel oped our theoretical orientation therefore parallel sthat
of instructional design as characterized by Gravemeijer (1994b).

[Design] resembles the thinking process that Lawler (1985) characterizes by the
French word bricolage, ametaphor taken from Claude Levi—Strauss. A bricoleur is
ahandy man who invents pragmatic solutionsin practical situations. . . . [T]hebrico-
leur hasbecome adapt at using whatever isavailable. Thebricoleur’ stool sand materi-
alsarevery heterogeneous: Someremainfrom earlier jobs, othershave been collected
with a certain project in mind. (p. 447)

Similarly, we acted as bricoleurs when developing our theoretical orientation by
adapting ideas from arange of theoretical sourcesfor pragmatic ends. Casting our
work inthese down-to-earth termsservesto differentiateit from more ambitious ef-
forts that aim to fashion theoretical cosmologies (cf. Shotter, 1995).

Asan example of theway in which we have appropriated ideas to our purposes,
consider oneof thekey theoretical constructsthat we usewhenwetakeasocial per-
spective, that of aclassroom mathematical practice. Wedevel oped thisconstruct by
adapting sociocultural theorists' notion of a cultural practice (cf. Axel, 1992;
Minick, 1989). In sociocultura theory, this notion typically refers to normative
ways of acting that have emerged during extended periods of human history. We
found thisideaattractiveinthat it makesit possibleto characterize mathematics as
a complex human activity rather than as disembodied subject matter (van Oers,
1996). Further, it provides a useful way of framing instructional issues in broad
terms. In particular, the task facing both the teacher and the instructional designer
can be seen asthat of supporting and organizing students’ induction into the prac-
tices that have emerged during the discipline's intellectual history (Dérfler, in
press, Forman, 1996).

Despite these advantages, sociocultural theorists' notion of acultural practiceis
not acompletely adequate conceptual tool given our interest in changesin the nor-
mative activities of classroom communities. For example, in sociocultural theory,
thehistorically devel oped practicesof thedisciplineareseentoexist prior toandin-
dependently of teachers and their students. In contrast to these disciplinary prac-
tices, the normative practices of a local classroom community do not exist
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independently of the teacher and his or her students, but are instead constituted by
them in the course of their ongoing interactions (cf. Beach; 1999; Boaler, 1999).
Thus, when wetake alocal classroom community rather than the discipline as our
point of reference, apracticeis seen to be an emergent phenomenon rather than an
already-established way of reasoning and communicating into which students are
to beinducted. Further, although the practices of the discipline can be seen as pri-
mary when one adopts a sociocultural point of view, the relation between local
classroom mathematical practi cesand thereasoning of the studentswho participate
in them is better characterized as reflexive.

We made similar modifications when fashioning a psychological perspective
that is appropriate for our purposes, in this case by drawing on constructivism and
distributed theories of intelligence. For example, we take from constructivism the
basi c notion that learning isaprocess of reorganizing activity. However, influenced
by distributed theories of intelligence, we have found it important to broaden our
view of activity so that it is not restricted solely to internal mental activity but in-
stead reaches out into theworld and includesthe use of toolsand symbol s(Bateson,
1973). The rationale for this modification is at least in part pragmatic in that our
work as instructional designers involves developing notation systems, physical
tools, and computer-based tool sfor studentsto use. Wetherefore need an anal ytical
approach that can take account both of the diverse ways in which students reason
with tools and symbols, and of how those ways of reasoning evolve over time. An
approach of thistypeisfundamentally nonduelistinthat learning involvesthereor-
ganization of the world acted in aswell asways of acting in theworld (cf. Roth &
McGinn, 1998).

Thisdebt to distributed accountsof intelligence acknowl edged, we coul d not ac-
cept this theoretical orientation ready-made given its rejection of analytical ap-
proaches that focus explicitly on the nature of individual students’ reasoning (see
the third of the three criteria). Pea (1993), for example, has been outspoken in
delegitimizing analyses that involve such afocus. The modification we have made
istoredefinetheindividua asit ischaracterized in distributed accountsrather than
to dismissthisanalytical focus entirely. On our reading, distributed theories of in-
telligence have been developed in reaction to mainstream American psychology’s
focus on internal cognitive processes that intervene between an external stimulus
environment and observed output activity (Greeno, 1997). In developing their ap-
proach, Pea and other distributed intelligence theorists do not directly challenge
mainstream psychology’s portrayal of the individual as a disembodied creator of
internal representations and a processor of information. Instead, they question the
legitimacy of taking this mainstream character asaunit of analysis. Their proposal
isto equip theindividua conjured up within the discourse of mainstream psychol-
ogy with cultural tools and place it in social context. In their view, the functional
system consisting of theindividual, tools, and social contexts constitutesthe appro-
priate unit of analysis. A key point that is often overlooked isthat theindividua in
thistheoretical scheme isthat of mainstream discourse (cf. Cobb, 1998). Distrib-
uted intelligence theorists therefore appear to have accepted the mainstream psy-
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chological view of theindividual at face valuerather than asatheoretically loaded
characterization. Whenthispointislost sight of, their argumentsfor therejection of
theindividual of mainstream psychology asaunit of analysisare presented asim-
plying that all approachesthat focuson thequality of individuals' reasoning should
be rejected regardless of how theindividual isconceptualized. It isthis subtle shift
that resultsin the claim that all methodol ogiesthat involveaconcernfor individual
interpretation and meaning should be abandoned.

In contrast to distributed accounts, the psychological perspective that we favor
hasnot evolved from mai nstream American psychol ogy, but instead drawsonan al-
ternative European constructivist tradition that can trace its roots to aspects of
Piaget’s genetic epistemology (Piaget, 1970). In this tradition, there is no talk of
processing information or creating internal representations. Instead, intelligenceis
seen to be embodied, or to be located in activity (Johnson, 1987; Winograd &
Flores, 1986). Further, rather than representing aworld, people are portrayed asin-
dividually and collectively enacting a taken-as-shared world of signification
(Varela, Thompson, & Rosch, 1991). Thegoal of analysesconducted fromthispsy-
chological perspectiveistherefore not to specify cognitive mechanismslocatedin-
side students' heads. Instead, it is to infer the quality of individual students
reasoning in, with, and about the world, and to account for developmentsin their
reasoning in terms of the reorganization of activity and the world acted in.

Oncethe mainstream characterization of theindividual is challenged and a shift
is made from interna cognitive behaviors to activity-in-the-world, it no longer
makes senseto talk of intelligence being stretched over individuals, tools, and so-
cial contexts. In the psychological perspective that we take, the tools and symbols
that students use are not considered to stand apart from or outside the individual,
but areinstead viewed as constituent parts of their activity (cf. Dewey, 1981). Con-
sequently, what is viewed as a student-tool system from the perspective of distrib-
uted intelligence is, from the psychological perspective we have outlined, an
individual student engaging in mathematical activity that involves reasoning with
toolsand symbols. Thus, although the focus of this psychological viewpoint is ex-
plicitly on the quality of individual students’ reasoning, its emphasis on tools is
generally consistent with the notion of mediated action as discussed by
sociocultural theorists (cf. Kozulin, 1990; van der Veer & Valsiner, 1991; Wertsch,
1994). Further, as| haveindicated, the remaining component of the functional sys-
tem posited by distributed theories of intelligence, social context, becomes an ex-
plicit focusof attentionwhen thispsychological perspectiveiscoordinated withthe
social perspective.3

I nter pretive Framework

The specific interpretative framework that we useto organize our analysesof in-
dividual and collective mathematical learning is shown in Figure 6. The column
headings “Socia Perspective” and “Psychological Perspective” refer to the two
distinct viewpointsthat constituteour overall theoretical position. Theentriesinthe
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column under social perspective indicate three aspects of the classroom
microculturethat we havefound it useful to differentiate, and theentriesin the col-
umn under psychological perspective indicate three related aspects of individual
students’ activity in the classroom. The classroom microculture encompasses the
normativeor taken-as-shared ways of acting, reasoning, and arguing that emergeas
theteacher and students use availableresources (e.g., instructional tasks and tools)
to jointly enact classroom activities (e.g., classroom activity structure and dis-
course). Thus, whereas the classroom activity system specifies what the teacher
and students do together, the classroom microcultureis concerned with the norma-
tive meanings that emerge in the course of this collective activity. In Lemke's
(1997) terms, an analysis of the classroom microculture therefore describes an
ecosocial system whose ecology issemiotic; its ecology isone of meaning making
inwhich onething istaken asasign for another. AsLemke observes, such systems
are self-organizing systemsthat continually set up the conditionsfor their own fu-
turedevelopment. Over time, they therefore enact trajectories of learning. Our goal
when analyzing adata corpus such as that generated during the seventh-grade sta-
tisticsexperiment isto document the mathematical |earning trajectories of both the
classroom community as awhole and of individual participating students.

In describing the three aspects of the classroom microculture shownin Figure6,
| draw on whole-class discussions conducted during the statistics design experi-
ment to provideillustrations. Thefirst of thethree aspects, classroomsocial norms,

Figure 6.
An interpretive framework for analyzing classroom mathematical activity and
learning.

Classroom social norms Beliefs about own role, others' roles, and the
general nature of mathematical activity in
school
Sociomathematical norms Mathematical beliefs and values

Classroom mathematical practices Mathematical interpretations and reasoning
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enable us to document what Erickson (1986) and Lampert (1990) call the class-
room participation structure. The social norms for whole-class discussion that be-
came established relatively early in the statistics design experiment included that
students were obliged to explain and justify solutions, to make sense of explana-
tionsgiven by others, to indicate agreement or disagreement, and to question alter-
natives when conflictsin interpretations had become apparent. Asthese examples
make clear, the participation structure of aparticular activity such asawhole-class
discussion should not be confused with the overarching structure of classroom ac-
tivities. The latter describes the general flow of classroom activities (e.g., talking
through the data creation process, analyzing data individually or in small groups,
discussing the resulting analyses as a class). In contrast, the participation structure
documents both the expectations that the teacher and students had for each other’s
actionsand the obligationsthat were established for their own actionsin each phase
of the classroom activity structure. In the statistics experiment, for example, the
norms of participation differed for thefirst and third phases even though both were
whole-class activities.

It isimportant to emphasi ze that classroom social norms are established jointly
by the teacher and students. We would therefore question accounts framed in indi-
vidualistic termsin which theteacher issaid to establish or specify social normsfor
students. To be sure, the teacher is (and should be) an institutionalized authority in
the classroom (Bishop, 1985). He or she expressesthat authority in action by initi-
ating, guiding, and organizing the renegotiation of classroom social norms. How-
ever, the students also play their part in contributing to the evolution of social
norms. One of our primary conjecturesisin fact that in making these contributions
(socia perspective), students reorganize their individual beliefs about their own
role, others' roles, and the general nature of mathematical activity (psychological
perspective). As a consequence, we take these beliefs to be, for want of a better
term, the psychological correlates of classroom social norms (see Figure 6). We
therefore contend that in guiding the establishment of classroom norms for
whole-class discussions, the teacher in the statistics design experiment was simul -
taneously supporting her students’ reorganization of these beliefs. | should also
clarify that consistent with the reflexive rel ation between the social and psychol og-
ical perspectives, we give primacy to neither the social norms nor individua stu-
dents' beliefs. This implies that it is neither a case of a change in social norms
causing achangein students' beliefs, nor acase of studentsfirst reorganizing their
beliefsand then contributing to the evolution of social norms. Instead, social norms
and the beliefs of the participating students co-evolvein that neither isseento exist
independently of the other.

It isreadily apparent from this brief discussion that classroom social normsare
not specific to mathematics, but apply to any subject matter area. For example, one
might hopethat studentswould explain and justify their reasoningin scienceor his-
tory classes aswell asin mathematics. In contrast, the second aspect of the class-
room microculture shown in Figure 6, sociomathematical norms, deals with
normeative aspects of classroom action and interaction that are specific to mathe-
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matics (Lampert, 1990; Simon & Blume, 1996; Voigt, 1995; Yackel & Cobb,
1996). Examples of sociomathematical norms include what counts as a different
mathematical solution, a sophisticated mathematical solution, an efficient mathe-
matical solution, and an acceptable mathematical explanation. The last of these
norms proved to be particularly crucia in the statistics design experiment. Recall,
for example, the episode in which the teacher and students discussed analyses of
the battery datanear the beginning of the experiment (see Figure 3). | noted that the
first student to give an explanation argued that one of the two brands of batteries
was better because 7 of the 10 longest-lasting batteries were of that brand. Shewas
immediately challenged even though she had explained how she had structured and
interpreted the data sets and was obliged to justify why she had focused on the 10
longest-lasting batteries. In the ensuing discussion, her elaboration that she had fo-
cused on these batteries because 10 was half of 20, the total number of batteries,
was delegitimized. Crucially, she did not explain why focusing on the 10 lon-
gest-lasting batterieswas an appropriate way of comparing the two brands. In con-
trast, the next student who presented an analysis explained that he had partitioned
the data at 80 hours because he wanted a consistent battery that lasted at |east 80
hours. The teacher and other students accepted his argument aslegitimate because
he explained why the way in which he had organized the datawas rel evant with re-
spect to the question at hand, that of determining which of the brandswas superior.
Inthe course of thisand similar exchanges, it became established that to be accept-
able, an argument had to involve an explanation of why the way in which the data
had been structured wasrelevant to theissue under investigation. The emergence of
this sociomathematical norm for what counted as an acceptable mathematical ex-
planation occurred within the first few classroom sessions and it remained rela
tively stable throughout the remainder of the experiment.

Pragmatically, the analysis of sociomathematical norms has proven useful in
hel ping usunderstand the process by which theteachersin thisand other design ex-
perimentswere ableto foster their students’ development of intellectual autonomy.
Thisissueisparticularly significant to us given that the devel opment of student au-
tonomy was an explicitly stated goal of our work in classrooms from the outset.
However, we originaly characterized intellectual autonomy in individualistic
terms and spoke of students' awareness of and willingnessto draw ontheir ownin-
tellectual capabilities when making mathematical decisions and judgements
(Kamii, 1985; Piaget, 1973). Aspart of the process of supporting the growth of au-
tonomy, the teachers with whom we have collaborated initiated and guided the de-
velopment of acommunity of validatorsin their classrooms such that claims were
established by means of mathematical argumentation rather than by appealing di-
rectly to the authority of theteacher or textbook. For thisto occur, it was not suffi-
cient for the students to merely learn that they should make a wide range of
mathematical contributions. It was also essential that they became able to judge
both when it is appropriate to make a mathematical contribution and what consti-
tutes an acceptable contribution. This required, among other things, that the stu-
dents could judge what counted as adifferent mathematical solution, an insightful
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mathematical solution, an efficient mathematical solution, and an acceptable math-
ematical explanation. However, these are precisely the types of judgmentsthat are
negotiated when establi shing sociomathematical norms. Wetherefore contend that
students devel op specifically mathematical beliefs and values that enable them to
act asincreasingly autonomous members of the classroom mathematical commu-
nity asthey participate in the negotiation of sociomathematical norms (Y ackel &
Cobb, 1996). Further, wetake these specifically mathematical beliefsand valuesto
be the psychological correlates of the sociomathematical norms (see Figure 6). In
doing so, we conjecture that in guiding the establishment of particular
sociomathematical norms, teachers are simultaneously supporting their students
reorganization of the beliefs and values that constitute what might be called their
mathematical dispositions.

It isapparent from this discussion of sociomathematical normsthat we havere-
vised our conception of intell ectual autonomy over theyearsasweworkedin class-
rooms. At the outset, we defined autonomy in purely individualistic terms as a
characteristic that students possessed. However, asthe notion of sociomathematical
norms emerged, we came to view autonomy as a characteristic of an individual’s
way of participating in the practicesof acommunity. In particular, the devel opment
of autonomy can be equated with a gradual movement from relatively peripheral
participation in classroom activitiesto more substantial participation in which stu-
dentsincreasingly rely on their own judgments rather than on those of the teacher
(cf. Forman, 1996; Lave & Wenger, 1991). The example of autonomy is paradig-
matic inthisregard in that it illustrates the general shift we have madein our theo-
retical orientation during the 13 years that we have worked in classrooms away
from aninitially individualistic position toward one that invol ves coordinating so-
cial and psychologica perspectives.

The third aspect of the classroom microculture shown in Figure 6, classroom
mathematical practices, deals with the normative ways of reasoning mathemati-
cally that emerge as students use particul ar toolsto compl ete specific instructional
tasks. | have already noted that, in contrast to classroom social norms,
sociomathematical norms are specific to mathematical activity. However, they are
still relatively broad. For example, the sociomathematical norm for argumentation
that emerged relatively early in the statistics design experiment isquite general and
appliesto the analysis of bivariate as well as univariate data. The challenge when
delineating the mathematical practices that became established during the experi-
ment wasto specify what might betermed the normative or taken-as-shared mathe-
matical content of these arguments. This required us to tease out the
taken-as-shared interpretations of datathat became established asthe studentsused
the two computer minitools.

Asanillustration, again consider the discussion of the battery data. Thusfar, |
have concentrated on the differences between the two data-based arguments that |
have described. It is therefore important to note that there was also an underlying
commonality, namely that both students compared sets of datathat they had struc-
tured in additive part-whole terms. For example, the first student who gave an ex-
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planation partitioned the two data sets when she isolated the 10 longest-lasting
batteriesand focused on how many of these batterieswereof each brand. Thisargu-
ment can be contrasted with an alternative that focuses on the proportion of each
dataset thatisamong the 10 highest values. An argument of thistypewouldinvolve
comparing two data setsthat have been structured multiplicatively. Crucialy, such
an argument is concerned with the relative amount of the datain each set that is
aboveacertain value and thuswith how each data set isdistributed. Although addi-
tive reasoning is sufficient when comparing data sets with equal numbers of data
points, the students failed to make arguments that involved reasoning about data
proportionally when they encountered difficulties while using the first of the two
minitools to compare unequal data sets. This indicates that data sets were consti-
tuted in public classroom discourse during thefirst part of the design experiment as
collections of data points rather than as distributions. The classroom mathematical
practice that emerged as the students used the first minitool might therefore be de-
scribed as that of exploring trends and patternsin collections of data points.

This taken-as-shared way of reasoning about data can be contrasted with that
which became established inthelatter part of the design experiment. Recall, for ex-
ample, the relatively elementary analysis of the AIDS treatment data in which a
group of students partitioned thetwo data sets at the T-cell count of 525 (see Figure
1). Both they and the other students who contributed to the discussion focused on
the proportion rather than the absolute number of patientsin each trestment proto-
col whose T-cell countswere aboveand below 525. Similarly, thegroup of students
who produced arelatively sophisticated analysis by partitioning the two data sets
into four equal groups, each of which contained one fourth of the data points (see
Figure 2), also reasoned multiplicatively about the data. We did not realize until
midway through the design experiment that aconcern with patternsin the way that
data are distributed within a space of possible valuesin fact assumes that the data
have been structured multiplicatively (Cobb, 1999; McClainet a., in press). There
was every indication that data sets were constituted in public classroom discourse
asdistributionsrather than merely as collectionsof datapointsduring thelatter part
of the teaching experiment. The classroom mathematical practice that emerged as
the students used the second minitool can therefore be described as that of explor-
ing trends and patterns in data distributions.

It isalso worth noting that in addition to involving a shift from structuring data
sets additively to structuring them multiplicatively, the transition from the first to
the second mathematical practiceinvolved achangeinthenature of thewhole-class
discussions. Initially, the focus was on the practical decision or judgment that
needed to be made. For example, during the discussion of the battery data, the stu-
dents devel oped data-based argumentsin order to justify their claim that one of the
two brandswas superior. In contrast, the students agreed that the new treatment for
Al DS patientswas better than the standard treatment at the beginning of the discus-
sion. The focus was now on different ways of describing patterns in the two data
distributionsrather than onthe practical decision or judgment per se. It might there-
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forebe said that participation in the second mathematical practiceinvolved analyz-
ing data from a mathematical point of view.

The two examples of classroom mathematical practices that | have given pro-
vide snapshots of the starting and ending points of the classroom community’s ac-
tual learning trgjectory. A complete analysis of this trajectory would specify a
sequence of practicesthat led from the starting to ending pointstogether with an ac-
count of how each was constituted as a reorganization of previously established
practices. One of the strengths of an analytical approach of thistypeisthat it takes
what are traditionally called issues of mathematical content seriously. However,
this approach also callsinto question the metaphor of mathematics as content. The
content metaphor entails the notion that mathematicsis placed in the container of
the curriculum, which then servesasthe primary vehiclefor makingit accessibleto
students. In contrast, the approach | haveillustrated characterizeswhat istradition-
ally called mathematical content in emergent terms. For exampl e, the mathematical
ideaof distribution emerged asthe coll ective practices of the classroom community
evolved. Thistheoretical orientation clearly involvesasignificant paradigm shiftin
how we think about both mathematics and the means by which we might support
students' learning. | would, however, notethat it isconsistent with theview of math-
ematics as a socially and culturally situated activity (cf: Bauersfeld, 1992;
John-Steiner, 1995; Lave, 1993; Sfard, in press).

It isalsoimportant to clarify that analyses of thistype bear directly on theissue
of situating students' mathematical learning with respect to the classroom
microculture. Viewed against the background of classroom social and
sociomathematical norms, the mathematical practices established by a classroom
community can be seen to constitutetheimmediate, local situationsof the students
devel opment. Consequently, in delineating sequences of such practices, the analy-
sisdocumentsthe evolving social situationsinwhich studentsparticipateand learn.
| and my colleagues therefore take individual students’ mathematical interpreta-
tions and actionsto be the psychological correlates of these practices and view the
two asreflexively related (see Figure 6). What i sseen from one perspective asan act
of individual learning in which a student reorganizes his or her mathematical rea-
soning is seen from the other perspective as an act of participation in the evolution
of communal mathematical practices. In coordinating social and psychological
perspectives, the approach that we propose therefore seeksto analyze the devel op-
ment of students’ mathematical reasoning in relation to thelocal socia situationsin
which they participate and to whose emergence they contribute.

USEFULNESS

| have argued that the approach of coordinating psychological and social per-
spectiveson mathematical activity addressestwo of thethreecriteriathat an analyt-
ical approach which is appropriate for purposes of design research should satisfy.
However, | havethusfar said little about the remaining criterion; namely, that anal-
yses should feed back to inform the ongoing improvement of instructional designs.
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This criterion requires that accounts of students' mathematical learning betied to
analysis of what happened in the classrooms where that |earning occurred. In this
regard, | contend that analyses cast in terms of classroom mathematical practices
satisfy this criterion because, when they are coordinated with psychol ogical analy-
ses of individual students’ reasoning, they provide situated accounts of students
learninginwhich the processof learning isdirectly related to the means by whichit
was supported. Asaconsequence, adifficulty that often ariseswhen moreindivid-
ualistic approachesarefollowed, that of figuring out what theresultsof ananalysis
might imply for instruction, simply failsto materialize. Instead, wearein aposition
to devel op testable conjectures about how we might be able to improve the means
of supporting students' learning. For our purposes as instructional designers, the
situated nature of thisanalytical approach isastrength when compared with alter-
native approachesthat aimto produce context-free descriptions of cognitive devel-
opment that apparently unfold independently of situation and purpose. Wertsch
(1991) makes a similar point when he observes that

much contemporary research in psychology does not in fact have the practical impli-
cationsclaimed for it. Inmy view, amajor reason isthe tendency of psychological re-
search, especially in the United States, to examine human mental functioning asif it
existsin acultural, institutional, and historical vacuum. (p. 2)

The all-to-familiar gulf between theoretical analyses and instructional practice is
sidestepped inan approach of thetypethat | have described, becausetheoretical in-
sights about the means of supporting students' learning in a particular domain are
rooted in the practice of attempting to support that |earning. Such approaches are
therefore well suited to the task of supporting educational innovation as a process
of continual, iterative improvement.

In addition to having practical utility in the context of design research, situated
approaches that link students' mathematical learning to the socia situations in
whichit occurshave considerable explanatory power. Thisbecomesapparent when
wefocuson theissue of replicability. Asweknow only toowell, the history of edu-
cational research in general, and in mathematics education in particular, isreplete
with more than its share of disparate and irreconcilable findings. Often, different
patterns of learning are documented when instructional sequences that had previ-
ously proven effective are enacted in other classrooms. In my view, a primary
source of difficulty is that the independent variables of traditional psychological
experimental research are often relatively superficial and havelittle to do with ei-
ther context or meaning (Forman, 1998). The conceptualization of the classroom as
amatrix of environmental variablesis at odds with the approach | have taken in
which theclassroom microcultureisviewed asasemiotic ecology that hasmeaning
making at its core. In the standard psychologica paradigm, the relationship be-
tween the devel oping mind and the environment is analogousto that between jello
and amold. From thisit followsthat just aswe should study the mold if wewant to
understand the shapeof thejello, so we should analyze the pre-given environment if
we want to understand the contours of the mind. In contrast, in the situated ap-
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proach that | have outlined, the anal ogue of the mold, the classroom microculture,
is not viewed as independent of the teacher’s and students’ activity. Instead, stu-
dents are seen to actively contribute to the evolution of the microculture that both
enablesand constrainsthe devel opment of their reasoning. Itisthissenseof partici-
pationinan evolving community of practicethat typically fallsbeyond the purview
of traditional experimental research.

In my view, the central issueisnot so much that findings are often disparate, but
that they aretypically irreconcilable—it has not been possibleto account for differ-
ences in findings when different groups of students have received supposedly the
same instructional treatment. In contrast to traditional experimental research, the
challenge as| seeit is not that of replicating instructional treatments by ensuring
that instructional sequences are enacted in exactly the sameway in different class-
rooms. The conception of teachers as professionals who continually adjust their
plans on the basis of ongoing assessments of their students' reasoning would, in
fact, suggest that complete replicability is neither desirable nor, perhaps, possible
(Ball, 1993; Franke et a.; 1998, Gravemeijer, 1994b). The challengeisinstead to
develop ways of analyzing treatments so that their realizations in different class-
rooms can be made commensurable. | contend that situated approach of the type
that | haveillustrated offersthispossibility. Thisisbecause an analysisof the math-
ematical practicesthat are established when an instructional sequenceisenactedin
a particular classroom documents the evolving social situation in which the stu-
dents’ mathematical learning occurs. Consequently, an analysisof two different en-
actments of the same instructional sequence enables us to relate the differing
patterns of what are traditionally called learning outcomes to the differing situa-
tions of learning that were actually constituted in the two classrooms. In such an
analysis, thefocuson the practicesin which the studentsactually participate asthey
reorganize their mathematical reasoning brings context and meaning to the fore.
Thisin turn makesit possible to compare and contrast critical aspects of different
enactmentsof atreatment, thereby making them commensurable. | thereforeclaim
that an analytical approach of thistype can lead to greater precision and control by
facilitating disciplined, systematicinquiry intoinstructional innovation and change
that embraces the messiness and complexity of the classroom.

CONCLUSION

Throughout thisarticle, | have stressed that | and my colleagues’ overall goal is
tobeincreasingly effectivein devel opinginstructional designsthat support student
mathematical learning. | reiterate this point to emphasize that our commitment to a
situated viewpoint on mathematical activity is not ideological in the pejorative
sense of the term. When | described our general theoretical orientation, | clarified
that the approach we take focuses squarely on the diversity of individual students’
reasoning. Our reasons for doing so are pragmatic and relate directly to the pur-
poses of design research. As| indicated, wefind it essential to take account of the
particular waysinwhich individual students are reasoning when we make instruc-
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tional decisions in the classroom. In addition to acknowledging this emphasis, |
also explained why we have cometo regject purely individualistic approaches and,
instead, find it useful to view students' mathematical reasoning asactsof participa
tionin communal practicesthat they and the teacher establish in the course of their
ongoing interactions. The reasons | gave were again pragmatic and relate to the
process of planning a design experiment. In particular, | discussed why we need
theoretical constructsthat makeit possible for usto devel op conjectures about the
envisioned learning of the classroom community. | aso illustrated that this ap-
proach hasthe benefit of enabling usto devel op analysesthat relateindividual stu-
dents’ mathematical learning to the evolving social situations in which that
learning occurs.

In light of these considerations, the situated approach that | have described
might be best viewed as having the status of areport from the field. For us, the ap-
proach is nothing more than a potentially revisable solution to the concrete prob-
lems and issues that we have encountered while experimenting in classrooms.
Further, the various constructs that | have discussed are, for us, conceptual tools
that are appropriate for certain purposes but not others. As a consequence of this
pragmatic orientation, we can readily accept that alternative approaches might be
more appropriate when investigations are motivated by other concerns. | therefore
leaveit to thereader to assesswhether aspects of the analytical approachthat | have
presented are relevant to the problems of interest to them.
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NOTES

1. My colleagues in classroom design experiments conducted since 1992 have been
Kay McClain and Koeno Gravemeijer. My colleagues in prior design experiments were
Erna Y achel and Terry Wood.

2. We speak of normative activities being taken-as-shared rather than shared to leave
room for the diversity in individual students’ ways of participating in these activities. The
assertion that a particular activity is taken-as-shared makes no deterministic claims about
the reasoning of the participating students, least of all that their reasoning isidentical.

3. Thisapproach of coordinating psychological and social analysesis closely related to
servera other proposals. These include Hatano's (1993) call to synthesize constructivism
and Vygotskian perspective, Saxe' s (1991) discussion of theintertwining of cultural forms
and cognitive functions, and Rogoff’s (1995) distinction between three planes of anaysis
that correspond to personal, interpersonal, and community processes.
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Interweaving Content and
Pedagogy in Teaching and
Learning to Teach: Knowing
and Using Mathematics

Deborah Loewenberg Ball and Hyman Bass

INTRODUCTION?

Suppose you posed four numbers—7, 38, 63, and 90—to aclass and asked the stu-
dents to identify which of the numbers were even. And suppose, further, that you
got this paper back from one of the students, with none of the numbers circled:

7 38 63 90

What would you make of this?1sthisanswer surprising or predictable?What might
this student actually know? What number or numbers would you pose next to find
out with more precision what the student thinks? Why would that sel ection be use-
ful?

Thinking about this and figuring out what to do next thisis one of many exam-
ples of the kind of mathematical problem solving in which teachers regularly en-
gage. Although no teacher we have ever met could not correctly identify which
numbers are even in the preceding list, understanding what there isto know about
even numbers goes beyond being able to do this oneself and is critical to teaching
well.

[dentifying any even number entailsknowing adefinition for even numbersand
being able to use that definition for any number. Viable definitions include:

Fair share: A number N isevenif it can bedividedintotwo (equal) partswith nothing
left over (algebraically, N =2 x k; i.e., k + k).

Pair: A number N iseven if it can be divided into twos (pairs) with nothing left over
(algebraicaly, N=k x 2;i.e,2+2+2+...+2[ktermg]).

Alternating: The even and odd numbers alternate on the number line.
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Unitsdigit: A number isevenif itsunitsdigit is even (e.g., 712 iseven because 2 is
even).

But these definitions are not enough in themselves. One would need to know,
first of all, how to use them to consider and determine the status of specific num-
bers. Thisisparticularly salient with the unitsdigit definition. Thiscriterion canbe
easy to use, for, because one does not have to worry about any digit other than the
units, one candeploy it routinely. However, itismore subtleto explain. Justifying it
reguires understanding place value, for this definition is based on understanding
the decomposition of anumber represented in decimal form—that is, that 712=7 x
10241 x 101+ 2x 10°=700+ 10+ 2. If onedoesnot understand that thisisthe ba-
sisonwhichthedefinitionisfounded, one may get confused if oneforgetsthealgo-
rithm; 712 can look ambiguous, for the 7 and the 1 are both odd.

Another important understanding isto know the domain to which these defini-
tions are usefully and conventionally applied. (Even the appreciation that thisisa
fundamental mathematical question about adefinition isan important sensibility.)
For example, are fractions typically categorized as even or odd? I's zero?

Third, one should have good sense of when each definition might be useful . For
exampl e, the unitsdigit definitionisuseful for large numbers; the alternating defi-
nition iscumbersomefor any but very narrow intervalsin which one already hasan
established referent (e.g., with small numbers, or with large numbers where some
neighboring number is already known to be even).2

Finally, one would want to understand how the four definitions compare: Why
do they each work to identify the same set of numbers? How might one explain
these correspondences mathematically?

Knowing and being sensitiveto all thesethings, and being ableto usetheminthe
context of the student’ sresponse, can equip oneto consider plausiblereasonswhy a
child might not mark any of the numbers. Seven isnot even, and, like the even/odd
status of each of thedigits, can be simply memorized as such. Thirty-eight includes
an odd digit aswell asan even one, and one might consider it “mixed.” Sixty-three
isnot even, and achild might consider it mixed (as 38) or might use one of the other
definitions to establish it as odd. Ninety packs a double mathematical issue: 9 is
odd, and for the same reason as 38, might present difficulties. Moreover, 0 might be
considered odd, or neither even nor odd.

Knowing and being sensitive to all these kinds of things and being able to use
themisal socritical to be ableto manage other kindsof situationsthat might arise. A
child might ask why theunitsdigit definition works. Another might ask whether 1/2
(or 2/3) iseven. Children often wonder about the status of zero. Managing thesereal
situations demands a kind of deeply detailed knowledge of mathematics and the
ability touseitinthesevery real contextsof practice. Thischapter drawsfromwork
we have been doing to understand the mathematical knowledge entailed by teach-
ing (e.g., Ball, 1999; Ball & Bass, 2000). We begin by looking backward, acknow!-
edging that this question is far from new and that our work builds on substantial
recent progress to addressiit.
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CHASMSIN KNOWING AND LEARNING PRACTICE

At the turn of the 20th century, John Dewey (1904/1964) articulated a funda-
mental tension in the preparation of teachers—that of the “ proper relationship” of
subject matter and method. At the turn of the 21st century, thistension endures. In
fact, many of the same questions persist. On the one hand, to what extent does
teaching—and hence, learning to teach—depend on the development of knowl-
edge of subject matter? On the other, to what extent doesit rely on the devel opment
of pedagogical method?

Clearly the answer must be, “it depends on both.” Yet, across the century, this
tension hascontinued to simmer, with strong viewson both sidesof what isunfortu-
nately often seen as a dichotomy. Policymakers debate whether teachers should
major in education or in adiscipline. Others argue that what mattersis caring for
students as well as skills at working effectively with diverse learners. Dewey’s
(1904/1964) conception of the relationship of subject matter knowledge and
method was sophisticated and subtle—so much so that 100 years later, hisideais
still elusive. He wrote:

Scholastic knowledge is sometimes regarded asiif it were something quiteirrelevant
to method. When this attitude is even unconsciously assumed, method becomes an
external attachment to knowledge of subject matter. (p. 160)

This separation of substance from method, he argued, fundamentally distorted
knowledge. How an ideais represented is part of the idea, not merely its convey-
ance.

Dewey also believed that good teachers were those who could recognize and
create “genuine intellectual activity” in students, and he argued that methods of
such activity wereintimately tied into disciplines. Subject matter, he believed, was
theembodiment of themind, the product of human curiosity, inquiry, and the search
for truth. Teachers who were accustomed to viewing subject matter from the per-
spective of its growth and devel opment would be prepared to notice nascent intel-
lectual activity in learners. Such individuals would know subject matter in ways
that prepared them to hear and extend students' thinking. To do this, he argued,
teacherswoul d need to be abl e to study subject matter in waysthat took it back toit
“psychical roots’ (p. 162).

Despite these prescient ideas that intimately interweave knowledge and learn-
ing, teacher education across the 20th century has consistently been severed by a
persistent divide between subject matter and pedagogy. This divide has many
traces. Sometimes it appears in institutional structures as the chasm between the
arts and sciences and schools of education, or asthe gulf between universitiesand
schools(Lagemann, 1996). Sometimesthedivide appearsasfissuresintheprevail-
ing curriculum of teacher education, separated into domains of knowledge, com-
plemented by “experience’ —supervised practica, student teaching, practiceitself.
Inall of these, the gap between subj ect matter and pedagogy fragmentsteacher edu-
cation by fragmenting teaching.
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In recent years, in yet another peculiar fragmentation, commitments to equity
and concernsfor diversity have often been seen asintension with afocuson content
in teacher education. Courses in multiculturalism contend with subject matter
coursesfor spacein the professional curriculum. Yet subject matter understanding
isessential inlistening flexibly to othersand hearing what they are saying or where
they might be heading. Knowing content isalso crucial to being inventive in creat-
ing worthwhile opportunitiesfor learning that take learners’ experiences, interests,
and needs into account. Contending effectively with the resources and challenges
of adiverse classroom requires a kind of responsibility to subject matter without
which efforts to be responsive may distort students’ opportunities to learn (Ball,
1995). Moreover, thecreativity entailed in designing instructioninwaysthat are at-
tentive to difference requires substantial proficiency with the material.

The overarching problem across these many examplesisthat the prevalent con-
ceptualization and organi zation of teachers' learning tendsto splinter practice, and
leave to individual teachersthe challenge of integrating subject matter knowledge
and pedagogy inthe contextsof their work. We assumethat theintegration required
to teach is simple and happens in the course of experience. In fact, however, this
does not happen easily, and often does not happen at all.

QUESTSTO BRIDGE THE CHASM

These chasmsin our ways of thinking about content and pedagogy have plagued
researchers, teacher educators, and policymakers. And athough perhaps not in
these forms, these issues have plagued teachers aswell, for our incomplete under-
standing of how content matters in practice has often left practitioners un-
der-prepared for their work, challenged by the problems and mysteries that arise
with distressing regularity.

That teachers' own knowledge of the subject affects what they teach and how
they teach seems so obviousasto betrivial. However, theempirical support for this
“obvious’ fact hasbeen surprisingly elusive.® And although conceptions of what is
meant by “ subject matter knowledge,” aswell asvalid measuresthereof, have been
developing, we lack an adequate understanding of what and how mathematical
knowledge is used in practice.

What are the weaknesses in current widely shared ideas about teacher content
knowledge? First, subject matter knowledgefor teaching isoften defined simply by
the subject matter knowledge that students are to learn—that is, by the curricular
goalsfor students. Put simply, most people assumethat what teachersneed to know
iswhat they teach. Many would a so add to thelist, arguing that teachersmust know
more in order to have a broad perspective on where their students are heading.
Nothingisinherently wrong with thisperspective. However, to assumethat thissuf-
ficesisto assumethat the enactment of the curriculum relieson no other mathemat-
ical understanding or perspective.

Furthermore, the use of mathematical knowledge in teaching is often taken for
granted. The mathematical problems teachers confront in their daily work—such
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asthe simple case at the beginning of this chapter—are left unexplored, the occa-
sionsthat require mathematical sensitivity and insight unprobed. Hence, the con-
tent and nature of the mathematical knowledge needed in practiceisinsufficiently
understood. Moreover, therole played by such knowledgeisal soleft unexamined.

In 1986, Lee Shulman, Suzanne Wilson, Pamela Grossman, and Anna Richert
introduced “ pedagogical content knowledge” tothelexicon of research onteaching
and teacher education (Shulman, 1986). Theterm called attention to aspecia kind
of teacher knowledge that links content and pedagogy. | n addition to general peda-
gogical knowledge and knowledge of the content, argued Shulman and his col-
leagues, teachersneeded to know thingslikewhat topicschildrenfind interesting or
difficult or the representations most useful for teaching a specific content idea.
These scholars identified and named a unique kind of knowledge that intertwines
aspects of teaching and learning with content.

The introduction of pedagogical content knowledge brought to the fore ques-
tions about the content and nature of teachers' special subject matter understand-
ing. Consider the following example. As an experienced classroom teacher, Ball
knowsthat figuring out what her fifth graders know about decimal s dependsin part
on her knowledge of number systemsand in part on her understanding of the kinds
of errorsthat 10-year-olds typically make. For example, she knows that they will
often confuse .5 with .05 and that they draw this confusion, in part, fromtheir prior
conviction that 5 and 05 are the same number. Thismeansthat afifth-grade teacher
needsto understand alot about the base 10 number system and about positional no-
tation. When afifth grader asks, “Whereisthe‘oneths place?” ateacher needsto
be ableto hear that thislikely emanates from a 10—year-old’s reasonabl e expecta
tionthat if thereisaonesplacetotheleft of thedecimal point, and atensplacetothe
|eft of that, there should be asymmetry to the right of the decimal. In other words,
why isthe placeimmediately to theright the tenths place, and not a“ oneths” place?
But being ableto hear thisstudent isnot enough. Why isn’'t therea* oneths” place?
Answering thisfor oneself requires a certain explicit understanding of place value
and of the multiplicative structure of the base 10 system that goes beyond being
ableto name the places (ones, tens, hundreds, etc.) or read numbers. And then, be-
yond being clear about the mathematics, hel ping afifth grader understand the miss-
ing “oneths’ requires an intertwining of content and pedagogy, or pedagogical
content knowledge.

Thiskind of understanding is not something a mathematician would have, but
neither would it be part of a high school socia studies teacher’s knowledge. It is
special to the teaching of elementary mathematics. Pedagogical content knowl-
edge—representations of particular topics and how students tend to interpret and
usethem, for example, or ideas or procedures with which students often have diffi-
culty—describes a unique subject-specific body of pedagogical knowledge that
highlightsthe closeinterweaving of subject matter and pedagogy in teaching. Bun-
dles of such knowledge are built up by teachers over time as they teach the same
topicsto children of certain ages, or by researchers asthey investigate the teaching
and learning of specific mathematical ideas.
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Liping Ma (1999) describes the “knowledge packages’ that are part of the
knowledge of the 72 Chinese elementary teachers whom she interviewed. These
packages constituted arefined sense of the organization and devel opment of aset of
related ideasin an arithmetic domain. Theteachersin her study had clearly articu-
lated ideas about “the longitudinal process of opening up and cultivating such a
field in students’ minds’ (Ma, 1999, p. 114). Their knowledge packages consisted
of key ideasthat “weigh more” than other ideasin the package, sequencesfor devel-
opingtheideas, and“ concept knots” that link crucially related ideas. Ma snotion of
“knowledge packages’ represents a particularly generative form of and structure
for pedagogical content knowledge.

Our work builds on pedagogical content knowledge by complementing what it
offersfor practice. Pedagogical content knowledgeisaspecial form of knowledge
that bundles mathematical knowledge with knowledge of learners, learning, and
pedagogy. These bundles offer a crucial resource for teaching mathematics, for
they can help the teacher anticipate what students might have trouble learning, and
have ready alternative models or explanations to mediate those difficulties. Be-
cause onehig challenge of teaching isto integrate across many kinds of knowledge
inthe context of particular situations, the fact that there are patternsin and predict-
ability to what students might think, and that there are well-tried approachesto de-
velop certain mathematical ideas, can help managethischallenge. However, abody
of such bundled knowledge may not always equip the teacher with the flexibility
needed to manage the complexity of practice. Teachers also need to puzzle about
the mathematics in a student’s idea, analyze a textbook presentation, consider the
relative val ue of two different representationsin the face of aparticular mathemati-
cal issue. To do this, we argue, requires akind of mathematical understanding that
ispedagogically useful and ready, not bundledin advancewith other considerations
of students or learning or pedagogy.

Although pedagogical content knowledge provides a certain anticipatory re-
source for teachers, it sometimes falls short in the dynamic interplay of content
with pedagogy in teachers' real-time problem solving. No repertoire of pedagogi-
cal content knowledge, no matter how extensive, can adequately anticipate what it
isthat students may think, how sometopic may evolvein aclass, the need for anew
representation or explanation for afamiliar topic. Moreover, morethan one mathe-
matical issue or goal may be at play at once, requiring simultaneous consideration
of different content within the pedagogical context. That is, asthey meet novel situ-
ationsin teaching, teachers must bring to bear considerations of content, students,
learning, and pedagogy. They must reason, and often cannot simply reach into a
repertoire of strategiesand answers. When teacherslook at student work, choosea
text to read, design atask, or moderate adiscussion, they must attend, interpret, de-
cide, and make moves. Their thinking dependsontheir capacity to call into play dif-
ferent kinds of knowledge, from different domains. An endless barrage of
situations—of what we are beginning to understand as mathematical problemsto
be solved in practice—entails an ongoing use of mathematical knowledge. It is
what it takes mathemati cally to manage these routine and nonroutine problemsthat
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has preoccupied our interest aswe seek to build on the groundbreaking research on
pedagogical content knowledge.# It isto thiskind of pedagogically useful mathe-
matical understanding that we attend in our work.

This chapter draws on work that we—Bass, a professional mathematician, and
Ball, an educational researcher and elementary school teacher—beganin 1996. We
have been using our distinct disciplinary perspectives to probe the interplay of
mathematics and pedagogy in practice.> The problem on which we have been
working isonethat is central to both professional education and instructional im-
provement: What mathematical knowledge is needed to teach elementary school
mathematics well? How must it be understood and held so that it is available for
use? Working with primary records of teaching and |earning—videotapes, student
work, curriculum materials, teacher notess—we have beentryingto analyzeand ar-
ticulate ways in which mathematical insight, sensibilities, and knowledge are en-
tailed by the practice of teaching mathematics.”

Our research turns the usual approach to this problem on its head. Rather than
identifying the mathematical knowledge needed for teaching by examining the cur-
riculum, or by interviewing teachers, we begin instead with an examination of prac-
ticeitself. Examining the curriculum, although useful, isincomplete for it failsto
anticipate the mathematical demands of its enactment in classrooms. Interviewing
teachers, though aso valuable, is incomplete because it infers teaching’'s mathe-
matical demandsfrom teachers' accounts of what they think or would do. Without
knowing whether the teachers interviewed are actually able to help all students
learn mathematicswell, what they report remainsin some significant ways unwar-
ranted. In any case, neither of these approaches bridgesthe gap between knowledge
and practice, except indirectly through inference or report.

We seek to complement the examination of curriculum and of what experienced
teachers know with a mathematical analysis of core activities of mathematics
teaching. Weintend with the phrase* coreactivities’ toinclude such thingsasfigur-
ing out what studentsknow; choosing and managing representations of mathemati-
cal ideas; appraising, selecting, and modifying textbooks; deciding among
alternative courses of action; steering a productive discussion—and we seek to
identify the mathematical resources entailed by these teacher activities.

In thiswork, we see teaching as a practice embedded with both regularities and
endemic uncertainties. For example, some topics—such as arithmetic with inte-
gers, probability, and fractions—are quite often difficult for students. Certain ways
of approaching these topics—particular representations and methods of develop-
ment—can help mediate these difficulties. Oft-used mathematical tasks can be
mapped by the range of typical approaches used by students of agiven age (Stigler
& Hiebert, 1999). Being prepared for these regularities of practice is enabled by
what wethink of as*pedagogical content knowledge,” clustersthat embed knowl-
edge of mathematics, of students, and of pedagogy. However, no amount of peda-
gogical content knowledge can prepareateacher for all of practice, for asignificant
proportion of teaching isuncertain. Many others have written about the uncertain-
ties of teaching (Ball, 1996; Cohen, in preparation; Lampert, 1985; Lampert &
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Ball, 1999; L ortie, 1975; McDona d, 1992), citing numerous sources of uncertainty
and providing analyses of the consequences for teachers and their work. Sources of
uncertainty inteaching derivein part fromitsfoundations: theimpossibility of know-
ing definitely what students know, and the necessarily incompl ete nature of knowl-
edge of teaching, and even the inherent indeterminacy of mathematical knowledge
itself that isgermaneto agiven instructional context (Ball, 1996). Because teaching
practiceisconstructed in theinterplay of mathematics, students, and pedagogy, con-
siderable parts of teachers' work are embedded with uncertainties. Acknowledging
theuncertainty of teaching doesnot mean that teachers cannot be prepared toknow in
practice. Quitethe contrary: Knowing mathematicsfor teaching must take account of
both the regularities and the uncertainties of practice, and must equip teachers to
know in the contexts of the real problems they have to solve.

Because we are interested in the mathematical entailments of practice, we are
interested not only in what teachers must know, but also how they must be able to
use that knowledge (Cohen & Ball, 1999). “ Knowing teaching is more than apply-
ing prior understandings. It also depends fundamentally on being able to know
thingsin the situation” (Lampert & Ball, 1999, p. 38).

Our approach, akind of “job analysis” of classroom teaching focused on the ac-
tual work, isrooted in these premi sesabout practiceand seeksto locateand analyze
mathematicsasit isused in practice. Such amathematical perspective onthework
of teaching can extend what we currently understand about the mathematical re-
sources needed for teaching, therole of such resourcesin practice, and, by implica-
tion, what opportunitiesfor teachers and prospective teachers need to be devel oped
for them to be prepared to teach mathematics well.

KNOWLEDGE IN PRACTICE

Webeginwithtwo examples, each offering acloser look at adliver of thework of
teaching. Consider, first, thework of examining and preparing to teach amathemat-
ics problem (Gelfand & Shen, 1993):

Write down astring of 8's. Insert some plus signs at various places so that the result-
ing sum s 1,000.

At first glance, this problem may look trivial and uninteresting—one way of
solving it entails simply adding 125 8'stogether. A closer look revealsthat if sev-
eral 8'sare written together—888 or 88—many more solutions are possible. And
working on the problem alittle further reveal sinteresting and provocative patterns
inthe solution set. Figuring out how to organizethe solutionsisitself aninteresting
component of the work, and depending on how they are organized, different ele-
ments of the problem and its solutions are visible.

A teacher preparing to use this task must contemplate: Would this be a good
problem for my students? What would it take to figure out the patterns and nu-
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ances?Isit worthwhilein terms of what students might learn? At least, it would be
important to know what the problem is asking, whether it has one or many solu-
tions, how the solutions might be found. How isit (or could it be) related to other
parts of the curriculum? It seems obvious that the task entails some computa
tion—for example, verifying any one solution—»but what is the mathematical po-
tential of thetask? Arethereimportant ideas or processesinvolved in the problem?
What would it take to use thistask well with students? It would help to know what
might make the problem hard, and how students might get stuck, and anticipate
what the teacher might do if they did. Would students find this interesting? What
might it take to hook them on it?

Perhaps, on looking at this problem, ateacher would decide that it isinterest-
ing but abit too difficult for her students. What wouldit taketo make amathemati-
cally similar problem that is a bit easier? At what grade levels would some
mathematically equivalent but simpler version of this problem be accessible?
How might onerescal ethe problem, for exampl e, for third graders? For first grad-
ers—Could asimilar problem structure be set up with Cuisenaire rods? Suppose,
in contrast, the teacher worriesthat thisproblemistoo easy. What would it taketo
make a more challenging, but again, mathematically similar task? What happens
to the problem if one replaces 1,000 with other numbers, or 8 with some other
digit? How might one modify the problem so that there are no solutions? Infi-
nitely many solutions? This sort of analysis and preparation of a single math
problem begins to reveal how much significant mathematical reasoning is en-
tailed within the work of teaching.

We turn now to a second example. Unlike the preceding example, which pro-
vides a glimpse of the work of preparing to use atask with students, this example
showsthework of using atask during class. |n each example, we seek to remind the
reader that the work of teaching, too often thought to be generic, isembedded with
significant mathematical analysisand problem solving. M oreover, we seek to show
that the mathematical resources entailed in such analysis and problem solving may
not in fact be evident on the surface of the school curriculum. Simply looking at the
math problem or considering the content on which students are working does not
lead to asufficient appreciation of the specific mathematical knowledge or sensibil-
ity that it takes to teach that problem or that content.

Thefollowing example, drawn from Ball’ sthird-grade class, centerson the chil-
dren’swork on subtraction of multidigit numbers, learning the conventional place
value algorithm, and a so using other procedures. We drop in near the beginning of
class. The students are discussing solutions to the simple problem:

Joshua ate 16 peas on Monday and 32 peas on Tuesday.
How many more peas did he eat on Tuesday than he did on Monday?

Several solutionsare offered. Sean goesto the board and, counting up from 16 to
32 on the number line, explains,
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| wentsixteen...,1,2,3,4,5,6,7,8,9,10,11,12,13,14, 15, 16 and | ended upon 32.

Lucy agrees with him, saying that she “got the same answer and did it the same
way.” Riba concurs, and offersto “prove that his answer isright.” She explains:

Riba: Because ahalf of . . . ahalf of 32 would be 16.
Ball: Uh huh. And how does that prove that his answer isright?

Riba: | ...because...it's...it'sahalf of 32. Sixteenisahalf of 32. That proveshis
answer.

Ball, not sure what to do with Riba' sidea, continues on. Betsy, speaking mostly to
Sean, saysthat she used beansticks® to solvethe problem and that she has gotten 15.
She goes up to the overhead projector and lays out representations of 16 and 32:
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She begins matching individual beans, and then trades a beanstick for 10 loose
beans. She continues matching individual beanswith othersand then one beanstick
from each group. Mei objects to Betsy’s method of representing both 16 and 32
beans on the overhead:

If youdothatyou'll ... if youwant to do 32 takeaway 16 or something likethat, you'll
need totakeaway only 16 and. . . and you shouldn’t beputting on 32 and 16 up there.

Betsy triesto explain. She countsout her beansand sticks, saying that the 16 “what
he ate on Monday” and the 32 waswhat he ate on Tuesday. Then shetriesto justify
her method:

So, what I’ m doing is|’ m seeing how much more heate by putting them together. And
whenyou put themtogether, you'rematchingit upjustlike. . . just about the sasmeway
Sean would. But, seeinstead of adding them together, I’ m putting them together like
this. And then, sinceit hasamatch, I’ m putting it down here. So that meansyou don’t
count these ones because those are the one that have amatch. So, | keep . . . | did this
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and then seel can’t take 4 away from 10. So, what | doistakethisinfor 10 beansand
then | match these together. Then, | counted how many | had.

Mei seemsunconvinced. Betsy goesthrough her solution again. With theteacher’s
help, she narrates the placement of beansticks and what they represent. She ex-
plains the processes she is using to compare the two amounts:

See, I'm taking these two beans and matching them with these two beans. I’ m taking
these two beans and matching them with these two beans. These two beans and
matching them with them.

After doingit, dlowly, with explanations, Betsy arrivesat the correct answer, 16,
which sherecognizesisinconsistent with her original answer, 15. Experiencing, in
front of the class, aswell asin her own mind, the disequilibrium of this contradic-
tion, she proceeds, with the invitation of her teacher and indulgence of her class-
mates, to reenact carefully the matching of the 16 beans with part of the 32 beans,
and, once again, findsthat 16 beans remain unmatched. At this point she places (a
still dlightly tentative) confidencein the answer, 16. Moreover sheretracts her ear-
lier notion that her solution islike the method of “ counting up” on the number line
used by Sean. The class goes on to see yet another solution, presented by Cassan-
dra, hersusing the conventional subtraction algorithm. Thisprompts Seanto offer
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+16
32

for another approach.

By the end of class, the children have seen six different methods, and worked
back and forth between the symbolic representati ons and the concrete forms. They
have discussed why some children used subtraction while others added, and they
have tried to identify similarities and differences across the methods. This appar-
ently simple word problem has taken the teacher and the children deep into some
significant mathematical territory, invisible on the surface of the problem. How are
subtraction and addition related, in both symbolic and concrete models? How are
the comparison and “take-away” interpretationsof subtraction related? How dothe
beanstick representations map onto the symbolic forms, and how do the processes
used by each child map onto each of these? How, for exampl e, does Betsy’smethod
of matching comparewith Sean’s* counting up” method?WasMei’ s objection that
Betsy should not represent both the 32 and the 16 legitimate? What is Betsy doing,
and how can onereconcileit with Mei’sobjection? What is Ribathinking when she
seeks to “prove’ Sean’s answer by talking about 16 being “half of” 327

When teachers hold class discussions, they make decisions about which (and
whose) ideasto pick up and pursue and which (and whose) to suspend or let drop.
Theteacher formulates probes, pushes students, offershints, and providesexplana-
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tions. Studentsget stuck: What does one do to hel p them remobilize? None of these
tasksof teaching can be carried out generically. No matter how committed oneisto
caring for students, to taking students’ ideas seriously, to hel ping students devel op
robust understandings, none of these tasks of teaching is possible without making
use in context of mathematical understanding and insight.

Hereinliesafundamental difficulty inlearningtoteach, for despiteitscentrality,
usable mathematical knowledge is not something teacher education, in the main,
provideseffectively. Although someteachers haveimportant understandings of the
content, they often do not know it in waysthat help them hear students, select good
tasks, and help al their students learn. No prospective or practicing teacher we
know is unable to solve the problem of Joshuaand the peas. But the mathematical
issues embedded in the enactment of thistask in classare not trivial. Being able to
help Ribadevel op her idea, for example, would requirethat ateacher be sensitiveto
the nature of mathematical reasoning and the need for the stepsin anargument to be
developed, at alevel of granularity appropriatefor the context (Ball & Bass, 2000).
Riba's clam—that 16 ishalf of 32—iscorrect; theissueisnot this, but rather how
this can support a proof of Sean’s claim. The teacher would need to “hear” (and
guess) the unspoken elements of her proof and be ableto think of what to ask or say
that might help Riba develop her idea enough so that the other children could con-
sider what she is saying.?

Thus, teachers need mathematical knowledge in ways that equip them to navi-
gate these complex mathematical transactionsflexibly and sensitively with diverse
studentsinreal lessons. Not providing thisundermines and makeshollow effortsto
prepare high-quality teacherswho canreach all students, teachin multicultural set-
tings, and work in environments that make teaching and learning difficult. Despite
frequently heard exhortations to teach all students, many teachers are unable to
hear studentsflexibly, represent ideasin multipleways, connect content to contexts
effectively, and think about things in ways other than their own. For example, in
their study of a middle school teacher's attempt to teach the concept of rate,
Thompson and Thompson (1994) highlight the crucial role played by language.
They describe, vividly, thesituation of oneteacher who, although heunderstood the
concept of rate himself, wasrestricted in hiscapacity to expressor discusstheideas
ineveryday language. Satisfied with computational languagefor hisown purposes,
when these did not hel p students understand, hewas not ableto find other means of
expressing key ideas. In addition, teachers may not be able to size up their text-
books and adapt them effectively; they may omit topics central to students’ futures
or make modifications that distort key ideas. They may substitute student interest
for content integrity in making subject matter choices.

A recent analysis provides a glimpse of the importance of the distinction be-
tween knowing how to do math and knowing it in waysthat enable usein practice.
This distinction is key to understanding how mathematics knowledge matters in
good teaching. In general, astonishingly little empirical evidence exists to link
teachers' content knowledge to their students’ learning. One hypothesis has been
that what isbeing measured as* content knowledge” (often teachers’ course attain-
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ment) isapoor proxy for pedagogically usable subject matter understanding. How-
ever, intheir 1997 Sociology of Education article describing their analysis of data
from the National Education Longitudinal Study of 1988, Rowan and his col-
leaguesreport strong positive correl ationsbetweenteachers' responsestoitemsde-
signed to measure the use of mathematical knowledge in teaching and their
students' performance (Rowan, Chang, & Miller, 1997).1° This analysis provides
some confirmation that understanding the use of mathematicsin thework of teach-
ing is acritical arearipe for further examination. It is not just what mathematics
teachersknow, but how they know it and what they are ableto mobilize mathemati-
caly in the course of teaching.! Though less easily quantified than other indices,
such as coursestaken, it isthis pedagogically functional mathematical knowledge
that seemsto be central to effective teaching.

An important challenge for teacher education at the beginning of the 21st cen-
tury isto bridge the chasm identified by John Dewey almost 100 years ago. Our
schools are more diverse than ever and we ask more of both teachers and students.
What would it take to bring the study of content closer to practice and prepare
teachers to know and be able to use subject matter knowledge effectively in their
work as teachers?

CLOSING THE GAP: DEVELOPING AND USING
KNOWLEDGE IN PRACTICE

Three problems stand out; problems that we must solve if we are to meet this
challenge to prepare teachers who not only know content but can make use of it to
help all students |earn. One problem concerns identifying the content knowledge
that matters for teaching, a second regards understanding ways in which such
knowledge needsto be held and athird centers on what it takesto learn to use such
knowledge in practice.

What M athematics | s Entailed by Teaching?

First, we would need to reexamine what content knowledge matters for good
teaching. Subject matter knowledge for teaching hastoo often been defined by the
subject matter knowledge that students are to learn. Put simply, many assume that
what teachers need to know iswhat they teach—plus abroad perspective on where
their students came from and are heading. Nothing is inherently wrong with this
perspective. However, the lists of what teachers should know that are produced by
analyzing the school curriculum are long and largely arbitrary. Little is known
about how “knowing” thetopicsontheselistsaffectsteachers’ capabilities. Theun-
examined conviction that possessing such knowledge is all that teachers need to
know has blocked the inquiry needed to bring together subject matter and practice
in ways that would enable teacher education to be more effective.

Instead of beginning solely with the curriculum, our understanding of the con-
tent knowledge needed in teaching must start also with practice. We must under-
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stand better the work that teachers do, and analyze the role played by content
knowledge in that work.

Consider, on one hand, the subtraction problem. We have what lookslikeasim-
plecalculation, 32 — 16, embedded in asimple story problem. Viewed purely from
the point of view of curriculum, thislesson entails some rudimentary knowledge of
place value, and of how the algorithm for subtraction with borrowing works.

Consider, ontheother hand, themathematical themesand eventsencountered as
the problem unfolded in the children’swork. Sean counted the distance up from 16
to 32 on the number ling, finding 16. Ribaobserved that 16 is half of 32, proposing
that this“proved” the correctness of Sean’sanswer. Betsy used base 10 bean sticks
to construct a physical matching between a collection of 16 beans with apart of a
separate collection of 32 beans, and then counted the unmatched beans, which in-
volved trading in a 10-stick for 10 individual beans. The result of this, 16, contra-
dicted Betsy’s original answer of 15, which she then tried to reconcile. Mei
protested that Betsy should not have displayed aseparate collection of 16 beans, but
only the collection of 32 beans. The physical presence of the 16 beans looked to
Mei asthough they were being added, not taken away. Sean used the symbolic addi-
tion, 16 + 16 = 32, asthe basis for another derivation of the answer 16. In the end,
the students produced six mathematically distinct approaches to the problem.

What mathematical demands are created by this lesson, beyond knowledge of
thesymbolic algorithm for subtraction with borrowing, and of theunderlying place
value system? First are the several models or representations of the problem. Sym-
balically, the subtraction, 32 — 16 = ?, isequival ent to the missing addend problem,
16 + ? = 32. There are the two interpretations of subtraction, “take away” (if you
take 16 away from 32, how many are left?) and “ compare” (how many moreis 32
than 167). Second are the many representations of these. Oneisonthe number line,
counting 16 down from 32, or counting the distance up from 16 to 32 (as done by
Sean). Other representations use bean sticks, either removing 16 from 32 beans
(which entails trading a 10-stick for 10 individual beans) or matching 16 beans
with some of the 32 beans, and counting what remains (as done by Betsy; which
aso entailstrading a 10-stick for 10 individual beans). Finaly, given the multiple
approaches produced by the students, thereisaprofound mathematical imperative
to inspect, analyze, and reconcile them.

Permeating thislessonisalso aset of classnormsfor how to justify mathemati-
cal claims. Thisisanother large domain of mathematical knowledge on which the
teacher must draw, for examplein ng, by both teacher and students, the dif-
ferent student responses, and in evaluating and processing claims such as Riba's
pretended “proof” of Sean’s answer. What kind of functional knowledge of proof,
of mathematical justification, is germane to elementary instruction?!2

Thiskind of direct examination of practice seeksto uncover what teachers need
to know and be sensitiveto about content in order to teach well. Thiskind of analy-
sismay bring some surprises. For example, in our research, we expected to see that
concepts such as place value and decimal notation, the arithmetic of fractions, and
so on, would be central—and they have been, as have operations and informal
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methods of reasoning. But beyond that, we have been struck by the unanticipated
but recurrent prominence of certain mathematical notions. For instance, we have
found that ideas about similarity, equivalence, mapping among representations,
and even isomorphism emerge across many instances of ordinary and extraordi-
nary teaching and learning. We have also uncovered salient i ssuesinvolving math-
ematical language—symbolic notation and definitions of terms, their formation
and expansion to larger mathematical domains (Ball & Bass, 2000). Similarly new
notionsare emerging from parallel work intheteaching and learning of history and
science (Rose, 2000; Wilson, in press). Inquiries that begin with practice are re-
vealing subject matter entail ments of teachers' work that are not seen when we be-
gin with lists of content to be taught that are derived from the school curriculum.
These content demands emerge from analyzing the sorts of challengeswith which
teachers must contend in the course of practice, as they mediate students' ideas,
make choices about representations of content, modify curriculum materials, and
the like.

What M akes M athematical Knowledge Usable for Teaching?

A second problem concerns how subject matter must be understood in order to
be usablein teaching. We need to probe not just what teachers need to know, but to
learn how that knowledge needs to be held and used in the course of teaching.
Working on this problem requires examining the assumption that mathematically
proficient people know the content sufficiently well to solve the mathematically
implicated problemsthat arisein the course of teaching el ementary students. Wedo
not examine here the other sorts of knowledge they would need—of students, of
teaching methods, of the contexts, of curriculum. We mean to refer hereto how one
must be able to understand mathematics in order to manage the deeply con-
tent-related issues that can arise.

Ma (1999) describes what she calls “profound understanding of fundamental
mathematics’ in terms of the depth, breadth, and thoroughness of the knowledge
teachersneed. “ Depth,” according to Ma, refersto the ability to connect ideasto the
large and powerful ideas of the domain, whereas“ breadth” hasto do with connec-
tions among ideas of similar conceptual power. Thoroughnessis essential in order
toweaveideasinto acoherent whole. In addition to the premium she placeson con-
nections, Maal so emphasizesflexibility asheldinamultiplicity of representations
and approaches. Drawing on Bruner’s (1960) ideas about the “ structure” of adisci-
pline, Mastressestheimportance of teachers knowing and attending to the“ simple
but powerful basic conceptsand principles of mathematics’ (p. 122), and devel op-
ing “basic attitudes’ (p. 122)—for example, to seek to justify claims, to seek con-
sistency inanideaacross contexts, to know how aswell aswhy. How such profound
understanding of fundamental mathematics (PUFM) isused in practiceisboth dy-
namic and situated in contexts. Maarguesthat teachers' knowledge of mathematics
for teaching must belike an experienced taxi driver’sknowledge of acity, whereby
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one can get to significant placesin awide variety of ways, flexibly and adaptively
(p. 123).

Itisto the question of usethat we have been drawn. Looking at knowledgefrom
the perspective of practice, and the actual work of teaching, we have been increas-
ingly intrigued by the many moments in teaching when mathematical insight,
knowledge, and sensibility matters. In the wide variety of mathematical issues,
problems, andtasksthat arise, weare struck with thevariety of waysinwhich math-
ematicsis entailed by practice.

Flexibility and adaptiveness are clear requirements of teaching. As Ma (1999)
argues, teachersmust be ableto reorganizewhat they know in responseto aparticu-
lar context. To do this, one needsto be ableto deconstruct one’s own mathematical
knowledgeinto less polished and final form, where elemental components are ac-
cessible and visible. We refer to this as decompression. Paradoxically, most per-
sonal knowledge of subject matter, which is desirably and usefully compressed,
can be ironically inadequate for teaching. In fact, mathematics is a discipline in
which compression is central. Indeed, its polished, compressed form can obscure
one's ability to discern how learners are thinking at the roots of that knowledge.
Knowing flexibly in and for teaching requires a transcendence of the tacit under-
standing that characterizes much personal knowledge (Polanyi, 1958). Because
teachers must be able to work with content for studentsin itsgrowing, not finished,
state, they must be able to do something perverse: work backward from matureand
compressed understanding of the content to unpack its constituent elements (Co-
hen, in preparation).

For example, they must be ready to hear students' ideas, and to hypothesize
about their origin, status, and direction. And, in order to ascertain the opportunities
for learning embedded in the examples and work that they assign, teachers must be
ableto decompose amathematicstask, considering itsdiverse possibletrajectories
of enactment and engagement. Teaching mathematics entails work with micro-
scopic elements of mathematical knowledge, elements invisible that were, for
someone with mature mathematical fluency, long ago covered up—or perhaps
never even known. Speculating on why asix-year-old might write“1005” for “one
hundred five,” and not reading it as a mistaken count—"one thousand five’—re-
quires the capacity to appreciate the elegance of the compressed notation system
that adults use readily for numbers but that is not automatic for learners. After al,
Roman numerals follow precisely the same structure as the young child’s inclina-
tion, each element with itsown notation—CV for “ one hundred five” —without the
“place value” core of our system. Being able to see and hear from someone else's
perspective, to make sense of astudent’ sapparent error or appreciateastudent’sun-
conventionally expressed insight requiresthisspecia capacity to unpack one’'sown
highly compressed understandingsthat arethehallmark of expert knowledge. Even
producing a comprehensible explanation depends on this capacity to unpack one's
own knowledge, for an explanation worksonly if it isat asufficient level of granu-
larity—that is, if itslogical steps are small enough to make sense for a particular
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learner or awhole class, based on what they currently know or do not know (Ball &
Bass, 2000).

Being ableto use mathematical knowledgeinvolves using mathematical under-
standing and sensibility to reason about subtle pedagogical questions. What arethe
advantages and disadvantages of particular metaphors or anal ogies? Where might
they distort the subject matter? For example, both “take away” and “borrowing”
create problemsfor students’ understanding of subtraction. These problems cannot
bediscerned generically, for they requireacareful mapping of themetaphor agai nst
critical aspects of the concept being learned and against how learnersinterpret the
metaphor. And knowing that subtraction isaparticularly difficult ideafor students
to master isnot something that can be seen from knowingthe“bigideas’ of thedis-
cipline. This kind of knowledge is quite clearly mathematical, yet formulated
around the need to make ideas accessible to others.

These aspects of content knowledge help to illuminate the territory to which
Dewey called attention almost a century ago, bridging the divide between content
and pedagogy. However, teachingisapractice. Itis, in Lampert’sterms, “athinking
practice”—that is, it integrates reasoning and knowing with action (Lampert,
1998). Our tendency to focuseither onitscognitive demands (teachers' knowledge,
reasoning, decision making, reflection) or on its actions (teacher behavior, class-
room management) isyet one more recent form of fragmentation in teacher educa-
tion, and in particular in our efforts to help teachers acquire usable content
knowledge.

How Might Teachers Develop Usable Mathematical
Under standing?

Hence, athird problem wewould haveto solveishow to create opportunitiesfor
learning subject matter that would enable teachers not only to know, but to learn to
use what they know in the varied contexts of practice (Ball & Cohen, 1999). Even
with more grounded analyses of what thereisto know and amorefinely tuned con-
ception of the nature of the understanding needed to teach, simply teaching such
content may not solve the problems of use. How do teachers use content under-
standing inthe context of practiceto carry out the coreactivitiesof their work?How
can opportunitiesfor learning be designed that are aimed at helping teacherslearn
to use subject matter knowledge to figure out what their students know, to pose
questions, to evaluate and modify their textbooks wisely, to design instructional
tasks, to manage class discussions, to explain the curriculum to parents?

Some such work along theselinesisalready underway. One promising possibil-
ity isto design and explore opportunitiesto learn content that either simulate or are
situated inthe contextsin which subject matter isused—core activitiesof teaching.

Consider, for example, what is entailed in preparing and using academic tasks.
As teachers construct or select atask, they analyze the nature and territory of the
task and consider the curricular learning goal sitsengagement might support. They
appraise its accessibility and challenge: For example, they examine whether it has
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multiple entry and exit points, whether it admits multiple solution strategies, and
multiple solutions or levels of solution. They also size up whether it supports col-
lective classwork or isbetter suited to individual (home) work. At times, they seek
ways of scaling the problem up or down in difficulty, linking the problem to other
domainsof theclasswork, and so on. In either teacher education or professional de-
velopment settings, these deliberate opportunitiesfor analysis and design could be
used assitesfor anintegral part of theteacher’ slearning of mathematical content.

For example, with the 8's problem discussed earlier, mathematical analysis
might start with construction of asolution, inspecting the methods used, then look-
ing for other solutions, and further tryingto find them all (seeing that thereareonly
finitely many), trying to organize (or give structureto) the sol ution set, and contem-
plating ways of proving that one has all solutions. How many terms (addends) or
how many digits does each solution involve? What are the patterns of these num-
bers? Further analyses could probe how these features are affected when various
termsof the problem arevaried, such asreplacing 1,000 by another number, or 8 by
another digit, or allowing other operationsthan +. These variations might produce
versionsthat would challenge college students. On the other hand, one could try to
model a“mathematically similar” version of this problem accessible to first grad-
ers. In each instance one could consider the design of enactment of the task with a
givenlevel of students, anticipating thelikely resultsof student engagement, possi-
ble readings or misreadings of different formulations of the problem, and so on.
Each of these analyses embeds crucial mathematical work, and as such, could be
wielded to be critical points for teachers to learn mathematics.

As another example, some teacher educators use student work as a site to ana-
lyze and interpret what students know and arelearning and, in so doing, to work on
the content itself.13 Another exampleliesintheuse of videotapeof classroomlessons
or cases of classroom episodes (Lampert & Ball, 1998; Stein, Smith, Henningsen, &
Silver, in press). Here the moves made by the teacher could be analyzed to consider
theimpact on the course of thelesson, thetrajectory of the class' swork, and the op-
portunitiesfor learning for particular students and for the group. In both instances
(using student work, using videotapes or cases of classroom lessons) teachers or
prospective teachers might engage in content-based design work—developing a
possible next assignment in response to their analysis of students’ work, or plan-
ning anext instructional segment based on analysis of the classroom episode. Each
of these activities takes atask of teaching that entails content knowledge and cre-
atesapossiblesitefor teachers' learning of and using that content in authentic con-
texts.

But much more work is needed to contend with this endemic problem of use.
Working in specific contexts might run the risk of limiting the generality of teach-
ers’ learning of content and their capacity to useit in avariety of contexts. How can
teachersbe prepared to know content sufficiently flexibly such that they areableto
make use of content knowledge with awidevariety of students, acrossawiderange
of environments? How could teachers develop a sense of the trgjectory of atopic
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over time, how to developitsintellectual corein students’ mindsand capacities, so
that they eventually reach mature and compressed understandings and skills?

Solving these three problems—what teachers need to know, how they have to
know it, and helping them learn to use it—by grounding the problem of teachers
content preparation in problems and sites of practice, could help to close the gaps
that have plagued progress in teacher education. But we should realize the chal-
lengesthat doing thiswould pose. After all, Dewey thought hisvision at theturn of
the 20th century was imminently realizable. He thought that what he was describ-
ing was" nothing utopian.” He suggested that, “ the present movement . . . for theim-
provement of rangeand quality of subject matter issteady andirresistible” (Dewey,
1904/1964, p. 170). One hundred years later, as we stare at university and college
catalogsthat divide “methods’ courses from disciplinary studies from practica, or
at professional development offeringsthat are devoid of content or chock full of ac-
tivities for kids, we should understand that bridging these strangely divided prac-
tices will be no small feat.
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NOTES

1.The ideas in this chapter about subject matter knowledge in teaching—its nature,
uses, and how it might be acquired—have benefited from and drawn on Ball’s work and
discussions with colleagues David Cohen, Magdalene Lampert, Suzanne Wilson, and Joan
Ferrini-Mundy. Members of the Mathematics Teaching and L earning to Teach Group have
aso contributed significantly to the development of our ideas: Mark Hoover, Jennifer
Lewis, Ed Wall, Raven Wallace, Merrie Blunk, Deidre LeFevre, Geoffrey Phelps, Kather-
ine Morris, Heather Lindsay.

2. Thisdefinition helps also for general claims, such asthe fact that any product, N (N
+ 1), (N awhole number) is even, which is one explanation of why the binomial coeffi-
cient, N (N +1)/2, isaninteger.

3. Seeg, for example, Ball (1999) and Ball, Lubienski, and Mewborn (in press).

4. See, for example, Shulman (1986, 1987); Wilson, Shulman, and Richert (1987); Wil-
son (1988); Grossman (1990); and Ma (1999).

5. Ball (1999).

6. These main data comprise ayear’ sworth of primary records of teaching and learning
gathered in Ball’s third-grade class during 1989—1990, under a grant from the National
Science Foundation to Magdalene Lampert and Deborah Ball. In addition, we study re-
cords from other elementary classrooms, as a means to compare the mathematical entail-
ments across classrooms.

7. See, for example, Ball (1999); Ball and Bass (2000).

8. Beansticks are a base 10 model, constructed with 10 dried beans glued to a popsicle
stick to represent tens, and |oose beans to represent units. Ten 10-sticks can be glued side
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by side on a cardboard square to represent hundreds. The children were working only with
tens and ones in this lesson.

9. One plausible line of reasoning might go as follows: Sixteen is half of 32. So Joshua
ate half as many peas on Monday as he ate on Tuesday. So the other half was how many
more peas he ate on Tuesday than on Monday. In other words, half of 32, or 16, is how
many more pesas he ate on Tuesday than on Monday.

10. These items were developed at the National Center for Research on Teacher
Learning, Michigan State University. See Kennedy, Ball, and McDiarmid (1993).

11. These ideas about the use of mathematics knowledge in teaching draw on Bal’'s
work with David K. Cohen. See, for example, Cohen and Ball (1999).

12. We explorethisin Ball and Bass (in press).

13. Several professional development curricula in mathematics are built on this idea.
See, for example, Schifter; Barnett; and Stein, Smith, Henningsen, and Silver (in press).
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Who Counts What As Math?
Emergent and Assigned
Mathematics Problems in a
Project-Based Classroom

Reed Stevens

INTRODUCTION

This chapter presents a case study of atype of mathematics education that contin-
uesto stir controversy in America: project-based mathematics (PBM). PBM class-
rooms are variable in their enactments but share the following basic structure:
students work on projects guided by the teacher, usually in groups, that are ex-
tended over weeks or months and are organized around fields of inquiry other than
disciplinary mathematics. These other fields of inquiry—such as architectural de-
sign or science—areintended to give shape and meaning to student uses and learn-
ing of mathematics.

PBM educationiscontroversia (Battista, 1999) in part becauseit violateswide-
spread assumptionsabout what counts asmathematics. For parents, administrators,
politicians, and sometimes students themselves, PBM does in fact present avery
different image of mathematicsfrom that found in the mass-marketed mathematics
textbooksthey encounteredintheir own K-12 schooling experiences. With no other
significant images of mathematics than those generated in these experiences and
with the default measure of student success being performance on standardized
tests, project-based classrooms can easily appear lacking. Another set of stake-
hol ders—professional mathematicians—seem to hold PBM in particular disdain
(Wu, 1997) because of how project-based efforts misrepresent “real mathematics,”
whichiswhat, by definition, they do.! Some prominent mathematicians have been
near the center of the“Math Wars® (Jackson, 1997a; Jackson, 1997b), a battle that
unfortunately has pitted mathematicians and parents concerned mainly about test
scores on one side against mathematics education reformers on the other.

Oneof the shared features of the positions held by many professional mathema-
ticians and these other educational stakeholders (some parents, politicians, etc.) is
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that both evaluate PBM effortsin terms of absences not presences. By this| mean
PBM efforts are criticized on the basis of what they are not (i.e., not like research
mathematics, not like the textbooks) rather than what they are. However, as has
been argued from diverse pointsin the social sciences, analyses organized around
absences are intellectually problematic (Cole & Scribner, 1974; Garfinkel, 1967;
Lave, 1988; Smith, diSessa, & Roschelle, 1994). In light of this, | offer here an
analysis organized mostly around what was present in a project-based classroom.
My dataare field notes and video recordings made in this classroom over a school
year. Thegoa of thisanalysisisnot to fight a battlein the Math Wars, though my
sympathiesand participation in education reformwill be clear enough. From aper-
sonal perspectiveon thisresearch, | wasaformer mathematics student who was di-
verted from pursuing a Ph.D. in the discipline by questions about learning and
student experiencethat arosewhen | wasamathematicsteacher. | havean enduring
respect for the discipline (in both senses of the word) of mathematics; however, as
my experiences as ateacher and aresearcher (cf. Hall & Stevens, 1995; Stevens &
Hall, 1998; Stevens, 1999) and other research suggests (e.g., Boaer, 1997), tradi-
tional mathematicseducation remainsproblematic. It ssemsneither to teach people
to use mathematicsasagenerative resourcein their out-of-school livesnor to enlist
enthusiasts or apprentices to the discipline of mathematics except from among a
highly privileged minority. And the sequence of mathematics coursesremainsare-
markably effective social filter that helpsto ensure our society’ s continued dispro-
portionate allocation of knowledge-making rights. Add these deficiencies to the
fact that almost everyonewho was ever astudent dreaded or feared math class (just
ask them) and we have a strong justification for considering carefully and empiri-
cally thealternative of PBM education. Itisimportant to notethat an analysisof ac-
tual events does not entail an affirmation of project-based curricula; rather it
provides validity for an evaluation of the opportunities and dilemmas this form of
classroom experiment presentsfor student learning and school experience. Infact,
| later propose some generalizations that point to dilemmas involved in PBM,
rooted in the organizational structure of schoolsand the familiar cultural practices
of school mathematics.

Another outcome of this sort of analysis can be proposalsfor future educational
design (cf. Brown, 1992). Project-based classroom experiments, at least in their
current instantiation, are still relative yearlingsin the span of educational time. As
such they should be considered not as fixed entities but asrevisable. It isargued at
theend of the chapter that these anal ysesof classroom events provide specificrevis-
ing resources both for educational designers and for teachers for whom the pro-
ject-based classroom is till unfamiliar territory.

METHODS OF ANALYSIS

Thisanaysisishbuilt around analytical descriptions of four interactional events
involving middle school studentsand ateacher. These descriptionsarethen used to
ground further ethnographic descriptions of patterns of classroom activity. The
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interactional analysesare detailed and built up from audio-video recordings of nat-
urally occurring classroom events, thus preserving the ecological validity (Cole,
Hood, & McDermott, 1997) of the events described. Talk, being the primary com-
muni cative medium for these events, isfocal and has been transcribed according to
simplified conventions from conversation analysis (Goodwin & Heritage, 1990;
Sacks, Schegloff, & Jefferson, 1974). Becausetalk hereisconcurrent with relevant
representational action of other kinds (e.g., drawing, gesturing, and tool-mediated
action), action descriptions are incorporated within the transcript. Although the
larger studies from which this case study isdrawn (Hall, 1995; Stevens, 1999) in-
volved systematic interviews with participating students and the teacher, no inter-
view material is drawn upon for this analysis. As Marjorie Goodwin describesin
her explanation of similar methodological choices for her analysis of childrens
out-of-school activities:

Treating language as a “mode of socia action rather than a mere reflection of
thought” (Malinowski 1959, pp. 312-313) necessitates investigation of how compe-
tent members of a society use language to deal with each other. This requires first,
methods of data collection that maintain the sequential structure of indigenousinter-
active events (i.e., ones that exclude the ethnographer’s intervention through elicita-
tion) and make visible the process that these events are both embedded within and
congtitute; and second, a mode of analysis that, rather than treating talk as either a
means for obtaining information about other phenomena or a special type of verbal
performance, focuses on how competent membersusetalk socially to act out theordi-
nary scenes of everyday life. (Goodwin, 1990, p. 286)

The question of what to count as mathematical (cf. McDermott & Webber,
1998) looms over thisanalysis asit does, | believe, over the entire field of mathe-
matics education. No definitive (or definitional) answer to this question is offered
here but as my earlier remarks suggest, the vernacular definitions of mathemati-
cians and former textbook users are insufficient (but not irrelevant) for an analysis
of PBM classrooms.2 One correctivetoworking from anormative and stabl e defini-
tion of what counts as mathematical is ethnomethodol ogical whereby the orienta-
tions of the students or the teacher, or both, toward events, representations, or
actions as mathematical provide the analytical basis for selecting and analyzing
them as such. Thisreplacesan external definition of the mathematical, possibly ir-
relevant to locals, with one defined and maintained locally.

For the most part, an ethnomethodol ogical perspectiveistaken here. My analy-
sisdivergesfrom this perspective when |, as a mathematics educator not just adis-
interested analyst, want to point to particular events as mathematical that are not
seen or valued as such by students or teachersthemsel ves or when | want to point to
lost opportunitiesthat accord with what mathemati cians might more readily recog-
nize as mathematical. In other words, my analysis is designed to represent, asiits
first order of business, the presencesin the data; but the analysis al so takes account
of some absences of educational relevance. By relating the presences to the ab-
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sences, | hope to provide a balanced representation from which appropriately
weighted evaluations may be made.

Although what counts as mathematics is a central concern in this chapter, my
criterion for selecting particular events for analysis from the recorded data corpus
was a hit wider. Eventsthat students or teachers counted as problems (i.e., not just
math problems) have been selected for this analysis. Because problems in PBM
classroomsemergeinthe process of pursuing nonmathematical objectives (likede-
signing alivable building), mathematicsis not alwaysin the foreground; other cri-
teria such as designability, aesthetics, or projected inhabitant functionality often
take precedence in project work just as they do in professiona architecture firms
(Stevens, 1999). However, once problems emerge, it is a central question for this
analysis how or if mathematical practices are relevant to their resolution by stu-
dentsand if the students count these practicesas mathematical . It ismy strong posi-
tion that if our analyses do not take seriously the framing projects (e.g.,
architectural design) that are meant to give shape to mathematical work, then we
areimplicitly and hypocritically treating these frames aslittle more than elaborate
cover storiesfor traditional mathematics, as are algebra story problems. Likewise,
if our analysesareto be of useinfollowing students outside of school, we need ana-
lytical tools that can recognize and analyze mathematicsin an activity not only as
the activity.3

As an example, consider one of the instances discussed in depth later in this
analysis. Two student designers decided to include a“bavarium” in the middle of
the Antarctic research station they were designing for hypothetical scientists. A
bavarium is not, as readers might think, a German beer garden but instead a glass
enclosurefilled with plant life used for research purposes, in other words, avivar-
ium, misheard by theinitiating student. In considering whereto place the bavarium
the student designers sought to placeit in the middle of the already established di-
mensions of the research station. Thiswastheir problem: placing the bavarium “in
the middle of everything.” What this problem created was a subsidiary math prob-
lem of evenly spacing the rectangular bavarium within the perimeter of an existing
rectangular design structure. How thishappened, what it meant for theevolving de-
sign, and for the students’ working relationship are the elementsthat constitute my
analysis.

Asin this example, problems emerged in this project-based classroom as stu-
dents designed together. However, mathematics problems appeared in this class-
room in more traditional ways as well. Probably like many project-based
classrooms, anecessary compromise was struck that made this classroom ahybrid
of traditional and reform practices. Students were allowed to find, formulate, and
solve their own problems, mathematical and otherwise, in the course of designing
together. However, as a mathematics classroom held accountable to standards at
many levels, studentswere al so assigned mathematics problemsthat | ooked agood
deal more traditional. In the curricular package used in this classroom (MMAR,
1995), work sheet-like “ math activities” were assigned to students that thematized
topicsthat wererecognizably aligned with National Council of Teachersof Mathe-
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matics (NCTM) standards, such asthe general relationship between the geometric
concepts of areaand perimeter. These assigned problemswere designed to beinte-
grated within the project, but as my analysis seeks to show, the contrast was often
stark between the social and epistemological impact of these assigned problems
and those that emerged.

Theanalytical unitsaround which this case study is organized are ateam of stu-
dents working together on aproject. Although my examples are drawn fromasin-
gle student team, a methodological choice warranted by the goal of assembling a
detailed developmental history of ateam and aproject, my broader fiel dwork activ-
ities and collaboration with colleagues in the Math @ Work project suggest that
there are important generalizable features of this analysis. Because the issue of
generalizability isalways at issue with case studies (Ragin & Becker, 1992), | will
seek to clearly identify the features of this analysis that appear generalizable and
thosethat are specific to thisteam’s activities. My position on thisissue returns me
to the basic ideas of grounded theory (Charmaz, 1983; Glaser & Strauss, 1967;
Strauss & Corbin, 1990) and the collective nature of the research enterprise across
our field. The processes, dilemmas, and opportunities| identify in thischapter may
turn out to be local to this school, this class, and this curriculum, but this awaits
comparative analysis with other instantiations of PBM.

Another important caveat about this analysis, given the worn-out but
time-honored opposition in our field between the individual and the social, isthat
differencesbetween individual sneed not be and are not here erased even though the
leading unit of analysisis a collective—a student team. As my previous work has
sought to show (Stevens, 1997; Stevens, in press) and as| describehere, differences
between studentswithintheteam arecritical, andin thiscase | will demonstratedif-
ferences in the impact of assigned and emergent problems on different students.
The notion that people enter new collectiveswith personal inclinations, habits, and
ideas based intheir own historiesisan essential claim of constructivism, but just as
essential isthe notion drawn from interactionist research that participation in col-
lectives organizes which of these personal traits are displayed, valued, and devel-
oped. Interactionist research also argues against analyses that begin with a
reduction of arelationally organized system to its commonsense components (e.g.,
individuals and their intentions). In light of these constructivist and interactionist
perspectives, the analytical approach | take to these datais to follow the contribu-
tions by individuals within the collectively defined and devel oped events of prob-
lem finding, formulating, and solving.

For morethan adecade, one of the main goals of mathematics education reform
has been to organize instruction so that mathematics is experienced as a
sense-making resource for students rather than arote activity (Schoenfeld, 1992).
In focusing on how mathematical practices emerge as people design, this chapter
clearly standswithin this research tradition. This chapter diverges from this tradi-
tioninthat much of the research on sense-making has been on the relation between
individuals and already mathematized situations (cf. DeCorte, Greer, &
Verschaffel, 1996). Much lessempirical attention has been paid to how people use
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mathematical practices to make sense together or to when and how people
mathematize situations (see, however, Cobb, 1995). Toward this purpose, | iden-
tify the data exemplarsin two different ways. In thefirst two dataexemplars, | de-
scribe how emergent problems functioned in cooper ative sense-making situations.
By cooperative sense-making, | am referring to situations in which interactants
work together to pursue a shared objective. In the third dataexemplar, | analyze a
competitive sense-making situation in which different participants argue for alter-
native versions of a situation.

ETHNOGRAPHIC BACKGROUND

Theclassroom setting where | conducted the fieldwork for this study wasa pub-
lic middleschool classroom at Pine Middle School inamiddle-classneighborhood
in Alameda, California. Theteacher, Ms. Leoni,* was at thetimein her first year of
teaching at Pine, having recently moved from another middle school in Alameda.
She described this change as | ess than favorabl e as she found many of the features
of the new school restrictive and counterproductiveto her reform teaching goals. In
fact, Ms. Leoni left Pine at the end of the school year, moving to another school that
she regarded as being a more conducive environment. Ms. Leoni was a practiced
user of the particular curriculum (MMAP) at her former school, and she had even
participated in its development.

The neighborhood in which the school was |ocated was modest, consisting of
small, single-family homes and apartments. The ethnic makeup of the class was
roughly 40 percent Caucasian-American, 40 percent Asian-American, and 20 per-
cent African-American. Ms. Leoni was of Caucasian-American descent. The stu-
dent team that | followed over the course of the project included two girls and two
boys. Both girlswere Chinese-American (Marshaand Cathy), one boy wasof Poly-
nesian descent (Henry), and one boy was Caucasian (Ted).

These students began the design project (in which they were assembled as a
team) with some prior school -based experiences of each other that | did not system-
atically explore but came to understand through the stories they told to and about
each other over the course of the school year. Ted and Marshahad known each other
fromtheir earliest schooling experiences and had arelationship that could be char-
acterized as semihostile familiarity not uncommon between boys and girls at this
age. Therelationship between Cathy and Ted was more recent but was significantly
more hostile, with Cathy indicating from the outset that sitting next to Ted was a
sourceof displeasure. Early on sheexplained to Marsha, when Ted was hot present,
that she had recently secured a seat away from Ted in another class. There was no
clear sense of why Ted faced this hostility other than the fact that he was perceived
as“annoying” by these students and also to some degree by the wider community
of students. Cathy and Marsha shared a partially overlapping out-of-school net-
work owing to their participation in Chinese cultural activities, such asafter-school
Chinese language classesthat both currently attended. In school, however, Marsha
and Cathy appeared not to be part of the same friendship network, with Marsha be-
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ing clearly a popular girl whereas Cathy was not. Throughout the project, | often
felt that both Cathy and Ted were orienting to Marsha' s popularity. Henry wasthe
quietest and was the most disconnected member of the group. The primary reason
for thisisthat Henry’ sbest friend, Dinesh, wasa sointheclass, and Henry spent as
much time as possible away from the team table with him.

The MMAP curriculum unit was designed at the Institute for Research on
Learning (MMARP, 1995). It wasdesigned to frame aseries of activitiesfor students
that resembl e the activities of professional adults, in this case the activities of pro-
fessional architects. Architectural design projects are considered a vehicle for the
learning and using of mathematics, as an “anchoring event,” as Bransford and col-
leaguescall it (Van Haneghan, Barron, Young, Williams, Vye, & Bransfield, 1992),
an idea described in an overview document from the devel oper of these curricular
materials.

The AntarcticaProject, and theunitsthat follow it, arebased on anew way of thinking
about mathematical applications. Traditionally, in math classrooms, applications
were something that came at the end of the chapter, in the form of a few of those
dreaded word problems, and exercised students’ abilitiesto usethealgorithmthey just
learned to do. . . . Our applications are simulations of some part of the real world that
become the context for complex, open-ended design and analysis problems with
many different solutions and paths to solutions. We believe that greater conceptual
understanding of mathematics can be attained when children are given opportunities
to participate in activities similar to those of people who use math in their work.
(MMAR, 1995, pp. 1-2)

Inthe Antarcticaunit studentswere asked to imagine themsel ves as members of
architectural teams hired to build aresearch station for scientistswho would “win-
ter over” in Antarctica. The students were provided with information about their
hypothetical clients, paper design materials, and relatively frequent accessto com-
puter software with which to draft their station in floor plan view. With this soft-
ware, students could also set various features of the interior and exterior
environments (e.g., temperature, insulation values) and then see the result of auto-
matic cal culations performed by the software’ sunderlying (but inaccessibl€) math-
ematical model. For example, with a drafted station, students could have the
software quickly calculate and display heating costs or overall buildings costs
based on the model. Progress through the project unit was regulated by a set of
“memos’ distributed by theteacher to the students, moving them through research,
design, analysis, and presentation phases of activity. In addition to thisdesign pro-
ject framework as a*“ context for complex open-ended design and analysis’ prob-
lems, mathematical activities were, as | have described, assigned to studentsin a
manner more recognizable as school mathematics: as numbered work sheet-like
“math activities’ selected from the curricular package. The expressed intent of
these activities was to present students with exposure to easily recognizable and
valued mathematical conceptsand tool sthat the curricular designers* expect[ed] to
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come up as students work through the design problems in the Antarctica Project
Unit” (MMAP, 1995).

Because of its particular relevance to this case, the grading practices in this
classroom deserve special mention. Grading was complicated, because athough
the school was typical and the teacher was required to grade and rank individual
class members, she was ambivalent about grading. Her ambivalence, from my per-
spective, could be most closely tied to her affiliation with reform practices that
problematize the relation of grading to learning. What thisled to in practicewasa
very complex system of grading that changed over the course of theproject. At first,
Ms. L eoni gavefew grades and focussed her energies on hel ping the students move
along with their projects. However, astime passed she faced a deadline—midterm
and eventually semester grades—that led her to try to generate more grades. The
fact isthat she had no consistent policy on grading; sometimes she assigned grades
to individuals based on assignments every student completed, and sometimes she
assigned gradesto teamsbased on what asubset of team membersaccomplished as
representative of their teams. At the end of the project, she assigned gradesto stu-
dentson the basis of reportsthey generated individually about their participationin
the project and assigned grades to each team member based on an assessment of a
shared final product. My analyses suggest that these practices, against the back-
ground of the simpler system to be found in more traditional individual focussed
classrooms, was confusing for the studentsand challenging for theteacher tomain-
tain. In retrospect, al of usinvolved in enacting this project probably wish we had
organized a different assessment system at the outset, but such are the virtues of
hindsight.

DATA COLLECTION AND SELECTION OF DATA
EXEMPLARS

Thedataanalyzed in this chapter is drawn from fieldwork and recordings made
at Pine Middle School between October 1996 and February 1997. My field notes
reflect abroad perspective on classroom events, but the video recordings| madefo-
cussed on a single student team. With the exception of 3 days | missed duetoill-
ness, | made audio-video records of the activities of this team during every class
period from the beginning of the project to itsend. One of the characteristicsof this
datacollectionisthat because my cameracaptured eventslocal to the student team,
| had access to events that were largely unknown to the teacher unless | described
them to her. In total, nearly 60 hours of videotape were watched, logged, and ana-
lyzed. From these analysesthe four extended exemplarsrepresented in thischapter
weredrawn. | also collected most of the paper material s produced by thisteam dur-
ing the unit, including copiesof their journal writing, design sketches, and work on
assigned problems. At the beginning and end of the project, | did collective inter-
viewswith themembersof the student team, though | do not report onthisinterview
material here for the reasons described earlier.
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The four segments analyzed in depth in this chapter were chosen for two rea
sons: (1) to explorethe compl exities of the category of problems| havecalled emer-
gent, and (2) to draw a contrast between emergent problems and ones that were
gned. Three of the exemplars are drawn from the corpus of emergent problems
and onefrom those assigned. | have chosen hereto give more attention to the emer-
gent problems under the assumption that they are less well understood by our re-
search community. There are now many careful studies of student (and teacher)
work on assigned problems (for areview, see DeCorte et a., 1996) but few that fo-
cus on emergent problems (see, however, Saxe & Guberman, 1998). Thefirst three
exemplars involve emergent math problems—those that come up in the course of
student design—and the fourth involves a math problem, drawn from the curricu-
lum, assigned to students by the teacher.

DATA ANALYSIS

Data Exemplar 1: “ Putting the Bavarium Right in the Middle of
Everything’

This collection of episodes | present and analyze are drawn from the first day
that studentswere allowed to design. Thiswasnot thefirst day of the project, asthe
first 2 weeks had been occupied with other preliminary activities. These prelimi-
nariesincluded asequenceof assignmentsfrom theteacher drawnfromthecurricu-
lum, including journa writing exercises (e.g., asking individual students about
their expectations for team membership), a choice and design of ateam name and
logo (e.g., this team became LIFE, standing for Life In Frigid Environments),
brainstorming exercises asking the students to list the features they wanted to in-
cludein their research station, and an assigned math problem, completed by indi-
viduals, about converting Fahrenheit temperaturesto aCelsiusscale. Thisassigned
math problem required that the studentsfirst do tutorialson the use of aspreadshest
and graphing program that was intended as atool for solving the conversion prob-
lem. My analysesin thischapter focuson theteam’sactivitiesthat followed thisini-
tial sequence of activities once the design project was tangibly under way. It is
during this phasethat problems emerged, that the design gained adurablelife of its
own within the team, and that students had to juggle accountabilities to this work
and the math problems they were periodically assigned.

Asinany institutional setting where actionsare not fully prescribed, the student
team faced the challenge of organizing abeginning for their project work together.
Up until this point, roles and activities had more or less been prescribed asis com-
moninmiddleschool, but at thispoint the studentswereimplicitly granted asignif-
icant degree of discretion to organize themselves. The resources the students had
for assembling thisbeginning wereasfollows:. ablank piece of graph paper, alist of
features to possibly include in the station, and a very tenuous socia relationship
among the participants. Another initial constraint wasthat Ted began with thepiece
of graph paper on which theinitial design wasto beinscribed. Ted held thisinitial
position based on a random assignment by the teacher, picking one student from
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eachteamwithout regard for their specificidentity to havefirst control of the paper.
(A similar random assignment was used to rotate control of the paper among the
eight teams' members.)

A factor that | described earlier, but that bears repeating because of its
ethnographic relevance, was the rel ationship between Ted and the two girlswhich
was strained from the outset. Because | was in a position to overhear many of the
conversationswithinthegroup, | wasabletolearn that Cathy, in particular, disliked
Ted, based on experiences in another class. For example, she had told Marsha,
when Ted wasaway from thetabl e, that she had even sought to be moved apart from
Ted in this other class. Marsha's regard for Ted was more ambivalent, though she
resisted association with him and occasionally used him as avehicle for her sharp
wit during thefirst 2 weeks. Ted's perspective on Marsha and Cathy was harder to
establish because he did not have aconversational partner in the group to whom he
made hisfeelingsknown. However, therewasnointeractional evidencethat hebore
either any particular animus.

Evidence for this social relationship and its bearing on the beginning of the
working relationship is offered in thefirst transcript segment | present. In this seg-
ment, the L1FE team was gathered at their table. With the blank paper before him,
Ted tried to enlist histeammatesinto a design conversation about the research sta-
tion.

Segment 1.1

1 Ted: Should it have two stories Marsha?

2 Marsha: Don't ask me. I’'m not the only person in this group.

3 Ted: What about you Cathy? | think two storieswould be better, because of our lim-
ited space.

4 Ted: (Pause, Ted pays attention to the plan for 30 seconds.) Alright do you all think
its aright to have atwo-story building? Do you like it Marsha?

5 Marsha: Why are you asking me?

6 Ted: Do you like it Henry?

7 Henry: (inaudible with an ambiguous shrug)

8 Cathy: (to Marsha) | want it (inaudible, followed by laughter).

9 Marsha: (laughter)

10 Ted: (turnsto Cathy) Do you want it two story?

11 Cathy: (looking forward, not to Ted) No. (laughter)

Intheinteractional analysesof transcript segmentsin the chapter, | have adapted
aset of framing termsfrom Toulmin (1958) for naturally occurring argumentation.
Theremainder of the analytical language is drawn from a diverse body of interac-
tion analysis studies (Duranti & Goodwin, 1992; Goodwin & Heritage, 1990;
Goodwin, 1990). Based on Toulmin's framework, when a participant represents a
possibledesignfeatureintalk or visual representation, | will refer tothisasadesign
proposal. | will call those design proposalsthat are recognized by someone elsein
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talk or action recognized design proposals. Those proposal sthat are al so accompa-
nied by grounds are called grounded design proposals. In this segment, Ted pro-
duced agrounded design proposal (Turn 3) that combines a possible feature of the
station (“two stories”) with aground for that feature (“limited space”). Although
Ted did not further specify what he meant by “limited space,” he likely was refer-
ring totheonly areaconstraint theteamswererequired to satisfy: that the station fit
within aregion 17 by 30 meters. In soliciting feedback to the grounded proposal,
Ted clearly tried to begin a collaborative design conversation (Turns 1, 3, and 6).
However, Ted was resisted in this attempt. Evidence for this resistance includes:
Cathy’ s nonresponse to his question in Turn 3, her bald negation in Turn 11, and
Marsha sredirectionsin Turns 2 and 5. These are forms of response that in every-
day interaction are conventionally heard as disaffiliative (Goodwin & Heritage,
1990) or, in other words, are ways of interacting that erode rather than build up an
interaction. In addition, Turns8through 11, although not audibleenoughto betran-
scribed accurately, quiteclearly involveajokeat Ted’ sexpense, aninferencel base
on the bodily orientation of Marsha and Cathy with respect to Ted and on their
laughter that followed their remarksto each other. In summary, this segment shows
how Ted made an initial move to establish a design conversation and how his at-
tempt failed.

With this example, the team appears to be some distance from encountering
emergent math problems as they design together. However, they were not so far.
Shortly thereafter Ted reintroduced a design idea he had been talking about during
the prior week: the bavarium. Unlike in the prior segment when Ted was rebuked,
this segment (Segment 1.2, following) illustrates abeginning to a.collaborative de-
sign conversation between Ted and Marsha, thus setting the stage for emergent
mathematical problems.

Segment 1.2

1 Ted: (aninaudible sentence about the bavarium) And weall agreeit should beonthe
first floor right? (looking at Marsha, who nods begrudgingly)

2 Marsha: (Following afacial exclamation of excitement, her hands come forward
over asheet of paper in her open binder and she leansin to speak to Ted.) | think
(hands come together to form an enclosed volume in the middle of the paper) it
should beright inthe middle of everything. (She gestures aperimeter with fingers
from both hands.)

3 Ted: Oh, yeah, yeah, yeah. (Hishands cometogether to makean enclosed volumeas
Henry hands something to Cathy in the line of vision between Marsha and Ted.
Marsha leans under Henry's arm to see what Ted is doing. Inaudible.)

4 Marsha: (Henry pullsback.) And it’slike central heating (accompanying gestures)
you know. (audibly excited) And so like you have like glass screen doors to ob-
serve the presence of the living environment.

5 Ted: That'sagood idea.
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Inthissegment, Marshaand Ted did two important thingstogether that reshaped
their working relations and the space where these were enacted. First, unlike Ted's
prior attempt to begin adesign conversation (Segment 1.1), this attempt is not re-
buked; instead, Marshabuilt on Ted'sinitial proposal for the bavarium by tacitly ac-
cepting“it” (i.e., thebavarium) asoneof the station’sdesign featuresand proposing
itslocation: “rightinthe middle of everything” (Turn 2). The second important fea-
ture of their interaction involved how they oriented their bodies in such away to
show each other that they were designing together. Following Ted' senthusiastic af-
firmation of Marsha's proposal (Turn 3), he produced a gestural animation that
Marsha bent her body to see (description italicized in transcript) beneath Henry
who happened at the moment to be reaching in front of her for some materials on
thetable, thereby recognizing his design proposal. What is clear in thissegment is
what | have called elsewhere an intersubjective media space (Stevens, 1999) was
developing for the new participation structure of collaborative design.

Because Ted still controlled the paper and he had affirmed Marsha's idea as
“good,” it fell to him to solve the emergent mathematics problem she had posed of
putting the bavarium “right in the middle of everything.” “ Everything” at thispoint
washot much, as Ted had only drawn the perimeter of their building to the maximal
allowable dimensions of 17 by 29 meters.> This problem, and Ted's solution, were
relatively simple and straightforward, drawing on what was clearly an existing
mathematical resource, counting. Because the representational space was
prestructured as a grid (i.e., graph paper), it afforded counting. To place the
bavarium, Ted repeated the same strategy to locatethetwo setsof parallel sidesof a
rectangular bavarium. Countingin an equal distance from the edgesof thestation’s
perimeter, Ted drew the two sets of sidesand joined them to form arectangle. In so
doing, he had realized Marsha'sideaof putting the bavarium right in the middle of
everything.

Werethisexample offered as evidence of mathematical sophistication by Ted, it
could easily affirm theimage of PBM asintellectually trivial. With anarrow focus
onthe content of the mathematics al one and the demandsthe problem placed onthe
student, the intellectual challenge Ted faced was small. However, a wider view
shows the central importance of this problem and challenges the singular narrow
focus on content alone. Although some problems are worthy of solution because
they challenge students to learn new and powerful mathematical ideas, others are
worthy because they move aong collective endeavors. In this case, Ted solidified
the fragile working relationship with Marsha, the team member who also was ac-
tively pursuing aninterest inthedesign, by solving her problem. Recall that shehad
done something similar just beforewith hisdesignidea, thebavarium, by implicitly
accepting “it” asafeature and proposing itslocation. By thisanalysis, itistherec-
ognized design proposals that were the connective tissue that set the stage for the
designers to act as each other’s agents in these early moments of the projects. In
turn, these acts established aworking rel ationship between Ted and Marshaas col-
laborative designers and set the stage for subsequent mathematical activity to
emerge. So despite being ostensibly mathematically trivial, this first emergent
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math problem had enormous social significance and was developmentally essen-
tial for later mathematical activity.

Data Exemplar 2: “Can You Make It Circldike?”

An enduring question about PBM education concernstherole of theteacher. As
isnow widely acknowledged, when studentsare meant to find, formul ate, and solve
mathematical problemsthat emergeintheir inquiries, the stereotypical didacticim-
age of the math teacher isof limited use. But what isher or hisrole?1sit to stay out
of the students’ way? To help them structure problems? To offer tailored hints or
techniquesfor solving problems? To offer general information to the whole class?
To synthesize ideas across a classroom of distinct teams and distinct projects? In
my ethnographic observations, all of these modes are appropriate at different mo-
mentsin the span of aproject of thiskind. Inthisexample, | consider an instance of
how theteacher, Ms. L eoni, participated in an emergent mathematics problem gen-
erated by the LIFE design team. From my perspective, this episode exemplifies
some of the promise that this sort of classroom holds for teaching and learning
mathematicsin aproject-based way, whileat the sametime exemplifying one of the
primary challenges.

A few days after the LI FE designers placed the bavarium “right in the middl e of
everything” and had been designing station featuresaround it, they reopened acon-
versation about the bavarium and sought to further specify its features.

Segment 2.1

1 Ted: Marshal was thinking, maybe the bavarium could go up all theway. Both sto-
ries, instead of staying on the bottom—

2 Marsha—O0o0o0, that'd be pretty cool it'slike the airport (inaudible).

3Ted: Doyou know what | mean? Doyou likethat idea? And the roof of the bavarium

can beattached to theroof of thething. Soyou can draw, soyou canlikeplanttaller
stuff, and plusyou can haveit also two storiesin the bavarium, kindalike awalk-

way—

4 Marsha: You know what would be cool if it was round. (Gestures a circle on the
plan.)

5 Ted: Whoa, ho, ho, ho. (She smileswidely at his assessment.)

6 Marsha: Then how do we draw that? And we need stairs too.

7 Ted: Na, hey, if it'sgoing to be round, have those round stairs (gestures aspira up)
going up like this.

8 Marsha: Oh my gosssh (hearable as an evaluation of how hard this will be).

9 Ted: That'd be coal. It'd like match.

Over the courseof thisbrief segment, Marshaand Ted jointly producethe* cool”
ideaof making atwo-story, round bavariumwith circular stairsto“ match.” In mak-
ing thisproposal, they proposed two possi ble emergent mathematical problems: (1)
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replacing thenearly squarebavariumwithacircular one, and (2) designing and rep-
resenting stairsthat spiral around thecircul ar bavarium. Beforefurther formulating
the problem, Ted and Marshacalled on Ms. L eoni with aquestion asshewascircu-
lating in the classroom.

Segment 2.2a

1 Ted: (to LL) Can we make it be round? (gestures)

2 Ms. Leoni: Why not? (As sheanswershim, Marshawho waslooking at LL looksat
Ted.)

3 Ted: Well how would wedo that?Would welike have acompassin there (pointing to
the plan and gestures aradial motion) and,

4 Ms. Leoni: You know what will be difficult iswhen you try to put it on to the com-
puter (pointing at the computer)

5 Ted: Yeah, that’swhat | was thinking.

6 Ms. Leoni: Yeah, but there is away, you could make it more circular-LIKE. How
would you do that? To be more circlelike?

There are anumber of points to be made about this segment. First, in bringing
thisemergent mathematical problem to theteacher, we are offered animage of how
differently ateacher can participatein thisrole compared to atraditionally didactic
one. Inthiscase, shehelpsthem to formul ate adoabl e problem (cf. Fujimura, 1987)
that had emerged in their own design project work. Onebasisfor her reformulation
of circular to“circlelike” isan upstream expectati on the studentswere aware of but
have apparently forgotten; they would have to put the hand-drawn design plan into
the computer design program and curved shapes could not be represented in this
software program. Artfully she used this do-ability constraint that Ted recognized
(Turn 5) to pose an important mathematical question about circlelike shapes com-
posed of linear segments. For those familiar with the calculus, approximating
curvilinear shapes with rectilinear sesgmentsis afoundational idea. Ted answered
Ms. Leoni’s question thisway:

Segment 2.2b

7 Ted: You could haveit go, ching, ching. (These sounds go with gestures around his
head that indicate linear segments of an enclosing structure.) Kind of likean octa-
gon. (Ms. Leoni and Marsha nod in affirmation.) Cuz the glass isn't round, so
whether we like it or not, it's not going to be perfect.

Ted provided the key insight that both Ms. Leoni and Marsha affirmed: aregular
n-gon approximates a circle. In addition to articulating a key mathematica idea,
equally important acrossthiscollaboratively produced reformulation (Turns1to7) is
how many realms of meaning it connects. At the same time as an important mathe-
meatical ideais expressed (i.e., n-gons are circlelike), concerns are addressed about
both what is represented (i.e., “glass isn't round”) and how it is represented (i.e,
“how do we draw that” and “difficult to put on the computer”). In uniting practical,
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representational, and mathematical considerations, this episode is an exemplar of
the clear promise of a PBM classroom. But the story continues.

Followingtheir collectivereformulation of the problem, Ms. Leoni left theLIFE
designersto try to solveit. At this point, Marsha had control of the paper design.
She started by erasing the existing bavarium on the floor plan and drawing (using a
ruler) three contiguous equal -length segments as possible sides of a polygon, fur-
ther evidence that regularity was part of their intent. At this point, Ted made an ob-
servation that this approach would produce “ excess space,” or what Marshawould
shortly thereafter call “wasted space.” Theregion of wasted spacetowhichthey re-
ferred isrepresented in Figure 1.

The recognition of the wasted space was a recognition of an unintended conse-
guence (Schon, 1990) of another design objective. Asaresult, the designers aban-
doned the attempt to place apolygon and sought to placeasquare. A square, whilea
regular polygon, isarather poor approximation of acircle and wasrelatively easy
for Marshatore-place. Inthislight aninterpretation of thisevent isthat an opportu-
nity for the more complex mathematical work of constructing aregular n-gon was
lost. This interpretation of events is an important one (which | will consider
shortly), but it oversimplifies the situation.

Mathematics problems that emerge are not always solved (in the conventional
sense). Sometimes they are resolved by making a conventional solution unneces-
sary through a consideration of different accountabilities that bear upon it or be-
cause a different socio-logic (Coulter, 1989) is operative than an academic

Figure 1.
Studentsidentified the triangular region as*wasted space” and abandoned the
contruction of then-gon on thisbasis.
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mathematical one (cf. de la Rocha, 1986; Lave, 1988; Stevens & Hall, 1998;
Stevens, 1999). Such resolutions are a feature of professional engineering design
competence (Hall & Stevens, 1995; Stevens & Hall, 1998), and Schon’ s analyses
have found responsiveness to unintended consequences to be ameasure of agood
architectural design. In other words, these students’ actions can be interpreted as
sensiblenot only within their own framing of eventsbut from an external disciplin-
ary perspective on design competence. In addition, the concept of avoiding
“wasted space” became an enduring design heuristic for these designers, one that
was affirmed when professional architects visited the classroom and critiqued the
student teams' designs. As one of these architects said to half the studentsin the
class, “[In architecture], there’ s no such thing as leftover space.”

What | am seeking to keep in the picture hereistherelevance of both the mathe-
matical and the design considerations to these students' self-organized activities.
Thequestionablealternativeisto treat the design projectsaslittle morethan acover
story for creating math problems. Thisis problematic analytically becauseit treats
aparticular type of mathemati csas paramount whenit isnot for the participantsand
when something elseclearly is(e.g., design functionality). Theeffect of discarding
the carcass of the project to remove the white meat of mathematicsis to diminish
the authenticity (in any sense of theword) of everything about the project (e.g., de-
signing, collaborating) that is not mathematical. Reflexively, this can diminish the
authenticity of the mathematical activities themselves.

Notwithstanding this important analytical point, Data Exemplar 2 does repre-
sent a missed opportunity in which an interesting mathematical problem once
found by students was subsequently lost, even though it was lost for the good rea-
sons described earlier. As mathematic educators at al levels know, it is extremely
difficult to create the conditions for students to pursue genuinely applied mathe-
matics problems. What this example showsisacommon tension in PBM between
thedesireto keep mathematicsat or near the center of student activity and thedesire
to alow projects to be real enough in their organization to allow mathematical
problems to emerge or not.

Oneadvocatefor keeping mathematicsnear the center of student activity can be,
and in this instance was, the teacher. Readers may wonder what happened to Ms.
Leoni following her initial participation in the formulation of the interesting and
doable math problem. Did shefollow up? Did she return to affirm the value of this
problem as mathematics or to help formulate sol ution strategies? After she helped
the students begin aredesign of the bavarium as circlelike, Ms. Leoni was thrown
back into the hurly-burly of the wider classroom. The period was about half over
(i.e., 20 minutes remained), but she never was ableto return to thisteam. Why was
this? Her answer istypical and mundane but nonethel essimportant. Demandsfrom
the other seven teams and accountabilitiesto maintai ning the bureaucratic machin-
ery of the classroom took precedence. When | asked her about it during adaily de-
briefing that followed each class, shesimply said, “| didn’t havetime” Andinsome
sense, the familiarity of these events and this response leave nothing further to say
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except to consider how and if things should be different. These are central topics of
my remarks later in the chapter.

Data Exemplar 3: “ That Hallway’s Way Too Big”

This example represents an instance of competitive sense-making centered
around a disagreement between Marsha and Ted about whether a proposed design
featurewould be“toobig” or not. Asinthe previousdataexemplars, the mathemat-
ical practicesthat are enacted asmathematicsare not particul arly sophisticated, but
they are decisivein settling the students’ disagreement through persuasion and al-
tering the course of collaborative action.

Inthisexemplar, thedesign wasmuch further along than inthefirst twofirst exem-
plars, and students were considering arevision based on some feedback they had re-
ceived when professional architects had visited. The architects had questioned the
team’s decision to locate a laundry room near the front entrance of the station,
because a laundry room is not a central function in a research station and therefore
should belocated in aless prominent part of the station. In this segment, the students
areinthemidst of deciding whereto movethelaundry roomandwhat to put initsplace.

Segment 3.1

1 Ted: | know but, the laundry room just kinda doesn't fit.

2 Marsha: Well we're moving it, we already decided THAT.

3 Ted: | know but we're trying to figure out what we want to put in.

4 Marsha: NOT a computer room (throws her logbook up for emphasis).
5 Ted: What are some of your suggestions?

6 Marsha: (no response)

Although this segment begins as a cooperative sense-making situation (“we're
moving [the bavarium], we already decided THAT” (Turn 2), it quickly turnsinto a
competitive one when Marsha anticipates and rejects a previous proposal of Ted's
(“a computer room”). In response, Ted challenges her to produce an aternative
(Turn5). Marshadoes not respond with words but draws an alternative. Using trace
paper over the top of the existing design, she proposed eliminating the laundry
room and expanded the contiguous library and hallway (Figure 2).

When Marsha showed her proposal to Ted, he challenged it.

Segment 3.2

1Ted: That’sonehell of ahallway. (Looksat her trace drawing for ashort time.) That
would never work. That hallway’s just way too big.

2Marsha: Noit'snot, you could always put likea(tree?) onit and you can put abench
there.

3 Ted: What the hell (pointing, possibly counting over the trace).
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Figure2.

A composite figure of the base drawing and the trace used by Marshain making
her proposal. The base drawing isblack and thetracelinesare gray. Notice that
Mar sha hasredrawn much of the station, with changes proposed in the lower right
portion of the plan to the entry, thelibrary, and the front door. Her proposal would
eliminate the laundry room and the closet near the front door.

g [-XT 1o xH]

4 Marsha: We're taking out the entire laundry room. | just expanded the library and
just made the entrance bigger.

5Ted: Thatisonehell of abigroom. (Pointstolibrary.) That'sliketwicethesizeof the
bavarium and the bavarium’s bigger than this whole room.
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In this segment, Ted began a mathematically grounded argument against Mar-
sha’'snew proposal. First, he offered an ungrounded challengeto the proposed hall-
way as"“way too big.” Second, he grounded a challengeto the size of the expanded
library (Turn 5) withacomplex quantitativerelation that compared the proposed li-
brary’ssize(i.e., itsarea) to twicethesize of thebavarium. Inturn, thisquantity was
compared to the actual dimensions of the classroom they currently occupied.

Marsha, however, was not persuaded by either of Ted'schallengesand called on
him (as he had done to her) to materially produce an alternative. With paper and
tracein hand, he spent anumber of minutestrying to do so but could not producean
alternativethat satisfied him. A short timelater another team member (Henry), who
had been looking on and growing impatient with Ted, held up Marsha's proposal
and challenged Ted to tell him “what’s wrong with this”7

Segment 3.3

1 Henry: What are the changes?
2 Ted: Nothing so far.
3 Henry: (Henry picks up Marsha's proposal.) What's wrong with this?

Because Ted had not produced an alternative and was clearly stymied, hereiter-
ated hischallengeto the size of the hallway proposed by Marsha. Though hedid not
have an alternative, this time he offered grounds for his challenge to her hallway
proposal. After positioning thetraced revision over the grided floor plan and count-
ing the units on the grid, Ted pursued his argument.

Segment 3.4a

1 Ted:—That hallway will never work though. (Stretches fingers across its length.)
It'sjust—
2 Marsha: Why not?

3Ted: It'stoo damn big. It’shuge. Here. (Picks up pencil.) How long do you think this
is Henry? (Points with pencil to opening.)

4Marsha: (leaningin) That’sameter (pointing to thewidth of the previoushallway on
the plan).

5 Ted: So we figure, one, two, three, four five, six, seven.

6 Marsha: Now if you look (using the graph paper plan) at the dotsok. | just opened it
up like this (gesturing over).

7 Ted: Soit'd be about eight.

8 Marsha: And that’s a closet now. (Points to a region on the plan.)
9 Henry: (to Reed?) What do you think? Hey Reed (inaudible).

10 Ted: Let's see, where's ameter stick? (Gets up to fetch one.)

11 Marsha: It's going to be areally big nice hallway.

Ted retrieved ameter stick and returns to the table.



124 REED STEVENS

Segment 3.4b

12 Ted: Just to say, Marsha. That isameter (holding it up on the desk momentarily).
Eight meterswould be (laysit down on the floor) there, from right here. (Now he
kneels on the floor with stick laid down.) One. (Slides stick.)

13 Marsha: (reaching for her trace plan) Fine, | could alwaysfix it.
14 Ted: Two. (He moves along the floor one more meter.)
15 Henry: (with pencil poised over paper) We extended the hallway right?

16 Ted: Marsha, this room (has reached an eight count, points from one end to the
other) is eight meters. It would never work. (walking back) How can you have a
hallway, the length of this room? It's huge.

In this extended segment, Ted's mathematically grounded argument eventually
persuaded Marshathat her hallway wastoo big. Marshacapitulated in Turn 13 with
the succinct announcement that “I could always fix it” and the retrieval of her
sketch. Ted's argument was, in fact, so well built up for Marsha that she, seeing
where hisdemonstration was|eading from almost the moment when he kneeled on
the floor and began counting meters across the classroom, conceded the contested
point just as he had begun the demonstration (Figure 3).

Figure 3.
Ted’s argument succeeds when his demonstration leads to Marsha’s (begrudging)
acknowledgement of his point and theretrieval of the sketch for repair (Turn 12-13).
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What had Ted's argument involved? First, he had superimposed an unmeasured
space on another with a unitized grid. He used this superimposition to determine
the scaled length of the hallway and then had used that number to lay out the actual
length in the classroom. By showing Marshathat her proposed hallway was bigger
thanthelong dimension of a“room,” he had effectively challenged the proposal for
a“hallway.” Again, the mathematical depth of thisinstance may appear minimal.
Although true from one perspective, we may wish to valuethisinstancefor itstype
not its degree, asit is an instance of mathematical grounds being offered and ac-
cepted asabasisfor settling adisagreement. Whereas shewas not persuaded by un-
grounded challenges, she was convinced by this more mathematically grounded
one. Marsha’sreception of Ted' sargument wasthereforejust asimportant ashisca-
pacity to makeit asit indicatesthe devel opment of shared practice between them of
settling disputes discursively using mathematical resources.

In addition, abroader perspective might certainly recognize hereaproto-form of
mathematical argumentationinthediscipline’sconventional sense. By proto-form,
| am referring to aform that can be seen asan early version of arecognizable disci-
plinary practice.® To make this proto-form recognizable to the mathematically
enculturated, | have abstracted Ted's challenges (to the hallway and to the library)
asfollows:

Let usassumethat yisclearly toobig (yisthisroom’sareaor itslong dimension). I
X >y (xisthe hallway’s length or the library’s ared), then x must also be too big.

For some, mathematics is seen as continuous with less formal reasoning prac-
tices.? For mathemati cs educators and mathematiciansof asimilar inclination, I of-
fer the (hardly unbiased) suggestion that professional ethnographic and
interactional analyses such asthis one (see also Boaler, 1997; Cobb, 1995; Hall &
Rubin, 1998; O’ Connor, Godfrey, & Moses, 1998) have agreat deal more validity
than amateur blitzkrieg ethnographies (e.g., Wu, 1993) for answering questions
about whether project-based classrooms foster the devel opment of mathematical
proto-forms and prepare students for afuture in the discipline.

Data Exemplar 4: “1t’s Not Our Problem You’'re Dumb”

Thus far, my analysis has focussed on mathematics problems that emerged in
thecourseof student design. Inthisdataexemplar, | analyze eventsinvolving one of
the assigned mathematics problems. Asmy analysis seeksto show, the contrast be-
tween events surrounding emergent and assigned problems wasfairly stark and is
the basis for an ethnographically grounded distinction between the emergent and
assigned problems as different contexts for the organization of student activity
(Stevens, 1999). In turn, this raises the question of what accounts for the contrast.
Following my analysis of this assigned problem, | offer a possible explanation of
this difference in terms of the issue of who counts what as math and when.

Inthe datathusfar presented, afocus on emergent problemshas meant largely a
focus on the collaborative activities of Ted and Marsha, because divisions of labor
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emerged within the team in which these students became the designers and Cathy
and Henry became responsible for other parts of the project (Stevens, 1997;
Stevens, in press). In this assigned problem, Cathy plays a much more significant
role because, within the overall emergent division of labor, Cathy became the cen-
ter of responsibility for and production of theassigned problems(Stevens, 1999).

This segment involves the second problem the students had been assigned. The
first had been assigned to all theindividual studentsand involved converting atable
of Fahrenheit temperature conversions to Celsius. The second problem was as-
signed to teams, which meant that asingle product would bethe source of the grade
for all theteam members. Thefirst problem al so was assigned before designing had
actually begun, and thus students did not yet face major competing demands on
their time. The events described heretook place 3 days after the events of Data Ex-
emplar 2 (redesigning thebavarium asapolygon). During these 3 days, Marshaand
Ted had continued to design together, and Cathy and Henry had spent most of their
time translating the hand-drawn design into the computer.

The first transcribed segment begins just after Ms. Leoni handed out the Area
and Perimeter problem (Figure 4) to the teams. When Ms. Leoni handed out the
Area and Perimeter problem, she told the students that the problem needed to be
turned in for grading at the end of class.

Ms. Leoni set theday’seventsin motion by pairing studentsand having onepair
continue with ongoing project activitiesand the other pair begin the assigned prob-
lem. She explained to the class that she would call for aswitch inthe middie of the
class period so that both pairs of students would have a chance to work on the as-
signed area and perimeter problem. She reminded the students repeatedly that the
assignment would be collected and graded at the end of the period. Asaresult of the
pairings made by Ms. Leoni, Marsha and Cathy were sent to the computer and the
boys remained at the table to work on the assigned problem.

After Ms. Leoni released the studentsto work, the girls moved to the computer
and Ted read the area and perimeter problem. After about a minute, Ted set the
problem aside and began working on the floor plan design that he and Marshahad
worked on during the 3 prior days. At this point, Henry was for the moment at a
friend’ s table across the room. While Henry was away, Cathy returned to the table
toretrieveapaper and saw that Ted wasnot working ontheareaand perimeter prob-
lem.

Segment 4.1

1 Cathy: (returning to thetable) You're supposed to do this. (Shakesthe areaand per-
imeter work sheet at Ted.)

2 Ted: We're working on the top floor.

3 Cathy: No, we have to work on that (pushes finger onto the work sheet).

4 Ted: I'm not good at that, but I'll try. (Cathy leaves.) (Ilow) Never have been, never
will be.
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Figure 4.
The Area and Perimeter problem.

AREA AND PERIMETER

Arg aren and perimeter reluted? If su, how? You get a chanee to explore and find out.

l Draw two foar plans that have exactly How is it possible that two figures with
the same floor area bul different wall the same area have different
penmeters. perimeters?

3 Pick a floor area between 4 and 20 square units. Play around with different shapes of buildings that
have that area.

4 Make a chart or poster that s/omwsthe answer fo this gueslion;
Assume that you can only maks “right angle” buildings with whole number length walls, Then what
are ALL the different perimeter measures you can get for your chosen floor area?

s Have a poster fair. For each group's poster, make a conjecture about a mathematical nile or
patiern thal you see relating area and perimeter. Your conjecture can be about one poster, or about
all | the posters. Here are some examples of conjectures:

The perimeter s always larger than the area,
The perimeter can never be an odd number.

F¥I

’ A conjecture is your best guess, based on evidence. You don't know for sure
% that it is true, but you have reason lo think it might be.

6 7

In your group, pick a conjecture and Iniyour iog:

make an argument for or against it. « Write out one of your conjectures
Keep doing this until you have 3 and the argument that goes with it.
conjectures with arguments FOR » Write a paragraph explaining how
them, the conjecture could be used to help

youmake a better ArchiTech design.

5 Ted: (Looks at the work sheet for another minute and then Henry returnsto the ta-
ble.) You dothat (hands paper and work sheet to Henry) and I’ [l work onthis(picks
up ruler and floor plan paper).

6 Henry: (Henry looks at papers.) What the?
7 Ted: What they said to do.

The preceding segment isa complex instance of the work of dividing labor and
attributing responsibility within the team. In Turn 1, Cathy directs Ted to what he
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(“you™) asanindividual issupposed to bedoing. Ted respondsin Turn 2 that heand
Henry (“we") are working on the floor plan. In response, Cathy tells him what the
team (“we”) hasto work on. In responseto this stated accountability, Ted accepted
thetask, sayingthat he (“1”) whilenot good at that would try. When Henry returned,
the pronouns continued to shift with Ted passing the work sheet to Henry, instruct-
ing him (“you”) to“dothat.” When Henry askswhy (Turn 6), Ted referstowhat the
girls (“they”) “said to do.”

Wheress the previous data exemplars were more straightforward instances of
joint action—representing either cooperative or competitive sense-making—thisex-
emplar is complicated, beginning with Ted pushing the assigned problem away, Ca-
thy pushing it back toward him, and finaly Ted pushing it toward Henry. What
explains these polarities? My answer to this question is that both Ted and Cathy
counted this problem as mathematics but attributed very different meanings to this
recognition. My analyses interpret Ted's utterance (Turn 4) as referring to school
mathematics. Though only aseventh grader, Ted’s school experienceshad led himto
believe not only that he “never hald]” been good at what he recognized as math but
that he “never w[ould]” be. As aresult, Ted resisted working on this problem.1°

Cathy, like Ted, clearly counted the areaand perimeter problem as mathematics.
Because she was regarded by herself, her peers, and her teacher as good at math,
Cathy was concerned (as the next segment shows) about how Ted’s work on the
problem would reflect on her standing and her grade. The following segment oc-
curred after Cathy, who had been monitoring the progress of the boys, returned to
thetable.

Segment 4.2

1 Cathy: You guys have to work on the area and perimeter (inaudible word).

2 Henry: (toward both girls) He's not working with me.

3 Ted: (toward both girls, pointing at the design) I’ m working on this story.

4 Marsha: It's due TODAY.

5 Ted: Yea.

6 Cathy: We're being graded and if | get an “F” onit, I'm going to kill you.

7 Ted: Good luck. (Helooksdownto hisfloor plan assheturnsback to thecomputer.)
8 Henry: Man, just for-get it. (Puts the area and perimeter papers in the folder.)

As in the previous segment, Cathy offered a moral admonishment (Turn 1).
What was different about this admonishment was that Henry now stood accused
with Ted (“you guys’) of not working on the problem, to which Henry responded
by laying blame on Ted for not working with him (Turn 2). Thiswas followed by
Marsha stating the urgency (Turn 4) of the deadline, Cathy issuing a more severe
threat (Turn 6), Ted resisting further (Turn 7), and Henry displaying frustration
(Turn 8). The girls returned to the computer for a short time, but then conflict be-
tween Cathy and Ted continued. Cathy again returned to the table and issued a di-
rectiveto Ted (“you're not working on [thefloor plan]”). In response, hereiterated
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hisincompetence, “I’ m not good at the other area and perimeter thing.” Given the
repeated nature of thisconflict, theteam wasclearly at animpasse. The outcome of
this conflict was, however, different from the previousinstance, with Ted propos-
ing ashift inthedivision of labor wherein the girlswould work on the problem and
he and Henry would move to the computer. Thisinteractional move wassimilar to
hisattempt to del egatethisproblemto Henry in that he acted to seethat the problem
would be completed by someone other than himself.

Thegirlsaccepted the proposed changein thedivision of l1abor, seemingly based
on ashared awareness that otherwise the problem would not be completed by the
end of the period. Asthe boys moved over to the computer, the girlsreturned to the
table, read the work sheet together quickly and announced to each other that they
didn't understand how to do it either. Marsha then went to request help from Ms.
Leoni but she was busy with other students. Marsha returned to the table and was
followed shortly thereafter by Ms. Leoni, who had apparently seen Marshawaiting
to ask aquestion. When Ms. Leoni arrived, she asked theteam if they had donethe
assigned problem.

Segment 4.3

1 Ms. Leoni: Did you guys do your [area and perimeter problem]?
2 Marsha: We just got off the computer and they didn’t do anything.
3 Ms. Leoni: Uh-oh. (Henry starts to say something, inaudible.)

4 Marsha: Well he (pointsto Henry) was doing something and he (pointsto Ted, who
was now waiting for the group’s printouts) wasn’t doing anything.

Two things Marsha said in response to Ms. Leoni’s question were not literally
truefrom my perspective asan observer and subsequent analyst of theseevents. Ted
had done “something,” working the entire time on thefloor plan, and Henry did no
more than Ted on the assigned problem, though Ted had been the audible spokes-
person for not doing it. Marsha had been placed in a position by the teacher of ac-
counting for the team'’s prospective failure to complete the assignment and had
blamed Ted. And whereas Marsha's claim that Ted “wasn’t doing anything” was
not literally true, it wasin a sense organizationally true because Ted was spending
timeonanactivity (i.e., designing) that did not count at that moment to anyoneelse
in the organization.! Ted may have even shared thisinterpretation, because he did
not defend his design work when the teacher—the organization’s local author-
ity—was present (Segment 4.3) as he did when he was talking only to his team
members (Segment 4.2).

When Ms. Leoni left the team with an injunction to completethetask in there-
maining time (13 minutes), further recriminationswere directed at Ted asthe girls
realized the pressure they faced to quickly finish and turn in the assignment.
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Segment 4.4

1 Cathy: Ok, now we have to do, we have to do al this[the area and perimeter work
sheet] heckafast, because | don’t want to get a, areally bad grade.

2 Marsha: (turning toward Ted at the printer) Uh, look what you did? (Growls and
shakes her body.)

3 Cathy: | know. | told you guysto work on it with somebody—
4 Henry:—(pointing at Ted, who'sstill out of frame) It washim. Hedidn’t helpme.
5 Marsha: OK, then we'll blameit on him.

During the next few minutes, the girlsstruggled to render the problem doable as
the grading deadline approached. Henry, perhaps feeling some cul pability for the
situation the team found themselvesiin, | eft the table to solicit help from hisfriend
Dinesh at anearby table. A moment later, Henry and Dinesh returned together, and
Dinesh, prompted by Henry, delivered a piece of succinct direction instruction on
how to do the assigned problem.

Segment 4.5

1Dinesh: (leaningin, speaking quickly) What you doisyou takeall these shapes, you
cut em out, and set em on apiece of paper like this (puts hand over a piece of con-
struction paper).

2Marsha: That'sit?I candothat. (Marshaand Cathy quickly begin cutting shapes.)

What Dinesh had provided was the baldest form of instruction, aform that al-
lowed Marsha and Cathy to complete only asuperficial version of the assignment
under the severetime constraintsthey now faced.12When Ted returnedto thetablea
moment later after collecting someteam printouts he saw hisfellow team members
at work and proposed to help. It was, however, too latefor Ted and Marshadelivered
asummation of who Ted had becomefor her, anidentification that would “ stick” to
Ted with respect to assigned mathematics problems.

Segment 4.6

1 Ted: How do you want me to help you? How?

2Marsha: See. That'syour problem, you don’t know what to do and you can’t help us.
It's not our fault you're dumb.

3 Ted: Yeah.

Ted'sfind affirmation of being “dumb” was not an ironic response; audibly he
shared the identification. For the purposes of my remarks about this complex seg-
ment, | will stipulate and hope the reader will agree that the identifications of Ted
(by himself and others) throughout the segment are unfortunate. Also unfortunate
were the experiences of Cathy and Marsha, who cared about their grade on the as-
signment but werelargely powerlessto control itsfate. These unfortunate outcomes
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raisethefollowing questions: (1) what accountsfor them?and (2) why doesthis seg-
ment contrast so significantly with those aready described around the emergent
problems, especially with regard to the relationship between Ted and Marsha?

With respect to the first question, thereis surely plenty of blame that could be
distributed acrossthe student team and perhapsto theteacher aswell for how theas-
signment was made. In other words, one account of this event might appeal to the
contingent details of who participated and how thisproblem was enacted. This per-
spective, although in part true, obscures amore general point, because across each
of the participants the recognizability of this problem as school mathematics was
not in question. It was a piece of work to be completed (or not), turned in, and
graded as mathematics. At just 12 years of age, these students were aready well
enough enculturated into school mathematicsto recognizethe assigned problem as
aninstance and to behave accordingly. For Ted, behaving accordingly meant avoid-
ing mathematics because of his own self-identified incompetence. For Cathy and
Marsha, behaving accordingly meant saying whatever they felt necessary to and
about Ted to assure agood grade on aproblem that counted as mathematics. For the
teacher, behaving accordingly meant deploying arecognizableinstance of mathe-
matics, packaged more or less as awork sheet in the curriculum, to assembl e stu-
dent grades as a midterm grading period approached.

These ways of participating in the cultural practices of school math by students
and teachersalike may surpriseno one. What may surprise somereadersisthe con-
trast between the relationships among students (e.g., Marsha and Ted) across the
two types of problems in the same mathematics classroom over just a few days.
Whereas Marsha and Ted were antagonistic around this assigned problem, they
worked collaboratively around the emergent problems that arose in their design
work. And when they disagreed and engaged in what | have called competitive
sense-making (asin Data Exemplar 4), they settled their disputes with arguments
grounded in mathematical and design considerations rather than in attributions
about their respectiveincompetence asindividuals. In other words, and my broader
analyses (Stevens, 1999) support this generalization, the differential
recognizability of problems as mathematics invoked differential ways of interact-
ing with each other. And, simply put, theways studentsinteracted around the emer-
gent problems accorded better with educational values for collaboration and
sociable discourse (Lampert, Rittenhouse, & Crumbaugh, 1996).

Before proceedingwith thisanalysis, | want to forestall (but not dismiss) twoin-
terpretationsof thecontrast | have drawn between emergent and assigned problems
as different contexts for student activity: (1) the area and perimeter problem was
just a bad mathematics problem, and (2) the distinction between assigned and
emergent can be collapsed into adistinction between graded and not graded. Of in-
terpretation 1, it can be argued that the underlying mathematical content (i.e., the
general relationship between areaand perimeter) could easily have beenrelevant to
student design work. Because heat loss was one of the considerations students
faced (asthey were designing aresearch station for Antarctica), an understanding
of this general relationship could have allowed them to maximize floor area and
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minimize perimeter, thereby minimizing heat loss and thereby minimizing cost.
Thisis precisely the kind of complex, quantitative relation that architects manage
(Stevens, 1999) and that we might wish to see among students doing projects like
these. Infact, astrong affirmation of thisidea' s utility was provided when practic-
ing architectsvisited the classroom and, whil e critiquing student designsindepend-
ently, identified thisissue of therelation between heat lossand perimeter. What this
means is that the problem itself cannot be blamed for the contrast.

Of interpretation 2, grades were surely relevant to the interactional trouble that
occurred in the student team around the assigned problem. However, my analyses
argue against collapsing the distinction between assigned and emergent problems
into thedistinction between graded and nongraded work. For example, Ted did care
about his grades at times and nearly aways he cared about how his work was as-
sessed. This was particularly true when professiona architects visited and re-
viewed their design work. Ted also explicitly identified math, not grading, as the
reason for why he resisted working on the area and perimeter problem. He knew
that the problem was going to be graded and tried to delegate it because of this; it
was math he was avoiding, not grading. With respect to the higher performing stu-
dents such as Marsha, what counted as math may have been more equivalent with
what counted for agrade. However, collapsing emergent into nongraded would fail
to explain why Marshainvested so much energy and collaborated so fully with Ted
on the emergent design and mathematics problems. If these were only nongraded
work to her, she would not have bothered.

It is beyond the scope of this chapter to further analyze the multiple episodesin
which Ted positioned himself or was positioned by histeam members asincompe-
tent or trustworthy with respect to the assigned math problems. However, | want to
avoid freezing the action around this episode lest it produce a caricature of either
these students or assigned problems. Asthe project proceeded, the dynamicsof the
team and their approach to both the emergent and assigned problems was negoti-
ated, oftenimplicitly, within theteam. Ted did not remain identified exclusively as
“dumb,” though both Cathy and Marsharepeatedly complained that he “did noth-
ing” when it came time to work on these problems.

What the negotiation begot was a division of labor in which Cathy more or less
took over the production of all the assigned problems and was trusted to do so by
her teammates. At times, thismeant that shewoul d volunteer to dowork assigned to
al theteam membersaswhen, later in the project, shetold her teammatesthat “ 1’11
dothe chart (a spreadsheet based problem) for you guys.” At other timesthis meant
that while the other students worked on other activities, such as designing, Cathy
would be the first to complete assigned problems and then “share” her work with
her teammates. | place quotes around the word shareto index afurther complexity:
that Cathy, holding the official capital resource of this classroom, would distribute
itdifferentially tothe other members. WhereasMarshacould ask to“ see[her] num-
bers’ and had this request granted without question on every occasion, similar re-
questsby Ted would often yield aresponsethat he* should do it [himself].” Inthese
instances, Cathy’s actions could be construed as unfair but may also beinterpreted



Who Counts What As Math? 133

as pedagogical; my interpretation of many of these moments suggests that Cathy
allowed Marshato see her numbers because she had confidence that Marshacould
dothework if shetried. Because she did not have the same confidencein Ted, she
wanted him to try to do it himself. In summary, the assigned mathematicsin this
classroom had a complicated existence. Rather than ssimply being given by the
teacher and taken by the students (a presumption that underlies most eval uations of
classrooms of all types), assigned problems were treated differently by different
students and were, among other things, ignored, resisted, delegated, shared, cop-
ied, commodified, and sometimes solved.13

DISCUSSION

Based on the data presented in this chapter, it would be premature to claim that
the distinction between emergent and assigned problems as different contexts for
student activity isnecessarily ageneral one. However, | dowishto proposethedis-
tinction as a generalizable one, awaiting comparisons with studies of other class-
rooms that involve emergent and assigned problems!* and to argue for some of the
potential theoretical and pedagogical entailments of this distinction. These entail-
mentsare: (1) aproductiveway to think about context, (2) theinstitutional invisibil-
ity of emergent mathematics problems, and (3) the tradeoffs involved with
emergent mathematics problems.

A Productive Way to Think About Context

One of the potentialy distinctive theoretical features of the contrast | have
drawn ishow it extends the concept of context. In ethnographically grounded edu-
cational research, context has been a key term that is usually assigned to different
settingswhich, inturn, are argued to organize different social and epistemological
outcomes. Such setting-based comparisons of contexts include school and work
(Becker, 1986; Hall, 1995; Lave & Wenger, 1991; Scribner & Cole, 1973; Stevens,
1999), typesof classrooms (Boaler, 1997; Cobb, Wood, Yackel, & McNeal, 1992),
and in versus out-of-school environments (Newman, Griffin, & Cole, 1989). This
chapter’sanalysisisdistinctivein showing different contextswithin a single setting.
What thisimpliesisadynamic sense of context in which the same participants as-
semble themselves and local materials from a single setting to be and mean very
different things (Duranti & Goodwin, 1992; McDermott, 1993; Phillips, 1983).
Thisfiner-grained sense of context s, if nothing el se, atool for avoiding premature
conclusions about what a setting is based on its name or official primary function.
For the setting under consideration here, this “ project-based classroom” was too
complicated a hybrid of old and new educational practices to serve to finalize an
evaluation of educational experimentsthat go by thisname. And perhaps by exten-
sion we might suspect that nearly all settings are equally hybrid when examined
closely.

As evidence for how emergent and assigned problems were different contexts,
the students’ comparative participation in each isillustrative. Whereas Ted was an
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active and enthusiastic participant in the problems, mathematical and otherwise,
that emergedin design, Ted resisted those problemsthat were assigned and thereby
clearly recognizable as school mathematics. Fromthisanalysis, the contrastiveim-
ages to keep in mind are, on the one hand, Ted crawling on the floor, measuring
stick in hand, to bring an extended mathematical argument to aconclusion and, on
the other hand, Ted taking less than a minute to size up and set aside an assigned
problem as something heis“not good &t . . . never have been, never will be.” Emer-
gent and assigned problems provided different contexts for Cathy as well, but in
somewhat the opposite manner. Asl described earlier, shewasfully investedinand
responsible for the assigned problems, but took almost no role in designing and
emergent problems. For Marsha, theseweredifferent contextsnot so muchinterms
of how she participated, but in how her teammates appeared to her. Around the
emergent problems of design, Ted was a collaborator. Around the assigned prob-
lems, Ted was untrustworthy and Marsha looked to Cathy for help and sharing of
work.15

Given the selection of the particular assigned problem and my analysis of the
troubleit caused, readers might wonder about my assessment of assigned problems
in project based classrooms? Am | suggesting they be banished? Not quite. Rather,
where | am led to istheideathat the assigned problems, in the form they took—as
numbered work sheets highlighting mathematical content distributed to all the stu-
dentsl®—weretoo easy to treat ascover storiesfor school math asusual. They were
easy to seethisway by the students and easy to use thisway by the teacher. Part of
thisease can beaccounted for by theinstitutional arrangementsthat werealready in
place at this mostly traditional middle school. Even though Ms. Leoni articulated,
in various meetings and informal interviews, adistrust in grading as a vehicle for
teaching and learning, she was accountable to grading individuals as one of the
main requirements and measures of her job performance. This explainsin part the
ambivalence and disorganized perspective she displayed about grading that | de-
scribed at the beginning of the chapter and why shefell back on the assigned prob-
lems when she needed to produce grades. For the students, project-based
instruction was new and stood out agai nst the background of their otherwisenormal
schooling experiences involving textbooks, daily assignments, quizzes, and tests.
And because of thisexisting and seemingly durable cultural knowledge about what
counts as school math and school in general, it was often hard to trick them into be-
lieving that this was something different when they could assemble enough local
evidencethat it wasnot. Both of these factsreaffirm for metheideathat consistent,
school-wide organizational change is necessary if reform practices are to have a
real chance to succeed and endure (Brown & Campione, 1994; Sizer, 1992).

TheInsgtitutional Invisibility of Emergent Mathematics
Problems: Emergent mathematics problemswereinvisible and
did not count in at least three senses.

1. Emergent mathematical problemsdid not count outsidetheteam-local events.
Except on afew serendipitous occasions when Ms. Leoni’s contact with the team
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intersected with a“live” emergent problem, most of the mathemati cs problemsthat
emerged in the course of design work came and went within the confines of the
team. And on no occasion did any of the emergent mathematical problemsin this
team or in any other find their way from the local team to the public arena of the
whole-classdiscussion. Although thispractice hasbeentied to artful teaching (Hall
& Rubin, 1998) and itsabsence here might suggest that Ms. L eoni waslessthan art-
ful, itisimportant also to point out that this sort of classroom circulation may have
failed to occur because of more systemic features. In thisregard, it isimportant to
reiterate that events involving emergent math problems were observable infre-
quently to Ms. Leoni; they were outside her horizons of observation (Hutchins,
1995). Only from my position as observer, recorder, and analyst of the team were
these events observable.

2. Emergent mathematical activitiesdid not count because therewere no assess-
ment technol ogiesin the classfor recording them. Even if there had been away for
Ms. Leoni to seeand then facilitatethe circul ation of emergent problemsto the pub-
lic sphere as examples of mathematics, no assessment infrastructure existed for
counting them. With respect to grading, thework sheet-like “ math activities” were
preprinted, numbered for scoring, and distributable to all students. As such, they
provided aresource for doing what routinely happens in school; giving everyone
the samething to do and using what students do with them asameansto rank order
them (Mehan, 1990). No such system existed for the emergent problems, because
these were diverse across the teams and, as | described earlier, mostly came and
went, within eachteam. When Ms. L eoni did bump into an emergent problemwhile
making her classroom rounds, she had artful pedagogical strategiesfor scaffolding
mathematical activity (e.g., Data Exemplar 2, the circlelike bavarium). What she
did not have were organizational devices for keeping these problems in the fore-
ground; as such it was too easy to get caught up in awelter of classroom manage-
ment and, as occurred with the circlelike bavarium, never return to the team after
initial scaffolding. Thesort of organizational devicel havein mind might beadocu-
ment for recording the finding, formulating, and solving of emergent math prob-
lems across the different teams. Teachers always have material support for
recording comparativeindividual work on uniform assignments, but nearly nothing
beyond their own memoriesto record diversity, collective achievements, and emer-
gent features of student work.

3. Emergent math problemsdid not count in that studentsdid not recogni zethese
problems as mathematics. As| have argued, these seventh-grade students had al-
ready arelatively well developed notion of what counted as mathematics around
traditional forms and social functions—as what appeared on tests, on work sheets,
intextbooks, or in standard mathematical orthography.1” Andinlarge part, because
of the two prior senses of invisibility—to the teacher and to the assessment sys-
tem—the emergent problems did not count as mathematics to the students even
though they were central to the progress of the project.

There are two paradoxical implications of these ways in which the emergent
problems did not count for local participants as mathematics. The first paradox is



136 REED STEVENS

that the organizational invisibility, although troubling from one perspective, also
can be seen asbeneficial. Thisisbecause by not counting these problemsas mathe-
matics, the teacher and the students did not invoke the less desirable cultural prac-
tices of school math. In this case, what was not invoked around the emergent
problemswere such things as easy attributions of personal inability or the political
economy of grading and giving credit at the expense of learning (i.e., asinthe as-
signed problem). The second paradox, set against thefirst, isthat student participa-
tion in emergent problems may have meant they learned val uable mathematical or
proto-mathematical practices such asusing mathematicsasavehiclefor building a
relationship (Exemplar 1), for formulating design problems (Exemplar 2) and for
settling intellectual disputes (Exemplar 3) even though these achievements went
unremarked as related to mathematics.

The Tradeoffs I nvolved with Emergent Mathematics Problems

The emergent problems may have fostered mathematical learning and were
clearly vehiclesto important endswithin theteam. In fact, thisteam’s design when
reviewed by architects at the end of the project was considered the best among not
only theteamsin this class but al so in competition with designs from another class
at another middle school. Despite these positivefeatures of the emergent problems,
their mathematical content (to useapractical if simplifying construct) was, as| de-
scribed in my analysis of the emergent problems, often minimal. Students could
solve their design problems with simple mathematical techniques that used fea-
turesof their toolsor their environment and coul d set complex math problemsaside
becausetheir design ideastook themin other directions. Although peoplein every-
day life often avoid mathematics and get along fine with other resources and prac-
tices (de la Rocha, 1986; Lave, 1988), we may not want to make it so easy for
students in school. Just as educators in language arts want students to experience
the complexity and potential impact on student life of obscure unpopular novels,
essays, and poems, we may wish studentsto be exposed to mathematical ideasand
tools they would not otherwise encounter. Such exposure, if donein a right way,
may allow students themsel ves to make connections between things mathemati cal
and therest of their life. What, then, isaright way? Or at least a better one? How
might classrooms|like thisbe reorganized to “ count” emergent problems as mathe-
matics? Can a classroom be centered around students finding, formulating, and
solving their own problems while at the same time nurturing and maintaining the
mathematical content of these problems? Are these mutually exclusive goal s?

PEDAGOGICAL RECOMMENDATIONS: REVISING
RESOURCES FOR EDUCATORSINTERESTED IN PBM

Inthissection, | propose that these goals are not mutually exclusive. As| stated
intheintroduction, project-based effortsare still new andinviterevision prior to fi-
nal assessmentsof their educational viability. With thisperspectivein mind, thefol-
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lowing are some recommendations, based on my analyses of classroom activity,
that may mitigate some of the tensions and enhance the environmentsof PBM. Al-
though the remarks that follow are meant to be general to project-based environ-
ments, where appropriate | use the specific case considered here—architectural
design projects as a vehicle for |earning mathematics—to frame the proposals.

The organizational conditions of classrooms such as these make it difficult for
teachersto play therolesthey seem to most want to play and thosethey are asked to
play within reform documents: as guides, coaches, and peripheral collaborators.
What woul d assi st teachersin doing so with respect to emergent problemswoul d be
adocumentary infrastructure for keeping track of emergent problems at different
stages in their development. Problem-finding, formulating, and solving would be
relevant categories to represent in such a document, which would provide the
teacher with asynoptic view of how different teams are encountering mathematics
problemsin the course of their project work. Such documentswould support vari-
ous sorts of whole-classlectures or discussions and would act as an aid to memory
so that teachers could remember to follow up with teams that had an interesting
problem at some stage of development.18

Such documentswould help, but they would not be enough, becauseitisstill the
case that emergent problems could remain largely invisible. As | have suggested,
only infrequently areteachersat theright timeand theright placeto participate ped-
agogically inemergent problems. Inlight of this, studentsthemselvesshould havea
greater roleinidentifying and circul ating those problemsthat emergein projectsas
prospectively mathematically relevant. In other words, the responsibility for the
identification and circulation of such events should be distributed across the stu-
dents and the teacher. A prerequisite for such a set of classroom practices by stu-
dentswould, | believe, be explicit and ongoing discussions about what counts as
math and how PBM may differ in form and function from textbook-based mathe-
matics. Such discussionscould set up something of anomination practice, inwhich
students nominate problemsto the teacher and her or his classmatesto consider as
mathematics. These instances could then enable whole-class discussions.

Finally, the classroom practices where revision might have the greatest impact
involve how mathematicsis assessed. Emergent mathematical problems and their
solutions simply need to be counted if PBM education isto be anything more than
cover storiesfor math as usual. As cover stories, they unnecessarily complicate an
aready complicated environment for students and teachers. As something more,
they can be environments for mathematicsto be found, formulated, and solved and
thereby experienced as relevant to students.

How to organize such an assessment system to register emergent practicesin a
classroomisalarger topic than can be treated adequately here. However, oneidea,
based on our prior research of the distributed nature of mathematical activitiesin
professional settings (Hall & Stevens, 1995; Hall, Stevens, & Torralba, in press;
Stevens, 1999) would be give credit to students on two bases: (1) their successin
finding, formulating, and solving emergent math problems, and (2) their successin
making and using proj ect-rel evant architectural generalizations. With respect to us-
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ing mathematical generalizations or tools, students might be provided with a
sourcebook of possibly relevant mathematical ideas such as the genera relation-
ship between area and perimeter. This sourcebook would be compiled to reflect
possible mathematical opportunitiesthat might arise in the project, thus matching
theintent of the assigned “mathematical activities’ in the curriculum but pursuing
thisintent through different means. In other words, rather than assigning and grad-
ing work sheets, students would receive credit when they could use and justify the
use of oneof these generalizations or toolsin the course of their project work. Even
more credit could be assigned to students to create their own tools or generaliza-
tions for other’ s use in the classroom.

With respect to both the circumstances under which students could earn credit,
the students themsel veswould be primarily responsiblefor seeking credit for work
they proposed as mathematical, proposalsthat could be decided by the teacher and
the students together. With these as the main sources of credit-giving in the class-
room, the teacher would likely have more freedom to encourage, shape, and advo-
cate the mathematical qualities of student projects. Students' work could also be
“published” (i.e., made public) through posting in classroom space or electroni-
cally. And under the assumption that teachers would use a project-based curricu-
lum over a number of years, these publications could be available to studentsin
futureyears' classeswith students receiving due authorship credit. Although there
are many routesto desired ends, thisis one way by which aclassroom of thiskind
might become more of a genuine community of learners (Brown & Campione,
1994).

The sourcebook of mathematical generalizations and tools | have described is
oneway these curriculamight berevised. Another idea—directed at enhancing the
mathematical content inthe project-based curriculumwithout reducing it toacover
story—involves borrowing and adapting someideasfrom the professional practice
of architecture (or whatever the framing disciplinary practice might be: biology,
cartography, digital imaging, etc.). For example, in my research on the forms and
functions of mathematics among professional architects, | found that the single
most prevalent accountability faced by architects that generated emergent mathe-
matics problems was code. This term refersto federal, state, and municipal rules
that architectsmust follow when designing buildings, theselegal standardsenforce
such design features as the maximum slope of awheelchair ramp or an acceptable
rangefor theratio of stairway risersand runners. Plans do not receive approval and
buildings are not built unless code is met. As such, architects are continuously try-
ing to satisfy code in ways that save money and meet design goals, and thisforces
them to confront many emergent mathematics problems. In the student projects,
variantsof code could berequirementsfor students. For exampl e, studentsmight be
required to make their bathrooms accessible to disabled persons. This would in-
volve, among other things, designing 5—foot radial regionsin all toilet rooms, a
problem that, as | have shown elsewhere, bears similarities but also important dif-
ferences from the traditional mathematical problem of inscribing acircle withina
sguare (Stevens, 1999). The advantages of giving assignments of thiskind, versus
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moretypical assignmentssuch astheareaand perimeter problem of DataExemplar
4, arethreefold: (1) code doesnot specify asingle correct answer but allowsarange
of correct solutions, and (2) code creates different emergent problem for different
projects because surrounding constraints differ, and (3) students can learn about
authentic concernsinthebuilding process, suchasmaking it possiblefor adisabled
person to be able to use a building. One benefit of thisisthat assigned problems of
this kind could provide an answer to the ubiquitous and hard-to-answer student
question, “What are we ever going to use this for?”’

CONCLUSION

Despitesomecaricaturesincircul ation, PBM (or project-based science) wasnot
born of the whims of palitically radical, know-nothing “ education people.” These
educational experimentswere born, at least in the versions with which | am famil-
iar, against the background of arecalcitrant system of mathematics education that
has worked for a privileged few and failed many. At least at the level of espoused
goals, these endeavors, asdiverse asthey are, represent an attempt to make mathe-
matical tools and ideas available to the many. These experiments al so seek to pro-
vide students with opportunities to connect mathematics to experience and make
mathematicsaresource, though only one among many, for making sense of that ex-
perience. As| have sought to show in this chapter, these experiments and the emer-
gent mathematical practices they generate are socially and epistemologically
complex. Inthischapter | aso havetried to follow the often-ignored recommenda-
tion by Brown (1992) to represent the gold of educational experiments aswell as
the dross.

| began this chapter with a description of the political storm surrounding PBM
education. So much of this storm rages around the issues of standards and test
scores. At theeyeof thisstorm, hard to reach and often unexamined, isthe question
of who countswhat as math. This chapter probably will dolittleto quiet the storm,
but | hope it will contribute to making it harder to talk only about the alleged ab-
sencesof project-based classrooms. Inso doing, | also hopethat it will contributeto
complicating the discussion a bit by bringing other terms into the equation. | see
raising standardized test scores as one sort of objective, but | see hel ping most stu-
dents learn to use mathematical tools and ideas to support arguments, to work to-
gether, to make things, and to resolve problematic situationsfrom daily lifeasvery
different sorts of objectives. More important ones, | would argue. And while | do
not proposethat current versions of PBM education will achieve these objectives, |
do propose that we consider this a better starting point than the alternatives.
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NOTES

1. Recently over 200 research mathematicians and physicists ran a full-page advertise-
ment in the Washington Post (November 18, 1999) demanding that the federal government
retract its recommendations for a number of well-known reform curriculum packages.
Clearly not al research mathematicians share this disdain for the reform movement; ex-
ceptionsinclude Steve Monk of the University of Washington and Hyman Bass of the Uni-
versity of Michigan.

2. | havefound them even more inadequate for an analysis of mathematicsin the work-
place (Stevens, 1999).

3. See Hall and Stevens, 1995; Stevens and Hall, 1998; and Stevens, 1999.

4. The names of the school, teacher, and students are pseudonyms.

5. The project constraints actually allowed the longer dimension to be 30 meters, but
the graph paper only had 29 units across its long dimension and thus the students took this
astheir long dimension.

6. Although Ted did not use the word “regular,” he represented it nonetheless with vo-
cally animated gestures. Further evidence for regularity as an assumed feature of the stu-
dents’ plan is provided later.

7. The basis for Henry’s impatience was rooted in a role he had been assigned by the
teacher: to record the changes made by the team during that class period. As yet, he had
nothing to record and the end of period was drawing near.

8. M.C. O’ Connor (1998) has used this specific term in astudy of classroom mathemat-
ics. See also, Bruner (1960/1977).

9. See Schoenfeld (1990) for arguments supporting this principle of continuity in math-
ematics learning and diSessa (1983,1993) for related arguments about the continuity of
physics learning.

10. Although Ted resisted work on this problem, it cannot simply be interpreted in
terms of what Ted did not do (i.e., as an absence), for the following reasons. First, Ted did
visibly try to do the problem if only for about a minute or so (Turn 5, earlier, and prior to
the excerpt); second, Ted was |egitimately continuing with another line of work that no one
in the team or the class has suggested should be shut down (i.e., the design); and third, he
did show some accountability to the team by delegating the assigned problem to Henry
while he continued with the design.

11. See Garfinkel (1967) on accountability and Star and Strass (in press) on invisible
work for relevant treatments of the relations between social phenomenaand their organiza-
tional recognizability.

12. | call their version superficial because what they turned met neither of the mathe-
matical criteriastipulated in the problem: (1) to make rectanglesthat held the area constant
but varied the perimeter, and (2) to make a conjecture about the general relationship be-
tween area and perimeter.

13. Despite the large corpus of studies that focus on assigned mathematics problems, it
is worth considering whether these studies provide an analytical vocabulary wide enough
to encompass this sort of variety in the ways that students “take” assignments (cf. Lemke,
1990, on differences between the intended and lived curriculum).
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14. Because of the demands of this type of data collection and analysis, it is likely that
generalizations will be produced across members of our field, through comparative analy-
sis of cases, rather than by single researchers.

15. The fourth member of the team, Henry, because he was quiet and often away from
the table, is harder to assess relative to the distinction between assigned and emergent
problems.

16. The designers of this curriculum may be disheartened by these perceptions and
uses, because the text of the teachers' guide repeatedly warned against them, asin the em-
phatic: “These are NOT worksheets.”

17. Thisis supported by the pieces of text the students wrote in their journals midway
through the project. When asked to describe how they had used mathematics, students re-
ferred to basic operations such as measuring, dividing, and adding but did not refer to such
activities as using quantitative comparisons to make design decisions or related judgments
of scale to make arguments (cf. Boaler, 1997 for asimilar finding).

18. These ideas also may have implications for teacher education programs.
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Effects of Dominant and
Subordinate Masculinities on
Interactions in a Collaborative

Learning Classroom

Mary Barnes

INTRODUCTION

Thischapter isbased on thefirst stage of an ethnographic study of students’ experi-
ences of collaborative learning in secondary mathematics, which aims to investi-
gate the interaction of student gender, the socia construction of mathematical
competence, and waysin which mathematicsisvalued. A classof Year 10 students
in an independent coeducational school regularly worked in small groups on chal-
lenging mathematics problems, followed by reporting-back and whole-class dis-
cussion. One group of boys was observed to exert a disproportionate influence on
classroom proceedings. Within the achievement-oriented culture of this school,
these boys (“the Mates”) came closest to the stereotype of hegemonic masculinity.
They were able and ambitious, but restless and attention-seeking and frequently
initiated off-task talk and banter. Another identifiable group of boys (“the
Technophiles™) wererather isolated within the class. They had poorer communica-
tion skillsand val ued obtaining an answer quickly morethan justifying it to others.
This chapter discussesthe possible effects of these students' behavior on their own
learning and that of their classmates, and makes some tentative suggestions about
implications for teaching.

Why Collabor ative L earning?

Collaborative | earning—students working together, usually in small groups, on
ashared activity and with acommon goal—has been widely recommended in re-
cent years as a strategy to enhance mathematics learning for all students (see, for
example, Australian Education Council, 1991; National Council of Teachers of
Mathematics, 1989). It isargued that social processes involving the negotiation of
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meaning play akey roleinthelearning of mathematics(Cobb & Bauersfeld, 1995),
and that small-group discussions enable all students to be involved in the
co-construction of “ common knowledge” (Edwards& Mercer, 1987). However, as
Neil Davidson and Diana Kroll observed,

arelatively small percent of the studies have attempted to study the interactions that
take place during cooperative work to determine how various academic, social, or
psychological effects are produced. (Davidson & Kroll, 1991, p. 363)

Although morework along theselineshasbeen donesince 1991, understanding the
effectsof interactionswithin collaborative groupsremainsakey focusfor research-
ers on collaborative learning.

Working collaboratively hasal so been seen asespecially beneficial for girls. Rea-
sonsgiven arethat most girlsprefer collaborationto competition; girlsgenerally have
good communication skills and benefit from and enjoy discussion; small collabora-
tive groups facilitate “connected” learning and support and encourage risk taking;
and collaboration helps to create a more egditarian environment (Cordeau, 1995;
Jacobs, 1994; Morrow & Morrow, 1996; Solar, 1995). In acomparative study of two
schools, Jo Boaler (19973, 1997b, 1997c¢) found that girlsin aschool that used an ap-
proach based on collaboration and open-ended inquiry reported increased confi-
dence and enjoyment of mathematics. Girlsin aschool with asimilar population that
used atraditional textbook-based approach reported widespread disaffection, lack of
confidence, and the feeling that they were not being given a chance to understand.

For people concerned with gender equity, another potential benefit of the collab-
orative approach isthat boys may play aless dominant rolein small-group discus-
sions than they do in whole-class teaching. Studies of the latter have consistently
found that a disproportionate number of teacher-student interactions are with boys
(Howe, 1997; Koehler, 1990; Leder, 1990). Collaborative work in small groups
may allow more students the opportunity to articulate their ideas than would be
possible in whole-class teaching, and so may have the effect of counteracting the
tendency for afew males to dominate classroom interactions.

Although many studies of gender and classroom interaction, such asthose cited
earlier, havelooked at the context of whole-classinstruction, relatively few havein-
vestigated theinfluence of gender oninteractionin acollaborativeinquiry context.
| am interested in how students interact with one another in such a classroom, and
how student gender and the social construction of mathematical competence have
an impact on one another.

M asculinities and Femininities As Social Constructs

As many writers have pointed out, neither biologically based theories nor
sex-role socidization theories have been found adeguate to explain the complex
process of the formation of gender identity (see, for example, Connell, 1987
Davies, 1989; Gilbert & Gilbert, 1998; Mac an Ghaill & Haywood, 1998; Weiner,
1994). Feminist poststructuralist theory recognizes the ways in which gender is
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contested and reconstructed daily through the multiple discursive practices in
which individuals participate (see Davies, 1989; Davies, 1994; Johnson, 1997;
Jones, 1993; Walkerdine, 1986; Weedon, 1987). As Sally Johnson explainsit:

Masculinity and femininity are not character traits or social roles which are learned
during childhood and adolescence, and which arefixed and intransigent in adult life.
Instead, they are ongoing social processes dependent upon systematic restatement, a
process which is variously referred to as “performing gender” or “doing identity
work.” (Johnson, 1997, p. 22)

Bronwyn Davies further claims that,

Who oneisisaways an open question with a shifting answer depending on the posi-
tions made available within one's own and others' discursive practices and within
those practi ces, the storiesthrough which we make sense of our own and others' lives.
(Davies, 1989, p. 229)

Thistheory impliesthat peopl€e’s sense of who they areis dependent on the subject
positions made possible for them by the available discourses. Although gender
construction takes place largely within the discourses and practices of the family,
the peer group, and the wider society, the school aso plays an important part.

Schools may be seen asactive agentsinthemaking of . . . femininitiesand masculini-
ties. In thisway, the official and hidden curriculado not merely reflect the dominant
rolemodelsof thewider society, but actively producearange of femininitiesand mas-
culinities that are made available in local schooling arenas for pupils collectively to
negotiate and inhabit within peer subcultures. (Mac an Ghaill & Haywood, 1998, p.
215).

My maininterest isin what happens within the mathematics classroom. Asstu-
dentsinteract with one another while struggling to make meaning of the mathemat-
ical ideas they are encountering, they are at the same time devel oping ideas about
how to learn mathematics, and constructing views of themselves aslearners or do-
ers of mathematics. These views, too, are not fixed, but may shift and change de-
pending on the context, the other people with whom the student isinteracting, and
the discourses and power relations called into play—and in these processes gender
plays asignificant role.

A number of ethnographic studies of school peer groups, and in particular of
boysin school (Beynon, 1989; Eckert, 1989; Mac an Ghaill, 1994; Walker, 1988;
Weis, 1989; Willis, 1977) have identified subgroups which, despite inevitable
within-group variability, could be observed to share acommon subculture. As Rob
and Pam Gilbert (1998) point out, different studieshaveidentified groupswith con-
siderable degrees of similarity, and although group membership was continually
shifting, it tended to stabilize as students grew older.

Mairtin Mac an Ghaill (1994) described a group in an English comprehensive
school that he called “the Macho Lads.” These represented a stereotype of hege-
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monic masculinity—tough, dominating, rebellious, and anti-school. Other studies
have reported groups with broadly similar characteristics. For example, Jm
Walker, inastudy of an Australian inner-city school, identified an ascendant group
“the footballers,” who primarily valued sporting success in the dominant football
code. They displayed aggressive competitiveness, liked to engagein jokes, insults,
and real or pretend physical violence, and seemed to enjoy roving around in arest-
lessway, dominating the spacein the school grounds. In addition, they displayed a
disdainfor teacher valuesbut, because they recognized the need for credential s, did
not reject the school culture outright.

Many of the previously cited studiesfocused on disaffected students or trouble-
makers. Robert Connell, Dean Ashenden, Sandra Kesder, and Gary Dowsett
(1982), on the other hand, showed that the form taken by hegemonic masculinity is
class-dependent. In what they call “the ruling-class schools,” they found a some-
what different form of dominant masculinity, “ Motivated to compete, strong in the
sense of one'sown abilities, ableto dominate othersand to face down opponentsin
situationsof conflict” (Connell etal., 1982, p. 73). Although this shares some of the
toughness and dominance of Mac an Ghaill’s“Macho Lads,” and Walker’s “foot-
ballers” it differsin important ways. It is not anti-school; indeed, it accepts and
adopts the values promoted by the school. And the emphasis on competition and
success means that both academic achievement and sporting prowess are val ued.

Set in opposition to the dominant group in all these studies were other forms of
masculinity and femininity. As one of Robert Connell’s informants described it,
“the cool guyshang out together, and the cool girlshang out together, and therewas
the swots and the wimps’ (Connell, 1989, p. 295). In one of the “ruling-class
schools’ studied by Connell and associates, boyswho rejected sporting prowessin
favor of “study, debating, theatricalsand thelike” (Connell et al., 1982, p. 96) were
scornfully dubbed “the Cyrils.” Although relatively lacking in power and subject to
derogatory comments, including implications of effeminacy or homosexuality,
boysin suchmarginalized groupsstill struggled to maintain somestatus, andin par-
ticular to emphasizetheir superiority to girls. Thiswasmadeexplicit by oneof Mac
an Ghaill’s“Academic Achievers,” who explained hisinterest in literature asbeing
the acquisition of expertise asacritic, which he saw as quite different from the ap-
proach taken by girls: “Because even if you're doing the same subjects, men and
women have completely different thingsthat they’reinterested in. | think that men
would be more intellectual and women more emotional” (Parminder, quoted in
Mac an Ghaill, 1994, p. 61). In the present study, | observed forms of masculinity
that bore some similarities to those described earlier, and had an important influ-
ence on classroom interactions.

DESCRIPTION OF THE STUDY
M ethods

The datareported hereare drawn from an ethnographi ¢ study of aYear 10 math-
ematics class (students aged 15 to 16 years) in an independent, coeducational
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school inan Australian city. Thisstudy formspart of alarger study of collaborative
learning in mathematics. The class of 22 students (11 males and 11 females) was
following an accelerated mathematics program that included mathematical con-
tent, such as introductory calculus, normally studied in Year 11. This class had
been formed to cater to students who were achieving very high gradesin tests and
examinations. These students were generally extremely able and ambitious. They
were not, however, the highest-achieving mathematics students in their year—a
more advanced accel erated class was following the full Year 11 course. The class
was selected for the study because of theteacher’ sinterestin, and experiencein us-
ing, the collaborative inquiry approach described in the following pages.

The usual procedurein the class was for students to work in groups of three or
four on challenging mathematical problems. Thiswould be followed by a report-
ing-back session and whole-classdiscussion. A seriesof lessonswasobserved, and
17 of them were videotaped. Whenever the studentswereworking in small groups,
the camerawas trained on one of these groups. Transcripts of the videotapes were
prepared, including descriptions of actions, gestures, facial expressions, or voice
intonations that were judged to be relevant. Interviews were conducted with eight
studentswho had been sel ected askey informants, aswell astheteacher and two se-
nior members of the school executive. There were also separate interviews with
groups of six girls and six boys. Data collected also included field notes, work
sheets, student work samples, and general information about the school.

The Classroom Context

Although the school was coeducational, it had in other respects much in com-
mon with the “ruling-class schools” described by Connell and associates (1982).
The predominating culture was competitive, emphasizing high achievement in all
areas of the curriculum. Therewasastrong focus on examination successand, ulti-
mately, on competition for university entrance. Alongside that, there was also an
emphasisonthe co-curriculum, especially awidevariety of sports, but al so outdoor
education, creative activities such asmusic and drama, and exchange visitsto other
countries. The very broad range of activities meant that studentsfrequently missed
classes because of other activities in which they were involved. The school pro-
spectus al so stressed opportunitiesfor leadership, character devel opment, and ser-
vice to the wider community.

Inmathematics, atraditional approach to teaching wasthenorm. The mathemat-
ics staff generally placed heavy reliance on the textbook and regular testing. Stu-
dents cameto expect large quantities of practice exercises, and to value only those
activitiesthat would contribute to their end-of-year grade. The teacher of the class
inthe study said she had noticed that if students were not going to be given agrade
for apieceof work, or if they thought that atopic would not betested in an examina-
tion, thenthey judgedit to be of lesser importance. Commentsfrom some of the stu-
dents confirmed this attitude. For example, one student said,
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The work that we're doing isn’t actually something that we could be assessed on, in
termsof having atest, soit kind of takesaway abit fromthesyllabus, fromthecurricu-
lumthat'sbeenlaidout. ... Andit may not sort of help usmuchfor next year. (Jacqui)

Inthis case the work that they were doing was, in fact, an introduction to calculus,
which would help them very much indeed for the following year. But because the
introduction had been by means of a series of investigations, and the student could
not see where they wereleading, she had at that stage decided that it was unimpor-
tant and unlikely to be useful.

Theteacher of the classin the study had introduced a collaborative inquiry ap-
proach, which involved students working together in small groups on substantive
mathematical tasks. Although parts of these tasks at timesinvolved familiar mate-
rial, there were other parts for which the students had no learned routine, and for
which they had to use their own resources to find a solution, by combining their
knowledge of mathematics and other relevant topics and using a variety of prob-
lem-solving skills as well as imagination, intuition, and inspiration. While the
groupswereworking, theteacher circulated and asked questionsto help clarify un-
derstanding of thetask, check progress, and encourage breakthroughsand explana-
tions. From timeto time, group memberswere asked to report their solutionsto the
rest of the class. This was usualy followed by a whole-class discussion during
which misunderstandings were cleared up, aternative methods proposed, and,
where appropriate, generalizations formulated.

In attempting to make sense of the small-group interactions, | found it necessary
to bear in mind the complexity of the classroom context, and the differing values
and expectations of the teacher and the students. The students found themselves
functioning at theintersection of several powerful but conflicting discourses: nota-
bly those of the school, their parents, the mathematics department, the class
teacher, and the peer group.

The teacher had taken trouble to establish norms for behavior when students
were working in groups. These included listening to other people, valuing what
they said, justifying any assertions made, and making sure that everybody in the
group understood the group’sfinal solution. Her insistenceon collaboration among
the students, and on the need to understand and explain their solutions, and her
downplaying of competition, rote learning, and mindless practice, meant that the
culturethisteacher wasintroducingin her classroom wasto someextent in conflict
with that predominating in the school, especialy in other mathematics classes.

Most students valued and enjoyed the collaborative approach. Typical com-
ments included the following:

I think it'sreally beneficial. Some peoplesay “ Oh, it'sabit of abludge,” but you know
you'veall gottoputin. .. doing the group work we're doing at the moment we're all
putting in ideas and getting the end result, which we probably couldn’t do by our-
selves. It'sagood way tolearn becauseyou' regetting other peopl€’ sopinions, not just
your own. (Jacqui)
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I likeworkingingroups. .. .| find that usually if I don’t understand something some-
one else in the group might understand it, and you know because it's not the whole
classyou don't feel really embarrassed about saying, “| don’t really get it, so can you
explain it to me?’ (Mandy)

My observations haveled meto believethat, in general, the group collaborative
processwasextremely effective. The students struggled with difficult ideas such as
limit and derivative, and in the process developed considerable insights, which, as
the previously quoted student claimed, they probably could not have achieved if
working by themselves. These insights were revealed and developed further
through whole-class discussions. For example, a number of very common misun-
derstandingsabout limits, which often cause students confusion for many yearsand
create problems at university level, were brought into the open by the students
themselves, and discussed at some length, until the class had reached a consensus
and everyone was satisfied. The students also began gradually to appreciate the
power of calculusasan analytical tool. Asanillustration, when othersin hisgroup
explained to Adam how to use the derivative to find turning points, the following
exchange took place:

Adam: It'sacubic—but we'redoing it like aquadratic because of thisbeautiful deriv-
ative!

Con: Yeah because of the derivative.
Adam: It'sbeautiful! ... Oh, | loveit!

Incidents such astheseled meto concludethat the studentsin thisclasswere devel -
oping afar deeper understanding and appreciation of calculus concepts, in particu-
lar, of how derivatives are found and how they are used, than is usua at this
introductory stage.

Theteacher had established awarm and friendly relationship with the class, and
the atmosphere was generally relaxed and positive. There was broad participation
in classdiscussions, and most students appeared to feel comfortable about contrib-
uting. | believethat it isimportant to emphasi ze these points, because the analysis
that follows focuses on factors that tended to disrupt the easy flow of communica
tion, and | want to stress that these were noticeabl e because they represented ade-
parture from the norm.

On some occasions the collaboration was | ess effective than the teacher would
have wished. To alarge extent, this appeared to result from the behaviors and atti-
tudes of certain groups of boys, and it is on these groups that this chapter focuses.
The classteacher was aware of these groups and their behavior, but itisimpossible
for anyone to hear and see everything that happensin aclassroom. The researcher
with acamerahas the advantage of being ableto focusin detail on one group for a
whole lesson, and thus to become aware of the extent and the details of behaviors
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far morethan could be possible for any teacher, no matter how attentive and sensi-
tive to group dynamics and student behavior in general.

Therearealsoinherent problemsarising fromthe presence of aresearcher witha
camera in the classroom. Some students obviously “play up” to the camera,
whereas others may become more reticent. The teacher may feel constrained in
what he or she does by adesireto assist the research, or may be consciously or un-
conscioudly inhibited by the presence of a camera and an observer. Asaresult the
teacher may not interact with the studentsin quite the same way as under normal
circumstances. Thus, some aspects of behavior may be exaggerated, and some may
be deemphasized. However, athough the observer’s presence may introduce some
distortionto classroominteractions, itishighly unlikely that it will changethe fun-
damental nature of these interactions.

OBSERVATIONS
TheMates

One group of five boys, Vic, Mike, Steve, Adam, and Con, “the Mates,” exer-
cised considerably more influence on class proceedings than the rest of the stu-
dents. They knew one another well, having been together at the school for several
years, and all were highly successful inavariety of sports. Most of themwereinthe
same classfor other school subjects, and shared in out-of-class activities, including
the school band. Vic held asignificant leadership position within the student body.
Thephysical presence of these boysin the classroom was always noticeable. Their
behavior wasrestlessand attention-seeking; they tended to take up more spacethan
other students, to move around more, and to make more noise.

My attention wasfirst drawn to this group during ateacher-led whole-classles-
son. When they were not working in groups, these boys always sat together in the
front row, with the rest of the boysin the row behind, and the girls occupying the
two back rows. From their position at the front, the dominant group was able to
claim the teacher’s attention more easily than other students. Because disaffected
studentstend to | ocate themsel ves away from theteacher’'sgazeto allow fuller rein
to off-task activities, sitting at the front indicates an interest in learning. Neverthe-
less, the teacher’s management of the lesson was made more difficult by frequent
interruptions from this group—but they were work-related interruptions. These
boyscalled out answers, asked questions, or made comments, while other students
sat with their hands up waiting to be called on. Occasionally, there would be acho-
rus of answersto aquestion, and when this happened, the voices of thisgroup, and
particularly of Vic their |leader, were clearly audible above all the rest.

When theteacher wanted the classto work in small groups, she usually selected
the groups herself. She explained the reasons for this to the class in the following

way:
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I try and mix different thinking styles together, and different persondlities. . . . So, in
mixing you up, I'mtrying to get aniceflow through of ways of thinking about the dif-
ferent tasks. (Sarah James, teacher)

In asubsequent interview she explained to me, “you need to make sure the groups
areright or they’re not going towork.” In general, the Mateswere placed in differ-
ent groups. In spite of this, they maintained intermittent voice and eye contact with
one another while they worked. This seemed to be mainly for the purpose of liven-
ing up the lesson and bringing in friendly rivalry. They monitored the progress of
groups containing other Mates, attended to the teacher’s evaluative comments
about these groups, and remarked on them. For example:

Teacher’s voice in the background [to Steve's group.]: Very good! Well done!
Mike: Well done! What ho, Stevo. (Lesson 2)

Teacher’s voicein background: A few of the groups are a bit stuck, so we may need
to—

Steve: [inamused voice] Areyou stuck, West? [to Mike West, in another group] (Les-
son 6)

In this way, they introduced an element of competition to the collaborative tasks.
They vied with oneanother for their group to befinished first, and boasted jokingly
about their success. For example, inresponseto aninaudible question from another
group, Mike was heard to reply,

That'sbasic, look. . . . It's cos we're so good, you know. (Lesson 2)

The Mates were confident in their interactions with other students and quite
willing to make use of their expertise. When disagreement about an answer arose
within Vic's group, he sought confirmation, first by eavesdropping on another
group, and then by asking them directly:

We'reonthe sametrack aswhat they’reon. Two point four two. [ Turnsround and calls
out] Saly, I heard two point four two, which isexactly what we' vegot. Isthat right for
graphing the thing? [shows calculator to Sally] (Lesson 15)

From time to time, there were brief episodes of banter between groups, or talk
about irrelevant off-task topics such as sport or TV programs. Throughout the 17
lessons recorded, | observed frequent instances of students calling out comments
from one group to another in thisway; in al but one case these exchangeswereini-
tiated by one of the Mates. From timeto time, two of the Matesin different groups
would make eye contact, and then join in softly singing or beating out arhythm on
the desk.

If agroup contained only one of the M ates, thisboy frequently took ontheroleof
“manager”’—calling the group to order, reading out the questions, keeping themon
task. Occasionally, this appeared to be a device to avoid having to do too much
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thinking—the “manager” read out the questions, waited for other group members
to suggest answers, and wrote these down. But on many other occasions, the stu-
dent combined the managerial role with full participation in the problem-solving
process. On the other hand, when another student in the group had taken on therole
of manager, the Mate was likely to display frequent signs of boredom, intermit-
tently tuning out from the di scussion and either resting hishead on the desk or lean-
ing back in his seat and looking around the room. When the teacher joined the
group, however, theMate paid full attention and took amajor partinthediscussion,
evenif it concernedideasand resultsto which hehad contributed little. To someex-
tent this can be seen as appropriating other group members’ work. An extreme ex-
ample of claiming ownership of others’ work occurred when Vic left two girlsin
his group to carry out necessary calculations while he joked with students in an-
other group, and then turned back to the girls and asked, “What' ve we got?’

On thefew occasionswhen circumstances made it necessary for two or more of
theMatesto bein the samegroup, the amount of off-task conversation, banter, sing-
ing, and “fooling around” significantly increased. Intheir talk, these boys hinted at
adegree of worldly experience, by discussing suchtopicsasgirls, horseracing, and
betting. There was, however, no way of knowing how much of thiswas exaggera-
tion. Intalk with other studentsthey often displayed an attitude of not taking work
seriously, but when it cameto receiving marksfor their effortsthiswasrevealed to
be a pose—they took this aspect of their work very seriously indeed. When Vic, in
particular, received agrade lower than he thought he deserved, he made no attempt
to hide his astonishment, said he thought it was unfair, and later argued with the
teacher about his mark.

The Mates appeared to enjoy reporting on their group’s work to the rest of the
class. They werewilling to volunteer to do so, and were generally effective report-
ers. But when other studentswere reporting they displayed atendency to interject,
make jokes, make faces or laugh, and in avariety of ways to disrupt the reporting
process. Sometimesthereporter wasdistracted by thistreatment, but on other occa-
sions laughed it off. When the teacher reprimanded them for interrupting the stu-
dent at the board, the response was, “It’s okay, we're mates’ (Lesson 6).

Two of the boys from this group were interviewed and proved to be charming
and very happy to talk about themselves. Both reveal ed that they had been recog-
nized asgood at mathematics, and had enjoyed it, in primary and thelower years of
secondary school. They had been achieving very high marks before being selected
for the accelerated class, but were now finding it more effort, were not always so
successful, and so tended to become bored. Both spoke of “tuning out” in mathe-
matics lessons:

| find it too easy to tuneout in mathsand | do get abit bored. And when | get behind, |
don’t know what's going on, don’t understand it. (Adam)

There may be times when you may not do much work because you just tune out to-
gether, and you sort of talk to the other person alot. It occasionally happenswith me,
because | get lapsesin concentration. (Vic)
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Note that Vic seems to be suggesting that his lapses in concentration just hap-
pen—they are not his responsibility.

Responsesto aquestionnaire completed by all studentsin the classrevealed that
all the Mateswere planning careersin either business or medicine. On items mea
suring attitudes to mathematics, they gave broadly similar responsesto the rest of
the class, with one exception. In spite of the broad range of applications that the
teacher had presented, they tended to hold morestrongly than othersin the classthe
view that the main importance of mathematicsisasacredential, anecessary quali-
ficationto gain entry into acareer or course of study, rather than somethinginterest-
ing or likely to be useful to them personally. As the two Mates interviewed said,

Someareas| think, | just think to myself, “Why, why are we doing this, becausethere
will be no way that | will usethislater oninlife” (Vic)

| don’'t have any trouble doing the problems and working out the answers, but | can
never understand the point of it. (Adam)

Questionnaire responses also indicated that the Mates also tended to hold less
strongly than othersaview of mathematicsasacohesivesubject, that is, aview that
focuses on the connections between mathematical concepts, and between mathe-
matics and other subjects, including real world applications. The latter point was
reinforced by Vic's observation,

| also seeit asvery mixed, mixed up, that there's so many workings and problemsand
functions that it's al over the place for me. (Vic)

Both boys claimed that they did not mind challenging tasks, but showed no en-
thusiasm for them and said they preferred to tackle such tasksin agroup. They ad-
mitted to atendency not to perseverevery long with something difficult if they were
on their own.

If | get stuck on onething, or havetroublegetting started, | just stopand | just can’t do
anything else. (Adam)

Inaninterview with agroup including four of the Mates, they claimed that they
“muck around” because “it makes it more fun.” While admitting that this fooling
around might distract others, Vic added confidently and rather selfishly, “as our
marks show, not us.”

The Technophiles

Threeother boys, Robert, John, and Charles, formed acontrast in behavior tothe
Mates. This group appeared to be somewhat isolated socially from the rest of the
class. If given the choice, they sat together and worked together. Although there
were considerable individual differencesin personality among the three, they all
had a keen interest in computers, and expressed the desire to follow careersin sci-
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ence, engineering, or information technology. They were quick to make use of their
graphics calculators in exploring and solving mathematics problems, and dis-
played a facility in their use. | have chosen to characterize them as “the
Technophiles.”

During small-group discussions, the Technophiles usually stuck to the point.
They took little part in irrelevant talk, and when they had completed the set task
would sit quietly while others chatted. They werevery focused on the problem, and
on getting a solution as quickly as possible. In part, this seemed to be because it
gave them a sense of superiority:

It makes me feel glad when my group’s worked it out before any other group. | like
that when | know that |'ve got something right and heaps of other people are still
struggling. (John)

Intheir rush to solve aproblem, they often made authoritative pronouncements,
apparently expecting othersto follow their reasoning, or simply to accept what they
said. They appeared to be moreinterested in getting an answer quickly thanin ex-
ploring possibilitiesor seeking alternative approaches. Although they agreed that it
was helpful to discuss ideas with friends, they preferred to attempt problems by
themselves first. As Robert said:

It'sprobably bestif you can get away, doit your ownway, seeif you can get it towork,
and then get together, see how each of you'sdoneit, seewho'sright, how you'vedone
it, if there'saconsensus. . . . (Robert)

When other students were in a group with only one of the Technophiles, they
tended to use him as an expert resource, asking him questions, and persuading him
to do the calculations, or work them out on his calculator. On the other hand, when
two of the Technophiles worked together, they communicated with one another in
brief, rather cryptic remarks, which othersfound difficult tofollow. They seemedto
be unaware of the extent to which this excluded other studentsfrom the discussion.
In whole-class |essons, the Technophiles frequently volunteered answers, but oth-
erwise did not draw attention to themselves.

The teacher reported that written assignments from all three boys were inade-
guate and did not reflect their understanding. Work was frequently submitted late,
was shallow or scrappy, and appeared to indicate lack of effort. John and Robert
(the only two interviewed) claimed that they were not good at written explanations
and tended to excuse themselves by downplaying the importance of this skill.

I’m not so good on my writing up. | just get the answer, because | know that’sthe an-
swer, but then | can’'t explainit mathematically alot of thetime. ... | canexplainiton
theboard, | can say why it is, but | just can’t write up the sum, and say thisiswhy it s,
and [sigh]. (Robert)

| just prefer theactual solving to the communicating of it. | mean, like, I'musually not
really worried about sort of like—I mean |’ minterestedin being an engineer . . . other
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people will probably be more interested in the answer than how you actually got the
answer, unless they’'re trying to solve things like that themselves. (John)

Becausethethree Technophileshad very different personalitiesand did not form
such atightly knit group asthe Mates, it may help to understand some of their be-
havior and attitudes if we briefly consider them separately.

To the extent that the group had aleader, it was John. Hewas very quick at prob-
lem solving and was perceived by theteacher to be the most mathematically able of
thethree, infact, one of the two most mathematically ablein the class. He claimed
to like mathematics because of itslogic, and preferred to learn by thinking about it
by himself. He explained that he learned mathematics best by:

having notes put up on the board . . . and then trying to understand them myself, and
usually | findthat alot of thetimel just need to do acouple of examplesand then | un-
derstand it. (John)

It isnot clear what exactly John meant by “understand.” He claimed to be able to
pick things up quickly, but observation of hisinteraction in groups suggeststhat he
may have been more focussed on knowing what to do than on knowing why. After
talking about the logic of mathematics, he went on to speak of “ going through the
various processes, to work out the answer.” It is possible that he liked to see why
each step followed from the one before, but was less interested in deeper under-
standings, such as getting amore holistic picture of atopic or making connections
with other aspects of mathematics.

He wasless enthusiastic about the value of collaboration than most of the other
studentsin the class. He said “they [i.e., other studentsin the group] just help you
understand a bit better, and learn it abit better, and point out where you'rewrong,”
but then added, “I don’t know whether you necessarily learn better ingroups.” Rob-
ert, hisfriend, described him as uninterested in listening to other students, because
his own ideas were usually better. He also claimed that John at times made use of
other peopl€e’s ideas but was reluctant to give them credit for them. John was not
very interested in explaining or justifying his statements to others:

I’m not sort of trying to—when I’ m working through the problem I’ m not trying to do
it sothat other peoplecan understandit, it'sjust sothat | can get theanswer. (John)

| don't really feel very concerned with having everybody understanding just what |
did, aslong as myself and a couple of other people understand it, and we think it's
right, then I’ m happy. (John)

Hewaswilling to report to the class on his group’s sol utions but admitted to some
reservations about this, because he found explaining hisideas difficult:

| oftenfeel that perhaps other people might not understand what I’ m saying, likewhen
| do go up and haveto show how | got it ontheboard, | find | usually havetobelikere-
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aly basic, likel suppose| speak alittle bit Slowly. Perhaps sometimes|’ Il go through
it slowly, thinking that some people might not understand. (John)

Fromtheway it wassaid, | interpret this statement asreflecting asense of superior-
ity totheother studentsrather than feelings of inadeguacy about hisown communi-
cation skills.

John showed an interest in practical interpretations of the mathematics they
were doing, speculating, for example, about what road or traffic conditions might
have caused a car to travel more slowly for one section of itsjourney, although this
was hot a question that had been asked. He looked for ways to generalize results,
explaining that a generalization would save time by providing a quick method of
solving alarge number of problems.

Robert was much morethoughtful than John and showed no signsof John’sarro-
gance. He showed more awareness of other students' reactions and sensitivity to
their feelings. Although not asquick at solving problems, hisresponsesto the ques-
tionnaire indicated that he derived more enjoyment from mathematics than John
and felt more confident in face of the challengesinherent in problem solving. He,
too, appreciated practical aspects of mathematics, especially applications to sci-
ence, and did not enjoy repetitive practice.

Robert wasalso abetter oral communicator than John, and discoursed at consid-
erablelength intheinterviews. Hewas eager to explain hisgroup’s solutionsto the
class, believing that he was good at it (an opinion with which the teacher con-
curred), but he had some hesitations about how other students perceived him.

Well, sometimesthey don’t valuewhat I’ m saying. Like, they don’t think of mehighly
as someone who um, who is good at this. (Robert)

He had observed that, apart from the other Technophiles, studentsin the class sel-
dom sought his opinion, preferring to ask people like Mike (one of the Mates).

Everyone reckons he'slike really good at maths, so they always ask him, you know,
“What's this?” Now | don’t usually, | don’t usually get asked, at all. (Robert)

Robert admired John, and enjoyed working with him, but sometimes found it
hard to keep up with his thinking:

... hedoesgo extremely fast, and it's hard for meto follow. Sometimes| go oh oh oh
slow down, John. Just tell mewhat you' ve done, and then he goes, right. You know he
tells me like commando talk. (Robert)

Robert’s admiration for and friendship with John may have caused him to under-
value hisown real strengths. By adopting John's rather cryptic “commando talk,”
and in part his attitude of superiority, Robert may have isolated himself from the
rest of the class, and so failed to gain as much from the collaborative process as he
might otherwise have done. They may al so have encouraged oneanother in devalu-
ing written explanations.
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Rabert and John were not exclusively focused on science and technology. Both
had arange of other interests, including drama and various sports (though unlike
the Matesthey did not excel at sport). Charlesfitted more closely to the stereotype
of “nerd,” lacking both social and communication skills. He appeared nervous both
in small groups and whole-class discussions. Within agroup, he tended to beinar-
ticulate, making suggestions, but often failing to explain them clearly enough for
the othersto follow histhinking. Asaresult, hisideaswere frequently ignored, and
hewithdrew into silence. Unfortunately, Charleswas not one of the key informants
inthe study. Without knowing more about him and hisbackground, itisimpossible
totell whether hisnervousnessand inarti cul ateness may be aconsequence of previ-
ous disparaging comments or negative interactions with other students. He did,
however, make insightful contributions to whole-class discussions, especially
when encouraged by the teacher. In this situation, the teacher’s authority lent
weight to his ideas, and the other students were more prepared to listen to him.

TheRest of the Class

After these detailed descriptions of the behavior and attitudes of two groups of
boys, itisnatural to wonder about therest of the class. Werethere similar groups of
girlswith distinct behaviors, attitudes, and values? And what about the remaining
boys?

Although there were equal numbers of girls and boys in the class, the girls
seemed to operate as a single group, rather than forming cliques or gangs as the
boysdid. Althoughit waspossibletoidentify groupsof girlswith similar character-
istics—for example, there were several confident, active, and powerful girls with
good |eadership skills who spoke out readily in discussions, and anumber of qui-
eter, more studious girls—these groups did not keep to themsel ves but mixed with
all the others. On the occasions when the students were free to choose whereto sit,
thegirlsall sat inthe back two rows, but | could discern no patternsin who sat with
whom. Even pairs of close friends did not always sit together.

The small discussion groups generally worked well, but groups consisting en-
tirely or mainly of girls appeared to function particularly effectively, keeping on
task and involving everyonein the discussion. As Jacqui explained, referring to an
all-femalegroup shehad recently beenin, “we'reall putting inideasand getting the
end result.” Although this group was not videotaped, Jacqui’s comment was con-
firmed by the teacher’s observation that the group had worked well together.

TheMatestended to try to position girlsas hel pers or assistants, but the girls of -
ten resisted being given orders, as the following exchange illustrates:

Vic: Will it still foldinto abox, thissheet of paper?[Raised voiceto attract attention]
[Vic takes the sheet of paper from Zoe, gestures with it, then gives it back to her.]
[Zoe smiles and nods.]

Vic: Fold it into a box then.[Challenging tone of voice. Sits back, chin on hands.]
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Zoe: Toget itinto abox, you'll haveto cut out the corners. No, you can easily foldit.
[Pushes the paper back towards Vic]

If the Mates showed atendency to fool around, agirl waslikely to take thelead in
managing thegroup, sothat they could get onwith thework. AsSally explained:

Let'ssay | wasin agroup with three males, there’d be no question, I'd just do it [i.e.,
take the lead] straight away without thinking about it, because, with all due respect
they're sort of, they're really unmotivated and they'd rather discuss the weekend
sporting event or, you know, thelatest chick at the disco, or whatever. . . . Ittendstobe
thereally blokey blokesthat can’t get focused, but . . . if you just get them going, then
it happens. (Sally)

Other girlsexpressed similar attitudes. From the description she gave, Sally was
presumably referring to the Mates. She madeit clear, however, that taking thelead
was largely amatter of self-interest on her part:

| just basically took onthethought thatif | don’tdoit, nobody elseisgoingtodoit, and
we'reall goingto sit here and do absol utely nothing and get nowhere, and then haveto
do it for homework, and that’s going to be a pain in the neck. (Sally)

Publicly, the girls appeared to tolerate and even excuse the Mates' tendency to
interject and disrupt when another student wasreporting. Referring to oneincident,
Jacqui said:

Mandy got up to report, and Vic wasjust, you know, making abit of afool of her. . ..
They’re pretty good friends, so he's allowed to. He wouldn’t do that to anyone he
wasn't really friends with. (Jacqui)

Jacqui admitted that “it can be abit intimidating sometimes, if you're not really
that sure” The intimidation came from the “louder” (male) half of the class and
made her feel that “you’'d rather not make amistake, yeah, cosit would definitely
get picked up.” Some of the other girls, however, did not appear to feel like this.
They were quite capabl e of keeping the Mates under control, speaking out if one of
the Mates overstepped thelineand giving back asgood asthey got. The shyer boys,
on the other hand, may have been as much intimidated by the Mates' behavior as
any of the girls. During my discussion with the group of girls, they described the
Mates as “the louder ones’ and said:

Megan: They’ve got their own group of friends and they sort of “ Yeah | want to work
with them cos they’re my mates”

Jacqui: They're moreinterested in talking about the latest footy scores, cricket or ra
-cing.

Zoe: There'salot of guysin this class who've got—
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M egan;—testosterone overload.
Zoe: Yeah, overload! [General laughter, indicating agreement]

Thisindicatesthat these girls tended not to take the Mates too seriously. However,
the testosterone comment shows that they may have accepted the discourse of bio-
logical essentiaism as an explanation for the Mates' behavior. They aso accepted to
someextent theideathat they should ableto“takeajoke’ without revesling weakness.

The Technophilestended to position other students asless able, and sometimes
ignored their attemptsto contribute to adiscussion. Reporting on her experience of
working with Robert and John, Jacqui said:

They'resort of friendswith each other, andit’skind of weird becausel don'treally as-
sociate with them that much, and they’re sort of they’relike happy todoit all by them-
selves, and they’ll be, they’ [l want to bethefirst tofinishit, and they’renot really into
interacting with the other members of the group . . . they were just really concerned
with getting it for their own benefit, rather than trying towork inthegroup. . . . | think
they’'ve got to learn to work in agroup properly. (Jacqui)

This showsthat Jacqui recognized and rejected the boys' competitive attitudes and
placed responsibility for thelack of effective communication at their door. Some of
her other commentsindicated that being excluded from the discussion by thesetwo
boys had not in the long term affected her confidence in herself. | thought that the
girlsdisplayed considerable insight into the weaknesses of both groups, as Jacqui
did in this example.

A few boys in the class appeared to belong to neither of the two groups de-
scribed. One was a would-be Mate, not fully accepted by the group, but sharing
many of their attitudesand behaviors, and associating with them when the opportu-
nity arose. The remaining two were very quiet and did little to draw attention to
themselves. They contributed in small-group discussions, but less than most other
students. They did not volunteer to report on their group’s work, nor did they say
much in whole-classdiscussions. Asthey were not among the key informantsinter-
viewed, | did not get to know so much about them.

MASCULINITIESAND POWER

Masculinity isassociated with power, and different formsof masculinity arerelated
to different forms of power:

Social power intermsof accessto higher education, entry to professions, command of
communication, is being delivered by the school system to boys who are academic
“successes.” The reaction of the “failed” is likely to be a claim to other sources of
power, even other definitions of masculinity. Sporting prowess, physical aggression,
sexual conquest may do. (Connell, 1989, p. 295)

Connell describes the resulting “contest for hegemony between rival versions of
masculinity” as not a matter of individual choice, but “something that happens at
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the level of the institution and in the organization of peer-group relationships’
(1989, p. 295).

Within the achievement-oriented culture of an independent school such asthe
oneinthisstudy, andin particular withinthisclass, sel ected because of the students
previous success in mathematics, we might expect to find fewer differences be-
tween groups than in comprehensive secondary schools such as those studied by
Walker (1988) and Mac an Ghaill (1994). In particular, no differences based on so-
cial class were observable among the students, although undoubtedly the families
were not al equally prosperous and some may have struggled to pay the school
fees. Nevertheless, conflicting versions of masculinity could be discerned, and
each made claim to some form of power. As Rob and Pam Gilbert explain:

Whilethe physical dominance of the macho boysmay place themin apowerful posi-
tioninthe peer culture, al the groups present themsel ves as powerful and superior in
terms of some criterion, be it intellectual hardness, coolness and style, or pragmatic
careerism. All these qualities can be a source of strength and toughness. (Gilbert &
Gilbert, 1998, p. 142)

TheMates

Themasculinity of the Mateswas based in part on sporting prowess, and the ku-
doswhich that brought within this school. Up to apoint, it was very physical—the
Mates made use of body posture, movement, gestures, and tones of voice to draw
attention to themselves and maintain a dominant position in the classroom. How-
ever, intelligence, quick thinking, and verbal wit also played a part. They had not
only established a degree of dominance over other students, but also from time to
time attempted to test the authority of theteacher. Their behavior bringsstrongly to
mind the description of masculinity asperformance (Johnson, 1997). Here, the per-
formance seemed to be primarily for the benefit of the others in their group, and
only secondly for the teacher and the rest of the class. It was their means of estab-
lishing and maintaining group membership.

Although therewas considerabl e variability within the group, these boystended
to be extroverts, to seek or even demand attention, and to enjoy being in the lime-
light. Lynn Davies (1984) has given adefinition of power as applied specifically to
school students that provides some insight into this attention-seeking behavior:

Power hasto bemorethan the ability to make othersdo what you want, or allow youto
dowhat youwant. . . . Power isnot the same as status, though statusmay bean alterna-
tiveto power. . .. Initsbroadest sense, power istheability to alter the course of events,
to create ahappening, whether or not a particular endisinview. (Davies, 1984, p. 3;
italicsin original)

Generally the Mates had good opinions of themselves, although one admitted pri-
vately to alack of confidence. Appearing “cool” seemed to be paramount: they
projected the attitude that life, and school work, were not to be taken too serioudly.
The pose of not taking work seriously, and not putting in too much effort, can be seen
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asadefenseagaingt failure: if they did not try too hard, they could not be said to have
failed, and could always claim that if they had tried they would have succeeded bril-
liantly.

All of the Mateswerethinking about careersthat would eventually placethemin
positions of authority, and their approach to school appeared to be a (probably un-
conscious) preparation for this. The widerange of activitiesin which they werein-
volved was helping them to build networks of contacts. In group discussions, they
liked to be in control and tended to lose interest if they were not.

These boys represent hegemonic masculinity as expressed within the culture of
this school. This differs significantly from the form of hegemonic masculinity de-
scribed, for example, by Mac an Ghaill asthe “Macho Lads’ or by Walker as the
“footballers.” Like these groups, sport played a significant role for the Mates, but
unlike them, the Mates were neither underachieving nor antischool, but able and
ambitious. They established their sense of identity through the school, by identify-
ing strongly with the values of the school, and engaging in a wide variety of
school-related activities.

The Technophiles

The Technophiles displayed amore rational form of masculinity. It was associated
withideasand the acquisition of knowledge—but not with the sharing of theideasand
knowledge with others. They wereimpressed by the power of mathematicsto explain
the physical world, and its usefulness in science and other practical applications.

This group shares some of the characteristics of Mac an Ghaill’s “New
Enterprisers,” especially their interest in technology. In contrast to the overt, but
joking, boastfulness of the Mates, the Technophiles kept their thoughts to them-
selves, but in private considered themselves superior thinkers and looked down a
little on those whom they saw asless bright. One described the other two as*“ very,
very intelligent . . . very smart” and himself as “catching on to things extremely
quickly.” They seemed allittle resentful that the rest of the class did not acknowl-
edge their ability. Although they knew that they had the respect of othersin their
group, they would a so have liked wider recognition.

They were introspective, and appeared to value ideas more than relationships.
They took mathematics seriously, and thismay not have been seen as“ cool” by the
other students. Asaresult they tended to be marginalized, both by the Matesand by
thegirls, who saw them as*“ abit weird.” Although some of thegirlsalso took math-
ematics seriously, the Technophiles distanced themselves from them by their un-
willingness or inability to communicate. Marginalized to a greater or lesser extent
by othersinthe class, they maintained their belief in themselves, and their sense of
superiority, by competing to be thefirst to solve aproblem, and by acknowledging
one another’s ahility. Their status in the class was established through the media-
tion of the teacher, who encouraged them to explain their ideas to the class and
praised them when they showedinsight or devel oped “ good” solutionsto problems.
Itisunfortunatethat their attitudesand val ues did not alwaysfacilitatetheir produc-
tive participation in small-group discussions.
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Conflicting Discour ses

This classroom was situated at the intersection of a number of conflicting dis-
courses. As previoudly explained, the students generally adopted and supported the
teacher’ sdiscourseon thevalue of learning by collaborativeinvestigation. Interviews
conducted ayear after theinitial period of research revealed that in retrospect they ap-
preciated even more strongly the value they had derived from learning in this way.

Somestudents, however, attempted to mobilize other discoursesin oppositionto
the teacher and in support of their own ends, such as avoiding effort or livening up
lessons. At times students appealed to the discourse of traditional mathematics
teaching to dispute the teacher’s agenda, questioning, for example, whether work
they were doing was going to be assessed. At other times, they appealed to the
school’s discourse on the importance of sport and other extra-curricular activities,
explaining that it was not their fault when they missed | essons—these other activi-
tiesmadeit necessary. And at times other class members supported the Mates' dis-
course about not taking work too seriously, by joininginthetalk and thejoking, and
even accepting a certain degree of mockery with only minimal protest.

Thecasesof two studentsillustratethese conflictsclearly. Mike managed adeli-
catebalancing act, taking partinall of thefun and banter of theMates, but still man-
aging to maintain a high standard of work and comply with everything the teacher
asked. Asaresult, hewas subjected to occasional teasing by the other Mates. Inthis
case, there appears to have been a conflict between the values of hard work and
achievement supported by his family, and the values and practices of the Mates.
Mike resolved thisby joining in thetalk and joking in class, but working very hard
at home to catch up with hiswork, bring notes up to date, and practice techniques
and problems.

Robert, one of the Technophiles, was strongly influenced by his admiration for
John. Heallowed himself at timesto be positioned as John’ sassistant and appeared to
accept many of John’sval uesinstead of thevaluesof collaborativelearning promoted
by theteacher. Asaresult, hetended to concentrate on trying to keep up with John, to
theneglect of some of hisown abilities. Robert was morereflectivethan Johnand had
more skill with words. He might have gained much morefrom the collaborativework
and contributed moreto others' learningif he had been lesskeen to keep up with John,
and morewilling to listen to others, share hisideas with them, and expl ore the possi-
bilities inherent in open-ended problems instead of rushing toward closure.

POSSIBLE CONSEQUENCESOF THE OBSERVED
BEHAVIORS

Effects on the Students Own L earning

Intheir desireto appear “cool,” to have fun, and to guard against the appearance
of failure, the Mates did not put as much effort into their work as they might have
doneand, hence, did not achi eve asthorough an understanding of the mathematical
concepts asthey could have. Theteacher reported that written work they handed in
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was often superficial. Shesaid they did not “ do themselvesjustice,” and they made
the same admission themselvesin interviews, possibly echoing thewords of teach-
ersor parents.

By focussing on their own ways of solving problems, and disregarding alterna
tive approaches, the Technophiles failed to gain as much as they might otherwise
have donefrom the exchange of ideas. They underval ued theimproved understand-
ing that most students derive from explaining their ideasto others. Their poor writ-
ten communication skills had a detrimental effect on their assessments in
mathematics. Unless this improved, it would very likely seriously hinder their
progress in future mathematics courses that were important for their career goals.
Again, they could be described as not doing themselves justice—in this case be-
cause the ideas and insight they displayed in class discussions were not translated
into assessable written work.

Effects on Other Students

The Mates tended to distract other students with their talk and fooling around
and may have caused some, especially shyer students, to hesitate to put forward
their ideasfor fear of ridicule. Students who were deterred in thisway from taking
part in discussions would be disadvantaged by being deprived of opportunitiesto
try out and develop their ideas. The off-task talk initiated by the Mates was more
frequent than that of other students, male or female, and more disruptive. This
slowed the progress of thewhol e class on occasions. In onedocumented incident, a
group spent 2 minutes talking about betting at the races. As a result, when the
teacher asked the classto stop work for areporting-back session, they had not com-
pleted everything expected of them, forcing the teacher to change her plans and
switch to discussing a different problem.

The Technophilestended to pay |ess attention to ways of thinking that were dif-
ferent from their own. Consequently, areduced range of points of view was repre-
sented in some of the small-group discussions, which were less rich and less
productive than might have been the case. As aresult, the others did not benefit as
much asmight have been possiblefrom theinterchange of ideas. Theteacher coun-
tered this as far as possible by drawing out arange of ideas in class discussions.

IMPLICATIONS FOR TEACHING

Asl observeditin actionin this classroom, the overall success of the collabora-
tive inquiry approach was evident. Further evidence not presented here indicated
that thisapproach to learning resulted in adeep understanding of the subject matter.
When student-student and student-teacher interactions during collaborative in-
quiry lessons were compared with interactions during whole-class lessonsinvol v-
ing the same class and teacher, it was clear that there was asubstantial reductionin
the disadvantageto girlsand theless assertive boys. More opportunitieswere avail-
able to them to express and devel op their ideas, aswell asto ask questionsand re-
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ceive explanations. Students who had been in this class were observed the
following year to be more open to challenge and better ableto think for themselves
than other students, including somewho had been judged by the school to be more
mathematically able. Although this chapter has focused on some situations in
which the outcomes of collaboration were less than optimal, this should not be al-
lowed to detract from the overall effectiveness of this teaching approach.

No teacher can be aware of everything that goes on in a classroom while he or
sheiscirculating around the groups and guiding their discussions. However, stu-
dents who share a culture similar to that of the Mates need to be monitored care-
fully. To minimize potentially disruptive behavior, it may help to avoid having
several of these studentsinthe samegroup, astheteacher in thisstudy did whenever
possible. Teachersmay find it necessary to check that all studentshavefully partici-
pated in the working out of the group’s solution and have not |eft the detailsto one
or two. There needsto be avery strong emphasis on accountability, on listening to
others' ideas, and on every group member being able to explain all details of the
group’ssol ution. When theteacher joinsagroup to check progress, the tendency of
studentslike the Mates to appropriate other students' work can be guarded against
by directing questions to others and not allowing one student to become the main
spokesperson. Studentsin agroup who have said nothing in the discussion with the
teacher need to be explicitly invited to contribute.

Students such as the Technophiles need to be convinced of the importance of
both written and oral communication skills and given assistance in improving
them. Establishing a supportive environment in which everyone is valued and no
oneisever disparaged or madefun of will aid oral communication. Theimportance
of listening to others also needs to be stressed to all students, but especialy this
group. Aswiththe Mates, avoiding, if possible, placing two of these studentsin the
same group will help. Because they take careers and higher education seriously,
visitors holding scientific or technical jobs, or university students of science or
technology, could beinvited to visit the classto tell something about their work, in-
cluding the important role of communication in their working lives—written re-
portsand papers, oral presentationsat conferences or meetings, grant applications,
and so on. It may also help to stresstheimportance of keeping clear records of what
they have done, to which they can return much later to help them recall what they
did. David Clarke has described an assessment exercise (Clarke, 1996) in which a
classis presented with several sample student reports of variable quality, and stu-
dentsare asked to study and compare them and work out for themsel veswhat con-
stitutes an excellent report. Such an exercise would benefit all students, but might
be of particular help in convincing students such asthe Technophiles of theimpor-
tance of learning how to communicate mathematics.

CONCLUSION

Most studiesof collaborativelearning in mathematics havetreated boysasaho-
mogeneous group, whereas studies of the construction of masculinities have fo-
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cused on schooling generally rather than specific subject areas. Theresultsreported
here provideabetter understanding of factorsinfluencing classroominteractionsin
the context where a teacher in a prosperous, independent school implements col-
laborativelearning in mathematics. The observations emphasi ze the importance of
taking into account socially constructed versions of masculinity and femininity
when studying students’ behavior in the mathematics classroom.

Comparison of student behavior during collaborative group work with the be-
haviors of the same studentsin awhole-class teaching context suggests that teach-
ersmay be ableto decrease theinfluence of dominant groups of malesby adopting
acollaborative inquiry approach. However, the results al so emphasize the need to
monitor carefully and control the behavior of certain groups of males.

Some issues remain unresolved and will be the focus of further investigations.
One of theseisthe extent to which the observations may be generalized beyond the
particular class and school in which the research was carried out. The role of the
culture of the school in determining which forms of masculinity are endorsed and
which are marginalized needsto be considered. In this context, however, itisworth
noting that when the behavior of the Mates and the Technophileswas described to a
group of teachers from other schools, several acknowledged that they recognized
thetypesof boysdescribed. Onesaid, “| have boyslikethesein my class,” and oth-
ers agreed.

Another question requiring more study is what forms of femininity may be
foundinthe class, and in which waysthe girls behaviorsand valuesinfluence, and
areinfluenced by, the collaborativelearning environment and the different forms of
masculinity. Further research isal so needed toinvestigatethe constructions of mas-
culinity and femininity likely to befound in schools such asrural schoolsand met-
ropolitan schools catering to students of lower socioeconomic background, whose
student populations differ in important ways from the school in this study. The ef-
fectiveness of the recommended strategies for teachers also remains untested.

Asaguard against stereotyping studentsby gender, ethnicity, social class, or any
other category, teachersfrequently claim that they treat each child asanindividual.
But emphasizing students’ individual characteristics may cause teachers to focus
on psychological traits at the expense of the social context and social rel ationships
within the classroom, and to avoid interrogating their own behaviors, attitudes, and
values. This chapter has drawn attention to the importance of looking at subgroups
of students within aclass and, in particular, the specific discourses of masculinity
operating within some such subgroups. These discourses intersect with students’
direct experienceof collaborativelearning in mathematicsand hel pto construct the
cultural climate of the class asawhole.
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Identity, Agency, and Knowing
in Mathematics Worlds

Jo Boaler and James G. Greeno

INTRODUCTION

Thenumber of peoplewho chooseto pursue mathematicswithin or beyond univer-
sityissmall. Inthe United States, aswell asother countriesacrosstheglobe, declin-
ing proportions of students are majoring in mathematics, with particularly small
numbers of women and non-Asian minorities entering the discipline (Anderson,
1997; Gutierrez, 2000). These facts are assumed by many, particularly those in
mathematics departments, to be owing to the cognitive challenge of the subject.
Mathematics is regarded as difficult and attainable only by some. We will present
new datain thischapter that challengesthisview through arepresentation of learn-
ing as a process of identity formation in “figured worlds’ (Holland, Lachicotte,
Skinner, & Cain, 1998). Thefigured worlds of many mathematics classrooms, par-
ticularly those at higher levels, are unusually narrow and ritualistic, leading able
students to reject the discipline at a sensitive stage of their identity development.
Traditional pedagogies and procedural views of mathematics combine to produce
environments in which most students must surrender agency and thought in order
tofollow predetermined routines (Boaler, 1997a; Doyle, 1988; Schoenfeld, 1988).
Many students are capabl e of such practices, but reject them, asthey run counter to
their devel oping i dentification asresponsi bl e, thinking agents (Wenger, 1998). The
application of thought and the devel opment of agency (Holland et al., 1998) should
be an intrinsic part of any learning environment, yet there is evidence that such
practices are dismally represented for students in many mathematics classrooms
(Boaler, 1997a; Cheek & Castle, 1981; Stigler & Hiebert, 1999).

L earning mathematics has traditionally been regarded as an individual, cogni-
tive activity. Educators have focused on the knowledge and understanding that stu-
dentsdevelop, asaproduct both of individual student resourcesand the practicesin
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which students engage. A supporter of traditional teaching methods, for example,
may argue that a student’s knowledge would be enhanced by working through a
textbook, while a reform-oriented teacher may argue that a student’s knowledge
would be enhanced through the act of mathematical discussion. Both of these edu-
catorsregard the activity of |earning mathematics asavehiclefor acquiring mathe-
matics knowledge, but essentially distinct from the knowledge that is eventually
developed. More recent theories of mathematical knowledge (e.g., Kitcher, 1983;
Tymoczko, 1986) and learning (Greeno & MMAP, 1998; Lave, 1988, 1993; Lave
& Wenger, 1991) challenge thisdistinction, claiming that the practices of learning
mathemati csdefinethe knowledgethat is produced. Such theoriesare supported by
Boaler’ sfinding (19973, 1998, 20004) that students of mathematics who had pre-
dominantly worked through textbooksfound it difficult to usetheir mathematicsin
new and varied situations that required a different set of practices. Students who
had engaged in practices of negotiation andinterpretationinthe mathematicsclass-
room were more able to use mathematicsin different situations that required such
practices. Both sets of students had learned how to form and solve equations, for
example, but, consistent with sociocultural (Rogoff, 1990) or situative (Greeno &
MMAP, 1998; Lave, 1988, 1993; Lave & Wenger, 1991) theories of learning, stu-
dentsfrom the different learning environments had qualitatively different forms of
knowledge, mediated by the belief sthat studentsdevel oped about mathematicsand
learning in response to different teaching methods. Their knowledge was
co-constituted by the practices of their learning and therefore differentially useful
in real world situations (Boaler, 1997a). But situated theories do not only illumi-
natethediscontinuity of mathematical practicethat isrecorded between sitesindif-
ferent research studies (Lave, 1988). Their focus on the patterns of participation
that constitute learning gives insights into the nature and extent of identification
and belonging that students develop as they learn to be mathematics learners
(Dowling, 1996; Wenger, 1998).

We proposein this chapter that broadened perspectives of mathematicslearning
provide considerable insight both into students' mathematical understanding, as
well asthechoicesthey makeabout lifeand work. We consider knowing and under-
standing mathematics as aspects of participation in socia practices, particularly
discourse practices, in which people engage in sense-making and problem solving
using mathematical representations, concepts, and methods as resources. Calling
these “social practices’ does not exclude activities of individual swho work alone,
using and developing mathematical representations, concepts, and methods that
they have encountered by participating in classrooms or by reading texts. Anim-
portant implication of thisideaisthat students' learning of mathematicscan becon-
sidered as atrajectory of participation in the practices of mathematical discourse
and thinking. This view goes beyond recognizing that social practices provide a
context for learning mathemati cs—instead, according to thisview, participationin
social practicesiswhat learning mathematicsis. The social practices of acommu-
nity provide an environment in which students can participate, and their ways of
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participating are adaptationsto the constraints and aff ordances of the environment
(Greeno & MMAP, 1998).

In this chapter, we make use of a practice-based interpretation of mathematics
learning in our analysis of interviewswith 48 high school students of calculus. We
interpret the results of these interviews using a concept of ecologies of participa-
tion. Wefind it useful to consider ecologies of participation in terms devel oped by
Holland and associates (1998). Thisgroup of anthropol ogists discussed social sys-
temsin terms of figured worlds, positioning, and authoring. Figured worlds (Hol-
land et al., 1998, p. 52) are places where agents come together to construct joint
meaningsand activities. A mathematicslearning environment could be regarded as
aparticular figured world because students and teachers construct interpretations
of actionsthat routinely take placethere. Figured worldsare socially and culturally
constructed realms “ of interpretation in which particular characters and actors are
recognized, significance is assigned to certain acts, and particular outcomes are
valued over others’ (1998, p. 52). The importance of this label for researchers of
mathematics education residesin the characterization of amathematics classroom
as an interpretable realm, in which people fashion their senses of self. Figured
worlds draw attention to interpretations by actors—students and teachers, for ex-
ample—and to therituals of practice. The mathematics classroom may be thought
of as a particular social setting—that is, a figured world—in which children and
teachers take on certain roles that help define who they are.

Holland and associates (1998) use the term “positional identity” to refer to the
way in which people comprehend and enact their positionsin the worldsin which
they live. This builds on their theory that identities develop in and through social
practice. They acknowledge that identities are centrally related to structural fea-
tures of society such as ethnicity or gender but draw attention to the specific prac-
tices and activities situated in “worlds’ such as academia, romance, or local
politics. “ Positional identities haveto do with the day-to-day and on-the-ground re-
lations of power, deference, and entitlement, social affiliation and distance—with
the social-interactional, social-relational structures of the lived world” (Holland et
al., 1998, pp. 127-128). Another aspect of identity they describe is the “ space of
authoring,” which is encapsulated by the notion that “the world must be an-
swered—authorshipisnot achoice” (1998, p. 272). Thisideaisconcerned with the
responsesindividual sgive, with human agency, and with improvisation. The possi-
bility and forms of authoring that are created in different mathematics environ-
ments, among learners who are often conceived as “receivers’ of education
(Corbett & Wilson, 1995), is an important question that will be pursued in this
chapter.

We consider students' talk about their mathematics learning in their interviews
with us as reports of their perceptions and understandings of the figured social
worlds of mathematics education in which they participated as learners. The stu-
dents’ descriptionsmay also betaken to indicate their positioningsin the ecologies
of participation in practices of mathematics education and reflections of their
authoring of identities as learners and performers of mathematics. The figured
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worldsof mathematicslearning environmentsarenot all alike, and our resultsillus-
trate two kinds of figured world that differ in an important way. Ininterpreting dif-
ferences between the two kinds of learning environmentsthese students described,
we use concepts devel oped by Belenky, Clinchy, Goldberger, and Tarule (1986),
and extended by Clinchy (1996) and Tarule (1996). Based on interviewswith indi-
viduals about their beliefs and understandings of knowing and learning, these re-
searchers developed distinctions that they referred to as ways of knowing. The
typology that these researchers developed included the following:

» Received knowing, in which theindividual considers her knowledge as primarily
dependent on and derivative from an authoritative source other than herself

» Subjectiveknowing, inwhichtheindividual considersher knowledgeasprimarily
aresult of her affective reactions to information and ideas

* Separate knowing, in which theindividual considers her knowledge as primarily
being constructed to comply with rulesthat establish validity and to be defensible
against challenges based on rules for validating knowledge

» Connected knowing, inwhich theindividual considersher knowledgeasprimarily
being constructed ininteraction with other people (either directly, in conversation,
or indirectly, through interacting with texts or other representations of others
knowledge and thinking), in a process that depends on understanding others’ ex-
periences, perspectives, and reasoning, and incorporates this understanding into
the individual’s knowing and understanding’

Belenky and associates' (1986) interviews were concerned with quite general
aspectsof knowing and |earning, and they used their ways of knowing to character-
ize individuals. Our interviews dealt more specifically with students’ experiences
and beliefsregarding their learning of mathematics, and we consider that the differ-
ent ways of knowing are characteristics of students' adaptationsto their mathemat-
ics learning environments. Indeed, the interviews we report include considerable
evidence of the different ways of knowing that students are required to accept, ne-
gotiate, or oppose in mathematics classrooms, compared with other school sub-
jects.

RESEARCH METHODS

As part of aresearch project investigating the nature of mathematical confi-
dence, researchers? interviewed 8 students from each of 6 Northern Cdifornian
high schools, 48 studentsin total. The studentswere all attending advanced place-
ment (AP) calculus classes. The six schools are all part of the public system and
serve diverse populations of students. The proportion of nonwhite students at the
schoolsrangesfrom 37 to 61 percent, while the proportion of students classified as
being eligiblefor free school meal srangesfrom 4 to 13 percent. Theschoolsarelo-
catedinarelatively affluent part of the United States, and they al include high pro-
portions of middle and upper-middle class students. All six schools are popular
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with parents and contain large numbers of college-bound students. Researchersin-
terviewed two girlsand two boysthat theteacher of AP calculusidentified asmath-
ematically confident, and two girls and two boys that the teacher identified as
lacking confidence, in each of the six classes. The eight students in each school
wereinterviewed in single-sex pairs. Theteachers of the six classes, half of whom
are female, are experienced and well respected in their departments. As the stu-
dentsweretaken from AP calculus classes, they may all be regarded as successful
students of mathematics, having all chosen to take mathematicsinto afourth year,
at anadvanced level. Indeed, the success of the studentsand their self-selectioninto
an advanced mathematics class meant that the students we interviewed were well
placed to choose mathematics asafield of study. All of theinterviewswere coded
using a system of open coding (Miles & Huberman, 1994). The different themes
that emerged were then combined into broader categories, which are reported in
this chapter. Theinterviews were semistructured, enabling the interviewer to pur-
suedirectionsraised by the students. Studentswere asked to describe mathematics
lessons; they were asked about |essonsthey particularly liked and disliked, the ex-
tent of discussion in mathematics, and the nature of mathematical confidence. In
this chapter, we will consider the students' representation of their mathematics
classroom environments and their subsequent beliefs about mathematics. In dis-
cussion, we will consider the implications of these different experiences and be-
liefs for the nature of mathematics knowing, identification, and participation.

RESEARCH RESULTS

We present our results in three sections. First, we describe students' reports of
their perceptions of the mathematics classroom environments in which they
worked and the characteristics of mathematics learning that they believed. These
findings provide apicture of thefigured social worlds of mathematicslearning that
the students experienced. Second, we describe students' reports of their beliefs
about their placesin the figured worl ds of mathematicslearning, their understand-
ings of their positioning in theselearning ecologies. Third, we present students' re-
portsabout their affective reactionsand i dentificationstoward their participationin
mathematics learning, in the present and future. This provides information about
theidentitiesthey authored regarding knowing and | earning mathematics. Implica-
tionsof thestudents' viewsfor their future as mathematicslearnersand thefuture of
mathematics education will be discussed.

The Figured Worlds of the Mathematics Classroom

All 48 of the students we interviewed were asked to describe their AP-calculus
mathematics lessons, and interviewers engaged studentsin conversation about the
different features they described. The students all described teachers reviewing
homework, explaining methods at the board, and assigning questions to be com-
pleted. However, the descriptions of lessonsat two of the schoolsdifferedinanim-
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portant way. Teachersat two of the high school s, both women, encouraged students
to work on questions collaboratively. When teachers explained methods to stu-
dents, they encouraged student discussion, and when students worked on prob-
lems, they did so in groups. Students of the other four teachers described
mathematics classes asindividua environmentsinwhich their rolewasto practice
and repeat the proceduresteachers demonstrated. The nature of the different class-
room environments will be explored briefly in the pages that follow.

Ecologies of Didactic Teaching

The pedagogical practices students reported in the four individualistic environ-
ments, which we call Apple, Cherry, Lemon, and Lime schools, were remarkably
consistent, with student after student portraying animage of mathematicsteaching
that afforded received knowing. The teachers presented procedures that students
were supposed to learn to perform. The students’ characterizations of these class-
room practices are illustrated by the following remarks:

Basically, throughout my experience, we go to class and the teachers|ecture, go over
the material and show us exactly how to do the problems, cover the subjects that
they'reteaching and after the teacher’sfinished teaching if we ask questions and sort
of like clear up anything that we don’t know and then homework will beassignedto us
that day, then we go home and do it. (Brad, Cherry school)

Studentsfrom these school sreported that mathematics classes alwaysfollowed the
same pattern—of reviewing homework and then working through exercises—and
that even the questions in the exercises were similar:

It'scalculus! Everythingisthesame. It'sall derivatives, and somehow you gottauseit
somehow. | never liked derivativesor integrals, but thewholebook so far hasbeenthe
same thing, derivatives. (Khir, Apple school)

The students seemed to accept thelack of variety they reported in mathematicsles-
sons, not because they enjoyed the lessons, but because they thought that was the
way mathematics had to be. Few of the students had experienced anything differ-
ent:

K: I'mjust not interested in, just, you give me aformula, I’ m supposed to memorize
the answer, apply it and that'siit.

Int: Does math have to be like that?
B: I've just kind of learned it that way. | don't know if there’s any other way.
K: Atthepoint | amright now, that'sall I know. (Kristinaand Betsy, Appleschool)

The mathematics textbooks that the school s used all presented the fundamental
theorem of calculus, expanded on the different concepts underlying the domain,
and demonstrated proceduresthat could be used to solve problems. The booksthen
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introduced a series of questionsthat required studentsto practice the different pro-
cedures. Students reported that they worked through their textbooks every lesson,
and they were encouraged to attend carefully to the words and practices of their
teacher. Students were not expected nor encouraged to discuss the mathematics
they were learning:

Thereisn’t much between students because you can’t spend the time, like talking, if
you want to pay attention and listen to what they’re explaining. So unlesslike, when
somebody next to me hasaquestion, then I’ [l lean over becauseit'salittlething | can
ask, | think it's more with the teacher. (Janet, Lemon school)

One of the students laughed for along time when we asked him whether he and
other studentswere encouraged to interact or talk to each other in mathematicsles-
sons. He then gave the following response:;

Unless Mr. Bond says the marvel ous sentence, “you have the period to yourself,” we
will never interact with each other directly. We go (whispering) “pass me your
book” —we will never interact directly, not even with Mr. Bond because it’s like our
little cubicle, we have to do it. (Chris, Cherry school)

Thefigured worldsthat these students portray, and that will be given moredepth
inthe next section, are highly ritualized. Students cometo class, watch theteachers
demonstrate procedures, and then practice the procedures—alone. The ways in
which students position themselves in such aworld and form relationships with
mathematics and each other isthe focus of the next section. First, we offer asimi-
larly brief characterization of the two other mathematics classesin which students
were required to play adifferent role.

Ecologies of Discussion-based Teaching

Studentsfrom Grape and Orange school s painted amarkedly different picture of
mathematics lessons. The students talked about the time they spent discussing the
different questions, as a class, and in student groups. They described being posi-
tioned as active agents in their classes, and their role involved contributing to the
shared understanding of ideas that developed among the class. Their classroom
practices aff orded growth of connected knowing, with development of mathemati-
cal understanding that the students constructed and shared. The students from
Grape and Orange school swere generally more positive about their experiences of
calculusthan studentsin the other schools, which they attributed to the relaxed na-
ture of lessons, the positive relationships they formed with the teacher and other
students, and the chance to derive meaning through discussion. When the students
described their mathematics lessons, they gave discussion a central role and they
talked about the increased access to understanding that collaboration provided:

V: Classes are social.
J: We work in groups most of the time.
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V: Ms. Green works really hard on making it social and not just by yourself.

J: | think the groups are the best situation just because you can talk to the kidsin your
group and see if they can figure out the problem too. (Veena and Jazz, Orange
school).

J. Theteacher givesus something and hasuswork on awork sheet and then work with
peoplein our group on the work sheet, because if | understand something, then |
can explainit to the group membersor if | don’t understand it the group members
may explainit to me. Whereasif sheteachesthelesson and sendsushomewithit,
I’m not really that confident because | haven't put like thingstogether. (Jacob, Or-
ange school)

The students appreciated the opportunity to discuss their work, partly because
their discussions gave them deeper insightsinto the mathematicsthey met, but also
because their discussions changed the nature of the classroom environment. When
the students talked about AP calculus, they emphasized relationships—between
the different aspects of mathematicsaswell asthe peopleintheclass. Their figured
worldsdid not center around individualized procedurerepetition, but rather around
collaboration of ideas within a community of learners (Lave & Wenger, 1991):

D: Yeah, thisismy favorite class this year because the environment is so like family
and you can just go there and talk about math or any problems you have.

B: She givesyou time when she's not teaching, sheletsyou work on the problems, so
shekind of walksaround the room and it could belike socializing if you want. So
it's like even when we socialize we still get math.

D: Yeah we always socialize about math. Weird but it happens.

B: I've definitely done better in this class than any other math class.

D: 1 think it's the relationships you have with other people in the class and with the
teacher. (Debbie and Becky, Grape school)

In discussion-oriented figured worlds, connections between learners are empha-
sized as students are positioned as relational agents who are mutually committed
and accountable to each other for constructing understanding in their discourse
(Mclaughlin & Talbert, 1999; Wood, 1999). Studentsare expected to be co-authors,
with their teachers, of their understanding of mathematical principles and proce-
dures.

Thisbrief section has presented asummary of the students’ presentations of fig-
ured worlds. Onegroup of students presented their worldsasstructured, individual-
ized, and ritualized, the other group as relational, communicative, and connected.
The difference between the students’ reported experiences in classrooms that did
and did not encourage di scussion was unexpected, asweknew little about the class-
rooms before we went in to interview the students. But it became clear to us,
through our discussions with the students, that such differences had a significant
impact on the students' positioning as learners in the two versions of figured
worlds, as we shall now explore.
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Students’ Placesin the Figured Worlds of Mathematics
Learning

Positioning within Didactic Teaching

In order to consider students' roles as learners in their figured worlds, we en-
gaged them in conversation about the nature of the knowledge they encountered
and their roles as interpreters of that knowledge. We were interested to know
whether students in the more traditional classes played an active role considering
and interpreting the meaning of the procedures they encountered, which may have
led to abroad, conceptual understanding of mathematics, or a passive role as re-
ceivers of predetermined knowledge that appeared unavailable for discussion or
negotiation. Through conversation with the students from the more didactic class-
rooms, it became clear that their role in the mathematics classroom was narrowly
defined:

There'sonly oneright answer and you can, it’s not subject to your own interpretation
or anything it's always in the back of the book right there. If you can’t get it you're
stuck. (Susan, Cherry school)

Some students believed that mathematics lessons did not require them to think in
the way that other subject lessons did because of the closed nature of the problems
they encountered:

There'sdefinitely aright answer toit. The other subjectslike English and stuff that re-
aly have no right answer so | have to think about it. (Kim, Apple school)

Some of the students regarded thinking practicesto be an unnecessary part of their
mathematical experiences, in a similar way to the students’ taught in traditional
classesin Boaler’spreviousstudy (1997a), asone of the studentsfrom that study re-
ported:

L: In maths you have to remember; in other subjects you can think about it. (Louise,
Year 11, set 1) (Boaler, 19974, p. 36)

Theideathat learning mathematics requires no or little thought, as students are
only required to reproduce procedures, suggests that students are engaging in ritu-
alistic acts of knowledge reproduction rather than thinking about the nature of the
procedures and the reasonswhy and when they may beapplied. That thinking prac-
ticesarelimited, even at such advanced levels of mathematics, seemsboth incredi-
bleand worrying. Further evidencefor thelimited role of thinking wasprovided by
the students’ answersto the following question, posed to themintheinterviews: Is
mathematics more about understanding concepts or memorizing procedures? Stu-
dents from three of the four schools give these answers:

G: | think it's very procedural. Different chapters they have this blue section, theo-
rems, just memorize theorems. (Greg, Apple school)
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K: Procedures. Because you have to learn thisto learn thisto understand this. | think
of it like that. (Karen, Cherry school)

L: It'sall about theformulas. If you know how to useit then you've got it made. Even
if you don’t quite understand the concept, if you'reabletofigureout all the partsof
the formula, if you have the formulathen you can do it. (Lori, Lime school)

P: I'd say it'salittleof both. | don’t think it'sconceptual. Like, there are big concepts,
and it's derivative and everything, things like that. But you have to remember all
the little tricks and rules you have to follow. (Paul, Lime school)

This student suggests that though he appreciates that “big concepts’ underlie the
mathematics he is learning, the “little tricks and rules’ dominate his perception.
Other student reflections supported the idea that the practice of working through
multiple procedures reduced the opportunity for a broader understanding:

A: If we actually went into detail about certain, like the stronger concepts that we'll
maybeuselater, | think wewould remember morethanjust bombardinguswithall
these different things on aweekly basis. It getsto the point where you're doing so
much you don’t see the relationship, you're just doing so many problems. (An-
thony, Lime schooal).

A: Concepts | think are second priority and I’ll spend more time trying to learn the
procedure.

B: Thebook doestheworst job of explainingit. You might aswell just get those notes
down. Who knows how to use them, but somehow learn the procedure. (Arnetha
and Barbara, Lime schoal).

Students of both sexes, different confidence levels, and various levels of attain-
ment in the didactic classestold usthat mathematicswas a closed, rule-bound sub-
ject. The students related breadth and openness with thought. In contrast,
mathematics questions requiring one answer, which could be achieved by follow-
ing a standard procedure, required little thought. Despite the range of initiatives
aimed at reforming school mathematicsin the United States (Fennema & Nelson,
1997; National Council for Teachers of Mathematics, 1989), thereis evidence that
traditional pedagogies dominate mathematics classrooms, particularly at higher
levels(Boaler, 1997c; Rogers 1995). Thus, teachers of mathematics frequently ex-
pect students to spend the majority of their time in mathematics lessons working
through exercisespracticing procedures (Schoenfeld, 1988). Theaim of suchwork,
presumably, isthat studentswill become conversant in the use of the different pro-
ceduresand be ableto usethem in arange of mathematical situations. However, the
act of practicing proceduresappearsto become sufficiently dominant for many stu-
dentsthat it obscuresthe meaning of the subject, and takes students’' thoughts away
from the concepts that are intended to be exemplified by the procedures (Mason,
1989; Perry, 1991). Many studentsdescribed theact of working through procedures
as oppositional to understanding the big ideas in the domain:
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C: | seeit moreas proceduresand solving one problem at atime. It'shard for meto see
how it relates to everyday things, so | don't really get the big picture alot of the
time. (Cathy, Lemon school)

The students suggested that the procedural presentation of mathematics they en-
countered forced themto become passivereceiversof knowledge—with anarrowly
defined role that was one of memorization:

K: ThisisAPsoit'sdefinitely going to be harder, but | feel aslong as| can memorize
the formulas and memorize the derivatives and things like that, then | should be
pretty well off. (Kim, Apple schoal)

V: You have to memorize these little steps, there’ s always an equation to solve some-
thing and you have to memorize stuff in the equation to get the answer and there’'s
like alot of different procedures. (Vicky, Lime school)

In the four schools in which students worked through cal culus books alone, the
students appeared to view the domain of mathematics as a collection of conceptu-
ally opaque procedures. The mgjority of studentsinterviewed from the traditional
classesreported that thegoal of their learning activity wasfor themto memorizethe
different proceduresthey met. Such afigured world of didactic teaching and learn-
ing rests on an epistemology of received knowing. In this kind of figured world,
mathematical knowledge is transmitted to students, who learn by attending care-
fully toteachers’ and textbook demonstrations. Ball and Bass (2000) offer support-
ing evidence when they reflect that “ students often receive mathematical knowledge
inschool that isjustified by littleel sethan thetextbook’ sor theteacher’ sassertion. By
default the book has epistemic authority: Teachers explain assignmentsto pupils by
saying, ‘ Thisiswhat they want you to do here; and theright answersarefoundinthe
answer key” (Ball & Bass, 2000). Students' positioning in thiskind of ecology isthat
of receiving and absorbing knowledge from the teacher and textbook. This knowl-
edgeconsists of the ability to select and perform procedures of symbol manipulation,
thereby producing sequences of symbolsthat are correct, according to specifications
taken from authoritative mathematics (Povey, Burton, Angier, & Boylan, 1999). The
students’ responses to their positioning as received knowersin this highly ritualized
figured world will bethefocusof our final section. First, wewill explorethe students
positioning in the discussion-oriented classes.

Positioning within Discussion-based Teaching

The studentsin Grape and Orange schools used the same, or similar, textbooks
as students in the other four schoals, but they did not work through the exercises
producing answers that were supported or invalidated by the teacher or textbook.
Instead, they were asked to discuss the different questions and consider the mean-
ing of possible solutionswith each other, thusengaging in the process of validation
alongsidetheteacher. The studentsat Grape and Orange schools engaged in acts of
negotiation and interpretation that appeared to lead to their distinctly more progres-
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siveviewsof mathematicsasadiscipline. The studentsdid not describe mathemat-
icsasan abstract, closed, and procedural domain, but asafield of inquiry that they
could discuss and explore. Concomitantly, they regarded themselves as active
learners whose role went well beyond memorization:

L: 1 cangetmoreintoit, not just like“ ohthiskind of problem” but “why isthistheway
you do it?’

M:Yeah youwant to figure out the problem, you want to understand the concept. (L ori
and Melissa, Grape school)

Some of the students in Grape and Orange schools contrasted mathematics with
English, asthe studentsin some of the other schools had done, but they did soto il-
lustrate the depth of thinking required in mathematics, rather than the procedural
nature of the subject:

M: I don’t know, it just seemslike math ismoreimportant. In my English class, | can
just kind of flow, and whatever’sgoing on, write an essay about whatever, it'snot a
lot, well, in my case, it's not alot of deep thinking. Not alot under the surface.

Int: Is there in math—deep thinking?

M: Yeah. Yeah because the thing, being conceptual, and that’s alot harder than just
like memorizing formulas, definitely. (Melissa, Grape school)

T: | guess!’'veliked math overall becauseit’salot better than English or social studies,
just because | don't like to memorize just abunch of stuff. It'salot of solving the
problems, not like looking over past stuff, it'salot of new stuff you're covering.
(Tom, Orange school)

The studentsin the discussion-oriented classesregarded their roleto belearning
and understanding mathematical relationships, they did not perceive mathematics
classesto be aritual of procedure reproduction. When the students described their
figured worlds, they centralized rel ationships between people. Debbie and Becky,
cited earlier, described their mathematics class as a family environment; Angier
and Povey (1999) received similar responses from students they interviewed who
engaged in mathematical discussionsin class. Such descriptionssuggest that there-
lationships studentsform in their classes are central to thelearning that takes place
(McLaughlin& Talbert, 1999), rather than acasual by-product of achangein peda-
gogy. Thefollowing student relates the attainment of conceptual understanding to
the relationships that are formed with teachers and classmates:

D: | don't know, | guessthere'safeeling of more, it'skind of more laid back, | mean
we get alot of work done, we have people get 100 percent on thetests and thingslike
that. We have peoplewho don’t understand it, they still get agrasp of the general con-
cept and it’s not like we're sitting there with our hands on our desk, like. We're al-
lowed to make, we're allowed to make jokes, to be out of whack sometimes. We have
funwith theteacher, and when we get to work we get to work. With Mr. Cain, and our
other teachers, it's kind of like, there’s not that relationship. (David, Grape school)
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Ininterviewsat Grape and Orange schools, the studentswere extremely positive
about the discussions of mathematics that took place in class, which they related,
among other things, to the opportunitiesto learn through student language, the ac-
cessibility of other students’ ideas, and the formation of strong, personal relation-
shipsthat enhanced their learning. One of the studentswho wasin one of the more
didactic environmentsreflected on the discussions he had with friendswhen hewas
completing homework, concluding that discussions were helpful as they helped
him consider mathematics from another person’s perspective:

S: You can't dlwaysunderstand every problem. Likeif you go through atest or home-
work or an assignment, like it’s hard. Sometimes your mind doesn’t always click
onwhat you haveto dofor thiscertain problem, you haveto approachitinadiffer-
ent way so you haveto kind of get everyone'spoint of view. You haveto get every-
body’stake on how to do it. So it helpsif someone else could belooking at itina
different way, then they would have seen something alittle bit different. That defi-
nitely helps. (Seth, Lime school)

This student’s reflection seems to encapsulate the spirit of connected knowing,
with discussions of mathematics offering him the occasion to consider other peo-
ple's representations of knowledge. He valued the opportunities that homework
discussions provided for such insights, whereas the students at Grape and Orange
schoolswere afforded occasionsfor connected knowing on adaily basis, theimpli-
cations of which will be considered now.

Students’ Authored Identitiesin Their Different Mathematics
Worlds

Didactic Teaching and Received Knowing

For the studentsin Lemon, Lime, Apple, and Cherry schools, mathematics was
presented as a series of procedures that needed to be learned, as the students have
described. For studentsto be successful in such classes, they needed to both assume
the role of areceived knower and develop identities that were compatible with a
procedure-driven figured world. We assert that compatibility with forms of know-
ing, and identification with pedagogical practices, are both crucial aspects of math-
ematical success and we expand on both of these points next. It is critical to our
analysisthat when weinterviewed studentsin the didactic classes about the nature
of success in mathematics classrooms, they did not prioritize “ability,” the cogni-
tivedemand of the discipline, or even effort. Instead they prioritized students’ will-
ingness to accept a particular form of knowing and to build identities that give
human agency a minimal role.

Thefollowing students, from three of the four didactic classes, were asked what
it takes to be successful in mathematics. The interviewers of these students ex-
pected to hear about interest, effort, or even talent, and were surprised by the stu-
dents’ replies:
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A: Patience.
Int; Patience?

V: Yeh motivation and just wanting to do it. Perseverance. Wanting to do it over and
over again. (Vicky and Amy, Lime school)

A: Obedience.

Int: Obedience?

A: Obedient. I'veknown these peoplelike 4 yearsof my lifeand long enough to know
that no matter, evenif they didn't likewhat they’re doing you would feel like what
we're doing is completely ridiculous, they’re not going to raise a fuss about it,
they’re not going to speak their mind about it. They’ll just do it because it's re-
quired and that’'s what the teacher wants. The teacher would rather you do it and
not hear your thoughts on the thing, than have you contest what you're doing and
like—“I don't understand this.” . . . | can't sit therefor hours, just, | just can’t fol-
low directionswhen | see people doing something completely irrational. Or likeif
| don’t agree with like the question that he wants us to answer or whatever. (An-
thony, Lime school)

T: You haveto bewilling to accept that sometimesthings don’t look like—they don’t
seemthat you should dothem. Likethey haveapoint. But you haveto accept them.
(Tom, Lemon school)

R: | guessit depends on how you take frustration. (Rick, Apple school)

These students suggest that successin their calculus classes required aform of
received knowing, in which obedience, compliance, perseverance, and frustration
played acentral role. There seemed to be considerable consensus for this perspec-
tive among the studentsin the didactic classes, even though the students were di-
vided in their responsesto the form of knowing with which they apparently needed
to comply. We asked all 32 of the studentsin the didactic classes whether they en-
joyed mathematics; 18 said that they did (56 percent). Thirty of the students were
asked whether they intended to take any other mathematics classes; 14 said that
they did (47 percent). Those who disliked mathematics and had decided to cease
their study of mathematics (generally the same students) were not unsuccessful in
class; indeed, some of them were extremely able mathematics students. But the stu-
dentsresented the lack of opportunitiesthey received to develop adeep, relational,
and connected understanding of mathematics, as this student describes:

K: Weknew HOW to doit. But wedidn’'t know WHY weweredoing it and wedidn’t
know how we got around to doing it. Especially with limits, we knew what the an-
swer was, but we didn’t know WHY or how we went around doing it. We just
pluggedintoit. And | think that’swhat | really struggled withis—I can get thean-
swer, | just don’t understand why. (Kate, Lime school)

That such responseswereunrelated to “ ability” isnot surprising. In Boaer’s previ-
ous study of students working in traditional classrooms (1997b, 1997¢), the stu-
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dents who became most alienated, and ultimately unsuccessful, were at one time
the highest attaining mathematics studentsin the school; their attainment progres-
sively deteriorated as their mathematics teaching became more procedural. The
alienated studentsin that study—most of whom were girls—were capable of prac-
ticing the procedures they were given and gaining successin the classroom and on
tests, but they desired amore connected understanding that included consideration
of “why” the procedures they used were effective. The alienated studentsin this
study seemed to be rejecting mathematicsfor the same reasons. With aremarkable
degree of consistency, the students who stated that they liked mathematics (11 of
the 18 wereboys) gavereflectionsthat suggested they did so precisely becausethey
wanted to be received knowers, with minimal requirement to interpret knowledge
or think about connections within and across the mathematical domain:

Int: Why do you like math?
S: Because | think with so many of the other classes—what they teach and how they

teach it, they’'re opinionated and political and it al depends, it's never the same,
you can never depend onit. But withmath, it’s pretty constant. (Seth, Limeschool)

R: For me, it'sone of my strongest subjectsand for meit’ssomething I’ m happy about
andfeel goodin. Again, it'sthat methodol ogy of mathematicsthat |eadsto the one
answer that you can get, that there’s no answer other than that. (Rich, Cherry
school)

J: | dways like subjects where there is a definite right or wrong answer. That's why
I’m not avery inclined or good English student. Because| don't really think about
how or why somethingistheway itis. | just likemath becauseitisoritisn't. (Jerry,
Lemon school)

It seems striking that the studentsin didactic classeswho liked mathematics did so
because there were only right and wrong answers, and becausethey did not haveto
consider different opinionsor ideas, or usecreativity or expression. Jerry statesthat
helikes mathemati cs because he does not haveto “ think about how or why,” theim-
plications of which will be pursued in the conclusion to this chapter.

Belencky and associates describe “received knowers’ in the following way:
“For thosewho adhereto the perspective of received knowledge, thereareno grada-
tions of the truth—no gray areas. Paradox is inconceivable because received
knowers believe several contradictory ideas are never ssmultaneously in accor-
dancewith fact. Becausethey see only blacks and whites but never shades of grey”
(1986, p. 4). The three students quoted previously appear to exemplify this posi-
tion. Seth describes other classes as“ opinionated and political and it all depends,”
which to him was the anathema of the knowing he wanted. The following student
reflectson the studentswho liked mathematicsin hisclass, withadescriptionthatis
strikingly similar to that of Belencky and associates' (1986) received knowers:

T: There'sdefinitely acertain type of person who'sbetter at math. Generdly, if you're
better at English they seem to be more socia. And the math people. | don’t know,
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they'rejust associal, but in adifferent way. They expressthemselvesdifferently,
they like to see thingsin black and white. They don’t seethe colors and greys be-
tween. (Tom, Lemon school)

Tom suggeststhat acertain type of person isattracted to mathematicsand acertain
typerejected. Thedifferencesalign, not with capability, but with theideas of know-
ing available.

Another striking aspect of the students’ reflections on their response to mathe-
matics, concerned the primacy they gavetotheir devel opingidentities. A large pro-
portion of the students interviewed appeared to reject mathematics because the
pedagogical practiceswith which they had to engage were incompatible with their
conceptionsof self. Unlikethe people Belenky and associates (1986) characterized
as received knowers, for whom received knowing was a general pattern in their
lives, these students considered themsel ves as constructive knowersin other school
subjects. They understood themselves as received knowers in the limited circum-
stances of the mathematics classesinwhich thelearning practicesavailableto them
reguired that they acquire specified procedures with no opportunity that they per-
ceived to be thoughtful or creative about what they needed to learn to do. The stu-
dents’ descriptions particularly centered around the need they perceived for
occasions to be creative, use language, and make decisions, for example:

Int: Why wouldn’t you major in math?

C: | think I’'m amore creative person, | can do it and | can understand it but it's not
something | could dofor therest of my lifeand | think if | had ajob1’d likeonethat
let me be alittle more crestive.

Int: Mathisn't creative. . . ?
C: No. (Cathy, Lemon school)

S: Wellit'snot that | don’t understandit, when | understand concepts| likedoingit be-
cause it’s fun. I’'m more of alanguage/history person, kind of. And aso there's
only one right answer and you can, it's not subject to your own interpretation or
anything. (Susan, Cherry school)

Int: Do you like math?
V: No, | hateit.
Int: Why do you hate it?

V: It'sjust too, I'minto the history, English. . . . It'sliketoo logical for me, it aways
has to be one answer, you can't get anything else BUT that answer. (Vicky, Lime
school)

One of our calculus students suggested that women, in particular, needed to iden-
tify with subjects that allowed them to explore rather than receive knowledge:

| think women, being that they’re more emotional, are more emotionally involved and
math ismorelike concrete, it'sso “it'sthat and that’sit.” Women are more, they want
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toexplorestuff andthat’ slifekind of likeand | think that’ swhy | like English and sci-
ence, I'm moreinterested in like phenomenaand nature and animalsand I’ m just not
interested injust you givemeaformula, I’ m supposed to memorize theanswer, apply
it and that’s it. (Kristina, Apple school)

A rangeof studiessupport theideathat girlsand women areparticularly likely to
reject subjectsthat preclude deep, connected understanding (Becker, 1995; Burton,
1995). Thissuggeststhat the procedural presentations of knowledge that dominate
within many higher level mathematics classes are likely to be amajor factor in the
under-representation of women at high levels. Thisseemspartly to bedueto thede-
sire for connected understanding that is evident among many girls and women
(Becker, 1995; Boaler, 1997c), and partly dueto the need to pursue subjectsthat fit
with developing identities. For many girls, mathematics appears too alien, other-
worldly, and “weird” to be amajor part of their lives:

B: | usedtolovemath, but now | think, it'slikel’ m going to make surethat | don't ma-
jorinmath or anything becauseit’s starting to beliketoo much competition, it'sso
weird. When it cameto calculusand precalculus, | just kind of lost interest. | care
more about science and English, stuff that makes sense to me where | think I'm
learning morals and lessons from this, where | can apply it to something. (Betsy,
Apple school)

L: I think that math isthe lowest priority in my life. | don't have afavorite subject but
math istheleast important to me. It'sOK and if | don’t understand something I’'m
not going to die, | just don’t think it’s that applicable to what | want to do in life,
and | don’t even know what that is. (Lori, Lime school).

When students talked about their rejection of mathematics, their reasons went
beyond cognitive likes and didlikes, to the establishment of their identities. They
talked not about their inability to do the mathematics, but about the kinds of person
(Schwab, 1969) they wanted to be—creative, verbal, and humane. Unfortunately
for the students, there was adistinct inconsi stency between theidentitiesthat were
taking formin the ebb and flow of their lives and the requirements of AP-calculus
classrooms. The students did not want to be told what to do and do it—when it was
“completely irrational” (Anthony, Lime school); they werenot prepared to give up the
agency that they enjoyed in other aspects of their lives, or the opportunities to be
cregtive, use language, exercise thought, or make decisions. The disaffected students
we interviewed were being turned away from mathematics because of pedagogica
practicesthat are unrel ated to the nature of mathematics (Burton, 1999a, 1999b). Most
of the students who had rejected mathematics in the four didactic classrooms—nine
girlsandfiveboys, all successful mathemeati cs students—did so becausethey wanted to
pursue subjects that offered opportunities for expression, interpretation, and agency.

Discussion Based Teaching and Connected Knowing

At Grapeand Orange schools, 15 of the 16 students said that they enjoyed math-
ematics (94 percent), and 8 out of the 10 studentsasked (80 percent) stated that they
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planned to continue with other mathematics courses. Two of the girlsinterviewed
stated that they planned to major in mathematics. V eena, cited inthefollowing pas-
sage, was one of them:

Sometimesyou sit thereand go “it’sfun!” I’'m avery verbal personand I'll just ask a
guestion and evenif | soundlikeatotal idiot andit’sastupid question |’ mjust not see-
ingit, but usually for meit clickspretty easily and then | can go on and work onit. But
at first sometimesyou just sit there and ask—"what is she teaching us?’ “what am |
learning?’ but then it clicks, there's this certain point when it just connects and you
see the connection and you get it. (Veena, Orange school)

Oneof theinteresting aspects of Veend' s statement isher description of herself asa
“verbal person,” which was one of the common reasons students gave for rejecting
mathematicsin thefour didactic classes. Indeed, it seemsworrying, but likely, that
Veena may have rejected mathematics if she had been working in one of the four
other classrooms in which the discussions and connections she valued were un-
der-represented. It seems clear from Veena's statement that she valued both con-
nected understanding as well as the opportunities she received to express her
thinking, and that both of these were part of her mathematics world.

At Lemon, Lime, Apple, and Cherry schools, almost half of the students re-
ported negative identifications with mathematics, in some cases contrasting this
with their more positiveidentificationswith other subjects, such as English, where
they could be thoughtful or creative. Many of those studentswho reported positive
identifications did so because mathematics alowed them to passively receive
knowledge. Studentsat Grapeand Orange schools, in contrast, identified more pos-
itively with mathematics and many of them did so because they were able to be
thoughtful and to develop connected, relational understanding.

DISCUSSION AND CONCLUSION

In California, aswell as other parts of the world, important decisions about mathe-
matics education are being made by university mathematicians (Becker & Jacob,
2000). The mgjority of the mathematicians who involve themselves in matters of
K-12 education appear to be outspoken opponents of nontraditional teaching meth-
ods. Mathematiciansfrequently arguethat studentsin schools should be taught ab-
stract mathematical procedures through repeated practice of the procedures, in
order that they reach university conversant in the range of methods that they will
need to use and apply there. But their assumptions about the importance of proce-
dure repetition contain two important flaws. First, it is assumed that by practicing
procedures out of context, studentswill be able to use and apply proceduresin the
future—anumber of studies provide evidencethat thisisoften not the case (Boaler,
1997a; Lave, 1988). Second, they overlook the fact that students do not just learn
mathematics in school classrooms, they learn to be, and many students develop
identitiesthat give negative valueto the passive reception of abstract knowledge. It
isprobabl ethat many able studentswho could becomeworld-class mathematicians
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leave mathematics because they do not want to author their identitiesaspassivere-
ceivers of knowledge. This has been the subject of this chapter.

Wehavefoundit useful to consider mathematicsclassroomsintermsof “figured
worlds’ in which people are not only regarded as mathematics learners, assuming
the cognitive order of the discipline, but people negotiating asense of self. Figured
worlds seem to extend Bourdieu’'s (1986) notion of habitus, which includes the
norms and practices of aplace, to theinterpretations that people make and the sig-
nificancethat isattached to certain acts. Thus, what actually happensin mathemat-
ics classrooms matters less within representations of figured worlds than the
teachers' or students' perceptions of what happens. This has been useful in this
chapter in hel ping usunderstand students’ responsesto didactic pedagogy inwhich
memorization and procedure repetition are central practices. Corbett and Wilson
talk about the exclusion of students from conversations about reform, with adults
dictating to studentsthe* conditionsof their participation” (1995, p. 15). Indidactic
mathematics classrooms, students' participation is defined by textbooks, rules, and
procedures—they are excluded from the negotiation or development of proce-
dures; they are restricted in their application of selves; and their ideas, inventive-
ness, and general agency do not appear to be valued. Becker (1995) has proposed
that “connected teaching,” in which teachers share the process of mathematical
problem solving with students rather than presenting neatly solved problems and
procedures, would enable connected knowing, making mathematics more equita-
bly accessible, and also encouraging larger numbers of studentsto pursue mathe-
maticsasacareer. Sheassertsthat “ mathemati cs needsto betaught asaprocess, not
as a universal truth handed down by some disembodied, non-human force’
(Becker, 1995, p. 168). Stephen Ball (1993) al so talks about the “ curriculum of the
dead,” describing the inclination of right-wing politicians to support curriculum
that are composed of remote facts, in which students have noroleto play other than
receivers of thosefacts. Becker and Ball both highlight the nonhuman or nonliving
characteristic of traditional curricula. Data from this study suggest that many stu-
dentsfind the narrowly defined rolesthey arerequired to play within such curricula
incompatible with their devel oping identities.

The type of participation that is required of students who study in discus-
sion-oriented mathematics classroomsisdifferent. Studentsare asked to contribute
to the judgment of validity, and to generate questions and ideas. Students in this
study described their involvement within such environments in terms of commu-
nity participation and family relationships. The students in the discussion-based
environmentswere not only required to contribute different aspects of their selves,
they wererequired to contribute more of their selves. In the discussion-based class-
rooms students were, quite simply, given more agency. To be a successful partici-
pant of atraditional classroom, students need to give up their choice and decision
making, whichisreflectedin the students’ comments about obedience and compli-
ance. Theact of surrendering their thoughtsand ideasisdifficult for many students,
including those who could make significant contributionsto the discipline of math-
ematics.
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Belencky and associates (1986) have presented different characterizations of
“knowers,” suggesting that some people need to make connectionsasthey learn, ei-
ther directly through interactions with people, or indirectly through interactions
with texts and other representations of knowledge. Others prefer to receive knowl-
edge that is derived solely from a separate authoritative source. For the students
studying calculusin the four didactic classes, there appeared to be few, if any, op-
portunitiesfor connections, and studentswere forced to become received knowers.
Wedo not regard the categoriesthat Belencky and associates offer as stable charac-
teristics of the students we interviewed, as these learners seemed able to move in
and out of different “forms of knowing” in different circumstances. Indeed, some
learners enjoy the chanceto receive knowledge in some circumstances asachange
from others in which they are thinking and making connections. Nevertheless, it
seemed clear that the mathematics environments at Lemon, Lime, Apple, and
Cherry schools encouraged a particularly passive and received form of knowing
that alienated many learners.

We have analyzed interviews with 48 high-attaining studentsin this chapter, 32
of whom weretaught in traditional classes, 16 in discussion-oriented classes. Sev-
enteen of the 48 students reported that they hated or disliked mathematics, 16 of
these students (94 percent) were taught in the traditional classes. These are small
numbersof students, but the students' reflectionsin interviewsgive meaningtothis
percentage. The students who were planning to leave the discipline wanted the op-
portunity to think, negotiate, and understand the procedures they encountered.
When mathematicians oppose nontraditional pedagogies, they argue that they do
not want the disciplineto be“watered down” and they want standard proceduresto
beavailablefor those studentswho chooseto major in mathematics. But by empha-
sizing thedrill and practice of procedures, they createarite of passagethat isattrac-
tive only for received knowers. This reduces the numbers of students who want to
study mathematics at advanced levelsto a critical minimum (at Stanford Univer-
sity, for example, approximately seven students per year choose to major in mathe-
matics); it also eliminates creative, divergent thinkers from the discipline. The
elimination of such learners may be extremely damaging for mathematics and out
of place with our time (Noss, 1991). In years gone by, students may not have ex-
pected to challenge or negotiate ideasin school and procedural mathematics prac-
tices were less distinctive. Now students are offered choices, they expect to have
their ideas valued, they enjoy being treated as responsible young adults, and many
do not choose mathematics.

Burton (19993, 1999b) conducted an important study, one of the first to give us
insight into the practices of university mathematicians. She interviewed 70 re-
search mathematiciansto find out about the nature of their work, aswell astheir un-
derstanding of knowing. She found that the mathematicians emphasized the
importance of intuition, uncertainty, and connectivity. Not surprisingly, they did
not talk about the procedural nature of mathematics, but rather about the creativity
of the enterprise with which they were engaged. They spoke about the euphoria
they experienced when solving problems and the fun and excitement of mathemat-
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ics, thus offering asharp contrast to the views of many of the studentsinterviewed
inthis study. Even those students we interviewed who enjoyed mathematicsin di-
dactic classesdid not rel ate their enjoyment to the pleasure of problem solving, but
tothe structure and limits of the discipline asthey experiencedit. Whilethe mathe-
maticians Burtoninterviewed emphasi zed the uncertainty of their explorations, the
students in didactic classes who liked mathematics emphasized the certainty of
their work. This suggests that narrow mathematical practices within school are
problematic, not only becausethey disenfranchise many students, but becausethey
encourage forms of knowing and ways of working that are inconsistent with the
discipline. Thus, school mathematics, asnoted by Burton (1999a) and others, isun-
likethemathematicsencounteredinlifeor university (Boaler 1997a; Noss, 1991).

Burton'sresultsremind usthat that the excitement of mathematical inquiry and
discovery is not always experienced as a product of social interaction. Indeed, the
prevailing image of mathematical work isthat of anindividual struggling, like Ro-
din’s The Thinker, to find coherence in adeep conceptua problem, and experienc-
ing near ecstasy if Sheisableto achieve an elegant solution. Inour discussion here,
we have opposed anindividualistic version of received knowing of procedureswith
socially connected knowing that has conceptual depth. Those are the kinds of
knowing that werereported by the studentswhom weinterviewed, but weacknowl -
edge that the coupling of social and conceptual aspectsis not necessary or univer-
sal. Skills that are mainly procedural can be learned in socially cooperative
environments (consider learning the steps of atraditional Gaelic danceinBritain or
asquare danceinthe United States), and individual s can and do explore conceptual
issues beyond the boundaries of the current understandings that members of their
community support (consider the familiar examples of Galois and Ramanujan in
the history of mathematics). We acknowledge that in mathematics classrooms, ac-
tivitiescan be organized so the studentsengagein enjoyable social interactionwith-
out achieving significant mathematical |earning—either conceptual or procedural.
And there are some students who perceive even quite productive class discussions
as“clutter” that distractsthem from the concentrated individual attention to mathe-
matical concepts and methods that they prefer. The conceptua framework that we
have used to interpret the data of our interviews would need to be extended to ac-
commodate examples of engaged conceptual knowing that is only weakly sup-
ported by discourseinteractionsin theindividual’simmediate|earning community.
We believethat such an extension could be quiteimportant for mathematics educa-
tion. It could involve hypothesizing aform of connected knowing that emphasizes
the knower’s being connected with the contents of a subject-matter domain.

We believe that the distinction between separate and connected knowing, dis-
cussed by Belenky and associates (1986) and Clinchy (1996) mainly in relation to
other people, can also be used to understand different ways in which learners can
relate to the things, ideas, and representations of a subject matter. Belenky and as-
sociates used Elbow’s (1973) phrases, “the doubting game” and “the believing
game,” to convey an important difference between learners' ways of considering
other peopl€e's experience and opinions in their distinction between separate and
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connected knowing. We consider these phrases as di stingui shing between attitudes
that can be directed toward things, texts, and ideas that a person studies, aswell as
toward other people with whom one communicates. One way that this distinction
appliesisintherelation of scientiststo thethings or peoplethat they study. For ex-
ample, many ethnographers have made the point that their main task is to under-
stand the peoplethey study intheir own terms, the so-called “ emic” stance. Totake
thisethnographic stance toward the peoplebeing studiedisaversion of “thebeliev-
ing game,” in which the researcher assumes that the practices of other people are
sensible, and thewaysinwhich they are sensible can belearned by theresearcher if
he or she succeedsin their study. To succeed, the researcher needs to incorporate
theways of sense-making of the studied peopleinto her or hisways of understand-
ing. We consider this a profound kind of connected knowing, in which the
knower-researcher hascometo know the people he or she studied through an open-
ness to their ways of knowing and understanding.

The attitude of openness—of understanding things on their own terms—alsois
expressed by scienti stswhose subject matter isnot human social activity. A famous
exampleisBarbaraMcClintock’s attitude toward the plants she studied, expressed
in the title of her biography, A Feeling for the Organism (Keller, 1983). Keller's
characterization of McClintock’swork and thinking includes phrases that identify
her opennessto learning by interacting sympathetically with the plantsthat she at-
tended to so carefully. “McClintock’ sfeeling for the organismisnot simply along-
ing to beholdthe ' reasonrevealed inthisworld.’ Itisalonging to embracetheworld
in its very being, through reason and beyond” (Keller, 1983, p. 199). “Over the
years, aspecial kind of sympathetic understanding grew in McClintock, heighten-
ing her powers of discernment, until finally, the objects of her study have become
subjectsin their own right; they claim from her akind of attention that most of us
experience only in relation to other persons’ (Keller, 1983, p. 200).

Wealso contend that “the believing game” characterizes some peopl €' slearning
relationship with conceptual domains. Indeed, the kind of study and knowing that
characterized M cClintock’s scientific work isnot just intimate and sympatheticin-
corporation of the subject’s character into the scientist’sway of understanding the
world. It aso includes finding an orderly and coherent explanatory account in the
conceptua resources of the scientific discipline. Learning these conceptual re-
sources can be approached either inthe“believing” or the “ doubting” game. More
accurately, any conceptual learning includesamixture of these attitudes, but we be-
lievethat people—including students—differ in their basic expectationsregarding
the prospects of a subject matter to provide productive sense-making resourcesin
return for the effort of incorporating them into one’s understanding. Engaging in
“the believing game” with the concepts and methods of a subject-matter domainis
relational, involving positive expectations both about the subject matter and about
one's self asalearner of that subject.

The connection of a successful scientist with both the phenomena and the ex-
planatory concepts of the subject-matter domain supports her or his expectation
that there is order to be discovered in the phenomena and that the conceptual re-
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sources of the discipline can provide away of representing that order and thereby
explaining the phenomena. The moments of dramathat scientists report often in-
volve situations in which the scientist was faced with phenomena that he or she
hoped or expected to be able to explain with the resources of her or hisdiscipline,
but seemed unabl e to; then achieved the understanding that was needed. An exam-
ple in McClintock’s biography occurred during avisit to Stanford as arelatively
young, albeit quite well-established scientist, where she had been invited in the
hope that she could solve a problem of working out the cytology of mutations and
enzyme deficienciesin the bread mold Neurospora. At first, thingsdid not go well.
In Keller'stelling:

By her own account, her confidence had begun to fail even before setting out. “1 was
really quite petrified that maybe | was taking on more than | could really do.” She
went, set up the microscope, and proceeded to work, but after about three days, found
she wasn't getting anywhere. “1 got very discouraged, and realized that there was
something wrong—something quite seriously wrong. | wasn’t seeing things, | wasn't
integrating. | wasn't getting things right at all. | was lost.” Realizing she had to “do
something” with herself, she set out for awalk.

A long winding driveway on the Stanford campusis framed by two rows of giant
eucalyptustrees. Beneath thesetrees, shefound abench where she could sit and think.
Shesat for half an hour. “ Suddenly | jumped up, | couldn’t wait to get back to thelabo-
ratory. | knew | was going to solve it—everything was going to be all right.”

She doesn’t know quite what she did as she sat under those trees. She remembers
she“letthetearsroll alittle,” but mainly, “I must have donethisvery intense, subcon-
sciousthinking. And suddenly | knew everything wasgoing to bejust fine” It was. In
five days, she had everything solved. (Keller, 1983, p. 115)

Weinterpret thisasan exampl e of reasoning that depended on M cClintock’sknow-
ing of biological concepts, which supported her intuitive confidencein the potential
validity of an explanatory scheme that she then went back and worked out.

We recognize that mathematicsisunlikeempirical sciencesinthat it lacksado-
main of empirical phenomena that concepts and principles are used to explain.
However, the natural histories of mathematical discoveries contain the samekinds
of dramaasthey do in other domains. Hereisan example, from Aczel’srecounting
of the proof of Fermat’s Last Theorem. The situation was subsequent to Andrew
Wiles's presentation of hisanalysis, which he believed to be aproof, at Cambridge
and the discovery by others that his argument was flawed.

When more than ayear passed since his short-lived triumph in Cambridge, Andrew
Wiles was about to give up all hope and to forget his crippled proof.

On Monday morning, September 19, 1994, Wileswassitting at hisdesk at Prince-
ton University, pilesof paper strewn all around him. He decided hewould take onelast
look at hisproof before chuckingit all and abandoning all hopeto prove Fermat’sL ast
Theorem. He wanted to see exactly what it was that was preventing him from con-
structing the Euler System. He wanted to know—just for his own satisfaction—why
hehad failed. Why wasthere no Euler System?—hewanted to beableto pinpoint pre-
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cisely which technical fact was making the whole thing fail. If he was going to give
up, he felt, then at least he was owed an answer to why he had been wrong.

Wiles studied the papersin front of him, concentrating very hard for about twenty
minutes. And then he saw exactly why he was unable to make the system work.
Finally, heunderstood what waswrong. “ It wasthe most important moment in my en-
tire working life,” he later described the feeling. “ Suddenly, totally unexpectedly, |
had thisincrediblerevelation. NothingI'll ever doagainwill ... " at that moment tears
welled up and Wiles was choking with emotion. What Wiles realized at that fateful
moment was“ so indescribably beautiful, it wasso simpleand soelegant . . . and | just
staredindisbelief.” Wilesrealized that exactly what was making the Euler Systemfail
is what would make the Horizontal Iwasawa Theory approach he had abandoned
threeyearsearlier work. Wiles stared at his paper for along time. He must be dream-
ing, he thought, this was just too good to be true. But later he said it was simply too
good to be false. The discovery was so powerful, so beautiful, that it had to be true.
(Aczel, 1996, pp. 132-133)

And it was, as the mathematics community soon verified when Wiles circul ated
copies of hisnew argument to several close colleagues and successfully submitted
hispaper, co-authored by Richard Taylor, asacorrection to the paper that Wileshad
presented at Cambridge.

When mathematicians decide that aproof is“true,” their judgment does not rest
on empirical observationsof thekind that biologistsor physicistsuse. Instead, their
verification depends on the outcome of applying accepted procedures of proof and
computation. Pickering's (1995) analysis of agency in mathematical and scientific
work provides a hel pful framework for considering this.3 In Pickering’s terms, an
advance in mathematics involves three processes, called bridging, transcription,
and filling. Bridging involves a proposal for making some extension of a base
model—that is, a set of accepted concepts and methods (establishing a “ bridge-
head”). Transcription invol vestransferring components of the base model anal ogi-
caly to the bridgehead—that is, attempting to treat the contents of the new topic
with methods that are previously accepted. Filling involves providing additional
definitions of termsinthe new domain or modifying (preferably by generalization)
methods from the base model. In the process of transcription, the mathematician
performs procedures that he or she is not free to vary; Pickering refers to this as
agency of the discipline.#

Itisin bridging andfilling that the agency of mathematical work resideswiththe
human mathematical thinkers. In Pickering’s words,

As | conceive them, bridging and filling are activities in which scientists display
choiceand discretion, the classic attributes of human agency. . . . Bridging and filling
arefree moves, as| shall say. In contrast, transcription iswhere discipline assertsit-
self, where the disciplinary agency just discussed carries scientists along, where sci-
entists become passive in the fact of their training and established procedures.
Transcriptions, inthissense, aredisciplined forced moves. Conceptual practicethere-
forehas, infact, thefamiliar form of adance of agency, inwhichthe partnersarealter-
nately the classic human agent and disciplinary agency. (1995, p. 116)
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Interpreting the example of Fermat’s Last Theorem in these terms, Wiles'sinitial
bridgehead was a proposal to prove the theorem by constructing an Euler System,
and he believed that he had accomplished that transcription successfully, but his
colleagues discovered that he had not. He revised the bridgehead to use the Hori-
zontal lwasawa Theory. When he said, inrecollection, “ The discovery was so pow-
erful, so beautiful, that it had to be true,” he expressed his cornviction that the
methods of that theory could be transcribed successfully for the proof of Fermat’s
Last Theorem. And this conviction proved correct.

We find Pickering’s distinctions helpful in understanding differenceslike those
between thefour didactically procedure-oriented classroomsand thetwo moredis-
cussion- and conceptually oriented classrooms of the studentsinterviewed for this
study. We consider that learning mathematicsis like doing mathematicsin at least
one important respect. At any stage of learning mathematics, learners have some
concepts and methods that they already know and understand. Their next learning
extends what they already know. We can think of alearning episode, then, asone
that includes bridging and transcribing, and possibly filling, so that some new topic
isincluded in, and integrated with, some of their previous mathematical knowl-
edge. Indidactic, procedure-driven|earning, studentsare shown constituents of the
mathematical disciplineto absorb so they can apply them. In learning that focuses
more on conceptua discussion, they can participatein bridging and filling, and ex-
perience the functional significance of transcription. In other words, by including
studentsin processes of meaning-making, they can experience and learn those as-
pects of mathematical thinking—nbridging and filling—in which human agency is
significant. If their opportunities for learning are limited to acquiring procedures,
then their understanding and perception of mathematicscan easily belimited to the
aspects of mathematical thinking in which the human agent is relatively passive.

As we know, a few students develop identities of significant mathematical
agency even in didactic learning environments that mainly present the parts of
mathematical practicethat are performed passively. In our conceptual framework,
the explanation for these exceptional students probably arisesfrom their authoring
of identitiesthat overcome deficiencies of the environment. Holland and associates
(1998) described somewomenin the southern American collegesthey studied who
resisted the general pressure to adopt mainly passive positionsin their figured so-
cial worlds that were primarily concerned with romantic attractiveness. These
women authored identities with significant social and intellectual agency that de-
parted from the norms that most women complied with. It is not surprising, then,
that there are some studentsin figured social worldsof didactic mathematicsteach-
ing who author identities of individual agency in which they construct meaningful
understanding and capabilitiesto formulate questions, conjectures, and arguments
that provide satisfying conceptual coherence in their practices of mathematical
knowing.

Webelievethat careful study of mathematical |earning environmentscould pro-
videimportant understanding of the devel opment of |earning identitieswith signif-
icant agency. We hypothesize that many didactic classrooms are organized to
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promote as “gifted” one or two students whose relation to the subject matter of
mathematics is extraordinarily agentive. We expect that teachers and studentsin
these classrooms probably attribute these students' lack of conformity to some
combination of mathematical “talent” and “interest” that both motivates and sup-
portstheir unusual participation in learning practices. It may also include being at
least dightly “weird” (Boaler, 2000b). We also expect that identification of stu-
dents to fill the few available “gifted” slots involves interesting interactions in
which parentsand othersplay significant roles, and support for these slots probably
isbiasedinfavor of boysfromrelatively affluent families.Our datasupport the con-
jecture that when mathematics learning practices place students in positions with
more significant conceptual agency, it is much easier for many of them to author
their identities as learners with that kind of agency. The positional identities that
students in the discussion-oriented classrooms expressed had agency that did not
reguire them to resist the prevailing expectations and become identified as espe-
cialy “gifted.”

Mathematicians often complain about the dependency of undergraduate stu-
dents, and one of Burton’s research subjects characterized the common concern:
“One of the things | find about students, undergraduates in particular, is that they
seemto havevery littleintuition. They are dependent upon being spoon-fed” (cited
in Burton, 1999b, p. 37). But whereas many mathematicians who are critical of
school practices link such problems with the “reform movement,” this study sug-
geststhat lack of intuition and over dependency are more likely to be a product of
narrow pedagogical practices in traditional classrooms. The students who like
mathematicsbecausethey believeit isabstract and definitive, with only one correct
answer, are engaging in adistressingly limited version of the discipline of mathe-
matics (Schoenfeld, 1988). The certainty they have come to enjoy, and on which
they will make decisions about future subjects, appears to be inconsistent with the
mathematics with which they would engage at the highest mathematical levels.
Studentswho choose mathematics astheir main field of study, based upon theidea
that the subject isstructured, certain, and nonnegotiable, may encounter significant
problems as the mathematics they learn at university becomes more advanced.
Those who rise to the top of their undergraduate classes and eventually become
mathematicians must surely be those who have a deep, conceptual understanding
of the material, and students such as Jerry, cited earlier, who do not like to think
about “how or why something istheway itis’ may belimited in the understanding
that they develop. Itisunusual for undergraduates who excel in mathematicsto be-
come school teachers of mathematics, which means that the mathematics majors
who choose teaching are sometimes those who have preferences for “received
knowing” that were developed in school and that have limited their attainment.
Thus, we perpetuate acycle of received knowers, teaching received forms of know-
ing. Thisis ahighly speculative interpretation that we nevertheless offer as a hy-
pothesis to help explain the recurrence of traditional mathematical practices in
schools (Cohen, 1990; Fennema & Nelson, 1997).
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There is evidence that knowledge presented in an abstract, decontextualized
way is more alienating for girls than boys (Becker, 1995; Belencky et al., 1986;
Boaler, 1997c)—and for non-Western than Western students (Banks, 1993). This
suggests that traditional pedagogical practices will maintain inequality in the at-
tainment and representation of mathematics students, particularly at the highest
levels, even as stereotypical societal expectations diminish. University mathemat-
icswill continue to be awhite, male preserve and large numbers of girls and stu-
dentsfrom particular minority groupswill be excluded from asubject at which they
could excel. By giving the final word to equity, we hope to communicate our com-
mitment to a different world in which classroom mathematical practices support
the development of thinking, responsible agents and mathematical identification
and knowing becomesapossihility for abroader, morediversegroup of students.
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NOTES

1. Belenky and associates (1986) al so characterized silent knowing, in which the indi-
vidual considers herself powerlessto know, and constructed knowing, which combinesthe
stances of separate and connected knowing and emphasizes the knower’s agency in the
process of achieving and | egitimizing knowledge. We use the term constr uctive knowing to
refer to separate knowing, connected knowing, and constructed knowing. We depart,
therefore, from Belenky and associates' use of the term procedural knowing for separate
and connected knowing, mainly because “procedura” is a term that the community of
mathematics education research uses to refer to a specific form of knowledge, consisting
mainly of knowing how to perform procedures.

2. The interviews were conducted by Jo Boaler and Megan Staples.

3. Pickering devel oped these distinctions for mathematics with the example of Hamil-
ton’s construction of quaternions. He also discussed an example from physics, in which he
analyzed agency as being divided by scientists and material systems; one example was Da-
vis's development of the bubble chamber, and he attributed material agency to the func-
tioning of apparatus that interacts with the agency of humans who construct apparatus in
the hope that the material will behave in ways that support the construction of scientific
findings related to theoretical issues.

4. To quote Pickering: “Think of an established concdptual practice—elementary alge-
bra, say. To know algebrais to recognize a set of characteristic symbols and how to use
them. . .. Such usesare [what | call] detached disciplines. . . . they are machinelike actions,
in Harry Collins sterminology. Just asin arithmetic one completes‘3+4 =" by writing ‘7’
without hesitation, so in algebra one authomatically multipliesout ‘a(b + )’ and ‘ab + ac.’
Conceptua systems, then, hang together with specific disciplined patterns of human
agency, particular routinized ways of connecting marks and symbols with one another.
Such disciplines—acquired in training and refined in use—carry human conceptual prac-
tices along, as it were, independently of individual wishes and intents. The scientist is, in



198 JO BOALER and JAMES G. GREENO

this sense, passive in disciplines conceptual practice. . . . | want to redescribe this human
passivity in terms of anotion of disciplinary agency. Itis, | shall say, the agency of adisci-
pline—elementary algebra, for example—that leads us through a series of manipulations
withing an established conceptual system.

The notion of discipline as a pereformative agent might seem odd to those accustomed
to thinking of discipline as a constraint upon human agency, but | want (like Foucault) to
recognize that discipline is productive. There could be no conceptual practice without the
kind of discipline at issue; there could be only marks on paper” (Pickering, 1995, p. 115).
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“‘Cracking the Code” of
Mathematics Classrooms:
School Success As a Function
of Linguistic, Social, and
Cultural Background

Robyn Zevenbergen

INTRODUCTION

Theroleof languagein theteaching and | earning of mathematicshasbeen givenin-
creasing recognition over recent years. Much of this attention has been inspired by
constructivist epistemologies that have placed aspects of language central to the
learning process. These literatures have shown how languageisinextricably bound
tolearning. It providesthe medium through which communication of ideasismade
possible, and negotiation of ideas and conceptsis delivered. These literatures has
alerted educatorsto the mismatch of language between experts (teachers) and nov-
ices (students) and suggested that a more appropriate level of language and com-
munication is made possible through dialogue among the students. This chapter
extends thiswork by drawing attention to the political nature of the language used
in classrooms. Drawing on Bourdieu’s notion of cultural capital, or more particu-
larly, linguistic capital, it isargued that some studentswill have greater or lesser ac-
cess to the modes of communication in a classroom, and hence have more or less
access to the mathematics inherent in such communications.

Three common communicative strategies found in mathematics classrooms
form the basis of this chapter. Thefirst isthetype of questionscommonly found in
textsand tests. Theserepresent theregister of mathematicsthat | argueisvery struc-
tured and that students must cometo learnin order to be ableto participatein apro-
ductive and effective manner. The second communicative strategy is that of
classroom talk, which hasits own internal rules that are not made explicit to stu-
dents but form the basis for communication in the classroom. The third and final
example is that of what comes to constitute legitimate knowledge in the
classroom, and thisis bound to the contexts used to embed mathematical tasks.
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The attempts made to make mathematics“real” cometo be aveneer, which serves

to include or marginalize students (Boaler, 1993).
In order to become a legitimate participant in acommunity, one must learn its

language. Increasi ngly, mathematics educatorsare recogni zing that mathematicsis
alanguage (Ellerton & Clements, 1991). Although it may be based in the language
of instruction, such as English or French, it hasits own internal logic and relation-
ships between words and structure (grammar). Inthislight, it ismost productiveto
consider it asaregister, and as such, certain aspects of that |anguage need to be con-
sidered. These range from specialized vocabulary to syntax and lexical density.
Students must come to learn thisregister if they are to become effective speakers,
listeners, and communicators in mathematics classrooms. Yet, in many cases, the
teaching and learning of mathematicsis seen to be aprocess of learning the mathe-
maticsas devoid of thelanguage. Inthis chapter, | arguethat students must cometo
learn mathematics as alanguage equally as adiscipline of knowledge.

Bourdieu’snotionsof habitusand field are particul arly useful in theorizing how
social differencesare manifested and | egitimated through school mathematics. For
Bourdieu, habitus is the embodiment of culture, and it provides the lens through
which the world is interpreted. Through his detailed work with patterns of con-
sumption and work, Bourdieu (1979) has shown how different social classes have
distinctive preferences toward food, sport, leisure, housing, and so forth. For stu-
dentswho have been socialized within particular familial contexts, distinctive pat-
terns are observable of which language use is one of the key differences across
diverse groups. Asstudents cometo hear and use particular formsof language, this
language becomes embodied to constitute alinguistic habitus. When studentsenter
mathematics classrooms, they have accepted the language of their home environ-
ment, the consistency of which will vary with respect to formal school language.
Where there is greater continuity between the home and school, there is greater
chance of successin school mathematics (Bourdieu, Passeron, & de saint Martin,
1994).

When considering the differences between home and school, anumber of stud-
ies have shown adigjunction between some homes and the school. In her studies of
students from different backgrounds, Brice-Heath (Heath, 1982, 1983) has shown
that students from economically disadvantaged backgrounds are morelikely to be
exposed to declarative statements when they are expected to undertake tasks,
whereas students from economically advantaged homes are more likely to receive
pseudo-questions from parents or guardians requesting their children to undertake
tasks. Similarly, in their studies of mothers and daughters, Walkerdine and L ucey
(1989) reported similar differences in interactions between socia classes. From
thesefamilial interactions, children are morelikely to embody different patterns of
interaction, which will be differentially used and recognized within the formal
school context. When the studentsenter the school context, their out-of-school lan-
guage practices, which have become embodied in their habitus, provide alensfor
interpreting and acting within the school context. Accordingly, when the teacher
asks, “Could you get out your math books?,” it isinterpreted quite differently de-
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pending on children’s previous experiences. When students are able to recognize
the question as a pseudo-question that demandsthat they take out their math books
and begin work, there is a greater chance of effective participation in that class-
room. In contrast, when students interpret the question as one in which they are
given an option asto whether or not they would liketo take out their books, they are
morelikely to be constructed asdeviant, and hence be positioned asmarginal inthe
classroom.

Thisisnot to suggest a deterministic reading of socia background (asis com-
monly made of Bourdieu’sworks) but rather to recognizethat differencesexist be-
tween home and school languages and these have an impact on a students
performance in the classroom. Harker (1984) argues persuasively that the primary
habitus can be reconstituted. In his view, for students whose habitus is different
fromthat of theformal school context, thereispotential for it to bebrought closer to
that whichislegitimated through school practices, thus suggesting atransformative
component of pedagogy rather than adeterministic reading. However, such recon-
stitution must be undertaken with considerable effort. According to thisinterpreta-
tion the linguistic background of the student can be converted to success, or
restriction thereof, within the school context. The language background of the stu-
dent can therefore be converted to academic rewards and become aform of capital,
namely, linguistic capital.

Within this framework, linguistic capital gains its value by the social context
withinwhichitislocated. Language, by itself, does not convey statusor power, but
rather practices within the school, classroom, or wider society serve to legitimate
some forms of language over others. Different contexts confer different status on
thelanguage used. For exampl e, the language used by membersof aparticul ar gang
will convey different status on the street than when used in the context of the class-
room. For thischapter, thisimpliesthat it isnecessary to consider the context of the
mathematics classroom, or more broadly, the formal school setting, within which
the language is being used in order to understand how power is conveyed to stu-
dents who display the desired patterns of language use.

Within the context of schoolsand classrooms, practices such asthe use of an ap-
propriate mathematics register or decoding of teacher-talk are seen to be valuable
aspects of language use. Students who display or assimilate those socially legiti-
mated linguistic practices within their own repertoire of behaviors are positioned
morefavorably. However, the skillsseento hold status and power within thefield of
school mathematics may be very different from those of another context. Thisis
borne out in studies of ethnomathematics where students who display street-talk
and skillswithin street selling may be positioned asmargina withinthefield of ed-
ucation. For these students, the dispositions that have become embodied within
their habitus and that predispose them to be effective in bartering because of the
structuring practices of themarketpl ace are positioned lessfavorably within mathe-
matics education, where the structuring practices do not | egitimate the practices of
the marketplace. The practiceswithin thesetwo divergent fields differentially con-
vey power on the participants. Mathematics education, as afield, values and con-
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veys power and status on those who display the characteristics, attributes, and
dispositions seen asdesirablewithin thefield at any given point in time. What con-
veysstatusmay bedifferent at different pointsintime, so it must be recognized that
asafield, mathematicseducationistransitory. Further, studentsarerarely taughtin
an explicit manner regarding the differencesin what is valued (Corbett & Wilson,
1995).

LANGUAGE ASA FORM OF CAPITAL

Linguistic competence—or incompetence—in mathematics reveals itself
through daily exchanges. Within the mathematics classrooms, | egitimate participa-
tionisacquired and achieved through acompetence with written or spoken texts, or
both. To be constructed as an effective learner of mathematics, students must be
able to display a competence with these forms of texts. This frequently demands
that studentsbe ableto render visiblethe social and political differencesembedded
within such texts. Bourdieu argues that:

Linguistic competenceisnot asimpletechnical ability, but astatutory ability. . . . what
goesin verbal communication, even the content of the message itself, remains unin-
telligible as long as one does not take into account the totality of the structure of the
power positionsthat ispresent, yet invisible, inthe exchange. (Bourdieu & Wacquant,
1992, p. 146)

When students are able to deconstruct texts for the underlying meaning, they are
better positioned within thefield. In most instances, thisrequiresafamiliarity with
the language of representation—in this instance, the mathematics register when
considering written texts, and interactional competencewhen considering oral lan-
guage.

Thelinguistic habitus of studentswill have substantial impact on their capacity
to make sense of the discursive practices of the mathematics classroom and, hence,
their subsequent capacity to gain access to legitimate mathematical knowledge
along with the power and status associated with that knowledge. The processes
through which the schooling procedures are able to val ue onelanguage and deval ue
others must be systematically understood. Through this process, we can better un-
derstand how mathematical pedagogy both inculcates mathematical knowledge
and imposes domination.

In the following section, | explore the notion of mathematics being a particular
register that students must cometo learnin order that they may beableto“ crack the
code” of themathematicsclassroom. Just aswith other languages, mathematicshas
aparticular form and the newcomer must be ableto decipher that language. In much
thesameway asatourist can make minimal sense of languagesinforeign countries,
the learning of mathematicsis similar for students. Where a student gains compe-
tency in the intricacies of the mathematics register, he or shewill be better able to
decipher the subtle but precise meaning of mathematical expressions.
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MATHEMATICSASA REGISTER

In considering mathematics as aregister, three componentswill be considered:
the specialized vocabulary of mathematics, the semantic structure, and the lexical
density of mathematics. These aspects of a mathematics register constitute aform
of language for the discipline. To provide an example of how register influences
students' performance in mathematics, a series of tasks are taken from a statewide
testing scheme, “The 1997 Year 6 Test” (Education Queensland, Australia, 1997),
which isimplemented in the sixth year of formal schooling.

Specialized Vocabulary

Mathematicshasavery particularized vocabulary to which students need access
in order to be constructed as effective learners of mathematics. Many of the words
used in mathematics are ambiguous for students in that they have very different
meaningsin the nonschool context versusthe formal mathematics context. For ex-
ample, words such as ruler, face, prime, odd, mean, right, rational, root, and mass
have very different meanings depending on the context in which they arebeing used
or intended. L earning mathematicsis, in part, learning the unique correspondence
between the signifiers (words) and signifieds (concepts) within amathematics con-
text with some words having different meanings depending on the strand? of the
curriculum. Even these names can be considered arbitrary and will be determined
by the national contexts. For example, base and square have very different mean-
ingsfor studentswhen used in the context of space and number. Similar difficulties
are posed for students when words that sound similar are used. These include ho-
mophones such as sum/some and whole/hole along with wordsthat are slightly dif-
ferent in sound such as off/of, sixty/sixteen, and tens/tenths, which demand careful
attention. When a student is unabl e to decipher the specificity of the mathematics
signifier, they are at risk of calling up avery different discourse than that intended
by the teacher. For example, in a recent lesson on fractions that | observed, the
teacher was using doughnuts to talk about two halves and then later how the two
halves, when combined, madeawhole. Unfortunately, the doughnut wasonewith a
holeinthemiddle so many studentswere very confused asto how two halves could
make awhole (rather than ahole!). However, their experiencesin mathematics po-
sitioned them to accept the teacher’scomments astruths. For thisgroup of students
the relationships of signification became a source of confusion, particularly for
those who did not understand the concept or language to begin with.

A further variation on the theme of specialized vocabulary isthe highly techni-
cal vocabulary of mathematics. These words are specific to mathematics and often
unfamiliar to students. Such wordswould include tessellations, numerator, and de-
nominator. The lack of specificity in meaning can be problematic. When dealing
with common fractions, it isacommon perception that numerator isthetop number
and denominator isthe bottom number. However, thissimplistic translation cannot
betransferred to subtraction equationswhere the denominator (the bottom number)
can be subtracted from the numerator (thetop number). It also refersto the specific
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useof prepositionsin mathematics. McGregor (1991, p. 7) hasnoted that the prepo-
sitions used in mathematics are a cause for difficulty in understanding tasks. She
notes the use of prepositions in the following manner: The temperature fell to 10
degrees. .. by 10degrees. . . from 10 degrees; and the effect of omitting the preposi-
tion: the temperature fell 10 degrees.

Trigger words, often embedded within word problems, need to be interpreted
correctly if students are to perform the task contained within the problem. For ex-
ample, in many word problems, trigger words such asmore, less, got, or took away
provide cues for the students as to what operation needs to be performed
(Schoenfeld, 1988). In part, thisis due to the ways mathematicsis most frequently
taught. Thisisacommon strategy for students who do not have accessto therich-
ness and specificity of mathematics language. For example, deaf students tend to
rely on this strategy significantly owing to their difficulty in comprehending the
changes in meaning caused by order and other contextual words (Barham &
Bishop, 1991; Hyde, Power, & Zevenbergen, 1999).

Semantic Structure

M athematics language needs to be expanded to include the semantic structure
used within problems. In considering theword problemsidentified aschange, com-
bine, and compare problems (De Corte & Verschaffel, 1991; Lean, Clements, &
Del Campo, 1990) that are commonly found inthe mathematicsclassroom, itisrec-
ogni zed that the problemsare simpleinsofar asarithmeticisconcerned, but seman-
tically complex. Depending on the order of the problems and what operations need
to be undertaken, the complexity of thetasksincreases. For example, in an additive
change problem wherethe unknownisthe solution and theform of theequationis3
+ 2 =X, thetask isrelatively easy for the student. A question of thisform may be:
“John has 3 cars. Jenny gave him 2 more. How many did he have altogether?’ In
contrast, when the unknown is the first variable and, for example, the form of the
equationisx + 2 =5, the question could be of the form: “ John had some cars. Jenny
gave him 2 more so that he now has 5 cars. How many cars did John have to start
with?’ In thisinstance the complexity is much greater for the students and fewer
studentsare ableto respond (De Corte & Verschaffel, 1991; Lean et a., 1990). Re-
search focused on changing the semantic structure so that itismorein linewith the
language used by students rather than the formal expression of the problems, in-
creases students' capacity to solve the tasks (Carpenter, 1985, cited in De Corte &
Verschaffel, 1991). However, while changing the semantic structure of the question
may makethe question more accessibleand hel p the studentsfind an answer, it does
not help them “crack the code” of the mathematics register.

Lexical Density

Halliday (1975) points out that the lexical density found in mathematical and
scientific registers is somewhat denser than that found in spoken or written lan-
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guage. He sums up the notion of lexical density as being “the number of lexical
itemsasaratio of the number of clauses’ (1988, p. 67). Halliday suggeststhat lexi-
cal density contributes to the complexity of written problemsin mathematics and
may be afurther barrier to learning. Mathematical tasks are often characterized by
their conciseness and preciseness, where there are few redundant words and where
all words have highly specific meaning. As noted previously, that specificity of
meaning may not be the same as in the nonmathematics contexts. To trandate a
mathematical task into amore accessibleformwould require, in most cases, amore
convoluted and lengthy description. Asaconseguence, thelexical density resultsin
ahigh level of complexity in the trandation of the problem. Dawe and Mulligan
(1997, pp. 9-10) compared an exampl e of atask where students had to estimate the
volume of aphonebox and then select from four options. Thetask contained apic-
ture of aperson and aphone box with the accompanying text reading: “ Thevolume
of aphone box isabout 0.1 cubic metres, 2 cubic metres, 5 cubic metres, 10 cubic
metres.” They contrasted thiswiththe question: “ Trish’ smodel boatis8 cmlong. It
isfifty timesshorter than thereal boat. How long isthereal boat?4 m, 6.2 m, 40 m,
50 m.” Clearly there are substantial differencesin the vocabulary used including
the use of comparative terms along with differences in the mathematical demands
of thetwo tasks. However, the complexity of thetask iscompounded by thelexical
density.

ANALYSISOF A TESTING SCHEME

Inthissection, | seek to embed the theoretical issues discussed in the preceding
section into a practical framework. The examples are taken from the 1997 Year 6
Test, which isimplemented across all Queensland state schools and other schools
wanting to participatein thetesting scheme. The exampl es provided bel ow yielded
consistent results across the state of Queensland (Education Queensland, 1997).
Thetest was chosen becauseit represents commonly occurring testing schedulesin
primary schooling rather than for other features unique to this particular test. One
could critically evaluate the questions, but this is not the point of the exercise.
Rather, it ismy intention to show how the register of mathematics affects students’
capacity to answer thequestionsposed. Theoverriding pattern of resultswasthat in
al questions, indigenous students performed significantly below nonindigenous
students. Rather than interpreting these results from within a deficit framework, it
isproductiveto analyzetheir linguistic features. Thisprovidesalensthroughwhich
it becomes possible to highlight aspects of language that hinder access to mathe-
matics. For students whose language is not the dominant one of school or curricu-
lum, in this case indigenous students, the chance of accessing the task is
restricted. There was only one task in which the results for indigenous and
nonindigenous students were similar. Thistask is shown in Figure 1.

Thistask required the studentsto place apiece of string (whichwas provided for
the students, attached to the test papers) along a curved line and then measure it
against the options. In spite of the words in the task, the provision of alength of



208 ROBYN ZEVENBERGEN

Figurel.

Q6 Here is a piece of string.

<

Which line is about the same length as the piece of string
a)
b)
c)
d)

Source: 1997 Queensland Year 6 Test (Education Queensland, 1997)

string provided a cue for the students who could then assume that the task was to
overlay thestring along thelinesand nominatetheline of similar length. Theequiv-
alent performance of indigenous and nonindigenous students on thisitem suggests
similar mathematical competence among the students, not accessed through the
other test items. All other 39 items produced significant differences in perfor-
mances. Some of the tasks are analyzed for aspects of amathematical register that
can be seen to create difficulty for students for whom the language of representa-
tion is different from their spoken language.

Comparison Word Problems

The syntax of the mathematics register often found in comparison word prob-
lemscan bedifficult for studentsto decipher. Inthetask shownin Figure 2, compar-
isons are made between two sets—namely, Anna and Maria—requiring a
subtractive operation along with the conversion of lengthto asingleformthat hasto
be identified by the students.

The comprehension of task requirementsis complex. The student must be able
toidentify that two different unitsare being used in thework problem. Thisinitself
demands a recognition of the symbolism (m = meters, km = kilometers) and the
conversion between the two units. The student then must be able to recognize that
theterm“further” actually refersto the comparison between thetwo walkersrather
than some additional distance. The comparison isnot made explicit but isto be un-
derstood by the term. The operation to be undertaken must be determined by the
student. Although the term “further” suggests growth and hence addition, the stu-
dentisrequired to undertake asubtraction of thedistancetraveled by Annafromthe
distancetraveled by Maria. Students must al so takeinto consideration the different
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Figure 2.

[ Q8 Two friends walk to school. Anna travels 0.3 kms. Maria travels 760 m.

Which statement is correct?

a) Anna walks further by 300m b) Maria walks further by 460 m
¢) Anna walks further by 1.06 km d) Maria walks further by 0.73 km

Source: 1997 Queensland Year 6 Test (Education Queensland, 1997)

units of measurement in order to determine the appropriate unit in which to make
the comparisons.

Signifiersand Symbolism

The problemsassociated with symbolism and language used in mathematicsbe-
come apparent in questions where the protocol for representation is embedded in
thetask. Studentsmust be ableto decode not only thelinguistic form of the question
but al so the symbolism used inthe mathematical practices. Oftenthissymbolismis
compounded by the lexical density of the question asked and the mathematicsin-
volved. This is further compounded when there is an overlaying context within
which the task is embedded.

The space strand of mathematicsisprobably themost richintermsof itslinguis-
tic complexity and itsrel ationships of signification. Often thislanguage specificity
isseento bethe cause of many of thedifficultiesfor learning thisarea of mathemat-
ics. If one considersthelanguage of angles—even at the most simplelevel—words
such asreflex, acute, obtuse, complimentary, and adjacent illustratethe complexity
of demand. The difficulties of learning this area of mathematics are compounded
by the complex symbolization of the strand. The protocolsfor representation must
be learned and, if one considers the ways in which students come to represent
cubes, this symbolization becomes obvious. In the example shownin Figure 3, stu-
dents must recogni ze the protocol for representing 3D shapes whereby the hidden
edges and vertices are drawn using dotted lines.

The student must not only access the symbolism of mathematicsto effectively
answer the question, but al so the specific signifiersmust beknown. The complexity
of terms such as pentagonal, prism, and vertices must be accessible in order for
them to “crack the code” of the question. Being able to read and comprehend the
questioniscritical to the capacity to answer it. To do this, the student must have ac-
cess to the specific language embedded in the question as well as the formal sym-
bolism of the diagrammatic representation.
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Figure 3.

Q13 Here is a drawing of a pentagonal prism:

How many vertices does this prism have? DID

Source: 1997 Queensland Year 6 Test (Education Queensland, 1997)

Inthetask shown in Figure 4, thelanguageisvery limited yet thistask was per-
formed poorly by all students, but in particular, by indigenous students. The speci-
ficity of the symbols appears to create the difficulty for students. In this question,
the students must be able to make sense at a number of very different levels. The
firstisto understand the compl exity of the mathematical signifiers—bothlinguistic
and symbolic. Thelinguistic signifiers of “whole number” and “ number sentence”
arekeystothetask. A student must know what ismeant by these terms. In terms of
symbolic signifiers, the student must be able to make sense of the symbolsin the
equation: 120 x 5>60 ----.

At the second level isthe complexity in the sentence structure. Even if the stu-
dent is aware of the individual meanings for each signifier, these must then be
linked in away that makes the question and the equation make sense. At the third
level, the student must be able to make sense of the question mathematically and
link the elements into something coherent. Regardless of the strategies used to
solvethe equation (calculator, logic, etc.), the student must beabletolink it all into
a coherent form. If both sides of the equation were to be made equal, they would
need to make 600 and the sol ution of the equation would be 10, but asthesignifieris
“greater than,” theright-hand side must belessthan or equal totheleft. Inthissitua-
tion, experience with and understanding of the symbols > and = is needed if a cor-
rect answer isto be offered. Studentswho offer a10in thiscasewill beincorrect as
the correct answer is any number less than 10, but restricted interpretation of the
symbolization is very common. When this task was given to a group of 150
first-year preserviceteachers, 12 percent of theteachersanswered incorrectly, with
most mistaken answersfailing to recognize thelack of inequality inthe symboliza-
tion. The teachers either created an equal equation or misrecognized the direction
of the > sign so that the equation was greater than it should have been. When stu-
dentsin primary schoolsare given thistask, their interpretation of thesignislikely
to be hindered by less experience with the symbols. Furthermore, when students
encounter the abstract nature of such symbolization, particularly when that sym-
bolizationisnot common or relevant totheir culture, asisthe casewith many indig-
enous students, then the chances of success in interpreting such abstractions is
further restricted.
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Figure 4.

Q9 Write a whole number to make the number sentence true.

] 120x5>60x ED:D

Source: 1997 Queensland Year 6 Test (Education Queensland, 1997)

A further complexity of the problem isthe provision of thefour boxes. Students
must be able to understand the significance of the boxes and ascertain whether or
not they provide relevant or redundant information.

Clearly, the specificity of the mathematics language creates difficulties for stu-
dents whose first language is not English. However, it is equally necessary to be
cognizant of those students whose command of the very particularized English
used in mathematicsclassroomsisnot strong. Thereisagrowing literaturethat rec-
ognizes the language used by some students whose first language is English is not
of the same form as others—in particular, students from working-class back-
grounds. Theresearchinlanguage education (see, for example, Freebody, Ludwig,
& Gunn, 1995) has produced some highly relevant and important work in the area
(Lubienski, 1997; Secada, 1992). Therole of theregister of mathematicsiscritical
in understanding how students make sense, or fail to make sense, of the questions
posed in the classroom or on tests. In the preceding sections, aspects of register
have been highlighted. Thismay be related to the contextualization of mathemati-
cal tasks. The movement in mathematics education to embed mathematical tasks
into word problemswith the intention of making them more meaningful (and sup-
posedly more accessible) has not met with the success that was hoped for. Cooper
and Dunne (1998) have found that students from different socioeconomic groups
perform equally well on decontextualized tasks but differ when the tasks become
contextualized. They contend that the language-richness of the contextualized
tasks makes readability and comprehension difficult for working-class students.
More centrally, they argue that the “correct” degree of engagement that is needed
with real world contextsisaparticular from of capital that isnot equally accessible
for working-class and middle-class students.

The previous section has highlighted the more formal aspects of mathematical
language, particularly asit relatesto written texts. A central aspect of mathematical
language and successis oral and played out within classroom interactions. These
aspects are discussed in the next section.

CLASSROOM INTERACTIONS

Studies of classroom interactions have demonstrated aregularity in theinterac-
tions that become taken-for-granted in a mathematics culture. The culture of the
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mathematics classroom has been well documented and has often been described by
teachers and students within restricted frameworks. Many teachers hold beliefs
about mathematicsteaching that can be seento belargely behaviorist intheir foun-
dations. Such approaches engender anarrow set of practicesthat are frequently re-
called by students. Most often these are described as teacher directed, students
undertaking routine exercisesthat are assessed using pencil-and-paper testing pro-
cedures (Leder & Forgasz, 1992). With a greater emphasis on inquiry modes of
pedagogy such asthose advocated by the National Council for Teachers of Mathe-
matics (1989), mathematics classroomsthat have adopted these new forms of ped-
agogy have provided fertile ground for research (see, for example, Bauersfeld,
Krummheuer, & Voigt, 1988; and Wood 1994, for discussion of thewaysinwhich
changedinteractional patternsbrought about by changesin pedagogy canfacilitate
improved learning outcomes).

Bernstein (1990) has developed the notion of “relay” to describe the elusive
ways in which cultural norms and knowledge are transmitted. Successful interac-
tion patterns are rarely taught explicitly to our students; they must come to learn
them covertly. In the following sections, | draw on the work of ethnomethodol ogy
that seeks to identify the micro interactions of classrooms that become a compo-
nent of the culture of classrooms.

Micro I nteractions

Within interactions between two or more people, there are particularized pat-
terns. | refer totheseas” microinteractions’ asit connotesthe minute detail of anal -
ysis that can be undertaken of the interactions. One of the most documented
patterns of interaction in the classroomisthat of “triadic dialogue” (Lemke, 1990).
It has been found across all curriculum areas and all sectors of formal schooling.
Thephrase“triadic dialogue’ ascoined by Lemkeistheonel useinthischapter, al-
though others have described the same interaction patterns in different terms.
Triadic dialogueconsistsof threekey parts: theteacher initiatesaquestiontowhich
thestudentsusually know theanswer; astudent responds; and theteacher then eval -
uates the student’s response (Mehan, 1982; Sinclair & Coulthard, 1975). The ex-
tract below is taken from a classroom in which | was conducting research:

1. Teacher: Hereis adiagram of a 3D shape—who can tell me what it is?
2. Student: A rectangular shape.

3. Teacher: Mmm, almost. John?

4. Student: A rectangular cube?

5. Teacher: Nearly, you are half right. Margaret?

6. Student: A rectangular prism.

7. Teacher: Good, that’sit. A rectangular prism. Funny word, isn't it.

The first three lines show the nature of the three-phase interaction. When the re-
sponseis not the desired one, the teacher |eads the studentsinto amore acceptable
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response while still retaining the three-part interaction. This structure is common
across many Western countries (Stigler & Hiebert, 1999).

Triadicinteractions servethe purpose of controlling student behavior whilealso
prescribing the content of lessons. Lemke (1990) argues that rules for interacting
arenot explicitly taught and studentshaveto learn them through participationin the
interactions. However, Lemkeal so notesthat the patterns of interaction arenot con-
sistent acrossthethree phases of alesson. Triadic dialogueiscommon in theintro-
ductory phase of alesson where the teacher attempts to keep tight control of the
content and students. Hence, asignificant amount of power resideswith theteacher.
Similar observationsare made of the concluding phase of thelesson. However, dur-
ing the“work” phase of the lesson, the patterns of power are somewhat more equal
and students can express their lack of understanding. The role of teachers' ques-
tionsare critical in controlling the interactions with classrooms. As Lemke (1990)
has shown through triadic dialogue, questions are used to control the flow of the
lesson, the content to be covered, and the behavior of students, and to provide pro-
gressive evaluation of student learning and lesson implementation.

Acceptable classroom responses are rarely taught to students explicitly so stu-
dents must learn them through participation. Thisis made easier if there is some
continuity between the school and home. The contribution made by the studies
cited previously (Heath, 1982, 1983; Walkerdine, 1990) shows that the transition
from the hometo the school is moredifficult for working-class studentsor students
whose cultural patterns of interaction are different from those within the formal
school context, than for others. This transition is encapsulated in a comment of-
fered by amother when talking about the difficultiesfaced by socially different stu-
dentsin the school context: “My kid, he too scared to talk, ‘ cause nobody play by
the rules he know. At home, | cain't shut him up” (cited in Heath 1982, p. 107).

In a 1-year, ethnographic study of three schools (an independent elite school
serving amiddle- to upper-classclientele, agovernment school serving apredomi-
nantly middle-class clientele, and a government school serving a predominantly
working-class clientele), two classrooms were observed and mathematics lessons
video recorded throughout the year. Interviews were conducted with students and
participating teachers. These data were used to examine the practices within the
schoolsinorder toidentify thewaysinwhich social differenceswerebeingrealized
in and through the practices of mathematics. From the analysis of classroom inter-
actions in middle-class settings, it was noted that there was a strong compliance
with triadic dialogue in mathematics lessons. Students and teachers used this
model of interaction effectively and efficiently to convey information and maintain
control of the lesson and students. In contrast, in both classrooms at the school
where the students were predominantly from working-class backgrounds, there
weremany challengesto thetriadic dialogue and, hence, itsuse by theteacherswas
thwarted by the actions of the students. This made control of the content and stu-
dents less effective (Zevenbergen, 1994, 1998). Freebody and associates
(Freebody, Ludwig, & Gunn, 1995) researchinliteracy classroomshasfound simi-
lar patterns of interactionswith studentsfrom di sadvantaged backgrounds. Inthese
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studies of mathematics and literacy classrooms, it was found that students from
working-class backgrounds were likely to transgress the unspoken rules of class-
room interactions and disrupt the flow of lessons, thus making it more difficult for
the teacher to “teach” the content of the lesson and ultimately cover the content
identified through formal syllabus or statutory documents.

Inaclassroom in the sixth year of primary schooling at aworking-class school
inwhich | was observing, the teacher was undertaking alesson on the construction
of 3D shapes from nets. In the following extract from the orientating or introduc-
tory phase of the lesson, the teacher had been progressively leading the students
through the various shape names and was seeking to elicit the word “prism” from
thestudents. In the preceding discussion, he had been asking the students about var-
ious 2D shapesand linking themto 3D solids (e.g., squaresto cubes). Inthefollow-
ing extract, he has arrived at the point of naming arectangular prism with thefirst
mention of the signifier “prism”:

1. Student: A rectangular oblong.

2. Teacher: The word we're looking for is*“prism.”
3. Student: Yeah, | said that.

4. Teacher: Say the word please [to the whole class].
5. Students: Prism.

6. Teacher: Not like go to jail prison, that’s “prison.”

This sequenceindicates how the three-phase interaction control s student behavior.
Inthethirdlinethe student violates aclassroom norm by calling out. Thisresponse
isignored indicating to studentsthat thisis not an appropriate nor valued comment.
In other cases, the teacher may be more overt in chastising the students. The effect
isthat theteacher isableto control theflow of thelesson such that responsesthat are
not wanted are either ignored or rejected whereas commentsthat are sought can be
expanded or praised so that the students become aware of what isthe“correct” re-
sponse. Through this process, teachers are able to control behavior and content.
However, Lemkeisquick to point out that the level of questioning is often low and
isaimed at keeping the lesson moving at a brisk pace to keep students motivated
while introducing and covering the content that is the focus of the lesson.

Theflow of interactionswasfar more consistent and smooth in the middle-class
contexts than in the working-class contexts. In the following extract from awork-
ing-class classroom, the teacher isworking with the studentsin the construction of
nets.

1. T: Beforewe start, what shape do you think thisonefor example[cubenet] isgoing
to make when you fold it up and we'll pass the sticky tape around. Now there’'s
only two rolls so it may take awhile before you get it. You can actually stick it to
make it together. What shape, Rebecca?

2. G: A cube.
3. T: Any other answers?
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4. Cs. A cube.

5. T: A cube, good. It will have squares on it. What shape do you think this will
make?[atriangular prism] Excuse me, areyou concentrating? What shape do you
think it will be?

6. G: [no answer].
7. G: A square.
8. T: It will certainly have squares on it.
9. B: A rectangle.
10. T: A rectangular. . . .
11. B: Prism?
12. T: What shape will it make?
13. C: It won't! [student stands up and calls out]
14. :T You may not have your chair if you don’t use your manners.
15. B: What's it called? A triangle.
16. T: A triangleis part of it. Who can continue on, atriangleis part of it.
17. G:A right angletriangle.

18. T: Yes it would have aright angle triangle in it. Thisis the right angle triangle
shape here. [calling out] Put your hand up if you're going to give an answer. Sit
down David. Stop. Excuseme. Listentous. We'reasking for aname, doyou havea
name?

19. B: No.

20. B: A triangular prism.

21. B: | was going to say that. He stole my brain.

22. B: What brain?

23. C: The oneinside my head.

24. [chatter]

25. T: OK, hand these out to each person [photocopied sheets with nets]. Could the
hand-out monitorsal so hand out apair of scissorsbetween two people. If you have

any inyour tub, get them out please. You can get out your rulesand seeif you can
start on these.

The interactions within this working-class classroom, appear substantially differ-
ent to those in many middle-class classrooms. At line 13, astudent challengesthe
teacher’sauthority and theremainder of theinteractionsappear to be more confron-
tational than compliant. These challengesto theteacher result in theteacher chang-
ing his approach to the lesson and moving to a work phase, where the students
would be engaged in the active construction of nets. Although this approach would
beexpected in most classrooms, what isimportant to noteisthat the previousintro-
ductionwasonly avery short period of time (just under 2 minutes), thussuggesting
that the students did not comply with the expected social normsof classroominter-
actions. Thismakesit very difficult for the teacher to continue with such modes of
teaching and compels him to moveto different strategies. It isnoteworthy that such
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challenges were not observed in the middle-class classrooms in my study. In the
middle-class classroom, there was a strong compliance with the triadic dialogue
thus permitting the teacher to proceed through the lesson in away that was congru-
ouswith her aims, enabling the studentsto cover the content necessary for theles-
son.

These studies indicate that students from disadvantaged backgrounds may be
excluded from significant mathematical knowledge through their noncompliance
with the unspoken rules of classroom interactions.

LEGITIMATE CONTEXTS

Thefinal section of thischapter isconcerned with what isregarded aslegitimate
knowledgein mathematics. Two aspects need to be considered in concert with each
other: the first isthe language of the task, and the second is the biases represented
by the contextualizing of thetask itself. In considering the contextsin which school
mathematics become embedded, therole of language isakey consideration. Inthe
first instance, the role of language is essential for conveying ideas so that the
contextualizing of tasksisachieved through linguistic turns. As Cooper and Dunne
(1998) have demonstrated, working-class students are considerably disadvantaged
by the embedding of tasksin a pseudo-mathematical context. In part, thisisowing
to the increasing complexity of demands of the task. Newman (Ellerton &
Clements, 1992) hasnoted that several cognitive stepsare needed in deconstructing
and responding appropriately to a word problem: reading the problem, compre-
hending the problem, trandl ating the probleminto amathematical task, undertaking
the mathematics necessary for the task, and, finaly, interpreting what the answer
means. Students are able to make mistakes at any of these steps and hence produce
incorrect responses. Thisisthen further compounded by the language differences
between that which isrepresented in and through the mathematics curriculum—as
evident in the mathematicsregi ster—and the language of the students. Wherethere
isgreater synergy between thelanguage of the mathematics problem and that of the
student, thereisgreater potential for success. In contrast, wherethereis significant
difference between the two registers, the chances of success are reduced.

Although the knowledge represented in and through the curriculumis seento be
important and worthwhile, thereis aneed to be critical about whose knowledgeis
actually being represented and with what effects. Over the past two decades, there
hasbeen anincreasing international recognition that the mathematics embeddedin
the curriculumisculturally and socialy biased. Historical studies have shown that
thereisvery strong Eurocentric biasin theknowledge (Joseph, 1991; Joseph, 1987)
wherein other cultures may have been working with mathematical ideas before
Westerners, but this has not been recognized, thereby perpetuating a belief in the
superiority of Western mathematics. Similarly, studies in the broad area of
ethnomathematics have been active in drawing out the mathemati cs undertaken by
particular socia and cultural groupswho have been perceived to be mathematically
inferior. For example, studies of Mozambican basket weavers (Gerdes, 1988) have
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shown that quite complex mathematicsis needed to weave strong baskets. Within
the Australian context, Harris (1992) has argued that Indigenous Australian art
shows strong mathematical concepts. There are criticisms of this type of work in
that it is Eurocentric initstranslation of those activities and subjugates the indige-
nous activity to a Western mathematics frame of reference (Dowling, 1998).

Other studies concerned with situated cognition and learning have drawn atten-
tion to the mismatch between school mathematics and out-of-school mathematics.
Studies of street vendors (Carraher, 1988; Carraher, Carraher, & Schliemann,
1985; Saxe, 1988); shoppers (Lave, Murtaugh, & de la Rocha, 1984), and work-
place mathematics (Kanes, 1996; Zevenbergen, 1997) have shown that the context
of the activity provides avery strong support for effective performance. Often the
performance undertaken in this context does not resemble the formal mathematics
of school. When asked to transfer school mathematics to these contexts, partici-
pants are often not as confident with their work and produce more incorrect re-
sponses. Indeed, the context provides a high degree of motivation for the
participantsto the point where, in many cases, school mathematicsisredundant or
inappropriate, or both.

These studies draw attention to the need to question whose knowledgeis being
represented in theteaching and | earning of mathematicsthat isbeing undertakenin
our classrooms. When the culture, and hencein many cases, knowledge, of the stu-
dentsin many classroomsisdifferent from that represented in the curriculum, then
thereislikely to be agreater mismatch between what is seen asrel evant and mean-
ingful. In many cases, thisis blatantly obvious; for instance, where thereis abig
mismatchin cultures. Wherethereisless of amismatch between the classroom and
school, thereis greater opportunity for seeing the activities as being relevant to al
students.

One of the most common strategies used in mathematics teaching isto embed
the mathematical concepts currently being taught into a context in an attempt to
make the mathematics appear useful and purposeful. Typical tasks asked of stu-
dentsreguire them to apply curriculaconcepts and processesto atask that appears
to havetheseelementsoccurring init “naturally.” For example, atask fromaYear 9
textbook (Brodie & Swift, 1998, pp. 426-427) asked students to undertake an in-
vestigation into car purchasing through aloan process. The picture enclosed with
the project was a Mitsubishi with a price tag of $9,999. A set of assumptions are
built into the task including the “car will cover 16,000 kmintheyear, . . . will use
petrol at arate of approximately 9 km/L; . .. useapproximately 1 L of oil for every
5,000 km, . . . service the car every 5,000 km, new tires at $120 each and a battery
cost about $80 and lastsabout 2 years” (p. 426). Other information about insurance,
financing, registration, on-road costs, servicing and petrol should be sought from
the RACQ (regional motoring club). It isassumed that the student has a deposit of
$5,000. There are numerous examples such as this in school textbooks, often
guided by theintention that they provide areal context in which students can make
sense of the mathematicsthey have been studying and begin to see the rel evance of
the mathematics in the world beyond the classroom. Often, where there is some
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criticism of the tasks, there is the potential to suggest that students should still be
able to encounter the applications as they prepare for activities that they may en-
counter in the world beyond school. From a more critical perspective, Boaler
(1993) hasargued that this process may indeed makethetask moreinaccessiblefor
students. Furthermore, Cooper and Dunne (1998) have shown that the embedding
of mathematics in contextualized tasks decreases the performance on tests for
working-class students, whereas Boal er has shown that girls may similarly bedis-
advantaged by some “real world” contexts (Boaler, 1994).

| would support and extend these positionsby arguing that it isnecessary to con-
sider the examplesfrom asociological aswell asalinguistic and mathematical per-
spective. In many cases, the activities work on a mathematical assumption that
students will need to be able to apply the mathematics in contexts that they are
likely to encounter in their lives beyond schoal. It is seen to be the task of school
mathematics to empower students to make the “right” choicesin their adult lives,
with mathematicsbeing regarded asakey tool for making suchinformed decisions.
From a school perspective, such tasks conform with the demands placed on teach-
ersby syllabus and curriculum documentsthat are often mandated by statutory au-
thorities. For many teachers, the activitiesin the books are onesthat they encounter
in their daily lives, and so the tasks have a veneer of authenticity and relevance to
theteachers. However, projectssuch astheonecited previously arealso riddenwith
considerable assumptions about what is seen asusual purchasing patterns, many of
which are the antithesis of what disadvantaged students are likely to encounter
when (or if) they come to purchase a car. Questions need to be asked that will de-
construct the assumptions underpinning the question in order that we can ascertain
whose cultureisbeing valued and, hence, whoseisbeing deval ued or evenignored.
Some of thesewould includefirst asking whether the question hasrelevanceto the
students. Once this has been ascertained, then other questions need to be consid-
ered including the following:

» |Isthecontext of the question relevant to the students? In this example, how could
thetask be best contextualized for acohort of students? Would students consider
the purchase of acar of thisvalue? How could the task be best suited for the needs
of students so that they can see the relevance of mathematics to their everyday
lives? (If indeed thereisany.) In some places, the purchase of acar would not even
be contemplated.

* What are the usual patterns of purchase for a group of students? For many, this
could be purchasing afriend's car and coming to some sort of arrangement with
him or her insofar asrepayments, or borrowing from parents or family rather than
financial institutions.

» Deposits—What would be a deposit within the local community? It may be of a
cash value, but may be something else (such asastereo or thelike). What savings
schedulesmay be necessary prior to purchase of the car in order to have adeposit?
Do the students have savings schedul es?

* What are the constraints that they would be encountering when maintaining the
car? Servicing—Would it be done as afriendship activity on theweekend with la-
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bor (and learning) occurringinasocial situation? What sort of maintenancewould
be undertaken? What types of purchases would be made (second-hand parts, re-
treadsfor tires, etc.)? Mileage rates may not even be a consideration as purchase
price determines what can be purchased; and so forth.

The implicit assumptions embedded in these types of questions needs to be
questioned in relation to the real lives of the students. Simply embedding mathe-
matics into contexts does not make it relevant and worthwhile. For studentsliving
in remote areas, the constraints that they would encounter when purchasing a car
would be substantially different from those of their peersininner city areas. These
factors must be considered; if not, thereisatendency to recognize aparticular cul-
tural form over others and in so doing implicitly value that cultural form. Indeed,
this process of recognizing the dominant forms of knowledge and contexts may
compound the alienation of many students through the imposition of a particular
value system on them that is of little or no relevance or meaning to them.

Within this context, not only must the links with the local community be ex-
plored and articulated, but also the language used by students. It isvery likely that
thelanguage used by thisgroup of studentsisdifferent from theformal language of
the tasks and should also be explored. In order that students be able to solve
contextualized tasks, they need to be able to deconstruct the tasks mathematically,
linguistically, and contextually. Where the language and context are different from
their lived experiences, this creates greater cognitive demands for some students
than others, thereby restricting their accessto the tasks and subsequent resolution.
This seemsto correlate more closely with economic advantage than with potential
or mathematical understanding.

CONCLUSION

By considering the teaching of mathematics asacultura event, we can see that
there are aspects of pedagogy and curriculum that can exclude some students. By
understanding how the patterns of language, work, and power areimplicated inthe
construction of mathematics, it become possibleto understand how we can change
our practicesin order that they become more accessible and equitable for our stu-
dents. Thisis not to suggest that the mathematics be watered down. Rather, we
should consider the practices within which mathematicsis embedded—Iinguistic,
social, and contextual—in order that it becomes more accessible to more students.
In this chapter, | have made explicit some of the ways in which the practices of
mathematics can be exclusory for some students, particularly for those whose lan-
guageis not that of the formal mathematics found within schools and classrooms.
Thisisnot to suggest adeficit in the language of the students, but to strongly advo-
catethat thereare differences between thelanguage and experiences of the students
and common school practices. It isnow widely recognized that languageisinextri-
cably bound to world views. Wittgenstein and advocates (Watson, 1989;
Wittgenstein, 1953, 1967) have argued persuasively that the waysin which people
see and read the world are shaped through language which comes to construct
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formsof lifethat arethe subjectiverealitiesfor participantsin the language games.
For students coming into mathematics classrooms, there are particular language
gamesthey cometo learn, with which they have some familiarity because of simi-
larities with their home environments. For these students, the language games of
the classroom—the registers, the interactions, the contexts—are familiar enough
that they are ableto participate more effectively and more efficiently and be seen as
mathematically able students. For these students, their familiarity with the lan-
guage gamesbecomesaquality they can useor tradefor successin classrooms. Ac-
cordingly, such familiarity is aform of capital that can be traded for educational
rewards. If the language games of students are not part of their social or cultural
backgrounds, then subsequent constructions of their success are far more elusive.
Without substantial reconstruction of their familial habitus, effective participation
inthe mathematics classroomistransitory and intangible, making accessto mathe-
matics and success difficult to achieve.

NOTE

1. The term “strand” is used here to denote the different branches of the mathematics
curriculum. These branches are arbitrary and vary across state and national contexts, but
for the purposes of this chapter can be considered to be main divisions of the mathematics
curriculum such as number study, chance and data, algebra, measurement, and space.
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Better Assessment in
Mathematics Education? A
Social Perspective

Candia Morgan

INTRODUCTION

Assessment of school mathematics has animportant impact both onindividual stu-
dents and teachers and on groups within society. Its summative forms have tradi-
tionally been used in many countriesasaprimary meansof discriminating between
individualsin order to all ocate scarce resources (often in theform of further educa-
tional and employment opportunities). It may be used to compare different groups
within apopulation and thus haspotential power asatool of systematic discrimina-
tion, for example, using the results of tests to make and justify policy decisions
about theformsof education that should be made avail ableto variousgroupswithin
asociety. At various times and places, the results achieved by their students have
also influenced teachers' pay and possibilities for advancement. Even at the class-
roomlevel, theday-to-day judgmentsof teachersabout individual pupilsinevitably
affect future interactions, judgments, and hence opportunities. The act of assess-
ment takes place in interaction between individual students, teachers, and social
contexts, and itsresults have far-reaching social consequences, yet research within
mathematics education that acknowledges the importance of a social perspective
has overwhelmingly focused on curriculum and classrooms rather than on assess-
ment.

Thevast magjority of existing research related to assessment within mathematics
education has been done within two main traditions that | shall characterize as
“psychological” and“ curriculumreform.” Althoughthereisabody of research that
addresses assessment from asociol ogical perspective, thishasnot yet substantially
informed research within the mathemati cs education community. In this chapter, |
intend to critique the “ mainstream” mathematics assessment research and to dis-
cuss what might be meant by a social perspective on research into assessment in
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mathematicseducation. | shall also discusssomeof theissuesthat arise, referringto
examplesof research that havetaken or begun to take such aperspective. In conclu-
sion, | shall suggest anumber of questionsthat may be used to interrogate existing
research on assessment in mathematics education and to guide future efforts.

MAINSTREAM TRADITIONS OF MATHEMATICS
ASSESSMENT RESEARCH

Therearethree basi ¢ assumptions underpinning mainstream thinking on assess-
ment. First, it is assumed that individuals possess attributes (such as knowledge,
understanding, skill, ability, etc.) that are discoverableand measurable. Second, the
primary purpose of assessment isto discover and measure these attributes. Finally,
the assessment process and its outcomes are assumed to be fundamentally benign
or even beneficia (although unfortunate side effects may be recognized and at-
tempts made to ameliorate them). The benefits that “good” assessment is claimed
to bring include the following: increased understanding of students' mathematical
thinking, both collectively and individually; possibilities for improved teaching,
with the design of schemes of work that match what is known about students; and
opportunities to influence teachers’ practice, bringing it in line with the ideals of
those designing the assessment.

Itisclear that these assumptionsarerooted inastrongly positivist tradition. That
is, they are predicated on the belief that there is an underlying truth to be assessed
andthat it istheoretically possibleto get asclose as one might wish to thisunderly-
ing truth. This positivist tradition is perhaps even stronger in mathematics than in
other subject areas, asmany believethat thereareonly right or wrong answers; peo-
pleeither know theright answer or they do not. Uncertainty and nonexcluded mid-
dlesin mathematical contexts are deeply uncomfortable for many people, even for
those who might find them less surprising in other disciplines. Situated theories of
learning challenge both the idea that there is some absolute “ truth” about students’
understanding of mathematics and the ideathat any instrument could observe and
measure such a state. Yet such epistemol ogical concerns have had little impact on
thinking about assessment (Galbraith, 1993).

The Psychological Tradition

Research rel ated to assessment that is reported in the Proceedings of PME! (the
International Group for the Psychology of Mathematics Education) has two main
concerns. One is the development and use of assessment instruments to form im-
proved (more valid) characterizations of the attributes of individual students. (See,
for example, Hunter & Monaghan, 1996; Jaime & Gutiérrez, 1994; Karsenty &
Vinner, 1996; Lawrie, 1998; Leung, 1994; Rickards& Fisher, 1997.) Thesecondis
the construction of models of the general characteristics of knowledge and under-
standing in a given area of mathematical activity (e.g., Garcia-Cruz & Martindn,
1997, 1998; Orton & Orton, 1996). The aspects of mathematics involved include
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both “traditional” areas of study, such as geometry, and areas associated with cur-
rent curriculum reform movements, such as problem solving. Some of the studies
reported appear to be* pure’ research whereasothersaimto providetool sfor teach-
ersto use or to influence teachers' practice, often linked to the “reform” tradition
(seelater discussion). Although there are substantial differencesin the aims, con-
tent, and theoretical framing of these studies, they all share the three assumptions
outlined earlier. In particular, they strive toward validity in order to discover the
truth about students’ knowledge—a completely appropriate aim for research in a
cognitive psychological paradigm.

In recent years, learning hasincreasingly cometo be seen asasocial rather than
solely individual process. Bjérkqvist (1997) has argued that this means mathemat-
icseducation assessment research needsto take more account of social psychol ogi-
cal frameworks. However, this does not yet seem to have had a significant
influence. Moreover, Bjorkvist’s primary concern, like that of others within the
psychological tradition, is still with the search for validity. Thereislittle room for
considering either the social effectsof the assessment processor the possibility that
validity might be an illusory goal.

The Curriculum Reform Tradition

Thefield of mathematics education has witnessed many arguments about both
the nature of the curriculum and the nature of its assessment. Thelink between cur-
riculum and assessment is now explicitly seen as atwo-way relationship and there
has been increasing recognition of therolethat assessment structuresplay ininflu-
encing what happensin classrooms, either hampering or “leading” effortsat curric-
ulum reform (Burkhardt, 1988; Ridgway & Schoenfeld, 1994). The function of
assessment that is of primary importance for curriculum reformersisthe power to
influence the curriculum, with accompanying concern that this influence should
“match” theintentions of the reform. The focus of the curriculum reform tradition
in relation to assessment has thus been twofold. First, researchersin thistradition
have critiqued existing forms of assessment, considering both their effects on the
curriculum and their effectivenessin producing valid measures of those aspects of
students' mathematical thinking that are valued by the proposed curriculum. Sec-
ond, they have proposed, developed, and trialled alternative forms of assessment
intended to match more closely the aims of the reform curriculum, both in produc-
ing the desired effectsin schools and classrooms, and in measuring that which the
reform values.

In particul ar, there hasbeen increasing interest in theidea of “ authentic” assess-
ment, in mathematicsasin other subject areas (Torrance, 1995). Theterm “authen-
tic” has a number of connotations, not all of which are made explicit in debates
about assessment reform. Authentic tasks may have some “redlistic” aspect; their
assessment procedures may match more closely the aims, content, and breadth of
the curriculum; and the results of the assessment may be amore genuine measure of
students’ achievement. There has been considerable international interest in dis-
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cussing the characteristics of more “authentic” means of assessment aswell as at-
tempts to design and implement new forms of assessment in the context of
curriculum reform (Leder, 1992; Lesh & Lamon, 1992; Niss, 1993a, 1993b;
Romberg, 1995).

Concernfor social issues, inparticular for “equity” inrelation to gender and mi-
nority ethnic groups, has been one of the motivations of recent curriculum reform
movements, and thishas been reflected in some of the principles underpinning par-
alel assessment reforms. In the United States, for example, the Assessment Stan-
dards produced by the National Council of Teachers of Mathematics include the
principle that assessment should “promote equity” (NCTM, 1995, p.15). The dis-
satisfaction with traditional forms of assessment, in particular with timed tests de-
manding predetermined short answersto closed questions, hasarisenin part froma
growing awareness of cultural biasin even (or perhaps especially) the most “ objec-
tive” of tests.

The power of assessment to influence the curriculum is, however, a dou-
ble-edged sword. It is necessary to ask who is controlling the reform and in whose
intereststhey act. In recent yearsin the United Kingdom, we have seen achangein
the rel ationships between teachers, curriculum reforms, and assessment practices.
Inthe 1970s and early 1980s, the official examination system allowed some possi-
bilities for teachers to develop aternative practices. Although regional examina
tion boards controlled the setting and marking of high-stakes examinations for
students aged 16+ years, schools and groups of schoolswere ableto apply for vali-
dation of their own syllabusesand examinations, whileindependent curriculum de-
velopers such as SMP, SMILE,2 and the Association of Teachers of Mathematics
were successful in devel oping alternative syllabuses and assessment regimens that
could be adopted by schools. During this period, reformers who wished to see
greater diversity inthe curriculumand opportunitiesfor wider groupsof studentsto
participate in mathematics made use of innovative assessment methods to encour-
age the teaching of problem solving and the use of mathematical investigation in
the classroom (see, for example, Love, 1981). In 1988, with the introduction of a
new national system of examination for England and Wales, some of these prac-
ticeswere officially endorsed and, eventually, made compulsory. As| have argued
elsewhere (Morgan, 1998b), thisuse of assessment toinstigate universal reform ac-
tually acted in some casesto distort and impoverish the types of rich mathematical
activity it wasintended to encourage. Sincethelate 1980s, assessment hasincreas-
ingly been used asatool in the move toward centralized control of the curriculum.
Teachershave lost most of their opportunitiesto innovate and to havetheir innova-
tions validated through the official assessment system. Both the content and the
method of teaching have been deliberately engineered through theintroduction and
shaping of national tests for political as much as educational purposes. As
Galbraith argues, the generally accepted idea that external assessment require-
ments should be used to influence the curriculum is“ ultimately disempowering to
teachersinimpeding the growth of full professional responsibility, and to students
in making their choices and interestsirrelevant” (Galbraith, 1993, p. 82).
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Critique of the Mainstream Traditions

Both psychological and curriculum reform traditions of assessment research
haveastheir principleaim the searchfor validity, inthe narrow sense of accuracy of
measurement (of whatever isbeing measured) and in the broader senses of curricu-
lar and content validity. Their efforts are thus directed to the devel opment of new
and better assessment instruments. Critiques of traditional methods of assessment
still tend to liewithin the same positivist paradigm. For example, intherecent ICMI
study on “Mathematics Education as a Research Domain,” Ellerton and Clements
(1998) identify “Questioning the Basis for Assessing Achievement in Mathemat-
ics’ (p. 168) as one of 10 major concerns for mathemati cs education research. Yet
their “questioning” leads primarily to the claim that “Closer research scrutiny
needsto be givento theissue of how achievement isbest measured in mathematics”
(p. 169). Their point is illustrated by reference to research by Thongtawat that
“found that students who scored poorly on a [multiple-choice] test could some-
times have a good conceptual grasp of the material which the items covered” (p.
169). This critique assumes that some (unspecified) alternative method of assess-
ment can provide a more valid picture of students’ “conceptual grasp.” Even
Galbraith’s (1993) critique of the inconsistency of those who simultaneously es-
pouse constructivist epistemologies and cling to positivist conceptions of assess-
ment is not consistent. He, too, appears to argue that at least “local” forms of
assessment that take into account cultural and contextual features could provide
valid knowledge of students' understanding. He rejects the positivist principles of
reliability and objectivity but still reliesontheideathat it ispossibleto seek valid-
ity.

Although it is generally recognized that students interpret what teachers say in
multiple ways, thisinsight into the contingent nature of meaning making israrely
extended to how teachersinterpret what students say or write. Mainstream thinking
about assessment is still based on a* commonsense” or naive transmission view of
the nature of communication inwhich meaning resideswithinthetext, independent
of thereader, carrying the author’sintentions exactly. The assessor’sroleisthusto
“extract the meaning” from the text produced by the student. Obvious failures to
communi cate—where different modes of communication (for example, awritten
test and ateacher observation of achild working) provide different messages about
the “same” student competence or where the teacher/assessor is unable to make
sense of awritten or spoken text produced by astudent—are often seentobea*lan-
guage problem” for the student. But on what basis do we assume that, when teach-
ers and other assessors do succeed in making sense of a student’s text, they then
know what the student intended to communicate? A more consistent epistemol ogy
would suggest that thereis no necessary simple correspondence between a piece of
text and the meanings its various readers construct. Rather, the meanings con-
structed will depend on theresources brought to bear on thetext by individual read-
ers. These resources will vary according to the discourse within which the text is
read and the positionsadopted by aparticular reader within that discourseaswell as
the reader’ sprevious experience (Kress, 1989). There can never beaguaranteethat
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the interpretations made by the assessor are exactly those intended by the student.
Indeed, studies of teacher/assessors demonstrate how different assessors can con-
struct entirely different interpretations from the same text (Morgan, 1996; Watson
and Morgan, 2000).

TOWARD A SOCIAL PERSPECTIVE ON ASSESSMENT IN
MATHEMATICSEDUCATION

| have argued abovethat the aim of mainstream research related to assessment in
mathematics education hasgenerally been to devel op and validate more“ accurate’
and “authentic” means of assessing student learning. | have also argued that this
aimisanillusory one—that thefirst two assumptions on which both psychological
and curriculum reform traditions are based are unfounded and inconsistent with
epistemological stancesthat take into account the socially situated and contingent
nature of knowledge and of communication. | now turn to the third assumption of
the mainstream traditions—the assumption that assessment is fundamentally be-
nign. In making this assumption, it is clear that mainstream research neglects the
crucial functions that assessment performs within society.

What Isa*“ Social Perspective?’

What might constitute research with a “social perspective’ on assessment in
mathematicseducation? Theterm“social” canhavereferenceat anumber of differ-
ent levels from interactions between two individuals to national and international
structures and systems. But whatever aspect of the“social” isthe object of study, |
would argue that such a perspective must invol ve some consideration of valuesand
consequences. Thus, it must involve asking the questions:

» Who benefits and who is disadvantaged?

» How do assessment processesand systemsact to benefit or disadvantageindividu-
als and groups?

In each case, the scope of the questions may vary from the level of an individual
classroom to large-scal e assessment systems, both national and international . Ex-
amples of questions at each of those levels could be:

* Who within this classroom is disadvantaged by the assessment that takes place?

» How does the form of these national examinations serve to disadvantage work-
ing-class children?

» How are the opportunities for learning in this country influenced by the govern-
ment’s desire to demonstrate international comparability of qualifications or to
raisethe country’sstanding ininternational comparisonssuch asthethird Interna-
tional Mathematics and Science Study?
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Unlike the mainstream tradition of assessment research discussed earlier, the
object of research on assessment taking asocial perspective cannot be the devel op-
ment of “more valid” assessment instruments, though lack of validity may be one
aspect of the critique of existing instruments.

Assessment as Discrimination

Although | have argued that the mainstream tradition assumes that the primary
purpose of assessment in mathematicsisto discover and measure the mathematical
attributes of individuals, it is, of course, generally acknowledged that the results
may be used to serve awide variety of functions, ranging from the design of indi-
vidual learning programs, to determining students' future educational or occupa-
tional opportunities, to evaluating teachers. All these functions, however, are
predicated on the belief that knowing the “truth” about an individual’s state of
knowledge or understanding is a proper basis for making such decisions. As
Broadfoot (1996) pointsout, thisbelief isarelatively modern devel opment, reflect-
ing the dominancein modern society of individualism and of rationa (rather than
coercive) authority asthe basisfor hierarchical control. It isno longer acceptable,
asit oncewas, to say that acertain type of education isnot suitable for a particular
group of children because their parents are peasants or factory workers. It issimi-
larly unacceptableto say that this person istheright person to become adoctor or a
lawyer or apriest because she or he comesfrom the appropriate social group. How-
ever, the dominant modern ideology alows arguments of the form: this child
should be taught in this way because of his own talents or difficulties; this person
should betrained to be alawyer because she has demonstrated that she hasthe nec-
essary intellectual and personal attributes (including the desire to become a law-
yer). Whether rational authority and the resulting “meritocracy” is superior
(ethically or practically) to other bases of discriminating between peoplein order to
organizethe division of labor and distribution of resourceswithin society isnot an
issuel wish to address here. The point isthat thisideology isameans of |egitimat-
ing divisions and control within society.

Rather than seeing assessment as the attempt to discover the truth of astudent’s
state of understanding, itisthususeful tolook at it asthe processby which astudent
may gain or be denied access to particular forms of privilege or power. We know
that mathematics qualifications serve in many societies around the world as a
means of discriminating between individuals when alocating educational and oc-
cupational opportunities, even where knowledge of mathematics itself may beir-
relevant to thefuture performance of theindividual. AsNossclaimedin hiscritique
of the U.K. National Curriculum, the purpose of assessing ability to perform long
divisionisto “divide and rule” (Noss, 1990).

There is atension for mathematics educators in taking such a perspective on
their activity asmost have entered thefield with amajor interest in mathematicsand
in students’ learning. If schooling and assessment are regarded as a means of dis-
criminating between individuals, then the mathematics and the learning become
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unimportant by-products. Vinner (1997) takes a moral stance against the pursuit
(by teachersand students) of “pseudo-knowledge” (that is, knowledgethat enables
acceptableanswersto be given to school mathemati cs questions but doesnot repre-
sent “true” mathematical understanding) as ameans of gaining “ credit” within the
system. He claims that the “intention” of the educational system is*“to give credit
for true knowledge and not for pseudo-knowledge” (p. 68) and that to gain credit
for pseudo-knowledge is aform of “cheating.” It is not clear to me how a system
can have“intentions,” though individualsand groupswithinit can. What isclear is
that the system functions to discriminate and select on the basis of the credits
gained rather than the quality of the knowledge acquired.3

What isit that assessment gives credit for? | would agree with Vinner that it is
not “knowledge,” becausethisisnot directly observable, but the extent towhich the
student isableto participatein theform of discoursethat isvalued withinthepartic-
ular classroom or assessment regime. “Knowledge” itself will not be given credit
unless it somehow manifests itself in ways that are recognized within that dis-
course. A teacher makes judgments about a student’s mathematical knowledge by
interpreting oral and written texts and other behavior produced by the student. The
teacher’s interpretation of these texts as evidence of knowledge or lack of knowl-
edge depends on the extent to which their form matches the teacher’s expectations
of mathemati cal texts—expectations shaped by his or her own knowledge and ex-
perience of discourses of mathematics and mathematics education. To be success-
ful in gaining credit, therefore, the student must learn to produce texts that will be
judged to be legitimate texts (Bernstein, 1996) within the practices of the mathe-
matics classroom.

It can beargued that learning to participatein mathematical discourseislearning
mathematics. | would also argue that the discourse of mathematics classroomsis
mathemati cal—not becauseit necessarily matchesup to someideal of “real” math-
ematical thinking (as defined by mathematicians or mathematics educators), but
becauseit happensin mathematics classrooms (see Morgan, 19983, for afuller dis-
cussion of what may belabeled “ mathematical”). Thus, all thosewho participateto
any extent are learning mathematics, even if much of it might be classified by
Vinner as pseudo-mathematics. The problem isthat much discourse in mathemat-
ics classrooms consists of forms of mathematics that are of low status and lack
power to enable studentseither to gain val ued credit within theexisting society or to
take action to transform that society. Dowling's (1998) analysis of the discourse of
a scheme of mathematics textbooks demonstrates how these act to construct and
confirm students in their class positions, allowing the “high attainers’ access to
high-status esoteric domain mathematics that could serve to apprentice them as
mathematicians as well as leading to valued qualifications, whereas the texts for
“low attainers’ position them asmanual workersand induct theminto anarrow and
low statusform of “real world” mathematical activity. Dowling doesnot addressas-
sessment directly, but hiswork provides someinsight into how division and disad-
vantage may be constructed in classrooms. The form of the public examination
systemin the United Kingdom legitimates and necessitatesthisdivision. Different
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groups of students are only allowed to enter one of several “tiers’ of examination,
usually determined by their teachers. Only those entered for the highest tier have
accesstothehighest grades, whereasthose entered for thelowest tier may achievea
maximum gradeof “ D" —Ilargely considered to beafailing gradeand carrying little
value as a qualification for employment or further education opportunities (see
Boaler, 1997, for students' responses to this).

Existing Research with a Social Per spective

| turn now to consider the research into assessment of mathematics that has ad-
dressed the two questions (who benefits/is disadvantaged and how) suggested ear-
lier as central to asocial perspective. There are three main types of issuesthat have
been addressed:

« Differential accessto ‘high-stakes assessment and qualifications
« Differential performance on various types of assessment tasks
e Potentia inequity in judgments formed by assessors

| do not aim to present afull review in this chapter but to illustrate some of the
ways in which these issues have been addressed and to discuss some of the ques-
tions and methodol ogical issuesthat remain. Most of theresearch | shall discussis
based within the education system of England and Wales. Although | would sug-
gest that the threeissuesidentified here are also likely to be of importance in other
education systems, there may well be other issuesthat arise el sewhere, particularly
in so-called developing nations.

Differential Accessto High-Stakes Assessment

One obvious way in which individuals and groups can be disadvantaged by an
assessment system isthrough being excluded from accessto those forms of assess-
ment that | ead to benefits (in the form of high-status qualifications or opportunities
to progresswithin the school). As| have described earlier, the mathematics exami-
nation systemin England and Walesat age 16+ yearsisstructured so that only those
considered by their teacherstobe* suitable” may be entered for thetier of examina-
tion that allows access to the highest grades; others must make do with second- or
third-rate qualifications. (Thisisnot thecasein al subject areas; in English, for ex-
ample, all students are entered for the same papers.) Stobart, Elwood, and
Quinlan’s (1992) study showed that girls are entered in disproportionate numbers
for the“intermediate” tier of examination. Although successinthisexamination al-
lows students to achieve the “C" grade that is a requirement for many further
courses and employment, it is not usually accepted as an adequate basis for ad-
vanced study in mathematics. The researchers suggest that the decision to enter
somegirlsfor theintermediate rather than the higher examination may betheresult
of a perception shared by both teachers and pupils that girls lack confidence in
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mathematics. (See also discussion of similar decisions about entry to high- and
|ow-status examination by Walden & Walkerdine, 1985.) Dunne’ s(1998) study of
entriesfor National Curriculumtestsat Key Stage 3 (age 14) also showsthat differ-
ent school s use different bases for making decisions about the level test for which
pupils are to be entered. Thus, a pupil might be entered for the highest tier in one
school, but the middle or lowest tier in another.

The use of results of examinations to evaluate and rank schools encourages
schools, departments, and teachersto “ play safe” in the decisions they make about
entries to maximize the appearance of the results of the school as awhole. In the
United Kingdom, the principle measure used to compare schools is the number of
A to C grades achieved inthe GCSE examination.* Asagrade C can be achievedin
the intermediate level examination, there is substantial anecdotal evidence to sug-
gest that schools are making more entries at intermediate level because it is per-
ceived that it is easier to gain a C by that route. Theinterests of the school but not
necessarily theinterests of theindividual student may be served by such adecision.
Moreover, it seems that some school s target scarce resources on students who are
borderline between C and D grades, providing extralessons and support for these
students—the motivation being to maximize the school’s achievement rather than
that of the students (Gillborn & Youdell, 1999).

Theprovision of differentiated examinationsisoften justified by suggesting that
it allows al candidates to attempt tasks at a level with which they can cope and
achieve some measure of success (Cockcroft, 1982). As soon as decisions must be
made about entry levels, however, it becomes clear that some students or groups of
students may be disadvantaged by variation in the way the decisions are made and
appliedtothem. Theway inwhichteachersarrive at the assessmentson which such
decisions are based forms another area of research and is discussed next.

Differential Performance on Various Types of Assessment Tasks

Because of the prominent place of mathematics in the curriculum and the high
status attached to qualificationsin mathematics, the subj ect has often beenincluded
as an example within more general studies of bias in testing and examinations.
Studies of responsesto different forms of assessment tasks have shown that differ-
ences between the performance of girls and boys vary between multiple-choice
tests, “free response” questions, and extended “coursework” tasks (Anderson,
1989; Stobart et al., 1992). These studies and others addressing the idea of “bias’
(see Gipps & Murphy, 1994, for a much fuller discussion), tend to rest on an as-
sumptionthat it istheoretically possibleto make use of theknowledge about differ-
encesthat they haveidentified in order to construct assessment instrumentsthat are
not biased—thus working with the mainstream assumptions | have critiqued ear-
lier.

Within mathematicseducation, the* context” withinwhich assessment tasksare
presented has been seen to be an important variable in making the tasks easier or
more difficult for various groups of students. In some cases, this has been based on
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rather simplistic model s of theway inwhich such bias might operate. For example,
a subcommittee of the Mathematical Association (MA) entitled “Monitoring
GCSE Papersfor Bias’ defined itstask to be to examine the contexts of examina
tion questions for their “cultural diversity,” reporting in 1990 that:

... some paperscontain animbal ancein mentionsof male/female, and traditional ste-
reotypical rolesfor girlsand women. . . . Thereisalittle use of “Asian” names, and a
very inappropriate drawing of black children which offends, but no signs at al that
any paper acknowledges, yet al one promotes, multiculturalism. (Mathematical Asso-
ciation, 1990)

Although the MA report bases its investigation on general principles about a
“multicultural” approach to mathematics education rather than specific claims
about the effects of such “bias’ on students’ performance in the examinations, it
aso citesextractsfrom the policy statements of examination boardswhich suggest
that their concern is underpinned by the assumption that the cultural context does
have such effects:

The Board will be dert to the need to befair to its candidates by devel oping schemes
of examination whose components do not bias against particular ethnic groups. The
culture free examination isan unrealistic aim and would, in any case, lead to dull ex-
aminations. (London Examinations and Assessment Group, cited in Mathematical
Association, 1990)

Thisisarather naive approach toissuesof cultural disadvantage. Wherethe effects
of context on students' mathematical problem-solving behavior and success have
been studied, it isapparent that the simplistic equation “ culturally familiar/sympa
thetic context = easier” does not work. Indeed, there are indications that familiar
contexts can make problems more difficult for some groups of students (Boaler,
1993, 1994; Cooper, 1998; Cooper & Dunne, 1998).

A moretheoretically informed approach istaken by Cooper and Dunnein their
studies of students' approaches to and performance on assessment tasks (taken
from national testsfor 11— and 14—year-olds) set in “everyday” contexts. In com-
paring the performance of 11-year-old students from working-class and profes-
sional families, they show that working-class children, already achieving at alower
level overall, were even less successful on “realistic” questions (Cooper & Dunne,
1998). Whereas the rules for answering traditional “esoteric” mathematics ques-
tions are clear-cut, in order to answer such contextualized questions successfully,
students have to judge very finely exactly how much everyday “realistic” knowl-
edge to use. The relatively poor performance of working-class children on such
contextualized tasks appears to be related to their use of inappropriate “ everyday”
modes of response when they would need to draw on more formal mathematical
methodsin order to achievetheanswersexpected by thetest setters (Cooper, 1998).
The researchers draw on the work of Bourdieu (1990) and Bernstein (1996) to ex-
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plain differencesin competence on these tasks between studentsfrom different so-
cial groups.

Potential Inequity in Judgments Formed by Assessors

In rejecting so-called objective multiple-choicetestsasinvalid in relation to the
curriculum and inequitablein the opportunitiesthey providefor different groupsto
display competence, the question of how assessors interpret and form judgments
about student responses to assessment tasks becomes crucial. Moreover, teachers
judgments about their students not only may contribute to summative assessments
(including the decisions about access to qualifications discussed earlier) but also
influencetheir day-to-day interactions and the opportunitiesthey providetheir stu-
dentsfor learning. (A more detailed discussion of the sources of inequity inteacher
assessment may be found in Watson and Morgan, 2000.) It has long been estab-
lished that teacher expectations and teacher stereotyping of student characteristics
canleadtodifferential treatment of students, to differencesin student performance,
and to differencesin the waysin which student behavior isinterpreted and evalu-
ated. At the sametime, however, it must be acknowledged that, in most cases, such
inequity does not arise from any deliberate discrimination on the part of the
teacher/assessor. It is, therefore, important to ask how it does arise and whether,
through understanding its nature and sources, it can be challenged.

Studies of teacher assessment in mathematics have suggested that much assess-
ment of students makes use of general constructsof “ability” or “level” (see, for ex-
ample, Gill, 1993; Ruthven, 1987) and that teachers have confidence in the
“implicit and largely unarticulated process’ (Dunne, 1998, p. 153) by which they
reach their judgments about student “ability.” Dunne (1998) points out that these
judgments are likely to beinfluenced by the presence or absence of “ cultural affin-
ity” betweenteacher and students. Studiesof thedetail of teacher/assessor interpre-
tation of texts produced by students (in the form of observable behavior, spoken or
written production; see Morgan, 1996, 1998b; Watson, 1997, 1998) reveal the ex-
tent to which different teachers may attend to different aspects and construct very
different meanings from the same student text.

Theimplicit nature of the assessment processidentified by Dunneinrelation to
general judgments of “ability” also appliesto what might appear to be much more
concrete cases of assessment of particular incidents or examples of student texts.
When studying teachers eval uating student reports of mathematical investigations,
| found that, whereasthe teacherswere able to rank student texts without difficulty
and wereabl eto point to some of those aspectsof thetextsthat they approved or dis-
approved, they were unableto articulate the evaluation criteriathey wereusingina
way specific enough to hel p studentsto produce acceptable texts (Morgan, 1998b).
For exampl e, whereas ateacher might provide general adviceto hisor her students
to make use of diagramsin their reports, when the same teacher was actually read-
ing atext with diagramsinit, only somekindsof diagramswereval ued whileothers
werecondemned as“awaste of time” or apparently taken asasign of alimited level
of mathematical thinking.
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Thechallengefor the student, then, isnot to acquire knowledge and understand-
ing of mathematics but to acquire knowledge of the characteristics of the forms of
behavior that will allow her to be seen to know and understand, together with the
skills necessary to display the appropriate behavior. In Bernstein's terms, the stu-
dent needs to acquire the recognition rules that “ regul ate what meanings are rele-
vant” and the realization rules that “regulate how the meanings are to be put
together to create the legitimate text” (Bernstein, 1996, p. 32). Theideals of “re-
form” mathematicscurricula, unfortunately, increasethischallengefor the student.
By weakening the framing of the pedagogical discourse—valuing creativity rather
than industry, student empowerment rather than rule following—the criteria by
which studentsareto be evaluated becomeincreasingly implicit andinvisible. This
does not mean that assessment criteria are any less determinate, merely that it is
more difficult to determine what they are. Lerman and Tsatsaroni (1998) have ar-
gued that, just astraditional (strongly framed) forms of pedagogical discourse are
inaccessible to working-class students, these same students may be further disad-
vantaged by the discourse of “reform” curriculaand evaluation practices. Theim-
plicit evaluation “rules’ arelikely to be most accessibleto those groups of students
whose cultural and linguistic backgrounds are closest to that of the school.

CONCLUSION

In this chapter, | have called into question the assumptions underlying main-
stream research into assessment in mathematics education, in particular the search
for “validity,” recognizing that assessment is an interpersonal interpretative prac-
tice, not ascientific measurement, and chall enging the assumption that assessment
isfundamentally benign. Assessment takes place and acts at anumber of different
levels: in everyday interactions between individual teachers and students; within
classes, departments, and schools; in national and international systems. In particu-
lar, it functions to discriminate between individuals and groups at all these levels.
This discriminatory function needs to be recognized and examined.

Mainstream mathematics education research has taken as its major aim the
search for “better” assessment instruments. The issuesthat have been discussed in
this chapter suggest that this search needsto beinterrogated from asocia perspec-
tive, asking the questions:

*  Which students are identified as high and low attainers by these instruments?

* What arethecriteriaby which students' responsesareto bejudged and to what ex-
tent are the students both aware of the criteria and in command of the resources
needed to demonstrate that they have met them?

* |Isaccess to this awareness and command of resources differentially distributed
among various socia groups?

* How will use of the assessment instruments differentially affect the future of high
and low attainers (considering issues of immediate curricular opportunities and
access as well as qualifications for longer term education and employment)?
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» What effects may implementation of these instruments have on teachers (consid-
ering issues of teachers’ professionalism, control of the curriculum, and their im-
mediate objectives aswell as effects on the waysin which they interact with their
students)?

Rather than attempting to find “ better” ways of assessing, amajor aim of research
into assessment in mathematics education that takes a social perspective must first
be to understand how assessment works in mathematics classrooms and more
broadly in education systems, and to understand what its consequencesarefor indi-
vidualsand for groupswithin society. Understanding the waysin which assessment
works and the conseguences of assessment for both teachers and students must en-
tail understanding the complex relationships between individual teachers and stu-
dents and the broader structures of the societies within which they act. It is only
with such understanding of assessment asasocial practice that the discriminatory
effects of assessment practices can be recognized and challenged.

NOTES

1.1 believe | am justified in taking the research reported in PME to be representative of
the psychological tradition in mathematics education research. There are, of course, other
places where work in this tradition is published. My purpose here is not, however, to re-
view the field but to characterize it.

2. SMP (School Mathematics Project) involved academics and teachers (initially
largely from independent schools) in developing textbooks. The materials are very widely
used in schools throughout England. SMILE (Secondary Mathematics Individualised
Learning Experiment—Ilater changed to “ Experience”’) was devel oped by groups of teach-
ers, mainly within London, who produced materials that allowed students to work on indi-
vidually designed programs. Teacher involvement in developing materials continues,
though recent years have seen a decline in the number of schools adopting the individual-
ized way of working.

3. Baldino (1998) proposes a solution to the mismatch in the mathematics classroom
between discourse (which claims to value learning) and action (directed toward gaining
credit) that leadsto what he terms* cynical consciousness.” He suggeststhat hard work (al-
ways a hidden criterion for success) should be made an explicit criterion. Indeed, he has
gone so far as to suggest that it should be the only criterion for awarding credit (personal
communication). Although this might be a possible approach for individua teachersin ed-
ucation systems that allow them substantial autonomy in deciding how to assess their stu-
dents, it is not a practical proposition for those teachers who are themselves subject to
surveillance and evaluation.

4. General Certificate of Secondary Education isan examination taken by nearly all stu-
dentsin the United Kingdom at the age of 16+ years.
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Mathematics Reform Through
Conservative Modernization?
Standards, Markets, and
Inequality in Education

Michael W. Apple

THINKING RELATIONALLY

It isunfortunate but true that there is not along tradition within the mainstream of
mathematics education of both critically and rigorously examining the connections
between mathematics as an area of study and the larger relations of unequal eco-
nomic, political, and cultural power. A number of scholarsand activiststhroughout
the world have attempted to build such atradition of critical work in mathematics
education (see, for example, Boaler, 1997; Borba & Skovsmose, 1997; Franken-
stein, 1990; Méellin-Olsen, 1987; Skovsmose, 1994; Valero, 1999). Although | have
written el sawhere about some of thewaysin which recent “reforms’ in mathemat-
ics education may result inincreasing inequalities (see, e.g., Apple, 1995, 1999), |
want to contribute to the development of such critical work by focussing on the
larger context in which mathemati cs education operates. | want to critically exam-
ine the current context of educational “reforms,” a context that is structured by
neoliberal and neoconservative movements. Without an examination of these
movements and the ideological tendenciesthat characterize them, | do not believe
that wewill be able to adequately understand the limits and possibilities of amore
democratic and critical education. In an essay of thislength, | can only outline the
tendencies that are currently structuring the terrain on which we operate. But, |
want to give a picture of the social movements and ideological mobilizations that
unfortunately are gaining even more power in education and the larger society in
general now than has been true in the past. As something of an outsider to mathe-
matics education, | hope that this examination of thislarger picture provides suffi-
cient detail for you to make the connections to specific movements, debates, and
tensions within mathematics education in particular.
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RIGHT TURN

In his influentia history of curriculum debates, Herbert Kliebard has docu-
mented that educational issueshave consistently involved major conflictsand com-
promises among groups with competing visions of “legitimate” knowledge, what
counts as “good” teaching and learning, and what is a “just” society (Kliebard,
1986). Although | believe neither that these competing visions have ever had equal
holds on the imagination of educators or the general citizenry nor that they have
ever had equal power to effect their visions, itisstill clear that no analysisof educa
tion can befully seriouswithout placing at itsvery core asensitivity to the ongoing
struggles that constantly shape the terrain on which the curriculum operates.

Today isnodifferent thaninthe past. A “new” set of compromises, new alliance,
and new power bloc has been formed that hasincreasing influencein education and
all things socia. This power bloc combines multiple fractions of capital who are
committed to neoliberal marketized solutions to educational problems,
neoconservativeintellectualswho want a“return” to higher standardsand a“com-
mon culture,” authoritarian populist religiousfundamentalistswho are deeply wor-
ried about secularity and the preservation of their own traditions, and particular
fractionsof the professionally oriented new middle-classwho are committed to the
ideology and techniques of accountability, measurement, and “ management.” Al-
though thereare clear tensionsand conflictswithinthisalliance, ingeneral itsover-
al ams are in providing the educational conditions believed necessary both for
increasinginternational competitiveness, profit, and disciplineand for returning us
toaromanticized past of the*ideal” home, family, and school (Apple, 1996, 2000).

In essence, the new alliance—what | have el sewhere called “ conservative mod-
ernization” (Apple, 1996)—hasintegrated education into awider set of ideological
commitments. The objectivesin education are the same asthose that guideits eco-
nomic and social welfare goals. They include the dramatic expansion of that elo-
quent fiction, the free market; the drastic reduction of government responsibility
for socia needs; the reinforcement of intensely competitive structures of mobility
both inside and outside the school; the lowering of peopl€e’s expectations for eco-
nomic security; the “disciplining” of culture and the body; and the popularization
of what isclearly aform of social Darwinist thinking, as the popularity only afew
yearsago of TheBell Curve(Herrnstein & Murray, 1994), withitsclaimthat people
of color, poor people, and women are genetically deficient, so obviously and dis-
tressingly indicates.

The seemingly contradictory discourse of competition, markets, and choice on
the one hand and accountability, performance objectives, standards, national test-
ing, and national curriculum have created such adinthat it is hard to hear anything
else. Asl have shown in Cultural Politics and Education (Apple, 1996), these ten-
denciesoddly reinforce each other and help cement conservative educational posi-
tions into our daily lives. Although lamentable, the changes that are occurring
present an exceptional opportunity for critical investigations. Here, | am not speak-
ing of merely the accumulation of studies to promote the academic careers of re-
searchers, although the accumulation of serious studiesisnot unimportant. Rather,
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| am suggesting that in atime of radical social and educational changeitiscrucial to
document the processesand effectsof the variousand sometimescontradictory ele-
ments of the forces of conservative modernization and of the ways in which they
are mediated, compromised with, accepted, used in different ways by different
groupsfor their own purposes, and/or struggled over inthe policiesand practices of
people’ sdaily educational lives (Ranson, 1995, p. 427). | shall want to give asense
of how thismight be happening in current “reforms” such as marketization and na-
tional curriculaand national testing in this essay.

NEW MARKETS, OLD TRADITIONS

Behind agood deal of the New Right’s emerging discursive ensembleisaposi-
tionthat emphasizes*aculturalist construction of the nation asa(threatened) haven
for white (Christian) traditions and values’ (Gillborn, 19973, p. 2). Thisinvolves
the construction of an imagined national past that is at |east partly mythol ogized,
and employedto castigatethe present. Gary M cCulloch arguesthat the nature of the
historical images of schooling has changed. Dominant imagery of education asbe-
ing “safe, domesticated, and progressive” (that is, as leading toward progress and
social/personal improvement) has shifted to become “threatening, estranged, and
regressive’ (McCulloch, 1997, p. 80). The past isno longer used as a source of sta-
bility, but amark of relativefailure, disappointment, and loss. Thisis seen most viv-
idly in the attacks on the “progressive orthodoxy” that supposedly now reigns
supreme in classrooms in many nations.

For example, in England—though much the sameisechoedinthe United States,
Australia, and el sswhere—M ichael Jones, thepolitical editor of The Sunday Times,
recalls the primary school of his day.

Primary school was a happy time for me. About 40 of us sat at fixed wooden desks
with ink wells and moved from them only with grudging permission. Teacher satina
higher desk in front of usand moved only to the blackboard. She smelled of scent and
inspired awve. (Quoted in McCulloch, 1997, p. 78)

The mix of metaphors invoking discipline, scent (visceral and almost “natural”),
and aweisfascinating. But he goeson, lamenting the past 30 yearsof “reform” that
transformed primary schools. Speaking of his own children’s experience, Jones

says:

My children spent their primary yearsin ashowplace school wherethey wereallowed
towander around at will, devel op their real individuality and dodgethe 3Rs. It wasall
for the best, we were assured. But it was not. (Quoted in McCulloch, 1997, p. 78).

For Jones, the “ dogmatic orthodoxy” of progressive education “had led directly to
educational and social decline” Only the rightist reforms instituted in the 1990s
could halt and then reverse this decline (McCulloch, 1997, p. 78). Only then could
the imagined past return.
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Much the same is being said on my own side of the Atlantic. These sentiments
are echoed in the public pronouncements of such figuresasWilliam Bennett, E. D.
Hirsch Jr., and others, al of whom seem to believe that progressivismisnow inthe
dominant position in educational policy and practice and has destroyed a valued
past. All of them believethat only by tightening control over curriculum and teach-
ing (and students, of course), restoring “our” lost traditions, making education
more disciplined and competitive as they are certain it was in the past—only then
can we have effective schools. Thesefigures are joined by otherswho have similar
criticisms, but instead turn to adifferent past for adifferent future. Their pastisless
that of scent and awe and authority, but one of market “freedom.” For them, nothing
can be accomplished—even the restoration of awe and authority—without setting
the market loose on schools so asto ensure that only “good” ones survive.

We should understand that these policiesareradical transformations. If they had
comefrom the other side of the political spectrum, they would have been ridiculed
in many ways, given theideol ogical tendenciesin our nations. Further, not only are
these policies based on a romanticized pastoral past, these reforms have not been
notable for their grounding in research findings. Indeed, when research has been
used, it has often either served asarhetoric of justification for preconceived beliefs
about the supposed efficacy of markets or regimes of tight accountability or they
have been based—asin the case of Chubb and M oe’s much publicized work onthe
benefits of marketization in education (Chubb & Moe, 1990)—on quite flawed re-
search (see, e.g., Whitty, 1997).

Yet, no matter how radical some of these proposed “reforms’ are and no matter
how weak the empirical basis of their support, they have now redefined the terrain
of debate of all things educational. After years of conservative attacks and mobili-
zations, it has become clear that “ideas that were once deemed fanciful, unwork-
able—or just plain extreme” are now increasingly being seen as commonsense
(Gillborn, 1997b, p. 357).

Tactically, the reconstruction of commonsense that has been accomplished has
proven to be extremely effective. For example, there are clear discursive strategies
being employed here, onesthat are characterized by “ plain speaking” and speaking
in alanguage that “everyone can understand.” (I do not wish to be wholly negative
about this. Theimportance of thesethingsissomething many “progressive”’ educa-
torshaveyet to understand.) These strategiesalso involvenot only presenting one’s
own position as “commonsense,” but tacitly implying that there is something of a
conspiracy among one's opponents to deny the truth or to say only that which is
“fashionable” (Gillborn, 1997b, p. 353). As Gillborn notes,

Thisis a powerful technique. Firgt, it assumes that there are no genuine arguments
against the chosen position; any opposing viewsarethereby positioned asfalse, insin-
cere or self-serving. Second, the technique presents the speaker as someone brave or
honest enough to speak the (previously) unspeakable. Hence, the moral high ground
is assumed and opponents are further denigrated. (Gillborn, 1997b, p. 353)
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Itishard to missthese characteristicsin some of the conservative literature such as
Herrnstein and Murray’s(1994) publicizing of the unthinkable“truth” about genet-
ics and intelligence or E. D. Hirsch’s (1996) latest “tough” discussion of the de-
struction of “serious’ schooling by progressive educators.

MARKETSAND PERFORMANCE

L et ustake as an example of thewaysinwhich all this operates one element of
the conservative restoration—the neoliberal claim that the invisible hand of the
market will inexorably |ead to better schools. AsRoger Daleremindsus, “the mar-
ket” actsasametaphor rather than an explicit guidefor action. It isnot denotative,
but connotative. Thus, it must itself be “marketed” to thosewho will existinit and
livewith its effects (Roger Dale, quoted in Menter, Muschamp, Nicholls, Ozga, &
Pollard, 1997, p. 27). Markets are marketed, are made legitimate, by a
depoliticizing strategy. They are said to be natural and neutral, and governed by ef-
fort and merit. And those opposed to them are by definition, hence, al so opposed to
effort and merit. Markets, aswell, are supposedly less subject to political interfer-
ence and the weight of bureaucratic procedures. Plus, they are grounded in the ra-
tional choicesof individual actors(Menter et al., 1997, p.27). Thus, marketsand the
guarantee of rewards for effort and merit are to be coupled together to produce
“neutral,” yet positive, results. M echanisms, hence, must be put into placethat give
evidence of entrepreneurial efficiency and effectiveness. This coupling of markets
and mechanismsfor the generation of evidence of performanceis exactly what has
occurred. Whether it works is open to question.

Inwhat is perhaps the most comprehensive critical review of all of the evidence
on marketization, Geoff Whitty cautionsusnot to mistakerhetoric for reality. After
examining research from anumber of countries, Whitty argues that whereas advo-
cates of marketized “choice” plans assume that competition will enhance the effi-
ciency and responsiveness of schools, as well as give disadvantaged children
opportunities that they currently do not have, this may be a false hope (Whitty,
1997, p. 58). These hopesare not now being realized and are unlikely to berealized
inthefuture“in the context of broader policiesthat do nothing to challenge deeper
social and cultural inequalities’ (Whitty, 1997, p. 58). Ashegoesonto say, “Atom-
ized decision-making in a highly stratified society may appear to give everyone
equal opportunities, but transforming responsibility for decision-making from the
publicto the private sphere can actually reduce the scope of collective actiontoim-
prove the quality of education for al” (p. 58). When this is connected to the fact
that, as| shall show shortly, in practice neoliberal policiesinvolving market “solu-
tions” may actually serve to reproduce—not subvert—traditional hierarchies of
class and race, this should give us reason to pause (Apple, 1996; Whitty, 1997;
Whitty, Edwards, & Gewirtz, 1993; Whitty, Power, & Halpin, 1998).

Thus, rather than taking neoliberal claims at face value, we should want to ask
about their hidden effectsthat are too often invisiblein the rhetoric and metaphors
of their proponents. Given the limitations of what one can say in an essay of this
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length, | shall select afew issuesthat have been given less attention than they de-
serve, but on which there is now significant research.

The English experienceisuseful here, especially as Chubb and Moe (1990) rely
so heavily onit. In England, the 1993 Education Act documentsthe state’scommit-
ment to marketization. Governing bodies of local educational authority (LEA)
schoolswere mandated to formally consider going “grant maintained” (GM) each
year (that is, opting out of the local school system’s control, being funded directly
by the state, and entering into the competitive market) (Power, Halpin, & Fitz,
1994, p. 27). Thus, theweight of the state stands behind the presstoward neoliberal
reformsthere. Yet, rather than leading to curriculum responsiveness and diversifi-
cation, the competitive market has not created much that isdifferent from the tradi-
tional modelsso firmly entrenched in school stoday (Power et al., 1994, p. 39). Nor
has it radically altered the relations of inequality that characterize schooling.

In their own extensive analyses of the effects of marketized reforms “on the
ground,” Ball and his colleagues point to some of the reasons why we need to be
quite cautious here. As they document, in these situations educational principles
and values are often compromised such that commercial issues become moreim-
portant in curriculum design and resourceallocation (Ball, Bowe, & Gewirtz, 1994,
p. 19). For instance, the coupling of marketswith the demand for and publication of
performance indicators such as“ examination league tables’ in England has meant
that schools are increasingly looking for ways to attract “motivated” parents with
“able” children. Inthisway, schoolsare ableto enhancetheir relative positioninlo-
cal systems of competition. This represents a subtle, but crucial shift in empha-
sis—onethat isnot openly discussed as often asit should be—from student needs
to student performance and from what the school does for the student to what the
student doesfor the school. Thisisalso accompanied too uncomfortably often by a
shift of resources away from students who are labeled as having special needs or
learning difficulties, with some of these needed resourcesnow being shifted to mar-
keting and public relations. “Special needs’ students are expensive (although
schools are given additional resources for those students who are formally classi-
fied), and they deflate test scores on those all important |eague tables.?

Not only does this make it difficult to “manage public impressions,” but it also
makesit difficult to attract the“best” and most academically talented teachers (Ball
etal, 1994, pp. 17-19). The entire enterprise does, however, establish anew metric
and anew set of goals based on a constant striving to win the market game. What
thismeansisof considerableimport, not only intermsof its effectson daily school
lifebutinthewaysit signifiesatransformation of what countsasagood society and
aresponsible citizen. Let me say something about this generally.

Drawing on Kliebard'ssignificant historical work, | noted earlier that behind all
educational proposals are visions of a just society and a good student. The
neoliberal reforms | have been discussing construct thisin a particular way. Al-
though the defining characteristic of neoliberalism islargely based on the central
tenets of classical liberalism, in particular classic economic liberalism, there are
crucia differences between classical liberalism and neoliberalism. These differ-
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ences are absolutely essential in understanding the politics of education and the
transformations education is currently undergoing. Mark Olssen clearly details
these differences in the following passage. It is worth quoting in its entirety.

Wheresas classical liberalism represents a negative conception of state power in that
the individual was to be taken as an object to be freed from the interventions of the
state, neo-liberalism has come to represent a positive conception of the state’srolein
creating the appropriate market by providing the conditions, laws and institutions
necessary for its operation. In classical liberalism, the individual is characterized as
having an autonomous human nature and can practice freedom. In neo-liberalismthe
state seeks to create an individual who is an enterprising and competitive entrepre-
neur. In the classical model the theoretical aim of the state wasto limit and minimize
itsrolebased on postulateswhich included universal egoism (the self-interested indi-
vidual); invisible hand theory which dictated that the interests of theindividual were
also theinterests of the society asawhole; and the political maxim of laissez-faire. In
the shift from classical liberalism to neo-liberalism, then, there is a further element
added, for such a shift involves a change in subject position from “homo
economicus,” who naturally behaves out of self-interest and is relatively detached
fromthestate, to“ manipulatableman,” whoiscreated by the state and whoiscontinu-
aly encouraged to be “perpetually responsive” It is not that the conception of the
self-interested subject is replaced or done away with by the new ideals of
“neo-liberalism,” but that in an age of universal welfare, the perceived possibilities of
slothful indolence create necessities for new forms of vigilance, surveillance, “per-
formance appraisal” and of forms of control generaly. In this model the state has
taken it upon itself to keep usall up to the mark. The state will seeto it that each one
makesa“ continual enterprise of ourselves’ . . . inwhat seemsto be aprocess of “gov-
erning without governing.” (Olssen, 1996, p. 340)

Theresultsof Ball and colleagues’ research (Gewirtz, Ball, & Bowe, 1995) doc-
ument how the state does indeed do this, enhancing that odd combination of
marketi zed individualism and control through constant and comparative public as-
sessment. Widely publicized |eaguetables determine one’srel ative valuein the ed-
ucational marketplace. Only those schools with good results, irrespective of
attainment upon entry, are worthy. And only those students who can “ make a con-
tinual enterprise of themselves’ can keep such schoolsgoing inthe“correct” direc-
tion. Yet, although these issues are important, they fail to fully illuminate some of
the other mechani smsthrough which differential effectsare produced by neoliberal
reforms. Here, class issues come to the fore in ways that Ball and his colleagues
(1994) make clear.

Middle-class parents are clearly the most advantaged in thiskind of cultural as-
semblage, and not only aswe saw because the principals of schools seek them out.
Middle-class parents have become quite skilled, in general, in exploiting market
mechanismsin education and in bringing their social, economic, and cultural capi-
tal to bear uponthem. “Middle classparentsare morelikely to have the knowledge,
skillsand contactsto decode and manipul atewhat areincreasingly complex and de-
regulated systems of choiceand recruitment. The more deregul ation, the more pos-
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sibility of informal procedures being employed. The middle class aso, on the
whole, aremore ableto movetheir children around thesystem” (Ball et al., 1994, p.
19). That class and race intersect and interact in complex ways means that—even
though we need to be clear that marketized systems in education often expressly
havetheir consciousand unconsciousraisond’ etrein afear of “theother” and often
express a racialization of educational policy—the differentia results will “natu-
rally” be decidedly raced as well as classed.3

Economic and social capital can be converted into cultural capital in various
ways. In marketized plans, more affluent parents often have more flexible hours
and can visit multiple schools. They have cars—often more than one—and can af-
ford to drive their children across town to attend a “ better” school. They can also
fund the hidden cultural resources such as camps and after-school programs
(dance, music, computer classes, etc.) that give their children an “ease,” a“style,”
that seems“natural” and actsasaset of cultural resources. Their previous stock of
social capital—who they know, their “comfort” in social encounters with educa
tional officials—isan unseen but powerful storehouse of resources. Thus, more af-
fluent parents are more likely to have the informal knowledge and skill—what
Bourdieu would call the habitus (Bourdieu, 1984)—to be able to decode and use
marketized forms to their own benefit. This sense of what might be called “ confi-
dence”—whichisitself theresult of past choicesthat tacitly but no less powerfully
depend on the economic resources to have had the ability to make economic
choices—is the unseen capital that underpinstheir ability to negotiate marketized
forms and “work the system” through sets of informal cultural rules (Ball et a.,
1994, pp. 20-22).

Of course, it needsto be said that working-class, poor, or immigrant parents are
not skill-lessinthisregard, by any means. (After all, it requiresan immense amount
of skill, courage, and socia and cultural resourcesto survive under exploitativeand
depressing material conditions. Thus, collective bonds, informal networks and
contacts, and an ability to work the system are developed in quite nuanced, intelli-
gent, and oftenimpressivewayshere.) However, thematch betweenthe historically
grounded habitus expected in schools and in its actors and those of more affluent
parents, combined with the material resources available to more affluent parents,
usually leadsto asuccessful conversion of economic and social capital into cultural
capital (see Bourdieu, 1996). And thisisexactly what ishappening in England, the
United States, and elsewhere (see, e.g., Gewirtz et a., 1995; Lauder & Hughes,
1999).

These empirical findings can be placed in their larger context by employing Pi-
erre Bourdieu's analysis of the relative weight given to cultural capital as part of
mobility strategiestoday (Bourdieu, 1996). Theriseinimportance of cultural capi-
tal infiltrates all ingtitutions in such away that there is a relative movement away
from the direct reproduction of class privilege (where power istransmitted largely
within families through economic property) to school-mediated forms of class
privilege. Here, “the bequeathal of privilege is simultaneously effectuated and
transfigured by the intercession of educational institutions’ (Wacquant, 1996, p.
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xiii). Thisisnot aconspiracy; itisnot “ conscious’ inthewayswenormally usethat
concept. Rather itistheresult of along chain of relatively autonomous connections
between differentially accumulated economic, social, and cultural capital operat-
ing at thelevel of daily eventsaswe make our respectivewaysin theworld, includ-
ing as we saw in the world of school choice.

Thus, while not taking an unyieldingly determinist position, Bourdieu argues
that a class habitus tends to reproduce the conditions of its own reproduction * un-
conscioudly.” It does this by producing a relatively coherent and systematically
characteristic set of seemingly natural and unconscious strategies—in essence,
ways of understanding and acting on the world that act asforms of cultural capital
that can be and are employed to protect and enhance one'sstatusin asocial field of
power. He aptly comparesthissimilarity of habitus across class actorsto handwrit-

ing.

Just astheacquired dispositionwecall “handwriting,” that isaparticular way of form-
ing|etters, awaysproducesthe same“writing” —that is, graphiclinesthat despitedif-
ferences in size, matter, and color related to writing surface (sheet of paper or
blackboard) and implement (pencil, pen, or chalk), that isdespite differencesin vehi-
clesfor the action, have an immediately recognizable affinity of style or afamily re-
semblance—the practices of a single agent, or, more broadly, the practices of all
agentsendowed with similar habitus, owethe affinity of stylethat makeseach ameta-
phor for the othersto the fact that they are the products of the implementation in dif-
ferent fields of the same schemata of perception, thought, and action. (Bourdieu,
1996, p. 273)

Thisvery connection of habitus acrossfields of power—the ease of bringing one's
economic, socia, and cultural resourcesto bear on “markets’—enables a comfort
between markets and self that characterizes the middle-class actor here. This con-
stantly produces differential effects. These effects are not neutral, no matter what
the advocates of neoliberalism suggest. Rather, they are themselvesthe resultsof a
particular kind of morality. Unlike the conditions of what might best be called
“thick morality” where principles of the common good are the ethical basisfor ad-
judicating policies and practices, markets are grounded in aggregative principles.
They are constituted out of the sum of individual goods and choices. “ Founded on
individual and property rights that enable citizens to address problems of interde-
pendenceviaexchange,” they offer aprime example of “thin morality” by generat-
ing both hierarchy and division based on competitive individualism (Ball et a.,
1994, p. 24). And in this competition, the general outline of thewinnersand losers
has been identified empirically.

NATIONAL CURRICULUM AND NATIONAL TESTING

| showed in the previous section that there are connections between at least two
dynamics operating in neoliberal reforms, “free” markets and increased surveil-
lance. Thiscan be seeninthefact that in many contexts, marketization has been ac-
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companied by a set of particular policies for “producers,” for those professionals
working within education. These policies have been strongly regulatory. Asinthe
case of thelinkage between national tests and performance indicators published as
leaguetables, they have been organized around aconcern for external supervision,
regulation, and external judgement of performance (Menter et a., 1997, p. 8). This
concern for external supervision and regulationisnot only connected with astrong
mistrust of “producers’ (e.g., teachers) and to the need for ensuring that people
continually make enterprises out of themselves. It isalso clearly linked both to the
neoconservative sense of aneed to “return” to alost past of high standards, disci-
pline, awe, and“real” knowledgeand to the professional middleclass sown ability
to carve out a sphere of authority within the state for its own commitment to man-
agement techniques and efficiency.

There has been a shift in the rel ationship between the state and “ professional s”
In essence, the movetoward asmall strong statethat isincreasingly guided by mar-
ket needs seems inevitably to bring with it reduced professional power and status
(Menter et al., 1997, p. 57). Managerialism takes center stage here.

Managerialismislargely charged with “ bringing about the cultural transforma-
tion that shifts professional identitiesin order to make them moreresponsiveto cli-
ent demand and external judgement” (Menter et a., 1997, p. 9). It aimsto justify
and to have people internalize fundamental alterationsin professional practices. It
both harnesses energy and discourages dissent (Menter et al., 1997, p. 9).

Thereisno necessary contradiction between ageneral set of marketizing and de-
regulating interests and processes, such as voucher and choice plans, and a set of
enhanced regulatory processes, such as plans for national curricula and national
testing. “ Theregulatory form permitsthe state to maintain ‘ steerage’ over theaims
and processes of education from within the market mechanism” (Menter et al.,
1997, p. 24). Such steerage has often been vested in such things as national stan-
dards, national curricula, and national testing. Forms of all of these are being
pushed for inthe United States currently and arethe subject of considerable contro-
versy, some of which cuts acrossideological lines and shows some of thetensions
within the different elements contained under the umbrella of the conservative res-
toration.

| have argued el sewherethat national curriculum and especially national testing
programs are paradoxically the first and most essential steps toward increased
marketization. They actually provide the mechanisms for comparative data that
“consumers’ need to make marketswork as markets (Apple, 1996). Without these
mechanisms, there is no comparative base of information for “choice.” Yet, we do
not have to argue about these regulatory forms in a vacuum. Like the neoliberal
markets | discussed in the previous section, they too have been instituted in Eng-
land; and, once again, thereisimportant research available that can and must make
us duly cautious in going down this path.

One might want to claim that aset of national standards, national curricula, and
national testswould providethe conditionsfor “thick morality.” After all, suchreg-
ulatory reforms are supposedly based on shared values and common sentiments
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that also create social spaces in which common issues of concern can be debated
and made subject to moral interrogation (Ball et al., 1994, p. 23). Y et, what counts
asthe “common,” and how and by whom it is actually determined, is rather more
thin than thick.

Itisthe casethat whereasthenational curriculum now so solidly inplacein Eng-
land and Wales is clearly prescriptive, it has not always proven to be the kind of
straitjacket it has often been made out to be. Asanumber of researchershave docu-
mented, itisnot only possiblethat policiesand legidlative mandates areinterpreted
and adapted, but it seemsinevitable. Thus, the national curriculumis*not so much
being ‘implemented’ in schools as being ‘recreated,’ not so much ‘reproduced, as
‘produced’” (Power et al., 1994, p. 38).

Ingenerd, it isnearly atruism that thereisno simplistic linear model of policy
formation, distribution, and implementation. There area wayscomplex mediations
at each level of the process. There is a complex politics that goes on within each
group and between these groups and external forcesinthe formulation of policy, in
itsbeing written up as alegislative mandate, in itsdistribution, and in itsreception
at thelevel of practice (Ranson, 1995, p. 436). Thus, the state may | egislate changes
in curriculum, evaluation, or policy (which is itself produced through conflict,
compromise, and political maneuvering), but policy writersand curriculumwriters
may be unableto control the meaningsand implementationsof their texts. All texts
are"“leaky” documents. They are subject to “recontextualization” at every stage of
the process (Ranson, 1995, p. 436).

However, this genera principle may bejust abit too romantic. None of this oc-
cursonalevel playingfield. Aswith market plans, therearevery rea differencesin
power in one's ability to influence, mediate, transform, or reject apolicy or aregu-
latory process. Granted, it is important to recognize that a “state control
model”—with its assumption of top-down linearity—is much too simplistic and
that the possibility of human agency and influenceis always there. However, hav-
ing said this, this should not imply that such agency and influence will be powerful
(Ranson, 1995, p. 437).

Thecaseof national curriculum and national testing in England and Walesdocu-
ments the tensions in these two accounts. It was the case that the national curricu-
lum that was first legislated and then imposed there was indeed struggled over. It
wasoriginally too detailed and too specific, and, hence, was subject to major trans-
formations at the national, community, school, and then classroom levels. How-
ever, even though the national curriculum was subject to conflict, mediation, and
some transformation of its content, organization, and its invasive and immensely
time-consuming forms of evaluation, its utter power is demonstrated initsradical
reconfiguration of the very process of knowledge selection, organization, and as-
sessment. It changed the entire terrain of education radically. Its subject divisions
“provide more constraint than scope for discretion.” The accompanying national
curriculum tests that have been mandated cement these constraintsinto theinstitu-
tion. “The imposition of national testing locks the national curriculum in place as
the dominant framework of teachers' work whatever opportunities teachers may
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taketo evade or reshapeit” (Richard Hatcher and Barry Troynaquoted in Ranson,
1995, p. 438).

Thus, it is not sufficient to state that the world of education is complex and has
multiple influences. The purpose of any serious analysis is to go beyond such
overly broad conclusions. Rather, we need to “ discriminate degrees of influencein
theworld,” toweigh therelative efficacy of thefactorsinvolved. Hence, althoughiit
isclear that while the national curriculum and national teststhat now exist in Eng-
land and Wal es have come about because of acomplex interplay of forcesandinflu-
ences, itisequally clear that “ state control has the upper hand” (Ranson, 1995, p.
438).

Thenationa curriculaand national testsdid generate conflict about issues. They
did partly lead to the creation of social spacesfor moral questionsto be asked. (Of
course, these moral questions had been asked all along by dispossessed groups.)
Thus, it was clear to many peoplethat the creation of mandatory and reductive tests
that emphasized memory and decontextualized abstraction pulled the national cur-
riculumin aparticular direction—that of encouraging a selective educational mar-
ket inwhich elite studentsand elite school swith awide range of resourceswould be
well (if narrowly) served (O'Hear, 1994, p. 66). Diverse groups of people argued
that such reductive, detailed, and simplistic paper and pencil tests* had the potential
to do enormous damage,” a situation that was made even worse because the tests
were so onerous in terms of time and record keeping (O’ Hear, 1994, pp. 55-56).
Teachershad agood deal of support when asagroup they decided to boycott the ad-
ministration of thetest in aremarkable act of public protest. Thisalsoled to serious
guestioning of thearbitrary, inflexible, and overly prescriptive national curriculum.
Although the curriculum is still inherently problematic and the assessment system
still contains numerous dangerous and onerous elements, organized activity
against them did have an impact (O’ Hear, 1994, pp. 56-57).

Yet, unfortunately, the story does not end there. By the mid-1990s, even with the
government’s partial retreat on such regulatory forms as its program of constant
and reductivetesting, it had becomeclearer by theyear that the devel opment of test-
ing and the specification of content had been “hijacked” by those who were ideo-
logically committed to traditional pedagogies and to the idea of more rigorous
selection (O’ Hear, 1994, p. 68). Theresidual effectsare both material and ideol ogi-
cal. They include a continuing emphasis on trying to provide the “rigor [that is]
missing in the practice of most teachers. . . judging progress solely by what istest-
able in tests of this kind” and the development of a“very hostile view of the ac-
countability of teachers’ that was seen as “part of awider thrust of policy to take
away professional control of public services and establish so called consumer con-
trol through a market structure” (O'Hear, 1994, pp. 65-66).

Theauthors of an extremely thorough review of recent assessment programsin-
stituted in England and Wal es provide asummary of what has happened. Gippsand
Murphy arguethat it has becomeincreasingly obviousthat the national assessment
program attached to the national curriculum is more and more dominated by tradi-
tional model sof testing and the assumpti onsabout teaching andlearning that lie be-
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hind them. At the sametime, equity issues are becoming much lessvisible (Gipps
& Murphy, 1994, p. 209). In the calculus of values now in place in the regulatory
state, efficiency, speed, and cost control replace more substantive concerns about
social and educational justice. The pressure to get testsin place rapidly has meant
that “the speed of test devel opment is so great, and the curriculum and assessment
changesso regular, that [thereig] littletimeto carry out detailed analysesand trial -
ing to ensure that the testsare as fair as possible to all groups’ (Gipps & Murphy,
1994, p. 209). The conditionsfor “thin morality” —in which the competitive indi-
vidual of the market dominates and socia justice will somehow take care of it-
self—are reproduced here. The combination of the neoliberal market and the
regulatory state, then, doesindeed “work.” However, it worksin waysinwhichthe
metaphors of free market, merit, and effort hide the differential reality that is pro-
duced.

Basil Bernstein’s discussion of the general principles by which knowledge and
policies (“texts’) move from one arena to another is useful in understanding this.
As Bernstein reminds us (and as Lerman discusses in this volume), when talking
about educational change there are three fields with which we must be concerned.
Each field has its own rules of access, regulation, privilege, and special interests:
(1) thefield of “production” where new knowledge is constructed; (2) the field of
“reproduction” where pedagogy and curriculum are actually enacted in schools;
and, between these other two, (3) the “recontextualizing” field where discourses
from the field of production are appropriated and then transformed into pedagogi-
cal discourse and recommendations (Bernstein, 1990, 1996). This appropriation
and recontextualization of knowledge for educational purposesisitself governed
by two sets of principles. Thefirst—de-location—impliesthat thereisalwaysase-
lective appropriation of knowledge and discoursefrom thefield of production. The
second—re-location—points to the fact that when knowledge and discourse from
the field of production is pulled within the recontextualizing field, it is subject to
ideological transformations as aresult of the various specialized or political inter-
estswhose conflictsstructuretherecontextualizing field (Evans& Penney, 1995).

A good example of this, one that confirms Gipps and Murphy’s analysis of the
dynamics of national curriculaand national testing during their more recent itera-
tions, isfoundinthe processby which the content and organi zation of the mandated
national curriculum in physica education was struggled over and ultimately
formed in England. Inthisinstance, aworking group of academics both within and
outside thefield of physical education, headmasters of private and state-supported
schools, well known athletes, and business leaders (but no teachers) was formed.

The origina curriculum policies that arose from the groups were relatively
mixed educationally and ideol ogically, taking account of thefield of production of
knowledgewithin physical education. That is, they contained both progressiveele-
ments and elements of the conservative restoration, as well as academic perspec-
tiveswithin the specialized fieldsfrom the university. However, asthese madetheir
way from report to recommendations and then from recommendations to action,
they steadily came closer to restorational principles. An emphasison efficiency, ba
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sic skills, and performance testing; on the social control of the body; and on com-
petitive norms ultimately won out. Like the middle class capturing of the market
discussed earlier, thistoo wasnot aconspiracy. Rather, it wastheresult of aprocess
of “overdetermination.” That is, it was not owing to an imposition of these norms,
but to a combination of interestsin the recontextualizing fiel d—an economic con-
text in which public spending was under severe scrutiny and cost savings had to be
sought everywhere; government officialswho were opposed to “frills” and consis-
tently intervenedtoinstitute only asel ection of therecommendations (conservative
onesthat did not come from “ professional academics’ preferably); ideological at-
tackson critical, progressive, or child-centered approachesto physical education;
and a predominant discourse of “being pragmatic.” These came together in the
recontextualizing field and helped ensure in practice that conservative principles
would bereinscribed in policies and mandates, and that critical formswere seen as
too ideological, too costly, or too impractical (Evans & Penney, 1995, pp. 41-42).
“Standards” were upheld; critical voices were heard, but ultimately to little effect;
the norms of competitive performance were made central and employed asregula-
tory devices. Regulatory devices served to privilege specific groups in much the
same way as did markets. Thus goes democracy in education.

CONCLUSION

Inthisrelatively brief essay, | have been rather ambitious. | have raised serious
guestions about current educational “reform” effortsnow underway in anumber of
nations, in large part because | believe that reformsin mathematics education must
not be seen asisolated from larger educational, social, and i deol ogi cal movements,
reforms, and conflicts. | have used research on the English experience(s) to docu-
ment some of the hidden differential effects of two connected strate-
gies—neoliberal-inspired market proposalsand neoliberal-, neoconservative-, and
middle-class managerial—inspired regulatory proposals. Taking a key from Her-
bert Kliebard's powerful historical analyses, | have described how different inter-
ests with different educational and social visions compete for dominion in the
social field of power surrounding educational policy and practice. In the process, |
have documented some of the complexities and imbalancesin thisfield of power.
Thesecomplexitiesandimbalancesresultin“thin” rather than“ thick” morality and
in the reproduction of both dominant pedagogical and curricular formsand ideolo-
gies and the social privileges that accompany them.

Having said this, however, | want to point to a hidden paradox in what | have
done. Even though much of my own and others' research recently has been on the
conservative restoration, there are dangers in such afocus of which we should be
aware. Research on the history, politics, and practices of rightist social and educa-
tional movementsand “reforms’ hasenabled usto show the contradictionsand un-
equal effects of such policies and practices. It has enabled the rearticulation of
claimsto social justice on the basis of solid evidence. Thisisall to the good. How-
ever, inthe process, one of thelatent effects has been the gradual framing of educa-
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tional issues largely in terms of the conservative agenda. The very categories
themselves—markets, choice, national curricula, national testing, stan-
dards—bring the debate onto the terrain established by neoliberals and
neoconservatives. Theanalysisof “what is’ hasled to aneglect of “what might be.”
Thus, there has been awithering of substantive, large-scale discussions of feasible
alternativesto neoliberal and neoconservative visions, policies, and practices, es-
pecialy alternatives that would move well beyond such conservative positions
(Seddon, 1997, pp. 165-166).

Because of this, at least part of our task may be politically and conceptually
complex, but it can be said simply. Inthelong term, we need to “ develop apolitical
project that isboth local yet generalizable, systematic without making Eurocentric,
masculinist claims to essential and universal truths about human subjects’ (Luke,
1995, pp. vi-vii). Another part of our task, though, must be and is more proximate,
more appropriately educational. Defensible, articulate, and fully fleshed out alter-
native progressive policies and practices in curriculum, teaching, and evaluation
need to be developed and made widely available.

Although, in Democratic Schools, James Beane and | have brought together a
number of such examplesfor alarger educational audience (Apple & Beane, 1995,
1999), so much more needsto done. Of course, we are not starting anew in any of
this. The history of democratically and critically oriented educationa reformsin
mathematics education and elsewherein al of our nationsisfilled with examples,
with resources of hope. Sometimes we can go forward by looking back, by recap-
turing what the criticisms of past iterations of current rhetorical “reforms’ have
been, and by rediscovering a valued set of traditions of educational criticism and
educational action that have alwaystried to keep the vast river of democracy flow-
ing. Wewill not find all of the answersby looking at our past, but we will reconnect
with and stand on the shoulders of educators whose lives were spent in struggle
against some of the very same ideological forces we face today.

Although crucial, it isthen not enough, as | have done in this essay, to decons-
truct the policies of conservative modernization in education. Neoliberals and
neoconservatives have shown how important changes in commonsense are in the
strugglefor education. Itisour task to coll ectively helprebuildit by reestablishinga
sense that “thick” morality, and a “thick” democracy, are truly possible today.
Thereispolitical and practical work that needs to be done. If we do not do it, who
will?

NOTES

1. Whether there have been changesin this given the victory by “New Labour” over the
Conservatives anumber of years ago remains to be seen, although the outlook is not neces-
sarily good in many ways. Certain aspects of neoliberal and neoconservative policies have
been accepted by Labour, such as the acceptance of stringent cost controls put in place by
the previous Conservative government and an aggressive focus on “raising standards’ in
association with strict performanceindicators. See, for example, Jones (1999) and Gillborn
and Y oudell (2000).
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2. Thisisacomplex situation. Many schools engage in a process of cost-benefit analy-
sis, because extra money does come from the state for such students. Further, because of
the increased emphasis in individual schools on getting their students to have more
“passes’ on national tests, more attention is paid to those students on the borderline be-
tween passing and failing. Less attention is given to those students who are predicted to
fail. These latter students tend to be poor or students of color, or both. See Gillborn and
Y oudell (2000).

3. See the discussion of theracial state in Omi and Winant (1994) and the analyses of
race and representation in McCarthy and Crichlow (1994).

REFERENCES

Apple, M. W. (1995). Taking power seriously. In W. Secada, E. Fennema, & L. B. Adajian
(Eds.), New directions for equity in mathematics education. New Y ork: Cam-
bridge University Press.

Apple, M. W. (1996). Cultural politicsand education. New Y ork: Teachers College Press.

Apple, M. W. (1999). Power, meaning, and identity. New Y ork: Peter Lang.

Apple, M. W. (2000). Official knowledge (2nd ed.). New Y ork: Routledge

Apple, M. W., & Beane, J. A. (1995). Democratic schools. Washington, DC: Association
for Supervision and Curriculum Development.

Apple, M. W., & Beane, J. A. (1999). Democratic schools: Lessons from the chalk face.
Buckingham, UK: Open University Press.

Bal, S., Bowe, R., & Gewirtz, S. (1994). Market forces and parental choice. In S.
Tomlinson (Ed.), Educational reform and its consequences (pp. 13-25). Lon-
don: IPPR/Rivers Oram Press.

Bernstein, B. (1990). The structuring of pedagogic discourse. New Y ork: Routledge.

Bernstein, B. (1996). Pedagogy, symbolic control, and identity. Bristol, PA: Taylor and
Francis.

Boaler, J. (1997). Experiencing school mathematics. Philadel phia: Open University Press.

Borba, M., & Skovsmose, O. (1997). The ideology of certainty in mathematics education.
For the Learning of Mathematics, 17(3), 17-23.

Bourdieu, P. (1994). Distinction. Cambridge, MA: Harvard University Press.

Bourdieu, P. (1996). The state nobility. Stanford, CA: Stanford University Press.

Chubb, J., & Moe, T. (1990). Palitics, markets, and America’s schools. Washington, DC:
Brookings Institution.

Evans, J., & Penney, D. (1995). The palitics of pedagogy. Journal of Education Palicy, 10,
2744,

Frankenstein, M. (1990). Incorporating race, gender, and classissuesinto a critical mathe-
matical literacy curriculum. Journal of Negro Education, 59(3), 336-347.

Gewirtz, S, Bdl, S, & Bowe, R. (1995). Markets, choice and equity in education.
Buckingham, UK: Open University Press.

Gillborn, D. (19974). Race, nation, and education. Unpublished paper, Institute of Educa-
tion, University of London.

Gillborn, D. (1997b). Racism and reform. British Educational Research Journal, 23,
345-360

Gillborn, D., & Youdell, D. (2000). Rationing education. Philadelphia: Open University
Press.

Gipps, C., & Murphy, P. (1994). A fair test? Philadelphia: Open University Press.



Standards, Markets, and Inequality in Education 259

Herrnstein, R., & Murray, C. (1994). The bell curve. New Y ork: Free Press.

Hirsch, E. D. Jr. (1996). The schools we want and why we don’'t have them. New Y ork:
Doubleday.

Jones, K. (1999). In the shadow of the centre-left: Post-conservative politics and rethinking
educational change. Discourse, 20, 235-247.

Kliebard, H. (1986). The struggle for the American curriculum. New Y ork: Routledge.

Lauder, H., & Hughes, D. (1999). Trading in places. Buckingham, UK: Open University
Press.

Luke, A. (1995). Series editor’sintroduction. In J. L. Lemke, Textual palitics (pp. iv—x).
Bristol, PA: Taylor and Francis.

McCarthy, C., & Crichlow, W. (1994). Race, identity, and representation in education.
New Y ork: Routledge.

McCulloch, G. (1997). Privatizing the past? British Journal of Educational Sudies, 45,
69-82.

Mellin-Olsen, S. (1987). The politics of mathematics education (Vol. 4). Dordrecht, Hol-
land: Kluwer.

Menter, I., Muschamp, P., Nicholls, P., Ozga, J., & Pollard, A. (1997). Work and identity in
the primary school. Philadelphia: Open University Press.

O'Hear, P. (1994). An alternative national curriculum. In S. Tomlinson (Ed.), Educational
reform and its consequences (pp. 52—72). London: |PPR/Rivers Oram Press.

Olssen, M. (1996). In defence of the welfare state and publicly provided education. Jour-
nal of Education Policy, 11, 337-362.

Omi, M., & Winant, H. (1994). Racial formation in the United States. New York:
Routledge.

Power, S., Halpin, D., & Fitz, J. (1994). Underpinning choice and diversity? In S.
Tomlinson (Ed.), Educational reform and its consequences (pp. 26-40). Lon-
don: IPPR/Rivers Oram Press.

Ranson, S. (1995). Theorizing educational policy. Journal of Education Policy, 10,
427-448.

Seddon, T. (1997). Markets and the English. British Journal of Sociology of Education, 18,
165-185.

Skovsmose, O. (1994). Towards a philosophy of critical mathematics education.
Dordrecht, Holland: Kluwer.

Valero, P. (1999). Deliberative mathematics education for social democratizationin Latin
America Zentralblatt fur Didaktik der Mathematik, 98(6), 20—26.

Wacquant, L. (1996). Foreword. In P. Bourdieu, The state nobility (pp. ix—xxii). Stanford,
CA: Stanford University Press.

Whitty, G. (1997). Creating quasi-markets in education. In M. W. Apple (Ed.), Review of
research in education (Vol. 22) pp. 3-47). Washington, DC: American Educa-
tional Research Association.

Whitty, G., Edwards, T., & Gewirtz, S. (1993). Specialization and choice in urban educa-
tion. New York: Routledge.

Whitty, G., Power, S, & Halpin, D. (1998). Devolution and choice in education.
Buckingham, UK: Open University Press.



This Page Intentionally Left Blank



Author Index

Aczel, A. D., 193-194

Agre, PE., 28

Alvarez, A., 51

Anderson, J. R., 3, 4, 25, 234

Anderson, S. E., 171

Angier, C., 181, 182

Apple, Michael, 13, 14-15, 30, 36, 243,
244, 247, 252, 257

Armstrong, B., 22

Ashenden, Dean, 148

Axdl, E., 65

Ball, Deborah L., 8-9, 45, 75, 84, 89-90,
94, 97, 98-99, 100

Ball, Stephen J., 7, 9, 30, 181, 189, 248,
249, 250, 251, 253

Banks, J. A., 196

Barham, J., 206

Barnes, Mary, 9-11

Barron, B., 10

Barron, L., 111

Bass, Hyman, 8-9, 84, 89, 94, 97, 98-99,
181

Bateson, G., 66

Battista, M., 105

Bauersfeld, H., 65, 73, 146, 212

Beach, K., 66

Beane, James, 257

Becker, H. S., 109, 133

Becker, J., 188

Becker, J. R., 187, 189, 196

Beihler, R., 50

Belencky, M. F, 174, 185, 186, 190, 191,
196

Bennet, William, 246

Bernstein, Basil, 14, 20, 28, 29, 30, 212,
232, 235-236, 237, 255

Beynon, J., 147

Bishop, Alan, 24, 25, 69, 206

Bjorkqvist, O., 227

Bloor, D., 23

Blume, G. W., 69-70

Blumer, H., 65

Boaler, Jo, viii, 9, 30-31, 66 106, 125,
133, 146, 171, 172, 179, 180, 184,
187, 188, 191, 196, 202, 233, 235, 243

Borba, M., 243

Bourdieu, Pierre, 26, 189, 201, 202, 204,
235-236, 250, 251

Bowe, R., 248, 249

Boylan, L., 181

Bransfield, J., 111

Broadfoot, P. M., 231

Brodie, K., 31

Brodie, R., 217

Brown, A., 35, 37, 106, 139



262 Author Index

Brown, A. L., 57, 134, 128

Brown, T., 28

Bruner, J., 25-26, 97

Burkhardt, H., 227

Burman, E., 27

Burton, Leone, 1, 22-23, 30, 33, 181,
187, 190-191, 196

Can, C., 11,171

Campione, J. C., 134, 138

Carpenter, S, 58

Carraher, D. W., 217

Carraher, T., 24, 217

Chaiklin, S., 1

Chang, F., 95

Charmaz, K., 109

Chubb, J., 246, 248

Clarke, David, 166

Clements, M. A., 202, 206, 216, 229

Clinchy, B. McV., 174, 191

Cobb, G. W, 52, 61

Cobb, Paul, 4, 6-7, 8,9, 22, 25, 47,
49-50, 52, 55, 57, 64, 66, 69-70, 71,
72, 109-110, 125, 133, 146

Cockcroft, W. H., 234

Cohen, David K., 8, 89-90, 98, 99, 196

Cole, M., 21, 25, 31, 35, 38, 65, 106, 107,

133
Confrey, J., 22, 31, 57, 58
Connell, Robert W., 146, 148, 149,
161-162
Cooper, B., 28, 211, 216, 218, 235
Corbett, D., 173, 189, 204
Corbin, J., 109
Cordeau, A., 146
Coulthard, M., 212
Crawford, K., 25
Crumbaugh, C., 131

Dale, Roger, 247

D’ Ambrosio, Ubiritan, 24
Dani€ls, H., 35
Darling-Hammond, L., 1
Davidson, Neil, 146
Davies, Bronwyn, 146-147
Davies, Lynn, 162

Davis, P J,, 22

Davydov, V. V., 26

Dawe, L., 207

Dawson, A. J,, 22

DeCorte, E., 109, 113, 206

delaRochg, O., 119-120, 136, 217

De Campo, G., 206

del Rio, P, 51

Dewey, John, 67, 85, 95, 99, 101

diSessa, A. A., 106

Donadson, M., 25

Dorfler, W., 51, 55, 65

Dowling, P, 26, 32, 37, 172, 217, 232

Dowsett, Gary, 148

Doyle, W., 171

Dunne, M., 28, 211, 216, 218, 234, 235,
236

Duranti, A., 114, 133

Eckert, P, 147

Edwards, D., 146

Edwards, T., 247

Ellertown, N. F,, 202, 216, 229
Ellsworth, E., 32

Elwood, J., 233

Engestrom, Y., 25, 31, 64-65
English, L. D., 25

Erickson, F., 69

Ernest, P, 22, 55

Evans, J. T., 27, 28, 31-32, 255, 256

Fennema, E., 180, 196
Ferrara, R., 35
Feuerstein, R., 25
Fischer, R., 22

Fisher, D., 226

Fitz, J., 248

Forgasz, H. J., 212
Forman, E., 24, 35, 55, 65, 71, 74
Foucault, Michel, 27
Franke, M. L., 45, 75
Frankenstein, M., 243
Freebody, P, 211, 213
Freire, Paulo, 30
Freudenthal, H., 61
Fujimura, J., 118

Gagnon, A., 50
Gailbraith, P, 226, 228
Garcia, R., 22



Author Index 263

Garcia-Cruz, J. A., 226

Garfinkel, H., 106

Gerdes, P, 216-217

Gewirtz, S., 247, 248, 249, 250

Gilbert, Pam, 146, 147, 162

Gilbert, Rob, 146, 147, 162

Gill, P, 236

Gillborn, D., 234, 246

Gillett, G., 36

Gipps, C., 234, 254-255

Glaser, B., 109

Godfrey, L., 125

Goldberger, N. R., 174

Goldman, S. V., 1

Gone, J. P, 36

Goodwin, C., 107, 114, 115, 133

Goodwin, Marorie, 107, 114

Gravemeijer, Koeno, 49-50, 52, 57-58,
59, 64, 75, 76n.1

Greeno, James G, 1, 2, 3, 4, 9, 11, 25,
30-31, 66, 172-173

Greer, B., 109

Griffin, P, 133

Grossman, Pamela, 87

Guberman, S., 113

Gunn, S, 211, 213

Gutierrez, A., 226

Habermas, Jurgen, 28

Hall, Roger, 106, 107, 119-120, 125, 133,
135, 137

Halliday, M. A. K., 206-207

Halpin, D., 247, 248

Hanna, G., 22-23

Harré, R., 36

Harris, P, 217

Hatano, G., 76n.3

Hatcher, Richard, 253-254

Haywood, C., 146, 147

Heath, S. B., 202, 213

Henningsen, M., 100

Heritage, J., 107, 114, 115

Herrnstein, R., 244, 247

Hersh, R., 22

Hiebert, J., 45, 58, 89, 171, 213

Hirsch, E. D., Jr., 246, 247

Hirst, P H., 30

Holland, D., 11, 171, 173, 195

Hood, L., 107

Howe, C., 146
Hoyles, C., 19
Huberman, M., 175
Hughes, D., 250
Hunter, M., 226
Hutchins, E., 65, 135
Hyde, M., 206

Jackson, A., 105
Jacob, B., 188

Jacobs, J. E., 146
Jacobson, C., 61
Jaime, A., 226
Jefferson, G., 107
John-Steiner, V., 73
Johnson, M., 67
Johnson, Sally, 147, 162
Jones, A., 147

Jones, Michael, 245
Joseph, G. G, 21, 216
Joseph, G. J., 216

Kaiser, G., 180

Kamii, C. K., 70

Kanes, C., 217

Kaput, J. J., 61

Karsenty, R., 226

Keitel, C., 1

Keler, E. F, 192, 193
Kemney, V., 61

Kessler, Sandra, 148

Kieren, T., 65

Kilpatrick, J., 2, 21

Kirshner, D., 25

Kitcher, P, 22, 172

Kliebard, Herbert, 244, 248, 256
Koehler, M. S., 146

Konold, C., 50

Kozulin, A., 35, 67

Kress, G., 229

Kroll, Diana, 146
Krummheuer, G., 35, 65, 212

Lachance, A., 57
Lachicotte, W., 11, 171
Lakatos, I., 22

Lamon, S., 22, 228



264 Author Index

Lampert, Magdalene, 45, 55, 60, 69-70, Méellin-Olsen, S., 243
89-90, 99, 100, 131 Menter, 1., 247
Langemann, E., 85 Mercer, N., 146
Larreamendy-Joerns, J., 35 Miles, M., 175
Latour, B., 51 Miles, M. B., 7
Lauder, H., 250 Miller, P. J., 36
Lave, Jean, 1, 5, 6, 21, 23, 25-27, 29, Miller, R., 95
30-35, 36, 3738, 65, 71, 73 106, Minick, N., 35, 37, 65
119-120, 133, 136, 172, 178, 188, 217 Moe, T., 246, 248
Lawrie, C., 226 Monaghan, J., 226
Lean, G. A., 206 Moore, D. S,, 50, 52
Leder, G. C., 146 Morgan, Candia, 13, 28, 228, 230, 232,
Leder, G. H., 212, 228 236
Lehrer, R., 51, 58, 61 Morrow, C., 146
Lemke, J. L., 31, 68, 212, 213, 214 Morrow, J., 146
Leont’ev, A. N, 34,51 Moses, R. P, 125
Lerman, R., 64 Muchamp, P, 247
Lerman, Stephen, 1, 6, 9, 21, 22, 24, 25, Mulligan, J., 207
28, 32, 35, 37, 237, 255 Murphy, P, 234, 254-255
Lesh, R., 228 Murray, C., 244, 247
Leung, S. S., 226 Murtaugh, M., 217
Levi-Strauss, Claude, 65
Lortie, D. C., 89-90 Nelson, B. S., 180, 196
Love, E., 228 Newman, D., 133
Lucey, H., 202 Nicholls, P, 247
Ludwig, C., 211, 213 Nickson, Marilyn., 22, 24
Luke, A., 257 Niss, M., 228
Luria, A. R, 37 Noss, R., 19, 190, 191, 231

Nunes, Terezinha, 24, 25
Ma, Liping, 88, 97-98

Mac an Ghaill, Mairtin, 146, 147, 148, O’ Connor, M. C., 55, 125
162, 163 Olssen, Mark, 249
Martinén, A., 226 Orton, A., 226
Mason, J., 180 Orton, J., 226
Matos, J.-F, 31, 33 Ozga, J., 247
McClain, Kay, 47, 49-50, 52, 55, 64, 72,
76n.1 Pea, R. D., 51, 65, 66
McClintock, Barbara, 192, 193 Penner, D., 58
McCulloch, Gary, 245 Penny, D., 255, 256
McDermott, R. P, 107, 133 Perry, Mason, 180
McDonad, J., 90 Phillips, D., 4-5
McGatha, M., 47 Phillips, S. U., 133
McGinn, M. K., 66 Piaget, Jean, 6, 20, 21, 22, 25, 35, 65, 67,
McGregor, M., 205-206 70
McLaughlin, M., 31, 178, 182 Polanyi, M., 98
McNed, B., 133 Pollard, A., 247
Mehan, H., 64, 135, 212 Pollatsek, A., 50

Meira, L., 35, 53 Popper, Karl, 22



Author Index

Povey, H., 181, 182
Power, D., 206
Power, S., 247, 248
Pozzi, S., 19

Quinlan, M., 233

Radford, L., 22
Ragin, C. C., 109
Ransom, S., 245, 253
Rappaport, J. 36
Reder, L., 3, 25
Redmond, J., 32
Restivo, S,, 22, 23, 26
Richards, J., 22
Richert, Anna, 87
Rickards, T., 226
Ridgway, J., 227
Rittenhouse, P, 131
Rogers, L., 22
Rogers, P, 180
Rogoff, B., 65, 76n.3
Romberg, T., 51, 228
Rosch, E., 67
Roschellg, J., 106
Rose, S. L., 97

Roth, W.-M., 51, 66
Rotman, B., 23
Rowan, B., 95
Rubin, A., 125, 135
Ruthveb, K., 236

Sacks, H., 107

Santos, M., 31, 33

Saxe, G. B., 51, 76n.3, 113, 217

Schauble, L., 58

Schlegloff, E. A., 107

Schliemann, A. D., 217

Schmittau, J., 25

Schoenfeld, Alan H., 5, 109, 180, 196,
206, 227

Schon, D. A., 119, 120

Schwab, J. J., 187

Scribner, S., 106, 133

Seddon, T., 257

Sfard, A., 55, 73

Shotter, J., 65

Shulman, Lee, 87

Silver, E. A., 100

Simon, H., 3, 25

Simon, M., 22

Simon, M. A., 45, 57, 58

Simon, M. S., 69-70

Sinclair, J., 212

Sizer, T.R.,, 134

Skinner, D., 11, 171

Skovsmosg, O., 243

Smith, E., 58

Smith, J. P, 106

Smith, M., 100

Solar, C., 146

Sowder, J., 22

Sowder, L., 22

Steele, C., 11

Steffe, L. P, 22, 35, 59, 65

Stein, M. K., 100

Steinbring, H., 50

Stephan, M., 64

Stevens, Reed, 9-10, 11, 106, 107, 108,
109, 116, 119-120, 125-126, 133,
137,138

Stigler, J. W., 45, 58, 89, 171, 213

Stobart, G., 233, 234

Stone, C. A., 35

Strauss, A., 109

Strom, D. A., 61

Swift, S., 217

Sykes, H., 1

Talbert, J., 178, 182
Tarule, J. M., 174
Taylor, Richard, 194
Thompson, A., 22, 94
Thompson, E., 67
Thompson, P, 94
Thompson, P W., 35, 59, 65
Torralba, A., 137
Torrance, H., 227
Troyna, Barry, 253-254
Tsatsaroni, A., 21, 237
Tukey, J. W., 51
Tymoczko, T., 22, 172
Tzou, C., 52

Vaero, P, 243
Vasiner, J,, 35, 67

265



266 Author Index

van Bendegem, J. P, 22
Van der Veer, R., 35, 67
Van Haneghan, J.,, 111
van Oers, B., 65

Varela, F. J., 67
Vasquez, O., 25
Verschaffel, L., 109, 206
Vinner, S., 226, 232
Voigt, J., 65, 69-70, 212
von Glaserfeld, E., 22
Vye N, 111

Vygotsky, Lev, 6, 24-25, 33-38

Wacquant, L., 250-251

Walcott, R., 32

Walden, R., 234

Walker, Jim C., 147, 148, 162, 163

Walkerdine, Valerie, 24, 25, 26, 27, 28,
31-32, 55, 147, 202, 213, 234

Waschescio, U., 64

Watson, A., 25, 31, 230, 236

Watson, H., 219-220

Webber, V., 107

Weedon, C., 147

Weiner, G., 146

Well, A., 50

Wenger, E., 6, 11, 25, 26-27, 29, 31, 32,
36, 38, 71, 133, 171, 172, 178

Wertsch, J. V., 24-25, 34, 35, 51, 55, 67,
74

Whitson, J. A., 25

Whitty, Geoff, 14, 246, 247

Williams, S., 111

Wilson, B., 173, 189, 204

Wilson, Suzanne, 87

Winbourne, P, 31, 33

Wittgenstein, Ludwig, 219-220

Wood, T., 133, 178, 212

Wu, H., 12, 105, 125

Yackel, E., 69-70, 71, 133
Youdell, D., 234
Young, M., 111

Zevenbergen, Robyn, 12, 13, 206, 213,
217
Zinchenko, V. P, 37



Subject Index

(‘i indicates an illustration)

absolutist/fallibilist dichotomy, 22
abstract procedure repetition, 3-4
accountability, educational reform, 244
“Academic Achievers,” 148
activity theory, 25, 38
adaptiveness, teaching, 98
agency
mathematics discipline, 171
production of, 36-37
three processes of, 194-195
agency of the discipline, 194
AIDS protocol, statistical data analysis,
47-50, 48i, 49i, 51, 56, 72
alternating term, definition of, 83
American Educational Research Associa-
tion, mathematical division, 21
“anchoring event,” 111
Antarctica project
assigned problems, 113, 125-133, 127i
data exemplars, 113-125, 119i
description of, 111-112
apprenticeship, learning method, 6, 26,
27,29, 34
Areaand Perimeter problem, 126, 127i
assessment
alternative methods, 228

access to, 233-237
design experiment, 47-50
mainstream assumptions, 226, 227,
230
mathematical, 12, 225-226
problematizing of, 13
assessment exercise, collaborative learn-
ing, 166
assessment instruments, 226, 229, 237
assessment models, mathematical re-
search, 226
assessment programs, in England/Wales,
254-255
assessment system
discrimination in, 231-237
emergent problems, 137-138
assigned problems, 10
data exemplar 4, 126-131, 127i,
131134
Association of Teachers of Mathematics,
alternate assessments, 228
“authentic” assessment, curriculum re-
form, 227-228, 230
authoring identities, 173, 175, 195-196
didactic teaching, 183-187
discussion-based teaching, 187-188
authoritarian perspective, education, 30
autonomy, intellectual, 70-71



268 Subject Index

“basics,” antireformers, 14
battery comparisons, statistical data anal-
ysis, 52, 54, 55, 56, 70, 71
“bavarium,” 108, 115, 116, 117-118,
122i, 123, 124i
behaviorism, mathematics education, 22,
212
belief system, psychological perspective,
68i, 69
“believing game,” 191, 192
Bell Curve, The, 244
boys
collaborative learning, 146
test performance, 234
bricolage, 65
bridging, mathematical advances, 194,
195

child
social construction of, 24, 27, 74-75
unit of analysis, 37
choice, educational reform, 244, 247,
256257
class habitus, 251
classical liberalism, 248-249
classification rules, school mathematics,
29
classroom
ecosocial system, 68
educational practices, 27-29, 32-33
empirical field, 19
framework, 7, 6773, 68i
goalsof, 29, 31-32
mathematical practices, 24, 26, 65-66,
68i, 71-73, 74
norms, 7, 68i, 68-69, 96
sociomathematical norms, 68i, 69—70,
71
classroom activity
general theory of, 63-67
system, 46, 56-57, 60, 68
classroom talk, communication strategy,
201
codes, PBM, 138-139
Cognition in Practice, 23
cognitive theory
challenge to, 23
design experiments, 59-60

collaborative learning, 145-146, 149-152,
164
benefits of, 165-166
implications for “technofiles,” 166
implications for “mates,” 166
competition, educational reform, 244,
248, 251, 256
competitive sense-making situations, 110,
121,131
computer-based tools, instructiona re-
sources, 45, 52-55, 53i
concept hierarchies, 20
“conceptua grasp,” 229
connected knowing, ways of knowing,
174,192
“connected teaching,” 189
“conservative modernization,” 14-15,
244-245, 257
conservative movement, impact on mathe-
matics education, 14-15
constructivism, 4-5
constructivist perspective
language, 201
learning method, 7, 65, 66
PBM, 109
“content knowledge,” 94-97
context, PBM, 133-134
cooperative sense-making situations, 110,
121
“core activities,” mathematics teaching,
89
“crack the code,” 204, 206, 209
cultural capital, 26, 201, 249, 250, 251
Cultural Politics and Education, 244
curriculum
student exclusion, 12
types of, 30
curriculum reform perspective,
assessment critique, 229-230
mathematics assessment, 225-226,
227228, 237
“Cyrils” 148

data collection, project, 112-113

data, creation of, 51-52

data exemplar 1, Antarctica project,
113117



Subject Index 269

data exemplar 2, Antarctica project, 113,
117121, 119i
data exemplar 3, Antarctica project, 113,
121125
data exemplar 4, assigned problem, 113,
125131, 127i, 131133
data sets, “ spreadoutness’ of, 53
“data snooping,” 50
“Day 5" 24
decompression, 98
decontextualization, 26
de-location, 255
Democratic Schools, 257
derivatives, collaborative learning, 151
design experiment, statistical data analy-
sis, 46, 47-57
design macrocycles, 59, 60i
design minicycles, 59, 60i
design proposal, Antarctica project,
114115
design research, statistical data analysis,
5761, 58i, 60i
didactic teaching
authored identities, 183187
figured worlds, 176-177, 188-189
student positioning, 179-181
“disciplinary matrix,” 20-21
discrimination, mathematical assessment
system, 231-237
discussion-based teaching
authored identities, 187—-188
figured worlds, 177-178
student positioning, 181-183
“dogmatic orthodoxy,” 245
“doubting game,” 191, 192
dualism, challenges to educational, 7
“dumb,” 9

ecologies of participation, mathematics
learning, 173, 175
economic capital, 250, 251
educational change, fields of, 255
educational perspectives, 30
educational research, 21
impact of Vygotsky, 35
mathematics assessment, 226228
situated theory, 56, 7
Educational Researcher, situated theory, 2

Educational Sudiesin Mathematics, 24
embedded contexts, mathematical |earn-
ing, 216, 217-219, 220
emergent problems, 10
Antarcticaproject, 116-117, 117-118,
131, 132, 133-134
documentary infrastructure, 137
invisibility of, 134-136
PBM recommendations, 136-139
tradeoffs, 136
“emic” stance, 192
equilibrium, learning mechanism, 35
Eurocentric bias, mathematics, 216-217
“examination league tables,” 248
examinations, access to, 233-237
exploratory data anaysis (EDA), 50-52

fair share, definition of, 83

feedback, analytic criterion, 58i, 60i, 61,
62, 73-74

Feeling for the Organism, A., 192

femininity, social construction of,
146-148, 167

Fermat's Last Theorem, proof of,
193-195

Fifth International Congress of Mathemat-
ical Education, 24

“figured worlds,” 11, 171, 173-174, 175,
189

didactic environment, 176-177
discussion-based environment,

177-178

filling, mathematical advances, 194, 195

“Footballers, the” 148, 163

framing rules, school mathematics, 29

“free” markets, 244, 251

fundamentalism, educational reform, 244

gender
mathematical knowledge, 10-11
teacher-student interactions, 146
identity, social construction of,

146-148

girls
collaborative learning, 146, 159-161
didactic teaching, 185-186, 196
embedded contexts, 218
test performance, 234



270 Subject Index

testing access, 233-234
grading
Antarctica project, 112, 131, 132, 134,
135
collaborative learning, 149-150, 166
grounded design proposals, Antarctica
project, 115
group, unit of analysis, 10

habitus, 189, 202, 203, 250, 251
hegemonic masculinity, 147-148
mates, 163
“high attainers,” 232
home language, digjunction from school,
203
humanist quasiempirical perspective, 22
hypothetical learning trajectory, statistical
dataanalysis, 58, 60, 62

identities
classroom mathematic practices,
28-29, 3233, 188-189
construction of, 11
situated theory, 25
inclusion perspective, education, 30
individual trajectories, 31, 33, 36
individual, unit of analysis, 26, 28-29
individuality
production of, 36-37
zpd (zone of proximal development),
35
inner speech, 35
Ingtitute for Research on Learning,
MMAP curriculum, 111
instructional designer, situated theory,

4546, 51, 74-75

intellectual autonomy, development of,
70-71

intelligence, distributed accounts of, 65,
66

interactionist perspective, 10

PBM, 109

internalization, learning mechanism, 34,

35

International Commission on Mathemat-
ics Instruction (ICMI), study group,
2,4

International Group for the Psychology of
Mathematics Education (PME), 22,
24

International Perspectives on Mathemat-
ics Education, purpose of, vii

interpretive approach, statistical data anal-
ysis, 46, 6173, 68i

intersubjective media space, Antarctica
project, 116

intersubjective priority, learning mecha
nism, 34

Journal for Research in Mathematics Ed-
ucation (JRME), 22

“knowers,” 189
knowing, forms of, 11
knowledge
legitimate form of, 201, 216-219, 244
mathematics, 8-9, 10, 12
situated theory, 2, 25-26
social origins of, 23-25
three levels of, 20
knowledge claim, validating, 21
knowledge production, 19-20
knowledge production community,
2021

language
development, 25, 37
legitimate mathematical, 216-219
mathematics assessments, 12, 229-230
mathematics teaching, 201-204
PBM, 107

laundry room, Antarctica project, 121,

122i

league tables, 248, 252

“leaky” documents, 253

learners
constructivism, 4-5
situated theory, 2-5

learning
concept of, 33
individual trajectories, 31
mathematics, 8-9
mechanism, 33-34
situated theory, 25
social theories of, 6



Subject Index 271

lexical density
mathematical register, 205, 206-207,
209
mathematics assessments, 12
limits, collaborative learning, 151
linguistic capital, 201, 203
linguistic habitus, 202, 204
“low attainers,” 232

macho boys, 162
“Macho lads,” 147, 148, 163
macrocycles, design, 59, 60i
managerialism, educational reform, 244,
252
market strategy, educational reform, 244,
246, 247-251, 252, 256-257
masculinity,
of mates, 162-163
and power, 161-162
of technophiles, 163
social construction of, 147-148, 167
“master,” 33
mastery, classroom practices, 32-33, 36
Mastery of Reason, 24
“mates, the,” 9, 145, 152-155, 159-161,
162-163, 164-165, 166, 167
“math activities” PBM, 108-109,
111112, 135
“math wars,” 13, 105, 106
Math @ Work, 109
mathematical beliefs/values, psychologi-
cal perspective, 68i, 71
mathematical claims, class norms, 96
Mathematical Enculturation, 24
mathematical environments, 11
mathematical gaze, 21, 26
mathematical knowledge
specificity of, 172
teacher education, 86-87
mathematical language, teacher education,
97
mathematical reasoning
analytic criterion, 62
psychological perspective, 68i,
72-73
mathematical understanding, usable,
99-101
“mathematically correct” website, 15

mathematics
collaborative learning, 145-146,
149-152
confidence, 174-175
decline in study of, 171
legitimate knowledge of, 216219
role of, 21
symbolic power of, 21
mathematics classrooms
assessments, 12
collaborative learning, 164
communication strategies, 201202
discoursein, 232
eventsin, 12
figured worlds of, 175-178, 188-189
gender construction, 147
linguistic culture of, 211-216
practices of, 26-29, 32-33
mathematics education
critical work in, 243
decontextualization, 26
educational reform criteria, 61-62
field of, viii, 1-2, 7-8, 13-14, 21-22
knowledge production, 19-20
learning in, 172-174
multiple practices of, 30
neoliberal reform, 14-15, 243, 244,
247-251, 256
PBM, 105-106
research community, 21, 23, 25
situated theory, 4546, 51
mathematics register, 204, 205-208, 211,
220
communication strategy, 201-202, 203
“meaning,” education practices, 27
measurement, educational reform, 244
mediation, learning mechanism, 34
methodology
collaborative learning study, 148-149
mathematics confidence, 174-175
PBM, 106-110
“micro interactions,” 212-216, 220
Mind in Society, 37
“mind-in-society-in-mind,” 6, 38
minicycles, design, 59, 60i
minitool
first, 52-53, 53i, 54, 72
second, 53i, 53-54, 72



272 Subject Index

MMAP curriculum, Antarctica project,
111
multiculturalism
mathematics education, 235
teacher education, 86
multiple models of mastery, 33

national curriculum, educational reform,
244, 251-257

national testing, educational reform, 244,

251-257
National Council of Teachers of Mathe-
matics (NCTM), 30
standards, 108-109, 212, 228
National Education Longitudinal Study,
teacher education, 95
National Numeracy Strategy, United
Kingdom, 30
neoconservative movement, educational
reform, 243, 244, 252, 256
neoliberal perspective
education, 30
education reform, 243, 244, 247-251,
256
mathematics education, 15
“New Enterprisers,” 163
1997 Year 6 Test, The,” 205, 207211,
208i-211i
Ninth International Congress of Mathe-
matical Education, vii

official discourse, mathematics class-
rooms, 28

old-liberal agenda, education, 30

open coding, 175

“overdetermination,” 256

pair, definition of, 83
participation
formsof, 11
working class children, 12
pea problem, 91-94, 96
“pedagogical content knowledge,” 87,
88-89
pedagogical discourse, principle of, 29
pedagogical practices
mathematics, 11-12
subject matter knowledge, 85

peer interactions, classrooms, 31
performance
educational reform, 244
masculinity as, 162
person-in-activity, unit of analysis, 38
“ person-in-practice-in-person,” 38
physical education, educational reform,
255-256
Pine Middle School, Antarctica project,
110, 112
“place value” 98
policy, mathematics education, 14-15
“positional identity,” 173, 175
didactic teaching, 179-181
discussion-based teaching, 181-183,
196
positivism, mathematics assessment, 226,
229
power
concept of, 162
forms of, 161
problems
assigned, 109, 111, 131-134
emergent, 108, 116117, 132, 133-136
PBM, 108-109
pea, 91-94, 96
string of 8's, 90-91, 100
procedural learning, 34
design experiment, 47
mathematics confidence study,
180-181, 188-189
“production” field, educational change,
255
professional mathematicians
on PBM, 105-106
study of, 190-191
profound understanding of fundamental
mathematics (PUFM), 97-98
progressive education, education reform,
245
“progressive orthodoxy,” 245
project work learning, 3-4
“project-based classroom,” 133
project-based mathematics (PBM),
105-106
recommendations for, 136-139
Proofs and Refutations, 22
“pseudo-knowledge,” 232



Subject Index 273

psychological perspective
assessment critique, 229-230
classroom activity, 63-64, 66, 67—73,
68i
mathematics assessment, 225227,
230
research methods, 22
Psychology of Mathematics Education
(PME) conference, 13
publication, PBM, 138

radical agenda, education, 30

radical constructivism, 20, 223

rangetool, 53

rationality, masculinity as, 163

received knowing

mathematics learning, 176-177, 181,
183, 184, 185, 186, 189-190, 196
ways of knowing, 174

“receivers,” 173

recognized design proposals, Antarctica
project, 114-115, 116

recontexualization, 20, 23, 29, 253, 255,
256

“recontexualizing” field, educational
change, 255

reflexivity, 64, 66, 73

regulation practices, 2629, 30-31, 33, 36

“relay,” 212

re-location, 255

“reproduction” field, educational change,
255

Research into Social Perspectives of
Mathematics Education,” 24

resources, knowledge production, 20

role models, 33

“ruling class schools,” 148, 149

“school mathematics,” 24, 29-31
schools
gender identity construction, 147
language of, 202
mathematics practice, 27-29, 32-33
teaching culture of, 34
self-regulation, 25
semantic structure
mathematical register, 205, 206
mathematics assessments, 12

sense-making, educational reform,
109-110, 192
separate knowing, ways of knowing, 174
situated theory, 2-5, 25
design experiment, 4546, 51, 74-75
educational research, 5-6
mathematics assessment, 226
mathematics education, 172
objectionsto, 3
Sixth International Congress of Mathe-
matical Education, 24
small-group discussions, collaborative
learning, 146, 149, 150
social capital, 250, 251
social perspective, 230
mathematics assessment, 225-226,
230-233
mathematics assessment research, 233
mathematics education, viii, 7, 6365,
67-73, 68i
social power, 151
“socia practices,” 172-173
social turn, mathematics education, 23, 25
sociocultural theory, mathematics educa-
tion, 65-66, 172
Sociology of Education, NEL S study, 95
sourcebook, mathematical, 137-138
“space of authoring,” 173
space strand, mathematical register, 209,
210i, 220n
statistical data analysis
AIDS protocol, 47-50, 48i, 49i, 51,
56, 72
battery comparisons, 52, 54, 55, 56,
70,71
experiment overview, 46
statistics, changesin field, 50
street math, 24
string of 8's problem, 90-91, 100
student performance
assessment tasks, 234, 235
embedded context, 217-218
market strategy, 248, 252
1997 Year 6 Test, 207-211, 208i-211i
triadic interactions, 213-216
student team
Antarctica project, 110-111
dataexemplar 1, 113-117



274 Subject Index

data exemplar 2, 113, 117-121, 119i
data exemplar 3, 113, 121-125
data exemplar 4, 113, 125-131, 127i
students
didactic teaching, 176-177, 179-181,
183-187, 190191
discussion-based teaching, 177-178,
181183, 187-188, 189
goals of, 31-32
identities of, 9-10, 11
interactional perspective, 10
mathematics learning, 173-174
participation of, 9-10, 11
roles of, 9-10
subject matter knowledge, teaching, 85,
86, 95-97
subject-world relation, learning mecha-
nism, 33
subjective knowing, ways of knowing,
174
subjectivities, discursive practices, 28-29
subjectivity, regulation of, 26-29
surveillance, educational reform, 251-252
symbolism, mathematical register,
208-210, 209i
syntax, mathematical register, 208-209,
2009i

taken-as-shared activities, 63, 72
taken-as-shared meanings, 64
task language, |egitimate knowledge, 216
teacher assessment, limitations of,
236-237
teacher education, domains of, 85
teachers
conception of, 75
goals of, 31-32
knowledge needed, 8-9, 94-97
learning mechanisms, 34
PBM, 110, 117-121, 129, 134, 135
regulation of, 30-31
teaching
cultural event, 12
didactic, 176-177, 179-181, 183-187

discussion-based, 177-178, 181183,
187-188
interactional perspective, 10
mathematics, 8-9
methods, mathematics, 12
as practice, 89-90
situated perspectives, 34
“Technophiles, the” 145, 155-159, 161,
163, 164, 165, 166, 167
telos, learning mechanism, 33
“thick morality,” 251, 252-253, 256, 257
“thin morality,” 251, 253, 255, 256
trajectory of participation, mathematics
learning, 172
transcription, mathematical advances,
194, 195
transfer
learning mechanism, 27-28, 34
situated theory, 25, 26
transfer theory, challenge to, 23
“triadic dialogue,” 212
triadic interactions, classroom culture,
212-216

unintended consequences, 119
unit digits, definition of, 84
unit of analysis, 36-38
group, 10
individual, 26, 28-29
mainstream psychology, 66-67
student team, 109

value tool, 53

vocabulary
mathematical register, 205-206
mathematics assessments, 12

ways of knowing, 174, 190
whole-class discussion
collaborative learning, 149, 150, 151
statistical data analysis, 51, 55-56,
62—63, 69, 72
whole-class teaching, collaborative learn-
ing, 146

zone of proximal development (zpd),
34-36



About the Editors and
Contributors

MICHAEL W. APPLE is the John Bascom Professor of Curriculum and Instruc-
tion and Educational Policy Studies at the University of Wisconsin, Madison. A
former elementary and secondary school teacher and past-president of a teachers
union, he has worked with educators, governments, unions, and dissident groups
throughout the world to democratize educational research, policy, and practice.
Among his many books are Ideology and Curriculum, Education and Power,
Teachers and Texts, Official Knowledge, Cultural Politics and Education, and
Power, Meaning and I dentity.

DEBORAH LOEWENBERG BALL isArthur F. Thurnau Professor of Mathemat-
ics Education and Teacher Education at the University of Michigan. Ball’swork fo-
cuses on studies of instruction and of the processes of learning to teach. She also
investigates efforts to improve teaching through policy, reform initiatives, and
teacher education. Ball’s publications include articles on teacher learning and
teacher education; the role of subject matter knowledge in teaching and learning to
teach; endemic challenges of teaching; and the relations of policy and practice in
instructional improvement.

MARY BARNES, formerly Director of the Mathematics Learning Centre at the
University of Sydney, is now afree-lance mathematics education consultant and a
doctoral student at the University of Melbourne. Her interestsin mathematics edu-
cation include gender equity, calculus teaching, assessment, and applications of
technology. Sheisthe author of Investigating change: An introduction to calculus
for Australian schools (aseries of unitson cal culus for senior secondary students,
designed to be gender-inclusive) and joint author of Girls count in maths and sci-
ence. Her current research is on students’ experiences of collaborative learning in



276 About the Editors and Contributors

secondary classrooms. Thisincludes|ooking at power relationshipswithin collab-
orative groups, and the social construction of both gender and mathematical com-
petence.

HYMAN BASSistheRoger Lyndon Collegiate Professor of Mathematicsand Pro-
fessor of Mathematics Education at the University of Michigan. Hismathematical
research publications cover broad areas of algebra, with connections to geometry,
topology and number theory. During the past four years he has been collaborating
with Deborah Ball and her research group at the University of Michigan on the na-
ture of mathematical knowledge required for teaching. Heisinterested in the chal-
lenge of building bridges between diverse professional communities and
stakeholders involved in mathematics education, both here and abroad.

JO BOALER is an assistant professor of mathematics education at Stanford
University. She is a former secondary school teacher of mathematics. She
taught in diverse, inner London comprehensive schools, across the 11-18 age
range. She hasalso worked asthe deputy director of anational assessment project
in the UK, researching and devel oping assessments for students across the coun-
try. Sheisauthor of the book Experiencing School Mathematics, which was pub-
lished by the Open University Pressin 1997 and won the Outstanding Book of the
Year award in education in Britain. Her research interests include mathematics
teaching approaches, assessment and equity. Sheiscurrently the Pl of aNSF pro-
ject investigating the relationship between mathematics teaching, learning and
curriculum approach.

LEONE BURTON is Emeritus Professor of Education (Mathematics and Sci-
ence) at The University of Birmingham, Visiting Professor of Mathematics Edu-
cation, King's College, London, 2000-2003, and Jubilee Professor in the
Department of Mathematics, Chalmers University, Gothenburg, Sweden for the
year 2000. Her most recent work has been on the epistemol ogies of practicing re-
search mathematicians and their implications for teaching and learning mathe-
matics. Thiswork has also involved her in researching the learning experiences
of university mathematics undergraduates and students specializing in mathe-
matics for their university entrance examinations. Her publications include a
number of edited collections on the theme of gender and mathematics, books on
the use of problem-solving inteaching and | earning mathematics, and many jour-
nal articles on assessment. Her last publication was an edited collection, pub-
lished in 1999 by Falmer Press, called Learning Mathematics: from Hierarchies
to Networks.

PAUL COBB is a Professor of Mathematics Education at Vanderbilt University.
His overarching research interests focus on students' mathematical learning as it
occursinthesocial context of the classroom. To thisend, he conductsclassroom de-
sign experimentsin the course of which heinvestigatesinnovativeinstructional ap-
proachesininquiry-based classrooms. Classroom-based work of thisnature brings
together issues concerning students' learning, teachers’ activity, classroom interac-



About the Editors and Contributors 277

tions, and the nature of instructional activities. Further, the mathematicsclassroom
can beviewed asthesitein whichissuesof cultural diversity and equity play outin
face-to-face interaction. Cobb also viewsthe classroomsin which he works as set-
tings in which to address these issues.

JAMESG. GREENO istheMargaret Jacks Professor of Education at Stanford Uni-
versity. His research examines processes of learning, reasoning, and understand-
ing, especialy involving mathematical concepts. In his current research, he is
working toward a theory that treats conceptual understanding as an aspect of dis-
courseand treats conceptual learning as changein discoursethat occurs as students
participate in activities of inquiry. He collaborated with Shelley Goldman, Ray
McDermott, Jennifer Knudsen and others in the Middle-school Mathematics
through Applications Project, which devel oped and studied a 6-8 grade mathemat-
ics curriculum centered on students' participation in design activities. Previoudly,
he developed cognitive computer-simulation models of knowledge and strategies
used by studentsin solving textbook problemsin elementary-school arithmetic and
secondary-school geometry. He hopes to be able to analyze learning, reasoning,
and understanding in away that represents both its cognitive-informational aspects
and its social-interactional aspects coherently.

STEPHEN LERMAN taught mathematicsin secondary schoolsin England andin
Israel before becoming aresearcher, then lecturer in mathematics education at the
Institute of Education, University of London. Heisnow Professor of Mathematics
Education at South Bank University in London and Head of Educational Research.
He was President of the International Group for the Psychology of Mathematics
Education from 1995 to 1998 and Chair of the British Society for Research into
Learning Mathematicsfrom 1994 to 1996. Hisresearch interestsinclude: philoso-
phy of mathematics; teacher education; equity issues; learning theories; and
socio-cultural analyses of mathematics teaching and learning.

CANDIA MORGAN isasenior lecturer in mathematics education at the Institute
for Education, University of London. She spent anumber of yearsteaching mathe-
matics and acting as an advisory teacher for mathematics in London secondary
schools and, before moving to the Institute of Education, taught mathematics and
mathematics education at South Bank University. Her current research interestsin-
clude language in mathematics and mathematics education, teacher assessment,
and the use of critical discourse analytic approachesin the study of mathematics
education.

REED STEVENS s currently an Assistant Professor of Cognition & Technology
at the University of Washington in Seattle. He earned his Ph.D. from the Cognition
and Devel opment programin the Graduate School of Education at the University of
Cdlifornia, Berkeley. He is aformer mathematics teacher and has a BA in mathe-
maticsfrom PomonaCollege. Hisresearch and teaching focuson naturalistic stud-
iesof cognition and learning acrossdiverse social settings. Hisresearch programis
broadly comparative and hasincluded studies of classrooms, scientific workplaces,



278 About the Editors and Contributors

architecture and engineering firms, and science museums. His main interests are
the comparative devel opment of mathematical practicesin and out of school and
the analysis of discourse and interaction asvehiclesfor learning and teaching. He
is currently a co-principal investigator on a NSF funded design experiment that
compares student and teacher discourse acrossthe subject matter disciplines of sci-
ence and history in elementary school.

ROBY N ZEVENBERGEN isasenior lecturer at Griffith University, Australia. She
isbased at the Gold Coast Campuswhere sheworksin theareaof mathematicsedu-
cation. She completed her doctoral studiesat Deakin University. Most of her work
isconcentrated inthe elementary yearsof schooling. Her interestsareintheareaof
equity and social justice. Sheisparticularly interested inissues of social classand
indigenous education, where shetakesasocially critical perspectiveto understand-
ing the construction of inequity in and through mathematics. Currently she is
working on projects related to the language of mathematics; in reform in mathe-
matics pedagogy; and the construction of mathematical identity (among adol escent
students).



	Multiple Perspectives on Mathematics Teaching and Learning
	Contents
	Series Editor’s Preface
	Acknowledgments
	1 Introduction: Intricacies of Knowledge, Practice, and Theory
	2 The Social Turn in Mathematics Education Research
	3 The Importance of a Situated View of Learning to the Designof Research and Instruction
	4 Interweaving Content and Pedagogy in Teaching and Learning to Teach: Knowing and Using Mathematics
	5 Who Counts What As Math?Emergent and Assigned Mathematics Problems in a Project-Based Classroom
	6 Effects of Dominant and Subordinate Masculinities on Interactions in a Collaborative Learning Classroom
	7 Identity, Agency, and Knowing in Mathematics Worlds
	8 “Cracking the Code” of Mathematics Classrooms: School Success As a Functionof Linguistic, Social, and Cultural Background
	9 Better Assessment in Mathematics Education? A Social Perspective
	10 Mathematics Reform Through Conservative Modernization?Standards, Markets, and Inequality in Education
	Author Index
	Subject Index
	About the Editors and Contributors

