0.6.(20 marks). Determine the first four terms of th
trigonometric Fourier series for the waveform shown ir

figure 3.
\ﬂUo
GaﬂhD

- - — - —-— - -

-% 0
(f'&-dtM 3)
Figure 3

Q.7.(10 marks). After closing the switch in the circuit

shown 1in figure 4 a current will flow. Determine the
following: -

(a) the final value of current:
(b) the initial value of current:

(c) the time constant of the circuit:
(d) the equation of the current.

S00 -
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Introduction

All the circuit analysis work you have experienced in
studying ac principles up to this point has involved only
pure sine waves. Because we have used only pure sine
waves, the calculations of impedances involving

inductive and capacitive reactances and complex powers
have been reasonably simple.

You may not agree with the previous statement, but
consider how you would analyse the effect of a square
wave on a circuit containing inductance and capacitance.
In this unit you will be shown a method called Fourier
analysis to help you work out problems simﬂnr to that of a
square wave in complex wmi]:m YO _

gh wgd Y Sagl AT " L Y
Much electrical and elﬁewm
waveforms which are non-sinusoida
deliberately created, others are the results of distortions
produced by equipment. In the analysis of these non-
sinusoidal waveforms you will b ,'-‘ '
repetitive waveforms can be made up of «
many sinusoidal waves. Ms@m ‘waveform can b
analysed to determine the component quantities. Thes
sine wave components may be used when investigati
the response of a complex impadam circuit to a non:
sinusoidal supply voltage. The Fourier method provides
the means for solving this type of problem. )

When you are studying this unit, the re
textbook, Edminister, is Chapter 1131 'mu in
covering this topic uses a camyi IS it :.‘ ,'_' -

approach using integral calculus. For th his
unit, you are not expected to mmmmm. / "i_.u r

rT‘ Riaid

is required (to obtain the values of constants etc vhich

you need to use in your anal si&aﬁ- vaveforms), _J',; ch
values will be given to you. wlw *Hln i‘i e o
textbook only be used E& ;g 51 ':- plement for v=';" _J: naterial
resened in this unit, The selfassessment exercises r"-._
gg /O hr;, %smmﬁmm; vhi h ...,‘Hﬂ | t “s "Ji t to be

1h|mﬁ___}qu£1mjml4 I

J.I

H -lF -
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ﬂ
Harmonics in waveforms

t of objectives gommsmﬁ?‘?d '?;h&r;m Reference: Edminister, page 190 |
1 this unit. Do not be conc '

1o stated here which you do not Most of the cireuit analysis in ac work you have done up

e 1 Thasa W MGTII' as you progress (o this stage has been possible because you have always

understaits = Ay the completion of this unit, review considered the supply voltage and current to be

L |’:'I'1. i

should be able to understand how to: sinusoidal. The formulae required the use of sinusoidal .

B series f waves, .
motric Fourler series for |
i The waveshapes in Figure 1 are common in both

and hence simplify the electronic and electrical circuits and thg calculation of

. S et S circuit responses is possible using the theory already
(e the Fourier series and show how the series applied to sine waves.

. s f— Id--l-
] e s ] - Ba
| . 1,1 £ I 11 |'._:1! i i
A B a - A . .
I 1 K Bal N _IIH J :
11 B
S IIIJl.. ¥ ‘I ; L _..F. .;.i "
¢ I- * - o ’
. . oy ol .
- - . s
4 TI1 4 il | ] !
i

vaveforms,

!
1

FRL ™Y
& -l

- _l' W - | {‘ | 1
) i ! ! [T1] 1 N I 1
AV Iy - . ﬁ

A
1

e concepts of Four mwlmuplﬂn the

*state the sources of the production of harmonics; | —
. explain the problems of non-sinusoidal waveforms in Mall - wave rectfier \
v - .. : o a0 ] ‘ 1 o & || | lfﬂ' WV’ 1H

v waveform and the

Ny e Y ". 1
Ly WA '-,-III'\..‘I |
. - i

E

i o 32w ol - ..' jlht,.-_:—_‘;i:i' i I .
111 . l-. r:l .IilI ¥ "fl. i I'l k) i1 & ‘: b, u . |.-I L gt L Il
g ir i . i . oy Bt R oy« 4 |
i % _. 1 1 Y Fa ."_l } AT t | t L ‘11 \
ects of harmonics on the value of the rms
- ]

g =
s K f'—' AT

'l s |2
1

Squore wave
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| T e, gt
i L 1 | TR wilth
fg - S oy 8

||I LRt Iu ri II l'“il'lq'-'ll e
g apliprinealy oy AN

Exponential wove _u‘rl"'f wave
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Sy 1 to be known about an
The first important detail to g y :
P t is repetitive. The term 'periodic These harmonics take the form shown below:

waveshape 18 whether 1 gl
ic used sometimes instead of 'repetitive.
R fundamental = base frequency (sin wt)
veshape in Figure 2. If we take the value 2nd harmonic = 2 x base frequency (sin 2awt)
3rd harmonic = 3 x base frequency (sin 3wt)

then the wave must have
exactly the same value at f; = t; + T, where T is the period to the nth harmonic = n x base frequency (si
y (sin nmt)

of the wave and again at t = t, + 2T. In other words the

wave must reproduce itself exactly during each time
period T(hence the term 'periodic’), during the time that

the supply 18 considered stable.

Consider the wavest
of the wave at any time &

IO |

|
—

t
‘ T t,  Time (sec)

Fi : »
1gure 2: Repetitive waveform

6
2840BP: 3 Power Circuit Principles 7
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B

is using Fourier
Waveform

Let us now add a third generator to the system with a
trequency of five times that of generator 1. This System is

*
Serles shown in Figure 4.
" Yt DY 1,1 ‘rt\ ]qh
Reference: Edminister, b 5 T ,_ - _ ?
' b ’ " . < v1
'i'l r\hj Y thl\ Ct}nt‘(\}'ll t'll' C{]n‘l_\'ll‘\ ,f\fﬂ\ S lj{‘lrlp‘ I]‘illil 11}1 F . f"
T;‘.‘ : ;:;mlzﬂnt'i of sine waves, let us consider an t“mmple
‘) Ct\ . t . s TAN B
- | sugh two Stages.
and develop it throug |
If two generators are connected In series, as ‘m Figure 3, ] Qj
with generator 2 having 2 frequency three times the
frequency of generator 1, the output ol the system is the
sum of all instantaneous amp itudes to give a combined
: *L
wave shape. | : * _
“J
(V) +Va sy )
3 . ? 4
3 )
I- .
Vi~
'
0
Figure 4

With the addition of the third generator the output wave
1S now beginning to resemble a poor quality square wave.
I time and space permitted, we would add further

V2 generators to this system containing the frequencies of
seven times, nine times, 11 times the fundamental
frequency, and so on. Each additional wave would
produce a squarer square wave with less ripple on the top,
until, with sufficient generators, a practical pure square
wave would be produced.

In this example a number of points must be noted:

er plitude of 1)
me:t::: ::”nt\uch less than that of ge,::rxgr C; ;r%r::th * Lach successive generator produces a frequency which
positiy at the same point and 1S an odd number multiple of the fundamental (base)
¢ direction, Jf v both rise in a | *
direction, the - We 2 were to start in the negative frequency,
Pt wave would be quite different

28408P: 3 Power Circull Principles
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oncies are called the third, fifth, seventh

frequencies.
harmonic was a

e These frE'qU _
(etc) harmonic
e Each successiVe

: SSOT. . .p s !
jflllts prte;ljeze: the same point and in a positive direction,
° star

t a reduced magnitude

be explained later but the significance

ints will ,
All these poin waves producing the square wave

of the addition of sine
must be noted.

yence of terms has developed in this

nous Se - . :
An obvious seq s can be explained using the principles of

example and thi
a Fourier series.

A Fourier series exists and can be written for any
repetitive complex waveform in the general form of:

1

f(1) =53 + 2, C0S ot + a, cos 2wt + a;cos 3wt + ...

+ bysinwt + bysin20t + bysin 3wt + ...

Let us take each term of this series and explain its
significance.

All the constants 2 and b can be calculated using calculus
but this is not in the scope of this subject, so you will be

given these values when a series is to be used in
calculations.

: 1 ',
The first term 2 % 15 an average value, hence it is the

Cosi - :
also when either, or botl:sluzeteézsd will be explained and

2840BP: 3 Power Circuit Principles

the a terms are zero, then there are no cosine terms in the
series.

At the end of each section of the general series, after the

a; cos 3wt and the b, sin 3wt there is a row of dots. These
dots represent the continuation of the terms in the series
to infinity in the mathematical sense. In reality it would
be determined by the circuit conditions, the consideration
of which is beyond the scope of this course.

Note: Sufficient terms must be given to indicate how the
series progresses, as it will repeat the arithmetic
progression after a certain number of terms. Usually three
to four terms is sufficient to demonstrate the progression
and any more terms would not be necessary for an
explanation of the waveshape, but they can be calculated if

necessary.

The general form of the Fourier series must be
memorised so that you will be able to construct series
applicable to given waveshapes at a later stage of this unit.

2840BP: 3 Power Circuil Principles | 11
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: : implification uysj
Fourier series simp uSlng A function is said to be half-wave symmetric if

waveform symmetry
T
f(t) = ~f(t + )

Reference; Edminister, page 193 where T is the period of the wave.
' 1t ' : To explain this expression for the function of t look at
itions which are used : O Exp p
There are two basic e 2 Simplify Figure 7 and note the value of the wave at t;. If you now

the Fourier series. move along the horizontal axis, half the period T, to the

: T
negative half cycle and to the position (t; + 5) then the

Condition 1: Half-wave symmetry value must be the negative of the value at t;.

When you look at the two examples in Figure 5, you wil]
notice that the horizontal axis is through the centre of the
waves. The shape of the positive section of the wave is

the same as that of the negative section of the wave. 7 '
f(t)
The test for half-wave symmetry is that both positive and
negative half cycles of the wave are indentical. This can by +T
ll::;checked by superimposing the negative half cycle e
utlgvegn_the t_wo positive half cycles and if each wave t / o=
pulse 1s 1‘dent1cal to the next, then the wave is half-wave
symmetric. Compare Figure 5 to Figure 6.
+ o ] g
— * Figure 7
: .
| 4 t This condition of half-wave symmetry can only exist if
L B0 — odd harmonics only are present. Odd harmonics are the
3rd, 5th, 7th, 9th etc. When even harmonics are present,

the positive and negative half cycles are different.

Figure 5
Waveforms with half-wavye ¢ - : :
ymmetry Condition 1 must be memorised so you can interpret

wave shapes for the purpose of constructing Fourier
series.

Now try the exercise in Self-assessment 1. This question is
for your self-testing only. Do not send your answer to
- OTEN. Check your answers with those given at the end of

f the unit.

F
igure ¢, W;avefow Ot hayj
n
12

B half-waye Symmetry 2840BP: 3 Power Circuit Principles 13
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gelf-assessment 1

Condition 2;: Odd and even functions

o following waves are half-wave

: r th ;
Indicate whethe When you look at Figure 8, the two wave shapes have a

symmetrlf- feature in common which classifies them as even
functions.
o Fit) f(t)
' [
e o *
e i
|
(1) (2) - ts PP =1 +1 e
: t
f11) f(t)

/ f/ Figure 8: Even functions

(3] An even function is defined as one which has the same
) value of f(t) for t and —t; that is,

fit)

fit) f(t) = f(-t)

/-\ - /\ L This means the wave must be the same both sides of the
\ vertical axis. One way physically to determine this is to

Imagine a mirror placed along the vertical axis and the
reflection in the positive direction on the time axis is

1 (%)

(6) identical to the wave in the negative direction.
it Compare the even waves in Figure 8 with the odd waves
of Figure 9.
1
17)
4 2840BP: 3 Power Circuil Principles 15
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Condition 2 Odd and even functions

ing waves are half-waye

: ther the following .

Indicate whe When you look at Figure 8, the two wave shapes have a
symmetric. featm:e IN common which classifies them as even

[ 1(t) il
e : ] N
— !
— '
(1) (2) =l ety e
t
fit) i
|
t
S +— L
/ Figure 8: Even functions
) An even function is defined as one which has the same
&) value of f(t) for t and —t: that is,
f1)
flt) f(t) = f(~t)
t
o = This means the wave must be the same both sides of the
vertical axis. One way physically to determine this is to
b e Imagine a mirror placed along the vertical axis and the
reflection in the positive direction on the time axis is
(6) identical to the wave in the negative direction.
fit) Compare the even waves in Figure 8 with the odd waves
of Figure 9.
-
74
14 5
2840BP: 3 Power Circuit Principles 15




f(t) or

Figure 10 leads us to the condition that:
f(t)
* Even functions onl

. y have cosine terms in their Fourier
series.

All the b constants are equal to zero. An
¥ example of an even function Fourier series is

+t

JJJJJJJJ

. ((t) = a, + a, cos wt + a, cos 2wt

. Od.d functions only have sine terms in their Fourier
series. All the a constants are equal to zero. An
example of an odd function Fourier series is

Figure 9: Odd functions f(t) = by sin wt + b, sin 2wt........

The odd waves in Figure 9 have the condition that the Adding a dc level to an even complex wave does not alter
function has the opposite value for f(t) for values of t and the even nature of the wave. Consider the two waves in

_t that is Figure 11. Both are even functions. Both contain only
' : cosine terms.

f(t) = —f(-t)

The most common even and odd functions are the cosine
and sine waves respectively. These are shown in f(1)
Figure 10. R

DC Value

Figure 11 -

Note: The addition of a constant to an odd function _. =
removes the odd nature of the function and the function L
will no longer be odd, nor is it even. The function could
then contain both sine and cosine terms in the Fourier
Sine—odd function series. |

2840BP: 3 Power Circuit Principles
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1@ axis you may make
inchor Qdd

. Belfdsdudivens’s RS g e
" The

ﬁmrter Wavelength 1 Indicate whether the followi
s function odd. This neither odd nor even.

1 ﬂﬂl, V¢ Ve

ng waves are odd, even or

" flt) > £(4)

3 flt) L. flt)

flt) fit)

h. nor even so they m — /\\/\_..
t s in their Fourier t t

1 :IE'-—'__ _. i +_]l l :

-I

m this section must ft)
e shapes for the 7

2. These
a not send your
th those given
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Review

So far in this unit you have covered the topics of

waveform symmetry and waveform synthesis using the
Fourier series.

The topic of waveform symmetry was related to two
conditions. Condition 1 occurred if the wave was half-
wave symmetric, and if so, then it only contained odd
harmonics in its Fourier series. The second condition was
if the waveform was odd or even. If the waveform was
odd, it only contained sine terms. If the waveform was
neither odd nor even, then it was said to contain both sine
and cosine terms in its Fourier series.

By using these definitions of waveform symmetry, we
could synthesise waves by using the various harmonics to
build up a waveshape of the desired type.

In the remainder of this unit we will be covering the
analysis of waveshapes, using Fourier analysis. We will
then deal with the practical problem of sources of
harmonics in the power system and finally we will
perform calculations of the rms voltages and currents of
complex waves in ac circuits.

2840BP: 3 Power Circuit Principles . a1




For the level of understanding required by this subject
you should be able to analyse the wave using the two
conditions in the previous section of this unit.

Let us consider the square wave of Figure 13,
3 were shown how to make up

fom a series of sine waves Condition 1: [s if half-wave symmetric?
iple. Using the same

Yes. Then the waveform contains only odd harmonics.
analysed to determine thejr Condition 2: Is it an odd or even function?

Odd. Then the waveform contains only sine functions.
Is the wave offset by a dc component?

. - - No, because the positive and negative half cycles
e wave as shown in Figure have the same maximum value.
1alysis to be represented by

-

: We can, from these details, construct a Fourier series as
oy sin 5ot  sin 7wt } follows:

; ___::-! 5 + 7 +

e(t) = b, sin wt + b, sin 3wt + b; sin 5wt + b, sin 7wt

tttttt

ol ";'_f:r time t, E_ is the

. - which has the same terms as the equation given except that the values
and @is 2T x of the constants b,, b, etc are not evaluated as we do not have to
L Sin Wt component is the perform that level of maths in this subject.
¥ is the third harmonic, Bl
. ﬂl e A second example is the sawtooth wave shown in Figure 14,
éic The £ which, by the method of Fourier analysis produces the
Nonics, no even
2Em sin2wt  sin3wt sin4wt  sin Sot )
e=—"1r(sinot - e ST et S sk BT oo

In this case all the harmonics are present and once again
there is no dc component.

Note: In general, a waveform has no dc component

when it is symmetrical above and below the horizontal
' f time axis,

3 2840BP: 3 Power Circuit Principles | 23
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field from the

tor coils in their
produce an emf
The next possible
irrents of

.
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it voltage is to be
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N

mall. *;g is is
bout 5% of the

-urrent represents
it. This means

r o L :
M Iart
o o

occur

variety of harmonics and
.._"'-_4_;:‘_";_'_}' and so on will add up in the neutral if banks
of fluorescent lamps are
sprea d over the three phases. This can cause overheating
o €

1Bl

Silicon controlled rectifier (SCR) units affect the current
_--'.::I'w \ from the supply in a similar manner to fluorescent
4 the wave shape of the current, and hence its
har mc content, varies as the average dc voltage from

gCn nics. These current
] fj"'(:; 1 11

e

by causing a
impedance.

The current flowing in fluorescent tubes contains a

the third and ninth (triple-n

wired phase-to-neutral and

it L

Ne neutral connection in large installations.

=

1

he rectifier system is varied by phase angle C(_)ntrgl of the
CRs. Typical voltage waveforms are shown in Figure 16.



» harmonic

' e g Ims value of
. 1 he :-';}:‘@ ~11 - CurrEnt
3 U "'ie:?;]?f the average POWer in a circuit due o
' the compie
; ,”i ' age and current wavyes can then be

e motor must
ase at lowe Consider the circuit shown in Fi -
ase at lower i gure 17:

er low

R . s
> Narm mC
3 i_.l_: ‘ i

i
i i L". :--'.| qj" .
il

calculate the total voltage, current and power in the

wit, it is necessary to consider each voltage source
parately, calculate its respective current and then ]io

\bine these values to obtain the resultant overa

= 1 o
I-':!-l-l .
S.

. - ‘ . he
is the superposition method which is similar to t

tod used in multi-sourced dc circuits.



alate impedance of circuit at @ = 250 rad /s

25 volts

"m:tance has no effect on de.

K = .
:.H_{_‘-‘- 1)

_ %

‘= 1.25 amperes

-.';.:; 7 .
¢ fundamental = 80 sin wt

jlate the inductive reactance at ) = 250 rad/s

X, = oL
" _""-' 250 x 0.2
= 50 ohms

]
1 Iil

VRZ + X2

= \[20) + (50)

'.;-. 53.85 ohms

Iculate the current
| £I |

' E- '
80 sin 250t

53,85 £8.2°
1.49 sin (250t — 68.2°)




.1\[5

- = 0.093 £82.4° amperes

] .
I;I us current 1 = 1.25 + 149 gip, (250t - 6820 .
| 0.132 sin (750t - 82.4°)

il

- "'

age and current (rms)

alcu gte the total rms voltage in the circuit we cannot
2 arithmetic with phasor values. b

consider the power as
I

P = 'IzR
'
1

usi 4’.:5 the same principle as above

Can be uSEd fOI' any

e formulae for Ep,, and Ly, ”
armonics and must be' memorise

it Principles



uit containing a coil with resistance of 25
g E____ ] _'.Il -_ . - 0
i : 0.25 henrys is in series with a 45 ohk;ns o
.I5'1- ‘he supply voltage is given by the expression
e(t) = 13 + 120 sin 0t + 35 sin 3t

unda ental frequency is 50 Hz.
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= =,
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™™ j:l‘ql .j

W o

e expression for the instantaneous current
rms value of current

="

otal -power dissipated in the coil
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Review

In the second part of this unit you have covered the
analysis of a simple repetitive waveform to determine its
basic Fourier series components. This was achieved by
using waveform symmetry. The next topic contained an
explanation of the sources of harmonics in power systems
and concentrated on the three main areas of magnetic
circuits, transformers, fluorescent lights and SCR-
controlled motors. Finally, the effect of non-sinusoidal
waveforms on complex impedances in circuits was

detailed.

You have to be able to calculate the total rms voltages and
current in these circuits, remembering that to add
individual rms values, the formula

L. = VI + e + ()’

must be used for current and the similar one for voltage.
The calculation of the individual rms currents for each
harmonic was shown by calculating each harmonic
current from the harmonic voltage in the complex

impedance. The individual currents we then added in the

formula shown above.

36 r ~ 2B40BP: 3 Power Circuil Principles

A
nstrs to self-assessment
questions

Self-assessment 1

half-wave symmetric
not half-wave symmetric
half-wave symmetric
half-wave symmetric
half-wave symmetric
half-wave symmetric
not half-wave symmetric

SO O s O N =

Self-assessment 2

1 odd

even
neither odd nor even
neither odd nor even

neither odd nor even
odd

odd

NOYOT e O N =

2 (a) odd
(b) neither odd nor even
(¢) neither odd nor even

Self-assessment 3

1 e(t) = a, cos wt + a; cos 3wt + as cos Swt.......
e(t) = 5 + b, sin wt + b, sin 2wt + b, sin 3wt........
+ a, cos wt + a, cos 2wt + a; cos 3wt........

3 e(t) = b, sin wt + b, sin 2wt + by sin 3wt......
+ a, cos Wt + a, cos 2wt + a, cos 3wt......

4 e(t) = b, sin ot + b, sin 20t + b, sin 3wt......

5 e(t) = 10 + b, sin ot + b, sin 2wt + b, sin 3wt......
+ a, cos Wt + a, cos 2wt + a; cos 3wt........

6 e(t) = b, sinwt + by sin 3wt + bs sin Swt........

e(t) = a, cos Wt + a3 COS 3wt + ag sin Swt........

2840BP: 3 Power Circul Principles -




A
R

NI
[

JR? + X2 Aan’!

Self-assessment 4 T
= (70)* + (78.5)* Aan”! =0
Circuit diagram
5 = 105.2 248.3° ohms
11 120 sin 314t
105.2 A48.3°
" 450 .
O13V DC = 1.14 sin (314t — 48.3°) amperes
1 Third harmonic:
- | |
: 5
Orlzo Sin wt | | ieae iy
ot 1 = 942 x 0.25
: I = 235.5 ohms
* |
O 35 Sin 3wt : : 0.25H ?
5 T e
[ 'L 3 Z = \JR* + X, /_taan
2355
= \(70)7 + (235.5 s@an =2

245.7 /73.4° ohms

Il

Frequency = 50 Hz = 2n x 50rad/s = 314rad/s

I3 35 sin 942t
1 Expression for instantaneous current

L E 245.7 /B4
de 1= g
T = (.14 sin (942t — 73.4°)
B
70 Then expression 1is
= 0.186 amperes
i(t) = 0.186 + 1.14 sin (314t — 48.3°) + 0.14 sin (942t — 73.4°) amperes
RT - 45 + 25

= 70 ohms 2 rms value of current

Fundamental: I (0.186)° + + )
i i T
y = wL
%= gl O _ /0,035 + 0.65 + 0.0098
= 78.5 ohms

/0.695

0.83 amperes

30



-

.

3 Power in coil

- (083 x 25

F I i - =

——— —__— e T o ¥

Glossary of terms

analysis breaking down a waveshape into Rt
~ its component parts (harmonics). |
distortion any variation from the original
waveshape.
even function a function which has the same

value of f(t) for t and —t. It
contains only cosine terms in its
Fourier series.

Fourier series a mathematical series which can
be used to represent a complex
repetitive wave form.

fundamental frequency the basic frequency of a complex
wave. It is the reciprocal of the
period of the complete complex
wave.

half-wave symmetry the shapes of the positive half
cycle and negative half cycle of
the waveform are identical. The
Fourier series of such waves has
only odd harmonics.

harmonic a sine wave of some frequency
which is a multiple of the base or
fundamental frequency.

integral calculus a mathematic method which can
be used to find areas under
waveshapes.

non-sinusoidal a waveshape which has a form

different to a sine wave.

odd function a function which has the

opposite value of f(t) for t and —t.
It contains only sine terms in its
Fourier series.

2840BP: 3 Power Circuit Principles 41



1761L
Student Workbook

f.d r._ O ,L.N\:

A m ﬁ N n nl 1 O ._FH ..w - ul_m,J, O Jfﬁ. .,w,rn...r,..g A.ir.o.r(nd;ru rﬁrﬂ_“.»ﬂ?rﬁ.m.ﬂ

¥ { oy ( _r._r_,,‘. J

National Module No. EA190
Electrical Engineering

St George TAFE

Sydney Institute




143 -?_-T- II.T—_ :

= 1

b |

Section 2: Signals, spectra and nan—hnearity W

PREAMBLE

To introduce you to Fourier concepts and the spectra of
some common signals, and to extend these concepts in
explaining the effect of non-linearity.

—_——— o — — - — == —

This section covers learning outcomes 3 and 4 of the Module Descriptor.

Objectives

At the end of this section you should be able to:

predict the spectral frequencies of a given periodic wave

recognise that a non-periodic signal such as speech contains a continuous
band of frequencies

sketch typical time and frequency domain diagrams for white noise, speech,
music, video and random binary data

relate one line of video to a grey scale

define non-lineanty

calculate harmonic and intermodulation distortion frequencies.

_ J !ne Uses open
1efly H‘“ pare the likely
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~ Student Workbook 15 -
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) versus time, which is adequate for
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J' low frequen fm measurements involving timing and

ually adequate when studying RF
' | .* lators and antennas. The
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sforms above several hundred MHz.

amplifying many of the high
equipment. For example,

= used to view these signals.

-
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T
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|

display the tiny signals found

most oscilloscopes have 1mV/cm
ay signals with uV levels. It
ignal at the same time as a

OWR into its constituent parts;
§ are complex; that is, they

| -'---;-j_'j._.'_i. impossible with an
f 2 complex wave.

2ven though it can’t do the
eneral purpose laboratory
mentioned above may

ent is called a spectrum

i |
!
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Frequency domain _

In general, the term frequency domain refers to any graph or measurement which is
taken as a function of frequency. The most commonly encountered measurement is
amplitude versus frequency. The resulting display is known as a spectrum or a
spectral diagram.

The spectrum analyser displays amplitude versus frequency on the screen. A signal
having only one frequency component appears as a single vertical line. The height
of this line represents amplitude measured either in volts or milliwatts or dBm
(another way of expressing power measurements). The position of this vertical line
along the horizontal axis tells us its frequency.

The line moves 1o the left or right when
the frequency vanes.

=— Frequency

4
|

Frequency domain display

One feature of the spectrum analyser is that it allows either linear or logarithmic (dB)
scales. The logarithmic scale permits both large and small signals to be displayed

! . 1
simultaneously. For example a signal which is 60dB below another is T of

(:ai signal’s power. On a linear scale only the larger signal would be seen. Viewed
on an oscilloscope, the effect of the smaller signal would not be noticeable.

EA190 Electronic Signals and Systems E!ﬂ
‘Student Workbook ut
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Fundamentals of Fourier Analysis

Stated in the simplest of terms, Fourier’s theorem says:

A complex periodic waveform may be analysed as a
number of harmonically related sinusoidal waves.

This means that we can synthesise (make) any complex periodic waveform by adding
together pure sine waves in the right amounts. Electronic music can be created in
exactly this way: certain combinations of sine waves may sound like a flute, while
another combination may sound like a fog-hom. The term periodic simply means
that the waveform repeats itself after a given time period T.

The frequencies of the constituent sine waves are all integer multiples of the
fundamental frequency of the waveform concerned. These multiples are known as
the harmonic frequencies, the second multiple being known as the second harmonic,
the third multiple being known as the third harmonic and so on. The first harmonic
is just the original frequency, and is referred to simply as the fundamental.

This applies to all complex periodic waveforms, such as square, triangle, pulsed and
sawtooth signals. An ideal sine wave however, has only a fundamental component
and no harmonics.

Generally speaking, the higher harmonics are weaker than the lower ones, although
the individual amplitudes may vary in a complex manner. (Note that in the figure on
the next page, the ninth harmonic 1s larger than the eighth harmonic). Also note that
the fundamental or any harmonic(s) may have zero amplitude.

An example of this is the square wave which has only odd harmonics. Another

property of the square wave is that the third harmonic has an amplitude % that of

the fundamental, the fifth harmonic has an amplitude % that of the fundamental and

SO Orn.

EA190 Electronic Signals and Systems TAFE:
Student Workbook 19 TAFE:
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(b) Rectangular wave
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Let us now see how a square wave can be made by adding a fundamental frequency
and a number of harmonics. You will recall that only odd harmonics are required.

and that the third harmonic has % the amplitude of the fundamental and SO on.

Figure (a) below shows the fundamental, the third and fifth harmonics and their
phase relationships, and Figure (b) shows the resultant. Note that all odd harmonics

to infinity must be considered to construct a perfect square wave, although in
practice the higher order harmonics become insignificant.
Final scquare wave
D 3rd harmonic
©
!
Bt
E
= 5th harmonic
frequency of the fundmnental reigpogielip
(a) Components of a square wave
Frequncies to the
Sth onic
- e harm
(b) Resultant of frequencies to fifth harmonic
EA 190 Electronic Signals and Systems m
Student Workbook 2]
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e periodic, but the remaining signals are no;

ach of these has its own characteristic frcquency
s what each one looks like, but the precise

{ any given moment can not be predicted.

T e

t
r- 1

 extends from about 80Hz to 12kH;

y at the higher frequencies. This wide range of
delity broadcast quality speech. For most

axi and police radio, telephone) such a wide range s

0 300-3400Hz before the intelligibility suffers.
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Random data ile -

For data, the required bandwidth is related 1o the bit rate. The higher the bit rate, the
more bandwidth is required. For most applications we can say &W m:‘%ﬁn
bandwidth is equal to the reciprocal of duration of the narrowest pulse,

-

1200bps -l--—--ﬂm
- i"mzm sec.

=
e ——
—
e e ————

Iy, e,

0  1200Hz 2400Hz

Spectrum of random data

The term bandwidth in relation to the various signals above, refers to the numerical

difference between the upper and lower frequency limits of the signal. For example,
the speech signal above has a minimum acceptable bandwidth of 3100Hz.

But what does this mean? Does it mean that the component frequencies in the
speech that comes from your telephone stop sharply at 3400Hz?

No! It means that outside the limits of 300Hz and 3400Hz, the spectral components

are weaker by 3 decibels (dB) or more below the strongest spectral components
within the 300 to 3400Hz band.

Note: The decibel is a logarithmic power ratio which is used throughout all fields of
electronics. In particular, 3 dB means that the power has fallen by half.

In the case of speech which has been transmitted through a telephone network, the
bandwidth will have been reduced so that the 3dB points are 300Hz and 3400Hz.

EA190 Electronic Signals and Systems
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In this case the Sth harmonic (SkHz) has zero amplitude.

Note that when the above spectra are displayed on a spectrum analyzer, all the
spectral lines are shown above the horizontal axis.
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As T increases, the spectral lines get closer together.

If T — o (ie. we have only one pulse), the spectral lines form a continuum.

| ‘hr“]
——e |
A
5
\ Note that a large proportion of the pulse’s energy lies below the frequency _1_
6

Even one cycle of a sinewave has a continuous spectrum. This is used as a test
signal 1n Television.

Energy density
e
[
i
% f i
One
of a sinewave V!W mgf:w
frequency.

kHz

nic, and
L . .I_'—J

|
[ B
that the first component to have zero

M_
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Spectrum with varying signal:

. Luminance: 0 - SMHz _
. Chrominance: Centred on 4.43MHz
Horizontal sync: 15625Hz + harmonics.

Non-linearity

Output voltage is not proportional to input voltage.

- iJ':.' -_ ’ and Syﬁﬂ:ﬂr.

 Student Workbook
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Non-linear device

The curve can be represented by as power series:
VO - A,V-m + AI ij + A] vmj + S ara B
Harmonic distortion
If we let v, = sinmt
then A, v’ = A, sin‘ot
Al
= _ % = _° cosZ2wl
2
cos2mt = 2nd harmonic.

Likewise the 3rd order term A,v.” will produce a 3rd harmonic,

Intermodualation distortion
Let the input consist of two sinewaves:

V.. = Sinw,l + sinw,!

The second term in the power series above becomes
A V.7 = A, (sinml + sinw,t)°

A little trigonometry will show that this term produces not only the harmonics 2w,
and 2w, but also sum and difference frequencies w, * w,

The 3rd order term will produce w, * 2w,
and 20, + W,

EA190 Electronic Signals and Systems
Student Workbook 29
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-1 Suine Periodic Waveforms and Their
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Fourier Series Wﬁ'
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* (the rectifier input signal
will have a period of 2 T
e.
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g.
h.
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vit) = sin 2nfit — %—4 cos 2m(2f)t — 24 cos 2n(4f)t + ...

157
sin Zuft + E—“ =)o)

(1 — n2)

lh SNBSS
mlh ulh

- cos 2x( nf )t

2-—"4 +%; cos 2rnf t— 155’3- COS 2m(2f )t + - - .
~24 ¥ A1)

vie) =

vit) = %’5 sin 2rfit + %—’E sin 2#(3-!;” + -

e
SN 2rn(nf)t

24 -.:,-r.-) (”::TT,’;T) cos 2r(nf)t

= sinnw/4\ _
i Emé _ﬂ_lﬂ'f_4-—) coSs 2Tt't n f;’ t

(special case of 50% "alternate inversion")

vie) =24 cos 2nft+ 32 cos 2n(3f)¢ + 3203C0S 2n(5F)¢ + -

. z (mr)’ cos 2n(nf)t

v(e) = —-[sm Zr:ft" 3sin 2r(2£)¢t + 3 sin 2r(3f)e + - -0l
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These questions will help you revise what you have learnt in Section 2.

For each of the following waveforms, state the frequencies of the first three

components present.

1

Cutput of 8 common
STt

Square wave
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Sawlooth wave 2. For the waveform shown below, will the 5th harmonic be presen
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A rectangular pulse train has a peak amplitude of 5V, a pulse width of 2ms and
a period of Sms.

(a) Calculate the DC (‘average’) value of this waveform.

(b) Calculate the mark-space ratio.
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h of the pulse trains below,
. 1 - ll D
1ic at the first zero of the curve.

(b) Describe the effect on the spectrum of a rectangular pulse train if the pulse
width is decreased, while the pulse period remains constant.

Y= 5
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8.  Sketch the spectrum of 2400bps random binary data.

9. A 50Hz sinewave and a 7kHz sinewave are applied to a non-linear amplifier.
List the output frequencies produced by 2nd and 3rd order non-linearities.

June 1995
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Section 3: Filters T

rs .e EE;E Qdulatlon
AR “at severa T{pmnts on the
e 59
1 Hs] ad ﬂl’d&l’ PI'OdUCtS Can

SUGGESTED PREAMBLE
DURATION

5 hrs 20 mins | To introduce you to simple filter types, filter parameters,
and the effects of filters on various signals.

Viz. ,_i.:.'.'x \Y ﬂ I tmd lonHZ
thin the ;&3 108MHz bang.

This section covers learning outcome S of the Module Descriptor.

Objectives
At the end of this section you should be able to:

0] use frequency domain diagrams to define both ideal and practical filters of
the following types:

- low-pass

- high pass
- band pass
- band stop

[0 draw and identify block diagram symbols for ideal and practical filters

O for ideal and practical filters, use diagrams to explain what is meant by:
- amplitude versus frequency response
- phase versus frequency response
- 3 dB bandwidth
- insertion loss
- roll-off slope

describe the effects of both high and low-pass filters on audio signals

describe the effect of low-pass filtering on video signals

O O 0O

describe the effect of low-pass filtering on data signals

O

give two reasons for using filters in communications equipment.

— ~ EAI190 Elecuonic Signals and Systems 45 m
" ~ Student Warkbook
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9. 2nd order: ® 100Hz, 14kHz (Harmonics)
' = 6.95kHz, 7.05kHz (Intermod products)

s 150hz, 21kHz (Harmonics)
s 6.9kHz, 7.1khz, 13.95kHz, 14.05kHz

3rd order:

~ 10. 98,99, 100, 102, 103 and 104MHz
I

~ Section 3

20°
Band stop filter. (Stop band = 100 - 200 kHz).
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6. (a) VHF
(¢) UHF
 (d) HF

7 ,rT - = Super High Frequency

) |! used for satellite communications

8. - Its amplitude would be restricted to two levels.

Q

=

9. rAme,m ?_ig,.a -mor%ul*fltorldcmodulator which converts a digital signal to a form
'1 I;! suitable for transmission through an analog channel and reconverts to digital.

10. Codec.
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V.sin (wt O
1 )Cole + Ulcosfwtl~'

= Vlsinﬁlcos(wt} + v

Alcos(wt) + B.sin

grmine the component vajyes o
BHESEXPIESSIon in equation (2) f

mplitudes of the component waveforme

= L 27 :
= nfo v(t)cos(no)de for o

A ram - 36
= “fo v(t)sin(no)de or n

IMMETRICAL WAVEFORMS

ghlation of the amplitudes of component waveforms
| S

Bade easier if the waveform is symmetrical.

[ B
." - Elan even function, all terms in the Fourier series
BB o3 e | ','f.-"'-:?’!z terms with a possible constant value.
4 =41 =
‘=) . |

(l) BWoltage waveform v(t) is even if vit) = v(-t).
ks Aien ¢ @amples of even functions are given 1n figure 4.1.

L)

/ fl-f:_-:T COs ‘3W t) +

Sin (3wt) +

(2)

11 terms in the Fourier series
a

| f_, Odd function.
ine _e.nils. |
T , : ) = =v(=t)
A voltage waveforl v(t) is odd if vit)




* ‘127 .3cos (wt) - 42.44cos(3wt) + 25.46cos (5Swt)
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J‘-f - Wave S etry: Harmonics

The nth harmonic(n is an integer) 1is defined

1. == x
as An Cosné, BnSin ne. | :
lﬁ V(@ + ) =+v(@) then the Fouriex series for

\ ' ' 1CS.
V(8) will contain only even harmonic L
ée&(g+1r) = = V(6) then the Fourlier series for

V(8) will contain only odd harmonics.
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%n“ {1 COS(Z)}
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T
B, (L0=10) = ES
_ 100 FEI00
gl (155 1) = =
_ 100 1 _ 100 1
_ 100 y. 1
By =5 (1 - 1) =0
S5 = 5p (L 20) = =2 x 2
_ 100 - 100 1
10 W = l > 1 .
E = {sin(wt) + sin(2wt) + 3 sin(3wt) + = sin(5wt)
1 -
+ 3 sin(éwt) + ...}

v(t) = 31.83sin(wt) + 31.8351n(2wt) + lﬂ.&lsin(Jwt)
+ 6.37sin(5wt) + 10.61sin(6wt) + ....

EXAMPLE 4.2.3

Determine the first four terms of the trigonometric
Fourier series for the waveform shown in figure 4.5.
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' (u—ait‘a) 4
10 7 Rl al 25

Figure 4.5




VALUE OF A COMPLEX WAVEFORM

= i

a‘.

I:r
1
7 + V

I::,'__";‘I g._' - 1

sin(wt + 61) + V.sin(2wt + 6.)

2 2

¥ + V.sin (3wt :
_ﬂﬁti__ . 3 A E}3) + V451n(4wt - 54) -
ven by the following expression:-
1} 2 2 i
is //;2 + Vi . Vo V3 Vi

/sum of t
he (r.m.s. values)? of the component
waveforms.

=

' If the waveform is expressed in the form:

viit) = Vdic. - Alcos(wt) - Azcas(Ewt) = A3c05(3wt)-+
- Blsin(wt) +_stin(2wt) + B3sin(3wt) S
Also v: = Ai - B; : V; = AE - BE ; etc
ghus again V=L B e //;é.c. + ;1 + ;i + ;E F e

{.4 WAVEFORM SYNTHESIS

ised by adding the

g one complete cycle.

e obtained 1n tabular
ter is available try

A complex waveform may be synthes
-ﬁﬁponent parts at various times durin
he values of the complex waveform can b
srm or by using a computer. If a compu
anning the program on the following page:-
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50 PRINT "ENTER THE MAGINI TLIDE ANL r_*:uf:\:. S
A0 PRINT "E1 IN VOLTS. Al IN RADIANEZS
&2 INPUT El1-Al R S, v
A% PRINT "ENTER THE MAGNITUDE ANL FHAZE ANGLE OF THE SEC
644 INPLUT EZ2yAZ |
A5 PRINT "ENTER THE MAGNITLIDE ANDN FHAZE ANGLE OF THE THIR
&6 INFUT EZ.AS
70 FPRINT TAB(Z2I)3"O"
B0 PRINT Memmmmm e e e e e e e e e e e e e e e e e e e e e
20 F1=ATN(1)#4 ~—~
100 FOR T=0 TO Z+#F1 STEFP F1/10
110 E = EL1#SIN(T+ALl) + EZRSIN(Z4T+AL2) + EB*SIN(S%T+Q;:¢)
120 M = ABS(EL)+ABS(EZ)+ABRS(ES) 3
130 X = INT(ISS+E4325/M)
140 FRINT TAB(X)3"#"
1230 NEXT T
170 END
1k,

CoNTATRJCRAMME PLOTS THE CURVE FOR A COMPLEX WAVEFCRH
TAATAINING A SECOND AND THIRD HARMONIC

LEAEEENAVEFCIRM HAS THE EGUATION:
ENTER THE l'lﬂéﬂ:?mé?mé )P;QEE*SIH'(HT*‘AE) + EGRSIN(WT+AZ)
=1 IN VOLTS, A1 IN RADIANS oo O THE FUNDAMENTAL

ENTER THE MAGNITU
7 20,0.55 TONTUDE AND PHASE ANGLE oF The SECOND HARMONIC

ENTER THE MAG
¢ ~40,1.41 NITUDE AN FHASE ANGLE OF THE THIRD HARMONIC

-‘--
_---
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WORK TO BE FORWARDED FOR COMMENT

yjeform has a trigonometric Fourier series of

.a?fgfiﬁﬂfsin(wt) - lsin(3wt) + éLsin(Swt)
3

9 55 ) volts.

ite a BASIC programme that will give a sketch of the
veform between the intervals of 0 to 47.

Q@;ﬁ the trigonometric Fourier series for each waveform
shown in figure 4.6,

?I v ()

! (ol h)SLO "




.-

= 3 cos

(Twt) +. ..




