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ix

  The history of digital fi lters essentially began in the mid - 1970s, concurrent with the 
advent of the fi eld of study called digital signal processing (DSP). Over the ensuing 
30 something years, digital fi lters have become both a facilitating and enabling 
technology. They serve as analog replacements as well as serving in unique DSP 
roles in a host of application domains including communications, control, defense, 
audio, biomedicine, geophysics, radar, entertainment, and others. I have been blessed 
to be able to witness and participate in all of these phases of digital fi lter 
evolution. 

 A digital fi lter is a device that can modify the attributes of a signal using digital 
means. Required fi lter attributes can be assumed or defi ned in terms of published 
standards that specify amplitude and phase behavior as a function of frequency. 
Besides altering a signal ’ s attributes, digital fi lters must often meet a host of other 
constraints such as speed, complexity, power consumption, cost, and other factors. 
In the pantheon of digital fi lters, the majority are identifi ed as being fi nite impulse 
response (FIR), infi nite impulse response (IIR), or multirate systems. The book ’ s 
primary goal is to provide the needed understanding of both design and analysis 
strategies as they apply to mainstream digital fi lters. 

 In the normal course of an engineer ’ s career, regardless of their disciplinary 
training, they will be called upon to design or analyze a mainstream fi lter. 
Unfortunately, many engineers and technologists have little to no formal digital fi lter 
experience. Fortunately, today ’ s workplace is abundant with fi lter design software 
packages with various levels of sophistication. One of the leaders in this fi eld is 
Mathwork ’ s MATLAB ™ . Today, both practicing engineers and students of engineer-
ing exhibit a growing reliance on these tools with MATLAB being a de facto stan-
dard. However, after observing how these tools are being used in the workplace and 
classroom, concerns arise in that users are often overwhelmed with a plethora of 
fi lter design options, often developing a fi lter solution that may not be best for the 
target application. In addition, users often have insuffi cient experience or under-
standing of fi lter theory to be able to make even minor enhancements to a MATLAB -
 produced fi lter outcome. This too is a motivation for developing this book, which 
elevates the reader ’ s understanding of how to characterize a digital fi lter, to make 
proper design choices, and to enhance a computer - generated design into a well -
 crafted outcome. 

 In reality, using tools such as MATLAB to design a mainstream digital fi lter 
is the easiest step in a solution process that ends with a successfully implemented 
digital fi lter. Implementation, whether in software or hardware, is generally the 
more challenging problem. Tools, such as MATLAB, provide the user with some 
basic implementation support. Unfortunately, most engineers have no, or only a 
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rudimentary, understanding of the implementation choices offered by MATLAB. 
This provides additional motivation to develop fi lter implementation awareness 
skills, providing content that is generally missing in the current collection of digital 
fi lter books and monographs. 

 The book has been organized to support the stated objectives. The presentation 
begins with the fundamentals, including sampling, data acquisition, data conversion 
and quantization, and transforms. Next, the design, implementation, and analysis of 
an FIR fi lter are presented. Topics include FIR attributes, types, special cases, and 
implementation. Following FIRs, the design, implementation, and analysis of an IIR 
fi lter are presented. Like FIRs, topics include IIR attributes, types, special cases, and 
implementation. Additional attention is given to understanding state variables as an 
IIR architectural description language. Finally, multirate systems are explored, 
ranging from a discussion of their properties to case studies. In most cases, each 
topic is supported with MATLAB examples and exhibits. 

 The study of fi lters is supported with a number of examples, many involving 
the use of MATLAB. In an attempt to actively engage the reader, the MATLAB 
script used to generate the MATLAB examples and graphics are available from John 
Wiley & Sons Supplemental Book Material site at  http://booksupport.wiley.com . 
The MATLAB scripts can be easily copied into MATLAB ’ s Command Window and 
reparameterized to refl ect the reader ’ s fi lter applications and needs. Many of the 
scripts were polished by Mr. Rajneesh Bansal, to whom I owe a great debt. 

     FRED J. TAYLOR   
  IEEE Fellow  

  Professor Emeritus, University of Florida  
  Board Chairman and Senior Scientist, The Athena Group Inc.         



  CHAPTER 1 

INTRODUCTION TO DIGITAL 
SIGNAL PROCESSING     

   INTRODUCTION 

 Signal processing refers to the art and science of creating, modifying, manipulating, 
analyzing, and displaying signal information and attributes. Since the dawn of time, 
man has been the quintessential signal processor. Human signal processing was 
performed using one of the most powerful signal processing engines ever developed: 
the 25 - W human brain that commits about 10   W to information processing. In that 
context, this biological processor is comparable to the Intel mobile Pentium III 
processor. As humans evolved, other agents were added to man ’ s signal processing 
environment and repertoire, such as information coding in the form of intelligible 
speech, art, and the written word. In time, communication links expanded from local 
to global, global to galactic. It was, however, the introduction of electronics that 
enabled the modern information revolution. Analog electronics gave rise to such 
innovations as the  plain old telephone system  ( POTS ), radio, television, radar/sonar, 
and a host of other inventions that have revolutionized man ’ s life and landscape. 
With the introduction of digital technologies over a half century ago, man has wit-
nessed a true explosion of innovations that has facilitated the replacement of many 
existing analog solutions with their digital counterparts. In other instances, digital 
technology has enabled solutions that previously never existed. Included in this list 
are digital entertainment systems, digital cameras, digital mobile telephony, and 
other inventions. In some cases, digital technology has been a disruptive technology, 
giving rise to products that were impossible to envision prior to the introduction 
of digital technology. An example of this is the now ubiquitous personal digital 
computer.  

  ORIGINS OF DIGITAL SIGNAL PROCESSING ( DSP ) 

 Regardless of a signal ’ s source, or the type of machine used to process that informa-
tion, engineers and scientists have habitually attempted to reduce signals to a set of 
parameters that can be mathematically manipulated, combined, dissected, analyzed, 
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2 CHAPTER 1 INTRODUCTION TO DIGITAL SIGNAL PROCESSING

or archived. This obsession has been fully realized with the advent of the digital 
computer. One of the consequences of this fusion of man and machine has been the 
development of a new fi eld of study called  digital signal processing , or DSP. Some 
scholars trace the origins of DSP to the invention of iterative computing algorithms 
discovered by the ancient mathematicians. One early example of a discrete data 
generator was provided in 1202 by the Italian mathematician Leonardo da Pisa 
(a.k.a. Fibonacci  *  ). Fibonacci proposed a recursive formula for counting newborn 
rabbits, assuming that after mating an adult pair would produce another pair of 
rabbits. The predictive Fibonacci population formula is given by  F n      =     F n       −    1     +     F n       −    2  
for the initial conditions  F  0     =    1,  F   − 1     =    0, and produces a discrete - time sequence that 
estimates the rabbit population {1, 1, 2, 3, 5, 8, 13, 21, 34, 55,    . . . } as a function 
of discrete - time events. However, those who promote such action as evidence of 
DSP are overlooking the missing  “ D - word. ”  DSP, at some level, must engage digital 
technology in a signal processing activity.

  *      Fibonacci is short for  fi lius Bonacci , son of Bonacci, whose family name means  “ good stupid fellow. ”  

       Harry Nyquist (1889 – 1976)            Claude Shannon (1916 – 2001  )    

 The foundations of DSP were laid, in fact, in the fi rst half of the 20th century. 
Two agents of change were Claude Shannon and Harry Nyquist. They both formu-
lated the now celebrated sampling theorem that described how a continuous - time 
signal can be represented by a set of sample values. Such representations were found 
to be so mathematically perfect that the original signal could be reconstructed from 
a set of sparsely distributed samples. Nyquist conjectured the sampling theorem in 
1928, which was later mathematically demonstrated by Shannon in 1949. Their work 
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provided the motivation and framework to convert signals from a continuous - time 
domain to and from the discrete - time domain. The sampling theorem, while being 
critically important to the establishment of DSP, was actually developed prior to the 
general existence of digital technology and computing agents. Nevertheless, it was 
the sampling theorem that permanently fused together the analog and discrete - time 
sample domain, enabling what is now called DSP. 

 During the 1950s, and into the 1960s, digital computers fi rst began to make 
their initial appearance on the technology scene. These early computing machines 
were considered to be far too costly and valuable to be used in the mundane role of 
signal analysis, or as a laboratory support tool by lowly engineers. In 1965, Cooley 
and Tukey introduced an algorithm that is now known as the  fast Fourier transform  
( FFT ) that changed this equation. The FFT was indeed a breakthrough in that it 
recognized both the strengths and weaknesses of the classic von Neumann general -
 purpose digital computer architecture of the day, and used this knowledge to craft 
an effi cient code for computing Fourier transforms. The FFT was cleverly designed 
to distribute data effi ciently within conventional memory architectures and perform 
computation in a sequential manner. Nevertheless, early adopters of the FFT would 
not necessarily have considered themselves to be DSP engineers since the fi eld of 
DSP had yet to exist. 

 Since the introduction of the FFT, digital computing has witnessed a continu-
ous growth, synergistically benefi ting from the increasing computing power and 
decreasing cost of digital technologies in accordance with Moore ’ s law.  *   The digital 
systems available in the 1970s, such as the general - purpose minicomputer, were 
capable of running programs that processed signals in an off - line manner. This 
process was often expensive, time - consuming, required considerable programming 
skills, and generally remained compute bound, limiting the type of applications that 
could be considered. During this epoch, early attempts witnessed the use of dedi-
cated digital logic to build rudimentary digital fi lters and radar correlators for 
national defense purposes. These activities caused engineers and scientists to recog-
nize, for the fi rst time, the potential of DSP even though there was no formal fi eld 
of study called DSP at that time. All this, however, was about to change. 

 In 1979, a true (albeit quiet) revolution began with the introduction of the 
fi rst - generation DSP microprocessor (DSP  μ p) in the form of the Intel 2920, a device 
called an  “ analog signal processor ”  for marketing reasons. The 2920 contained on -
 chip analog - to - digital converter (ADC)/digital - to - analog converter (DAC), and a 
strengthened arithmetic unit that was able to execute any instruction in 200    μ s. 
While initiating a fundamentally important chain of events that led to the modern 
DSP  μ p, by itself, the 2920 was a marketplace disappointment appearing in a few 
300   b/s modems. It was, nevertheless, warmly embraced by a small but active group 
of digital audio experimenters. With the second generation of DSP  μ p (e.g., Texas 
Instruments TMS320C10), DSP technology exposed its potential value in a host of 
new applications. For the fi rst time, products with embedded DSP capabilities 
became a practical reality establishing DSP as an enabling technology. The fi eld, 

  *      Moore ’ s law   ( )( ) ( )( ) . ( )Nt A t Nt a t t t/ /1 0 1 58 1 0= × −  predicts that semiconductor density will double every 
18 months. 
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now called DSP, rapidly developed in the form of academic programs, journals, and 
societies, and developing infrastructure technology. These beginnings swiftly gave 
way to a third and fourth generation of general - purpose DSP  μ p as well as custom 
DSP devices. Even though DSP remains a relatively young science, being only a 
few decades old, it has become both a major economic and technological force. DSP 
solutions are now routinely developed using  commercial off - the - shelf  ( COTS ) soft-
ware and DSP  μ ps and fi eld programmable gate arrays (FPGAs), along with 
application - specifi c integrated circuits (ASICs).  *   There is now an abundance of DSP 
software design and development tools that serve this industry. Through the intel-
ligent use of these resources, DSP has become an enabling technology for high -
 speed, low - cost data communications (modems), digital controllers, wireless 
solutions including cellular telephony and other personal communications services, 
video compression, multimedia and entertainment (audio and video solutions), plus 
a host of other applications. At the core of this revolution are the tens of thousands 
of scholars and technologists who now refer to themselves as DSP engineers and 
scientists. These engineers are hybrids in that they need to have competence in the 
application area they serve, to possess strong computer hardware and/or software 
skills, plus to have an understanding of the theory and practice of DSP. They, like 
DSP technology itself, are still in the formative stage. All that can be accurately 
predicted at this time is that DSP will be one of the principal technological driving 
forces of the 21st century economy.  

  SIGNAL DOMAINS 

 Signals are abundant in both the natural and artifi cial worlds. Nature, in particular, 
is rich in signals, from cosmic rays, bird trills, and the proverbial tree falling in the 
woods. Signals found in the natural world are produced by a variety of mechanisms. 
An example is a biological electrocardiogram (EKG) signal illustrated in Figure  1.1 . 

       Figure 1.1     Typical EKG model (top) showing the P, Q, R, S, and T phases. Shown also is 
a typical EKG recording (bottom).  

Q wave

P wave

R wave

S wave

T wave

P–R interval: 0.12–0.20 second
QRS duration: 0.04–0.12 second
Q–T interval: <0.4 second
Rate: 60–100 bpm

  *      ASICs are defi ned by the solution provider, not the manufacturer. A variation on this theme is the 
application - specifi c standard parts (ASSPs), which are essentially ASICs developed for high - volume 
commercial sale. 
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Others include man - made signals such as those generated by musical instruments 
or the human voice. Artifi cial signals can be created without a natural production 
mechanism but using algorithms and electronic sound reproduction equipment. 
Signals from these domains can be classifi ed as being one - , two - , and M - dimensional. 
A simple one - dimensional sinusoid  x ( t )    =    cos( ω  t ) that can be expressed as an ampli-
tude versus time trajectory. Images are often classifi ed as being two - dimensional 
signals that can be expressed as a function of two spatial parameters, such as 
 f ( x  1 , x  2 )    =    cos( ω  x  1     +     ω  x  2 ). A simple black and white image can be represented as an 
array of image values  i ( x , y ), where  i ( x , y ) is the image intensity at coordinates ( x , y ) 
(see Fig.  1.2 ). Signals of higher dimension also exist. The Dow Jones industrial 
average, for example, is a function of 30 economic variables and represents a mul-
tidimensional signal.   

 Causality is also an important signal property. Causal signals are produced by 
causal systems (nonanticipative systems) where the output signal output  y ( t ), at some 
specifi c instant  t  0 , depends only on the system input  x ( t ) for  t     ≤     t  0 . Signals that are 
not causal are called noncausal, anticausal signals, or anticipatory.  *   While noncausal 
signals are not products of a physically realizable signal generation mechanism, they 
will play a signifi cant role in the mathematical study of signals and systems or in 
performing off - line simulations. For example, the signal  x ( t )    =    cos( ω  0  t ) technically 
persists for all time (i.e.,  t     ∈    ( −  ∞ ,  ∞ )) and is therefore noncausal. It is also recog-
nized that  x ( t )    =    cos( ω  0  t ) represents a mathematically important signal even though 
it could not have been created by a physical signal generator.  

  SIGNAL TAXONOMY 

 Any meaningful signal taxonomy needs to recognize that signals can live in different 
domains. Specifi cally, there are three important signal domains, and they are devel-
oped below. 

       Figure 1.2     Two - dimensional image  “ Lena ”  as a 512    ×    512    ×    8   bit/pixel image on the left 
and JPEG compressed image on the right.  

  *      He who answers before listening — that is his folly and his shame — Proverbs 18:13. 
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  Continuous - Time Signals 

 Continuous - time or analog signals  x ( t ) are defi ned as a continuum of points in both 
independent and dependent variables. Both the signal ’ s amplitude  x ( t ) and time 
instance  t  are numbers known with infi nite precision. Continuous - time signals can 
be further portioned into differentiable, analytic, piecewise differentiable, continu-
ous, piecewise constant, as well as others.  

  Discrete - Time Signals 

 A discrete - time signal  x [ k ] is obtained by sampling a continuous - time signal  x ( t ) 
with an ideal sampler. Specifi cally, if  T  s  denotes the sample period, then  f  s     =    1/ T  s  is 
called the sample rate or sample frequency and is measured in sample per second, 
denoted  “ Sa/s, ”  although  “ Hz ”  is commonly used interchangeably with Sa/s. The 
sample value at the sample instance  t     =     kT  s  is denoted  x ( t     =     kT  s )    =     x [ k ]. A collection 
of such sample values is called a time series. A discrete - time series consists of 
sample values that are continuously resolved along the dependent axis (amplitude) 
and discretely resolved along the independent axis (time). Whereas the sample 
instances are discrete (in time), the sample value  x [ k ] is an infi nite precision real or 
complex number. Discrete - time signals can be physically created by passing a con-
tinuous signal through an electronic device called an impulse sampler or ideal 
sampler. The sampled value  x [ k ] can be used to construct a continuous - time signal 
 y ( t ) using an inverse process called interpolation. An example interpolator is a called 
sample - and - hold (S/H) circuit, as shown in Figure  1.3 . S/H circuits are commonly 
found in the design of DACs. Other forms of interpolation are possible.   

 Computing algorithms, such as those studied in discrete mathematics, can be 
used to produce discrete - time signals. In addition, discrete - time series also arise in 
the fi elds of economics, biology, calculus, statistics, physics, plus others. The engi-
neering importance of discrete - time signals can be traced back to a post - World War 
II era in the form of sampled data control systems and telephony. During the early 
days of the Cold War, strategic bombers were fl ying missions having long time 
durations while attempting to navigate with a high degree of accuracy. This was a 
challenging problem for the day ’ s analog control systems. Small drifts in the control 
surface signal values could accumulate over time, resulting in large positional errors. 
What was required was a more precise autopilot technology. It was discovered that 
if the control signal was sampled and modulated, drift - free alternating current (AC) 
amplifi ers could replace the troublesome drift prone direct current (DC) amplifi ers. 
The simplest modulation scheme is an alternating sign periodic analog pulse train 
using a device that was called a  “ chopper. ”  The modulated signal was then transmit-

       Figure 1.3     Discrete - time signal sampler and sample - and - hold circuit.  
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ted to a receiver where it was demodulated, returning all the samples to their original 
sign. This gave rise to a technology called sampled - data control, which had a strong 
following in the 1950s and 1960s. 

 The most enduring technology emerging from this era is found in telephony. 
It was discovered that a number of distinct discrete - time time series could be inter-
laced (i.e., time - division multiplexed) onto a common channel, thereby increasing 
the channel ’ s capacity in terms of the number of subscribers per line per unit time. 
The result was that the telephone company could bill multiple clients for using a 
single copper line. Claude Shannon developed the mathematical framework by 
which these signals can be time multiplexed, transmitted along a common line, and 
reconstructed at each individual receiver. Shannon ’ s innovation, known as Shannon ’ s 
sampling theorem, has been a driving force behind most DSP techniques and 
methodologies.  

  Digital Signals 

 Digital signals are discrete - time signals that are also quantized along the dependent 
axis (amplitude). Digital signals can be produced by a digital computer using fi nite 
precision arithmetic or by passing an analog signal  x ( t ) through an ADC or A/D, 
also producing a fi nite precision approximation of a discrete - time signal. In either 
case, quantizing the amplitude of the original signal introduces an uncertainty called 
quantization error. Controlling and managing such errors is often critical to the suc-
cessful design of a DSP solution. 

 A general signal taxonomy is presented in Figure  1.4 . Contemporary signal 
processing systems typically contain a mix of analog, discrete, and digital signals 
and systems. A signal ’ s original point of origin is often the continuous - time or analog 
domain. Digital signals, however, are becoming increasingly dominant in this mix. 
Applications that were once considered to be exclusively analog, such as sound 

       Figure 1.4     Signal hierarchy consisting of an analog, discrete - time or sampled signal, and 
digital or quantized signal process.  
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recording and reproduction, have become digital. The wireless communications 
industry are replacing analog components in radios, as well as back - end audio and 
signal decoding sections, with digital devices. Images and video signals are now 
routinely coded and decoded as digital signals. Discrete - time systems, as defi ned, 
are rarely found in use today except as part of the sampling subsystems (samplers) 
found in ADCs. The reason for this paradigm shift from analog signal processing to 
DSP is primarily due to two breakthroughs. The fi rst is the sampling theorem and 
the second is the product of the fruitful digital semiconductor industry. Once this 
bridge was crossed, it became logical to replace everything possible with digital 
technology.     

   DSP : A DISCIPLINE 

 Signal processing is a gift of the sampling theorem and formidable armada of com-
panion theories, methodologies, and tools, such as the celebrated FFT. Initially DSP 
was envisioned simply as an analog replacement technology. It is now clearly appar-
ent to many that DSP will move into new areas and become the dominant signal 
processing technology in the 21st century. DSP has matured to the point where it 
can claim to be an academic discipline replete with a rich infrastructure industry. 
DSP continues to gain semiconductor market share mainly because it can deliver 
solutions. The DSP advantage is summarized below. 

  Digital Advantages 

 The attributes of a digital solution are as follows:

    •      Both analog and digital systems can generally be fabricated as highly 
integrated semiconductor systems. Compared with analog circuitry, digital 
devices can take full advantage of submicron technologies and are generally 
more electronically dense, resulting in both economic and performance 
advantages.  

   •      As semiconductor technologies shrink (deep submicron) and signal voltages 
continue to decline (1.25   V and lower), the intrinsic signal - to - noise ratio found 
at the transistor level decreases. Digital systems are far more tolerant of such 
internal noise. These devices, however, are essentially useless as an analog 
system (e.g., equivalent 3 - bit precision per transistor).  

   •      Digital systems can operate at extremely low frequencies, which would require 
unrealistically large capacitor and resistor values if implemented as an analog 
solution.  

   •      Digital systems can be designed with increased precision with only an incre-
mental increase in cost, whereas the precision of an analog system precision 
is physically limited (10   bits    ∼    60 - dB dynamic range typical).  

   •      Digital systems can be easily programmed to change their function whereas 
reprogramming analog systems is extremely diffi cult.  
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   •      Digital signals can be easily delayed and/or compressed, an effect which is 
diffi cult to achieve with analog signals.  

   •      Digital systems require no external alignment, while analog systems need 
periodic adjustment (due to temperature drift, aging, etc.).  

   •      Digital systems do not have impedance - matching requirements, while analog 
systems do.  

   •      Digital systems, compared with analog devices, are less sensitive to additive 
noise as a general rule.     

  Analog Advantages 

 There are, however, a few analog attributes that resist the digital challenge. They 
are as follows:

    •      Analog systems can operate at extremely high frequencies (e.g., microwave 
and optical frequencies) that exceed the maximum clock rate of a digital device 
or ADC.  

   •      Analog solutions are sometimes more cost effective (e.g., fi rst - order resistor -
 capacitor [RC] fi lter) compared with solutions fashioned with digital compo-
nents (e.g., ADC, digital fi lter, plus DAC).    

 Driven by advancements in semiconductors, software, and algorithms, DSP will be 
a principal enabling and facilitating technology in the following areas:

  Audio 

  Audio - video 
receivers  

  Computing  

  Digital radio  

  Home audio  

  Flat panel displays  

  Internet audio  

  Pro audio  

  Speech  

  Toys   

  Transportation 

  Chassis sensors  

  Power train  

  Driver displays  

  Security systems  

  Safety systems   

  Broadband 

  Wireless local area network 
(LAN)  

  Cable  

  Digital subscriber line (DSL)  

  Voice - over Internet protocol (VoIP)   

  Control 

  Digital power supplies  

  Embedded sensors  

  Industrial drives  

  Motors  

  Instrumentation   

  Medical 

  Automated external defi brillators  

  Monitoring  

  Hearing aids  

  Imaging  

  Prosthetics   

  Military 

  Avionics  

  Countermeasures  

  Imaging  

  Munitions  

  Navigation  

  Radar/sonar   

  Wireless 

  Handsets  

  Infrastructure  

  Radiofrequency 
tagging  

  Security  

  Biometrics  

  Smart sensors   

  Telecom 

  High - frequency 
radios  

  Infrastructure  
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  Navigation  

  Telecom accessories  

  Wire systems   

  Video and Imaging 

  Still cameras  

  Digital TV  

  Digital video  

  Digital recorders  

  Internet protocol (IP) video phones  

  Media devices  

  Set - top boxes  

  Streaming media  

  Surveillance  

  Video conferencing  

  Vision  

  Infrastructure    

 DSP engineers and technologists continue to invent new products based on preexist-
ing and emerging DSP theory and technology. Based on what has been witnessed 
over the brief history of DSP, one can only view in awe the possibilities of the future.   
    
 
 

 

   
  
 
 
    
 



  CHAPTER 2 

SAMPLING THEOREM     

   INTRODUCTION 

 One of the most important scientifi c advancements of the fi rst half of the 20th 
century is attributable to Claude Shannon of Bell Laboratories. Many of Shannon ’ s 
inventions remain with us today. One of his more amusing creations was a black 
box that, when activated with a switch, would extend a green hand outward and turn 
the switch off. Of greater value is his celebrated and enduring sampling theorem. 
Shannon ’ s interest in sampling can be attributed to the fact that he worked for the 
telephone company. He was therefore interested in maximizing the number of bill-
able subscribers that could simultaneously use a copper telephone line, the technol-
ogy of the day. Shannon ’ s innovation was to sample the individual subscriber ’ s 
conversations, interlace the samples with samples from other subscribers, place them 
all on a common telephone wire, and fi nally reconstruct the original message at the 
receiver after de - interlacing the samples. Today, we refer to this process as  time -
 division multiplexing  ( TDM ). Shannon established the rules that govern the sam-
pling and signal reconstruction procedure. Without a reconstruction rule, however, 
Shannon ’ s labors would have held no value to the telephone company. The outcome 
was the sampling theorem, which has become the core to understand the theory and 
practice of digital signal processing (DSP). The theorem both enables and constrains 
the performance of the typical DSP system suggested in Figure  2.1 . The diagrammed 
system consists of an analog - to - digital converter (ADC), digital - to - analog converter 
(DAC), digital or DSP processor, plus analog signal conditioning fi lters (i.e., anti -
 aliasing and interpolation fi lter). The sampling theorem also motivates the need for 
these signal conditioning fi lters.    

  SHANNON ’ S SAMPLING THEOREM (AN ENABLING 
TECHNOLOGY) 

 The sampling theorem states that if a band - limited signal  x ( t ), whose highest fre-
quency component is bounded from above by some  f  max , is periodically sampled at 
some rate  f  s , where

11
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    f fs > ×2 max,     (2.1)   

 then the original signal  x ( t ) can be reconstructed from the sample values 
 x ( t     =     kT  s )    =     x [ k ], where  T  s  (sample period) satisfi es  T  s     =    1/ f  s . The parameters that 
defi ne this process are 2    ×     f  max , called the Nyquist sample rate in sample per second 
(Sa/s), and  f  s /2, referred to as the Nyquist frequency in hertz. It should be strongly 
noted that the sampling rate must be greater than the Nyquist sample rate (2 f  max ) and 
not equal to 2 f  max . The importance of the statement can be illustrated by considering 
a simple cosine wave  x ( t )    =    cos( π  f  s  t ). If sampled at a rate  f  s , beginning at  t     =    0, the 
result is the time series  x [ k ]    =    cos( π  k )    =    {1,  − 1, 1,    . . .    , ( − 1) k ,    . . . } as illustrated in 
Figure  2.2 . It is tempting to assume that a continuous - time signal with a cosine 
envelope could have been reconstructed from the displayed sample values. Is this 
then a counterexample of Shannon ’ s sampling theorem? Consider a slight modifi ca-
tion of the previous observation by using  x ( t )    =    sin( π  f  s  t ). Sampling  x ( t ) at the same 
rate  f  s , starting at  t     =    0 would produce a time series  x [ k ]    =    sin( π  k )    =    {0, 0, 0,    . . . }, 
which would be reconstructed (incorrectly) as  x ( t )    =    0. It should be understood 
exactly what Shannon said and what he did not say. Shannon ’ s sampling theorem 
simply states that if you sample at a rate  f  s     >    2    ×     f  max , then the original signal (parent) 
can be theoretically reconstructed from its sample values  x [ k ]. It makes no claims 
beyond this. What remains to be established is a means of reconstructing the original 
signal from its sample values. This process is called interpolation.    

  SIGNAL RECONSTRUCTION 

 Shannon assumed that an analog signal  x ( t ) can be replaced with a set of periodic 
sample values  x [ k ] that form what is called a time series. The reconstruction of  x ( t ) 

       Figure 2.1     DSP system consisting of an input signal conditioner (anti - aliasing fi lter), 
ADC, DSP microprocessor, DAC, and output signal conditioner (interpolation fi lter).  
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from its sample values involves the use of an interpolating fi lter. According to 
Shannon, the ideal continuous - time interpolation fi lter is

    h t
t

T

t

T

t

T
( ) sin sin .= 











π π
s s s

c�     (2.2)   

 Formally, the output of a Shannon interpolator to an arbitrary input time series  x [ k ] 
is mathematically defi ned by a process called linear convolution as motivated below:

    x t x k h t kT x k
t kT T

t kT T
k k

( ) [ ] ( ) [ ]
sin( )

( )
= − =

−( )
−( )=−∞

∞

∑ s
s s

s s

/

/

π
π==−∞

∞

∑ .     (2.3)   

 The interpolation process, described in Equation  2.3 , is graphically interpreted in 
Figure  2.3 . The input signal  x ( t ) is sampled at a rate consistent with Shannon ’ s 
sampling theorem to produce a time series  x [ k ]. The time series is then passed 
through Shannon ’ s interpolation fi lter that performs the convolution operation 
described by Equation  2.3 . The outcome is the reconstructed signal  x ( t ), which again 
resides in continuous - time domain.   

 Shannon ’ s sinc interpolating fi lter, defi ned by Equation  2.2 , can also be inter-
preted in the frequency domain as suggested in Figure  2.4 . The frequency domain 
envelope of Shannon ’ s interpolating fi lter is that of an ideal low - pass (boxcar) fi lter 
having a passband defi ned over  f     ∈    [0,  f  s /2)   Hz (i.e., 0   Hz [DC] to the Nyquist 
frequency).    

  SHANNON INTERPOLATION 

 Assume that an analog sinusoidal signal  x ( t )    =    sin(2 π  f  0  t ) is sampled above the 
Nyquist sample rate at a frequency  f  s , where  f  s     >    2 f  0 . The sampling process produces 

       Figure 2.3     Shannon ’ s interpolation process showing how a signal ’ s sample values are 
converted (interpolated) into a continuous - time signal using an ideal sinc fi lter.  
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       Figure 2.4     Shannon ’ s interpolating fi lter interpreted in the continuous - time (left) and 
continuous - frequency domains (right).  
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a discrete - time signal  x [ k ]. Theoretically, a perfect reconstruction of an analog signal 
 x ( t ) from that signal ’ s sample values requires that Shannon ’ s interpolating sinc fi lter 
be employed as shown in Figure  2.5 .   

 While Shannon ’ s interpolating fi lter is elegant, it presents a major implementa-
tion obstacle. The interpolating fi lter  h ( t )    =    sinc( t / T  s ) is seen to be noncausal by 
virtue of the fact that the fi lter ’ s response exists for all time,  −  ∞     ≤     t     ≤     ∞ . As a result, 
Shannon ’ s interpolation fi lter is not physically realizable for real - time application 
since the fi lter ’ s impulse response exists in prehistory (i.e.,  t     ≤    0). This has caused 
DSP technologists to search for alternative real - time interpolating fi lters that behave 
in a manner similar to a Shannon interpolator, but are also physically realizable. 
Such fi lters would replace Shannon ’ s fi lter shown in Figure  2.5 . 

 In practice, the ideal signal interpolation process, described in Figure  2.5 , 
would be performed using the technology as shown in Figure  2.6 . It is required that 
the sampled signal be fi rst converted into a digital data stream using an ADC. The 
digitized samples are converted back into analog form using a DAC, which translates 
digital words into analog signal levels that are maintained for a full sample period 
(sample and hold [S & H]). This process is called a  zero - order hold  ( ZOH ). The 

       Figure 2.5     Shannon ’ s theoretical interpolator process.  
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       Figure 2.6     Practical interpolation process. S & H, sample and hold.  
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analog ZOH signal is then presented to a causal analog fi lter that approximates the 
behavior of a Shannon interpolator. The output is an interpolated analog signal that 
approximates the original input  x ( t ). Interpolation errors are due to quantization 
effects introduced by ADC and DAC devices, plus the differences between the 
Shannon and approximate interpolation fi lters.   

 Ultimately, the objective of the interpolating fi lter is to produce an output that 
is in good agreement with the analog signal of origin, given knowledge only of the 
analog signal ’ s sample values. Traditionally, this has been accomplished, to varying 
degrees of success, using one or more of the following strategies:

    •      a ZOH circuit produces an output  y ( t ) that is a piecewise constant approxima-
tion of the input sample value  x [ k ], where  y ( t )    =     x [ k ] for  t     ∈    [ kT  s , ( k     +    1) T  s ];  

   •      a fi rst - order hold circuit produces an output  y ( t ) that is a piecewise linear 
approximation of the original signal passing through  x [ k ] and  x [ k     +    1], where 
 y ( t )    =     x [ k ]    +     t ( x [ k  + 1]    −     x [ k ])/ T  s , for  t     ∈    [ kT  s , ( k     +    1) T  s ];  

   •      higher - order interpolation schemes (polynomials, splines, etc.);  

   •      a low - pass analog  “ smoothing ”  fi lter.    

 The anticipated attributes of the classic analog  “ smoothing ”  fi lter are interpreted in 
Figure  2.7  in both time and frequency domains. The frequency domain response of 
the physically realizable fi lter, having an impulse response  h ( t ), is shown in Figure 
 2.7 , and can replace the ideal noncausal Shannon interpolator. In practice, the physi-
cally realizable fi lter would exhibit noticeable roll - off in transition band. From a 
practical design standpoint, typical low - pass interpolating fi lters have passbands 
extending out to 0.4 f  s    Hz. Beyond that frequency, the analog fi lter transitions into 
the stopband whose depth is a function of fi lter order. If the signal being interpolated 
is dominated by low - frequency signal components, then the fi lter ’ s passband can be 
made smaller than 0.4 f  s    Hz (i.e., aggressive low - pass fi ltering). For the case where 
the sample frequency is fi xed, realizable active fi lters are normally employed that 
are based on the use of common operational amplifi ers (Op Amps). These fi lters are 
well documented in the literature and are supported with numerous software design 
packages. An example is the fi xed - frequency Sallen – Key interpolating fi lter.   

 The Sallen – Key fi lter is commonly used in a fi xed - frequency interpolation 
role. A second - order Sallen – Key fi lter is shown in Figure  2.8  and belongs to a class 
of active devices called  voltage - controlled voltage source  ( VCVS ) fi lters. VCVS 
fi lters use a unity - gain amplifi er having effectively infi nite input impedance and zero 

       Figure 2.7     Physically realizable interpolating fi lter.  
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output impedance. Filter design parameters are tabled or obtained from a predefi ned 
computer program. The choice of parameters determines whether a Bessel, 
Butterworth, or Chebyshev fi lter type is to be realized.   

 Fixed coeffi cient interpolation fi lters are often too rigid to serve in multisample 
rate environments, such as those found in many audio and multimedia applications. 
Developing programmable sample rate fi lters using conventional electronic Op -
 Amp - enabled fi lters is expensive and technically challenging. Instead, program-
mable analog fi lters are often fabricated using a switched capacitance technology. A 
switched capacitance fi lter connects two capacitors of different values (typically 
1:100) through an electronic switch. The fi lter performance is determined by a 
charge transfer process and the switching rate. The response of a switch capacitance 
fi lter emulates that of a low - pass RC fi lter as suggested in Figure  2.9 . The realized 
programmable fi lter therefore has an RC low - pass response that is needed to perform 
low - pass interpolation.   

       Figure 2.8     Active Sallen – Key fi lter. GND, ground.  
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       Figure 2.9     Switched capacitance versus RC low - pass fi lter.  
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 Low - pass interpolation electronic (e.g., Op Amp) or switched capacitance 
fi lters can be used to design low - pass Bessel, Butterworth, Chebyshev, or Elliptic 
analog interpolating fi lters. Figure  2.10  exhibits the response of a typical Bessel and 
Chebyshev fi lter model to a piecewise constant pulse input (i.e., that of a 0th order 
hold). The Bessel fi lter (similar to a Butterworth fi lter) has a tendency to be slow to 
respond to rising and trailing signal edges but is devoid of any overshoot such as 
that associated with a Chebyshev and elliptic fi lter.    

  SAMPLING MODALITIES 

 In practice, ADC sampling occurs in one of the following three modes:

    •      critically sampled:  f  s     =    2 f  max ,  

   •      oversampled:  f  s     >    2 f  max ,  

   •      undersampled:  f  s     <    2 f  max ,    

 where it is assumed that the highest frequency component in an input signal  x ( t ) is 
bounded from above by  f  max . Critical sampling presumes that sample rate is set to 
 f  s     =    2 f  max , which technically does not satisfy the sampling theorem. To insure that 
the analog signal ’ s highest frequency is essentially bounded by  f  max , an analog pre-
fi lter, called an anti - aliasing fi lter, is often placed between the signal and ADC as 
shown in Figure  2.1 . A successful anti - aliasing fi lter is expected to signifi cantly 
suppress signal energy residing beyond the Nyquist frequency  f  s /2   Hz. However, it 
is extremely diffi cult and expensive to construct a  “ steep - skirt ”  or narrow transition 
band analog fi lter that can achieve high frequency selectivity. Using a commonly 
available 44.1   kSa/s ADC to process a 20 - kHz audio record, shown in Figure  2.11 , 
results in a 22.05 - kHz Nyquist frequency and a 2.05 - kHz transition band. An eighth -
 order Butterworth fi lter having a  − 3 - dB passband gain at 20   kHz could only manage 
a  − 5   dB gain at 22.05   kHz. The system designer may therefore have to consider an 
alternative strategy. Oversampling, for example, relaxes the design requirements 
imposed on the analog anti - aliasing fi lter. This allows the Nyquist frequency to be 
set well into the analog fi lter ’ s stopband, resulting in a practical anti - aliasing fi lter. 
Using a 4 ×  oversampling solution, for example, would set the sample rate to 160   kHz, 

       Figure 2.10     Pulse response of a Bessel and Chebyshev low - pass fi lter. (a) Pulse 
waveform; (b) Bessel fi lter; (c) Chebyshev fi lter.  
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producing an 80 - kHz Nyquist frequency. The anti - aliasing fi lter ’ s transition band now 
resides between 20   k and 80   kHz, or is 60   kHz wide instead of 2.05   kHz for the 
44.1   kSa/s case. An eighth - order Butterworth anti - aliasing fi lter can achieve a  − 48   dB 
gain at the end of the transition band. In the case of recorded speech or music, it is 
assumed that any signal residing between 20   k and 80   kHz is already of low ampli-
tude, well below the passband signal levels. The result would be negligible signal 
energy found at the output of the anti - aliasing fi lter beyond the Nyquist frequency.   

  Example: Sampling 

 The system characterized in Figure  2.11  would suggest that 44.1   kSa/s is probably 
too low a sample rate for use in high - end audio signal processing. The question 
arises regarding the rationale behind standardizing on 44.1   kSa/s for multimedia 
applications. The answer is that low - cost 44.1   kSa/s ADCs preexisted the multime-
dia era and were in plentiful supply. These pre - multimedia ADCs were extensively 
used to support video recording industry standards, namely, 

   •      NTSC — 490 lines/frame, 3 samples/line, 30 frames/s    =    44,100   Sa/s;  

   •      PAL — 588 lines/frame, 3 samples/line, 25 frames/s    =    44,100   Sa/s.    

 The engineering choice of the 44.1   kSa/s standard, therefore, was based on 
economics. 

 The maximum sample speed is set by technology. Signals can now be digitized 
far in excess of 1   GSa/s. In general, ADC speed is gained at a cost in power dissipa-
tion and high cost. At the other end of the spectrum are low sample rate applications. 
A biomedical signal, for example, may be band - limited to a few hertz. Building an 
ADC that can operate at such slow sample speeds is extremely challenging and 
expensive (e.g., 8   Sa/s). Instead, the designer would be wise to choose to use a low -
 cost ADC, which would oversample the signal by a factor of 1000 (e.g., 8   kSa/s), 
and then keep only 1 in 1000 samples. Here, the fact that a signal is highly overs-
ampled is justifi ed in order to produce a low - cost, low - complexity solution. Finally, 
undersampling can be intentional or unintentional. In either case, the sampling 
theorem is violated. In such instances, a phenomenon called aliasing can and will 
occur. Aliasing, developed in Chapter  3 , can introduce serious and disturbing errors 
into a DSP solution. While the introduction of aliasing errors can degrade system 
performance, intelligently controlled aliasing can also be used as a design asset.   

       Figure 2.11     Hypothetical multimedia data acquisition system.  

Anti-aliasing
Analog Filter

x(t) x
a
(t) x

d
[k]

ADC

Audio
Spectrum

Unwanted
Spectrum

Audio
Spectrum

0             20 kHz 0             20 kHz

22.05 kHz

Anti-aliasing
Filter’s Response



MATLAB AUDIO OPTIONS 19

  MULTICHANNEL SAMPLING 

 In certain circumstances, multichannel signals obtained from a multichannel analog 
multiplexer can be converted using a single ADC operating at an oversampled rate. 
This action can be motivated in the context of the application shown in Figure  2.12 , 
which requires that four independent signals be digitized with 16   bits of accuracy. 
The baseband bandwidths for the four signals are 10   k, 10   k, 10   k, and 30   kHz, 
respectively. Suppose the ADC is capable of multiplexing between the channels. If 
the ADC runs at 120   kSa/s, then the ADC period is  T  s     =    1/ f  s     =    8.33    μ s. In order to 
sample the signal with the single multiplexed ADC, the samples will need to be 
interlaced as { .   .   .    ,  x  1 (0 T  s ),  x  4 (1 T  s ),  x  2 (2 T  s ),  x  4 (3 T  s ),  x  3 (4 T  s ),  x  4 (5 T  s ),  x  1 (6 T  s ),    . . . }. It 
can be noted that the signal  x  4 ( t ) is being polled at a 60 - kHz rate and the other three 
at 20 - kHz rate each.    

   MATLAB  AUDIO OPTIONS 

 MATLAB provides users with a limited ability to play recorded audio records 
through a standard multimedia soundboard. Information regarding the use of these 
tools can be displayed using the MATLAB help command:

  »  help sound  

 SOUND(Y,FS) sends the signal Y (with sample rate FS) to multimedia speakers. 
The array Y is restricted to the dynamic range  ± 1.0. Values outside that range are 
clipped. Stereo sounds can be played on platforms that support stereo, where Y is 
an Nx2 matrix. SOUND(Y) plays the audio record at a default sample rate of 
8192   Hz, and SOUND(Y,FS,BITS) assigns BITS bits/sample where most platforms 
support BITS    =    8 or 16 processing. 

 A similar family of functions can be viewed using

  »  help soundsc  

 SOUNDSC — autoscale and play vector as sound, 
 SOUNDSC — performs an autoscaling of the data array, playing the audio 

record as loud as possible without clipping.    
  
 
 
 
 
 
 
 

       Figure 2.12     Multichannel ADC.  
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  CHAPTER 3 

ALIASING     

   INTRODUCTION 

 Whenever Shannon ’ s sampling theorem is violated, a phenomenon called aliasing 
can occur. Aliasing manifests itself as a corruption of a reconstructed (interpolated) 
signal or image. Specifi cally, aliasing occurs when a reconstructed signal or image 
impersonates another signal or image. To illustrate, consider as a youth seeing your 
fi rst Hollywood western. The camera was following a moving stagecoach at 
30   frames/s rate. The stagecoach wheel was moving at a leisurely clockwise rate of 
45 °  per frame, and the viewer sees the wheel spinning at a constant rate of (30/8) 
revolutions per second in a clockwise direction as shown in Figure  3.1 . Then danger 
appears and the background music is translated to a minor key. The stagecoach is 
now in a headlong rush moving forward at full speed; the wheel is spinning at a rate 
of 315 °  per frame. From the viewer ’ s perspective, it would appear that the wheel is 
turning at a rate of  − 45 °  (315 °     −    360 ° ) per fame in a counterclockwise direction as 
suggested in Figure  3.1 . That is, the fast - moving wheel now impersonates a slow -
 moving wheel rotating in the opposite direction. The impersonation effect is called 
aliasing.    

  ALIASING 

 Shannon ’ s sampling theorem states that a signal can be reconstructed (interpolated) 
from its sample values without error provided that it is sampled above the Nyquist 
sample rate 2    ×     f  max . If this condition is violated by choosing too small a sample rate, 
then signal reconstruction is compromised. To illustrate, consider the monotone 
cosine wave shown in Figure  3.2 . The cosine is seen to be sampled well below the 
critical sampling rate (i.e., undersampled) and results in a reconstructed analog 
signal that continues to be sinusoidal but at a much lower frequency. This observa-
tion suggests that an important metamorphosis has taken place, one that maps a 
sinusoidal signal originally located at a frequency  ω  0  to a lower baseband frequency 
 Δ  0     ∈    ( −  f  s /2,  f  s /2). What is desired is to develop a mathematical framework that can 
predict the baseband frequency of a reconstructed (interpolated) signal if the sample 
rate and original signal frequency are known.   
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 The effects of aliasing can be experimentally motivated by sampling a fre-
quency selectable sinusoid  x ( t )    =    cos(2 π  f  0  t ) at a fi xed rate  f  s . For the case where the 
sinusoid ’ s frequency is set to  f  0     =     α  f  s , the sampled and reconstructed signals are 
shown in Figure  3.3  for specifi c values of  α     =    0, 0.1, 0.3, and 0.8 corresponding to 
 f  0  equal to 0%, 10%, 30%, and 80% of the sampling frequency  f  s . It should be 
recalled that Shannon ’ s sampling theorem is satisfi ed whenever  f  0  is less than 50% 
of  f  s  ( α     <    0.5). In those cases, the original signal can be seen to be recovered (using 
the Shannon interpolation) from the original signal ’ s sample values. However, when 
the input signal is at a frequency equal to 80% of the sample frequency, the original 
signal is no longer evident as shown in Figure  3.3  for  α     =    0.8. In fact, a much lower -
 frequency sinusoid appears as the interpolated signal. That is, the sample values of 
the high - frequency signal ( α     =    0.8) appear to be impersonating the sample values 
of a much lower baseband signal. The objective is to determine the new baseband 
frequency.   

 It had been established that aliasing refers to a condition in which the sample 
values of one signal impersonates another signal. At issue is the form the alias signal 
takes when aliasing occurs. The form can be determined with a simple analytical 

       Figure 3.1     Image aliasing experiment showing a slowly moving stagecoach (top) and 
rapidly moving stagecoach (bottom).  
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       Figure 3.2     Original sine wave with a period of 32 seconds being sampled at a rate 
1/31   Sa/s. The sample values outline a sinusoid having a period of 992 samples.  
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study using a sinusoid sampled above and below the Nyquist sample rate. First, 
consider oversampling a simple monotone sinusoidal signal operating at a frequency 
 f  0     =    0.3 f  s ( α     =    0.3), thereby satisfying the sampling theorem. Upon sampling 
 x ( t )    =    cos(2 π  f  0  t ) at a rate  f  s , one obtains the time series  x [ k ]    =    cos(0.6 π  k ). The result-
ing reconstructed or interpolated continuous - time signal, based on the discrete - time 
samples shown in Figure  3.3  ( α     =    0.3), is seen to be a faithful replica of the original 
signal  x ( t ). Now consider increasing the signal ’ s frequency to  f  1     =    0.8 f  s ( α     =    0.8). In 
this case, Shannon ’ s sampling theorem is violated, and the signal is said to be under-
sampled. A Shannon interpolator, however, would be unaware of this heresy and 
assumes that the input signal has been properly sampled. Upon sampling 
 x ( t )    =    cos(2 π  f  1  t ), the time series  x [ k ]    =    cos(2 π  f  1  kT  s )    =    cos(1.6 π  k ) results. The 
outcome of this process is displayed in Figure  3.3  ( α     =    0.8), which shows that the 
reconstruction of a sampled signal to be at a much lower frequency. The new 
frequency can be determined using the trigonometric identity cos( a     +     b )    =    
cos( a )cos( b )    −    sin( a )sin( b ), where  a     +     b     =    1.6,  a     =    2, and  b     =     − 0.4, then  x [ k ]    =    
cos(1.6 π  k )    =    cos((2    −    0.4) π  k )    =    cos((2) π  k ) cos(( − 0.4) π  k )    −    sin((2) π  k ) sin(( − 0.4) π  k )  
  =    cos(( − 0.4) π  k ). The claim is that the resulting baseband frequency is actually 
 − 0.2 f  s ( α     =     − 0.2). Since cosine is an even function, it can also be claimed 
for cos(( − 0.4) π  k )    =    cos((0.4) π  k ), and that the reconstructed signal has a frequency 
of 0.2 f  s . Repeating the analysis for  f  1     =    0.8 f  s ( α     =    0.8) and  x ( t )    =    sin(2 π  f  1  t ), and 
using the identity sin( a     +     b )    =    sin( a )cos( b )    +    cos( a )sin( b ), it follows that  x [ k ]    =    
sin(( − 0.4) π  k ), which corresponds to a baseband frequency  f     =     − 0.2 f  s ( α     =     − 0.2). 
Since sine is an odd function, it can also be claimed for sin(( − 0.4) π  k )    =     − sin((0.4) π  k ), 
introducing a 180 °  phase shift in the reconstructed signal. 

       Figure 3.3     Signal sampling experiments where the input signal frequency is 0%, 10%, 
30%, and 80% of the sampling frequency  f  s . The individual sample values of the 80% case 
are seen to impersonate the sample values of a much lower frequency sinusoid. (a) Analog 
frequency    =    0.0 (i.e., DC); (b) analog frequency    =    10% of  f  s ; (c) analog frequency    =    30% 
of  f  s ; (d) analog frequency    =    80% of  f  s .  
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  Modular Arithmetic 

 The previous narrative develops the thesis that undersampling results in an aliased 
reconstructed signal. The reconstructed signal, using an ideal Shannon interpolator, 
is a signal whose frequencies reside exclusively within the baseband range  f     ∈    ( −  f  s /2, 
 f  s /2). The actual baseband frequency of the aliased signal can be determined using 
a modular arithmetic equation  *  :

    f f f f f fs s s1 0 1 2 2= ∈ −mod( ), [ / , / ),     (3.1)  

  where

   f  0          =    frequency of the sampled signal,  

  f  s          =    sample rate,  

  f  1          =    baseband frequency of the interpolated sampled signal.    

 Based on this analysis, if the discrete - time analysis of sinusoidal signals  x ( t )    =    cos( ω  0  t ) 
and  x ( t )    =    sin( ω  0  t ) are sampled at a rate  f  s , then the baseband outcomes are shown 
in Table  3.1 . To illustrate its use in a problem environment, consider an electrocar-
diogram (EKG) signal sampled at a rate of 135   Sa/s signal as shown in Figure  3.4 . 
The biologically signifi cant signal information is concentrated about 0   Hz. However, 

       Figure 3.4     EKG spectrum showing the effects of aliasing. Unexpected spectral lines are 
shown at  ± 15 and  ± 60   Hz.   
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  TABLE 3.1.    Aliasing Study (Sample Rate  f  s  Sa/s) 

    f  0  (Input 
Frequency)  

    f  1     ∈    [ −  f  s /2,  f  s /2) (Interpolated Frequency)     Aliased  

  0.2 f  s     0.2 f  s  mod( f  s )    =    0.2 f  s     No  

  0.4 f  s     0.4 f  s  mod( f  s )    =    0.4 f  s     No  

  0.6 f  s     0.6 f  s  mod( f  s )    =     − 0.4 f  s     Yes  

  0.8 f  s     0.8 f  s  mod( f  s )    =     − 0.2 f  s     Yes  

  1.0 f  s     1.0 f  s  mod( f  s )    =    0.0 f  s     Yes  

  1.2 f  s     1.2 f  s  mod( f  s )    =    0.2 f  s     Yes  

  1.4 f  s     1.4 f  s  mod( f  s )    =    0.4 f  s     Yes  

  *       A     =     B  mod( C ) if  B     =     kC     +     A ,  k  an integer. For example, 9    =    109 mod(10). 
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there is strong evidence of spectral contamination of some type at several higher -
 frequency locations. The instrument producing the spectrum calibrates the baseband 
frequency axis to range over  f     ∈    [ −  f  s /2,  f  s /2)    =    [ − 67.6, 67.5) as shown. Two suspi-
cious positive baseband tones are located at 60 and 15   Hz. The 60 - Hz tone can be 
attributed to 60 - Hz line - frequency interference, probably due to poor ground isola-
tion. The 15 - Hz contamination remains a mystery until aliasing is suspected. 
Specifi cally, the possible sources of a 15 - Hz aliased signal sampled at 135   Hz are 
signals having frequencies { .   .   .    ,    − 255,  − 120, 15, 150, 285,    .   .   . }. All of these fre-
quencies satisfy the modular equation 15    =     f  0  mod(135). Of these, the  − 120 - Hz line 
stands out as being physically signifi cant. A similar search suggests the presence of 
a  + 120 - Hz signal being present as well as shown in Figure  3.4 .       

  CIRCLE CRITERIA 

 Care needs to be taken in the production of modular arithmetic operations using 
generic tools such as MATLAB. To illustrate, for  f  s     =    1   kHz, and  f  0     =    750   Hz, then 
 f  1 , is a baseband frequency residing between  f  1     ∈    [ − 500, 500), having a value of 
 − 250   Hz. However, MATLAB ’ s interpretation is  750mod(1000)    =    750 , which is not 
a valid baseband frequency. This problem can be mitigated by interpreting the 
modulo( f  s ) mapping in the context of a unit circle as shown in Figure  3.5 a. The point 
1    +    j0 corresponds to the location of all multiples of the sample frequency  f  1 + j0     =     kf  s . 
The point  − 1    +    j0 corresponds to the location of all multiples of the Nyquist fre-
quency  f  1 − j0     =     kf  s     +     f  s /2. Reconstructed signal frequencies reside on the unit circle 
with the positive baseband frequencies occupying the top arc (0 to  + 180 ° ), and the 
negative baseband frequencies occupying the bottom arc (0 to  − 180 ° ). A point on 
the unit circle at 630 ° , for example, is mapped to 270 °  on the unit circle, a point on 
the negative frequency arc corresponding to  − 90 ° . The point  − 90 °  has a physical 
value of  f  1     =     −  f  s /4, a negative baseband frequency. The EKG data are also analyzed 
using the circle criteria and Figure  3.5 b. For  f  s     =    135   Hz, the aliasing frequency 
locations are plotted to be  ± 120   Hz.    

       Figure 3.5     (a) Circle criteria used in analyzing  f  1     =     f  0  mod( f  s ) where  f  1  is a baseband 
frequency, and (b) location of  f  0     =     ± 120   Hz for a sample rate of 135   Hz and  f  1     =    15   Hz.  

f
N
 = 

±k f
s 
+ f

s 
/2

f  = 
±k f

s

(a)

..., –135, 0, 135, ...

(b)

..., –67.5,
     67.5, ...

..., –120, 15, 150, ...

..., –150, –15, 120, ...



26 CHAPTER 3 ALIASING

   IF  SAMPLING 

 An RF receiver is proposed in Figure  3.6  consisting of an analog RF to intermediate 
frequency (IF) front - end, analog - to - digital converter (ADC), and digital signal pro-
cessing agents. The signal of interest is centered about a carrier frequency of 
70   MHz. According to the sampling theorem, the sample rate must exceed 140   MSa/s. 
For reasons that may include cost and power dissipation considerations, it is con-
cluded that 100 +    MSa/s ADC is unacceptable. A much lower speed (undersampling) 
and available ADC operating at an  f  s     =    25.3444   MSa/s rate is preferred. The remain-
der of the solution is based on a  numerically controlled oscillator  ( NCO ) that pro-
duces a sine wave at a user - specifi ed frequency, and a digital mixer to heterodyne 
the sampled signal to baseband where a low - pass fi lter extracts a selected sub - band 
from baseband (called a superheterodyne receiver — see insert). Finally, a  “ back - end ”  
 μ p decodes received signals.

       Figure 3.6     Hypothetical RF receiver.  
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 Factoid: Major Armstrong was an electrical engineer and inventor. He, in fact, 
invented  frequency modulation  ( FM ) radio and the regenerative feedback circuit as 
an undergraduate (patented in 1914), and the superheterodyne receiver (patented 

         Major Armstrong (1890 – 195  4)     
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1918). During World War II, he played a major role in supplying allied troops with 
communication equipment. Many of Armstrong ’ s inventions were ultimately claimed 
by others in the form of patent lawsuits. Armstrong found himself embroiled in many 
patent wars, suffering from unethically and illegal tactics practiced by his adversar-
ies. Alone and depressed over the outcome of the FM patent dispute, Armstrong 
jumped to his death from the 13th fl oor window of his New York City apartment on 
January 31, 1954. His suicide note to his wife said:  “ May God help you and have 
mercy on my soul. ”  

 Collectively, the system under study is based on what is called an IF unders-
ampling technology. The essential elements of the undersampled receiver are dis-
played in Figure  3.6 . The spectrum of the signal of interest, shown in Figure  3.7  
(top), is assumed to be centered about a frequency 70   MHz and is sampled at an 
ADC rate of 25.344   MSa/s, well below the Shannon sampling rate. The ADC sam-
pling action will therefore produce aliased images of the RF/IF signal that are 
centered around multiples of the sampling frequencies  nf  s ,  n     =    1, 2, as shown in 
Figure  3.7  (middle). It should be noted that the received analog signal also has 
negative frequency domain components centered at  f     =     − 70   MHz, which will 
also produce aliased images centered about  nf  s ,  n     =     − 1,  − 2,    . . .    . The analog signal 
center at 70   MHz will be aliased to a baseband frequency of  − 6.032   MHz 
(70    ×    10 6     −    76.032    ×    10 6 ), while the analog signal center at  − 70   MHz will be aliased 
to a baseband frequency of 6.032   MHz ( − 70    ×    10 6     +    76.032    ×    10 6 ). The aliased 
baseband signal will need to be translated down to 0   Hz (DC) to complete the super-
heterodyne process. This is accomplished by setting the NCO to 6.032   MHz and 
mixing the ADC and NCO outputs. This will center the original signal located at 
70   MHz to a DC location as shown in Figure  3.7  (bottom). From this point, the 
desired signal can be isolated using a low - pass fi lter and the information extracted 
using digital processors.   

       Figure 3.7     Undersampled system showing received RF/IF spectrum (top), sampled 
spectrum with resulting aliasing (middle), and low - pass fi ltered spectrum (bottom).  
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 The undersampling story does not end here. While the undersampled strategy 
resulted in a reduced ADC rate (a modest 25.344   MSa/s vs. 140 +    MSa/s), the ADC ’ s 
sample - and - hold circuit must be capable of producing a nearly ideal (instantaneous) 
sample of an analog signal of 70 +    MHz regardless of the actual ADC sample rate. 
These devices are called IF sampling ADCs or undersampling ADCs. An example 
is a commercial 14 - bit, 125   MSa/s ADC that has an analog bandwidth of 750   MHz 
(corresponds to a 1.5   GSa/s ADC). For the design being considered, the 25.344   MSa/s 
ADC would need to have an analog section with a sampling bandwidth of 140   MHz 
or better. In addition, the designer would also need to insure that the only RF signal 
components centered about 70   MHz are presented to the ADC. Any signal outside 
this range will be aliased back to baseband, producing potentially undesirable results. 

 Since the presence of aliasing can degenerate the performance of a digital 
fi lter, how to manage this phenomenon must be understood. This is particularly true 
in mixed - signal environments where the signals generated by noisy digital logic can 
be coupled into the analog section and then sent on an ADC. It has been shown that 
aliasing can also be creatively used to achieve unexpected solutions such as under-
sampled IF systems.  
    

   
  
 
 
 
 
 
  
   
 



  CHAPTER 4 

DATA CONVERSION 
AND QUANTIZATION     

   DOMAIN CONVERSION 

 The ubiquitous  analog - to - digital converter  ( ADC ) and  digital - to - analog converter  
( DAC ) are core digital signal processing (DSP) technologies. In fact, without an 
ADC or DAC, there would be no DSP today. They are found in applications that 
involve digital processing of signals that originate and/or terminate in the continuous -
 time domain. The basic ADC device shown in Figure  4.1  consists of two parts. The 
fi rst stage performs a sample - and - hold operation that physically converts an analog 
signal  x ( t ) into a discrete - time signal  x [ k ]. The second stage consists of a quantizer 
that maps the discrete - time sample value  x [ k ] into an equivalent digital word  x  D [ k ]. 
An  n  - bit ADC quantizes  x [ k ] into one of 2  n   possible digital values. In addition, ADCs 
can be classifi ed to be members of four basic groups. They are 

   •      fl ash — direct conversion,    

   •      pipelined — segmented direct conversion,  

   •       successive approximation register  ( SAR ) — indirect conversion, and  

   •      sigma - delta ( Σ  Δ ) — adaptive conversion.    

 The mechanism by which a quantized (digital) or discrete - time signal is returned to 
a continuous - time signal  x ( t ) is called interpolation. The process generally involves 
the use of a DAC and interpolating fi lter as shown in Figure  4.2 . DACs are com-
monly confi gured using a zero - order hold (ZOH) circuit that converts a discrete - time 
signal into a piecewise constant analog signal  x  Z ( t ). The piecewise constant signal 
is then  “ smoothed ”  by an interpolating fi lter that produces a continuous - time 
outcome. DACs, like ADCs, are parameterized in terms of precision (in bits), speed 
(sample per second or Sa/s), linearity, noise, and other qualifi ers. Some DACs come 
supplied with embedded analog circuits that are used to perform additional signal 
processing and waveform shaping using modulation and multiplicative operations. 
Both ADC and DAC technologies are available as a suite of commercial products 
spanning a wide range of cost, precision, and bandwidth choices.    
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   ADC  TAXONOMY 

 ADC architectures are varied, resulting in a wide choice of performance, power, 
cost, and complexities. Choosing the right ADC is fundamentally important to 
the success of the DSP and fi lter solution. The general speed versus precision 
relationships among the basic ADC forms are summarized in Figure  4.3  and com-
parisons are made in Table  4.1  with the converters graded on a 1 – 4 scale (1 being 
the best, 4 worst), with    denoting a capability in the topical area, and    denoting 
none.     

       Figure 4.1     ADC - based digital conversion system.  
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       Figure 4.2     DAC - based digital conversion system.  
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       Figure 4.3     ADC precision as a function of performance (Sa/s) and architecture.  
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   ADC  Metrics 

 Digital data acquisition and conversion systems are found in virtually every modern 
communication system, DSP solution, electronic instrument and microcontroller 
applications. As a technology, data conversion systems are seen to evolve at a slow 
rate compared with mainstream semiconductors. Two data acquisition parameters 
considered key to many applications are speed and precision. For mobile and unte-
thered applications, a third parameter, power dissipation can be equally important. 
The parameters that usually defi ne the quality of the ADC conversion process are 
summarized in Table  4.2 .     

   ADC  ENHANCEMENT TECHNIQUES 

 A typical ADC is approximately linear over its dynamic range. In general, the input 
signal  x ( t ) may need to be scaled in order to conform to ADC ’ s available dynamic 
range. This is the role of an  automatic gain control  ( AGC ) device. If the input data 
range exceeds the dynamic range of the ADC, then the ADC will saturate. This action 
can result in large conversion errors. There are instances, however, when the operat-
ing characteristics of an ADC are intentionally made nonlinear in order to reduce 
the possibility of run - time saturation or dynamic range overfl ow. To illustrate, the 
human auditory system is capable of working over 100 - dB dynamic range or greater. 
Man achieves this remarkable capability by logarithmically processing signals. A 
similar capability can be embedded into an ADC. For example, a signal fully cover-
ing a 16 - bit range would obviously overwhelm an 8 - bit ADC unless the data are 
fi rst logarithmically compressed as suggested in Figure  4.4 . This modifi cation is 
called companding. It can be seen that large input signals are highly compressed 
by the compander, and the small - scale signals are amplifi ed. The two common 
companding strategies in current use are called mu ( μ ) - law and A - law. Formally, 
they are  

    mu -law typical( ) : ( )
log

log
; ( )µ

µ
µ

µy x sign x
x( ) =

+( )
+( )

=
1

1
255     (4.1)  

  TABLE 4.1.     ADC  Comparison 

   Attribute     Flash     Pipelined     SAR      Σ  Δ   

  Throughput    1    2    3    4  

  Resolution (effective number of bits or ENOBs)    4    3    2    1  

  Latency    1    3    2    4  

  Suitability for converting multiple signal per ADC    1    2    1        

  Undersampling                          

  Dithering (increase resolution)                          
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  TABLE 4.2.     ADC  Parameters 

   Test Parameter     Unit     Typical Description  

  Resolution    Bits    The resolution of an  n  - bit ADC is 1 part in 2  n  .  

   Nonlinearity, 
differential  ( DNL )  

  Bits    Number of bits guaranteed to have no missing codes. 
Example: 9   bits minimum.  

   Nonlinearity, integral  
( INL )  

  LSB    An ideal ADC operated on a linear operating line 
ranging from  “ zero ”  to  “ full scale. ”  The maximum 
deviation from this line is the ADC ’ s integral 
nonlinearity. Example:  ± 2 LSB ’ s max.  

  Full - scale range    V    Difference between the maximum and minimum analog 
input values specifi ed for the ADC. Example: 0   V to 
 + 10   V, single ended;  − 5   V to  + 5   V bipolar.  

  Conversion time     μ s    Time required to complete a conversion. Example: 
10    μ s.  

  Power supply ( ± V)    V    ADCs supply voltage. Example:  ± 5   V.  

   Signal - to - noise ratio  
( SNR )  

  dB    Ratio of measured signal power at the output to 
internal noise power. SNR max     =    6.02   N    +    1.76   dB. 
Example: 45   dB typically at 1   MHz.  

   Total harmonic 
distortion  ( THD )  

  % or dB    The ratio of the root mean square (rms) sum of the fi rst 
six harmonic components to the rms value of a 
full - scale input signal. Example:  − 88   dB.  

  Effective number of 
bits  

  Bits    Statistical number of bits residing above the noise fl oor. 
ENOB    =    (SNR max     −    1.76)/6.02.  

   Spurious - free dynamic 
range  ( SFDR )  

  dB    Amplitude difference between rms value of the 
fundamental and the largest nonfundamental 
harmonic spur. SFDR max     =    9   N    −    6   dBc: Example: 
 − 62   dB.  

  Aperture error    ns    Errors introduced by clock jitter. Example: 1   ns.  

       Figure 4.4     Mu - law compander.  
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   DSP  DATA REPRESENTATION 

 In a typical DSP application, data enters a system from an ADC and exits from a 
DAC. In other applications, the data remains digital from start to fi nish. In all cases, 
digital data are manipulated using DSP objects such as a digital fi lter. DSP solutions 
are generally  multiply - accumulate  ( MAC ) intensive and are often referred to as 
being SAXPY (S    =    AX    +    Y) intense. To achieve high performance and precision, 
within realistic package, power, and cost constraints, engineers must carefully access 
their design choices, which collectively defi ne the outcome. One of these decisions 
relates to the choice of number and/or arithmetic system. In practice, the arithmetic 
choices are 

  1.     fi xed point,  

  2.     fl oating point, and  

  3.     block fl oating point (BFP).    

 Signed fi xed - point systems appear in integer or fractional form and can be directly 
mapped to and from ADCs and DACs. While an unsigned or signed integer repre-
sentation is familiar to those developing code, the DSP engineer often prefers to 
work with real numbers (e.g., coeffi cients and data). To illustrate, consider a 
16 - bit fi xed - point system that consists of a sign bit, 3 integer bits, and 6   bits to 
fractional bits. Such a system would be said to have [ N    :    F ]  *   data format, where 
 N     =    16 and  F     =    6. A real number  α     =    4.2344 would be coded as the [16,6] word 
[0:100    ◊    001111] 2     =    4.2344 10  where  ◊  denotes the binary point location. In general, 
the signed fractional data word  X  has the form

    X X Xi
i

i F

I

i= ± ∈−

=−
∑ 2 0 1; [ , ].     (4.3)   

 The format associated with a baseline 16 - bit  Texas Instrument  ’ s ( TI ) DSP processor, 
for example, is [16: F ]. TI, however, interprets the data format using what is called 
 “  Q  ”  notation and it is  Q ( F ), where  N     =    16 is implicitly assumed. Fixed - point repre-
sentations, in any of these formats produce only an approximation to a real number 
 α . The difference between  α  and its fi xed - point representation is called the quantiza-
tion error. 

 For off - line fi ltering (e.g., MATLAB), and some real - time applications where 
precision is a major issue, fl oating point is preferred. The fl oating - point representa-
tion of a signed number is  x     =     ±  m  x  r e   x , where  m  x  is called the fl oating - point mantissa 
(generally normalized),  r  is the radix, and  e  x  is the exponent. Floating - point formats 
have been standardized (e.g., IEEE). Their use in digital fi ltering is justifi ed on the 
basis of high precision, but they introduce a host of problems as well. Notable is the 
fact that fl oating point is slow and resource intense (hardware), and introduces data -
 dependent latencies that create real - time operational problems. 

  *      [ N    :    F ] format defi nes a signed  N  - bit fi xed - point word having a sign bit,  F  fractional bits of precision, 
 I  integer bits, where  I     =     N     −     F     −    1. 
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 A variation on the fl oating - point theme is BFP. Some DSP  application - specifi c 
standard part s ( ASSP s), such as dedicated fast Fourier transform (FFT), use BFP. A 
BFP system is actually a scaled fi xed - point system. Specifi cally, given an array of 
data { x  i }, with maximal element | x  max |    ≤     K     =    2  k  , the BFP version of an  N  - sample 
array of sample values { x  i } is { y  i }    =    { x i  / K }    ×    2  k   where | x i  / K |    ≤    1 and the scale factor 
2  k   can be reapplied to the data at the end of a computational cycle or, in some cases, 
ignored altogether. Compared with a fi xed - format fi xed - point system, a BFP - coded 
data set can more effi ciently utilize the available data dynamic range. 

 Of these choices, the overwhelming choice for digital fi ltering is fractional 
fi xed point for hardware - based designs, and specifi cally 2 ’ s complement. The fi xed -
 point advantages in hardware solutions are manifold, including higher speed, reduced 
complexity, power dissipation, and cost. The fi xed - point solution construction often 
begins with an ADC, which defi nes, in total or in part, the solution ’ s data format 
and quantization error. Statistically quantifying this error is necessary in order to 
rigorously analyze a digital fi lter.  

  QUANTIZATION ERROR 

 Digital signals can be generated by digital devices, such as the ADC shown in Figure 
 4.5 . An ideal impulse sampler instantaneously captures a sample value  x  S [ k ] of an 
analog signal  x ( t ) at  t     =     kT  s . The sampled value is then passed to a quantizer that 
converts  x  S [ k ] into a digital word  x  D [ k ], where  x  D [ k ] is a digital approximation of 
 x  S [ k ]. The difference between the discrete - time and quantized sample is called the 
quantization error and is formally defi ned to be  

    e k x k x k[ ] [ ] [ ].= −D S     (4.4)   

 To illustrate, an analog signal  x ( t ) having a  ± 1 - volt swing, shown in Figure  4.6 , is 
sent to an ideal 3 - bit signed ADC. The weight of the  least signifi cant bit  ( LSB ) is 
LSB    =    1/4   V/bit.   

 In general, it would be useful to express the ADC errors and properties in 
terms of computable statistics. If the input signal  x ( t ) is double ended, ranging 
over  −  A     ≤     x [ k ]    <     A , then the quantization step size for an  n  - bit ADC converter is 
given by

    ∆ = 2 2A n ( ),double ended     (4.5)  

  where  Δ  is the quantization step size and is normally measured in volts or amps per 
bit. If the input signal is single ended, ranging over 0    ≤     x ( t )    <     A , then the quantiza-
tion step size for the  n  - bit converter is given by

       Figure 4.5     Analog - to - digital converter (ADC).  
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    ∆ = A n2 ( ),single ended     (4.6)   

 which is  ½  the double - ended quantization step size. For linear ADC applications, 
there is a straightforward statistical error analysis procedure that can quantify the 
error process. The analysis process is based on the production of the quantization 
error, which can be expressed in terms of the quantization step size,  Δ  (also com-
monly denoted as  Q ). To illustrate, assume that a signed (doubled ended) 16 - bit ADC 
is designed to operate over the analog range  ± 32.768   V. The ADC quantization step 
size is given by  Δ     =    2    ×    32.768/2 16     =    10  − 3  (V/bit). A sampled value of 3.015   V, 
shown in Figure  4.7 , would be mapped to the quantized integer value of 3015 
without quantization error. The signal being quantized in Figure  4.7  is known to be 
locally distributed randomly about 3.015   V in time. The resulting quantized values 
are therefore distributed about 3015. Using rounding, a particular sample value, say 
 x  S [ k ]    =    3.0152   V, would be mapped to an integer value 3015, which corresponds to 
a real value  x  D [ k ]    =    3.015    =    3015 Δ . The quantization error, in this case, would be 
 e [ k ]    =    3.015    −    3.0152    =     − 0.0002. The quantization error, shown on a sample - by -
 sample basis is seen to reside within the range [ −  Δ /2,  Δ /2) (LSB weight    =     Δ ), which 

       Figure 4.6     Digitized analog signal using a 3 - bit ADC (top) and the resulting quantization 
error (bottom).  
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       Figure 4.7     Production of quantization errors. (a) Original analog signal; (b) sampled 
analog signal; (c) digitized signal; (d) quantization error; (e) PDF for quantization noise.  
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corresponds to a maximum  ± 0.5 - mV error. The error statistics can be defi ned in 
terms of the error probability density function or PDF. The PDF, when computed 
and plotted as a histogram, is seen to have a  “ blocky ”  distribution over the range 
 ±  ½  LSB as shown in Figure  4.7 . If the experiment had been run over a longer sample 
record, and if the histogram resolution was increased, the PDF would converge to 
a uniform distribution.   

 A quantizer can be set to perform rounding or truncation operations. If an 
ADC ’ s word width is  n  - bits, and if  n  is suffi ciently large (typically  n     ≥    4   bits), the 
quantization error  e [ k ] is generally assumed to be a uniformly distributed random 
process. Specifi cally, the statistical error model for rounding is a uniformly distrib-
uted PDF centered about zero (i.e., zero mean). For truncation, the error model is 
again uniform, but the mean error is now  Δ /2. The fi rst and second moment statistics 
(i.e., mean and variance), as well as the maximum error for each case are shown in 
Table  4.3 .   

 The data shown in Table  4.3  state that when the quantization error is uniformly 
distributed, the error variance is

    σ2 2

2

2

21
12= =

−
∫∆

∆
∆

∆

x dx
/

/

/ .     (4.7)   

 The variance can also be interpreted as a standard deviation given by   σ = ∆ / 12 
having units of  Δ  (e.g., volts per bit). The error, in bits, can be expressed in bits as

    error in bits( ) log ( ) log ( ) .= = −2 2 1 79σ ∆     (4.8)   

 or in decibels as error (dB)    =    20log 10 ( σ )    =    (20log 10 ( Δ )    −    10.8) dB. 

  Example: Error Analysis  

 The input to a signed 16 - bit double - ended ADC is assumed to be bounded by 
| x ( t )|    ≤    1. The quantization step size is therefore  Δ     =    2  − 15  and an attendant error vari-
ance is  σ  2     =     Δ  2 /12    =    2  − 30 /12. The test signal, an array of random variables, is quan-
tized into fractional numbers having  m  - bits of fractional precision, where  m  ranges 
from 1 to 15   bits. The outcome is graphically interpreted in Figure  4.8 . It can be 
seen that there is an agreement between the theoretical prediction and the experi-
mental outcome.   

 Drilling deeper into the details of the quantization model, consider a double -
 ended analog input signal  x ( t ) bounded by  ± 10   V is to be digitized using a  ± 10   V 
( A     =    10) 10 - bit signed ADC. While the errors can be readily predicted and computed, 

  TABLE 4.3.    Quantization Error Statistics 

   Policy  Figure        Maximum  | Error |      Error Range     Error Mean     Error Variance  

  Truncation    16(a)     Δ LSB     e  [  k  ]     ∈     [ 0,  Δ )     Δ /2     Δ  2 /12  

  Rounding    16(b)     Δ /2     e  [  k  ]     ∈     [  −   Δ /2,  Δ /2)    0     Δ  2 /12  
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a common problem is interpreting these errors. From the given data, the quantization 
step size is computed to be  Δ     =    20/1024    ∼    20   mV/bit, a number that can be used to 
calibrate the statistical error study. The ADC output corresponds to a 10 - bit data 
word having 1 sign bit and 9 data bits, where 2 9  *  Δ     =    512    ×    0.02    ∼    10 (single - ended 
range limit). The quantization error  e [ k ]    =     x  S [ k ]    −     x  D [ k ] is assumed to be uniformly 
distributed over [ −  Δ /2,  Δ /2). The resulting rounded error statistics, defi ned in Table 
 4.3 , are  E ( e )    =    0 and  σ  2     =     Δ  2 /12, or log 2 ( σ )    =    7.43   bits. A logical question to ask is 
what does  − 7.43   bits of precision actually mean? The quantization error, in bits, was 
computed using the formula log 2 ( σ )    =    log 2 ( Δ )    −    1.79   bits and has a value of 
 − 7.43   bits and is statistically interpreted as 7.43 fractional bits of ADC precision. 
Removing the statistical bias of 1.7   bits from the computed quantization error  − 7.43 
results in an absolute ADC precision of  F     =    5.63 fractional bits. Note that 25.63    ×     
Δ     =    25.63    ×    0.02    =    0.990442    ∼    1.0, which covers ADC ’ s fractional dynamic range 
[0,1]. Subtracting the number of fractional bits  F     =    5.63   bits from the 10 - bit data 
format, one concludes that the number of retained integer bits (i.e.,  I ) per sample 
satisfi es 10    =     I     +     F     +    1 or  I     =    3.4. Observe that 2 3.4     =    9.849    ∼    10 is the limit of the 
single - ended ADC dynamic range. The data format would code data using a [ ± : 
I    ◊    F] format, where  ◊  denotes the binary point,  I  is the number of integer bits, and 
 F  is the fractional word width in bits. The system under study would technically 
have the data format [ ± : 3.4    ◊    5.6]. In  “ DSP speak, ”  the data format would be 
denoted [ N    :    F ]    =    [10:5.6], and in  “ TI speak, ”  the format would be  Q (5.6) where 
 N     =    16 is implicitly assumed. 

 In the time domain, the quantization error is assumed to be a uniformly dis-
tributed random process. It is normally assumed that in the frequency domain, the 
noise spectrum is  “ fl at ”  over the baseband range  f     ∈    [0,  f  s /2). Specifi cally, a critically 
sampled ADC produces a quantization noise process that is uniformly distributed 
over the frequency range  f     ∈    [0,  f  s /2). If the ADC is oversampled by a factor  k , the 
same noise power is distributed over  f     ∈    [0,  kf  s /2), which reduces the density of 
noise by a factor  k  as suggested in Figure  4.9 . A low - pass fi lter can then be used to 
eliminate the noise contributions beyond the Nyquist frequency  f  s /2, leaving only 
1/ k th the original noise power located at baseband.   

 A basic  Δ  Σ  ADC, by its very nature, is a highly oversampled system. In addi-
tion, the  Δ  Σ  ADC uses an integrator, having a frequency response  H  I ( f )    =    1/ f  to 

       Figure 4.8     Computer simulation outcome displaying the quantization error (in bits) of a 
random input for a fractional precision  m  ranging from 1 to 15   bits. The experimental data 
clearly illustrate about 1.79 - bit bias in the error statistics.  

0 5 10 15
–20

–15

–10

–5

0

O
ut

pu
t 

P
re

ci
si

on
 in

 B
it

s

Fractional Number of Bits

Computed Error in Bits
LSB



38 CHAPTER 4 DATA CONVERSION AND QUANTIZATION 

process internal error signals. As a result, the noise found at the higher frequencies 
is rejected by the integrator, resulting in a higher than expected  effective number of 
bit s ( ENOB s) of precision.   

   MAC  UNITS 

 Quantization errors can occur whenever and wherever real data are replaced by a 
fi xed - point equivalent. Besides ADCs, there are other quantization error sources 
found in a fi xed - point system. It has been established that DSP solutions are SAXPY -
 intensive, which implies that there exists arithmetic units, including multipliers, that 
can introduce additional quantization errors. Managing and measuring such errors 
is both necessary and challenging. To illustrate, suppose two signed real data arrays 
 A  and  X  consisting of 256 samples each are to be combined to form a  sum - of -
 product s ( SOP s) outcome that can be expressed as

    Y A i X i
i

= [ ] [ ]
=
∑

0

255

    (4.9)  

  and graphically interpreted in Figure  4.10 . Figure  4.10  indicates that there are dif-
ferent word lengths assigned to data at different locations within the MAC unit. 

       Figure 4.9     Typical ADC architectures (top: critically sampled; bottom: oversampled).  
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       Figure 4.10     Basic MAC unit showing data bus widths of 16, 32, and 40   bits.  
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Assume that the  N     =    16 bit versions of | A i  |    ≤    1 and | X i  |    ≤    1 are quantized so that 
 A     ε    [16:15] and  X     ε    [16:15]. The full precision product  M i   of each  A i   and  X i   pair is 
then modeled to be a 32 - bit word requiring a format of  M     ε    [32:31]. To insure that 
the output register of the accumulator does not overfl ow during run time, it must 
survive a worst case attack. The worst case SOP | Y | is 256, which is the result of 
accumulating 256 worst case individual products. Since this case can occur during 
run time, the developers of DSP hardware technology have made provision in 
designing MAC units so that they can operate under worst case conditions without 
interruption. Specifi cally, it is recognized that the output register containing  Y  must 
be able to accept data outcomes out to 256, which is 8 integer bits larger than the 
individual multiplier data word. This is accomplished by designing the accumulator 
data paths 8   bits wider than the full precision multiplier data paths. This is called 
 “ extended precision ”  accumulator having an output  Y     ε    [32    +    8:31]    =    [40:31]. If it 
were not for such dynamic range extensions, register overfl ows would likely occur 
during run time, resulting in either large and disturbing errors or excessive overhead 
in constantly checking for register overfl ow and correcting it when it occurs. Once 
the SAXPY SOP has been completed, the extended precision outcome  Y     ε    [40:31] 
can be rounded to a 16 - bit word having a [16:7] format. The rounded outcome 
therefore would statistically have  − 7    −    1.8    =     − 8.8   bits of fractional precision.    

   MATLAB  SUPPORT 

 MATLAB contains several tools that can be used to support quantization studies. 
They are 

   •       ceil  function: round toward  ∞ ,  

   •       fl oor  function: round toward  −  ∞ ,  

   •       fi x  function: round toward 0,  

   •       round  function: round toward nearest integer, and  

   •       hist  function: histogram.    

 Other measures include 

   •       median ,  std ,  min ,  max ,  var .     
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THE   Z   - TRANSFORM     

   INTRODUCTION 

41

 Like so many technical and scientifi c fi elds, digital signal processing (DSP) has 
developed its own language and idioms. The language of DSP is rooted in the math-
ematics that describes the objects under study. For digital fi lters, this is the  z  -
 transform, a bridge between continuous - time (analog) systems and their discrete - time 
counterparts. Discrete - time systems, in turn, provide the framework upon which 
digital fi lters are built. The origins of the  z  - transform can be traced to the Laplace 
transform. In studying continuous - time signals and systems, it was soon realized 
that the analysis complexity could be signifi cantly reduced by replacing calculus 
operations with Laplace - defi ned algebraic statements. The Laplace transform, in a 
sense, transformed 20th - century academic engineering, placing the study of linear 

Digital Filters: Principles and Applications with MATLAB, First Edition. Fred J. Taylor.
© 2012 by the Institute of Electrical and Electronics Engineers, Inc. 
Published 2012 by John Wiley & Sons, Inc.

        Pierre - Simon Marquis de Laplace (1749 – 1827) , French mathematician and 
astronomer.    



42 CHAPTER 5 THE Z-TRANSFORM

systems on a new mathematical foundation. When discrete - time signals fi rst made 
their appearance in the mid - 20th century as sampled - data control systems, they were 
initially studied in the context of Laplace transforms using a well - known delay 
property of Laplace transforms. The delay theorem states that if  x ( t )    ↔     X ( s ), then 
  x t kT e X ss

skTs( ) ( )− ↔ − . As a result, a time series  x [ k ]    =    { x [0],  x [1],  x [2],    . . . } can 
be alternatively represented using the Laplace transform and the delay theorem as 
  X s x x e x esT sT( ) [ ] [ ] [ ]= + + +− −0 1 2 2s s �. The fundamental problem with the Laplace 
representation methodology is that each delay term requires the insertion of a delay 
operator of the form   e skT− s. For periodically sampled signals, an infi nite number of 
insertions would be required. Obviously, this can become very tedious and rapidly 
gave rise to the adoption of a shorthand representation of the form

    z e z esT sTˆ ˆ ,= =− −s sor 1     (5.1)  

  which is known by its popular name the  z  - operator and  z  - transform. Since its intro-
duction, the venerable Laplace  s  - operator, and more recently the  z  - operator, has 
become a ubiquitous tool in the study of continuous -  and discrete - time linear signals 
and systems. 

 Equation  5.1  defi nes a relationship between points in the  s  - plane and those in 
the  z  - domain as graphically shown in Figure  5.1 . The  z  - transform is seen to be a 
mapping of the complex Laplace operator  s     =     σ     +     j  ω , into the  z  - domain as 
  z e e resT j j= = =+s σ ω ω. For  ω     =     k (2 π )    +     ω  0 ,   z re rej k j= =+( )2 0 0π ω ω . It can therefore be 
concluded that if the  z  - transform mapping is to be unique, the imaginary part of  s  
must be restricted to a range  ω     ∈    [ −  π ,  π ). This corresponds to limiting the frequency 
range to be only baseband frequencies, physically residing between the  ±  f  Nyquist  in a 
manner consistent with Shannon ’ s sampling theorem.    

    Z   - TRANSFORM 

 The two - sided (bilateral)  z  - transform of an arbitrary time series  x [ k ] is formally 
defi ned to be

       Figure 5.1     Mapping of the  s  - plane into the  z  - plane under   z esT= s .  
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    X z x k z k

k

( ) [ ] .= −

=−∞

∞

∑     (5.2)   

 For a causal time series, the one - sided (right - sided, unilateral)  z  - transform applies 
and is given by the right - sided, or one - sided summation:

    X z x k z k

k

( ) [ ] .= −

=

∞

∑
0

    (5.3)   

 A time series may also be of fi nite duration. In such cases, the  z  - transform is given 
by the fi nite sum

    X z x k z k

k m

n

( ) [ ] .= −

=
∑     (5.4)   

 The values of  z  for which the sums found in Equations  5.2  through  5.4  produce a 
bounded outcome are called the  z  - transform ’ s region of convergence or ROC. The 
importance of the ROC to the study of discrete - time signals is subject to debate. 
Some place a great emphasis on establishing the ROC of a transform, others totally 
ignore this study altogether. Whether the ROC is emphasized or deemphasized, the 
production of the  z  - transform of an arbitrary signal  x [ k ] can be a challenging 
problem. Fortunately, the  z  - transform for many important time series (i.e., elemen-
tary functions) is well known and has been cataloged.  

  PRIMITIVE SIGNALS 

 In general, the  z  - transform of simple signals is rarely derived from fi rst principles. 
Instead, they are synthesized using elements from standard tables (e.g., Table  5.1 ) 
and known properties of  z  - transforms (e.g., linearity). A collection of these signals, 
their  z  - transforms, and ROCs are shown in Table  5.1 .    

    Z   - TRANSFORM: LINEAR SYSTEMS 

 Digital fi lters can be modeled and analyzed in the  z  - domain. A common means of 
analyzing a fi lter is to present the fi lter with a Kronecker delta function  δ  K [ k ] as an 
input and to analyze the outcome (i.e., impulse response). From such studies, the 
response of a fi lter to an arbitrary input can be derived. In general, the input – output 
behavior of an at - rest (zero initial conditions) linear constant coeffi cient system, or 
fi lter, can be characterized by the difference equation:

    a y k m b x k mm

m

N

m

m

M

[ ] [ ],− = −
= =

∑ ∑
0 0

    (5.5)  
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  where  y [ k ] is the output at the  k th sample instance and  x [ k ] is the input also at the 
 k th sample instant. Suppose the  z  - transform of  y [ k ] is denoted  Y ( z ), and the  z  -
 transform of  x [ k ] is denoted  X ( z ). Then, it immediately follows from the delay 
theorem that  y [ k     −     m ]    ↔     z   −    m Y ( z ) and  x [ k     −     m ]    ↔     z   −    m X ( z ), which results in the  z  -
 transformed difference equation given by

    a z Y z b z X zm
m

m

N

m
m

m

M
−

=

−

=
∑ ∑







 =











0 0

( ) ( ).     (5.6)   

 The ratio of  Y ( z ) to  X ( z ) is traditionally called a transfer function and is denoted 
 H ( z ). For the linear system, described by Equation  5.6 , the transfer function is for-
mally given by

    H z
Y z

X z

b z

a z

m
m

m

M

m
m

m
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( )

( )

( )
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=
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    (5.7)   

  TABLE 5.1.     z  - Transforms of Elementary Functions 

   Time Domain      z  - Transform     Region of Convergence  

   δ [ k ]    1    Everywhere  

   δ [ k     −     m ]     z   −    m      Everywhere  

   u [ k ]     z /( z     −    1)    | z |    >    1  

   ku [ k ]     z /( z     −    1) 2     | z |    >    1  

   k  2  u [ k ]     z ( z     +    1)/( z     −    1) 3     | z |    >    1  

   k  3  u [ k ]     z ( z  2     +    4 z     +    1)/( z     −    1) 4     | z |    >    1  

   a k u [ k ]     z /( z     −     a )    | z |    >    | a |  

   ka k u [ k ]     az /( z     −     a ) 2     | z |    >    | a |  

   k  2  a k u [ k ]     az ( z     +     a )/( z     −     a ) 3     | z |    >    | a |  

  sin[ bk ] u [ k ]      
z b

z z b

sin( )

cos( )2 2 1− +
  

  | z |    >    1  

  cos[ bk ] u [ k ]      
z z b

z z b

( cos( ))

cos( )

−
− +2 2 1

  
  |z|    >    1  

  Exp[ akT  s ]sin[ bkT  s ] u [ kT  s ]      
ze bT

z ze bT e

aT

aT aT

s

s s

s

s

sin( )

cos( )2 22− +
  

  | z |    >    |exp( aT  s )|  

  Exp[ akT  s ]cos[ bkT  s ] u [ kT  s ]      
z z e bT

z ze bT e

aT

aT aT

( cos( ))

cos( )

−
− +

s

s s

s

s
2 22

  
  | z |    >    |exp( aT  s )|  

   a  k sin( bkT  s ) u [ kT  s ]      
az bT

z az bT a

sin( )

cos( )
s

s
2 22− +

  
  | z |    >    | a |  

   a  k cos( bkT  s ) u [ kT  s ]      
z z a bT

z az bT a

( cos( ))

cos( )

−
− +

s

s
2 22

  
  | z |    >    | a |  

   a  k ( u [ k ]    −     u [ k     −     N ])    (1    −     a N z   −    N  )/(1    −     az   − 1 )    Everywhere  
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       Figure 5.2     Impulse invariant system response.  
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 Equation  5.7  describes how the  z  - transform of the input signal is  “ transformed ”  to 
the  z  - transform of the output signal. Much information about a system is stored or 
embedded in the transfer function. 

 One of the useful attributes of the  z  - transform is called the impulse invariant 
property as shown in Figure  5.2 . This can be illustrated by considering a simple 
fi rst - order continuous - time system  H ( s )    =    1/( s     +    1) having an impulse response 
 h ( t )    =     e   −    t u ( t ). For  T  s     =    0.1, the pole at  s     =     − 1 is mapped to   z e e asTS= = = =− −0 1 0 9048. . . 
Therefore, from Table  5.1 ,  H ( z )    =     z /( z     −     a ) and an impulse response  h [ k ]    =     a k u [ k ], 
which corresponds to   h t e u t a u k

t kT
t

t kT
k( ) ( ) [ ]=

−
=

= =
s s

. That is, the continuous -  and 
discrete - time impulse responses are identical at the sample instances  t     =     kT  s , which 
is predicted by the impulse invariance property.    

    Z   - TRANSFORMS PROPERTIES 

 It is generally assumed that most of the important signals can be represented as a 
collection of one or more elementary functions found in Table  5.1 . However, these 
primitive signals may need to be altered in some form using one or more of the 
operators, or modifi ers, listed in Table  5.2 . The operations listed in Table  5.2  describe 
how complicated signals can be constructed by manipulating and combining primi-
tive signals.   

 In addition to the properties listed in Table  5.2 , there are several other opera-
tors that need mentioning. The fi rst is called the initial value theorem, which states 
that

    x X z
z

[ ] lim ( )0 =
→∞     (5.8)  

  if  x [ k ] is causal. The second property is called the fi nal value theorem and is 
given by

    x z X z
z

[ ] lim( ) ( )∞ = −
→1

1     (5.9)  

  provided that the poles of ( z     −    1) X ( z ) are interior to the unit circle (i.e., | z |    <    1.0).  
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  TABLE 5.2.    Properties of  z  - Transforms 

   Property     Time Series      z  - Transform  

  Homogeneity (scaling)     α  x [ k ]     α  X ( z )  

  Additivity     x  1 [ k ]    +     x  2 [ k ]     X  1 ( z )    +     X  2 ( z )  

  Linearity     α  x  1 [ k ]    +     β  x  2 [ k ]     α  X  1 ( z )    +     β  X  2 ( z )  

  Left shift (single delay)     x [ k     +    1]     zX ( z )    −     x [0]  

  Left shift (multiple delays)     x [ k     +     N ]  
    z X z x i zN i

i

N

( ) − [ ]







−

=

−

∑
0

1

  

  Right shift (multiple delays)     x [ k     −     N ]     z   −    N X ( z )  

  Complex conjugation     x  * [ k ]     X  * ( z  * )  

  Reversal     x [ −  k ]     X (1/ z )  

  Complex modulation    e j θ k  x [ k ]     X ( e   − j θ   z )  

  Multiplication by a complex power series     w  k  x [ k ]    X( z / w )  

  Ramping     kx [k]  
    −z

dX z

dz

( )
  

  Reciprocal decay  
    
1

k
x k[ ]       − ∫ X

d
( )ζ
ζ

ζ�   

  Summation (accumulation)  
    x n
n

k

[ ]
=−∞
∑       

zX z

z

( )

( )−1
  

  Periodic extension of signal of length  N   
    x k nN

n

( )+
=

∞

∑
0

      
z X z

z

N

N

( )

−1
  

  Convolution     x  1 [ k ] x  2 [ k ]     X  1 ( z ) X  2 ( z )  

  Correlation     x  1 [ k ] x  2 [ −  k ]     X  1 (z) X  2 ( z     −    1)  

  Parseval ’ s equation  
    x k x k
k

1 2[ ] [ ]*

=−∞

∞

∑       
1

2

1
1 2

1

j
X X d

π
σ

σ
σ σ( )

*
* 
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   MATLAB  Z - TRANSFORM SUPPORT 

 MATLAB ’ s Symbolic Math Toolbox provides tools for solving and manipulating 
symbolic math expressions. The toolbox contains symbolic functions that are 
expressed in MATLAB ’ s MuPAD language. All functions can be accessed from the 
MATLAB command line or from the MuPAD notebook interface. A tool having 
particular interest at this time is  ztrans , which returns the  z  - transform from a given 
expression of  x [ k ]. To illustrate, consider analyzing  x [ k ]    =     a k u [ k ], | a |    <    1, as found 
in Table  5.1 , using MATLAB:

  »  syms a n % declares the symbolic variables 

  »  x =  a ∧ n; 

  »  X = ztrans(x); 
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  »  X 

 z/a/(z/a - 1)  

 The result is  X ( z )    =    ( z / a )/(( z / a )    −    1)    =     z /( z     −     a ). The MATLAB production of the 
 z  - transform of a sinusoid of the form  x [ k ]    =    sin( ak ) u [ k ], as found in Table  5.1 , pro-
ceeds as follows:

  »  syms a n % declares the symbolic variables 

  »  x = sin(a * n); 

  »  X = ztrans(x); 

  »  X 

 z * sin(a)/(z ∧ 2 - 2 * z * cos(a) + 1)  

 The result is  X ( z )    =    sin( a ) z /( z  2     −    2 z    cos( a )    +    1), | a |    <    1. There are times, however, 
when interpreting the MATLAB outcome can be challenging.  

  SYSTEM STABILITY 

 A system is classifi ed as being  bounded - input bounded - output  stable ( BIBO ) if the 
output remains bounded for all possible bounded inputs. The  z  - transform, as defi ned 
by Equation  5.1 , provides a simple means of classifying the stability of a linear 
constant coeffi cient (time - invariant) discrete - time system. Specifi cally,   z esT= s maps 
the poles of a continuous - time system to the  z  - plane. The stable pole locations of a 
continuous - time system can then be translated into stable pole locations of a discrete -
 time system. The mapping of the pole locations of a continuous - time system into 
the  z  - plane is graphically shown in Figure  5.3  and summarized in Table  5.3 . From 
classic continuous - time linear system theory, poles can be classifi ed as being asymp-
totic stable, conditionally stable, and unstable depending on the pole locations. For 
example, a continuous - time system  H ( s )    =     N ( s )/ D ( s ) is asymptotic stable if all the 
poles are located in the left - hand  s  - plane. Under the  z  - transform, the left - hand 

       Figure 5.3     Mapping of  s  - domain poles with specifi c stability conditions into the  z  - plane.  
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 s  - plane poles are mapped to points interior to the unit circle in the  z  - plane. The 
production of the pole locations associated with a given transfer function 
 H ( z )    =     N ( z )/ D ( z ) can be facilitated by using a general purpose math analysis soft-
ware tool, such as MATLAB. Specifi cally, the MATLAB  roots  command can be 
used to factor the  n th - order polynomial  D ( z ) to produce a list of poles  z     =     p  i . By 
evaluating the magnitude of the roots (| p  i |), the pole ’ s relative position on, interior, 
or exterior to the unit circle in the  z  - domain can be determined and the stability class 
can be indentifi ed.     

  Example: Pole - Zero Distribution 

 MATLAB can be used to defi ne the transfer function of a seventh - order Butterworth 
low - pass fi lter having a passband cutoff frequency of  f     =    0.225 f  s  as shown in Figure 
 5.4  along with the fi lter ’ s pole - zero distribution. The poles are computed and found 
to consist of three complex - conjugate pole pairs plus one real pole. Their absolute 

  TABLE 5.3.    Pole Locations of Continuous -  and Derivative Discrete - Time Systems 

   Stability Class      s  - Domain      z  - Domain     Example     Pole 
Locations  

  Asymptotically 
stable  

  Re( s )    <    0    | z |    <    1 (interior to the 
unit circles)  

   H ( z )    =     z /( z     −     α ), 
| α |    <    1  

   z     =     α , 
| α |    <    1  

  Conditionally 
stable  

  At most one pole at 
any point on the 
 j  ω  - axis with all 
other poles in the 
left - hand plane  

  At most one pole is on 
the unit circle with 
all other poles being 
interior to the unit 
circle  

   H ( z )    =     z  2 /( z     −    1)
( z     −     α ), 

| α |    <    1  

   z     =    1, 
 z     =     α , 

| α |    <    1  

  Unstable    More than one pole 
at a point on the 
 j  ω  - axis or at least 
one pole satisfying 
Re( s )    >    0  

  More than one pole at 
a point on the unit 
circle or at least 
one pole outside 
the unit circle  

   H ( z )    =     z  2 /( z     −     α   − 1 )
( z     −     α ), 

| α |    <    1  

   z     =    1/ α , 
 z     =     α , 

| α |    <    1  

       Figure 5.4     Seventh - order Butterworth low - pass fi lter and pole - zero distribution.  
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values are all bounded below unity, which insures that the poles are interior to the 
unit circle guaranteeing stability:

 MATLAB code 

  »       [B,A] = butter(7,0.45); [H,w] = freqz(B,A); plot(w,abs(H)) 

  »       zplane(B,A); roots(A) 

          0.1282  +  0.7894i; 0.1282  -  0.7894i 

          0.0968  +  0.4779i; 0.0968  -  0.4779i 

          0.0828  +  0.2268i; 0.0828  -  0.2268i 

          0.0787 

  »       abs(roots(A)) 

             0.7998; 0.7998 

             0.4876; 0.4876 

             0.2414; 0.2414 

             0.0787      

  INVERSE   Z   - TRANSFORM 
        
 The  z  - transforms of primitive signals, such as the exponential  x [ k ]    =     a k u [ k ], have 
generally been reduced to table entries (e.g., Table  5.1 ). From a knowledge of  X ( z ), 
it is possible to recover the original discrete - time signal  x [ k ] using a process called 

  Oliver Heaviside (1850 – 1925) , English electrical engineer. 
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the inverse  z  - transform. The most popular inverse  z  - transform instantiation is called 
the partial fraction expansion or the Heaviside expansion method.  

  HEAVISIDE EXPANSION METHOD 

 The Heaviside method is based on a partial fraction expansion of  X ( z ) and takes the 
form

    X z
N z

D z

z

z

z

z

z

z
j n

n kj
( )

( )

( ) ( ) ( ) (
, , ,= = + +

−
+ +

−
+ +α

α
λ

α
λ

α
0

1… … …j

j

j k

j

j

−−
+

λ j )
…     (5.10)   

 It can be observed that all the terms in Equation  5.10  are in one - to - one correspon-
dence with the terms found in a standard  z  - transform table (e.g., Table  5.1 ). The 
coeffi cients  a  i,k  are called Heaviside coeffi cients and correspond to the eigenvalue 
 λ  i  appearing with multiplicity  n  i . The Heaviside coeffi cient production rules are 
complicated, especially for high - order systems with repeated roots. The production 
formula are shown below for an eigenvalue  λ  j  appearing with multiplicity  n  j :

    α
λ

λ
j n

z

nz X z

z
, lim

( )
,j

j

j
j=

−( )
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    (5.11)  
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 ∈ −; [ , ].k n1 1j     (5.12)   

 Equations  5.11  and  5.12  can be manually computed, but the process can be exas-
perating and subject to computational errors. In a contemporary setting, a general 
purpose computer is normally used to compute the Heaviside coeffi cients. The 
MATLAB functions  residue  and  residuez  can be used to compute Heaviside 
coeffi cients. The function  residue  is used when working with polynomials  X ( z ) in 
ascending power and  residuez  is used in the descending case. The name residue 
is derived from residue calculus, which provides a theoretical foundation for 
 z  - transforms. 

  Example: Heaviside Expansion 

 Suppose  X ( z )    =     z  2 /[( z     −    1)( z     −    0.5)], where  x [ k ] is causal. It is apparent that the poles 
of  X ( z ) are distinct (nonrepeated) and are located at  z     =    1 and  z     =    0.5. The general 
form of the partial fraction expansion of  X ( z ) is

   X z
z

z z

z

z

z

z

z

z
( )

. .
=

−( ) −( )
= +

−






+
−







= +
−

2
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1 0 5 1 0 5

0 2
1

α α α 





−
−







z

z 0 5.
 

  having an inverse  z  - transform  x [ k ]    =    (2    −    0.5  k  ) u [ k ] according to Table  5.1 . Using 
MATLAB and the  residue  command, the following results are obtained when 
expanding  X ( z )/ z  (not X(z)) in ascending powers of  z :
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  »  b = [1,0,0];         %      N(z) 

  »  a = [1, - 1.5,0.5,0];          &       zD(z) 

  »  residue(b,a)      %      invert N(z)/zD(z) 

 ans    =                {Heaviside coeffi cients} 

                   2            { α  1 } 

                 - 1            { α  2 } 

                   0            { α  0 }  

 which agrees with the previously presented outcome. If  X ( z ) is written in descending 
order,  residuez  can be used. As before,

   

X z
z

z z z z

z

( ) =
−( ) −( )

=
−( ) −( )

=
−( ) +

−

− −

−

2

1 1

1 1 2

1 0 5

1

1 1 0 5

1

1

1

1 0 5

. .

.
α α

zz

z

z

z

z−( ) =
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+
−( )1 1 2

1 0 5
α α

.
.

  

 Then, using MATLAB ’ s  residuez  the Heaviside coeffi cients  α  1  and  α  2  are obtained 
as follows:

  »  b = [1];      %      N(z ∧  - 1) 

  »  a = [1, - 1.5,0.5];            %      D(z ∧  - 1) 

  »  residuez(b,a) 

 ans    =  

                   2 

                 - 1  

 which results in the previously stated solution.   

   MATLAB  INVERSE Z - TRANFORM SUPPORT 

 MATLAB ’ s Symbolic Math Toolbox can facilitate the inversion of a given  X ( z ). The 
tool  iztrans  returns an inverse  z  - transform of a given  X ( z ). To illustrate, consider 
inverting  X ( z )    =     z /( z     −    0.5):

  »  syms z k 

  »  X = z/(z - 0.5) 

  »  x = iztrans(X,z,k) 

 X  =  (1/2) ∧ k  
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 or  x [ k ]    =    (0.5)  k u [ k ]. Consider now  X ( z )    =     z  2 /( z  2     −    1.5 z     +    0.5):

  »  syms z k 

  »  X = (z ∧ 2)/(z ∧ 2  - 1.5 * z  + 0.5) 

  »  x = iztrans(X,z,k) 

 x  = 2 - (1/2) ∧ k  

 or  x [ k ]    =    (2    −    (0.5)  k  ) u [ k ]. Finally, consider  X ( z )    =     z  2 /( z     −    1) 2 :

  »  syms z k 

  »  X = (z ∧ 2)/(z - 1) ∧ 2 

  »  x = iztrans(X,z,k) 

 x  = 1 + k  

 or  x [ k ]    =    (1    +     k ) u [ k ]. It should be noted, however, that for higher - order instances, 
the symbolic inverse  z  - transform delivered can be diffi cult to interpret.    
  
 
 
  
  
 

  
 



  CHAPTER 6 

FINITE IMPULSE 
RESPONSE FILTERS     

   INTRODUCTION 

 Electronic fi lters are generally assumed to be defi ned as continuous - time, discrete -
 time, or digital devices. Signals in these domains appear in one, two, or multiple 
dimensions. Some signals are completely parameterized by their time and/or fre-
quency domain attributes; others are defi ned in some statistical sense. The function 
of an electronic fi lter is to alter or manipulate a signal ’ s shape, energy, distributions, 
and other attributes in some predetermined manner. Filters, for example, can be 
created to alter audio and video records, transforming signals into forms that conform 
to the designer ’ s personal tastes and preferences. In communication applications, 
fi lters are used to detect and select signals of interest that reside within a prespecifi ed 
frequency band, to suppress noise, and to correct for imperfections in a communica-
tion channel. Filters can be used to monitor human health as well as the health of 
other machines. The list of applications is virtually endless. 

 Analog, or continuous - time fi lters, have been part of man ’ s world since the 
dawn of time. They are part of the human auditory system. Man has also fashioned 
optical fi lters in the form of lens to sharpen images, and developed hydraulic fi lters, 
called shock absorbers, to smooth an uneven roadway. Beginning in the fi rst half of 
the 20th century, analog electronics gave rise to a new class of fi lters based on resis-
tors, capacitors, inductors, and amplifi ers. The outcome was radio, television, and 
other electronic wonders. The mid - 20th century saw a short - lived era of discrete -
 time or sample data fi lters. This technology rapidly gave way to the products of the 
digital revolution, an era we now inherit. Digital technology has ushered into exis-
tence a plethora of digital hardware, fi rmware, and software - defi ned fi lter solutions 
and products. In many cases, digital fi lters are used as an analog replacement tech-
nology. In other cases, digital technology has enabled new fi lters and fi lter applica-
tions that previously never existed. Digital fi lters have now matured to point where 
they exhibit a long list of attributes including 

   •      high - precision and accuracy,  

   •      programmability and adaptability,  

53

Digital Filters: Principles and Applications with MATLAB, First Edition. Fred J. Taylor.
© 2012 by the Institute of Electrical and Electronics Engineers, Inc. 
Published 2012 by John Wiley & Sons, Inc.



54 CHAPTER 6 FINITE IMPULSE RESPONSE FILTERS 

   •      precise phase and latency control,  

   •      robust performance over a wide range of frequencies,  

   •      compact size and interoperability with other digital subsystems,  

   •      low - cost and low - power dissipation, and  

   •      high reliability and repeatability.    

 Baseline digital fi lters have evolved along two major paths called  fi nite impulse 
response  ( FIR ) fi lters and  infi nite impulse response  ( IIR ) fi lters. The simplest and, 
in many cases, the most important of these fi lter classes is the FIR.  

   FIR  FILTERS 

 As the name implies, an FIR fi lter has fi nite duration impulse response. The impulse 
response of an  N th - order FIR is defi ned by the  N  - sample time series  h N  [ k ]    =    { h [0], 
 h [1],    . . .    ,  h [ N     −    1]). A common implementation of the fi lter is shown in Figure  6.1 . 
This form, called a direct FIR architecture, consists of a collection of shift registers 
confi gured as a  fi rst - in fi rst - out  ( FIFO ) array,  N  multipliers, and an accumulator. 
Observe that if the fi lter ’ s input is an impulse  x [ k ]    =     δ [ k ], then the FIR ’ s output time 
series  y [ k ] is { h [0],  h [1],    . . .    ,  h [ N     −    1]), the fi lter ’ s impulse response. Mathematically, 
the output response of an  N th - order linear FIR, having an impulse response  h [ k ] to 
an arbitrary input time series  x [ k ], is defi ned by the linear convolution sum

    y k h m x k m h k m x m
m

N

m

N

[ ] [ ] [ ].= [ ] − = −[ ]
=

−

=

−

∑ ∑
0

1

0

1

    (6.1)     

 In  z  - transform domain, the fi lter ’ s transfer function can be expressed as

    H z h zk
k

k

N

( ) .= −

=

−

∑
0

1

    (6.2)   

 The fi lter ’ s frequency response can be obtained by evaluating  H ( z     =     e j    ϖ  ) over the 
normalized baseband frequency range  ϖ     ∈    [ −  π /2,  π /2]. Like any periodically 
sampled process, the FIR ’ s spectrum is periodically extended in both the positive 
and negative frequency directions on centers that are integer multiples of the sample 

       Figure 6.1      N th - order FIR consisting of shift registers, multipliers, and accumulator.  
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frequency. That is, if the frequency response of a FIR, having and transfer function 
 H [ z ] is evaluated at  ω     =     ϖ     +    2 π  k , then the resulting fi lter ’ s frequency response is

   H e h z h e e hj k
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z e
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jk j k

k

N

k
j k

( )ϖ π ϖ π

ϖ π

+ −

=

−

=

− −

=

−

= = ( ) =∑ ∑
+

2

0

1
2

0

1

2

ee H ejk

k

N
j−

=

−

∑ =ϖ ϖ

0

1

( ),     (6.3)  

  which translates the baseband spectrum to locations defi ned by multiples of the 
normalized sample frequency ( ϖ     =    2 π ). To illustrate, a simple 10th - order FIR called 
a  moving average  ( MA ) fi lter has an impulse response given by  h [ k ]    =    (0.1)
[1,1,1,1,1,1,1,1,1,1]. The fi lter ’ s frequency response is  H ( e j    ϖ  )    =    (0.1) Σ ( e jk    ϖ  ),  k     =    0, 
1,    . . .    , 9. The frequency response evaluated over the range  ϖ     ∈    [ − 4 π , 4 π ] is shown 
in Figure  6.2 . The periodic extension of the baseband response is apparent.    

  IDEAL LOW - PASS  FIR  

 An ideal low - pass fi lter has unit gain across a prescribed passband and infi nite 
attenuation elsewhere. Such a fi lter is sometimes called a  “ boxcar ”  or  “ brick wall ”  
fi lter and is motivated in Figure  6.3 . Mathematically, an ideal low - pass fi lter has a 
frequency response given by

    H e j
ideal

c c

otherwise
ϖ ϖ ϖ ϖ( ) =

− ≤ ≤



1

0

;

;
,     (6.4)  

  where  ϖ  c  is the normalized baseband cutoff frequency  ϖ  c     =     ω  c / ω  s . From Fourier 
theory, the duality theorem states that the ideal low - pass fi lter has an impulse 
response given by

    h k
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       Figure 6.2     Magnitude frequency response of a 10th - order MA FIR over the normalized 
frequency range  ϖ     ∈    [ − 4 π , 4 π ].  
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 The impulse response is seen to have a sin( x )/ x  or sinc( x ) shape defi ned for 
all positive and negative time. As such, the ideal low - pass fi lter is noncausal and is 
therefore not physically realizable but can, nevertheless, serve as a mathematical 
standard to which other low - pass fi lters can be compared. 

  Example:  FIR  

 Consider the simple 10th - order FIR having a decaying real exponential impulse 
response given by  h [ k ]    =    (0.75)  k  ,  k     ∈    [0,9]. The transfer function  H ( z ) immediately 
follows and it is  H ( z )    =     Σ (0.75)  k  z  −    k  ,  k     =    0, 1,    . . .    , 9. The fi lter ’ s impulse and mag-
nitude frequency response is shown in Figure  6.4  for  ϖ     ∈    [ −  π ,  π ]. The fi lter ’ s fre-
quency response can be seen to be decidedly low - pass and the phase response is 
nonlinear. The fi lter ’ s magnitude frequency response, however, lacks the sharpness 
needed to replace an ideal sinc fi lter.     

   FIR  DESIGN 

 The FIR design process is motivated in Figure  6.5 . It begins with a set of specifi ca-
tions that can be articulated in a variety of forms and domains. The most common 
form is as a set of frequency domain specifi cations as summarized in Figure  6.6 . 

       Figure 6.4     Impulse response  h [ k ] (left) two - sided magnitude frequency response (middle), 
and two - sided phase response (right).  
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       Figure 6.5     FIR design and implementation cycle.  
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       Figure 6.6     Typical FIR specifi cations.  
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Other requirements may be imposed on the fi nal solution, such as maximum fi lter 
order, impulse response symmetry, and so forth. The design process begins by trans-
lating the solutions specifi cations into a fi lter model  H ( z ). This process is well sup-
ported with software tools that can rapidly translate the design requirement into a 
candidate solution. The fi rst step, using software - enabled fi lter synthesis tools, is 
generally the easiest design step in the process. The next action involves making 
architecture choices. This step is particularly important because architecture strongly 
determines the performance envelope of an FIR. The solution can also be constructed 
as a fi xed -  or fl oating - point solution. Fixed - point designs are by far the most popular, 
if implemented in hardware. The fi xed - point popularity is gained by a speed, cost, 
power, and memory size advantage over fl oating - point alternatives. If the design 
process breaks down at any level, corrective measures must be taken. Finally, if the 
end - to - end design fails to meet specifi cations after mitigation efforts have taken 
place, then a solution may require that the original set of specifi cations be relaxed 
and the design process repeated.   

 While specifi cations are assumed to defi ne the performance envelope of a 
physically realizable fi lter, they are often framed in terms of ideal physically unre-
alizable fi lter models. To illustrate, consider that the objective is to design an 
approximate ideal low - pass fi lter. Specifi c side constraints might require that the 
realized magnitude frequency response be close to the ideal value (Fig.  6.7 ). The 
challenge becomes one of achieving the  “ best ”  solution from a list of many possible 
solutions. This is where fi lter design becomes both a science and an art.    

  STABILITY 

 If the input presented to an FIR is bounded on a sample - by - sample basis by 
| x [ k ]|    <     M  x , and the impulse response is bounded on a sample - by - sample basis by 
| h [ k ]|    <     M  h , then each partial product  h [ m ] x [ k     −     m ] of the linear convolution formula 
(Eq.  6.1 ) must be bounded by | h [ m ] x [ k     −     m ]|    <     M  x  M  h . It then follows that

    y k h m x k m h m x k m NM M
m

N

m

[ ] [ ] [ ] [ ] [ ] .= − ≤ −








 < ≤ ∞

=

−

=

∞

∑ ∑
0

1

0

x h     (6.6)   

 Such a fi lter is said to be  bounded - input bounded - output  ( BIBO ) stable. The conclu-
sion is quite satisfying in that all FIRs with bounded coeffi cients are automatically 
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stable. However, with digital fi lters, the issue is rarely stability, but rather quantifying 
the fi lter ’ s run - time dynamic range requirements. This information is essential to the 
successful operation of a fi xed - point FIR in order to insure that fi lters will not 
encounter dynamic range (register) overfl ow during run time. Overfl ow occurs 
whenever the data being sent to the fi lter ’ s register exceed the capacity (dynamic 
range) of that register. The consequence of run - time overfl ow is the introduction of 
excessively large errors in the fi lter ’ s output. A standard corrective action is to insure 
a fi lter, operating under worst case conditions, operates in an overfl ow - free mode. 
Specifi cally, a fi lter ’ s worst case output is the maximum response to a worst case 
input. If an  N th - order FIR fi lter has an impulse response  h [ k ], and the fi lter ’ s input 
 x [ k ] is bounded by  M  on a sample - by - sample basis, then the fi lter ’ s worst case input 
is mathematically given by

    x m L M h N m M m Nwc[ ] sign( [ ]) , [ , ],− = − − = ± ∈ −1 0 1     (6.7)  

  where  L  is an arbitrary integer delay in samples. This production rule insures 
that each partial product in the linear convolution sum of products obtains its indi-
vidual maximal positive value. Assuming  L     =    0, the worst case output to a worst 
case input is

    y k h k m M h k m M h k m MG
m

N

m

N

wc[ ] [ ] sign [ ] [ ] .max≤ − =( ) = − ≤
=

−

=

−

∑ ∑
0

1

0

1

    (6.8)   

 The parameter  G  max  is called the fi lter ’ s worst case gain. The worst case gain is seen 
to be easily computed and can serve to establish a maximal run - time dynamic range 
bound on the FIR ’ s internal and external data registers and data paths.  G  max  estab-
lishes what is called the register  “ headroom ”  requirement for a fi xed - point FIR. This 
headroom corresponds to the required dynamic range expansion of a data register 
in order to insure that the register does not overfl ow during run time. If  G  max     ≤    2  I  , 

       Figure 6.7     Typical low - pass FIR designed to meet a set of frequency domain constraints. 
Impulse response of a 21st - order FIR, (top left), FIR ’ s magnitude frequency response (top 
right), phase response in radians (bottom left), and zero distribution (bottom right). The 
zeros off the unit circle correspond to passband locations, and those on the unit circle 
produce nulls and are in the fi lter ’ s stopband.  
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then the corresponding FIR registers must have at least  “  I  ”  additional bits of integer 
precision. 

  Example: Worst Case Analysis 

 Consider a 10th - order FIR having an impulse response  h [ k ]    =    (0.75)  k u [ k ]. Suppose 
the input is a unit - bounded step function (| u [ k ]|    ≤    1 or  M     =    1); then, the worst case 
gain is given by

   G h k
k

max . .= ( ) =
=

∑
0

9

3 7747   

 The worst case input ( L     =    0 for convenience) is computed to be  x wc  [ m ]    =    
sign( h [9    −     m ])    =    1 for  m     ∈    [0, 9]. The worst case input is a time series that is defi ned 
by the sign of the fi lter ’ s impulse response in reverse time order. The response of 
convolving the worst case input with FIR is shown in Figure  6.8 . Observe that the 
linear convolution sum produces a response of length 2 N     −    1    =    19 samples, which 
is consistent with the theory of linear convolution. It can also be noted that if the 
input is bounded by unity, the maximal output value is 3.7747    <    2 2 , which would 
require at least two additional integer bits be added to the output accumulator to 
inhibit run - time dynamic range overfl ow during run time. Such an accumulator is 
said to be an extended precision accumulator.     

  LINEAR PHASE 

 A primary FIR attribute is its ability to precisely manage the system ’ s phase response. 
This is a direct consequence of the fact that an FIR is essentially a taped delay line, 
which serves as an accurate phase shifter. An FIR fi lter is said to have a linear phase 
response if the measured phase response has the linear form

    φ ϖ αϖ β( ) = +     (6.9)  

  over the normalized baseband range  ϖ     ∈    [ −  π ,  π ]. Linear phase fi lters have an impor-
tant role to play in a number of applications areas that are intolerant of a frequency -
 dependent propagation delay. Examples are 

   •       phase lock loop  ( PLL ) systems that are used to synchronize data and decode 
phase modulated signals,  

       Figure 6.8     FIR ’ s response to a worst case input.  
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   •      linear phase anti - aliasing fi lters placed in front of complex signal analysis 
subsystems (e.g., discrete Fourier transform [DFT]), and  

   •      processing phase - sensitive signals such as images.    

 The frequency domain representation of an  N th - order linear phase FIR, in amplitude -
 phase form, is given by

    H e h k e H e ej

k

N
jk j jϖ ϖ ϖ φ ϖ( ) = = ( )

=

−
− − ( )∑ [ ] ,

0

1
R     (6.10)  

  where  H  R ( e j    ϖ  ) is a real amplitude function satisfying  H  R ( e j    ϖ  )    =     ± | H ( e j    ϖ  )|. Assume that 
the FIR under study is a linear phase fi lter, where  ϕ ( ϖ )    =     α  ϖ     +     β . To illustrate, 
Figure  6.9  displays the machine production of the fi lter ’ s magnitude frequency, 
amplitude response, phase response, and zero locations of an 11th MA FIR having 
an impulse response  h [ k ]    =    (1/11)[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]. The amplitude 
response is seen to have zero crossings and gains that alternate in sign. The phase 
response appears to be confused but does suggest that it may have a linear form 
 θ ( ϖ )    =     α  ϖ     +     β  if properly interpreted.   

 Refer to the zero distribution plotted in Figure  6.9 . The fi lter ’ s null frequencies 
occur where the zeros are found on the periphery of the unit circle at the positive 
baseband frequency locations  ϖ     =    {2 π /11, 4 π /11, 6 π /11, 8 π /11, 10 π /11}. Referring 
to the phase response, also shown in Figure  6.9 , it can be seen that the phase response 
appears to linear out the fi rst null frequency  ϖ     =    2 π /11. The phase response mea-
sured at  ϖ     =    2 π /11 is  ϕ     =     − 10 π /11. The phase response can be experimentally deter-
mined by fi rst observing that the phase  y  - axis intercept at  ϖ     =    0 is zero. This means 
that  β     =    0 and  ϕ ( ϖ )    =     α  ϖ     +     β  (linear phase model). The phase slope is given by 
 α     =     Δ  y / Δ  x     =    ( − 10 π /11)/(2 π /11)    =     − 5. 

 Connecting the disjoint phase segments together using a process called phase 
unwrapping is shown in Figure  6.10 . The phase unwrapping process shown in Figure 
 6.10  is based on data presented in Figure  6.9 . The fi rst linear line segment of the 

       Figure 6.9     Magnitude frequency response of an 11th - order linear phase moving average 
(MA) FIR (top left), amplitude response (top right), phase response (bottom left), and zero 
distribution (bottom right).  
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phase response ranges over  ϕ     ∈    [0,  − 10 π /11] across the normalized frequency range 
 ϖ     ∈    [0, 2 π /11]. The next linear section ranges over  ϕ     ∈    [1 π /11,  − 9 π /11] across the 
normalized frequency range  ϖ     ∈    [2 π /11, 4 π /11]. If the second linear section is 
 “ pushed down ”  by  π  radians and attached to the end of fi rst section, then a linear 
line segment is created over [0, 4 π /11]. Continuing this process across the entire 
baseband would result in the phase response being reduced to a straight line satisfy-
ing the linear equation  ϕ ( ϖ )    =     − 5 ϖ .   

 The previous analysis motivates the claim that a linear phase FIR can be 
achieved when the tap - weight coeffi cients are symmetrically distributed about the 
fi lter ’ s midpoint, or center - tap coeffi cient. To validate this claim, consider the case 
presented in Equation  6.2  in a slightly modifi ed form. Initially, it is assumed that  N  
is odd and  L     =    ( N     −    1)/2. Originally, the causal  H ( z ) had a point of symmetry of 
 k     =     L . When the fi lter ’ s impulse response is left shifted by  L  samples, the point of 
symmetry moves to  k     =    0 resulting in

    H z z h z z h h z h zL
m

m

m L

L
L

m
m

m
m

m

L

( ) .= = + ±( )







− −

=−

− −
−

=
∑ ∑0

1

    (6.11)   

 The coeffi cients of the noncausal fi lter are symmetrically distributed about the 
center - tap coeffi cient  h  0  with  h i      =     h   −    i   for even symmetry and  h i      =     −  h   −    i   for odd sym-
metry. If  N  is even, then the coeffi cient  h  0  found in Equation  6.11  is missing. The 
fi lter ’ s frequency response can be computed by substituting  z     =     e j    ϖ   into Equation 
 6.11 , producing the following frequency response (shown for  N  odd, even 
symmetry):

    

H e e h h e h e

e h h

j j L
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j m
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    (6.12)  

  where  H  R ( ϖ ) is a real amplitude function of  ϖ . The FIR ’ s phase response, defi ned 
by Equation  6.12 , is  ϕ ( ϖ )    =     −  L  ϖ . The claim is that such linear phase FIRs have a 

       Figure 6.10     Analysis of the phase response of an 11th - order FIR showing the conversion 
from a piecewise linear phase spectrum into a linear phase response (using unwrapping).  
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symmetric impulse response. There are, in fact, four types of symmetry that need to 
be discussed. They are 

   •       N  odd, even coeffi cient symmetry ( h  i     =     h   − i );  

   •       N  odd, odd coeffi cient symmetry (antisymmetry  h i      =     −  h   −    i  );  

   •       N  even, even coeffi cient symmetry; and  

   •       N  even, odd coeffi cient symmetry (antisymmetry).    

 The linear phase behavior of even and odd order FIRs, having even or odd coeffi cient 
symmetry, is summarized in Table  6.1  and organized as FIR Types (1 – 4).   

 The data found in Table  6.1  apply to an  N th - order FIR having a symmetric 
and antisymmetric impulse response. The sign of  β  in the linear equation 
 ϕ ( ϖ )    =     α  ϖ     +     β  is determined by whether the antisymmetric impulse response starts 
positive or negative. The frequency response for each type of FIR is given by

    H e Q Hjϖ ϖ ϖ( ) = ( ) ( )R ,     (6.13)  

  where  H  R ( ϖ ) is a zero - phase real function of  ϖ  and  Q ( ϖ ) is a phase - dependent term. 
The individual FIR fi lter types satisfy the following equations, for  L     =    ( N     −    1)/2:

   Type R R1 2
1

: ; cos ,H e e H H h L h L n nj jL

n

L
ϖ ϖ ϖ ϖ ϖ( ) = ( ) ( ) = [ ] + +[ ] ( )−

=
∑     (6.14)  

   Type R R2 2 1 2 1 20: ; / cos /H e e H H h L n nj jL

n

ϖ ϖ ϖ ϖ ϖ( ) = ( ) ( ) = − +[ ] −( )( )−

=11

1 2L+

∑
/

,    
 (6.15)  

   Type R R3 2
1

20

: ; sin ,
/

H e je H H h L n nj jL

n

N
ϖ ϖ ϖ ϖ ϖ( ) = ( ) ( ) = +[ ] ( )−

=
∑     (6.16)  

   Type R R4 2 1 2 1 2: ; / sin /H e je H H h L n nj jL

n
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1 2L+

∑
/
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 (6.17)   

 These relationships provide the foundation upon which several important classes of 
FIR fi lters are constructed. 

  TABLE 6.1.    Linear Phase  ϕ ( ϖ )    =     α  ϖ     +     β   FIR  Relationships 

   Type      N  (order)     Symmetry      α       β       H  R ( ϖ ); 
 ϖ     =    0  

    H  R ( ϖ ); 
 ϖ     =     f  s /2  

  1     N  odd    Even     α     =     −  M ;  M     =    ( N     −    1)/2     β     =    0    Unrestricted    Unrestricted  

  2     N  even    Even     α     =     −  M ;  M     =    ( N     −    1)/2     β     =    0    Unrestricted    0  

  3     N  odd    Odd     α     =     −  M ;  M     =    ( N     −    1)/2     β     =     ±  π /2    0    0  

  4     N  even    Odd     α     =     −  M ;  M     =    ( N     −    1)/2     β     =     ±  π /2    0    Unrestricted  
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  Example:  FIR  Types 

 There are four types of linear phase low - pass FIRs based on the fi lter order and 
impulse response symmetry. The four responses are illustrated below. The designed 
fi lters are 

  #1:  N     =    21 (odd), symmetry even, Type 1;  

  #2:  N     =    22 (even), symmetry even, Type 2;  

  #3:  N     =    21 (odd), symmetry odd, Type 3; and  

  #4:  N     =    22 (even), symmetry odd, Type 4.    

 The four design outcomes are shown in Figure  6.11 . The even and odd impulse 
response symmetry is clearly visible. Viewing the magnitude frequency response, it 
can be noticed that antisymmetric FIRs have a 0   Hz (DC) gain of zero, a character-
istic of this class of fi lter. The unwrapped phase responses are all linear with the 
even symmetry fi lters having a zero - phase DC intercept and the antisymmetric fi lters 
are displaced by  −  π /2. All the slopes are equal to  α     =     − ( N     −    1)/2.     

  GROUP DELAY 

 It has been established that interpreting a digitally computed phase response can, at 
times, be challenging. A tool commonly used to quantify and/or interpret phase 
behavior of a fi lter is called group delay. Group delay is formally defi ned to be

       Figure 6.11     Orders 21 and 22 symmetric and antisymmetric FIRs (Types 1 – 4) outcomes. 
Impulse responses (upper left), magnitude frequency response (upper right), and phase 
response in radians (bottom). Notice that Types 3 and 4 fi lters have zero DC gain and that 
the phase slopes are either  − 10 or  − 10.5.  
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    τ
φ ϖ

ϖg = − ( )( )d

d
    (6.18)  

  and is measured in samples. For a linear phase fi lter having a phase response 
 ϕ ( ϖ )    =     α  ϖ     +     β ,  α     =     − ( N     −    1)/2, the group delay is

    τ
φ ϖ

ϖ
αϖ β

ϖ
α= − ( )( ) = −

+( ) = − = −d

d

d

d

N 1

2
    (6.19)  

  samples for all FIR types. To illustrate, suppose an 11th - order Type 1 linear phase 
FIR has a symmetric impulse response  h [ k ]    =    [1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1]. The 
fi lter has a group delay value of  τ  g     =    fi ve samples, which can be verifi ed using direct 
computation. According to theory, the propagation delay imparted to a sinusoidal 
input at  f     =     f  s /8 should be fi ve samples. This can also be experimentally verifi ed as 
shown in Figure  6.12 .   

 To examine the signifi cance of frequency - independent propagation delay, con-
sider a 63rd - order (Type 1) linear phase FIR having a theoretical group delay  τ  g     =    31 
samples. The implication is that a signal ’ s propagation delay through the fi lter is 
 τ  g     =    31 sample periods or 31    ×     T  s     =    31/ f  s  seconds. This prediction can be experimen-
tally investigated using sinusoidal test signals of frequencies  f     =    0.1 f  s  and 0.2 f  s . An 
analysis of the FIR ’ s propagation delay is shown in Figure  6.13 . First consider a 
sinusoidal input  x [ k ]    =    cos(2 π  k /10) (i.e.,  f     =    0.1 f  s ), a signal with period  T  0     =    10 T  s . 
This signal appears at the fi lter ’ s output as  y [ k ]    =     G  1    cos(2 π  k /10    +     ϕ ), where 
 G  1     =    | H ( e j   2 π /10 )|. The phase shift  ϕ  can be expressed in terms of the signal ’ s period 
using the proportional relationship  T  0 / τ  g     =    (10) T  s /31 T  s     =    10/31, which establishes a 
proportional relationship 10/31    ∝    2 π / ϕ , or a phase shift of  ϕ     =    6.2 π . The steady - state 
response of the FIR can therefore be expressed as  y [ k ]    =     G  1    cos((2 π  k /10)    −    6.2 π ), 
which corresponds to a 31 - sample phase shift. A similar analysis is performed for 
an input  x [ k ]    =    cos(2 π  k /5) (i.e.,  f     =    0.2 f  s ), and the outcome again is 31 - sample 
delayed. Finally, the propagation delay can be directly measured from the data pre-
sented in Figure  6.13 . A point on the input signal is seen to appear at the output 31 
samples later for both signals. The conclusion is that in both test cases, the propaga-
tion delay is 31 samples regardless of the input frequency.    

       Figure 6.12     Magnitude frequency response of an 11th - order linear phase FIR (left) and 
response to a sinusoid at frequency  f     =     f  s /8 (right). The measured propagation delay equals 
the group delay.  
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   FIR  ZERO LOCATIONS 

 The zeros of a linear phase  N th - order FIR, having a transfer function  H ( z ), satisfi es 
the algebraic relationship

    z H z H zN ( ) = ( )* / * .1     (6.20)   

 That is, if  z  is a zero of  H ( z ), then (1/ z  * ) must also be a zero of  H ( z ). This fact 
translates into the following possible cases:

    •      Zeros can be located at  z i      =     ± 1 since (1/ z i   * )    =     ± 1.  

   •      Zeros can be located on the unit circle at  z     =     z i   and  z     =     z i   *  since ( z     −     z i  )
( z     −     z i   * )    =    ( z     −    (1/ z i   * ))( z     −    (1/ z i  )).  

   •      The real zeros lying off the unit circle must occur in reciprocal pairs.  

   •      The complex zeros lying off the unit circle must occur in groups of four, { z i  ,  z i   * }, 
and their reciprocals.    

 These conditions are graphically interpreted in Figure  6.14 .   

  Example: Zero Distribution 

 A linear phase Type 1 21st - order low - pass FIR has the zero distribution shown 
in Figure  6.15 . The zeros located on the unit circle (stopband) appear with 

       Figure 6.13     FIR impulse response and magnitude frequency response (top); phase and 
group delay (middle). Input – output response for sinusoidal inputs at frequencies  f     =    0.1 f  s  
and 0.2 f  s  sinusoidal input showing a 31 - sample delay relationship (bottom).  
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complex - conjugate symmetry. Those zeros off the unit circle (passband) appear with 
complex - conjugate and reciprocal symmetry, as shown in Figure  6.14 .     

  ZERO - PHASE  FIR  

 A zero - phase fi lter is a special case of a linear phase fi lter having a phase response 
 ϕ ( ϖ )    =     α  ϖ     +     β     =    0. First, the FIR must have even symmetry in order to insure that 
 β     =    0. If  α     =    0, then group delay must likewise be zero, suggesting that the fi lter 
has a zero delay. Suppose an  N th - order Type 1 linear phase FIR, having an impulse 
response  h [ k ]    =    { h [0],  h [1],    . . .    ,  h [ N     −    1]} and coeffi cient symmetry has a center 
tap located at  L     =    ( N     −    1)/2. For the Type 1 FIR, the fi lter ’ s frequency response is 
given by

    H e H e ej j j( ) ( ) ,ϖ ϖ τ ϖ= −R g     (6.21)  

  where  τ  g  is the group delay and  H  R ( e j    ϖ  ) is a real amplitude. The fi lter described by 
the impulse response is causal, having its initial sample  h [0]. If the center - tap coef-
fi cient (point of symmetry) is left - shifted by  τ  g  samples, then a new noncausal fi lter 
results, having an impulse response  h  0 [ k ]    =    { h [ −  L ],  h [ − ( L     −    1)],    . . .    ,  h [ − 1],  h [0], 
 h [1],    . . .    ,  h [ L     −    1],  h [ L ]} where  L     =    ( N     −    1)/2    =     −  τ  g . The resulting FIR ’ s frequency 
response is

       Figure 6.14     Possible zero distribution of a linear phase FIR.  
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       Figure 6.15     Zero distribution of a 21st - order linear phase Type 1 FIR.  
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    H e H e e e H ej j j j j
0 ( ) ( ) ( ),ϖ ϖ τ ϖ τ ϖ ϖ= ( ) =−R Rg g     (6.22)  

  where  H  0 ( e j    ϖ  ) and  H  R ( e j    ϖ  ) are real, and is called a zero - phase fi lter. The zero - phase 
FIR is seen to be noncausal and therefore cannot be used in real - time applications. 
The fi lter can, however, be used in non - real - time or off - line applications requiring 
zero delay fi ltering. This is commonplace in such areas such as image processing. 

  Example: Zero - Phase  FIR  

 A 21st - order linear phase FIR is converted into a zero - phase fi lter by left shifting 
the original impulse response by  τ  g     =    10 samples. The resulting zero - phase FIR 
impulse response and real frequency response  H  R ( e j    ϖ  ) is shown in Figure  6.16  and 
indicates both positive and negative frequency - dependent gain.   

 A zero - phase fi lter can also be synthesized as a quadratic fi lter function | H ( z )| 2 , 
where

    H z H z H z H z h k h k h k( ) ( ) ( ) ( ) [ ] [ ] [ ],2 1= = ⇔ ⊗ − =−
zp zp     (6.23)  

  where  H ( z ) is an  N th - order FIR. The design strategy is motivated in Figure  6.17 . 
Since | H ( z )| 2  is entirely real, the resulting systems is also called a zero - phase fi lter. 
Referring to Equation  6.23 , a zero - phase fi lter is seen to be of order (2 N     −    1), which 
is always odd. The point of coeffi cient symmetry is also located at  k     =    0.     

  MINIMUM PHASE FILTERS 

 An FIR having all zeros interior to the unit circle is called a minimum phase fi lter. 
Minimum phase FIR systems have a nonlinear phase response. Compared with a 
linear phase FIR and a given magnitude frequency response specifi cation, a minimum 
phase realization normally provides a lower order solution. 

 Minimum phase fi lters can be thought of as  “ minimum delay ”  fi lters in 
that they have less propagation delay than linear phase fi lters, while possessing 

       Figure 6.16     Zero - phase FIR (left), real frequency response (right).  
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       Figure 6.17     Zero - phase architecture.  
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essentially the same magnitude frequency response. While a low - pass linear phase 
FIR fi lter has its largest (magnitude) coeffi cients in the center of the impulse response, 
the largest (magnitude) coeffi cients of a minimum phase fi lter are found at the begin-
ning. Minimum phase FIRs can be synthesized from real symmetric linear phase 
FIRs by refl ecting the fi lter ’ s zeros residing outside the unit circle, to interior loca-
tions. Recall that the zeros of a linear phase FIR naturally group themselves into 
pairs of conjugate pairs of the form ( α     +     j  β ), ( α     −     j  β ), 1/( α     +     j  β ), 1/( α     −     j  β ). By 
refl ecting the exterior zero to a reciprocal interior point, the FIR ’ s zeros become 
( α     +     j  β ), ( α     −     j  β ), ( α     +     j  β ), ( α     −     j  β ), or a doubling of the zeros at an interior posi-
tion without compromising the magnitude frequency response. The problem with 
this scheme is that the resulting minimum phase FIR has the order of the linear phase 
FIR. Another method, called spectral factorization, is an extension of the refl ection 
technique. This method is based on the idea that | H ( z )| 2     =     H ( z ) H  * ( z   − 1 ), where the 
zeros are redistributed to  H ( z ) and  H  * ( z   − 1 ) so as to cause  H ( z ) to be a minimum 
phase FIR. The multistep design procedure is shown below:

    •      Design a prototype FIR that satisfi es | H ( z )| 2  specifi cations.  

   •      Compute the zeros of the prototype FIR.  

   •      Delete all zeros residing outside the unit circle and  ½  of all the zeros residing 
on the unit circle.  

   •      Convert the surviving zeros into the coeffi cients of an FIR and gain - adjust the 
new FIR.    

 Some refi nements are needed to insure that the prototype fi lter correlates to the 
specifi cations of  H ( z ) and retains minimum phase behavior. If the desired passband 
ripple deviation  δ  p  and stopband ripple deviation  δ  a  are given, then the prototype 
passband ripple deviation should be assigned a value

    δ
δ
δ δp prototype

p

p a
( ) =

+ −( )
4

2 2 2 2     (6.24)  

  and stopband value targeted to be

    δ
δ
δ δa prototype

a

p a
( ) .=

+ −( )
2

2 22 2
    (6.25)   

 The prototype requirements can lead to a higher - order fi lter, twice the order of the 
fi nal minimum phase fi lter  H ( z ). A number of MATLAB objects support the design 
of minimum phase fi lters. Included in this list are the  fi rminphase  and  fi rgr  (equi-
ripple) programs. 

  Example: Minimum Phase  FIR s 

 A 21st linear phase and minimum phase FIR is designed to meet or exceed the previ-
ous set of magnitude frequency response constraints. The distribution of the FIR ’ s 
zeros is displayed in Figure  6.18 . The minimum phase zeros are seen to be on or 
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interior to the unit circle. The magnitude frequency responses of both FIR fi lters are 
shown in Figure  6.19 . While the linear phase FIR meets the specifi cations, the 
minimum phase FIR signifi cantly exceeds them. This suggests that a minimum phase 
FIR of order less than 21 could be designed that meets the posted specifi cations. 
The phase responses of the two FIRs are displayed in Figure  6.20 . Over the passband, 
the minimum phase FIR is seen to have a nonlinear phase response.   

 The impulse response of each FIR is shown in Figure  6.21 . The minimum 
phase FIR is seen to produce a strong signal early in the impulse response ’ s time 
history. The linear phase FIR, however, concentrates its activity to a much later time, 

       Figure 6.18     Zero distribution of a linear phase FIR (left) and minimum phase FIR (right).  
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       Figure 6.19     Magnitude frequency response of the linear phase and minimum phase FIRs.  
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       Figure 6.20     Phase response of a linear phase and minimum phase FIR.  
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in fact around the  τ  g  sample. One of the features that can make a minimum phase 
fi lter useful is the rapid development of the impulse response as motivated in Figure 
 6.21 . This can result in a more aggressive forced response as shown in Figure  6.22 , 
which shows the step response of both fi lters. It can be seen that the minimum phase 
response is more aggressive than that of a linear phase FIR. While the steady - state 
behavior of both systems is the same, the minimum phase fi lter achieves steady - state 
status earlier. This can be an important consideration when choosing a fi lter for use 
in control applications.       
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

       Figure 6.21     Impulse responses of linear phase FIR (left) and minimum phase FIR (right).  
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       Figure 6.22     Step response of a linear phase (left) and a minimum phase FIR (right).  

0 30

0

1
Linear Phase Step Response

h[
k]

k 0 30

0

1

Minimum Phase Step Response

h[
k]

k



  CHAPTER 7 

WINDOW DESIGN METHOD     

   FINITE IMPULSE RESPONSE ( FIR ) SYNTHESIS 

 Normally, FIRs are designed to meet a set of frequency domain specifi cations 
defi ned over the frequency range  ϖ     ∈    [ −  π ,  π ], where  ϖ     =     π  corresponds to the 
normalized Nyquist frequency. Specifi cally, it is assumed that the target FIR has a 
frequency response given by  H  d ( e j    ϖ  )    =    | H  d ( e j    ϖ  )| ∠  H  d ( e j    ϖ  ). The objective of any FIR 
design strategy is to synthesize a physically realizable fi lter having a frequency 
response  H ( e j    ϖ  ) that closely approximates the desired response  H  d ( e j    ϖ  ) in some 
acceptable manner. 

 The metrics of comparison are generally defi ned in terms of an error criterion 
where, in the frequency domain, the approximation error is given by

    ε ϖ ϖ ϖ( ) = ( ) − ( )H e H ej j
d .     (7.1)   

 A popular FIR design strategy that attempts to minimize the approximation error is 
called  minimum squared error  ( MSE ) criterion and is given by

    minimize =φ ϖ ϖ ϖ π π
ϖ

( ) ( ) ∀ ∈ −
∀
∑ e 2 ; [ , )     (7.2)  

  over the normalized baseband frequency range as illustrated in Figure  7.1 . The 
advantage of the MSE method is that it is well known. The shortcoming of the MSE 
method is found in the fact that even though the majority of baseband frequency 
errors can be small, large localized errors can occur. Common MSE FIR design 
strategies have been reduced to software; therefore, creating these fi lters and evaluat-
ing them is no longer an obstacle.    

  WINDOW - BASED DESIGN 

 One of the simplest FIR design methods begins with an ideal (a.k.a., boxcar) low -
 pass fi lter model having a noncausal impulse response:

    h k
k

k
[ ]

sin( / )
.=

π
π

2
    (7.3)   
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 The fi lter described in Equation  7.3  is infi nitely long and therefore not physically 
realizable. However, if a suitable fi nite duration approximation of the ideal impulse 
response shown in Equation  7.3  could be found, then a physically realizable approxi-
mate solution is possible. A fi nite  N  - sample approximating impulse response can be 
extracted from the ideal impulse response using an  N  - sample rectangular window, 
or mask, denoted  w N  [ k ], where

    w k
k N

N [ ]
; ( ) /

:
,=

≤ −



1 1 2

0 otherwise
    (7.4)  

  which can be used to defi ne a fi nite duration time series  h N  [ k ]    =     w [ k ]    ×     h [ k ]. The 
fact that  h N  [ k ] extends into negative time means that the windowed fi lter  h N  [ k ] is 
noncausal and therefore unable to support real - time applications. In order to convert 
the fi nite noncausal FIR into a causal FIR, the windowed impulse response would 
need to be right - shifted in time by an amount  L     =    ( N     −    1)/2 samples. The resulting 
causal impulse response is given by

    h k
k N

k N
k NC[ ]

sin(( / )( ( ) / ))

( ( ) / )
; , , , , ( ).=

− −
− −

= −
π
π

2 1 2

1 2
0 1 2 1…     (7.5)   

 The design process is motivated in Figure  7.2 . Because the windowing (masking) 
operation is applied to  h [ k ], the design strategy is called window - based or window 
method. Referring to Figure  7.2 , it can be seen that the magnitude frequency response 
of the FIR fi lter, defi ned by Equation  7.5 , exhibits an oscillatory error with the largest 
errors being located about the points of discontinuity in the desired boxcar response 
(i.e., transition band). This behavior is traditionally called Gibbs phenomena or 
Gibbs error.   

 There are four possible types of ideal piecewise - constant fi lter models that 
need addressing, and they are shown in Figure  7.3 . The production rules used to 
produce each ideal noncausal fi lter models are shown in Table  7.1 .      

  DETERMINISTIC DESIGN 

 Using the window method, design a 201st - order linear phase low - pass (i.e., boxcar) 
fi lter having a near unit passband out to  ϖ  c     =    0.1 ϖ  s , and a gain at, or near, 0 across 

       Figure 7.1     Example of a typical FIR design criteria (left). Ideal and MSE fi lter response 
(right). Note the proportionally large localized error found at the transition band edge.  
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       Figure 7.2     Windowing of an ideal low - pass fi lter ’ s impulse response (upper left) with a 
51 - sample fi nite rectangular window  w [ k ] (upper right). Notice that the magnitude 
frequency response changes from being nearly ideal to one having a discernable oscillating 
approximation error that becomes locally large near the edges of the fi lter ’ s transition band.  
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       Figure 7.3     Magnitude frequency response of ideal noncausal fi lter models.  
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  TABLE 7.1.    Ideal Impulse Responses ( f  c ,  f  1 ,  f  2  Are Cutoff Frequencies) 

   Type      h [ k ]      h [0]  

  Low - pass    2 f  c    sin( k  ϖ  c )/ k  ϖ  c     2 f  c   

  High - pass     − 2 f  c    sin( k  ϖ  c )/ k  ϖ  c     1    −    2 f  c   

  Band - pass    (2 f  2    sin( k  ϖ  2 )/ k  ϖ  2 )    −    (2 f  1    sin( k  ϖ  1 )/ k  ϖ  1 )    2( f  2     −     f  1 )  

  Band - stop    (2 f  1    sin( k  ϖ  1 )/ k  ϖ  1 )    −    (2 f  2    sin( k  ϖ  2 )/ k  ϖ  2 )    1    −    2( f  2     −     f  1 )  

the stopband. The inverse transform and therefore the FIR coeffi cients are mathe-
matically given by the sample values defi ned by Equation  7.5 , namely,

    h k
k

k
[ ] =

−( )( )
−( )

sin
,

ϖ τ
π τ

c g

g

    (7.6)  

  where   τ   g  is the FIR ’ s group delay. The specifi c truncated sin( x )/ x  impulse response 
of the causal 201st - order low - pass FIR, having a cutoff frequency of  f  c     =    0.1 f  s , is 
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generated and displayed in Figure  7.4 . The frequency response is seen to have the 
general shape of an ideal low - pass fi lter, but exhibits some local excessive Gibbs 
errors about the edges of the transition band.   

 The higher the fi lter order  N , the better the approximation to an ideal low - pass 
fi lter model. However, Gibbs errors are persistent and typically result in a 9% error 
before and after a discontinuity. The key parameters of comparison include the real-
ized transition bandwidth and passband and stopband critical frequencies. Finally, 
the mean squared approximation error measure is given by Equation  7.1 . The 
approximation error can be somewhat excessive due, in part, to the fact that the 
rectangular window has a sin( x )/ x  response having locally weak stopband attenua-
tion. Other choices of windows, such as Hamming, offer better trade - offs between 
passband and stopband gain. Commonly used fi xed coeffi cient window choices and 
their key parameters are reported in Table  7.2  and Figure  7.5 . It can be seen that 
each window brings to the table its unique set of performance parameters and 
produce different outcomes.      

       Figure 7.4     Frequency response of a 201st - order sin( x )/ x  impulse response (left); passband 
details (right).  
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       Figure 7.5     Typical frequency domain window specifi cations.  
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  TABLE 7.2.    Common Fixed - Coeffi cient  N  - Sample Windows 

   Window     Main Lobe 
Width  

    − 3 - dB 
Width  

    − 6 - dB 
Width  

   Max. Side 
Lobe (dB)  

   Side Lobe 
Roll - Off 
dB/dec.  

   Normalized 
Transition 
Bandwidth  

   Passband 
Ripple  

  Rectangle    4 π /N    0.88    1.21     − 13    29    0.9/N    0.74  

  Hamming    8 π /N    1.30    1.8 ′      − 43    20    3.3/N    0.02  

  Hann    8 π /N    1.44    2.00     − 32    60    3.1/N    0.055  

  Blackman    12 π /N    1.64    2.3     − 58    60    5.5/N    0.0017  
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  DATA WINDOWS 

 A rectangular window can introduce errors that are attributable to Gibbs phenom-
enon. Numerous data smoothing windows have been developed that can suppress 
this type of error. Some of the popular fi xed coeffi cient windows that meet these 
criteria are listed in Table  7.2  (rectangular included for completeness), with a few 
graphically interpreted in the time and frequency domain in Figure  7.6 . It should be 
noted that there are many more windows appearing in the literature. The windows 
found in Table  7.2  are simply some of the more popular representatives from the 
class of fi xed - coeffi cient windows. MATLAB, for example, supports the following 
recognized window functions:

   Barllett    

  Blackman  

  Blackman - Harris  

  Bohman  

       Figure 7.6     Thirty - fi rst - order rectangular, Hamming and Blackman windows (left) and 
their magnitude frequency responses (right).  
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  Chebyshev  

  Flat Top  

  Gaussian  

  Hamming  

  Hann  

  Kaiser (variable)  

  Nuttall  

  Parzen  

  Rectangular  

  Taylor  

  Triangle  

  Tukey    

 All of the windows in Table  7.2 , except the rectangular window, are seen to have 
sample values at or near zero at the  “ ends ”  of their support interval (i.e.,  k     =    0 and 
 k     =     N     −    1). This eliminates or reduces any potential jump discontinuities located at 
the ends of the window. Since Gibbs phenomenon is attributed to such discontinui-
ties, windows can suppress this type of distortion. 

 There are also several parameterizable windows that augment the list of fi xed -
 coeffi cient windows presented in the list. One popular parameterized window is the 
Kaiser window given by

    w k
I k M

I
M k M[ ] =

− ( )( )
( )

− ≤ ≤
0

2

0

1β

β

/
; ,     (7.7)  

  where  I  0 ( β ) is the modifi ed 0th - order Bessel function. The parameter  β  affects the 
main lobe bandwidth and stopband attenuation trade - offs. The time -  and frequency -
 domain behavior of a Kaiser window is shown for  β     =    1, 3, and 10 in Figure  7.7 . 
The selected value of  β  is infl uenced by the desired attenuation band gain  A  as 
illustrated below:
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β
β
β

= ≤ −
= − + − − ≤ ≤
=

0 21

0 584 21 0 4 0 079 21 21 50

0

if dB

if dB

A

A A A

,

. ( ) . . ( ) ,

.11102 8 7 50( . ) .A A− ≥if dB
    (7.8)     

  Example: Window - Based  FIR  Design 

 Consider the design of a 21st - order linear phase Type I low - pass FIR design that 
approximates an ideal fi lter. The 21st - order linear phase FIR has a group delay given 
by  ϕ ( ϖ )    =     −  τ  g   ϖ     =     − 10 ϖ . If a 21 - sample Hamming window is applied to the 21st -
 order FIR, a Hamming - windowed FIR results. The magnitude frequency responses 
of the rectangular and Hamming - windowed fi lters are shown in Figure  7.8  with the 
rectangular windowed version exhibiting considerable Gibbs distortion about the 
transition band. Observe that the Hamming window suppresses the large Gibbs error 
previously located near the transition band edge. This reduction in error is gained 
at the expense of a widened transition band (factor of 3.6 x  from Table  7.2 ). Since a 
Hamming window possesses even symmetry; the linear phase property and group 
delay of the windowed Type I FIR is unaltered.     

   MATLAB  WINDOW  FIR  DESIGN 

 MATLAB provides a tool called  fi r1  that can be used to design a linear phase FIR 
using the window method. The program accepts standard MATLAB windows and 

       Figure 7.7     Kaiser parameterizable window with time - domain profi le shown on the left 
and two - sided magnitude frequency response on the right.  
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       Figure 7.8     Two - sided spectrum of a windowed (rectangular and Hamming) FIR. Dual 
spectrum (left); windowed group delay (right).  
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can be used to design a low - pass, high - pass, band - pass, or band - stop as well as 
multiband fi lters. Windows can be multiplicatively applied to an FIR ’ s impulse 
response anytime. The MATLAB  fi r1  syntax is given by

 h  =  fi r1(n,wn, ′ ftype ′ , window)  

 where  n  is the MATLAB fi lter order (order    =     n     +    1 form FIR theory)  *
  ;  “  wn  ”  is 

passband cutoff frequencies normalized to the Nyquist frequency (not the sample 
frequency  f  s );  ftype     =     low - pass ,  high - pass ,  band - pass , and  band - stop ; and window 
is the user - selected data window function (default    =    Hamming). MATLAB recom-
mends the use of  fi r2 , however, for designing FIRs having an arbitrary magnitude 
frequency response. To illustrate, consider designing a low - pass FIR having a critical 
passband frequency of  f  c     =    0.45( f  s /2), a baseband frequency that specifi es a  − 6 - dB 
(i.e., 0.5) fi lter gain. A low - pass fi lter having a  − 6 - dB gain at  f  c     =    0.45(       f  s /2) is shown 
in Figure  7.9 .    

  KAISER WINDOW 

 Parameterizable windows, such as a Kaiser window, are more versatile than a fi xed 
parameter window. In order to use a Kaiser window in the design of an FIR, the 
Kaiser window needs to be properly parameterized. A formula that predicts a reason-
ably accurate order estimate for a Kaiser windowed FIR is defi ned in terms of transi-
tion bandwidth ( Δ  f       ), sample period ( T  s ), and passband and attenuation error deviations 
  δ   p  and   δ   a . The MATLAB - computed order estimate is given by

    N
f T

=
− ( ) −20 7 95

14 36

log .

.
,

δ
∆ s

    (7.9)  

  where  δ     =    min( δ  p ,  δ  a ). The veracity of the estimate is judged on a case - by - case basis. 

  *      MATLAB caveat: MATLAB defi nes an FIR fi lter having an impulse response  h [ k ]    =    { h [0],  h [1],  
  . . .    , h [ n ]} to be  n , whereas the order is normally defi ned to be  n     +    1 in the literature and classic fi lter 
analysis. 

       Figure 7.9     A 21st - order (20th order in MATLAB) low - pass linear phase FIR designed 
using  fi r1  and a Hamming window. Magnitude frequency response (left) and phase 
response (right).  
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  Example:  FIR  Order 

 Suppose a windowed band - pass FIR is desired having a passband cutoff frequency 
of  f  c     =    (0.2    ±    0.05) f  s , transition bandwidth of  Δ  f     =    (0.05) f  s , tolerable passband error 
or ripple of 0.2   dB, and the stopband attenuation of at least 60   dB. The passband 
and stopband error deviations are

   δ δp psuch that dB= + =0 012 20 1 0 210. ( log ( ) . )  

  and

   δ δa adB or= − = −60 10 3,  

  then  δ     =    min( δ  p ,  δ  a )    =    10  − 3 . From these parameters, a Kaiser - windowed FIR 
of order

   N
f T

=
− ( ) −

=
−20 7 95

14 36

60 7 95

14 36 0 05
73

log .

.

.

. ( . )
~

δ
∆ s

 

  is required. From Equation  7.8  and  A     ≥    50   dB, it follows that  β     =    0.1102( A     −    8.7)    =    5.6. 
The production of these parameters can also be facilitated using MATLAB 
and MATLAB function  kaiserord  as exemplifi ed by executing the code shown 
below:

 f = [.1 .15 .25 .3];      %      critical frequencies 

 a = [0 1 0 ];      %      gain profi le  –  band - pass fi lter 

 [N,Wn,BTA,FILTYPE] = kaiserord(f,a,[.001 .012 .001],1);  

 [ N     =    73 order,  W n    =    0.2500, 0.5500, normalized by the Nyquist frequency] 

  BTA  = 5.6533      %(beta)  

 A Blackman window solution is also possible. It follows that the order of the 
Blackman window is defi ned by the transition band bandwidth, namely, 
 N     =    5.5/ Δ  ϕ     =    110. The Kaiser and Blackman designs are presented in Figure  7.10 .     

       Figure 7.10     Kaiser window and Blackman window magnitude frequency responses (left) 
and log magnitude (right).  
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  TRUNCATED FOURIER TRANSFORM DESIGN METHOD 

 Another simple FIR synthesis technique is called the truncated Fourier transform 
method.  *   It is based on the use of an inverse discrete Fourier transform, or IDFT, 
to produce a database that is used to defi ne an  N th - order physically realizable FIR 
that emulates the shape and form to the desired FIR frequency response. This method 
provides a straightforward means of synthesizing an  N th - order FIR from an arbitrary 
desired frequency response specifi cation. Formally the method involved computing 
an  M  - sample ( M     >>     N ) IDFT of the desired fi lter ’ s magnitude frequency response 
(| H  d ( e j    ϖ  )|) and phase response ( ∠  H  d ( e j    ϖ  )). The  M  - sample time series  h [ k ], resulting 
from an  M  - point IDFT, is then reduced (pruned) to an  N  - sample realizable FIR. For 
linear phase fi lters, the realized fi lter is centered about sample  L     =    ( M /2)    −    1 and 
the phase is set to  ϕ ( ϖ )    =    ( N     −    1) ϖ /2 for a Type 1 linear phase FIR. The  N  - samples 
symmetrically extracted about the fi lter ’ s midpoint forms an  N th - order linear phase 
FIR whose magnitude frequency response approximates the desired response. This 
process is motivated in Figure  7.11 .   

 Types 2, 3, and 4, as well as nonlinear phase response FIRs, are also possible. 
For a Type 1 FIR, the desired frequency response is

    H e H e jj jϖ ϖ φ ϖ φ ϖ( ) = ( ) ( )( ) + ( )( )( )cos sin .     (7.10)   

 Reviewing the method, the frequency - domain specifi cations of the desired fi lter 
interprets Equation  7.10  at the frequency locations  ϖ   i      =     i 2 π / M ,  i     ∈    [ −  M /2,  M /2) 
where  ϖ   i      ∈    [ −  π ,  π ). The long  M  - point IDFT outcome is then reduced to an  N  - point 
realizable FIR impulse response using symmetric truncation. It is important to note, 
however, that there are really no restrictions on the form and shape of the desired 
fi lter ’ s frequency response. As long as it can be represented by an IDFT, a realizable 
fi lter can be extracted by windowing. 

  *      The truncated Fourier method is sometimes called the frequency sampling technique. 

       Figure 7.11     Truncated Fourier transform design method ( M     >>     N ). High - resolution 
spectrum (upper left) and realized spectrum (upper right). High - resolution impulse response 
(lower left) and truncated (realized) impulse response (lower right).  
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  Example: Truncated Fourier Transform Design Method 

 To illustrate the truncated Fourier method, consider the design or a rectangular 
windowed 21st - order linear phase Type I FIR. The desired fi lter ’ s magnitude fre-
quency response is given by

    H e j
d for passband( ) . ( ),ϖ ϖ π= ≤ ≤1 0 0 4   

  and

    H e j
d / for transition band( ) ( )( . ) . . ( ),ϖ π ϖ π π ϖ π= − − ≤ ≤1 10 0 4 0 4 0 5   

    H e j
d  for stopband( ) . ( ).ϖ π ϖ= ≤0 0 5    

 A desired Type 1 linear phase response for the 21st - order FIR is specifi ed using 
 ϕ ( ϖ )    =     −  τ  g   ϖ     =     − 10 ϖ . The resulting fi lter is shown in Figure  7.12 .   

 The desired magnitude frequency response is fi rst mapped into the time 
domain using a 1023 - point inverse fast Fourier transform (IFFT). The realized FIR ’ s 
21 coeffi cients are extracted from a 1023 - point IFFT ’ s midpoint, or at  k     =    511. The 
realized magnitude frequency response is seen to be a good approximation to the 
desired magnitude frequency response. The maximum error occurs at the boundary 
of the transition band and is attributable to the Gibbs phenomenon. The phase 
response is linear and the fi lter ’ s group delay is 10 samples. 

 It is also possible to apply classic data windows (e.g., Hamming) to the synthe-
sized  h [ k ] in order to mitigate Gibbs effects or excessive overshoot. While applying a 
data window to achieve these goals, it should be noted that data windows have a det-
rimental effect on transition bandwidth. As a result, the generated realizable fi lter 
must always be checked against the design specifi cations to insure compliance.   

  FREQUENCY SAMPLING DESIGN METHOD 

 The frequency sampling design technique can formally be used to design an  N th -
 order FIR based on the presumption that the fi lter ’ s frequency response is known at 

       Figure 7.12     Twenty - fi rst - order window (rectangular) FIR truncated Fourier design 
example showing realized impulse response (top left), two - sided spectrum (top right), 
phase response (lower left), and group delay (lower right).  
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 N  periodically spaced harmonics. Mathematically, a frequency sampling fi lter ’ s 
response is defi ned in terms of

    h k
N

H n WN
nk

n

N

[ ] = ( )
=

−

∑1

0

1

.     (7.11)   

 The fi lter ’ s impulse response is a function of the fi lter ’ s frequency response evalu-
ated on harmonic centers with spacing  f  0     =     ±        f  s / N . A discipline is required to insure 
that the resulting fi lter has real coeffi cients. There are several frequency assignment 
schemes that can be used to assign the harmonic values. The details of the inverted 
spectra can vary as a function of the frequency assignments. In the case where the 
FIR is to be designed using an IDFT or FFT. The frequency location  ϖ     =    0 must be 
present. The frequency spacing is then determined by the fi lter order  N . A linear 
phase odd order FIR with even coeffi cient symmetry is given by

    h k
N

H n n k L N H L
N

k

N

[ ] ( ) cos ( ) / ; .
( / )

= −( ) + ( ) =
−

=

−

∑1
2 2 0

1

2
1

2 1

π     (7.12)   

 It can be seen that the preassigned spectral values are mapped to a real impulse 
response. Each even or odd order FIR, with even or odd symmetry, would be gener-
ated by a similar equation. 

  Example: Frequency Sampling Filter 

 MATLAB provides a tool,  fi r2 , that produces an FIR fi lter using the frequency 
sampling method. The  fi r2  program produces a linear phase FIR with an applied 
default  “ Hamming ”  window. Other windows can be used, such as a rectangular 
window ( rectwin ). Use  fi r2  to design of a frequency sampling low - pass FIR that 
approximates a desired ideal (boxcar) magnitude frequency response with a cutoff 
frequency of  f  c     =    0.45 f  N ,  f  N     =     f  s /2. The  fi r2  program accepts an array of desired 
frequencies and corresponding magnitude frequency responses and converts the data 
into a  N th - order FIR. The program explicitly requires that the frequency/gain pair 
be defi ned for  ϖ     =    0 and the Nyquist frequency. This restricts the adoption of some 
of the possible mathematical frequency assignment rules, but results in an algorithm 
that can be based on the use of the IDFT or FFT. 

 The fi rst design attempts to synthesize an ideal low - pass fi lter having the 
passband end and a stopband beginning at  f  c     =    0.45 f  N  (0 transition band), using both 
rectangular and Hamming windows. A second version creates a transition band 
having a width of  f  t     =    0.1 f  N , again using rectangular and Hamming windows. This 
model linearly interpolates the transition band. The third design forces a more rea-
sonable transition band behavior on the fi lter by subdividing the transition band into 
subfrequencies  f  1     =    0.4833 f  N  and  f  2     =    0.5167 f  N  with gains of 0.8 and 0.2, respec-
tively, again using rectangular and Hamming windows. The results are shown in 
Figure  7.13  for the rectangular and Hamming window case. With the rectangular 
window in use, the ideal model (0 transition bandwidth) is seen to approximately 
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follow their assigned transition band trajectories. The linearly interpolated and 
piecewise linearly interpolated responses are seen to follow the form of the defi ned 
transition band gain profi le. Figure  7.13  shows the Hamming window case. When 
a Hamming window is applied, a reduction in Gibbs error is traded off against a 
widened transition band.     
    
 
   
  
 
 
 
 
 
 
 
 
 
 
 
  
  
  
 

       Figure 7.13     Frequency sampling fi lter design using rectangular window (left) showing 
frequency response. Frequency sampling fi lter design using a Hamming window (right) 
showing frequency response.  
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  CHAPTER 8 

 LMS  DESIGN METHOD     

   FINITE IMPULSE RESPONSE ( FIR ) SYNTHESIS 

 Computer - generated FIR design strategies fall into several categories based on a 
chosen optimization criteria. In the frequency domain, the approximation error is 
assumed to be given by

    ε ϖ ϖ ϖ( ) = ( ) − ( )H e H ej j
d .     (8.1)   

 One of the more popular and useful design criteria is one that minimized the error 
squared and is given by

    minimize φ ϖ ϖ
ϖ

( ) = ( )
∀
∑ e 2.     (8.2)   

 An example of a  least mean square  ( LMS ) approximation to an ideal boxcar fi lter 
is shown in Figure  8.1 . There is a good general agreement between the LMS and 
boxcar responses with the possible exception of large localized errors near points of 
discontinuity or transition band.    

  LEAST - SQUARES METHOD 

 The least - squares method provides engineers and scientists with a robust means of 
approximating the solution of an overdetermined system (i.e., more equations than 
unknowns). Least - squares analysis produces a means of obtaining a solution that 
minimizes the sum of the squares produced by each individual equation. One of 
the most important least - squares applications is in data fi tting, which includes deter-
mining what FIR  “ best ”  approximates a desired frequency response. The general 
least - squares method was described by Carl Friedrich Gauss. Using this classic 
mathematical tool, an FIR fi lter can be synthesized that can meet very demanding 
specifi cations. 
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       Johann Carl Friedrich Gauss (1777 – 1855)    

       Figure 8.1     LMS FIR design strategy. MSE, mean squared error.  
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 Gauss has made contributions to many scientifi c fi elds, including number theory, 
statistics, analysis, differential geometry, geodesy, geophysics, electrostatics, astron-
omy, and optics. Gauss is credited with developing the fundamentals that form the 
basis for least - squares analysis in 1795 at the age of 18. Legendre, however, was 
the fi rst to publish the method. Gauss realized that the least - squares method could 
be used to analyze an overdetermined system with measurement  y i   and unknown 
coeffi cient  β   i  , which satisfy a linear equation:

    x y j n m nij j

i

m

iβ
=

∑ = ∈ >
1

1; [ , ], .     (8.3)   

 The resulting  m  linear equations are defi ned in terms of  n  unknowns that can be 
written in linear algebraic form as
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 The LMS solution is one that minimizes:

    min .
β

βy xi ij j

j

n

i

m

−
==

∑∑
1

2

1

    (8.5)   

 The optimal LMS solution satisfi es   β̂ = ( )−
X X X yT T1

.  

  LEAST - SQUARES  FIR  DESIGN 

 Classic least - squares estimation techniques can be applied to the FIR design ques-
tion. Consider designing a linear phase FIR that minimizes the weighted  minimum 
squared error  ( MSE ) criterion,

    σ ω ϖ ϖ ϖ ϖ= ( ) ( )[ ]{ } = ( ) ( ) − ( )[ ]{ }
= =

∑ ∑W e W H Hi i

i

K

i i i

i

K
2

1

2

1

d ,     (8.6)  

  where  H ( ϖ   i  ) is the realized FIR ’ s complex frequency response,  H  d ( ϖ   i  ) is the desired 
complex frequency response, and  W ( ϖ   i  )    ≥    0 is the error weight at the  i th frequency 
locations  ϖ     =     ϖ   i  . The error weight  W ( ϖ   i  ) is a feature that differentiates the LMS 
method from the window method. The weights can be set high over critically impor-
tant frequency regions and low in those cases where the response is more or less 
arbitrary (i.e., don ’ t care). In addition, it has been previously established that an 
 N th - order linear phase FIR has either even or odd coeffi cient symmetry. For 
 N     =     N  0     +    1, the general form of an FIR transfer function having an impulse response 
beginning at sample index  n     =    0, takes the form  H ( z )    =     ∑   h [ n ] z   −    n  ,  n     ∈    [0,  N  0 ]. There 
are four types of linear phase cases to be considered and they are as follows: 

     

  Type    Order  N     Coeffi cient Symmetry  
  1    Odd    Even  

  2    Even    Even  

  3    Odd    Odd  

  4    Even    Odd  

 The frequency response of each type is given by  H ( e j    ϖ  )    =     Q ( ϖ ) H R  ( ϖ ), where 
 H  R ( ϖ ) is a real function of  ϖ . The individual fi lter types satisfy the following 
relationships: 

 Type 1:

    

H e e H

H h N h N n n

j jN

n

N

ϖ ϖ ϖ

ϖ ϖ

( ) = ( )

( ) = [ ]+ ( ) −[ ] ( )

−

=

0 2

0 0

1

2 2 2

/ ;

/ / cos

R

R
00 2/

∑     (8.7)   
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 Type 2:

    

H e e H

H h N n n

j jN R

n

ϖ ϖ ϖ

ϖ ϖ

( ) = ( )

( ) = +( )( ) −[ ] −( )( )

−

=

0 2

02 1 2 1 2

/ ;

/ cos /R

11

1 20N +( )

∑
/     (8.8)   

 Type 3:

    

H e je H

H h N n n

j jN R

n

N

ϖ ϖ ϖ

ϖ ϖ

( ) = ( )

( ) = ( ) −[ ] ( )

−

=
∑

0

0

2

0

1

2

2 2

/

/

;

/ sinR
    (8.9)   

 Type 4:

    

H e je H

H h N n n

j jN R

n

ϖ ϖ ϖ

ϖ ϖ

( ) = ( )

( ) = +( )( ) −[ ] −( )( )

− 0 2

02 1 2 1 2

/ ;

/ sin /R

==

+( )

∑
1

1 20N /     (8.10)   

 To illustrate, the (real) amplitude frequency response of a Type 1 linear phase FIR 
of order  N     =    ( N  0     +    1) (odd) is modeled as

    H a k a h M a h ik

k

M

iϖ ϖ( ) = ( ) = =
=

∑ cos ; [ ], [ ],
0

0 2     (8.11)  

  where  M     =     N  0 /2 (an integer). The parameter  M  locates the fi lter ’ s center tap. In a 
matrix – vector framework, the LMS problem can be represented as

    

H

W W W M

W W W
=

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
ϖ ϖ ϖ ϖ ϖ
ϖ ϖ ϖ ϖ

1 1 1 1 1

2 2 2 2

cos cos

cos co

…
… ss

cos cos

;
M

W W W M

a

a

ϖ

ϖ ϖ ϖ ϖ ϖ

2( )

( ) ( ) ( ) ( ) ( )



















=

… … … …
…K K K K K

00

1

1 1

2 2a

a

d

W H

W H

W H

… …

M

d

d

K d K



















=

( ) ( )
( ) ( )

( ) ( )





;

ϖ ϖ
ϖ ϖ

ϖ ϖ















.

    (8.12)   

 Defi ning the approximation error  e  to be  e     =     Ha     −     d , the design objective is to 
determine the vector that minimizes the error criteria

    σ = = = − − ≥e e e H d H dT T2 0( ) ( ) .a a     (8.13)   
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 The optimizing vector  a  can be obtained by setting  ∂  σ / ∂  a     =    0, which results in the 
minimal squared error solution that is given in terms of the normal equation (also 
known by other names):

    H Ha H d H H H dT T T T= ⇒ = −a ( ) .1     (8.14)   

  Example: LMS Design 

 Design an LMS fourth - order nonlinear phase FIR having a desired magnitude fre-
quency response | H ( e j   0 )|    =    1, | H ( e j   2 π /6 )|    =    1, | H ( e j   2 π /3 )|    =    0, and | H ( e j   2 π /2 )|    =    0. Choosing 
uniform error weights,  W ( e j   0 )    =     W ( e j   2 π /6 )    =     W ( e j   2 π /3 )    =     W ( e j   2 π /2 )    =    1.0, Equation  8.12  
becomes
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 From Equation  8.14 ,  h     =    ( H  T  H )  − 1  H  T d    =    [1/2, 2/3, 0,  − 1/6] T . Observe that the result-
ing fourth - order FIR has a nonlinear phase response due to a lack of impulse 
response symmetry. For linear phase designs, impulse response symmetry is required. 
The magnitude frequency response of the designed FIR is shown in Figure  8.2  for 
a uniformly error - weighted response. While having the general shape of the desired 
FIR, the errors are proportionally higher around  ϖ     =    2 π /6 and  ϖ     =    2 π /3 (transition 
band edges). These errors can be reduced by applying a large error weight at these 
frequencies. Suppose  W ( e j   0 )    =     W ( e j   2 π /2 )    =    1.0, and  W ( e j   2 π /6 )    =     W ( e j   2 π /3 )    =    2, a strategy 
that considers the errors at  ϖ     =     π /3 and 2 π /3 to be twice as egregious as those errors 
at  ϖ     =    0 and  π . The algebraic framework for the weighted design problem now 
becomes

       Figure 8.2     LMS FIR designs for weighted (nonuniform) and unweighted (uniform) fi lters.  
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 Solving,  h     =    ( H  T  H )  − 1  H  T  d     =    [1/3, 1/2, 0,  − 1/6] T . The frequency response shown in 
Figure  8.2  as the nonuniform weighted solution exhibits a closer fi t to the desired 
response, especially in the transition band. It can also be noted that both FIR have 
a nonlinear phase response due to an asymmetric impulse response.   

   MATLAB   LMS  DESIGN 

 The MATLAB function  fi rls  designs a linear phase FIR fi lter that minimized the 
weighted accumulated square error between a desired piecewise linear magnitude 
frequency response and the realized magnitude frequency response over a set of 
specifi ed frequencies. The MATLAB  fi rls  function

 h = fi rls(n,f,a)  

 returns a row vector  h  containing the  n     +    1 coeffi cients of an FIR fi lter whose mag-
nitude frequency response approximates the desired response over frequency range 
  f   with gain profi le   a  . The fi lter ’ s coeffi cients satisfy the symmetry conditions

   h k h n k k n[ ] [ ], , , ,= − = 0 1…  

  for a Type 1 FIR, if  n  is even, and Type 2 FIR, if  n  is odd. Again it should be noted 
the ( n     +    1) - order FIR is classifi ed as an  n th - order FIR by MATLAB. 

  Example: LMS Design 

 The  fi rls  function can be used to synthesize a fi fth - order (order 4 in MATLAB) 
Type 1 low - pass linear phase FIR whose magnitude frequency response is that of 
an ideal piecewise constant fi lter. The target unit gain passband ranges over  f     ∈    [0, 
0.125 f  s ]. The zero gain stopband ranges over  f     ∈    [0. 25 f  s , 0.5 f  s ]. In MATLAB, these 
requirements correspond to normalized frequencies [0, 0.25, 0.5, 1] where 1 refers 
to the Nyquist frequency. To suppress the fi lter response in the middle of the long 
stopband  f     ∈    [0. 25 f  s , 0.5 f  s ], a zero gain condition is placed at the midpoint  f     =    0.375 f  s . 
The frequency response of the synthesized FIR is shown in Figure  8.3 , and the 
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physical implementation is shown in Figure  8.4 . The quality of the response of the 
synthesized fi lter is directly proportional to the fi lter ’ s order.   

 Constrained LMS FIR fi lters can be designed using MATLAB ’ s  fi rcls  and 
 fi rcls1  functions. The  fi rcls  syntax is

   h n f a DEV UP DEV LO= −fircls( , , , , ),1 _ _  

  where the response of the synthesized  n th - order fi lter (MATLAB order  n     −    1) 
approximates the desired fi lter ’ s piecewise constant frequency response in an LMS 
sense. The desired fi lter response is parameterized in terms of  f  (an array of frequen-
cies) and   a   (an array of gains). Gain constraints can be imposed above and below 
the ideal responses and are defi ned in terms of the parameters  DEV_UP  and 
 DEV_LO .  

  Example: Constrained LMS Design 

 To illustrate a constrained LMS FIR design, consider a 21st - order (order 20 in 
MATLAB) linear phase low - pass FIR having a normalized passband extending out 
to  f  p     =    0.15 f  s . Note that the stopband edges are not specifi ed. The study begins with 
a loosely constrained fi lter and terminates with a more tightly constrained fi lter. 
Specifi cally: 

     

       Figure 8.3     Magnitude frequency response (left) and linear phase response in radians 
(right).  
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       Figure 8.4     Implementation of fi fth - order  fi rls  linear phase FIR.  

 

⊕ ⊕ ⊕ ⊕ 

T T T T 

0.1045 ⊗ 
0.2756 ⊗ 

0.3547 ⊗ ⊗ ⊗ 
0.2756 0.1045 

   FIR     Passband Gain     Allowable 
Deviation  

   Stopband Gain     Allowable 
Deviation  

  LMS 1    1    [ − 0.5, 0.5]    0    [ − 0.5, 0.5]  

  LMS 2    1    [ − 0.5, 0.025]    0    [0.5, 0.025]  

  LMS 3    1    [ − 0.025, 0.025]    0    [ − 0.025, 0.025]  
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 The results are presented in Figure  8.5 . The derived impulse responses appear to be 
very similar. The magnitude frequency responses (in decibel) do, however, exhibit 
some points of differentiation. LMS 1 is essentially an unconstrained fi lter since all 
the passband and stopband error deviations fall well within the  ± 0.5 requirement. 
LMS 2 tightens up the passband and, in doing so, gives back some stopband attenu-
ation resulting in the minimum stopband attenuation that is less than that of LMS 
1. The more restrictive LMS 3 has to fi ght to meet the specifi cations resulting in, 
for example, minimum stopband gains that are essentially constant across the stop-
band in order to meet the designer ’ s requirements. When the design is complete, the 
stopband edge frequency will need to be separately computed.    

  Example: fi rcls LMS Design 

 Design a 31st - order linear phase band - pass FIR having a normalized passband of  f  P  
ranging from 0.2 f  s  to 0.4 f  s . Note that the stopband edges are not specifi ed. Begin 
with a uniformly constrained fi lter followed by an FIR with unsymmetrical con-
straints. The fi rst FIR has a uniform 10% constraint on the fi rst and second stopbands 
and passband. The second FIR has a relaxed fi rst stopband, tightened second stop-
band, and the original 10% passband. The effects of these changes can be seen in 
the magnitude frequency response shown in Figure  8.6 . Notice that even though the 
fi rst stopband constraints were relaxed, they were effectually increased in the fi nal 
design.   

       Figure 8.6     Magnitude frequency response of band - pass FIR implemented using  fi rcls .  
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       Figure 8.5     Low - pass constrained linear phase  fi rcls  fi lter. Note the similarity of the 
impulse responses (left) and the dissimilar magnitude frequency responses due to the 
imposed constraints (right).  
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 The MATLAB   FIRCLS1   function is used to create an  n th - order ( n     −    1 order 
in MATLAB) low -  and high - pass constrained least - squares FIRs using the following 
syntax:

   h n wO DEVP DEVS= −FIRCLS1( , , , )1  

  with a cutoff frequency  w0  and maximum band deviations or ripples (in linear units) 
limited by   DEVP   and   DEVS  . For a high - pass design, use the following:

   h n wO DEVP DEVS high= −FIRCLS1( , , , , ) .1 “ ” is a high-pass filter   

 A low - pass extension is

   h n wO DEVP DEVS wP wS K= −FIRCLS1( , , , , , , ),1  

  which weighs the square error in the passband  K  times greater than that in the stop-
band. Continuing,   wP   is the passband edge of the  L  2  weight function and   wS   is the 
stopband edge (  wP      <      w0      <      wS  ).  

  Example: fi rcls1 LMS Design 

 Design a 31st - order (30 in MATLAB) linear phase low - pass FIR having a normal-
ized passband of  f  p     =    0.15 π . The  fi rcls1  routine can be based on the use of  L  2  norms 
and can set  “ soft ”  passband and stopband edges. The design study begins with a 
loosely constrained fi lter, followed by a more highly constrained fi lter. Note how 
the constraints also affect the transition bandwidth as illustrated in Figure  8.7 .     

   MATLAB  DESIGN COMPARISONS 

 MATLAB provides several tools that can be used to create LMS and other classes 
of FIR fi lters. The  fi r2  window design method is used to design a linear phase 
frequency sampling FIR using a selected window (default Hamming). The  fi rcls  
function produces a constrained (gain) LMS design. The fi lter routine  fi rcls1  pro-
duces a weighted constrained (gain) low - pass or high - pass LMS design. Program 
 fi rls  also produces a least - squares FIR, which can provide baseline services as well 
as operate as a differentiator or Hilbert fi lter. To compare these design strategies, a 

       Figure 8.7     Magnitude frequency response of low - pass FIR implemented using fi rcls1.  
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family of 21st - order FIR models (order 20 in MATLAB) is constructed. These 21st -
 order FIRs, using  fi r2 ,  fi rcls , and  fi rcls1 , are generated, and the FIRs ’  impulse 
responses are shown in Figure  8.8  along with their magnitude frequency responses. 
Referring to Figure  8.8 , it can be observed that the fi rst FIR fi lter is a 21st - order 
 fi r2  low - pass fi lter with a normalized passband cutoff frequency of 0.2 π  and stop-
band cutoff of 0.25 π , using a default Hamming widow. The second FIR is a 21st -
 order  fi rcls  low - pass FIR with a passband cutoff frequency of 0.2 π , 0.1 passband 
deviation, and 0.1 stopband deviation. The third FIR is a 21st - order  fi rcls1  low -
 pass FIR with cutoff frequency of 0.2 π , 0.2 passband deviation out to 0.175 π , and 
0.2 stopband deviation beginning at 0.25 π , with a weighting factor of  k     =    10. The 
fourth FIR is a 21st - order  fi rls  low - pass FIR with a passband cutoff frequency of 
0.2 π  and stopband cutoff of 0.25 π . It can be noted that there is, at a macrolevel, 
general agreement among the fi lter trials. However, they do differ at the microlevel. 
Some may meet a given set of specifi cations, some may not.    

  PRONY ’ S METHOD 

 A question logically arises regarding how to design an FIR from only an empirical 
or experimental understanding of a fi lter ’ s response. In such cases, Prony ’ s method 
can sometimes be used to map a measured time series  h [ k ]    =    { h  0 ,  h  1 ,  h  2 ,    . . . } into 
an equivalent transfer function having the form

    H z h z
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k
k

k
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    (8.15)   

 Equation  8.15  does not automatically specify an FIR due to the terms appearing in 
the denominator. If the denominator terms are removed, then the transfer function 
has an FIR form

       Figure 8.8     Comparison of linear phase LMS FIR design strategies. Impulse response 
(left) and magnitude frequency response (right).  
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    H z b k z k

k

N

( ) [ ]= −

=
∑

0

    (8.16)   

 Such a fi lter would have an impulse response of length  N     +    1. It should be apparent 
that the fi rst  N     +    1 samples immediately defi ne the  N     +    1 coeffi cients  b [ k ],  k     ∈    [0, 
 N ]. Prony ’ s method automatically performs this task, even in the presence of noise. 
In such cases, Prony ’ s method will produce the best LMS estimate of the monitored 
FIR reponse. 

  Example: Prony ’ s Method 

 The impulse response of a 21st - order low - pass linear phase FIR is observed over 31 
consecutive sample instances. The observed FIR ’ s impulse response and derived 
magnitude frequency response are shown in Figure  8.9 . The impulse response could 
have been immediately deduced from the measured impulse response without the 
intervention of Prony ’ s method. Suppose, however, that the measured impulse 
response samples are contaminated by additive noise. In such instances, the data 
shown in Figure  8.10  will result. The additive noise is seen to have an effect on the 
resulting spectrum.       
  
 
 
 
 
 

       Figure 8.9     Prony ’ s database. First 21 samples (left) and resulting magnitude frequency 
response (right).  
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       Figure 8.10     Application of Prony ’ s method. First 21 noise - contaminated samples (left) 
and resulting magnitude frequency response (right).  
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  CHAPTER 9 

EQUIRIPPLE DESIGN 
METHOD     

   EQUIRIPPLE CRITERION 

 The  least mean square  ( LMS ) fi lter synthesis methodology can produce a design 
having potentially large localized errors. An alternative design strategy is one that 
will insure that the largest approximation error is bounded below some acceptable 
value. This is the role of the equiripple design rule that satisfi es what is called a 
minimax error criteria given by

    δ ϖ ε ϖ ϖ ϖe sminimize maximum /( ) = ∈{ ( ( ) | [ , )},0 2     (9.1)  

where  δ ( ϖ  e ) is called the minimax or extremal error where the error at frequency  ϖ  
is defi ned to be

    ε ϖ ϖ ϖ ϖ( ) = ( ) ( ) − ( )W H e H ej j
d     (9.2)   

 with  W ( ϖ )    ≥    0, a non - negative error weight. It can be noted that the error  ε ( ϖ ) is 
the weighted difference between the desired  H  d ( e j    ϖ  ) and realized fi lter ’ s response 
 H ( e j    ϖ  ) at the normalized baseband frequency  ϖ . An  N th - order minimax FIR design 
strategy minimizes the maximum absolute error over all baseband of frequencies. 
These maximum errors  δ ( ϖ  e ), called extremal errors, occur at the extremal frequen-
cies  ϖ  e . The extremal errors satisfy | δ ( ϖ  e )|    ≥    | δ ( ϖ )| across the baseband. In addition, 
if  δ ( ϖ   i  ) and  δ ( ϖ   k  ) are extremal errors measured at the extremal frequencies  ϖ   i   and 
 ϖ   k  , then | δ ( ϖ   i  )|    =    | δ ( ϖ   k  )| for all  i  and  k . In addition, the signs of the extremal errors 
are also known to alternate between adjacent extremal frequencies so that 
 δ ( ϖ   i  )    =     −  δ ( ϖ   i    + 1 ). Because all the extremal errors are equal in magnitude and alternat-
ing in sign, the resulting fi lter is also referred to as an equiripple fi nite impulse 
response (FIR). 

 It has been previously established that an  N th - order linear phase FIR has either 
even or odd coeffi cient symmetry. For  N     =     N  0     +    1, the general form of an  N th FIR 
having an impulse response, beginning at sample index  n     =    0, has a transfer function 
given by
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    H z h n z n

n

N
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0

    (9.3)   

 The four types of linear phase FIRs are the following: 
     
  Type    Order  N     Coeffi cient Symmetry  

  1    Odd    Even  

  2    Even    Even  

  3    Odd    Odd  

  4    Even    Odd  

 The frequency response of each type is given by  H ( e j    ϖ  )    =     Q ( ϖ ) H  R ( ϖ ), where  H  R ( ϖ ) 
is a real function of  ϖ . In this context, the individual fi lter types satisfy
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  where the real valued function  H  R ( ϖ ) exhibits the sign changes that characterize an 
equiripple solution. The standard means of achieving an equiripple solution is the 
Remez exchange algorithm.  

  REMEZ EXCHANGE ALGORITHM 

 For a linear phase FIR, the location of the maximum errors can be numerically 
computed using the alternation theorem from polynomial approximation theory. This 
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method, popularized by Parks and McClellan, is used to iteratively solve a system 
of equations using what is called the Remez exchange algorithm. The Remez 
exchange algorithm continually adjusts the tentative location of an extremal fre-
quency  ϖ   i   until the minimax criterion is satisfi ed in terms of an  ε  stopping rule. This 
method has been used for decades to design linear phase FIRs and continues to 
provide reliable results. 

 The standard equiripple design method, based on the Remez exchange algo-
rithm, can be motivated in terms of the design of a physically realizable  N th - order 
Type 1 linear phase FIR. It is assumed that the fi lter ’ s amplitude frequency response 
(i.e.,  H  R ( ϖ )) can be compactly modeled as a real function of  ϖ , denoted  A ( ϖ ), and 
has the form

    A a i a h L a h ii

i

L

iω ϖ( ) = ( )( ) = = [ ]
=
∑ cos ; [ ];

0

0 2     (9.8)  

  where  L     =     N  0 /2 (an integer) locates the FIR ’ s center tap. The desired FIR magnitude 
frequency response, measured at frequency  ϖ   i  , is assumed to be  D ( ϖ   i  )    =    | H  d ( ϖ   i  )| 
where  H  d ( ϖ   i  ) is the desired (positive baseband) frequency response measured at  ϖ   i  . 
The equiripple design method determines the  L     +    1 fi lter coeffi cients that satisfy the 
minimax error criterion. The error process is modeled using Chebyshev polynomials 
that insure the extremal errors alternate in sign (i.e.,  ±  δ ). The optimizing fi lter can 
be modeled in a linear algebraic sense in terms of  L     +    2 equations in  L     +    2 unknowns. 
Specifi cally, for  a i      =     a [ i ],
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= d,     (9.9)  

  where ( − 1)  r   is the result of the fact that the extremal errors alternate in sign. The 
equiripple method iterates until a minimax error criterion is satisfi ed, a condition 
where  A ( ϖ   i  )    −     D ( ϖ   i  )    =    ( − 1)  i    δ  evaluated at the extremal frequencies  ϖ   i  ,  i     ∈    [0, 
 L     +    1] within some  ε  stopping criterion. Once the coeffi cient set  a [ i ]    =    2 h [ i ], 
 a [0]    =    2 h [0], has been determined, the Type 1 fi lter coeffi cient space is fi lled using 
the symmetry assignment rule  h [ i ]    =     h [ −  i ]. 

 A variation on this theme assigns individual weights to the critical frequencies 
to achieve a weighted minimax error, producing ( A ( ϖ   i  )    −     D ( ϖ   i  )) W ( ϖ   i  )    =    ( − 1)  i    δ  at 
the extremal frequencies  ϖ   i  ,  i     ∈    [0,  L     +    1], and  W ( ϖ   i  )    ≥    0. The weighted minimax 
problem can be casted into the linear algebraic framework shown below:
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 The Remez exchange algorithm produces a minimax solution, which is as close to 
being optimal up to the limits of an  ε  stopping criteria. The computational process 
is abstracted below for an  N th - order FIR design, where  N     =     N  0     +    1 and  L     =     N  0 /2:

   1.     Initially set the ( L     +    2) candidate extremal frequencies  ϖ   i   to arbitrary values.  

  2.     Determine the approximation error value:
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  3.     The values of the realized magnitude response  A ( ϖ ) at  ϖ     =     ϖ   i   are computed 
as
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  4.     The polynomial  A ( ϖ ) is determined by interpolating the above equation at the 
 L     +    2 extremal frequencies using the Lagrange interpolation formula:
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  where
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    5.     The new weighted error function is computed within a dense set  S ( S     ≥     L ) of 
frequencies ( S     =    16 L  typical) to determine the  L     +    2 new extremal frequencies 
from the error criterion values.  

  6.     If the peak error values of  δ  are nearly equal in absolute value, terminate; 
otherwise return to Step 2.    

  Example: Equiripple Criterion 

 The objective is to synthesize a linear equation  A ( ϖ )    =     a  1  ϖ     +     a  0  solution that best 
fi ts a desired quadratic profi le  D ( ϖ )    =    1.1 ϖ  2     −    0.1, for  ϖ     ∈    [0, 2] in a minimax 
sense. Let the initial guess of the extremal frequency locations be  ϖ     =    0, 0.5, and 
1.5, corresponding to desired fi lter gains of  D ( ϖ )    =     − 0.1, 0.175, 0.175, and 2.375, 
respectively. For uniform error weighting,  A ( ϖ ) has a minimax fi t to  D ( ϖ ) that is 
obtained using the computer pseudocode below:

 f = rmp(101,2/100,101)      # ramp frequency [0, 2] 

 d = 1.1 * f ∧ 2 - 0.1      # desired response 

 A = {[1,0,1],[1,0.5, - 1], [1,1.5,1]}      # A( ϖ ) = a1 ϖ  + a0 +  �  

 v = { - 0.1,0.175,2.375}      # desired response 

 a = inv(A) * v # solution 

 a       

           - 0.375      # a0 

                1.65      # a1 

                0.275      #  ε  

 Aw = 1.65 * f - 0.375      # Current value of A( ϖ ) = a1 ϖ  + a0  

 Finally,  D ( ϖ ),  A ( ϖ ), and  ε ( ϖ ) are shown in Figure  9.1 . Note that the errors at the 
extremal test frequencies are the same ( ε     =    0.275), as required of a minimax solu-
tion. However, the tested frequencies are not the actual minimizing extremal fre-
quencies. The search continues.   

 Choose new frequencies that are found at the extreme error locations of Figure 
 9.1 . They are  ϖ     =    0, 0.75, and 2 and correspond to desired fi lter gains  D ( ϖ ) of  − 0.1, 
1.0, 0.5188, and 4.3, respectively. For uniform error weighting, the next iteration 
produces the following:

  A  = {[1,0,1],[1,0.75, - 1],[1,2,1]} #  A ( ϖ ) =  a 1 ϖ  +  a 0 +  ε  

  v  = { - 0.1,0.5188,4.3}            # desired response 

  a   =  inv( A ) * v      # solution 
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  a           

              - 0.616      #  a 0 

                   2.2      #  a 1 

             0.516         #  ε  

 Aw = 2.2 * f - 0.6156      # Current value of A( ϖ ) = a1 ϖ  + a0  

 Finally,  D ( ϖ ),  A ( ϖ ), and  δ ( ϖ ) are shown in Figure  9.2 . Note that the errors at the 
test frequencies are the same ( ε     =    0.516) and differ from the fi rst trial ( ε     =    0.275). 
Again, the selected frequencies are not the actual extremal frequencies.   

 Choose the new candidate frequencies found in Figure  9.2 . They are  ϖ     =    0, 
1, and 2, respectively with desired fi lter gain  D ( ϖ ) of  − 0.1, 1.0, and 4.3, respectively. 
For uniform error weighting, the next iteration produces the following:

 A = {[1,0,1],[1,1, - 1],[1,2,1]}      # A( ϖ ) = a1 ϖ  + a0 +  ε  

 v = { - 0.1,1.0,4.3}               # desired response 

 a = inv(A) * v         # solution 

 a             

                       − 0.65            # a0 

       Figure 9.1     First iteration outcome with the maximal error at  ϖ    =   0.75.  
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       Figure 9.2     Second iteration outcome with the maximal error at  ϖ    =   1.0.  
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                            2.2            # a1 

                         0.55            #       ε  

 Aw = 2.2 * f - 0.65         # Current value of A( ϖ ) = a1 ϖ  + a0  

 Finally,  D ( ϖ ),  A ( ϖ ), and  ε ( ϖ ) are shown in Figure  9.3 . For the fi nal iteration, the 
extremal frequencies are unchanged and have a minimax error value of  ε     =    0.55. 
Therefore, upon completion of the third iteration, a solution is found with unchanged 
extremal frequencies.   

 A typical equiripple FIR approximation of a piecewise constant ideal fi lter 
model is presented in Figure  9.4 . The equiripple design objectives can be seen to be 
satisfi ed since the extremal passband and attenuation (stop) band deviations (errors) 
are equal. The reason that no extremal frequencies are located in the transition band 
is that no transition band performance requirements were specifi ed.     

  WEIGHTED EQUIRIPPLE  FIR  DESIGN 

 The uniformly weighted ( W ( ϖ )    =    1) solution that exhibits equal extremal errors at 
extremal frequencies. There are times, however, when it is desired to independently 
specify the pass and stopband ripple deviations parameters  δ  p  and  δ  a . This is the role 
of the non - negative error weight  W ( ϖ )    ≥    0. If  W  passband ( ϖ )    =     W  stopband ( ϖ ), then the 

       Figure 9.3     Third iteration outcome with the maximal error at  ϖ    =   1.0.  

Extremal frequencies
ϖ = { 0, 1.0, 2.0}

0.55 

Error

D(ϖ)Best linear fit 

Extremal errors
0.55

Current extremal  
frequencies  
ϖ = { 0. 1.0, 2.0} 

5

0

0                                                                       1.0                                                                 2.0

       Figure 9.4     Type 1 31st - order FIR equiripple approximation to a piecewise linear FIR 
magnitude frequency response model showing (left) the impulse response, (middle) the 
magnitude frequency response, and (right) the magnitude frequency response in decibels. 
Also shown are the equiripple extremal errors | δ |    =    | δ  p |    =    | δ  a | at the extremal frequency 
locations.  
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error deviations found in the passband are treated the same as those in the stopband. 
The realized fi lter will produce a magnitude frequency response that satisfi es 
 δ     =     δ  p     =     δ  a . Such solutions are said to be uniformly weighted. Choosing a weighted 
relationship  W  p ( ϖ ) (passband)    =    10 W  a ( ϖ ) (attenuation band) implies that the extre-
mal error in the passband is to be considered to be 10 times more serious (undesir-
able) than those found in the attenuation band. The resulting solution to the weighted 
equiripple error minimization problem would be a solution in which 10 δ  p     =     δ  a . That 
is, the actual fi lter error deviation in the passband would be 1/10th that of the stop 
or attenuation band. In this manner, signifi cant to subtle adjustments can be made 
to the magnitude frequency response envelope of an equiripple design. Finally, the 
rms value of the error deviation is given by   δ δ δ= p a  where  δ  is the error for 
a uniformly weighted design (i.e.,  W ( ϖ )    =    1). To illustrate, consider a 51st - order 
low - pass equiripple FIR having uniform error weights to meet the following 
specifi cations:

    •      sampling frequency  f  s     =    100   kHz;  

   •      frequency band 1:  f     ∈    [0.0, 10]   kHz, desired gain    =    1.0,  W ( f )    =    1 (passband);  

   •      frequency band 2:  f     ∈    [15, 50]   kHz, desired gain    =    0.0,  W ( f )    =    1 (stopband).    

 The resulting equiripple fi lter is displayed in Figure  9.5 . The resulting Type 1 fi lter 
has a worst case gain computed to be  G  max     =    1.67565    <    2 1 . The measured minimax 
error is  δ     =     δ  p     =     δ  a     =    0.00428 or  − 47.4   dB, and   δ δ δ= p a . By decreasing the fi lter 
order, the deviation error will increase, and increasing the order will decrease the 
error deviation. It should be appreciated, however, that fi lter order is directly cor-
related to the number of multiply - accumulate (MAC) cycles required per fi lter cycle. 
This is inversely related to the maximum run - time bandwidth of the fi lter. This 
constraint can often be used to establish the maximum accepted fi lter order.   

 The 51st - order Type 1 low - pass equiripple FIR that has been designed using 
uniform error weights has a  − 47.4 - dB passband and stopband error deviation. The 
 − 47.4 - dB passband deviation ( ± 0.00428) would, in most instances, be considered 
to be excessive for most applications. A passband deviation of  ± 0.1 or  − 20   dB is 
considered to be more realistic. This redefi nition of the passband maximal attenua-
tion can be achieved using sub - band weights in an intelligent manner. Assigning 
the stopband weight to be 1000 times that of the passband weight (i.e., 1000 

       Figure 9.5     Fifty - fi rst - order low - pass FIR using uniform passband and stopband weights. 
Impulse response (left), magnitude frequency response (middle), and zoom expanded 
magnitude frequency response (right) along with the direct measurement of the passband 
extremal errors.  
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 W  passband ( ω )    =     W  stopband ( ω )) results in the FIR shown in Figure  9.6 . The passband 
deviation is measured to be approximately  δ  p     =     ± 0.0954302    ∼    ( ± 0.1) and the stop-
band weight is estimated to be  δ  a     =     − 79   dB. This is a relaxation factor greater than 
20 in the passband and corresponds to an increase of 27.5   dB. That is,  δ  p     ∼    0.1, 
 δ  a     ∼    0.00018, and   δ δ δ= =p a 0 00424264. , which is essentially the minimax error 
for the uniformly weighted value of  δ . Finally, the worst case gain of the fi lter is 
computed to be  G  max     =    1.72627    <    2 1 , which is a slight increase over the uniformly 
weighted case.   

  Example: Equiripple  FIR  

 A 51st - order band - pass equiripple Type 1 FIR is designed to meet the following 
specifi cations:

    •      sampling frequency  f  s     =    100   kHz;  

   •      frequency band 1:  f     ∈    [0.0, 10]   kHz, desired gain    =    0.0,  W ( f )    =    1 (stopband #1);  

   •      frequency band 2:  f     ∈    [12, 38]   kHz, desired gain    =    1.0,  W ( f )    =    1 (passband);  

   •      frequency band 3:  f     ∈    [40, 50]   kHz; desired gain    =    0.0,  W ( f )    =    1 (stopband #2).    

 The resulting fi lter is shown in Figure  9.7 .   
 The impulse response is seen to have even symmetry and the magnitude fre-

quency response exhibits equal equiripple deviation from the ideal in both the 
passband and stopband. The measured extremal errors are  δ  p     =     δ  a     =    0.0664 
( − 23.5   dB). The 0.0664 passband deviation may be considered to be too restrictive 
(overspecifi ed). A  δ  p     =    0.125 passband deviation is considered to be more realistic. 
This can be achieved using sub - band weights in an intelligent manner. The required 
weights can be determined experimentally for an FIR having the following design 
specifi cations:

    •      sampling frequency  f  s     =    100   kHz;  

   •      frequency band 1:  f     ∈    [0.0, 10]   kHz, desired gain    =    0.0,  W ( f )    =    4;  

       Figure 9.6     Fifty - fi rst - order low - pass FIR using uniform and nonuniform passband and 
stopband weights (1:1000). Impulse responses (left); magnitude frequency responses in 
decibels (right).  
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   •      frequency band 2:  f     ∈    [12, 38]   kHz, desired gain    =    1.0,  W ( f )    =    1;  

   •      frequency band 3:  f     ∈    [40, 50]   kHz, desired gain    =    0.0,  W ( f )    =    4.    

 The FIR is designed using the Remez method. The measured passband and stopband 
deviations from the ideal are found to be given by  δ  p     =    0.125 and  δ  a     =    0.033 
( ∼  − 30   dB). While the passband deviation has been relaxed to a more acceptable 
value, the stopband attenuation has increased from  − 23.5   dB to about  − 30   dB. This 
is normally considered to be an acceptable if not a desirable trade - off. For compara-
tive purposes, the weighted and uniform weighted magnitude frequency responses 
are shown in Figure  9.8 . Notice also that   δ δ δ= =p a 0 065. , which is essentially the 
error deviation of the uniformly weighted design.     

  HILBERT EQUIRIPPLE  FIR  

 Equiripple fi lters are commonly used in the design of low - pass, band - pass, band -
 stop, and high - pass linear phase fi lters. Another important use of the equiripple 
design paradigm is to construct FIR fi lters that can implement Hilbert transforms. 
Hilbert transforms, or fi lters, are important elements in many communication 
systems. A Hilbert fi lter has a frequency response given by

       Figure 9.7     Equiripple band - pass FIR with uniform pass -  and stopband weights showing 
impulse response (left) and magnitude frequency response (right).  
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       Figure 9.8     Fifty - fi rst - order equiripple band - pass FIRs designed using uniform and 
nonuniform weights. Observe the trade - off of passband gain against stopband attenuation 
for the nonuniformly weighted case.  
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 Observe that a Hilbert fi lter is essentially an all - pass fi lter in that | H ( e j    ϖ  )|    =    1, for all 
 ϖ     ∈    [ −  π /2,  π /2), but possesses a distinctive quadrature phase - shifting property. The 
phase - shifting property of a Hilbert fi lter is particularly useful in defi ning single 
sideband modulators,  quadrature amplitude modulation  ( QAM ) communications 
systems, and systems having in - phase and quadrature phase (I/Q) channels. The 
quadrature phase - shifting ability of a Hilbert fi lter can be viewed in framework of 
a pure cosine and sine wave, where  y [ k ]    =    cos( ϕ  k )    =    ( e   −    j    ϕ    k      +     e   −    j    ϕ    k  )/2 and  y [ k ]    =    sin( 
ϕ  k )    =    ( e   −    j    ϕ    k      +     e   −    j    ϕ    k  )/2 j . Assuming that the tone  y [ k ] is in the passband of the Hilbert 
fi lter, Equation  9.17  states that
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    (9.17)   

 There is a minor problem associated with implementing a practical equiripple Hilbert 
fi lter. In particular, implementing the sharp phase transition from  − 90 °  to 90 °  at 0   Hz 
is diffi cult. This problem can be mitigated by creating a small guard band around 
0   Hz (DC) and  f  s /2. 

  Example: Hilbert  FIR  

 An ideal Hilbert fi lter would have a unity baseband gain that cannot be realized by 
an approximating equiripple FIR. Instead, locally defi ned guard bands around  f     =    0 
and  f     =     f  s /2 are asserted. A 63rd - order Hilbert FIR can be designed that meets the 
following specifi cations:

    •      sampling frequency  f  s     =    1   Hz (normalized);  

   •      frequency band 1:  f     ∈    [0.0, 0.01]   kHz, desired gain    =    0.0,  W ( f )    =    1 (guard band);  

   •      frequency band 2:  f     ∈    [0.02, 0.48]   kHz, desired gain    =    1.0,  W ( f )    =    1 (passband);  

   •      frequency band 3:  f     ∈    [0.49, 0.50]   kHz, desired gain    =    0.0,  W ( f )    =    1 (guard 
band).    

 The sample frequency was set to unity for convenience. The FIR is designed using 
the equiripple method with respect to the given gain profi le shown in Figure  9.9 . 
The FIR has a passband and stopband deviation of  δ  p , which is measured to be 
approximately  δ     =     − 15.8039   dB. The impulse response is also seen to be that of an 
odd symmetry (Type 3), representing a linear phase FIR.    

  Differentiator 

 Equiripple fi lters are also adept at implementing other fi lter classes of FIRs, such as 
a linear phase differentiator of order  N . An  N th - order differentiator ’ s frequency 
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response is given by  H ( e j    ϖ  )    =    ( j  ϖ )  N  . For practical realization reasons, the desired 
frequency response specifi cations should include a guard band near the Nyquist 
frequency. That is, it is desired to set | H ( e j    ϖ  )|    =    0 for  ϖ  near  ϖ     =     π /2.  

  Example: Differentiator 

 A 51st - order linear phase differentiator is to be designed having a differentiating 
baseband frequency response out to 0.4 f  s  and a stopband buffer beginning at 0.45 f  s . 
The differentiator ’ s impulse and magnitude frequency responses are shown in Figure 
 9.10 . Notice that the impulse response is antisymmetric (Type 3) and that a stopband 
guard band has been added, buffering the end of the passband.     

  EQUIRIPPLE ORDER ESTIMATE 

 There are several order estimation algorithms commonly used to translate a set of 
design parameters ( δ  p ,  δ  a ,  ω  p ,  ω  a ) into an estimate of the equiripple order based on 
a linear phase model. The most popular estimation formulas are summarized below. 
The fi rst estimator is given by

    NFIR
a p≈

− −
+

10 15

14
110log ( )
,

δ δ
ω∆

    (9.18)  

       Figure 9.9     Hilbert FIR fi lter impulse response (left) and magnitude frequency response 
showing the presence of guard bands (right).  
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       Figure 9.10     Fifty - fi rst - order differentiator ’ s impulse (left) and magnitude frequency 
response (right).  
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  where  Δ  ω  is the normalized transition bandwidth and is given by  Δ  ω     =    ( ω  a     −     ω  p )/ ω  s . 
Another order estimator is similar and is given by

    NFIR
a p≈

− −
+

10 13

14 6
110log ( )

.
.

δ δ
ω∆

    (9.19)   

 These formulas provide an estimate of an equiripple fi lter ’ s order needed to 
meet linear phase FIR design requirements specifi ed in terms of  δ  p ,  δ  a ,  ω  p , and  ω  a . 
For a uniform error weighted equiripple FIR (i.e.,  W ( ϖ )    =    1),  δ  a     =     δ  p     =     δ , and for a 
nonuniformly weighted equiripple FIR with   δ δ δa p = . For example, a six - channel 
DVD audio player running at 96   kSa/s would require that a 100 - tap FIR operate at 
60   M   MAC/s. The order prediction formula suggests that the design of a steep - skit 
or narrow - band equiripple FIR will result in an unrealistic high - order solution. As 
a  “ rule of thumb, ”  when the normalized transition band  Δ  ϖ  has a value less than 
0.04, an equiripple fi lter is virtually impossible to build. Another problem with high -
 order FIRs is that the coeffi cients found out on the tapers (tap weight coeffi cients 
found at the extreme beginning or end of the impulse response) would have such 
small values that they could not be successfully resolved by a fi xed - point word. 

  Example:  FIR  Order 

 Consider again the nonuniformly weighted low - pass equiripple FIR fi lter studied in 
an earlier example. In particular,  δ  p     =    0.1,  δ  a     =    0.00018, and  Δ  ϖ     =    0.05. From 
Equation  9.18 , one obtains an estimate of  N     =    47.3, and from Equation  9.19 , 
 N     =    48.3, both being consistent with the realized order of  N     =    51.   

   MATLAB  EQUIRIPPLE  FIR  

 MATLAB provides several means of designing equiripple FIRs. The most common 
of these are as follows:

    •       fi rpm  (equiripple FIR design using the Parks – McClellan method),  

   •       fi rpmord  (order estimation for equiripple FIR design using the Parks –
 McClellan method).    

 Other toolkits, such as the Filter Design Toolbox, include the following:

    •       fi rgr  (Parks – McClellan equiripple fi lter),  

   •       fi rcband  (constrained - band equiripple fi lter),  

   •       fi rxceqrip  (constrained low - pass equiripple fi lter),  

   •       fi requint  (equiripple FIR interpolation fi lter),  

   •       fi rcgr  (Parks – McClellan equiripple fi lter).    

 These methods share many core attributes, differing mainly in subtle features. The 
most versatile tools are the  fi rgr  and  fi rpm  modules. As with other MATLAB FIR 
design tools, a traditional  n th - order FIR is of order  n     −    1 in MATLAB. 
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  Example: Equiripple MATLAB design 

 A fi ve - band linear phase Type 1 FIR is defi ned using MATLAB. Initially, the band 
error weights are set to unity across the baseband. A second design is requested with 
the stopband errors being progressively smaller than those of the unity weighted 
passband. Finally, the process is reversed, strongly weighting the passband errors. 
The three distinct designs are reported in Figure  9.11 . The relative trade - offs between 
passband and stopband gains as a function of error weights can be clearly seen.   

 The MATLAB function  fi rpmorder  function can be used to estimate the order 
of a linear equiripple FIR. Use  fi rpmorder  to design, for example, a minimum - order 
low - pass fi lter with a 500 - Hz passband cutoff frequency and 600 - Hz stopband cutoff 
frequency, having a sampling frequency of 2000   Hz, and at least 40 - dB attenuation 
in the stopband with less than 3   dB of ripple in the passband as shown in Figure 
 9.12 . A 23rd - order (order 22 in MATLAB) FIR is required that is implemented and 
displayed in Figure  9.12 .   

 There is no hard and fast rule that would suggest which class of classic FIR 
(window, LMS, equiripple) can best meet a set of fi lter requirements with the lowest 
order solution. The success of a fi lter solution is predicated on the decisions made 
by the fi lter designer. Nevertheless, one of the most basic decisions to be made is 
what type of fi lter best meets the design specifi cations. There is a common tendency 
to assume that an equiripple is generally a  “ best fi t. ”  This is not necessarily univer-
sally correct. However, with the abundance of fi lter design software, a family of 
designs can be rapidly implemented and compared. To illustrate (see Fig.  9.13 ), 

       Figure 9.11     Multiple 31st - order equiripple Type 1 fi ve - band linear phase equiripple FIRs 
with varying error weights.  
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       Figure 9.12     Designed 23rd - order equiripple FIR showing magnitude frequency response 
in decibels (left) and phase response (right).  
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consider designing and comparing a 31st - order (order 30 MATLAB) window - based, 
LMS, and equiripple linear phase FIRs that meet a common set of specifi cations. 
The window - based fi lter, designed using a rectangular window, is seen to have an 
extended transition band and pronounced Gibbs error. The maximum ripple error of 
the LMS and equiripple fi lters have essentially the same error found immediately 
before the end of the passband. It can also be seen that the maximum ripple error 
of an equiripple fi lter is constant maximum error, but the LMS local maximum errors 
monotonically decreases moving toward DC ( ϖ     =    0). As a result, in the absence of 
any other criterion, any of these may be the designer ’ s selection.     

   L  P   FIR  DESIGN 

 The  minimum square error  ( MSE ) and minimax design strategies have been intro-
duced in the form of window - based, LMS, and equiripple designs. These methods 
give a wide and generally suffi cient coverage of the fi xed - coeffi cient FIR design 
space. A more general design strategy that can embody a number of the studied 
methodologies is based on minimizing an  L  p  error norm. The approximation error 
is again defi ned to be

    ε ϖ ϖ ϖ ϖ( ) = ( ) ( ) − ( )W H e H ej j
d ,     (9.20)  

  where  W ( ϖ )    ≥    0 is a non - negative error weight. It can be noted that the error  ε ( ϖ ) 
is the weighted difference between the desired and realized baseband frequency 
response. The  L  p  error norm is formally defi ned to be

    ε ϖ ϖ ϖ ϖ( ) = ( ) ( ) − ( )( )



=

−

∑p i
j j p

i

N p

W H e H ei i
d

0

1 1/

.     (9.21)   

 Some of the familiar  L  p  norms are the  p     =    2 (Euclidian) and  p     =     ∞  norms. The  L  2  
norm satisfi es the formula

    ε ϖ ϖ ϖ ϖ( ) = ( ) ( ) − ( )( )
=

−

∑2

2

0

1

W H e H ei
j j

i

N

i i
d .     (9.22)   

       Figure 9.13     Comparison of FIR design strategies. Equiripple, window, and LMS fi lter 
magnitude frequency responses.  
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 The  L   ∞   norm satisfi es

    ε ϖ ϖ ϖ ϖ( ) = ( ) ( ) − ( )( )∞ max .W H e H ei
j ji i

d     (9.23)   

 The differences between  L  p  norms can be graphically explored. The  L  p  unit norm 
(i.e., || ε ( ϖ )||  p      =    1) in two - space is graphically interpreted in Figure  9.14  for  p     =    1, 2, 
and  ∞ . While each error norm is unity (i.e., || e ( ϖ )||  p      =    1), it can be seen that they 
produce different outcomes, specifi cally the domain of  e ( ϖ ) for which || e ( ϖ )||  p      =    1.    

   MATLAB   L  P  DESIGN 

 MATLAB provides a means of designing  L  p  optimal FIRs using the form of  fi rlp-
norm , found in the Filter Design Toolbox. The tool can be used to determine the 
best fi t, in an  L  p  sense, between a desired and realized response. The function  fi rlp-
norm  performs a scanning operation over a range of  p  to determine the minimum 
 L  p  error design. To illustrate, consider the design of a 21st - order (20 in MATLAB) 
low - pass fi lter having a passband out to  f     =    0.2 f  s , and three design attempts with the 
fi rst being  p     ∈    [2, 4], the second  p     ∈     [6, 10], and the third  p     ∈    [12, 128], where  p  
is required to be an even integer with 128 being essentially infi nity. The magnitude 
frequency response outcomes are shown in Figure  9.15 . It can be noted that as a 
group, the designed FIRs are similar. At a more detailed level, however, differences 
exist. It can be noted that for the lower values of  p , the magnitude frequency response 

       Figure 9.14     Loci of points satisfying | ε ( ϖ )||  p      =    1 for  p     =    1, 2, and  ∞ .  
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takes on the attributes of an LMS FIR fi lter. For higher values of  p , the fi lter begins 
to emulate an equiripple design.   

 One of the features of the  L  p  design strategy is that  fi rlpnorm  is not restricted 
to model only piecewise constant desired fi lter frequency responses. To illustrate, 
suppose the passband of the FIR displayed in Figure  9.15  is to be modifi ed. It is 
assumed that the middle of the passband is to have a gain that is about 25% higher 
than the gains found at the passband edges. This is accomplished by using MATLAB 
to initiate a scan of all even values of  p  from 2 to 128. The results are shown in 
Figure  9.16  and exhibit an elevated gain in the middle of the passband as requested.   

 A word of caution: The resulting fi lter is not a linear phase FIR as the data in 
Figure  9.17  would indicate. In particular, the impulse response is asymmetric and 
the phase response shown to be nonlinear.      
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    

       Figure 9.16     Custom  L  p  FIR design using  fi rlpnorm .  
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       Figure 9.17     Impulse response (left) and phase response (right) of the FIR displayed in 
Figure  9.16 .  
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  CHAPTER 10 

 FIR : SPECIAL CASES     

   INTRODUCTION 

 Finite impulse responses (FIRs) exhibit a wide range of speed, frequency selectivity, 
and functional capabilities. They are found in a variety of applications. The majority 
of baseline FIR design requirements can be met using baseline window, least mean 
square (LMS), or equiripple FIRs. In some instances, these standard design practices 
can result in excessively complex outcomes or exhibit other undesirable attributes. 
In such cases, special FIR forms can sometimes be employed to overcome the 
shortcomings of traditional FIR designs. Some of the more important FIR special 
cases are developed below.  

  MOVING AVERAGE ( MA )  FIR  

 An important class of FIR fi lters are those referred to as being multiplier free. A 
multiplier - free example is the moving average (MA) FIR. In the time domain, the 
output of an MA fi lter is the average value of  N  contiguous samples. An  N th - order 
MA fi lter has a transfer function given by
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    (10.1)   

 An  N th - order MA FIR is implemented with  N     −    1 shift registers and an accumulator. 
The accumulator ’ s dynamic range requirement can be specifi ed in terms of the fi l-
ter ’ s worst case gain. The MA FIR ’ s worst case gain is given by  G  MA     =    (1/ N )  ∑  
| h [ k ]|. Since the FIR ’ s impulse response is  h [ k ]    =    1 at sample  k , the worst case gain 
is given by  G  MA     =    1. The zeros or nulls of the MA FIR are defi ned by the location 
of the roots of the numerator polynomial in Equation  10.1 , namely,

    z z e i NN
i

j i N− = → = ∈ −( )1 0 0 12π / for [ , ].     (10.2)   
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 The zeros of an  N th - order MA fi lter are uniformly distributed about the periphery 
of the unit circle ( z     =     e j   2 π    n   /   N  ) on  ϕ     =    2 π / N  radian centers. One of the zeros is located 
at  z     =    1, which exactly coincides with the location of a pole defi ned by the denomi-
nator found in Equation  10.1 . The result is exact pole - zero cancellation at  z     =    1 as 
displayed in Figure  10.1 . The surviving zeros defi ne the location of the frequency 
response nulls shown in Figure  10.1 . The MA FIR ’ s magnitude frequency response 
is seen to be decidedly low - pass and has a sin( x )/ x  magnitude frequency response 
envelope.    

  COMB  FIR  

 A comb FIR is a multiplier - free variation on the MA fi lter theme. An  N th - order comb 
FIR simply adds or subtracts an  N  - sampled delayed from the current input sample 
value. The two versions of a comb FIR have transfer functions given by

    
H z z z e i N

H z z z

N
i

j i N j

N
i

+
− +( )

−
−

( ) = + = → = ∈ −

( ) = − = →
1 0 0 1

1 0

2π π/ for [ , ],

== ∈ −( )e i Nj i N2 0 1π / for [ , ].
    (10.3)   

 Equation  10.3  states that a multiplier - free comb fi lter consists only of shift registers 
and an adder or subtractor. Like the MA fi lter, the zeros of the comb fi lter  H   ±  ( z ) are 
uniformly distributed along the periphery of the unit circle. The locations of the 
zeros defi ne the position of the nulls in the frequency domain as shown in Figure 
 10.2 . Observe that for the ( + ) case, the comb fi lter does not have a null at 0   Hz (DC) 
( z     =    1), resulting in a fi nite DC gain (i.e.,  H   +  (1)    =    2). For the ( − ) case, the comb 
fi lter has a null located at DC ( z     =    1) and has local peak gains of 2 between the nulls. 
In either case, the FIR ’ s worst case comb fi lter gain is  G  comb     =    2.   

  Example:  MA  and Comb Zero Locations 

 The pole - zero distributions of unscaled MA and comb fi lters, both having transfer 
function numerators (1    ±     z   − 7 ), are displayed in Figure  10.3 . Observe that in all cases 
the zeros lie on the unit circle and are separated from each other by 2 π /7 radians. 

       Figure 10.1     Thirty - fi rst - order moving average (MA) multiplier - free FIR. Magnitude 
frequency response (left) and pole - zero distribution (right). Note the absence of a pole or 
zero at  z     =    1.  
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The MA pole - zero annihilation occurs at  z     =    1 giving rise to a fi nite DC gain (i.e., 
 H (1)    ≠    0). The comb fi lter, given by  H   +  ( z )    =    1    +     z   − 7 , also has a fi nite DC gain by 
virtue of the fact that the fi lter does not possess a zero  z     =    1. However, the fi lter has 
zero gain at the Nyquist frequency due to a zero being located at  z     =     − 1. The comb 
fi lter given by  H   −  ( z )    =    1    −     z   − 7  has a zero at  z     =    1, but none at  z     =     − 1. Therefore, this 
fi lter has a zero DC gain and fi nite gain at the Nyquist frequency. The worst case 
gain for the unnormalized MA fi lter is  G  MA     =    8, and for the comb fi lters,  G  comb     =    2. 
The magnitude frequency responses for the three multiplier - free FIRs are examined 
in Figure  10.4 .     

       Figure 10.2     Twelfth - order comb FIR magnitude frequency response and zero distribution 
for the ( − ) option (left) and ( + ) option (right).  
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       Figure 10.3     Pole - zero distributions of moving average and comb FIR fi lters all having 
numerators of (1    −     z   − 7 ). Notice that the zeros are separated by angle 2 π /7 radians.  
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       Figure 10.4     Magnitude frequency responses for an unnormalized MA FIR ( h  1 [ k ]    =    {1, 1, 
1, 1, 1, 1, 1, 1}) ( N     =    8), a ( − ) comb fi lter ( h  2 [ k ]    =    {1, 0, 0, 0, 0, 0, 0,  − 1}) ( N     =    7), and ( + ) 
comb fi lter ( h  3 [ k ]    =    {1, 0, 0, 0, 0, 0, 0, 1}) ( N     =    7).  
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    L   - BAND FILTERS 

 An  L  - band  N th - order FIR is a fi lter with every  L th coeffi cient being zero. An  L  - band 
low - pass FIR is also called a Nyquist fi lter and has a passband width that is roughly 
1/ L th the baseband frequency range. Compared with a regular  N th - order FIR defi ned 
in terms of  N  nonzero tap - weight coeffi cients, an  L  - band  N th - order FIR is less 
complex. The fact that every  L th multiply - accumulate can be omitted means that an 
 L  - band FIR has potentially higher real - time bandwidth when compared with a 
general  N th - order FIR. 

 A half - band FIR ( L     =    2) is a special FIR case that exhibits the magnitude 
frequency response similar to that shown in Figure  10.5 . Observe that the frequency 
response has a point of symmetry in the middle of the baseband (i.e., at  ϖ     =     π /2), a 
point that corresponds to half the Nyquist frequency. The result is an essential 2:1 
reduction in the number of coeffi cients needed to implement a half - band FIR com-
pared with the general case. That is, except for the center - tap coeffi cient, every other 
tap - weight coeffi cient is zero, effectively halving the FIR ’ s multiply - accumulation 
burden.   

  Example: Half - Band  FIR  

 Consider an 11th - order linear phase half - band FIR having the center of the transition 
band set to  f     =    0.25 f  s  with a transition bandwidth of  Δ  f     =     ± 0.05 f  s . The fi lter coeffi -
cients of the resulting half - band FIR fi lter are shown in Figure  10.6 . Notice that 
except for the FIR ’ s center - tap coeffi cient, every other coeffi cient has a value of 
zero. As a result, when compared with an arbitrary FIR, the half - band FIR requires 
approximately  ½  the number of multiply - accumulate calls per fi lter cycle. This 
translates into a higher potential real - time fi lter rate.     

       Figure 10.5     Desired magnitude frequency response of a half - band FIR.  
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       Figure 10.6     Magnitude frequency response of a low - pass 11th - order half - band FIR (left) 
with a symmetric impulse response (right) showing FIR coeffi cients  h [1],  h [3],  h [7], and 
 h [9]    =    0.  
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  MIRROR  FIR  

 FIR windowed, LMS, and equiripple strategies are core FIR technologies. In all 
cases, a noncausal transfer function of the resulting  L th - order FIR has the form 
 H ( z )    =     Σ   h [ k ]z  −    k  ,  k     ∈    [ −  M ,  M ], where  L     =    2 M     +    1. It is often desired to develop 
variations of these basic fi lters that maintain a close mathematical relationship to 
the original fi lter, but physically exhibits different frequency - domain behavior. For 
example, a mirror fi lter refl ects an inverted copy of the magnitude frequency response 
of a parent fi lter. If the original, or parent fi lter, is low - pass with a normalized transi-
tion bandwidth  Δ , then the mirror fi lter would be a high - pass fi lter having the same 
transition bandwidth  Δ . Mirroring can be achieved by simply modulating the impulse 
response  h [ k ] by a sinusoid running at the Nyquist frequency. That is, the parent 
fi lter ’ s coeffi cients are modulated by  c [ k ]    =    cos( π  k )    =    ( − 1)  k  . This action will trans-
late (heterodyne) the original frequency response centered about DC to a new center 
frequency located at the Nyquist frequency. As a result, the mirror version of a parent 
FIR  h  parent [ k ] has an impulse response  h  mirror [ k ]    =    ( − 1)  k h  parent [ k ]. The only structural 
difference between the mirror and parent fi lter is the alternating sign of the 
tap - weight coeffi cients. The spectral relationship between a mirror and its parent 
fi lter is graphically interpreted in Figure  10.7  for a linear phase 21st - order 
parent FIR.    

  COMPLEMENT  FIR  

 Assume the transfer function of a parent fi lter is given by  H  parent ( e j    ϖ  ) fi lter and has 
an impulse response  h  parent [ k ] over  k     ∈    [ −  L ,  L ]. The transfer function of the comple-
mentary fi lter is

    H e H ej j
comp parent( ) ( ) .ϖ ϖ+ = 1     (10.4)   

       Figure 10.7     Comparison of mirror and complement (see next section) FIRs with a 
common low - pass parent FIR.  

+/–
Σh[k]

Parent Filter

(–1)kh[k]

Mirror Filter

(–1)kh[k]

Complement Filter

L Delays

0

1

Half-Band 
Frequency Response

Normalized Baseband Frequency

M
ag

ni
tu

de

Realized
Desired

π

Parent, Mirror, and 
Complement FIRs

Normalized Baseband Frequency

M
ag

ni
tu

de

Parent
Mirror
Complement

π

1

0
00



118 CHAPTER 10 FIR: SPECIAL CASES

 If the odd order linear phase Type 1 parent fi lter  H  parent ( e j    ϖ  ) has a passband gain of 
 K , then Equation  10.4  can be modifi ed to read  H  comp ( e j    ϖ  )    +     H  parent ( e j    ϖ  )    =     K . Observe 
that when the original and complement fi lter are added, an all - pass fi lter results. 
Complement fi lters can be particularly useful when designing a bank of sub - band 
fi lters to cover a wide frequency range. From Equation  10.4 , the complement fi lter 
can be expressed as (assume  K     =    1)  H  comp ( e j    ϖ  )    =    1    −     H ( e j    ϖ  ) with an impulse response 
 h  comp [ k ], over  k     ∈    [ −  L ,  L ]. To create and implement a complement fi lter, the center -
 tap coeffi cient (i.e.,  h [0]) of the parent FIR is subtracted from unity to defi ne a new 
center - tap coeffi cient for the complement FIR. The other complement fi lter coeffi -
cients are the negative of the parent fi lter ’ s tap - weight values. If the parent ’ s center -
 tap coeffi cient is not located at  k     =    0 but is instead at sample  L  for a causal fi lter, 
then the parent and complement FIR ’ s impulse responses are given by

    

Parent

Complement

: , , , , , ,

:

h k h h L h L h L h L[ ] = [ ] −[ ] [ ] +[ ] [ ]{ }0 1 1 2… …
hh k h h L h L h L h Lcomp [ ] = − [ ] − −[ ] − [ ]( ) − +[ ] − [ ]{ }0 1 1 1 2, , , , , , .… …    

 (10.5)   

 In terms of Equation  10.5 , a complement FIR ’ s transfer function can be interpreted 
as  H  comp ( z )    =     z   −    L      −     H  parent ( z ), which states that the complement fi lter can be obtained 
simply with the addition of the output of an  L  - delay shift register, which is a 
multiplier - less operation (essentially zero overhead). It is interesting to note that the 
shift register length  L  is equal to the group delay of the linear phase parent FIR. 
This case is illustrated in Figure  10.7 . 

  Example: Mirror and Complement  FIR  

 Consider a simple linear phase fi fth - order unnormalized parent MA parent FIR 
having an impulse response  h [ k ]    =    {1/5, 1/5, 1/5, 1/5, 1/5}. The mirror and comple-
ment versions are given by

    
h k H z

z

mirror mirror/ / / / /

/ /

[ ] { , , , , } ( )= − − ⇔
= − +−

1 5 1 5 1 5 1 5 1 5

1 5 1 5 11 // / /5 1 5 1 52 3 4z z z− − −− +
  

  and

    
h k H z

z

comp mirror/ / / / /

/ /

[ ] { , , , , } ( )= − − − − ⇔

= − − +−

1 5 1 5 4 5 1 5 1 5

1 5 1 5 1 44 5 1 5 1 52 3 4/ / /z z z− − −− − .
   

 The magnitude frequency responses of the fi fth - order parent MA, mirror, and 
complement fi lters are displayed in Figure  10.8 . The mirror action is obvious and 
the complement fi lter behavior can be argued in terms of  H  comp ( e j    ϖ  )    +     H  parent ( e j    ϖ  )    =    1. 
Specifi cally,  H  comp ( e j    ϖ  )    +     H ( e j    ϖ  )    =     z   − 2 , which physically represents an all - pass linear 
phase FIR.     
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  FREQUENCY SAMPLING FILTER BANK 

 The frequency sampling fi lter bank consists of a set of band - pass fi lters. It draws 
from the theory of multiplier - free FIRs and should not be confused with a frequency 
sampling fi lter based on the theory of truncated Fourier transform (MATLAB   fi r2  ). 
An  N th - order frequency sampling fi lter bank can be envisioned as a collection of 
narrow - band fi lters having user - defi ned gains ( A ( ϖ )) and phase responses ( ϕ ( ϖ )) at 
the normalized center frequencies  ϖ     =    2 π  n / N . That is, at the  n th center frequency, 
the fi lter ’ s response is

    H e H n A n nn
j n N

n( ) [ ] ( ) ( ).2π φ/ = = ∠     (10.6)   

 The impulse response of an  N th - order FIR satisfying Equation  10.6 , for  n     ∈    [0, 
 N     −    1], can be computed using an inverse discrete Fourier transform (IDFT). 
Equivalently, the  z  - transform and DFT representation of the realized FIR is

    H z h k z
N

H n e zk
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j nk N
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11 π / ,,     (10.7)   

 which, after simplifi cation and reversing the order of summation, can be further 
reduced to read

    H z
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 Using a standard summation reduction formula, the parenthetical term in Equation 
 10.8  can be expressed as

    e z
z

e z
j n N k

k

N N

j n N
2 1
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2 1
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1
π

π
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 This allows the FIR transfer function to be expressed as

    H z
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       Figure 10.8     Fifth - order MA parent FIR, mirror, and complement versions.  
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  and is interpreted in Figure  10.9 . The preamble fi lter (1    −     z   −    N  ) is seen to be a simple 
comb fi lter that places nulls (zeros) at the reference frequency locations  ϖ     =    2 π  n / N . 
The terms in the summation represent a collection of sub - band fi lters having poles 
also at the center frequencies  ϖ     =    2 π  n / N . Ideally, the pole at  ϖ     =    2 π  n / N  cancels a 
comb fi lter zero located at the same location. Due to the pole - zero cancellation, the 
resulting fi lter is without poles (i.e., FIR).   

 Each sub - band fi lter is a sharply tuned narrow - band fi lter characterized by

    H z
H n

e z

A n n

e z
n Nn j n N j n N

( ) = [ ]
−

= [ ]∠ ( )
−

∈ −− −
d

/ /1 1
0 1

2 1 2 1π π

φ
, [ , ].     (10.11)   

 The poles of these resonator fi lters are located along the periphery of the unit circle 
at  z     =     e j   2 π    n   /   N  . For stability reasons, the fi lter poles and zeros are often moved slightly 
interior to the unit circle by scaling the unit circle poles and zeros back to a radius 
 r  (i.e.,  z     =     re j   2 π    n   /   N  ), where  r     <    1. Since the complex poles occur in complex - conjugate 
pairs that allow the fi lter defi ned by Equation  10.10  to be represented as a second -
 order system (using Euler ’ s equation), namely,
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 (10.12)   

 if  N  is odd. If  N  is even, then
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 (10.13)   

 While the frequency sampling fi lter bank method has been successfully used for 
some time to design FIR fi lters having an arbitrary magnitude frequency response 

       Figure 10.9     Frequency sampling fi lter bank system architecture.  
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envelope, it does have acknowledged limitations. A major design problem can occur 
when a frequency sampling fi lter is required to be modeled as an ideal fi lter having 
a piecewise constant fi lter response characterized by | H ( n )|    =    1 and | H ( n     +    1)|    =    0 
(i.e., abrupt change across the transition band boundary). Modeling sharp transition 
is also diffi cult using an IDFT (i.e., Gibbs phenomenon). The problem can be miti-
gated somewhat by relaxing the transition band condition so that | H ( n )|    =    1    −     α , and 
| H ( n     +    1)|    =     α  for 0 ∠  α  ∠ 1.0. This will reduce the slope of the fi lter ’ s skirt so that it 
can be more easily modeled by an IDFT. 

  Example: Frequency Sampling Filter 

 An  N     =    15 frequency sampling band - pass FIR having an assigned frequency 
response,

    H n
j n

j
n ( )

,

,
,=

+ = ±
+





1 0 3

0 0 otherwise
   

 is to be implemented. The solution consists of four fi lters:  H  0 ( z ),  H  1 ( z ),  H  2 ( z ), and 
 H  3 ( z ). The frequency assignment for  H  3 ( z ) ( n     =    3), at frequency  ϖ     =    2 π (3/15), 
satisfi es

    H z
z z

z z
3

15 1

1

1

15

2 1 2 3 15

1 2 2 3 15
( )

( ) ( cos( ( / )) )

cos( ( ))
=

− −
− +

− −

−

π
π / −−2

.    

 The resulting frequency sampled fi lter ’ s magnitude frequency responses and pole -
 zero distribution is shown in Figure  10.10 . The frequency response is seen to be that 
of a band - pass fi lter. The pole - zero diagram shows pole - zero cancellation at 
 ϖ     =     ± 2 π (3/15), leaving all other surviving zeros unaffected.     

  SAVITZKY – GOLAY ( SG )  FIR  

 SG smoothing fi lters (also called digital smoothing polynomial fi lters) are typically 
used to reduce the effects of additive noise in a broadband signal. They are not 
so much a fi lter as they are a polynomial interpolator. In some applications, SG 

       Figure 10.10     Magnitude frequency response of a single frequency sampling fi lter bank 
band - pass fi lter element (left) and pole - zero distribution (right).  

0 π
0

1

Normalized Baseband

M
ag

ni
tu

de

–1

14

–1 0

0

1

1



122 CHAPTER 10 FIR: SPECIAL CASES

smoothing fi lters can outperform a standard FIR smoothing fi lter, which tends to 
fi lter out a signifi cant portion of the signal ’ s high - frequency content along with the 
noise. Although SG fi lters are more effective at preserving pertinent high - frequency 
signal components, they are less successful than standard averaging FIR fi lters at 
rejecting low - frequency noise. The response of an SG fi lter to an input  x [ k ] is

    y i h k x i k
k n

nR

[ ] = [ ] +[ ]
=−
∑ 0

L

.     (10.14)   

 The SG smoothing strategy is designed to preserve higher - order statistical moments 
and is based on least - squares techniques that fi t a low - order polynomial (typically 
quadratic or quadric) to a collection of data samples. Data are assumed to belong to 
a moving noisy signal record of length  N  R     +     N  L     +    1 samples ( N  R     =    number of 
samples to the right of the 0th sample,  N  L  to the left). A polynomial interpolation 
equation can then be defi ned by

    ˆ ,x d a dm
n

n m

m

[ ] =
=−
∑     (10.15)  

  where   ̂x d[ ] is to become an estimate of  x [ d ], for  d     ∈    [ −  N  L ,  N  R ]. An example of a 
quadratic interpolation fi lter is given by   ̂x d a a d a d[ ] = + +0 1 2

21 . The LMS solution 
can be expressed in terms of the matrix equation
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    (10.16)  

  where  d  k  is the relative distance from the point to be smoothed to data point   ̂x k[ ]. 
The optimal solution will minimize the squared error where the error is given by 
  ε = − = −x x x Dxˆ ˆ  with the solution that is defi ned by the pseudoinverse (or Penrose 
inverse), namely,

    a D D D x Hx= ( ) =−T T1
.     (10.17)   

 For example, using a 0th - order interpolating polynomial, namely,   ̂x k a[ ] = 0, and fi ve 
consecutive samples { x   − 2 ,  x   − 1 ,  x  0 ,  x  1 ,  x  2 }, with  N  L     =     N  R     =    2, defi ne the interpolator 
 D     =    [1   1   1   1   1] T . Since  D     =    [1   1   1   1   1] T , it follows that

    H D D D= ( ) =























−T T1 1
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1 1 1 1 1
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.     (10.18)   
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 Isolating  a  0 , it follows that  a  0     =    (1/5)[1   1   1   1   1] T . Finally,

    ˆ ,x a x xk

k

0 0

2

21

5
= =

=−
∑     (10.19)   

 which defi nes the synthesized fi lter to be a simple MA estimator. The process can 
be generalized to read

    

a D D D x

y n a x a m x n m
m N

N

= ( )

[ ] = = [ ] +[ ]
=−
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T T

T

L

R

0 0 0

    (10.20)  

  where  y  0 [ n ] is the optimal noise - suppressed estimate of the interpolated value of a 
set of noisy sample values. 

  Example:  SG   FIR  Design 

 Use a cubic interpolating polynomial having the form  a  0     +     a  1  d     +     a  2  d  2     +     a  3  d  3 , 
 d     ∈    [ − 2, 2], and knowledge of fi ve consecutive samples, with  N  L     =    2 and  N  R     =    2, 
defi ne an SG smoothing fi lter in terms of
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 SG fi lters are optimal in that they minimize the least - square error in fi tting a poly-
nomial to each frame of noisy data. An example of an SG application is suppressing 
additive noise from a noisy sinusoid  x [ k ], as shown in Figure  10.11 . The displayed 
outcome was produced using MATLAB ’ s  sgola ( x ,  k ,  f ) command, where  k  is the 
interpolation polynomial order (e.g., cubic    =    3) and  f  is called the frame size (active 
data window). The results shown in Figure  10.11  are for a cubic interpolation ( k     =    3) 
and two frame sizes ( f     =    31, 101).     
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  NONLINEAR PHASE  FIR  

 An acknowledged FIR attribute is its ability to support linear phase signal process-
ing. There are times, however, when maintaining phase linearity is not required, but 
minimizing fi lter order (complexity) is an objective. In such cases, a nonlinear phase 
FIR becomes a viable design option. Due to symmetry requirements, the design 
specifi cations of an  N th - order linear phase FIR essentially constrains  N  coeffi cients 
( h i      =     ±  h N    −    i  ). Without such a constraint, an FIR of approximate order  N /2 may be 
found that meets or exceeds the magnitude frequency specifi cation (no imposed 
phase requirements). The MATLAB function  cfi rm  program can be used to imple-
ment a nonlinear phase equiripple FIR. 

  Example: Nonlinear Phase  FIR  

 Design an 11th - order nonlinear phase FIR with an asymmetric impulse response 
given by the raised cosine function 1    +    cos( ϕ ),  ϕ     ∈    [0,  π ]. The magnitude frequency 
response and phase response are displayed in Figure  10.12 . To achieve the displayed 

       Figure 10.11     Savitzky – Golay (SG) cubic smoothing fi lters applied to a noise - added 
sinusoid using different frame sizes.  
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       Figure 10.12     Magnitude frequency response and phase response of an 11th - order 
nonlinear phase FIR.  
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frequency response, a 22nd - order linear phase FIR would be required. The nonlinear 
phase performance can be witnessed in Figure  10.12 .     

  FARROW  FIR  

 An interesting class of fi lter is one that can implement fractional delays to a signal 
with respect to the fi lter ’ s clock. Such a fi lter can be motivated in the context of 
interpolation. Interpolation, it may be recalled, refers to those mathematical tech-
niques that produce intersample values of a sampled signal process. A system that 
can implement variable delay lengths interpolations is called a Farrow fi lter. A 
Farrow fi lter based on a linear interpolation rule is shown in Figure  10.13 . The 
system described satisfi es the difference equation:  

    Fractional delay: [ ] ( ) [ ] [ ].y k x k x k= − − +1 1α α     (10.21)   

 The choice of the control parameter  α  will allow the interpolation delay to be effec-
tively set between 0 and 1.    
  
 
 
 
 
 
 
 
 
 
 
 
    

 

       Figure 10.13     Farrow fi lter using linear interpolation.  
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  CHAPTER 11 

FIR IMPLEMENTATION     

   FINITE IMPULSE RESPONSE FILTER ( FIR ) 
IMPLEMENTATION 

 Digital fi lters are implemented using the basic building block elements of adders, 
multipliers, and shift registers. How these elements are arranged and interconnected 
defi nes a fi lter ’ s architecture. In general, a given fi lter can have multiple architectures 
that can be used to implement a common transfer function. The individual architec-
tures possess different attributes in the form of complexity, speed, latency, accuracy, 
power dissipation, and other metrics. There are, however, only a few basic architec-
tural forms that are found in common use.  

  DIRECT - FORM  FIR  

 An  N th - order causal FIR fi lter, having an impulse response given by  h [ k ]    =    { h  0 , 
 h  1 ,    . . .    ,  h N    − 1 }, can be expressed in transfer function form as  H ( z )    =     ∑   h  k  z  − k  ,  k     ∈    [0, 
 N     −    1]. The most common FIR implementation architecture is called the direct - form 
FIR. A direct FIR implementation of  H (z) is summarized in Figure  11.1 . An  N th -
 order direct FIR is seen to consist of a collection of  N     −    1 shift registers,  N  tap -
 weight coeffi cients  h k  , with attendant multipliers, and  N     −    1 adders or an accumulator. 
The FIR ’ s impulse response can be directly inferred from the architecture to be 
 h [ k ]    =    { h  0 ,  h  1 ,    . . .    ,  h N    − 1 }. For each input sample  x [ k ], a direct FIR would be imple-
mented using the following set of arithmetic operations:   

 For each input sample  x [k], do

    x x k0 = [ ]   

    y k h x h x h xN N[ ] = + + + − −0 0 1 1 1 1…   

    { ; , , , }update FIFO stack x x x x x xN N− −= = = =1 2 2 1 1 0… …    

 Once initiated, the routine would be continually executed over the fi lter ’ s life cycle. 
The designers of modern digital signal processing (DSP)  μ ps have learned to imple-
ment arrayed  multiply - accumulate  ( MAC ) calls using optimized internal architec-
tures involving single or multiple MAC units. Modern DSP  μ ps generally contain 
dual - port memory that can simultaneously supply two MAC operands ( x i  ,  h j  ) per 
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execution cycle. Coeffi cients can be read to and from memory in a circular modulo( N ) 
manner, repeating a fi xed sequence for each fi lter cycle. Since many DSP  μ ps can 
execute an instruction in a single MAC or pipeline cycle, the computational latency 
can be estimated to be  T  FIR_cycle     ≅    ( N     +    1) T  inst - cycle  

 Mathworks provides some direct architectural support for implementing FIRs 
using the MATLAB Filter Design Toolbox  dfi lt  option. In particular,  dfi lt.dffr  
converts a transfer function into a direct FIR. To illustrate, a fourth - order FIR is 
presented in Figure  11.2 . In addition, MATLAB ’ s Signal Processing Toolbox con-
tains the fvtool command that can be used to graphically examine the fi lter ’ s time -
 domain, pole - zero, and frequency - domain behavior. A sample of the MATLAB code 
is shown below:  

 h = fi rpm(3,[0 0.4 0.5 1], [1 1 0 0]);      % Filter Design Toolbox 

 Hdir = dfi lt.dffi r(h); % Direct FIR 

 realizemdl(Hdir); % SIMULINK   

  TRANSPOSE ARCHITECTURE 

 Another baseline FIR architecture is called the transpose FIR, which is a variation 
of the direct architecture theme. An FIR, with an impulse response  h [ k ]    =    

       Figure 11.1     Direct  N th - order FIR architecture.  
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       Figure 11.2     A fourth - order (third - order MATLAB) direct FIR architecture (MATLAB 
style).  

Input
K

z–1

K

K

z–1

z–1

K
   +

+

   +

+

   +

+

Output

b(1)

b(4)

b(3)

b(2)



SYMMETRIC FIR ARCHITECTURES 129

{ h  0 ,  h  1 ,    . . .    ,  h N −    1 } can be implemented as the transpose architecture shown in Figure 
 11.3 . Mathworks provides some support in the creation of a transpose FIR using the 
Filter Design Toolbox  dfi lt  option. In particular,  dfi lt.dffi rt  converts an FIR ’ s 
transfer function into a transpose form FIR. The outcome for a fourth - order FIR is 
shown in Figure  11.4 . A sample of the MATLAB code is shown below:  

 h = fi rpm(3,[0 0.4 0.5 1], [1 1 0 0]);      %         Filter Design Toolbox 

 Hdt = dfi lt.dffi rt(h); % Transpose FIR 

 realizemdl(Hdt); % SIMULINK   

  SYMMETRIC  FIR  ARCHITECTURES 

 Many baseline FIRs are linear phase fi lters and, as a result, possess either even or 
odd coeffi cient symmetry. Coeffi cient symmetry allows the direct - form FIR archi-
tecture to be modifi ed as shown in Figure  11.5 , resulting in what is called a sym-
metric FIR architecture. The symmetric fi lter ’ s advantage is a reduced multiplier 
budget. If a fi lter has an add/subtract cycle time that is less than a multiply cycle 

       Figure 11.3     Transpose  N th - order FIR architecture.  
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       Figure 11.4     A fourth - order (third - order MATLAB) transpose FIR architecture (MATLAB 
style).  
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time, then a symmetric FIR can achieve a higher real - time bandwidth. This presumes 
that adders and multipliers are always available when needed. A conventional DSP 
 μ p, however, has been optimized to perform a series of in - order MACs and not 
add - multiply - add operations required of symmetric FIR. As a result, symmetric FIR 
architectures are not synergist with general - purpose DSP  μ p architecture.   

 Mathworks provides some support in the creation of a symmetric FIR using 
the Filter Design Toolbox  dfi lt  option. In particular,  dfi lt.dfsymfi r  converts a 
transfer function into a symmetric form FIR of even or odd order. The outcome for 
a fourth - order FIR is shown in Figure  11.6 . A sample of the MATLAB code is shown 
below:  

 h = fi rpm(3,[0 0.4 0.5 1], [1 1 0 0]);      %         Filter Design Toolbox 

 Hsym = dfi lt.dfsymfi r(h); % Symmetic FIR 

 realizemdl(Hsym); % SIMULINK   

       Figure 11.5     Reduced multiplication symmetric FIR architecture for an 11th - order FIR.  
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       Figure 11.6     A fourth - order (third - order MATLAB) symmetric FIR architecture (MATLAB 
style).  
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  LATTICE  FIR  ARCHITECTURE 

 Another important FIR structure is called the lattice architecture. An  N th - order 
lattice FIR is shown in Figure  11.7 . The lattice coeffi cient  k [ i ] is called a partial 
correlation (PARCOR) coeffi cient, which is related to the FIR ’ s impulse response. 
A lattice FIR requires 2 N  multiples per fi lter cycle (vs.  N  for a direct FIR) and 
therefore is more complex. Nevertheless, a lattice FIR is often preferred over the 
direct FIR due to a natural ability to suppress coeffi cient round - off errors. In addi-
tion, lattice structures are often the architecture of choice when implementing adap-
tive fi lters and applications that do not require linear phase behavior. A lattice 
architecture can be used to implement a monic FIR fi lter having the general form  

    A z a zj
j

j

N

( ) . ,= +












−

=

−

∑1 0
1

1

    (11.1)  

  where the use of the coeffi cient notation is purposeful. Specifi cally, the coeffi cient 
 a j   is differentiated from the coeffi cient  k [ i ] found in Figure  11.7 . The fi lter described 
by Equation  11.1  can also be implemented using a direct or transpose FIR architec-
ture. Due to the structure of  A ( z ), it can also be seen that a lattice FIR has asymmetric 
impulse response, precluding its ability to implement a linear phase fi lter. To fully 
appreciate the lattice architecture, consider the simple second - order lattice fi lter 

       Figure 11.7     Lattice FIR architecture.  
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       Figure 11.8     Motivational second - order lattice fi lter.  
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shown in Figure  11.8  in the  z  - transform domain. The input – output relationships can 
be expressed as  

    
A z k z k z X z

B z k k z z X z

( ) = + [ ] + [ ]( ) ( )
( ) = [ ]+ [ ] +( ) ( )

− −

− −

1 0 1

1 0

1 2

1 2

,

.
    (11.2)   

 It can be seen that  A ( z ) carries the form suggested in Equation  11.1 . Furthermore, 
 B ( z ) is  A ( z ) in permuted (reversed) order. 

 The coeffi cients shown in Equation  11.1  are related to the coeffi cients of the 
lattice fi lter of Figure  11.7  over iteration indices  i     =    1, 2,    . . .    ,  N     −    1. Specifi cally, 
let  A  0 ( z )    =     B  0 ( z )    =    1.0. The PARCOR coeffi cient  k [ i ], shown in Figure  11.7 , is related 
to  a j   of Equation  11.1 , as follows:

    
A z A z k z B z m N

B z z A z m
m m m m

m
m

m

( ) = ( ) + ( ) ∈ −
( ) = ( ) ∈

−
−

−
− −

1
1

1

1

1 1

1

; [ , ]

; [ , NN −1]
,     (11.3)  

  where  B m  ( z ) is simply  A m  ( z ) in reverse order. In reversing the process, it follows that

    A z
A z k A z

k
m Nm

m m m

m
− ( ) =

( ) − ( )
−

∈ −1 21
1 1; [ , ].     (11.4)   

  Example: Lattice  FIR  

 Suppose a third - order lattice fi lter, shown in Figure  11.9 , has PARCOR coeffi cients 
 k  1     =    1/4,  k  2     =    1/2, and  k  3     =    1/3. The direct architecture coeffi cient  a i   can be com-
puted as follows:   

     

       Figure 11.9     Third - order FIR with a direct architecture (top) and lattice fi lter architecture 
(bottom).  
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    m       A m  ( z )      B m  ( z )  
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 The resulting direct fi lter coeffi cients are  a  0     =    1,  a  1     =    13/24,  a  2     =    5/8, and  a  3     =    1/3. 
Finally, the transfer function defi ned from input to the output  Y ( z ) is  A  3 ( z )    =     A ( z ) 
and  W ( z )    =     B  3 ( z )    =     B ( z ). As a side note, the polynomials  A  1 ( z ),  B  1 ( z ),  A  2 ( z ),  B  2 ( z ), 
 A  3 ( z ), and  B  4 ( z ) correspond to the transfer function from input to their corresponding 
output locations. 

 Reversing the process, one obtains the following: 
     

 These results are summarized in Figure  11.9 , which compares the two solutions 
(direct and lattice), namely,

    h kdirect_FIR[ ] { , / , / , / },= 1 13 24 5 8 1 3   

    h klattice_FIR[ ] { , / , / , / },= 1 1 4 1 2 1 3    

 which produce fi rst few sample values:

    Architecture y y[ ] [ ]0 1   

    Direct 1 13 24/   
    Lattice 1 1 4 1 4 1 2 1 2 1 3 13 24/ ( / )( / ) ( / )( / ) / .+ + =    

 The lattice fi lter, shown in Figure  11.9 , can be expressed as  A ( z ) (Eq.  11.1 ). 
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 Consider the third - order lattice FIR having PARCOR coeffi cient  k [ i ]    =    {0.5, 
0.25, 0.125} as shown in Figure  11.10 . The transfer function from input to  A i  ( z ) and 
 B i  ( z ) can be computed using Equations  11.3  and  11.4 , producing  

    A z z1
11 1 2( ) ( / ) ,= + −   

    B z z1
11 2 1( ) ( / ) ( ),= + − reverse   

    A z z z z z2
1 2 1 21 1 2 1 2 1 4 1 4 1 5 8 1 4( ) ( / / / ) ( / ) ( / ) ( / ) ,= + + × + = + +− − − −   

    B z z z2
1 21 4 5 8( ) / ( / ) ( ),= + +− − reverse   

    
A z z3

11 1 2 1 2 1 4 1 4 1 8
1 1 4 1 2 1 4 1 8 1 2 1

( ) ( / / / / / )
( / / / / / /

= + + × + × +
× + × × + ×

−

88 1 8
1 21 32 21 64 1 8

2 3

1 2 3

) ( / )
( / ) ( / ) ( / ) ( ),

z z
z z z H z

− −

− − −
+

= + + + =
  

    B z z z z3
1 2 31 8 21 64 21 32( ) / ( / ) ( / ) ( ),= + + +− − − reverse   

  where  B i  ( z )    =     z  − i A i  ( z   − 1 ). The lattice fi lter ’ s transfer function is

    A z H z z z z3
1 2 31 21 32 21 64 1 8( ) ( ) / / /= = + + +− − −    

 or  h [ k ]    =    {1, 21/32, 21/64, 1/8}. In the reverse direction,  B  3 ( z )    =    1/8    +    (21/64) z   − 1     +    
(21/32) z   − 2     +    z  − 3 . The magnitude frequency responses of  A ( z ) and  B ( z ) are shown in 
Figure  11.11 , and can be seen to be identical. The difference in the fi lter responses 
is found in the phase domain due to their zero locations. The zeros of the  H ( z ) are 
also computed to be located at  z     =     − 0.5    +    0 j ,  − 0.078    ±    0.494 j , and those of the 
reverse order fi lter are  z     =     − 2    +    0 j ,  − 0.312    ±    1.975 j . They are seen to be reciprocal 
refl ections of each other (i.e.,  z     =     re j    ϕ  , then  z  R     =    (1/ r ) e  − j    ϕ  ).    

       Figure 11.10     Third - order lattice FIR.  
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       Figure 11.11     Magnitude frequency response of  H ( z ) (left) and the reverse order fi lter 
 H  R ( z ) (right).  
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  Example:  MATLAB  Lattice  FIR  

 Refer again to a previous lattice example having a transfer function was  H ( z )    =   
  A  3 ( z )    =    1    +    21/32 z   − 1     +    21/64 z   − 2     +    1/8 z   − 3 , having PARCOR coeffi cient  k [ i ]    =    {1/2, 
1/4, 1/8} (see Fig.  11.10 ). The fi lter ’ s time -  and frequency - domain behavior can be 
examined using MATLAB. The  tf2latc  command converts a transfer function into 
a lattice fi lter, and  latc2tf  reverses the process. The function  latcfi lt  convolves 
an input signal with a lattice fi lter. 

 Mathworks provides some support in the creation of a lattice FIR architecture 
using the Filter Design Toolbox  dfi lt  option. In particular,  dfi lt.lattticemamax  
converts a transfer function into a lattice form FIR. In addition,  dfi lt.latttice-
mamin  is used to convert a transfer function into a minimum phase lattice FIR. The 
MATLAB generated outcome is displayed in Figure  11.12  and produced using the 
following MATLAB code:  

 h = [1 21/32 21/64 1/8]; k = tf2latc(h) % transfer function 
to lattice conversion {k  =  0.5000, 0.2500, 0.1250} 

 hh = latc2tf(k)         %      lattice to transfer function conversion 
{hh  =  1.0000, 0.6563, 0.3281, 0.1250} 

 [F,G] = latcfi lt(k,[1,zeros(1,1000)]);      %      convolve input x 
with lattice fi lter producing a forward response F (i.e., 

A(z)) and backwards response G (i.e., B(z)).  

 [Magf,w] = freqz(F,[1]); [Magg,w] = freqz(G,[1]); % plot 
abs(Magf) and abs(Magg) 

 Hlat = dfi lt.latticemamax(k); % Lattice FIR 

 Hlat 

                FilterStructure:  ′ Lattice Moving - Average (MA) For 
Maximum Phase ′  

                               Arithmetic:  ′ double ′                                                                                                                       

       Figure 11.12     Filter Design Toolkit rendering of a fourth - order (third - order MATLAB) 
lattice FIR architecture (MATLAB style).  
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                                        Lattice: [0.25 0.50 0.3333333333]             

             PersistentMemory: false                                                                                                                               

 realizemdl(Hlat);    

  DISTRIBUTED ARITHMETIC ( DA ) 

 Once designed, a fi lter ’ s coeffi cients  h i   can be assumed to be fi xed or constant. As 
a result, the linear convolution sum - of - product terms are of the form  h i      ×     x [ i     −     k ] 
that technically defi ne a scaling operation and not multiplication  *  : As a result, the 
linear convolution sum consists of a collection of accumulated scaled terms. Whereas 
multiplication requires the use of a general - purpose multiplier, scaling can be imple-
mented with far lower complexity (e.g., 2 ’ s - complement [2C] data shift). One of the 
most attractive alternatives is to replace a traditional multiplier with high bandwidth 
semiconductor  lookup table  ( LUT ) that contains all possible precomputed product 
(scaled) outcomes. A popular LUT - based technology is called distributed arithmetic 
(DA). A DA fi lter assumes that data are coded as an  M  - bit 2C fractional data word, 
specifi cally,

    x k x k x k i x ki

i

M

[ ] [ : ] [ : ] ; [ ] .= − + ≤−

=

−

∑0 2 1
1

1

     (11.5)   

 Here,  x [ k : i ] denotes the  i th bit of sample  x [ k ]. Substituting Equation  11.5  into the 
linear convolution sum (Eq. 6.1), one obtains
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 Upon reversing the order of the double summation,  *   the following results:
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    (11.7)   

 Suppose that a 2  N   - word LUT  θ [ x [ k ]: i ] is programmed to contain all possible 2  N   
values of the inner sum terms in Equation  11.7 , namely,

    θ [ [ ] : ] [ : ]; [ : ] [ , ].x k i h x k r i x s ir

r

N

= − ∈
=

−

∑
0

1

0 1     (11.8)   

  *      Because of the redistribution of the order of summation, the result is called a DA fi lter. 

  *      Scaling refers to the multiplicative combination of a variable and a constant. Multiplication is defi ned 
to be a multiplicative combination of two variables. 
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 All possible 2  N   values of  θ [ x [ k ]   :    i ], shown in Equation  11.8 , are addressable by an 
 N  - bit address vector   x  [ k    :    i ]    =    { x [ k    :    i ],  x [ k     −    1   :    i ],    . . .    ,  x [ k     −     N     −    1   :    i ]}, where  x [ r    :    i ] 
is binary valued (i.e., {0, 1}). The output word width of the table  θ [ x [ k ]   :    i ] is assumed 
to be  B  - bits wide, where  B  is chosen to meet an output precision requirement. To 
illustrate, if  N     =    8, assume the data in the  i th common bit location is  x [ k    :    i ]    =    
{10110101}. Assume also that the fi lter ’ s impulse response is  h [ k ]    =    {1, 0.9, 0.8, 
0.7, 0.6, 0.5, 0.4, 0.3}, then  θ [  x  [ k ]   :    i ]    =     h  0     +     h  2     +     h  3     +     h  5     +     h  7     =    1    +    0.8    +    0.7    +    
0.5    +    0.3    =    3.3. 

 Collectively, the convolution sum, defi ned by Equation  11.7 , becomes

    y k x k x k ii

i

M

[ ] [ [ ] : ] [ [ ] : ]= − + −

=

−

∑θ θ0 2
1

1

    (11.9)   

 The DA implementation of a convolution sum is seen to consist of a collection of LUT 
calls, accumulation, and scaling by 2   − i   as shown in Figure  11.13 . Note that the vector 
of binary values [ x [ k ]   :    i ], for a given  i , is presented to the table  θ  as an address vector 
beginning with all the least signifi cant bits (LSBs) of  x [ k ], then moving on to the most 
signifi cant. The fi rst ( M     −    1) binary - valued vectors correspond to positive bits. It is 
important to note that the bits used to form the vector [  x  [ k ]   :    i     +    1] have a weight of two 
relative to the bit values found in [  x  [ k ]   :    i ]. This explains the scaling factor 2   − i   found in 
Equation  11.9 , which is implemented as a shift/adder as shown in Figure  11.13 . The 
last address vector is taken from a common sign - bit (negation) location. This requires 
that the last LUT output  θ  be subtracted from the accumulator.   

 In some instances, the maximum real - time bandwidth of a DA FIR can be 
signifi cantly higher than that of a fi lter implemented using general - purpose multipli-
ers. Suppose  M     =    16 bits and the fi lter order is  N     =    12. If the traditional FIR is 

       Figure 11.13     Basic  N th - order FIR DA architecture.  

M
-b

it
 

sh
if

t r
eg

is
te

r

x[k]

M
-b

it
 

sh
if

t r
eg

is
te

r

x[k – 1]

M
-b

it
 

sh
if

t r
eg

is
te

r

x[k – N + 1]

x[k]

Φ
N

-b
it

 ta
bl

e 
lo

ok
up

... ...

A
C

C
 

ac
cu

m
ul

at
or

+/–

S
ca

le
2–1



138 CHAPTER 11 FIR IMPLEMENTATION

implemented using a MAC with a 100 - ns cycle time, then the minimum fi lter cycle 
time is  T  FIR_cycle     =     N     ×     T  MAC_cycle . This results in a 1200 - ns cycle time or a real - 
time rate of 833   kHz. Compared with a DA fi lter based on a 2 12     ×    16 bit memory 
table having a cycle time of 10   ns, the minimum fi lter cycle time is  T  DA_cycle     =     M     ×     
T  Memory_cycle . This translates into a fi lter cycle time of 160   ns, or a real - time rate of 
6.250   MHz, a 750% improvement! This is done without any appreciable increase in 
hardware complexity and is, in many cases, actually less complex than those designs 
based on a DSP  μ p. Because of speed and complexity arguments, DA is often the 
fi lter technology of choice for FPGA implementations. 

  Example: Distributed  FIR  

 Consider a simple fourth - order FIR having a transfer function given by  H ( z )    =    1.0    
−    0.9 z   − 1     +    0.64 z   − 2     −    0.575 z   − 3 . The worst case unit - bound input is  x [ k ]    =    {1,  − 1, 1, 
 − 1}, which would produce a worst case output of  ∑ | h i |     =    3.115    <    2 2 . This requires 
that at least 2 bits be reserved for accumulator  “ headroom ”  in order to prohibit run -
 time register overfl ow. The largest possible individual table lookup value is 
 θ [  x  [ k ]   :    i ] max     =    1.64    <    2 1 , which means that the LUT data format must contain at least 
one integer bit. Assume, for illustrative purposes, that the memory table contents are 
coded as 8 - bit 2C words consisting of a sign bit, 1 integer bit (previously discussed), 
and 6 fractional bits, to form words having an [8:6] format. The 2 4     =    16 possible 
table contents of a 2 4     ×    8 LUT are precomputed, converted to a 2C word having 6 
bits of fractional precision (e.g., [ x [ k ]   :    i ]    =    [0,0,1,1]    →     < 0.64    −    0.575    =    0.065 >  6     =    
0.0468 without rounding), and saved (see Table  11.1 ).   

  TABLE 11.1.    DA Table Contents (2C Truncated Word with 6 
Fractional Bits of Precision) 

    x [ k 0   :    i ]      x [ k 1   :    i ]      x [ k 2   :   i]     x[k3   :   i]     Table  

  0    0    0    0    0  

  0    0    0    1     − 0.5781  

  0    0    1    0    0.6092  

  0    0    1    1    0.0468  

  0    1    0    0     − 0.9062  

  0    1    0    1     − 1.4843  

  0    1    1    0     − 0.2656  

  0    1    1    1     − 0.8437  

  1    0    0    0    0.9843  

  1    0    0    1    0.4062  

  1    0    1    0    1.6093  

  1    0    1    1    1.0468  

  1    1    0    0    0.0781  

  1    1    0    1    0.4843  

  1    1    1    0    0.7187  

  1    1    1    1    0.1406  
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 Assume that at sample time  k     =    3, the inputs are four 4 - bit input sample values 
having 2C codes  x [3]    =    0    ↔    [0 Δ 000]    =    0,  x [2]    =     − 1    ↔    [1 Δ 000]    =     − 1,  x [1]    =    0    ↔    
[0 Δ 000]    =    0, and  x [0]    =    1    ↔    [0 Δ 111]    =    7/8 where  Δ  denotes the binary point loca-
tion. The real output  y [3] is mathematically given by the linear convolution sum 
 y [3]    =     h  0  x [3]    +     h  1  x [2]    +     h  2  x [1]    +     h  3  x [0]    =     h  1  x [2]    +     h  3  x [0]    =    0.3969 (without round-
ing). To produce this result using a DA fi lter, the sequence of operations shown in 
Table  11.2  is executed.   

 At the conclusion of the distributed fi lter cycle, the accumulator holds 
 y [3]    =    0.40039, which is close to the desired result. The error is 0.003515, an error 
that is generally smaller than is obtained using a general - purpose arithmetic logic 
unit (ALU) operating with 6 bits of fractional precision. 

 Higher - order designs are required when the fi lter ’ s order exceeds the size of 
the address space of a single LUT. Higher - order DA fi lters can be constructed from 
low - order distributed fi lters using the tree architecture shown in Figure  11.14 . In 
such cases, the FIR order  N  is spread across  L  tables having an address space of 
 n  - bits each. In particular  L     =     ⎡  N / n  ⎤ , where  ⎡  °  ⎤  denotes the ceiling function.     

  TABLE 11.2.    DA Execution Table 

    i      LUT Address Vector     Table  <  θ  >  6      ACC     ACC    =    ACC/2    ±     θ   

  3    [ x [ k ]   :   0 LSB]    →    [0001]     − 0.5781    0    0    +    ( − 0.5781)    =     − 0.5781  

  2    [ x [ k ]   :   1]    →    [0001]     − 0.5781     − 0.5781     − 0.2890    +    ( − 0.5781)    =     − 0.8671  

  1    [ x [ k ]   :   2]    →    [0001]     − 0.5781     − 0.8671     − 0.4335    +    ( − 0.5781)    =     − 1.0116  

  0    [ x [ k ]   :   3]    →    [0100]     − 0.9062     − 1.0116     − 0.5058    −    ( − 0.9062)    =    0.40036  

   ACC, accumulator.    

       Figure 11.14     High - order DA architecture.  
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  CANONIC SIGNED DIGIT ( CSD ) 

 The CSD system is a ternary - valued (i.e., {1, 0,  − 1}) numbering scheme. The CSD 
was employed in early vacuum tube digital computers and by a fi rst - generation DSP 
chip (i.e., Intel 2920) in an attempt to accelerate multiplication. A coding comparison 
of a 2C and CSD word is shown in Table  11.3  and Equation  11.10 :  

   x x x x C CC n
n

i
i

i

i

n

i
i

i

i
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∑ ∑ == x( ).CSD     (11.10)   

 The CSD encoding scheme, shown in Table  11.3 , is defi ned in terms the 2C digits  x i  , 
where  c i   is a 2C carry - in,  c i    + 1  is a 2C carry - out digit, and  C i   is the  i th CSD ternary -
 valued digit. The CSD achieves its goal of accelerating multiplication by creating 
data words that are dense in zeros compared with traditional binary coding schemes 
(e.g., 2C). The probability of a 2C digit being 0 is 50% but is 67% for the CSD case. 
This high density in 0 digits translates into an increased  “ no - op ”  count and acceler-
ated multiplication. To illustrate, the 4 - bit binary representation of the number 15 is 
given by 15 10     ↔    1111 2  and requires three shift - adds to complete a sequential multipli-
cation. The CSD representation for 15 is given by 15 10     =    16 10     −    1 10     ↔    CSD and can be 
implemented using one addition and a hard - wired shift register. 

  Example:  CSD  

 Code the 3 - bit number  x     =     − 2 10     =    [110] 2C  as a CSD number and compute  y     =    10 x . 
From Table  11.3 , it follows that

    c x x c C0 1 0 1 00 1 0 0 0= = = = =, , , ,   

    c x x c C1 2 1 2 10 1 1 1 1= = = = = −, , , ,   

    c x x c C2 3 2 3 01 1 0 0= = = = =, , , / ,N A   

  where  x     =     C  0     +    (2 C  1 )    +    (4 C  2 )    =     − 2. Therefore,  y     =    10 x     =    10    ×     C  0     +    10    ×    (2 C  1 )    +    
10    ×    (4 C  2 )    =     − 20.  

  TABLE 11.3.    2C to CSD Conversion 
( C i      =    CSD Value) 

    c i        x i    + 1       x i        c i    + 1       C i    

  0    0    0    0    0  

  0    0    1    0    1  

  0    1    0    0    0  

  0    1    1    1     − 1  

  1    0    0    0    1  

  1    0    1    1    0  

  1    1    0    1     − 1  

  1    1    1    1    0  
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  Reduced Adder Graphs ( RAG ) 

 The RAG method is also based on the theory of the ternary - valued numbers. The 
RAG paradigm attempts to extract a power - of - 2 factorization of an integer having 
a minimum number of terms. The cost of a RAG multiplier is measured in terms of 
the number of adders needed to complete a design. For example, the 2C cost of 
multiplying by 45 10     ↔    101101 2  is 3, but using RAG factoring, the cost of a multiply 
by 45    =    5    ×    9    =    (4    +    1)    ×    (8    +    1) is 2. To illustrate the value of a RAG design, 
consider the half - band fi lter having an impulse response  h [ k ]    =    {9, 0,  − 44, 0, 208, 
346, 208, 0,  − 44, 0, 9}. To reduce these numbers over common factors, emphasizing 
radix - 2 - like decompositions, the data can be represented as follows:

    346 2 173 2 128 45 2 128 9 5 2 128 8 1 4 1= × = × + = × + × = × + + × +( ) ( ( )) ( (( ) ( )),   

    208 16 13 16 4 9 16 4 8 1= × = × + = × + +( ) ( ( )),   

    44 4 11 4 2 9 4 2 8 1= × = × + = × + +( ) ( ( )),   

    9 8 1= + ,    

 which is graphically interpreted in Figure  11.15 .    

  Example:  RAG  and  CSD  Implementation 

 A compensator is to be designed to account for the roll - off attributed to an in - line 
fi lter as shown in Figure  11.16 . The compensator is to have approximately a recipro-
cal magnitude frequency response over the in - line fi lter ’ s passband. The 15th - order 
FIR compensator ’ s impulse response is given (as integers) by  h [ k ]    =    { − 1, 4,  − 16, 
32,  − 64, 136,  − 352, 1312,  − 352, 136,  − 64, 32,  − 16, 4,  − 1}. The CSD coeffi cient 
code is shown below. It can be seen that the low - complexity RAG FIR improves 
the overall system magnitude frequency response. It can be seen that both fi lters 
have a low complexity. The CSD - enabled FIR fi lter cycle would require 2    ×    5 one -
 digit coeffi cients plus 2    ×    1 two - digit coeffi cients plus 1 three - digit coeffi cient. The 
RAG implementation is based on radix - 2 coeffi cients 1, 2, 4, 8, 16, 32, and 64, along 
with hard - wired 2C shifts.   

       

       Figure 11.15     RAG implementation of an FIR.  
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  FIR FINITE WORD LENGTH EFFECTS 

 It may be recalled that the worst case FIR gain can be easily computed. It shall be 
assumed that the input has been properly scaled so that no run - time overfl ow errors 
occur. Errors that occur within such a system are then attributed to fi nite word length 
effects in the form 

   •      coeffi cient round - off errors, or  

   •      arithmetic rounding errors.    

 Coeffi cient round - off errors, as the name implies, correspond to errors associated 
with converting real numbers with a digital approximation having  F  - bits of fractional 
precision. The difference between the coeffi cients is called the coeffi cient round - off 
error. It is assumed that the rounding of a set of real fi lter coeffi cient  h i   can be 
modeled as   h hi i i i

FR where = + ≤ − +∆ ∆, ( )2 1 , where | Δ   i  |    ≤    2  − (   F    + 1)  (i.e.,  ± LSB/2). The 
size of the error is seen to be a direct function of  F , the number of fractional bits 
used in the fi nite word length representation of  h i  . Based on this model, the linear 
convolution outcome of an ideal (real valued) and fi xed - point system can be com-
pared. The linear convolution of an FIR having an impulse response  h i   with an input 
signal  x [ k ] produces an outcome  y [ k ]. Convolving the input with a set of fi xed - point 
FIR fi lter coeffi cients results in an output response,

    y k h x k m y k x k mR
m m
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    (11.11)   

       Figure 11.16     Compensating FIR fi lter ’ s magnitude frequency response.  
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 The error, due to coeffi cient rounding is

    e k y k y k x k mm

m

N

[ ] [ ] [ ] [ ].= ′ −( ) = −
=

−

∑∆
0

1

    (11.12)   

 The error budget is seen to be scaled by the individual values of  x [ k ]. It is often 
assumed that the input time series has a mean value of zero (i.e.,  E ( x [ k ])    =    0). If 
the input is assumed to be an impulse, that is,  x [ k ]    =     δ [ k ], then Equation  11.12  sim-
plifi es to

    e k y k y k k mm
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k[ ] = ′ − [ ]( ) = − =
=

−

∑[ ] [ ] ,∆ ∆δ
0

1

    (11.13)  

  where  Δ   k   comes from a uniformly distributed random population defi ned over [ − 2  −    F   /2 , 
2  −    F   /2 ). In this case, the error is seen to have a mean value of zero ( E ( e [ k ])    =    0) and 
a variance  σ  2     =    2  − 2   F  /12 (i.e.,  Q  2 /12,  Q  being the quantization step size). This is of 
little practical value, however, since the input signal is rarely just an impulse. If the 
input is a random or arbitrary signal, then the error can be modeled as

    σ σ σ σ
e x

F
xN

N2 2 2
2 22

12
= =

−

∆ ,     (11.14)  

  where   σx
2 is the signal variance (power). Therefore, the coeffi cient round - off error 

variance of an  N th - order FIR is essentially the round - off error power associated with 
each rounding (i.e.,  Q  2 /12), scaled by the signal power and fi lter order. For example, 
the predicted round - off error variance of a 64th - order FIR is expected to be twice 
that of a 32nd - order fi lter. A standard means of analyzing these data is to interpret 
the error in bits (log 2 ( σ  e )). Therefore, going from a 32nd - order to a 64th - order FIR 
costs only 1 bit of precision due to coeffi cient rounding. 

 The coeffi cient round - off error associated with DA or CSD fi lters is application 
dependent. DA fi lters are less susceptible to coeffi cient rounding because the sum 
of products, defi ned by Equation  11.8  (i.e.,  θ [  x  [ k ]   :    i ]), is computed using fl oating -
 point precision, and then is rounded to a fi xed - point number. The coeffi cient round -
 off errors introduced by CSD encoding are dependent on the original coeffi cient 
distribution. Some coeffi cients lend themselves to exact CSD coding, others resist. 

 The coeffi cient round - off error can also be examined in the context of a signal -
 to - noise ratio, or SNR, where the SNR (in decibels) is given as

    SNR = × 
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  where   σh
2 denotes the variance (power) of the FIR ’ s impulse response  h [ k ], and   σe

2 
is the variance (power) in the error process  e [ k ]    =     h [ k ]    −     h F  [ k ], where  h F  [ k ] is  h [ k ] 
rounded to  F  - fractional bits of precision. Based on this model, the improvement in 
statistical SNR performance of adding one additional fractional bit to the coeffi cients 
would be
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  Example: Coeffi cient Round - Off Error 

 An analysis of a 101 - order equiripple high - pass FIR, having a passband cut - off 
frequency of 0.2125 f  s  and a stopband cut - off frequency of 0.2 f  s , is shown in Figure 
 11.17 . The analysis includes determining the worst case gain (2.54), maximum tap -
 weight coeffi cient (0.587), and the effects of coeffi cient rounding in an SNR context. 
Assume, for analysis purposes that the fi lter is to be implemented using an 8 - bit data 
format. If an [8:7] fi xed - point data format is chosen, then all the tap - weight coef-
fi cients can be successfully coded (| h [ i ]|    <    1). Assume further that the input is also 
bounded in magnitude to be less than unity (i.e., | x [ k ]|    <    1). The full - precision tap -
 weight multiplier outputs are 16 - bit words having a sign bit and  F     =    15 bits of 
fractional precision (i.e., [16:15]). However, the worst case gain calculation 
 G     =    2.54    <    2 2  indicates that two additional bits of accumulator  “ headroom ”  would 
be needed to remove any chance of run - time overfl ow. This means that the accumu-
lator output format should be [16    +    2:15]    =    [18:15]. If providing an extended preci-
sion accumulator is impractical, then to ensure that run - time overfl ow does not occur, 
the input, FIR coeffi cients, or combination of input and coeffi cients would need to 
be scaled by at least  G     =    2.54, with an attendant loss in output precision. In any 
case, the accumulator ’ s output would normally be returned to a common format 
(e.g., 8 bits) at the end of the fi lter cycle. These ideas are explored in the MATLAB 
code insert, shown below. The results are summarized in Figure  11.17  and the execu-
tion of the code is shown below. At 7 fractional bits, the 4.77 - dB guideline would 
have predicted the output SNR is 7    ×    4.77    =    33   dB, which is close to the value 
computed (30.04   dB):  

 h = fi rpm(100,[0 .4 .425 1],[0 0 1 1]);      %      equiripple FIR 

 norm(h,1)      % worst case gain: L1 norm  =  2.5437 

 max(abs(h))      % largest coeffi cient 0.5875 

 t = 0:100; h8 = round(2 ∧ 7 * h)/2 ∧ 7;      % round to [8:7] 

 SNR = 10 * log10(var(h)/var(h - h8));      %      SNR  =  30.0436  

       Figure 11.17     Magnitude frequency response of a high - pass 101st - order equiripple FIR 
(left) and coeffi cient round - off errors for 7 fractional bits ( Δ     =    2  − 7 ) (right).  
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 One observation that should be kept in mind is that linear phase FIR fi lter coeffi cients 
tend to be defi ned in terms of small valued numbers found at the beginning and end 
of the impulse response support (called tapers). In many fi xed - point designs ( N     <    16 
bits), these coeffi cients can be easily rounded to zero. Therefore, while increasing 
the order of an FIR to meet design specifi cation may seem like a good idea when 
using fl oating - point design tools (e.g., MATLAB), many of the new tap - weight coef-
fi cients can be inadvertently quantized to zero.  

  Example: Coeffi cient Round - Off Error 

 A 21st - order equiripple linear phase low - pass FIR has a direct architecture imple-
mentation shown in Figure  11.18 . The coeffi cients of the resulting fl oating - point FIR 
is converted into a fi xed - point fi lter using an [8:7] format. The design is equipped 
with full - precision multipliers and an extended precision (by 2 bits) accumulator. 
The fi lter coeffi cients of the fl oating -  and fi xed - point fi lter are compared. The fl oat-
ing and fi xed - point fi lter performances are compared in Figure  11.19 . It can be seen 
that fi nite word length effects do have an effect, albeit marginal, on the frequency 
response of the fi xed - point system. The zero distributions were also seen to be 
subject to minor changes due to fi nite word length effects.     

       Figure 11.18     Architecture of a 21st - order FIR showing coeffi cients rounded to 7 
fractional bits ( Δ     =    2  − 7 ), full precision multipliers, and extended precision accumulator.  
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       Figure 11.19     Comparison of fl oating -  and fi xed - point magnitude frequency responses.  

0 π
–200

–100

0

Normalized Baseband Frequency

M
ag

ni
tu

de
 (

dB
)

Floating Point
Fixed Point



146 CHAPTER 11 FIR IMPLEMENTATION

  ARITHMETIC ERRORS 

 Arithmetic errors can occur when the partial products  x [ k     −     m ]    ×     h m   being produced 
by a convolution operation are performed using fi nite precision arithmetic. 
Mathematically quantifying this process is, in general, a challenging problem. The 
errors associated with an ideal multiplier, operating on fi xed - point operands  X  and 
 Y , are given by

    var( ) ( ( )) var( ) ( ( )) var( ) var( )var( ).XY E X Y E Y X X Y= + +2 2     (11.17)   

 To appreciate this process, consider forming a digital product of two variables  X  and 
 Y , coded as 2C fi xed - point variables  X r   and  Y r  . Suppose two 4 - bit 2 ’ s complement 
numbers, having a [4:3] format, are to be multiplied. For  X  10     =    6/8 (6/8 2C     =    0110) 
and  Y  10     =     − 5/8 ( − 5/8 2C     =    1011), resulting in the product  − 30/64 10 . The computational 
process is illustrated below: 

     

  {extended sign bit}    0    0110 0000    {form fi rst partial product – rightmost bit    =    LSB}  

  {extended sign bit}    0    0011 0000    {shift right preserving extended sign bit}  

  {extended sign bit}    0    1001 0000    {add second partial product}  

  {extended sign bit}    0    0100 1000    {shift right, preserving extended sign bit}  

  {extended sign bit}    0    1001 0000    {add third partial product    =    0}  

  {extended sign bit}    0    0010 0100    {shift right, preserving extended sign bit}  

  {extended sign bit}    1    1100 0100    {subtract fourth partial product    =    0}  

  {extended sign bit}    1    1110 0010    {shift right, preserving extended sign bit}  

          1110 0010    {discard extended sign bit, fi nal value    =     − 30}  

 The outcome is seen to be an 8 - bit 2C word having an [8:7] format. The value of 
the LSB also has changed from 2  − 3  to 2  − 7 . The data can, at this point, be interpreted 
as a double - precision data word or rounded to a single - precision entity. What needs 
to be statistically measured is the quality of the outcome. This question can be 
explored using computer simulation, which can be used to multiply two long uni-
formly distributed random processes represented as real and [16:15] fi xed - point data 
words. The experimental results are presented below:

 x1 = 2 * (rand(1,1000) - 0.5);x2 = 2 * (rand(1,1000) - 0.5) % random 
inputs x1 and x2  

 x1r = round((2 ∧ 15) * x1)/2 ∧ 15; x2r = round((2 ∧ 15) * x2)/2 ∧ 15; % 
quantize to [16:15] 

 log10(sqrt(var(x1 - x1r)))/log10(2)         % quantization error 

in bits  - 16.7950 

 log10(sqrt(var(x2 - x2r)))/log10(2)         % quantization error 

in bits  - 16.8099 

 y = x1. * x2; yr = x1r. * x2r; % sum of products 
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 log10(sqrt(var(y - yr)))/log10(2)         % quantization error in 

bits  - 17.0831  

 First, quantizing the input data to 15 fractional bits produces a result with a predict-
able quantization error. For  Δ     =    2  − 15 , the predicted error is  − 15    −    1.79    =     − 16.79 
fractional bits, which is close to the computed quantization errors of  − 16.795 and 
 − 16.81 for inputs  x  1 [ k ] and  x  2 [ k ], respectively. The quantized and real arrays are 
multiplied and their difference is compared. The statistical difference of  − 17.08 bits 
is found to be less than the individual input quantization errors. While the error is 
better than that of a [16:15] word, it is far from achieving the LSB value of the 
double - precision [32:31] word. To examine the nature of these errors requires that 
the basic MAC structures, as shown in Figure  11.20 , be understood. The MAC #1 
architecture performs error - free real multiplication and accumulation. MAC #2 
performs a full - precision digital multiply and then rounds the outcome to a single -
 precision outcome that is then accumulated using single - precision arithmetic. One 
of the issues with the MAC #2 architecture is that the accumulator needs to be 
checked for overfl ow at the end of each accumulation. This slows the accumulation 
process and adds data - dependent stalls to any pipeline. To overcome this obstacle, 
the adder shown in the MAC #2 is redesigned as MAC #3. This design can be 
implemented using an extended precision accumulator having a word width of 
( N     +     R ) bits, where  R     =     ⎡ log 2 ( G ) ⎤ ) where  G  is the fi lter ’ s worst case gain. For a 
typical FIR,  R  will have a value of but a few bits. For example, if  G     =    2.54    <    2 2 , 
then two additional bits of accumulator  “ headroom ”  would be needed to eliminate 
any chance of run - time overfl ow. This means that the accumulator output format 
should be [ N     +    2: F ]. The price paid would be an increase in complexity. What is 
gained is a fi lter that is protected from run - time register overfl ow and the elimination 
of run - time overfl ow detection operations. Finally, if the MAC #3 fi lter performs 
one rounding operation per fi lter cycle (reduction of a 2 N  or 2 N     +     R  - bit product to 
an  N  - bit outcome), the resulting output quantization error estimate is given by 
 σ  2     =     NQ  2 /12,  Q     =    2  −    F  , which is normally several bits less than a round - after - multiply 
architecture.   

       Figure 11.20     Basic MAC structures. MAC #1 (left), MAC #2 (middle), and MAC #3 
(right).  
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  Example:  MAC  errors 

 The three MAC architectures shown in Figure  11.20  are experimentally explored 
using a 21st - order linear phase low - pass FIR and a unit - bound random noise input. 
The outputs, for both real and [16:15] fi xed - point instances are compared. The 
analysis begins with the calculation of worst case gain of  G     =    1.771    <    2 1 , which 
indicates that the extended precision accumulator requires 1 bit of headroom. The 
maximum FIR coeffi cient is found to be 0.4487, which means all the coeffi cients 
can be coded as a [16:15] 2C word. In some instances, design engineers advocate 
using a [16:16] format, which effectively means that the FIR coeffi cients are scaled 
(upward) by a factor of 2 before coding. This, in concept, would add one additional 
bit of precision to the coded coeffi cients. However, it should be noted that the worst 
case gain is now increased to  G     =    3.54, which will require an additional 2 bits 
(instead of 1) of headroom to protect against run - time overfl ow. The result is the 
increased 1 - bit precision that is taken back by the need for 1 additional integer (head 
room) bit. The experimental results are summarized below, where the error is com-
pared with the ideal (fl oating - point) fi lter response: 

     

   Case      x [ k ]      h [ k ]      y [ k ]     log 2 ( σ )     Comment  

   y  0     Real    Real    Real     F     =     −  ∞     Ideal fi lter response  

   y  1     [16:15]    [16:15]    Real     F     =     − 15.5    Precision for an ideal fi lter processing 
quantized input data. Slightly degraded 
over a basic [16:15] error of  − 16.79 bits.  

   y  r     Real    Real    [16:15]     F     =     − 16.8    Real input and fi xed - point FIR. Error 
agrees with theoretical prediction of 
 − 16.79 bits.  

   y  n     [16:15]    [16:15]    [16:15]     F     =     − 15.3    Precision for a fi xed - point fi lter processing 
quantized input data. Slightly degraded 
over a basic [16:15] error of  − 16.79 bits.  

 The arithmetic errors associated with DA or CSD fi lters represent a set of special 
cases. A DA FIR is known to enjoy a precision advantage over direct or transpose 
FIR implementations. An  N th - order DA FIR is assumed to have the statistical error 
budget given by  σ  2     =     Q  2 /9 versus  σ  2     =     NQ  2 /12 for direct architecture models. The 
errors introduced by a computer - aided design (CAD) implementation are essentially 
due entirely to coeffi cient rounding, and arithmetic errors are zero if extended preci-
sion adders are used.   

  SCALING 

 The worst case gain of an FIR fi lter gain is denoted  G  max . Intuitively, it would make 
sense for the worst case gain to have a power - of - two value, say 2  n  . This can be 
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achieved by scaling the FIR by a factor  k  where  k     =    2  n  / G  max . By multiplying each 
fi lter coeffi cient  h i   by  k , the new FIR would have a maximum gain of  G  ’ m ax     =    2  n   as 
a result. This action would be performed off - line and not affect the fi lters ’  run - time 
performance. It should be appreciated, however, that the scaled fi lter ’ s magnitude 
frequency response will be increased by a factor  k . Scaling can take place in a 
downward direction as well. Logically, a scale factor  k     =    2  n    − 1 / G  max  can also be con-
sidered. The scale factor  k  can be used to adjust the gains downward to the nearest 
power - of - two value. While the absolute magnitude frequency response will be 
changed, the relative gain will be left unaffected.  

  MULTIPLE  MAC  ARCHITECTURES 

 As technology provides more powerful and compact arithmetic devices, multiple 
MACs architectures are becoming a viable option. FIRs typically require multiple 
MAC calls to be performed per fi lter cycle. This provides motivation for implement-
ing multiple MAC FIR architectures. Suppose  M  MACs are available for use in 
implementing an  N th - order FIR convolution sum, where  x [ k ] is a bounded input time 
series. The fi lter tap - weight coeffi cients, denoted  h k  , are assumed to be real. Upon 
presenting an input to the FIR, an output time series  y [ k ] will result having the form

    

y h x

y h x h x

y N h N x h

[ ] [ ] [ ]
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 For sample indices  k     ≥     N     −    1,  N  physical multiplications must be performed per 
fi lter cycle. These multiples can be performed sequentially or concurrently. If  M  
MACs are available for concurrent use, and  N  is divisible by  M , then a  K     =     N / M  - fold 
speed up can be realized. Suppose, however, that  N     =     KM     +     K  0 ,  K  0     ∈    [1,  N     −    1], 
then  K     +    1 MAC cycles would be required where the fi rst  K  cycles would use all  M  
MACs concurrently and the last cycle would use only  K  0  of the available MACs. 
The effi ciency of this action can be mathematically represented by  Δ :

    ∆ = =
 

actual speed-up

ideal speed-up

L M

L M

/

/
,     (11.18)  

  where  ⎡  °  ⎤  again denotes the ceiling function. The value of  Δ  is interpreted in Figure 
 11.21  for other cases. Notice that the effi ciency improves as  L  increases, which 
simply refl ects the fact that the overhead is reduced when a large number of MAC 
need to be performed.   

 The multiple MAC fi lters shown in Figure  11.22  are called horizontal (direct) 
and vertical (transpose) architectures since the multiple MACs are spread horizon-
tally and vertically across the convolution space. It is assumed that the coeffi cients 
are loaded into registers and are spatially attached to each MAC. Each one of the 
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 M  MACs could be dedicated to the computation of  y [ k ] at one sample instance. This 
form is called a vertical architecture that is graphically interpreted in Figure  11.22 . 
Again the effi ciency of the multi - MAC architecture is a function of the relationship 
between the fi lter length  N  and the number of MACs  M . The execution of the fi rst 
several clock instances of a four - multiplier vertically architected FIR is shown in 
Table  11.4 .      
    

 

   

  

       Figure 11.22     Example of a four - multiplier horizontally (direct) architected FIR.  
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  TABLE 11.4.    Four - Multiplier Vertically (Transpose) Architected FIR Execution 

   Clock     Cell 0     Cell 1     Cell 2     Cell 3     Sum/Clear  

  0     h  3  x [0]    0    0    0    0  

  1     h  2  x [1]     h  3  x [1]    0    0    0  

  2     h  1  x [2]     h  2  x [2]     h  3  x [2]    0    0  

  3     h  0  x [3]     h  1  x [3]     h  2  x [3]     h  3  x [3]    Cell 0    =     y [3]  

  4     h  3  x [4]     h  0  x [4]     h  1  x [4]     h  2  x [4]    Cell 1    =     y [4]  

  5     h  2  x [5]     h  3  x [5]     h  0  x [5]     h  1  x [5]    Cell 2    =     y [5]  

  6     h  1  x [6]     h  2  x [5]     h  3  x [5]     h  0  x [5]    Cell 3    =     y [6]  

  7     h  0  x [7]     h  3  x [6]     h  2  x [6]     h  3  x [6]    Cell 0    =     y [7]  

       Figure 11.21     Speed - up potential of a four - multiplier FIR as a function of fi lter order.  
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  CHAPTER 12 

CLASSIC FILTER DESIGN     

   INTRODUCTION 

 There are instances when a low fi lter order and/or a fi lter having precise frequency 
selectivity are the overriding design considerations. In such cases, a  fi nite impulse 
response  fi lter ( FIR ) may not be a viable option. The antithesis of an FIR is the 
infi nite impulse response (IIR) fi lter. IIRs can often provide a low - complexity, 
frequency - selective solution. An IIR system is modeled in terms of a transfer func-
tion having the form

    H z h z
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 It can be seen that an IIR has both numerator  N ( z ) and denominator  D ( z ) terms. This 
is in sharp contrast with an FIR that possesses only numerator terms (i.e., no feed-
back). The presence of the denominator  D ( z ) indicates that an IIR contains feedback 
giving rise to a fi lter having an impulse response that can persist forever. 

 The baseband frequency response of an IIR fi lter is determined by evaluating 
the transfer function  H ( z ) in the  z  - domain along the periphery of the unit circle at 
points  z     =     e j    ϖ  ,  −  π     ≤     ϖ     ≤     π . The frequency response is formally given by
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 It is claimed that an IIR can meet very demanding frequency response requirements 
and excel in those cases where the frequency response must be highly selective. 
However, IIRs have many shortcomings as well. Due to the presence of feedback, 
IIRs are far more susceptible to encounter instability and arithmetic overfl ow prob-
lems during run time when compared with an FIR. Improperly managing these 

151

Digital Filters: Principles and Applications with MATLAB, First Edition. Fred J. Taylor.
© 2012 by the Institute of Electrical and Electronics Engineers, Inc. 
Published 2012 by John Wiley & Sons, Inc.



152 CHAPTER 12 CLASSIC FILTER DESIGN

conditions can lead to a disastrous outcome. Other IIR issues include nonlinear phase 
performance (variable group delay) and coeffi cient round - off error sensitivity. 

  Example: Comparison of  IIR s and  FIR s 

 The magnitude frequency and phase responses of a 63rd - order linear phase FIR fi lter 
and a sixth - order low - pass IIR fi lter are compared in Figure  12.1 . It can be seen that 
both fi lters have similar magnitude frequency responses. The IIR ’ s phase response 
of the IIR is seen to be nonlinear resulting in a frequency - dependent propagation 
delay (i.e., group delay). Because the IIR is 1/10th the order of the FIR, it can 
potentially run 10 times faster.     

  CLASSIC ANALOG FILTERS 

 IIR fi lters can be defi ned in terms of their transfer function  H ( z ) in the  z  - domain. It 
may be recalled that a  z  - transform is based on an established relationship between 
the  s  -  and  z  - domains. It is therefore reasonable to explore analog fi lters where solu-
tions can be interpreted in the context of discrete - time or digital fi lters. Classic 
analog fi lters have been studied and chronicled for nearly a century. Their origins 
can be traced to the early days of radio, where frequency - selective fi lters were 
required as a radio infrastructure technology. Classic analog fi lters were defi ned in 
terms of an ideal low - pass, high - pass, band - pass, band - stop, and all - pass frequency 
response models. The body of knowledge associated with the design of classic 
analog fi lters is enormous. Historically, classic analog fi lters are generally based on 
Bessel, Butterworth, Chebyshev, and Cauer (elliptic) fi lter models. Compared with 
Butterworth, Chebyshev, and Cauer fi lters, Bessel fi lters have a relatively fl at group 
delay (linear phase like). However, since true linear phase behavior can be obtained 

       Figure 12.1     Comparison of a 63rd - order linear phase FIR and sixth - order IIR showing 
magnitude frequency responses (top left), logarithmic (decibels) magnitude frequency 
responses (top right), phase responses (bottom left), and group delay responses (bottom 
right).  
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with a simple FIR, digital Bessel fi lters are rarely implemented today. The other 
fi lter types, however, are commonly found in today ’ s digital technology. The design 
of a digital Butterworth, Chebyshev and Cauer (elliptic) fi lter begins with the speci-
fi cations of a classic analog fi lter. This information can be translated into fi lter design 
parameters. Today, like yesterday, the analog IIR fi lter design strategy is a highly 
structured procedure. For a classic design, the fi rst step is to defi ne an analog low -
 pass fi lter having a normalized critical passband frequency of  Ω     =    1 rad/s that 
refl ects many of the desired fi lter ’ s attributes. Such a fi lter is called an analog pro-
totype fi lter and has a transfer function  H  p ( s ). The next step accounts for the fact 
that the desired fi lter can be something other than low - pass (e.g., band - pass) with a 
 Ω     =    1 rad/s passband. The prototype fi lter is mapped to its fi nal analog form 
( H  p ( s )    →     H ( s )) using a mapping rule called a frequency – frequency transform (see 
Table  12.1  and Fig.  12.2 ).     

  Example: Frequency – Frequency Mapping 

 A third - order  − 3 - dB passband Butterworth analog low - pass prototype model, having 
a 1 rad/s critical frequency, is given by

       Figure 12.2     Frequency – frequency transforms associated with the mapping of a prototype 
low - pass into (a) low - pass, (b) high - pass, (c) band - pass, and (d) band - stop fi lters.  
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  TABLE 12.1.    Frequency – Frequency Transforms 

    N th - Order Prototype     Frequency – Frequency Transform     Final Order  

  Low - pass to low - pass     j  Ω     ←     j  Ω / Ω  p      N   

  Low - pass to high - pass     j  Ω     ←     Ω  p / j  Ω      N   

  Low - pass to band - pass     j  Ω     ←    ( j  Ω  2     +     Ω  H     Ω  L )/( j  Ω ( Ω  H     −     Ω  L ))    2 N   

  Low - pass to band - stop     j  Ω     ←    ( j  Ω ( Ω  H     −     Ω  L ))/( j  Ω  2     +     Ω  H     Ω  L )    2 N   
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    H s
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 The fi lter ’ s DC gain is | H  p ( j 0)|    =    1 and the gain at the critical frequency  s     =     j  Ω     =     j 1 
is | H  p ( j 1)|    =    0.707, corresponding to the  − 3 - dB point. In a practical setting, the actual 
 − 3 - dB frequency would normally be something other than 1 rad/s, say 1   kHz. Using 
a low - pass - to - low - pass frequency – frequency transformation (Table  12.1 ), for 
 Ω  p     =    2 π     ×    1000    =    6280 rad/s, results in an analog fi lter model given by
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 Evaluating  H ( s ) at  s     =     j  Ω  p     =     j 6280 rad/s (i.e., 1   kHz) verifi es that the fi lter ’ s gain is 
| H ( j 6280)|    =    0.707 or  − 3   dB at the low - pass cutoff frequency as required.   

  PROTOTYPE ANALOG FILTERS 

 The key to designing a classic digital fi lter (Butterworth, Chebyshev, elliptic) is 
deriving the transfer function of the analog prototype fi lter. Much is known about 
this process, which has been reduced to a set of algebraic and computer instructions. 
The design procedure for a classic analog prototype is presented below for the 
purpose of completeness. In all cases, the low - pass analog prototypes fi lters are 
synthesized to meet magnitude frequency response specifi cations as shown in Figure 
 12.3 . The analog low - pass prototype is shown to have a magnitude squared fre-
quency response, measured at  Ω     =    1 rad/s, to be  

    H s
s j

( ) .= =
+1

2

2

1

1 ε
    (12.3)   

 If  ε  2     =    1, or  ε     =    1, the prototype is said to be a  − 3 - dB fi lter. If  ε  2     =    0.2589, or 
 ε     =    0.508, the prototype is said to be a  − 1 - dB fi lter. Other design parameters are 
defi ned in terms of the data shown in Figure  12.3 . The passband and stopband gains 

       Figure 12.3     Magnitude frequency response squared of a low - pass analog prototype fi lter 
having a critical frequency of 1 rad/s.  
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are specifi ed in terms of the parameters  ε  and  A  a , respectively. The depth of the 
fi lter ’ s skirt can be measured in terms of the transition gain ratio given by 
  η ε= −/ Aa

2 1 or the alternative reciprocal gain ratio  d     =    1/ η . The frequency transi-
tion ratio, denoted  k  d , is a measure of the width of the transition bandwidth. The 
value of  k  d  is case dependent and given by

    low-pass d
p
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Ω
Ω

    (12.4)  
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    band-pass
if

if
d

u v
2

u
2

v
2

: ,k
k

k
=

≥
<





1
2

2

Ω Ω
Ω Ω

    (12.6)  
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    (12.7)   

 From this list of parameters, the order and transfer function of classical analog 
prototype fi lters can be determined for Butterworth, Chebyshev, and Cauer/elliptic 
fi lter models.  

  BUTTERWORTH PROTOTYPE FILTER 

 An  N th - order Butterworth prototype fi lter has a magnitude squared frequency 
response given by

    H N
( )

/
.Ω

Ω Ω
2

2 2

1

1
=

+ ( )ε p

    (12.8)   

 The Butterworth IIR is sometimes referred to as a maximally fl at fi lter because the 
fi rst 2 N     –    1 derivatives of | H ( Ω )| 2     =    0 at  Ω     =    0. The prototype Butterworth IIR has 
a critical frequency  Ω  p     =    1 rad/s and is used as the foundation for designing 
Butterworth digital fi lters having user - specifi ed critical frequencies. The order of a 
Butterworth IIR can be defi ned in terms of the design parameters, including 
  H A( )Ωa a

2 2=  (see Fig.  12.3 ). The fi lter order is estimated to be

    N
A d
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log
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1
kd

    (12.9)   

 The 2 N  order transfer function squared | H ( s )| 2  can be factored into | H ( s )| 2     =     H ( s ) H ( −  s ), 
where  H ( s ) is called the realizable fi lter containing all the stable poles (i.e., left - hand 
plane poles) of | H ( s )| 2 , and  H ( –  s ) is the unstable fi lter. The  s  - domain poles of | H ( s )| 2  
are located on a circle of radius  r     =    1/ ε  1/   N   and are separated by  π / N  radians. As 
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a result, the poles of a classic Butterworth are located at  s  k     =     re   −    j   (2   k    − 1) π /2   N  , 
 k     ∈    [0, 2 N     –    1], resulting in  N  stable pole locations and  N  unstable pole locations. 
To illustrate, three  − 3 - dB ( ε     =    1) Butterworth analog low - pass prototype fi lters are 
designed of order  N     =    1, 3, and 6. All three Butterworth prototypes have a critical 
passband frequency of  Ω     =    1.0 rad/s. The production of these fi lters can be facili-
tated using the MATLAB  butter  and  buttord  (order) commands and are shown 
in Figure  12.4 . The MATLAB - derived  − 3 - dB Butterworth prototype fi lters are  

    

H s
s

H s
s s s

H s
s s s

1

3 3 2

6 6 5 4

1

1
1

2 2 1
1

3 86 7 46 9 13

( ) ,

( ) ,

( )
. . .

=
+

=
+ + +

=
+ + + ss s s3 27 46 3 86 1+ + +. .

.

   

 The pole locations of a prototype Butterworth fi lter are distributed along the periph-
ery of a unit circle in the  s  - domain. The pole of the fi rst - order Butterworth prototype 
is located at  s     =     − 1, the third - order Butterworth prototype has poles at  − 1, and 
 – cos(30 ° )    ±     j  sin(30 ° ), and the sixth - order Butterworth prototype poles are located 
at  s  k     =     e j   [ π /2 +  π /12 + (2k π /12)]  for  k     ∈    [1, 6]. 

  Example: Butterworth Prototype 

 Design of a low - pass Butterworth fi lter with a 35 - Hz ( Ω  p     =    2 π     ×    35)  − 1 - dB 
( ε     =    0.508) passband and  A  a     =    10 3  ( − 60   dB) stopband attenuation starting at 100   Hz 
( Ω  a     =    2 π     ×    100) (after Fig.  12.3 ). The remaining design parameters are given by 
  η ε= − = × −/( ) ./Aa

2 1 2 31 0 508 10  and  k  d     =    35/100    =    0.35. The fi lter order can therefore 
be estimated to be

       Figure 12.4     Magnitude frequency response of an order 1, 3, and 6 order analog  − 3 - dB 
Butterworth analog prototype fi lters (left), and pole locations of an order 1, 3, and 6 order 
analog Butterworth prototype (right).  
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 or order 8. The fi lter order  N  could have been machine - calculated using the MATLAB 
 buttord  command. The resulting eighth - order prototype Butterworth fi lter is 
given by

   

H s

s s s s s s

p ( )

. . . . . .

=

+ + + + + +
1

5 125 13 137 21 846 25 688 21 846 13 18 7 6 5 4 3 337 5 125 12s s+ +.
.
  

 Next, the prototype fi lter  H  p ( s ) is mapped into a fi nal analog fi lter using a low - pass -
 to - low - pass frequency – frequency transform of the form  s     →     s / Ω  p     =     s /(2 π 35) (see 
Table  12.1 ). The resulting transfer function for the fi nal analog Butterworth low - pass 
fi lter is given by

    
H s

s s s s
( )

.

. . . .
= ×

+ × + × + × + ×
1 1 10

1 23 10 7 53 10 3 00 10 8 42 10

19

8 3 7 5 6 8 5 10 ss

s s s

4

13 3 15 2 17 171 72 10 2 47 10 2 31 10 1 1 10+ × + × + × + ×. . . .

   

 The result of an eighth - order Butterworth fi lter has a  − 1 - dB passband of 35   Hz and 
a stopband beginning at 100   Hz as shown in Figure  12.5 .     

  CHEBYSHEV PROTOTYPE FILTER 

 The magnitude squared frequency response of an  N th - order prototype low - pass 
Chebyshev I fi lter is given by

    H s
CN

( )
( / )

,2

2 2

1

1
=

+ ε Ω Ωc

    (12.10)  

       Figure 12.5     Magnitude frequency response of eighth - order Butterworth fi lter ( Ω  p     =    220 
rad/s [35   Hz] and  Ω  a     =    628 rad/s [100   Hz]) (left) and the log magnitude frequency 
response (right).  
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  where  C N  ( s ) is an  N th - order Chebyshev polynomial given by

    C s
N s s

N s s
N ( ) =

( )( ) ≤
( )( ) >





−

−

cos cos ,

cosh cosh ,

1

1

1

1
    (12.11)  

  and satisfying the recursive relationship

    C s sC s C sN N N+ −( ) = ( ) − ( )1 12 .     (12.12)   

 The fi rst few Chebyshev polynomials are  C  0 ( s )    =    1,  C  1 ( s )    =     s ,  C  2 ( s )    =    2 s  2     −    1, 
 C  3 ( s )    =    4 s  3     −     s , and so forth. The order of a Chebyshev I fi lter, in terms of fi lter 
specifi cations, is estimated to be

    )N

k kd d
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η
η

    (12.13)   

 The 2 N  poles of | H ( s )| 2     =    | H ( s ) H ( –  s )| lie on an ellipse whose geometry is determined 
by  ε  and  N . Once again,  N  of the poles | H ( s )| 2  belongs to the stable left - hand plane 
and is assigned to  H ( s ). In particular, the left - hand plane poles are located at 
 s  k     =     − sin( x [ k ])sinh( y [ k ])    +     j cos( x [ k ])cosh( y [ k ]), where  x [ k ]    =    (2 k     −    1) π /2 N , and 
 y [ k ]    =     ± sinh  − 1 (1/ ε )/ N . The other  N  unstable poles belong to  H ( −  s ). 

 A variation on the Chebyshev I model is called the Chebyshev II fi lter. The 
Chebyshev II magnitude squared frequency response is given by

    
H j

C

C
N

N

( )
( / )
( / )

.ω
ε

2

2
2

2

1

1
=

+ 





Ω Ω
Ω Ω

a

a

    (12.14)   

 The order estimation formula (Equation  12.14 ) is the same for both the Chebyshev 
I and II models. A typical magnitude frequency response for a Chebyshev I or II 
fi lter is displayed in Figure  12.6 . The differential features between the Chebyshev I 
and II fi lter strategies can be deduced from the displayed responses. The Chebyshev 

       Figure 12.6     Typical Chebyshev I and II low - pass fi lter magnitude frequency response 
(left) and in decibel units (right).  
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I is seen to exhibit equiripple behavior in the passband and have a smooth transition 
into a relatively fl at stopband. The Chebyshev II fi lter is seen to have an equiripple 
stopband and smooth transition into a relatively fl at passband.   

  Example: Chebyshev Low - Pass Filter 

 Design a Chebyshev I and II that meets a set of specifi cations of a prototype fi lter. 
The gain specifi cations include a stopband bound of  A     =    10 3  ( − 60   dB) and a pass-
band gain limited by  ε     =    0.508 ( − 1   dB). The passband width is 35   Hz and the 
stopband begins at 100   Hz. The remaining design parameters are given by  η     =     ε /
( A  2     −    1) 1/2     =    0.508    ×    10  − 3  and  k  d     =    35/100    =    0.35. The fi lter order is estimated to be
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+ − ×

×
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−log
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) 663
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= <. .

   

 These specifi cations resulted in an eighth - order Butterworth IIR. The fi fth - order 
 − 1 - dB prototype Chebyshev I and II fi lters (denoted CI and CII) are given by

    H s
s s s s s

CI ( )
.

. . . . .
,=

+ + + + +
0 122

0 94 1 69 0 97 0 58 0 1225 4 3 2
  

    H s
s s

s s s s
CII ( )

. . .

. . .
=

× + +( )
+ + + +

0 0142 32 65 2 213 25

4 00 7 89 9 73

4

5 4 3 2 77 52 3 05. .
.

s +
   

 After applying a low - pass - to - low - pass frequency – frequency transform, the fi nal 
version of the Chebyshev I and II fi lters become

    H s
s s s s

CI ( )
.

. . . .
= ×

+ × + × + × + ×
6 32 10

2 06 10 8 17 10 1 04 10 1 35 1

10

5 2 4 4 3 7 2 00 6 32 109 10s + ×.
,   

    H s
s s

s s
CII ( )

. ( . . )

. .
= + × + ×

+ × + ×
3 14 1 58 10 5 00 10

8 74 10 3 82 10

4 6 2 11

5 2 4 55 3 8 2 10 121 04 10 1 76 10 1 56 10s s s+ × + × + ×. . .
.    

 The frequency responses of the analog Chebyshev I and II fi lters are shown in 
Figure  12.7 .   

       Figure 12.7     Chebyshev I and II fi lters showing magnitude frequency (left) and phase 
responses (right).  
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 The design algorithms and design process can be reduced to computer pro-
grams. Specifi cally, a fi fth - order Chebyshev I and II design can be mechanized using 
MATLAB. The design process computes the required fi lter order using the  che-
b1ord  and  cheb2ord  commands. A Chebyshev I or II IIR can then be synthesized 
using MATLAB ’ s  cheby1  and  cheby2  commands. The designed fi fth - order 
Chebyshev I fi lter ’ s transfer function can be produced using the command  tf(B,A) , 
with the following result:

    H s
s s s s

( )
.

. . . .
= ×

+ × + × + × + ×
6 31 10

2 06 10 8 16 10 1 03 10 1 35 10

10

5 2 4 4 3 7 2 9 ss + ×6 31 1010.
,    

 which is in agreement with the previously derived solution. The response of the 
resulting Chebyshev I fi lter is shown in Figure  12.8 .   

 The fi fth - order Chebyshev II fi lter is similarly designed and displayed in 
Figure  12.9 . Both fi lters essentially have the same gross magnitude frequency 
response. At the microscopic level, the MATLAB Chebyshev I exhibits passband 
ripple while the Chebyshev II fi lter has ripple in the stopband.     

  ELLIPTIC (CAUER) PROTOTYPE FILTER 

 An  N th - order prototype elliptic fi lter is expressed in terms of a Jacobian elliptic 
integral equation of the form

       Figure 12.8     Magnitude frequency response of a fi fth - order Chebyshev I low - pass fi lter for 
 Ω  p     =    220 rad/s (35   Hz) and  Ω  a     =    628 rad/s (100   Hz) (left) and log - magnitude frequency 
response (right).  
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       Figure 12.9     Magnitude frequency response of a fi fth - order Chebyshev II fi lter for 
 Ω  p     =    220 rad/s (35   Hz) and  Ω  a     =    628 rad/s (100   Hz) (left) and log - magnitude frequency 
response (right).  
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 The order of an elliptic fi lter is estimated to be0
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  where the other parameters are
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 A typical magnitude frequency response of an elliptic low - pass fi lter is presented in 
Figure  12.10 . It can be seen that an elliptic fi lter exhibits equiripple behavior in both 
the pass -  and stopbands.   

  Example: Elliptic Prototype 

 Design an elliptic fi lter ’ s stopband gain that is bounded by  A     =    10 3  ( − 60   dB) begin-
ning at 100   Hz and the passband gain is defi ned by  ε     =    0.508 ( − 1   dB) out to 35   Hz. 
The remaining design parameters are given by  η     =     ε /( A  2     −    1) 1/2     =    0.508    ×    10  − 3  and 
 k  d     =    35/100    =    0.35. The fi lter order is given by

    ′ = −( ) =k 1 0 35 0 93672. . ,   

    q
k

k
0

1

2

1

1
0 0081667= − ′

+ ′
=( )

( )
. ,   

    q q≈ =0 0 0081667. ,   

    D d d= = =2 21968 1; / .η   

       Figure 12.10     Typical elliptic fi lter magnitude frequency response (left) and in decibels 
(right).  
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 These specifi cations require an eighth - order Butterworth IIR of fi fth - order Chebyshev 
I and II IIRs. Unlike a Butterworth or Chebyshev fi lter, the system ’ s poles are not 
easily expressed in terms of a formula. The fi lter coeffi cients can be machine -
 computed using the MATLAB  ellip  function, and the order determined by using 
the  ellipord  command. The fourth - order Elliptic fi lter ’ s transfer function can be 
produced using MATLAB ’ s  tf(B,A)  command. Using manual techniques, the 
analog prototype fourth - order  − 1 - dB elliptic prototype fi lter is computed to be

    H s
s s

s s s
p ( )

. ( . . )

. . .
= + +

+ + +
0 000461 22 502 65 237

0 553 0 498 0 149

4 2

4 3 2 ss + 0 0337.
.    

 After applying the low - pass - to - low - pass frequency – frequency transform, the fi nal 
version of the elliptic fi lter emerges and is given by

    H s
s s

s s
( )

. ( . . )

. .
= + × + ×

+ × +
0 000461 3 229 10 1 342 10

2 096 10 7 1

4 6 2 12

4 2 3 448 10 8 148 10 6 961 104 2 6 8× + × + ×s s. .
.    

 The zeros are found at  s     =     ±  j 1654.7 and  ±  j 700.3 while the poles are located at 
 s     =     − 75.76    ±     j 93.21 and  − 29.065    ±     j 217.7. The elliptic fi lter ’ s magnitude frequency 
response is shown in Figure  12.11 .     

  PROTOTYPE TO FILTER CONVERSION 

 The process of designing a classic analog Butterworth, Chebyshev I – II, and elliptic 
fi lters fi rst involves designing an analog prototype fi lter  H  p ( s ). This fi lter is then 
mapped into its fi nal form (i.e.,  H ( s )) using frequency – frequency transforms. The 
resulting fi lter  H ( s ) meets or exceeds the posted analog frequency domain specifi ca-
tions in terms of gains, and gain deviations at the critical frequencies. This process 
is motivated by the following example. 

       Figure 12.11     Magnitude frequency response of a fourth - order elliptic analog fi lter for 
 Ω  p     =    220 rad/s (35   Hz) and  Ω  a     =    628 rad/s (100   Hz) (left) and log - magnitude frequency 
response (right).  
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  Example Design 

 Design an analog high - pass Butterworth IIR fi lter having a  − 20   dB or better stop-
band ranging over  Ω     ∈    [0, 10] rad/s, and a passband with an allowable 0.1 - dB 
deviation beginning at  Ω     =    40 rad/s. The manual fi lter design process begins with 
producing an  N th - order analog low - pass prototype model having a critical frequency 
of 1 rad/s (MATLAB  buttord  command). This fi lter is then mapped to a fi nal 
high - pass form  H (s) using a low - pass high - pass frequency – frequency transform 
(MATLAB  lp2hp  command). The fi lter can also be machine - computed using 
MATLAB. The fi lter order can be determined to be  N     =    4 and computed using 
MATLAB ’ s  buttord  command. The Butterworth high - pass fi lter can be computed 
using MATLAB ’ s  butter  command. The resulting low - pass prototype fi lter ’ s trans-
fer function can be produced using MATLAB ’ s  tf(B,A)  command to produce

    H s
s

s s s s
HP ( ) .=

+ + + +

4

4 3 246 1077 14639 99499
   

 The outcome is graphically shown in Figure  12.12 .     

  OTHER  IIR  FILTER FORMS 

 The purpose of Butterworth, Chebyshev I and II, and elliptic fi lter design protocols 
is to construct a good facsimile to a piecewise constant ideal fi lter magnitude fre-
quency response model. Analog fi lter structures, other than the classical Butterworth, 
Chebyshev I and II, and elliptic fi lter models are required at times. Filters with an 
arbitrary magnitude frequency response can be defi ned by the synthesis techniques 
based on estimation tools, such as  autoregressive  ( AR ) or  autoregressive moving 
average  ( ARMA ) models. In all cases, the objective is to synthesize an  N th - order 
analog fi lter having a transfer function of the form

    H s

b s

a s

m
m

m
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m
m

m

N
( ) = =

=

∑

∑
0

0

    (12.18)   

       Figure 12.12     Analog high - pass Butterworth fi lter. Magnitude frequency response (left) 
and phase response (right).  
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 whose frequency response agrees with the observed or measured output of the 
system being modeled in some acceptable manner. Experienced analog fi lter design-
ers also work directly in the  s  - plane. By adjusting the location of the poles and zeros, 
relative to the  j  Ω  - axis, the frequency response of an analog fi lter can be shaped until 
it satisfi es the designer ’ s requirements. Again, the result is a transfer function  H ( s ). 

 Regardless of the design strategy used to synthesize an analog fi lter  H ( s ), it 
needs to be converted into the  z  - domain in order to realize a digital fi lter. There are 
basically two strategies that commonly map an  s  - domain transfer function  H ( s ) into 
a  z  - domain transfer function  H ( z ), resulting in a digital fi lter. These techniques are 
called the impulse invariant and bilinear  z  - transform methods. However, some 
digital fi lter design paradigms are not based on analog models; instead, they convert 
digital fi lter specifi cations into a fi nal form using what are called direct synthesis 
methods. Some of the more common direct methods are summarized below.  

  PRONY ’ S (PAD É ) METHOD 

 The majority of IIR starts are defi ned in terms of a set of frequency domain speci-
fi cations. There are, however, times when the fi lter is defi ned in terms of an arbitrary 
time - domain set of specifi cations. In such a case, Prony ’ s method can be used to 
convert a set of time - domain specifi cations into an IIR design having the form

    H z

b z

b z

B z

A z
h i z

i
i

i
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i
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∑0

0

0

.     (12.19)   

 An  L  sample impulse response can be used to generate an IIR  H ( z ), where 
 L     ≥     N     +     M     +    1, using MATLAB ’ s Prony ’ s tool. 

  Example: Prony ’ s Method 

 Synthesize the transfer function  H ( z ) from knowledge of the fi rst 26 samples of the 
IIR ’ s impulse response. Suppose that the original IIR is a fourth - order low - pass 
Butterworth fi lter having a normalized passband edge of 0.2 π . The synthesis process 
is illustrated below as

 [b,a] = butter(4,0.2); % Design a 4th order Butterworth 
IIR 

 h = fi lter(b,a,[1 zeros(1,25)]); % Create L = 26 - point impulse 
response 

 [B,A] = prony(h,4,4); % Synthesize an IIR for N = M = 4, 
L > M + N + 1  
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 The measured initial 26 impulse response samples of the fourth - order Butter-
worth fi lter is the time series  h [ k ]    =    {0.0048, 0.0307, 0.0906, 0.1679,    . . .    ,  − 0.0010, 
0.0004}, which upon being processed by Prony, for  N     =     M     =    4, returns a fi lter 
model:

    H s
s s s s

s s
( )

. . . . .

. .
= + + + +

− +
0 0048 0 019 0 0289 0 019 0 0048

2 369 2 3

4 3 2

4 3 114 1 054 0 1872s s− +. .
,    

 which corresponds to the coeffi cients of the original fourth - order Butterworth fi lter.   

  YULE – WALKER 

 Another direct design method is based on the Yule – Walker equations. The MATLAB 
program  yulewalk  designs an IIR digital fi lter, which has a magnitude frequency 
response that best approximates that of a measured or specifi ed magnitude frequency 
response. The desired fi lter order is user selected. 

  Example: Yule – Walker 

 Design a 3rd - , 5th - , and 10th - order IIR that have a magnitude frequency response 
that best approximates

    H e

n n

n

n n

jn( )

/ ; , , ,

; , ,

( ) / : , , ,

.Ω =
=

=
− =







4 0 1 2 3

1 4 5 6

10 4 7 8 9 10

   

 The frequency responses of the MATLAB - realized 3rd - , 5th - , and10th - order IIR 
fi lter, based on the Yule – Walker equations, are shown in Figure  12.13 . They are seen 
to provide a reasonable facsimile of the desired response up to the limits of their 
order.       
  
 
 
 
 
 
 
 
 
 

       Figure 12.13     Yule – Walker designs for fi lter orders 3, 5, and 10.  
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  CHAPTER 13 

 IIR  DESIGN     

   INTRODUCTION 

 The process of designing a classic Butterworth, Chebyshev, or elliptic fi lter begins 
with the production of a continuous - time transfer function  H ( s ). Once created,  H ( s ) 
needs to be converted into a discrete - time fi lter (a.k.a., digital fi lter  H ( z )). As it turns 
out, there are a number of ways in which this mapping can be accomplished. There 
are, however, two universally accepted techniques, called the impulse invariant 
transform and the bilinear  z  - transform method that are in common use. These 
methods generally produce decidedly different outcomes.  

  IMPULSE INVARIANCE 

 One of the obvious techniques that can be used to convert a classical analog fi lter 
 H ( s ) into a discrete - time fi lter  H ( z ) is the standard  z  - transform. The standard  z  -
 transform is also referred to as an impulse invariant transform. An impulse invariant 
transform preserves the connection between a system ’ s continuous - time and discrete -
 time impulse responses at the sample instances. Suppose the impulse response of a 
continuous - time fi lter having a transfer function is  h  a (t). Then, upon sampling the 
continuous - time impulse, a discrete - time impulse response  h  d [ k ] results. The impulse 
invariant property of the standard  z  - transform insures that  h  d [ k ]    =     h  a ( t     =     kT  s ) for all 
 k . Furthermore, the  z  - transform of the discrete - time impulse response  h  d [k] can be 
expressed in terms of the Laplace transform of the continuous - time impulse response 
 h  a ( t ). Specifi cally,

    H z
T

H s j
T

nz e a

n

sT( ) = +



=

=−∞

∞

∑s

s s

1 2π
.     (13.1)   

 Evaluating Equation  13.1  along the periphery of the unit circle in the  z  - domain 
produces the discrete - time fi lter frequency response. Specifi cally,

    H e
T

H j
T

j
T

nj

n

ϖ ϖ π( ) = +





=−∞

∞

∑1 2

s
a

s s

,     (13.2)  
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  for | ϖ |    ≤     π / T  s . The term 2 π  n / T  s  appearing in Equation  13.2  reinforces the fact that 
signal energy at analog frequencies above the Nyquist frequency, namely, | ϖ |    =     π / T  s , 
is mapped into the discrete - time fi lter ’ s baseband. This effect is historically called 
aliasing. If the discrete - time system is to be alias free, then  H  a ( j  ϖ / T  s     +    2 π  n / T  s )    =    0 
for all  n     ≠    0. This can be approximately accomplished using an anti - aliasing fi lter. 
Under this condition,

    H e
T

H j
T

j

n

ϖ ϖ( ) = 





=−∞

∞

∑1

s
a

s

.     (13.3)   

 A problem arises when one considers a practical analog fi lter. Analog fi lters generally 
have a fi nite magnitude response that persists for all frequencies. For illustrative 
purposes, consider the simple integrator having a transfer function  H ( s )    =    1/s and a 
frequency response  H ( j  Ω )    =    1/ j  Ω . For any fi nite sample rate  f  s     =    1/ T  s , the integrator 
has a nonzero gain having a magnitude | H ( j  Ω )|    =    1/| Ω |. In the context of Equation 
 13.2 , the frequency response of the discrete - time fi lter will contain energy passed 
by an analog fi lter at frequencies above the Nyquist frequency. Consider the experi-
ment shown in Figure  13.1 , which displays the magnitude frequency response of a 
typical analog low - pass fi lter with a 1   rad/s passband shown. Suppose the sample 
rate is  f  s     =    5/2 π    Sa/s; then, the low - pass fi lter ’ s gain has a nonzero value for frequen-
cies residing above the Nyquist frequency (2.5   rad/s). As a result, signal components 
beyond 2.5   rad/s will be aliased back into the discrete - time fi lter ’ s baseband. This 
highlights a serious design limitation that can compromise the potential value of an 
impulse invariant digital fi lter. Specifi cally, they can have diffi culty in meeting spe-
cifi c frequency - domain requirements due to excessive aliasing. This caveat does not 
necessarily diminish the importance of impulse invariant fi lters in that there are 
many instances where the digital fi lter is designed as an analog replacement having 
known time - domain characteristics. The acceptance criteria, in this case, are devel-
oping a solution having the time - domain behavior of the continuous - time system 
being replaced.    

       Figure 13.1     Spectrum of a fourth - order low - pass impulse invariant Butterworth fi lter with 
a 1   rad/s passband. Shown are the magnitude frequency response of the parent analog fi lter 
(left) and the spectrum of the impulse invariant digital fi lter sampled at  f  s     =    5   Sa/s after 
Equation  13.2  (right). Note that the spectral overlap introduces aliasing.  
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  IMPULSE INVARIANT DESIGN 

 An impulse invariant fi lter is based on an analog parent fi lter having an assumed 
transfer function  H  a ( s ) and impulse response  h  a ( t ) given by

    H s
A

s s
h t T A e u tm

mm

N

m
s tm

a
Inverse Laplace

a s( ) =
−( )

 → ( ) = ( )
=

∑
1 mm

N

=
∑

1

.     (13.4)   

 Upon sampling the continuous - time impulse response, a discrete - time time series 
results having a standard  z  - transform transfer function  H  d ( z ) given by

    

h k h kT A e u t

A e u t

m
s kT

m
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m
s T k
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N
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d d s

-trans
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= ( ) ( )
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m1 1
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.

    (13.5)   

 From the impulse invariant property of  z  - transforms, it follows that  h  a ( t )|  t    =    kT   s     =     h  d [ k ] 
results. Refer to Figure  13.1  and assume that the impulse invariant version of an 
analog fi lter is to be used as an analog fi lter replacement. It is desired that the time -
 domain behavior of the  z  - transformed fi lter closely approximates that of the parent ’ s 
analog system. In this scenario, it is assumed that the digital device is an analog 
replacement technology. It has been established, however, that aliasing can compro-
mise the digital solution. To illustrate, consider a simple fi rst - order continuous - time 
system with a time constant  τ     =    10  − 2  and  H ( s )    =    (1/ τ )/( s     +    [1/ τ ]). When sampled at 
the high rate of  f  s     =    1000   Sa/s, the fi lter ’ s magnitude frequency responses are com-
parable out with the Nyquist frequency (see Fig.  13.2 ). At the lower sample rate of 
 f  s     =    250   Sa/s, there is a notable difference (see Fig.  13.2 ). The reason for this dif-
ference is aliasing. Analog or continuous - time fi lters have stopbands that typically 
fall off slowly (e.g.,  − 20   dB per decade for a fi rst - order fi lter). Specifi cally, the 
analog fi lter ’ s gain around the Nyquist frequency is between 0.1 and 0.2, and has 
nonzero gain beyond that frequency. All the energy that resides beyond the Nyquist 
frequency will be returned to baseband as an aliased signal. The lower the sample 

       Figure 13.2     Simulated response of a continuous - time and discrete - time fi rst - order fi lter at 
sample rates of  f  s     =    1000   Sa/s (left) and  f  s     =    250   Sa/s (right).  
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rate, the greater the aliasing. When the fi lter is, however, suffi ciently oversampled, 
such as  f  s     =    1000   Sa/s, then the Nyquist frequency resides deeper in the analog fi l-
ter ’ s stopband and proportionally less aliasing occurs. The next example explores 
this observation.   

  Example: Second - Order Impulse Invariant Filter 

 A second - order  − 1 - dB Butterworth low - pass discrete - time fi lter having a 1 - kHz 
passband is designed. The fi lter ’ s transfer function is given by

    
H s

s s s
( )

.

( )
. .

.

.
=

+ +
=

×
+

1 965

2000
1 9822

2000
1 9652

7 757 10

1 2452

2

7

2

π π
44 10 7 757 104 7× + ×s .   

  having poles located at s    =     − 6.22    ×    10 3     ±     j 6.22    ×    10 3 . The system ’ s impulse response 
has the general form

    h t e t u t je jeat a j t a j t( ) sin( ) ( ) . . .( ) ( )= = − +( )− − + − −ω ω ω
0 0 5 0 50 0    

 The analog fi lter can be used to develop a discrete - time impulse invariant fi lter by 
applying the standard  z  - transform and selecting a sample rate. For  f  s     =    5   kHz (fi ve 
times passband), the discrete - time response and transfer function is

    h k kT
z T

T z z T
k Z[ ] sin( )

sin( )

cos( )
,= ← →

− +( )α β
α β
α β αs

s

s s

2

22 2   

  where  T  s     =    1/ f  s     =    2    ×    10  − 4 ,   α = =− ×e T6 228 103
0 2878. .s , and  β     =    6.228    ×    10 3 . The trans-

fer function is

    H z
Kz

z

Kz

z z
( ) =

−( ) + ( )
=

− +0 0919 0 272686 0 1960 0 08282 2 2. . . .
,   

  where the value of  K  ( K     =    0.679) is computed using the  z  - transform rules and  K  is 
also chosen ( K     =    0.8990) so that the fi lter ’ s 0   Hz (DC) gain is unity (i.e.,  H ( z     =    1)). 
The magnitude frequency responses are simulated for sample rates of  f  s     =    5   kHz and 
shown in Figure  13.3 . There is a notable difference between the analog and impulse 
invariant discrete - time fi lter ’ s magnitude frequency responses due to aliasing.   

 The process by which an analog fi lter is mapped into an impulse invariant 
discrete - time fi lter can be automated using MATLAB ’ s  impinvar  command. This 
process maps an analog fi lter, denoted  H ( s ), into a discrete - time fi lter  H ( z ) with a 
given sample rate. 

 Consider the previously studied analog fi lter  H ( s )    =    7.757    ×    10 7 /( s  2     +    1.2454    
×    10 4 s    +    7.757    ×    10 7 ) sampled at a 5   kSa/s rate. The continuous - time fi lter  H ( s ) 
can be mapped into the impulse invariant fi lter using the standard  z  - transform 
 H ( z )    =     Ts     ×    3.3968    ×    10 3  z  1 /(z 2     −    0.1968 z     +    0.0828)    =    0.67936z 1 /(z 2     −    0.1968 z     
+    0.0828) resulting in the outcome shown in Figure  13.3 .  
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  Example: Higher - Order Example 

 A fourth elliptic low - pass fi lter is designed with a 25 - Hz - wide, 1 - dB passband and 
a 20 - dB stopband attenuation. The transfer function  H ( s )

    H s
s s s s

( )
. . . . .

=
+ × + × + × + ×− −0 1 1 312 10 1 338 10 7 497 10 3 2 104 14 3 4 2 10 1 8

ss s s s4 3 4 2 6 1 8142 4 137 10 3 367 10 3 59 10+ + × + × + ×. . .
.    

 For  f  s     =    75   Sa/s, the impulse invariant fi lter is given by

    H z
z z z z

z
( )

. . . . .

.
=

− + + + +
+ +

0 188 0 4871 0 617 0 5476 0 0002009

0 72 0

4 3 2 1

4 .. . . .
.

7312 0 8305 0 02649 0 15063 2 1z z z+ + +
   

 The impulse invariant fi lter ’ s impulse response can be produced using MATLAB ’ s 
function  impz  command. The frequency response difference between the analog 
parent and the fi lter ’ s impulse invariant version is shown in Figure  13.4  and is due 
to aliasing.   

 Discrete - time mathematics and simulations demonstrate that impulse invariant 
fi lters have a diffi cult time realizing quality magnitude frequency response (see Figs. 

       Figure 13.3     Simulated responses of a second - order continuous -  and discrete - time impulse 
invariant Butterworth fi lter. The numerator gains are  K     =    0.8990 and 0.6793. The energy in 
the analog fi lter ’ s frequency response beyond the Nyquist frequency is aliased back into the 
baseband of the discrete - time fi lters.  

0 π
0

1

Frequency (rad/s) × 10,000

M
ag

ni
tu

de
 

 

Analog Filter

Impulse Invariant (K = 0.899)

Impulse Invariant (K = 0.679)

       Figure 13.4     Comparison of a fourth - order low - pass elliptic analog and impulse invariant 
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 13.3  and  13.4 ). The problem is that practical impulse invariant fi lters suffer from 
aliasing. Aliasing occurs because analog fi lters have fi nite gain beyond a practical 
and/or acceptable Nyquist frequency. As a result, the impulse invariant  z  - transform 
is generally not recommended for use in implementing infi nite impulse responses 
(IIRs) that must satisfy a set of frequency - domain specifi cations. However, there are 
times when the IIR design specifi cations are given in the time domain, such as rise 
time and overshoot. In this application domain, impulse invariance is a defi nite asset. 
Nevertheless, an alternative to the standard  z  - transform is needed if frequency selec-
tive IIRs are to be a reality. This is the role of the bilinear  z  - transform.   

  BILINEAR   Z   - TRANSFORM 

 While the standard  z  - transform fi lter was shown to possess the impulse invariant 
property, it was found to be problematic when compliance with frequency - domain 
specifi cations is a design prerequisite. Problems in meeting frequency - domain goals 
were attributed to the effects of aliasing. Aliasing effects are anticipated from knowl-
edge that 

  1.     the spectrum of any periodically sampled signal is periodically replicated on 
frequency centers, which are multiples of the sample frequency  f  s  (Eq.  13.1 ), 
and  

  2.     the gain of an analog fi lter never actually falls to zero at or beyond a selected 
meaningful Nyquist frequency.    

 As a consequence, it should be assumed that the highest frequency component found 
in the analog fi lter ’ s response is infi nity. Therefore, it would appear that any fi nite 
sampling frequency will technically result in aliasing. Aliasing effects can, however, 
be mitigated using interpolation of some form. A potentially superior interpolation 
form is a simple integrator, an operator that functions as a low - pass fi lter. A 
continuous - time integrator ’ s input – output transfer function is given by  H ( s )    =    1/ s . 
A discrete - time model of the integrator is the classic Reimann integrator given by 
 y [ k     +    1]    =     y [ k ]    +    ( T  s /2) ( x [ k ]    +     x [ k     +    1]). In the  z  - domain, the Reimann integrator 
can be expressed as

    H z
Y z

X z

T z

z

T z

z
( )

( )

( )
.= =

+( )
−( ) =

+( )
−( )

−
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s s
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1

1

1

1
    (13.6)   

 Fusing together  H ( s ) with  H ( z ), one obtains

    s
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T s

T s
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s
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/
.     (13.7)   

 Equation  13.7  is called a bilinear  z  - transform or Tustin ’ s method. One factor that 
immediately stands out is that the bilinear  z  - transform is a simple algebraic mapping 
rule between the continuous - time and discrete - time domains. This is in sharp con-
trast with a more complicated standard  z  - transform ’ s exponential mapping (i.e., 
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  z esT= s). However, this by itself is insuffi cient to consider using the bilinear  z  -
 transform as a replacement to the venerable standard  z  - transform. Recall that the 
problem associated with the standard  z  - transform was one of aliasing. That is, the 
frequency components residing in the  “ tail ”  of an analog fi lter, extending beyond 
the Nyquist frequency, are aliased back into the discrete - time fi lter ’ s baseband. 
Overcoming this problem would be suffi cient justifi cation for using the bilinear  z  -
 transform as a replacement for the standard  z  - transform. But fi rst, the frequency -
 domain properties of the linear  z  - transform (Eq.  13.7 ) need to be understood.  

  WARPING 

 The bilinear  z  - transform distorts (called warping) the discrete - time fi lter ’ s frequency 
axis. To examine the effects of warping, assume that the frequency response of an 
analog fi lter is defi ned by  H  a ( j  Ω ). Let the normalized frequency response of a 
discrete - time fi lter be given by  H ( e j    ϖ  ), where  ϖ     ∈    [ −  π ,  π ]. The discrete - time fre-
quency axis can be calibrated, if necessary, with respect to the actual sampling 
frequency using  ϖ     =     ω / T  s . The problem at hand is to construct a mapping from the 
 s  - plane to the  z  - plane in a manner that eliminates aliasing. To demonstrate, consider 
evaluating Equation  13.7  along the trajectory  s     =     j  Ω  in the  s  - domain and the arc 
 z     =     e j    ϖ   in the  z  - domain. Direct analysis yields

    j
T

e

e T

j

T

j

j
Ω = 
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 = 





2 1

1

2 2

2

2

s s s

ϖ

ϖ

ϖ
ϖ

sin( / )

cos( / )  ( )j tan( / ) .ϖ 2     (13.8)   

 Upon simplifi cation, Equation  13.8  can be expressed as

    Ω Ω= 









 = −2

2
2 21

T
T

s
sortan tan ( / ).

ϖ
ϖ     (13.9)   

 These relationships are interpreted in Figure  13.5 .   
 The mapping rule that takes the normalized baseband frequency  ϖ  to  Ω  (Eq. 

 13.9 ) is called the prewarping equation. The mapping rule that takes  Ω  to the nor-
malized baseband frequency  ϖ  (Eq.  13.9 ) is called the warping equation. It can be 
seen that the relationship between the analog -  and discrete - frequency axes is non-
linear. As a result, the critical frequencies of an analog fi lter model will not, in 
general, align themselves with the critical frequencies of the resulting discrete - time 
fi lter. This mismatch can be managed using the prewarping and warping equations. 
What is of signifi cance is how the bilinear  z  - transform overcomes the aliasing 
problem that limited the impulse invariant design method. It can be seen that as the 
analog frequency increases toward  Ω     →     ∞  along the continuous - time frequency axis 
(i.e.,  j  Ω ),  ω     →     π  f  s  along the discrete - time frequency axis (i.e.,  j  ω ). This point cor-
responds to a normalized Nyquist frequency  ϖ     →     π . That is, the entire positive and 
negative analog frequency axis is now uniquely mapped onto the unit circle. As a 
result, no aliasing is possible. Because of this property, the bilinear  z  - transform is 
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well suited to convert classic analog fi lters into a discrete - time IIR model that pre-
serves the shape of the magnitude frequency response of the parent analog system. 
The design paradigm is, unfortunately not a straightforward process due to the fact 
that the mapping rules are nonlinear. The bilinear  z  - transform procedure is outlined 
and presented in graphical form in Figure  13.6 . It accounts for the nonlinear effects 
motivated in Figure  13.5 . The four - step process is outlined as follows:

   1.     Specify the desired discrete - time fi lter requirements and attributes. Prewarp 
the discrete - time critical frequencies into their corresponding analog frequen-
cies. Compute the order of the resulting analog prototype fi lter that meets or 
exceeds the analog fi lter ’ s specifi cations.    

  2.     Design an analog prototype fi lter  H  p ( s ) from the given prewarped continuous -
 time parameters.  

  3.     Convert the analog prototype into an analog fi lter  H ( s ) using an appropriate 
frequency – frequency transform.  

       Figure 13.6     Design process for a discrete - time IIR from an analog model using a bilinear 
 z  - transform.  
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4.1 Perform a bilinear z-
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4.2 Derive the discrete-time 
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       Figure 13.5     Relationship between the continuous -  and discrete - frequency axes under a 
bilinear  z  - transform.  
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  4.     Design a digital fi lter  H ( z ) using a bilinear  z  - transform of  H ( s ), which auto-
matically warps the frequency axis back to its original values.    

 While this method may initially seem to be complicated, it is actually simple to 
implement using a digital computer, as demonstrated by the following set of 
examples. 

  Example: Bilinear   z   - Transform Design 

 The synthesis of a discrete - time Butterworth fi lter that meets or exceeds the follow-
ing specifi cations, using the bilinear  z  - transform, begins with specifying the discrete -
 time fi lter ’ s design objectives. They include 

   •      maximum passband attenuation    =     − 3   dB,  

   •      passband  f     ∈    [0, 1]   kHz,  

   •      minimum stopband attenuation    =     − 10   dB,  

   •      stopband  f     ∈    [2, 5]   kHz, and  

   •      sample frequency  f  s     =    10   kHz.    

 Step 1 requires that the digital fi lter frequencies ( f  p     =    1   kHz,  f  a     =    2   kHz, and 
 f  s     =    10   kHz) be prewarped to their analog counterparts. The prewarped continuous -
 time critical frequencies are given by passband and stopband (attenuation) pairs:

    ϖ π π πp p s= = ( ) =2 2 0 1 0 2f f/ . .   

    Ωp
s

p rad/s kHz= = × = →
2

2 20 10 0 1 6498 1 03453

T
tan( / ) tan( . ) .ϖ π   

    ϖ π π πa a s= = ( ) =2 2 0 2 0 4f f/ . .   

    Ωa
s

a rad/s kHz= = × = →
2

2 20 10 0 2 14 531 2 3123

T
tan( / ) tan( . ) , .ϖ π    

 Step 2 designs an analog prototype fi lter  H  p ( s ). From these data, a second - order 
Butterworth prototype fi lter model is required, which has a  − 3 - dB gain at  Ω     =    1, a 
normalized transition bandwidth ratio of  k  d     =     Ω  p / Ω  a     =    6498/14,531    =    0.447, and a 
stopband gain bounded by  − 10   dB. The second - order Butterworth prototype fi lter 
has a transfer function given by

    H s
s s

p ( )
.

.=
+ +

1

1 414 12
   

 Step 3 defi nes an analog fi lter model. The prototype is redefi ned using a frequency –
 frequency transform. In this case,  H  p ( s ) is mapped into a fi nal analog fi lter using a 
low - pass - to - low - pass frequency – frequency transform  s     =     s / Ω  p . The resulting analog 
fi lter becomes

    H s
s s

a ( )
.

. .
.=

×
+ × + ×

4 3 10

9 2 10 4 3 10

7

2 3 7
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 Step 4 implements the bilinear  z  - transform. The fi nal step is to apply the bilinear 
 z  - transform to  H (s) to obtain  H ( z ), which in the process warps the critical frequencies 
of  H  a ( j  Ω ), namely,  Ω  p  and  Ω  a , into their original critical frequency locations  ω  p  and 
 ω  a . That is,

    H z
z

z z
( )

. ( )

. .
.=

+
− +
0 0676 1

1 142 0 412

2

2
   

 The second - order digital fi lter meets the posted design specifi cations.  

  Example: Higher - Order Bilinear   z   - Transformed Filter 

 Design an elliptic low - pass IIR meeting or exceeding the following specifi cations, 
using the bilinear  z  - transform following the step - by - step procedure, beginning with 
listing the fi lter ’ s specifi cations:

    •      sampling frequency  f  s     =    100   kHz;  

   •      allowable passband deviation    =    1   dB, passband range  f     ∈    [0, 20]   kHz;  

   •      minimum stopband attenuation    =    60   dB, stopband range  f     ∈    [22.5, 50]   kHz.    

 Step 1 requires that the discrete - time critical frequencies be prewarped into the cor-
responding analog frequencies that are

    Ωp
s

p rad/s kHz= = × = × →
2

2 2 10 0 2 1 45308 10 23 12655 5

T
tan( / ) tan( . ) . .ϖ π ,,   

    Ωa
s

a rad/s k= = × = × →
2

2 2 10 0 225 1 70816 10 27 18625 5

T
tan( / ) tan( . ) . .ϖ π HHz.    

 Step 2 initiates a design of the analog prototype fi lter  H  p ( s ). These prewarped fre-
quencies along with the passband and stopband gains result in an analog elliptic 
(Cauer) prototype fi lter of order  N     =    8 that is specifi ed below:

    
H s

s s s s

s s
p ( ) .

. . . .

. .
=

+ + + +
+ +

0 000317
22 7 100 3 155 0 78 7

0 843 2 3

8 6 4 2

8 7 224 1 518

1 792 0 838 0 493 0 133 0 028

6 5

4 3 2

s s

s s s s

+ +
+ + + +

.

. . . . .

.
   

 Step 3 converts the analog prototype fi lter  H  p ( s ) model into the fi nal analog fi lter 
 H ( s ) using low - pass - to - low - pass frequency – frequency transform, resulting in the 
model shown below:

    
H s

s s s s
( ) .

. . . .
=

+ × + × + × + ×
0 000317

5 65 10 6 18 10 2 37 10 2 98 18 11 6 22 4 33 2 00

1 32 10 5 77 10 5 935 10 1 10 10

8 1

43

8 5 7 10 6 15 5 21 4s s s s s+ × + × + × + × +. . . .

. 33 10 7 55 10 3 22 10 1 06 1025 3 30 2 35 40× + × + × + ×s s s. . .

.
  

 Step 4 implements the bilinear  z  - transform of  H ( s ) producing the  H ( z ) shown below. 
The bilinear  z  - transform warps the frequency axis that was previously prewarped, 
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restoring the original critical frequencies. The result is the IIR shown below and 
meets the posted specifi cations:

    H z

z z z z

z z
( ) .

. . .

. . .
=

+ + + +
+ +

0 00658

1 726 3 949 4 936

5 923 4 936 3 9

8 7 6 5

4 3 449 1 726 1

3 658 7 495 11 432

11 906 8 996

2

8 7 6 5

4 3

z z

z z z z

z z

+ +
− + − +

−

.

. . .

. . ++ − +4 845 1 711 0 3172. . .

.

z z

   

 The frequency response of the resulting elliptic IIR is shown in Figure  13.7 . The 
passband deviation for the digital fi lter is 1   dB, and the minimum stopband attenu-
ation is about 70   dB, which exceeds the 60 - dB specifi cation. The frequency response 
of the eighth - order elliptic fi lter is seen to exhibit the classic ripple in the pass -  and 
stopband. Observe that most of the phase variability is concentrated in the pass -  
and transition band and early stopband. This is verifi ed by viewing the group delay 
that indicates that a delay of about 60 +  samples occurs at a transition band 
frequency.     

   MATLAB  IIR DESIGN 

 Analog Butterworth, Chebyshev I and II, and elliptic fi lters can be designed using 
MATLAB  butter ,  cheby1 ,  cheby2 , or  ellip  commands. MATLAB automati-
cally implements the four - step design process. The process of developing a digital 
IIR fi lter using the bilinear  z  - transforms starts with defi ning the digital fi lter ’ s per-
formance specifi cations. These specifi cations are interpreted as analog fi lter require-
ments. The analog model is then converted into a discrete - time IIR fi lter using a 
bilinear  z  - transform. This process is well established and has been reduced to a 

       Figure 13.7     Response of an eighth - order elliptic low - pass fi lter. Magnitude frequency 
response (top left), magnitude frequency response in decibels (top right), phase response in 
degrees (bottom left), and group delay in samples (bottom right).  
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computer program. MATLAB has a suite of programs that implement this process, 
and they are showcased below. 

  Example:  MATLAB  

 Design a band - pass digital Butterworth, Chebyshev I and II, and elliptic band - pass 
IIR fi lter having a 1 - dB passband ranging over  f     ∈    [200, 300]   Hz. The leading  − 50 -
 dB stopband ranges over  f     ∈    [0, 100]   Hz. The lagging  − 50 - dB stopband is defi ned 
over  f     ∈    [400, 500]   Hz. The sampling rate is 1000   Sa/s or the Nyquist frequency is 
500   Hz. The designs include low - pass analog prototype fi lters of order  N     =    5 for 
Butterworth,  N     =    4 for Chebyshev I and II, and  N     =    3 for elliptic IIRs. These fi lter 
orders can be verifi ed using MATLAB ’ s  buttord ,  cheb1ord ,  cheb2ord , and 
 ellipord  commands. The  N th - order low - pass fi lter will become a 2 N  - order band -
 pass IIR when the low - pass - to - band - pass frequency – frequency transform is per-
formed. The Butterworth outcome is displayed in Figure  13.8 , the Chebyshev I 
outcome in Figure  13.9 , the Chebyshev II outcome in Figure  13.10 , and the elliptic 
outcome in Figure  13.11 . If the analog fi lter model  H ( s ) is known, then the MATLAB 
command  bilinear  can be used once  f  s  is specifi ed.   

 The standard MATLAB - facilitated IIR design process fi rst translates the 
IIR fi lter specifi cations into a fi lter order ( buttord ,  cheb1ord ,  cheb2ord , and 
 ellipord ) and critical frequencies, and then uses this information to synthesize an 
IIR using the bilinear  z  - transform. The database for the fi rst step is summarized in 
Table  13.1 . The output of the order calculation (i.e., [ n ,  W  n ]) is then presented to the 

       Figure 13.8     Tenth - order Butterworth IIR magnitude frequency response (left) and in 
decibels (right).  
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       Figure 13.9     Eighth - order Chebyshev I IIR magnitude frequency response (left) and in 
decibels (right).  
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desired IIR module completing the command  butter( n , W n) ,  cheby1( n , W n) , 
 cheby2( n , W n) , or  ellip( N , W n) , where  N  is the order of the analog prototype 
fi lter and  W  n  is generated by the order program. It should be noted that for low - pass 
and high - pass, the resulting IIR fi lter is of order  N , but for a band - pass or band - stop 
designs, the outcome is a fi lter of order 2 N . This two - step method was used to 
produce the fi lters presented in Figures  13.8 – 13.11 .     

  IMPULSE INVARIANCE VERSUS BILINEAR  IIR S 

 An analog fi lter having a ramp impulse response  h ( t )    =     tu ( t ) can be uniformly 
sampled and transformed using the standard and/or bilinear  z  - transform. While the 

       Figure 13.10     Eighth - order Chebyshev I IIR magnitude frequency response (left) and in 
decibels (right).  
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       Figure 13.11     Sixth - order elliptic IIR magnitude frequency response (left) and in decibels 
(right).  
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  TABLE 13.1.    Filter Order and Critical Frequencies (Frequencies Normalized by  f  s    /2) for 
Use with  Butterord(W p , W a , R p , R s ) ,  Cheb1ord(W p , W a , R p , R s ) ,  Cheb2ord(W p , 
W a , R p , R s ) , and  Ellipord(W p , W a , R p , R s )  Commands 

   Class     Condition     Stopband     Passband  

  Low - pass     W  p     <     W  s     [ W  s , 1]    [0,  W  p ]  

  High - pass     W  p     >     W  s     [0,  W  s ]    [ W  p , 1]  

  Band - pass     W  s (1)    <     W  p (1)    <     W  p (2)    <     W  s (2)    [0, W s (1)]; [W s (2), 1]    [ W  p (1),  W  p (2)]  

  Band - stop     W  p (1)    <     W  s (1)    <     W  s (2)    <     W  p (2)    [ W  s (1),  W  s (2)]    [0,  W  p (1)]; [ W  p (2), 1]  

    R  p , passband deviation in decibels;  R  s , minimum stopband attenuation in decibels;  W  p , passband frequency;  W  s , 
stopband frequency.   
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system is unstable, it can nevertheless be used to explore the difference between the 
two design paradigms. For analysis purposes, assume that the sample rate is  f  s     =    1   Hz. 
The impulse invariant model  H ( z ) is defi ned in terms of the  z  - transform of  H ( s )    =    1/ s  2 . 
Applying the standard and bilinear  z  - transform to  H ( s ) is, in either case, a straight-
forward mapping process:

    H z
z

z z

z

z zZ1 2

1

1 22 1 1 2
( ) ,standard−

−

− −=
− +

=
− +

  

    H z
z z

z z

z z

z zZ2

2

2

1 2

1
0 25

2 1

2 1
0 25

1 2

1 2
( ) . .bilinear−

− −

− −=
+ +
− +

=
+ +
− + 22

.    

 The short - term impulse responses can be computed using long division. In 
particular,

    
standard -transform

continue

z z z z

z z z

z

:1 2

2

1
1 2 1

1 2 3

1

− +
− +

+
− − −

− − −

−

)
22 32 3z z− −+ + −ramp time series

  

  or  h [ k ]    =    {0, 1, 2, 3,    . . . }, which is immediately recognized to a ramp impulse 
response thereby reinforcing the impulse invariant claim of the standard  z  - transform. 
The bilinear  z  - transform results in

    
bilinear -transformz z z z z

z

: . . .

. .

1 2 0 25 0 5 0 25

0 25 0 5

1 2 1 2− + + +
−

− − − −)
−− −

− −

+

+ + +

1 2

1 2

0 25

0 25 1 2

.

.

z

z z

continue

others

  

  or  h [ k ]    =    {0.25, 1, 2,    . . . }, which technically is not to be the impulse response of a 
ramp. That is, the bilinear  z  - transform produces an impulse response that does not 
agree with the value of  h ( t ) at the sample instances and, as a result, is not an impulse 
invariant transform. 

  Example: Impulse Invariant and Bilinear   z   - Transform 

 The second - order analog  − 1 - dB Butterworth low - pass discrete - time fi lter having a 
1 - kHz passband previously studied is revisited. The analog fi lter has a transfer func-
tion  H ( s ) where

    H s
s s

( )
.

. .
.=

×
+ × + ×

7 757 10

1 2454 10 7 757 10

7

2 4 7
   

 The impulse invariant version of  H ( s ), sampled at 5000   Sa/s, is

    H z T
z

z z

z

z
( )

.

( . . )

.

( .
= ×

×
− +

=
−s

3 3968 10

0 1968 0 0828

0 67936

0 196

3 1

2

1

2 88 0 0828z + . )
.    
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 The bilinear  z  - transform version of  H ( s ), sampled at 5000   Sa/s, is

    H z
z z

z z
( )

. . .

. . .
.=

+
− +

− −

− −

0 2568 0 5135 0 2568

1 0 0 1485 0 1755

1 2

1 2
   

 The magnitude frequency response of the analog, impulse invariant, and bilinear 
 z  - transform fi lters are shown in Figure  13.12 . It can be seen that the impulse invari-
ant fi lter is a distorted version of the analog parent. The bilinear  z  - transform fi lter, 
however, meets the posted design requirements.     

  OPTIMIZATION 

 Classic fi lters approximate a piecewise constant frequency response. As a result, 
there are instances when a classic fi lter model does not exactly meet an applications 
need. In some cases, an approximate piecewise constant response is preferred. In 
such cases, it is desired to manipulate the response of a classic fi lter in an intelligent 
manner, distorting the piecewise constant frequency response profi le into one that 
is similar but different. This can be accomplished by manipulating the pole and zero 
locations of the basic classic fi lter that  “ seeds ”  the fi nal design. The movement of 
poles and zeros has a predictable effect on a fi lter ’ s frequency response. A fi lter ’ s 
frequency - dependent gain, for example, can be increased (peaked) by moving a pole 
or poles closer to the periphery of the unit circle. Frequency - dependent gains can 
be decreased (notched) by moving a zero or zeros closer to the periphery of the unit 
circle. These pole/zero movements can be iteratively preformed in software until a 
desired outcome is realized. 

  Example: Optimization 

 Suppose the passband of an  N th - order IIR is to have a higher gain near the end of 
the passband compared with the DC gain value. This can be justifi ed when the gain 
of the  “ upstream ”  fi lters and systems more aggressively attenuate the high - frequency 

       Figure 13.12     Butterworth analog fi lter response plotted out to 5   kHz (left). Impulse 
invariant fi lter response plotted out to the normalized Nyquist frequency of 2.5   kHz 
(middle); bilinear  z  - transform response plotted out to the normalized Nyquist frequency 
(right).  
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signal. By lifting the higher frequency gain with a modifi ed classic fi lter, the end – end 
gain can be equalized. To illustrate, the magnitude frequency response of a fi fth -
 order low - pass Butterworth fi lter, shown in Figure  13.13 , having a passband extend-
ing out to  f  p     =    0.25  f  s , is used to  “ seed ”  the design. The poles and zero of the classic 
IIR are shown in Figure  13.13  and have the following values:

    poles: . ; . ;0 0 7265 0 0 3249 0± ±j j   

    zeros: , , , , .− − − − −1 1 1 1 1      

 Increasing the value of the complex - conjugate pole pairs closest to  f  p , namely, 
0    ±     j 0.7265, by 10% produces the bulge in the frequency response shown in Figure 
 13.13 . By increasing or decreasing the pole scaling, slightly different effects can be 
achieved.     
  
 
 
 
 
 
 
 
 
 
 
 
  
   

 

       Figure 13.13     Magnitude frequency response of a classic Butterworth fi lter along with its 
optimized counterpart (left) and initial pole - zero distribution (right).  
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  CHAPTER 14 

STATE VARIABLE 
FILTER MODELS     

   STATE - DETERMINED SYSTEMS 

 The ability to form and manipulate transfer functions  H ( z ) is fundamentally impor-
tant to the design and analysis of a linear time - invariant (LTI) system. A transfer 
function, however, only quantifi es a fi lter ’ s input – output behavior and does not 
describe the internal dynamics of a system as defi ned by the system ’ s architecture. 
Architecture, in this instance, refers to how the basic system ’ s building blocks (i.e., 
memory, adders, multipliers, and data paths) are assembled to implement a particular 
solution. What is desired is to develop an architecture - aware methodology that is 
capable of analyzing and auditing fi lter information, both internal and external. This 
is the role of state variables, a tool used in the study of fi lter architectures.  

  STATE VARIABLES 

 State variables represent the information residing in a fi lter ’ s memory or registers. 
The future states of a state - determined system can be computed if 

  1.     all past state variable values are known,  

  2.     the mathematical relationship between the state variables are known, and  

  3.     all future inputs are known.    

 In general, a  multiple - input multiple - output  ( MIMO ) discrete - time system consists 
of  P  - inputs,  R  - outputs,  N  - states, and a state variable representation model given by

    state equation [ ] [ ] [ ] [ ] [: ],x A x B uk k k k k+ = +1     (14.1)  

    initial conditions [ ]: ,x x0 0=     (14.2)  

    output equation T: [ ] [ ] [ ] [ ] [ ],y C x D uk k k k k= +     (14.3)  

  where  A [ k ] is an  N     ×     N  matrix,  B [ k ] is an  N     ×     P  matrix,  C [ k ] is an  N     ×     R  matrix, 
 D [ k ] is an  R     ×     P  matrix,  u [ k ] is an arbitrary  P     ×    1 input vector,  x [ k ] is an  N     ×    1 state 
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vector, and  y [ k ] is an  R     ×    1 output vector. Such a system can be represented by the 
state 4 - tuple { A [ k ],  B [ k ],  C [ k ],  D [ k ]}. If the discrete - time system is also an LTI 
system (i.e., constant coeffi cient), then the state 4 - tuple consists of a collection of 
constant coeffi cient matrices { A ,  B ,  C ,  D }. A discrete - time state - determined system, 
based on Equations  14.1  through  14.3 , is graphically interpreted in Figure  14.1 . Note 
that the system ’ s  N  state variables are stored in  N  shift registers. If an  N th - order 
system can be implemented using only  N  shift registers, the architecture is said to 
be canonic.   

 Many important discrete - time LTI fi lters are  single - input single - output  ( SISO ) 
systems, which can be modeled by the  N th - order difference equation of the form

   a y k a y k a y k N b u k b u k b u k NN N0 1 0 11 1[ ] [ ] [ ] [ ] [ ] [ ].+ − + + − = + − + + −� �     (14.4)   

 The discrete - time at - rest LTI system, defi ned by Equation  14.4 , can also be expressed 
as a transfer function  H ( z ), where

   

H z
b b z b z

a a z a z

b

a

b b a a zN
N

N
N

( ) =
+ + +
+ + +

= +
−− −

− −

−
0 1

1

0 1
1

0

0

1 0 1 0
1�

�
( / ) ++ + −

+ + +

= +
+ +
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a a z a z

b

a

c z c z
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0
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z a z
d C z

D zN
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�

( )
( )

.    
 (14.5)   

 If  a  0     =    1, the system is said to be monic. The transfer function is seen to consist of 
three distinct subsystems. They are (1) a constant input – output path ( d  0 ), (2) feed -
 forward paths ( C ( z )), and (3) feedback paths ( D ( z )).  

  SIMULATION 

 One of the attributes of a state variable system representation is its ability to support 
discrete - time simulation for a selected architecture. The system shown in Figure 
 14.1 , consisting of coeffi cients, delays, and data paths, can be mapped to a state -
 space representation { A ,  b ,  c ,  d }. The state - space matrices and vectors can directly 
support a discrete - time simulation of the system under study. Specifi cally, given a 
state 4 - tuple { A ,  b ,  c ,  d }, the total system response can be iteratively computed using 
the following:

       Figure 14.1     MIMO state - determined model.  
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Initialize d x u

for

[ ] [ ] [ ] [ ] [ ]T

: [ , , , ]; ,

( , )

A b c

y c x u

0

0i N

k k k d k k

=
= +

xx A x b u[ ] [ ] [ ] [ ] [

end

k k k k k+ = +1 ]

    (14.6)   

  Example: Simulator 

 Suppose a specifi c second - order system is given by

    A b c d= 





= 




= 





= [ ]0 1

0 11 1

0

1

0 11

0
1

.
; ;

.
; .    

 The architecture associated with this state description, namely, { A ,  b ,  c ,  d }, is shown 
in Figure  14.2 .   

 Suppose the system is described by { A ,  b ,  c ,  d }, is initially at rest, and is 
presented with an input given as  u [ k ]    =     δ [ k ]    −     δ [ k     −    1]    −    0.11 δ [ k     −    2]. The state and 
output response, for  k     =    0, 1, 2, 3, 4, can be computed using MATLAB. The fi rst 
fi ve computed responses are  y [ k ]    =    {1, 0, 0, 0, 0},  x  1 [ k ]    =    {0, 0, 1, 0, 0}, and 
 x  2 [ k ]    =    {0, 1, 0, 0, 0}.   

   MATLAB  SIMULATIONS 

 The act of simulating the response of an at - rest linear state - determined system to an 
arbitrary input can be reduced to an iterative computer program. In MATLAB, the 
command  dlsim  belongs to the MATLAB ’ s Control Toolbox and can be used to 
support simulation studies. To illustrate, consider the design of a second - order 
Butterworth low - pass infi nite impulse response (IIR), sampled at a 100   Sa/s rate, 
having a passband out to  f  p     =    (0.1) f  s     =    10   Hz. The fi lter ’ s input is the sum of two 
sinusoids at frequencies  f     =    0.2 and 5   Hz, both being passband frequencies. The 
fi lter ’ s state variable representation is given by

    A b c= 





= 





=
0 277 0 415

0 415 0 865

0 587

0 190

0 146
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       Figure 14.2     State - induced architecture.  
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 The resulting state - determined architecture is shown in Figure  14.3 . Figure  14.4  
displays the input signal and spectrum over  f     ∈    [0,  f  s ] for an input containing two 
distinct passband frequencies. Figure  14.5  compares the input, output, and state 
trajectories. It would appear that even though the input and output trajectories are 
highly synergistic, the state trajectories seem to behave somewhat independently. 
This means the internal system behavior, in practice, must also be analyzed and 
quantifi ed in detail and cannot be assumed. Figure  14.6  repeats the study reported 
in Figure  14.4  but does so using an input that has only one of its two frequencies in 
the fi lter ’ s passband. Figure  14.7  addresses the study presented in Figure  14.5  based 
on the new signal.    

       Figure 14.3     Derived architecture of a second - order Butterworth fi lter.  
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       Figure 14.4     First 5 seconds of the multitone input signal having both signal frequencies 
in the fi lters passband (left). Normalized input spectrum ( f     ∈    [0, 100]   Hz) (right).  
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       Figure 14.5     First 1.5 seconds of the input and output signals (left) and output, with states 
 x  1 [ k ] and  x  2 [ k ] outputs (right). Since the multitone input is entirely in the fi lter ’ s passband, 
the output amplitude is similar to its input value. The output is, however, delayed relative 
to the input due to the fi lter ’ s fi nite group delay. The state  x  1 [ k ] appears to pass the higher 
input tone and attenuate the lower frequency component. The state  x  2 [ k ], however, appears 
to have inherited multitone attributes.  
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  STATE VARIABLE MODEL 

 The SISO  N th - order LTI system, shown in Figure  14.1 , can be modeled in terms of 
a state 4 - tuple { A ,  b ,  c ,  d } where  x [ k ] is the state  N  vector,  u [ k ] is the input,  y [ k ] is 
the output,  A  is an  N     ×     N  state matrix,  b  is a 1    ×     N  input vector,  c  is a 1    ×     N  output 
vector, and  d  is a scalar. At some sample index  k     =     k  0 , the next state can be computed 
to be

    x Ax b[ ] [ ] [ ].k k u k0 0 01+ = +     (14.7)   

 At sample instant  k     =     k  0     +    1, the next state is given by

    x Ax b A x Ab b[ ] [ ] [ ] [ ] [ ] [ ].k k u k k u k u k0 0 0
2

0 0 02 1 1 1+ = + + + = + + +     (14.8)   

 Continuing this pattern, at sample  k     =     k  0     +     n     −    1, the next state vector is given by

    
x A x A b A b

Ab b

[ ] [ ] [ ] [ ]

[ ] [

k n k u k u k

u k n u

n n n
0 0

1
0

2
0

0

1

2

+ = + + + +
+ + − +

− − …
� kk n0 1+ − ].

    (14.9)   

       Figure 14.6     First 1.5 seconds of the multitone input signal having one signal component 
in the fi lter ’ s passband, the other in the stopband (left) and input spectrum (right).  
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       Figure 14.7     First 1.0 seconds of the multitone input and output signal (left). Output and 
states  x  1 [ k ] and  x  2 [ k ] are displayed (right). Since the multitone input is partially inside and 
outside the fi lter ’ s passband, the output amplitude is different than the input amplitude. The 
output is again delayed relative to the input due to the fi lter ’ s fi nite group delay. The state 
 x  1 [ k ] again appears to contain the higher input tone and to attenuate the lower frequency 
component. The state  x  2 [ k ], however, again appears to have inherited multitone attributes.  
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 Equation  14.9  can be rearranged and expressed as

    x A x A b[ ] [ ] [ ].k k u ik k k i

i k

k

= +− − −

=

−

∑0

0

0
1

1

    (14.10)   

 Equation  14.10  is seen to consist of two parts, one defi ning the homogeneous solu-
tion, the other the inhomogeneous solution. The homogeneous solution is driven 
only by the initial conditions ( x [ k  0 ]), whereas the inhomogeneous solution is forced 
only by the external input  u [ k ]. Upon substituting Equation  14.10  into the output 
equation (Eq.  14.3 ), the generalized output of the state - determined system is

    y T T T[ ] [ ] [ ] [ ] [ ] [ ]k k du k k u k du kk k k i

i k

k

= + = + +− − −

=

−

∑c x c A x c A b0

0

0
1

1





,     (14.11)  

  which represents a convolution process. The same result can be obtained using 
transform - domain techniques. Observe that the  z  - transform of Equations  14.1 – 14.3  
are

    
z z z z U z

z z dU zT

X x AX b

c X

( ) − = ( ) + ( )
( ) = ( ) + ( )

0 ,

.Y
    (14.12)   

 If the system is at rest (i.e.,  x  0     =    0), then solving for  Y ( z ) one obtains

    
X I A b

c I A b

( ) ( ) ( ),

( ) ( ) ( ) ( ).

z z U z

Y z z U z dU zT

= −
= − +

−

−

1

1
    (14.13)   

 These results lead to the system ’ s transfer function defi ned by  H ( z )    =     Y ( z )/ U ( z ), or

    H z z d( ) ( ) .= − +−c I A bT 1     (14.14)   

  Example: Transfer Function 

 An at - rest second - order LTI system is given by the state 4 - tuple { A ,  b ,  c ,  d }:

    A b c= 





= 




= 




=
0 1

1 1

0

1

1

1
1; ; ; d .    

 Using Equation  14.14 , the transfer function can then be determined, and it is

    

H z z d
z z

z

z

z

z

( ) ( )= − + =
− −
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−c I A bT 1
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  CHANGE OF BASIS 

 The architecture of an at - rest digital fi lter is defi ned by the state - determined 4 - tuple 
{ A ,  b ,  c , d}, and the fi lter ’ s transfer function is given by  H ( z )    =     c  T ( z  I     −     A )  − 1  b     +     d . 
Suppose that the state vector  x [ k ] is redefi ned to be a new state vector using the 
linear transform

    ˆ[ ] [ ],x xk T k= �
    (14.15)  

  where  T  is a nonsingular  N     ×     N  matrix. This corresponds to a change of basis. In 
the context of a digital fi lter, however, the linear transformation  T  corresponds to a 
redefi ning of the fi lter ’ s architecture or wiring diagram. That is, the internal wiring 
diagram has been changed. Applying this transform to a state - determined system 
defi ned by { A ,  b ,  c ,  d } will result in

    

(state equation)

1 1

1

ˆ

ˆ

x x

x

x

k T k

TA k Tbu k

TAT k

+[ ]= +[ ]
= [ ]+ [ ]
= [−

�
� �

]]+ [ ]
= [ ]+ [ ]
= +

Tbu k

Ax k bu k

y k c k d

�

�

� �
ˆ ˆ ˆ

(output equation)

[ ] [ ]Tx
��
�

�

u k

c T k du k

c k du k

[ ]

[ ] [ ]

[ ] [ ]

T

T

= +

= +

−1 ˆ

ˆ ˆ ˆ
x

x

    (14.16)  

  where

    

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ .

A TAT A T AT

b Tb b T b

c c T c c T

d d

= =

= =
= =

=

− −

−

−

1 1

1

1

;

;

;T T T T
    (14.17)   

 The nonsingular transform  T  creates a new architecture defi ned by the new state 
4 - tuple   { }ˆ , ˆ, ˆ, ˆA b c d . Using the matrix identity

    ( ) ,XYZ Z X Y− − − −=1 1 1 1     (14.18)  

  it follows that the transfer function of the new system, under the mapping  T , is 
given by

   

ˆ ˆ ˆ ˆ ˆ

ˆ

H z z T z T T T

T T z

( ) = −( ) + = −( ) +

= −(

− − − −

−

c I A b d c I A b d

c I A

T T

T

1 1 1 1

1 ))( ) + = ( ) −( ) ( ) +

= −( ) + =

− − − − − − −

−

T T T T z T T

z

1 1 1 1 1 1 1

1

b d c I A b d

c I A b d

T

T HH z( ).

    (14.19)   

 That is, the similarity transformation  T  leaves the input – output system behavior 
unaffected but does change the internal architecture specifi cation of the system. The 
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signifi cance of this is huge in that it states that virtually any given transfer function 
 H ( z ) can be implemented with an infi nite number of architectural choices.  

   MATLAB  STATE SPACE 

 MATLAB contains a collection of state - determined commands that provide a means 
of connecting traditional transfer functions, pole - zero descriptions, state variable 
models, and second - order state variable models together. These mappings relate to 
the objects and elements shown below:

    

Transfer function model

Pole-zero

: ( )H z

b z

a z

i
i

i

N

i
i

i

N
=

−

=

−

=

∑

∑
0

0

  model

State variable m

: ( )H z k

z

z
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i
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N
=

−( )

−( )
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=

−

=

∏

∏

1

1

1

1

1

1

β

α

oodel }
T

:{ , , ,
[ ] [ ] [ ]

[ ] [ ] [ ]
A b c d

x x

x

k A k bv k

y k c k dv k

+ = +
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1

    (14.20)   

 Many of the state - determined elements relate to a second - order system representa-
tion of systems having a transfer function:

    H z g
b b z b z

a z a z
k k k

k kk

L

( ) .=
+ +

+ +

− −

− −
=
∏ 0 1

1
2

2

1
1

2
2

1 1
    (14.21)   

 These forms are interrelated using the following MATLAB commands:

    SS2TF : The state - space to transfer function conversion command has a syntax 
[NUM,DEN]    =    SS2TF(A,B,C ′ ,D,iu) and computes the input – output trans-
fer function from the  iu th input location ( iu     =    1 for SISO) where

    H z C zI A B D
Num z

Den z
( ) ( )

( )

( )
.= − + =−T 1     (14.22)    

   SS2ZP : The state - space to zero - pole conversion command has a syntax 
[Z,P,K]    =    SS2ZP(A,B,C,D,iu) and computes the input – output transfer 
function from the  iu th input location ( iu     =    1 for SISO) where

    H z C zI A B D k
z z

z p

i

i

( ) ( )
( )

( )
.= − + =

−

−
− ∏

∏
T 1     (14.23)      
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  Example:  SS2TF / SSTPZ  

 Consider the second - order state - determined system:

    A b c d= 





= 




= 




=
0 1

1 1

0

1

1

1
1: ; ; .    

 The state 4 - tuple { A ,  b ,  c ,  d } defi nes the fi lter ’ s transfer function to be given by

    
H z z d

z

z

z z

z

z z
( ) ( )= − + = [ ]

−





− −




+ =

−
−c I A bT 1

2

2

2
1 1

1 1

1

1

0

1
1

−−1
.
   

 MATLAB can be used to map the state 4 - tuple into a SISO transfer function using 
the following:

 A = [0 1; 1 1]; b = [0 ; 1]; ct = [1 , 1]; d = 1; 

 NUM, DEN] = SS2TF(A,b,ct,d,1);  

 which results in the transfer function  H ( z )    =     z  2 /( z  2     −     z     −    1). MATLAB can also map 
a state 4 - tuple into a SISO transfer function in pole - zero form using  [Z,P,K]  =  
SS2ZP(A,b,ct,d,1) , which results in the transfer function

    H z
z z

z z
( ) = −( ) −( )

+( ) −( )
0 0

0 618 0 618. .
.    

 The reverse process can also be facilitated by MATLAB. Mapping from a state 
variable model to a transfer function is accomplished using the functions shown 
below:

    TF2SS : The transfer function to state - space conversion command has a syntax 
[A,B,C,D]    =    TF2SS(NUM,DEN) and calculates the state - space representa-
tion given a transfer function using

    H z C zI A B D A b c d( ) ( ) , , , .= − + ⇒ { }−T 1     (14.24)    

   ZP2SS : The zero - pole to state - space conversion command has a syntax 
[A,B,C,D]    =    ZP2SS(Z,P,K) and calculates a state - space representation 
given a fi lter ’ s pole - zero distribution:

    H z C zI A B D k
z z

z p
T

i

i

( ) ( )
( )

( )
.= − + =

−

−
− ∏

∏
1     (14.25)       

  Example:  TF2SS / PZ2SS  

 Given  H ( z )    =     z  2 /( z  2     −     z     −    1), the MATLAB script

 NUM = [1 0 0]; DEN = [1  - 1  - 1]; 

 [A,B,C,D] = TF2SS(NUM,DEN)  
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 produces a state 4 - tuple   A b c d= 





= 




= 




=







0 1

1 1

0

1

1

1
1: ; ; . Given the transfer 

function  H ( z ) in pole - zero form,  H ( z )    =    ( z     −    0)( z     −    0)/( z     +    0.618)( z     −    1.618), 
MATLAB can compute the state 4 - tuple using

 Z = [0 0]; P = [ - 0.618 1.618]; K = 1; 

 [A,B,C,D] = ZP2SS(Z,P,K):  

 producing   A b c d= 





= 




= 




=







0 1

1 1

0

1

1

1
1: ; ; .  

  Example: Automatic Control 

 One of the principle signal processing domains is automatic controls. Controls have 
a natural affi nity to state variable modeling and are often the principal analysis tool. 
The system shown in Figure  14.8  is that of a typical continuous - time feedback 
control system. The continuous - time controller can be replaced by an equivalent 
digital controller. The digital controller performs the same control task as the 
continuous - time controller with the basic difference being that it is a digital system. 
There is a MATLAB Control Toolkit function called  c2dm  that converts a given 
continuous system (either in transfer function or state - space form) into a discrete 
system model using a zero - order hold operation. The basic  c2dm  command has a 
format:

 [numDz,denDz] = c2dm(num,den,Ts, ′ zoh ′ )%transfer function 

 [F,G,H,J] = c2dm(A,B,C,D,Ts, ′ zoh ′ )%state variables    

 As a guide, a control system ’ s sampling time ( T  s  in sample per second) should be 
smaller than 1/(30 * BW), where BW is the system ’ s closed - loop bandwidth fre-
quency (i.e., oversampling). Consider the continuous - time transfer function of a 
second - order mechanical system with feedback described by the transfer function 
 H ( s )    =    1/( Ms  2     +     bs     +     k ) where  M     =    1   kg,  b     =    10,  k     =    20   N/m, and  F ( s )    =    1. 
Assuming the closed - loop bandwidth frequency is greater than 1   rad/s, choosing the 
sampling time ( T  s ) equal to 1/100 second ( f  s     =    100   Sa/s) and parameters shown 
below produces the following outcome:

 num = [1]; den = [M b k]; Ts = 1/100; 

 [numDz,denDz] = c2dm(num,den,Ts, ′ zoh ′ ) 

 numDz  =       1.0e - 04 % k;      0, 0.4837, 0.4678 %      N(z) 

       Figure 14.8     Digital controller.  
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 denDz  =  1.0000,  - 1.9029, 0.9048      %      D(z) 

 num = [0.4837, 0.4678]; 

 den = [1  - 1.9029 0.09048]; 

 [A,b,c,d] = tf2ss(0.0001 * num, den);  

 MATLAB produces the discrete time controller replacement transfer function

    H z
z

z z
( ) = +( )

− +( )
0 0001 0 4837 0 4678

1 9029 0 09462

. . .

. .
  

  that has a state model illustrated in Figure  14.9  and given by

    A b c=
−





= 




= 


1 902 0 090

1 000 0 000

1

0

0 483

0 467

. .

. .
; ;

.

.
T


× =−10 0 0004; . .d        

  TRANSPOSE SYSTEMS 

 The state variable 4 - tuple { A ,  b ,  c ,  d } defi nes a unique architecture. Another archi-
tecture, called a transpose architecture, can be derived from { A ,  b ,  c ,  d }. The system 
exemplifi ed by the fi rst - order system shown in Figure  14.10  can be reengineered as 
the transpose system also shown in Figure  14.10 . The reengineering process is 
developed below:

       Figure 14.9     State model for the second - order system  H ( z ).  
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       Figure 14.10     Traditional architecture (left) and transposed architecture (right) fi lters.  
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    •      Reverse the direction of fl ow in all branches.    

   •      Reverse the input and output ports.  

   •      All nodes become summers, and all summers become nodes.    

 The transpose of the state - determined system { A ,  b ,  c , d} is characterized by the 
4 - tuple { A  T ,  c  T ,  b  T , d T }. The resulting transfer function is

   H z z A z z( ) ( ) ( ) ( ) ( ) .= + − = + − = + −− − −d d dT T T T T T T Tc I b b I A c b I A c1 1 1     (14.26)   

 The input – output transfer functions of the original and transpose systems are pro-
duced in Equation  14.26  and are equal. However, they have different internal wiring 
instructions. 

  Example: Transpose 

 Derive the state variable representation of a state - determined second - order 
Butterworth low - pass fi lter having a passband cutoff frequency of  f     =    0.1 f  s . Convert 
the resulting fi lter ’ s state 4 - tuple { A ,  b ,  c ,  d } into its transposed form { A  T ,  c  T ,  b  T ,  d  T } 
using the MATLAB code shown below. The transfer function is  H ( z )    =    (0.06746 z  2     
+    0.1349 z     +    0.06746)/( z  2     −    1.143 z     +    0.4128) and has a transposed architecture 
given by { A  T ,  c  T ,  b  T ,  d  T }. The MATLAB - produced transfer function is  H ( z )    =    
(0.06746 z  2     +    0.1349 z     +    0.06746)/( z  2     −    1.143 z     +    0.4128), which is the same as the 
original, but synthesized from the transposed architecture given by { A  T ,  c  T ,  b  T ,  d  T }. 
When the two architectures are compared, however, they differ as shown in Figure 
 14.11 . The outcomes can be explored using the following:

       Figure 14.11     Original architecture (left) and transposed architecture (right).  
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 [A,B,C,D] = butter(2,0.2); 

 [n,d] = ss2tf(A,B,C,D);      tf(n,d);      %      original 

 [nt,dt] = ss2tf(A ′ ,C ′ ,B ′ ,D);tf(nt,dt);%transponse      

   MATLAB  STATE - SPACE ARCHITECTURAL STRUCTURES 

 MATLAB provides a collection of objects that map a transfer function into a state -
 space architecture. The MATLAB Signal Processing Toolbox operator  dfi lt  is used 
to describe a discrete - time fi lter and has the syntax  H  d     =     dfi lt.structure 
(input1, … ) . The function  dfi lt  returns a discrete - time fi lter having a selected 
architecture or structure. The state - variable - specifi ed fi lter structure is  dfi lt.
statespace  where  H  d     =     dfi lt.statespace(A,B,C,D)  returns a discrete - time 
state - space fi lter defi ned in terms of the state 4 - tuple { A ,  B ,  C ,  D } that is graphically 
interpreted in Figure  14.12 .   

  Example:  MATLAB  ’ s State - Space Model 

 Design a sixth - order Chebyshev II low - pass fi lter having a  − 40 - dB or better stop-
band, and a stopband critical frequency of  f     =    0.125 f  s . Implement the fi lter using a 
state variable model, test the fi lter ’ s stability, and conduct fi ltering studies. The 
MATLAB - orchestrated design and analysis outcome is showcased in Figure  14.13 . 

       Figure 14.12     MATLAB ’ s state variable system model displayed in MATLAB style (dfi lt.
statespace).  
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       Figure 14.13     Low - pass Chebyshev II state variable fi lter ’ s magnitude frequency response 
(left) and in decibels (right).  
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The MATLAB script shown below computes the fi lter ’ s state 4 - tuple for the initial 
states set to zero. The fi lter ’ s bounded - input bounded - output (BIBO) stability is 
MATLAB - verifi ed. The system is also tested using MATLAB and a zero - mean 
random input  n [ k ] with the response shown in Figure  14.14 .    

 [n,d] = cheby2(6,40,0.25); [A,b,c,d] = tf2SS(n,d);         % State 
variable model 

 Hd = dfi lt.statespace(A,b,c,d);         % Implement using MATLAB ’ s 
state space tool 

 get(Hd)      % report state variable model 

 get(Hd, ′ A ′ )      % manually retrieve A 

 Hs = Hd.states         % Check that the initial states are zero 

 isstable(Hd)      % Is the fi lter BIBO stable? 

 x = randn(1000,1):      %      input noise 

 y = fi lter(Hd,x); % convolution      
  
 
 
 
 
 
 
 
 
 
 
 
 
    

 

       Figure 14.14     Output to the low - pass Chebyshev II state variable fi lter. The output time 
series is seen to be a smoothed version of a random input signal.  
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  CHAPTER 15 

DIGITAL FILTER 
ARCHITECTURE     

   FILTER ARCHITECTURE 

 A number of digital fi lter design procedures exist that translate a set of frequency -
 domain specifi cations into a transfer function  H ( z ). An infi nite impulse response 
(IIR) fi lter, for example, can be based on a transfer function  H ( z ) defi ned in terms 
of polynomials or poles and zeros as suggested in Equation  15.1 :

    H z
N z

D z
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b z

a z

K

z z

z

m
m

m
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m
m
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i
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∏
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1
.     (15.1)   

 Once the fi lter is designed, an implementing architecture needs to be selected. It 
should be appreciated that there are many architectures that are currently in common 
use. Examples of classic IIR architectures include direct I and II, cascade, parallel, 
ladder/lattice, and normal, to name a few. These architectures represent various 
trade - offs between maximum real - time speed, complexity, and precision. One of the 
most basic and popular architectures is called the direct form.  

  DIRECT  I  AND  II  ARCHITECTURES 

 Architectures can be viewed as a fi lter ’ s wiring diagram. What differentiates one 
specifi c architecture from another are the details of this wiring diagram, sometimes 
called a netlist. The simplest architectural representation for a system having a 
transfer function  H ( z ) is the direct I form (architecture) shown in Figure  15.1 . The 
direct I architecture, however, is noncanonic, requiring 2 N  shift registers to imple-
ment an  N th - order fi lter. The canonic direct II model is a refi nement of the direct I 
architecture and is also shown in Figure  15.1 . The canonic direct II structure needs 
only  N  shift registers to implement an  N th - order IIR. The advantage of the direct II 
over a direct I design is reduced complexity. The direct II architecture permits a 
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tentative state assignment that locates the  i th state variable  x i  [ k ],  i     ∈    [1,  N ], at the 
 i th shift register. This action is consistent with the knowledge that the states represent 
information, and information is stored in the fi lter ’ s registers. The displayed direct 
II state assignment  x N  [ k ] to  x  1 [ k ], shown in Figure  15.1 , is stored in a serial chain of 
registers. Unfortunately, this model provides no convenient way to express the 
output  y [ k ] as a linear combination of the current states  x i  [ k ],  i     ∈    [1,  N ], and the 
input  u [ k ]. Refer to Figure  15.1  and note that  x N  [ k     +    1] ( b  0  path) is not an element 
of the state  N  - vector  x [ k ]    =    [ x  1 [ k ],    .   .   .    ,    x N  [ k ]] T . This problem can be mitigated by 
slightly modifying the direct II form.   

 Consider representing  H ( z ) as
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  along with the following state assignment:
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  where  x i  [ k ] is called the  i th state variable and  x [ k ] is the  N  - state vector of states  x i  [ k ] 
at clock instance  k . This assignment allows the next state,  x [ k     +    1], to be defi ned as

       Figure 15.1     Direct I (top) and II (bottom) architectures. Coeffi cients  a i   and  b i   correspond 
to the multipliers of  z   −    i   in  D ( z ) and  N ( z ). State  x  1 [ k ] is closest to the output; state  x N  [ k ] is 
closest to the input.  
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 This, in turn, enables a direct II architecture to be defi ned by  x [ k     +    1]    =     Ax [ k ]    +     bu [ k ] 
where the  N     ×     N  coeffi cient state matrix  A  and  N     ×    1 input vector  b  are defi ned to be
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 The [ i ,  j ] element of  A  defi nes the path gain between state  x j  [ k ] and  x i  [ k     +    1]. The 
output, or output state equation, is given by  y [ k ]    =     c  T  x [ k ]    +     d  0  u [ k ]. According to 
Equation  15.2 , for a monic system (i.e.,  a  0     =    1),

    
cT = − − −( ) =

=
− −b b a b b a b b a c c c

d b
N N N N N0 1 0 1 1 0 1 1 2

0 0

� �( )
    (15.6)  

  where  c  is an  N  vector and  d  0  is a scalar. It can be seen that the modifi ed direct II 
architecture allows the output  y [ k ] to be constructed as a linear combination of the 
current states  x i  [ k ] and input  u [ k ]. The result is a system having a state representation 
{ A ,  b ,  c ,  d }. This modifi ed direct II architecture is shown in Figure  15.2 . However, 
due to its popularity, it is often referred to as simply the direct II architecture.   

  Example: Direct  II  Architecture 

 Consider, for example, a third - order monic digital fi lter having a transfer function 
given by
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       Figure 15.2     Modifi ed direct II architecture (often called direct II).  
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 Using Equations  15.5  and  15.6 , the modifi ed direct II system can be expressed as 
the state 4 - tuple:

    A b c=
−
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  as shown in Figure  15.3 .     

  DIRECT  I  AND  II   MATLAB   IIR  SUPPORT 

 MATLAB has extensive state variable direct I and II support. MATLAB ’ s state vari-
able programs, however, makes their state assignments in a reverse order from those 
normally found in signal processing literature and textbooks. Specifi cally, the tradi-
tional state located at  x i  [ k ] appears at state locations  x N    −    i  [ k ] in MATLAB. The con-
version of a transfer function  H ( z ) into a direct II architecture can be performed 
using the MATLAB programs  TF2SS  or  ZP2SS . For  single - input single - output  
( SISO ) IIR fi lter applications, they are briefl y summarized below:

    TF2SS : Transfer function to state - space conversion given by [A,B,C,D]    =    
TF2SS(NUM,DEN).  

   ZP2SS : Zero - pole to state - space conversion given by [A,B,C,D]    =    ZP2SS
(Z,P,K).    

 The resulting state 4 - tuples { A ,  b ,  c , d} is that of a direct II architecture in MATLAB 
style (i.e., reversed state order). 

  Example: MATLAB Direct  II  Architecture 

 To illustrate MATLAB ’ s reordering of states, consider the traditional direct II archi-
tecture presented in Figure  15.3  and given by
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 MATLAB can map  H ( z ) into a direct II fi lter in MATLAB style. The MATLAB 
direct II fi lter can be obtained using the  TF2SS  command, producing

       Figure 15.3     Third - order state - determined digital fi lter reduced to a direct II architecture 
showing traditional state assignments.  
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 n = [1  - .5  - .315  - .0185]; d = [1  - .5 .5  - .25];          

 [A,B,C,D] = TF2SS(n,d)  

 The outcome is
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  and illustrated in Figure  15.4 . Comparing the architectures shown in Figures  15.3  
and  15.4 , it can be seen that the architectures are identical except for the state 
ordering.    

  Example: High - Order Direct  II  Architecture 

 Consider the fi fth - order digital fi lter, having a transfer function
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 From Equation  15.2 ,  H ( z )    =     k ( d     +     C ( z )/ D ( z )) and consists of two parts. The fi rst part 
is an unscaled scaled transfer function  H  ′ ( z )    =    ( d     +     C ( z )/ D ( z )), which can be imple-
mented as a direct II architecture. The state 4 - tuple of the direct II fi lter, in MATLAB 
style, is
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       Figure 15.4     Third - order state - determined digital fi lter reduced to a direct II architecture 
showing MATLAB style state assignments.  
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 The second part is the application of scale factor  k     =    0.108 to the fi rst part transfer 
function  H  ′ ( z )    =    ( d     +     C ( z )/ D ( z )) to form  H ( z )    =     kH  ′ ( z ). This can be achieved by 
scaling the input to form  u  ′ ( t )    =     ku ( t ). The analysis of the fi lter requires that the 
output magnitude frequency response, as well as those of the states be quantifi ed. 
To compute the individual state responses, fi rst realize that states 1 through 5 are 
connected by a  fi rst - in fi rst - out  ( FIFO ) shift - register chain. Therefore, what happens 
to MATLAB state  x  1 [ k ] happens to state  x  5 [ k ] fi ve samples later. Next, recognize that 
state  x i  [ k ] can be isolated in the output by making the following modifi cations to  c  
and  d :
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 Figure  15.5  displays the output frequency response along with those of the isolated 
states  x  1 [ k ] and  x  5 [ k ].   

 Since  x  1 [ k ]    =     x  2 [ k     −    1]    =     x  3 [ k     −    2]    =     x  4 [ k     −    3]    =     x  5 [ k     −    4], the magnitude fre-
quency responses of  x  1 [ k ] and  x  5 [ k ] are identical. It can be observed that the magni-
tude frequency responses of the state solutions have a high local gain, which is about 
three times larger than that found in the natural output  y [ k ].   

   MATLAB  DIRECT  I  AND  II  STRUCTURES 

 MATLAB also provides a collection of objects that map a transfer function into a 
set of direct I and direct II architectures. The MATLAB Signal Processing Toolbox 
command  dfi lt  is used to describe a discrete - time fi lter with a specifi c architecture 
or structure using the syntax  Hd    =    dfi lt.structure(input1, ... ) . Each 
structure takes one or more inputs where the direct fi lter structures are as 
follows: 

     

       Figure 15.5     Magnitude frequency response of the fi fth - order direct II IIR measured at the 
output  y [ k ] (left), state locations  x  1 [ k ] (middle), and  x  5 [ k ] (right).  
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 The  dfi lt  function forms a family of MATLAB direct fi lters that are summarized 
in Figure  15.1 . Transposed versions of direct fi lter architectures are developed in 
Chapter  14 . It should be noted that the  df1  and  df1t  options are noncanonic, while 
the  df2  and  df2t  are canonic. 

  Example:  MATLAB  Direct  IIR  Structure 

 Design a sixth - order Chebyshev II low - pass fi lter having a  − 40   dB or better stop-
band, and a stopband critical frequency of  f     =    0.125 f  s . The IIR can be implemented 
using a MATLAB direct I ( df1 ), direct I transposed ( df1t ), direct II ( df2 ), and 
direct II transposed ( df2t ) architecture. The evaluation procedure for a direct II is 
shown below:

 [n,d] = cheby2(6,40,0.25); 

 Hd = dfi lt.df2(n,d);      %         Direct II 

 get(Hd) 

 Numerator: [0.0164  - 0.0243 0.0375  - 0.0292 0.0375  - 0.0243 

0.0164] 

 Denominator: [1  - 3.5779 5.6767  - 4.9900 2.5467  - 0.7101 

0.0846]  

 It can be seen that the IIR analysis reports a transfer function numerator and denomi-
nator, which can be displayed as a state - determined direct II for using the  TF2SS  
command.   

  CASCADE ARCHITECTURE 

 One of the most popular IIR structures found in common use today is called the 
cascade architecture. The basic  Q  - stage cascade architecture is shown in Figure  15.6  
and can be represented with a transfer function having the form

   dfi lt.df1     direct - form I,  

   dfi lt.df1t     direct - form I transposed,  

   dfi lt.df2     direct - form II,  

   dfi lt.df2t     direct - form II transposed.  

       Figure 15.6     Cascaded architecture consisting of  Q  subfi lters.  
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 The  i th subsystem, denoted  H i  ( z ), is either a fi rst -  or second - order fi lter section 
having only real coeffi cients. Each low - order subfi lter can also be represented in 
terms of a state model { A   i  ,  b   i  ,  c   i  ,  d i  } of order  N i      ∈    [1, 2]. A cascade architecture, as 
the name implies, presents the output of the  i th subsystem to the input of its succes-
sor. The design rules for the creation of fi rst -  and second - order subfi lters are well 
established and are presented in the next section.  

  FIRST -  AND SECOND - ORDER SUBFILTERS 

 A transfer function  H ( z )    =     N ( z )/ D ( z ) possesses many possible factorizations. One 
obvious form is based on the fi lter ’ s pole - zero distribution. Specifi cally,
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  where  H i  ( z ) is an  N i   - order IIR,  N i      <     N . Generally, for cascade designs, the real or 
complex conjugate poles and zeros are combined to create fi rst -  or second - order 
subsystems having only real coeffi cients. These fi rst -  and second - order systems can 
provide a basic design framework for cascade as well as other fi lter architectures. 

  First - Order  IIR  

 First - order subsystems occur when one or more of the system pole or poles are real. 
Suppose  p i   is real; then, a fi rst - order IIR biquadratic or direct II or subfi lter can be 
constructed, where
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 The details of the two fi rst - order architectural choices are shown in Figure  15.7 .    

  Second - Order  IIR  

 Second - order subsystems occur when one or more of the system poles appear in 
complex - conjugate pairs. Suppose  p i   and   pi

* are complex - conjugate poles; then, 
second - order IIR biquadratic or direct II or subfi lter can be constructed, where
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 (15.10)   

 The details of the two second - order architectural choices are shown in Figure  15.8 .   
 Both fi rst -  and second - order fi lters are defi ned in terms of real multiplications, 

which, compared with complex arithmetic, are very effi cient. A logical question to 
raise is how to pair the fi rst -  and/or second - order zeros and poles from a fi eld of  M  
possible zeros and  N  poles. For each pairing, a different subfi lter confi guration is real-
ized having a unique frequency response and maximum gain. As a general rule, zeros 
are paired with the closest poles. This proximity pairing strategy will generally result 
in a fi lter design having fi lter sections possessing the smallest maximal gain across the 
baseband, spreading the gain requirements more equitably across all subfi lters. Other 
pairing strategies can result in a few subsystems having excessively large dynamic 
range, which can reduce overall system precision. To illustrate, consider a simple 
second - order IIR having poles at  z     =    0.9 and  − 0.9, with zeros located at  z     =    0.5 and 
 − 0.5. The magnitude frequency responses of the subfi lters, obtained from two possi-
ble parings, are shown in Figure  15.9 . The resulting fi lters are the following:

    •      proximity pairing:  H  1 ( z )    =    ( z     −    0.5)/( z     −    0.9) and  H  2 ( z )    =    ( z     +    0.5)/( z     +    0.9),    

   •      nonproximity pairing:  H  1 ( z )    =    ( z     +    0.5)/( z     −    0.9) and  H  2 ( z )    =    ( z     −    0.5)/( z     +    0.9).    

 The maximum subfi lter gain for the proximity pairing design is  G  max     =    5.0. For the 
other pairing,  G  max     =    15.0. Given a choice, the proximity paired design would nor-
mally be selected.  

       Figure 15.7     Implementation of a fi rst - order section as a biquad  H i  ( z )    =    ( q i   0     +     q i   1  z   − 1 )/
(1    −     λ   i z   − 1 ) (left) or direct II section  H i  ( z )    =     q i   0     +    (r  i z   − 1 )/(1    −     λ   i z   − 1 ) (right).  
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       Figure 15.8     Implementation of a second - order section as a biquad  H i  ( z )    =    ( w i   0     +     w i   1  z   − 1     +     
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  Example: Pole - Zero Paring 

 Design a sixth - order Chebyshev II low - pass fi lter that has at least a  − 50 - dB stopband 
beginning at  f     =    0.125 f  s . The fi lter is to be implemented using a cascade architecture. 
The pole - zero distribution is displayed in Figure  15.10 . The frequency response of 
each second - order fi lter is displayed in Figure  15.11 . It can be seen that the frequency 

       Figure 15.9     Magnitude frequency responses of subfi lters. Proximity pairing (left) and 
nonproximity pairing (right).  
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       Figure 15.10     Pole - zero distribution of the Chebyshev II fi lter showing the proximity 
pairings for the three subfi lters.  
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       Figure 15.11     System output and individual subsystem responses. The maximum 
subsystem gain ranges from about 2 to nearly 9. The scaled by  “  g  ”  cascaded response of 
the subsystems and original transfer function are seen to be in full agreement.  
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response of each section is different in shape and maximal value. Other pairs would 
result in higher localized gain.     

   MATLAB  FIRST - AND SECOND-ORDER SECTIONS 

 MATLAB contains a collection of programs that recognize the connection between 
state variables and a cascade fi lter implementation. It is based on the use of 
MATLAB ’ s second - order system (sos) format that represents second - order 
sections. If
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  then the sos coeffi cient matrix is given by

    sos =

b b b a a

b b b a a

b b b a aL L L L L

01 11 21 11 21

02 12 22 12 22

0 1 2 1 2

1

1

1

… … … … … …



















.    

 The MATLAB cascade fi lter objects are the following:

    tf2sos : The command [sos,g]    =    tf2sos(b,a) converts a fi lter having a transfer 
function  H ( z ) as a collection of  L  second - order fi lters and stores the outcome 
in an sos  L     ×    6 sos matrix. If  H ( z ) is a fi rst - order system, then  b  2k     =     a  2k     =    0. 
The  tf2sos  function uses a multistep algorithm to determine the second -
 order section representation by  

  1.     computing poles and zeros of  H ( z ),  

  2.     grouping the zeros and poles into complex conjugate pairs on the basis 
of proximity, and  

  3.     implementing second - order subfi lters.    

   zp2sos : Program [sos,g]    =    zp2sos(b,a,k) converts a fi lter having a transfer 
function into a collection of  L  second - order fi lter sections in the form of an 
sos  L     ×    6 matrix.  

   ss2sos : Program [sos,g]    =    ss2sos(A,B,C,D) converts a fi lter having a state 
variable representation into a collection of  L  second - order fi lter sections in 
the form of an sos  L     ×    6 matrix. 

 The mapping process can be reversed using the following functions.  

   sos2ss : The command [A,B,C,D]    =    sos2ss(sos) converts a fi lter of second -
 order sections into a fi lter having an equivalent state - space representation.  

   sos2tf : The command [b,a]    =    sos2tf(sos) converts a fi lter consisting of 
second - order sections into a transfer function.    
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  Example: Cascade  IIR s 

 Consider the third - order IIR digital having the transfer function

    H z
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D z

z z z

z z
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. . .
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 Interpreted  H ( z ) as a cascade IIR using  tf2sos(N,D)  as shown below:

 N = [1  - .5  - .315  - .0185]; D = [1  - .5 .5  - .25]; 
[SOS,G] = TF2SOS(N,D) 

 SOS  =  1.0000  - 0.8813 0.0000 1.0000  - 0.5000 0.0000 

                         1.0000      0.3813 0.0210 1.0000      0.0000 0.5000 

 G  =  1  

 The outcome is two cascaded sections, namely,
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 Once the  Q     =    2 subfi lters have been defi ned, the individual transfer functions can 
be mapped into a state - determined model using the MATLAB program sos2ss, using 
the format [A,B,C,D]    =    sos2ss(SOS,G) for each individual subfi lter:
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= −[ ] =; . . ; .c d2 20 3813 0 479 1
   

 The individual fi lter sections have their direct II state variable models shown in 
Figure  15.12 .     

  PARALLEL ARCHITECTURE 

 Another basic fi lter structure is the parallel architecture. A parallel collection of  Q  
IIR subfi lters can be used to create the transfer function

       Figure 15.12     Cascade IIR fi lter.  
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  where  H i  ( z ) is a fi rst -  or second - order subsystem defi ned with real coeffi cients. That 
is, each fi rst -  and second - order system is implemented as a real direct II subfi lter. 
The process of mapping an  N th - order transfer function  H ( z ) into a parallel fi lter is 
facilitated by a Heaviside expansion. To illustrate, the Heaviside expansion of a third -
 order IIR, given by  H ( z )    =    (0.44 z  2     +    0.362 z     +    0.02)/( z  3     +    0.4 z  2     +    0.18 z     −    0.2), is
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 The Heaviside expansion of  H ( z ) is given in terms of 

  pole location:  p  1     =    0.4000,  p  2     =     − 0.4000    −     j 0.5831;   p j2 0 4000 0 5831* . .= + ,  

  Heaviside:  γ  1     =    0.24000,  γ  2     =    0.1000    −     j 0.1458;   γ 2 0 1000 0 1458* . .= + j ,    

 which results in the coeffi cients A, B, and C, namely,

    A = 0 24. ;   

    B j= = × − =2 2 0 1 0 1458 0 202(Re( ) ) Re( . . ) . ;γ and   

    
C p p= × + × = × × − + ×2 2 2 0 1 0 4 2 0 582 2 2 2(Re( ) Re( )) (Im( ) Im( )) ( . ) ( . ) ( .γ γ 331
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×
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 This produces the parallel architecture shown in Figure  15.13  and modeled by
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  CASCADE/PARALLEL  MATLAB  SUPPORT 

 MATLAB ’ s Signal Processing Toolbox contains a collection of objects that can be 
used to map a transfer function  H ( z ) into a cascade or parallel architecture. These 

       Figure 15.13     Parallel third - order IIR Filter.  
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operations use the function  dfi lt  to describe a discrete - time fi lter. The command 
 Hd    =    dfi lt.structure(input1,    ... )  returns a discrete - time fi lter having a user -
 defi ned structure or architecture. For cascade and parallel architectures, the choices 
are the following:

    dfi lt.cascade  — fi lters arranged in series,  

   dfi lt.parallel  — fi lters arranged in parallel,  

   dfi lt.df1sos  — direct I collection of second - order sos sections,  

   dfi lt.df1tsos  — transpose direct I collection of second - order sos sections,  

   dfi lt.df2sos  — direct II collection of second - order sos sections,  

   dfi lt.df2tsos  — transpose direct II collection of second - order sos sections.    

 These programs are based on reducing a given transfer function  H ( z ) into fi rst -  or 
second - order direct I or direct II as standard and transpose architectures, all having 
real coeffi cients. For sos, an  L     ×    6 matrix of second - order sections, the command 
 dfi lt.df1sos  creates a cascaded discrete - time direct I fi lter of second - order 
sections. The command  Hd    =    dfi lt.df1sos(sos)  returns a cascade architecture 
that is built on a collection of second - order direct I fi lter sections,  Hd    =    dfi lt.
df1tsos(sos))  for direct I transposed fi lters,  Hd    =    dfi lt.df2sos(sos)  for direct 
II fi lters, and  Hd    =    dfi lt.df2tsos(sos)  for direct II transposed fi lters. The com-
mands  tf2sos  or  zp2sos  can be used to create the sos matrix. These provide a 
plurality of options for implementing cascade fi lters.Alternatively, the MATLAB 
command  dfi lt.cascade(h1, h2, ...   )  returns a discrete - time fi lter with serial 
interconnection of two or more fi lter objects, which are separately designed (see Fig. 
 15.14 ) using MATLAB architectural tools (e.g., direct I conversion). The  dfi lt.
parallel(h1, h2, ... )  command is used to construct a parallel fi lter (see 
Fig.  15.14 ).   

  Example:  MATLAB  Cascade and Parallel  IIR  

 Implement a sixth - order, low - pass, elliptic fi lter as a cascade collection of three 
direct II second - order fi lters. This result can be obtained using  dfi lt.df2sos(s) . 
The magnitude frequency response of the derived fi lter and the three cascade stages 
and the three cascade sections are shown in Figure  15.15  using MATLAB ’ s  fvtool . 
The characteristics of each second - order fi lter are seen to be distinct. It can also be 
noted that the overall (cascaded) frequency response has a 0   Hz (DC) gain of about 

       Figure 15.14     MATLAB cascaded and parallel fi lter module.  
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36   dB, not 0   dB. The discrepancy can be explained when it is realized that the sepa-
rate input gain adjustment of  g     =    0.0153 ( − 36.29   dB), which was not applied to the 
cascade fi lter.   

 To explore a parallel architecture, two eighth - order unit gain low - pass IIR 
fi lters  H  1 ( z ) and  H  2 ( z ) with different passband cutoff frequencies are designed and 
combined in parallel to form  H ( z ) using  dfi lt.parallel(Hd1,Hd2) . The passband 
gain of  H ( z ) has a value of 2 which, if cascaded with a memory - less fi lter with a 
gain of 0.5, produces a unit gain passband outcome. This is illustrated below and 
the outcome is displayed in Figure  15.16 , using MATLAB ’ s  fvtool .     

  LADDER/LATTICE  IIR S 

 Lattice fi lters appear in both fi nite impulse response (FIR) and IIR forms. They have 
great utility in a number of digital signal processing (DSP) applications, such as 
speech processing and adaptive fi ltering. Lattice fi lters are essentially collections of 
independent fi lter sections or stages. Sections can be added or removed without 

       Figure 15.15     Magnitude frequency response of sections  H  1 ( z ),  H  2 ( z ),  H  3 ( z ), and  H ( z ). 
Display provided by MATLAB ’ s  fvtool .  
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       Figure 15.16     Magnitude frequency response of two direct II transpose fi lters connected in 
parallel. Notice that | Hp |    ≠    | H 1|    +    | H 2| but | Hp |    =    0.5(| H 1|    +    | H 2|). Display is provided by 
MATLAB ’ s  fvtool .  
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affecting the others. This is unlike other fi lters where a change in one part of a design 
can affect the entire design. The order of a lattice fi lter, for example, can be increased 
without the need of recomputing the preexisting sections. Lattice fi lters are also 
claimed to have a low sensitivity to coeffi cient round - off error, making them attrac-
tive for use with small word length technologies. Another lattice feature is the ability 
to compute both forward and backward predictions. Forward error predictions (a 
priori) are used to estimate a current or future value of a signal in noise. Backward 
error predictions (a posteriori) are used to estimate a past value of a signal in noise. 

 In general, an  M th - order linear time invariant IIR can be represented as the 
monic transfer function
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 The  M th - order system can be realized as the ladder/lattice IIR fi lter as shown in 
Figure  15.17 . The fi lter structure consists of two major subsystems. The fi rst is a 
lattice section that is similar to the feed - forward structure found in a lattice FIR. 
This section is defi ned by a set of refl ection or  partial correlation  ( PARCOR ) coef-
fi cients, with the difference being that the FIR feed - forward structure is replaced by 
a feedback structure. Attached to feedback taps of the lattice fi lter is a collection of 
tap weights that are used to synthesize a unique input – output relationship. One of 
the known properties of a lattice IIR fi lter is that the refl ection coeffi cients of a stable 
lattice fi lter are bounded by unity (i.e., | k i  |    <    1.0). The IIR design procedure is similar 
in form to that developed for lattice FIRs along with a production means for deter-
mining the tap - weight coeffi cient  λ   i   that defi nes the ladder section.   

  Example:  IIR  Lattice Filter 

 To motivate the IIR design process, consider the three - stage example having a trans-
fer function  H ( z )    =    (1    +    2 z   − 1     +    3 z   − 2     +    4 z   − 3 )/(1    +    (21/32) z   − 1     +    (21/64) z   − 2     +    (1/8) z   − 3 ). The 
analysis is based on the knowledge that the lattice IIR is defi ned in terms of the 
PARCOR coeffi cients that are computed to be {1/2, 1/4, 1/8} as shown in Figure 
 15.18 .   

       Figure 15.17     Ladder/lattice architecture.  
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 The Signal Processing Toolbox function  tf2latc  accepts an IIR fi lter in 
polynomial form and returns the corresponding refl ection coeffi cients. The process 
can be reversed using  latc2tf  to produce an outcome that agrees with the manual 
lattice fi lter calculations (see below):

 num = [1 2 3 4]; den = [1 21/32 21/64 1/8]; 

 [k,v] = tf2latc(num,den); 

 k =             0.5000      % k 1 ; 0.2500      % k 2 ;      0.1250      % k 3 ; 

 v  =          0.1797      %  λ  0 ; 0.4531      %  λ  1 ; 0.3750      %  λ  2 ; 4.0000      % 
 λ  3 ; 

 [n,d] = latc2tf(k,v);      % reverse process 

 n  =                1               2               3               4 

 d  =             1.0000            0.6563            0.3281            0.1250  

 Recall that MATLAB uses  dfi lt  to describe a discrete - time fi lter and that 
 Hd    =    dfi lt.structure(input1, ... )  returns a discrete - time fi lter (i.e.,  Hd ). 
MATLAB provides a collection of  dfi lt  objects that map a transfer function into a 
set of lattice architectures. Specifi cally, they are

    

       Figure 15.18     Third - order ladder/lattice IIR.  
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   dfi lt.latticear     lattice  autoregressive  ( AR ) and  
   dfi lt.latticearma     lattice  autoregressive moving average  ( ARMA ),  

 where the AR model refers to an all - pole IIR structure and ARMA has both poles 
and zeros. The internal structure of an AR lattice fi lter is shown in Figure  15.17  
where the output is taken from point  F  0 ( z ) and the coeffi cients  λ   i      =    0. The ARMA 
fi lter appears in the form shown in Figure  15.17 .     
  
 
 
 
 
 
 
 
 
 
 
 
 
 



  CHAPTER 16 

FIXED - POINT EFFECTS     

   BACKGROUND 

 Digital fi lters can be studied in the context of their architecture. Unless this analysis 
refl ects reality, performance prediction can range from being misleading to some-
times completely false. Virtually all digital fi lter analysis protocols are based on 
linear models. The veracity of these models can be challenged when nonlinear 
behavior appears in the form of fi nite word length effects. However, to ensure suc-
cessful fi lter performance under real - world conditions, fi nite word length effects 
must be understood, measured, and managed.  

  FIXED - POINT SYSTEMS 

 An  N  - bit fi xed - point signed number is represented by one sign bit,  I  integer bits, 
and  F  fractional bits such that  N     =     I     +     F     +    1 bits. Such a system is said to have an 
[ N    :    F ] format. The dynamic range of an [ N    :    F ] system is bounded by  ± 2  I  , and the 
signifi cance of the least signifi cant bit is  Q     =    2  −    F  . Since a fi xed - point system pos-
sesses both a limited dynamic range and precision, resources must be intelligently 
managed. If not, the performance can be compromised. The fi nite word length errors, 
introduced by a fi xed - point system, are 

   •      overfl ow saturation,  

   •      arithmetic rounding,  

   •      coeffi cient rounding,  

   •      data scaling, and  

   •      zero - input limit cycling.    

 Fortunately, corrective actions are generally available and take the form of 

   •      scaling the input or coeffi cients,  

   •      increasing the system ’ s word length, and  

   •      selecting an alternative architecture or fi lter model.    
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 A high - level design and analysis strategy begins with the translation of a set of fi lter 
specifi cations into a realizable fi lter ’ s transfer function, and ultimately assigned a 
specifi c architecture. The designed fi lter can be realized as a fl oating - point or fi xed -
 point fi lter. The performance of the candidate fi lter solution will need to be studied 
using analytical methods or simulations to ensure that the design specifi cations 
remain satisfi ed. If the candidate design fails this test, then the design strategy will 
need to be altered or modifi ed, and tested until a successful design is obtained, if 
one exists.  

  OVERFLOW (SATURATION) EFFECTS 

 One of the recognized fi nite word length effects is called run - time register overfl ow. 
Of all the error sources, register overfl ow is potentially the most disastrous. Register 
overfl ow can introduce signifi cant nonlinear distortion into a system potentially 
rendering a fi lter useless. It is therefore incumbent on the fi lter designer to eliminate, 
or at least mitigate, the effects of run - time register overfl ow. There are some standard 
precautions that can be used to control this problem in some circumstances. First, 
if fi xed - point arithmetic is used to implement a fi lter design, it should be 2 ’ s comple-
ment (2C) because of the modulo( N ) property. It is known that an array of  N  - bit 2C 
data words can be accumulated without error as long as the fi nal result is known to 
be a valid  N  - bit 2C number. The result is correct even if accumulator overfl ow is 
encountered during run time. Therefore, bounding a fi lter ’ s outcome to be a valid 
 N  - bit word, the worst case dynamic range requirements of the digital fi lter, needs to 
be mathematically and physically certifi ed. 

 Another method used to suppress the potential effects of register saturation is 
to use saturating arithmetic. A saturating arithmetic unit, upon detecting an overfl ow 
condition, clamps the accumulator output to the most positive or negative value (see 
Fig.  16.1 ). That is, the output of an  N  - bit 2C saturating accumulator, having a 
maximal dynamic range limit of  ± 2  N   0 ,  N  0     ≤     N , is defi ned to be  

    ACC

ACC

ACC ACC

ACC

N N

N N

N

=
−( ) ≥

− < < −
−

− −

− −

−

2 1 2

2 2 1

2

0 0

0 0

0

1 1

1 1

1

if

if

if ≤≤ −






−2 0 1N

.     (16.1)   

 Register overfl ow can be studied experimentally by continually scaling the input 
downward until overfl ows cease to occur. Unfortunately, experimental studies can 

       Figure 16.1     Saturating arithmetic unit.  
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only test a fi nite number of input sequences. One could potentially eliminate over-
fl ow errors by aggressively scaling the input, but such a policy will also reduce the 
precision of the resulting fi lter to a point that the fi lter is of no practical value. Since 
dynamic range and precision metrics are inversely related in fi xed - point systems, it 
is important to mathematically defi ne the dynamic range bounds as conservatively 
as possible. This question is called the binary - point assignment problem. 

  Example: Run - Time Overfl ow 

 Consider an eighth - order low - pass Chebyshev II fi lter having a transfer function
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 The fi lter is implemented using a [16:15] formatted fi xed - point direct II and cascade 
infi nite impulse response (IIR). The system is tested using a unit step function. The 
simulated step responses obtained from both architectures are shown in Figure  16.2  
along with the ideal response. The direct II response is highly distorted due to 
93 internal register overfl ows occurring in the fi rst 101 samples. The cascade 
fi lter ’ s response shows far less distortion and suffered only 19 register overfl ows 
during the same time period. It can be noted, however, that only the transient 
response was signifi cantly distorted due to fi nite word length effect errors. This is 
due to the nature of the test conducted, namely, a study of the IIR ’ s step response. 
If the transient response is important, such as motor control applications, the fi lter 
responses would signifi cantly differ. In addition, it should be noted that the cascade 
fi lter requires 25 multiply - accumulates (MACs) per fi lter cycle, while the direct II 
needs only 18 MAC calls per fi lter cycle. Therefore, the maximum real - time band-
width of the direct II can be 40% higher than the cascade. As a result, the fi xed - point 
architecture selection process often raises trade - off issues between bandwidth and 
precision.     

       Figure 16.2     Direct II and Cascade eighth - order IIR architectures and responses.  
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  ARITHMETIC ERRORS 

 The next most severe type of error attributed to fi nite precision arithmetic effects is 
called arithmetic error. Consider the fi xed - point MAC unit shown in Figure  16.3 , 
which is used to implement SAXPY (S    =    AX    +    Y) calls. It is assumed that  A  and  X  
are  N  - bit digital words presented to a full - precision multiplier, producing a 2 N  - bit 
full - precision product. The 2 N  - bit full - precision product may be reduced to an  S  - bit 
word,  S     ≤    2 N , before being presented to an  S  - bit accumulator. The  S  - bit accumulator 
is fi nally reduced to an  M  - bit fi nal result where  M     ≤     S . It is generally assumed that 
the error associated with the case where  M     <<    2 N  is given by  e     =    ( y [ k ]    −     Q F  ( y [ k ])) 
where  Q F  ( q ) denotes the quantization of a number  q  to a digital word having  F  frac-
tional bits of precision. The error variance is given by  σ  2     =     Q  2 /12 where  Q     =    2  −    F   is 
the weight of the least signifi cant bit of the  M  - bit accumulator output having  F  frac-
tional bits of precision. The problem is not necessarily the modeling the error itself, 
but determining what happens to the error after it is produced. Since the internally 
generated errors in an IIR can recirculate and remain within the system indefi nitely, 
monitoring and controlling these errors is essential to successful fi lter design.    

  COEFFICIENT SENSITIVITY 

 A third source of fi nite word length error is attributed to coeffi cient rounding. A 
general model for a monic IIR is
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       Figure 16.3     Fixed - point MAC unit.  
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 having only real coeffi cients. Suppose that  a m  , b m  , c m  , d  0  are rounded and replaced by 

  ̂ , ˆ , ˆ , ˆa b c dm m m 0, the coeffi cients of   ˆ ( )H z , where

    

ˆ ( ) , [ , ],
ˆ ( ) , [ , ],
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    (16.3)  

  and  Q F  ( x ) denotes the quantizing of a coeffi cient  x  to  F  fractional bits of precision. 
Comparing  H ( z ) into   ˆ ( )H z , defi ned in terms of   ̂ , ˆ , ˆ , ˆa b c dm m m 0, is diffi cult in general 
due to the nonlinear nature of the problem. Small changes in a denominator coef-
fi cient, for example, can radically alter a transfer function ’ s pole location causing, 
in some cases, instability. Specifi cally, the poles of the IIR are denoted  p m   and are 
the roots to

    D z a z p zm
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 If the coeffi cient  a m   is quantized to values   ̂ ( )a Q a a am F m m m= = + ∆ , then it follows 
that

    ˆ ( ) ˆ ˆ ,D z a z p zm
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∑ ∏1 1
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    (16.5)  

  where   ̂p p p m Nm m m= + ∈∆ , [ , ]1 . The roots of   ˆ ( )D z  defi ne the pole locations for a 
fi xed - point fi lter and are assumed to have moved from their ideal location  z     =     p m   by 
an amount  Δ  p m  . The incremental change in pole location  Δ  p m   can be modeled:
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    (16.6)   

 Based on a classic partial derivative model, the pole sensitivity is seen to a function 
of the proximity that the original poles have to each other. It should be apparent, 
however, that performing this analysis can be very tedious and may have limited 
value. Furthermore, the partial derivatives used in sensitivity analysis studies are 
only valid for very small incremental changes in parameters. This makes the value 
of this type of analysis questionable in the context of a practical fi xed - point fi lter. 
In lieu of formal mathematical tests, simulation is often used to qualify the effects 
of coeffi cient rounding. 

  Example:  IIR  Coeffi cient Sensitivity 

 A sixth - order Chebyshev I low - pass IIR is designed and implemented as direct II 
and cascade fi lters. The fi lter ’ s transfer function is given by
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 The fi lter is implemented as direct II and cascade IIRs with the fi lter coeffi cients 
rounded to a [16:8] format. The analysis of the direct II fi lter is shown in Figure 
 16.4 .   

 The analysis of the cascade fi lter is shown in Figure  16.5 . The fi lter is reduced 
to three second - order sections having only real coeffi cients. The coeffi cients of the 
second - order section are quantized and the system response is recorded.   

 The difference between the responses can be attributed to the coeffi cient 
rounding. It can be seen that cascade architecture has a slight advantage over direct 
II but represents a slightly more complex implementation. This observation gener-
ally holds when comparing cascade and direct II fi xed - point fi lters. 

 To illustrate coeffi cient rounding effects in a state variable format, consider 
an eighth - order narrow - band band - pass Chebyshev I fi lter. The fi lter is to have a 
1 - dB passband over  f  p     ∈    [0.4, 0.6] f  s , and 50 - dB attenuation in the stopbands of 
 f  a1     ∈    [0.0, 0.2] f  s  and  f  a2     ∈    [0.8, 1.0] f  s . The fi lter ’ s transfer function is given by

    H z
z z z z
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       Figure 16.4     Ideal and 8 - fractional - bit direct II magnitude frequency response (left) and 
spectral difference (right).  
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       Figure 16.5     Ideal and 8 - fractional - bit cascade magnitude frequency responses (left) and 
spectral difference (right).  
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 The direct II IIR implementation is described in the standard state variable model 
shown below. The fi lter is to be implemented with 8 - bit and 15 - bit fractional coef-
fi cient precision. This can be accomplished by rounding the coeffi cients of the state 
space model version of the fi lter to  F  fractional bits of precision:
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 The outcome is shown in Figure  16.6 . It can be seen that the 8 - fractional - bit design 
exhibits some passband degradation, while the 15 - fractional - bit solution is a good 
approximation to the ideal.   

 A common problem encountered in fi xed - point fi lter design is the quantizing 
of small, but important, fi lter coeffi cients to zero. To illustrate, the numerator  N ( z ) 
of the example IIR is  N ( z )    =    (0.00183    −    0.00734 z   − 2     +    0.01101 z   − 4     −    0.00734 z   − 6     +    
0.00183 z   − 8 ). The smallest coeffi cient is 0.00183 and would require at least 9 fractional 
bits to avoid being quantized to zero. Assigning more fractional bits to the design, 
while improving the precision of small coeffi cients, would reduce the maximum 
dynamic range of the system, exposing it to possible run - time register overfl ow. 

 The eighth - order Chebyshev I band - pass IIR studied as a direct II architecture 
can also be implemented using a cascade architecture. Replicating the analysis per-
formed for a direct II study, the cascade analysis would proceed as follows. Using 
proximity pairing, the eighth - order Chebyshev I band - pass IIR would be factored 
into four second - order sections satisfying

       Figure 16.6     Eighth - order band - pass fi lter showing the magnitude frequency response of 
the ideal and 8 -  and 15 - fractional - bit direct II fi lters (left) and in decibels (right).  
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 The resulting second - order sections are then mapped into a direct II and cascade 
form. The outcome is shown in Figure  16.7 . The fi xed - point fi lters are seen to 
produce a reasonably good approximation to the ideal magnitude frequency response. 
This observation is generalizable in that cascade IIRs are normally expected to 
provide a solution that has a higher coeffi cient round - off error tolerance.     

  SECOND - ORDER SECTIONS 

 The poles of an  N th - order IIR having a transfer function  H ( z )    =     kN ( z )/ D ( z ) are the 
roots of  D ( z )    =    0. For a direct II architecture, the characteristic equation is denoted 
 D  II ( z ) and is given by Equation  16.7  for the poles located at  z     =     p m  . Specifi cally,

    D z D z a z p zm
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m
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m

m

N
II II II( ) ( ) .= = = −( )−
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=
∑ ∏

0

1

0

1     (16.7)   

 Rounding or truncating of the coeffi cients  a m   to  F  fractional bits of precision, 
however, would result in a new characteristic polynomial:

       Figure 16.7     Cascade implementation of an eighth - order Chebyshev I band - pass IIR using 
8 and 15 fractional bits of coeffi cient precision showing the response of each second - order 
section. Shown are the ideal fi lter response plus those having 8 and 15 fractional bits of 
coeffi cient precision (upper left and right), and the output response of the cascade fi lter for 
each case (lower left) and a zoom expansion of part of the passband (lower right).  
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 Specifi cally,   Q a a aF m m m( )II = + ∆  and   p p pm m m
II II= + ∆ . The effect of this pole move-

ment is defi ned by the collective action of all the quantized feedback coeffi cients. 
Suppose that the IIR is implemented with a cascade architecture consisting of a 
collection of second - order fi lters. If the coeffi cients of the cascade architecture are 
truncated or rounded, then the poles of the fi xed - point fi lter ’ s cascaded characteristic 
equation is given by
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  where   Q a a aF i m i m i m( ): : :
C = + ∆  and   p p pm m m

C C= + ∆  and, in general,   ∆ ∆p pm m
II C≠ . The 

movement of the poles of a cascade architecture are seen to be defi ned by the round-
ing or truncation of pairs of feedback coeffi cients, which are distinctly different than 
those of a direct II fi lter. It should therefore be apparent that the pole sensitivity is 
architecture dependent. Since second - order sections are considered to be digital fi lter 
building blocks, they have been the focus of a number of focused studies. If the 
characteristic equation for the second - order section is

    D z r z r z( ) cos( ) ,= − +− −1 2 1 2 2φ     (16.10)   

 then the second - order poles are located at  z     =     re   ±    j    ϕ  . A second - order direct II fi lter 
section would possess a state matrix  A  given by
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  and that of the quantized second direct II section are given by the determinant of
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 The eigenvalues (poles) of  Q F  ( A ) are given by
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  and are displayed in Figure  16.8  for all possible 4 - fractional - bit coeffi cients. It can 
be seen that the roots of Equation  16.13  provide a nonuniform coverage in the  z  -
 plane. The poles lie on a circular loci at various radii from the origin. Notice also 
that the quantized poles are more dense nearer the periphery of the unit circle and 
sparse in the interior.   
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 Alternatively, a special second - order architecture, called a normal fi lter is 
defi ned by a state matrix of the form

    A
r r

r r
=

−
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.

φ φ
φ φ

    (16.14)   

 The quantized second - order normal section is given by determinant of the matrix 
 Q F  ( A ) where
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 The eigenvalues (poles) of  Q F  ( A ) are given by the roots of
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 The roots loci of a normal second - order section are displayed in Figure  16.8  for all 
possible signed 4 - fractional - bit coeffi cients. It can be seen that the direct II poles 
are nonlinearly distributed in the  z  - plane and those of a normal fi lter ’ s poles are 
more uniformly distributed. Because of this feature, normal architectures are gener-
ally assumed to have low coeffi cient round - off error sensitivity. However, this is 
conditionally true. If the poles are known to be close to the unit circle, the quantiza-
tion pattern of the direct II can result in a design having a lower coeffi cient round - off 
error budget. However, the analysis should not stop there.  

  NORMAL  IIR  

 The direct II fi lter architecture did not have a balanced or symmetric feedback 
structure. The cascade and parallel architectures were based on fi rst -  or second - order 

       Figure 16.8     Admissible locations of the quantized poles for a signed 4 - bit second - order 
direct II (left) and normal IIR fi lter (right).  
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direct II sections and therefore also have asymmetric feedback structures. Symmetric 
feedback is a hallmark of low round - off error sensitivity analog fi lters, which can 
be translated into low round - off error normal digital fi lters. Such digital fi lters can 
be expressed as a collection of fi rst -  and second - order normal subsystems. In general, 
a fi rst - order fi lter has the form

    H z d
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  where  λ   i   is the real eigenvalue of the  i th subsystem. The one term feedback structure 
of a fi rst - order system precludes any discussion of feedback symmetry. A second -
 order section is, however, a different case. Consider the second - order section 
given by

    H z d
c z c z

a z a z
d

N z

z
i i

i i

i i
i

i

( ) = + +
+ +

= + ( )
+( ) +

− −

− − −0
1

1
2

2

1
1

2
2 0 11 1 1λ λλi z

*
,−( )1     (16.18)  

  where  λ   i   and its complex - conjugate pair   λi
* are the complex eigenvalues of the 

 i th subsystem. In particular, let   λ α β φ
i i i i

jj re i= + =  and note that 1    +     a i   1  z   − 1     +     a i   2  z   − 2     
=    (1    −    ( α   i      +     j  β   i  ))(1    −    ( α   i      −     j  β   i  )). It then follows that  a i   1     =     − 2 α  and  a i   2     =     α  2     +     β  2 . The 
direct II model immediately follows, and it is given by the 4 - tuple:
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 A linear transformation of [ A   i  ,  b   i  ,  c   i  ,  d i  ] can be considered using the transform matrix 
 T  given by
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 The similarity transform  T  has the ability to create a new architecture, called a 
normal architecture, having a state 4 - tuple representation:
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 which is interpreted in Figure  16.9 .   
 It can be seen that the feedback structure is now symmetric. A mathematical 

property possessed by a normal architecture is   ˆ ˆ ˆ ˆA A A Ai i i i
T T= , which produces a dia-

gonal matrix and a determinant  α  2     +     β  2 . A more generalized embodiment of 



226 CHAPTER 16 FIXED-POINT EFFECTS

symmetric feedback architecture is shown in Figure  16.10 . The input – output transfer 
function of the displayed system can be computed to be  

   H z d
b c b c z b a c b a c b a c b a c z( ) = +

+( ) + + − − +( )−

0
1 1 2 2
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1 12 2 2 21 1 1 22 1 2 11 2
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 One means of developing a mathematical connection between an arbitrary second -
 order system and the normal architecture is to use a change of basis, or linear 
transform of the form

    T =
( ) − ( )
( ) ( )
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sin cos
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φ φ
φ φ

    (16.23)   

 The matrix  T  is called a rotational matrix for obvious reasons. Apply-
ing  T  to the normal architecture shown in Figure  16.10  results in 
  ˆ ; ˆ ; ˆ ; ˆA TAT A b TB c c T d d= = = = =− −1 1T T , which maintains the form of  A  and  d , but 
alters  b  and  c . The mapping  T  is nonunique, but can be reduced to an algebraic 
formula. This is accomplished by using a Heaviside expansion of  H ( z ) to form
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,     (16.24)  

  where  n i   is the  i th Heaviside coeffi cient satisfying

       Figure 16.9     Normal fi lter structure  derived from a direct II specifi cation .  
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       Figure 16.10     Normal fi lter structure defi ned by a normal [ A ,  b ,  c ,  d ] state description.  
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 It is assumed that complex poles come in complex - conjugate pairs. Combining two 
such complex fi rst - order sections results in
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  where  n i   and   ni
* are complex - conjugate pairs and  λ   i      =     r i e j    ϕ    i   with   λ φ

i
* = −rei

j i. The 
general normal architecture is defi ned in terms of these parameters. Specifi cally, 
defi ne  A i   to be
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 Due to the nonuniqueness of the change of architecture mapping, one can require 
the elements of the vectors  b i   and  c i   to satisfy
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  Example: Normal  IIR  

 Consider a fi lter having a transfer function
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 The eigenvalues are  λ  1     =    0.707e  j    π /4  and   λ π
1

40 707* /.= −e j  having residues (Heaviside 
coeffi cients)   n ni i= =* .0 5. It then follows from the recipe provided that

    A ri i
i i

i i

=
( ) − ( )
( ) ( )






=

−


cos sin

sin cos

. .

. .

φ φ
φ φ

0 5 0 5

0 5 0 5 
,   



228 CHAPTER 16 FIXED-POINT EFFECTS

    b b bi i i
T = ( ), , ,1 2   

    b b ri i i, , / . ,1
2

2
2 22 1 2 1 1 2 1 0+ = −( ) = −( ) =   

    

b
r r r

r
bi

i i i i i

i i
i, ,

sin cos

cos
2

2 4 2

2 1
2 1 2 2

2
= ( ) + + − ( )

− ( )






φ φ

φ1
,,

sin / / cos /

/ cos /
,= ( ) ( ) + + − ( )

− ( ) ( )






=1 2 1 1 4 2

1 2 2

1
1

/2

1

π π
π

bi

++( )
=

5

2
1 6181 1b bi i, ,. .

   

 Substituting, one obtains   b b b b bi i i i i, , , , ,. . . , . , .1
2 2

1
2

1
2

1 21 618 3 618 1 0 0 526 0 851+ ( ) = = = = . 
 Completing the  c  coeffi cients, and noting that   n n jn jni i i i+( ) = −( ) =* *;1 0, it 

follows that

    c
b n n b jn jn

r

b
i

i i i i i i

i i

i
,

,
*

,
*

,

cos
1

1 2

2

1

1 2

1=
+( ) + −( )( )
− ( )( ) = ( ) +

φ
bb b b

bi i i
i

, , ,
,

( / cos / )
,2 1 2

1
0

1 1 2 2

1 0

1
( )

− ( ) ( )
= ( ) + ( ) =

π
  

    c
b jn jn b n n

r

b
i

i i i i i i

i i

i
,

,
*

,
*

,

cos
2

1 2

2

1

1 2

0=
−( ) + +( )( )
− ( )( ) = ( ) +

φ
bb b b

bi i i
i

, , ,
,

( / cos / )
.2 1 2

2
1

1 1 2 2

0 1

1
( )

− ( ) ( )
= ( ) + ( ) =

π
   

 Assembling the parts shown in Figure  16.11  for the  i th subsystem, one obtains  
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  SCALING 

 Register overfl ow can be inhibited by reducing the dynamic range of the input. 
Scaling the input by a positive constant  K     <    1 reduces the chance of run - time over-
fl ow. Unfortunately, scaling also reduces the output precision. In particular, the preci-
sion of a scaled data word will be reduced by  k  - bits, where  k     =    log 2 ( K ). Equivalently, 
the output precision will be reduced by a like amount. Therefore, the error variance, 
compared with the unscaled system, can be expressed as

       Figure 16.11     Normal fi lter architecture.  
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 As a result, scaling (if required) should only be used minimally to the point where 
overfl ow is controlled. Expanding the word length of a system from  N  - bits to 
( N     +     M ) - bits will increase the dynamic range of the system by  M  - bits. This is done, 
however, at an additional system cost and possible reduction in the maximum real -
 time bandwidth. In the context of a modern digital signal processing (DSP) micro-
processor, the logical choices are 16 bits or 24 bits.  

  LIMIT CYCLING 

 Another fi nite word length effect is called zero input limit cycling, or simply limit 
cycling. Limit cycling causes a digital fi lter to produce small amplitude changes to 
appear at the system ’ s output during periods when the input is zero. In a voice com-
munication application, limit cycling can manifest itself as an undesirable  “ clicking ”  
sound that is audible during quiet (unvoiced) periods. The fi rst - generation DSP 
microprocessors were imprecise (e.g., 8 bits), and as a result, limit cycling was an 
annoying problem that could be reduced through serious engineering labor. With the 
advent of 16 - , 24 - bit, and fl oating - point processors, limit cycling has become a 
secondary problem. Limit cycling, it can be noted, is caused when the response of 
an unforced stable system does not successfully decay to zero due to fi nite word 
length effects. Consider the simple fi rst - order system  y [ k ]    =     ay [ k     −    1]    +     x [ k ]. If 
| a |    <    1, then ideally  y [ k ]    →    0 when  x [ k ]    =    0. If the fi lter is implemented in fi xed 
point, then  y [ k ]    =     Q F  [ ay [ k     −    1]]    +     x [ k ] where  Q F  [ q [ k ]] denotes the quantized value 
of  q [ k ] to  F  fractional bits of precision. Refer to Figure  16.12  and suppose that at 
sample instance  k , the fi rst - order system has a value  y [ k ] and an input  x [ k ]    =    0 for 
all  k     >     K . If the decay rate of the quantized system is too slow to allow the output 
to decay by an amount less than half a quantization interval (i.e.,  Δ [ k ]    =    ( y [ k ]    −   
  y [ k     −    1])    <     Q /2), then  y [ k ] would be rounded back to its previous value  y [ k     −    1]. As 
such, the output would never be able to decay to zero and would have some constant 
off - set (possibly oscillating), which is called limit cycling.   

       Figure 16.12     Limit cycling interpretation for  y [ k     +    1]    =     ay [ k ]. Response for small value 
of  “  a  ”  is rapid and converges to zero (left). Response for large value of  “  a  ”  is slow and 
does not converge to zero (right).  
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  Example: Limit Cycling 

 Suppose a system  y [ k ]    =     ay [ k     −    1]    +     x [ k ] has an [ N :4] format and  a     =    1/2,  − 1/2, 3/4, 
and  − 3/4. Investigate the zero input limit cycling properties of the system. The 
implementation of these four fi lters would yield the results in the data as inter-
preted in Table  16.1  for a 5 - bit 2C implementation using an initial condition 
 x [0]    =    1    →    0    ◊    1111, where  ◊  denotes the binary point. It can be seen that zero input 
limit cycling occurs in certain instances.   

 The 4 zero input responses are simulated for  F     =    4 -  and 8 - bit solutions in 
Figure  16.13 . The fi lter is initialized to  x [0]    =    1.0 and run. It can be seen that limit 
cycling can take place under certain circumstances, and that the severity of limit 
cycling is a function of decay rate of the response (i.e.,  “  a  ” ) and the number of bits 
of arithmetic precision maintained after multiplication. For contemporary 16 -  or 
24 - bit designs, especially those using full - precision multipliers and extended preci-
sion accumulators, the effect of limit cycling is generally very small or negligible.       
  
 
 
 
 

  TABLE 16.1.    First - Order System Limit Cycling Example 

    k       a     =    1/2    =    0    ◊    1000      a     =     − 1/2    =    1    ◊    1000      a     =    3/4    =    0    ◊    1100      a     =     − 3/4    =    1    ◊    1100  

  0    0    ◊    1111 (15/16)    0    ◊    1111 (15/16)    0    ◊    1111 (15/16)    1    ◊    1111 (15/16)  

  1    0    ◊    1000 (8/16)    1    ◊    1000 ( − 8/16)    0    ◊    1011 (11/16)    1    ◊    0101 ( − 11/16)  

  2    0    ◊    0100 (4/16)    0    ◊    0100 (4/16)    0    ◊    0110 (6/16)    0    ◊    0110 (6/16)  

  3    0    ◊    0010 (2/16)    1    ◊    1110 ( − 2/16)    0    ◊    0101 (5/16)    1    ◊    1100 ( − 4/16)  

  4    0    ◊    0001 (1/16)    0    ◊    0001 (1/16)    0    ◊    0100 (4/16)    0    ◊    0011 (3/16)  

  5    0    ◊    0001 (1/16)    1    ◊    1111 ( − 1/16)    0    ◊    0011 (3/16)    1    ◊    1101 ( − 3/16)  

  6    0    ◊    0001 (1/16)    0    ◊    0000 (0/16)    0    ◊    0010 (2/16)    0    ◊    0010 (2/16)  

  7    0    ◊    0001 (1/16)    0    ◊    0000 (0/16)    0    ◊    0010 (2/16)    1    ◊    1111 ( − 1/16)  

  8    0    ◊    0001 (1/16)    0    ◊    0000 (0/16)    0    ◊    0010 (2/16)    0    ◊    0001 (1/16)  

  9    0    ◊    0001 (1/16)    0    ◊    0000 (0/16)    0    ◊    0010 (2/16)    1    ◊    1111 ( − 1/16)  

   k     Limit cycling at 
 y [ k ]    =    1/16  

  No limit cycling    Limit cycling at 
 y [ k ]    =    2/16  

  Limit cycling at 
 y [ k ]    =    (1/16)( − 1)  k    

       Figure 16.13     Limit cycling for the unforced system  y [ k ]    =     ay [ k     −    1]    +     x [ k ],  x [ k ]    =    0, 
using a 4 -  and 8 - bit rounded integer arithmetic.  
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  CHAPTER 17 

 IIR  ARCHITECTURE ANALYSIS     

   OVERFLOW PREVENTION 

 The most grievous fi nite word length effect is called register overfl ow. Register 
overfl ow can occur whenever the dynamic range requirements of a system variable 
or parameter exceed the dynamic range capabilities of the fi lter. Register overfl ow 
can introduce major run - time nonlinear distortions into a system ’ s output that can 
render a fi lter unusable. In the most severe case, the output may suddenly go from 
a large positive value to a large negative value. This obviously can create great havoc 
in audio, servomechanism, biomedical, or other applications. Therefore, register 
overfl ow is a problem that must be controlled using detailed mathematical analysis 
or the intelligent use of computer simulations. A na ï ve approach to overcoming the 
overfl ow obstacle, also called the binary - point assignment problem, is to simply 
scale a system ’ s input gain so that signal levels do not exceed a fi lter ’ s specifi ed 
dynamic range limits. However, scaling will also reduce the fi lter ’ s precision (data 
quality), possibly to an unacceptable level. Therefore, a more formal mathematical 
framework is required.  

   L  P  NORM BOUNDS 

 A single - input single - output  N th - order proper at - rest infi nite impulse response (IIR) 
digital fi lter can be reduced to a state variable model (see Fig.  17.1 ):  

    
x Ax b

c

[ ] [ ] [ ]{ },

[ ] [ ] [ ]{

k k u k

y k x k du

+ = +
= +
1 state equation

k outpuT tt equation}.
    (17.1)   

 An advantage of a state variable architectural model is found in the fact that state 
variables directly correlate to the information that resides within the fi lter ’ s shift 
registers. Finite word length effect errors produced within an IIR will eventually 
migrate to the shift register level where they can be observed, quantifi ed, and poten-
tially controlled. This is the key to solving the binary - assignment problem. 
Fortunately, classical analysis methods have been developed that can be used to 
compute a state bound in an  L  p  sense, where the  L  p  norm of a causal time series  s [ k ] 
is denoted || s ||  p   and is given by
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 In the case where  p     →     ∞ , ||s||  ∞      =    max(| s [ k ]|) for all  k     ≥    0.  

   L  2  OVERFLOW PREVENTION 

 Developing a state bound begins with computing the impulse response measured at 
a shift register location. If the impulse response is measured at the  i th state, denoted 
 h i  [ k ], then the forced response at this location is given by the linear convolution sum 
 y i   [ k ]    =     h i  [ k ] *  v [ k ]. From Holder ’ s inequality,  *   it follows that

    y k h k m v m h v
p q

i i i p q
m

[ ] [ ] [ ] .≤ − ≤ ∋ + =
∞

∑
=

;
0

1 1
1     (17.3)   

 Observe that if || v ||  q      ≤    1, then the state bound at the  i th register location will be 
bounded by || h i  ||  p  . This can serve as a measure of the dynamic range requirement for 
the  i th state. A common assumption is that  p     =     q     =    2 (i.e.,  L  2  norms). Then,  y i  [ k ] will 
be bounded if both  h i  [ k ] and  v [ k ] are bounded in an  L  2  sense. It may also be recalled 
that a signal having a fi nite  L  2  norm is of fi nite energy. Classifying signals on the 
basis of fi nite energy (not to be confused with power) is a natural way to partition 
the signal space. Methods of possessing signals of fi nite energy have been exten-
sively studied and cataloged by engineers leaving in its wake a rich mathematical 
legacy. Another advantage of working with  L  2  norms is that this study is well devel-
oped in the context of signals and linear systems in the time and frequency domains. 
Recall that the forced or inhomogeneous state response of a state - determined system 
to an arbitrary input  v [ k ] is given by the convolution sum

    x k A bv k nk

n

[ ] [ ].= + −
=

∞

∑ 1
0

    (17.4)   

       Figure 17.1     State variable model of an IIR showing the states residing at the shift register 
level.  
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  *      Holder ’ s inequality states that  Σ | x i y i  |    ≤    || x ||  p  || y ||  q   such that 1/ p     +    1/ q     =    1. 
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 Assume, for illustrative purposes, that the input  v [ k ] is a white zero mean, unit vari-
ance wide sense stationary random process. The whiteness of  v [ k ] implies that the 
signal ’ s autocorrelation function satisfi es  E ( v [ k     −     n ] v [ k     −     m ])    =     δ [ n     −     m ]. This leads 
to the defi nition of a non - negative defi nite  N     ×     N  matrix  K , where

   
K E x k x k A bE v k n v k m b A A bn m

mn

n= = + − + − =
=

∞

=

∞

∑∑( [ ] [ ]) ( [ ] [ ]) ( )T T T1 1
00

bb A n

n

T T( ) .
=

∞

∑
0   

  (17.5)   

 The energy measured at the  i th state location corresponds to the  K ii   on - diagonal value 
of  K  as shown below:

    K x k xii i

k

i= =
=

∞

∑ 2

0
2

2[ ] .     (17.6)   

 That is, the  i th on - diagonal element of  K  is the  L  2  norm squared value of  x i  [ k ] for 
the case where the input signal is a white random process having unit variance. Thus, 
Equation  17.6  can provide a gateway to determining state norms provided, of course, 
that the elements of the matrix  K  can be effi ciently computed. Fortunately, such 
methods exist.  

   L  2  NORM DETERMINATION 

 Suppose, once again, that the input process is a white zero mean wide sense station-
ary random process. Working with the next state value (i.e.,  x [ k     +    1]    =     A  x [ k ]    +     b v[ k ]) 
and Equation  17.5 , the following results:

   
E x k x k AE x k x k A bE v k b AE x k v k b( [ ] [ ]) ( [ ] [ ]) ( [ ] ) ( [ ] [ ])+ + = + +1 1 2T T T T TT

T T+ bE v k x k A( [ ] [ ]) ,
�     (17.7)   

 which simplifi es once the a priori knowledge that  E ( v [ k ])    =    0,  E ( x [ k ] v [ k ])    =    0, and 
 E ( v [ k ] 2 )    =    1 is substituted into Equation  17.7 . Specifi cally,

    E x k x k E x k x k K AKA bb( [ ] [ ]) ( [ ] [ ]) .+ + = = = +1 1T T T T�     (17.8)   

 The  N     ×     N  matrix  K  is often referred to as a Lyapunov stability matrix and is exten-
sively used in the study of state - determined system stability. If  K  can be readily 
computed, then the on - diagonal terms can then be used to establish  L  2  norm squared 
state bound on the states, namely,   K x kii i= [ ] 2

2. If the system [ A ,  b ,  c ,  d    ] is stable, 
then the elements of  K  are bounded. The value of  K , from Equation  17.8 , can be 
computed by using the MATLAB procedure shown below:

    Q bb K Q A= =T; dlyap  MATLAB Lyapunov function( , ) % .     (17.9)   

 The on - diagonal terms of  K  provide a direct measure of the  L  2  norm squared 
bounds on the state vectors. Once the analysis is performed for a given system 
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[ A ,  b ,  c ,  d ], the maximum  K ii   can be determined such that  K  max     =    maximum( K ii  ). To 
protect the states from encountering run - time dynamic range overfl ow, the data 
format [ N    :    F ] must be carefully chosen. In the context of  K  max , the size of the integer 
fi eld  I  in bits (i.e.,  I     =     N     −     F     −    1) should be

    I K=  log max2     (17.10)   

 in bits. That is, at least  I  integer bits need to be allocated to the  N  - bit data fi eld in 
order to protect against run - time overfl ow in an  L  2  sense. 

 The  L  2  norm squared bound of a simple second - order IIR can be experimen-
tally determined by driving the system with an input signal having a unit  L  2  norm 
squared, and measuring the  L  2  norm or norm squared state bound at the state level. 
For a direct II architecture, states  x  1 [ k ] and  x  2 [ k ] are serially (directly) connected. 
Therefore, the state bound on  x  1 [ k ] is the same as the bound on  x  2 [ k ]. The state  x  1 [ k ] 
can be isolated by assigning the output  y [ k ] to be exclusively  y [ k ]    =     x  1 [ k ]. This can 
be accomplished by setting  c  T     =    (1, 0) and  d     =    0 to extract  x  1 [ k ]. This is graphically 
interpreted for the isolation of state  x  1 [ k ] of a second - order direct II section in Figure 
 17.2 . This mapping convention can be used to map selected states of an arbitrary 
system to the output by modifying the state 4 - tuple [ A ,  b ,  c ,  d ] as follows:

   1.     Retain  A  and  b .    

  2.     Replace  d  with  d     =    0.  

  3.     Replace existing c vector with  c     =    { . . .    , 1 ( i th location),    . . . } to complete the 
assignment  y [ k ]    =     x i  [ k ].    

 Isolating  x  2 [ k ] would logically require that  c  T     =    (0, 1) and  d     =    0, resulting in 
 y [ k ]    =     x  2 [ k ]. 

  Example:  L  2  State Bound 

 Consider the second - order system having a transfer function
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 implemented using a traditional direct II architecture having a state model [ A ,  b ,  c , d] 
where

       Figure 17.2     State reassignment to isolate a specifi c state variable shown as  y [ k ]    =     x  1 [ k ].  
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 From [ A ,  b ,  c ,  d ], the fi lter can be explored analytically or experimentally. The 
resulting Lyapunov matrix  K , after Equation  17.9 , is:

    K = 





2 4 1 6

1 6 2 4

. .

. .
.    

 State  x  1 [ k ] for example, can be assigned to the output port by setting  c  2     =     d     =    0 and 
 c  1     =    1, resulting in  y [ k ]    =     x  1 [ k ] as shown in Figure  17.2 . If the input  v [ k ] is chosen 
to be a unit impulse, having a unit  L  2  norm, then the resulting output achieves a 
value   x k y k1 2

2

2

2 12 5 2 4[ ] [ ] .= ≤ =/  as shown in Figure  17.3 . This is consistent with 
the MATLAB - computed Lyapunov matrix.     

   L  2  NORM CAVEAT 

 The  L  2  norm is not strong enough to serve as a reliable method of eliminating run -
 time register overfl ow in practice. Most condemning is that its use is restricted to 
inputs having a bounded  L  2  norm. Unfortunately, virtually any interesting or physi-
cally meaningful signal (impulse is an exception) has an infi nite  L  2  norm. For 
example, for  s [ k ]    =    cos( ω  0  k ) u [ k ], a causal cosine wave, || s [ k ]|| 2     =     ∞ . As such, the  L  2  
norm analysis process is fl awed since it does not recognize real - world signals. 

  Example: Experimental  L  2  Norm 

 Analyze a unit gain low - pass second - order Butterworth IIR having a state variable 
model

    A b c=
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 The output impulse response  y [ k ], plus states  x  1 [ k ] and  x  2 [ k ], are shown in Figure 
 17.4 , converging to zero in about 18 samples. Using MATLAB ’ s  norm  command, 

       Figure 17.3      L  2  norm squared and state  x  1 [ k ] impulse response trajectories.  
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the  L  2  norm can be calculated. The   L2
2 squared output norms are computed to be 

0.2142, and the   L2
2 state norms are both 0.4592 (using MATLAB), even though they 

are derived from distinctly different trajectories.     

   L   ∞   NORM BOUNDS 

 In the pantheon of norms, the  L  2  norm is the most popular. In the context of Holder ’ s 
inequality, an  L  2  - bounded signal ( p     =    2) convolved with another  L  2  - bounded system 
( q     =    2) impulse response results in a bounded outcome. Unfortunately, except for 
an impulse, no meaningful signal has a fi nite  L  2  norm. Therefore, the  L  2  method is 
of little practical value. A potentially superior measure is the  L   ∞   norm where,  p     =     ∞  
requires  q     =    1 (i.e., 1/ p     +    1/ q     =    1). If the input signal  v [ k ] is bounded in the time 
domain by unity in an  L  1  sense (i.e., || v [ k ]|| 1     =    1), then | x i  [ k ]| is bounded by  v [ k ]|| 1 || h i  [ k ]||  ∞  , 
where  h i  [ k ] is impulse response measured at the output of the  i th shift register loca-
tion (i.e.,  x i  [ k ]). Unfortunately, many interesting and useful signals  v [ k ] also have an 
unbounded  L  1  norm. However, a different case can be made in the frequency domain. 
Suppose  V [ n ] is the discrete Fourier transform (DFT) of  v [ k ],  H i  [ n ] is the DFT 
of  h i  [ k ], and  X i  [ k ] is the DFT of  x i  [ k ]. Then theory states that | X i  [ n ]| is bounded by 
|| H i  [ n ]||  ∞  || V [ n ]|| 1 , which simplifi es to | X i  [ n ]|    ≤    || H i  [ n ]||  ∞   if || V [ n ]|| 1     ≤    1. The use of the 
 L   ∞   norm in the frequency domain can be motivated as follows. Let the discrete - time 
Fourier transform (DTFT) of  h i  [ k ], the impulse response measured at the  i th state 
location, be given by  H i  ( e j    ϕ  ) over the baseband range  −  π     ≤     ϕ     ≤     π . The  L   ∞   frequency -
 domain norm   H n H e H ei i

j
i

j[ ] ( ( ) ) ( )max
∞ = =maximum φ φ , the maximum magnitude 

frequency response value across the baseband. Based on Holder inequality, consider 
an input signal  v [ k ] having an  L  1  frequency - domain norm || V ( e j    ϕ  )|| 1     =     V . Upon passing 
 v [ k ] through a linear fi lter having an  L   ∝   frequency - domain norm of   H e Hi

j
i( ) maxφ

∝
= , 

then the output measured at the  i th state location will then be bounded by   VHi
max. 

Furthermore, suppose that the inputs to the fi lter are restricted to be a monotone 
sinusoid having a unit amplitude with phase  ω  t     =     ϕ  0 . Using Euler ’ s equation, it 
follows that  v ( e j    ϕ  )    =    0.5 δ ( ϕ     −     ϕ  0 )    ±    0.5 δ ( ϕ     +     ϕ  0 ) and

    V e jφ δ φ φ δ φ φ( ) = −( ) + +( ) = +( ) =
1 0 0

1

2

1

2

1

2
1 1 1.     (17.11)   

       Figure 17.4     System ’ s input – output impulse response (left), and input state impulse 
response measured at state locations  x  1 [ k ] and  x  2 [ k ] (right).  

0 15
–0.5

0

0.5

Sample Index

A
m

pl
it

ud
e 

y[k]

0 15

0

1

Sample Index

A
m

pl
it

ud
e 

x
1
[k]

x
2
[k]



L∞ NORM BOUNDS 237

 That is, the  L  1  norm of the unit amplitude sinusoid  V ( e j    ϕ  ) in the frequency domain 
is unity. Based on this assumption, the output measured at the  i th state locations is 
bounded by

    X e V e H e H e Hj j
i

j
i

j
ii ( ) .maxφ φ φ φ≤ ( ) ( ) = ( ) ≤

∞ ∞1     (17.12)   

 This states that for a unit amplitude sinusoidal input, the maximal steady - state output 
at the  i th state location is bounded by   Hi

max in the frequency domain. This result is 
intuitively valid and provides motivation for the use of an  L   ∞   norm in 
the frequency domain. The  L   ∞   state bound, unfortunately, assumes that the worst 
case input is a sinusoid of the form  v [ k ]    =    cos( ω  0  kT  s ). This, in turn, presumes that 
the fi lter will be evaluated at steady state, and that any overfl ows that may have 
occurred took place during the transient period and have since left the system. This 
obviously still leaves the design exposed to possible overfl ow errors if the true worst 
case input is not a pure sinusoid. However, the  L   ∞   bound is easy to compute using 
a DFT or fast Fourier transform (FFT). Protecting the system for register overfl ow 
in an  L   ∞   sense would require the data have an integer fi eld of  I  - bits where 
  I Hi= ( )( ) log max

2 maximum . However, it should be recalled that this theory is only 
valid for the steady - state sinusoidal case that may not refl ect reality. 

  Example:  L   ∞   Norm 

 An eighth - order Chebyshev II fi lter
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 is implemented using cascade, direct II, ladder/lattice, and normal architectures. The 
decision on whether to maintain the input scale at  k     =    0.0883 or  k     =    1 is a design 
choice. Maintaining  k     =    0.08883 will result in a unity passband gain. If  k     =    1, the 
passband gain increases to 11.257 (i.e., 1/0.08883). Once  k  is chosen, the DFT of 
the impulse response is measured at the output of each shift register (state location), 
and the maximum value is assigned to   Hi

max. A useful observation is to note that only 
one register needs to be tested for a direct II architecture since all registers are directly 
chained together. For cascade architectures, consisting of a collection of second - order 
direct II sections, only one of the two registers of each second - order section need 
be monitored. For  k     =    0.08883, the  L   ∞   data and coeffi cient register bounds are shown 
in Table  17.1  for cascade, direct II, ladder/lattice, and normal architectures. The 
integer word length  I  presumes that coeffi cients, states, input, and output share a 
common data format. The production of the state norms is shown in Figure  17.5  for 
cascade and direct II fi lter forms. The tabled data indicate that the cascade fi lter ’ s 
integer bit fi eld (i.e.,  I ) actually is established by the fi lter coeffi cient dynamic range 
requirements. Setting aside the coeffi cient problem, it is noted that the next largest 
dynamic range requirements is established by the output term || y [ k ]||  ∞      =    1.       
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   L  1  NORM BOUND 

 In the study of the  L  2  state bound, it was noted that its practical use was compromised 
by the fact that many important inputs to a linear digital fi lter do not have a fi nite 
 L  2  bound. The  L   ∞   frequency - domain state bound was found to be somewhat more 
practical, but suffered from the fact that it was based on a rigid steady - state sinu-
soidal assumption and that the input is a monotone sinusoidal signal. This too leaves 
the system vulnerable to potential run - time register overfl ows during transient 
periods, or in those instances where the input is not sinusoidal. What is desired is a 
state bound based on the individual samples of an arbitrary time series  v [ k ]. It is 
reasonable to assume that the input sample values are bounded on a sample - by -
 sample basis. For example, the sample values leaving an analog - to - digital converter 
(ADC) may be assumed to be bounded by unity or || v [ k ]||  ∞      ≤    1. From Holder ’ s 
inequality, if  p     =     ∞ , it follows that  q     =    1 since 1/ p     +    1/ q     =    1. To guarantee the con-
tents of the  i th shift register bounded, the impulse response measured from input to 
the output of the  i th shift register (i.e.,  h i  [ k ]) must be  L  1  bounded. Unfortunately, 
computing the  L  1  norm can be diffi cult in the general case. Specifi cally, the  L  1  norm 
for the impulse response measured at the  i th state location is

    h h ki i

k
1

0

= [ ]
=

∞

∑ .     (17.13)   

 The  L  1  norm of  h i  [ k ] was also called the worst case gain when applied to fi nite impulse 
responses (FIRs). If  h i  [ k ] is of infi nite duration, computing the  L  1  norm becomes more 
challenging. It is reasonable to assume, however, that the fi lter under study is stable. 

       Figure 17.5      L   ∞   state norms for cascade and direct II fi lters.  
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  TABLE 17.1.    Summary of the Derived   L    ∞   Data and Coeffi cient Bounds 

   Architecture       Hi
max      @ State     | y [ k ]|  ∞       Max. Coef.     Max.    <    2  I        I   

  Cascade    0.461    [7, 8]    1    1.86    1.86    1  

  Direct II    0.992    [1,    . . .    , 8]    1    19.17    19.17    5  

  Lattice/ladder    0.992    [1, 2]    1    5.11    5.11    3  

  Normal (cascade)    0.297    [7, 8]    1    3.2    3.27    2  
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In such cases, the impulse response  h i  [ k ] will eventually decay to some neighborhood 
of zero. The resulting trajectory can then be approximated by a fi nite time series. The 
advantage of estimating an  L  1  bound can be appreciated when the worst case condi-
tion is considered. The worst case  L   ∞   input, having a unit bound, measured at the  i th 
state location is  v [ k ]  =  sign( h i  [ n     −     m ]. Convoluting the worst case input with the 
fi lter ’ s impulse response, measured at state location  “  i , ”  results in

   y k h k m v k h k m h k m h vi i

m

i i i

m

[ ] [ ]signmax

0 0

= − = − − ≤ =
=

∞

∞
=

∞

∑ ∑[ ] [ ] ( [ ]) 1 hhi 1,     (17.14)   

 which can be computed if || h i  || 1  can be approximated by a fi nite sum. That is,

    h h k h ki i

k

i

k

N

1
0 0

11

= [ ] [ ]
=

∞

=

−

∑ ∑~ ,     (17.15)  

  where the value of  N  1  is suffi ciently large that the sum converges for all practical 
purposes. 

  Example:  L  1  Bound Estimate 

 A sixth - order elliptic low - pass fi lter, with a  − 0.5 - dB passband over  f     ∈    [0, 5]   kHz, 
 − 60 - dB stopband over  f     ∈    [7, 22.05]   kHz, and a sample frequency  f  s     =    44.1   kHz, 
was designed. The fi lter ’ s magnitude frequency response is displayed in Figure  17.6 . 
The transfer function is   
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 The sixth - order fi lter is factored into three second - order direct II fi lters having 
transfer functions of the form  H ( z )    =     gH  1 ( z ) H  2 ( z ) H  3 ( z ),  g     =    0.004, where

       Figure 17.6     A sixth - order elliptic magnitude frequency response (left) and in decibels 
(right).  
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 For the sake of providing a common analysis forum, the input scale factor  g     =    0.004 
is set to unity. The magnitude frequency response of the fi lter, measured at the output 
of each cascaded section is shown in Figure  17.7 . The peak responses correspond 
to the  L   ∞   section norms in the frequency domain. The response of each second - order 
section can also be explored by monitoring the second - order fi lter ’ s input – output 
impulse response  h i  [ k ],  i     ∈    [1, 3], at state location  x  1 [ k ] for each cascaded section. 
The stage - by - stage output impulse response can be computed and displayed in 
Figure  17.7 . It can be seen that each trajectory converges to a steady - state value, but 
at differing rates. After about 200 samples the impulse responses have essentially 
converged. This information can be used to directly compute || h i  [ k ]|| 1  for each 
second - order section. The  L  1  norms || h i  [ k ]|| 1  are determined to be || h  1 [ k ]|| 1     =    34.04, 
|| h  2 [ k ]|| 1     =    10.36, and || h  3 [ k ]|| 1     =    12.45.   

 Suppose the input has a unit  L   ∞   norm, that is, || v [ k ]||  ∞      =    1. Then the magnitude 
of the fi rst section ’ s output | y  1 [ k ]|    ≤    || h  1 [ k ]|| 1     ×    1    =    34.04. The next output would be 
bounded by | y  2 [ k ]|    ≤    || h  2 [ k ]|| 1     ×    | y  1 [ k ]|    =    10.36    ×    34.04    =    352.65. The fi nal stage 
output would be bounded by | y  3 [ k ]|    ≤    || h  3 [ k ]|| 1     ×    | y  2 [ k ]|    =    12.45    ×    352.65    =    43905.5
4    <    2 15.4 . The analysis assumes that the input to all second - order fi lter sections are 
worst case inputs, an unrealistic assumption in many cases. At fi rst glance, it would 
appear that 15 +  bits of headroom would excessively stress a 16 - bit processor. It 
should be remembered, however, that the  L  1  method is very conservative and natu-
rally overestimates the headroom requirement. Returning the scale factor  g     =    0.004 
to the fi lter reduces | y  3 [ k ]|    ≤    17.56    <    2 5 , a more realistic headroom requirement. 
Assuming that the  L  1  norm is conservative, 3 or 4 bits of integer precision may be 
all that is needed to inhibit run - time register overfl ow. This analysis, however, does 
not account for internal dynamic range growth. This can be factored into the design 
by analyzing the computed internal state bounds in each of the second - order direct 

       Figure 17.7     Magnitude frequency response of the sixth - order fi lter and three second - order 
sections (left). Also shown are the  L  1  norms || h i  [ k ]|| 1  of the output of each second - order 
section displayed over the fi rst 200 output samples (right).  
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II sections. Since the two states of a second - order direct II fi lter are equally bounded, 
only one of the two impulse responses need to be computed for each section. The 
results are summarized in Table  17.2  and in Figure  17.8 . The data are presented as 
the worst case outputs and state values per second - order section, assuming the input 
is unit bounded in an  L   ∞   sense (i.e., || v [ k ]||  ∞      =    1). It can be seen that the internal 
headroom needed is similar to those predicted by analyzing worst case outputs.       

  NOISE POWER GAIN 

 It can be noted that a digital fi lter ’ s dynamic range requirement and precision param-
eters are always in a state of tension. Fortunately, the trade - off between dynamic 
range and retained precision can often be mathematically managed. The difference 
between the ideal and computed outputs, namely,  e [ k ]    =     y  ideal [ k ]    −     y  fi nite [ k ], is attrib-
uted to fi nite word length effects. Imprecision of this type can be studied in terms 
of quantization errors. Quantization errors, such as those found at the output of an 
ADC, or due to coeffi cient rounding, or arithmetic rounding, are produced on a 
sample - by - sample basis. Individual quantization errors are normally reported to be 
a uniformly distributed random process having a zero mean and variance  σ  2     =     Q  2 /12, 
where  Q  is the quantization step size. Arithmetic round - off errors can be assumed 
to be injected into the system at the point where rounding occurs as shown in Figure 
 17.9 . In Figure  17.9 , two  multiply - accumulate  ( MAC ) architectures are shown. The 
fi rst is called  multiply - round - accumulate  ( MRA ) architecture that takes a full -
 precision product, rounds the product to a single - precision word, and then accumu-
lates the outcomes. The second, called  multiply - accumulate - round  ( MAR ) 
architecture accumulates all the full - precision products (using extended precision 
registers), then rounds the fi nal accumulation to a single - precision word. In some 
cases, the MAC architecture is established by the implementation technology; in 
other cases, it can be set by the fi lter designer under program control. It should be 

       Figure 17.8      L  1  and  L  2  state norms, shown for comparative purposes, showing the internal 
state register dynamics for three second - order direct II fi lter sections.  
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  TABLE 17.2.     L  1  Norm Outcome Comparisons 

   Section 1     Section 2     Section 3  

  | y  1 [ k ]|    ≤    34.04    | y  2 [ k ]|    ≤    10.46    | y  3 [ k ]|    ≤    12.45  

  | x  11 [ k ]|    ≤    11.24    | x  12 [ k ]|    ≤    10.06    | x  13 [ k ]|    ≤    28.88  
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appreciated that once an error is introduced into the system, it can perpetually stay 
within that system due to feedback. These recirculated errors can, in some instances, 
render the fi lter ’ s output useless.   

 It should be recognized that a fi nite word length effect study of an IIR fi lter 
is substantially more diffi cult than an FIR fi lter. The fundamental difference is that 
noise introduced by arithmetic rounding can only be propagated along feed - forward 
paths for an FIR, whereas the noise injected into an IIR can be connected to a feed-
back path. As such, IIR rounding errors can recalculate and accumulate over time. 
The graph of the measured error variance versus the fractional word length for a 
typical IIR is suggested in Figure  17.10 . Three operational regimes are delineated 
in this fi gure, and they correspond to the following possible modes of operation:

   1.     nonlinear mode (severe rounding) resulting in gross run - time errors introduced 
due to insuffi cient coeffi cient and data precision (i.e.,  F  too small);    

  2.     linear mode resulting in log( σ ) precision versus the fractional word length  F  
following the relationship that satisfi es log( σ )    ∝     −  α F;  

  3.     nonlinear mode (saturation) resulting in gross run - time saturation overfl ows 
occur due to insuffi cient integer word length  I     =     N     −     F     −    1 (i.e.,  F  too large).    

       Figure 17.9     Physical error model where  e [ k ] is a uniformly distributed random process 
representing round - off errors. The MRA architecture multiplies, rounds, then accumulates. 
The MAR architecture multiplies, accumulates, then rounds. The uncertainty in these 
processes is modeled by injecting quantization errors into the design at the points where 
rounding occurs.  
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       Figure 17.10     Typical IIR error variance versus fractional word length relationship 
showing high errors occurring when there are too many or too few fractional bits, and an 
ideal (linear) operating range.  
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 Because of the complexity associated with the study of nonlinear systems, the error 
performance envelope of a system is often determined experimentally. Here, the 
arithmetic errors for a given IIR are computed over a collection of architectural and 
word length choices. A best design may then be selected in the context of minimizing 
the overall fi lter noise gain while simultaneously optimizing other performance 
parameters.  

  STATE - DETERMINED NOISE ANALYSIS 

 The study of errors within an IIR fi lter can be challenging. Consider fi rst what 
happens to round - off noise injected into the  i th shift register of an  N th - order IIR. 
Assume that the impulse response, measured between the input of the  i th shift register 
and fi lter ’ s output is computed and denoted  g i  [ k ]. It should be fully appreciated that 
 g i  [ k ] includes the effects of all the feedback loops, which pass through the  i th shift 
register. The noise injected into the  i th shift register from all the attached rounded 
error sources will continuously recirculate within the fi lter while also being passed to 
the output. Therefore, the problem becomes one of measuring what happens to the 
noise over time. Statistically, the error variance measured at the output, due to a col-
lection of internally injected noise sources attached to the  i th shift register is given by

    σi i i i
*

k

i ik
Q

g k g k k
Q

g2
2

0

2

2

2

12 12
= [ ] [ ] =

=

∞

∑ ,     (17.16)  

  where  k i   refl ects the number of independent round - off error sources, each having 
variance  Q  2 /12. The variance of the injected noise is scaled, or amplifi ed by the path 
power gain   gi 2

2, existing between the  i th register and output. Since there are  N  shift 
registers for an  N th - order canonic IIR architecture, the noise variance measured at 
the output is actually due to the collective contributions of all the amplifi ed internal 
noise sources. That is, at the system - level, the error variance is

    σ σ2 2
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 The value  σ  2  is the round - off error variance measured at the output and is seen to 
be the error variance of a single rounding source scaled by  G  2 , where  G  2  is referred 
to as the fi lter ’ s noise power gain. The rms value of  G  2  (i.e.,  G ) is called the noise 
gain. In addition, the form of Equation  17.17  is reminiscent of the computing for-
mulas developed to support  L  2  scaling policies as applied to state - determined IIR 
fi lters. The energy in this process, defi ned by Equation  17.17 , can be represented in 
terms of the elements of an  N     ×     N  matrix  W [ k ], a dyadic product given by

    W k g k g k A cc A
k k[ ] = [ ] [ ] = ( ) ( )− −T T T1 1.     (17.18)   
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 The on - diagonal elements of  W [ k ] correspond to   g ki [ ] 2
2. Fortunately,   g ki [ ] 2

2 can 
be computed using a general - purpose digital computer and using techniques devel-
oped earlier for  L  2  analysis. More specifi cally, defi ning the matrix  W  to be

    W W k g k g k A cc A
k k

k k

k

= [ ] = [ ] [ ] = ( ) ( )
=

∞

=

∞

=

∞

∑ ∑ ∑
0 0 0

T T T T .     (17.19)   

 It can be shown that  W  is a Lyaponov matrix satisfying  W     =     A  T  WA     +     cc  T . The 
Lyaponov matrix can be computed using the formula presented in Equation  17.9 , 
which results in an error variance  σ  2  and noise power gain  G  2  formula given by

    σ2
2
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k Wi ii

i

N

.     (17.20)   

 It can be noted that everything required to compute Equation  17.20  is specifi ed in 
terms of the elements of the state 4 - tuple [ A ,  b ,  c ,  d ], including  k i  . The value of  k i   
can be directly equated to the number of noise sources in each feedback path. The 
determination of  k i   can be automated by searching the  i th row of the  A  matrix and 
counting the number of nonzero, nontrivial ( ± 1) coeffi cients in that row. Recall that 
if  M  multipliers are attached to the input of the  i th shift register and rounded before 
being summed (MRA), then  k i      =     M  (see Fig.  17.9 ). If, however, all multipliers are 
maintained as full - precision products and are accumulated using an extended preci-
sion adder, and if the accumulator contents are then rounded, then  k i      =    1 (see 
Fig.  17.9 ). Implicit in this model is the assumption that rounding the coeffi cients in 
[ c ,  d ] will not appreciably add to the noise power gain. 

  Example: Noise Power Gain 

 An eighth - order Chebyshev II fi lter, having the transfer function
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 is studied as direct II, cascade, and ladder/lattice fi lters. Each architecture has a 
unique state variable model and therefore a noise power gain. The noise power 
gains can be computed for a scaled and unscaled direct II, cascade, and lattice/
ladder realization. Assuming an MRA architecture, the outcome is summarized in 
Table  17.3 .   

 The noise power gains would indicate that all the architectures are essentially 
the same, operating at about 4.5 bits of lost precision. Over the suite of architectures 
reported, the cascade architecture is generally considered to be a good compromise. 
The actual statistical performance of a given architecture is a function of the complex 
interaction of arithmetic and coeffi cient round - off errors, which can, at various times, 
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behave linearly or nonlinearly. Therefore, the noise models only provide a guideline 
of how an IIR may behave during run time. 

 The noise gain, in bits, can be experimentally studied by comparing the fi xed -
 point system impulse response to the fl oating - point response, which is considered 
to be error free. The results of such an experiment are shown in Figure  17.11 a for 
the cascade, direct II, and lattice/ladder cases, assuming the input is an impulse. The 
16 - bit architectures studied over all possible fractional word lengths  F     ∈    [0,    . . .    , 
15]. It can be seen that initially ( F     ∼    0), all the architectures suffer from severe 
coeffi cient quantization due to an insuffi cient fractional word width that causes small 
but critical coeffi cients, being rounded to zero. Here, for example, the input scale 
factor of  k     =    0.08883 will be mapped to zero for all  F     ≤    3 bits. For larger values of 
 F , the system enters a linear mode of operation (no severe quantization or overfl ow 
errors). The measured round - off errors of the direct II and cascade are found to be 
nearly identical. The lattice/ladder response is similar, although of somewhat less 
precision. It should be remembered that the lattice/ladder was promoted as a low 

  TABLE 17.3.    Eighth - Order  IIR  Example 

   Architecture      G  2       G      log 2 ( G )  

  Cascade    594.56    24.37     < 5 bits  

  Direct II    499.73    22.34     < 5 bits  

  Lattice/ladder    705.86    26.57     < 5 bits  

       Figure 17.11     Noise gain in bits for a typical eighth - order IIR driven by an impulse (a) 
and a unit bound worst case input (b).  

0

–3

–6

–9

–11
0 3          4         5 12    13      14    15

0

–2

–4

–6

–8

0 3          4         5 13      14    15

N
oi

se
 G

ai
n

N
oi

se
 G

ai
n

Severe Rounding

Severe Rounding

Overflow

Overflow

Direct II
Ladder

Cascade

Ladder

Direct II

Cascade

Fractional Bits

Fractional Bits

10

(a)

(b)



246 Chapter 17 IIR ARCHITECTURE ANALYSIS

coeffi cient round - off error sensitivity fi lter, which is not the same as claiming it to 
be immune to other types of round - off errors. At 12 bits, the direct II fi lter begins 
to suffer from a buildup of saturation errors, whereas the cascade and lattice/ladder 
fi lters performances continue to improve out to the maximum value of  F     =    15. The 
results are summarized in Table  17.4 .     

 A problem associated with experimentally determining the effects of round - off 
noise is choosing a valid forcing function. This is particularly true when attempting 
to verify the scaled error variance predictions. Unexpected overfl ows can occur 
whenever the input is something other than a simple impulse. A unit step input  u [ k ] 
would be a more aggressive choice of test input for a low - pass fi lter. A popular 
choice is simply a uniformly distributed random noise  u [ k ]    ∈     U [ − 1, 1] or linear 
chirp. The most aggressive and recommended input, however, is the worst case 
input. All these inputs have an  L   ∞   norm of unity but are internalized by the system 
differently. An example of this choice of forcing function is shown in Figure  17.11 b 
and summarized in Table  17.5 . It can be seen that in operation, the slope of each 
error trajectory is similar to that of the direct II, but the  y  - axis intercept values 
and duration of the linear descent differ. The linear operating range for the direct II 
is over the range  F     ∈    [4,    . . .    , 10],  F     ∈    [7,    . . .    , 13] for the cascade, and 
 F     ∈    [6,    . . .    , 13] lattice/ladder. The lattice/ladder fi lter has a precision of about 8 
fractional bits at  F     =    13. It is interesting to note that the optimal operating point of 
the lattice/ladder fi lter is  F     =    13 or  I     =    2, a point where the maximum lattice/ladder 
coeffi cient will be rounded from 5.1099 to 4. The coeffi cients can be seen to require 
at least  I     =    3 bits of integer precision. It can also be noted that the lattice/ladder 
superiority is present only over a subrange of  F . For the simulation study, it would 
appear that the lattice/ladder, when set to  F     =    13, would provide the best statistical 
performance with the direct II ( F     =    10) and cascade ( F     =    13) behaving in manners 
similar to the lattice/ladder but about 2 - bit inferior in precision. The maximum run -

  TABLE 17.4.    Noise Gain Performance of a Typical Eighth - Order  IIR  Using an Impulse 
Input 

   Type     Severe Rounding Range     Normal Operation     Overfl ow Saturation  

  Cascade     F     ∈    [0,    . . .    , 5]     F     ∈    [6,    . . .    , 15]    Not applicable  

  Direct II     F     ∈    [0,    . . .    , 4]     F     ∈    [5,    . . .    , 12]     F     ∈  [12,    . . .    , 15]  

  Lattice/ladder     F     ∈    [0,    . . .    , 6]     F     ∈    [7,    . . .    , 15]    Not applicable  

  TABLE 17.5.    Noise Gain Performance of a Typical Eighth - Order  IIR  with a Worst Case 
Input 

   Type     Severe Rounding Range     Normal Operation     Overfl ow Saturation  

  Cascade     F     ∈    [0, 6]     F     ∈    [7, 13]     F     ∈    [14, 15]  

  Direct II     F     ∈    [0, 3]     F     ∈    [4, 10]     F     ∈    [11, 15]  

  Lattice/ladder     F     ∈    [0, 5]     F     ∈    [6, 13]     F     ∈    [14, 15]  
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 time bandwidth of the lattice/ladder would, however, normally be less than the direct 
II or cascade, which require fewer multiply - accumulations per fi lter cycle.     

  SIMILARITY TRANSFORMATION 

 It has been previously established that a system possessing a state variable model 
[ A ,  b ,  c ,  d ] can be transformed into another, say   [ ]ˆ , ˆ, ˆ, ˆA b c d , using a linear transform 
 T . It has been previously established that

    ˆ ˆ ; ˆ ˆ; ˆ ˆ ; ˆ ,A TAT A T AT b Tb b T b c c T c c T d d= = = = = = =− − − −1 1 1 1; ; ;T T T T     (17.21)   

 which results in the following noise power gain matrix for the transformed system

    W A WA cc T A T WT AT T cc T= + = ( ) +− −T T T T T Tˆ ˆ ˆ ˆ
1 1     (17.22)   

 that can be simplifi ed to read   Ŵ T WT= ( )− −T 1 1 and is the noise power gain matrix 
for the new system. The signifi cance of this result is that any change in architecture 
will normally produce a different noise power gain.      
   

  
 
 
 
 
 
 
 
 
 
  
  

 

 

 

  

 



  CHAPTER 18 

INTRODUCTION TO 
MULTIRATE SYSTEMS     

   BACKGROUND 

 Digital fi lters accept sampled inputs and produce sampled outputs. In between, an 
input signal ’ s time -  and/or frequency - domain attributes are modifi ed. Normally, the 
input sample rate  f  in  equals the output sample rate  f  out  (i.e.,  f  s     =     f  in     =     f  out ). When they 
differ, a multirate solution arises. Multirate solutions are found in a wide range of 
applications, such as audio signal processing where various audio subsystems 
operate with different sample rates (e.g., 40   kHz vs. 44.1   kHz). In still other applica-
tions, multirate techniques can be used to reduce channel bandwidth and computa-
tional requirements. With the increased interest in multirate solutions, it is important 
that the design engineer be familiar with multirate design practice.  

  DECIMATION 

 If a time series  x [ k ] is accepted at a sample rate  f  in  and exported at a rate  f  out , such 
that  f  in     >     f  out , then the signal is said to be decimated  *   by  M , where  M     =     f  out / f  in . If  M  
is an integer, then the decimated time series  x  d [ k ] is given by  x  d [ k ]    =     x [ Mk ], retaining 
only every  M th sample of the original time series, discarding all others. The effective 
sample rate is reduced from  f  in  to  f  d     =     f  in / M    Sa/s. Formally, a decimated by  M  time 
series satisfi es

    x n x k n kM
k

d[ ] [ ] ( )= −
=−∞

∞

∑ δ     (18.1)   

 with a  z  - transform given by  X d  ( z )    =     X ( z M  ). The frequency signature of the decimated 
signal, relative to the undecimated parent, is given by

249

  *      Decimation originally referred to a disciplinary action employed by the Romans in dealing with muti-
nous soldiers. The mutineers were forced to select balls from an urn containing 10 times more white balls 
than black balls. The holders of black balls would be put to the sword. Therefore, every 10th soldier 
would be slain or decimated. 

Digital Filters: Principles and Applications with MATLAB, First Edition. Fred J. Taylor.
© 2012 by the Institute of Electrical and Electronics Engineers, Inc. 
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    X e X ej jM
d ( ) ( ),φ φ=     (18.2)   

 which is a frequency scaled version of the original signal spectrum. Furthermore, 
the decimated signal spectrum periodically repeats on  f  s / M  centers. This process is 
graphically shown in Figure  18.1 .   

 One should be aware that Shannon ’ s sampling theorem also applies to deci-
mated signals. Suppose the highest frequency found in a time series  x [ k ] is  B    Hz. 
Aliasing can only be avoided if the decimated sample rate exceeds  f  d     =    2 B    Hz. This 
means that there is a practical upper bound to the decimation rate. Referring to Figure 
 18.2 , it can be seen that for unaliased decimation to take place,  f  s / M     −     B     >     M  or 
 M     >     f  s /2 B . Increasing the decimation rate beyond this value will introduce the pos-
sibility of aliasing, as shown in Figure  18.2 . In practice, the maximal decimation 
rate is rarely used. Instead, a more conservative oversampled rate is generally 
employed that will allow for a well - defi ned guard band as suggested in Figure  18.2 .   

 The spectral behavior of a decimated band - limited signal can be studied 
graphically. Consider the band - limited signal shown in Figure  18.3 . Decimation can 
be used to rearrange the spectrum and place copies of the signal spectrum at selected 
baseband locations. Suppose ( m ) π /2 M     ≤     ϖ  s     ≤    ( m     +    1) π /2 M , where  M  is the decima-

       Figure 18.1     Magnitude spectrum of a parent and decimated by  M  ( M     =    2 shown) signals 
are interpreted. The input signal spectrum is assumed to be baseband limited to  B    Hz and 
the Nyquist frequency is  f  s /2. The spectrum is periodically extended on multiples of the 
sample frequency. The decimated signal ’ s spectrum is baseband limited to  B    Hz, as before, 
but the output Nyquist frequency is now  f  s /2 M  with sample frequency  f     =     f  s / M . The 
spectrum is periodically extended on multiples of the new sample frequency.  
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tion rate and  m  is a positive integer. The resulting decimated spectrum is shown in 
Figure  18.3 . If  m  is even, the original spectrum is translated down to 0   Hz (DC) 
( ω     =    0). If  m  is odd, the spectrum is a refl ection of the original spectrum, also trans-
lated down to DC.   

  Example: Audio  CD - ROM  

 It is normally assumed that a high - quality audio is band - limited to 20   kHz. This 
class of signal can be oversampled using an industry standard 44.1 - kHz multimedia 
analog - to - digital converter (ADC). The nature of periodic sampling states that the 
baseband spectrum is replicated on integer multiples of 44.1   kHz. To insure that no 
aliasing occurs, an anti - aliasing analog fi lter is attached to the ADC ’ s input. The 
purpose of the anti - aliasing fi lter is to remove signal energy found above the Nyquist 
frequency, such as those generated by the digital components, which are clocked at 
high rates. The rise and fall of these digital pulses generate high - frequency signals 
that can fi nd their way to the ADC ’ s input. To suppress such aliasing signals, the 
low - pass anti - aliasing analog fi lter would need a 20 - kHz passband, and a stopband 
beginning no later than 24.1   kHz, resulting in a transition band of no more that 
 Δ  f     =    4.1   kHz, as shown in Figure  18.4 . This is the specifi cation for a very steep - skirt 
analog fi lter. Such narrow transition band analog fi lters are impractical when cost 
and packing requirements are considered. To achieve a viable solution, the design 

       Figure 18.3     Decimation of a band - limited signal for  m  even and  m  odd showing different 
baseband symmetric outcomes.  
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       Figure 18.4     Oversampled 4 ×  commercial CD - ROM audio system.  
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requirements need to be relaxed. To demonstrate the design differences between the 
unrelaxed and relaxed designs, refer to Figure  18.4 , where the  ± 20 - kHz baseband 
spectrum is displayed along with the shape of the anti - aliasing analog fi lter for 
 f  s     =    44.1 and 156.4   kHz. The choice of  f  s     =    44.1   kHz requires the use of a steep - skirt 
anti - aliasing analog fi lter, which is diffi cult to achieve in practice. For  f  s     =    176.4   kHz 
(4 ×  oversampled), a much simpler low - order fi lter can serve as an analog anti -
 aliasing fi lter. This assumes that there is no appreciable signal energy from 20   kHz 
out to 156.4   kHz ([176.4    −    20]   kHz). The analysis can be repeated for the case 
where  f  s     =    48   kSa/s, with a 4 ×  oversampling rate of 192   kSa/s.     

  INTERPOLATION 

 The antithesis of decimation is called interpolation or upsampling. The use of the 
word interpolation is somewhat unfortunate since interpolation has previously been 
used to defi ne a class of operations that are used to reconstruct a signal from a sparse 
set of samples. In the context of decimation and interpolation, interpolation simply 
refers to a mechanism that increases the effective sample rate of a signal. Suppose 
a signal  x [ k ] is interpolated by a factor  N  to create an interpolated or upsampled time 
series  x i  [ k ], where

    x k
x k k N

i [ ] =
[ ] =




if

otherwise

0

0

mod
    (18.3)   

 The act of interpolation by a factor  N  is facilitated by inserting  N     –    1 zeros in 
between the adjacent samples of the original time series. This action is sometimes 
referred to as zero padding. The result is a time series sampled at a rate  f  in  that is 
interpolated into a new time series sampled at the elevated sample rate  f  out     =     Nf  in . 

 Interpolation is often directly linked to decimation. To illustrate, suppose  x  d [ k ] 
is decimated by the  M  version of a time series  x [ k ], which was sampled at a rate  f  s . 
Then  x  d [ k ] contains only every  M th sample of  x [ k ] and is defi ned with respect to a 
decimated sample rate  f  d     =     f  s / M . Interpolating  x  d [ k ] by  N  would result in a time series 
 x i  [ k ], where  x i  [ Nk ]    =     x  d [ k ] and 0 otherwise. The sample rate of the interpolated signal 
would therefore be increased from  f  d  to  f  i     =     Nf  d     =     Nf  s / M . If  N     =     M , the output sample 
rate would be restored to  f  s . It can be noted that  x i  [ k ]    ≠     x [ k ] due to the loss of sample 
values during the decimation process. If  x [ k ] is fi rst interpolated by  N  and then deci-
mated by  N ,  x [ k ]    =     x  d [ k ]. 

 Relative to the decimated signal  x  d [ k ], the frequency - domain signature of an 
interpolated by  N  signal  x i  [ k ] can be defi ned in terms of the  z  - transform of Equation 
 18.3 , which states that

    X e X ei
j jNω ω( ) = ( ).     (18.4)   

 Therefore, the frequency - domain representation of the zero - padded or interpolated 
signal is that of the original signal ’ s spectrum replicated in the frequency domain as 
shown in Figure  18.5 . As predicted by Equation  18.4 , the presence of the complex 
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exponential  e jN ω    gives rise to periodic replications of the spectrum on centers that 
are integer multiples of the original sample rate.   

 For a given integer  N , the frequency response of the interpolated signal can 
be computed and compared with that of the original time series. The result of inter-
polating by  N  a low - frequency signal sampled at a rate  f  s / N  is displayed in Figure 
 18.6 . Observe that the resulting interpolated spectrum contains copies of the base-
band spectrum located on  f  s / N  frequency centers. The signal spectra found at the 
output of an interpolator is seen to contain multiple copies of the baseband spectrum. 
The unwanted copies generally need to be removed before the interpolated signal 
can be made useful. If the interpolated signal is fi rst converted into an analog domain 
using a digital - to - analog converter (DAC), a simple RC low - pass circuit can some-
times be used to eliminate the unwanted extraneous spectral components (i.e., 
images). If the elimination of the unwanted copies of the baseband spectrum from 
the interpolated spectrum is to be performed digitally, an ideal Shannon interpolating 
fi lter is known to be optimal, but also impractical. As a result, the ideal Shannon 
interpolation fi lter is generally approximated by a practical low - pass fi lter having a 
passband covering the frequency range  f     ∈    ( −  f  s /2 N ,  f  s /2 N ).    

  SAMPLE RATE CONVERSION 

 A commonly encountered signal processing problem is interfacing two systems 
having dissimilar sample rates, say  f  in  and  f  out . This defi nes a sample rate conversion 

       Figure 18.5     Frequency response of a zero - padded interpolated signal (shown for  M     =    2).  
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problem. If the ratio of  f  in  to  f  out , or vice versa, is a rational fraction, then direct deci-
mation and interpolation can be used. To illustrate, suppose  k     =     N / M  where  N  and 
 M  are integers where  f  in     =     kf  out . The non - integer sample rate converter system 
is described in Figure  18.7 . The indicated fi lters, whether separate or combined, 
either  “ clean up ”  an interpolated signal or provide anti - aliasing services for the 
decimator.   

  Example: Sample Rate Conversion System 

 Two typical audio sampling rates are 44.1   kSa/s (multimedia) and 48   kSa/s (audio 
tape). It follows that the conversion ratio  k     =    48,000/44,100    =    160/147 can be 
reduced no further. The implication is that CD sample rate of 44.1   kSa/s will need 
to be interpolated by a factor of 160 to a sample rate of 7.056   MSa/s. This requires 
that the upsampler, or interpolator ’ s output be elevated to a 7.056   MSa/s rate as 
shown in Figure  18.8 . The low - pass interpolating fi lter has a cut - off frequency 
around 22.05   kHz to insure that energy above the input Nyquist frequency is elimi-
nated. The anti - aliasing low - pass fi lter, located before the decimator must have a 
bandwidth no greater than 24   kHz based on an ultimate 48 - kHz output. The two 
low - pass interpolating and aliasing fi lters, when cascaded, would result in a 22.05 -
 kHz fi lter (see Fig.  18.8 ). There is, however, a potential problem with implementing 
sample rate conversion at high interpolation and decimation rates. Connecting a 
44.1   kSa/s device to a 40   kSa/s unit would, for example, require even higher inter-
polating and decimation rates, specifi cally 400 and 441. This may be impractical in 
some cases. In such cases, it is sometimes easier to send the 44.1   kSa/s signal to a 
DAC, convert it into an analog signal, and then resample the analog signal at 
48   kSa/s.     

       Figure 18.7     Basic rate conversion system.  
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  POLYPHASE REPRESENTATION 

 Interpolated and decimated signals and systems can be studied in a piecemeal fashion. 
However, a more robust and formal means of mathematical modeling multirate 
systems is called a polyphase decomposition. Polyphase models are defi ned in the 
 z  - domain and are used to represent an arbitrary time series  x [ k ], sampled at a rate 
of  f  s    Sa/s. Initially assume that a discrete - time signal  x [ k ] has a  z  - transform repre-
sentation given by  X ( z )    =     ∑   x [ k ] z   −    k  . Suppose the time series  x [ k ] is partitioned into 
 M  distinct data sequences as shown in Figure  18.9  (called block decomposition).   

 The  i th block can be seen to be the original time series delayed by  “  i  ”  samples 
and decimated at a rate  M . In terms of a  z  - transform, the block decomposed time 
series can be expressed as

    X z

x z x M z x M

z x z x M z x

M M

M M
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( [ ] [ ] [ ] )
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=

+ + +
+ + +
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.     (18.5)   

 The  i th row of Equation  18.5  can now be defi ned in terms of the  i th polyphase term 
 P i  ( z ) that is given by

    X z z P z P z x kM i zi
i

M

i

M

i
k

k

( ) ( ); ( ) ( ) .= = +−

=

−
−

=−∞

∞

∑ ∑
0

1

    (18.6)   

 The resulting compact representation is called an  M  - component polyphase decom-
position of the time series  x [ k ]. A multirate system can also be described in terms 
of the transposed polyphase function denoted  Q i  ( z ), which is related to the polyphase 
function  P i  ( z ) through

    X z z Q z Q z P zM i
i

M

i

M

i M i( ) ( ); .= ( ) = ( )− − −( )

=

−

− −∑ 1

0

1

1     (18.7)   

 The mechanics of a polyphase and transpose polyphase decomposition are summa-
rized in Figure  18.10 . Notice that for the case where  M     =    4, the solution consists of 
four parallel channels along with  M     −    1    =    3 shift registers to properly phase the 
signals. Each channel consists of a 4:1 decimator and a path from input to output, 
which is clocked at  f  s /4. The bandwidth requirements of each individual channel is 
1/ M     =    1/4th that of a direct input/output path. The interleaved polyphase components 
can then be recombined to reconstruct the original signal at the original sample rate.   

       Figure 18.9     Block decomposition of the signal space.  
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 A polyphase representation can also be used to examine the physical act of 
decimation. Consider a time series  x [ k ], which is decimated by a factor  M  to produce 
a new time series  x  d [ k ], which is given by  x  d [ k ]    =     x [ Mk ]. Suppose further that the 
 z  - transform of  x [ k ] is known for an arbitrary time series  x [ k ] and is given by  X ( z )    =     Σ  
 x [ k ] z   −    k  . With respect to a sample frequency  f  s , each sample delay (i.e.,  z   − 1 ) has a 
duration of  T  s     =    1/ f  s . The  z  - transform of the decimated time series can then be 
expressed as  X  d ( z )    =     Σ   x  d [ k ] z   −    k      =     P  0 ( z ). It is important to notice that each delay now 
has a duration based on a decimated clock rate having a period  T  s     =     M / f  s . After some 
algebraic manipulation,  X  d ( z ) can be reinterpreted as

    X z P z
M

X W z W eM
k M

k

M

M
j M

d ( ) ( ) ( ); ,/ /= = =
=

−
−∑0

1

0

1
21 π     (18.8)   

 which can be verifi ed by performing the summation term - by - term to achieve

   

1

1

1

0

1

0 1 1 1 2 1

M
X W z

M
X W z X W z X W z X

M
k M

k

M

M
M

M
M

M
M

( )

[ ]

/

/ / /

=

−

∑
= + [ ]+ [ ]+ +… WW z

M

x x z x z x M z

x

M
M M

M M M M

−

− − −

[ ]( )

=

[ ]+ [ ] + [ ] + + [ ] +
+

1 1

1 2

1

0 1 2

0

/

/ / /… …

[[ ]+ [ ] + [ ] + + [ ] +

+ [ ]+

− − −x W z x W z x M W z

x x

M
M

M
M

M
M M M1 2

0 1

1 1 2 2/ / /

. .

… …
… …

[[ ] + [ ] + + [ ] +






 − − − − − −W z x W z x M W zM
M M

M
M M

M
M M M M1 1 2 1 2 12/ ( ) / ( ) /… …













= [ ]+ [ ] + [ ] + + [ ] +{ }

=

− − −1
0 0 1 0 11 2

M
Mx x z x z Mx M zM M M M/ / /… …

11
0 0

M
Mx Mx M z P zM M[ ]+ [ ] +( ) = ( )− / .…    

 (18.9)   

       Figure 18.10     Example  M     =    4 polyphase multirate system.  
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 The term  z   − 1  refers to a single clock delay relative to the decimated sample rate 
 f  d     =     f  s / M , or equivalently a delay of  T  d     =     M / f  s  with respect to the input sample rate. 
Therefore,  z   − 1/   M   physically corresponds to a delay of  T  d / M     =     T  s     =    1/ f  s . 

  Example: Polyphase Spectrum 

 The time series  x [ k ]    =     a k u [ k ], where | a |    <    1, represents a decaying exponential signal 
being sampled at a rate of  f  s  samples per second. Assume that two decimation rates, 
namely,  M     =    2 and  M     =    4, are to be tested. From a standard table of  z  - transforms, 
it follows that the  z  - transform of the original time series, clocked at  f  s , is  X ( z )    =    
1/(1    −     az   − 1 ) where  z   − 1  corresponds to a delay of  T  d     =    1/ f  s  seconds. The decimated by 
2 signal has a time series given by  x  d [ k ]    =     x [2 k ]    =    {1,  a  2 ,  a  4 ,    . . . }. The  z  - transform 
of this decimated signal satisfi es  X ( z )    =    1/(1    −     a  2  z   − 1 ), where  z   − 1  now corresponds to 
the delay of the decimated signal, which is given by  T  d     =    2/ f  s  seconds. From Equation 
 18.8  and  M     =    2, it follows that for   W2

0 1= ,   W2
1 1= − :

    X z X W z X W zd ( ) ,/ /= ( ) + ( )( )1

2
2
0 1 2

2
1 1 2   

  where, at the decimated sample rate of  f  d     =     f  s /2, the reconstructed signal compo-
nents are
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 It can immediately be seen that upon combining these terms,  X  d ( z ) and  x  d [ k ] result. 
For  M     =    4,  x  d [ k ]    =     x [4 k ]    =    {1,  a  4 ,  a  8 ,    . . . } and 
  X W z X W z/ /+ ( ) + ( ))4

1 1 4
4
1 1 4 , where, at the sample rate of  f  d     =     f  s /4, the individual delay 

terms are defi ned with respect to  f  s  and satisfy

    X W z X z a z
az

a a ak k

k

4
0 1 4 1 4 4

0
1 4

2 31

1
1/ / /

/
{ , , , , },( ) = ( ) = =

−
↔−

=

∞

−∑ …   

    X W z X jz j a z
jaz

jak k k

k

4
1 1 4 1 4 4 4

0
1 4

1

1
1/ / / /

/
( ) { ,( ) = −( ) = − =

+
↔ −−

=

∞

−∑ ,, , , },−a ja2 3 …   

    X W z X z a z
az

a a ak k

k

4
2 1 4 1 4 4

0
1 4

2 31

1
1/ / /

/
( ) { , , , ,( ) = −( ) = − =

+
↔ − −

=

∞

−∑ ……},   

    X W z X jz j a z
jaz

ja ak k k

k

4
3 1 4 1 4 4 4

0
1 2

1

1
1/ / / /

/
( ) { , ,( ) = ( ) = =

−
↔ −−

=

∞

−∑ 22 3, , }.− ja …    

X z X W z X W zd ( ) ( / ) / /= ( ) + ( )(1 4 4
0 1 4

4
1 1 4



258 CHAPTER 18 INTRODUCTION TO MULTIRATE SYSTEMS

 Again it can immediately be seen that upon combining these terms,  X  d ( z ) and  x  d [ k ] 
result. 

 A logical question to pose relates to the location of the decimator in a typical 
signal processing stream. The two systems shown in Figure  18.11  are functionally 
equivalent. The equivalence of the two architectures is sometimes referred to as the 
noble identity. The topmost path consists of a decimator and a fi lter. The bottom 
path consists of a fi lter, which is identical to that found in the top loop, except its 
clock is running  M  times faster than the rate that is found in the top loop. Both 
designs have the same number of coeffi cients and therefore the same arithmetic 
complexity. The major difference between the circuits is found in the rate at which 
the coeffi cient multiplications must be performed. The topmost fi lter has an internal 
data rate 1/ M th that of the bottom fi lter. Therefore, the top architecture is generally 
preferred due to its lower real - time computational requirement.    

  Example: Polyphase Filter Description 

 Consider passing a discrete - time signal through a fi nite impulse response (FIR) fi lter 
given by  H ( z )    =    2    +    3 z   − 1     +    3 z   − 2     +    2 z   − 3 , followed by the decimation of the fi lter ’ s 
output by  M     =    2. The fi lter is implemented using the polyphase description shown 
in Figure  18.12 . For  M     =    2, Equation  18.6  states that  H ( z )    =     P  0 ( z  2 )    +     z   − 1  P  1 ( z  2 )    =    [2    
+    3 z   − 2 ]    +     z   − 1 [3    +    2 z   − 2 ] or  P  0 ( z  2 )    =    2    +    3 z   − 1 ;  P  1 ( z  2 )    =    3    +    2 z   − 1 . The fourth - order FIR is 
now represented as two interleaved second - order FIRs. While the circuits shown in 
Figure  18.12  are equivalent, the data being fi ltered by Circuit A arrive at the poly-
phase fi lter ’ s input at a rate half of that seen by Circuit B. Therefore, Circuit A would 
have the lowest arithmetic bandwidth demands (multiply - accumulate [MAC]/s) of 
the two choices.   

 A detailed analysis of the fi ltering process would indicate that at various 
sample instances, the fi lter ’ s intermediate values are

    x k x x x xa [ ] { , [ ], [ ], [ ], [ ], },= … …0 2 4 6   

    y k x x x x x x x xa [ ] { , [ ] [ ], [ ], [ ], [ ] [ ], [ ] [ ]= + − + + +… 2 0 3 2 2 2 3 0 2 4 3 2 2 6 3 4 ,, },…   

    x k x x x xb[ ] { , [ ], [ ], [ ], [ ], },= … …1 3 5 7   

    y k x x x x x x x xb[ ] { , [ ] [ ], [ ], [ ], [ ] [ ], [ ] [ ]= + − + + +… 3 1 2 1 3 3 2 1 3 5 2 3 3 7 2 5 ,, }.…    

 At time sample  k     =    4,  y [4]    =    2 x [4]    +    3 x [3]    +    3 x [2]    +    2 x [1]    =     y  a [3]    +     y  b [2].   

       Figure 18.11     Equivalent decimated systems.  
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  SUB - BAND FILTERS 

 Multirate systems often appear as a bank of fi lters, where each fi lter maps the input 
into a sub - band. Refer to Figure  18.13  that separates the fi lters into a multirate 
subsystem classifi ed as analysis fi lter and synthesis fi lter systems. The analysis 
fi lters, denoted  H i  ( z ), convolves the input signal into  M  sub - bands. The synthesis 
fi lters, denoted  F i  ( z ), reconstruct the signal from the sub - band components. This 
structure is common to many bandwidth compression and signal and image enhance-
ment applications. Sub - band fi lters are designed so that the data rate requirements 
of each channel, shown in Figure  18.13 , are rated to be 1/ M th that of the input. This 
allows low data rate channels to be used to communicate analysis data to the syn-
thesizer for reconstruction.    

   MATLAB  

 MATLAB contains a number of multirate infrastructure support tools. They are 
discussed in the following sections. 

       Figure 18.12     Equivalent multirate fi lters.  
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  Decimation: Decrease Sample Rate 

 Operation  y  =  decimate(x,r)  reduces the sample rate of  x  by a factor  r . The 
decimate operation automatically includes a low - pass anti - aliasing fi lter having a 
passband ranging from  f     ∈    [0, 0.4 f  s ]. Figure  18.14  displays a decimation by 4 
operation.    

  Downsample: Decrease Sampling Rate by Integer Factor 

 Operation  y  =  downsample(x,n)  decreases the sampling rate of  x  by keeping 
every  n th sample starting with the fi rst sample. Figure  18.15  displays a decimation 
by 4 operation.    

  Interp: Increase Sampling Rate by Integer Factor 

 Operation  y  =  interp(x,r)  increases the sampling rate of  x  by a factor of  r . 
 Figure  18.16  displays an interpolation by 4 operation.    

  Interp1: 1 -  D  Data Interpolation (Table Lookup) 

 Operation  yi  =  interp1(x,Y,xi)  interpolates to fi nd  yi , the values of the under-
lying function  Y  at the points in the vector or array  xi . A number of interpolation 
schemes are supported. Here,  x  must be a vector. Figure  18.17  displays the interpola-
tion of sine wave.    

       Figure 18.14     Decimation by 4 of an input time series.  
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       Figure 18.15     Decimation by 4 of an input time series.  
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  Resample: Change Sampling Rate by Any Rational Factor 

 Operation  y  =  resample(x,p,q)  resamples the sequence in vector  x  at  p / q  times 
the original sampling rate, using a polyphase fi lter implementation. Figure  18.18  
displays a sample rate conversion by 3/2.    

  Upsample: Increase Sampling Rate by Integer Factor 

 Operation  y  =  upsample(x,n)  increases the sampling rate of  x  by inserting  n     −    1 
zeros between samples. Figure  18.19  displays an upsampling by a factor 3.    

  Spline: Cubic Spline Data Interpolation 

 Operation  yy  =  spline(x,Y,xx)  uses a cubic spline interpolation to fi nd  yy , the 
values of the underlying function  Y  at the values of the interpolate  xx . For the inter-
polation, the independent variable is assumed to be the fi nal dimension of  Y  with 
the breakpoints defi ned by  x . Figure  18.20  displays the interpolation of a sine wave.    

       Figure 18.16     Interpolation by 4 of an input time series.  
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       Figure 18.17     Interpolation of a sine wave using Interp1.  
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       Figure 18.18     Sample rate conversion of 3/2.  
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  Upfi rdn: Upsample, Apply  FIR  Filter, and Downsample 

 Operation  yout  =  upfi rdn(xin,h,p,q)  fi lters the input signal  xin  using FIR fi lter 
having an impulse response  h , for  p  being the upsample value,  q  the downsample 
value (default  p     =     q     =    1). Figure  18.21  displays a change in the sampling rate by a 
factor of 147/160 (48   kHz [DAT rate] to 44.1   kHz [CD sampling rate]) and fi lters 
the data with an FIR fi lter.     
    

   

  
 
 
 

       Figure 18.20     Interpolation of a sine wave using spline.  
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       Figure 18.21     Sample rate conversion of 147/160 using Upfi rdn.  
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       Figure 18.19     Upsampling by a factor 4.  

0 30
–2

0

2
Original Signal

S
am

pl
e 

V
al

ue

Sample Index 0 120

Interpolated Signal

S
am

pl
e 

V
al

ue

Sample Index
–2

0

2



  CHAPTER 19 

MULTIRATE FILTERS     

   INTRODUCTION 

 Fixed clock rate fi lters represent today ’ s mainstream fi lter technology. There are 
times, however, when such fi lters become excessively complex, especially when 
attempting to satisfy demanding performance specifi cations. In such cases, multirate 
fi lters can sometimes mitigate this problem, reducing complexity to an acceptable 
level. Over time, a number of multirate fi lter structures have emerged that are known 
to provide viable solutions in specifi c application instances.  

  DISCRETE FOURIER TRANSFORM ( DFT ) FILTER BANK 

 Broadband signals can often be decomposed into frequency restrictive sub - bands. 
An interesting application of this principle is called the uniform DFT fi lter bank, or 
DFT fi lter bank. A DFT fi lter bank has a magnitude frequency response suggested 
in Figure  19.1  and consists of a collection of identically shaped fi lters whose center 
frequencies are uniformly distributed across the baseband. The  n th fi lter of an  M th 
order DFT fi lter bank, denoted  H n  ( z ), is defi ned in terms of the profi le of a low - pass 
fi lter  H  0 ( z ), called the prototype fi lter. A DFT fi lter bank translates the prototype ’ s 
low - pass frequency response to new center frequencies  f  n     =     nf  s / M , producing 
  H z H W zn M

n( ) ( )= 0  for  n     ∈    [0,  M     −    1]. The complex exponential term   WM
n performs 

a modulation service, mixing the prototype ’ s impulse response,  h  0 [ k ], with   WM
nk in 

order to perform the frequency translation. In the frequency domain, the  n th subfi l-
ter ’ s frequency response is therefore given by  H n  ( e j    ω  )    =     H  0 ( e j  ( ω  − 2  n    π /   M  )). The result 
is a bank of frequency translated frequency - selective fi lters as shown in Figure  19.1  
for  M     =    8.   

 Consider the case where the prototype fi lter  H  0 ( z ) has a polyphase 
representation

    H z z P zi
i

M

i

M

0 0

0

1

( ) ( ),= −

=

−

∑     (19.1)   
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 then

    H z W z P W z W z P zn M
in i

i M
Mn M

i

M
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i
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( ) ( ) ( ),= =− −
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−
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    (19.2)   

 which has the structure of a DFT (i.e., DFT( x [ k ])    =     X [ n ]    =     ∑  W nk x [ k ]). When the 
polyphase outputs are combined using an  M  - sample DFT, as sh own in Figure  19.2 a, 
an  M  - band fi lter results. The complexity of a DFT fi lter bank can be analyzed in the 
context of the complexity of a fi lter and DFT. Adding the decimate by  M  circuit, 
shown in Figure  19.2 b, reduces the multiply rate count by a factor of 1/ M . The 
multiplicative complexity of an  M  - point DFT can, in practice, be made small on the 
order of  M log 2 ( M ) if a radix - 2 fast Fourier transform (FFT) can be used. MATLAB, 
it can be noted, does not contain direct DFT fi lter bank design support.   

  Example:  DFT  Filter Bank 

 A DFT fi lter bank is defi ned in terms of a low - pass prototype fi lter. Suppose the 
prototype fi nite impulse response (FIR) has a transfer function H 0 ( z )    =    2    +    3 z   − 1     +   
 3 z   − 2     +    2 z   − 3 . For  M     =    2, the polyphase fi lter representation is  H  0 ( z )    =     P  00 ( z  2 )    +     z   − 1  P  01 ( z  2 ), 
where  P  00 ( z )    =    2    +    3 z   − 1 , and  P  01 ( z )    =    3    +    2 z   − 1 . Noting that   W2

0 1=  and   W2
1 1− = −  for 

a 2 - point DFT, it follows that

    H z z P z P z z P z z z zi
i

i

0 0
2

0

1

00
2 1

01
2 1 2 32 3 3 2( ) ( ) ( ) ( ) ,= = + = + + +−

=

− − − −∑   

       Figure 19.1     Uniform DFT fi lter bank magnitude frequency response for  M     =    8.  
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       Figure 19.2     (a) DFT fi lter bank and (b) decimated DFT fi lter bank.  
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    H z W z P z P z z P z z zi i
i

i

1 2 0
2

0

1

00
2 1
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2 1 22 3 3 2( ) ( ) ( ) ( )= = − = − + −− −

=

− − −∑ zz−3.    

 The impulse response of the DFT fi lter bank is interpreted in Figure  19.3 . The 
impulse response, measured along the top path, is seen to be equal to {2, 3, 3, 2}, 
which corresponds to the low - pass fi lter response  h  0 [ k ]. The impulse response mea-
sured along the bottom path is equal to {2,  − 3, 3,  − 2}, which corresponds to the 
high - pass fi lter response  h  1 [ k ].     

   L  BAND FILTERS (REVISITED) 

 An  L  band fi lter, also called a Nyquist fi lter, is odd order and characterized by 
 h [ Lk ]    =    1/ L  for  k     =    0, 0 otherwise. That is, the 0th coeffi cient is 1/ L , but all others 
that are a multiple of  L  have a value of zero. This has implications in a polyphase 
representation of a fi lter. A half - band fi lter has about half of its coeffi cients equal to 
zero. The MATLAB function   fi rhalfband   found in the Filter Design Toolbox can be 
used to create an equiripple half - band FIR. Otherwise, half - band fi lters can be 
created using an equiripple FIR design tool. A half - band FIR has a baseband point 
of even symmetry at  f     =     f  s /4. 

  Example: Half - Band Filter 

 A half - band fi lter ( L     =    2) has an impulse response  h [ k ] having a center - tap coeffi cient 
of  ½  and all other even - indexed coeffi cients are zero. This means that about half 
of the fi lter ’ s coeffi cients are zero. The frequency response of a typical half - band 
fi lter is shown in Figure  19.4 . A half - band fi lter has known symmetry about the 

       Figure 19.3     DFT fi lter bank and impulse response for  M     =    2.  
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normalized frequency  f     =     f  s /4 and is based on the  L  band fi lter theory. It also follows 
that  H ( e j    ϕ  )    +     H ( e j   ( ϕ  −  π ) )    =    1 for any  ϕ . Half - band fi lters will be used to develop the 
next class of fi lter.     

  QUADRATURE MIRROR FILTER ( QMF ) 

 Multirate systems are often used to reduce the required sample rate to a value that 
can be accepted by a band - limited communication channel. QMFs are a popular 
means of performing a sub - band signal decomposition so that the individual sub -
 bands can be processed through channels of reduced bandwidth. The basic architec-
ture of a two - channel QMF system is shown in Figure  19.5 . The two - channel QMF 
system establishes two input – output paths, each having a bandwidth requirement 
that is essentially half the original bandwidth requirements. Using this technique, a 
2  M   - channel QMF can be designed using an  M  - level binary tree architecture. The top 
path of the  M     =    2 solution shown in Figure  19.5  contains a low - pass fi lter, and the 
bottom path a high - pass fi lter. The spectral evolution of the signal elements of the 
system shown in Figure  19.5  is presented in Figure  19.6 . Observe that the signals 
 x  0 [ k ] (viz:  X  0 [ z ]) and  x  1 [ k ] (viz:  X  1 [ z ]) are decimated by 2 after being fi ltered. The 
signals entering the decimators are  H  0 ( z ) X ( z ) and  H  1 ( z ) X ( z ), respectively. From the 
theory of polyphase representation, it follows that  

    
X z X z H z X z H z

X z X z

0
1 2
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1 2 1 2
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( ) ( ) ( ) ( ) ( ) ,

( ) (

/ / / /

/

= + − −{ }

= )) ( ) ( ) ( ) ./ / /H z X z H z1
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1 2+ − −{ }

    (19.3)   

 The signals  x  0 [ k ] and  x  1 [ k ] are then transmitted by the analysis fi lter section at the 
decimated rate ( f  s /2), and carried to the synthesis fi lter section within two distinct 
channels. The signals are recovered by the synthesis fi lter section, which, upon 
postprocessing, restores the original signal at the original sample rate  f  s . Interpreting 
 Y  0 ( z  2 ) and  Y  1 ( z  2 ), as shown in Figure  19.6 ,  Y ( z ) can be expressed as

   
Y z G z Y z G z Y z

H z G z H z G z X z

( ) ( ) ( ) ( ) ( )

( ( ) ( ) ( ) ( )) ( )

= +

= +
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2
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       Figure 19.5     QMF fi lter architecture.  
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 The problem, however, is that in the frequency domain, the responses found in the 
two transmission channels partially overlap. If left uncorrected, the overlapping 
signals could introduce aliasing errors into the fi nal solution. A possible aliasing 
suppression strategy is graphically shown in Figure  19.6 . The aliasing error potential 
can be suppressed if ideal (boxcar) fi lters are assumed, but that is impractical. 
Consider instead the use of only physically realizable fi lters to remove potential 
aliasing effects. The fi rst term, or factor, found in Equation  19.4  contains all the 
alias - free information needed to reconstruct the input signal. The second term con-
tains all the alias terms that need to be removed for alias - free signal restoration. To 
suppress aliasing effects, it is required that

    H z G z H z G z X z0 0 1 1 0−( ) ( ) + −( ) ( )( ) −( ){ } = ,     (19.5)   

 which is trivially satisfi ed if  G  0 ( z )    =     H  1 ( −  z ) and  G  1 ( z )    =     −  H  0 ( −  z ). A special case 
assumes that  H  0 ( z ) and  H  1 ( z ) are sub - band fi lters satisfying the mirror fi lter relation-
ship  H  1 ( z )  =   H  0 ( −  z ) or  H  1 ( e j    ω  )  =   H  0 ( e j   ( ω  −  π ) ). In the  z  - domain, this assignment results 
in the QMF fi lter condition   Y z k H z H z X z T z X z( ) = ( ) − −( )[ ] ( ) = ( ) ( )0

2
0
2  where  k  is 

a real scale factor introduced by decimation. The fi lter function  T ( z ) can represent 
several personalities. The most common persona results in nonideal performance 
and possible distortion classifi ed as 

       Figure 19.6     Graphical interpretation of aliasing in a QMF.  
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   •      ALD    =    alias distortion;  

   •      AMD    =    amplitude distortion; and  

   •      PHD    =    phase distortion.    

 If a fi lter is ALD, AMD, and PHD free, the fi lter possesses the  perfect reconstruction  
( PR ) property, and  Y ( z )    =     Kz   −    d X ( z ), or  y [ k ]    =     Kx [ k     –     d ]. That is, the QMF system 
reconstructs an output that is simply a scaled and delayed version of the input. Since 
the scale factor and delay are known, the original signal can be reconstructed 
from  y [ k ]. 

 In the study of FIRs, the virtues of linear phase performance were established 
on numerous occasions. Suppose it is desired to design an  N th - order QMF FIR that 
is also linear phase. If  N  is odd, it can be shown that a null will be placed in the 
output spectrum at the normalized frequency  ω     =     π /2. As a result, an odd order linear 
phase FIR can remove the aliasing errors from the output, but it cannot have a fl at 
magnitude frequency response. If  N  is even, then a response that is both linear phase 
and fl at is only produced by a trivial two - coeffi cient FIR having the form

    H z c z c z H z c z c zn n n n
0 0

2
1

2 1
1 0

2
1

2 10 1 0 1( ) = + ( ) = −− − +( ) − − +( );     (19.6)   

 for some integer  n  0  and  n  1 . Unfortunately, this fi lter has little value in practice. Any 
other even order linear phase choice will result in a distorted fi lter. 

 It is known that there does not exist any nontrivial, or physically meaningful, 
fl at response, linear phase QMF fi lter. Most QMF designs represent some compro-
mise. If the linear phase, or perfect mirror condition (i.e.,  H  1 ( z )    =     H  0 ( −  z )), is relaxed, 
then a magnitude and PHD - less QMF system can be realized. A popular design 
paradigm is called the  perfect reconstruction QMF  ( PRQMF ) method. The output 
of a PRQMF system is equal to the input with a known delay. The PRQMF design 
procedure is given by the following:

   1.     Defi ne a linear phase equirippple FIR  F ( z ) to be a (2 N     −    1) - order half - band 
FIR having a ripple deviation  δ .  

  2.     Classify the zeros of the fi lter as being interior or exterior to the unit circle. 
Unfortunately, many of the zeros of  F ( z ) lie on the unit circle and cannot be 
readily classifi ed as being interior or exterior with respect to the unit circle. 
Therefore, add  q  δ  to the center - tap weight of  F ( z ) to form  F   +  ( z )    =     F ( z )    +     q  δ , 
where  q    >     1.0, but close to unity. This action makes the minimum passband 
gain  F   +  ( z ) bounded by unity. Biasing  F ( z ) in this manner lifts the zeros off the 
unit circle and forces them to be either interior of exterior.  

  3.     Defi ne an  N th  -  order FIR  H  0 ( z ) and  H  1 ( z ) satisfying  F   +  ( z )    =     H ( z ) H ( z   − 1 ). Defi ne 
 H ( z ) in terms of the interior zeros.  

  4.     Let  H  0 ( z )    =     H ( z ) and  H  1 ( z )    =    ( − 1)  N    − 1  z   − (   N    − 1)  H ( −  z   − 1 ).  

  5.     Let  G  0 ( z )    =     H  1 ( −  z ) and  G  1 ( z )    =     −  H ( −  z ).    

 The result is an all - pass PRQMF system having an input – output transfer function 
 T ( z )    =     Kz   − (   N    − 1)  where  K  is a constant. 
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  Example:  PRQMF  

 Design a PRQMF system based on a 15th - order (i.e., order [2 N     −    1]) linear phase 
half - band fi lter satisfying  F ( z )    =     − 0.02648 z  7     +    0.0441 z  5     −    0.0934 z  3     +    0.3139 z  1     +    0.
5    +    0.3139 z   − 1     −    0.0934 z   − 3     +    0.0441 z   − 5     −    0.02648 z   − 7 . The magnitude frequency 
response of  F ( z ) is shown in Figure  19.7 . From the half - band FIR, a PRQMF system 
can be defi ned by following the stated step - by - step design processes, beginning with 
the following:

    Step 1 :    F ( z ) is given and  δ     =    0.0238.    

   Step 2 :   Let  q     =    1.01 and produce  F   +  ( z ) such that  F   +  ( z )    =     F ( z ) except at  z     =    0 
where  F   +  (0)    =     F (0)    +     q  δ .  

   Step 3 :   The factors of  F   +  ( z ) are (up to the precision of the computing routine) 
the following:       

       Figure 19.7     Half - band parent FIR and zero distribution of  F   +  (z).  
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 The location of the 14 zeros of  F   +  ( z ) are shown in Figure  19.7 . Collecting the zeros 
residing within the unit circle and multiplying them together, one obtains fi lters 
having the following approximate values summarized below:

    
H z z z z z z z( ) . . . . . . .= + + − − + +− − − − − −1 0 1 34 0 68 0 24 0 34 0 099 0 2391 2 3 4 5 6 −−

=

−0 17 7

0

.

( ),

z

H z
  

    H z z z z z z z1
1 2 3 4 50 17 0 24 0 099 0 34 0 24 0 68 1 34( ) . . . . . . .= − − + + − − +− − − − − −− −−6 71 0. ,z   
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    G z z z z z z z0
1 2 3 4 50 17 0 24 0 099 0 34 0 24 0 68 1 34( ) . . . . . . .= − + + − − + +− − − − − −− −+6 71 0. ,z   

    G z z z z z z z1
1 2 3 4 51 0 1 34 0 68 0 24 0 34 0 099 0 24( ) . . . . . . .= − + − − + + −− − − − − −66 70 17− −. .z    

 Note that individually, the asymmetric fi lters are also nonlinear phase fi lters. The 
frequency response shape and placement of these FIR fi lters are graphically shown 
in Figure  19.8 . It can be seen that the two channels, before decimation, and after 
interpolation, have overlapping frequency responses. The condition outlined in 
Equation  19.5  insures, however, that no aliasing distortion is present in the recon-
structed signal.   

 In practice, the two - channel QMF fi lter displayed in Figure  19.8 , can be used 
to motivate an  N     =    2  n   channel fi lter bank having  n  - levels. The structure of a high -
 order dyadic fi lter bank is suggested in Figure  19.9 . The analysis fi lters are  H  0 ( z ) 
(Lo) and  H  1 ( z ) (Hi), and the synthesis stage fi lters are  G  0 ( z ) (Lo) and  G  1 ( z ) (Hi).     

  POLYPHASE REPRESENTATION 

 A two - channel QMF fi lter can be expressed in polyphase form in terms of 
 H  0 ( z )    =     P  0 ( z  2 )    +     z   − 1  P  1 ( z  2 ), where  P  0  and  P  1  are part of the polyphase representation 
of  H  0 ( z ). It then follows that  H  1 (z)    =     P  0 ( z  2 )    −     z   − 1  P  1 ( z  2 ). The resulting QMF is shown 
in Figure  19.10 . The displayed architecture can also be implemented as a modifi ed 
architecture, also shown in Figure  19.10 , that operates at a lower decimated fi lter 
clock speed.    

       Figure 19.8      H  0 ( z ),  H  1 ( z ),  G  0 ( z ), and  G  1 ( z ) of a QMF fi lter.  
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       Figure 19.9     Dyadic fi lter architecture.  
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  FREQUENCY MASKING FILTERS 

 There are instances when a steep - skirt (i.e., narrow transition band) fi lter is required. 
Unfortunately, steep - skirt fi xed - sample rate fi lters are historically very complex and 
of high order. Such fi lters can, however, often be designed using multirate techniques 
based on the frequency masking method. The frequency masking method uses what 
are called compressed fi lters. A compressed by  M  version of a prototype FIR  H ( z ) 
is   H  ( z )    =     H ( z M  ) and can be realized by replacing each single clock delay in  H ( z ) with 
an  M  sample delay. The compressed fi lter   H  ( z ) continues to be clocked at the original 
sample rate  f  s .  *   Refer to Figure  19.11  and observe how compression scales the fre-
quency axis by a factor 1/ M  and, as a consequence, compresses the FIR ’ s original 

       Figure 19.10     Polyphase and modifi ed polyphase representation of a QMF fi lter.  
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       Figure 19.11     Magnitude frequency response of compressed by  M     =    4 FIRs showing the 
critical frequencies of  ϖ  p     =    0.2 and  ϖ  a1     =    0.3 being mapped (compressed) to  ϖ     =    0.2/4    =    
0.05 and  ϖ     =    0.3/4    =    0.075. The transition bandwidth is scaled from  Δ     =    0.1 to  Δ / M     =    
0.025. In addition, multiple copies of the compressed spectra are distributed uniformly 
along the baseband frequency axis.  
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  *      A compression fi lter is not an interpolating FIR. An interpolation FIR operates at an elevated sample 
rate  f  M     =     Mf  s , a compression fi lter operates at the original rate  f  s : 
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transition bandwidth by a like amount. It can also be observed that the act of com-
pression populates the baseband spectrum with multiple copies, or artifacts, of the 
compressed prototype fi lter ’ s frequency response. The center frequencies for these 
artifacts are located at  ϖ  k / ϖ  s     =     k / M . It is through the intelligent use of compression 
that steep - skirt fi lters can be realized.   

 The frequency - masked FIR architecture, presented in Figure  19.12 , consists 
of the following defi nable subsystems:

    •        H   1 ( z ), a compressed by  M  1  version of an  N  1  - order FIR  H  1 ( z );    

   •        H   2 ( z ), the compressed by  M  2  version of the complement of  H  1 ( z );  

   •        H   3 ( z ), the compressed by  M  3  version of an  N  3  - order FIR  H  3 ( z );  

   •        H   4 ( z ), the compressed by  M  4  version of an  N  4  - order FIR  H  4 ( z );  

   •       H  5 ( z ), an  N  5  - order FIR.    

 The compression factor  M  1  is chosen in order to map a transition bandwidth of  Δ  1  
to the fi nal transition bandwidth of  Δ     =     Δ  1 / M  1     <<     Δ  1 . The target fi lter ’ s low - pass 
cutoff frequency  ϖ  p  needs to be made coincident with one of the critical frequencies 
of a compressed fi lter   H   1 ( z ) (e.g.,  K  1  ϖ  p1 / M  1 ) or the compressed complement fi lter 
  H   2 ( z ) as motivated in Figure  19.12 . Notice that the passband trailing edge for the 
fi rst compressed image (i.e.,  K     =    0) is located at  ϖ  p1 /4    =    0.05, and for the second 
image ( K     =    1), at 4 ϖ  p1 /4    =    0.3. The compressed and compressed complement fi lters 
are summarized below:

    ϖ ϖ
ϖ ϖ ϖ

ϖ ϖ ω ϖ
/

/ ;

/ / ;
s

s p s

s p s

centric
=

+( ) ( ) −
+( ) ( ) −( )

K M H z

K M H
1 1 1

1 21 2 zz( ) −


 centric

.     (19.7)   

 The stopband critical frequencies can be likewise determined and are a function of 
 M  1  and the original stopband frequency of  H  1 ( z ), or those of the complement fi lter 
 H  2 ( z ). Once the compressed or compressed complement fi lter ’ s critical frequency is 
chosen, a need for a housekeeping fi lter becomes apparent. The compressed artifacts 
are generated by the compressed prototype and compressed complement prototype 
fi lters extending beyond the target fi lter ’ s passband frequency and need to be elimi-
nated. This is the role of the frequency - masking fi lters   H   3 ( z ) and   H   4 ( z ). The optional 
last stage shaping FIR   H   5 ( z ), shown in Figure  19.12 , provides a fi nal level of artifact 
suppression. The rules that codify the design of a frequency masking fi lter are shown 
below:

    •      The component FIR fi lters   H   1 ( z ),   H   2 ( z ),   H   3 ( z ),   H   4 ( z ), and   H   5 ( z ) should be 
designed to have their transition bands somewhere in the middle of the base-

       Figure 19.12     Anatomy of a frequency masked (steep skirt) FIR.  
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band range  f     ∈    [0,  f  s /2). This will ensure that no unusual passband or stopband 
widths are imposed on the component fi lters.  

   •      The fi lter   H   1 ( z ), or its complement, must have a critical passband frequency 
 ω  p , that maps to the target passband frequency for a compression factor of  M  1  
and copy index  K .  

   •      The design should minimize the solution ’ s transition bandwidth, which can be 
achieved by minimizing  γ  where

    γ = + + + +






( ) ( ) ( ) ( ) ( ) ( )

min ,
1 1 1 1 1 1

1 3 5 4 4 5
∆ ∆ ∆ ∆ ∆ ∆H z H z H z H z H z H z 

.     (19.8)      

 This metric corresponds to the estimated transition bandwidths of the upper and 
lower paths. The value of  γ  can be reduced if all the compressed fi lters have similar 
transition bandwidths. For the case where the component fi lters are of differing 
orders ( N i  ) and transition bandwidths ( Δ   i  ), the design strategy is to create fi lters 
where the values of  N i   Δ   i   are similar. As a rule, the highest order FIR section in a 
frequency - masked system is generally   H   1 ( z ) (therefore   H   2 ( z )), followed by   H   3 (z), 
  H   4 ( z ), and fi nally   H   5 ( z ). This suggests that their individual uncompressed transition 
bandwidths should appear in the reverse order. For linear phase solutions, the group 
delay of the upper and lower paths need to be the same. If  N  4     <     N  3 , then fi lter   H   4 ( z ) 
will need to be equipped with additional ( N  4     −     N  3 )/2 shift register delays in order to 
equalize the group delays of the upper and lower paths. Finally, as a general rule, 
the passband deviation of each fi lter can be chosen to be 25 – 33% of the target devia-
tion, to account for the degradation (increase) in passband ripple due to cascading. 

  Example: Compression Filter 

 Design a steep - skirt FIR low - pass fi lter having the following specifi cations:

    •      passband defi ned over  f     ∈    [0.0, 0.1] f  s  (i.e.,  ϖ  p     =    0.1), with a maximum devia-
tion of  − 0.175   dB from 0   dB;  

   •      stopband defi ned over  f     ∈    [0.1025, 0.5] f  s  (i.e.,  ϖ  a     =    0.1025), with a gain of 
 − 40   dB, or less; and  

   •      a transition bandwidth of (0.1025    −    0.1) f  s     =    (0.0025) f  s .    

 It is worth noting that satisfying the specifi cations with a single speed fi lter would 
require a linear phase equiripple fi lter having an order in excess of 700. This is, in 
most instances, unacceptable. The design of a steep - skirt fi lter begins with a defi ni-
tion of the prototype   H   1 ( z ) in terms of the critical design parameters ( ϖ  p1 ,  ϖ  a1 ,  Δ  1 ) 
and compression ratio ( M  1 ) and replication constant ( K  1 ). Since the target normalized 
transition bandwidth satisfi es 0.0025    =     Δ  1 / M  1 , a list of acceptable  Δ  1  and  M  1  pairs 
can be assembled using a direct computer search. A reasonable, but by no means 
unique choice is  M  1     =    17 resulting in  Δ  1     =    0.0428. Next, for  M  1     =    17, the targeted 
passband cutoff frequency needs to be expressed in terms of the compression fi lter 
parameters  ϖ  p1  or  ϖ  a1 , and  K  1  (these parameters also apply to the compressed 
complement fi lter as well.) Again a direct computer search can be used to sort out 
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the parametric options as illustrated in Figure  19.11 . Figure  19.13  shows the outcome 
if  ϖ  p     =    0.1,  ϖ  p1     =    0.2573,  ϖ  a1     =    0.3,  K     =    2, and  M     =    17. That is, the target passband 
frequency is obtained by compressing the complement fi lter   H   2 ( z ) and  K     =    2.   

 Finally, the passband gains of the component fi lters need to be specifi ed. 
Suppose the minimum passband gain for the upper path is  G  upper     =     G  1  G  3  G  5  and 
 G  lower     =     G  2  G  4  G  5  for the lower path. Assume, for the purpose of discussion, that all 
individual gains are comparable such that   G Gupper ∼ 1

3 and   G Glower ∼ 1
3. Since the 

specifi ed minimum passband gain is on the order of  − 0.175   dB, it follows that 
 G  upper     =    G lower     =    0.98 or the gain deviation is (1    −    0.98)    =    0.02    ∼     − 34   dB. For design 
consistency, let the passband deviation of all the fi lters (i.e.,  G  1 ,    . . .    ,  G  5 ) be essen-
tially the same. Then if   G G Gupper lower= = =0 98 1

3. , or  G  1     =    0.9933 resulting in a 
passband deviation on the order of 1    −    0.9933    =    0.0067    ∼     − 43   dB. The fi lters   H   3 ( z ) 
and/or   H   4 ( z ) will spawn spectral artifacts that are outside the fi nal solution ’ s pass-
band, which are suppressed by   H   5 ( z ). The locally minimum stopband attenuation is 
essentially set by the stopband attenuation of fi lter   H   5 ( z ). 

 The frequency - masking fi lter process is summarized in Table  19.1 . All com-
ponent fi lters are equiripple FIRs with critical frequencies  ϖ  pi  and  ϖ  ai  as described 
in Table  19.1 . The behavior of the fi lter   H   2 (z) is established by   H   1 ( z ). The fi lters are 

       Figure 19.13     Frequency - masked design example for  ϖ  p     =    0.1,  M     =    17,  K     =    2, 
 ϖ  p1     =    0.2573, and  ϖ  a1     =    0.3. The fi nal design retains two copies ( K     =    2) of the compressed 
prototype spectrum and two copies ( K     =    2) of the compressed complement response.  
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       Figure 19.14     Frequency masked fi lter component and localized response. The lower left 
panel displays the output response.   
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  TABLE 19.1.    Frequency Masked Filter 

   Item       H   1 ( z )       H   2 ( z )       H   3 ( z )       H   4 ( z )       H   5 ( z )  

  Passband edge ( ϖ pi)    0.257200    0.300000    0.229412    0.300000    0.100000  

  Stopband edge ( ϖ ai)    0.300000    0.257200    0.307500    0.398382    0.200599  

  Passband ripple ( δ  pi )     − 43   dB     − 56   dB     − 45   dB     − 58   dB     − 42   dB  

  Stopband ripple ( δ  ai )     − 56   dB     − 43   dB     − 58   dB     − 71   dB     − 42   dB  

  Filter order  N i      63    63    37    37    23  

   N i   Δ   i      2.8676    2.8676    2.8897    3.64    2.438  

  Transition bandwidth  Δ   i      0.0428    0.0428    0.0781    0.0984    0.1006  

  Compression factor  M i      17    17    3    3    1  

generally designed to have a passband deviation on the order of  − 40   dB and a value 
of  N i   Δ   i      ∼    2.8. The exception is the 37th - order   H   4 ( z ) (same order as   H   3 ( z )), where 
 N  4  Δ  4     ∼    3.6. A 29th - order  H  4 ( z ) could have been used resulting in an  N  4  Δ  4     ∼    2.85 if 
eight addition delays (four predelays, four postdelays) are added to equalize group 
delays. Choosing a 37th - order FIR over a 29th - order FIR will simply result in the 
lower path having a slightly different gain deviation. The fi lter  H  5 (z) is chosen to 
suppress the high - frequency anomalies shown in Figure  19.14      

 Figure  19.14  shows the spectral response of the complete 160th - order solution 
(Note:   H   2 ( z ) is assumed to be implemented as a delay - enabled complement FIR 
requiring no additional coeffi cient multipliers). The design is based on a compressed 
critical frequency obtained from   H   2 ( z ) ( ϖ  a1     =    0.3 is compressed to  ϖ  p     =    0.1). It 
can also be seen that the fi lters   H   3 ( z ) and   H   4 ( z ) pass the fi rst  K  1     =    2 copies of   H   1 ( z ) 
and   H   2 ( z ), respectively. The estimated transition bandwidths of the upper and lower 
paths are
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 which results in a value of  Δ  steep - skirt     =    0.0023    <    0.0025. The resulting steep - skirt 
linear phase FIR is analyzed in Figure  19.14  and exhibits a 

   •      passband edge: 0.1 f  s ,  

   •      stopband edge: 0.1025 f  s ,  

   •      passband ripple:  < 0.1   dB, and  

   •      stopband ripple:  ≥ 42   dB,    

 which are seen to meet or exceed the design specifi cations.   

  CASCADED INTEGRATOR - COMB ( CIC ) FILTER 

 The motivation to develop wireless systems with high digital content has sometimes 
been based on valid arguments, at other times, false assumptions. While consumers 
have seen signifi cant changes in packaging and functionality of wireless instruments, 
the underlying physical infrastructure has evolved slowly. Consider, as an example, 
the wireless transceiver shown in Figure  19.15 . The engineering desire is to  “ drive ”  
the digital portion of the transceiver as close to the antenna as possible, or practical. 
The digital portion of the system is only incrementally expanding. This slow growth 
is the result of the fact that mobile wireless devices are power sensitive, which pre-
cludes using ultra high - speed digital logic and analog - to - digital converters (ADCs). 
While it is possible to digitize RF or near RF signals in the GHz  +   range, such tech-
nologies would have a power dissipation budget that would preclude its use in mobile 
wireless applications. Nevertheless, there remains a constant problem of locating 
where to initiate the requisite analog - to - digital conversion. Assuming that 300   MHz 

       Figure 19.15     Anatomy of a wireless transceiver. DSP, digital signal processing.  
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may represent an upper bound for low - power ADC operation, it is apparent that 
1 – 5   GHz (or beyond) wireless signals will still continue to require embedded analog 
processing to reduce a signal ’ s bandwidth to a value consistent with a low - power 
ADC. Once a signal is digitized, it can be processed using various algorithms. The 
front - end baseband bandwidth must be equal to, or in excess of the signal bandwidth 
defi ned by the modulation scheme. For narrow - band communication applications, 
the channel bandwidth is much lower than the fi rst ADC rate. For broadband applica-
tions, the signal bandwidth is assumed to be 1/10th (or more) of  f  s .   

 The conversion of a digitized signal (e.g., 300   MHz) to baseband (e.g., 
300   kHz) is the role of a digital down converter (DDC), or channelizer. The basic 
problem in implementing this sample rate conversion is, again, the speed limitations 
of digital signal processing elements. If a linear phase FIR is used to select a narrow -
 band of frequencies from a broadband spectrum, the resulting FIR order can become 
excessively high, requiring a large number of multiply - accumulate (MAC) calls per 
fi lter cycle. Implementing these fi lters in real time (e.g., 300   MHz) would place an 
excessive power demand of the design. A properly designed channelizer, however, 
can mitigate this problem. The preferred channelizer architecture is called a CIC or 
Hogenauer fi lter.  *   

 A complete down converter system is suggested in Figure  19.16 . The CIC 
architecture has a defi nite advantage over conventional digital fi lters in that it is 
multiplier - less (i.e., MAC free). The CIC solution consists of a direct digital syn-
thesizer (local carrier generator) and a digital mixer that heterodynes a desired sub -
 band down to DC. A CIC fi lter section includes a collection of comb and integrator 
fi lters separated by a decimation by  R  circuit. Each integrator has a transfer function 
given by  H  I ( z )    =    1/(1    −     z   − 1 ) and is clocked at the ADC rate of  f  s . It can be noted that 
the integrator requires only a shift register and adder (no multiplier) to implement. 
Each integrator has a pole located at  z     =    1. Cascading  N  integrators together results 
in a partial transfer function of  H  I ( z )    =    1/(1    −     z   − 1 )  N  , which contributes  N  poles at 
 z     =    1 to the design. Following the integrators are  N  comb fi lters. Each comb fi lter 
is clocked at a decimate rate of  f  comb     =     f  s / R . The individual transfer function for each 
comb fi lter is therefore  H  C ( z )    =    (1    −     z   −    R  ), which contributes  R  zeros distributed 

  *      MATLAB ’ s   mfi lt.cicdecim   command in the Filter Design Toolbox provides some CIC support. 

       Figure 19.16     Down converter (channelizer) architecture. Conventional signal processing 
heterodyne solution involving a channelizer (a.k.a., digital down converter). The  N th - order 
channelizer consists of  N  integrators and  N  delay  M  comb fi lter, separated by a decimate -
 by -  R  circuit. Osc., oscillator; DDS, direct digital synthesizer; MT, as is.  
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uniformly about the unit circle on multiples of  π / R  radian centers, including one at 
 z     =    1. Cascaded together, the  N  comb fi lter section results in  H  C ( z )    =    (1    −     z   −    R  )  N  . The 
result is called an  N th - order CIC fi lter, displayed in Figure  19.17 , and is character-
ized by a transfer function  H  CIC ( z )    =    (1    −     z   −    R  )  N  /(1    −     z   − 1 )  N  . The decimation rate estab-
lishes the output baseband range for 0 to the fi rst null at  f  s / R . The  N th - order CIC 
fi lter possesses  N  - poles, located at DC (i.e.,  z     =    1.0), and  R  zeros of multiplicity  N  
located on the unit circle at  z     =     e j   2 π    k   /   R  ,  k     ∈    [0,  R ) including  N  zeros at  z     =    1. The  N  
zeros located at  z     =    1 cancel an equal number of zeros at the same location (see Fig. 
 19.17 ) resulting in a fi lter having a high DC gain (i.e., low - pass). The pole - zero 
cancellation is ensured because all the fi lter coeffi cients are exact at  z     =    1. 
Furthermore, since all the CIC fi lter coeffi cients are unit - valued, they require no 
general - purpose processor or embedded MAC to realize. Because of this, CIC fi lters 
are often used in high - speed communication and instrument applications at the 
physical layer.    
    

 

   

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
   

 

       Figure 19.17     Baseband CIC fi lter section ( R     =    32).  
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    MATLAB  

 MATLAB contains many signal processing and digital fi lter design functions. Some 
of the more popular and germane programs and utilities are listed below and found in 

  MATLAB,  

  MATLAB Signal Processing Toolbox,  

  MATLAB Filter Design Toolbox,  

  MATLAB Control Toolbox, and/or  

  MATLAB Communication Toolbox.    

  Signal Processing Functions in  MATLAB  
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  conv    Convolution and polynomial multiplication  

  fft    Fast Fourier transform  

  fftshift    Shift zero - frequency component to center of spectrum  

  ifft    Inverse discrete Fourier transform  

  unwrap    Correct phase angles to produce smoother phase plots  

 APPENDIX     

  Digital Filters 

  Discrete - Time Filters           

  dfi lt.cascade    Cascade of discrete - time fi lters  

  dfi lt.delay    Delay fi lter  

  dfi lt.df1    Discrete - time, direct - form I fi lter  

  dfi lt.df1sos    Discrete - time, second - order section, direct - form I fi lter  

  dfi lt.df1t    Discrete - time, direct - form I transposed fi lter  

  dfi lt.df1tsos    Discrete - time, second - order section, direct - form I 
transposed fi lter  
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  dfi lt.df2sos    Discrete - time, second - order section, direct - form II 
fi lter  

  dfi lt.df2t    Discrete - time, direct - form II transposed fi lter  

  dfi lt.df2tsos    Discrete - time, second - order section, direct - form II 
transposed fi lter  

  dfi lt.dfasymfi r    Discrete - time, direct - form antisymmetric fi nite impulse 
response (FIR) fi lter  

  dfi lt.dffi r    Discrete - time, direct - form, FIR fi lter  

  dfi lt.dffi rt    Discrete - time, direct - form FIR transposed fi lter  

  dfi lt.dfsymfi r    Discrete - time, direct - form symmetric FIR fi lter  

  dfi lt.fftfi r    Discrete - time, overlap - add, FIR fi lter  

  dfi lt.latticeallpass    Discrete - time, lattice, all - pass fi lter  

  dfi lt.latticear    Discrete - time, lattice, autoregressive fi lter  

  dfi lt.latticearma    Discrete - time, lattice, autoregressive, moving - average 
fi lter  

  dfi lt.latticemamax    Discrete - time, lattice, moving - average fi lter  

  dfi lt.latticemamin    Discrete - time, lattice, moving - average fi lter  

  dfi lt.parallel    Discrete - time, parallel structure fi lter  

  dfi lt.scalar    Discrete - time, scalar fi lter  

  dfi lt.statespace    Discrete - time, state - space fi lter  

  cfi rpm    Complex and nonlinear phase equiripple FIR fi lter design  

  fi r1    Window - based FIR fi lter design  

  fi r2    Frequency sampling - based FIR fi lter design  

  fi rcls    Constrained least square, FIR multiband fi lter design  

  fi rcls1    Constrained least square, low - , high - pass, linear phase, FIR 
fi lter design  

  fi rls    Least square linear phase FIR fi lter design  

  fi rpm    Parks – McClellan optimal FIR fi lter design  

  fi rpmord    Parks – McClellan optimal FIR fi lter order estimation  

  intfi lt    Interpolation FIR fi lter design  

  kaiserord    Kaiser window FIR fi lter design estimation parameters sgolay 
Savitzky – Golay fi lter design  

  FIR Filter Design 
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  butter    Butterworth fi lter design  

  cheby1    Chebyshev Type I fi lter design (passband ripple)  

  cheby2    Chebyshev Type II fi lter design (stopband ripple)  

  ellip    Elliptic fi lter design  

  maxfl at    Generalized digital Butterworth fi lter design  

  yulewalk    Recursive digital fi lter design  

  Infi nite Impulse Response ( IIR ) Digital Filter Design 

      

  buttord    Butterworth fi lter order and cutoff frequency  

  cheb1ord    Chebyshev Type I fi lter order  

  cheb2ord    Chebyshev Type II fi lter order  

  ellipord    Minimum order for elliptic fi lters  

   IIR  Filter Order Estimation 

      

  abs    Absolute value (magnitude)  

  angle    Phase angle  

  freqz    Frequency response of digital fi lter  

  fvtool    Open Filter Visualization Tool  

  grpdelay    Average fi lter delay (group delay)  

  impz    Impulse response of digital fi lter  

  phasedelay    Phase delay of digital fi lter  

  phasez    Phase response of digital fi lter  

  stepz    Step response of digital fi lter  

  zerophase    Zero - phase response of digital fi lter  

  zplane    Zero - pole plot  

  Filter Analysis 

      

  bilinear    Bilinear transformation  

  impinvar    Impulse invariance transformation  

  Filter Discretization 
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  latc2tf    Convert lattice fi lter parameters to transfer function form  

  residuez     z  - Transform partial - fraction expansion  

  sos2ss    Convert digital fi lter second - order section parameters to 
state - space form  

  sos2tf    Convert digital fi lter second - order section data to transfer 
function form  

  sos2zp    Convert digital fi lter second - order section parameters to 
zero - pole - gain form  

  ss2sos    Convert digital fi lter state - space parameters to second - order 
sections form  

  ss2tf    Convert state - space fi lter parameters to transfer function form  

  ss2zp    Convert state - space fi lter parameters to zero - pole - gain form  

  tf2latc    Convert transfer function fi lter parameters to lattice fi lter form  

  tf2sos    Convert digital fi lter transfer function data to second - order 
sections form  

  tf2ss    Convert transfer function fi lter parameters to state - space form  

  tf2zp    Convert transfer function fi lter parameters to zero - pole - gain form  

  tf2zpk    Convert transfer function fi lter parameters to zero - pole - gain form  

  zp2sos    Convert zero - pole - gain fi lter parameters to second - order sections 
form  

  zp2ss    Convert zero - pole - gain fi lter parameters to state - space form  

  zp2tf    Convert zero - pole - gain fi lter parameters to transfer function form  

  Linear Systems 

      

  barthannwin    Modifi ed Bartlett – Hann window  

  bartlett    Bartlett window  

  blackman    Blackman window  

  blackmanharris    Minimum four - term Blackman – Harris window  

  bohmanwin    Bohman window  

  chebwin    Chebyshev window  

  dpss    Discrete prolate spheroidal (Slepian) sequences  

  dpssclear    Remove discrete prolate spheroidal sequences from 
database  

  dpssdir    Discrete prolate spheroidal sequences database directory  

  dpssload    Load discrete prolate spheroidal sequences from database  

  fl attopwin    Flat top weighted window  

  Windows 

      



APPENDIX 285

  gausswin    Gaussian window  

  hamming    Hamming window  

  hann    Hann (Hanning) window  

  kaiser    Kaiser window  

  nuttallwin    Nuttall - defi ned minimum four - term Blackman – Harris 
window  

  parzenwin    Parzen (de la Vall é e - Poussin) window  

  rectwin    Rectangular window  

  taylorwin    Taylor window  

  triang    Triangular window  

  tukeywin    Tukey (tapered cosine) window  

  window    Window function gateway  

  wvtool    Open Window Visualization Tool  

  decimate    Decimation — decrease sampling rate  

  downsample    Decrease sampling rate by integer factor  

  interp    Interpolation — increase sampling rate by integer factor  

  resample    Change sampling rate by rational factor  

  upfi rdn    Upsample, apply FIR fi lter, and downsample  

  upsample    Increase sampling rate by integer factor  

  Multirate Signal Processing 

      

  chirp    Swept - frequency cosine  

  diric    Dirichlet or periodic sinc function  

  gauspuls    Gaussian - modulated sinusoidal pulse  

  gmonopuls    Gaussian monopulse  

  pulstran    Pulse train  

  rectpuls    Sampled aperiodic rectangle  

  sawtooth    Sawtooth or triangle wave  

  sinc    Sinc  

  square    Square wave  

  tripuls    Sampled aperiodic triangle  

  vco    Voltage - controlled oscillator  

  Waveform Generation 
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  fdatool    Open Filter Design and Analysis Tool  

  fvtool    Open Filter Visualization Tool  

  sptool    Open interactive digital signal processing tool  

  wintool    Open Window Design and Analysis Tool  

  wvtool    Open Window Visualization Tool  

  Graphical User Interfaces ( GUI  s ) 

             
 



    Aliasing        Aliasing is an effect that causes a signal, upon sampling, to impersonate another 
signal.  

  Amplitude Modulation  ( AM )        A modulation scheme that carries information on the 
amplitude envelope of a modulated signal.  

 Analog Prototype Filter        Classic analog Butterworth, Chebyshev, or elliptic low - pass 
fi lter models having a 1   rad/s passband.  

  Analog - to - Digital  ( A/D ) Converter (ADC)        A device that converts analog signals into 
sample values having digital precision.  

 Anti - Aliasing Filter        An analog low - pass fi lter placed in front of an analog - to - digital 
converter (ADC) to eliminate or suppress distorting aliasing effects. 

  Application - Specifi c Integrated Circuits  ( ASICs )   Semiconductor devices designed to 
perform a fi xed versus general - purpose function.  

 Architecture        Architecture refers to the interconnection of fundamental building block 
elements to defi ne a physical digital signal processing (DSP) solution.  

 Arithmetic Error        Arithmetic errors occur when performing arithmetic operations using 
data of fi nite precession.  

  Arithmetic Logic Unit  ( ALU )        A part of a digital processor that contains the arithmetic 
and logical processing agents.  

 Autocorrelation        A measure of the similarity of a signal with itself over a range of 
delays.  

  Autoregressive Moving Average  ( ARMA )        A process that can produce an approximate 
model of a linear system based on direct measurements of a system ’ s frequency response.  

 Band - Limited Signal        Associated with signals having a fi nite maximum frequency.  

 Band - Pass Filter        A fi lter that passes only a range of frequencies bounded away from 
0   Hz (DC) and the Nyquist frequency.  

 Band - Stop Filter        A fi lter that suppresses a single range of frequencies bounded away 
from 0   Hz (DC) and the Nyquist frequency.  

 Bandwidth        A contiguous range of frequencies that contain signal power or energy.  

 Baseband        Contiguous frequency range between 0   Hz (DC) and the Nyquist frequency.  

 Benchmark        A device or process that measure the performance or attributes of a system 
or subsystem.  

 Bilinear  z  - Transform        A type of  z  - transform well suited for use with frequency - selective 
infi nite impulse response (IIR) fi lter designs.  
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 Biquad        A common fi rst -  and second - order fi lter building block architecture.  

  Bounded - Input Bounded - Output  ( BIBO ) Stable        Property of systems producing only 
bounded outcomes for any arbitrary bounded input.  

 Butterfl y        A complex arithmetic operation associated with the production of a  fast Fourier 
transform  ( FFT ).  

 Canonic Architecture        A fi lter architecture that implements an  N th - order fi lter with at 
most  N  shift registers.  

  Canonic Signed Digit  ( CSD )        An arithmetic code that is dense in zero digits.  

 Cascade Architecture        A serial connection of low - order fi lter sections to create a 
higher - order fi lter.  

  Cascaded Integrator - Comb  ( CIC ) Filter        Multiplier - less low - pass fi lter also known as a 
Hogeneaur fi lter.  

 Causal Signal        Causal signal has a fi nite starting time (time of origin).  

 Chirp  z  - Transform        A method of computing  z  - transforms using convolution methods.  

 Circular Convolution        A process of convolving two periodic signals with common 
period.  

 Classic Infi nite Impulse Response (IIR)        IIRs based on analog Butterworth, Chebyshev I 
and II, or elliptic fi lter models.  

 Coeffi cient Round - Off Error        An error that occurs when real coeffi cients are quantized 
into fi nite precision data words.  

 Comb Filter        Multiplier - less fi lter architecture having multiple nulls located at 
periodically spaced frequencies.  

 Companding        A logarithmic amplitude suppression scheme used to compress the dynamic 
range of a signal.  

 Complement Filter        A fi lter that when additively combined with its parent fi lter, produces 
an all - pass fi lter.  

  Complex Instruction Set  ( CISC )        A digital processor technology having a numerically 
large instruction set.  

 Compression        A process by which the size of a sampled signal can be reduced without 
signifi cantly reducing signal information.  

 Continuous Time        Signals or systems that are continuously resolved in both time and 
amplitude.  

 Convolution        A mathematical process that defi nes linear fi ltering.  

 Correlation        A measure of the similarity of two signals over a range of delays.  

 Critical Sampling        Sampling at the Nyquist sample rate  f  s /2.  

 Data Flow Architecture        Multiprocessing architectures where individual processing 
elements perform multiple instructions on many pieces of data.  

 Decimation        The act of discarding samples from a time series to produce a sparser time 
series at a lower sample rate.  

 Digital Filter        A device that is capable of altering a digital signal ’ s magnitude and/or 
phase response using digital technology.  

  Digital Signal Processing  ( DSP )        The art and science of creating, modifying, and 
manipulating signal attributes using digital technology.  

 Digital Signal Processing Microprocessor (DSP  µ p)        A function - specifi c processor used 
to realize DSP solutions.  
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 Digital Signal        A digital signal is discretely resolved or quantized in both time and 
amplitude.  

  Digital - to - Analog Converter  ( DAC )        A device that converts digital signal into discrete -
 time or analog signal.  

 Direct Architecture        Filter architecture appearing in canonic (direct II) and noncanonic 
(direct I) form.  

  Discrete - Cosine Transform  ( DCT )        A time - frequency transform based on a real cosine 
expansion.  

 Discrete Fourier Transform (DFT)        An algorithm that maps a discrete - time time - series 
into the discrete frequency domain.  

  Discrete - Time Fourier Series  ( DTFS )        The discrete - time Fourier transform of discrete -
 time periodic signals.  

  Discrete - Time Fourier Transform  ( DTFT )        The discrete - time Fourier transform of a 
discrete time series.  

 Discrete - Time Sample        A sample having fi nite resolution in time and continuous 
resolution in amplitude.  

 Discrete - Time Signal        A time series consisting of contiguous discrete - time samples.  

 Distributed Arithmetic        A special fi xed - point fi lter architecture that replaces a general 
purpose multiply - accumulator with memory table lookups.  

 Dithering        A technique of adding a small amount of noise to a signal to reduce the overall 
statistical error of a reconstructed signal.  

 Dynamic Range        The attainable (unconstrained) range of a signal.  

 Echo Canceller        A fi lter designed to remove refl ected (returned) signals.  

 Equalization        A process that compensates for the nonlinear effects of a channel or 
system.  

 Equiripple Finite Impulse Response (FIR)        A type of FIR satisfying a minimax ripple 
error criterion.  

 Farrow Filter        A multirate fi lter possessing fractional delays.  

  Fast Fourier Transform  ( FFT )        A fast implementation of a discrete Fourier transform 
(DFT).  

 Filter        A device that alters the attributes of input signal (e.g., magnitude and phase).  

 Filter Bank        A collection of individual fi lters designed to collectively achieve a desired 
frequency - domain effect.  

  Finite Impulse Response  ( FIR ) Filter        A nonrecursive or transversal fi lter that has no 
feedback paths.  

 Finite Word Length Effects        Finite errors and uncertainties introduced by fi nite precision 
arithmetic.  

 First - Order Hold        A linear interpolation technique used to convert piecewise constant 
signals into piecewise linear signal.  

 Fixed Point        Numbering or arithmetic system of fi nite precision and dynamic range.  

 Fixed - Point Processor        A processor used to implement fi xed - point arithmetic.  

 Floating Point        A number scheme that codes data with high precision and dynamic 
range.  

  Floating - Point Operations Per Second  ( FLOPS )        A measurement of performance of 
capabilities of a fl oating - point processor.  
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 Floating - Point Processor        A processor used to implement fl oating - point arithmetic 
operations.  

 Frequency        First time derivative of phase or, in a popular sense, the number of cycles per 
unit of time.  

  Frequency Division Multiplexing  ( FDM )        A process that divides a channel into 
nonoverlapping frequency bands.  

 Frequency Domain        A domain in which signal and systems are defi ned in terms of their 
frequency attributes.  

 Frequency Masking Filter        A multirate fi nite impulse response (FIR) fi lter strategy used 
to synthesize  “ steep - skirt ”  FIRs.  

 Frequency Sampling Filter        A fi lter implemented as a bank of frequency - selective 
fi lters.  

 Gain        The amplifi cation ability of a system.  

 Group Delay        The frequency - dependent signal propagation delay introduced by a digital 
fi lter.  

 Half - Band Filter        A fi lter having magnitude frequency response symmetry about  f  s /4 
resulting in a low complexity design.  

 Harvard Architecture        A processor architecture that uses separate busses for program, 
memory, and input/output (I/O).  

 Heaviside Expansion        A process by which a transfer function can be represented as the 
additive collection of low - order terms, sometimes called a partial fraction expansion.  

 High - Pass Filter        A fi lter that passes only high frequencies.  

 Hilbert Filter        A fi lter having quadrature phase behavior in the frequency domain.  

 Hogeneaur Finite Impulse Response (FIR)        See cascaded integrator - comb fi lter.  

 Homogeneous Solution        The solution to a difference or differential equation due only to 
the system ’ s initial conditions.  

 Image Processing        The process of enhancing or extracting information from an image.  

 Impulse Invariant        A property that ensures the sample value of a discrete - time impulse 
response agrees with those of the continuous - time parent at the sample instances.  

 Impulse Response        The response of a fi lter to an input impulse signal.  

 Impulse Sampler        An ideal device that can instantaneously sample an analog signal.  

  Infi nite Impulse Response  ( IIR ) Filter        Also called a recursive fi lter, identifi es a class of 
fi lters having feedback.  

 Inhomogeneous Solution        Solution to a difference or differential equation due to the 
system ’ s external forcing function.  

  Integrated Circuit  ( IC )        A semiconductor device or chip.  

 Interpolating Filter        An analog fi lter that converts a discrete - time signal into an analog 
signal.  

 Interpolation        The act of increasing the effective sample rate of a signal or synthesizing 
signal values in between adjacent samples.  

 Lattice/Ladder Architecture        A special type of fi nite impulse response (FIR) and infi nite 
impulse response (IIR) fi lter architecture.  

  L  - Band Finite Impulse Response (FIR)        Filter exhibiting specifi c symmetry conditions 
in the frequency domain.  

  Least Mean Square  ( LMS )        A fi lter design optimization criteria.  
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 Limit Cycling        The result of unwanted oscillations due to data rounding, truncation, or 
saturation.  

 Linear Phase        A fi lter property that requires that the fi lter ’ s propagation delay is constant 
for all frequencies.  

  Linear Shift Invariant  ( LSI ) Filter        A linear fi lter with constant coeffi cients.  

 Low - Pass Filter        A fi lter that passes only low frequencies.  

 Magnitude Frequency Response        The absolute value of a signal ’ s or system ’ s frequency 
response.  

 Microprocessor        Compact full - function general - purpose computers.  

  Million Instructions Per Second  ( MIPS )        A measurement of the performance, or 
capacity, of a digital processor.  

 Minimum Phase Finite Impulse Response (FIR)        An FIR having zeros only on or 
interior to the unit circle in the  z  - plane.  

 Mirror Filter        A fi lter having a refl ected magnitude frequency response of a parent fi lter.  

 Mixed - Signal Device        A system containing a collection of analog and digital signals.  

 Modular Arithmetic        A type of algebra based on algebraically manipulating remainders.  

 Modulation        The modifi cation of a signal process using multiplicative processes.  

 Moving Average Filter        A low complexity low - pass fi nite impulse response (FIR) fi lter.  

  Multiply - Accumulate  ( MAC )        Operations of the form S    ←    AX    +    Y (see SAXPY).  

 Multiprocessing        A paradigm in which the computational process is spread across several 
processors to improve the performance of the system.  

 Multirate        A condition in which a system contains two or more differing sample rates.  

 Multitasking        A division of a computational process across several tasks and facilitators.  

 Noise Gain        The amplifi cation of errors due to internal fi nite word length effects 
measured at a system ’ s output.  

 Noise Power        The power amplifi cation of errors due to internal fi nite word length effects 
measured at a system ’ s output.  

 Normal Architecture        An infi nite impulse response (IIR) fi lter architecture exhibiting 
state space symmetry.  

 Nyquist Filter        Finite impulse responses (FIRs) exhibiting special symmetry conditions.  

 Nyquist Frequency        One - half the sample frequency  f  s /2.  

 Nyquist Sample Rate        The minimum sample rate at which an analog signal that enables 
signal reconstructed without aliasing.  

 Oversampling        A sampling above the Nyquist sample rate.  

 Overfl ow Saturation        Refers to a class of error that occurs when a variable exceeds the 
dynamic range limitation of a system.  

 Parallel Architecture        An architecture in which low - order systems are added together to 
create a higher - order system.  

 Parallel Processing        Task speedup using concurrent processing.  

 Periodogram        Power spectrum approximation technique.  

 Phase Response        Frequency - dependent phase angle of a signal ’ s or system ’ s frequency 
response.  

 Pipelining        A technique used to reduce a task into a serial set of smaller tasks that can be 
individually processed and recombined.  
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 Pole        An artifact (singularity) generated by a feedback path of a fi lter.  

 Polyphase Representation        A mathematical procedure of representing decimated and 
interpolated signals and systems.  

 Prony Filter        A fi lter synthesis technique that can be used to model a physical fi lter ’ s 
impulse response.  

  Quadrature Mirror Filter  ( QMF )        A fi lter bank capable of reconstructing a signal from 
its component parts.  

 Quantization        A process by which a real variable is converted into a digital word of fi nite 
precision.  

 Quantization Error        The error associated with representing a real number with a 
quantized number.  

 Recursive Filter        See infi nite impulse response (IIR).  

 Reduced Adder Graph        A technique used to represent a number with a spare set of 
digits.  

  Reduced Instruction Set Computer  ( RISC )        A computer architecture having a small 
instruction set.  

  Region of Convergence  ( ROC )        The region of the  z  - plane in which the  z  - transform is 
guaranteed to exist.  

 Resolution        The measure of accuracy of an analog - to - digital (ADC) or digital - to - analog 
(DAC) converter.  

 Sallen – Key Filter        An analog fi lter based on an operational amplifi er, typically used as an 
anti - aliasing fi lter.  

  Sample and Hold  ( S & H )        An analog device that captures a sample of an analog signal 
and holds that value for a simple period.  

 Sample Frequency        See sample rate.  

 Sample Rate        The rate at which an analog signal is sampled in samples per second (Sa/s).  

 Sampling        The process of converting of a continuous time analog signal into a discrete -
 time time series.  

 Sampling Theorem        Establishes the conditions under which alias - free signal 
reconstruction can take place.  

 Savitzky – Golay Finite Impulse Response (FIR)        A fi lter form used to perform 
interpolation using polynomials.  

 SAXPY        A fundamental digital signal processing (DSP) operation of the form 
S    ←    AX    +    Y (see multiply - accumulate [MAC]).  

  Short - Time Frequency Transform  ( STFT )        A process of estimating the frequency 
response of a system from a collection of short Fourier transforms.  

 SINC        A function of the form sin( x )/ x  that represents an ideal Shannon interpolation fi lter.  

  Single Instruction Multiple Data  ( SIMD )        An architecture where individual processing 
elements perform the same instruction on many pieces of data.  

 Spectrum Analyzer        An instrument that displays the frequency - domain representation of 
a signal.  

 State Variable        Information - bearing variables residing in the shift registers of a digital 
fi lter.  

 State Variable Model        Defi nes a linear algebraic framework for the systematic 
representation and analysis of linear systems.  

 Stopband        The frequency range of a fi lter that is highly attenuated.  
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 Sub - Band Filters        A part or portion of a larger fi lter solution.  

 Superposition        A property of a linear discrete or continuous - time system.  

 Superscalar        A CPU architecture implements a form of parallelism allowing the system 
as a whole to run faster than it would.  

 Time Division Multiplexing        A technique of packing a number of independent signal 
occupying nonoverlapping time intervals into a single signal stream.  

 Time Domain        A domain in which signal and systems are defi ned in terms of their time 
attributes.  

 Time Series        A continuous string of sample values.  

 Transducer        A transducer is a piece of equipment that converts a physical signal into an 
electrical signal.  

 Transfer Function        The ratio of the  z  - transform of an at - rest linear system ’ s input to 
output  z  - transform.  

 Transpose Architecture        An architecture defi ned in terms of transpose operations applied 
to a different architecture.  

 Transversal fi lter        See fi nite impulse response (FIR) fi lter.  

 Truncated Fourier Transform Finite Impulse Response (FIR)        An FIR synthesis 
technique that approximates a desired frequency - domain response.  

 Twiddle Factor        The complex coeffi cients found in a fast Fourier transform (FFT).  

 Undersampling        A sampling rate below the Nyquist sample rate.  

  Very Long Instruction Word  ( VLIW )        Large - sized complex instructions encoded into 
one instruction.  

 von Neumann architecture        A traditional microprocessor architecture.  

 Warping        Nonlinear phase distortion introduce by the bilinear  z  - transform.  

 Wavelet        A means of representing or producing a signal in time and scale (frequency), 
which obeys a set of mathematical properties.  

 Window        A means of isolating, localizing, and modifying data over a fi nite interval to the 
exclusion of all time intervals.  

 Window Method Finite Impulse Response (FIR)        Technique of synthesizing an FIR 
fi lter in terms of a window function.  

 Worst Case        The maximum possible outcome.  

  z  - Domain        The complex plane in which signals and system are represented by 
 z  - transforms.  

 Zero        An artifact (singularity) generated by the feed - forward path of a system.  

 Zero - Order Hold        A device or method that interprets a discrete - time signal as a 
piecewise constant analog signal.  

 Zero Phase Finite Impulse Response (FIR)        A noncausal FIR fi lter having a zero phase 
response.  

  z  - Transform        A mathematical method of analyzing and representing discrete - time signals.    
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