SYDNEY INSTITUTE

TARE?

Ultimo

College

Student Name : \qquad KEY \qquad
Class : \qquad PM \qquad
Date : \qquad 13/Mar/13 \qquad

20222 Certificate III Electrotechnology Electrician

D.C. Circuits PRACTICAL TEST 1A
 PHILIPS Chapters 1-4

Time allowed - 30 min
3 Pages in this Question Booklet

OBSERVE SAFE WORKING PRACTICES DURING THIS PRACTICAL TEST

Instructions:

- All answers to be entered on the answer sheet provided
- All work to be performed on an individual basis
- Total marks for this test is 15

Equipment Required:

- DC power supply
- 0-20V DC analog voltmeter
- 0 to 1 A DC analog ammeter
- Lamp and lampholder - $12 \mathrm{~V}, 5$ watt
- Single pole switch
- Connection leads -4 mm banana leads

SECTION	Possible Marks	Actual Marks
Circuit Wiring	5	
Circuit Connection	5	
Readings/ Calculations	5	
Total	15	

Aids permitted where indicated:

Standard Dictionaries	Bilingual Dictionaries	Technical Dictionaries	Programmable Calculators	Non- programmable Calculators	Mobile Phones	MP3 Players
No	Yes	No	No	Yes	No	No

Procedure

Step 1: Neatly draw the wiring required to enable the components below to operate correctly as a series circuit.

Step 2: Arrange the equipment on the bench to match that shown in Figure 1, then connect the components as drawn. Choose leads of a suitable length to give a neat circuit layout.

Figure 1 Electric Circuit Connections

Do not proceed until the teacher has checked your circuit.

Step 3: (a) With the switch in the open position, turn on the power supply and adjust for a voltage output of $\mathbf{1 0 ~ V}$.
(b) Close the switch then measure and record (in space provided on the answer sheet) the circuit current as indicated by the ammeter.

Do not proceed until the teacher has checked your results.
Step 4: Using your results from Step 3, calculate the resistance of the lamp and record it on the answer sheet in the space provided.

Step 5: Turn off the power supply, then disconnect the circuit and return all equipment to its proper place.

Practical Test 1A - Answer Sheet

Step 1: Circuit Wiring (Figure 1)

$\mathbf{1}^{\text {st }}$ Try	$\mathbf{2}^{\text {nd }}$ Try	Teacher Assist
5	2	0

Step 2: Circuit Connection

$\mathbf{1}^{\text {st }}$ Try	$\mathbf{2}^{\text {nd }}$ Try	Teacher Assist
5	2	0

Step 3: Supply Voltage V \qquad 10Volts \qquad
Circuit Current I \qquad $410-500 \mathrm{~mA}$ \qquad (depends on lamp)
(2 Marks)

Step 4: Lamp Resistance (by calculation, show working)
\qquad $\mathrm{R}=\mathrm{V} / \mathrm{I}$
\qquad 10/410mA \qquad
\qquad $=24.4 \Omega$ \qquad

Total Mark: \qquad /15

SYDNEY INSTITUTE TAFEI
Ultimo College

Student Name : \qquad
Class: \qquad
Date : \qquad

20222 Certificate III Electrotechnology Electrician

D.C. Circuits PRACTICAL TEST 1A
 PHILIPS Chapters 1-4

Time allowed - $\mathbf{3 0} \mathbf{~ m i n}$
3 Pages in this Question Booklet

OBSERVE SAFE WORKING PRACTICES DURING THIS PRACTICAL TEST

Instructions:

- All answers to be entered on the answer sheet provided
- All work to be performed on an individual basis
- Total marks for this test is 15

Equipment Required:

- DC power supply
- $0-20 \mathrm{~V}$ DC analog voltmeter
- 0 to 1 A DC analog ammeter
- Lamp and lampholder - 12 V , 5 watt
- Single pole switch
- Connection leads -4 mm banana leads

SECTION	Possible Marks	Actual Marks
Circuit Wiring	5	
Circuit Connection	5	
Readings/ Calculations	5	
Total	15	

Aids permitted where indicated:

Standard Dictionaries	Bilingual Dictionaries	Technical Dictionaries	Programmable Calculators	Non- programmable Calculators	Mobile Phones	MP3 Players
No	Yes	No	No	Yes	No	No

Procedure

Step 1: Neatly draw the wiring required to enable the components below to operate correctly as a series circuit.

Step 2: Arrange the equipment on the bench to match that shown in Figure 1, then connect the components as drawn. Choose leads of a suitable length to give a neat circuit layout.

Figure 1 Electric Circuit Connections

Do not proceed until the teacher has checked your circuit.

Step 3: (a) With the switch in the open position, turn on the power supply and adjust for a voltage output of $\mathbf{1 0 ~ V}$.
(b) Close the switch then measure and record (in space provided on the answer sheet) the circuit current as indicated by the ammeter.

Do not proceed until the teacher has checked your results.
Step 4: Using your results from Step 3, calculate the resistance of the lamp and record it on the answer sheet in the space provided.

Step 5: Turn off the power supply, then disconnect the circuit and return all equipment to its proper place.

Practical Test 1A - Answer Sheet

Step 1: Circuit Wiring (Figure 1)

$\mathbf{1}^{\text {st }}$ Try	$\mathbf{2}^{\text {nd }}$ Try	Teacher Assist
5	2	0

Step 2: Circuit Connection

$\mathbf{1}^{\text {st }}$ Try	$\mathbf{2}^{\text {nd }}$ Try	Teacher Assist
5	2	0

Step 3: Supply Voltage V
Circuit Current I

Step 4: Lamp Resistance (by calculation, show working)
\qquad
\qquad
\qquad

Total Mark: \qquad /15

AFB

Student Name: Class :
Date :

20222 Certificate III Electrotechnology Electrician

D.C. Circuits TEST 1A

PHILIPS Chapters 1-4

Time allowed - 1.5 hours

16 Pages in this Question Booklet

Aids to be supplied by College:
None
Aids to be supplied by Students:
Pen, pencil, eraser, rule, calculator

TOTAL MARKS AVAILABLE

SECTION	Possible Marks	Actual Marks
A	20	
B	20	
C	20	
D	25	
TOTAL	85	

Instructions to Students:

- Electronic devices are to be turned off and removed from your person.
You cannot access an electronic device during this examination.
- All questions are to be answered in the space provided in this Question Booklet.
Answers to Section A - Multi-choice Questions, are to be recorded on the Answer Sheet attached to this Question Booklet.
- You are not to use any reference book in this examination.
- The whole of this Question Booklet is to be handed to the Supervisor upon completion.

Aids permitted where indicated:

Standard Dictionaries	Bilingual Dictionaries	Technical Dictionaries	Programmable Calculators	Non- programmable Calculators	Mobile Phones	MP3 Players
No	Yes	No	No	Yes	No	No

[^0]
SECTION A - (20 Marks)

INSTRUCTIONS:

Select the best answer for the following statements and place the identifying letter in the bracket. Each correct answer is worth 1 mark.

1. How many electrons are there in one Coulomb:
A. 3.14
B. $12.57 \times 10-7$
C. 6.24
D. 6.24×1018
2. Current in a circuit is a direct result of applying:
A. an e.m.f. to the circuit
B. Ohm's Law to the circuit
C. an ammeter to the circuit
D. resistance to the circuit.
3. Current in a solid conductor is the:
A. ionisation of molecules in one direction
B. movement of ions in one direction
C. movement of electrons
D. ionisation of atoms in one direction
4. To measure the voltage across a load, A voltmeter should be connected in:
A. series with a load
B. series with an ammeter
C. parallel with a load
D. parallel with an ammeter.
5. Power is defined as the:
A. amount of energy to do work
B. rate at which the work is done
C. ability to do work
D. amount of heat dissipated.
6. If the resistance of a circuit is halved while the applied e.m.f. remains constant, the current will be:
A. doubled
B. halved
C. the same
D. higher.
7. To protect the circuit wiring and the load, a fuse is connected in:
A. parallel with the supply
B. series with the voltmeter
C. series with the load
D. parallel with the load.
8. The voltage measured across a open switch will equal:
A. approximately 12 volts
B. zero volt
C. half the supply voltage
D. the total supply voltage.
9. A battery provides a source of:
A. electrical opposition
B. reluctance
C. resistance
D. electrical pressure.
(1 Mark)
10. The electric charge created by rubbing two surfaces together is called:
A. moving electricity
B. static electricity
C. a battery
D. photo-voltaic.
11. To measure the current through a load, the ammeter should be connected in:
A. series with the load
B. series with a voltmeter
C. parallel with a load
D. parallel with a voltmeter
12. The term "work" is directly related to:
A. the distance a force moves a body
B. the rate at which energy is used
C. how quickly a body accelerates
D. how heavy a body is.
13. The LED that produces light from current is a:
A. luminous enhancing device
B. long extended lamp
C. light emitting diode
D. large electric devices.
14. Which metal has the least resistance and is commonly used in electrical wiring:
A. aluminium
B. steel
C. gold
D. copper.
15. Energy can be measured in:
A. joules
B. watts
C. ohms
D. pascals.
16. If the electrical pressure applied to a circuit is decreased, the electric current will:
A. decrease
B. remain the same
C. increase
D. decrease to zero.
17. The unit for charge is:
A. amperes
B. coulombs
C. joules
D. pascals.
18. In the atomic structure of an element, a positive charge is exhibited by a:
A. proton
B. atom
C. electron
D. neutron.
19. 400 mA is equal to:
A. 4 amps
B. 0.4 amps
C. 40 amps
D. 400000 amps .
20. Lifting a 200 kg load in two different amounts of time uses
A. two different amounts of energy
B. the same amount of energy
C. slightly different amounts of energy
D. less Joules of energy.

SECTION B - (20 Marks)

INSTRUCTIONS:

Answer the following questions in the space provided:

1. State two employee obligations under current safety laws.
a) ___Safety for Yourself \& Others_
b) __Cooperate with Employer. \qquad Report any H \& S Issues
2. Sustainable energy is made up of two parts, what are they
a) \qquad Renewable Energy \qquad
b) \qquad Energy Efficiency \qquad
3. State three forms of energy that can be converted to electrical energy?
a) ___Mechanical \qquad
b) \qquad Chemical \qquad
c) \qquad Light \qquad Heat \qquad
4. If the resistance of a circuit is doubled what is the effect on the circuit current. (1)
a) \qquad Halved \qquad
5. Name two renewable energy sources which are commonly used to produce electrical power.
b) \qquad Wind \qquad Wave \qquad Hydro \qquad Geothermal \qquad
c) \qquad Solar \qquad etc... \qquad
6. Name the device which produces a voltage when exposed to light.
a) \qquad Photo Voltaic \qquad
7. State two factors which determine the value of current flowing through your body when you get an electric shock.
a) \qquad Voltage applied \qquad
b) \qquad Resistance of the body (current path) \qquad
8. The electrical industry can be divided into three main areas, what are they?
a) \qquad Electrical Supply \qquad
b) \qquad Industrial \qquad
c) \qquad Commercial \& Domestic \qquad
9. What charge does an electron hold?
a) \qquad Negative \qquad
10. Define the term, 'Resistance’.
a) \qquad Opposition to Current Flow \qquad
11. What is the relationship between kinetic and potential energy?
a) \qquad Potential is Stored Energy \qquad
b) \qquad Kinetic is Energy in Motion \qquad

SECTION C Drawings and Diagrams - (20 Marks)

1. Circle the appropriate letter which indicates the correct meter range for accuracy and to prevent damaging the meter.

\mathbf{A}	\mathbf{B}	C

(2)
2. Complete the table below for electrical quantities.

Quantity	Symbol	Measurement Unit
Voltage	V	Volt
Current	I	Amps
Resistance	R	Ohms
Charge	Q	Coulombs

(3)
3. Study the picture below and answer the related questions.

a. What is being produced by placing this material under pressure?
\qquad Voltage \qquad
b. What effect is this known as?
___Piezo Electric \qquad
c. State an electrical application for this effect.
_Microphone, _Guitar Pick Ups, _Electronic
lighters,_ etc__
4. Draw a Circuit Diagram from the basic wiring diagram using the correct component symbols. Use a ruler or marks will be deducted.

Circuit Diagram

(4)
5. Study the picture below and answer the related questions.

Name the parts of the atom which make the nucleus.
\qquad Protons
Neutrons \qquad
(1)

What part of an atom is this known as?
___Electron \qquad
What shell is it placed in?
__Valence \qquad
What charge does it hold?
___Negative \qquad
6. Study the pictures below and state what form of energy is being converted to electrical.

a)___Heat__

b)___Light___
(2)
7. Electric current causes a number of effects. Name the three effects demonstrated by the images below.
b)___Physiological_ \qquad

c)___Chemical___

SECTION D - Calculations (20 Marks)

INSTRUCTIONS:

All working out must be shown or marks will be deducted.

1. Convert the standard numbers to an appropriate metric prefix.

Standard Notation	Metric prefix
$\mathbf{2 , 0 0 0 , 0 0 0 , 0 0 0}$ Watts	2GW (example)
$3,900,000$ Watts	3.9 MW
33,000 Volts	33 kV
0.002 Amps	2 mA
0.000004 ohms	$4 \mu \Omega$

2. Calculate the power consumed when a water heater draws 20 amperes from a 230V supply.

4600W. Preferred written as 4.6 kW
3. When a potential difference of 400 volts is applied to a resistor the current is five amperes. Calculate the value of the resistor.
80Ω
4. A 230 volt supply is connected to an electric heater, with an element resistance of 22Ω. Calculate the current drawn.
10.45A
5. Determine the torque, when a force of 400 N is applied to a spanner with a radius of 120 mm .

48Nm
(3)
6. An oven is rated at 400 V and its combined element resistance is 18Ω. Calculate the power dissipated.
8888.88W. Prefered written as 8.9 kW
7. Calculate the current drawn by a $15 \Omega, 18 \mathrm{~W}$ resistor.
1.1Amp
(3)
8. A Motor takes 700 W of electrical power and delivers 640 W of mechanical power. Calculate the efficiency.
91.4\%
(2)
9. Calculate the value of Charge if a lighting circuit draws 3amp for a period of 10 minutes.

1800C.
(2)
10. An electric forklift truck lifts a 350kg load vertically through a distance of 1.5 metres. Calculate the work done? (note: gravity $=9.8 \mathrm{~m} / \mathrm{s}^{2}$)

Options a) Force $=\mathrm{ma}=350 \times 9.8=3430 \mathrm{~N}$

$$
W=\mathrm{Fd} \quad=3430 \times 1.5=5145 \text { Joules }
$$

Option b) $W=\operatorname{mgh}=350 \times 9.8 \times 1.5=5145$ Joules

Note: The symbols used on this sheet follow AS1046 pt 1. There are alternate recognised symbols in use. The list does not contain every equation used in the course. Transposition of equations will be necessary to solve problems

$Q=I t$	$v=\frac{s}{t}$	$a=\frac{\Delta v}{t}$
$F=m a$	$W=F s$	$W=m g h$
$W=P t$	$\eta \%=\frac{\text { output }}{\text { input }} \times \frac{100}{1}$	$I=\frac{V}{R}$
$P=V I$	$P=I^{2} R$	$P=\frac{V^{2}}{R}$
$R_{2}=\frac{R_{1} A_{1} l_{2}}{A_{2} l_{1}}$	$R_{h}=R_{c}(1+\alpha \Delta t)$	$R=\frac{\rho l}{A}$
$R_{T}=R_{1}+R_{2}+R_{3}$	$V_{T}=V_{1}+V_{2}+V_{3}$	$\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}$
$I_{T}=I_{1}+I_{2}+I_{3}$	$V_{2}=V_{T} \frac{R_{2}}{R_{1}+R_{2}}$	$I_{2}=I_{T} \frac{R_{1}}{R_{1}+R_{2}}$
$R_{x}=\frac{R_{A} R}{R_{B}}$	$C=\frac{Q}{V}$	$\tau=R C$
$\frac{1}{C_{T}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}$	$C_{T}=C_{1}+C_{2}+C_{3}$	$C=\frac{A \varepsilon_{0} \varepsilon_{r}}{d}$
$F_{m}=I N$	$H=\frac{F_{m}}{l}$	$B=\frac{\Phi}{A}$
$\Phi=\frac{F_{m}}{S}$	$S=\frac{l}{\mu_{0} \mu_{r} A}$	$V=N \frac{\Delta \Phi}{\Delta t}$
$e=B l v$	$L=\frac{\mu_{o} \mu_{r} A N^{2}}{l}$	$L=N \frac{\Delta \Phi}{\Delta I}$
$V=L \frac{\Delta I}{\Delta t}$	$\tau=\frac{L}{R}$	$F=B i l$
$T=F r$	$E_{g}=\frac{\Phi Z n P}{60 a}$	$P=\frac{2 \pi n T}{60}$
$t=\frac{1}{f}$	$f=\frac{n p}{120}$	$V=0.707 V_{\max }$
$I=0.707 I_{\max }$	$V_{\text {ave }}=0.637 V_{\max }$	$I_{\text {ave }}=0.637 I_{\text {max }}$
$v=V_{\text {max }} \sin \phi$	$i=I_{\text {max }} \sin \phi$	$I=\frac{V}{Z}$
$Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$	$X_{L}=2 \pi / L$	$X_{C}=\frac{1}{2 \pi f C}$

$\cos \phi=\frac{P}{S}$	$\cos \phi=\frac{R}{Z}$	$S=\sqrt{P^{2}+Q^{2}}$
$S=V I$	$P=V I \cos \phi$	$Q=V I \sin \phi$
$f_{o}=\frac{1}{2 \pi \sqrt{L C}}$	$V_{L}=\sqrt{3} V_{P}$	$I_{L}=\sqrt{3} I_{P}$
$S=\sqrt{3} V_{L} I_{L}$	$P=\sqrt{3} V_{L} I_{L} \cos \phi$	$Q=\sqrt{3} V_{L} I_{L} \sin \phi$
$\tan \phi=\sqrt{3}\left(\frac{W_{2}-W_{1}}{W_{2}+W_{1}}\right)$	$Q=m C \Delta t$	
$V^{\prime}=4.44 \Phi f N$	$\frac{V_{1}}{V_{2}}=\frac{N_{1}}{N_{2}}$	$\frac{I_{2}}{I_{1}}=\frac{N_{1}}{N_{2}}$
$N_{s p n}=\frac{120 f}{p}$	$s \%=\frac{\left(n_{s y n}-n\right)}{n_{s y n}} \times \frac{100}{1}$	$f_{r}=\frac{s \% \times f}{100}$
$V_{r e g} \%=\frac{\left(V_{N L}-V_{F L}\right)}{V_{F L}} \times \frac{100}{1}$	$V_{r e g} \%=\frac{\left(V_{N L}-V_{F L}\right)}{V_{N L}} \times \frac{100}{1}$	$T=\frac{\Phi Z I P}{2 \pi a}$
$I_{S T}=\frac{1}{3} \times I_{\text {DOL }}$	$T_{S T}=\frac{1}{3} \times T_{D O L}$	$I_{S T}=\frac{V_{S T}}{V} \times I_{D O L}$
$T_{S T}=\left(\frac{V_{S T}}{V}\right)^{2} \times T_{D O L}$	$I_{\text {motor } s t}=\frac{\% T A P}{100} \times I_{D O L}$	$I_{\text {linest }}=\left(\frac{\% T A P}{100}\right)^{2} \times I_{D O L}$
$E=\frac{\Phi_{v}}{A}$	$E=\frac{I}{d^{2}}$	$\eta_{v}=\frac{\Phi_{v}}{P}$
$V_{L}=0.45 V_{a c}$	$V_{L}=0.9 V_{a c}$	$V_{L}=1.17 V_{\text {phase }}$
$V_{L}=1.35 V_{\text {line }}$	$P R V=\sqrt{2} V_{a c}$	$P R V=2 \sqrt{2} V_{a c}$
$P R V=2.45 V_{\text {ac }}$	$V_{\text {ripple }}=\sqrt{2} V_{a c}$	$V_{\text {ripple }}=0.707 V_{\text {phase }}$
$V_{\text {ripple }}=0.1895 V_{\text {line }}$		

$$
V_{\text {ripple }}=0.1895 V_{\text {line }}
$$

Student Name : \qquad KEY \qquad
Class : \qquad PM 2013 \qquad

ANSWER SHEET

Section A (Multi-choice Questions)

Instructions:

Enter your personal details in the top right hand corner of this sheet.
Place an \mathbf{X} in box of your choice. If you make a mistake, circle your answer $\boldsymbol{\otimes}$ and choose again.

Question	A.	B.	C.	D.
1				\mathbf{X}
2	\mathbf{X}			
3			X	
4			X	
5		X		
6	X			
7			X	
8				\mathbf{X}
9				\mathbf{X}
10		\mathbf{X}		
Totals				

Question	A.	B.	C.	D.
11	\mathbf{X}			
12	\mathbf{X}			
13			\mathbf{X}	
14				\mathbf{X}
15	\mathbf{X}			
16	\mathbf{X}			
17		\mathbf{X}		
18	\mathbf{X}			
19		\mathbf{X}		
20		\mathbf{X}		
Totals				

Total Marks Section A:

\qquad

SYDNEY INSTITUTE

TAFEB

Ultimo

Student Name: \qquad
Class : \qquad
Date: \qquad

20222 Certificate III Electrotechnology Electrician

D.C. Circuits TEST 1A

PHILIPS Chapters 1-4

Time allowed - 1.5 hours

16 Pages in this Question Booklet

Aids to be supplied by College:
None
Aids to be supplied by Students:
Pen, pencil, eraser, rule, calculator

TOTAL MARKS AVAILABLE

SECTION	Possible Marks	Actual Marks
A	20	
B	20	
C	20	
D	25	
TOTAL	85	

Instructions to Students:

- Electronic devices are to be turned off and removed from your person.
You cannot access an electronic device during this examination.
- All questions are to be answered in the space provided in this Question Booklet.
Answers to Section A - Multi-choice Questions, are to be recorded on the Answer Sheet attached to this Question Booklet.
- You are not to use any reference book in this examination.
- The whole of this Question Booklet is to be handed to the Supervisor upon completion.

Aids permitted where indicated:

Standard Dictionaries	Bilingual Dictionaries	Technical Dictionaries	Programmable Calculators	Non- programmable Calculators	Mobile Phones	MP3 Players
No	Yes	No	No	Yes	No	No

[^1]
SECTION A - (20 Marks)

INSTRUCTIONS:

Select the best answer for the following statements and place the identifying letter in the bracket. Each correct answer is worth 1 mark.

1. How many electrons are there in one Coulomb:
A. 3.14
B. $12.57 \times 10-7$
C. 6.24
D. $6.24 \times \times 1018$
2. Current in a circuit is a direct result of applying:
A. an e.m.f. to the circuit
B. Ohm's Law to the circuit
C. an ammeter to the circuit
D. resistance to the circuit.
3. Current in a solid conductor is the:
A. ionisation of molecules in one direction
B. movement of ions in one direction
C. movement of electrons
D. ionisation of atoms in one direction
4. To measure the voltage across a load, A voltmeter should be connected in:
A. series with a load
B. series with an ammeter
C. parallel with a load
D. parallel with an ammeter.
5. Power is defined as the:
A. amount of energy to do work
B. rate at which the work is done
C. ability to do work
D. amount of heat dissipated.
6. If the resistance of a circuit is halved while the applied e.m.f. remains constant, the current will be:
A. doubled
B. halved
C. the same
D. higher.
7. To protect the circuit wiring and the load, a fuse is connected in:
A. parallel with the supply
B. series with the voltmeter
C. series with the load
D. parallel with the load.
8. The voltage measured across a open switch will equal:
A. approximately 12 volts
B. zero volt
C. half the supply voltage
D. the total supply voltage.
9. A battery provides a source of:
A. electrical opposition
B. reluctance
C. resistance
D. electrical pressure.
10. The electric charge created by rubbing two surfaces together is called:
A. moving electricity
B. static electricity
C. a battery
D. photo-voltaic.
11. To measure the current through a load, the ammeter should be connected in:
A. series with the load
B. series with a voltmeter
C. parallel with a load
D. parallel with a voltmeter
12. The term "work" is directly related to:
A. the distance a force moves a body
B. the rate at which energy is used
C. how quickly a body accelerates
D. how heavy a body is.
13. The LED that produces light from current is a:
A. luminous enhancing device
B. long extended lamp
C. light emitting diode
D. large electric devices.
14. Which metal has the least resistance and is commonly used in electrical wiring:
A. aluminium
B. steel
C. gold
D. copper.
15. Energy can be measured in:
A. joules
B. watts
C. ohms
D. pascals.
16. If the electrical pressure applied to a circuit is decreased, the electric current will:
A. decrease
B. remain the same
C. increase
D. decrease to zero.
17. The unit for charge is:
A. amperes
B. coulombs
C. joules
D. pascals.
18. In the atomic structure of an element, a positive charge is exhibited by a:
A. proton
B. atom
C. electron
D. neutron.
19. 400 mA is equal to:
A. 4 amps
B. 0.4 amps
C. 40 amps
D. 400000 amps .
20. Lifting a 200 kg load in two different amounts of time uses
A. two different amounts of energy
B. the same amount of energy
C. slightly different amounts of energy
D. less Joules of energy.

SECTION B - (20 Marks)

INSTRUCTIONS:

Answer the following questions in the space provided:

1. State two employee obligations under current safety laws.
a)
b) \qquad
2. Sustainable energy is made up of two parts, what are they
a)
b) \qquad
3. State three forms of energy that can be converted to electrical energy?
a)
b) \qquad
c) \qquad
4. If the resistance of a circuit is doubled what is the effect on the circuit current. (1)
a) \qquad
5. Name two renewable energy sources which are commonly used to produce electrical power.
b) \qquad
c) \qquad
6. Name the device which produces a voltage when exposed to light.
a) \qquad
7. State two factors which determine the value of current flowing through your body when you get an electric shock.
a)
b) \qquad
8. The electrical industry can be divided into three main areas, what are they?
a)
b)
c) \qquad
9. What charge does an electron hold?
a) \qquad
10. Define the term, 'Resistance'.
a) \qquad
11. What is the relationship between kinetic and potential energy?
a) \qquad
b) \qquad

SECTION C Drawings and Diagrams - (20 Marks)

1. Circle the appropriate letter which indicates the correct meter range for accuracy and to prevent damaging the meter.

\mathbf{A}	\mathbf{B}	\mathbf{C}

(2)
2. Complete the table below for electrical quantities.

Quantity	Symbol	Measurement Unit
Voltage	V	Volt
	I	Amps
Resistance		Ohms
Charge	Q	

3. Study the picture below and answer the related questions.

a. What is being produced by placing this material under pressure?
b. What effect is this known as?
c. State an electrical application for this effect.
\qquad
4. Draw a Circuit Diagram from the basic wiring diagram using the correct component symbols. Use a ruler or marks will be deducted.

Circuit Diagram

5. Study the picture below and answer the related questions.

Name the parts of the atom
which make the nucleus.
-

6. Study the pictures below and state what form of energy is being converted to electrical.

a)

b)
(2)
7. Electric current causes a number of effects. Name the three effects demonstrated by the images below.

(3)

SECTION D - Calculations (20 Marks)

INSTRUCTIONS:

All working out must be shown or marks will be deducted.

1. Convert the standard numbers to an appropriate metric prefix.

Standard Notation	Metric prefix
$\mathbf{2 , 0 0 0 , 0 0 0 , 0 0 0}$ Watts	2GW (example)
$3,900,000$ Watts	
33,000 Volts	
0.002Amps	
0.000004 ohms	

2. Calculate the power consumed when a water heater draws 20 amperes from a 230V supply.
3. When a potential difference of 400 volts is applied to a resistor the current is five amperes. Calculate the value of the resistor.
4. A 230 volt supply is connected to an electric heater, with an element resistance of 22Ω. Calculate the current drawn.
5. Determine the torque, when a force of 400 N is applied to a spanner with a radius of 120 mm .
6. An oven is rated at 400 V and its combined element resistance is 18Ω. Calculate the power dissipated.
7. Calculate the current drawn by a $15 \Omega, 18 \mathrm{~W}$ resistor.
8. A Motor takes 700 W of electrical power and delivers 640 W of mechanical power. Calculate the efficiency.
9. Calculate the value of Charge if a lighting circuit draws 3amp for a period of 10 minutes.
(2)
10. An electric forklift truck lifts a 350kg load vertically through a distance of 1.5 metres. Calculate the work done? (note: gravity $=9.8 \mathrm{~m} / \mathrm{s}^{2}$)

Note: The symbols used on this sheet follow AS1046 pt 1. There are alternate recognised symbols in use. The list does not contain every equation used in the course. Transposition of equations will be necessary to solve problems

$Q=I t$	$v=\frac{s}{t}$	$a=\frac{\Delta v}{t}$
$F=m a$	$W=F s$	$W=m g h$
$W=P t$	$\eta \%=\frac{\text { output }}{\text { input }} \times \frac{100}{1}$	$I=\frac{V}{R}$
$P=V I$	$P=I^{2} R$	$P=\frac{V^{2}}{R}$
$R_{2}=\frac{R_{1} A_{1} l_{2}}{A_{2} l_{1}}$	$R_{h}=R_{c}(1+\alpha \Delta t)$	$R=\frac{\rho l}{A}$
$R_{T}=R_{1}+R_{2}+R_{3}$	$V_{T}=V_{1}+V_{2}+V_{3}$	$\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}$
$I_{T}=I_{1}+I_{2}+I_{3}$	$V_{2}=V_{T} \frac{R_{2}}{R_{1}+R_{2}}$	$I_{2}=I_{T} \frac{R_{1}}{R_{1}+R_{2}}$
$R_{x}=\frac{R_{A} R}{R_{B}}$	$C=\frac{Q}{V}$	$\tau=R C$
$\frac{1}{C_{T}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}$	$C_{T}=C_{1}+C_{2}+C_{3}$	$C=\frac{A \varepsilon_{0} \varepsilon_{r}}{d}$
$F_{m}=I N$	$H=\frac{F_{m}}{l}$	$B=\frac{\Phi}{A}$
$\Phi=\frac{F_{m}}{S}$	$S=\frac{l}{\mu_{0} \mu_{r} A}$	$V=N \frac{\Delta \Phi}{\Delta t}$
$e=B l v$	$L=\frac{\mu_{o} \mu_{r} A N^{2}}{l}$	$L=N \frac{\Delta \Phi}{\Delta I}$
$V=L \frac{\Delta I}{\Delta t}$	$\tau=\frac{L}{R}$	$F=B i l$
$T=F r$	$E_{g}=\frac{\Phi Z n P}{60 a}$	$P=\frac{2 \pi n T}{60}$
$t=\frac{1}{f}$	$f=\frac{n p}{120}$	$V=0.707 V_{\max }$
$I=0.707 I_{\max }$	$V_{\text {ave }}=0.637 V_{\max }$	$I_{\text {ave }}=0.637 I_{\text {max }}$
$v=V_{\text {max }} \sin \phi$	$i=I_{\text {max }} \sin \phi$	$I=\frac{V}{Z}$
$Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$	$X_{L}=2 \pi / L$	$X_{C}=\frac{1}{2 \pi f C}$

$\cos \phi=\frac{P}{S}$	$\cos \phi=\frac{R}{Z}$	$S=\sqrt{P^{2}+Q^{2}}$
$S=V I$	$P=V I \cos \phi$	$Q=V I \sin \phi$
$f_{o}=\frac{1}{2 \pi \sqrt{L C}}$	$V_{L}=\sqrt{3} V_{P}$	$I_{L}=\sqrt{3} I_{P}$
$S=\sqrt{3} V_{L} I_{L}$	$P=\sqrt{3} V_{L} I_{L} \cos \phi$	$Q=\sqrt{3} V_{L} I_{L} \sin \phi$
$\tan \phi=\sqrt{3}\left(\frac{W_{2}-W_{1}}{W_{2}+W_{1}}\right)$	$Q=m C \Delta t$	
$V^{\prime}=4.44 \Phi f N$	$\frac{V_{1}}{V_{2}}=\frac{N_{1}}{N_{2}}$	$\frac{I_{2}}{I_{1}}=\frac{N_{1}}{N_{2}}$
$N_{s p n}=\frac{120 f}{p}$	$s \%=\frac{\left(n_{s y n}-n\right)}{n_{s y n}} \times \frac{100}{1}$	$f_{r}=\frac{s \% \times f}{100}$
$V_{r e g} \%=\frac{\left(V_{N L}-V_{F L}\right)}{V_{F L}} \times \frac{100}{1}$	$V_{r e g} \%=\frac{\left(V_{N L}-V_{F L}\right)}{V_{N L}} \times \frac{100}{1}$	$T=\frac{\Phi Z I P}{2 \pi a}$
$I_{S T}=\frac{1}{3} \times I_{\text {DOL }}$	$T_{S T}=\frac{1}{3} \times T_{D O L}$	$I_{S T}=\frac{V_{S T}}{V} \times I_{D O L}$
$T_{S T}=\left(\frac{V_{S T}}{V}\right)^{2} \times T_{D O L}$	$I_{\text {motor } s t}=\frac{\% T A P}{100} \times I_{D O L}$	$I_{\text {linest }}=\left(\frac{\% T A P}{100}\right)^{2} \times I_{D O L}$
$E=\frac{\Phi_{v}}{A}$	$E=\frac{I}{d^{2}}$	$\eta_{v}=\frac{\Phi_{v}}{P}$
$V_{L}=0.45 V_{a c}$	$V_{L}=0.9 V_{a c}$	$V_{L}=1.17 V_{\text {phase }}$
$V_{L}=1.35 V_{\text {line }}$	$P R V=\sqrt{2} V_{a c}$	$P R V=2 \sqrt{2} V_{a c}$
$P R V=2.45 V_{\text {ac }}$	$V_{\text {ripple }}=\sqrt{2} V_{a c}$	$V_{\text {ripple }}=0.707 V_{\text {phase }}$
$V_{\text {ripple }}=0.1895 V_{\text {line }}$		

$$
V_{\text {ripple }}=0.1895 V_{\text {line }}
$$

Student Name : \qquad
Class : \qquad

ANSWER SHEET

Section A (Multi-choice Questions)

Instructions:

Enter your personal details in the top right hand corner of this sheet.
Place an \mathbf{X} in box of your choice. If you make a mistake, circle your answer $\boldsymbol{\otimes}$ and choose again.

Question	A.	B.	C.	D.	Question	A.	B.	C.	D.
1					11				
2					12				
3					13				
4					14				
5					15				
6					16				
7					17				
8					18				
9					19				
10					20				
Totals					Totals				

Total Marks Section A:

\qquad

Student Name: \qquad

Class :_-_-	KEY
PM	
Date $: \quad$	March 2013

20222 Certificate III Electrotechnology Electrician
 D.C. Circuits PRACTICAL TEST 2A

PHILIPS Chapters 5-7

Time allowed - 45 Minutes

4 Pages in this Question Booklet

OBSERVE SAFE WORKING PRACTICES DURING THIS PRACTICAL TEST

Instructions:

- All answers to be entered on the answer sheet provided
- All work to be performed on an individual basis
- Total marks for this test is 10

Equipment Required:

- DC power supply
- 0-20V DC analog voltmeter
- 0 to 500 mA DC analog ammeter
- Multimeter

SECTION	Possible Marks	Actual Marks
Series Circuit	15	
Parallel circuit	15	
Total	30	

- Five resistors, R1, R2, R3, R4 and R5 all of unknown value
- Single pole switch
- Connection leads - 4 mm banana leads

Aids permitted where indicated:

Standard Dictionaries	Bilingual Dictionaries	Technical Dictionaries	Programmable Calculators	Non- programmable Calculators	Mobile Phones	MP3 Players
No	Yes	No	No	Yes	No	No

Procedure

Step 1: Arrange the equipment on the bench in a neat and logical manner, and then connect the circuit shown in Figure 1. Choose leads of a suitable length to give a neat circuit layout.

Figure 1

Do not proceed until the teacher has checked your circuit.
Step 2: With the switch in the open position, turn on the power supply and adjust it for an output voltage of $\mathbf{1 4 . 5} \mathbf{V}$.

Close the switch then measure and record (in the space provided on the answer sheet) the circuit current (I).

Step 3: Open the switch and remove the ammeter from the circuit. Check that the output of the power supply has not changed, and readjust if necessary.

Close the switch then using the voltmeter, measure the voltage drop across each resistor $\left(\mathbf{V}_{\mathbf{R 1}}, \mathbf{V}_{\mathbf{R} 2}\right.$ and $\left.\mathbf{V}_{\mathbf{R} 3}\right)$. Record these readings in the space provided on the answer sheet.

Step 4: Turn off the power supply and disconnect it from the circuit. Also disconnect the voltmeter from the circuit.

Using the multimeter, measure the total resistance $\left(\mathbf{R}_{\mathbf{T}}\right)$ of the circuit and record the result in the space provided on the answer sheet.

Do not proceed until the teacher has checked your results.

Step 5: Connect the circuit shown in Figure 2 below.

Figure 2

Do not proceed until the teacher has checked your circuit.

Step 6: Turn on the power supply, close the switch, and adjust the voltage output from the power supply to give a total circuit current of $\underline{\mathbf{4 5 0} \mathbf{~ m A}}$.

Measure the voltage ($\mathbf{V}_{\mathbf{s}}$) supplying the circuit and record this value in the space provided on the answer sheet.

Step 7: Use the ammeter to measure the current flowing through the resistors ($\mathbf{I}_{\mathbf{R} 2}$, $\mathbf{I}_{\mathbf{R 4}}$ and $\mathbf{I}_{\mathbf{R} 5}$) and record the values in the spaces provided on the answer sheet. (Note: open the switch before reconnecting the ammeter for each measurement).

Turn off the power supply and disconnect it from the circuit. Also disconnect the voltmeter and ammeter from the circuit.

Using the multimeter, measure the total resistance $\left(\mathbf{R}_{\mathbf{T}}\right)$ of the circuit and record the result in the space provided on the answer sheet.

Do not proceed until the teacher has checked your results.
Step 8: Disconnect the circuit and return all the equipment to its proper place.

Practical Test 2A - Answer Sheet

Name:

KEY
-PM
March 2013

Class:
Date : \qquad

Total Mark: \qquad /30

Series circuit

CIRCUIT CONNECTION

$\mathbf{1}^{\text {st }}$ Try	$\mathbf{2}^{\text {nd }}$ Try	Teacher Assist
5	2	0

Measured Value	Measured Values \& Units	Marks
I	250 mA	2
$\mathrm{~V}_{\mathrm{R} 1}$	3.68 V	2
$\mathrm{~V}_{\mathrm{R} 2}$	8.18 V	2
$\mathrm{~V}_{\mathrm{R} 3}$	2.49 V	2
R_{T}	58.7Ω	2

Parallel circuit

CIRCUIT CONNECTION

$\mathbf{1}^{\text {st }}$ Try	$\mathbf{2}^{\text {nd }}$ Try	Teacher Assist
5	2	0

Measured Value	Measured Values \& Units	Marks
V_{S}	8.05 V	2
$\mathrm{I}_{\mathrm{R} 2}$	280 mA	2
$\mathrm{I}_{\mathrm{R} 4}$	130 mA	2
$\mathrm{I}_{\mathrm{R} 5}$	90 mA	2
R_{T}	18Ω	2

SYDNEY INSTITUTE

TAFI事

Ultimo College

Student Name: \qquad
Class: \qquad
Date: \qquad

20222 Certificate III Electrotechnology Electrician
 D.C. Circuits PRACTICAL TEST 2A

PHILIPS Chapters 5-7

Time allowed - 45 Minutes

4 Pages in this Question Booklet

OBSERVE SAFE WORKING PRACTICES DURING THIS PRACTICAL TEST

Instructions:

- All answers to be entered on the answer sheet provided
- All work to be performed on an individual basis
- Total marks for this test is 10

Equipment Required:

- DC power supply
- 0-20V DC analog voltmeter
- 0 to 500 mA DC analog ammeter
- Multimeter

SECTION	Possible Marks	Actual Marks
Series Circuit	15	
Parallel circuit	15	
Total	30	

- Five resistors, R1, R2, R3, R4 and R5 all of unknown value
- Single pole switch
- Connection leads - 4 mm banana leads

Aids permitted where indicated:

Standard Dictionaries	Bilingual Dictionaries	Technical Dictionaries	Programmable Calculators	Non- programmable Calculators	Mobile Phones	MP3 Players
No	Yes	No	No	Yes	No	No

\qquad M.A.James \qquad Date - 18103/13

Procedure

Step 1: Arrange the equipment on the bench in a neat and logical manner, and then connect the circuit shown in Figure 1. Choose leads of a suitable length to give a neat circuit layout.

Figure 1

Do not proceed until the teacher has checked your circuit.
Step 2: With the switch in the open position, turn on the power supply and adjust it for an output voltage of $\mathbf{1 4 . 5} \mathbf{V}$.

Close the switch then measure and record (in the space provided on the answer sheet) the circuit current (I).

Step 3: Open the switch and remove the ammeter from the circuit. Check that the output of the power supply has not changed, and readjust if necessary.

Close the switch then using the voltmeter, measure the voltage drop across each resistor $\left(\mathbf{V}_{\mathbf{R 1}}, \mathbf{V}_{\mathbf{R} 2}\right.$ and $\left.\mathbf{V}_{\mathbf{R} 3}\right)$. Record these readings in the space provided on the answer sheet.

Step 4: Turn off the power supply and disconnect it from the circuit. Also disconnect the voltmeter from the circuit.

Using the multimeter, measure the total resistance $\left(\mathbf{R}_{\mathbf{T}}\right)$ of the circuit and record the result in the space provided on the answer sheet.

Do not proceed until the teacher has checked your results.

Step 5: Connect the circuit shown in Figure 2 below.

Figure 2

Do not proceed until the teacher has checked your circuit.

Step 6: Turn on the power supply, close the switch, and adjust the voltage output from the power supply to give a total circuit current of $\underline{\mathbf{4 5 0} \mathbf{~ m A}}$.

Measure the voltage ($\mathbf{V}_{\mathbf{s}}$) supplying the circuit and record this value in the space provided on the answer sheet.

Step 7: Use the ammeter to measure the current flowing through the resistors ($\mathbf{I}_{\mathbf{R} 2}$, $\mathbf{I}_{\mathbf{R 4}}$ and $\mathbf{I}_{\mathbf{R} 5}$) and record the values in the spaces provided on the answer sheet. (Note: open the switch before reconnecting the ammeter for each measurement).

Turn off the power supply and disconnect it from the circuit. Also disconnect the voltmeter and ammeter from the circuit.

Using the multimeter, measure the total resistance $\left(\mathbf{R}_{\mathbf{T}}\right)$ of the circuit and record the result in the space provided on the answer sheet.

Do not proceed until the teacher has checked your results.
Step 8: Disconnect the circuit and return all the equipment to its proper place.

Practical Test 2A - Answer Sheet

Name: \qquad Total Mark: \qquad /30

Class: \qquad
Date : \qquad

Series circuit

CIRCUIT CONNECTION

$\mathbf{1}^{\text {st }}$ Try	$\mathbf{2}^{\text {nd }}$ Try	Teacher Assist
5	2	0

Measured Value	Measured Values \& Units	Marks
I		2
$\mathrm{~V}_{\mathrm{R} 1}$		2
$\mathrm{~V}_{\mathrm{R} 2}$		2
$\mathrm{~V}_{\mathrm{R} 3}$		2
R_{T}		2

Parallel circuit

CIRCUIT CONNECTION

$\mathbf{1}^{\text {st }}$ Try	$\mathbf{2}^{\text {nd }}$ Try	Teacher Assist
5	2	0

Measured Value	Measured Values \& Units	Marks
V_{S}		2
$\mathrm{I}_{\mathrm{R} 2}$		2
$\mathrm{I}_{\mathrm{R} 4}$		2
$\mathrm{I}_{\mathrm{R} 5}$		2
R_{T}		2

Student Name :
Class :

KEY

P.Murray

March 2013

20222 Certificate III Electrotechnology Electrician

D.C. Circuits TEST 2A

PHILIPS Chapters 5-7

Time allowed - 2 hours
 17 Pages in this Question Booklet

Aids to be supplied by College:

None
Aids to be supplied by Students:
Pen, pencil, eraser, rule, calculator
Total Marks Available

SECTION	Possible Marks	Actual Marks
A	25	
B	20	
C	18	
D	26	
TOTAL	89	

Instructions to Students:

- Electronic devices are to be turned off and removed from your person.
You cannot access an electronic device during this examination.
- All questions are to be answered in the space provided in this Question Booklet.
Answers to Section A - Multi-choice Questions, are to be recorded on the Answer Sheet attached to this Question Booklet.
- You are not to use any reference book in this examination.
- The whole of this Question Booklet is to be handed to the Supervisor upon completion.

Aids permitted where indicated:

Standard Dictionaries	Bilingual Dictionaries	Technical Dictionaries	Programmable Calculators	Non- programmable Calculators	Mobile Phones	MP3 Players
No	Yes	No	No	Yes	No	No

SECTION A - (25 Marks)

INSTRUCTIONS:

Select the best answer for the following statements and place the identifying letter in the bracket. Each correct answer is worth 1 mark.

1. A piezo-electric material will produce an e.m.f when:
A. exposed to sunlight
B. subjected to mechanical pressure
C. heated
D. passed through a magnetic field.
2. The ability of a conductor to permit the flow of electricity is called its:
A. conductance
B. resistance
C. reluctance
D. Capacitance.
3. A VDR is a device that changes its properties when:
A. current varies
B. temperature varies
C. voltage varies
D. light varies.
4. The proportion of what we get out of a machine or system for what we put into it is termed the:
A. output of the system
B. efficiency
C. operating losses of the system
D. proficiency of the system.
5. The metal often used in heating elements is
A. nichrome
B. copper
C. aluminium
D. Silver.

Cont....
6. If the cross sectional area is increased, the resistance will be:
A. doubled
B. halved
C. increased
D. Decreased.
7. Total resistance in a series circuit is equal to the:
A. largest value resistor
B. lowest value resistor
C. sum of the resistor values connected in series
D. average of the resistors connected.
8. An open circuit in a series circuit will cause:
A. current to remain the same
B. current to stop flowing
C. current to rise
D. a doubling of the current
9. The relationship between current and voltage in a series circuit is considered:
A. logarithmic
B. inversely proportional
C. non proportional
D. proportional
10. When there's an open circuit in a branch of a parallel circuit the total power will:
A. decrease
B. increase
C. remain the same
D. stop flowing
11. The total power consumed in a parallel circuit is the:
A. sum of the power consumed by all branches of the circuit
B. voltage divided by the total resistance
C. current multiplied by the total resistance
D. Equivalent to one branch of the circuit

Cont....
12. As the temperature of a copper conductor increases, its resistance:
A. increases
B. remains unchanged
C. decreases
D. reaches a minimum value
13. If five lamps are connected in series and the second lamp develops an open circuit, there is:
A. no current flow in lamps three, four and five only
B. current flow in lamp one only
C. no current flow in lamp two only
D. no current flow in all lamps
14. If the length of a conductor is doubled and its cross sectional area is halved, its resistance would:
A. remain unchanged
B. double
C. decrease
D. quadruple
15. When selecting a resistor for a circuit, the two factors which must be considered are:
A. the resistance and the current rating
B. the resistance and the voltage rating
C. the current and the voltage rating
D. the resistance and the power rating
(1Mark)
16. When three 30Ω Resistors are connected in parallel to each other the equivalent circuit resistance is
A. 3Ω
B. 90Ω
C. 30Ω
D. 10Ω
17. What would be the value of a resistor if it had $4 K 7$ written on it?
A. 47 ohms
B. 0.0047 ohms
C. 4700 ohms
D. 4.7 ohms

Figure 1
18. For the circuit shown in Fig.1, which resistance would have the most current flowing through it?
A. R1
B. R2
C. R3
D. the same current will flow through each resistor
19. The equivalent resistance of the circuit in Fig. 1 would be:
A. greater than R3
B. less than R1
C. greater than R1
D. the sum of R1, R2 and R3
20. If a conductor has a negative temperature coefficient, it's resistance will:
A. increase with an increase in temperature
B. decrease with an increase in temperature
C. be unaffected by a change in temperature
D. remain constant throughout the negative temperature range
21. Resistivity's unit of measurement is:
A. Degrees centigrade ($\left.{ }^{\circ} \mathrm{C}\right)$
B. Ohms (Ω)
C. Ohms per metre (Ω / m)
D. Metres (m)

Figure 2

22. The equivalent resistance of the resistors R1 and R2 shown in Fig. 2:
A. is always smaller than the lowest value of resistance
B. is calculated by adding the two resistances
C. can only be found be using Ohm's Law
D. can only be found by using an ohmmeter
23. If resistor R2 in Fig. 2 was to develop a short circuit the equivalent resistance would:
A. increase
B. decrease
C. remain unchanged
D. quadruple
24. If the voltage applied to the circuit Fig. 2 was to be doubled, the total power consumed by the circuit would:
A. quadruple
B. halve
C. double
D. triple
25. If resistor R2 in Fig. 2 was to become an open circuit, the total resistance of the circuit would:
A. beinfinity
B. decrease
C. remain unchanged
D. equal R1

SECTION B - (20 Marks)

Place the answer to each of the following questions in the appropriate place on the answer sheet.

Questions 1 to 3 refer to table 1 below.

COLOUR	VALUE	MULTIPLIER	TOLERANCE
Black	0	1	-
Brown	1	10	1%
Red	2	100	2%
Orange	3	1,000	-
Yellow	4	10,000	-
Green	5	100,000	0.5%
Blue	6	$1,000,000$	0.25%
Violet	7	-	0.1%
Grey	8	-	-
White	9	-	-
Gold	-	0.1	5%
Silver	-	0.01	10%

1.

(a) Using Table 1, determine the value of a resistor with the following colour bands: - Brown, Black, Red, Red
$1000 \quad+/-2 \%$
(b) Determine the tolerance range for the resistor in question 1a

2.
(a) Determine the value of a resistor with the following colour bands:White, Grey, Blue, Red, Gold
$98600 \quad+/-5 \%$
(2)
(b) Determine the tolerance range for the resistor in question 2 a
93670Ω to 103530Ω
3. Identify the colours of the four bands that would be found on a 120Ω resistor with a range of 108Ω to 132Ω.

4. How many current paths does a series circuit have?

5. If four identical resistors are connected in parallel and have a total resistance of 25Ω. What are the four individual resistance values?
-------- 100Ω
6. What is a common semiconductor material?

7. What is the tolerance range of an E12 resistor?
-_-_-_-_ 10%
8. What is the typical emf per cell of a standard lead-acid battery?

9. List the four (4) factors that affect the resistance of a conductor.

10. Give an example of where a thermistor is used and why?
Application \quad Motor control

Purpose ___ Over temperature protection
11. What type of temperature coefficient does "Constantan" have?

SECTION C - (18 Marks)

INSTRUCTIONS:

The question in this section requires some simple drawing and calculations. Ensure that the drawing is neat and legible. The use of pencil on the drawing is acceptable in this section only.

Q. 1

The diagram drawn below shows the components of a circuit. Draw the connections that are required to meet the following description:
(a) R1, R2, R3 and R4 are connected in parallel
(b) The ammeter measures total circuit current
(c) The voltmeter measures the voltage across R4

QUESTION 2

Identify the following component and sketch the resistance/light response curve and symbol.

(6)

QUESTION 3

Identify the following component, temperature/ resistance, response curve and draw its symbol.

Draws the symbol for response curve B

(6)

SECTION D Calculations - (26 Marks)

Show ALL working for your calculations.

1. A 12 VdD .C supply is connected to a series circuit containing a 10Ω and a 27Ω resistor. Determine the value of current drawn.

$$
\begin{equation*}
\mathrm{R}_{\mathrm{T}}=37 \Omega \quad \mathrm{I}_{\mathrm{T}}=324 \mathrm{~mA} \tag{3}
\end{equation*}
$$

2. Determine the resistance of a 180 metre length of $1.5 \mathrm{~mm}^{2}$ conductor. The resistivity of this aluminium is $2.83 \times 10-8$
3. If the branches of a parallel circuit dissipate $10 \mathrm{~W}, 20 \mathrm{~W}$ and 30 W respectively, what amount of power is dissipated by the entire circuit?
4. A 160 metre long copper cable is allowed a maximum resistance of 1Ω. Determine the minimum cross sectional area of a suitable cable. The resistivity of copper is $1.72 \times 10-8$
$2.75 \mathrm{~mm}^{2}$
5. The circuit below has three identical lamps. Find the current flowing in the circuit

$$
\mathrm{P}_{\mathrm{T}}=450 \mathrm{~W} \quad \mathrm{I}_{\mathrm{T}}=1.96 \mathrm{~A}
$$

6. Calculate the cost of running of 1200 watt electric heater for eight hours. The cost of electricity is $\$ 0.12$ per kWh .

$$
\mathrm{P}_{\mathrm{T}}=1.2 \mathrm{kw} \quad \text { Energy }=9.6 \mathrm{kWh} \quad \text { Cost }=\$ 1.15
$$

7. Determine the total power dissipated in a 230 V parallel circuit with three resistor of value, $\mathrm{R}_{1}=120 \Omega, \mathrm{R}_{2}=60 \Omega$ and $\mathrm{R}_{3}=47 \Omega$.

$$
\mathrm{R}_{\mathrm{T}}=21.61 \Omega \quad \mathrm{P}_{\mathrm{T}}=2.45 \mathrm{~kW}
$$

8. Find the resistance of a copper conductor at $120^{\circ} \mathrm{C}$, if it has a resistance of 25Ω at 200 C . The coefficient for copper is $0.004 \Omega /{ }^{\circ} \mathrm{C}$.

$$
R_{C}=\operatorname{Rh} /(1+(0.004 \times 80))=18.94 \Omega
$$

9. Calculate the following values in figure 1
a) Total resistance R_{T}
$\mathrm{R}_{\mathrm{T}}=58.3 \Omega$
b) Supply Voltage V_{T}
$\mathrm{V}_{\mathrm{T}}=\mathrm{I}_{\mathrm{T}} \times \mathrm{R}_{\mathrm{T}}=17.5 \mathrm{~V}$

Figure 1

Note: The symbols used on this sheet follow AS1046 pt 1. There are alternate recognised symbols in use. The list does not contain every equation used in the course. Transposition of equations will be necessary to solve problems

$$
\begin{aligned}
& Q=I t \\
& v=\frac{s}{t} \\
& a=\frac{\Delta v}{t} \\
& F=m a \quad W=F s \quad W=m g h \\
& W=P t \\
& \eta \%=\frac{\text { output }}{\text { input }} \times \frac{100}{1} \quad I=\frac{V}{R} \\
& P=V I \\
& P=I^{2} R \\
& P=\frac{V^{2}}{R} \\
& R_{2}=\frac{R_{1} A_{1} l_{2}}{A_{2} l_{1}} \\
& R_{h}=R_{c}(1+\alpha \Delta t) \\
& R=\frac{\rho l}{A} \\
& R_{T}=R_{1}+R_{2}+R_{3} \\
& V_{T}=V_{1}+V_{2}+V_{3} \\
& \frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}} \\
& I_{T}=I_{1}+I_{2}+I_{3} \\
& V_{2}=V_{T} \frac{R_{2}}{R_{1}+R_{2}} \\
& I_{2}=I_{T} \frac{R_{1}}{R_{1}+R_{2}} \\
& R_{x}=\frac{R_{A} R}{R_{B}} \\
& C=\frac{Q}{V} \\
& \tau=R C \\
& \frac{1}{C_{T}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} \\
& C_{T}=C_{1}+C_{2}+C_{3} \\
& C=\frac{A \varepsilon_{0} \varepsilon_{r}}{d} \\
& F_{m}=I N \\
& H=\frac{F_{m}}{l} \\
& B=\frac{\Phi}{A} \\
& \Phi=\frac{F_{m}}{S} \\
& S=\frac{l}{\mu_{0} \mu_{r} A} \\
& V=N \frac{\Delta \Phi}{\Delta t} \\
& e=B l v \\
& L=\frac{\mu_{o} \mu_{r} A N^{2}}{l} \\
& L=N \frac{\Delta \Phi}{\Delta I} \\
& V=L \frac{\Delta I}{\Delta t} \\
& \tau=\frac{L}{R} \\
& F=B i l \\
& T=F r \\
& E_{g}=\frac{\Phi Z n P}{60 a} \\
& P=\frac{2 \pi n T}{60} \\
& t=\frac{1}{f} \\
& f=\frac{n p}{120} \\
& V=0.707 V_{\max } \\
& I=0.707 I_{\max } \\
& V_{\text {ave }}=0.637 V_{\text {max }} \\
& I_{\text {ave }}=0.637 I_{\max } \\
& v=V_{\text {max }} \sin \phi \\
& i=I_{\text {max }} \sin \phi \\
& I=\frac{V}{Z} \\
& Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} \\
& X_{L}=2 \pi L \\
& X_{C}=\frac{1}{2 \pi f C}
\end{aligned}
$$

$\cos \phi=\frac{P}{S}$
$\cos \phi=\frac{R}{Z}$
$S=\sqrt{P^{2}+Q^{2}}$
$S=V I$
$P=V I \cos \phi$
$V_{L}=\sqrt{3} V_{P}$
$I_{L}=\sqrt{3} I_{P}$
$S=\sqrt{3} V_{L} I_{L}$
$P=\sqrt{3} V_{L} I_{L} \cos \phi$
$Q=\sqrt{3} V_{L} I_{L} \sin \phi$
$\tan \phi=\sqrt{3}\left(\frac{W_{2}-W_{1}}{W_{2}+W_{1}}\right)$
$Q=m C \Delta t$
$V^{\prime}=4.44 \Phi f N$
$\frac{V_{1}}{V_{2}}=\frac{N_{1}}{N_{2}}$
$\frac{I_{2}}{I_{1}}=\frac{N_{1}}{N_{2}}$
$N_{s y n}=\frac{120 f}{p}$
$s \%=\frac{\left(n_{s y n}-n\right)}{n_{s y n}} \times \frac{100}{1}$
$f_{r}=\frac{s \% \times f}{100}$
$V_{r e g} \%=\frac{\left(V_{N L}-V_{F L}\right)}{V_{F L}} \times \frac{100}{1}$
$V_{\text {reg }} \%=\frac{\left(V_{N L}-V_{F L}\right)}{V_{N L}} \times \frac{100}{1}$
$T=\frac{\Phi Z I P}{2 \pi a}$
$I_{S T}=\frac{1}{3} \times I_{D O L}$
$T_{S T}=\frac{1}{3} \times T_{D O L}$
$I_{S T}=\frac{V_{S T}}{V} \times I_{D O L}$
$T_{S T}=\left(\frac{V_{S T}}{V}\right)^{2} \times T_{D O L}$
$I_{\text {motor st }}=\frac{\% T A P}{100} \times I_{D O L}$
$I_{\text {linest }}=\left(\frac{\% T A P}{100}\right)^{2} \times I_{D O L}$
$E=\frac{\Phi_{v}}{A}$
$E=\frac{I}{d^{2}}$
$\eta_{v}=\frac{\Phi_{v}}{P}$
$V_{L}=0.45 V_{a c}$
$V_{L}=0.9 V_{a c}$
$V_{L}=1.17 V_{\text {phase }}$
$V_{L}=1.35 V_{\text {line }}$
$P R V=\sqrt{2} V_{a c}$
$P R V=2 \sqrt{2} V_{a c}$
$P R V=2.45 V_{a c}$
$V_{\text {ripple }}=\sqrt{2} V_{a c}$
$V_{\text {ripple }}=0.707 V_{\text {phase }}$
$V_{\text {ripple }}=0.1895 V_{\text {line }}$

ANSWER SHEET

Section A (Multi-choice Questions)

Instructions:

Enter your personal details in the top right hand corner of this sheet.
Place an \mathbf{X} in box of your choice. If you make a mistake, circle your answer $\boldsymbol{\otimes}$ and choose again.

Question	A.	B.	C.	D.	Question	A.	B.	C.	D.
1		X			14				X
2	X				15				X
3			X		16				X
4		X			17			X	
5	X				18	X			
6				X	19		X		
7			X		20		X		
8		X			21			X	
9				X	22		X		
10	X				23		X		
11	X				24	X			
12	X				25	X			
13				X					
Totals					Totals				

Total Marks Section A:

TAFE

Student Name:
Class : \qquad
Date: \qquad

20222 Certificate III Electrotechnology Electrician

D.C. Circuits TEST 2A

PHILIPS Chapters 5-7

Time allowed - 2 hours
17 Pages in this Question Booklet

Aids to be supplied by College:

None
Aids to be supplied by Students:
Pen, pencil, eraser, rule, calculator
Total Marks Available

SECTION	Possible Marks	Actual Marks
A	25	
B	20	
C	18	
D	26	
TOTAL	89	

Instructions to Students:

- Electronic devices are to be turned off and removed from your person.
You cannot access an electronic device during this examination.
- All questions are to be answered in the space provided in this Question Booklet.
Answers to Section A - Multi-choice Questions, are to be recorded on the Answer Sheet attached to this Question Booklet.
- You are not to use any reference book in this examination.
- The whole of this Question Booklet is to be handed to the Supervisor upon completion.

Aids permitted where indicated:

Standard Dictionaries	Bilingual Dictionaries	Technical Dictionaries	Programmable Calculators	Non- programmable Calculators	Mobile Phones	MP3 Players
No	Yes	No	No	Yes	No	No

SECTION A - (25 Marks)

INSTRUCTIONS:

Select the best answer for the following statements and place the identifying letter in the bracket. Each correct answer is worth 1 mark.

1. A piezo-electric material will produce an e.m.f when:
A. exposed to sunlight
B. subjected to mechanical pressure
C. heated
D. passed through a magnetic field.
2. The ability of a conductor to permit the flow of electricity is called its:
A. conductance
B. resistance
C. reluctance
D. Capacitance.
3. A VDR is a device that changes its properties when:
A. current varies
B. temperature varies
C. voltage varies
D. light varies.
4. The proportion of what we get out of a machine or system for what we put into it is termed the:
A. output of the system
B. efficiency
C. operating losses of the system
D. proficiency of the system.
5. The metal often used in heating elements is
A. nichrome
B. copper
C. aluminium
D. Silver.
6. If the cross sectional area is increased, the resistance will be:
A. doubled
B. halved
C. increased
D. Decreased.
7. Total resistance in a series circuit is equal to the:
A. largest value resistor
B. lowest value resistor
C. sum of the resistor values connected in series
D. average of the resistors connected.
8. An open circuit in a series circuit will cause:
A. current to remain the same
B. current to stop flowing
C. current to rise
D. a doubling of the current
9. The relationship between current and voltage in a series circuit is considered:
A. logarithmic
B. inversely proportional
C. non proportional
D. proportional
10. When there's an open circuit in a branch of a parallel circuit the total power will:
A. decrease
B. increase
C. remain the same
D. stop flowing
11. The total power consumed in a parallel circuit is the:
A. sum of the power consumed by all branches of the circuit
B. voltage divided by the total resistance
C. current multiplied by the total resistance
D. Equivalent to one branch of the circuit
12. As the temperature of a copper conductor increases, its resistance:
A. increases
B. remains unchanged
C. decreases
D. reaches a minimum value
13. If five lamps are connected in series and the second lamp develops an open circuit, there is:
A. no current flow in lamps three, four and five only
B. current flow in lamp one only
C. no current flow in lamp two only
D. no current flowin all lamps
14. If the length of a conductor is doubled and its cross sectional area is halved, its resistance would:
A. remain unchanged
B. double
C. decrease
D. quadruple
15. When selecting a resistor for a circuit, the two factors which must be considered are:
A. the resistance and the current rating
B. the resistance and the voltage rating
C. the current and the voltage rating
D. the resistance and the power rating
16. When three 30Ω Resistors are connected in parallel to each other the equivalent circuit resistance is
A. 3Ω
B. 90Ω
C. 30Ω
D. 10Ω
(1 Mark)
17. What would be the value of a resistor if it had 4 K 7 written on it?
A. 47 ohms
B. 0.0047 ohms
C. 4700 ohms
D. 4.7 ohms

Figure 1
18. For the circuit shown in Fig.1, which resistance would have the most current flowing through it?
A. R1
B. R 2
C. R3
D. the same current will flow through each resistor
19. The equivalent resistance of the circuit in Fig. 1 would be:
A. greater than R3
B. less than R1
C. greater than R1
D. the sum of R1, R2 and R3
20. If a conductor has a negative temperature coefficient, it's resistance will:
A. increase with an increase in temperature
B. decrease with an increase in temperature
C. be unaffected by a change in temperature
D. remain constant throughout the negative temperature range
21. Resistivity's unit of measurement is:
A. Degrees centigrade $\left({ }^{\circ} \mathrm{C}\right)$
B. Ohms (Ω)
C. Ohms per metre (Ω / m)
D. Metres (m)

Figure 2
22. The equivalent resistance of the resistors R1 and R2 shown in Fig. 2:
A. is always smaller than the lowest value of resistance
B. is calculated by adding the two resistances
C. can only be found be using Ohm's Law
D. can only be found by using an ohmmeter
23. If resistor R2 in Fig. 2 was to develop a short circuit the equivalent resistance would:
A. increase
B. decrease
C. remain unchanged
D. quadruple
24. If the voltage applied to the circuit Fig. 2 was to be doubled, the total power consumed by the circuit would:
A. quadruple
B. halve
C. double
D. triple
25. If resistor R2 in Fig. 2 was to become an open circuit, the total resistance of the circuit would:
A. beinfinity
B. decrease
C. remain unchanged
D. equal R1

SECTION B - (20 Marks)

Place the answer to each of the following questions in the appropriate place on the answer sheet.

Questions 1 to 3 refer to table 1 below.

COLOUR	VALUE	MULTIPLIER	TOLERANCE
Black	0	1	-
Brown	1	10	1%
Red	2	100	2%
Orange	3	1,000	-
Yellow	4	10,000	-
Green	5	100,000	0.5%
Blue	6	$1,000,000$	0.25%
Violet	7	-	0.1%
Grey	8	-	-
White	9	-	-
Gold	-	0.1	5%
Silver	-	0.01	10%

1.

(a) Using Table 1, determine the value of a resistor with the following colour bands: - Brown, Black, Red, Red
(b) Determine the tolerance range for the resistor in question 1a to
2.
(a) Determine the value of a resistor with the following colour bands:White, Grey, Blue, Red, Gold
(b) Determine the tolerance range for the resistor in question 2a to
3. Identify the colours of the four bands that would be found on a 120Ω resistor with a range of 108Ω to 132Ω.
4. How many current paths does a series circuit have?
5. If four identical resistors are connected in parallel and have a total resistance of 25Ω. What are the four individual resistance values?
\qquad
6. What is a common semiconductor material?
\qquad
7. What is the tolerance range of an E12 resistor?

8. What is the typical emf per cell of a standard lead-acid battery?
9. List the four (4) factors that affect the resistance of a conductor.
\qquad
10. Give an example of where a thermistor is used and why?

Application
Purpose
11. What type of temperature coefficient does "Constantan" have?

SECTION C - (18 Marks)

INSTRUCTIONS:

The question in this section requires some simple drawing and calculations. Ensure that the drawing is neat and legible. The use of pencil on the drawing is acceptable in this section only.

Q. 1

The diagram drawn below shows the components of a circuit. Using all components draw the connections that are required to meet the following description:
(a) R1, R2, R3 and R4 are connected in parallel
(b) The ammeter measures total circuit current
(c) The voltmeter measures the voltage across R4

QUESTION 2

Identify the following component and sketch the resistance/light response curve and symbol.

Component name \qquad
Draw its response curve
100Ω
Dark Light Intensity \quad Daylight

Draws its SI symbol

(6)

QUESTION 3

Identify the following component, temperature/ resistance, response curve and draw its symbol.

Draws the symbol for response curve B
(6)

SECTION D Calculations - (26 Marks)

Show ALL working for your calculations.

1. A 12 VdD .C supply is connected to a series circuit containing a 10Ω and a 27Ω resistor. Determine the value of current drawn.
2. Determine the resistance of a 180 metre length of $1.5 \mathrm{~mm}^{2}$ conductor. The resistivity of this aluminium is $2.83 \times 10-8$
3. If the branches of a parallel circuit dissipate $10 \mathrm{~W}, 20 \mathrm{~W}$ and 30 W respectively, what amount of power is dissipated by the entire circuit?
(2)
4. A 160 metre long copper cable is allowed a maximum resistance of 1Ω. Determine the minimum cross sectional area of a suitable cable. The resistivity of copper is $1.72^{\mathrm{x} 10-8}$
5. The circuit below has three identical lamps. Find the current flowing in the circuit

6. Calculate the cost of running of 1200 watt electric heater for eight hours. The cost of electricity is $\$ 0.12$ per kWh .
7. Determine the total power dissipated in a 230 V parallel circuit with three resistor of value, $\mathrm{R}_{1}=120 \Omega, \mathrm{R} 2=60 \Omega$ and $\mathrm{R}_{3}=47 \Omega$.
8. Find the resistance of a copper conductor at $120^{\circ} \mathrm{C}$, if it has a resistance of 25Ω at 200 C . The coefficient for copper is $0.004 \Omega /{ }^{\circ} \mathrm{C}$.
9. Calculate the following values in figure 1
a) Total resistance R_{T}
b) Supply Voltage V_{T}

Figure 1

Note: The symbols used on this sheet follow AS1046 pt 1. There are alternate recognised symbols in use. The list does not contain every equation used in the course. Transposition of equations will be necessary to solve problems

$Q=I t$	$v=\frac{s}{t}$	$a=\frac{\Delta v}{t}$
$F=m a$	$W=F s$	$W=m g h$
$W=P t$	$\eta \%=\frac{\text { output }}{\text { input }} \times \frac{100}{1}$	$I=\frac{V}{R}$
$P=V I$	$P=I^{2} R$	$P=\frac{V^{2}}{R}$
$R_{2}=\frac{R_{1} A_{1} l_{2}}{A_{2} l_{1}}$	$R_{h}=R_{c}(1+\alpha \Delta t)$	$R=\frac{\rho l}{A}$
$R_{T}=R_{1}+R_{2}+R_{3}$	$V_{T}=V_{1}+V_{2}+V_{3}$	$\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}$
$I_{T}=I_{1}+I_{2}+I_{3}$	$V_{2}=V_{T} \frac{R_{2}}{R_{1}+R_{2}}$	$I_{2}=I_{T} \frac{R_{1}}{R_{1}+R_{2}}$
$R_{x}=\frac{R_{A} R}{R_{B}}$	$C=\frac{Q}{V}$	$\tau=R C$
$\frac{1}{C_{T}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}$	$C_{T}=C_{1}+C_{2}+C_{3}$	$C=\frac{A \varepsilon_{0} \varepsilon_{r}}{d}$
$F_{m}=I N$	$H=\frac{F_{m}}{l}$	$B=\frac{\Phi}{A}$
$\Phi=\frac{F_{m}}{S}$	$S=\frac{l}{\mu_{0} \mu_{r} A}$	$V=N \frac{\Delta \Phi}{\Delta t}$
$e=B l v$	$L=\frac{\mu_{o} \mu_{r} A N^{2}}{l}$	$L=N \frac{\Delta \Phi}{\Delta I}$
$V=L \frac{\Delta I}{\Delta t}$	$\tau=\frac{L}{R}$	$F=B i l$
$T=F r$	$E_{g}=\frac{\Phi Z n P}{60 a}$	$P=\frac{2 \pi n T}{60}$
$t=\frac{1}{f}$	$f=\frac{n p}{120}$	$V=0.707 V_{\max }$
$I=0.707 I_{\max }$	$V_{\text {ave }}=0.637 V_{\text {max }}$	$I_{\text {ave }}=0.637 I_{\text {max }}$
$v=V_{\text {max }} \sin \phi$	$i=I_{\text {max }} \sin \phi$	$I=\frac{V}{Z}$
$Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$	$X_{L}=2 \pi / L$	$X_{C}=\frac{1}{2 \pi f C}$

$\cos \phi=\frac{P}{S}$
$\cos \phi=\frac{R}{Z}$
$S=\sqrt{P^{2}+Q^{2}}$
$S=V I$
$P=V I \cos \phi$
$V_{L}=\sqrt{3} V_{P}$
$I_{L}=\sqrt{3} I_{P}$
$S=\sqrt{3} V_{L} I_{L}$
$P=\sqrt{3} V_{L} I_{L} \cos \phi$
$Q=\sqrt{3} V_{L} I_{L} \sin \phi$
$\tan \phi=\sqrt{3}\left(\frac{W_{2}-W_{1}}{W_{2}+W_{1}}\right)$
$Q=m C \Delta t$
$V^{\prime}=4.44 \Phi f N$
$\frac{V_{1}}{V_{2}}=\frac{N_{1}}{N_{2}}$
$\frac{I_{2}}{I_{1}}=\frac{N_{1}}{N_{2}}$
$N_{s y n}=\frac{120 f}{p}$
$s \%=\frac{\left(n_{s y n}-n\right)}{n_{s y n}} \times \frac{100}{1}$
$f_{r}=\frac{s \% \times f}{100}$
$V_{r e g} \%=\frac{\left(V_{N L}-V_{F L}\right)}{V_{F L}} \times \frac{100}{1}$
$V_{\text {reg }} \%=\frac{\left(V_{N L}-V_{F L}\right)}{V_{N L}} \times \frac{100}{1}$
$T=\frac{\Phi Z I P}{2 \pi a}$
$I_{S T}=\frac{1}{3} \times I_{D O L}$
$T_{S T}=\frac{1}{3} \times T_{D O L}$
$I_{S T}=\frac{V_{S T}}{V} \times I_{D O L}$
$T_{S T}=\left(\frac{V_{S T}}{V}\right)^{2} \times T_{D O L}$
$I_{\text {motor st }}=\frac{\% T A P}{100} \times I_{D O L}$
$I_{\text {linest }}=\left(\frac{\% T A P}{100}\right)^{2} \times I_{D O L}$
$E=\frac{\Phi_{v}}{A}$
$E=\frac{I}{d^{2}}$
$\eta_{v}=\frac{\Phi_{v}}{P}$
$V_{L}=0.45 V_{a c}$
$V_{L}=0.9 V_{a c}$
$V_{L}=1.17 V_{\text {phase }}$
$V_{L}=1.35 V_{\text {line }}$
$P R V=\sqrt{2} V_{a c}$
$P R V=2 \sqrt{2} V_{a c}$
$P R V=2.45 V_{a c}$
$V_{\text {ripple }}=\sqrt{2} V_{a c}$
$V_{\text {ripple }}=0.707 V_{\text {phase }}$
$V_{\text {ripple }}=0.1895 V_{\text {line }}$

Student Name : \qquad
Class : \qquad

ANSWER SHEET

Section A (Multi-choice Questions)

Instructions:

Enter your personal details in the top right hand corner of this sheet.
Place an \mathbf{X} in box of your choice. If you make a mistake, circle your answer \otimes and choose again.

Question	A.	B.	C.	D.	Question	A.	B.	C.	D.
1					14				
2					15				
3					16				
4					17				
5					18				
6					19				
7					20				
8					21				
9					22				
10					23				
11					24				
12					25				
13									
Totals					Totals				

Total Marks Section A:

Student Name:

20222 Certificate III Electrotechnology Electrician
 D.C. Circuits Practical Test 3A

PHILIPS Chapters 8-10

Time allowed - 45 Minutes

3 Pages in this Question Booklet

OBSERVE SAFE WORKING PRACTICES DURING THIS PRACTICAL TEST

Instructions:

- All answers to be entered on the answer sheet provided
- All work to be performed on an individual basis
- Total marks for this test is 30

Equipment Required:

- DC power supply
- 0 to 500 mA DC analog ammeter
- Multimeter
- Five resistors, R1, R2, R3, R4 and R5, all of unknown value
- Single pole switch
- Connection leads

SECTION	Possible Marks	Actual Marks
Circuit Wiring	8	
Circuit Readings	13	
Observations/Calculations	9	
Total	30	

Aids permitted where indicated:

Standard Dictionaries	Bilingual Dictionaries	Technical Dictionaries	Programmable Calculators	Non- programmable Calculators	Mobile Phones	MP3 Players
No	Yes	No	No	Yes	No	No

Procedure

Step 1: Arrange the equipment on the bench in a neat and logical manner, and then connect the circuit shown in Figure 1.
Connect Ammeter to measure $I_{T} \quad$ Voltmeter to measure V_{S}

Circuit Connections

$1^{\text {st }}$ Try	$2^{\text {nd }}$ Try	Teacher Assist
5	3	0

Do not proceed until the teacher has checked your circuit.
Step 2: Turn on the power supply, close the circuit switch and adjust the total circuit voltage to $\underline{\mathbf{1 0}}$ V.D.C. Ensure that this voltage is maintained through the test.

Complete the tables below

Table 1
(2 Marks)

Supply Voltage - Vt	Circuit Current - I_{T}
10 Vdc	320 mA

Table 2
(4 Marks)

Voltage Drop - VR1	Voltage Drop - VR 2	Voltage Drop - VR3	Voltage Drop - VR4
3 V	7 V	1.25 V	8.75

Table 3
(4 Marks)

Current $-\mathrm{I}_{\mathrm{R} 1}$	Current $-\mathrm{I}_{\mathrm{R} 2}$	Current $-\mathrm{I}_{\mathrm{R} 3}$	Current $-\mathrm{I}_{\mathrm{R} 4}$
195 mA	195 mA	125 mA	125 mA

Step 3: Turn the circuit switch off. Connect resistor R_{5} to the circuit as shown in Figure 2 below.

Circuit Connections \mathbf{R}_{5}

$1^{\text {st }}$ Try	$2^{\text {nd }}$ Try	Teacher Assist
3	1	0

Do not proceed until the teacher has checked your circuit and results.

Step 4: Turn the circuit switch on and adjust the total circuit voltage to 10 V.D.C. and complete table 4

Table 4

Voltage across R_{5}	Circuit Current - I_{T}
10 V	440 mA

Step 5: Observations - (not calculations)

1 In reference to your results which circuit dissipated the most power, explain your answer.

> Circuit two, has lowest resistance therefore higher current \& more power
$\sqrt{\square}$

2 In reference to your results what is the effect of adding R5 to your circuit?
a. To the supply current
Draws more current and decreases resistance (3 Marks)
b. To equivalent resistance.
$\boxed{\text { Decreases equivalent resistance }}$

Student Name: \qquad
Class : \qquad
Date : \qquad

20222 Certificate III Electrotechnology Electrician

D.C. Circuits Practical Test 3A

Philips Chapters 8-10
Time allowed - $\mathbf{4 5}$ Minutes
3 Pages in this Question Booklet

OBSERVE SAFE WORKING PRACTICES DURING THIS PRACTICAL TEST

Instructions:

- All answers to be entered on the answer sheet provided
- All work to be performed on an individual basis
- Total marks for this test is 30

Equipment Required:

- DC power supply
- 0 to 500 mA DC analog ammeter
- Multimeter
- Five resistors, R1, R2, R3, R4 and R5, all of unknown value
- Single pole switch
- Connection leads

SECTION	Possible Marks	Actual Marks
Circuit Wiring	8	
Circuit Readings	13	
Observations/Calculations	9	
Total	30	

Aids permitted where indicated:

Standard Dictionaries	Bilingual Dictionaries	Technical Dictionaries	Programmable Calculators	Non- programmable Calculators	Mobile Phones	MP3 Players
No	Yes	No	No	Yes	No	No

[^2]
Procedure

Step 1: Arrange the equipment on the bench in a neat and logical manner, and then connect the circuit shown in Figure 1.
Connect Ammeter to measure $I_{T} \quad$ Voltmeter to measure V_{S}

Circuit Connections

$1^{\text {st }}$ Try	$2^{\text {nd }}$ Try	Teacher Assist
5	3	0

Do not proceed until the teacher has checked your circuit.
Step 2: Turn on the power supply, close the circuit switch and adjust the total circuit voltage to $\underline{\mathbf{1 0}}$ V.D.C. Ensure that this voltage is maintained through the test.

Complete the tables below

Table 1
(2 Marks)

Supply Voltage - Vt	Circuit Current - I_{T}

Table 2
(4 Marks)

Voltage Drop - VR1 2	Voltage Drop - VR2 2	Voltage Drop - V R3	Voltage Drop - VR4

Table 3
(4 Marks)

Current $-\mathrm{I}_{\mathrm{R} 1}$	Current $-\mathrm{I}_{\mathrm{R} 2}$	Current $-\mathrm{I}_{\mathrm{R} 3}$	Current $-\mathrm{I}_{\mathrm{R} 4}$

Step 3: Turn the circuit switch off. Connect resistor R_{5} to the circuit as shown in Figure 2 below.

Circuit Connections \mathbf{R}_{5}

$1^{\text {st }}$ Try	$2^{\text {nd }}$ Try	Teacher Assist
3	1	0

Do not proceed until the teacher has checked your circuit and results.

Step 4: Turn the circuit switch on and adjust the total circuit voltage to 10 V.D.C. and complete table 4

Table 4

Voltage across R_{5}	Circuit Current - I_{T}

Step 5: Observations - (not calculations)

1 In reference to your results which circuit dissipated the most power, explain your answer.
\qquad
\qquad
2 In reference to your results what is the effect of adding R5 to your circuit?
a. To the supply current
\qquad
b. To equivalent resistance.
\qquad

Date:

20222 Certificate III Electrotechnology Electrician

D.C. Circuits TEST 3A

PHILIPS Chapters 8-10

Time allowed - 2 hours
18 Pages in this Question Booklet

TOTAL MARKS AVAILABLE

Aids to be supplied by College:

None
Aids to be supplied by Students:
Pen, pencil, eraser, rule, calculator

SECTION	Possible Marks	Actual Marks
A	20	
B	25	
C	28	
D	22	
TOTAL	95	

Instructions to Students:

- Electronic devices are to be turned off and removed from your person. You cannot access an electronic device during this examination.
- All questions are to be answered in the space provided in this Question Booklet. Answers to Section A - Multi-choice Questions, are to be recorded on the Answer Sheet attached to this Question Booklet.
- You are not to use any reference book in this examination.
- The whole of this Question Booklet is to be handed to the Supervisor upon completion.

Aids permitted where indicated:

Standard Dictionaries	Bilingual Dictionaries	Technical Dictionaries	Programmable Calculators	Non- programmable Calculators	Mobile Phones	MP3 Players
No	Yes	No	No	Yes	No	No

\qquad Signature

SECTION A - MULTIPLE CHOICE

(1 mark per question = 20 marks)
For each question in Section A, identify the response you consider to be the best answer by placing its identifying letter in the space provided at the end of each question.

1. For the circuit in Figure 1, the voltage drops across R1, R2 and R3:
A. are equal in every resistor
B. sum to equal to the supply voltage
C. are inversely proportional to the resistor values
D. are inversely proportional to the value of circuit current
2. For the circuit of Figure 1, if R1 is a 220Ω resistor, R2 a 110Ω and R3 a 470Ω, the resistor which would have the largest voltage drop would be:
A. the 220Ω resistor
B. the 470Ω resistor
C. the 110Ω resistor
D. they would all have the same voltage drop
3. If resistor R1 in the circuit of Figure 1 becomes short circuited, the equivalent circuit resistance would
A. increase
B. remain the same
C. zero ohms
D. decrease
4. The equivalent resistance $\left(\mathrm{R}_{\mathrm{EQ}}\right)$ of the resistors in the circuit of Figure 1 is:
A. always less than the smallest value of resistance
B. only obtainable by measuring with an ohmmeter
C. equal to the sum of the individual resistance values
D. only obtainable by applying Ohm's Law.
5. When an analog needle moves to its furthest point this is called:
A. full scale deflection
B. maximum deflection
C. moving coil
D. fixed coil.
6. Ammeters use what to allow them to measure high currents:
A. moving iron
B. series resistor
C. capacitor
D. shunt resistor.
7. To increase the capacitance of a circuit you would:
A. use an iron core in the existing capacitor
B. connect a second capacitor in series with the existing capacitor
C. reverse the polarity of the existing capacitor
D. connect a second capacitor in parallel with the existing capacitor
(1 Mark)
8. What factor does not determine the capacitance of the capacitor
A. time constant
B. dielectric thickness
C. dielectric type
D. plate surface area
9. The thinner the dielectric of a capacitor the greater the:
A. capacitance
B. voltage rating
C. size
D. surface area
10. The symbol for a variable capacitor is a standard capacitor symbol:
A. with a cross through it
B. with a circle around it
C. with an arrow diagonally through it
D. does not exist
11. A parallel circuit is different from a series circuit as it has:
A. fewer current paths
B. more than one current path
C. only one current path
D. no current paths
12. Measuring instruments are specified by their sensitivity, resolution and:
A. size
B. accuracy
C. calibration
D. power
13. Two resistors R_{A} and R_{B} are connected in parallel. If resistor R_{A} has twice the resistance of resistor R_{B}, the current taken by resistor R_{A} is:
A. two thirds of the supply current
B. twice that taken by resistor R_{B}
C. one third of the supply current
D. one half of the supply current

14. The equivalent resistance (R_{EQ}) of the resistors connected in the circuit of Figure 2 is:
A. always less than the smallest value of resistance
B. only obtainable by measuring with an ohmmeter
C. equal to the sum of the individual resistance values
D. only obtainable by applying Ohm's Law
15. If an open circuit occurs in resistor R1 of the circuit of Figure 2, the equivalent resistance will:
A. Decrease
B. remain the same
C. Increase
D. cannot tell without knowing circuit values
16. If an extra resistor R4 is connected in parallel to resistor R3 in the circuit of Figure 2, the equivalent resistance will:
A. Increase
B. Decrease
C. remain the same
D. cannot tell without knowing circuit values
17. In the circuit of Figure 2, the current taken from the supply is:
A. the same as the currents in resistor R1, R2 and R3
B. the difference of the currents in resistor R1, R2 and R3
C. only able to be determined by Ohm's Law
D. the sum of the currents in resistor R1, R2 and R3

Figure 3
18. The resistor configuration of the circuit of Figure 3 is:
A. R1 in series with R2
B. R1 in series with R3
C. R1 in series with parallel resistors R2 \& R3
D. R1, R2 \& R3 all connected in parallel.
19. If the value of the series connected resistor in the circuit of Figure 3 is increased, the equivalent circuit resistance will:
A. increase
B. decrease
C. remain the same
D. cannot tell without knowing circuit values
20. If the resistor R2 of Figure 3 was bypassed by a short circuit connection, the overall power consumed by the circuit will:
A. increase
B. decrease
C. remain the same
D. cannot tell without knowing circuit values

SECTION B - Short Answer (25 Marks)

INSTRUCTIONS:

Blank spaces in the following statements represent omissions. Complete the statements with the word phrase or answer that you think fits best in the blank spaces.

1 What essential precaution must be taken before measuring resistance on a suspected live circuit?
\qquad Ensure Circuit Isolated \qquad
\qquad
2. Name two types of capacitors
__Ceramic, Power, Electrolytic, Thin film, Carbon Composite_
\qquad

3 What category of meter would be suitable for use on the load side of the service fuse in a domestic installation
\qquad CAT 3
4. What type of capacitor must be connected with the correct polarity:
\qquad Electrolytic \qquad (2)
5. Analog meters use magnetism to measure values. True or False
\qquad True
6. What two functions are performed by the hair springs in a moving coil meter:
(A) \qquad Provide Current Path To Coil \qquad
(B) \qquad Provide Torque Against Magnetic field \qquad (2)
7. How many time constants does it take for a capacitor to be fully charged or discharged?

FIVE
8. If a conductor has a PTC characteristic, its resistance _Increases_ with an increase in \qquad Temperature \qquad .
9. The resistance of a light dependent resistor will \qquad Decrease \qquad with an increase in \qquad daylight \qquad falling on the resistor.
10. When reading an anolog meter what type of error can occur by incorrectly aligning your eye with the pointer? \qquad Parallax \qquad

11 Total resistance in a series-parallel circuit can be calculated by just adding up the values. True or False
\qquad False

12 Capacitance of a capacitor is \qquad Inversely \qquad proportional to the distance between the plates.
\qquad

13 How would you safely discharge a capacitor?
\qquad By placing an appropriate rated resistor across the terminals \qquad

14 What effect does a capacitor have on a D.C. current?
\qquad Blocks D.C. Current

15 If three 15Ω Resistors are connected in parallel what is the equivalent resistance?
_ 5 \qquad

SECTION C - CALCULATIONS - (28 Marks)

The following questions are to be answered in the spaces provided on the question sheet. The marks are shown for each question.

For all questions the following is required:

Figure 5

1. Determine the equivalent resistance $\left(\mathrm{R}_{\mathrm{EQ}}\right)$ of the circuit of Figure 5 .

$$
\begin{array}{rlr}
\mathrm{R}_{4}+\mathrm{R}_{5}=330 & \mathrm{R}_{\mathrm{P}}=165 \quad \text { Rtotal }=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{\mathrm{P}} \\
& =260 \Omega
\end{array}
$$

2. In the circuit Figure 5, determine the current I_{T},

885 mA

3. In the circuit of Figure 5, determine the current I_{3}.
4. A simple circuit which contains three capacitors of values $C_{1}, 25 \mu f, C_{2}, 50 \mu \mathrm{~F}$ and $\mathrm{C}_{3}, 75 \mu \mathrm{~F}$ are connected in series to an 85 Volt supply determine,
a). the equivalent circuit capacitance.

$13.64 \mu \mathrm{~F}$

b). the total charged stored by your circuit.

1.16 mC

c). the voltage drops across each capacitor.

$$
\begin{aligned}
& \mathrm{V}_{1}=46.4 \mathrm{~V} \\
& \mathrm{~V}_{2}=23.2 \mathrm{~V} \\
& \mathrm{~V}_{3}=15.5 \mathrm{~V}
\end{aligned}
$$

5. A simple circuit which contains three capacitors of values $\mathrm{C}_{1}, 15 \mu \mathrm{f}, \mathrm{C}_{2}, 35 \mu \mathrm{~F}$ and $\mathrm{C}_{3}, 45 \mu \mathrm{~F}$ are connected in parallel to an 60 Volt supply, determine;
a). The equivalent circuit capacitance.

$$
95 \mu \mathrm{~F}
$$

b). Calculate the total charged stored by your circuit.

5.7 mC

c). the charge across each capacitor.

$$
\begin{aligned}
& \mathrm{Q}_{1}=900 \mu \mathrm{C} \\
& \mathrm{Q}_{2}=2.1 \mathrm{mC} \\
& \mathrm{Q}_{3}=2.7 \mathrm{mC}
\end{aligned}
$$

(3)
$6 \quad$ An RC circuit consists of a resistance of $120 \mathrm{k} \Omega$ and a capacitance of $36 \mu \mathrm{~F}$. Determine the:
a) time constant of the circuit. (2)
b) time taken for the capacitor to fully charge. (1)
a) $\quad \mathrm{T}=\mathrm{RC} \quad=4.32$ seconds
b) $\quad 4.32 \times 5=21.6$ seconds
7. An RC circuit has an applied voltage of 30 V . What is the voltage across the capacitor after 1 time constant?

$$
V=30 \times 63.2 \% \quad=18.96 \mathrm{~V}
$$

(2)
8. How much energy is stored in a $22 \mu \mathrm{~F}$ capacitor charges to 400 V .

$$
\mathrm{E}=1 / 2 \mathrm{CV} 2 \quad 0.5 \times 22 \mu \mathrm{~F} \times 400^{2}=1.76 \text { Joules }
$$

(2)

SECTION D - Drawings \& Symbols - (22 Marks)

1. Identify the symbols below from the selection given in table 1 .

variable	C
trimmer	D
fixed non-polarised	A
fixed polarised	B
thermister	
varistor	

2. Identify the following capacitor types

b) VARIABLE

c) ELECTROLYTIC
3. In reference to the diagram below answer the following;
a) Are the appliances connected in series or parallel \qquad Parallel
b) Determine the power drawn by the toaster \qquad 1.18 kW \qquad (3)

4. From the following description sketch a circuit containing series resistors, R_{1} $\& R_{2}$ connected to a parallel branch containing R_{3} and R_{4}. The supply voltage is 30 V .

(3 Marks)
5. Refer to the graph below and answer the following questions.
a. What is the graph below commonly known as?

Universal Time Constant Curve
b. Which curve represents the voltage discharging?
\qquad Curve 2
c. Which curve represents the current discharging?
\qquad Curve 2 \qquad
d. Mark on the graph the percentage after two time constants for current CHARGING a capacitor.

Note: The symbols used on this sheet follow AS1046 pt 1. There are alternate recognised symbols in use. The list does not contain every equation used in the course.
Transposition of equations will be necessary to solve problems

$$
\begin{aligned}
& Q=I t \\
& v=\frac{s}{t} \\
& a=\frac{\Delta v}{t} \\
& F=m a \\
& W=F s \\
& W=m g h \\
& W=P t \\
& \eta \%=\frac{\text { output }}{\text { input }} \times \frac{100}{1} \quad I=\frac{V}{R} \\
& P=V I \\
& P=I^{2} R \\
& P=\frac{V^{2}}{R} \\
& R_{2}=\frac{R_{1} A_{1} l_{2}}{A_{2} l_{1}} \\
& R_{h}=R_{c}(1+\alpha \Delta t) \\
& R=\frac{\rho l}{A} \\
& R_{T}=R_{1}+R_{2}+R_{3} \\
& V_{T}=V_{1}+V_{2}+V_{3} \\
& \frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}} \\
& I_{T}=I_{1}+I_{2}+I_{3} \\
& V_{2}=V_{T} \frac{R_{2}}{R_{1}+R_{2}} \\
& I_{2}=I_{T} \frac{R_{1}}{R_{1}+R_{2}} \\
& R_{x}=\frac{R_{A} R}{R_{B}} \\
& C=\frac{Q}{V} \\
& \tau=R C \\
& \frac{1}{C_{T}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} \\
& C_{T}=C_{1}+C_{2}+C_{3} \\
& C=\frac{A \varepsilon_{0} \varepsilon_{r}}{d} \\
& F_{m}=I N \\
& H=\frac{F_{m}}{l} \\
& B=\frac{\Phi}{A} \\
& \Phi=\frac{F_{m}}{S} \\
& S=\frac{l}{\mu_{0} \mu_{r} A} \\
& V=N \frac{\Delta \Phi}{\Delta t} \\
& e=B l v \\
& L=\frac{\mu_{o} \mu_{r} A N^{2}}{l} \\
& L=N \frac{\Delta \Phi}{\Delta I} \\
& V=L \frac{\Delta I}{\Delta t} \\
& \tau=\frac{L}{R} \\
& F=B i l \\
& T=F r \\
& E_{g}=\frac{\Phi Z n P}{60 a} \\
& P=\frac{2 \pi n T}{60} \\
& t=\frac{1}{f} \\
& f=\frac{n p}{120} \\
& V=0.707 V_{\max } \\
& I=0.707 I_{\max } \\
& V_{\text {ave }}=0.637 V_{\max } \\
& I_{\text {ave }}=0.637 I_{\max } \\
& v=V_{\text {max }} \sin \phi \\
& i=I_{\text {max }} \sin \phi \\
& I=\frac{V}{Z} \\
& Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} \\
& X_{L}=2 \pi f L \\
& X_{C}=\frac{1}{2 \pi f C}
\end{aligned}
$$

$$
\begin{aligned}
& \cos \phi=\frac{P}{S} \\
& \cos \phi=\frac{R}{Z} \\
& S=\sqrt{P^{2}+Q^{2}} \\
& S=V I \\
& P=V I \cos \phi \\
& Q=V I \sin \phi \\
& f_{0}=\frac{1}{2 \pi \sqrt{L C}} \\
& V_{L}=\sqrt{3} V_{P} \\
& I_{L}=\sqrt{3} I_{P} \\
& S=\sqrt{3} V_{L} I_{L} \\
& P=\sqrt{3} V_{L} I_{L} \cos \phi \\
& Q=\sqrt{3} V_{L} I_{L} \sin \phi \\
& \tan \phi=\sqrt{3}\left(\frac{W_{2}-W_{1}}{W_{2}+W_{1}}\right) \quad Q=m C \Delta t \\
& V^{\prime}=4.44 \Phi f N \\
& \frac{V_{1}}{V_{2}}=\frac{N_{1}}{N_{2}} \\
& \frac{I_{2}}{I_{1}}=\frac{N_{1}}{N_{2}} \\
& N_{s y n}=\frac{120 f}{p} \\
& s \%=\frac{\left(n_{s y n}-n\right)}{n_{s, n}} \times \frac{100}{1} \\
& f_{r}=\frac{s \% \times f}{100} \\
& V_{\text {reg }} \%=\frac{\left(V_{N L}-V_{F L}\right)}{V_{F L}} \times \frac{100}{1} \\
& V_{\text {reg }} \%=\frac{\left(V_{N L}-V_{F L}\right)}{V_{N L}} \times \frac{100}{1} \\
& T=\frac{\Phi Z I P}{2 \pi a} \\
& I_{S T}=\frac{1}{3} \times I_{D O L} \\
& T_{S T}=\frac{1}{3} \times T_{D O L} \\
& I_{S T}=\frac{V_{S T}}{V} \times I_{D O L} \\
& T_{S T}=\left(\frac{V_{S T}}{V}\right)^{2} \times T_{D O L} \quad I_{\text {motor st }}=\frac{\% T A P}{100} \times I_{D O L} \quad I_{\text {linest }}=\left(\frac{\% T A P}{100}\right)^{2} \times I_{D O L} \\
& E=\frac{\Phi_{v}}{A} \\
& E=\frac{I}{d^{2}} \\
& \eta_{v}=\frac{\Phi_{v}}{P} \\
& V_{L}=0.45 V_{a c} \\
& V_{L}=0.9 V_{a c} \\
& V_{L}=1.17 V_{\text {phase }} \\
& V_{L}=1.35 V_{\text {line }} \\
& P R V=\sqrt{2} V_{a c} \\
& P R V=2 \sqrt{2} V_{a c} \\
& P R V=2.45 V_{a c} \\
& V_{\text {ripple }}=\sqrt{2} V_{a c} \\
& V_{\text {ripple }}=0.707 V_{\text {phase }} \\
& V_{\text {ripple }}=0.1895 V_{\text {line }}
\end{aligned}
$$

Student Name : \qquad
Class : \qquad

ANSWER SHEET

Section A (Multi-choice Questions)

Instructions:

Enter your personal details in the top right hand corner of this sheet.
Place an \mathbf{X} in box of your choice. If you make a mistake, circle your answer $\boldsymbol{\otimes}$ and choose again.

Question	A.	B.	C.	D
1		X		
2		X		
3				X
4			X	
5	X			
6				X
7				X
8	X			
9	X			
10			X	
Totals				

Question	A.	B.	C.	D
11		X		
12		X		
13			X	
14	X			
15			X	
16		X		
17				X
18			X	
19	X			
20	X			
Totals				

Total Marks Section A:

\qquad

Student Name: \qquad
Class: \qquad
Date: \qquad

30811 Certificate III Electrotechnology Electrician

D.C. Circuits TEST 3A

PHILIPS Chapters 8-10

Time allowed - 2 hours
18 Pages in this Question Booklet

TOTAL MARKS AVAILABLE

Aids to be supplied by College:

None
Aids to be supplied by Students:
Pen, pencil, eraser, rule, calculator

SECTION	Possible Marks	Actual Marks
A	20	
B	25	
C	28	
D	22	
TOTAL	95	

Instructions to Students:

- Electronic devices are to be turned off and removed from your person. You cannot access an electronic device during this examination.
- All questions are to be answered in the space provided in this Question Booklet. Answers to Section A - Multi-choice Questions, are to be recorded on the Answer Sheet attached to this Question Booklet.
- You are not to use any reference book in this examination.
- The whole of this Question Booklet is to be handed to the Supervisor upon completion.

Aids permitted where indicated:

Standard Dictionaries	Bilingual Dictionaries	Technical Dictionaries	Programmable Calculators	Non- programmable Calculators	Mobile Phones	MP3 Players
No	Yes	No	No	Yes	No	No

SECTION A - MULTIPLE CHOICE

(1 mark per question = 20 marks)
For each question in Section A, identify the response you consider to be the best answer by placing its identifying letter in the space provided at the end of each question.

1. For the circuit in Figure 1, the voltage drops across R1, R2 and R3:
A. are equal in every resistor
B. sum to equal to the supply voltage
C. are inversely proportional to the resistor values
D. are inversely proportional to the value of circuit current
2. For the circuit of Figure 1, if R1 is a 220Ω resistor, R2 a 110Ω and R3 a 470Ω, the resistor which would have the largest voltage drop would be:
A. the 220Ω resistor
B. the 470Ω resistor
C. the 110Ω resistor
D. they would all have the same voltage drop
3. If resistor R1 in the circuit of Figure 1 becomes short circuited, the equivalent circuit resistance would
A. increase
B. remain the same
C. zero ohms
D. decrease
4. The equivalent resistance $\left(\mathrm{R}_{\mathrm{EQ}}\right)$ of the resistors in the circuit of Figure 1 is:
A. always less than the smallest value of resistance
B. only obtainable by measuring with an ohmmeter
C. equal to the sum of the individual resistance values
D. only obtainable by applying Ohm's Law.
5. When an analog needle moves to its furthest point this is called:
A. full scale deflection
B. maximum deflection
C. moving coil
D. fixed coil.
6. Ammeters use what to allow them to measure high currents:
A. moving iron
B. series resistor
C. capacitor
D. shunt resistor.
7. To increase the capacitance of a circuit you would:
A. use an iron core in the existing capacitor
B. connect a second capacitor in series with the existing capacitor
C. reverse the polarity of the existing capacitor
D. connect a second capacitor in parallel with the existing capacitor
8. What factor does not determine the capacitance of the capacitor
A. time constant
B. dielectric thickness
C. dielectric type
D. plate surface area
9. The thinner the dielectric of a capacitor the greater the:
A. capacitance
B. voltage rating
C. size
D. surface area
10. The symbol for a variable capacitor is a standard capacitor symbol:
A. with a cross through it
B. with a circle around it
C. with an arrow diagonally through it
D. does not exist
11. A parallel circuit is different from a series circuit as it has:
A. fewer current paths
B. more than one current path
C. only one current path
D. no current paths
12. Measuring instruments are specified by their sensitivity, resolution and:
A. size
B. accuracy
C. calibration
D. power
(1 Mark)
13. Two resistors R_{A} and R_{B} are connected in parallel. If resistor R_{A} has twice the resistance of resistor R_{B}, the current taken by resistor R_{A} is:
A. two thirds of the supply current
B. twice that taken by resistor R_{B}
C. one third of the supply current
D. one half of the supply current

14. The equivalent resistance (R_{EQ}) of the resistors connected in the circuit of Figure 2 is:
A. always less than the smallest value of resistance
B. only obtainable by measuring with an ohmmeter
C. equal to the sum of the individual resistance values
D. only obtainable by applying Ohm's Law
15. If an open circuit occurs in resistor R1 of the circuit of Figure 2, the equivalent resistance will:
A. Decrease
B. remain the same
C. Increase
D. cannot tell without knowing circuit values
16. If an extra resistor R4 is connected in parallel to resistor R3 in the circuit of Figure 2, the equivalent resistance will:
A. Increase
B. Decrease
C. remain the same
D. cannot tell without knowing circuit values
17. In the circuit of Figure 2, the current taken from the supply is:
A. the same as the currents in resistor R1, R2 and R3
B. the difference of the currents in resistor R1, R2 and R3
C. only able to be determined by Ohm's Law
D. the sum of the currents in resistor R1, R2 and R3

Figure 3
18. The resistor configuration of the circuit of Figure 3 is:
A. R1 in series with R2
B. R1 in series with R3
C. R1 in series with parallel resistors R2 \& R3
D. R1, R2 \& R3 all connected in parallel.
19. If the value of the series connected resistor in the circuit of Figure 3 is increased, the equivalent circuit resistance will:
A. increase
B. decrease
C. remain the same
D. cannot tell without knowing circuit values
20. If the resistor R2 of Figure 3 was bypassed by a short circuit connection, the overall power consumed by the circuit will:
A. increase
B. decrease
C. remain the same
D. cannot tell without knowing circuit values

SECTION B - Short Answer (25 Marks)

INSTRUCTIONS:

Blank spaces in the following statements represent omissions. Complete the statements with the word phrase or answer that you think fits best in the blank spaces.

1 What essential precaution must be taken before measuring resistance on a suspected live circuit?
\qquad
\qquad
2. Name two types of capacitors
\qquad
\qquad (2)

3 What category of meter would be suitable for use on the load side of the service fuse in a domestic installation
\qquad
4. What type of capacitor must be connected with the correct polarity:
\qquad (2)
5. Analog meters use magnetism to measure values. True or False
\qquad
6. What two functions are performed by the hair springs in a moving coil meter:
(A)
(B)
7. How many time constants does it take for a capacitor to be fully charged or discharged?
8. If a conductor has a PTC characteristic, its resistance \qquad with an increase in \qquad .
9. The resistance of a light dependent resistor will \qquad with an increase in \qquad falling on the resistor.
10. When reading an anolog meter what type of error can occur by incorrectly aligning your eye with the pointer?

11 Total resistance in a series-parallel circuit can be calculated by just adding up the values. True or False

12 Capacitance of a capacitor is \qquad proportional to the distance between the plates.
\qquad

13 How would you safely discharge a capacitor?
\qquad (2)

14 What effect does a capacitor have on a D.C. current?
\qquad (2)

15 If three 15Ω Resistors are connected in parallel what is the equivalent resistance?

SECTION C - CALCULATIONS - (28 Marks)

The following questions are to be answered in the spaces provided on the question sheet. The marks are shown for each question.

For all questions the following is required:

Figure 5

1. Determine the equivalent resistance $\left(\mathrm{R}_{\mathrm{EQ}}\right)$ of the circuit of Figure 5.
2. In the circuit Figure 5, determine the current I_{T},
3. In the circuit of Figure 5, determine the current I_{3}.
4. A simple circuit which contains three capacitors of values $C_{1}, 25 \mu f, C_{2}, 50 \mu \mathrm{~F}$ and $\mathrm{C}_{3}, 75 \mu \mathrm{~F}$ are connected in series to an 85 Volt supply determine,
a). the equivalent circuit capacitance.
b). the total charged stored by your circuit.
c). the voltage drops across each capacitor.
5. A simple circuit which contains three capacitors of values $\mathrm{C}_{1}, 15 \mu \mathrm{f}, \mathrm{C}_{2}, 35 \mu \mathrm{~F}$ and $\mathrm{C}_{3}, 45 \mu \mathrm{~F}$ are connected in parallel to an 60 Volt supply, determine;
a). The equivalent circuit capacitance.
b). Calculate the total charged stored by your circuit.
c). the charge across each capacitor.
(3)
$6 \quad$ An RC circuit consists of a resistance of $120 \mathrm{k} \Omega$ and a capacitance of $36 \mu \mathrm{~F}$. Determine the:
a) time constant of the circuit. (2)
b) time taken for the capacitor to fully charge. (1)
6. An RC circuit has an applied voltage of 30 V . What is the voltage across the capacitor after 1 time constant?
7. How much energy is stored in a $22 \mu \mathrm{~F}$ capacitor charges to 400 V .

SECTION D - Drawings \& Symbols - (22 Marks)

1. Identify the symbols below from the selection given in table 1 .

variable	
trimmer	
fixed non-polarised	
fixed polarised	
thermister	
varistor	

B

C

D
2. Identify the following capacitor types

a)

b)

(6 marks)
3. In reference to the diagram below answer the following;
a) Are the appliances connected in series or parallel
b) Determine the power drawn by the toaster

4. From the following description sketch a circuit containing series resistors, R_{1} $\& R_{2}$ connected to a parallel branch containing R_{3} and R_{4}. The supply voltage is 30 V .

Series / parallel circuit
5. Refer to the graph below and answer the following questions.
a. What is the graph below commonly known as?
\qquad
b. Which curve represents the voltage discharging?
\qquad (1)
c. Which curve represents the current discharging?
d. Mark on the graph the percentage after two time constants for current CHARGING a capacitor.

Note: The symbols used on this sheet follow AS1046 pt 1. There are alternate recognised symbols in use. The list does not contain every equation used in the course.
Transposition of equations will be necessary to solve problems

$$
\begin{aligned}
& Q=I t \\
& v=\frac{s}{t} \\
& a=\frac{\Delta v}{t} \\
& F=m a \\
& W=F s \\
& W=m g h \\
& W=P t \\
& \eta \%=\frac{\text { output }}{\text { input }} \times \frac{100}{1} \quad I=\frac{V}{R} \\
& P=V I \\
& P=I^{2} R \\
& P=\frac{V^{2}}{R} \\
& R_{2}=\frac{R_{1} A_{1} l_{2}}{A_{2} l_{1}} \\
& R_{h}=R_{c}(1+\alpha \Delta t) \\
& R=\frac{\rho l}{A} \\
& R_{T}=R_{1}+R_{2}+R_{3} \\
& V_{T}=V_{1}+V_{2}+V_{3} \\
& \frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}} \\
& I_{T}=I_{1}+I_{2}+I_{3} \\
& V_{2}=V_{T} \frac{R_{2}}{R_{1}+R_{2}} \\
& I_{2}=I_{T} \frac{R_{1}}{R_{1}+R_{2}} \\
& R_{x}=\frac{R_{A} R}{R_{B}} \\
& C=\frac{Q}{V} \\
& \tau=R C \\
& \frac{1}{C_{T}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} \\
& C_{T}=C_{1}+C_{2}+C_{3} \\
& C=\frac{A \varepsilon_{0} \varepsilon_{r}}{d} \\
& F_{m}=I N \\
& H=\frac{F_{m}}{l} \\
& B=\frac{\Phi}{A} \\
& \Phi=\frac{F_{m}}{S} \\
& S=\frac{l}{\mu_{0} \mu_{r} A} \\
& V=N \frac{\Delta \Phi}{\Delta t} \\
& e=B l v \\
& L=\frac{\mu_{o} \mu_{r} A N^{2}}{l} \\
& L=N \frac{\Delta \Phi}{\Delta I} \\
& V=L \frac{\Delta I}{\Delta t} \\
& \tau=\frac{L}{R} \\
& F=B i l \\
& T=F r \\
& E_{g}=\frac{\Phi Z n P}{60 a} \\
& P=\frac{2 \pi n T}{60} \\
& t=\frac{1}{f} \\
& f=\frac{n p}{120} \\
& V=0.707 V_{\max } \\
& I=0.707 I_{\max } \\
& V_{\text {ave }}=0.637 V_{\max } \\
& I_{\text {ave }}=0.637 I_{\max } \\
& v=V_{\text {max }} \sin \phi \\
& i=I_{\text {max }} \sin \phi \\
& I=\frac{V}{Z} \\
& Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} \\
& X_{L}=2 \pi f L \\
& X_{C}=\frac{1}{2 \pi f C}
\end{aligned}
$$

$$
\begin{aligned}
& \cos \phi=\frac{P}{S} \\
& \cos \phi=\frac{R}{Z} \\
& S=\sqrt{P^{2}+Q^{2}} \\
& S=V I \\
& P=V I \cos \phi \\
& Q=V I \sin \phi \\
& f_{0}=\frac{1}{2 \pi \sqrt{L C}} \\
& V_{L}=\sqrt{3} V_{P} \\
& I_{L}=\sqrt{3} I_{P} \\
& S=\sqrt{3} V_{L} I_{L} \\
& P=\sqrt{3} V_{L} I_{L} \cos \phi \\
& Q=\sqrt{3} V_{L} I_{L} \sin \phi \\
& \tan \phi=\sqrt{3}\left(\frac{W_{2}-W_{1}}{W_{2}+W_{1}}\right) \quad Q=m C \Delta t \\
& V^{\prime}=4.44 \Phi f N \\
& \frac{V_{1}}{V_{2}}=\frac{N_{1}}{N_{2}} \\
& \frac{I_{2}}{I_{1}}=\frac{N_{1}}{N_{2}} \\
& N_{s y n}=\frac{120 f}{p} \\
& s \%=\frac{\left(n_{s y n}-n\right)}{n_{s y n}} \times \frac{100}{1} \\
& f_{r}=\frac{s \% \times f}{100} \\
& V_{\text {reg }} \%=\frac{\left(V_{N L}-V_{F L}\right)}{V_{F L}} \times \frac{100}{1} \\
& V_{\text {reg }} \%=\frac{\left(V_{N L}-V_{F L}\right)}{V_{N L}} \times \frac{100}{1} \\
& T=\frac{\Phi Z I P}{2 \pi a} \\
& I_{S T}=\frac{1}{3} \times I_{D O L} \\
& T_{S T}=\frac{1}{3} \times T_{D O L} \\
& I_{S T}=\frac{V_{S T}}{V} \times I_{D O L} \\
& T_{S T}=\left(\frac{V_{S T}}{V}\right)^{2} \times T_{D O L} \quad I_{\text {motor st }}=\frac{\% T A P}{100} \times I_{D O L} \quad I_{\text {linest }}=\left(\frac{\% T A P}{100}\right)^{2} \times I_{D O L} \\
& E=\frac{\Phi_{v}}{A} \\
& E=\frac{I}{d^{2}} \\
& \eta_{v}=\frac{\Phi_{v}}{P} \\
& V_{L}=0.45 V_{a c} \\
& V_{L}=0.9 V_{a c} \\
& V_{L}=1.17 V_{\text {phase }} \\
& V_{L}=1.35 V_{\text {line }} \\
& P R V=\sqrt{2} V_{a c} \\
& P R V=2 \sqrt{2} V_{a c} \\
& P R V=2.45 V_{a c} \\
& V_{\text {ripple }}=\sqrt{2} V_{a c} \\
& V_{\text {ripple }}=0.707 V_{\text {phase }} \\
& V_{\text {ripple }}=0.1895 V_{\text {line }}
\end{aligned}
$$

Student Name : \qquad
Class : \qquad

ANSWER SHEET

Section A (Multi-choice Questions)

Instructions:

Enter your personal details in the top right hand corner of this sheet.
Place an \mathbf{X} in box of your choice. If you make a mistake, circle your answer $\boldsymbol{\otimes}$ and choose again.

Question	A.	B.	C.	D
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
Totals				

Question	A.	B.	C.	D
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
Totals				

Total Marks Section A:

Student Name: \qquad
Class: \qquad
Date: \qquad

20222 Certificate III Electrotechnology Electrician

D.C. Circuits TEST 3A

PHILIPS Chapters 8-10

Time allowed - 2 hours
18 Pages in this Question Booklet

TOTAL MARKS AVAILABLE

Aids to be supplied by College:

None
Aids to be supplied by Students:
Pen, pencil, eraser, rule, calculator

SECTION	Possible Marks	Actual Marks
A	17	
B	21	
C	28	
D	22	
TOTAL	88	

\qquad

Instructions to Students:

- Electronic devices are to be turned off and removed from your person. You cannot access an electronic device during this examination.
- All questions are to be answered in the space provided in this Question Booklet. Answers to Section A - Multi-choice Questions, are to be recorded on the Answer Sheet attached to this Question Booklet.
- You are not to use any reference book in this examination.
- The whole of this Question Booklet is to be handed to the Supervisor upon completion.

Aids permitted where indicated:

Standard Dictionaries	Bilingual Dictionaries	Technical Dictionaries	Programmable Calculators	Non- programmable Calculators	Mobile Phones	MP3 Players
No	Yes	No	No	Yes	No	No

SECTION A - MULTIPLE CHOICE

(1 mark per question = 17 marks)
For each question in Section A, identify the response you consider to be the best answer by placing its identifying letter in the space provided at the end of each question.

1. For the circuit in Figure 1, the voltage drops across R1, R2 and R3:
A. are equal in every resistor
B. sum to equal to the supply voltage
C. are inversely proportional to the resistor values
D. are inversely proportional to the value of circuit current
2. For the circuit of Figure 1, if R1 is a 220Ω resistor, R2 a 110Ω and R3 a 470Ω, the resistor which would have the largest voltage drop would be:
A. the 220Ω resistor
B. the 470Ω resistor
C. the 110Ω resistor
D. they would all have the same voltage drop
3. If resistor R1 in the circuit of Figure 1 becomes short circuited, the equivalent circuit resistance would
A. increase
B. remain the same
C. zero ohms
D. decrease
4. The equivalent resistance $\left(\mathrm{R}_{\mathrm{EQ}}\right)$ of the resistors in the circuit of Figure 1 is:
A. always less than the smallest value of resistance
B. only obtainable by measuring with an ohmmeter
C. equal to the sum of the individual resistance values
D. only obtainable by applying Ohm's Law.
(1 Mark)

(1 Mark)
5.

(1 Mark)
7. To increase the capacitance of a circuit you would:
A. use an iron core in the existing capacitor
B. connect a second capacitor in series with the existing capacitor
C. reverse the polarity of the existing capacitor
D. connect a second capacitor in parallel with the existing capacitor
(1 Mark)
8. What factor does not determine the capacitance of the capacitor
A. time constant
B. dielectric thickness
C. dielectric type
D. plate surface area
9. The thinner the dielectric of a capacitor the greater the:
A. capacitance
B. voltage rating
C. size
D. surface area
10. The symbol for a variable capacitor is a standard capacitor symbol:
A. with a cross through it
B. with a circle around it
C. with an arrow diagonally through it
D. does not exist
11. A parallel circuit is different from a series circuit as it has:
A. fewer current paths
B. more than one current path
C. only one current path
D. no current paths
12. Measuring instruments are specified by their sensitivity, resolution and:
A. size
B. accuracy
C. calibration
D. power
(1 Mark)
13. Two resistors R_{A} and R_{B} are connected in parallel. If resistor R_{A} has twice the resistance of resistor R_{B}, the current taken by resistor R_{A} is:
A. two thirds of the supply current
B. twice that taken by resistor R_{B}
C. one third of the supply current
D. one half of the supply current

14. The equivalent resistance (R_{EQ}) of the resistors connected in the circuit of Figure 2 is:
A. always less than the smallest value of resistance
B. only obtainable by measuring with an ohmmeter
C. equal to the sum of the individual resistance values
D. only obtainable by applying Ohm's Law
15. If an open circuit occurs in resistor R1 of the circuit of Figure 2, the equivalent resistance will:
A. Decrease
B. remain the same
C. Increase
D. cannot tell without knowing circuit values
16. If an extra resistor R4 is connected in parallel to resistor R3 in the circuit of Figure 2, the equivalent resistance will:
A. Increase
B. Decrease
C. remain the same
D. cannot tell without knowing circuit values
17. In the circuit of Figure 2, the current taken from the supply is:
A. the same as the currents in resistor R1, R2 and R3
B. the difference of the currents in resistor R1, R2 and R3
C. only able to be determined by Ohm's Law
D. the sum of the currents in resistor R1, R2 and R3

Figure 3
18. The resistor configuration of the circuit of Figure 3 is:
A. R1 in series with R2
B. R1 in series with R3
C. R1 in series with parallel resistors R2 \& R3
D. R1, R2 \& R3 all connected in parallel.
19. If the value of the series connected resistor in the circuit of Figure 3 is increased, the equivalent circuit resistance will:
A. increase
B. decrease
C. remain the same
D. cannot tell without knowing circuit values
20. If the resistor R2 of Figure 3 was bypassed by a short circuit connection, the overall power consumed by the circuit will:
A. increase
B. decrease
C. remain the same
D. cannot tell without knowing circuit values

SECTION B - Short Answer (21 Marks)

INSTRUCTIONS:

Blank spaces in the following statements represent omissions. Complete the statements with the word phrase or answer that you think fits best in the blank spaces.

1 What essential precaution must be taken before measuring resistance on a suspected live circuit?
\qquad
\qquad
2. Name two types of capacitors
\qquad
\qquad (2)

3 What category of meter would be suitable for use on the load side of the service fuse in a domestic installation
\qquad
4. What type of capacitor must be connected with the correct polarity:
\qquad (2)
5. Analog meters use magnetism to measure values. True or False
\qquad
6. What two functions are performed by the hair springs in a moving coil meter:
(A)
(B)
7. How many time constants does it take for a capacitor to be fully charged or discharged?
8. If a conductor has a PTC characteristic, its resistance \qquad with an increase in \qquad .
9. The resistance of a light dependent resistor will \qquad with an increase in \qquad falling on the resistor.
10. When reading an anolog meter what type of error can occur by incorrectly aligning your eye with the pointer?

11 Total resistance in a series-parallel circuit can be calculated by just adding up the values. True or False

12 Capacitance of a capacitor is \qquad proportional to the distance between the plates.
\qquad

13 How would you safely discharge a capacitor?
\qquad (2)

14 What effect does a capacitor have on a D.C. current?
\qquad (2)

15 If three 15Ω Resistors are connected in parallel what is the equivalent resistance?

SECTION C - CALCULATIONS - (28 Marks)

The following questions are to be answered in the spaces provided on the question sheet. The marks are shown for each question.

For all questions the following is required:

Figure 5

1. Determine the equivalent resistance $\left(\mathrm{R}_{\mathrm{EQ}}\right)$ of the circuit of Figure 5.
2. In the circuit Figure 5, determine the current I_{T},
3. In the circuit of Figure 5, determine the current I_{3}.
4. A simple circuit which contains three capacitors of values $C_{1}, 25 \mu f, C_{2}, 50 \mu \mathrm{~F}$ and $\mathrm{C}_{3}, 75 \mu \mathrm{~F}$ are connected in series to an 85 Volt supply determine,
a). the equivalent circuit capacitance.
b). the total charged stored by your circuit.
c). the voltage drops across each capacitor.
5. A simple circuit which contains three capacitors of values $\mathrm{C}_{1}, 15 \mu \mathrm{f}, \mathrm{C}_{2}, 35 \mu \mathrm{~F}$ and $\mathrm{C}_{3}, 45 \mu \mathrm{~F}$ are connected in parallel to an 60 Volt supply, determine;
a). The equivalent circuit capacitance.
b). Calculate the total charged stored by your circuit.
c). the charge across each capacitor.
(3)
$6 \quad$ An RC circuit consists of a resistance of $120 \mathrm{k} \Omega$ and a capacitance of $36 \mu \mathrm{~F}$. Determine the:
a) time constant of the circuit. (2)
b) time taken for the capacitor to fully charge. (1)
6. An RC circuit has an applied voltage of 30 V . What is the voltage across the capacitor after 1 time constant?
7. How much energy is stored in a $22 \mu \mathrm{~F}$ capacitor charges to 400 V .

SECTION D - Drawings \& Symbols - (22 Marks)

1. Identify the symbols below from the selection given in table 1 .

variable	
trimmer	
fixed non-polarised	
fixed polarised	
thermister	
varistor	

B

C

D
2. Identify the following capacitor types

a)

b)

(6 marks)
3. In reference to the diagram below answer the following;
a) Are the appliances connected in series or parallel
b) Determine the power drawn by the toaster

4. From the following description sketch a circuit containing series resistors, R_{1} $\& R_{2}$ connected to a parallel branch containing R_{3} and R_{4}. The supply voltage is 30 V .

Series / parallel circuit
5. Refer to the graph below and answer the following questions.
a. What is the graph below commonly known as?
\qquad
b. Which curve represents the voltage discharging?
\qquad (1)
c. Which curve represents the current discharging?
d. Mark on the graph the percentage after two time constants for current CHARGING a capacitor.

Note: The symbols used on this sheet follow AS1046 pt 1. There are alternate recognised symbols in use. The list does not contain every equation used in the course.
Transposition of equations will be necessary to solve problems

$$
\begin{aligned}
& Q=I t \\
& v=\frac{s}{t} \\
& a=\frac{\Delta v}{t} \\
& F=m a \\
& W=F s \\
& W=m g h \\
& W=P t \\
& \eta \%=\frac{\text { output }}{\text { input }} \times \frac{100}{1} \quad I=\frac{V}{R} \\
& P=V I \\
& P=I^{2} R \\
& P=\frac{V^{2}}{R} \\
& R_{2}=\frac{R_{1} A_{1} l_{2}}{A_{2} l_{1}} \\
& R_{h}=R_{c}(1+\alpha \Delta t) \\
& R=\frac{\rho l}{A} \\
& R_{T}=R_{1}+R_{2}+R_{3} \\
& V_{T}=V_{1}+V_{2}+V_{3} \\
& \frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}} \\
& I_{T}=I_{1}+I_{2}+I_{3} \\
& V_{2}=V_{T} \frac{R_{2}}{R_{1}+R_{2}} \\
& I_{2}=I_{T} \frac{R_{1}}{R_{1}+R_{2}} \\
& R_{x}=\frac{R_{A} R}{R_{B}} \\
& C=\frac{Q}{V} \\
& \tau=R C \\
& \frac{1}{C_{T}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} \\
& C_{T}=C_{1}+C_{2}+C_{3} \\
& C=\frac{A \varepsilon_{0} \varepsilon_{r}}{d} \\
& F_{m}=I N \\
& H=\frac{F_{m}}{l} \\
& B=\frac{\Phi}{A} \\
& \Phi=\frac{F_{m}}{S} \\
& S=\frac{l}{\mu_{0} \mu_{r} A} \\
& V=N \frac{\Delta \Phi}{\Delta t} \\
& e=B l v \\
& L=\frac{\mu_{o} \mu_{r} A N^{2}}{l} \\
& L=N \frac{\Delta \Phi}{\Delta I} \\
& V=L \frac{\Delta I}{\Delta t} \\
& \tau=\frac{L}{R} \\
& F=B i l \\
& T=F r \\
& E_{g}=\frac{\Phi Z n P}{60 a} \\
& P=\frac{2 \pi n T}{60} \\
& t=\frac{1}{f} \\
& f=\frac{n p}{120} \\
& V=0.707 V_{\max } \\
& I=0.707 I_{\max } \\
& V_{\text {ave }}=0.637 V_{\max } \\
& I_{\text {ave }}=0.637 I_{\max } \\
& v=V_{\text {max }} \sin \phi \\
& i=I_{\text {max }} \sin \phi \\
& I=\frac{V}{Z} \\
& Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} \\
& X_{L}=2 \pi f L \\
& X_{C}=\frac{1}{2 \pi f C}
\end{aligned}
$$

$$
\begin{aligned}
& \cos \phi=\frac{P}{S} \\
& \cos \phi=\frac{R}{Z} \\
& S=\sqrt{P^{2}+Q^{2}} \\
& S=V I \\
& P=V I \cos \phi \\
& Q=V I \sin \phi \\
& f_{0}=\frac{1}{2 \pi \sqrt{L C}} \\
& V_{L}=\sqrt{3} V_{P} \\
& I_{L}=\sqrt{3} I_{P} \\
& S=\sqrt{3} V_{L} I_{L} \\
& P=\sqrt{3} V_{L} I_{L} \cos \phi \\
& Q=\sqrt{3} V_{L} I_{L} \sin \phi \\
& \tan \phi=\sqrt{3}\left(\frac{W_{2}-W_{1}}{W_{2}+W_{1}}\right) \quad Q=m C \Delta t \\
& V^{\prime}=4.44 \Phi f N \\
& \frac{V_{1}}{V_{2}}=\frac{N_{1}}{N_{2}} \\
& \frac{I_{2}}{I_{1}}=\frac{N_{1}}{N_{2}} \\
& N_{s y n}=\frac{120 f}{p} \\
& s \%=\frac{\left(n_{s y n}-n\right)}{n_{s y n}} \times \frac{100}{1} \\
& f_{r}=\frac{s \% \times f}{100} \\
& V_{\text {reg }} \%=\frac{\left(V_{N L}-V_{F L}\right)}{V_{F L}} \times \frac{100}{1} \\
& V_{\text {reg }} \%=\frac{\left(V_{N L}-V_{F L}\right)}{V_{N L}} \times \frac{100}{1} \\
& T=\frac{\Phi Z I P}{2 \pi a} \\
& I_{S T}=\frac{1}{3} \times I_{D O L} \\
& T_{S T}=\frac{1}{3} \times T_{D O L} \\
& I_{S T}=\frac{V_{S T}}{V} \times I_{D O L} \\
& T_{S T}=\left(\frac{V_{S T}}{V}\right)^{2} \times T_{D O L} \quad I_{\text {motor st }}=\frac{\% T A P}{100} \times I_{D O L} \quad I_{\text {linest }}=\left(\frac{\% T A P}{100}\right)^{2} \times I_{D O L} \\
& E=\frac{\Phi_{v}}{A} \\
& E=\frac{I}{d^{2}} \\
& \eta_{v}=\frac{\Phi_{v}}{P} \\
& V_{L}=0.45 V_{a c} \\
& V_{L}=0.9 V_{a c} \\
& V_{L}=1.17 V_{\text {phase }} \\
& V_{L}=1.35 V_{\text {line }} \\
& P R V=\sqrt{2} V_{a c} \\
& P R V=2 \sqrt{2} V_{a c} \\
& P R V=2.45 V_{a c} \\
& V_{\text {ripple }}=\sqrt{2} V_{a c} \\
& V_{\text {ripple }}=0.707 V_{\text {phase }} \\
& V_{\text {ripple }}=0.1895 V_{\text {line }}
\end{aligned}
$$

Student Name : \qquad
Class : \qquad

ANSWER SHEET

Section A (Multi-choice Questions)

Instructions:

Enter your personal details in the top right hand corner of this sheet.
Place an \mathbf{X} in box of your choice. If you make a mistake, circle your answer $\boldsymbol{\otimes}$ and choose again.

Question	A.	B.	C.	D
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
Totals				

Question	A.	B.	C.	D
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
Totals				

Total Marks Section A:

[^0]: Verified by (print name) $_$M.A. James

[^1]: Verified by (print name) __ M.A.James

[^2]: Verified by (print name)__M.A.James_signature_M. A. James Date_18/03/13

