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PREFACE

Digital system design requires rigorous modeling and simulation analysis that

eliminates design risks and potential harm to users. Thus, the educational objective

of this book is to provide an introduction to digital system design through modeling,

synthesis, and simulation computer-aided design (CAD) tools. This book provides an

introduction to analytical and computational methods that allow students and users to

model, synthesize, and simulate digital principles using very high-speed integrated-

circuit hardware description language (VHDL) programming. We present the prac-

tical application ofmodeling and synthesis to digital systemdesign to establish a basis

for effective design and provide a systematic tutorial of how basic digital systems

function. In doing so, we integrate theoretical principles, discrete mathematical

models, computer simulations, and basics methods of analysis. Students and users

will learn how to use modeling, synthesis, and simulation concepts and CAD tools to

design models for digital systems that will allow them to gain insights into their

functions and the mechanisms of their control. Students will learn how to integrate

basic models into more complex digital systems. Although the approach designed in

this book focuses on undergraduate students, it can also be used for modeling and

simulation students who have a limited engineering backgroundwith an inclination to

digital systems for visualization purposes.

The book includes nine chapters. Each chapter begins with learning objectives that

provide a brief overview of the concepts that the reader is about to learn. In addition,

the learning objectives can be used as points for classroom discussion. Each chapter

ends with problems that will enable students to practice and review the concepts

covered in the chapter. Chapter 1 introduces modeling and simulation and its role in

digital system evolution. The chapter provides a brief history ofmodeling and simula-

tion in digital systems, VHDL programming, programmable and reconfigurable

systems, and advantages of using modeling and simulation in digital system design.

Chapter 2 introduces the mathematical foundations of digital systems and logical

reasoning.Described areBoolean theory, its axioms and theorems, and basic logic gates

as well as early modeling in digital system design using algebraic manipulations.

Chapter 3 provides an overview of number representations, number conversions,

and number codes. The relationships between decimal representation and the less

obvious digital number representations are described. Chapter 4 provides a brief

history of VHDL programming, the reasons for its creation, and its impact on the

evolution of digital systems andmodern computer systems. Described are CAD tools,

programming structure, and instructions and syntax of VHDL. Chapter 5 provides a

simplified view of the progression of integrated systems and their application in

ix



digital logic circuits and computer systems. The role of modeling and simulation in

the optimization and verification of digital system design at the transistor level is

described. Chapter 6 provides graphical means and Karnaughmaps to streamline and

simplify digital system design using visualization schemes. Although these methods

are used only when designing circuits with a small number of gates, they provide

rudimentary means for the design of automatic CAD tools.

Chapter 7 introduces combinational logic and its applications in multiplexers,

decoders, and arithmetic and logic circuits and systems. Chapter 8 introduces sequen-

tial logic, with a focus on sequential logic elementary circuits and their applications in

complex circuits such as counters and registers. Chapter 9 provides an overview of

finite-state machines, especially the synchronous sequential circuit models used to

design simple finite-state machines. Also described is asynchronous sequential logic

and its advantages and disadvantages for digital systems. All chapters illustrate circuit

design using VHDL sample codes that allow students not only to learn and master

VHDL programming but also to model and simulate digital circuits.

MOHAMMED FERDJALLAH
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1 Digital System Modeling
and Simulation

1.1 OBJECTIVES

The objectives of the chapter are to:

. Describe digital systems

. Provide a brief history of digital systems

. Describe standard chips

. Describe custom-designed chips

. Describe programmable logic devices

. Describe field-programmable gated arrays

1.2 MODELING, SYNTHESIS, AND SIMULATION DESIGN

Modeling and simulation have their roots in digital systems. Long before they became

the basis of an interdisciplinary field, modeling and simulation were used extensively

in digital system design. As electronic and computer technology advanced, so did

modeling and simulation concepts. Today, the many computer-aided design (CAD)

tools are pushing the limit of modeling, synthesis, and simulation technology. We

focus on the implementation of modeling, synthesis, and simulation in digital

systems.

A digital system is a system that takes digital signals as inputs, processes them, and

produces digital output signals. A digital signal is a signal in which discrete steps are

used to represent information and change values only at discrete (fixed) time intervals.

In contrast, analog signals have “continuous” variations in signal amplitude over

time. At a given instant of time, an analog signal has infinite possible values. A digital

signal has discrete amplitude and time. Digital systems are very useful in the areas of

signal processing (i.e., audio, images, speech, etc.), computing, communication, and

data storage, among others. Digital systems are so commonplace in today’s world that

we tend to miss seeing them. Almost all electronic systems are partially or totally

Introduction to Digital Systems: Modeling, Synthesis, and Simulation Using VHDL, First Edition.
Mohammed Ferdjallah.
� 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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digitally based. Of course, real-world signals are all analog, and interfacing to the

outside world requires conversion of a signal (information) from digital to analog.

However, simplicity, versatility, repeatability, and the ability to produce large and

complex (as far as functionality is concerned) systems economically make them

excellent for processing and storing information (data).

1.3 HISTORY OF DIGITAL SYSTEMS

One of the earliest digital systems was the dial telephone system. Pulses generated by

activating a spinning dial were counted and recorded by special switches in a central

office. After all the numbers had been dialed and recorded, switches were set to

connect the user to the desired party. A switch is a digital device that can take one of

two states: open or closed.

In 1939, Harvard University built the HarvardMark I, which went into operation in

1943. It was used to compute ballistic tables for the U.S. Navy. In the next few years,

more machines were built in research laboratories around the world. The ENIAC

(ElectronicNumerical Integrator andComputer)was placed in operation at theMoore

School of Electrical Engineering at the University of Pennsylvania, component by

component, beginning with the cycling unit and an accumulator in June 1944. This

was followed in rapid succession by the initiating unit and function tables in

September 1945 and the divider and square-root unit in October 1945. Final assembly

of this primitive computer system took place during the fall of 1945.

The first commercially produced computer was Univac I, which went into

operation in 1951. More large digital computers were introduced in the next decade.

These first-generation computers used vacuum tubes and valves as primary electronic

components and were bulky, expensive, and consumed immense amounts of power.

The invention of the transistor in 1948 at the Bell Telephone Laboratories by

physicists John Bardeen, Walter Brattain, and William Shockley revolutionized the

way that computers were built. Transistors are used as electrical switches that can be

in the “on” or “off” state and so can be used to build digital circuits and systems.

Transistors were used initially as discrete components, but with the arrival of

integrated circuit (IC) technology, their utility increased exponentially. ICs are

inexpensive when produced in large numbers, reliable, and consume much less

power than do vacuum tubes. IC technology makes it possible to build complete

digital building blocks into single, minute silicon “chips.” The size of transistors has

been shrinking ever since their birth, and today, a complete computer is on one chip

(microprocessor), and even large systems are being integrated into a single chip

(system-on-a-chip).

1.4 STANDARD LOGIC DEVICES

Many commonly used logic circuits are readily available as integrated circuits.

These are referred to as standard chips because their functionality and configuration

2 DIGITAL SYSTEM MODELING AND SIMULATION



meet agreed-upon standards. These chips generally have a fewhundred transistors at

most. They can be bought off-the-shelf, and depending on the application, the

designer can build supporting circuitry on a PCB (printed circuit board) or bread-

board. The advantages of using standard chips are their ease of use and ready

availability. However, their fixed functionality has proved disadvantageous. Also,

the fact that they generally do not have complex functionality means that many such

chips have to be put together on a PCB, leading to a requirement for more area and

components. Examples of standard chips are those in the 7400 series, such as the

7404 (hex inverters) and 7432 (quad two-input OR gates).

1.5 CUSTOM-DESIGNED LOGIC DEVICES

Chips designed to meet the specific requirements of an application are known as

application-specific integrated circuits (ASICs) or custom-designed chips. The logic

chip is designed from scratch. The logic circuitry is designed according to the

specifications and then implemented in an appropriate technology. The main ad-

vantage of ASICs is that since they are optimized for a specific application, they

perform better than do functionally equivalent circuits built from off-the-shelf ICs or

programmable logic devices. They occupy very little area, as all of the logic can be

built into one chip. Thus, less PCB area would be required, leading to some cost

savings. The disadvantage of ASICs is that they can be justifiable economically only

when there is bulk production of the ICs. Typically, hundreds of thousands of ASICs

must be manufactured to recover the expenditures necessary in the design, manu-

facturing and testing stages. Another drawback of the custom-design approach is that

it requires the work of highly skilled engineers in the design, manufacturing, and test

stages. The design time needed for these chips is also high, as a lot of verification has

to be carried out to check for correct functionality. The circuitry in the chip cannot

be altered once it is fabricated.

1.6 PROGRAMMABLE LOGIC DEVICES

Advances inVLSI technologymade possible the design of special chips,which can be

configured by a user to implement different logic circuits. These chips, known as

programmable logic devices (PLDs), have a very general structure and contain

programmable switches, which allow the user to configure the internal circuitry to

perform the desired function. The programmer (end user) has simply to change the

configuration of these switches. This is usually done by writing a program in a

hardware description language (HDL) such asVHDLorVerilog and “downloading” it

into the chip. Most types of PLDs are reprogrammable for a fixed number of times

(generally, a very high number). This makes PLDs excellent for use in prototyping of

ASICs and standard chips. A designer can program a PLD to perform a particular

function and then make changes and reprogram it for retesting on the same chip.

Also, there is a great cost savings in using a device that is reprogrammable for
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prototyping purposes. Themain disadvantage of PLDs is that theymay not be the best

performing. The performance of a functionally equivalent ASIC or standard chip is

likely to be better. This is because all functions have to be realized from existing

blocks of logic inside the PLD. The most popular types of PLDs include:

. Simple programmable logic devices (SPLDs)

. Programmable array logic (PAL)

. Programmable logic array (PLA)

. Generic array logic (GAL)

. Complex programmable logic devices (CPLDs)

. FPGA (field-programmable gate arrays)

. FPIC (field-programmable interconnect)

These different types of PLDs vary in their internal architectures. Different

manufacturers of PLDs choose different architectures for implementing the logic

blocks and the programmable interconnection switch matrices. FPGAs have the

highest gate count among the various PLDs, which can accommodate much larger

designs than can SPLDs and CPLDs. Today’s FPGAs have millions of transistors in

one chip. PALs and PLAs generally carry just a few hundred or a few thousand gates.

PLD manufacturers include, among others, Altera Corporation, Xilinx Inc., Lattice

Semiconductor, Cypress Semiconductor, Atmel, Actel, Lucent Technologies, and

QuickLogic.

1.7 SIMPLE PROGRAMMABLE LOGIC DEVICES

Simple programmable logic devices (SPLDs) include programmable logic arrays

(PLAs) and programmable array logic (PALs). Early SPLDs were simple and

consisted of an array of AND gates driving an array of OR gates. An AND gate

(known as an AND plane or AND array) feeds a set of OR gates (an OR plane). This

helps in realizing a function in the sum-of-products form.

Figure 1.1 shows the general architecture of PLAs and PALs. The most common

housing of PLAs and PALs was a 20-pin dual-in-line package (DIP). The difference

between PALs and PLAs is that in PLA, both the AND and OR planes are

programmable, whereas in PALs, the AND plane is programmable but the OR plane

is fixed. PLAs were expensive to manufacture and offered somewhat poor perfor-

mances, due to propagation delays. Therefore, PALs were introduced for their ease of

manufacturability, lower cost of production, and better performance. PALs usually

contain flip-flops connected to the OR gates to implement sequential circuits. Both

PLAs and PALs use antifuse switches, which remain in a high-impedance state until

programmed into a low-impedance (fused) state. These devices are generally

programmed only once. Generic array logic devices (GALs) are similar to PALs

but can be reprogrammed. PLAs, PALs, and GALs are programmed using a PAL

programmer device (a burner).

4 DIGITAL SYSTEM MODELING AND SIMULATION



1.8 COMPLEX PROGRAMMABLE LOGIC DEVICES

PALs and PLAs are useful for small digital circuits which do not require more than 32

inputs and outputs. To implement circuits that need more inputs and outputs, multiple

PLAs or PALs can be used. However, this will compromise the performance of the

design and also occupy more area on the PCB. In such situations, a complex

programmable device (CPLD) would be a better choice. ACPLD comprises multiple

circuit blocks on a single chip. Each block is similar to a PLA or PAL. There could be

as few as two such blocks in a CPLD and 100 or more such blocks in larger CPLDs.

These logic blocks are interconnected through a programmable switch matrix or

interconnection array, which allows all blocks of the CPLD to be interconnected.

Figure 1.2 shows the internal structure of aCPLD.As a result of this configuration, the

architecture of the CPLD is less flexible. However, the propagation delay of aCPLD is

...
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Figure 1.2 CPLD Internal Structure
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predictable. This advantage allowed CPLDs to emulate ASIC systems, which operate

at higher frequencies.

1.9 FIELD-PROGRAMMABLE GATE ARRAYS

Field-programmable gate arrays (FPGAs) differ from the other PLDs and generally

offer the highest logic capacity. AnFPGA consists of an array of complex logic blocks

(CLBs) surrounded by programmable I/O blocks (IOBs) and connected by a pro-

grammable interconnection network. The IOBs provide the control between the

input–output package pins and the internal signal lines, and the programmable

interconnect resources provide the correct paths to connect the inputs and outputs

of CLBs and IOBs into the appropriate networks. The logic cells combinational logic

may be implemented physically as a small lookup table memory (LUT) or a set of

multiplexers and gates. An LUT is a 1-bit-wide memory array; the memory address

lines are logic block inputs and the 1-bit-memory output is the lookup table output.

A typical FPGA may contain tens of thousands of (configurable) logic blocks and

an even greater number of flip-flops. The user’s logic function is implemented by

closing the switches in the interconnect matrix that specify the logic function for each

logic cell. Complex designs are then created by combining these basic blocks to create

the desired circuit. Typically, FPGAs do not provide a 100% interconnect between

logic blocks (Figure 1.3). There are fourmain categories of FPGAs currently available

commercially: symmetrical array, row-based, hierarchical PLD, and sea of gates.

Currently, the four technologies in use are static RAM cells, antifuse, EPROM

transistors, and EEPROM transistors. Static RAM is common inmost FPGAs. It loses

all knowledge of the program once power is removed from it. It has no memory built

I/O Block

Interconnecting
Switches

Logic Block

Figure 1.3 FPGA Internal Structure
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into the chip and upon each power-up must depend on some external source to

upload its memory. EPROM-based programmable chips cannot be reprogrammed

in-circuit and need to be clearedwith ultraviolet (UV) erasing. EEPROMchips can be

erased electrically but generally cannot be reprogrammed in-circuit.

Some FPGA device manufacturing companies are Altera, Cypress, QuickLogic,

Xilinx, Actel, and Lattice Semiconductor. In the early years, Xilinx was a leading

manufacturer and designer of FPGAs. Xilinx produced the first static random access

memory FPGA. The drawback of a SRAMFPGA is the loss of memory after a loss of

power. Actel created a more stable FPGA using antifuse technology. This design

provided a buffer to the loss of memory, kept the cost of each gate low, ran extremely

fast, and provided protection against industrial pirating. SRAMs, were easy to design

however, and the addition of antifuse technology would make the design process

longer. SRAM FPGAs are the majority choice of designers today.

A FPGAvendor usually provides software that “places and routes” the logic on the

device (similar to the way in which a PCB autorouter would place and route

components on a board). There are a wide variety of subarchitectures within the

FPGA family. The key to the performance of these devices lies in the internal logic

contained in their logic blocks and on the performance and efficiency of their switch

matrix. The behavior of an FPGA is accomplished using a hardware descriptive

language (HDL) or an electronic design automation tool to create a design schematic.

When this process is completed, it can be compiled to generate a net list. The net list

can then bemapped to the architecture of the FPGA. The binary file that is generated is

used to reconfigure the FPGA device. The most common hardware descriptive

languages in the design industry are VHDL and Verilog. The design process of

programming an FPGA consists of design entry, simulation, synthesis, place and

route, and download. Design libraries are a common part of the software used in

programming FPGAs. These libraries contain programs of widely used functions and

possess the ability to add new programs provided by the user. Design constraints are

preset by the need for the design and the flexibility of the components reproduced that

are used by the program.

1.10 FUTURE OF DIGITAL SYSTEMS

The latest microprocessors for home computing applications run at about 3GHz.

Most chips available commercially use the bulk-CMOS (complementary metal–

oxide semiconductor) process to manufacture the transistor circuits. Also, most

digital designs are synchronous in nature. Synchronous systems are also referred to as

clocked systems. The latest commercially available chips are manufactured using the

90-nm process. Over the next few years, companies expect to move to 65 nm or lower.

Some experts in the semiconductor industry see an asynchronous future for digital

designs. Asynchronous systems are digital systems that do not use a clock to time

events. Chip size has been shrinking continuously, and designs have become more

complex than ever. Emerging technologies such as hybrid ASIC and LPGA (laser

programmable gate array) make the future exciting. New materials, design

FUTURE OF DIGITAL SYSTEMS 7



methodologies, better fabrication facilities, and newer applications are certainly

making things interesting. The Semiconductor Industry Association (SIA) predicts

that the worldwide per capita production of transistors will soon be 1 billion per

person.

In particular, FPGAs are leading the way to a technological revolution. Many

emerging applications in the communication, computing, and consumer electronics

industries demand that their functionality stays flexible after the system has been

manufactured. Such flexibility is required in order to cope with changing user

requirements, improvements in system features, changing standards, and demands

to support a variety of user applications. With the vast array that FPGAs provide,

hardware design has never been easier to develop or implement. Design revisions can

be implemented effortlessly and painlessly. Currently, they are still under develop-

ment to become faster and easier to program then their CPLD counterparts are now,

but soon the technology will be a reality and the possibility for complete and total

reconfigurable systems will become real. One day, a computer could program itself to

run faster and more efficiently with no help from the user.

PROBLEMS

1.1 What is a digital system?

1.2 Describe computer-aided design software tools.

1.3 Explain Moore’s law.

1.4 What does “PCB” stand for?

1.5 Describe the advantages and disadvantages of standard chips.

1.6 Describe the advantages and disadvantages of programmable logic devices.

1.7 Describe the advantages and disadvantages of custom logic devices.

1.8 Describe the advantages and disadvantages of reconfigurable logic devices.

1.9 Describe the basic design process for digital systems.

8 DIGITAL SYSTEM MODELING AND SIMULATION



2 Number Systems

2.1 OBJECTIVES

The objectives of the chapter are to describe:

. Number systems

. Number conversion

. Data organization

. Unsigned and signed numbers

. Binary arithmetic

. Hexadecimal arithmetic

. Number codes

2.2 BASES AND NUMBER SYSTEMS

The objective of this section is to introduce the various types of number representa-

tions used in digital system designs. The general method for numerical representation

is called positional number representation. Consider the familiar decimal system.

A number in decimal representation is made of digits that range from 0 to 9. Consider

the following decimal number:

ð4261Þ10 ¼ 4� 103þ 2� 102þ 6� 101þ 1� 100

This number is normally written as 4261, as the powers of 10 are implied by the

position of that particular digit. Therefore, a decimal number N with n digits can be

expressed as follows:

ðNÞ10 ¼ dn� 1 � 10n� 1þ dn� 2 � 10n� 2þ � � � þ d1 � 101þ d0 � 100

Decimal representations are said to be base-10 or radix-10 numbers because each

digit has 10 possible values, weighted as a power of 10, depending on the position of

Introduction to Digital Systems: Modeling, Synthesis, and Simulation Using VHDL, First Edition.
Mohammed Ferdjallah.
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the digit in the number. In a similar way, in binary representation, each binary digit has

two possible values, 1 and 0, and the digits areweighted as a power of 2, depending on

their position in the number. The binary system of representation is also known as a

base-2 system. Consider the following binary number:

ð1001Þ2 ¼ 1� 23þ 0� 22þ 0� 21þ 1� 20 ¼ ð9Þ10
Similarly, a binary number N with n digits can be expressed as follows:

ðNÞ2 ¼ dn� 1 � 2n� 1þ dn� 2 � 2n� 2þ � � � þ d1 � 21þ d0 � 20

In general, any numberN can be represented in a base b by the following power series:

ðNÞr ¼ dn� 1 � rn� 1þ dn� 2 � rn� 2þ � � � þ d0 � r0þ d� 1 � r� 1þ � � �þ d�m � r�m

The coefficients (di) are called digits, and r represents the radix or base. In the binary

system the digits are referred to as bits. There are four types of numerical representa-

tions: binary, decimal, octal, and hexadecimal. Numbers in binary form can be rather

long, exhausting, and difficult to remember. Binary numbers are often represented in

more compact forms using the octal (base 8) and hexadecimal (base 16) systems. The

digits 0 through 7 are used in the octal system. The hexadecimal system uses the digits

0 through 9 and the letters A through F, where A represents the decimal 10 and F

represents the decimal 15 (Figure 2.1).

Binary representation is by and far the most commonly used system in computer

design. The only reason for using octal and hexadecimal numbers is the convenience

in programming. The following examples illustrate power series expansions of a

binary, decimal, octal and a hexadecimal number.

Decimal Binary Octal Hexadecimal

00 00 0000 00 

01 01 0001 01 

02 02 0010 02 

03 03 0011 03 

04 04 0100 04 

05 05 0101 05 

06 06 0110 06 

07 07 0111 07 

08 10 1000 08 

09 11 1001 09 

0A 12 1010 10 

0B 13 1011 11 

0C 14 1100 12 

0D 15 1101 13 

0E 16 1110 14 

0F 17 1111 15 

Figure 2.1 Decimal, Binary, Hexadecimal, and Octal Systems
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ð1834Þ10 ¼ 1� 103þ8� 102þ3� 101þ4� 100

ð1567Þ8 ¼ 1� 83þ5� 82þ6� 81þ7� 80 ¼ ð887Þ10
ð101011Þ2 ¼ 1� 25þ0� 24þ1� 23þ0� 22þ1� 21þ1� 20 ¼ ð43Þ10
ð2F3AÞ16 ¼ 2� 163þ15� 162þ3� 161þ10� 160 ¼ ð5678Þ10

2.3 NUMBER CONVERSIONS

Conversions of binary numbers to other number systems, and vice versa, are common

in input–output routines. The following sections illustrate the conversion of numbers

between number representation systems.

2.3.1 Decimal-to-Binary Conversion

Learning by examplewould probably be the best way to become familiar with number

conversions. The decimal value of a binary number is easily calculated by summing

the power terms with nonzero coefficients. Continuous division by 2 obtains the

binary form of a decimal number until the final result is equal to zero. The remainder is

saved after each division step. The first remainder is the least significant bit (LSB) and

the last remainder is the most significant bit (MSB) of the resulting binary number.

The following example illustrates decimal-to-binary conversion.

ð153Þ10 � 2 ¼ 76 remainder is 1 LSB

76� 2 ¼ 36 remainder is 0

36� 2 ¼ 18 remainder is 0

18� 2 ¼ 9 remainder is 0

9� 2 ¼ 4 remainder is 1

4� 2 ¼ 2 remainder is 0

2� 2 ¼ 1 remainder is 0

1� 2 ¼ 0 remainder is 1 MSB

Therefore,

ð153Þ10 ¼ ð10010001Þ2
A conversion is carried out by first dividing the given decimal number by 2. The

quotient that results from each division step is again divided by 2 and the remainders

are noted in each step. The remainders form the actual binary number. The quotient

from the first division step forms the least significant bit (LSB) and the quotient from

the last division step forms the most significant bit (MSB).

2.3.2 Decimal-to-Octal Conversion

The same process may be applied to convert decimal numbers to octal numbers by

continuous division by 8. It is similar to converting a decimal number to its binary
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form, but instead of dividing by 2, the quotient is divided by 8. The remainders form

the octal equivalent. The following example illustrates decimal-to-octal conversion:

ð3564Þ10 � 8 ¼ 445 remainder is 4 LSB

445� 8 ¼ 55 remainder is 5

55� 8 ¼ 6 remainder is 7

6� 8 ¼ 0 remainder is 6 MSB

Therefore,

ð3564Þ10 ¼ ð6754Þ8

2.3.3 Decimal-to-Hexadecimal Conversion

The same process may be applied to convert decimal numbers to hexadecimal

numbers by continuous division by 16. Similarly, the decimal number is divided

continuously by 16. The remainders form the hexadecimal equivalent. The following

example illustrates decimal-to-hexadecimal conversion.

ð37; 822Þ10 � 16 ¼ 2363 remainder is 14 or E LSB

2; 363� 16 ¼ 147 remainder is 11 or B

147� 16 ¼ 9 remainder is 3

9� 16 ¼ 0 remainder is 9 MSB

Therefore,
ð37; 822Þ10 ¼ ðEB 39Þ16

2.3.4 Binary-to-Octal and Hexadecimal Conversions

The conversion of a binary number to an octal number or a hexadecimal number

requires converting the binary digits in groups of 3 or 4, respectively, starting from the

least significant bit. Given a binary number, the octal number is formed by taking

groups of 3 bits starting from the LSB and replacing each group with the correspond-

ing octal digit. The following examples illustrate binary-to-octal conversion.

ð10011001Þ2 ¼ 10 011 001 ¼ ð231Þ8
ð111010000110011Þ2 ¼ 111 010 000 110 011 ¼ ð72063Þ8

Similarly, given a binary number, the hexadecimal number is formed by taking

groups of 4 bits starting from the LSB and replacing each group with the correspond-

ing hexadecimal digit. The following examples illustrate binary-to-hexadecimal

conversion:

ð110010001010Þ2 ¼ 1100 1000 1010 ¼ ðC8AÞ16
ð0010111000011011Þ2 ¼ 0010 1110 0001 1011 ¼ ð2E1BÞ16
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To convert an octal number or a hexadecimal number to a binary number, each

octal or hexadecimal digit is simply converted to its binary form. The following

examples illustrate octal-to-binary and hexadecimal-to-binary conversions:

ðF1Þ16 ¼ ð11110001Þ2 ðA8Þ16 ¼ ð10101000Þ2
ð123Þ8 ¼ ð001010011Þ2 ð247Þ8 ¼ ð010100111Þ2

Once the binary number is formed, it can be converted into any of the other

representation systems using the procedures above.

2.4 DATA ORGANIZATION

A binary number is a sequence of bits that may represent an actual binary number, a

character, or an instruction. Therefore, microcomputers must use a specific

data structure or big groupings to express the various binary representations. As

learned earlier, in each binary grouping the rightmost bit is called the least

significant bit and the leftmost bit is called the most significant bit. A group of

consecutive 4 bits is called a nibble. A nibble is used to represent a BCD or

hexadecimal digit. A group of consecutive 8 bits is called a byte, which is the

smallest addressable data in memory. A byte is also used to represent an alpha-

numeric character. A group of consecutive 16 bits, called a word, can be divided into

a high byte and a low byte. For example, in 16-bit general-purpose registers and

accumulators, the high and low bytes can be manipulated separately. In general, the

size of the microcomputer internal registers determines the size of binary grouping.

A 16-bit microcomputer has two bytes, or a 16-bit word size. However, the memory

unit is divided into an 8-bit, or byte, word length. For example, to store a 16-bit

number, the microcomputer uses two consecutive byte locations in the memory

space. High-end (32 and 64-bit) microcomputers use double-word and quad-word

data structures. These wide data structures are used mainly in highly pipelined and

parallel microcomputers.

2.5 SIGNED AND UNSIGNED NUMBERS

Unsigned binary numbers are, by definition, positive numbers and thus do not require

an arithmetic sign. Anm-bit unsigned number represents all numbers in the range 0 to

2m� 1. For example, the range of 8-bit unsigned binary numbers is from 0 to 25510 in

decimal and from 00 to FF16 in hexadecimal. Similarly, the range of 16-bit unsigned

binary numbers is from 0 to 65,53510 in decimal and from 0000 to FFFF16 in

hexadecimal.

Signed numbers, on the other hand, require an arithmetic sign. Themost significant

bit of a binary number is used to represent the sign bit. If the sign bit is equal to

zero, the signed binary number is positive; otherwise, it is negative. The remaining

bits represent the actual number. There are three ways to represent negative numbers.
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2.5.1 Sign–Magnitude Representation

In the sign–magnitude representation method, a number is represented in its binary

form. The most significant bit (MSB) represents the sign. A 1 in the MSB bit position

denotes a negative number; a 0 denotes a positive number. The remaining n� 1 bits

are preserved and represent the magnitude of the number. The following examples

illustrate the sign–magnitude representation:

ðþ 3Þ ¼ 0011 ) ð� 3Þ ¼ 1011

ðþ 7Þ ¼ 0111 ) ð� 7Þ ¼ 1111

ðþ 0Þ ¼ 0000 ) ð� 0Þ ¼ 1000

2.5.2 One’s-Complement Representation

In the one’s-complement form, the MSB represents the sign. The remaining bits are

inverted for negative numbers only. Positive numbers are represented in the sameway

as in the sign–magnitude method. The following examples illustrate the one’s-

complement representation:

ðþ 3Þ ¼ 0011 ) ð� 3Þ ¼ 1100

ðþ 7Þ ¼ 0111 ) ð� 7Þ ¼ 1000

ðþ 0Þ ¼ 0000 ) ð� 0Þ ¼ 1111

The decimal number equivalent to a binary number represented using the

one’s-complement method can be computed using the expression

ðNÞ10 ¼ S� ð2n� 1Þþ ðdn� 2 � 2n� 2þ dn� 3 � 2n� 3þ � � � þ d1 � 21þ d0 � 20Þ

where S is the sign bit and n is the number of bits.

2.5.3 Two’s-Complement Representation

In the two’s-complement method, the negative numbers are inverted and augmented

by one. The MSB is the sign bit. The positive numbers are similar to those of the

sign–magnitude method. The following examples illustrate the one’s-complement

representation:

ðþ 3Þ ¼ 0011 ) ð� 3Þ ¼ 1101

ðþ 7Þ ¼ 0111 ) ð� 7Þ ¼ 1001

ðþ 0Þ ¼ 0000 ) ð� 0Þ ¼ 0000

The decimal number equivalent to a binary number represented using the two’s-

complement method is obtained by subtracting an n-bit positive number from 2n:
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ðNÞ10 ¼ S� 2nþðdn� 2 � 2n� 2þ dn� 3 � 2n� 3þ � � � þ d1 � 21þ d0 � 20Þ

where S is the sign bit and n is the number of bits.

2.5.4 Negative Number Representation

Figure 2.2 summarizes the three methods used for 4-bit signed binary numbers. The

sign–magnitude and one’s-complement methods have a major drawback: They both

have two different representations for the binary number zero, as indicated in the

figure.

Two’s complement does not, however, have such confusing representations. The

major advantage of the two’s-complement method, perhaps, is its simple implemen-

tation at the logic-level design. Microcomputers therefore use two’s complement

to represent n-bit signed binary numbers in the range �2n�1 to þ 2n�1� 1. For

example, the range of 8-bit signed binary numbers is from �12810 to þ 12710 in

decimal and from 8016 to 7F16 in hexadecimal. The range of 16-bit signed binary

numbers is from �32,76810 to 32,76710 in decimal and from 800016 to 8FFF16 in

hexadecimal.

Signed binary numbers can be sign extended when the data structure size is

increased. For example, an 8-bit signed binary number is represented in 16 bits by

copying the sign bit in all the bits of the high byte. The examples in Figure 2.3 illustrate

the sign extension of signed binary numbers in hexadecimal form.

Similarly, unsigned binary numbers can be zero extended when the data structure

size is increased. An 8-bit unsigned binary number is represented in 16 bits by storing

zero in all bits of the high byte. The examples in Figure 2.4 illustrate zero extension of

unsigned binary numbers in hexadecimal form.

Binary

Form

Sign

Magnitude

One’s

Complement

Two’s

Complement

0 +0 +0 0000 

+1 +1 +1 0001 

+2 +2 +2 0010 

+3 +3 +3 0011 

+4 +4 +4 0100 

+5 +5 +5 0101 

+6 +6 +6 0110 

+7 +7 +7 0111 

–8 –7 –0 1000 

–7 –6 –1 1001 

–6 –5 –2 1010 

–5 –4 –3 1011 

–4 –3 –4 1100 

–3 –2 –5 1101 

–2 –1 –6 1110 

–1 –0 –7 1111 

Figure 2.2 Four-Bit Signed Binary Numbers in Sign–Magnitude, One’s Complement, and

Two’s Complement
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Finally, signed binary numbers can be sign contracted when the data structure size

is decreased only if the number can be represented in the smaller data structure size.

The examples in Figure 2.5 illustrate when signed contraction of signed binary

numbers is possible and when it is not.

2.6 BINARY ARITHMETIC

2.6.1 Addition of Unsigned Numbers

Numbers that are always considered to be positive are designated unsigned

numbers; numbers that can take up negative values are designated signed numbers.

An addition operation using unsigned numbers is carried out pretty much like a

decimal addition process. The only difference is that in binary arithmetic we use

only two digits: 0 and 1. The following examples illustrate the four basic results of

adding only 2 bits.

0þ 0 ¼ 0 with carry ¼ 0

0þ 1 ¼ 1 with carry ¼ 0

1þ 0 ¼ 1 with carry ¼ 0

1þ 1 ¼ 1 with carry ¼ 1

8-bit 16-bit

FF82 82 FFFFFF82 

0028 28 00000028 

FFF5 F5 FFFFFFF5 

005F 5F 0000005F 

32-bit

Figure 2.3 Sign Extension

16-bit 32-bit

00000082008282

00000028002828

000000F500F5F5

0000005F005F5F

8-bit

Figure 2.4 Zero Extension

16-bit 8-bit

92FF92

280028

contractedngsibeCannotFE82

contractedngsibeCannot0200

Figure 2.5 Sign Contraction
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The following examples illustrate the addition of unsigned binary numbers.

Decimal addition was included for arithmetic verification.

1110 carry

ðþ 5Þ 0101

þðþ 7Þ þ 0111

ðþ 12Þ 1100

1110 carry

ðþ 15Þ 1111

þðþ 3Þ þ 0011

ðþ 18Þ 10010

Note that the result of the second example has 5 bits instead of 4. Therefore, we must

be careful when dealingwith binary arithmetic for large numbers.When implemented

in circuits that have fixed number lengths, the last bit will be considered the overflow.

When adding unsigned binary numbers, the resulting summay be larger than the size

of the internal registers of the digital system.

2.6.2 Subtraction of Unsigned Numbers

The subtraction operation is performed as an addition operation using the two’s-

complement method. When subtracting unsigned binary numbers, overflow never

occurs; however, special attention is given to the carry from theMSB to find the result

of the subtraction. If the carry from theMSB is set, the result is the correct answer and

the carry is ignored. On the other hand, if the carry from theMSB is reset, the result is

the two’s complement of the answer.

2.7 ADDITION OF SIGNED NUMBERS

2.7.1 Addition Using the Sign–Magnitude Method

The addition of signed numbers using the sign–magnitude method is simple if the

operands in the addition are of the same sign,wherein the result takes on the sign of the

operands. But in case the operands have different signs, the process becomes

complicated, and when used in computers it requires logic circuits to compare and

subtract the numbers. Since it is possible to carry out the processwithout this circuitry,

this method is not used in computer design.

2.7.2 Addition Using the One’s-Complement Method

Thismethod uses the simplicity of one’s complement in representing the negative of a

number. The process of addition using the one’s-complement method may be simple

or complicated, depending on the numbers being used. In certain cases, an additional

correction may need to be carried out to arrive at the correct answer. The following

examples illustrate one’s-complement additions for four cases:

ðþ 4Þ 0100

þðþ 2Þ þ 0010

ðþ 6Þ 0110

ð� 4Þ 1011

þðþ 2Þ þ 0010

ð� 2Þ 1101

ADDITION OF SIGNED NUMBERS 17



ðþ 4Þ 0100

þð� 2Þ þ 1101

ðþ 2Þ 1½ �0001
!þ 1 carry

0010

ð� 4Þ 1011

þð� 2Þ þ 1101

ð� 6Þ 1½ �1000
!þ 1 carry

1001

These examples show how a correction needs to be used in certain cases to form the

result expected. The carryout from theMSB is added to the result to obtain the results

expected.

2.7.3 Addition Using the Two’s-Complement Method

Using the same examples as above, the two’s-complement method is implemented.

Addition by this method is always correct when the carryout from the sign bit is

ignored. This is illustrated by examples showing four cases of addition for the same

numbers from previous examples of one’s-complement method addition.

ðþ 4Þ 0100

þðþ 2Þ þ 0010

ðþ 6Þ 0110

ð� 4Þ 1100

þðþ 2Þ þ 0010

ð� 2Þ 1110

ðþ 4Þ 0100

þð� 2Þ þ 1110

ðþ 2Þ 1½ �0010
Ignore c4

ð� 4Þ 1100

þð� 2Þ þ 1110

ð� 6Þ 1½ �1010
Ignore c4

These examples show that correction is not necessary to find the result expected.

2.7.4 Subtraction Using the Two’s-Complement Method

The process of subtraction is carried out similarly to the addition process. The two’s

complement of the subtrahend is computed and added to the minuend. The results

desired are obtained after ignoring the carryout from the sign bit.

ðþ 4Þ 0100

�ð� 2Þ þ 0010

ðþ 6Þ 0110

ð� 4Þ 1100

�ð� 2Þ þ 0010

ð� 2Þ 1110

ðþ 4Þ 0100

�ðþ 2Þ þ 1110

ðþ 2Þ 1½ �0010
Ignore c4

ð� 4Þ 1100

�ðþ 2Þ þ 1110

ð� 6Þ 1½ �1010
Ignore c4
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2.7.5 Arithmetic Overflow

When the process of addition or subtraction is carried out for n-bit numbers, the result

must be in the range�2n�1 to 2n�1. If the result does not fit in this range, an overflow

is said to occur. The examples that follow illustrate the various cases and the overflows

in each case. Overflow can never occur when the numbers are of different signs, but if

they are of the same sign, overflow can occur. There are two carryout that are essential

in determiningwhether overflowoccurs. For a 4-bit binary number, the first carryout is

C3, which is the carryout from theMSBposition, and the other isC4, the carryout from

the sign bit position. It is a fact that overflows occur when the values of these carryouts

are unequal. The result is correct if they have the same value. The following examples

illustrate arithmetic overflow.

ðþ 4Þ 0100

þðþ 2Þ þ 0010

ðþ 6Þ 0110

c3 ¼ 0 c4 ¼ 0

ð� 4Þ 1100

þð� 2Þ þ 1110

ð� 2Þ 11010

c3 ¼ 1 c4 ¼ 1

ðþ 7Þ 0111

þðþ 2Þ þ 0010

ðþ 9Þ 1001

c3 ¼ 1 c4 ¼ 0

ð� 7Þ 1001

þð� 2Þ þ 1110

ð� 9Þ 10111

c3 ¼ 0 c4 ¼ 1

For n-bit binary numbers, the overflow can be expressed using the following

expression:

overflow ¼ cn � cn� 1

2.8 BINARY-CODED DECIMAL REPRESENTATION

Humans beings use decimal numbers in their daily arithmetic operations. Conversion

frombinary to decimal is not trivial for the common consumer of digital systems, such

as a calculator. Digital systems must therefore allow the frequent user inputs and

output to be performed in decimal form. A special number system, binary-coded

decimal (BCD), has been designed to represent decimal numbers in a particular binary

grouping (Figure 2.6). Digits A through F of the hexadecimal system are considered

invalid binary forms in the BCD system. The BCD system has various codes, themost

popular of which is the 8421 code. Other codes, such as the 5421 and the excess-3

codes, are also used in special cases.

Replacing every digit of a decimal number by its corresponding 4-bit binary code

gives the BCD representation of that number. This means that only binary numbers

from 0000 to 1001 occur in a system that operates using BCD representation. The

other numbers are considered to be “Don’t-care” conditions. Although this type of

representation offers simplicity in display, its implementation for arithmetic
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operations becomes complex and alsowastes six other possible code combinations: the

codes from 1010 to 1111. The BCD systemmakes it possible for frequency inputs and

output to use the decimal system; however, the digital system still performs arithmetic

operations on BCD numbers in binary form. Arithmetic operations in the BCD system

may lead to invalid BCD numbers. If a resulting binary nibble is an invalid BCD digit,

the binary number 0110, 6 in decimal, is added to the binary nibble and the carryout bit

is propagated to the next binary nibble. On the other hand, if there is carryout from a

valid BCD nibble to the next, the nibble is augmented by the binary number 0110, or

decimal 6. This process is applied to all binary nibbles from right to left.

2.9 BCD ADDITION

In the case of BCD addition, the BCD number is first converted to its binary form

prior to performing the addition operation. The resulting binary nibbles are

converted to their corresponding BCD digits, and the arithmetic operation is then

performed. The addition of two BCD numbers is complicated because of the fact

that the resulting sum can be greater than 9, which means that corrections need to be

applied. Let us consider two BCD numbers, represented by U¼U3U2U1U0 and

V¼V3V2V1V0. If U þ V is less than or equal to 9, the process of addition is the

same as that of the binary addition of unsigned numbers. But if the sum is greater

than 9, we need to add the BCD equivalent of 6 (i.e., 0110) to the first result to get

the answer desired. The following examples illustrate BCD addition and the

corrections required to obtain the results expected.

ðþ 4Þ 0100

þðþ 7Þ þ 0111

ðþ 11Þ 1011 invalid

þ 0110 ðþ 6Þ10
10001

ðþ 9Þ 1001

þðþ 7Þ þ 0111

ðþ 16Þ 10000 with carry

þ 0110 ðþ 6Þ10
10110

Figure 2.7 shows additional examples of the addition of BCD numbers and the

adjustment required to obtain the correct BCD numbers.

Decimal

Form

BCD

8421

BCD

5421

BCD

Excess-3

0011 0000 0000 0 

0100 0001 0001 1 

0101 0010 0010 2 

0110 0011 0011 3 

0111 0100 0100 4 

1000 1000 0101 5 

1001 1001 0110 6 

1010 1010 0111 7 

1011 1011 1000 8 

1100 1100 1001 9 

Figure 2.6 BCD 8421, BCD 5421, and BCD Excess-3 Codes

20 NUMBER SYSTEMS



PROBLEMS

2.1 What is the range of unsigned integers that can be represented by the following

number of bits?

(a) 8

(b) 10

(c) 12

(d) 16

(e) 32

(f) 64

(g) 128

2.2 How many bits are required to represent the following unsigned integers?

(a) 255

(b) 515

(c) 1242

(d) 1978

(e) 2004

(f) 13,996

(g) 122,365

(h) 8,261,987

(i) 29,141,991

2.3 Convert the following unsigned binary numbers into decimal, octal, and

hexadecimal numbers.

(a) 0.1010

(b) 0.0110

(c) 101100

(d) 111001

(e) 11000.11

(f) 11101.01

BCD Addition 
BCD Result in 

Hexadecimal
Adjustment BCD Result Adjusted

(17) BCD+(09) BCD (20) 16 (06) 10 (26) BCD

(27) BCD+(13) BCD (4A) 16 (06) 10 (50) BCD

(76) BCD+(30) BCD (A6) 16 (60) 10 (106) BCD

(78) BCD+(44) BCD (BC) 16 (66) 10 (122) BCD

Figure 2.7 Addition of BCD Numbers
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(g) 01110.101

(h) 10101.111

(i) 10110.001

(j) 11100001.1001

(k) 10101001.0101

2.4 Convert the following decimal numbers into binary, octal, and hexadecimal

numbers.

(a) 127

(b) 159

(c) 789

(d) 1987

(e) 509.43

(f) 2961.72

(g) 4325.53

(h) 351.827

(i) 612.075

2.5 Convert the following hexadecimal numbers into binary, octal, and decimal

numbers.

(a) 32E.15

(b) 1010.AA

(c) C0DE.02

(d) 11F8.99

(e) CAFE.45

(f) F0AE.4A

(g) EEFF.99

(h) 10EF.75

(i) BABE.01

(j) 2004.FEB

2.6 Compute the following unsigned binary arithmetic operations.

(a) 1101011 þ 100111

(b) 1011001 þ 110110

(c) 1000010� 101010

(d) 1100001� 110010

(e) 011101111 þ 100011010

(f) 100100111 þ 010110011

(g) 100111000� 011010011

(h) 101100001� 011110000
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2.7 Compute the following signed binary numbers using one’s-complement

arithmetic operations.

(a) 011101111 þ 101010001

(b) 101110000 þ 111100101

(c) 011100111 þ 111010011

(d) 110011000� 110011101

(e) 011110111� 110010011

(f) 101100001� 011001100

2.8 Compute the following signed binary numbers using two’s-complement ar-

ithmetic operations.

(a) 110111110 þ 011100011

(b) 010110010 þ 110011101

(c) 100100110 þ 010110101

(d) 100100110� 010110011

(e) 100111000� 110101101

(f) 111000001� 001110010

2.9 Compute the following signed hexadecimal arithmetic operations.

(a) 918 þ 112

(b) 53F þ 3A8

(c) E48�A19

(d) 9F5� 6E4

(e) 1EAA þ F98C

(f) 9A7B þ C5A0

(g) 5421 þ EF9D

(h) 6842� 7967

(i) 72E4� 4A8C

(j) CE1E�BB09

2.10 Compute the following numbers using BCD arithmetic operations.

(a) 58 þ 28

(b) 95 þ 82

(c) 6389 þ 7034

(d) 2380 þ 1546

(e) 7020� 1498

(f) 2004� 3156

(g) 3084� 8976

(h) 1144� 1144
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3 Boolean Algebra and Logic

3.1 OBJECTIVES

The objectives of the chapter are to:

. Provide an introduction to Boolean theory

. Describe logic variables and logic functions

. Define Boolean axioms and theorems

. Describe logic gates and their truth tables

. Illustrate algebraic simplifications

. Describe sum of products and product of sums

. Describe NAND and NOR equivalent circuit design

3.2 BOOLEAN THEORY

Boolean theory provides the basic fundamentals for logic operators and operations to

perform Boolean algebra. Boolean algebra is a branch of mathematics that includes

methods for manipulating logical variables and logical expressions. The Greek

philosopher Aristotle founded a system of logic based on only two types of

propositions: true and false. His bivalent (two-mode) definition of truth led to the

four foundational laws of logic: the Law of Identity (A is A); the Law of Noncon-

tradiction (A is not non-A); the Law of the ExcludedMiddle (either A or non-A); and

the Law of Rational Inference. These “laws” function within the scope of logic where

a proposition is limited to one of two possible values, butmay not apply in caseswhere

propositions can hold values other than “true” or “false.”

The English mathematician George Boole (1815–1864) sought to give symbolic

form toAristotle’s systemof logic—hence thenameBooleanalgebra.Startingwithhis

investigation of the laws of thought, Boole constructed a “logical algebra.” This

investigation into the nature of logic and ultimately of mathematics led subsequent

mathematicians and logicians into several new fields of mathematics. Two of these,

known as the “algebra of propositions” and the “algebra of classes,” were based

principally on Boole’s work. The algebra now used in the design of logical circuitry is

known as Boolean algebra.

Introduction to Digital Systems: Modeling, Synthesis, and Simulation Using VHDL, First Edition.
Mohammed Ferdjallah.
� 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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In the mid-twentieth century, Claude Shannon, an electrical engineer and math-

ematician, appliedBoole’s ideas tomanipulating logical expressions to the analysis of

what are now called digital circuits, the foundation of digital electronic devices. The

fact that the two distinct logical values, true and false, are also represented by 1 and 0,

should hint that Boolean algebra has an application in binary systems, a fundamental

feature of modern digital electronic devices.

3.3 LOGIC VARIABLES AND LOGIC FUNCTIONS

Boolean algebra is a scheme for the algebraic description of processes involved in

logical thought and reasoning. Like algebra, Boolean algebra is based on a set of rules

that are derived from a small number of basic assumptions. Logic values involve

elements that take on one of two values, 0 and 1. Therefore, a logic variable can only

be equal to 0 or 1. A logic function is an expression, that describes the logic operations

between its logic variables. Similarly, a logic function can only be equal to 0 or 1.

3.4 BOOLEAN AXIOMS AND THEOREMS

The basic logic operations include logic sum, logic product, and logic complement. If

a logic variable is true, its logic complement is false. The following set of logic

expressions illustrates the axioms of Boolean algebra:

. 0 � 0 ¼ 0

. 0þ 0 ¼ 0

. 1 � 1 ¼ 1

. 1þ 1 ¼ 1

. 0 � 1 ¼ 1 � 0 ¼ 0

. 0þ 1 ¼ 1þ 0 ¼ 1

. if x ¼ 0; then �x ¼ 1

. if x ¼ 1; then �x ¼ 0

The character (�) represents the AND logic product, and the character (þ ) stands

for the OR logic sum. A bar over a character represents the NOT logic. From these

logic axioms, basic Boolean identities were formulated. The following expressions

illustrate these identities.

Identity Property

. xþ 0 ¼ x

. x � 1 ¼ x

. xþ 1 ¼ 1

. x � 0 ¼ 0
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Idempotent Property

. xþ x ¼ x

. x � x ¼ x

Complement Property

. xþ �x ¼ 1

. x � �x ¼ 0

Involution Property

. ��x ¼ x

Commutative Property

. xþ y ¼ yþ x

. x � y ¼ y � x

Associative Property

. xþðyþ zÞ ¼ ðxþ yÞþ z

. x � ðy � zÞ ¼ ðx � yÞ � z

Distributive Property

. x � ðyþ zÞ ¼ ðx � yÞþ ðx � zÞ

. xþðy � zÞ ¼ ðxþ yÞ � ðxþ zÞ

Absorption Property

. xþðx � yÞ ¼ x

. x � ðxþ yÞ ¼ x

Simplification Property

. xþð�x � yÞ ¼ xþ y

. x � ð�xþ yÞ ¼ x � y

Consensus Theorem

. x � yþ �x � zþ y � z ¼ x � yþ �x � z

. ðxþ yÞ � ð�xþ zÞ � ðyþ zÞ ¼ ðxþ yÞ � ð�xþ zÞ
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DeMorgan’s Theorem

. xþ y ¼ �x � �y

. x � y ¼ �xþ�y

In general, DeMorgan’s theorem states that any logical expression remains

unchanged if:

. All variables are changed to their complements

. All AND operations are changed to OR

. All OR operations are changed to AND

. The complement of the entire expression is taken

Example: ðAþBþCÞ � D ¼ ðAþBþCÞ þ �D ¼ �A � �B � �Cþ �D

3.5 BASIC LOGIC GATES AND TRUTH TABLES

Logic expressions describe an output as a function of the input and are called logic

functions. In the digital world, logic gates are used to implement logic functions.

There are seven types of logic gates: NOT, AND, OR, NAND, NOR, XOR, and

NXOR. These circuit diagrams are symbolic representations of their corresponding

logic functions (Figures 3.1 and 3.2).

The logic gates of AND,OR, XOR,NAND,NOR, andNXORmay havemore than

two inputs. The circuits in Figure 3.3 illustrate multi-input AND and OR logic gates.

3.6 LOGIC REPRESENTATIONS AND CIRCUIT DESIGN

Logic gates are used to represent and implement logic expression into digital circuit

diagrams. Consider the following logic function:

f ðx; y; zÞ ¼ x � y � zþ �x ��z

The digital circuit (Figure 3.4) implements the function f. The digital circuit

consists of elementary logic functions, which are implicit in the logic function. The

conversion from logic expressions to circuit diagrams obeys the operator precedence

rules shown in Figure 3.5. These precedence rules dictate the order in which the

implicit elementary logic functions are implemented.

Notice that logic expressions within parentheses are converted first. The imple-

mentation of the elementary logic functions within the parentheses obeys the

precedence rules as well. In all cases, the NOT function is implemented first, then

the AND function, then the OR function. Similarly, a digital circuit can be converted

to a logic expression. The logic function of the digital circuit is found by propagating
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the input variables through the gates to the output of the circuit. The logic output

expression of a gate is determined by the logic expressions at its inputs. Consider the

digital circuit shown in Figure 3.6. The logic expression, which represents the logic

circuit diagram in Figure 3.6, is expressed as

f ðx; y; zÞ ¼ ðx ��yÞ � ðyþ zÞ

The XOR function is not listed in Figure 3.5, but since the XOR function is a

composite logic function consisting of twoAND functions and oneOR function, it has

the same level of precedence as the AND function.

3.7 TRUTH TABLE

A truth table is generally the first design step. The designer begins with a word

statement that describes the function of a digital system. Next, he or she identifies the

inputs and outputs of the system and draws a truth table. The inputs and outputs may

be single bits or a collection of bits. The truth table consists of input and output

Truth Table Function Symbol

x x
1 0 
0 1 

NOT 

x y yx ∗
0 0 0 
0 1 0 
0 0 1 
1 1 1 

AND 

x y yx +
0 0 0 
1 1 0 
1 0 1 
1 1 1 

OR 

x y y x ⊕
0 0 0 
1 1 0 
1 0 1 
0 1 1 

XOR 

x

y
yx +

x
y yx∗

x x

x
y yx ⊕

Figure 3.1 NOT, AND, OR, and XOR Gates
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Truth Table Function Symbol

x y yx ∗
1 0 0 
1 1 0 
1 0 1 
0 1 1 

NAND 

x y yx +
1 0 0 
0 1 0 
0 0 1 
0 1 1 

NOR 

x y yx ⊕
1 0 0 
0 1 0 
0 0 1 
1 1 1 

NXOR 

x

y
yx ∗

x
y yx +

x
y yx ⊕

Figure 3.2 NAND, NOR, and NXOR Gates

Figure 3.3 Multi-input AND and OR Logic Gates

x y z

f(x,y,z)

Figure 3.4 Conversion from Logic Function to Circuit Diagram
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columns, which characterize the function of the digital circuit. The input columns

consist of all possible combinations of inputs. The maximum number of all possible

combinations of inputs is 2n, where n is the number of inputs.

Consider the truth table in Figure 3.7. The digital circuit described by this truth

table has three inputs (single bit) and one output (single bit). Since there are three input

variables, the maximum combinations of inputs possible is eight. Although one could

list the possible combinations of inputs randomly, it is generally strongly recom-

mended to use the pattern shown in Figure 3.7. Notice that the rightmost input column

changes every row, the next input column every two rows, and the next input column

every four rows. A fourth input columnwould change every eight rows, and so on. The

truth table in Figure 3.7 actually represents Figure 3.4. The process of designing a

digital circuit from a truth table is described in Section 3.9.

Order Precedence Algebra Algebra Boolean 

Parentheses Parentheses First 

NOT Exponent Second 

AND Multiplication/division Third 

OR Addition Last 

Figure 3.5 Precedence Rules for Elementary Logic Function Conversion

x y z

f(x,y,z)

Figure 3.6 Conversion from Circuit Diagram to Logic Expression

Row x y z f

1 0 0 0 0 

0 1 0 0 1 

0 0 1 0 2 

0 1 1 0 3 

0 0 0 1 4 

1 1 0 1 5 

0 0 1 1 6 

1 1 1 1 7 

Figure 3.7 Truth Table
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3.8 TIMING DIAGRAM

A timing diagram is the graphical representation of input and output signals as

functions of time. Since the inputs and outputs can only take the values 0 or 1, their

graphical representations are series of square pulses with a variety of time lengths.

The inputs and outputs are drawn on the same diagram to show the input–output

behavior of the digital system. A timing diagram is usually generated by an

oscilloscope or logic analyzer. Computer-aided design tools have software simulator

that generate timing diagrams. A timing diagram shows all possible input and output

patterns, not necessarily in an order similar to that of a truth table.

Consider the timing diagram in Figure 3.8. Notice that the time intervals are

equally separated. Notice also that the output transitions do not occur at exactly

the same time that the input transitions occur, but a very short time later. The delay in

the output transitions, referred to as the propagation delay, is the time difference

between the time of input application and the timewhen the outputs becomevalid. The

propagation delay is a real physical effect of electronic components that make a logic

gate or a circuit. Timing diagrams should show propagation delays. However, during

the initial design of a logic circuit, the actual circuit components are not well defined,

and therefore any propagation delay can only be estimated. Propagation delays are

explored further in Chapter 5.

3.9 LOGIC DESIGN CONCEPTS

If a function is specified in the form of a truth table, an expression that realizes the

function can be obtained by considering the rows in the table for which the function is

equal to 1 or 0, called the sum-of-products and the product-of-sums, respectively. For

a function of n variables, a product term in which each of the n variables appears once

is called aminterm. For each rowof the truth table, aminterm is formed by the product

of the variables (if equal to 1) or their complements (if equal to 0). Similarly, for each

rowof the truth table, amaxterm is formed by the sumof thevariables (if equal to 0) or

their complements (if equal to 1). The construction of minterms and maxterms for a

logic function is independent of its output. This concept of minterm and maxterm

evaluation is illustrated in Figure 3.9, where the rows have been numbered 0 through 7

for reference. All possible combinations of the inputs for a three-variableminterm and

maxterms are shown in the figure. The first row, row 0, shows x ¼ y ¼ z ¼ 0 , which

x(input)

y(input)

z(input)

f(output)

Figure 3.8 Timing Diagram
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has a corresponding minterm represented by �x � �y � �z and a corresponding maxterm

represented by xþ yþ z . To further simplify reference to individual minterms and

maxterms, they are identified by an index that corresponds to the row numbers. For

example, theminterm for row0will be referred to asm0, and themaxterm for the same

row will be referred to as M0.

3.10 SUM-OF-PRODUCTS DESIGN

A function can be represented by an expression that is a sum of minterms only, where

each minterm is ANDed with every other minterm to represent the function when it is

equal to 1. The resulting implementation is functionally correct and unique but not

necessarily the lowest-cost realization of the function. The sum of products (SOP) is a

logic expression consisting of product (AND) terms that are summed (ORed) with

each other. If each product term is aminterm, the expression is called a canonical sum

of products for the function. For example, consider the truth table in Figure 3.10 of a

logic function f of three variables. Using the minterms for which the function is equal

to 1, the function can be written explicitly as follows:

f ðx; y; zÞ ¼ �x ��y � zþ x ��y ��zþ x ��y � zþ x � y ��z

Row x y z Minterms Maxterms

0 0 0 0 zyxm
0

⋅⋅= z yxM
0

++=
1 0 0 1 zyxm

1
⋅⋅= zyxM

1
++=

0 1 0 2 zyxm
2

⋅⋅= zyxM
2

++=
1 1 0 3 zyxm

3
⋅⋅= zyxM

3
++=

0 0 1 4 zyxm
4

⋅⋅= zyxM
4

++=
1 0 1 5 zyxm

5
⋅⋅= zyxM

5
++=

0 1 1 6 zyxm
6

⋅⋅= zyxM
6

++=
1 1 1 7 zyxm

7
⋅⋅= zyxM

7
++=

Figure 3.9 Minterms and Maxterms for Three Variables

Row x y z f

0 0 0 0 0 

1 1 0 0 1 

0 0 1 0 2 

0 1 1 0 3 

1 0 0 1 4 

1 1 0 1 5 

1 0 1 1 6 

0 1 1 1 7 

Figure 3.10 Truth Table for the Logic Function f
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Through the use of Boolean algebra identities, this expression can be simplified

algebraically as follows:

f ðx; y; zÞ ¼ �x ��y � zþ x ��y ��zþ x ��y � zþ x � y ��z
¼ ð�xþ xÞ ��y � zþ x � ð�yþ yÞ ��z
¼ 1 ��y � zþ x � 1 ��z
¼ �y � zþ x ��z

This is the minimum-cost sum-of-products expression for f. The cost of a logic

circuit is the total number of gates plus the total number of inputs to all gates in the

circuit. Minterms, given their row-number subscripts, can be used to specify a given

function in a more concise form. The logic function can also be expressed as

f ðx; y; zÞ ¼
X

ðm1;m4;m5;m6Þ
or as

f ðx; y; zÞ ¼
X

mð1; 4; 5; 6Þ

The symbol
P

represents the logical sum (OR) operation.

3.11 PRODUCT-OF-SUMS DESIGN

Contrary tominterms, which represent the product of variables that set the function to

1, the function can also be represented by the sum of variables, which set the function

to 0. Variables used to represent the function using the complement to minterms are

called maxterms. All possible maxterms for three-variable functions are listed in

Figure 3.9. Consider the function specified by a truth table in Figure 3.10; its

complement function can be represented by a sum ofminterms for which the function

is equal to 0. For example, the complement of function f can be represented as

�f ðx; y; zÞ ¼ �x ��y ��zþ �x � y � zþ �x � y ��zþ x � y � z
¼ m0 þm2 þm3 þm7

Using DeMorgan’s theorem, the function f can be represented as

f ðx; y; zÞ ¼ m0 þm2 þm3 þm7

¼ �m0 � �m2 � �m3 � �m7

¼ M0 �M2 �M3 �M7

¼ ðxþ yþ zÞ � ðxþ�yþ zÞ � ðxþ�yþ�zÞ � ð�xþ�yþ�zÞ
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Using Boolean algebra identities, the function can be reduced:

f ðx; y; zÞ ¼ ðxþ yþ zÞ � ðxþ�yþ zÞ � ðxþ�yþ�zÞ � ð�xþ�yþ�zÞ
¼ ½ðxþ zÞþ y� � ½ðxþ zÞþ�y� � ½xþð�yþ�zÞ� � ½�xþð�yþ�zÞ�
¼ ðxþ zÞ � ð�yþ�zÞ

Using the shorthand method to express the function for the product of sums yields

f ðx; y; zÞ ¼
Y

ðM0;M2;M3;M7Þ
¼

Y
Mð0; 2; 3; 7Þ

The symbol
Q

represents the logical product (AND) operation. More algebraic

manipulations and simplifications are explored in the Karnaugh mapping sections in

Chapter 6.

3.12 DESIGN EXAMPLES

3.12.1 Multiplexer

A multiplexer is a combinatorial circuit that has a number (usually, a power of 2) of

data inputs (2n) and n select inputs used as a binary number to select one of the data

inputs. Themultiplexer has a single output, which has the same value as the data input

selected. Now let us consider a 2 : 1multiplexer. As the name indicates, it has two data

inputs, x1 and x2, a select input, s, and a single output, y. The output of the circuit will

be same as the value of input x1 if s¼ 0; otherwise the output will be equal to x2. We

can construct a truth table based on these requirements. The truth table of a 2 : 1

multiplexer is shown in Figure 3.11.

From the truth table we can derive the logical expression for the output y:

yðs; x2; x1Þ ¼ �s � �x2 � x1 þ�s � x2 � x1 þ s � x2 � �x1 þ s � x2 � x1

After simplification, the expression is reduced to

yðs; x2; x1Þ ¼ ½�s � x1 � ð�x2 þ x2Þ� þ ½s � x2 � ð�x1 � x1Þ�
¼ �s � x1 þ s � x2

s x
2

x
1

y

0 0 0 0 

1 1 0 0 

0 0 1 0 

1 1 1 0 

0 0 0 1 

0 1 0 1 

1 0 1 1 

1 1 1 1 

Figure 3.11 Truth Table of a 2 : 1 Multiplexer
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which can be realized using one OR gate and twoAND gates. The logic diagram for a

2 : 1 multiplexer is shown in Figure 3.12.

3.12.2 Half-Adder

The half-adder is an example of a simple functional digital circuit built from two logic

gates. A half-adder adds two 1-bit binary numbers, x and y. The output is the sum of

the two bits s and the carry cout. The truth table for a 1-bit half-adder is shown in

Figure 3.13. The logical expressions for the outputs sum s and carry cout are as follows:

sðx; yÞ ¼ �x � yþ x ��y ¼ x� y

coutðx; yÞ ¼ x � y

These logical expressions can be realized using one XOR gate and one AND gate.

The circuit diagram of a 1-bit half-adder is shown in Figure 3.14. The half-adder does

not take into account the carry-in from another half-adder. In Chapter 7 we explore

full-adder circuits, which can be used to implement the addition of numbers with

larger bit sizes.

s

x1

x2

y

Figure 3.12 Logic Diagram of a 2 : 1 Multiplexer

x y c
out

s

0 0 0 0 

1 0 1 0 

1 0 0 1 

0 1 1 1 

Figure 3.13 Truth Table of a 1-Bit Half-Adder

x

y
s

cout

Figure 3.14 Logic Diagram of a 1-Bit Half-Adder
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3.13 NAND AND NOR EQUIVALENT CIRCUIT DESIGN

Through the use of Boolean algebra, it is possible to convert an AND to an OR by

inverting the inputs or outputs (DeMorgan’s theorem). The same condition holds true

for the logical gates NAND and NOR. Figure 3.15 shows equivalencies for AND and

OR. Using DeMorgan’s theorem, one can generate equivalent logic gates for NAND

and NOR gates, as shown in Figure 3.16. The circles at the inputs of the AND and OR

gates in Figures 3.15 and 3.16 represent inverters. These inverters are referred to as

invert bubbles. Because of the gate equivalency, any logic circuit implemented with

NOT,AND, andORgates could be converted to a logic circuit containing onlyNAND

gates or only NOR gates. This conversion is practical when only one type of gate

(NAND or NOR) is available to the designer. In addition, fewer integrated circuits are

needed when implementing a logic circuit with NAND or NOR gates.

Often, the final logic circuit is implemented with only NAND gates or only NOR

gates. In practice, one usually draws the logic circuit using NOT, AND, and OR gates,

then implements a graphical conversion of the gates. During the graphical conversion,

invert bubbles are inserted to modify AND and OR gates to NAND or NOR gates, as

illustrated in Figure 3.15. Each bubble inserted must be compensated for on the same

connecting line. Two consecutive invert bubbles cancel each other out. Single bubbles

not canceled must be replaced by inverters. An inverter is replaced by a NAND or a

NOR gate by connecting both inputs. Consider the logic circuit in Figure 3.17. Its

equivalent NAND-only circuit is shown in Figure 3.18 and its equivalent NOR-only

circuit is shown in Figure 3.19.

Figure 3.15 AND and OR Equivalent Logic Gates

Figure 3.16 NAND and NOR Equivalent Logic Gates
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3.14 STANDARD LOGIC INTEGRATED CIRCUITS

An approach used widely until the mid-1980s was to connect multiple chips, each

containing only a few logic gates. Standard chips are integrated circuits that aremass-

produced to perform commonly needed electronic functions. They have proven to be

veryuseful incircuitdesignover theyears.Engineersandtechnicianscanconnect these

components to parts of a larger circuit to accomplish a specific function. Some of the

more common uses for standard chips are logic gates: AND, OR, NOT, NAND, NOR,

XOR, and XNOR, a wide variety of which are available with different types of logic.

Manyof these havebeencreated as chips in the7400or4000 series (these part numbers

areprintedon the topof thechip casing).Theexternal connectionsof thechip arecalled

pins or leads. Two pins are used to connect VCC and Gnd, which power the chip. The

other pins are used to connect to the inputs and outputs of each individual gate.

s

x1

x2

y

Figure 3.17 Logic Circuit Sample Using NOT, AND, and OR Gates

s

x1

x2

y

Figure 3.18 Equivalent NAND Circuit of the Logic Circuit in Figure 3.17

s

x1

x2

y

Figure 3.19 Equivalent NOR Circuit of the Logic Circuit in Figure 3.17
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Threemain types of technology are used to build 7400 series chips. Chips that bear

codes beginning with 74LS represent some of the older designs. They are made with

TTL (transistor–transistor logic) and have a maximum frequency of about 35MHz.

Their input voltage is always around 5V, and one of their outputs can drive up to ten

74LS inputs or fifty 74HCT inputs. This driving principle is called fan-out. 74HCT

chips are compatible with TTL but are created using the technology known as CMOS

(complementary metal–oxide semiconductor). These chips have an input voltage of

around 5V. Their maximum frequency is 25MHz, and one output can drive up to fifty

74HCT, HC, or other CMOS inputs, but only ten 74LS inputs. The 74HC series chips

use high-speed CMOS technology and have input voltages between 2 and 6Vand a

maximum frequency of 25MHz. The 4000 series chips are made using CMOS

technology, but their maximum frequency is only about 1MHz. Their input voltage

can range from 3 to 15V, and one output can drive up to fifty CMOS, 74HCT, or 74HC

inputs, but only one 74LS input. The power consumed by the chip itself, whether in the

4000 or 7400 series, is only a fewmicrowatts. Figure 3.20 lists some common standard

chips.

The actual function of each type is described in a datasheet, comprising instruc-

tions that explain how an IC functions. Power requirements, the truth table, and IC

characteristics are just a few examples of information that may be found on a

datasheet. Generally, the first page of a datasheet contains the part number, the gate

type of the IC, the schematic, and the truth table for the IC. Some important operating

conditions include:

. VCC: supply voltage required to power the IC

. VIHMIN: minimum input voltage required for the IC recognize a “high input

value,” or 1

. VILMAX: maximum input voltage required for the IC to recognize a “low input

value, or 0

. tPLH (propagation delay time): Time required for the IC to switch from a low-

level output to a high-level output

. tPHL (propagation delay time): Time required for the IC to switch from a high-

level output to a low-level output

7400 Series 4000 Series 

7400 - Quad 2-input NAND Gate

7402 - Quad 2-input NOR Gate

7404 - Hex Inverter 

7408 - Quad 2-input AND Gate

7414 - Hex Schmitt-Trigger Inverter  

7420 - Dual 4-input NAND Gate

7421 - Dual 4-input AND Gate

7432 - Quad 2-input OR gate 

7486 - Quad 2-input XOR Gate

4001 - quad 2-input NOR gate 

4012 - dual 4-input NAND gate 

4049 - hex NOT gate 

4070 - quad 2-input XOR gate 

4071 - quad 2-input OR gate 

4072 - dual 4-input OR gate 

4077 - quad 2-input XNOR gate 

4081 - quad 2-input AND gate 

4082 - dual 4-input AND gate

Figure 3.20 Partial List of Common Standard Logic Chips
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PROBLEMS

3.1 Verify the following Boolean algebraic equations.

(a) ( xþ xy ¼ x

(b) xþ �xy ¼ xþ y

(c) xðxþ yÞ ¼ x

(d) xð�xþ yÞ ¼ xy

(e) ðxþ yÞðxþ�yÞ ¼ x

(f) xyþ x�y ¼ x

(g) ðxþ yÞðxþ zÞ ¼ xþ yz

(h) xzþ yzþ �xy ¼ x�yzþ xzþ �xy�z

(i) �x ��yþ�y ��zþ x�yz ¼ �y

3.2 Verify the following Boolean algebraic equation using truth tables.

(a) xðyþ zÞ ¼ xyþ xz

(b) xyz ¼ �xþ�yþ�z

(c) xþ yþ z ¼ �x ��y ��z
(d) x� y ¼ x�yþ �xy

(e) x� y ¼ xyþ �x ��y
3.3 Using algebraic manipulation, simplify the logic functions described in

Figure P3.3(a) to (d) and draw their corresponding logic circuits.

(a)

x
1

x
2

x
3

x
1

x
2

x
3

f(x
1
,x
2
,x
3
) f(x

1
,x
2
,x
3
)

0 0 0 0 

0 1 0 0 

1 0 1 0 

1 1 1 0 

0 0 0 1 

0 1 0 1 

1 0 1 1 

1 1 1 1 

(b)

1 0 0 0 
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0 1 0 1 
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0 1 1 1 

Figure P3.3

PROBLEMS 39



3.4 Find the logic function(s) for the logic circuits in Figure P3.4(a) to (d).

x1

x2

x3

x4

x5

f

(a)

x1

x2

x3

f

(b)

x y z

f

(c)

x

y

s

cout

cin

(d)

Figure P3.4
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3.5 Using algebraic manipulations, simplify the following logic functions and

draw their corresponding logic circuits.

(a) f ðx1; x2Þ ¼ ðx1 þ x2Þð�x1 þ x2Þðx1 þ �x2Þ
(b) f ðx1; x2Þ ¼ x1x2 þðx1 þ x2Þ
(c) f ðx1; x2Þ ¼ ð�x1 þ �x2Þx1 þ x2

(d) f ðx1; x2; x3Þ ¼ x1�x2 þ x1�x2x3

(e) f ðx1; x2; x3Þ ¼ x1 þ x1�x2 þ x1�x2x3

(f) f ðx1; x2; x3Þ ¼ x1x2x3 þ x1x2�x3 þ �x1x2�x3

(g) f ðx1; x2; x3Þ ¼ ðx1 þ x2 þ x3Þðx1 þ x2 þ �x3Þð�x1 þ x2 þ �x3Þ
(h) f ðx1; x2; x3; x4Þ ¼ x1 þ �x2 þ �x3 þ x4 þ �x1x2�x3x4

(i) f ðx1; x2; x3; x4Þ ¼ x1x4 þ �x1x4 þ x2�x3 þ x1x2x3 þ �x1x2x3

(j) f ðx1; x2; x3; x4Þ ¼ �x1x4 þ x2x4 þ �x1x2x4 þ x1x2x3

3.6 Write the truth tables, simplify the logic functions f(x,y,z), and draw the logic

circuits described by the timing diagrams in Figure P3.6(a) to (d). Ignore

propagation delays.

x(in)

y(in)

z(in)

f(out)
(a)

x

y

z

f

(b)

x

y

z

f
(c)

Figure P3.6
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3.7 Using algebraic manipulations, simplify the following implicit SOP logic

functions and draw their corresponding logic circuits.

(a) f ðx1; x2; x3Þ ¼
X

ðm0;m1;m7Þ
(b) f ðx1;x2; x3Þ ¼

X
ðm0;m1;m3;m5Þ

(c) f ðx1; x2; x3; x4Þ ¼
X

ðm0;m2;m6;m8;m10;m14Þ
(d) f ðx1;x2; x3; x4Þ ¼

X
ðm5;m6;m7;m13;m14;m15Þ

(e) f ðx1; x2; x3; x4Þ ¼
X

ðm0;m1;m4;m5;m8;m9;m14;m15Þ
3.8 Using algebraic manipulations, simplify the following implicit POS logic

functions and draw their corresponding logic circuits.

(a) f ðx1; x2; x3Þ ¼ PðM3;M4;M6Þ
(b) f ðx1;x2; x3Þ ¼ PðM2;M4;M5;M6Þ
(c) f ðx1; x2; x3; x4Þ ¼ PðM1;M3;M4;M6;M9;M11Þ
(d) f ðx1;x2; x3; x4Þ ¼ PðM3;M6;M7;M11;M13;M15Þ
(e) f ðx1; x2; x3; x4Þ ¼ PðM0;M1;M5;M8;M9;M13;M15Þ

3.9 Draw the timing diagrams of the following logic functions.

(a) f ðx1; x2Þ ¼ ð�x1 þ �x2Þðx1 þ �x2Þð�x1 þ x2Þ
(b) f ðx1;x2Þ ¼ ðx1 þ x2Þ �x1 þ �x2
(c) f ðx1; x2; x3Þ ¼ �x1�x2�x3 þ �x1�x2x3 þ x1�x2x3
(d) f ðx1;x2; x3Þ ¼ ð�x1 þ �x2 þ �x3Þð�x1 þ �x2 þ x3Þðx1 þ �x2 þ x3Þ

3.10 Draw the equivalent logic circuits of the circuits in Figure P3.10(a) to (e) using

NAND gates only.
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(d)

Figure P3.6 (Continued )
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3.11 Draw the equivalent logic circuits for the circuits in Figure P3.10(a) to

(e) using NOR gates only.

3.12 Consider a logic function f with the three variables x1, x2, and x3. The

function f is equal to 1 if and only if two variables are equal to 1; otherwise,

the function f is equal to zero.
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x3

x4

f
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x3
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f

(c)
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s

cout

cin

(d)

x1

x2

x3

x4

f

(e)

Figure P3.10 (Continued )
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(a) Draw a truth table for the function f.

(b) Using algebraic manipulations, simplify the function f.

(c) Draw a logic circuit that implements the function f.

(d) Draw a timing diagram for the function f.

3.13 Consider a logic function f with the four variables x1, x2, x3, and x4. The

function f is equal to 1 if any odd number of variables are equal to 1; otherwise,

the function f is equal to zero.

(a) Draw a truth table for the function f.

(b) Using algebraic manipulations, simplify the function f.

(c) Draw a logic circuit that implements the function f.

(d) Draw a timing diagram for the function f.

3.14 Consider a logic function f with the four variables x1, x2, x3, and x4. The

function f is equal to 1 if any even number of variables are equal to 1; otherwise,

the function f is equal to zero.

(a) Draw a truth table for the function f.

(b) Using algebraic manipulations, simplify the function f.

(c) Draw a logic circuit that implements the function f.

(d) Draw a timing diagram for the function f.

3.15 Consider a logic function fwith the threevariablesx1,x2, andx3. The function f

is equal to 1 if x1 ¼ 1 and x2 ¼ x3 or if x1 ¼ 0 and x2 6¼ x3; otherwise, the

function f is equal to zero.

(a) Draw a truth table for the function f.

(b) Using algebraic manipulations, simplify the function f.

(c) Draw a logic circuit that implements the function f.

(d) Draw a timing diagram for the function f.

3.16 Consider a logic function f with the variables x1, x2, x3, and x4. The function

f is equal to 1 if any two variables or more are equal to 1; otherwise, the

function f is equal to zero, with the following exception: The function f is

also equal to zero if x1 is equal to zero and any other two variables are

equal to 1.

(a) Draw a truth table for the function f.

(b) Using algebraic manipulations, simplify the function f.

(c) Draw a logic circuit that implements the function f.

(d) Draw a timing diagram for the function f.
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3.17 Consider a logic function f with the four variables x1, x2, x3, and x4. The

function f is equal to 1 if two or more variables are equal to 1; otherwise,

the function f is equal to zero.

(a) Draw a truth table for the function f.

(b) Using algebraic manipulations, simplify the function f.

(c) Draw a logic circuit that implements the function f.

(d) Draw a timing diagram for the function f.
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4 VHDL Design Concepts

4.1 OBJECTIVES

The objectives of the chapter are to:

. Describe VHDL language programming

. Describe CAD tools for digital system design

. Describe hardware description languages

. Provide a history of hardware description languages

. Define VHDL

. Describe the VHDL programming structure

. Define entity

. Define architecture

. Describe VHDL data types

. Describe VHDL operators

. Describe Signal and generate statements

. Describe sequential statements

. Describe loops and decision-making statements

. Describe Subcircuit design

. Describe package and component statements

4.2 CAD TOOL–BASED LOGIC DESIGN

Today’s digital integrated circuits are designed to perform highly complex functions.

Their design would be very challenging (and nearly impossible) if it were not for the

availability of the numerous CAD (computer-aided design) tools used for

the following tasks: design entry, simulation, synthesis and optimization, and physical

design. Initially, the specifications of the system to be designed are derived from the

requirements.

Introduction to Digital Systems: Modeling, Synthesis, and Simulation Using VHDL, First Edition.
Mohammed Ferdjallah.
� 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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1. Design entry. Design entry is the first step in the design process using CAD

tools. A designer describes the circuit to be implemented using some design-

entry method provided by the tools. The most common design-entry method is

to write a hardware description language program in VHDL or Verilog, which

can be compiled using CAD tools to simulate the design, synthesize, optimize,

and generate the circuit implementation. Other methods of design entry include

schematic entry (the circuit is drawn using symbols from a library supported by

the tool), and entry using truth tables (where inputs and corresponding outputs

are described using a truth table in a text file).

2. Simulation. Once the design entry is completed, the design is tested for correct

functionality using simulation. The CAD tool that performs this job is called a

functional simulator. For simulation, the user has to supply to the simulator

“test vectors” for the inputs and expected outputs. Simulation is also performed

after synthesis, which is the process of translating the design entered

(at the design-entry phase) to a physically realizable circuit using logic gates

(in the ASIC design flow) or logic blocks inside a PAL/PLA/FPGA.

Postsynthesis simulation involves functional testing as well as tests to ensure

that the timing constraints of that the circuit are met.

3. Synthesis. A synthesis tool is used to translate the design described in a design-

entry method (usually, a program in VHDL or Verilog) into a physically

realizable circuit. The same tool is also used to optimize the circuit.

4. Place and Route (PAR). This is the final step in the design process before

actual hardware implementation of a digital integrated circuit (IC). PAR, also

known as the physical design phase, is where the gates are placed and

interconnected (routing) to complete the circuit. A final timing simulation is

performed after PAR tomake sure that the circuitmeets timing constraintswhen

the parasitic capacitances due to the transistors and interconnecting metal

wires are added.

4.3 HARDWARE DESCRIPTION LANGUAGES

A hardware description language (HDL) is a programming language used to describe

the behavior or structure of digital circuits (ICs). HDLs are also used to stimulate

the circuit and check its response. Many HDLs are available, but VHDL and Verilog

are by far the most popular. Most CAD tools available in the market support these

languages. VHDL stands for “very high-speed integrated-circuit hardware descrip-

tion language.” Both VHDL and Verilog are officially endorsed IEEE (Institute of

Electrical and Electronics Engineers) standards. Other HDLs include JHDL

(Java HDL), and proprietary HDLs such as Cypress Semiconductor Corporation’s

Active-HDL.

In the 1980s, the rapid advances in IC technology necessitated a need to

standardize design practices. In 1983, VHDL was developed under the VHSIC

program of the U.S. Department of Defense. It was originally intended to serve as
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a language to document descriptions of complex digital circuits. It was also used to

describe the behavior of digital circuits and could be fed to software tools that were

used to simulate a circuit’s operation. In 1987, IEEE adopted the VHDL language as

standard 1076 (also referred to, as VHDL-87). It was revised in 1993 as the standard

VHDL-93. Verilog HDL and a simulator were released by Gateway Design

Automation in 1983. In 1989, Cadence Design Systems acquired Gateway Design

Automation. In 1990, Cadence separated the HDL from its simulator (Verilog-XL)

and released the HDL into the public domain. Verilog HDL is guarded by the

Open-Verilog International Organization, now part of Accelera Organization.

In 1995, IEEE adopted Verilog HDL as standard 1364.

Hardware description languages, including VHDL, are used to program PLD-

and FPGA-based systems. The Altera and Xilinx corporations provide free limited

versions (for educational purposes) of CAD software and tools, which can be used to

program FPGA-based development boards. The CAD tools include a schematic

editor, a VHDL/Verilog editor, compilers, libraries, design simulators, and various

utilities tools.

4.4 VHDL LANGUAGE

VHDL [“VHSIC hardware description language” (VHSIC is “very high-speed

integrated circuit”)] is one of the two most popular HDLs, the other being Verilog

HDL. The VHDL language is very popular for the design entry of digital circuits into

CAD systems, simulation and documentation. VHDL is an extremely complex and

sophisticated language, so learning it completely can be a daunting task. However,

most designs can be accomplished by learning only a subset of the language. The

material presented here is in no way a comprehensive reference for the VHDL

language; it only introduces the reader to some important and fundamental concepts

of programming with VHDL. More details of the language can be obtained from

VHDL-specific textbooks, Web-based tutorials, and published white papers.

4.5 VHDL PROGRAMMING STRUCTURE

AVHDL program is written in a text file and has the extension “.vhd” (sometimes,

“.vhdl”). VHDL is not case sensitive. Every VHDL program has associated with it

an entity. The interface to the outside world (through pins) is described in this

section. Every entity has associated with it an architecture. The architecture

describes the behavior or structure of the design coded in the VHDL program. The

design units of VHDL, apart from entity and architecture, are package, package

body, and configuration. These are not required to be present in every VHDL

design, but designers use them for a better coding style and for convenience. Each

design unit of a VHDL design can be in a separate file. It is not required that an

entity and the corresponding architecture be described in the same file. It is

important to note that a single IC can be built from many VHDL files. For
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example, a design may be built hierarchically. A multiplier may be built from full-

adders, which in turn may be built from half-adders. One could write VHDL

programs for the half-adder, put two instances (copies) of the half-adder in

another VHDL program to build a full-adder, and write a third program to put full-

adders together to make a multiplier. This is an example of hierarchical design

(bottom-up design). VHDL programming is not case sensitive; however, to

identify the keywords of a VHDL program, they will be written in lowercase

boldface letters.

A typical VHDL program consists of a library declaration, an entity declaration,

and an architecture declaration, as illustrated in Figure 4.1.Library declarations are

generally included in the first lines of the code, which locate the system library and

user library sources to resolve and translate the language statementswithin the body of

the program. The IEEE standard library is often included in the VHDL program and

used by the VHDL compiler to translate standard inputs, outputs, and expressions

listed in the VHDL program. Other references, which are not listed in the IEEE

standard library, must be provided by the user’s libraries.

4.5.1 Entity

The entity of a VHDL program defines the external interface to the design. The term

entity is a keyword and cannot be used as a variable in theVHDL program. The entity

defines the input and output ports of a digital system. EveryVHDLprogrammust have

at least one entitywith a designated name. The entity declaration associates the entity
with a particular design, and specifies the names of the ports, their associated data

type, and the direction of the ports. The entity declaration does not describe how the

design functions. Consider the logic circuit of a NAND function illustrated in

Figure 4.2.

The entity declaration of the NAND function is illustrated in Figure 4.3. Notice

that only the input and output ports of the logic circuit are identified, there is no

reference to the function of the NAND circuit. The name of the entity is nand_gate.

}{
}{

}{ DeclarationArchitecture

DeclarationEntity

DeclarationLibrary

Figure 4.1 VHDL Program Structure

x1

x2
f

Figure 4.2 NAND Logic Circuit Input and Output Ports
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4.5.2 Architecture

The architecture describes the internal structure or behavior of the corresponding

entity. More than one architecturemay be associated with an entity. It is important

to note that in VHDL (unlike software programming languages such as C andCþþ ),

statements inside the architecturemodel events that happen concurrently. However,

statements inside a process block (which is defined inside a architecture body)

model events that occur simultaneously. Note that comments in a VHDL program

begin with “- -” and every line requires a separate “- -” if the comment spans more

than one line. Every architecture has a name andmust include the name of the entity
with which it is associated. The architecture declaration of the NAND circuit in

Figure 4.2 is illustrated in Figure 4.4.

Consider the logic circuit shown in Figure 4.5. The VHDL implementation of the

circuit requires an entity design, which identifies the input and output ports of the

circuit, and an architecture design, which identifies the logic function of the circuit.

The VHDL program in Figure 4.6 implements the logic circuit in Figure 4.5. Notice

that the function of the circuit is described in the architecture of the code. In general,

CAD tools have synthesis features that can be used to optimize the function without

the user carrying out any prior simplification.

architecture Behavior of nand_gate begin is 
f <=  not (x1 and x2); 

end Behavior; 

Figure 4.4 Architecture Declaration of the NAND Logic Circuit in Figure 4.2

entity nand_gate is
port (

: x1, x2 in bit ;
: f  out bit );

end nand_gate; 

Figure 4.3 Entity Declaration of the NAND Logic Circuit in Figure 4.2

x1

x2

x3

x4

x5

f

Figure 4.5 Logic Circuit Sample

50 VHDL DESIGN CONCEPTS



4.6 ASSIGNMENT STATEMENTS

In the examples above, the VHDL programs use simple assignment to describe the

output logic function. The 2 : 1 multiplexer described in Chapter 3 has two possible

output expressions depending on the value of the signal selected. VHDL provides

selected signal assignment statements, which will assign a signal from several values

using a selection condition. Consider the logic circuit for a 2 : 1 multiplexer shown in

Figure 4.7. The VHDL program in Figure 4.8 implements the 2 : 1 multiplexer in

Figure 4.7. The function of the multiplexer is described in the architecture of the code

using selected signal assignment statements. The signal assignment statement

selected begins with the reserved keyword with followed by the selection condition,

which is in the input signal, s. The reserved keywordwhen selects a possible value for

the select signal s. The when others (reserved keyword) is included to select the last

possible value of s.

4.7 VHDL DATA TYPES

VHDL is a strongly typed language. Thismeans that every object assumes the value of

its nominated type. To put it very simply, the data type of the left-hand side (LHS) and

x1

x2

s

f

2:1
Multiplexer

Figure 4.7 Block Diagram of a 2 : 1 Multiplexer

library ieee ; 
use ieee.std_logic_1164.all; 

entity logic_circuit is
port (

: x1,x2,x3,x4,x5 bitin ;
: f  bitout );

end logic_circuit; 
architecture Behavior of logic_circuit is

begin  
f <= ((x1  or x2) and (x3 and x4)) or x5;

end Behavior; 

Figure 4.6 VHDL Code for the Logic Circuit in Figure 4.5
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right-hand side (RHS) of a VHDL statement must be the same. The VHDL 1076

specification describes four classes of data types.

1. Scalar types represent a single numeric value or, in the case of enumerated

types, an enumeration value. The standard types that fall into this class are

integer, real (floating point), physical, and enumerated. All of these basic types

can be thought of as numeric values.

2. Composite types represent a collection of values. There are two classes of

composite types: arrays containing elements of the same type, and records

containing elements of different types.

3. Access types provide references to objects in much the same way that pointer

types are used to reference data in software programming languages.

4. File types reference objects (typically disk files) that contain a sequence of

values.

The most common data types are described below. The data types define the set of

value(s) that an object may take. The name of the type of object must be declared

before the object is used in any VHDL statement.

1. Integer type. Integer numbers range from –2147483647 to 2147483647, as

defined by the standard using a 32-bit representation. Notice that there are equal

number of positive and negative integers number in VHDL. The example in

Figure 4.9 illustrates the use of integer type.

2. Real type. Real numbers range between –1.0E38 and 1.0E38.

3. Bit and bit_vector types. These types are predefined in VHDL standards IEEE

1076 and IEEE 1164. Hence, no library is needed to use these data types. A Bit

object can take one of the values 0 and 1. An object of bit_vector type is an array

of Bit objects. The examples in Figure 4.10 show how to declare and use objects

of these types.

library ieee ; 
use ieee.std_logic_1164.all; 

entity mux2to1 is
port (

: x1,x2,s bitin ;
: f  bitout );

end mux2to1; 
architecture Behavior of mux2to1 is

begin  
with  s select

x1 <= f  when ‘0’ ;
x2   when others;

end Behavior; 

Figure 4.8 VHDL Code for the 2 : 1 Multiplexer in Figure 4.7
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4. Boolean type. A Boolean object can take a value that is either true or false.

“True” is equal to logic 1 and “false” is equal to logic 0.

5. Enumeration type. The user specifies a list of possible values that an object

could take. The examples in Figure 4.11 illustrate the enumeration data type.

6. Physical type. Objects with physical type require associated units. The range

of unitsmust be specified. Notice that the “time” is the only physical type object

predefined in the VHDL standards. The examples in Figure 4.12 illustrate

physical-type definition for resistance units.

7. Std_logic and std_logic_vector types. The std_logic data type is a part of IEEE

standard 1164. It provides more flexibility than the Bit type. To use this type,

two statements must be included in the library declaration (Figure 4.13). By

including these statements, the user will have access to the std_logic_1164

package, which defines the std_logic type. The std_logic_vector is a linear

array of objects of std_logic type. The IEEE 1164 standard defines the standard

type that would allowmultiple values to be represented for a wire. These values

are listed in Figure 4.14. The examples in Figure 4.15 illustrate std_logic

variable declarations and assignments using IEEE standard 1164.

8. Array type. The array type is used to group elements of the same data type into

a single VHDL object. The array may be constrained or unconstrained. Arrays

may be one or multidimensional. The examples in Figure 4.16 illustrate objects

of array data type.

--Declaration Examples 
signal :  x1 bit ;
signal :  C bit_vector (1 to 4); 
signal :  D bit_vector (7 downto 0); 

--Assignment Examples 
‘1’; <= x1  
“1010”; <= C  

D(7  downto “1100”; <=  4) 

Figure 4.10 Bit and Bit_Vector Types

architecture test_int of test is
begin  

process  (x)
variable  a: integer ;

begin  
-- OK a : 1;  
-- OK a : -1;  
-- illegal a : 1.0;  

end process;
end test_int; 

Figure 4.9 Integer Type
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Value Description

Un-initialized U 

Unknown X 

(driven) 0 Logic 0 

(driven) 1 Logic 1 

impedance High Z 

1 Weak W 

(read) 0 Logic L 

(read) 1 Logic H 

Don't-care - 

Figure 4.14 Std_Logic Values as Defined by IEEE 1164

type binary is (on, off) 
… statements … 
architecture test_enum of test is

begin  
process  (x) 

variable  a : binary; 
begin

-- OK a := ON;   
… statements … 

-- OK a := OFF;   
… statements … 

end process;
end test_enum; 

Figure 4.11 Enumeration Type

type resistance is range 0 to 1000000 
units  

-- ohm Ohm;  
-- i.e. 1 k= 1000 ohm; Kohm  Ω
-- i.e. 1 M= 1000 Kohm; Mohm  Ω

end units; 

Figure 4.12 Physical Type

library ieee; 
use ieee.std_logic_1164.all; 

Figure 4.13 Std_Logic and Std_Logic_Vector Types
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4.8 VHDL OPERATORS

VHDL provides predefined operators which are used as hardware modeling units.

These include logical (or Boolean), arithmetic, and relational operators. The logical

operators are listed in Figure 4.17. The NOT operator has one input and one output,

whereas the remaining operators are binary operators, which have two input ports and

one output port. VHDL relational operators are listed in Figure 4.18. Relational

operators are a set of binary logical operators that generate a result of Boolean type:

either “true” or “false.” The relational operands are of either bit type or Boolean type,

but not of mixed type.

VHDL arithmetic operators are listed in Figure 4.19. Arithmetic operators accept

operands of integer type or floating-point type (real type). VHDL does not accept

implicit type conversion between integer and floating-point numbers. The operators

REM and MOD are defined only for integer numbers. The exponential operator

Operator Description Operand Type Result Type

Any Bit  or  Boolean type   Not Not 

Any Bit  or  Boolean type   And And 

Any Bit  or  Boolean type   Or Or 

Any Bit  or  Boolean type   Not  And Nand 

Any Bit  or  Boolean type    Not  Or Nor 

Same Type  

Same Type  

Same Type  

Same Type  

Any  Bit  or Boolean type    

Any  Bit  or Boolean type    

Exclusive OR 

Exclusive NOR 

Xor 

Xnor 

Same Type  

Same Type  

Same Type  

Figure 4.17 VHDL Logical (Boolean) Operators

--Declaration Examples 
: A  std_logic_vector (3 downto  0); 
: B  std_logic_vector  (0 to 3);          
: C  std_logic_vector  (3 downto  0); 
: Clk  std_logic;

--Assignment are similar to BIT-VECTOR data type 

Figure 4.15 Std_Logic Variable Declaration

type reg_type is array (15 downto 0) of bit; 
variable reg_type; :  X 
variable BIT; :  Y 

-- Y gets value of element at index 4 Y := X(4);  

Figure 4.16 Array Type
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accepts both integer and floating-point numbers with exceptions. The data type of the

left operand of the exponential operator defines the data type of the result, and can be

integer or floating point. The right operand (exponent) must be of integer type.

Precedence among VHDL operators is grouped into several operator classes. The

operator class that has the highest precedence includes the exponential, the ABS

(absolute value), and the NOT operators. The operator class that has the lowest

precedence includes the logical operators AND, OR, NAND, NOR, XOR, and

NXOR. In VHDL the operators that belong to the same operator class do not have

precedence over each other. Parentheses must be used to define precedence among

operators of the same operator class. The operators within the innermost parentheses

are evaluated first, then the second set, and so on.

4.9 VHDL SIGNAL AND GENERATE STATEMENTS

4.9.1 Signal Statement

Signal is a VHDL keyword. It declares a signal of specified data type. A signal

declaration is used to represent internal signals within an architecture declaration.

Operator Description Operand Type Result Type

+ Addition or 
positive sign

Same integer or floating-point type Same type

– Subtraction or 
negative sign

Same integer or floating-point type Same type

* Multiplication Same integer or floating-point type Same type
/ Division Same integer or floating-point type Same type

MOD Modulus Integer type Same type
REM Remainder Integer type Same type

Same type Integer or floating-point type     Absolute value  ABS 

Exponentiation ** 
Left operant — integer or floating 

point type and Right operand 
(exponent) — integer type 

Same type of 
left operand 

Concatenation & Element or one-dimensional array 
type

One-
dimensional
array type 

Figure 4.19 VHDL Arithmetic Operators

Description Operand Type

= Equality Any type Boolean

/= Inequality Any type Boolean

< Less than Any scalar type or discrete array Boolean

<= Less than or equal Any scalar type or discrete array Boolean

> Greater than Any scalar type or discrete array Boolean

>= Greater than or equal Any scalar type or discrete array Boolean

Result TypeOperator

Figure 4.18 VHDL Relational Operators
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Unlike entity ports, internal signals do not have a direction. Signal assignment

statements execute onlywhen the associated signals (appearing on the right-hand side

of the assignment statement) change values. In VHDL, the order of concurrent

statements in VHDL code does not affect the order in which the statements are

executed. Signal assignments are concurrent and could execute in parallel fashion.

Consider the logic circuit in Figure 4.20 where the internal signals are identified.

Notice, that from the point of view of an entity declaration, the signals Sig1, Sig2,

and Sig3 are internal signals. They are neither input ports nor output ports, and

therefore do not have a direction.

The VHDL program in Figure 4.21 implements the logic circuit in Figure 4.20.

The entity declaration is similar to that in the VHDL program of Figure 4.6. The

architecture declaration has been modified to include the internal signals. The logic

function of the circuit is described in an indirect way using the internal signals. Both

VHDL implementations (Figures 4.6 and 4.21) have the same logic function and

should yield the same synthesized logic circuit.

library ieee ; 
use ieee.std_logic_1164.all; 

entity  logic_circuit is
port (

: x1,x2,x3,x4,x5 std_logicin ;
: f  std_logicout );

end logic_crcuit; 
architecture Behavior of logic_circuit is

signal  : Sig1,Sig2,Sig3 std_logic;
begin  

Sig1 <= x1  or x2; 
Sig2 <= x3  and x4; 
Sig3 <= Sig1  and Sig2;
f <= Sig3  or x5;

end Behavior; 

Figure 4.21 VHDL Code for the Logic Circuit in Figure 4.20

x1

x2

x3

x4

x5

f

Sig1

Sig2

Sig3

Figure 4.20 Logic Circuit with Internal Signals
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4.9.2 Generate Statement

Generate is a VHDL keyword used to replicate a set of concurrent statements or to

selectively execute a set of concurrent statements if a specified condition is met. The

generate statement provides a method of repeating a logic function or a component

instantiation without manually writing the logic function or the component instantia-

tion. Components and component instantiations are described in Section 4.13. There

are two types of generate statements: for generate, which is an iterative generate

statement, and if generate, which is a conditional generate statement. The examples

in Figure 4.22 illustrate both generate statements.

A generate statement begins with a unique label that identifies it. The label also

appears at the close of the statement. The generate statement repeats the enclosed

statements at each iteration or conditional pass. The index I is declared implicitly

inside the generate statement and cannot be changed by the program.

4.10 SEQUENTIAL STATEMENTS

Sequential VHDL statements allow the designer to describe the operation, or

behavior, of a circuit as a sequence of related events. Sequential statements are

found within processes, functions, and procedures. Sequential statements differ

from concurrent statements in that they have order dependency, which may or may

not imply a sequential circuit (one involving memory elements). VHDL’s process

statement is the primary way to enter a sequential statement. A process statement,

including all declarations and sequential statements within it, is actually a single

concurrent statement within a VHDL architecture. This means that the designer can

write as many processes and other concurrent statements as are necessary to

describe a design, without worrying about the order in which the simulator will

process each statement. Thus, the process statement constitutes the behavioral

statement in VHDL. The example in Figure 4.23 illustrates the general structure of

the process statement.

A process statement is listed in the architecture declaration. The process

statement begins with the reserved keyword process, following the begin statement

-- for generate iterative: 
for I in 0 to 5 generate

… enclosed statements …;  
end generate  iterative; 

-- if generate conditional: 
if ( I <= 4 and  I >=1) generate

… enclosed statements …;  
end generate  conditional; 

Figure 4.22 Generate Statement
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of the architecture. The process statement includes a begin statement inside it as well.

The process statement concludes with an end process statement. The process may

have a label, which also appears at the close of the process statement. The process

statement structure is composed of a declaration section and a statement section. The

declaration section declares the objects that will be used in the statement section of the

process statement. The statement section includes sequential statements, which

describe the sequential behavior of the logic circuit. The sequential statements, a

set of loops and decision-making statements, are discussed in Section 4.11. The

process statement may include a sensitivity list, which defines the activation and

suspension of the process statement based on the changes in signals included in the

sensitivity list. Because the process statement represents sequential behavior, it must

include an explicit wait statement to control the activation and suspension of the

process statement. When a sensitivity list is included in the process statement, the

wait statement is not necessary. The sensitivity list provides an implicit wait, which

describes the events of the signals listed.

4.11 LOOPS AND DECISION-MAKING STATEMENTS

Loop statements are a category of control structure that allow a designer to specify

repeating sequences of behavior in a circuit. There are three primary types of loops in

VHDL: for loops, while loops, and infinite loops. VHDL also provides if–then–else

and case statements to implement control structures.

4.11.1 For Loop

A for loop is a sequential statement that allows a designer to specify a fixed number of

iterations in a behavioral design description. It is important to note that in VHDL,

unlike other software programs, each iteration occurs concurrently, which means that

the loop is “unrolled.” A for loop can be used only inside a sequential statement, such

as a process statement, a function, or a procedure. The example in Figure 4.24

illustrates the form of a for statement. A for loop executes the sequential statement

within its body each time the index of the loop changes its valuewithin the range of the

loop. The label of the for loop is optional; the user may choose not to include it.

Process statement label Label: 
process (sensitivity list) 

… Declaration section;  

begin
… Statement section;  

end process ;

Figure 4.23 Sequential Declaration
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4.11.2 While Loop

Awhile loop is another form of sequential loop statement that specifies the conditions

under which the loop should continue rather than specifying a discrete number of

iterations. The condition must be of type Boolean. A while loop executes the

sequential statements in its body each time the condition is checked and evaluated

to be true. Otherwise, the while loop terminates. Similar to a for loop, the label of a
while loop is optional and can be omitted. The general form of a while loop is

illustrated in the code sample shown in Figure 4.25.

4.11.3 If–Then–Else Statement

The if–then–else statement is the most commonly used form of control statement in

VHDL. Its general form is illustrated in the code sample shown in Figure 4.26. The

condition statements must be expressions of type Boolean.

if first_condition then
sequential statements;  

elsif  second_condition then
sequenctial statements;  

else
sequential statements;  

end if ;

Figure 4.26 If–Then–Else Statement

For loop label For_Loop: 
for index in range 

loop 
sequential statement; 
sequential statement;  

end loop  For_loop; 

Figure 4.24 For Loop

While loop label while_Loop: 
while condition 

loop 
sequential statement; 
sequential statement;  

end loop  while_loop; 

Figure 4.25 While Loop
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4.11.4 Case Statement

A case statement can be used as an alternative to an if–then–else control structure.

However, it is important to understand the differences in the circuits generated by

CAD tools for the if and case statements, and to use the appropriate control

structure for a design. A case statement is generally used when making decisions

among options that have equal priority. The making-decision control expression

must have a finite set of values. The when statement switches between the possible

values. The when others statement is the final statement with a case statement. A

when others statement is used to represent the remaining possible values of the

control expression, not listed in the previous when statements. The general form of

a case statement is illustrated in the code sample shown in Figure 4.27. The when

others condition makes sure that all cases (that are not listed within the case body)

are covered.

4.12 SUBCIRCUIT DESIGN

VHDL provides many high-level features that help a designer manage complex

designs. In fact, design management is one of VHDL’s key strengths compared to

alternative design entry languages and methods. Like modularity features (func-

tions and procedures), design partitioning is another important aspect of design

management. Design partitioning goes beyond simpler design modularity methods

to provide comprehensive design management across multiple projects and to

allow alternative structural implementations to be tried out with minimal effort.

Design partitioning is particularly useful for those designs being developed in a

team environment, as it promotes cooperative design efforts and well-defined

system interfaces.

4.13 PACKAGES AND COMPONENTS

4.13.1 Package Statement

Packages are intended to hold commonly used declarations such as constants, type

declarations, and global subprograms. Packages can be included within the same

case control_expression is
when  test_expression1 => sequential statements; 
when test_expression2 => sequential statements; 

…  
.. 
when others => sequential statements; 

end case;

Figure 4.27 Case Statement
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source file as other design units (such as entities and architectures) or can be placed in

a separate source file and compiled into a named library. Packages may contain the

following types of objects and declarations:

. Type and subtype declarations

. Constant declarations

. File and alias declarations

. Component declarations

. Attribute declarations

. Functions and procedures

. Shared variables

When items from the package are required in other design units, the use

statement must be included to make the package and its contents visible for each

design unit. The package is stored in a separate VHDL code. It can also be included

at the end of a VHDL code, which contains the entity of the architecture of the

subcircuit. In both cases the package is compiled and stored in a library, which can

be accessed by employing the use statement. The entity and architecture of the

subcircuit referenced in a package must be compiled and made available to the

VHDL code, which uses the package reference. The VHDL compiler will use

the subcircuit to synthesize the complete circuit. The example in Figure 4.28

illustrates a package declaration for a 2 : 1 multiplexer circuit. Notice that the

package declaration included the 2 : 1 multiplexer as a component declaration,

which is described in the next section.

The VHDL codes for the 2 : 1 multiplexer and its associated package must be

compiled and stored in a defined directory. If both codes were available in theworking

directory, a library declaration is not necessary because the compiler has access to the

working directory. The example shown in Figure 4.29 illustrates how to access the

2 : 1 multiplexer package by employing the use statement. The “all” clause indicates

that all declarations included in the package are visible to the calling program,

whether or not it is using them.

library ieee; 
use ieee.std_logic_1164.all; 

package  mux2to1_package is
component mux2to1 

port  (
: x1,x2,s bitin ;
: f  bitout );

end component ;
end mux2to1_package; 

Figure 4.28 Package Statement
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4.13.2 Component Statement

The component declaration specifies the input and output ports of a subcircuit. A

component declaration can appear in an architecture or package declaration with a

structure similar to that of an entity declaration. A component declaration includes

the name of the component and its ports. The difference between a component and an

entity declaration is that an entity declaration declares a circuit model that has an

architecture, whereas a component declaration declares a virtual circuit template,

which must be instantiated to take effect during the design. A component declaration
could also be listed inside a package rather than the architecture. Components are used

library ieee; 
use ieee.std_logic_1164.all; 
use work.mux2to1_package.all; 

entity  mux4to1 is
port (

: x std_logic_vector(in 0 to 3);
: s std_logic_vector(in 1 downto 0);
: f  std_logicout );

end  mux4to1; 
architecture behavior of mux4to1 is

signal :  sig std_logic_vector (0 to 1) 
component  mux2to1 

port  (
: x1,x2,s bitin ;
: f  bitout );

end component ;
begin

mux1 : mux2to1  port map  (x(0),x(1),s(0),sig(0)); 
mux2 : mux2to1  port map  (x(2),x(3),s(0),sig(1)); 
mux3 : mux2to1  port map  (sig(0),sig(1),s(1),f); 

end behavior; 

Figure 4.30 Component Statement

library ieee; 
use ieee.std_logic_1164.all; 
use work.mux2to1_package.all; 

entity example is
--   entity declaration;  

end example; 

architecture behavior of example is
--   architecture declaration;  

end behavior; 

Figure 4.29 Use Statement
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to create subblocks that can be put together to form larger hierarchical designs. For

example, a multiplier may be built from full-adders, which in turn may be built from

half-adders. One could write VHDL programs for the half-adder, put two instances

(copies) of the half-adder in another VHDL program to build a full-adder and write a

third program to put full-adders together to make a multiplier. This is an example of

hierarchical design (bottom-up design). The following example shows how to define

components and use them in a structuralVHDLprogram. The example illustrates how

to design a 4 : 1 multiplexer from three 2 : 1 multiplexers (Figure 4.30). Multiplexers

are described in Chapter 7. The reserved keyword port map is used to instantiate

the 2 : 1 multiplexer component as needed in the design of the full 4 : 1 multiplexer.

Note that the component “mux2to1” has to be precompiled. Port mapping is done to

connect signals of the design in which the components are instantiated with the ports

of the component itself.

PROBLEMS

4.1 Describe the basic CAD tools for logic design.

4.2 Describe the major design entry tools.

4.3 What is the difference between simulation and synthesis?

4.4 Why should the designer perform a function simulation before final hardware

implementation?

4.5 What is VHDL?

4.6 Describe the basic programming structure of VHDL code.

4.7 What is the difference between an entity declaration and an architecture

declaration?

4.8 Can an entity have more than one architecture?

4.9 What is a VHDL signal statement? What is it used for?

4.10 What is the function of the “when others” clause in a case statement?

4.11 Describe the difference between the process and generate statements.

4.12 What is the difference between a VHDL component and a VHDL package?

4.13 Write VHDL code to implement a XOR logic gate.

4.14 Write VHDL code to implement a NOR logic gate.

4.15 Write VHDL code to implement a NXOR logic gate.

4.16 Write VHDL code to implement the logic circuit in Figure P4.16.

4.17 Write VHDL code to implement the logic circuit in Figure P4.16 using signal

data objects.
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4.18 Write VHDL code to implement the logic circuit in Figure P4.18.

4.19 Write VHDL code to implement the logic circuit in Figure P4.18 using signal

data objects.

4.20 Write VHDL code to implement the logic circuit in Figure P4.20.

4.21 Write VHDL code to implement the logic circuit in Figure P4.20 using signal

data objects.

4.22 Write VHDL code to implement the logic circuit in Figure P4.22.

4.23 Write VHDL code to implement the logic circuit in Figure P4.22 using

component declarations for NOT, AND, and OR logic gates.

x y z

f

Figure P4.18

x1

x2

x3

f

Figure P4.16

x

y

s

cout

cin

Figure P4.20
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4.24 Write VHDL code to implement the logic circuit in Figure P4.22 using a

package declaration which includes component declarations for NOT, AND,

and OR logic gate.

4.25 Write VHDL code to implement the logic circuit in Figure P4.25.

4.26 Write VHDL code to implement the logic circuit in Figure P4.25 using

component declarations for AND, OR, and XOR logic gates.

4.27 Write VHDL code to implement the logic circuit in Figure P4.25 using a

package declaration which includes component declarations for AND, OR,

and XOR logic gates.

4.28 Write VHDL code to implement the logic circuit in Figure P4.28.

x1

x2

x3

x4

f

Figure P4.28

x1

x2

x3

x4

f

Figure P4.22

x1

x2

x3

x4

f

Figure P4.25
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4.29 Write VHDL code to implement the logic circuit in Figure P4.28 using a

component declaration for XOR logic gate.

4.30 Write VHDL code to implement the logic circuit in Figure P4.28 using a

package declaration which includes a component declaration for XOR logic

gate.

4.31 Write VHDL code to implement the following logic expressions.

(a) f1 ¼ ðx1 þ x2Þð�x1 þ x2Þðx1 þ �x2Þ
(b) f2 ¼ x1x2 þðx1 þ x2Þ

4.32 Write VHDL code to implement the following expressions.

(a) f1 ¼ x1�x2 þ x1�x2x3

(b) f2 ¼ x1 þ �x2 þ �x3 þ x4 þ �x1x2�x3x4
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5 Integrated Logic

5.1 OBJECTIVES

The objectives of the chapter are to describe:

. Logic signals

. Logic switches

. NMOS and PMOS gates

. CMOS gates

. CMOS static and dynamic behaviors

. TTL gates and design practical aspects

. Transmission gates

5.2 LOGIC SIGNALS

Logic variables can be used to represent such electronic signals as voltage, current,

and frequency. There are a number of systems for representing binary information in

physical systems, such as:

. Avoltage signal with zero (0) corresponding to 0Vand one (1) corresponding to

5 or 3V.

. A sinusoidal signal with zero (0) corresponding to a frequency and one (1)

corresponding to another frequency.

. A current signal with zero (0) corresponding to 4mA and one (1) corresponding

to 20mA.

. For switches, open is indicated by 0 and closed is indicated by 1.

Now let us describe the logic levels using voltage signals. To represent voltage

signals using logic levels, we first have to define threshold voltage.Any voltage below

the threshold voltage represents one logic value, and voltages above this reference

voltage represent the other logic value. We can assign either 1 or 0 to represent any

Introduction to Digital Systems: Modeling, Synthesis, and Simulation Using VHDL, First Edition.
Mohammed Ferdjallah.
� 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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level, depending on the logic system. There are two different types of logic systems:

positive and negative. In a positive logic system, any voltage greater than the threshold

voltage is represented by logic 1, and voltages below the reference level are

represented by logic 0. The reverse notation is used for a negative logic system:

Logic 1 and logic 0 are used to represent lower voltage levels and higher voltage

levels, respectively.

Generally, we use voltage ranges rather than a fixed voltage level to represent logic

levels. Figure 5.1 shows the ranges: Any voltagewithin VDD and V1,min is represented

by logic 1 and the voltages between VSS and V0,max are represented by logic 0. The

range of voltages between V1,min and V0,max is undefined. Here VDD and VSS are the

maximum and minimum voltages, respectively. Figure 5.1 illustrates voltage levels

for positive logic. Typically, VDD is equal to 5V and VSS is equal to 0V or ground.

5.3 LOGIC SWITCHES

As described earlier, the logic 1 and logic 0 states represent closed and open switches,

respectively. We know that the operation of a transistor is similar to that of a simple

switch, so logic circuits can be built using transistors. Generally, metal–oxide

semiconductor field-effect transistors (MOSFETs) are used to implement the

switches. There are two different types of MOSFETs: n-channel and p-channel. An

n-channel MOSFET has four electrical terminals, known as gate (G), drain (D),

source (S), and body/substrate (B). The operation of an n-channel MOSFET is as

follows. When the gate voltage (VG) is greater than the threshold voltage (VTH), a

connection is established between the source and the drain and the transistor is said to

be turned on and acts as a closed switch. If the gate voltage (VG) is low, there is no

connection between the source and the drain and it acts as an open switch. The symbol

and the equivalent circuit for a simple n-channel MOSFET are shown in Figure 5.2.

DDV

SSV

min,1V

max,0V

Logic Value "1"

Logic Value "0"

Undefined

Voltage

(Gnd )

Figure 5.1 Logic Levels for Positive Logic
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PMOS transistors behave in exactly the opposite way to NMOS transistors. In this

case the transistor acts as an open switch for logic 1 and as a closed switch for logic 0.

The PMOS transistor also has four electrical terminals, known as gate, drain, source,

and body. Generally in logic circuits, the body is connected to VDD. If VG is high, the

transistor is turned off, implying that there will be no connection between the source

and the drain terminals, and it acts like an open switch.WhenVG is low, a connection is

established between the source and drain terminals, and the transistor works as a

closed switch. The symbol and the equivalent circuit for a simple PMOS transistor are

shown in Figure 5.3.

5.4 NMOS AND PMOS LOGIC GATES

5.4.1 NMOS Inverter

Consider the circuit shown in Figure 5.4. The operation of the circuit can be explained

as follows. When VG¼ 0V (logic 0), the NMOS switch is closed and the NMOS

GV

DDV

Open Switch
when VG= VSS

Closed Switch
when VG = V DD

Figure 5.2 NMOS Transistor as a Switch

GV

DDV

Open Switch
when V G=V DD

Closed Switch
when V G=V SS

DDD VV =

DDVDDV

Figure 5.3 PMOS Transistor as a Switch
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transistor T1 is off and no current flows through resistor R. The output voltage Vout is

equal to VDD (logic 1). However, if VG¼VDD (logic 1), the NMOS switch is closed

and the NMOS transistor T1 starts conducting, thereby pulling down the output node

to ground. Thus, the output voltage is logic 0. The circuit in Figure 5.4 acts as an

inverter gate. The purpose of resistor R is to limit the current when the NMOS

transistor is turned on. In other words, this resistor acts as a current source load. It will

be replaced with a PMOS transistor in later circuit design. The truth table is also

shown in Figure 5.4.

5.4.2 NMOS NAND Gate

Now observe the circuit diagram shown in Figure 5.5. Consider the case when both

inputs are high (i.e., logic 1) and NMOS transistors T1 and T2 are both turned, pulling

Truth Table Integrated Circuit 

VG T1 Vout

0 off 1
1 on 0

DDV

GV
outV

1T

R

Figure 5.4 NMOS Inverter Gate and Its Truth Table

Truth Table Integrated Circuit 

VG1 VG2 T1 T2 Vout

0 0 off off 1
0 1 off on 1
1 0 on off 1
1 1 on on 0

DDV

1GV
outV

2GV

1T

2T

R

Figure 5.5 NMOS (Two-Input) NAND Gate and Its Truth Table
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the output node down to ground, resulting in logic 0 as output. On the other hand, if

any one of the inputs or both inputs is low (i.e., logic 0), one or both transistors will be

turned off and act as an open switch, and thus the outputwill remain high (i.e., logic 1).

The resulting truth table for this circuit is also shown in Figure 5.5, which is the same

as that of the NAND gate.

5.4.3 NMOS NOR Gate

As we have seen above, the series connection of transistors implies a NAND

operation. Following the principle of duality, to perform a NOR operation the

transistors are connected in parallel. A circuit that realizes the function of a (two-

input) NOR gate is illustrated in Figure 5.6. In this case, if any of the inputs is logic

high, the output node is pulled down to ground, resulting in logic 0 at the output node.

For the case when both the inputs are low (i.e., logic 0), the output is at logic 1.

The corresponding truth table is also shown in Figure 5.6.

In the process of designing any logical circuit in NMOS technology, we have two

blocks, known as a pull-up network and a pull-down network. In all the NMOS

circuits above, resistor R acts as a pull-up network and all the NMOS transistors work

as pull-down networks. To save the chip areawe can replace the pull-up resistor with a

PMOS transistor. Such circuits are called pseudo-NMOS circuits. NMOS and pseudo-

NMOS circuits have the same pull-down network.

5.5 CMOS LOGIC GATES

Here we are going to use CMOS transistors, known as complementary MOS

transistors, consisting of both PMOS and NMOS transistors. As for NMOS logic

circuits, these CMOS logic circuits have pull-up and pull-down networks. However,

Truth Table Integrated Circuit 

VG1 VG2 T1 T2 Vout

0 0 off off 1
0 1 off on 0
1 0 on off 0
1 1 on on 0

DDV

1GV
outV

2GV
1T 2T

R

Figure 5.6 NMOS (Two-Input) NOR Gate and Its Truth Table
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for CMOS logic, the pull-up network consists of PMOS transistors. The functions

realized by pull-up and pull-down networks are complementary to each other. The

n-channel network is between the output and ground, and the p-channel network

is between the output and VDD. The number of transistors in each network is equal to

the number of inputs.

5.5.1 CMOS Inverter

The circuit diagram for a CMOS inverter is shown in Figure 5.7. For the logic high

input, transistor T1 will be turned on and T2 will be off, thus pulling down the output

node to ground, resulting in logic 0 at the output. On the other hand, for logic 0 input,

T1 will be off and T2 will be on, thus connecting the output node to the higher voltage,

VDD. Notice that there is no protective resistance.

5.5.2 CMOS NAND Gate

A CMOS (two-input) NAND gate is shown in Figure 5.8. For this network, if all the

inputs are high, the NMOS transistors will be on, the PMOS transistors will be off, and

the output will be pulled low to Ground. Conversely, if any of the inputs is a 0, one of

theNMOS transistorswill be off and the n-channel network offers infinite impedance.

One of the PMOS transistorswill be on and the outputwill be pulled up toVDD (logic 1).

Thus, any 0 input guarantees a 1 output and all ‘1’s give a 0 output, describing the

functionality of a NAND gate.

5.5.3 CMOS NOR Gate

Figure 5.9 shows the circuit diagram of a two-input CMOS NOR gate. Note that the

NMOS transistor network is the same as that seen previously for the NMOS NOR

gate. The only difference here is that the complement of the two parallel NMOS

Truth Table Integrated Circuit 

Vin T1 T2 Vout

0 off on 1
1 off off 0

DDV

inV outV

1T

2T

Figure 5.7 CMOS NOT Gate and Its Truth Table
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transistors is a pull-up network. If any input is high, at least one of the NMOS

transistors will be on, pulling the output to ground (i.e., logic 0). Conversely, if all the

inputs are low, all the NMOS transistors will be off and all PMOS transistors will be

on, thus pulling the output to VDD (i.e., logic 0). The corresponding truth table is also

shown in Figure 5.9.

Truth Table Integrated Circuit 

VG1 VG2 T1 T2 T3 T4 Vout

0 0 off off on on 1
0 1 off on on off 1
1 0 on off off on 1
1 1 on on off off 0

DDV

1GV

outV

2GV
2T

1T

3T 4T

Figure 5.8 CMOS (Two-Input) NAND Gate and Its Truth Table

Truth Table Integrated Circuit 

VG1 VG2 T1 T2 T3 T4 Vout

0 0 off off on on 1
0 1 off on on off 0
1 0 on off off on 0
1 1 on on off off 0

DDV

1GV

outV

2GV

1T 2T

3T

4T

Figure 5.9 CMOS (Two-Input) NOR Gate and Its Truth Table
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5.6 CMOS LOGIC NETWORKS

Design of logic networks using integrated transistors is an extensive discipline

referred to as VLSI technology. Physical aspects of transistors play a major role in

the layout of logic gates. VLSI technology is beyond our scope here. Nonetheless,

the design concepts illustrated in Section 5.5 can be used to design integrated logic

gates using CMOS transistors without exploring their practical aspects in detail. To

understand how PMOS andNMOS transistors can be interconnected to realize a logic

function, we analyze the CMOS logic circuit in Figure 5.10. We describe the logic

function of the circuit by determining the state of each PMOS andNMOS transistor as

the input voltages change according to the truth table.

An NMOS transistor is off when its input gate voltage is equal to 0V, and it is on

when its input gate voltage is equal to 5V.A PMOS transistor is off when its input gate

voltage is equal to 5V, and it is on when its input gate voltage is equal to 0V. Using

these properties of NMOS and PMOS transistors, one should be able to determine the

state of each transistor in the logic circuit. The truth table of the integrated logic circuit

is also shown in Figure 5.11.

Using the SOP method, the logic function of the integrated logic circuit is

evaluated and simplified to the expression

f ¼ �x1 � �x2 � �x3 þ �x1 � �x2 � x3 þ �x1 � x2 � �x3 ¼ �x1ð�x2 þ �x3Þ

Note that the logic expression is in a complemented form which combines NAND

and NOR operations. Therefore, to obtain a simple integrated logic circuit, the

VDD

Vx2

Vf

Vx3 T3

T2

T6 T5

T4

T1

Vx1

Figure 5.10 Integrated CMOS (Three-Input) Logic Circuit
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designer should attempt to express the logic function as a complemented form using

DeMorgans theorem. Complemented products are implemented using NMOS tran-

sistors in series, and complemented sums are implemented using PMOS transistors in

parallel. To design an integrated logic circuit from explicit logic functions, whichmay

not be complemented easily, we use the CMOS logic gates described in Section 5.5.

The resulting integrated circuits are only gross approximations of the actual circuits.

In practice, however, advanced VLSI methods and propriety methods are used to

design efficient CMOS integrated logic circuits which take into account the physical

aspects of CMOS transistors.

5.7 PRACTICAL ASPECTS OF LOGIC GATES

5.7.1 Fan-in and Fan-out Effects

In this section we describe the physical aspects of logic gates, which include the fan-

in, fan-out, noise margin, power dissipation, and propagation delays. The fan-in is the

number of inputs of a logic gate. For examples, a two-input ANDgate has a fan-in of 2

and a three-input NANDgate has a fan-in of 3. So aNOT gate always has a fan-in of 1,

which implies that for any logic circuit the inputs cannot be increased beyond a finite

number (i.e., fan-in). If the number of inputs is increased, the parasitic capacitance and

thus the propagation delay is increased and the noisemargin is lowered. Normally, the

propagation delay increases as a quadratic function of the fan-in. The number of gates

that each logic gate can drivewhile providing voltage levels in the guaranteed range is

called the standard load or fan-out. The fan-out depends on the amount of electric

current that a gate can source or sinkwhile driving other gates. The effects of loading a

logic gate output with more than its rated fan-out include the following:

. In the LOW state the output voltage VOL may increase above VOLmax.

. In the HIGH state the output voltage VOH may decrease below VOHmin.

. The operating temperature of the device may increase, thereby reducing the

reliability of the device and eventually causing the device to fail.

. Output rise and fall times may increase beyond specifications.

. The propagation delay may rise above the value specified.

VG1 VG2 VG3 T1 T2 T3 T4 T5 T6 Vout

0 0 0 off off off on on on 1
0 0 1 off off on on on off 1
0 1 0 off on off on off on 1
0 1 1 off on on on off off 0
1 0 0 on off off off on on 0
1 0 1 on off on off on off 0
1 1 0 on on off off off on 0
1 1 1 on on on off off off 0

Figure 5.11 Truth Table of the CMOS Logic Circuit in Figure 5.10
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Normally, as in the case of fan-in, the propagation delay introduced by a gate

increases as the fan-out increases.

5.7.2 Noise Margins

Gate circuits are constructed to sustain voltage variations in input and output voltage

levels. Voltage variations are usually the result of several factors.

. Batteries lose their full potential, causing the supply voltage to drop.

. High operating temperatures may cause a drift in transistor voltage and current

characteristics.

. Spurious pulses may be introduced on signal lines by normal surges of current in

neighboring supply lines.

All these undesirable voltage variations that are superimposed on normal operating

voltage levels are called noise. Gates are designed to tolerate a certain amount of noise

on their input and output ports. Themaximum noise voltage level that is tolerated by a

gate, called a noise margin, is derived from the voltage transfer characteristic

measured under different operating conditions. It is normally supplied in the

documentation about the gate provided by the manufacturer.

. NML (low noise margin): the largest noise amplitude that is guaranteed not

to change the output voltage level when it is superimposed on the input

voltage of the logic gate (when this voltage is in the LOW interval).

NML¼VILmax�VOLmax.

. NMH (high noise margin): the largest noise amplitude that is guaranteed not

to change the output voltage level when it is superimposed on the input

voltage of the logic gate (when this voltage is in the HIGH interval).

NMH¼VOHmin�VIHmin.

5.7.3 Propagation Delay

Gate propagation delay is the delay introduced by the gate for a signal appearing at its

input, before it reaches the gate’s output. Gate propagation delay may not be the same

for both transitions (i.e., gate propagation delay will be different for low-to-high

transition as compared to high-to-low transition). Low-to-high transition is called

turn-on delay, and high-to-low transition is called turn-off delay. Different technical

terms are used to specify the gate propagation delay: rise time, fall time, and

propagation delay.

. Rise time is the time required for the output voltage to increase (rise) fromVILmax

to VIHmin.

. Fall time is the time required for the output voltage to decrease (fall) fromVIHmin

to VILmin.

PRACTICAL ASPECTS OF LOGIC GATES 77



. Propagation delay is the time between the logic transition on an input and the

corresponding logic transition on the output of the logic gate. In other words, the

propagation delay is the time it takes the output of a gate to respond to a change at

its inputs. Generally, it is measured at midpoints (50% of the signal).

Figure 5.12 illustrates time characteristics and the propagation delay of a

typical inverter (NOT) logic gate. The propagation delay, a critical parameter in a

sequential circuit, is described in Chapters 7 and 8. In general, input and output

waveforms are drawn without showing the propagation delays introduced by the

various gates. The worst-case propagation delay must be considered when

designing logic circuits using CAD tools to obtain functional digital circuits. The

VHDL code in Figure 5.13 includes the propagation delay introduced by a typical

inverter gate.

The clause after 20 ns follows the concurrent assignment expression of the

output f. The 20 ns is the time it takes for the output to take effect after any change

in the input signals x. This time interval mimics the actual propagation of a

practical inverter. In practice, when using CAD tools, a synthesized logic circuit is

generally resynthesized with realistic propagation delays, which take into account

propagation delays of the targeted platforms.

x

y

50%

50%
90%

10%

90%

10%

Propagation Delay
tr

Rise Time

tf
Fall Time

Input

Output

Figure 5.12 Time Characteristics and Propagation Delay of a Typical Inverter

library ieee ; 
use ieee.std_logic_1164.all; 

entity inverter_circuit is
 port(

x : in std_logic;
 f : out std_logic);
end inverter_circuit; 
architecture behavior of inverter_circuit is
 begin 
 f <= not x after 20 ns;
end behavior; 

Figure 5.13 VHDL Code for a Typical Inverter with Propagation Delay

78 INTEGRATED LOGIC



5.7.4 Power Dissipation

Power dissipation is an important metric, for two reasons. The amount of current and

power available in a battery is nearly constant. The power dissipation of a circuit or

system defines the battery’s life. The greater the power dissipation, the shorter the

battery life. The power dissipation is proportional to the heat generated by the chip or

system. Excessive heat dissipation may increase the operating temperature and cause

the gate circuitry to drift out of its normal operating range, and may cause gates to

generate improper output values. Thus, the power dissipation of any gate imple-

mentation must be kept as low as possible. The power consumed by a logic gate under

steady-state conditions is known as static power dissipation. Dynamic power

dissipation is the power consumed during input and output transitions.

. Ps (static power dissipation): the power consumed when the output or input is

not changing or when the clock is turned off. Normally, static power dissipation

is caused by leakage current. [As the size of the transistor is reduced (below

90 nm), the leakage current could be as high as 40% of the total power

dissipation.]

. Pd (dynamic power dissipation): the power consumed during output and input

transitions when the signal level changes. It is caused by the switching current,

which charges and discharges parasitic capacitance. It is also caused by the

short-circuit current when both NMOS and PMOS transistors are momentarily

on at the same time. Pd is the actual power consumed by transistors plus the

leakage current.

NMOS circuits consume static and dynamic power, whereas CMOS circuits

consume only dynamic power. Thus, CMOS power dissipation is less than that of

NMOScircuits. The total power dissipation is the sumof the static and dynamic power

dissipation.

5.8 TRANSMISSION GATES

A transmission gate is constructed from a normally open switch (NMOS transistor)

wired in parallel with a normally closed switch (PMOS transistor), with comple-

mentary control signals. Figure 5.14 shows the transistor and schematic representa-

tions of a transmission gate. NMOS transistors pass logic 1 well and logic 0 poorly,

and the opposite is true for PMOS. However, a transmission gate is equally good at

passing a 0 or 1 when an external control signal is asserted.

5.8.1 Multiplexer

CMOS transmission gates provide an efficient way to build steering logic. Steering

logic circuits are circuits that route data inputs to outputs based on the settings of

control signals. As an example of such a circuit, consider a circuit that has two data

inputs, x1 and x2, a single output, f, and a control input, s. The function steers x1 to f
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when s is equal to 0 and x2 to fwhen s is equal to 1. This selector function, referred to

as a 2 : 1 multiplexer, is shown in Figure 5.15.

5.8.2 XOR Gate

The circuit diagram of a two-input XOR gate is shown in Figure 5.16. The number of

transistors required to implement this function is greatly reduced using CMOS

transmission gates than using the CMOS or NMOS technologies. The output f is set

Transmission Logic Circuit Graphical Symbol 

's

s

x f

's

s

x f

Figure 5.14 CMOS Transmission Gate

x1

x2

f

s

Figure 5.15 Implementation of a 2 : 1 Multiplexer Using CMOS Transmission Gates

x1

x2 f

Figure 5.16 XOR Gate Using Transmission Gates
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to the value of x2 when x1 is equal to 0 by the top transmission gate. On the other hand,

the bottom transmission gate sets the output f to the complement value of x2 when x1 is

equal to 1.

PROBLEMS

5.1 Implement a two-input AND gate using CMOS transistors and calculate the

number of transistors required.

5.2 Implement a two-input OR gate using CMOS transistors and calculate the

number of transistors required.

5.3 Implement a three-input NANDgate using CMOS transistors and calculate the

number of transistors required.

5.4 Implement a three-input NOR gate using CMOS transistors and calculate the

number of transistors required.

5.5 Implement a three-input AND gate using CMOS transistors and calculate the

number of transistors required.

5.6 Implement a three-input OR gate using CMOS transistors and calculate the

number of transistors required.

5.7 Determine the output logic function f(x1,x2,x3) of the three-input CMOS logic

circuit in Figure P5.7.

VDD

Vx2

Vf

Vx3

T3

T1

T6

T5

T4

T2

Vx1

Figure P5.7
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5.8 Implement the following logic functions usingCMOS transistors and calculate

the number of transistors required.

(a) f ðx1; x2Þ ¼ x1 � x2

(b) f ðx1; x2; x3Þ ¼ x1 þ x2x3

(c) f ðx1; x2; x3Þ ¼ ðx1 þ x2Þx3
(d) f ðx1; x2; x3; x4Þ ¼ ðx1 þ x2Þþ �x1x3

(e) f ðx1; x2; x3; x4Þ ¼ x1 þ x2x3 þ x4

(f) f ðx1; x2; x3; x4Þ ¼ x1x2 þ x3x4

5.9 Determine the number of transistors in the logic circuit in Figure P5.9 if the

gates were implemented in CMOS technology.

5.10 Determine the number of transistors in the logic circuit in Figure P5.10 if the

gates were implemented in CMOS technology.

5.11 Determine the number of transistors in the logic circuit in Figure P5.11 if the

gates were implemented in CMOS technology.

x1

x2

x3

x4

x5

f

Figure P5.9

x1

x2

x3

f

Figure P5.10
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y

s

cout
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Figure P5.11
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5.12 Determine the number of transistors in the logic circuit in Figure P5.12 if the

gates were implemented in CMOS technology.

5.13 Determine the number of transistors in the logic circuit in Figure P5.13 if the

gates were implemented in CMOS technology.

5.14 Determine the output waveform of the two-input NAND gate in Figure P5.14.

Assume that the NAND gate has a propagation delay of 5 ns. The timing

diagram has a 5-ns resolution.

5.15 Determine the output waveform of the two-input NAND gate in Figure P5.14.

Assume that the NAND gate has a propagation delay of 10 ns.

5.16 Write VHDL code to implement a two-input NAND gate. Assume that the

NAND gate has a propagation delay of 10 ns.

x1

x2

x3

x4

f

Figure P5.12

x1

x2

x3

x4

f

Figure P5.13

x(in)
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f(out)

Figure P5.14
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5.17 Determine the output waveform of the two-input XOR gate in Figure P5.17.

Assume that theXOR gate has a propagation delay of 5 ns. The timing diagram

has a 5-ns resolution.

5.18 Determine the output waveform of the two-input XOR gate in Figure P5.17.

Assume that the XOR gate has a propagation delay of 10 ns.

5.19 Write VHDL code to implement a two-input XOR gate. Assume that the XOR

gate has a propagation delay of 10 ns.

5.20 Determine the outputwaveformof the logic circuit in Figure P5.20(a). Assume

that all gates have a propagation delay of 5 ns. The timing diagram in

Figure P5.20(b) has a 5-ns resolution.

5.21 Write VHDL code to implement the logic circuit in Figure P5.20(a). Assume

that all gates have a propagation delay of 10 ns.

x(in)

y(in)

f(out)

Figure P5.17
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Figure P5.20
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5.22 Determine the outputwaveform of the logic circuit in Figure P5.22(a). Assume

that all gates have a propagation delay of 5 ns. The timing diagram in

Figure P5.22(b) has a 5-ns resolution.

5.23 Write VHDL code to implement the logic circuit in Figure P5.22(a). Assume

that all gates have a propagation delay of 10 ns.

5.24 Write VHDL code to implement the logic circuit in Figure P5.24. Assume that

all gates except the NOT gate have a propagation delay of 10 ns. The NOT gate

has a propagation delay of 5 ns.

x y z
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f
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Figure P5.22
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Figure P5.24
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5.25 Write VHDL code to implement the logic circuit in Figure P5.25. Assume that

all gates except theXOR gate have a propagation delay of 10 ns. TheXOR gate

has a propagation delay of 15 ns.

5.26 Draw a timing diagram for each of the following logic functions showing

propagation delays. Assume a propagation delay of 1 ns through all NOT,

AND, andOR logic gates. (Hint: Draw a timing diagramwith 1-ns resolution.)

(a) f ðx1; x2Þ ¼ ð�x1 þ �x2Þðx1 þ �x2Þð�x1 þ x2Þ
(b) f ðx1; x2Þ ¼ ðx1 þ x2Þ �x1 þ �x2

(c) f ðx1; x2; x3Þ ¼ �x1�x2�x3 þ �x1�x2x3 þ x1�x2x3

(d) f ðx1; x2; x3Þ ¼ ð�x1 þ �x2 þ �x3Þð�x1 þ �x2 þ x3Þðx1 þ �x2 þ x3Þ

5.27 Repeat Problem 5.26 after simplifying the logic functions. Compare the

resulting propagation delays to those of Problem 5.26.
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cout
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Figure P5.25
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6 Logic Function Optimization

6.1 OBJECTIVES

The objectives of the chapter are to:

. Describe logic function optimization

. Describe the Karnaugh map optimization method

. Describe the optimization of incomplete logic functions

. Provide design examples

. Describe the Quine–McCluskey optimization method

6.2 LOGIC FUNCTION OPTIMIZATION PROCESS

The process of digital design consists of three steps. The first step is to design a truth

table according to specifications, then minimize the logical expression obtained from

the truth table using optimization techniques, and finally, implement the minimized

expression using logic gates. Theminimization or optimization step is very important

in both ASIC- and PLD-based designs. Minimization is the process of deriving the

logical expression with a minimal number of literals, thereby reducing the number of

gates and gate inputs and thus reducing the cost and chip area. By optimizing the

logical expression, weminimize the number of inputs on first- and second-level gates.

While minimizing any expression, we assume that both true and complemented

versions of all inputs are available. There are different methods of optimizing logic

expressions. The most popular ways to illustrate minimization steps are to use

Karnaugh maps and prime implicant charts.

6.3 KARNAUGH MAPS

Earlier it was explained that the key to finding the minimum-cost expression for a

given logic function is to reduce the number of product (or sum) terms needed in the

expression by applying Boolean algebra theorems. Karnaugh mapping is a method

Introduction to Digital Systems: Modeling, Synthesis, and Simulation Using VHDL, First Edition.
Mohammed Ferdjallah.
� 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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used to simplify a truth table using sum of products or product of sums along with

simultaneous optimization of the output function. Karnaugh maps are the graphical

equivalent of a truth table. In other words, Karnaugh maps are an easy way of

designing and optimizing a circuit from a truth table. Consider the function f in

Figure 6.1.

The canonical (not reduced) SOP expression for the logic function f consists of the

minterms m0, m2, m4, m5, and m6, and can be written

f ¼ �x ��y ��zþ �x � y ��zþ x ��y ��zþ x ��y � zþ x � y ��z

Using Boolean algebraic manipulations, the logic function f can be simplified in

the following steps:

f ¼ ð�x ��y ��zþ �x � y ��zÞþ ðx ��y ��zþ x � y ��zÞþ ðx ��y � zþ x ��y ��zÞ
¼ �xðyþ�yÞ�zþ xðyþ�yÞ�zþ x ��yðzþ�zÞ
¼ �x ��zþ x ��zþ x ��y
¼ ðxþ �xÞ�zþ x ��y

The minimum expression for the logic function f can be written

f ¼ �zþ x ��y

The expression above can be checked by comparing it with the truth table. The

expression has the product term �z because f¼ 1 when z¼ 0, regardless of the values

x or y. Ignoring z and just looking at x and y, the remaining 1 occurs when x¼ 1 and

y¼ 0. Hence, the final portion of the minimum expression is realized. This pattern

may not be recognized until the Boolean algebra reduction theorems are implemen-

ted. However, using these Boolean algebra theorems in the process of reducing the

logical expression to the minimum expression can become tedious when there are

more variables.

The Karnaugh map method is an alternative to the truth table form for

representing a function. The map consists of cells that correspond to the rows

of a truth table. Consider the two-variable Karnaugh map in Figure 6.2, which

shows the truth table form, where each of the four rows is identified by a minterm.

Row x y z f

1 0 0 0 0 

0 1 0 0 1 

1 0 1 0 2 

0 1 1 0 3 

1 0 0 1 4 

1 1 0 1 5 

1 0 1 1 6 

0 1 1 1 7 

Figure 6.1 Truth Table Sample
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It also shows the Karnaugh map, which has four cells. The columns of the map are

labeled by the value of x2, and x1 labels the rows. This configuration creates a

table that houses the locations of the minterms, as shown in Figure 6.2. Karnaugh

maps have the advantage of allowing easy recognition of minterms that can be

combined using the properties of Boolean algebra. Minterms in any two cells that

are adjacent, either row or column, can be combined to produce a simplified

minterm.

6.4 TWO-VARIABLE KARNAUGH MAP

An example of a Karnaugh map for a two-variable function is shown in Figure 6.3.

Each value of the truth table is represented in the Karnaugh map. A 1 appears in both

columns of the top row. Therefore, there exists a single product term that can cause f

to be equal to 1 when the input variables have values that correspond to either of these

cells. These values have been circled and are identified as x1¼ 0, but x2 equals 0 for

the left column and 1 for the right. This implies that if x1¼ 0, then f¼ 1, regardless

of the value of x2. The product term represented by this circle is simply �x1. Similarly,

x1 x2 f

0 0 m0

0 1 m1

1 0 m2

1 1 m3

x2
x1

m0 m1

m2 m3

0 1

0

1

Figure 6.2 Two-Variable Karnaugh Map

x1 x2 f

1 0 0 

1 1 0 

0 0 1 

1 1 1 

x2x1f +=

x2
x1 10

0

1

11

10

Figure 6.3 Karnaugh Map Simplification of a Two-Variable Logic Function
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if x2 is 1, then regardless of x1, the function f will also equal 1. Hence, the minimum

realization for the logic function f can be expressed as

f ¼ �x1 þ x2

Algebraic simplification yields the same logic expression. Therefore, to find a

minimum implementation for a given logic function, it is necessary to find the

smallest number of product terms that produce a value of 1 for all cases. At the same

time, the number of these product terms should be as low as possible. Notice how

some of the 1’s are used more than once because a product term that covers two

adjacent cells is cheaper than a single-cell product term to implement.

6.5 THREE-VARIABLE KARNAUGH MAP

Karnaugh maps can be modified to handle a greater number of inputs. For example,

combining two two-variable maps together can create a three-variable Karnaugh

map. Figure 6.4 shows a three-variable truth table and a three-variable Karnaugh

map. Here x1 and x2 identify the rows of the map and x3 identifies the columns.

To assure that all the minterms in the adjacent cells of the map can be combined into

a single product term, the adjacent cells must differ by only one bit position. As you

may notice, the values of x1 and x2 count in the order 00, 01, 11, 10 rather than the

usual 00, 01, 10, 11. This ensures that each cell varies by only one bit position from

each adjacent cell. The map also wraps around itself, so the top and bottom cells are

also adjacent to each other. The cell adjacency of a Karnaugh map obeys the Gray

code, which consists of a sequence of code where each value differs by only one bit

position at a time.

x1 x2 x3 f

0 0 0 m0

1 0 0 m1

0 1 0 m2

1 1 0 m3

0 0 1 m4

1 0 1 m5

0 1 1 m6

1 1 1 m7

x1 x2

x3

m0

m2

m1

m3

00

01

10

11

10

m6

m4

m7

m5

Figure 6.4 Three-Variable Karnaugh Map
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In a three-variablemap it is possible to combine cells to produce product terms that

correspond to a single cell, two adjacent cells, or a group of four adjacent cells.

An example of this case is shown in Figure 6.5, which is the Karnaugh map that

represents the truth table in Figure 6.1. The four cells in the left column correspond to

(x1, x2, x3) 000, 010, 110, and 100. In this case, f¼ 1 when x3¼ 0, regardless of the

values of x1 or x2 and hence the product term �x3 represents these four cells. The

remaining 1, corresponding to minterm m5, which can be represented by x1 � �x2 � x3.
But if the adjacent cell is included, the final value can be reduced further, to x1 � �x2.
The complete realization of f can be expressed as

f ¼ �x3 þ x1 � �x2

which is similar to the result found by algebraic simplification in Section 6.3. It is

possible to have all the cells in the Karnaugh map set to 1, which would permit every

cell in the map to be enclosed within one circle. This is a trivial case where f always

equals 1 no matter what the input is.

6.6 FOUR-VARIABLE KARNAUGH MAP

A four-variable map is constructed similarly to the three-variable Karnaugh map, but

now two three-variable maps are combined. Figure 6.6 shows the structure and

minterm locations of a four-variable Karnaugh map. Notice that the values of x1 and

x2 and of x3 and x4 count in the order 00, 01, 11, 10 rather than the usual 00, 01, 10, 11.

This ensures that each cell varies by only one bit position from each adjacent cell. The

map also wraps around itself, so the top and bottom cells are adjacent to each other.

The cells of the rightmost column are adjacent to those in the leftmost column of the

map. The four corner cells are also adjacent and form a group of four minterms.

Figure 6.7 shows an example of a four-variable function reduced in a four-variable

Karnaugh map. Notice that just as the top and bottom edges of a map are adjacent,

213 xxxf +=

21xx
3x

00

01

0 1

11

10

1

1

1

1 1

0

0

0

Figure 6.5 Karnaugh Map Simplification of a Three-Variable Logic Function
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so are the right and left edges. This is shown by the 1’s in the four corners of the map,

which can be enclosed within one circle, forming a group of four 1’s. The rest of the

1’s are then enclosed within the other circles to complete the function as shown in

Figure 6.7.

In all previous examples, the Karnaugh maps had unique solutions for the

function f. However, other choices are sometimes available to minimize the

function. In this case the solution is not unique. Such an example is shown in

Figure 6.8. The groups of four 1’s in the top-left and bottom-right corners of the

map are realized by the terms �x1�x3 and x1x3, respectively. This leaves the two 1’s,

which correspond to the term x1x2�x3. But these two 1’s can be realized more

efficiently by treating them as a group of four 1’s instead. As shown in the map, the

last 1’s can be grouped in two different ways. One choice leads to the product term

x1x2 while the other leads to x2�x3. Both are valid and produce a function with the

same minimum implementation.
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Figure 6.6 Four-Variable Karnaugh Map
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6.7 FIVE-VARIABLE KARNAUGH MAP

A five-variable Karnaugh map can be constructed using two four-variable Karnaugh

maps. Imagine a map like those drawn previously, with an identically sized map

stacked directly on top of the other. The two halves are distinguished by the fifth

variable, which can be equal to 0 or 1. Since it is difficult to draw a three-dimensional

object on two-dimensional paper, a five-variable Karnaugh map can have both parts

drawn side by side as illustrated in Figure 6.9.

The logic function mapped into the Karnaugh map of Figure 6.9 has five variables.

The two groups of four 1’s shown in the upper right corners of eachmap section can be

circled as one group and denote the product term �x1x3. Since the 1’s appear in both

mapswhenx5 ¼ 0 andx5 ¼ 1, theydo not depend onx5. The same is true for the pair of
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Figure 6.8 Multiple Karnaugh Map Solutions
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1’s in the vertical line in both maps. The last 1 appears only in the x5 ¼ 1 and hence

gives the largest product term, as seen in the final function of f.

All theKarnaughmap examples illustrated earlier used the sum-of-products (SOP)

form, which considers the cells of values equal to 1. It is also possible to synthesize f

by considering the values that make f¼ 0. This can easily be done using Karnaugh

maps. The method is the same, but now we use the cells of value 0 in the Karnaugh

map rather than the cells with 1’s. For example, let us use the same three-variable

Karnaugh map as that used in Figure 6.5, but now use the 0’s in the map instead. The

corresponding Karnaugh map is illustrated in Figure 6.10. The cells of the Karnaugh

map contain the maxterms. Therefore, the method used to write in products-of-sums

(POS) form is used to write the function of the Karnaugh map. The same Karnaugh

rules apply to maxterms to simplify the logic function.

6.8 XOR AND NXOR KARNAUGH MAPS

Certain patterns for a Karnaughmap should be recognized readily. These patterns are

the XOR and NXOR logic functions, which can reduce greatly the implementation of

the logic function. Figure 6.11 shows patterns of Karnaugh maps that result in a XOR

logic expression. Similarly, Figure 6.12 shows the equivalent NXORKarnaughmaps.

NXOR are the complement of the XOR Karnaugh maps.

6.9 INCOMPLETE LOGIC FUNCTIONS

In digital systems there are certain input conditions for which a specific function

can never occur or possibly would simply be unimportant. For example, suppose

that you have two interlocking switches, A and B, such that both switches cannot

be closed at the same time. Therefore, there are only three possible states for the

switches. Switch A is open while switch B is closed, switch A is closed while

(x2 + x3) ⋅ (x1 + x3)f =

x3x1

x3

M0

M2

M1

M3

00

01

10

11

10
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M7

M5

x2x1

x3
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11

10

1

1

1

11

0

0

0

Figure 6.10 Karnaugh Map Simplification of a Two-Variable POS Logic Function
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switch B is open, or switches B and A are both open. In digital terms, the inputs

are 10, 01, or 00. But the value 11 will never occur. The value that will never

occur is called a don’t-care condition. Any function with don’t-care conditions is

said to be specified incompletely. Don’t-care states can be an advantage in

designing logic circuits. Since a don’t care will never occur, the designer can

assume that the event is either 1 or 0, whichever helps minimize the cost.

Consider the Karnaugh map example in Figure 6.13, which includes don’t-care

states. Notice that not all the d’s are used in the Karnaugh map. Since the don’t-

care states can be either 1 or 0, they are used to realize minimum sum-of-products

or product-of-sums functions.

x4x3f ⊕= x2x1f ⊕=

x3x2f ⊕= x4x3x2x1f ⊕⊕⊕=
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Figure 6.11 Karnaugh Map Patterns for Various XOR Logic Expressions
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6.10 QUINE–McCLUSKEY MINIMIZATION

The Karnaughmapmethod is used to minimize logic functions of up to five variables.

For logic functions with more than fivevariables, the Karnaughmapmethod becomes

impractical. The Karnaugh method uses maps, which become very difficult to design

as the number of input variables increases. Pattern recognition of adjacent cells

becomes tedious or impossible. An alternative method is the Quine–McCluskey

method. Quine–McCluskey is based on the same basic principles of the Karnaugh

map method. It uses an adjacency theorem to reduce minterms for which the logic

(x3 ⊕ x4)f = f = (x1 ⊕ x2)

f = (x2 ⊕ x3) f = (x1 ⊕ x2 ⊕ x3 ⊕ x4)
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Figure 6.12 Karnaugh Map Patterns for Various NXOR Logic Expressions
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function is equal to 1. Unlike a Karnaugh map, the Quine–McCluskey method uses

tables, which provide simple pattern recognitions.

Quine–McCluskeymethod is a tabularmethod thathasanadvantageoverKarnaugh

mapswhen a large number of inputs are present.Withmore inputs, pattern recognition

in Karnaugh maps can be tedious or sometimes even impossible. The

Quine–McCluskey method does not require pattern recognition. It consists of two

steps: (1) finding all prime implicants of the function, and (2) selecting a minimal

set of prime implicants of the function. An implicant is the product of some of the

variables (in complemented or uncomplemented form) for which the function is

equal to 1. Minterms for which the function is equal are considered implicants.

Product terms that result from minterm simplifications are also implicants. An

implicant is called a prime implicant if it cannot be combined with other implicant

or implicants to form a reduced product of variables. This is similar to combining

overlapping or adjacent groupings of minterms to form the largest grouping (power

of 2) of adjacent cells in the Karnaugh map method. If a prime implicant includes a

minterm that does not belong to any other prime implicants, it is called an essential

prime implicant. Any primary implicant that is not an essential prime implicant is a

secondary prime implicant.

In the first phase of Quine–McCluskey simplification, a prime implicant table is

constructed using the following steps:

1. List minterms in a column using their binary representation.

(a) Group minterms into groups containing the same number of 1’s.

SOP Implementation 
f = x2x3 + x3x4

f = (x2 + x3) . (x3 + x4)

POS Implementation 

x2x1

00

01
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x4x3

x2x1

x4x3

10110100

100
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d
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11

ddd
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00
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11
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Figure 6.13 Karnaugh Maps with Don’t-Care States for Both SOP and POS Design
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(b) Place groupings differing by one literal adjacent to one another (literals are

another name for the variables of the function).

2. Search for logically adjacent terms between adjacent groups.

(a) Combine each pair of terms into a single term by replacing the differing

literal with “-.”

(b) Repeat until no further columns can be created.

3. Construct a prime implicant chart with minterms listed horizontally, prime

implicants vertically, and place an�wherever a prime implicant covers a

minterm.

4. Select all essential prime implicants.

5. Select a minimal cover from the remaining prime implicants by eliminating

rows covered by another row and columns covered by another column.

6. Include don’t cares in the prime implicant table but not in the prime implicant

chart.

Similar to the Karnaugh map method, the Quine–McCluskey method can also be

applied to POS design and incomplete logic functions. The following example

illustrates the process of Quine–McCluskey minimization. Consider the logic func-

tion defined by the following implicit SOP expression:

f ¼
X

mð1; 3; 7; 14; 15Þ

First, we design the prime implicant table shown in Figure 6.14. The second

column of the table consists of SOP minterms, which are grouped accordingly to the

number of complemented variables in the minterms. The third column consists of

reduced implicants by combining implicants from the first column. The same process

will be duplicated if further combinations of the reduced implicants are possible;

otherwise, the process terminates. Prime implicants are indicted by an asterisk (�).
Once no further logic reduction is possible, the implicants, which are not reduced,

constitute the prime implicants. To identify essential prime implicants and secondary

prime implicants, another table is generated, which lists the prime implicants versus

the SOP minterms as shown in Figure 6.15. An�mark is checked if the primary

Number of 

Uncomplemented

Variables

Implicants

(SOP Minterms)

Simplification

First Round 

1 0001 0001 with 0011=>00-1* 

2 0011 0011 with 0111=>0-11* 

3 0111

1110

0111 with 1111=>-111* 

1110 with 1111=>111-* 

4 1111

Figure 6.14 Prime Implicant Table
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implicant covered the corresponding minterm. A prime implicant which covers a

minterm that is not covered by any other prime implicant, an essential prime

implicant, is indicated by a circled� (�). The remaining prime implicants are

secondary prime implicants. Minterm columns, for which minterms are covered by

essential prime implicants, are removed from the table. The essential prime im-

plicants will be included in the simplified logic function. From the remaining

secondary prime implicants, only those that cover all the remaining minterms with

the fewest secondary prime implicants will be selected. The number of secondary

prime implicants that belong to the same column may provide alternative solutions.

Whenever possible, only one secondary prime implicant should be considered from a

single column. Therefore, the final simplified expression of the logic function is

f ¼ x1x2x3 þ x2x3x4 þ �x1�x2x4

PROBLEMS

6.1 Using Karnaugh maps, simplify the following implicit SOP logic functions.

(a) f ðx1; x2; x3Þ ¼
Pðm0;m1;m7Þ

(b) f ðx1; x2; x3Þ ¼
Pðm0;m1;m3;m5Þ

(c) f ðx1; x2; x3Þ ¼
Pðm0;m1;m3;m7Þ

(d) f ðx1; x2; x3Þ ¼
Pðm0;m3;m5;m6Þ

(e) f ðx1; x2; x3Þ ¼
Pðm0;m1;m2;m5;m7Þ

(f) f ðx1; x2; x3; x4Þ ¼
Pðm2;m3;m6;m8;m9;m12Þ

(g) f ðx1; x2; x3; x4Þ ¼
Pðm0;m2;m6;m8;m10;m14Þ

(h) f ðx1; x2; x3; x4Þ ¼
Pðm0;m5;m6;m7;m14;m15Þ

(i) f ðx1; x2; x3; x4Þ ¼
Pðm5;m6;m7;m13;m14;m15Þ

(j) f ðx1; x2; x3; x4Þ ¼
Pðm7;m10;m11;m13;m14;m15Þ

(k) f ðx1; x2; x3; x4Þ ¼
Pðm2;m4;m8;m8;m9;m10;m14Þ

6.2 Using Karnaugh maps, simplify the following implicit POS logic functions.

(a) f ðx1; x2; x3Þ ¼ PðM3;M4;M6Þ
(b) f ðx1; x2; x3Þ ¼ PðM2;M4;M5;M6Þ
(c) f ðx1; x2; x3Þ ¼ PðM1;M2;M4;M7Þ

Minterms Covered by Prime Implicants 1 3 7 14 15

00-1 1,3 ⊗ x 
x x 00-1 3,7 

x x -111 7,15 
111- 14,15 ⊗ x

Figure 6.15 Prime Implicant Chart
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(d) f ðx1; x2;x3; x4Þ ¼ PðM3;M6;M7;M11;M13Þ
(e) f ðx1; x2; x3; x4Þ ¼ PðM1;M3;M4;M6;M9;M11Þ
(f) f ðx1; x2; x3; x4Þ ¼ PðM3;M6;M7;M11;M13;M15Þ
(g) f ðx1; x2; x3; x4Þ ¼ PðM1;M3;M5;M12;M14;M15Þ
(h) f ðx1; x2;x3; x4Þ ¼ PðM3;M6;M7;M11;M12;M14Þ
(i) f ðx1; x2; x3; x4Þ ¼ PðM0;M1;M5;M8;M9;M13;M15Þ
(j) f ðx1; x2; x3; x4Þ ¼ PðM2;M3;M6;M10;M12;M13;M14Þ
(k) f ðx1; x2;x3; x4Þ ¼ PðM0;M1;M2;M4;M6;M8;M10;M12Þ

6.3 Using Karnaugh maps, simplify the following incomplete SOP logic functions.

(a) f ðx1; x2; x3; x4Þ ¼
Pðm3;m4;m13;m15Þþ dð1; 7; 14Þ

(b) f ðx1; x2;x3; x4Þ ¼
Pðm1;m7;m13;m14Þþ dð3; 4; 15Þ

(c) f ðx1; x2; x3; x4Þ ¼
Pðm1;m4;m14;m15Þþ dð0; 5; 8; 9Þ

(d) f ðx1; x2;x3; x4Þ ¼
Pðm4;m9;m12Þþ dð1; 3; 6; 11; 14Þ

(e) f ðx1; x2; x3; x4Þ ¼
Pðm3;m6;m12Þþ dð0; 5; 9; 10; 15Þ

(f) f ðx1; x2; x3; x4Þ ¼
Pðm7;m8;m9;m11;m15Þþ dð0; 1; 4; 5Þ

(g) f ðx1; x2; x3; x4Þ ¼
Pðm0;m2;m6;m7Þþ dð8; 9; 10; 11; 13Þ

(h) f ðx1; x2;x3; x4Þ ¼
Pðm1;m4;m14Þþ dð0; 2; 5; 8; 10; 15Þ

(i) f ðx1; x2; x3; x4Þ ¼
Pðm1;m4;m8;m10;m15Þþ dð0; 2; 5; 9; 13Þ

(j) f ðx1; x2; x3; x4Þ ¼
Pðm2;m6;m8;m13;m15Þþ dð0; 5; 7; 10; 14Þ

6.4 Using Karnaugh maps, simplify the following incomplete POS logic functions.

(a) f ðx1; x2; x3; x4Þ ¼ PðM1;M7;M11;M13;M14Þþ dð2; 4; 8Þ
(b) f ðx1; x2;x3; x4Þ ¼ PðM2;M7;M10;M15Þþ dð0; 5; 8; 13Þ
(c) f ðx1; x2; x3; x4Þ ¼ PðM5;M9;M13Þþ dð1; 2; 6; 10; 14Þ
(d) f ðx1; x2;x3; x4Þ ¼ PðM10;M11;M13;M14Þþ dð0; 1; 4; 7Þ
(e) f ðx1; x2; x3; x4Þ ¼ PðM0;M2;M5;M6;M8Þþ dð9; 10; 11; 12Þ
(f) f ðx1; x2; x3; x4Þ ¼ PðM0;M11;M13;M15Þþ dð2; 3; 5; 6; 7Þ
(g) f ðx1; x2; x3; x4Þ ¼ PðM1;M2;M3;M4;M5;M6Þþ dð0; 8; 9; 10; 12Þ
(h) f ðx1; x2;x3; x4Þ ¼ PðM2;M4;M9;M11;M12Þþ dð0; 1; 3; 8; 10; 13Þ

6.5 Implement the following logic function using only NAND gates.

(a) f ðx1; x2Þ ¼ x1 � x2

(b) f ðx1; x2;x3Þ ¼ ðx1 þ x2Þðx1 þ x3Þ
(c) f ðx1; x2; x3Þ ¼ x3 þ x1x2

(d) f ðx1; x2;x3Þ ¼ x1x2 þð�x1 þ x3Þ
(e) f ðx1; x2; x3Þ ¼ ð�x1 þ x2Þðx2 þ �x3Þ
(f) f ðx1; x2; x3; x4Þ ¼ x1�x2 þ x2�x3x4 þ x1x4 þ �x2�x4

(g) f ðx1; x2; x3; x4Þ ¼ ðx2 þ x4Þð�x1 þ �x2 þ x3 þ x4Þðx1 þ �x2 þ �x3 þ �x4Þ
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(h) f ðx1; x2; x3; x4Þ ¼ ðx1 � x2Þðx3 � x4Þ
(i) f ðx1; x2; x3; x4Þ ¼ x1 � x2 � x3 � x4

6.6 Implement the following logic functions using only NOR gates.

(a) f ðx1; x2Þ ¼ x1 � x2

(b) f ðx1; x2; x3Þ ¼ ðx1 þ x2Þðx1 þ x3Þ
(c) f ðx1; x2; x3Þ ¼ x3 þ x1x2

(d) f ðx1; x2; x3Þ ¼ x1x2 þð�x1 þ x3Þ
(e) f ðx1; x2; x3Þ ¼ ð�x1 þ x2Þðx2 þ �x3Þ
(f) f ðx1; x2; x3; x4Þ ¼ x1�x2 þ x2�x3x4 þ x1x4 þ �x2�x4

(g) f ðx1; x2; x3; x4Þ ¼ ðx2 þ x4Þð�x1 þ �x2 þ x3 þ x4Þðx1 þ �x2 þ �x3 þ �x4Þ
(h) f ðx1; x2; x3; x4Þ ¼ ðx1 � x2Þðx3 � x4Þ
(i) f ðx1; x2; x3; x4Þ ¼ x1 � x2 � x3 � x4

6.7 Design a logic circuit to detectwhether a 4-bit binary number is an evennumber.

6.8 Design a logic circuit to detectwhether a 4-bit binary number is an odd number.

6.9 Design a logic circuit to detect whether a 4-bit binary number has even parity.

A binary number with even parity has an even number of 1’s.

6.10 Design a logic circuit to detect whether a 4-bit binary number has odd parity.

A binary number with odd parity has an odd number of 1’s.

6.11 Consider a logic function fwith the threevariablesx1,x2, andx3. The function f

is equal to 1 if and if only two variables are equal to 1; otherwise, the function f

is equal to zero.

(a) Draw a truth table for the function f.

(b) Using Karnaugh maps, simplify the function f.

(c) Draw a logic circuit that implements the function f.

6.12 Consider a logic function f with the four variables x1, x2, x3, and x4.

The function f is equal to 1 if any odd number of variables are equal to 1;

otherwise, the function f is equal to zero.

(a) Draw a truth table for the function f.

(b) Using Karnaugh maps, simplify the function f.

(c) Draw a logic circuit that implements the function f.

6.13 Consider a logic function f with the four variables x1, x2, x3, and x4. The

function f is equal to 1 if any even number of variables are equal to 1;

otherwise, the function f is equal to zero.

(a) Draw a truth table for the function f.

(b) Using Karnaugh maps, simplify the function f.

(c) Draw a logic circuit that implements the function f.
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6.14 Consider a logic function fwith the threevariablesx1,x2, andx3. The function f

is equal to 1 if (x1¼ 1 and x2¼ x3) or if (x1¼ 0 and x2 6¼ x3); otherwise, the

function f is equal to zero.

(a) Draw a truth table for the function f.

(b) Using Karnaugh maps, simplify the function f.

(c) Draw a logic circuit that implements the function f.

6.15 Consider a logic function f with the four variables x1, x2, x3, and x4. The

function f is equal to 1 if any two variables or more are equal to 1; otherwise,

the function f is equal to zero with the following exception. The function f

is also equal to zero if x1 is equal to zero and any two other variables are equal

to 1.

(a) Draw a truth table for the function f.

(b) Using Karnaugh maps, simplify the function f.

(c) Draw a logic circuit that implements the function f.

6.16 Consider a logic function f with the four variables x1, x2, x3, and x4. The

function f is equal to 1 if two or more variables are equal to 1; otherwise, the

function f is equal to zero.

(a) Draw a truth table for the function f.

(b) Using Karnaugh maps, simplify the function f.

(c) Draw a logic circuit that implements the function f.

6.17 Design a logic circuit that implements the truth table of a 2-bit adder

(Figure P6.17). The 2-bit adder adds a 2-bit binary number (x2x1) to a 2-bit

binary number (y2y1) and outputs a 3-bit binary number result (s3s2s1).

x2 x1 y2 y1 s3 s1 s1

0 0 0 0 0 0 0 

1 0 0 1 0 0 0 

0 1 0 0 1 0 0 

1 1 0 1 1 0 0 

1 0 0 0 0 1 0 

0 1 0 1 0 1 0 

1 1 0 0 1 1 0 

0 0 1 1 1 1 0 

0 1 0 0 0 0 1 

1 1 0 1 0 0 1 

0 0 1 0 1 0 1 

1 0 1 1 1 0 1 

1 1 0 0 0 1 1 

0 0 1 1 0 1 1 

1 0 1 0 1 1 1 

0 1 1 1 1 1 1 

Figure P6.17
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6.18 Design a logic circuit that implements the truth table of a 2-bit subtractor

(Figure P6.18). The 2-bit subtractor subtracts a 2-bit number binary (y2y1) from

a 2-bit binary number (x2x1) and outputs a 3-bit binary number (s3s2s1).

6.19 Design a logic circuit that implements the truth table of a 2-bit multiplier

(Figure P6.19). The 2-bit multiplier multiplies a 2-bit binary number (x2x1) by

a 2-bit binary number (y2y1) and outputs a 4-bit binary number result

(p4p3p2p1).

6.20 Design a logic circuit that implements the truth table of a BCD-to-excess-3

code converter (Figure P6.20).

x2 x1 y2 y1 s3 s1 s1

0 0 0 0 0 0 0 

1 1 1 1 0 0 0 

0 1 1 0 1 0 0 

1 0 1 1 1 0 0 

1 0 0 0 0 1 0 

0 0 0 1 0 1 0 

1 1 1 0 1 1 0 

0 1 1 1 1 1 0 

0 1 0 0 0 0 1 

1 0 0 1 0 0 1 

0 0 0 0 1 0 1 

1 1 1 1 1 0 1 

1 1 0 0 0 1 1 

0 1 0 1 0 1 1 

1 0 0 0 1 1 1 

0 0 0 1 1 1 1 

Figure P6.18

x2 x1 y2 y1 p4 p3 p1 p1

0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 1 1 0 0 

0 0 0 0 0 0 1 0 

1 0 0 0 1 0 1 0 

0 1 0 0 0 1 1 0 

1 1 0 0 1 1 1 0 

0 0 0 0 0 0 0 1 

0 1 0 0 1 0 0 1 

0 0 1 0 0 1 0 1 

0 1 1 0 1 1 0 1 

0 0 0 0 0 0 1 1 

1 1 0 0 1 0 1 1 

0 1 1 0 0 1 1 1 

1 0 0 1 1 1 1 1 

Figure P6.19
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6.21 Design a logic circuit that implements the truth table of BCD-to-Gray code

converter (Figure P6.21).

6.22 Design a logic circuit to determine whether the 2-bit binary number x2x1 is

equal to, greater than, or less than the 2-bit binary number y2y1. [Hint: Design a

truth table, that has four inputs (x1, x2, y1, y2) and three outputs: E (equal to), G

(greater than), and L (less than).]

6.23 Using the Quine–McCluskey method, simplify the implicit SOP functions for

Problem 6.1.

6.24 Using the Quine–McCluskey method, simplify the implicit POS functions for

Problem 6.2.

6.25 Using the Quine–McCluskey method, simplify the implicit incomplete SOP

functions for Problem 6.3.

6.26 Using the Quine–McCluskey method, simplify the implicit incomplete POS

functions for Problem 6.4.

Numbers BCD Numbers Code Excess-3 

x3 x2 x1 x0 y3 y1 y1 y0

1 1 0 0 0 0 0 0 

0 0 1 0 1 0 0 0 

1 0 1 0 0 1 0 0 

0 1 1 0 1 1 0 0 

1 1 1 0 0 0 1 0 

0 0 0 1 1 0 1 0 

1 0 0 1 0 1 1 0 

0 1 0 1 1 1 1 0 

1 1 0 1 0 0 0 1 

0 0 1 1 1 0 0 1 

Figure P6.20

Numbers BCD Numbers Code Gray 

x3 x2 x1 x0 y3 y1 y1 y0

0 0 0 0 0 0 0 0 

1 0 0 0 1 0 0 0 

1 1 0 0 0 1 0 0 

0 1 0 0 1 1 0 0 

0 1 1 0 0 0 1 0 

1 1 1 0 1 0 1 0 

1 0 1 0 0 1 1 0 

0 0 1 0 1 1 1 0 

0 0 1 1 0 0 0 1 

1 0 1 1 1 0 0 1 

Figure P6.21
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7 Combinational Logic

7.1 OBJECTIVES

The objectives of the chapter are to describe:

. Combinational logic circuits

. Multiplexers and demultiplexers

. Decoders and encoders

. Code converters

. Arithmetic circuits

. Comparison circuits

. VHDL codes for basic combinational circuits

7.2 COMBINATIONAL LOGIC CIRCUITS

Building a digital system using themethods learned thus far is very possible, although

very unrealistic. For simplicity, consider the NAND gate as the primitive element to

design all other logic functions. A microcomputer chip such as the Motorola 68000

device comprising the equivalent of some 70,000 gates would require some 17,500

integrated-circuit (IC) packages. Designing such a complex digital system at the gate

level would be a very difficult, if not impossible task. An alternative design method is

to use a combination of gates as building blocks, referred to as combinational circuits.

The primary tools required to build combinational circuits include truth table

design, basic knowledge of Boolean algebra, and implementation using logic gates. In

some special cases the specification is given in the form of a complete truth table, but

most often the procedure of designing a combinational logic circuit will start with a

method to determine a truth table from averbal orwritten statement, which a customer

provides to the designer. ABoolean expression describes the circuit behavior required

as expressed by the truth table. It is helpful to convert a Boolean expression with an

arbitrary mixture of operations (AND, OR, and NOT) to a form, which is easier to

implement with a combinational logic circuit.

Introduction to Digital Systems: Modeling, Synthesis, and Simulation Using VHDL, First Edition.
Mohammed Ferdjallah.
� 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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Combinational logic is probably the easiest circuitry to design. The outputs from

a combinational logic circuit depend only on the current inputs. In other words, a

combinational circuit is a set of interconnected gates whose output at any time is a

function of the input at that time. The appearance of input is followed almost

immediately by output, with only gate propagation delays.

On the other hand, sequential circuits are composed of combinational circuits and

memory elements with a set ofm inputs and a set of n outputs. At any given time, an

output is a function of the sequence of the inputs, implying that an output is a function

not only of the current input but also of the inputs in the past, which need to be

remembered by the memory elements. Thus, a sequential system is allowed to have

feedback paths from the output of memory element to the input. Figure 7.1 shows a

general schematic of a combinational circuit. The inputs of a combinational circuit

include data inputs and control or status inputs. The control inputs generally specify

how the data inputs affect the output of the combinational circuit. Simple and often-

used combinational logic circuits include multiplexers, decoders, encoders, and code

converters.

7.3 MULTIPLEXERS

Amultiplexer (or “mux”) is a digital switch that has 2M data inputs,M select (control)

inputs, and a single output. It routes data fromone of 2M data inputs to its single output.

Figure 7.2 shows the graphical symbol of a 2M : 1 (pronounced “2M to 1”) multiplexer.

The select input lines control which data input is connected to the output. Thus, a

multiplexer acts as a programmable digital switch.

7.3.1 2 : 1 Multiplexer

A 2 : 1 multiplexer has two data inputs, one select input, and a single output.

The function of a 2 : 1 multiplexer is described by the truth table shown in Figure 7.3.

The figure also shows the logic implementation of the 2 : 1 multiplexer. The same

circuit can be realized using transmission gates, as described in Section 3.9.

The VHDL code, which implements a 2 : 1 multiplexer, is illustrated in Figure 7.4.

Combinational
Circuit

OutputsInputs

x1
x2
x3

y1
y2
y3

xm yn

Figure 7.1 Block Diagram of a Combinational Circuit
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y

{

{2M

Data Inputs

M
Select Inputs

Single Output

Figure 7.2 Graphical Symbol of a 2M : 1 Multiplexer

Truth Table Logic Implementation 

s x2 x1 y

0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 1 

s
1x

2x

y

Figure 7.3 2 : 1 Multiplexer

library ieee ; 
use ieee.std_logic_1164.all; 

entity mux2to1 is
 port(

x1,x2,s : in std_logic;
 f : out std_logic);
end mux2to1; 
architecture circuit_behavior of mux2to1 is
 begin 

with s select
 f <= x1 when ‘0’;
  x2 when others;
end circuit_behavior; 

Figure 7.4 VHDL Code for a 2 : 1 Multiplexer Using Select Signal Assignment
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The clausewith–select–when is used as a select signal assignment to switch between

the two inputs.

A second VHDL code implementation of the 2 : 1 multiplexer, which uses the

conditional signal assignment clause when–else, is illustrated in Figure 7.5. A third

VHDL code implementation of the 2 : 1 multiplexer, which uses the if–else–then

conditional statement, is illustrated in Figure 7.6. Notice that the if–else–then
statement is a sequential conditional statement and thus a process statement is

required. The inputs of the multiplexer are included in the sensitivity list of the

process statement for its implicit activation/deactivation.

A fourth VHDL code implementation of the 2 : 1 multiplexer, which uses the case

statement, is illustrated in Figure 7.7. Notice that a process statement is required since

the case statement is also a sequential conditional statement. The inputs of the

library ieee ; 
use ieee.std_logic_1164.all; 

entity mux2to1 is
 port(

x1,x2,s : in std_logic;
 f : out std_logic);
end mux2to1; 
architecture circuit_behavior of mux2to1 is
 begin 
 f <= x1 when s=‘0’ else x2; 
end circuit_behavior; 

Figure 7.5 VHDL Code for a 2 : 1 Multiplexer Using Conditional Signal Assignment

library ieee ; 
use ieee.std_logic_1164.all; 

entity mux2to1 is
 port(

x1,x2,s : in std_logic;
 f : out std_logic);
end mux2to1; 
architecture circuit_behavior of mux2to1 is
 begin 

process (x1,x2,s) 
begin

 if s=‘0’ then;
 f <= x1; 

else
f <= x2; 

end if;
end process;

end circuit_behavior; 

Figure 7.6 VHDL Code for a 2 : 1 Multiplexer Using an If–Else–Then Statement
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multiplexer are included in the sensitivity list of the process to provide an implicit wait

for the process statement.

7.3.2 4 : 1 Multiplexer

A 4 : 1 multiplexer has four data inputs, two select inputs, and a single output.

The function of the 4 : 1 multiplexer is described using a truth table and can be

implemented using basic gates, as illustrated in Figure 7.8. The VHDL code that

implements a 4 : 1 multiplexer is illustrated in Figure 7.9. The clause with–select–

when is used as a select signal assignment to switch between the two inputs.

A larger multiplexer can be designed by direct implementation of the truth table of

the multiplexer. However, a larger multiplexer could be designed using smaller

library ieee ; 
use ieee.std_logic_1164.all; 

entity mux2to1 is
 port(

x1,x2,s : in std_logic;
 f : out std_logic);
end mux2to1; 
architecture circuit_behavior of mux2to1 is
 begin 

process (x1,x2,s) 
begin

case s is;
when ‘0’ => f <= x1; 
when others => f <= x2; 

end case;
end process;

end circuit_behavior; 

Figure 7.7 VHDL Code for a 2 : 1 Multiplexer Using a Case Statement

Truth Table Graphic Symbol 

s1 s0 y

0 0 x1

0 1 x2

1 0 x3

1 1 x4

y4:1
Mux

s0
s1

x1
x2
x3
x4

Figure 7.8 4 : 1 Multiplexer
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multiplexers as modules. The data inputs of the smaller multiplexers are funneled

down to a single output. For example, the 4 : 1 multiplexer can be implemented using

three 2 : 1 multiplexers, as illustrated in Figure 7.10.

The data inputs of two 2 : 1 multiplexers are funneled down to the single output of

the third multiplexer (Figure 7.5). The data inputs x1 and x2 are applied to Mux0, and

the data inputs x3 and x4 are applied to Mux1. The outputs of Mux0 and Mux1 are

applied to Mux3. To select the data inputs x1 and x2, the select inputs must be set to

(s1¼ 0, s0¼ x). If s0 is set to 0, the data input x1 is routed to the output of Mux2.

Otherwise (s0¼ 1), the data input x2 is output. Similarly, if s1 is set to 1, the data input

x3 or x4 will be routed to the output of Mux2, depending on the value of s0. This

modular multiplexer is implemented in the VHDL code illustrated in Figure 7.11

using component declaration.

library ieee ; 
use ieee.std_logic_1164.all; 

entity mux4to1 is
 port(

x1,x2,x3,x4 : in std_logic;
 s : in std_logic_vector(1 downto 0); 
 f : out std_logic);
end mux4to1; 
architecture circuit_behavior of mux4to1 is
 begin 

with s select
 f <= x1 when “00”;
   x2 when “01”; 
   x3 when “10”; 
  x4 when others;
end circuit_behavior; 

Figure 7.9 VHDL Code for a 4 : 1 Multiplexer Using a Select Signal Assignment

ys0

s1

x1

x2

x3

x4

2:1

Mux

'0'

2:1

Mux

'1'

2:1

Mux

'2'

Figure 7.10 Implementation of a 4 : 1 Multiplexer Using Three 2 : 1 Multiplexers
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7.4 LOGIC DESIGN WITH MULTIPLEXERS

Themain function of amultiplexer is to route only one selected data input to its single

output. Because of its unique structure, a multiplexer can also be used to implement a

logic function. Consider the 4 : 1 multiplexer circuit illustrated in Figure 7.12. The

truth table of the circuit identifies the function of the circuit as theAND logic function.

In fact, any logic function with N variables can be implemented directly with a 2N : 1

multiplexer. The data inputs of the multiplexer are the function values, and the select

inputs are the variables of the function. However, complex functionsmake their direct

implementation with multiplexers impractical. Fortunately, it is possible to design

logic functions with smaller size multiplexers by identifying patterns between the

library ieee ; 
use ieee.std_logic_1164.all; 
use work.mux2to1_package.all; 

entity mux4to1 is
 port( x : in std_logic_vector(0 to 3);

s : in std_logic_vector(1 downto 0);
 f : out std_logic);
end mux4to1; 
architecture circuit_behavior of mux4to1 is
 signal sig : std_logic_vector(0 to 1) 
 component mux2to1 
  port( x1,x2,s : in std_logic;
 f : out std_logic);
 end component;
begin
 mux0 : mux2to1 port map (x(0),x(1),s(0),sig(0)); 
 mux1 : mux2to1 port map (x(2),x(3),s(0),sig(1)); 
 mux2 : mux2to1 port map (sig(0),sig(1),s(1),f); 
end circuit_behavior; 

Figure 7.11 VHDL Code of a 4 : 1 Multiplexer Using Component Declaration

Truth Table Logic Function Implementation 

x1 x2 f(x1,x2)

0 0 0 
0 1 0 
1 0 0 
1 1 1 

f(x1,x2)4:1
Mux

x1
x2

0
0
0
1

Figure 7.12 AND Logic Function Implementation with a 4 : 1 Multiplexer
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function and its variables in the truth table. Consider again the truth table in

Figure 7.12. The truth table can be organized by selecting x1 select inputs and

relating the data input x2 to the function as illustrated in Figure 7.13. Therefore, the

AND function can be implemented using a 2 : 1 multiplexer with additional con-

nections and logic gates when necessary.

Similarly, an XOR function can be implemented with a 4 : 1 multiplexer as

illustrated in Figure 7.14. With simple modifications of the truth table of Figure 7.14,

an XOR function could be implemented with a 2 : 1 multiplexer and additional gates

as illustrated in Figure 7.15.

7.5 DEMULTIPLEXERS

The opposite of the multiplexer circuit, logically enough, is the demultiplexer. This

circuit takes a single data input and one or more address inputs and selects which of

multiple outputs will receive the input signal. The same circuit can also be used as a

decoder by using the address inputs as a binary number and producing an output signal

on the single output that matches the binary address input. In this application, the data

Truth Table Logic Function Implementation 

x1 f(x1,x2)

0 0 
1 x2

x1

x2

2:1
Mux

0
f(x1,x2)

Figure 7.13 AND Logic Function Implementation with a 2 : 1 Multiplexer

Truth Table Logic Function Implementation 

x1 x2 f(x1,x2)

0 0 0 
0 1 1 
1 0 1 
1 1 0 

y4:1
Mux

x1
x2

1
0

1
0

Figure 7.14 XOR Logic Function Implementation with a 4 : 1 Multiplexer
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input line functions as a circuit enabler. If the circuit is disabled no output will show

activity regardless of the binary input number. A 1 : 2 decoder/demultiplexer circuit

uses the same AND gates and the same addressing scheme as the 2 : 1 multiplexer

circuit described earlier. The basic difference is that it is the inputs that are combined

and the outputs that are separate. By making this change, a 1 : 2 demultiplexer circuit

is the inverse of the 2 : 1 multiplexer circuit.

7.6 DECODERS

A decoder is a multiple-input, multiple-output logic circuit that converts coded inputs

into coded outputs, where the input and output codes are different. The input code

generally has fewer bits than the output code, and there is one-to-one mapping from

input code words into output code words. The general structure of a decoder circuit is

shown in Figure 7.16. The enable inputs, if present, must be asserted for the decoder to

perform its normalmapping function. Themost commonly used input code is anN-bit

binary code, where an N-bit word represents one of 2N different coded values.

Normally, they range from 0 through 2N� 1. The input code lines select which output

Truth Table Logic Function Implementation 

x1 f(x1,x2)

0 2x
1 2x

x1

2:1
Mux f(x1,x2)

x2

Figure 7.15 XOR Logic Function Implementation with a 2 : 1 Multiplexer

Decoder

Input
Code

Output
Code

x1
x2
x3

xm

y1
y2
y3

yn

Enable
Input

Figure 7.16 Block Diagram of a N : 2N Decoder
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is active. The remaining output lines are disabled. Thus, the decoder is intended to

provide a binary code to other circuits, such as a memory circuit. In this case, the

decoder is referred to as an address decoder because it selects one address of amemory

location. However, a decoder could also be used to channel a stream of data on a

designated output line selected by the input code lines.

A 2 : 4 decoder is illustrated in Figure 7.17. The two data inputs are x1 and x2.

These inputs represent a 2-bit binary number that causes the decoder to assert one of

the outputs y1, y2, y3, and y4. The decoders can be designed to have either active-high

or active-low outputs. By setting inputs x1 and x2 to 00, 01, 10, or 11, it causes the

output y1, y2, y3, or y4 to be set to 1, respectively. Truth table, graphical symbol, and

logic circuit implementation of a 2 : 4 decoder are illustrated in Figure 7.17.

Similar to the modular design of larger multiplexers, large decoders can be

constructed from smaller decoders. Figure 7.18 shows the implementation of a

3 : 8 decoder using two 2 : 4 decoders. The x3 input drives the enable inputs of the

two decoders. The decoder 0 is enabled if x3 is equal to 0, and the decoder 1 is enabled

if x3 is set to 1. The VHDL code implementation of a 2 : 4 decoder is illustrated in

Figure 7.19.

 Truth Table  Block Diagram 

En x2 x1 y4 y3 y2 y1

0 x x 0 0 0 0 
1 0 0 0 0 0 1 
1 0 1 0 0 1 0 
1 1 0 0 1 0 0 
1 1 1 1 0 0 0 

 Logic Circuit Implementation 

2:4
Decoder

x1

x2

y1

y2

y3

En
y4

1x

2x

En

1y

2y

3y

4y

Figure 7.17 Logic Implementation of a 2 : 4 Decoder
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7.7 ENCODERS

A decoder’s output code normally has more bits than its input code. If the device’s

output code has fewer bits than the input code, the device is usually called an encoder.

So an encoder performs the function opposite to that of a decoder. It encodes the given

information into amore compact form. Themost commonly used encoders are binary

encoders and priority encoders.

2:4
Decoder

'0'

x1

x2

y1

y2

y3

y4

2:4
Decoder

'1'

y5

y6

y7

y8

x3

Figure 7.18 Implementation of a 3 : 8 Decoder Using Two 2 : 4 Decoders

library ieee ; 
use ieee.std_logic_1164.all; 

entity dec2to4 is
 port(

x : in std_logic_vector(1 downto 0);
 En : in std_logic;
 y : out std_logic_vector(0 to 3));
end dec2to4; 
architecture circuit_behavior of dec2to4 is

signal Enx : std_logic_vector(2 downto 0);
 begin 

 Enx <= En& x; 
with Enx select

 y <= “1000” when “100”;
   “0100” when “101”; 
   “0010” when “110”; 
   “0001” when “111” 
  “0000” when others;
end circuit_behavior; 

Figure 7.19 VHDL Code of a 2 : 4 Decoder
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7.7.1 Binary Encoder

A binary encoder encodes information from 2N inputs into anN-bit code. Exactly one

of the input signals should have a value of 1, and the outputs present the binary number

that identifies which input is equal to 1. A binary encoder converts only one input at a

time into a binary code. The general structure of a binary encoder circuit is shown in

Figure 7.20. A 4 : 2 binary encoder, which has four inputs and two outputs, is

illustrated in Figure 7.21. The modified truth table is shown in Figure 7.21. Notice

that only one input is set at any time. All other states with multiple inputs, which are

set, are considered don’t-care states and are not shown in the truth table. Conse-

quently, the logic circuit implementation of the 4 : 2 binary encoder has only two OR

gates. Notice also that x1 does not have any effect on either output y1 or y2.

7.7.2 Priority Encoder

A priority encoder is an encoder where more than one input can be activated

simultaneously. Each input is assigned a priority order. When the input with the

highest priority is asserted, the remaining inputs are ignored.A 4 : 2 priority encoder is

illustrated in Figure 7.22. It is assumed that x1 has the lowest priority and x4 the

highest. The outputs y2 and y1 represent the binary number that identifies the highest-

priority input set to 1. An input condition marked with an � represents a don’t-care

state combination.

7.8 CODE CONVERTERS

Decoder and encoder circuits are used to convert from one type of input encoding to a

different output encoding. For example, a 2 : 4 decoder converts a 2-bit binary number

input to a one-hot encoding sequence (see Section 9.6) at the output. Similarly, a 4 : 2

binary encoder performs the opposite conversion. There aremanyother possible types

of code converters known as BCD-to-seven-segment code converter, BCD-to-Gray

code converter, BCD-to-excess-3 code converters, and so on.

2
N 
:N

Binary Encoder

2
N

Inputs

N

Outputs

x
1

x
2

x
3

x
m

y
1

y
2

y
3

y
n

Figure 7.20 Block Diagram of a 2N :N Binary Encoder
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7.8.1 BCD-to-Seven-Segment Code Converter

A BCD-to-seven-segment code converter converts one binary-coded decimal (BCD)

digit into information suitable for driving a digit-oriented display such as a seven-

 Truth Table  Logic Implementation 

x4 x3 x2 x1 y2 y1

0 0 0 1 0 0 
1 0 1 x 0 1 
0 1 x x 1 0 
1 x x x 1 1 

2x
3x
4x

1y

2y

Figure 7.22 4 : 2 Priority Encoder

 Truth Table  Block Diagram 

x4 x3 x2 x1 y2 y1

0 0 0 1 0 0 
0 0 1 0 0 1 
0 1 0 0 1 0 
1 0 0 0 1 1 

 Logic Circuit Implementation 

4:2
Encoder

y1

y2

x1

x2

x3

x4

1x

2x

3x

4x

1y

2y

Figure 7.21 4 : 2 Binary Encoder
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segment display. In other words, it converts the BCD digit into seven signals that are

used to drive the segments in the display. The circuit of the BCD-to-seven-segment

code converter has four binary inputs (x1, x2, x3, and x4), representing the BCD

number, and seven binary outputs (a, b, c, d, e, f, and g) representing the LED

segments. Each segment is a small LED, which glows when driven by an electrical

signal. The BCD-to-segment code conversion truth table and a seven-segment LED

display are shown in Figure 7.23. The VHDL code in Figure 7.24 implements a BCD-

to-seven-segment code converter.

7.8.2 BCD-to-Gray Code Converter

Gray code is an encoding scheme inwhich two consecutive binary numbers change by

only 1 bit. Thus, a binary sequence with the property that only 1 bit changes between

any two consecutive elements is called a Gray code. Each number in a Gray code

sequence differs from its predecessor by exactly 1 bit. The circuit has four inputs (x1,

x2, x3, and x4) representing the BCD number, and four outputs (y1, y2, y3, and y4)

representing the 4-bit Gray code number. The truth table for a BCD-to-Gray code

converter is shown in Figure 7.25. Gray code has applications in various fields,

including data acquisition systems, communication coding, and mechanical position

sensors. Mechanical encoders use Gray code to convert the angular position of a disk

to digit form.

7.8.3 BCD-to-Excess-3 Code Converter

The BCD-to-excess-3 code converter converts a given BCD number into a number

that can be obtained by adding the number three (0011) to it. Excess-3 code was

 Truth Table  7-Segment Display 

x4 x3 x2 x1 a b c d e f g

0 0 0 0 1 1 1 1 1 1 0 
0 0 0 1 0 1 1 0 0 0 0 
0 0 1 0 1 1 0 1 1 0 1 
0 0 1 1 1 1 1 1 0 0 1 
0 1 0 0 0 1 1 0 0 1 1 
0 1 0 1 1 0 1 1 0 1 1 
0 1 1 0 1 0 1 1 1 1 1 
0 1 1 1 1 1 1 0 0 0 0 
1 0 0 0 1 1 1 1 1 1 1 
1 0 0 1 1 1 1 1 0 1 1 

a

b

c
d

e

f
g

Figure 7.23 BCD-to-Seven-Segment Code Converter
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used in older computer systems. An important characteristic of excess-3 code is its

self-complementing property, similar to that of the 1’s-complementmethod. The truth

table and logic expressions of the BCD-to-excess-3 code converter are illustrated in

Figure 7.26.

library ieee ; 
use ieee.std_logic_1164.all; 

entity bcd_to_7seg is
 port(

bcd : in std_logic_vector(3 downto 0);
 led_seg : out std_logic_vector(1 to 7));
end bcd_to_7seg; 
architecture circuit_behavior of bcd_to_7seg is
begin
 process (bcd)
 begin 

case bcd is
when “0000” => led_seg <= “1111110”;
when “0001” => led_seg <= “0110000”;
when “0010” => led_seg <= “1101101”;
when “0011” => led_seg <= “1111001”;
when “0100” => led_seg <= “0110011”;
when “0101” => led_seg <= “1011011”;
when “0110” => led_seg <= “1011111”;
when “0111” => led_seg <= “1110000”;
when “1000” => led_seg <= “1111111”;
when “1001” => led_seg <= “1111011”;
when others => led_seg <= “-------”;

 end case; 
 end process 
end circuit_behavior;

Figure 7.24 VHDL Code Implementation of the BCD-to-Seven-Segment Code Converter

 Truth Table  Output Logic Expressions 

x4 x3 x2 x1 y4 y3 y2 y1

0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 1 0 0 0 1 1 
0 0 1 1 0 0 1 0 
0 1 0 0 0 1 1 0 
0 1 0 1 0 1 1 1 
0 1 1 0 0 1 0 1 
0 1 1 1 0 1 0 0 
1 0 0 0 1 1 0 0 
1 0 0 1 1 1 0 1 

12312141 xxxxxxxy ++=

232 xxy ⊕=

343 xxy +=

44 xy =

Figure 7.25 BCD-to-Gray Code Converter
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7.9 ARITHMETIC CIRCUITS

Addition is themost commonly performed arithmetic operation in digital systems. An

adder is a digital circuit that adds two N-bit numbers and generates an N-bit number.

The adder circuit could also generate an overflow indication bit. The same adder

circuit is used to combine two arithmetic operands, which can be unsigned or two’s-

complement numbers. Therefore, an adder can perform subtraction as the addition of

the minuend and the complemented subtrahend. Direct implementation of an N-bit

adder would be very complex and not scalable. Each time the size of the adder is

changed, a new implementation must be designed. A simpler approach would be to

build an N-bit adder from smaller module circuits, which can be duplicated and

expanded as the size of the adder increases. The process of adding two N-bit numbers

can be accomplished by a sequence of N simple 1-bit addition operations. In the

following sections, several arithmetic circuit modules, which can be used to build

larger arithmetic circuits, are described.

7.9.1 Half-Adder

A 1-bit half-adder adds two 1-bit operands, x and y, and produces a 2-bit result. The

result can range from0 to 2, which requires 2 bits to represent. The low-order bit of the

sum is referred to as s (sum) and the high-order bit as cout (carryout). The truth table

and the optimized logic expressions of the 1-bit half-adder are illustrated in

Figure 7.27. The logic implementation of a 1-bit half-adder is shown in Figure 7.28.

A 1-bit half-adder can, however, only be used to add 1-bit numbers such as the LSB

bits of two N-bit numbers. Therefore, a 1-bit half-adder cannot be used as a circuit

module to build a larger adder.

 Truth Table  Output Logic Expressions 

x4 x3 x2 x1 y4 y3 y2 y1

0 0 0 0 0 0 1 1 
0 0 0 1 0 1 0 0 
0 0 1 0 0 1 0 1 
0 0 1 1 0 1 0 0 
0 1 0 0 0 1 1 1 
0 1 0 1 1 0 0 0 
0 1 1 0 1 0 0 1 
0 1 1 1 1 0 1 0 
1 0 0 0 1 0 1 1 
1 0 0 1 1 1 0 0 

11 xy =

)xx(y 122 ⊕=

123413233 xxxxxxxxy ++=

132344 xxxxxy ++=

Figure 7.26 BCD-to-Excess-3 Code Converter

120 COMBINATIONAL LOGIC



7.9.2 Full-Adder

When a carry-in bit is available, another 1-bit adder must be used, since a 1-bit half-

adder does not take a carry-in (cin) bit. A 1-bit full-adder adds three operands and

generates a 2-bit result: the sum bit (s) and the carryout bit (cout). The truth table and

the minimized expressions of a 1-bit full-adder are illustrated in Figure 7.29. Using

the minimized expressions in Figure 7.29, direct logic implementation of a 1-bit

 Truth Table  Output Logic Expressions 

x y cout s

0 0 0 0 
0 1 0 1 
1 0 0 1 
1 1 1 0 

yxs ⊕=
yxcout ⋅=

Figure 7.27 Truth Table and Optimized Expressions of a 1-Bit Half-Adder

x

y
s

cout

Figure 7.28 Logic Implementation of a 1-Bit Half-Adder

 Truth Table  Output Logic Expressions 

x y cin cout s

0 0 0 0 0 
0 0 1 0 1 
0 1 0 0 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 1 0 
1 1 0 1 0 
1 1 1 1 1 

incyxs ⊕⊕=

ininout cycxyxc ⋅+⋅+⋅=

Figure 7.29 Truth Table and Minimized Expressions of a 1-Bit Full-Adder
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full-adder is shown in Figure 7.30. The VHDL code implementation of a 1-bit full-

adder is illustrated in Figure 7.31. The logic implementation in Figure 7.30 requires

one three-input XORgate, three two-input ANDgates, and one three-input OR gate in

two-gate-level design. Using the truth table in Figure 7.29, the output logic expres-

sions can be written as follows:

cout ¼ x � y � cin þ x ��y � cin þ �x � y � cin þ x � y ��cin
cout ¼ x � yþðx� yÞ � cin
s ¼ x� y� cin

In the logic expressions above, onewould recognize the logic expressions of a 1-bit

half-adder. A 1-bit full-adder can be accomplished by cascading two 1-bit half-adders

as illustrated in Figure 7.32. The final circuit has three-gate-level design.

library ieee ; 
use ieee.std_logic_1164.all; 

entity full_adder is
 port(

x,y,cin : in std_logic;
 s,cout : out std_logic);
end full_adder; 
architecture circuit_behavior of full_adder is
 begin 
 s <= x xor y xor cin; 
 cout <= (x and y) or (x and cin) or (y and cin); 
end circuit_behavior; 

Figure 7.31 VHDL Code Implementation of a 1-Bit Full-Adder

x

y
s

cout

cin

Figure 7.30 Logic Implementation of a 1-Bit Full-Adder
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7.9.3 Half-Subtractor

Although binary subtraction can be accomplished using the same adding circuitry,

specially designed subtractor circuits subtract two binary numbers and output a

difference binary number and 1 bit borrow. In particular, the 1-bit half-subtractor is a

combinational circuit which subtracts two inputs, x (minuend) and y (subtrahend),

and generates two 1-bit outputs, d (difference) and bout (borrow-out). The truth table

and minimized logic expressions of a 1-bit half subtractor are illustrated in

Figure 7.33. The logic implementation of 1-bit half-subtractor is shown in

Figure 7.34.

x

y

s

cout

cin

Figure 7.32 Logic Implementation of a 1-Bit Full-Adder Using 1-Bit Half-Adders

 Truth Table  Output Logic Expressions 

x y bout d

0 0 0 0 
0 1 1 1 
1 0 0 1 
1 1 0 0 

yxd ⊕=
yxbout ⋅=

Figure 7.33 Truth Table and Minimized Expressions of a 1-Bit Half-Subtractor

x

y d

bout

Figure 7.34 Logic Implementation of a 1-Bit Half-Subtractor
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7.9.4 Full-Subtractor

A1-bitfull-subtractorisacombinationalcircuit thatperformssubtractionbyusingthree

bits: theminuend (x), the subtrahend (y), and theborrow-in (bin).The truth table and the

minimized expressions are shown in Figure 7.35. Using the minimized expressions in

Figure 7.35, direct logic implementation of a 1-bit full-subtractor is shown in Fig-

ure7.36.Similar to a1-bit full-adder, the logic implementationof a1-bit full-subtractor

has two-gate-level design.Cascading two1-bit half-subtractors canalso result ina1-bit

full-subtractor. Notice again that the final circuit has three-gate-level design.

7.9.5 Ripple-Carry Adder

Several 1-bit full-adders can be cascaded to add numbers with several bits. Two

binary numbers, each with N bits, can be added using a ripple-carry adder, a cascade

 Truth Table  Output Logic Expressions 

x y bin bout d

0 0 0 0 0 
0 0 1 1 1 
0 1 0 1 1 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 0 0 
1 1 0 0 0 
1 1 1 1 1 

incyxd ⊕⊕=

ininout bybxyxb ⋅+⋅+⋅=

Figure 7.35 Truth Table and Minimized Expressions of a 1-Bit Full-Subtractor

x

y
d

bout

bin

Figure 7.36 Logic Implementation of a 1-Bit Full-Subtractor
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of N full-adder stages, each of which handles 1 bit. Figure 7.37 shows the circuit for

a 4-bit ripple-carry adder. The carry-in to the least significant bit (c0) is normally set

to 0, and the carryout of each full-adder is connected to the carry-in of the next

most significant full-adder. Because a full-adder stage had to wait for the carryout of

the previous full-adder stage, a ripple-carry adder is generally slow. In theworst case a

carry must propagate from the least significant full-adder stage to the most significant

full-adder stage. Each full-adder introduces a certain propagation delay before its si
and ciþ 1 outputs are valid. Let this delay be denoted Dt. Thus, the complete sum is

available after a delay of nDt.The propagation delay incurred to produce the final sum
and carryout in a ripple-carry adder depends on the size of numbers.While the adders

are working in parallel, the carry bits must “ripple” from the least significant bit and

work their way to themost significant bit. Thus, the carry computation slows down the

circuit, making the speed degradation of the addition operation linearly related to the

bit-size number of the full ripple-carry adder.

It is not practical to have separate circuits for addition and subtraction operations,

especially when the adder circuit could be modified to implement subtraction as well.

Consider the logic circuit in Figure 7.38, which consists of a 4-bit ripple-carry adder

with four XOR gates, each connected to the input of a 1-bit full-adder stage with c0 as

an input and y as the other input. If c0 is equal to 0, the input y passes through without

change. In this condition the circuit acts as an adder. However, if c0 is equal to 1, the

input y is inverted. Notice that in this case c0 is equal to 1 and is applied to the first 1-bit

full-adder stage, which effectively performs the two’s complement of the input

number y. Therefore, the circuit acts as a subtractor using the two’s-complement

method. VHDL code implementation of a 4-bit ripple-carry adder using component

declaration is illustrated in Figure 7.39.

7.9.6 Carry Look-Ahead Adder

The ripple-carry adder performs arithmetic operations in a manner similar to those

performed manually. To speed up the performance of a ripple-carry adder, the ripple

effect of the carry must be eliminated.Carry look-ahead adders add much faster than

x1x2 y1y2y3 y0

1-Bit Full
Adder

x0

c1

x3

1-Bit Full
Adder

1-Bit Full
Adder

1-Bit Full
Adder c0c2c3c4

s0s1s2s3

Figure 7.37 Four-Bit Ripple-Carry Adder
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ripple-carry adders by computing the carry-in parallel. They are based on the fact that

a carry signal will be generated in two cases: when bits Ai and Bi are both 1, or when

one of the two bits is 1 and the carry-in (carry of the previous stage) is 1. The carry

look-ahead adder includes an additional circuit that computes the carryout bits at

once, without waiting for the carry output from the preceding stage. The carry look-

ahead circuit can be designed by analyzing the carry output logic expression. Consider

x1x2

y1y2y3 y0

1-Bit Full
Adder

x0

c1

x3

1-Bit Full
Adder

1-Bit Full
Adder

1-Bit Full
Adder c0c2c3c4

s0s1s2s3

Add/Sub

Figure 7.38 Four-Bit Ripple-Carry Adder/Subtractor

library ieee ; 
use ieee.std_logic_1164.all; 

entity rcadder_4bit is
 port(

cin : in std_logic;
x,y : in std_logic_vector(3 downto 0);
s : out std_logic_vector(3 downto 0);

 cout : out std_logic);
end rcadder_4bit; 
architecture ripple_behavior of rcadder_4bit is

signal c : std_logic_vector(1 to 3);
component full_adder 

 port( cin,x,y : in std_logic;
  s,cout : out std_logic);

end component;
begin
 fulladder0 : full_adder port map (cin,x(0),y(0),s(0),c(1)); 
 fulladder1 : full_adder port map (c(1),x(1),y(1),s(1),c(2)); 
 fulladder2 : full_adder port map (c(2),x(2),y(2),s(2),c(3)); 
 fulladder3 : full_adder port map (c(3),x(3),y(3),s(3),cout); 
end ripple_behavior; 

Figure 7.39 VHDL Code Implementation of a 4-Bit Ripple-Carry Adder
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the following logic expression of the carryout (ciþ 1) from the ith bit addition:

ciþ 1 ¼ xiyi þðxi þ yiÞci
ciþ 1 ¼ gi þ pici

Here gi and pi are called the generate and propagate terms, respectively, and can be

expressed as

gi ¼ xiyi

pi ¼ ðxi þ yiÞ

The propagate and generate terms depend only on the input bits. These terms will be

used to compute the carryout directly without waiting for the previous carryout to

ripple down. If the propagation delay throughANDandORgates is one gate delay, the

propagate and generate termswill be available after one gate delay. A 4-bit carry look-

ahead adder would require additional circuitry to implement the following logic

expressions of the carryout bits:

c1 ¼ g0 þ p0c0

c2 ¼ g1 þ p1c1 ¼ g1 þ p1g0 þ p1p0c0

c3 ¼ g2 þ p2g1 þ p2p1g0 þ p2p1p0c0

c4 ¼ g3 þ p3g2 þ p3p2g1 þ p3p2p1g0 þ p3p2p1p0c0

The carryout bit c4 of the last stage will be available after three delays. One gate

delay to calculate the propagate and generate terms, and two additional delays for

the additional AND and OR gates are required to compute c4. The sum bit si can be

calculated as

si ¼ xi � yi � ci

If we assume two gate delays through the XOR gate, the sum bit s4 (for a 4-bit carry

look-ahead adder) is available after a total of five gate delays after the input signals xi
and yi have been applied. The delays to computer c4 and s4 are always the same and are

independent of the number of bits and the size of the adder circuit. Figure 7.40

illustrates a 2-bit carry look-ahead adder.

Notice that as the size of the adder increases, the circuitry to compute the carryout

becomes more complex. The resulting propagation delays overcome the assumptions

made above, and the carry look-ahead adder becomes slower for larger numbers,

despite their complexity. A combined architecture of carry look-ahead and ripple

carry can be designed to get the best of both methods: simplicity and speed. A hybrid

adder design is illustrated in Figure 7.41, which consists of four 8-bit carry look-ahead

adders cascaded in a ripple-carry circuit to implement a 32-bit adder.
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7.9.7 Comparison Circuits

Comparison circuits are logic circuits that determine if binary number inputs are

equal to, greater than, or less than each other. Comparison circuits can be imple-

mented directly from truth tables using SOP or POS methods. However, comparator

circuits are best designed using logic expressions derived from simple logical

observations.

x0

y0
s0

c0

x1

y1

c1

c2

s1

Figure 7.40 Two-Bit Carry Look-Ahead Adder

x15 -8x23 -16 y15 -8y23 -16y31 -24 y7-0

8-Bit
CLH
Adder

8-Bit
CLH
Adder

x7-0

c8

x31 -24

c0c16c24c32

s7-0s15 -8s23 -16s31 -24

8-Bit
CLH
Adder

8-Bit
CLH
Adder

Figure 7.41 32-Bit Hybrid Adder
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Two binary numbers are equal if their corresponding bits are equal. To determine

whether two bits are equal, one could XOR the two bits and monitor the output result.

Thus, two bits are equal if the complement of their XOR function is equal to 1.

Consider two 3-bit numbers, x (x3x2x1) and y (y3y2y1):

x ¼ y ) x3 � y3 � x2 � y2 � x1 � y1 is true

To determine whether one binary number is greater than another, the most significant

bits (MSBs) are tested first. If theywere not equal, the number with anMSB of 1 is the

larger number. If the MSBs are equal, the next bit positions are tested using the same

process. The complement of the process is used to determine whether one binary

number is less than another. For two 3-bit numbers x (x3x2x1) and y (y3y2y1), the

greater than and less than operations are evaluated by the following logic expressions:

x > y ) x3�y3 þ x3 � y3 � x2�y2 þ x2 � y2 � x1�y1 is true

x < y ) �x3y3 þ x3 � y3 � �x2y2 þ x2 � y2 � �x1y1 is true

The logic expressions above can be used to implement a 3-bit comparator. TheVHDL

code illustrated in Figure 7.42 implements an 8-bit comparator.

PROBLEMS

7.1 Determine the logic functions of the multiplexer-based logic circuits in

Figure P7.1(a) to (d).

7.2 Determine the logic functions of the multiplexer-based logic circuits in

Figure P7.2(a) to (d).

library ieee ; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 

entity compare_8bit is
 port(

x,y : in std_logic_vector(7 downto 0);
 Eq,Lg,Ls : out std_logic);
end compare_8bit; 
architecture circuit_behavior of compare_8bit is
 begin 
 Eq <= ‘1’ when x = y else ‘0’; 
 Lg <= ‘1’ when x > y else ‘0’; 
 Ls <= ‘1’ when x < y else ‘0’; 
end circuit_behavior; 

Figure 7.42 VHDL Code Implementation of an 8-Bit Comparator
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7.3 Implement the function of the logic circuit in Figure P7.3 using an 8 : 1

multiplexer.

(a) (b)

(c) (d)

x2
2:1

Mux f(x1,x2)
1

x1

x2
2:1

Mux

x1

x2
2:1

Mux

1

x1

x2
2:1

Mux f(x1,x2)

0

Figure P7.1

(a) (b)

(c) (d)

x1

x2

2:1
Mux f

x3

x1

x2

2:1
Mux

x3

x1

x2

2:1
Mux f

x3

x4

x1

x2
2:1
Muxx3

x4

Figure P7.2

x1

x2

x3
f

Figure P7.3
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7.4 Implement the function of the logic circuit in Figure P7.3 using a 4 : 1

multiplexer and additional logic gates.

7.5 Implement the function of the logic circuit in Figure P7.3 using a 2 : 1

multiplexer and additional logic gates.

7.6 Implement the function of the logic circuit in Figure P7.6 using a 16 : 1

multiplexer.

7.7 Implement the function of the logic circuit in Figure P7.6 using an 8 : 1

multiplexer and additional logic gates.

7.8 Implement the function of the logic circuit in Figure P7.6 using a 4 : 1

multiplexer and additional logic gates.

7.9 Implement the function of the logic circuit in Figure P7.6 using a 2 : 1

multiplexer and additional logic gates.

7.10 Implement the following logic functions using multiplexers.

(a) f ðx1; x2Þ ¼ ðx1 þ x2Þð�x1 þ x2Þðx1 þ �x2Þ
(b) f ðx1; x2Þ ¼ x1x2 þðx1 þ x2Þ
(c) f ðx1; x2Þ ¼ ð�x1 þ �x2Þx1 þ x2

(d) f ðx1; x2Þ ¼ x1 � x2

(e) f ðx1; x2; x3Þ ¼ x1�x2 þ x1�x2x3

(f) f ðx1; x2; x3Þ ¼ x1 þ x1�x2 þ x1�x2x3

7.11 Implement the following logic functions using 2 : 1 multiplexers only.

(a) f ðx1; x2; x3Þ ¼ ðx1 þ x2Þðx1 þ x3Þ
(b) f ðx1; x2; x3Þ ¼ x3 þ x1x2

(c) f ðx1; x2; x3Þ ¼ x1x2 þð�x1 þ x3Þ
(d) f ðx1; x2; x3; x4Þ ¼ ðx1 � x2Þðx3 � x4Þ

7.12 Write VHDL code to implement a 4 : 1 multiplexer.

7.13 Write VHDL code to implement a 4 : 1 multiplexer using a when–else

statement.

x1

x2

x3

x4

f

Figure P7.6
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7.14 Write VHDL code to implement a 4 : 1 multiplexer using an if–then–else

statement.

7.15 Write VHDL code to implement a 4 : 1 multiplexer using a case statement.

7.16 Write VHDL code to implement a 16 : 1 multiplexer using 4 : 1 multiplexers.

7.17 Write VHDL code to implement an 8 : 3 priority encoder.

7.18 Write VHDL code to implement a 3 : 8 binary decoder.

7.19 Write VHDL code to implement a 3-bit priority encoder.

7.20 Write VHDL code to implement a BCD-to-seven-segment encoder using a

select signal assignment.

7.21 Write VHDL code to implement a BCD-to-Gray code converter.

7.22 Write VHDL code to implement a BCD-to-excess-3 code converter.

7.23 Verify that ci ¼ xi � yi � si, where xi and yi are the inputs, si is the sum, and ci
is the carryout from (i� 1)th bit position.

7.24 Verify that a 1-bit full-subtractor can be designed using two cascaded 1-bit

half-subtractors.

7.25 Design a 4-bit ripple-carry adder.

7.26 Design a 4-bit carry look-ahead adder.

7.27 Compare the number of gates of an 8-bit ripple-carry adder to that of an 8-bit

carry look-ahead adder.

7.28 Write VHDL code to implement a 32-bit hybrid adder by using four 8-bit carry

look-ahead adders. Use a component statement to declare an 8-bit carry look-

ahead adder as a subcircuit.

7.29 Design a logic circuit to compare two 4-bit numbers, A and B. The circuit

should provide outputs for the following conditions: A¼B, A > B, A <B, and
A 6¼B.

7.30 Write VHDL code to implement a 32-bit comparator.

7.31 Write VHDL code to implement an 8-bit comparator.

132 COMBINATIONAL LOGIC



8 Sequential Logic

8.1 OBJECTIVES

The objectives of the chapter are to describe:

. Sequential logic circuits

. SR and DF latches

. SR, D, JK, and T flip-flops

. Shift and parallel registers

. Asynchronous and synchronous counters

8.2 SEQUENTIAL LOGIC CIRCUITS

In Chapter 7 we discussed combinational circuits where the value of each output

depends solely on the values of signals applied to the inputs. There exists another class

of logic circuits inwhich the values of the output depend not only on the present values

of the inputs but also on the past behavior of the circuit. Circuits that have this behavior

are referred to as sequential circuits. The output values of a sequential circuit depend

on the temporal sequence of input values. A sequential circuit is described in terms of

logic conditions referred to as logic states. A logic state is the logic value of a circuit,

which is momentarily preserved. Therefore, sequential circuits include memory

elements that store the values of the logic states. The general structure of a sequential

circuit is illustrated in Figure 8.1.

A stable state of a sequential circuit is described as previous, present, or next. The

present state is the present logic output of the circuit. The previous state is the logic

output of the circuit before the present state. The next state is the logic output of the

circuit after the present state. Notice that the previous state cannot jump to the next

state without going through the next state. When the previous, present, and next states

occur during consecutive equal time periods, the sequential circuit is referred to as

synchronous.

Introduction to Digital Systems: Modeling, Synthesis, and Simulation Using VHDL, First Edition.
Mohammed Ferdjallah.
� 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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8.3 LATCHES

Latches and flip-flops are the basic building blocks ofmost sequential circuits. A latch

is a sequential circuit that watches all the inputs continuously and changes its outputs

at any time independently of a clocking signal. On the other hand, a flip-flop changes

its outputs only at times determined by a clocking signal. A latch is a bistable (two

stable output states) device that can store one bit (a logic 0 or 1) of data. Because of

their storing capacity, latches are sometimes referred to as bistable memory devices.

Latchesmay be used in groups of 4, 8, 16, or 32 for temporary storage of a nibble, byte,

or word of data. They are also used often in microprocessor-based design. The most

commonly used types of latches are described in the following sections.

8.3.1 SR Latch

A set–reset latch, commonly referred to as an SR latch, has two inputs (S and R), one

true output (Q), and one complemented output (�Q), as shown in Figure 8.2. The

crossing of the outputs is known as cross coupling. This circuit is said to employ cross-

coupled feedback. The feedback connects the output of a circuit to its input. When

outputQ is equal to 1, the latch is said to be in the set state; similarly, whenQ is equal

to 0, the latch is said to be in the clear (or reset) state. For the basic NOR latch circuit,

both inputs normally are at the 0 logic level. If one input (S orR) changed to the logic 1

level, the corresponding output (Q or �Q) will be forced to logic 0. The same output

logic level 0will also be applied, through the feedback, to the second input of the other

NOR gate, forcing its output to change to logic level 1. This output, in turn, feeds back

to the second input of the original NOR gate, forcing its output to remain at logic level

xm

x1 y1

yn

Combinational
Logic

Memory
Flip Flops

Figure 8.1 Sequential Circuit Block Diagram

R

S

Q

Q

Figure 8.2 Logic Circuit Diagram of an SR Latch
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0 even after the external input is removed. The logic circuit diagram of the SR latch is

illustrated in Figure 8.2.

The truth table and graphic symbol of an SR latch are shown in Figure 8.3. For

clarity and simplicity, the graphic symbol will be used to represent a complex logic

circuit. Notice thatwhen both inputs are at logic level 1, the SR latch does notmaintain

a stable output. These inputs force both outputs to logic level 0, overriding the

feedback latching action. This state is sometimes referred to as the forbidden state. To

understand why this state is fatal to the functioning of an SR latch, consider the

following cases. From the truth table of Figure 8.3, one could notice that whichever

input goes to logic level 0 first will lose control, while the other input (still at logic

level 1) controls the resulting state of the latch. If both inputs go to logic level 0

simultaneously, the result is a race condition, and the final state of the latch cannot be

determined ahead of time. The timing diagram shown in Figure 8.4 illustrates the

behavior of an SR latch.

The truth table in Figure 8.3 can be written to identify the present state (Q(t)) and

the next state (Q(tþ 1)) of an SR latch as a function of time. The present input variable

combinations and the latch state at time t (Q(t)) will determine the next state of the

latch at time (tþ 1) (Q(tþ 1)). The resulting truth table, referred to as the char-

acteristic table of the SR latch, is illustrated in Figure 8.5.An �S�R latchwith active-low

set and reset inputs is designed using NAND gates as shown in Figure 8.6. The

operation of the �S�R latch is similar to that of the SR latch, with twomajor differences.

First the latch holds its previous state when �S ¼ �R ¼ 1. Second, when S and �R are

Truth Table Graphic Symbol 

S R Q Q Comments

0/1 1/0 0 0 No change 
1 0 1 0 Reset
0 1 0 1 Set
0 0 1 1 Not used 

R

S

Q

Q

Figure 8.3 Truth Table and Logic Symbol of an SR Latch

R

S

Q

Q

?

?

Figure 8.4 Timing Diagram of an SR Latch
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asserted simultaneously, both latch outputs go to 1 and not to 0 as in an SR latch.

Under these input conditions, the �S�R latch is unstable. Figure 8.6 illustrates the truth

table and logic diagram of an �S�R latch.

Again notice that when both inputs are at logic level 0, the SR latch does not

maintain a stable output. These inputs force both outputs to a logic level 1, overriding

the feedback latching action, a state again sometimes referred to as the forbidden state.

Whichever input goes to logic level 1 first will lose control, while the other input (still

at logic level 0) controls the resulting state of the latch. If the two inputs go to logic

level 1 simultaneously, the result is a race condition, and the final state of the latch

cannot be determined ahead of time.

8.3.2 Gated SR Latch

The SR latches described in Section 8.3.1 are sensitive to S and R inputs at all times.

These SR latches are called asynchronous because the outputs respond immediately

to any changes in the inputs. However, the SR latch may be modified to create an SR

latch, which is sensitive to its inputs only when an enabling input signal is asserted.

Such an SR latch with an enable signal (Clk), referred to as a gated SR latch, is shown

in Figure 8.7. When Clk is equal to 1, the circuit behaves like an SR latch, and when

Clk is equal to 0, the circuit holds its preceding state. The truth table and graphic

symbol are illustrated in Figure 8.8.

S R Present State 
Q(t)

Next State 
Q(t+1)

Comments

0 0 0 0 No change 
1 1 0 0 No change 
0 0 1 0 Reset
0 1 1 0 Reset
1 0 0 1 Set
1 1 0 1 Set

Oscillating 0 1 1 Invalid
Oscillating 1 1 1 Invalid

Figure 8.5 Characteristic Table of an SR Latch

Truth Table Logic Diagram 

S R Q Q Comments

0/1 1/0 1 1 No change 
0 1 1 0 Set
1 0 0 1 Reset
1 1 0 0 Not used 

S

R

Q

Q

Figure 8.6 Truth Table and Logic Diagram of an �S�R Latch
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The enabling signalClk is generally a periodic signal referred to as the clock. Thus,

a gated SR latch is a synchronous latch.When the clock signal is HIGH (equal to logic

level 1), the SR latch is operational, whereas when the clock signal is LOW (equal to

logic level 0), the SR latch is disabled. The timing diagram shown in Figure 8.9

illustrates the function of the gated SR latch (Q is reset initially). Notice that the

forbidden input conditions are still possible with a gated SR latch.

8.3.3 D Latch

One very useful variation of a gated SR latch circuit is the data latch, orD latch as it is

generally called. As shown in Figure 8.10, a D latch is constructed by connecting S and

R inputs through an inverter. The single combined input is designatedD to distinguish

its operation from that of other types of latches. The truth table and graphic symbol of a

gatedD latch are shown in Figure 8.11. In a gatedD latch,when theClk input is equal to

R

S

Q

Q

Clk

Figure 8.7 Logic Circuit Diagram of a Gated SR Latch

Truth Table Graphic Symbol 

Clk S R Q Q Comments

0/1 1/0 0 0 1 No change 
0 1 1 0 1 Set
1 0 0 1 1 Reset
1 1 1 1 1 Not used 

0/1 1/0 x x 0 Disabled

R

S

Q

Q

Clk

Figure 8.8 Truth Table and Logic Symbol of a Gated SR Latch

R
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Q

Q

?

?

Clk

Figure 8.9 Timing Diagram of a Gated SR Latch
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logic level 1, theQ outputwill always reflect the logic level present at theD input.When

theClk input is equal to logic level 0, the last state of theD input is held at the output of

the latch. Because the single D input is also inverted to provide the signal to reset the

latch, the D-latch circuit cannot experience an unstable state. The timing diagram

shown in Figure 8.12 illustrates the function of the gated D latch (Q is reset initially).

The VHDL code implementation of a gated D latch is illustrated in Figure 8.13

using an if–then–else statement. The entity description of the D latch includes two

input signals,D and Clk. Since both affect the output of the circuit, they are included

in the sensitivity list of the process statement.

8.4 FLIP-FLOPS

Flip-flops are synchronous bistable storage devices capable of storing one bit. The

term synchronous means that the output state changes only at a specified point on a

D

Q

Q

Clk

Figure 8.10 Logic Circuit Diagram of a Gated D Latch

Truth Table Graphic Symbol 

Clk D Q Q Comments

Reset 1 0 0 1 
Set 0 1 1 1 

Hold 0/1 1/0 x 0 

D Q

QClk

Figure 8.11 Truth Table and Logic Symbol of a Gated D Latch

Clk

D

Q

Figure 8.12 Timing Diagram of a Gated D Latch
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triggering input called the clock signal. That is, the output changes are synchronized

with the clock signal. A basic flip-flop consists of two parts: a primary latch (master)

and a secondary latch (slave). A flip-flop is also known as a two-section flip-flop. The

input latch is operating as the master section and the output latch is slaved to the

master during half of each clock cycle. We use the terms primary and secondary

instead of master and slave.

8.4.1 SR Flip-Flop

An SR flip-flop consists of two identical gated SR latches. However, the inverter

connected between the two Clk inputs ensures that the two sections will be enabled

during opposite half-cycles of the clock signal. This is the key to the operation of this

flip-flop circuit. OutputsQ and �Q of the primarySR latch are connected to the inputs of

the secondary SR latch. The primary SR latch is also calledmaster, and the secondary

is called slave. The logic circuit of an SR flip-flop is illustrated in Figure 8.14.

The two latches use a common clock signal, but an inverter gate is connected

between them. When the clock signal goes HIGH, the inputs of the primary latch are

able to change the outputs of the primary latch or the inputs of the secondary latch.

However, at the same time the secondary latch cannot change the state of its outputs,

which are the actual outputs of the flip-flop, because its clock signal is LOW.When the

clock signal changes to LOW, the inputs of the primary are isolated from the

secondary. At the same time, the inverted clock signal allows the secondary to

change the output signals of the flip-flop. Because an SR flip-flop consists of two

latches clocked at different phases of the clock signal, its operation is considerably

different from that of a gated SR latch.

Starting with the Clk input at the logic level 0, the S and R inputs are disconnected

from the inputs of the primary latch. Therefore, any changes in the input signals

library ieee ; 
use ieee.std_logic_1164.all; 

entity D_latch is
port (

: D,clk std_logicin ;
: Q  std_logicout );

end D_latch; 
architecture circuit_behavior of D_latch is

begin  
process (D, clk )

begin
if clk = ‘1’ then

Q <= D;   
end if ;

end process 
end circuit_behavior; 

Figure 8.13 VHDL Code Implementation of a Gated D Latch
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cannot affect the state of the final outputs. When the Clk signal changes to logic level

1, the S and R inputs are able to control the state of the primary latch, just as with the

single RS latch. However, at the same time the inverted Clk signal applied to

the secondary latch prevents the state of the primary latch from having any effect

on the outputs of the secondary. Therefore, any changes in the S andR input signals are

tracked by the primary latch while Clk is at logic level 1, but the changes are not

reflected at theQ and �Q outputs, because the secondary latch is disabled.When theClk

signal changes to logic level 0, the S and R inputs are isolated from the primary latch.

At the same time, the inverted Clk signal allows the current state of the primary latch

to reach the output of the secondary latch. Therefore, theQ and �Q outputs can change

state onlywhen theClk signal falls from logic level 1 to logic level 0. This is known as

the falling (negative) edge of the Clk signal: hence the designation edge-triggered

flip-flop. The truth table and graphic symbol of an SR flip-flop are shown in

Figure 8.15. The timing diagram shown in Figure 8.16 illustrates the function of a

negative (falling) edge-triggered SR flip-flop (Q is reset initially).

8.4.2 D Flip-Flop

A D flip-flop performs a function very similar to that of a D latch. In a D flip-flop,

however, the rising or falling edge of the clock signal is used to capture the input of the

R

S

Clk

Q

Q

Figure 8.14 Logic Circuit Diagram of an SR Flip-Flop

Truth Table Graphic Symbol 

Clk S R Q(t+1)

↓ 0 0 Q(t)

↓ 0 (Reset)1 0 

↓ 1 (Set)0 1 

↓ 1 1 Undefined

R

S

Q

Q

Clk

Figure 8.15 Truth Table and Logic Symbol of an SR Flip-Flop
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flip-flop. This device is very usefulwhen it is necessary to track a logic signal, which is

very rapidly varying. This type of device is said to be edge-triggered. Rising edge-

triggered (0-to-1 transition) or falling edge-triggered (1-to-0 transition) devices are

available.

The D flip-flop shown in Figure 8.17 is a modification of a clocked SR flip-flop.

The D input connects directly to the S input, and the complement of the D input

connects to theR input. TheD input is sampled during the occurrence of a clock signal

transition. If D is equal to 1, the flip-flop is switched to the set state (unless it was

already set). If D is equal to 0, the flip-flop switches to the clear state. Figure 8.17

shows the logic circuit of a D flip-flop. The truth table and graphic symbol of a D flip-

flop are illustrated in Figure 8.18.

Clk

R

S

Q

Figure 8.16 Timing Diagram of an SR Flip-Flop

D

Clk

Q

Q

Figure 8.17 Logic Circuit Diagram of a D Flip-Flop

Truth Table Graphic Symbol 

Clk D Q(t) Q(t+1)

↓ 0 0 0 

↓ 0 1 0 

↓ 1 0 1 

↓ 1 1 1 

D Q

QClk

Figure 8.18 Truth Table and Logic Symbol of a D Flip-Flop
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The timing diagram shown in Figure 8.19 illustrates the function of a positive

(rising) edge-triggered D flip-flop (Q is initially reset). The VHDL code shown in

Figure 8.20 implements a D flip-flop. The code uses the if–else–then statement.

Notice the clause “clk’event and clk ¼ ‘1’”, which is used to represent the positive

edge of the clock signal. The clause ’event is an attribute that defines any change in

the clock signal. Thus, the “clk’event and clk ¼ ‘1’” clause means that when the

clock signal changes, it is now equal to logic level 1 (which refers to the positive edge

of the clock signal). The sequential statements inside the if–else–then statement

are then executed.

TheVHDLcode in Figure 8.21 is another implementation of theDflip-flop, but the

code uses thewait until clause instead of the if–else–then statement. Notice that there

is a sensitivity list for the process statement. That is because thewait until clause uses

the clock signal as an implicit sensitivity signal.

8.4.3 JK Flip-Flop

The JK flip-flop is the most versatile and most commonly used flip-flop when discrete

devices are used to implement arbitrary finite-state machines, which are described

in Chapter 9. A JK flip-flop can be configured to work as a D, RS, or T flip-flop. The

Clk

D

Q

Figure 8.19 Timing Diagram of a D Flip-Flop

library ieee ; 
use ieee.std_logic_1164.all; 

entity  D_flipflop is
port (

: D,clk std_logicin ;
: Q  std_logicout );

end D_flipflop; 
architecture circuit_behavior of D_flipflop is

begin  
process (clk)

begin
if clk’ event and clk = ‘1’ then

Q <= D;   
end if ;

end process 
end circuit_behavior; 

Figure 8.20 VHDL Code Implementation of a D Flip-Flop Using if–else–then
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T flip-flop is described in the next section. Similar to a RS flip-flop, a JK flip-flop has

two data inputs, J andK, and a clock input. However, it does not have undefined states

or a race condition. As a flip-flop the JKflip-flop is edge triggered. The JKflip-flop has

the following edge-triggered operating characteristics:

. If one input (J or K) is at logic level 0 and the other input is at logic level 1, the

output is set or reset (by J or K, respectively).

. If both inputs are at logic level 0, the output remains unchanged.

. If both inputs are at logic level 1, the flip-flop changes its state (toggles) at the

edge of a clock signal.

Figure 8.22 shows the truth table and graphic symbol of a positive edge-triggered

JK flip-flop. JK flip-flops can be designed using latches or flip-flops. Figure 8.23

shows a JK flip-flop constructed using a D flip-flop and additional logic gates. The

outputs of the D flip-flop are ANDed together with J and K, respectively. Notice that

library ieee ; 
use ieee.std_logic_1164.all; 

entity D_flipflop is
port (

: D,clk std_logicin ;
: Q  std_logicout );

end D_flipflop; 
architecture circuit_behavior of D_flipflop is

begin  
process

begin
wait until clk’ event and clk = ‘1’;

Q <= D;   
end process 

end circuit_behavior; 

Figure 8.21 VHDL Code Implementation of a D Flip-Flop Using wait–until

Truth Table Graphic Symbol 

Clk J K Q(t+1)

↑ 0 0 Q(t) (Hold) 
↑ 0 (Reset)1 0 
↑ 1 (Set)0 1 
↑ 1 1 )Q(t (Toggle)

J

K

Q

Q

Clk

Figure 8.22 Truth Table and Logic Symbol of a JK Flip-Flop
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the connection between outputs and inputs to AND gates determines the input

conditions to D when J ¼ K ¼ 1. This connection is what causes the flip-flop to

toggle. Figure 8.24 illustrates a timing diagram of a JK flip-flop with a falling-edge

trigger. The output Q of the flip-flop is reset initially.

8.4.4 T Flip-Flop

The output of a T flip-flop (“toggle flip-flop”) holds its current state when the input, T,

is LOW (equal to logic level 0). It reverses its current state when the input is HIGH

(equal to logic level 1). Although a T flip-flop is a useful element for building counter

circuits, it is not generally available in a commercial product.

The T flip-flop is a simplified version of a JK flip-flop that is used in many types of

circuits, especially counters and dividers. Its only function is that it toggles itself with

every clock pulse (on either the rising or falling edge). It can be constructed from a

D flip-flop as illustrated in Figure 8.25. The T flip-flop is normally set, or “loaded,”

with preset and clear inputs. It can be used to generate a periodic signal with a

frequency half that of a clock signal.

Figure 8.26 shows the truth table and graphic symbol of a positive edge-triggered

T flip-flop. Figure 8.27 illustrates a timing diagram of a T flip-flop with a falling-edge

trigger. The output Q of the flip-flop is reset initially. The VHDL code shown

in Figure 8.28 implements a T flip-flop with a positive edge-triggered clock

signal. The code uses nested if–else–then statements. Notice the clause “clk’event
and clk ¼ ‘1’”, which is used to represent the positive edge of the clock signal.

Clk

J

K

Q

Figure 8.24 Timing Diagram of a JK Flip-Flop

D Q

QClk

J

Clk

Q

Q

K

Figure 8.23 Logic Circuit Diagram of a JK Flip-Flop
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8.5 REGISTERS

The term register refers to a group of N flip-flops operating as a single unit to store

or shift data. A register is a set of flip-flops with a common clock to all the flip-

flops. For example, a shift register is an N-bit register which shifts its stored data by

one bit position (left or right) at each (rising or falling) edge of the clock. The flip-flops

are connected in a chain so that the output of one flip-flop is the input of the next flip-

flop. A common clock drives all the flip-flops, and all flip-flops are set or reset

simultaneously. In the following sections, the basic types of shift registers are

described.

D Q

QClk

T

Clk

Q

Q

Figure 8.25 Logic Circuit Diagram of a T Flip-Flop

Truth Table Graphic Symbol 

Clk T Q(t+1)

↑ 0 Q(t) (Hold) 
↑ 1 )Q(t (Toggle)

T Q

QClk

Figure 8.26 Truth Table and Logic Symbol of a T Flip-Flop

Clk

T

Q

Figure 8.27 Timing Diagram of a T Flip-Flop
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8.5.1 Serial-In, Serial-Out Shift Registers

An N-bit shift register can be constructed using N D flip-flops connected in series.

Each D flip-flop stores 1 bit of information. The serial input,Din, specifies a new bit to

be shifted into one end at each clock cycle. This bit appears at the serial output, Dout,

afterN clock cycles and is lost one clock cycle later. Figure 8.29 shows the structure of

a 4-bit serial-in, serial-out right-shift register.

The operation of the 4-bit right-shift register is illustrated in Figure 8.30 with a

random input sequence. The register is first cleared. Each D flip-flop is equipped with

a clear input, which forces the output of the flip-flop to logic level 0. The clear input is

an asynchronous input independent of the clock signal. By ANDing the clear input

with the clock signal, the clear input becomes synchronized to the clock signal. The

clear input is generally active LOW, which means that a logic level 0 is required to

clear the flip-flop.

The input data are then applied sequentially to the Din of the first flip-flop on the

left. During each clock cycle, one bit is transmitted from left to right at each positive

D Q

QClk

D Q

QClk

D Q

QClk

D Q

QClk

outDDin

Clk

Q0 Q1 Q2 Q3

Figure 8.29 Logic Circuit Diagram of a 4-Bit Serial-In, Serial-Out Register

library ieee ; 
use ieee.std_logic_1164.all; 

entity  T_flipflop is
port (

: T,clk std_logicin ;
: Q  std_logicout );

end T_flipflop; 
architecture circuit_behavior of T_flipflop is

begin  
process (T,clk)

begin
if clk’ event and clk = ‘1’ then

if T = ‘1’ then
Q <= not Q;    

end if ;
end if ;

end process 
end circuit_behavior; 

Figure 8.28 VHDL Code Implementation of a T Flip-Flop Using Nested if–else–then

Statements
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edge of the clock. Notice that the input data are not shifted in at the current rising edge

of the clock signal. We assumed that the input data came after the rising edge of the

clock, and it is not seen by the flip-flop until the next rising edge of the clock signal.

The VHDL code shown in Figure 8.31 implements a 4-bit serial-in, serial-out

right-shift register. The clause buffer is used to designate a special port of the entity.

Signals can flow in either direction through a buffer port. The signal flowing into the

buffer can be used inside the entity. Notice that the signalQ can appear on both sides

of the assignment operator.

8.5.2 Serial-In, Parallel-Out Shift Registers

For a serial-in, parallel-out shift register, data bits are shifted in serially in a manner

similar to that of a serial-in, serial-out shift register. The only difference between the

Time Din Q0 Q1 Q2 Q3

t0 0 0 0 0 1  
t1 0 0 0 1 0  
t2 0 0 1 0 0  
t3 0 1 0 0 1  
t4 1 0 0 1 0  
t5 0 0 1 0 1  
t6 0 1 0 1 1  
t7 1 0 1 1 0  
t8 0 1 1 0 1  

Figure 8.30 Data Shifting by a 4-Bit Serial-In, Serial-Out Register

library ieee ; 
use ieee.std_logic_1164.all; 

entity register_shift4 is
port (

: clk, Din  in std_logic;
: Q  std_logic_vector(buffer 3 downto 0));

end register_shift4; 
architecture circuit_behavior of register_shift4 is

begin  
process  
begin  

wait until clk’event and clk = ‘1’; 
Q(1)<= Q(0)  ;
Q(2)<= Q(1)  ;
Q(3)<= Q(2)  ;
Din<= Q(3)  ;

end process;
end circuit_behavior; 

Figure 8.31 VHDL Code Implementation of a Serial-In, Serial-Out Register
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two registers is the method in which the data bits are read out from the latter register.

Once the data are shifted in and stored in their respective bit positions, all bits appear

on their respective outputs and are available simultaneously. A typical application of

serial-in, parallel-out shift registers is serial-to-parallel conversion of the data format

between input–output devices and processors. Figure 8.32 illustrates a 4-bit serial-in,

parallel-out right-shift register. Parallel-in, serial-out shift registers perform a func-

tion opposite to that of serial-in, parallel-out shift registers. The data bits are stored

simultaneously and shifted out serially.

For parallel-in parallel-out shift registers, the data bits appear on the parallel

outputs immediately following the simultaneous entry of the data bits. The logic

circuit shown in Figure 8.33 is a 4-bit parallel-in, parallel-out shift register con-

structed using D flip-flops. TheD’s are the parallel inputs and theQ’s are the parallel

outputs. Once the register is clocked, all the data at the D inputs appear at the

corresponding Q outputs simultaneously. The VHDL code shown in Figure 8.34

implements a 4-bit parallel-in, parallel-out right-shift register.

8.5.3 Bidirectional Shift Registers

The serial shift registers discussed in previous sections involved only right-shift

operations, which means that the data bits were shifted from left to right. Notice that a

right-shift operation has the effect of dividing the binary number by 2. A left-shift

operation will have the effect of multiplying the number by 2. Reversing the order and

D Q

QClk

D Q

QClk

D Q

QClk

D Q

QClk

Din

Clk

Q0 Q1 Q2 Q3

Figure 8.32 Logic Circuit Diagram of a Serial-In, Parallel-Out Register
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Figure 8.33 Logic Circuit Diagram of a Parallel-In, Parallel-Out Register
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direction of the flip-flops in the right-shift register, the register can perform left-shift

operation. A bidirectional or reversible, shift register can be designed with proper

gating arrangement. A bidirectional shift register shifts data either to the left or right.

An input control line (R/L) is provided to switch between the two modes.

8.6 COUNTERS

A counter is simply a device that counts up or down. Counters have various important

applications. Counters may be used to count numbers, operations, quantities, or

periods of time. They may also be used for dividing frequencies, for addressing

information in storage, or for temporary storage. Counters are a series of flip-flops

wired together to perform the type of counting desired. Theywill count up or down by

ones, twos, or more. The total number of counts or stable states that a counter can

indicate is called the modulus. For example, the modulus of a four-stage counter

would be 1610, since it is capable of indicating (0000)2 to (1111)2. The termmodulo is

used to describe the count capability of counters. Modulo-16 represents a four-stage

binary counter, modulo-11 represents a decade counter, modulo-8 represents a 3-bit

binary counter, and so on.

The number of flip-flops used and how they are connected determine the number of

states and the sequence of the states that the counter goes through in each complete

cycle. Counters can be classified into two broad categories according to the way they

are clocked:

1. Asynchronous (also referred to as ripple) counters. In this type of counter the

first flip-flop is clocked by the external clock signal. Each successive flip-flop is

clocked by either the Q or �Q output of the preceding flip-flop.

library ieee ; 
use ieee.std_logic_1164.all; 

entity register4 is
port (

: D  in std_logic_vector(3 downto 0);
: clk, Din  in std_logic;
: Q  std_logic_vector(buffer 3 downto 0));

end register4; 
architecture circuit_behavior of register4 is

begin  
process  
begin  

wait until clk’ event and clk = ‘1’; 
D<= Q  ;

end process;
end circuit_behavior; 

Figure 8.34 VHDL Code Implementation of a Parallel-In, Parallel-Out Register
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2. Synchronous counters. In this type of counter all memory elements (flip-flops)

are triggered simultaneously by the same clock signal.

In the following sections, various asynchronous and synchronous up–down

counters are described.

8.6.1 Asynchronous Up–Down Counters

In asynchronous counters, only the first flip-flop is clocked by an external clock

signal, and each successive flip-flop is clocked by either the Q or �Q output of the

preceding flip-flop. Thus, the remaining flip-flops do not have a common clock

control. Asynchronous counters are also referred to as ripple counters because the

information ripples from the less significant bit to the more significant bit, one bit at a

time. T flip-flops are the building blocks of most asynchronous counters. A 4-bit

asynchronous counter is constructed using four T flip-flops, as illustrated in

Figure 8.35.

As illustrated in Figure 8.35, the external clock is connected to the clock input of

the first flip-flop only (left). Each subsequent flip-flop is connected to the inverted

output �Q of the preceding flip-flop. The input to the first flip-flop is always HIGH

(equal to logic level 1); therefore, it changes state at the rising edge of the clock signal.

The next flip-flop changes onlywhen triggered by the rising edge of theQ output of the

first flip-flop. Because of the inherent propagation delays through the flip-flops, the

transition of the input clock signal and a transition of theQ output of the first flip-flop

can never occur at exactly the same time. Because of the cumulative propagation

delays resulting from the ripple action of the clock signal, the flip-flops cannot be

triggered simultaneously. This ripple effect produces asynchronous operation of the

counter. The timing diagram of a 3-bit asynchronous up counter shown in Figure 8.36

illustrates the effects of propagation delays.

Avariation of the counter shown in Figure 8.35 is illustrated in Figure 8.37. Notice

that only the first flip-flop is triggered by the clock signal. Each subsequent flip-flop is

connected to the outputQ of the preceding flip-flop instead. The resulting counter will

count down from (1111)2 to (0000)2. Therefore, the counter is a 4-bit asynchronous

down counter.
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Figure 8.35 Logic Circuit Diagram of a 4-Bit Asynchronous Up Counter
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8.6.2 Asynchronous Decade Counter

The general binary counters count in serial count sequence up or down. An N-bit

counter has 2N states and counts from 0 to (2N� 1) or (2N� 1) to 0. However, counters

can have a truncated count sequence with fewer states. The truncated sequence is

achieved by forcing the counter to reinitialize before going through all of its normal

states. This type of counter is referred to as amodulus-M counter, whereM represents

the states beyond which the remaining states are truncated. A common truncated

sequence counter is the modulus-10 counter, also referred to as a decade counter. The

10 states of a decade counter represent the BCD numbers from 0 to 9. The logic circuit

shown in Figure 8.38 is an implementation of an asynchronous decade counter.

Once the counter counts to 10 (1010), all the flip-flops are reset by the NAND

output. Notice that when the counter reaches 10, Q1 and Q3 are at logic level 1,

whereas Q0 and Q2 are at logic level 0. Thus, only Q1 and Q3 are used to decode

the state, which corresponds to a count of 10. This is called partial decoding.

The timing diagram shown in Figure 8.39 illustrates an asynchronous modulus-6

counter. To illustrate, Figure 8.39 includes propagation delays. Despite the fact

that the asynchronous modulus-6 counter counts up to 5, the last state is valid only for

a shorter period of time. Thus, the last state may not be seen by devices that use this

counter. Therefore, the counter acts as a modulus-5 rather than a modulus-6 counter.

8.6.3 Synchronous Counters

As shown earlier, asynchronous counters are simple to design, but their cumulative

propagation delays severely degrade its counting function. For larger asynchronous
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Figure 8.37 Logic Circuit Diagram of a 4-Bit Asynchronous Down Counter
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Figure 8.36 Timing Diagram of a 3-Bit Asynchronous Up Counter
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counters, the cumulative propagation delay may be as large as the period of the clock

signal. Of course, one would increase the period of the clock signal to compensate for

the propagation delays, but longer clock signal periods mean slower counting. To

overcome the propagation delays of the “ripple” effects of asynchronous counters,

synchronous counters aregenerally used instead.Thedifference betweena synchronous

counter and an asynchronous counter is that all flip-flops in the synchronous counter

receive a common clock signal and change their states at the same time (in parallel).

Thus, the ripple effects are eliminated and the propagation delays are minimized.

Therefore, synchronous counters are faster than asynchronous counters. Synchronous

counters can be designed to count up or down. They can also be designed to generate

special count sequences of nonconsecutive numbers. Because all flip-flops are

synchronized to the same clock signal, the count sequence will depend on the logic

functions which drive the individual flip-flops. For example, to design a 3-bit

synchronous up counter using T flip-flops, one needs to list the count sequence

(Figure 8.40) of the counter and infer design criteria.

For the count sequence listed in Figure 8.40, the following observations can be

made:

. The output Q0 toggles on each clock cycle, thus, T0¼ 1.

. The output Q1 toggles on the next clock cycle each time that Q0¼ 1; thus,

T1¼Q0.

Clk

Q1

Q2

Q0

Figure 8.39 Timing Diagram of an Asynchronous Modulus-6 Counter
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Figure 8.38 Logic Circuit Diagram of an Asynchronous Decade Counter
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. The outputQ2 toggles on the next clock cycle each time thatQ0¼ 1 andQ1¼ 1;

thus, T2¼Q1Q0.

. For an N-bit counter, one would infer that TN-1¼QN-1� � �Q1Q0.

Figure 8.41 is an example of a 4-bit synchronous up counter designed with T flip-

flops. Notice that the additional AND gates are connected so as to satisfy the relations

derived from the observations made above.

The VHDL code in Figure 8.42 shows an implementation of an 8-Bit synchronous

up counter. Similar to asynchronous counters, synchronous modulus-N counters can

also be designed. The VHDL code shown in Figure 8.43 illustrates a synchronous

modulus-6 counter. The synchronous modulus-6 counter counts up from 000 to 101

and then recycles to 000 again.

8.6.4 BCD Counters

Digital counters are very useful in many applications. They can be found in digital

clocks and parallel-to-serial data conversion. Parallel-to-serial conversion is normally

accomplished by the use of a counter to provide a binary sequence for the data-select

inputs of a multiplexer. Although counters can be designed to perform dedicated

counting tasks, in general, a typical counter may include means to enable, clear,

and load the counter. The enable input is designed to disable the counter when it is not
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Figure 8.41 Four-Bit Synchronous Up Counter Designed with T Flip-Flops

Clock Cycle Q2 Q1 Q0

0 0 0 0 
1 0 0 1 
0 1 0 2 
1 1 0 3 
0 0 1 4 
1 0 1 5 
0 1 1 6 
1 1 1 7 
0 0 0 8 

Figure 8.40 Count Sequence of a 3-Bit Synchronous Up Counter
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in-use. The clear input can be either synchronous or asynchronous. On the other hand,

the load input is provided as a means to initialize the counter to any value within its

counting range. Figure 8.44 illustrates a typical counter with enable input, load select

input, and data load inputs. The counter is assumed to be synchronous. Figure 8.45

library ieee ; 
use ieee.std_logic_1164.all; 

entity modulus6_upcounter is
port (

: clk, clear  in std_logic;
: Q  std_logic_vector(buffer 2 downto 0));

end syn_upcounter; 
architecture circuit_behavior of modulus6_upcounter is

begin  
process ( clk, clear )
begin  

if clear = ’1’ then
Q <= 0;  

elsif (clk’ event and clk = ‘1’) then
if  Q = “101” then

0; <= Q  
else

Q+1<= Q  ;
end if ;

end if; 
end process;

end circuit_behavior; 

Figure 8.43 VHDL Code Implementation of a Synchronous Modulus-6 Up Counter

library ieee ; 
use ieee.std_logic_1164.all; 

entity syn_upcounter is
port (

: clk, clear  in std_logic;
: Q  std_logic_vector(buffer 7 downto 0));

end syn_upcounter; 
architecture circuit_behavior of syn_upcounter is

begin  
process ( clk, clear)
begin  

if clear = ’1’ then
Q <= 0;  

elsif (clk’ event and clk = ‘1’) then
Q+1<= Q  ;

end if; 
end process;

end circuit_behavior; 

Figure 8.42 VHDL Code Implementation of an 8-Bit Synchronous Up Counter
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illustrates a 4-bit synchronous modulus-10 counter. This counter is also referred to as

a 1-bit BCD counter. The timing diagram of the counter is shown in Figure 8.46.

BCD counters are used in many human interfaces. Typical applications of BCD

counters include cascaded BCD counters and digital clocks. The BCD counter

illustrated in Figure 8.47 consists of two 1-bit BCD counters cascaded to form a

2-bit (BCD1BCD0)BCD counter. The 2-bit BCD counter counts from00 to 99.Notice

that both 1-bit BCD counters are initialed by a load data input of 0. The BCD0

counter counts (the units) from 0 to 9 at every clock cycle (assume a clock rising edge)

because its enable input is active all the time. The output Q0 and Q3 are ANDed to

trigger the load input to initialize the counter to 0000. The AND gate is active only

Q0
Q1.

Qn-1

D0
D1.

Dn-1

Load
Clk
En

Load
Data

Counter
Output

Figure 8.44 Typical Counter with Load and Enable Inputs
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Figure 8.45 One-Bit BCD 0-to-9 Counter

Clk

Q1

Q2

Q0

Q3

Figure 8.46 Timing Diagram of a 1-Bit BCD 0-to-9 Counter

COUNTERS 155



when bothQ0 andQ3 are equal to logic level 1, which corresponds to the BCD number

9, after which the counter resets. The BCD1 counter counts (the tents) from 0 to 9, and

it is active onlywhen bothQ0 andQ3 of the BCD0 counter are equal to logic level 1. Its

enable input is connected to the AND gate ofQ0 andQ3. Similar to a BCD0 counter, a

BCD1 counter has its outputQ0 andQ3 ANDed to force it to reinitialize after it reaches

the BCD number 9.

Using the same design approach, one could cascade several 1-bit BCD counters

with different counting ranges. Three similar cascaded BCD counters would count

from 000 to 999. A BCD counter can be designed to make it possible to change the

reinitialization condition. For example, Figure 8.47 could be modified to count from

00 to 59 instead. The BCD1 counter needs to be modified to count from 0 to 5 by

ANDing theQ0 andQ2 outputs. The VHDL code shown in Figure 8.48 implements a

2-bit BCD counter, which counts from 00 to 99.

8.6.5 Special Counters

There is a special class of synchronous counters, which have been use in the past

to provide simple bit patterns for coding and decoding processes. These counters

include the Johnson and ring counters. A Johnson counter generates a sequence of

binary numbers where only one bit position changes between two consecutive

numbers. Figure 8.49 illustrates a 4-bit Johnson counter designed with four D

flip-flops. The most significant inverted output �Q (of the last flip-flop on the right)

is connected to the input of the least significant bit position (first flip-flop on the left).

Starting with an initial value of Q0Q1Q2Q3 equal to 0000, the Johnson counter

Q0
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Q2

Q3

D0
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D2

D3
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Clk
En

0
0
0
0

1

Clock
0Q
1Q
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3D
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Clk
En

0
0
0
0

Clear

BCD0

BCD1

Figure 8.47 Two-Bit BCD 00-to-99 Counter
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periodically generates the sequence 0000, 1000, 1100, 1110, 1111, 0111, 0011, 0001,

0000. Notice that only one bit position changes between two consecutive numbers, as

in the case of the Gray code. For a Johnson counter to work properly, it must be reset

initially to 0000.

The ring counter is a variation of the Johnson counter. Rings counters are used in

time-division multiplexing applications, where a series of outputs must be enabled in

library ieee ; 
use ieee.std_logic_1164.all; 

entity bcd_counter is
port (

: clk, clear, enable  in std_logic;
: bcd0, bcd1  std_logic_vector(buffer 3 downto 0));

end bcd_counter; 
architecture circuit_behavior of bcd_counter is

begin  
process ( clk)
begin  

if clk’ event and  clk = ‘1’ then
if clear = ’1’ then

bcd1 <= “0000”; bcd0 <= “0000”;  
elsif enable = ‘1’ then

if  bcd0 = “1001” then
bcd0 <= “0000”;  
if bcd1 = “1001” then

bcd1 <= “0000”; 
else

bcd1 <= bcd1 + ‘1’;  
end if ;

else
bcd0 <= bcd0 + ‘1’;  

end if ;
end if ;

end if ;
end process;

end circuit_behavior; 

Figure 8.48 VHDL Code Implementation of a 2-Bit BCD Counter
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Figure 8.49 Four-Bit Johnson Counter
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a given time sequence. A typical application of ring counters is their use in display

circuits, where lights ripple on and off in a cyclic pattern. Figure 8.50 illustrates a 4-bit

ring counter constructed with D flip-flops. Notice that it is the outputQ of the last flip-

flop which is connected to the input of the first flip-flop. Starting from an initial value

of Q0Q1Q2Q3 equal to 1000, the ring counter periodically generates the cyclic

sequence 1000, 0100, 0010, 0001, 1000. Notice that only one bit position at a time

is equal to logic level 1 in a cyclic pattern. For a ring counter to work properly, it must

be reset initially to 1000.

PROBLEMS

8.1 Using only NAND gates, design a gated SR latch.

8.2 Using only NOR gates, design a gated D latch.

8.3 Determine the output Q of an SR latch for the input waveforms depicted in

Figure P8.3. Assume that the output Q is reset initially.

8.4 Determine the outputQ of a gated SR latch for the input waveforms depicted in

Figure P8.4. Assume that the output Q is reset initially.

8.5 Determine the output Q of a gated D latch for the input waveforms depicted in

Figure P8.5. Assume that the output Q is reset initially.

8.6 Determine the output Q of a gated D latch for the input waveforms depicted in

Figure P8.6. Assume that the output Q is reset initially.

Clock

QD

Q

QD

Q

QD

Q

QD

Q

Q3Q2Q0 Q1

Figure 8.50 Four-Bit Ring Counter

Q

R

S

Figure P8.3

158 SEQUENTIAL LOGIC



8.7 Determine the output Q of a gated D latch for the input waveforms depicted in

Figure P8.7. Assume that the output Q is reset initially.

8.8 Determine the output Q of a positive edge-triggered D flip-flop for the input

waveforms depicted in Figure P8.8. Assume that the output Q is reset initially.

Clk

D

Q

Figure P8.5

Clk

D

Q

Figure P8.6

Clk

D

Q

Figure P8.7

Clk

D

Q

Figure P8.8

Clk

R

S

Q

Figure P8.4
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8.9 Determine the output Q of a negative edge-triggered D flip-flop for the

input waveforms depicted in Figure P8.8. Assume that the outputQ is initially

set.

8.10 Determine the output Q of a positive edge-triggered D flip-flop for the input

waveforms depicted in Figure P8.10.Assume that the outputQ is reset initially.

8.11 Determine the output Q of a negative edge-triggered D flip-flop for the

input waveforms depicted in Figure P8.10. Assume that the output Q is set

initially.

8.12 Determine the output Q of a positive edge-triggered JK flip-flop for the input

waveforms depicted in Figure P8.12.Assume that the outputQ is reset initially.

8.13 Determine the output Q of a negative edge-triggered JK flip-flop for the

input waveforms depicted in Figure P8.12. Assume that the output Q is set

initially.

8.14 Determine the outputQ of a positive edge-triggered JK flip-flop for the input

waveforms depicted in Figure P8.14. Assume that the output Q is reset

initially.
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8.15 Determine the output Q of a negative edge-triggered JK flip-flop for the

input waveforms depicted in Figure P8.14. Assume that the output Q is set

initially.

8.16 Determine the outputQ of a positive edge-triggered JK flip-flop for the input

waveforms depicted in Figure P8.16. Assume that the output Q is reset

initially.

8.17 Determine the output Q of a negative edge-triggered JK flip-flop for the

input waveforms depicted in Problem 8.16. Assume that the output Q is set

initially.

8.18 Design a D flip-flop with a load feature (load input). Use a 2 : 1 multiplexer to

load the data in.

8.19 Write VHDL code to implement a gated SR latch.

8.20 Write VHDL code to implement an SR flip-flop.

8.21 Write VHDL code to implement a D flip-flop with a synchronous reset.

8.22 Write VHDL code to implement a D flip-flop with an asynchronous reset.

8.23 Write VHDL code to implement a JK flip-flop.

8.24 Determine the output Q of a positive edge-triggered T flip-flop for the input

waveforms in Figure P8.24. Assume that the output Q is reset initially.

8.25 Determine the output Q of a negative edge-triggered T flip-flop for the input

waveforms depicted in Figure P8.24. Assume that the output Q is set initially.

8.26 Determine the output Q of a positive edge-triggered T flip-flop for the input

waveforms in Figure P8.26. Assume that the output Q is reset initially.
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8.27 Determine the output Q of a negative edge-triggered T flip-flop for the input

waveforms in Figure P8.26. Assume that the output Q is set initially.

8.28 Determine the outputQ of the logic circuit in Figure P8.28(a). Assume that the

outputQ is reset initially and that the propagation delay of theNANDandNOT

gates is 1 ns. The timing diagram in Figure P8.28(b) has a 1-ns resolution.

8.29 Implement the SR flip-flop using a D flip-flop and additional logic gates.

8.30 Implement the JK flip-flop using a T flip-flop and additional logic gates.

8.31 Determine the output of a 4-bit right-shift register after the input sequence

01010101 has been shifted eight times, starting with the most significant bit.

Assume that the output of the register is reset initially to 0000. Draw a timing

diagram and list the output state.

8.32 Determine the output of a 4-bit right-shift register after the input sequence

00111100 has been shifted eight times, starting with the most significant bit.

Assume that the output of the register is set initially to 1111. Draw a timing

diagram and list the output state.
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8.33 Determine the output sequence of the 4-bit right-shift register depicted in

Figure P8.33. Draw a timing diagram and list the output sequence.

8.34 Write VHDL code to implement an 8-bit right-shift register using an if–

else–then statement.

8.35 WriteVHDL code to implement an 8-bit right-shift register constructedwithD

flip-flops using a component declaration for a D flip-flop.

8.36 Write VHDL code to implement an 8-bit serial-in, parallel-out right-shift

register.

8.37 Write VHDL code to implement an 8-bit serial-in, parallel-out right-shift

register with an asynchronous reset.

8.38 Write VHDL code to implement an 8-bit serial-in, parallel-out right-shift

register with a synchronous reset.

8.39 Design a 4-bit parallel-in, serial-out right-shift register.

8.40 Write VHDL code to implement an 8-bit parallel-in, serial-out right-shift

register.

8.41 Design a 4-bit bidirectional shift register.

8.42 Write VHDL code to implement an 8-bit bidirectional shift register.

8.43 Using T flip-flops, design a 4-bit asynchronous up counter.

8.44 Using T flip-flops, design a 4-bit asynchronous down counter.

8.45 Using T flip-flops and other logic gates, design a 4-bit asynchronous up–down

counter. Include an additional input to select the counting direction.

8.46 Using T flip-flops, design a 4-bit synchronous up counter.

8.47 Using T flip-flops, design a 4-bit synchronous down counter.

8.48 Write VHDL code to implement an 8-bit synchronous up counter.

8.49 Write VHDL code to implement an 8-bit synchronous down counter.
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8.50 Design a 2-bit BCD counter to count from 00 to 59.

8.51 Design a BCD counter to count from 000 to 999.

8.52 Design a 2-bit BCD counter to count from 01 to 12.

8.53 WriteVHDLcode to implement a 2-bit BCD counter that counts from00 to 59.

8.54 WriteVHDLcode to implement a 2-bit BCD counter that counts from01 to 12.

8.55 Write VHDL code to implement a 3-bit BCD counter that counts from 000

to 999.

8.56 Determine the output sequence of the 4-bit ring counter depicted in

Figure P8.56. Assume that the initial output state is equal to 1000. Draw a

timing diagram and list the output sequence.

8.57 Determine the output sequence of the 4-bit Johnson counter depicted in

Figure P8.57. Assume that the initial output state is equal to 0000. Draw a

timing diagram and list the output sequence.

8.58 Write VHDL code to implement an 8-bit Johnson counter.

8.59 Write VHDL code to implement an 8-bit ring counter.
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9 Synchronous Sequential Logic

9.1 OBJECTIVES

The objectives of the chapter are to describe:

. Synchronous sequential design

. Synthesis of a finite-state machine

. Analysis of a finite-state machine

. Flip-flop selection

. State assignment

. State optimization

. FSM VHDL programming

9.2 SYNCHRONOUS SEQUENTIAL CIRCUITS

In a combinational circuit, the outputs at any point in time are fully determined by the

inputs present at that point in time. In a sequential logic circuit, the outputs depend not

only on the present inputs but also on the past behavior of the circuit. Thus, a

sequential logic circuit consists of a combinational circuit and memory elements that

form a feedback system, as illustrated in Figure 9.1.

The sequential circuits described in Chapter 8 perform simple functions such as

shifting and counting. Registers shift data inputs in response to a clock signal.

Similarly, counters generate a predetermined sequence of states and have no inputs

other than the initial conditions and the clock signal. The counters designed inChapter

8 were constructed by cascading flip-flops to count in an orderly fashion. Changing

the count order requires a sequence of data input. The design methods designed so far

are not adequate to design a complex sequential circuit.

A sequential circuit which has additional inputs that may change its present state is

also referred to as a finite-state machine (FSM). In general, the output sequence of an

Introduction to Digital Systems: Modeling, Synthesis, and Simulation Using VHDL, First Edition.
Mohammed Ferdjallah.
� 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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FSM depends on the input sequence and the present state of flip-flops of the FSM.

There are two classes of sequential circuits, synchronous and asynchronous. If a clock

signal is used to control the operation of a sequential circuit, the circuit is known as a

synchronous sequential circuit. Asynchronous sequential circuits do not require a

clock signal but rely on the time delays of its components. Propagation delays of logic

gates are used as timing delays to accomplish the required feedback. In general,

synchronous circuits are easier to design and are used in the vast majority of practical

applications. The general structure of a synchronous sequential circuit is illustrated in

Figure 9.2. Notice that a clock signal is applied only to thememory section of an FSM.

In most synchronous sequential circuits, the state of the memory changes on the

transition of the clock signal.

The inputs of a combinational circuit consist of the inputs and the present state of

the memory, and the outputs of a combinational circuit are the updated inputs of the

memory. The memory of the circuit consists of flip-flops. A combinational circuit

depends on the type of flip-flops used.

In this chapter we examine simple synchronous sequential circuits, which can

implement only a fixed number of possible states. The counters designed in Chapter 8

are rather simple finite-statemachines. Their outputs and states are identical, and there

is no choice of the sequence in which states are selected. The outputs and next state of

a finite-state machine are combinational logic functions of their inputs and present

states. A simple timing diagram may not be adequate to determine the state sequence

of the flip-flops. Additional design tools such as a state diagram, a state table, and a

state assigned table will be introduced to describe the behavior of a finite-state

machine.

Memory

Combinational
Circuit

Inputs Outputs

Feedback Path

Figure 9.1 General Structure of a Sequential Circuit

Memory

Combinational
Circuit

Inputs Outputs

Feedback Path

Clock

Figure 9.2 General Structure of a Synchronous Sequential Circuit
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9.3 FINITE-STATE MACHINE DESIGN CONCEPTS

The general structure of a sequential circuit consists of two parts: flip-flops and

combinational circuits. The flip-flops hold the state memory of the sequential circuit.

Depending on how the output of the finite-state machine is related to the state of the

flip-flops, two structure models can be constructed:

1. The Moore model. In the Moore model the output of the finite-state machine

depends only on the present state of the flip-flops. In other words, the output

does not depend on the present inputs but, rather, on the previous inputs. The

output does not explicitly include the inputs in its logic expression. The output is

not valid until the flip-flops are updated during the current clock cycle.

Figure 9.3 illustrates the structure of the Moore model. There is no direct

connection between the inputs and the outputs of a finite-state machine. The

output of a finite-state machine is a function of its present state.

2. TheMealymodel. TheMealymodel is the other type of sequential circuit. The

Mealy model is a variation of theMooremodel in which the output of the finite-

state machine depends on the present states of the flip-flops and the present

inputs of the finite-state machine. The logic expression of the output depends

explicitly on the inputs of the finite-statemachine. The output is valid before the

flip-flops are updated during the current clock cycle. Figure 9.4 illustrates the

structure of the Mealy model.

In either model, the logic expressions of the combinational circuits, the number of

states, and the transitions between states are necessary to design a finite-state

machine. In the following sections we define terms that will be used to determine

the states and the combinational logic circuits of a finite-state machine.

9.3.1 State Diagram

The behavior of a finite-state machine can be described bymany different representa-

tions. A state diagram is a graphical representation that consists of circles (nodes) and

State
Memory

Inputs Outputs

Feedback Path

Clock

Output
Combinational

Circuit

Next State
Combinational

Circuit

Figure 9.3 Moore Model Structure of a Finite-State Machine
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directional arcs. The nodes represent the states and the arcs represent the transitions

between the states. Two state diagram samples, which may not represent the same

finite-state machine, are illustrated in Figure 9.5. In both state diagrams x is the input

and z is the output.

In theMooremodel, each state is appendedwith anoutput value.That is because the

output of a Moore finite-state machine is a function of its present state. The arcs are

labeledwith inputvalues,whichcause thecorresponding transitionbetweentwostates.

In contrast, in theMealymodel, each state is not appendedwith anoutput value, but the

transition arcs are labeled with the input values and the output value is separated by a

slash. In either model, a starting state is selected to receive the reset conditions.

9.3.2 State and State Assigned Tables

A state table is a direct enumeration of a state diagram into a useful table. The state

table, also referred to as a state transition table, is one step closer to FSM circuit

State
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Inputs
Outputs

Feedback Path

Clock

Next State
Combinational

Circuit

Next State
Combinational

Circuit

Figure 9.4 Mealy Model Structure of a Finite-State Machine
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Figure 9.5 State Diagrams for (a) Moore and (b) Mealy Models
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implementation. Consider the state diagram in Figure 9.6. The state table consists of

three columns: the present state, the next state, and the output. Alphanumeric letters

represent the states of the FSM. Under this form, the state table has a very limited use.

Figure 9.7 illustrates the state table of the state diagram shown in Figure 9.6. The state

table has four states: S0, S1, S2, and S3. Each state can be implemented by a flip-flop. It

takes 2-bit binary numbers to represent the four states. Assigning binary numbers to

the states leads to the state assigned table. The state assigned table is exactly similar to

the state table, except that the states are represented by binary numbers. The resulting

state assigned table is illustrated in Figure 9.8. States S0, S1, S2, and S3 are assigned the

values 00, 01, 10, and 11, respectively.

The state table in Figure 9.8 is called a state assigned tablebecause binary numbers

are assigned selectively to the states. The present states are designated as y2 and y1 and

the next states are designated as Y2 and Y1. A different state assignment would lead to

the state assigned table shown in Figure 9.9. Notice that states S0, S1, S2, and S3 are

assigned the values 00, 01, 11, and 10 instead. We will discover in the next sections

that different state assignments have different logic implementations with various

degrees of circuit complexity. Finding the appropriate state assignment is not a trivial

matter. CAD tools usually have proprietary search methods to find the optimum

implementation.

S0/z=0 S1/z=0

x=1

x=0

x=0

x=1

x=1

x=0

x=1

x=0

S2/z=0S3/z=1

Figure 9.6 State Diagram

Next State Present
State

x = 0 x = 1

Output
z

S0 S 1 S 0 0  

S1 S 2 S 0 0  

S2 S 3 S 0 0  

S3 S 3 S 0 1  

Figure 9.7 State Table of the State Diagram in Figure 9.6
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9.3.3 Next-State and Output Logic Functions

The state assigned table lists the inputs, the present states, the next states, and the

outputs of the finite-state machine in a tabular form similar to that of a truth table. The

inputs and the present states are the input columns, and the next states and the output

are the output columns.

nextstates ¼ function ðpresent states; inputsÞ
output ¼ function ðpresent states; inputsÞ ! Mealy model

output ¼ function ðpresent statesÞ ! Moore model

Therefore, the next states and the outputs of the finite-state machine can be expressed

and simplified using algebraic or graphical manipulations (Karnaughmaps). The next

states and outputs can then be implemented using logic gates and flip-flops. Because

the present states are delayed versions of the next states, D flip-flops are the better

choice. In later sections we explore other types of flip-flops by modifying and

introducing new columns in the state assigned table.

9.3.4 Finite-State Machine Design Procedures

Now that we have defined a few important terms, the following procedure summarizes

the steps in the design of a synchronous sequential circuit (FSM).

Next State Present
State

x = 0 x = 1
Output

y2y1 Y 2Y1 Y 2Y1 z  

0 00 01 00 

0 00 10 01 

0 00 11 10 

1 00 00 11 

Figure 9.8 State Assigned Table of the State Table in Figure 9.7

Next State Present
State

x = 0 x = 1
Output

y2y1 Y2Y1 Y2Y1 z 

0 00 01 00 

0 00 11 01 

0 00 10 11 

1 00 00 10 

Figure 9.9 Alternative State Assigned Table of the State Table in Figure 9.7
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1. Obtain the behavior specifications of the finite-state machine.

2. Design a state diagram and state table from a word description using state

labels.

3. Select a starting state for reset conditions.

4. Minimize the number of states, if necessary.

5. Choose state variables and assign binary values to the states.

6. Design a state assigned table from state table or state diagram.

7. Choose a flip-flop type to implement FSM memory.

8. Derive the simplified next-states and output logic expressions.

9. Draw the logic circuit for the finite-state machine.

9.4 FINITE-STATE MACHINE SYNTHESIS

Synthesis is the process of designing a finite-state machine from a problem statement

which describes its specifications and behavior. We use the design procedures

provided in Section 9.3.4, with the exception of state minimization, which is covered

in detail in Section 9.8. We will implement a simple finite-state machine using

Moore and Mealy models to illustrate similarities and differences between the two

models. The finite-state machine is designed using D flip-flops. In Section 9.8 we

describe how to use other flip-flops, such as JK and T flip-flops.

Below we work with a finite-state machine with one input, x, and one output, z.

Output z is equal to 1when the sequence 111 has been detected at the input; otherwise,

output z is equal to 0. This finite-state machine is referred to as a sequence detector.

9.4.1 Moore Model Design

Recall that in the Moore model, the output of a finite-state machine depends only on

the present states of the machine. Therefore, input sequence 111would have occurred

in the preceding three clock cycles for output z to change to 1. A sample input–output

time sequence is illustrated in Figure 9.10. Notice that output z changes to 1 only if

input x was equal to 1 during the preceding three clock cycles. As long as input x is

equal to 0, there is no change in the state memory of output z of the FSM. Therefore,

we select state S0 as a starting state, where input x is equal to 0 and output z is equal to

0. If input x remains equal to 0, the FSM remains in state S0 and output z remains equal

to 0. If input x changes to 1, the first bit of the desired input sequence 111 is detected.

The FSM moves to state S1 to indicate that the first bit of the sequence has been

detected. Output z remains equal to 0, however, because the entire sequence has not

yet been detected.

x 0 0 1 1 1 1 0 0 0 1 1 1 0 1 1 0 0 
z 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

Figure 9.10 Input–Output Sequence Sample of the Sequence Detector FSM
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Once at state S1, if input x changes to 0, the FSM returns to state S0. However, if

input x remains equal to 1, the FSM moves to state S2. The second bit of the desired

input sequence has been detected. Output z remains equal to 0. Once at state S2, if

input x is changed to 0, the FSM returns to state S0 because the sequence has been

broken. Output z remains at 0. However, if input x remains equal to 1, the FSMmoves

to state S3. Output z becomes equal to 1 because the desired sequence 111 has been

detected. If input x remains equal to 1, the FSM remains in S3 because the FSM keeps

detecting a moving sequence of 111. Output z remains equal to 1. However, if input x

changes to 0, the FSM returns to state S0, and the output becomes equal to 0.

The state diagram shown in Figure 9.11 summarizes the states and state transitions

of the Moore type of the sequence detector FSM. Notice how the states are appended

with the output z values. The transitions between states are labeledwith the changes in

input x. From the state diagram the state table is constructed and is shown in

Figure 9.12. Notice that the output column does not depend on input x as the next

state does. Since there are four states, it takes 2-bit binary numbers to represent the

states of the FSM. Assigning the binary values 00, 01, 10, and 11 to states S0, S1, S2,

and S3, respectively, the corresponding state assigned table is illustrated in

Figure 9.13. The present states are designated y2 and y1 and the next states are

designated Y2 and Y1. Once the state assigned table has been constructed, the next-to-

last task is to determine the logic expressions of the next states and the output of the

S0/z=0 S1/z=0

x=0

x=1

x=1

x=0

x=0

x=1

x=0

x=1

S2/z=0S3/z=1

Figure 9.11 State Diagram of the Moore Model Sequence Detector FSM

Next State Present
State

x = 0 x = 1

Output
z

S0 S0 S1 0 

S1 S0 S2 0 

S2 S0 S3 0 

S3 S0 S3 1 

Figure 9.12 State Table of the FSM in Figure 9.11
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FSM. Using the Karnaughmapmethod, the optimized logic expressions are as shown

in Figure 9.14.

The final step of synthesis is to design a finite-state machine using logic gates and

flip-flops. D flip-flops are the favorite choice due to their straightforward application.

Next states Y1 and Y2 become the inputs D of the flip-flops and present states y1 and y2

Next State Present
State

x = 0 x = 1
Output

y2y1 Y2Y1 Y2Y1 z 

0 01 00 00 

0 10 00 01 

0 11 00 10 

1 11 00 11 

Figure 9.13 State Assigned Table of the FSM in Figure 9.11

Y1 = x(y1 + y2)

Y2 = xy1 + xy1 = x(y2 + y1)

z = y2y1
0

1

10

10

00

x

0

1

y2y1

y2y1

y1
y2

10110100

10

0

1

00

1

0

x

0

1

10110100

11

0

0

00

1

0

Figure 9.14 Next-State and Output Logic Expressions of the FSM in Figure 9.13
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are the outputs Q of the flip-flops. Sometimes, however, other types of flip-flops may

reduce the combinational circuitry. The next-state and output expressions are im-

plemented using logic gates, as illustrated in Figure 9.15. Notice that output z is a

function of present states y1 and y2 only, whereas next states Y1 and Y2 are functions of

present states y1 and y2 and input x.

For certain finite-statemachines, the number of states is not a power of 2. The states

of the FSM should be expended to include don’t-care states to obtain a number of

states that is a power of 2. Notice that the exponent or the power of the number is

exactly equal to the number of flip-flops needed to implement the FSM. For example,

if an FSM has five states, the user needs to add three additional don’t-care states

to obtain a number of states equal to 8 (the next power of 2 number). The number of

flip-flops required to implement the finite-state machine would be three since 8 is

equal to 23.

9.4.2 VHDL Implementation of a Moore Model

Afinite-state machine can be described using VHDL programming. Because an FSM

is a sequential circuit, there are several ways to implement it in VHDL code using

control and decision-making statements. The VHDL code implementation of the

FSM in Figure 9.13 is illustrated in Figure 9.16. The entity of the FSM describes only

the input and output ports: that is, the input x, the output z, and the clock signal Clk.

The states of the FSM are described in the architecture. Notice that the VHDL code

uses the reservedkeyword type, which allows the user to define unique data types. The
state_type is described to have four possible states: S0, S1, S2, and S3.Using this unique

description, the signal y is defined as the present state of the FSM. Notice that the bit

D Q

QClk

D Q

QClk zx

y1

y2Y2

Y1

Clk

Figure 9.15 Logic Implementation of the FSM in Figure 9.13
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size of the present state signal y is not specified. The VHDL compiler will

automatically generate the number of flip-flops required and assign the appropriate

binary numbers to states S0, S1, S2, and S3. CAD tools use proprietary methods to

generate optimized circuit implementations.

9.4.3 Mealy Model Design

In the Mealy model, the outputs of the finite-state machine depend not only on the

present states of the FSM but also on the inputs. For the sequence detector example,

the desired input sequence 111 is detected during three clock cycles: two previous

library ieee ; 
use ieee.std_logic_1164.all; 

entity sequence_detector is
port(

: x, clk in std_logic;
: z std_logicout );

end sequence_detector; 
architecture circuit_behavior of sequence_detector is

type state_type is (S0, S1, S2, S3); 
signal y : state_type;

begin 
process (clk)
begin 

if clk’ event and clk = ‘1’ then
case  y is

when  S0 => 
if x = ‘0’ then

y <= S0; 
else

y <= S1; 
end if ;

when S1 => 
if x = ‘0’ then

y <= S0; 
else

y <= S2; 
end if ;

when  S2 => 
if x = ‘0’ then

y <= S0; 
else

y <= S3; 
end if ;

end case;
end if;

end process; 
z <= ‘1’ when  y = S3 else  ‘0’; 

end circuit_behavior; 

Figure 9.16 VHDL Implementation of the FSM Table in Figure 9.13
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clock cycles and the present clock cycle (Figure 9.17). The same input sample

sequence as in theMooremodel is used to compare the behavior of theMealymodel to

that of theMooremodel. Notice that the sequence 111 is detected in three consecutive

clock cycles, including the present cycle. Similar to the Moore model, consider state

S0, where input x is equal to 0 and output z is equal to 0. If input x changes to 1 and

output z remains at 0, the FSMmoves to state S1. Once at state S1, if x changes back to

0, the FSM returns to state S0. However, if inputx remains at 1, the FSMmoves to state

S2, with output z equal to 0. Once at state S2, if input x changes to 0, the FSMmoves to

state S0. If input x remains at 1, the FSM remains in state S2 and output z changes to 1

during the same clock cycle. The desired input sequence 111 has been detected. If

input x continues to be equal to 1, the FSM will remain in state S2 because the

sequence 111 is being detected continuously. The state diagram shown in Figure 9.18

graphically depicts the behavior of the FSM.

The state table illustrated in Figure 9.19 is constructed from the state diagram. The

FSM has three states: S0, S1, and S2. Notice that the output column depends on input x

and the present states, as do the next states. Two-bit binary numbers are required to

represent the three states of the FSM. Assigning the binary numbers 00, 01, and 10 to

states S0, S1, and S2, respectively, the state assigned table is illustrated in Figure 9.20.

Notice that the number of states is not a power of 2. An additional don’t-care state is

added and assigned the binary number 11. Two flip-flops are required to store the state

memory of the FSM. The present states are designated with y2 and y1 and the next

states are designatedwithY2 andY1.Next statesY2 andY1 and output z aremapped into

x 0 0 1 1 1 1 0 0 0 1 1 1 0 1 1 0 0 
z 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 

Figure 9.17 Modified Input–Output Sequence of the Sequence Detector FSM

S0 S1
x=0/z=0

x=1/z=0

x=1/z=0

x=0/z=0

x=0/z=0

x=1/z=1

S2

Figure 9.18 State Diagram of the Mealy Model Sequence Detector FSM
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Karnaugh maps as shown in Figure 9.21. Notice that the don’t-care state is also

mapped and used when appropriate. The logic expressions for the next states and

output are derived and listed in Figure 9.21. In this case, the don’t-care state was

helpful in obtaining simpler logic expressions. Using D flip-flops, the Mealy-type

Next State Output zPresent
State

x = 0 x = 1 x = 0 x = 1

S0 S0 S1 0 0 

S1 S0 S2 0 0 

S2 S0 S2 1 0 

Figure 9.19 State Table of the FSM in Figure 9.17

Next State OutputPresent
State

x = 0 x = 1 x = 0 x = 1

y2y1 Y2Y1 Y2Y1 z z 

0 0 01 00 00 

0 0 10 00 01 

1 0 10 00 10 

d d dd dd 11 

Figure 9.20 State Assigned Table of the FSM in Figure 9.17

Y1=xy2y1 Y2 = xy1+xy2 = x(y2+y1)

z = xy2

x

0

1

y2y1 y2y1

y2y1

10110100

d0

d

1

00

0

0

x

0

1

10110100

d1

d

0

00

1

0

x

0

1

10110100

d0

d

0

00

1

0

Figure 9.21 Next-State and Output Logic Expressions of the FSM in Figure 9.20
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sequence detector finite-state machine is implemented by the logic circuit shown in

Figure 9.22.

9.4.4 VHDL Implementation of the Mealy Model

TheVHDL code shown in Figure 9.23 implements aMealy-type FSM.Notice that the

type attribute was used to define the state_type signal. Neither the bit size of the

state_type signal nor the number of flip-flops was specified explicitly. The VHDL

compiler automatically generates the number of flip-flops required and assigns the

appropriate binary numbers to states S0, S1, and S2 to implement the FSM.

9.5 STATE ASSIGNMENT

Recall that the state assigned table is constructed by assigning randomly binary

numbers to the states of the FSM. The problem is that there is no priori knowledge to

determine which state assignment sequence would produce a minimum circuit

implementation. To illustrate the effects of state assignment, consider the state

assigned table shown in Figure 9.13. An alternative state assigned table is shown

in Figure 9.24, where the binary values of states S2 and S3 were switched. States S2 and

S3 are assigned the binary numbers 11 and 10, respectively.

Next statesY1 andY2 and output z logic expressions are derived using theKarnaugh

maps shown in Figure 9.25. Using D flip-flops, the circuit implementation of the FSM

is illustrated in Figure 9.26.Notice that the combinational circuit of the FSMhas fewer

D Q

QClk

D Q

QClk

z

x

y1

y2Y2

Y1

Clk

Figure 9.22 Logic Implementation of the FSM in Figure 9.20
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logic gates than the implementation circuit in Figure 9.15. This example illustrates that

different state assignments generate different implementation circuits with varying

degrees of complexity. Although there is no simple way to guess an appropriate state

assignment, a visual inspection of Karnaugh maps of an initial state assignment would

give insights on how tomodify theKarnaughmaps to obtain reduced implicants, which

generate combinational circuitswith fewer logic gates.Of course, for a larger numberof

states, visual inspections become impossible. Asmentioned before, modern CAD tools

use proprietary methods to generate optimized implementations.

library ieee ; 
use ieee.std_logic_1164.all; 

entity Mealy_fsm is
port(

: x, clk in std_logic;
: z std_logicout );

end Mealy_fsm; 
architecture circuit_behavior of Mealy_fsm is

type state_type is (S0, S1, S2); 
signal y : state_type;

begin 
process (clk)
begin 

if clk’ event and clk = ‘1’ then
case y is

when S0 => 
if x = ‘0’ then y <= S0; 
else y <= S1; 
end if ;

when S1 => 
if x = ‘0’ then y <= S0; 
else y <= S2; 
end if ;

when S2 => 
if x = ‘0’ then y <= S0; 
else y <= S2; 
end if ;

end case;
end if;

end process; 

process (x,y)
begin 

case y is
when  S0 => z <= ‘0’; 
when  S1 => z <= ‘0’; 
when  S2 => z <= x; 

end case;
end process;

end circuit_behavior; 

Figure 9.23 VHDL Implementation of the FSM in Figure 9.20
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9.6 ONE-HOT ENCODING METHOD

One-hot encoding is an alternative state assignment method which attempts to

minimize the combinational logic by increasing the number of flip-flops. The goal

of the method is to try to reduce the number of connections between the logic gates in

the combinational circuit of the FSM. The presence of more gate interconnections

results into longer propagation delays and a slower FSM. Since the propagation delay

through the flip-flops is faster, FSMs require fewer logic gates but not necessarily

fewer flip-flops.

Next State Present
State

x = 0 x = 1
Output

y2y1 Y2Y1 Y2Y1 z 

0 01 00 00 

0 11 00 01 

0 10 00 11 

1 10 00 10 

Figure 9.24 Alternative State Assigned Table of the FSM in Figure 9.11

Y1 = xy2
Y2 =  xy1 + xy2 =x(y1+y2)

z = y2y1

x

0

1

y2y1

y1

y2y1

10110100

01

0

1

00

0

0

x

0

1

10110100

11

0

0

00

1

0

0

1

10

01

00

y2

Figure 9.25 Next-State and Output Logic Expressions of the FSM in Figure 9.24
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One-hot encoding assigns one flip-flop for each state. For example, a finite-state

machine with N states requires N flip-flops. The states are assigned N-bit binary

numbers; where only the corresponding bit position is equal to 1, the remaining bits

are equal to 0. For example, in a finite-state machinewith four states S0, S1, S2, and S3,

the states are assigned the binary values 0001, 0010, 0100, and 1000, respectively.

Notice that only one bit position is equal to 1; the other bits are all equal to 0. The

reamaining 12 binary combinations are assigned to don’t-care states. Consider the

Mealy-type finite-state machine described by the state diagram shown in Figure 9.19.

The state diagram has three states: S0, S1, and S2. One-hot encoding assigns the binary

number values 001, 010, and 100 to the states, as illustrated in Figure 9.27.

Three flip-flops are required to store the state memory of the FSM. The present

states are designated y3, y2, and y1 and the next states are designated Y3, Y2, and Y1.

Notice that the number of next states and present states is increased. Next states Y3,Y2,

and Y1 and output z are mapped into Karnaugh maps as shown in Figure 9.28. The 12

D Q

QClk

D Q

QClk zx

y1

y2Y2

Y1

Clk

Figure 9.26 Logic Implementation of the FSM in Figure 9.24

Next State Present
State

x = 0 x = 1
Output

y3y2y1 Y3Y2Y1 Y3Y2Y1 z 

0 010 001 001 

0 100 001 010 

1 100 001 100 

Figure 9.27 One-Hot State Assignment of the FSM in Figure 9.19
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don’t-care states are also mapped into Karnaugh maps and are used to simplify the

next-state and output logic expressions. The logic expressions derived do not seem to

simplify the combinational logic. In fact, for smaller numbers of states, one-hot

encoding does not necessarily generate minimum circuit implementations. However,

one-hot encoding has proven to generate minimum implementations as the number of

states increases.

The circuit implementation of a FSMusing one-hot encoding is left to the reader as

an exercise. Compare the combinational circuit to that of Figure 9.22. Are the

propagation delays any better than those of Figure 9.22?

9.7 FINITE-STATE MACHINE ANALYSIS

Analysis of a finite-state machine is the process of finding the function of the FSM

by determining the relationships among the inputs, the outputs, and the states of the

flip-flops. Recall that synthesis of a finite-state machine is the process of finding a

circuit implementation that satisfies the behavior of the FSM. On the other hand,

analysis is breaking the FSM apart to determine its behavior and eventually its

function.
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Y1 = xy1 Y2 =  xy1 + xy2

Y3 =  y3 + xy2
z = y3
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y2y1
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Figure 9.28 Next-State and Output Logic Expressions of the FSM in Figure 9.27
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We adopt the following steps to analyze a finite-state machine.

1. Identify the inputs and outputs of the finite-state machine.

2. Determine the logic expressions of the next states and the outputs simply by

reading the logic networks that interconnect the inputs and outputs of the flip-

flops.

3. Determine the number of all possible states, including the don’t-care states.

Recall that the number of states is equal to 2N, where N is the number of flip-

flops of the FSM.

4. Determine the necessary bit size of the binary numbers required to represent the

states of the FSM.

5. Decide on a state assignment and construct a state assigned table using the next-

state and output logic expressions.

6. Construct a state table from the state assigned table.

7. Construct a state diagram from the state table if necessary.

8. Draw or list a sample input–output timing sequence that describes the behavior

of the FSM.

9. Determine the function of the FSM.

Consider the finite-state machine logic circuit illustrated in Figure 9.29. We will

attempt to find the function and behavior of the finite-state machine using the steps

listed above. The finite-state machine has one input, x, and one output, z. Its

operations are synchronized by the clock signal Clk. The state memory of the

finite-state machine consists of two D flip-flops. The next states and present states

D Q

QClk

D Q

QClk

z

x
y1

y2Y2

Y1

Clk

Figure 9.29 FSM Circuit
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are designated Y2 and Y1 and y2 and y1, respectively.Y2 and Y1 are the inputs of the flip-

flops, and y2 and y1 are the outputs of the flip-flops. From the combinational logic that

interconnects the inputs and outputs of the flip-flops, the next-state and output logic

expressions can be written as follows:

Y1 ¼ x

Y2 ¼ �xy1 þ xy2�y1
z ¼ y2y1

Because the finite-state machine has two flip-flops, the FSMmay have a maximum of

four states S0, S1, S2, and S3, where one state may be a don’t-care state. By assigning

the binary numbers 00, 01, 10, and 11 to states S0, S1, S2, and S3, respectively, the state

assigned table shown in Figure 9.30 is constructed by evaluating next states Y2 and Y1
and output z logic expressions using all possible values for input x.

From the state assigned table of Figure 9.30, the state table is constructed and

illustrated in Figure 9.31. Comparing the state table in Figure 9.31 to that in

Figure 9.12, one could recognize that the logic circuit in Figure 9.29 is a sequence

detector FSM which detects the sequence 101.

9.8 SEQUENTIAL SERIAL ADDER

Sequential serial adders are economically efficient and simple to build. A serial adder

consists of a 1-bit full-adder and several shift registers. In serial adders, pairs of bits

Next State Present
State

x = 0 x = 1
Output

y2y1 Y2Y1 Y2Y1 z 

0 01 00 00 

0 01 10 01 

0 11 00 10 

1 01 10 11 

Figure 9.30 State Assigned Table of the FSM Circuit in Figure 9.29

Next State Present
State

x = 0 x = 1

Output
z

S0 S0 S1 0 

S1 S2 S1 0 

S2 S0 S3 0 

S3 S2 S1 1 

Figure 9.31 State Table of the FSM Circuit in Figure 9.29
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are added simultaneously during each clock cycle. Two right-shift registers are used to

hold the numbers (A andB) to be added, while one left-shift register is used to hold the

sum (S). A block diagram of a serial adder is shown in Figure 9.32.

Afinite-statemachine adder performs the addition operation on thevalues stored in

the input shift registers and stores the sum in a separate shift register during several

clock cycles. During each clock cycle, two input bits ai and bi are shifted from the two

input right-shift registers into the 1-bit full-adder, which adds the two bits and

evaluates the sum bit si and the carryout bit ciþ 1. The sum bit si is shifted out to

the left-shift register and the carryout bit ciþ 1 is stored in the state memory of the

serial adder for the next two bits. The time sequence of the operation of a 4-bit serial

adder is illustrated in Figure 9.33.

The statememory of a serial adder can only hold a bit for the carryout from a single

2-bit addition. Thus, the FSM for a serial adderwill have two states: one statewhen the

carryout is equal to 0 and the other state when the carryout is equal to 1. The carryout

ciþ 1 depends on output si and inputs ai and bi and is added to the inputs in the same

clock cycle. The state diagram shown in Figure 9.34 illustrates a Mealy model for the

serial adder. Starting from state S0, where the carryout is equal to 0, if the carryout

Clock

Shift Register

Shift Register

Shift Register
1-Bit

Full Adder

Figure 9.32 Block Diagram of a Serial Adder

A B S si ci+1

1 0 0000 0011 1011 

1 1 1000 0001 0101 

0 1 1100 0000 0010 

0 1 1110 0000 0001 

Figure 9.33 Time Sequence of the Operation of a 4-bit Serial Adder

aibi = 00/  si=0 aibi = 01/  si=0

aibi = 10/  si=0

aibi = 11/  si=1

aibi = 11/  si=0

s0 s1aibi = 01/  si=1

aibi = 00/  si=1
aibi = 10/  si=1

Figure 9.34 State Diagram of a Mealy Model Serial Adder
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remains equal to 0, the FSM serial adder remains in state S0. However, if the carryout

changes to 1, the serial adder moves to state S1. Once in state S1, the serial adder

returns to state S0 if the carryout changes to 0; otherwise, the serial adder remains in

state S1. The input and output values of the serial adder cause transitions between

states S0 and S1. The state table in Figure 9.35 summarizes the behavior of a serial

adder. Figure 9.36 shows a state assigned table of the serial adder.

Notice that the FSM serial adder has two states, and therefore only one flip-flop is

required to store the state memory of the FSM serial adder. The next state, ciþ 1, and

output si logic expressions are derived from the state assigned table as follows:

Y ¼ ciþ 1 ¼ aibi þ aiyþ biy ¼ aibi þ aici þ bici
si ¼ ai � bi � y ¼ ai � bi � ci

The logic expressions are similar to those derived for the full-adder designed in

Chapter 7. Using one D flip-flop, a logic circuit implementation of the serial adder is

illustrated in Figure 9.37. The logic circuit of a 1-bit full-adder has been discussed in

Section 7.4.

The state diagram of aMealymodel serial adder can bemodified to that of aMoore

model by appending the output values to the states of the FSM.Since the statememory

and the output of a Mealy model serial adder consist of a 1-bit binary number, that is,

the carryout ciþ 1 and the output si, aMooremodel serial adder would have four states.

The transitions between states S0, S1, S2, and S3 are caused by the changes in input bits

ai and bi. Figure 9.38 illustrates the state diagram of theMooremodel of a serial adder.

Two-bit binary numbers are required to represent the states of the FSM serial adder.

Next State Output si

a bi i a bi i

Present
State

11 10 01 00 11 10 01 00 

S0 S0 S0 S0 S1 1 1 1 0 

S1 S0 S1 S1 S1 1 0 0 0 

Figure 9.35 State Table of a Mealy Model Serial Adder

Next State Output

a bi i a bi i

Present
State

11 10 01 00 11 10 01 00 

sY y i

1 1 1 0 1 0 0 0 0 

1 0 0 0 1 1 1 0 1 

Figure 9.36 State Assigned Table of a Mealy Model Serial Adder
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The state table and state assigned table are illustrated in Figures 9.39 and 9.40,

respectively.

The logic expressions of next states Y2 and Y1 and output si are derived from

the state assigned table as follows:

Y1 ¼ ai � bi � y2 ¼ ai � bi � ci
Y2 ¼ ciþ 1 ¼ aibi þ aiy2 þ biy2 ¼ aibi þ aici þ bici
si ¼ y1

D Q

QClk

bi

ai

yY

Clk

1-Bit
Full

Adder

si

ci+1

Figure 9.37 Logic Implementation of a Mealy Model Serial Adder

aibi = 00 S0 /si = 0

S3 /si = 1 S2 /si = 1

S1 /si = 0
aibi = 11 aibi = 01

aibi = 10

aibi = 01

aibi = 10

aibi = 11
aibi = 00

a i
b i

 =
 0

0 a ib i =
 00

a ib i =
 11

a i
b i

 =
 1

1
aibi = 01

iaibi = 10

aibi = 01

aibi = 10

Figure 9.38 State Diagram of a Moore Model Serial Adder

Next State 

a bi i

Present
State

11 10 01 00 

Output
si

S0 S0 S1 S1 S2 0 

S1 S0 S1 S1 S2 1 

S2 S1 S2 S2 S3 0 

S3 S1 S2 S2 S3 1 

Figure 9.39 State Table of a Moore Model Serial Adder
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Notice that next states Y2 and Y1 describe the sum and the carryout of a Moore

model serial adder. Notice also that output si is equal to present state y1, which is a

delayed copy of next state Y1. Figure 9.41 illustrates a circuit implementation of a

Moore model serial adder using D flip-flops.

9.9 SEQUENTIAL CIRCUIT COUNTERS

A sequential counter is a logic circuit that generates a predetermined count sequence.

In Chapter 8, we designed synchronous and asynchronous counters by cascading flip-

flops.Often, thesecountersareunder thecontrolofaclocksignal.Aclocksignalcauses

counting transitions. Moreover, these counters can produce only a limited number of

count sequences. For counters that count in random sequences, cascading flip-flops to

generate these sequences may not be a trivial task. The design becomes complicated

when the user attempts to count asynchronous events without a clock signal.

To design synchronous counters, the general design procedures of sequential

circuits may be used. These procedures allow the design of complex counters which

can count in any counter order. To illustrate the design concepts of sequential

Next State 

a bi i

Present
State

11 10 01 00 

Output

y2y1 Y2Y1 si

0 10 01 01 00 00 

1 10 01 01 00 01 

0 11 10 10 01 10 

1 11 10 10 01 11 

Figure 9.40 State Assigned Table of a Moore Model Serial Adder

D Q

QClk

bi

ai

y2

Y1

Clk

1-Bit
Full

Adder

si

ci+1

D Q

QClk

Y2

y1

Figure 9.41 Logic Implementation of a Moore Model Serial Adder
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counters, wewill design a 3-bit binary up counter which counts from 000 to 111. Input

xwill be used to cause the counting transitions. When x is equal to 1, the counter will

increment; otherwise, the counter is idle at the last count. The example counter is

designed to count events described by input signal x. The clock signal can also be used

as an input signal as illustrated in the examples of Chapter 8.

Because input x does not cause a direct change in the output of the counter but,

rather, its state memory, it is more appropriate to use the Moore model. The output of

the counter is equal to the content of its state memory. Thus, each count is associated

with a state. A 3-bit up counter will have eight states (number of counts), and the

transitions between the states are controlled by input signal x and the clock signal. For

example, if S0 is the state associated with the count 000, the counter will move to S1
(the state associated with the count 001) when input signal x is equal to 1; otherwise,

the counter will remain in state S0. The counter will move from state to state when the

inputx is equal to 1.After the last state, S7, the counterwill reset to state S0 and start all

over again. Figure 9.42 illustrates the states and transitions between states for a 3-bit

synchronous up counter.

The state table shown in Figure 9.43 lists the states of a 3-bit up counter as

described in the state diagram of Figure 9.42. Notice that as long as input x is equal to

0, the counter remains in the corresponding state. It is only after inputx has changed to

1 that the counter increments. The 3-bit up counter has eight states. Therefore, 3-bit

binary numbers are required to represent the states of the counter. Because the output

of the counter is equal to the present state of the counter, it is convenient to assign each

state to the corresponding output of the counter. States S0 through S7 will be assigned

binary numbers 000 through 111. The output signals will be the same as the signals

representing the state variable. No additional combinational logic is necessary for the

outputs. The state assigned table is illustrated in Figure 9.44. The present states are

designated y3, y2, and y1 and the next states are designated Y3, Y2, and Y1.

x=0

x=1
S0 /0 S1 /1 S2 /2 S3 /3

S4 /4S5 /5S6 /6S7 /7

x=0x=0 x=0

x=0 x=0 x=0 x=0

x=1 x=1 x=1

x=1
x=1

x=1x=1

Figure 9.42 State Diagram of a 3-Bit Synchronous Up Counter
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Once the state assigned table has been constructed, the next task is to determine the

logic expressions of the next states and the output of the counter. Notice that we do not

need to determine the logic expressions for the outputs since the outputs are equal to

the present states of the counter. Using the Karnaugh maps shown in Figure 9.45, the

optimized logic expressions for the next states are evaluated as follows:

Y1 ¼ �xy1 þ x�y1 ¼ x� y1
Y2 ¼ �xy2 þ y2�y1 þ x�y2y1
Y3 ¼ �xy3 þ y3�y1 þ y3�y2 þ x�y3y2y1

with the outputs of the counter expressed as follows:

z1 ¼ y1
z2 ¼ y2
z3 ¼ y3

Next State Present
State

x = 0 x = 1
Output

y3y2y1 Y3Y2Y1 Y3Y2Y1 z3z2z1

000 001 000 000 

001 010 001 001 

010 011 010 010 

011 100 011 011 

100 101 100 100 

101 110 101 101 

110 111 110 110 

111 000 111 111 

Figure 9.44 State Assigned Table of a 3-Bit Synchronous Up Counter

Next State Present
State

x = 0 x = 1

Output
z

S0 S0 S1 0 

S1 S1 S2 1 

S2 S2 S3 2 

S3 S3 S4 3 

S4 S4 S5 4 

S5 S5 S6 5 

S6 S6 S7 6 

S7 S7 S0 7 

Figure 9.43 State Table of a 3-Bit Synchronous Up Counter
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9.9.1 D Flip-Flop Implementation

To implement the 3-bit up counter, the final step of design is to choose the appropriate

flip-flops. Of course, the simplest choice is to use D flip-flops. However, D flip-flops

may not yield simple combinational logic, and other flip-flops must be considered as

well. We will design the counter using D, JK, and T flip-flops.

Figure 9.46 shows a circuit implementation of the 3-bit counter using D flip-flops.

Each next state is connected to the D input of the flip-flop, which provides the present

state of the samevariable.Notice that the combination logic requires a large number of

logic gates. The complexity of the combinational logic will increase as the size of

the counter increases. Figure 9.46 shows two-level logic design, but as the size of the

counter increases, the fan-in and fan-out become serious problems that need to

be addressed. When designing with discrete components, other flip-flops must be

considered to minimize the combinational logic. Next, we attempt to reduce the

combinational logic by using JK and T flip-flops.

9.9.2 JK Flip-Flop Implementation

JK flip-flops have been used widely in the past to implement digital counters. They

can be configured (wired) to operate asD, SR, or Tflip-flops. Recall that the next states

00

01

11

10

y2y1
y2y1

xy3xy3

y2y1

xy3

10110100

010

01

0

11

1

10

101

00

00

01

11

10

10110100

110

11

0

10

0

00

110

01

00

01

11

10

10110100

000

11

0

00

0

11

111

10

Figure 9.45 Next-State Logic Expressions for a 3-Bit Synchronous Up Counter
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are the inputs of the flip-flops, and the present states are the outputs of the flip-flops.

Therefore, to use JKflip-flops to implement sequential circuits, inputs J andKmust be

determined from the output states of the JK flip-flop. The input characteristics of the

JK flip-flop are listed in Figure 9.47. Notice that for certain values of the present and

next states, J and K may be undetermined. Using Figure 9.47, the new state assigned

table of the counter is listed in Figure 9.48.

Using the Karnaugh maps shown in Figure 9.49, the optimized logic expressions

for the next states described by J and K are evaluated and listed in the figure.

D Q

QClk

D Q

QClk

z1x

y1

y2
Y2

Y1

Clk

D Q

QClk

2z

z3

y3Y3

Figure 9.46 Logic Implementation of a 3-Bit Synchronous Up Counter Using D Flip-Flops
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Figure 9.50 shows a circuit implementation of a 3-bit counter using JK flip-flops.

Notice that the don’t-care states in the new state assigned table in Figure 9.48 have

reduced the combinational logic substantially. Therefore, the use of JK flip-flops

would result in a simpler logic implementation of digital counters.

9.9.3 T Flip-Flop Implementation

A T flip-flop is a special operation of a JK flip-flop. For many counters, the state

transitions occur when the state variables toggle in predictable patterns. Therefore, T

flip-flops may be attractive alternatives. In fact, the digital counters described

in Chapter 8 were designed primarily with T flip-flops. Similarly, to use T flip-flops

to implement sequential circuits, the input T must be determined from the output

states of the T flip-flop. The input characteristics of the T flip-flop are listed in

Figure 9.51.

Because a T flip-flop is a JK flip-flop with the inputs wired together, there are no

undetermined states as observed in a JK flip-flop. Using the input characteristics of

the T flip-flop shown in Figure 9.51, the new state assigned table of the counter is

Next State Present
State

x = 0 x = 1
Output

y3y2y1 Y3Y2Y1 J3K3 J2K2 J1K1 Y3Y2Y1 J3K3 J2K2 J1K1 z3z2z1

000 1d 0d 0d 001 0d 0d 0d 000 000 

001 d1 d1 0d 010 d0 0d 0d 001 001 

010 1d d0 0d 011 0d d0 0d 010 010 

011 d1 d1 1d 100 d0 d0 0d 011 011 

100 1d 0d d0 101 0d 0d d0 100 100 

101 d1 1d d0 110 d0 0d d0 101 101 

110 1d d0 d0 111 0d d0 d0 110 110 

111 d1 d1 d1 000 d0 d0 d0 111 111 

Figure 9.48 State Assigned Table of a 3-Bit Up Counter Using JK Flip-Flops

Present State Next State Input Conditions 

K J Q(t+1) Q(t) 

d 0 0 0 

d 1 1 0 

1 d 0 1 

0 d 1 1 

Figure 9.47 Input Characteristics of a JK Flip-Flop
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given in Figure 9.52. From this table and using the Karnaugh maps shown in

Figure 9.53, the optimized logic expressions for the next states are evaluated as

follows:

T1 ¼ x

T2 ¼ xy1
T3 ¼ xy2y1

Figure 9.54 shows a circuit implementation of the 3-bit counter using T flip-flops.

Notice that the combinational logic is exactly similar to implementation with JK

flip-flops. From a careful inspection of Figure 9.50 one would observe that inputs J

and K of all the JK flip-flops are wired together to implement T flip-flops. One also

could recognize the similarity between Figures 9.54 and 8.41.

J1 = x K1 = x

J2 = xy1 K2 = xy1

J3 = xy2y1 K3 = xy2y1
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0
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d
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Figure 9.49 Next-State Logic Expressions for a 3-Bit Synchronous Up Counter Using JK

Flip-Flops
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9.10 STATE OPTIMIZATION

In the finite-statemachine exampleswe discussed in previous sections that the number

of states was very small. It was very easy to determine the minimum number of states

possible that describe the behavior of the finite-state machine without introducing

unnecessary (redundant) states. However, as the number of states increases, it

becomes difficult to distinguish between possible states. The initial design attempt

may include more states than are required by a finite-state machine. Some of the

states are redundant, which increases the complexity of the finite-state machine

unnecessarily.

z1x
y1

y2

Clk

z2

3z
y3

J1

K1

Q

Q

Clk

J2

K2

Q

Q

Clk

J3

K3

Q

Q

Clk

Figure 9.50 Logic Implementation of a 3-Bit Synchronous Up Counter Using JK Flip-Flops

Present State Next State Input Condition 

T Q(t+1) Q(t) 

0 0 0 

1 1 0 

1 0 1 

0 1 1 

Figure 9.51 Input Characteristics of the T Flip-Flop
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State minimization is the process of finding and eliminating the redundant states,

which are also referred to as equivalent states. Eliminating equivalent states will

reduce the number of flip-flops and simplify the combinational logic of the finite-state

machine. Two states are equivalent if and only if for all possible input sequences, the

finite-state machine generates the same output regardless of whether it starts at one or

the other state. It follows that the next states to two equivalent states must also be

equivalent. Knowing all possible input and output sequences of a finite-statemachine,

Next State Present
State

x = 0 x = 1
Output

y3y2y1 Y3Y2Y1 T3 T2 T1 Y3Y2Y1 T3 T2 T1 z3z2z1

000 1 0 0 001 0 0 0 000 000 

001 1 1 0 010 0 0 0 001 001 

010 1 0 0 011 0 0 0 010 010 

011 1 1 1 100 0 0 0 011 011 

100 1 0 0 101 0 0 0 100 100 

101 1 1 0 110 0 0 0 101 101 

110 1 0 0 111 0 0 0 110 110 

111 1 1 1 000 0 0 0 111 111 

Figure 9.52 State Assigned Table of a 3-Bit Up Counter Using T Flip-Flops
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Figure 9.53 Next-State Logic Expressions for a 3-Bit Synchronous Up Counter Using T

Flip-Flops
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one could automate the process by comparing two states at a time. Another less

tedious method is to identify the states, which are not equivalent and study the

remaining states closely to seewhether they are equivalent. This method is referred to

as the partitioning minimization method.

The partitioning minimization method will be illustrated in a finite-state machine

that has one input and one output. The partitioning minimization procedure is an

iterative method that partitions the states into blocks. Each block contains states that

may be equivalent to each other but are not equivalent to the states in other blocks. At

each iteration, the partitioning minimization method attempts to separate the states

into blocks of nonequivalent state groupings. Therefore, the partitioning minimiza-

tion method does not attempt to find states that are equivalent but, rather, finds states

that are not equivalent. Two states are not equivalent:

1. If for the same input sequence, they generate a different output sequence

2. If their next states are not equivalent, that is, they belong to different blocks

We will use these two criteria to minimize the states of the finite-state machine

described by the state table illustrated in Figure 9.55. Notice that the finite-state

machine has one input x and one output z. There are eight states, of which some are

equivalent. The initial partition P0 contains one block, which consists of all the states.

The states are assumed equivalent.

P0 ¼ ðA;B;C;D;E; F;G;HÞ

z1x
y1

y2

Clk

z2

z3

y3

T1
Q

QClk

T2
Q
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QClk

Figure 9.54 Logic Implementation of a 3-Bit Synchronous Up Counter Using JK Flip-Flops
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In the next iteration, the new partition P1 contains two blocks since there are two

possible input values. Each block contains states that generate the same output.

Clearly, two states that generate different outputs must not be equivalent. States A, B,

C, D, and F generate an output equal to 0, whereas states E, G, and H generate an

output equal to 1.

P1 ¼ ðA;B;C;D; FÞðE;G;HÞ

Partition P1 implies that states A, B, C, D, and F are not equivalent to states E, G, and

H. However, partition P1 does not imply that states A, B, C, D, and F are equivalent,

only that they may be equivalent. To test whether the states in a block remain in the

same block, we need to find the next states for each state. If for each input values, the

next states belong to the same block, the state remains in the current block.However, if

the next states do not belong to the same block, the state is not equivalent to the other

states in the same block. A new block is added to the new partition. The following

expressions show the next states for each input value:

For x ¼ 0; ðA;B;C;D; FÞ! ðA;C;C;A;DÞ and ðE;G;HÞ! ðE;E;GÞ
For x ¼ 1; ðA;B;C;D; FÞ! ðB; F;B;G;EÞ and ðE;G;HÞ! ðH;G;HÞ

Notice that the next states of states D and F do not belong to the same blocks. Thus,

statesD andFare not equivalent toA,B, andC.Notice also that the next states of states

E,G, andHbelong to the same blocks. Thus, states E,G, andHmay be equivalent. The

new partition P2 is constructed as follows:

P2 ¼ ðA;B;CÞðDÞðFÞðE;G;HÞ

We repeat the process of finding next states for the blocks that contain more than one

state. The next states for blocks (A, B, C) and (E, G, H) are as follows:

Next State Present
State

x = 0 x = 1

Output
z

0 B A A 

0 F C B 

0 B C C 

0 G A D 

1 H E E 

0 E D F 

1 G E G 

1 H G H 

Figure 9.55 State Table
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For x ¼ 0; ðA;B;CÞ! ðA;C;CÞ and ðE;G;HÞ! ðE;E;GÞ
For x ¼ 1; ðA;B;CÞ! ðB; F;BÞ and ðE;G;HÞ! ðH;G;HÞ

Notice that the next states of state B do not belong to the same block. Thus, state B

is not equivalent to A and C. Notice again that the next states of states E, G, and H

belong to the same blocks. Thus, states E, G, and H may be equivalent. The new

partition P3 is constructed as follows:

P3 ¼ ðA;CÞðBÞðDÞðFÞðE;G;HÞ
We repeat again the process of finding next states for blocks that contain more than

one state. The next state for blocks (A, C) and (E, G, H) are as follows:

For x ¼ 0; ðA;CÞ! ðA;CÞ and ðE;G;HÞ! ðE;E;GÞ
For x ¼ 1; ðA;CÞ! ðB;BÞ and ðE;G;HÞ! ðH;G;HÞ

Notice now that the next states of states A and C belong to the same block. Thus,

statesA andCmay be equivalent. Notice again that the next states of states E,G, andH

belong to the same blocks. Thus, states E, G, and H may be equivalent. The new

partition P4 is constructed as follows:

P4 ¼ ðA;CÞðBÞðDÞðFÞðE;G;HÞ

Since partition P4 is exactly similar to P3, the partitioning method stops. Because we

cannot find anymore states that are not equivalent, states that belong to the same block

are indeed equivalent. Therefore, states A and C are equivalent and states E, G, and H

are equivalent. From each block we select only one state to construct the minimized

state table shown in Figure 9.56.

9.11 ASYNCHRONOUS SEQUENTIAL CIRCUITS

Finite-state machines also include another class of sequential circuits, known as

asynchronous sequential circuits. Asynchronous sequential circuits do not require a

Next State Present
State

x = 0 x = 1

Output
z

0 B A A 

0 F A B 

0 E A D 

1 E E E 

0 E D F 

Figure 9.56 Minimized State Table of Figure 9.55
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clock to function. The memory of the asynchronous sequential circuit may include

flip-flops or time-delay devices.Whereas state transitions in a synchronous circuit are

controlled by changes in the clock, asynchronous circuits depend on the time-delay

propagation of the logic gates. The time-delay propagation, however, is not always

consistent throughout the stages of the circuit. Thus, the feedback time delay may not

be predictable. For this reason, asynchronous sequential circuits have limited

applications. A typical application of asynchronous sequential circuits is where a

circuit must respond to an input change promptly rather than waiting for a change in

the clock. Consider the asynchronous sequential circuit in Figure 9.57. Its state is

represented by the expression

Z ¼ f ðx; zÞ

where Z is the next state, z is the present state, and x is the input of the circuit. The

propagation time delay consists of the feedback loop in the circuit.

For example, consider the case where the input changes from 0 to 1 and causes the

next state to change from 0 to 1.While the change in the input is traveling through the

gates, the present state and next state are temporarily equal to 0. After the time-delay

propagation, the asynchronous sequential circuit eventually reaches a stable state.

This temporary instability can lead to hazards. The key design of asynchronous

sequential circuits is therefore to control the time-delay instability in the feedback

loops. Time propagation delays can introduce hazards that can alter the function of the

circuit temporarily. There are two types of hazards. A static hazard is a momentary

change in a signal as it is transitioning to its state value when the input changes. A

dynamic hazard, on the other hand, occurs when there is an imbalance in the

propagation delays of intersecting paths. Therefore, the design of asynchronous

sequential circuits must resolve all hazards to ensure proper functioning of the circuit.

Consequently, asynchronous sequential circuits are difficult to design due to

the inherent complications with propagation delays. In general, asynchronous circuits

are faster than synchronous sequential circuits. Currently, a hybrid design between the

synchronous and asynchronous models is used when faster circuits are warranted.

State
Memory

x Combinational
Circuit

Propagation
Delay

z
Z

Figure 9.57 Structure of an Asynchronous Sequential Circuit
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PROBLEMS

9.1 What is a finite-state machine?

9.2 List the procedural steps for finite-state machine design.

9.3 What is a Mealy machine?

9.4 What is a Moore machine, and how does it differ from a Mealy machine?

9.5 Using D flip-flops, design a logic circuit for the finite-state machine described

by the state assigned table in Figure P9.5.

9.6 Using D flip-flops, design a logic circuit for the finite-state machine described

by the state assigned table in Figure P9.6.

9.7 Using D flip-flops, design a logic circuit for the finite-state machine described

by the state assigned table in Figure P9.7.

9.8 Using D flip-flops, design a logic circuit for the finite-state machine described

by the state assigned table in Figure P9.8.

9.9 Using D flip-flops, design a logic circuit for the finite-state machine described

by the state assigned table in Figure P9.9.

Next State Present
State

x = 0 x = 1
Output

y2y1 Y2Y1 Y2Y1 z 

0 01 00 00 

0 10 00 01 

1 10 00 10 

1 10 00 11 

Figure P9.5

Next State Present
State

x = 0 x = 1
Output

y2y1 Y2Y1 Y2Y1 z 

0 01 00 00 

0 11 00 01 

0 10 00 10 

1 10 00 11 

Figure P9.6

PROBLEMS 201



9.10 Using D flip-flops, design a logic circuit for the finite-state machine described

by the state assigned table in Figure P9.10.

Next State Present
State

x = 0 x = 1
Output

y2y1 Y2Y1 Y2Y1 z 

1 10 01 00 

0 01 10 01 

0 00 11 10 

1 11 00 11 

Figure P9.7

Next State OutputPresent
State

x = 0 x = 1 x = 0 x = 1

y2y1 Y2Y1 Y2Y1 z z 

0 0 01 00 00 

0 0 10 00 01 

1 0 10 00 10 

1 1 10 00 11 

Figure P9.8

Next State OutputPresent
State

x = 0 x = 1 x = 0 x = 1

y2y1 Y2Y1 Y2Y1 z z 

0 0 01 00 00 

0 0 11 00 01 

0 0 10 00 10 

1 0 10 00 11 

Figure P9.9

Next State OutputPresent
State

x = 0 x = 1 x = 0 x = 1

y2y1 Y2Y1 Y2Y1 z z 

1 0 10 01 00 

0 0 11 00 01 

0 0 00 11 10 

1 0 00 10 11 

Figure P9.10
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9.11 Using JK flip-flops, design a logic circuit for the finite-state machine described

by the state assigned table in Figure P9.5.

9.12 Using JK flip-flops, design a logic circuit for the finite-state machine described

by the state assigned table in Figure P9.6.

9.13 Using JK flip-flops, design a logic circuit for the finite-state machine described

by the state assigned table in Figure P9.7.

9.14 Using JK flip-flops, design a logic circuit for the finite-state machine described

by the state assigned table in Figure P9.8.

9.15 Using JK flip-flops, design a logic circuit for the finite-state machine described

by the state assigned table in Figure P9.9.

9.16 Using JK flip-flops, design a logic circuit for the finite-state machine described

by the state assigned table in Figure P9.10.

9.17 Using T flip-flops, design a logic circuit for the finite-state machine described

by the state assigned table in Figure P9.5.

9.18 Using T flip-flops, design a logic circuit for the finite-state machine described

by the state assigned table in Figure P9.6.

9.19 Using T flip-flops, design a logic circuit for the finite-state machine described

by the state assigned table in Figure P9.7.

9.20 Using T flip-flops, design a logic circuit for the finite-state machine described

by the state assigned table in Figure P9.8.

9.21 Using T flip-flops, design a logic circuit for the finite-state machine described

by the state assigned table in Figure P9.9.

9.22 Using T flip-flops, design a logic circuit for the finite-state machine described

by the state assigned table in Figure P9.10.

9.23 Determine the minimum states of the finite-state machine described by the

state table in Figure P9.23.

Next State Present
State

x = 0 x = 1

Output
z

1 B A A 

0 F C B 

0 B C C 

0 G A D 

0 H E E 

0 E D F 

1 G E G 

1 H G H 

Figure P9.23
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9.24 Determine the minimum states of the finite-state machine described by the

state table in Figure P9.24.

9.25 Determine the minimum states of the finite-state machine described by the

state table in Figure P9.25.

9.26 Write VHDL code to implement the finite-state machine described by the state

assigned table in Figure P9.5.

9.27 Write VHDL code to implement the finite-state machine described by the state

assigned table in Figure P9.6.

9.28 Write VHDL code to implement the finite-state machine described by the state

assigned table in Figure P9.7.

9.29 Write VHDL code to implement the finite-state machine described by the state

assigned table in Figure P9.8.

Next State Present
State

x = 0 x = 1

Output
z

0 B C A 

0 D F B 

1 F E C 

1 B G D 

0 F C E 

1 E D F 

1 F G G 

1 G H H 

Figure P9.24

Next State Present
State

x = 0 x = 1

Output
z

1 D C A 

1 F H B 

0 E D C 

1 A E D 

0 C A E 

0 F B F 

1 B H G 

0 C G H 

Figure P9.25

204 SYNCHRONOUS SEQUENTIAL LOGIC



9.30 Write VHDL code to implement the finite-state machine described by the state

assigned table in Figure P9.9.

9.31 Write VHDL code to implement the finite-state machine described by the state

assigned table in Figure P9.10.

9.32 Consider the finite-state machine logic implementation in Figure P9.32.

(a) Determine the next-state and output logic expressions.

(b) Determine the number of possible states.

(c) Construct a state assigned table.

(d) Construct a state table.

(e) Construct a state diagram.

(f) Determine the function of the finite-state machine.

9.33 Consider the finite-state machine logic implementation in Figure P9.33.

(a) Determine the next-state and outputs logic expressions.

(b) Determine the number of possible states.

(c) Construct a state assigned table.

(d) Construct a state table.

(e) Construct a state diagram.

(f) Determine the function of the finite-state machine.

D Q

QClk

D Q

QClk

z
x

y1

y2Y2

Y1

Clk

Figure P9.32
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9.34 Consider the finite-state machine logic implementation in Figure P9.34.

(a) Determine the next-state and output logic expressions.

(b) Determine the number of possible states.

(c) Construct a state assigned table.

(d) Construct a state table.

(e) Construct a state diagram.

(f) Determine the function of the finite-state machine.

9.35 Consider the finite-state machine logic implementation in Figure P9.35.

(a) Determine the next-state and output logic expressions.

(b) Determine the number of possible states.

(c) Construct a state assigned table.

(d) Construct a state table.

(e) Construct a state diagram.

(f) Determine the function of the finite-state machine.

9.36 Consider the finite-state machine logic implementation in Figure P9.36.

(a) Determine the next-state and output logic expressions.

(b) Determine the number of possible states.

D Q

QClk

D Q

QClk

z1x

y1

y2
Y2

Y1

Clk

z2

Figure P9.33
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(c) Construct a state assigned table.

(d) Construct a state table.

(e) Construct a state diagram.

(f) Determine the function of the finite-state machine.

9.37 Design a logic circuit to implement a sequential parity checker. The parity bit

is added to a group of 7 bits during transmission or storage. If the number of

1’s in the 7-bit group is odd, the parity is odd. If the number of 1 in the 7-bit

group is even, the parity is even.

9.38 Design a logic circuit to implement a Moore-type sequence detector to detect

each of the following input sequences.

(a) 00

(b) 01

(c) 10

(d) 11

z1

x

y1

y2

Clk

z2

z3

y3

T1
Q

QClk

T2
Q

QClk

T3
Q

QClk

Figure P9.34
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z

x
y1

y2

Clk

J1

K1

Q

Q

Clk

J2

K2

Q

Q

Clk

Figure P9.35

z

x
y1

y2

Clk

J1

K1

Q

Q

Clk

J2

K2

Q

Q

Clk

Figure P9.36
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9.39 Design a logic circuit to implement a Mealy-type sequence detector to detect

each of the input sequences of Problem 9.38.

9.40 Design a logic circuit to implement a Moore-type sequence detector to detect

each of the following input sequences.

(a) 000 (b) 100

(c) 001 (d) 101
(e) 010 (f) 110

(g) 011 (h) 111

9.41 Design a logic circuit to implement a Mealy-type sequence detector to detect

each of the input sequences of Problem 9.40.

9.42 Design a logic circuit to implement a Moore-type sequence detector to detect

each of the following input sequences.

(a) 00 and 11

(b) 01 and 10

(c) 10 and 11

(d) 00 and 01

9.43 Design a logic circuit to implement a Mealy-type sequence detector to detect

each of the input sequences of Problem 9.42.

9.44 Design a logic circuit to implement a Moore-type sequence detector to detect

each of the following input sequences.

(a) 000 and 111 (b) 100 and 010

(c) 001 and 100 (d) 101 and 110

(e) 010 and 101 (f) 110 and 011

(g) 011 and 100 (h) 111 and 001

9.45 Design a logic circuit to implement a Mealy-type sequence detector to detect

each of the input sequences of Problem 9.44.

9.46 Using D flip-flops, design a logic circuit to implement a JK flip-flop.

9.47 Using D flip-flops, design a logic circuit to implement a T flip-flop.

9.48 Using D flip-flops, design a synchronous counter that counts in the sequence 1,

3, 0, 2, 1, . . .. The counter counts only when its enable input x is equal to 1;

otherwise, the counter is idle.

9.49 Using D flip-flops, design a synchronous counter that counts in the sequence 0,

2, 4, 6, 0, . . .. The counter counts only when its enable input x is equal to 1;

otherwise, the counter is idle.

9.50 Using D flip-flops, design a synchronous counter that counts in the sequence 1,

3, 5, 7, 1, . . .. The counter counts only when its enable input x is equal to 1;

otherwise, the counter is idle.
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9.51 Using D flip-flops, design a synchronous counter that counts in the sequence 0,

3, 6, 0, . . .. The counter counts only when its enable input x is equal to 1;

otherwise, the counter is idle.

9.52 Using D flip-flops, design a synchronous counter that counts in the sequence 1,

4, 7, 1, . . .. The counter counts only when its enable input x is equal to 1;

otherwise, the counter is idle.

9.53 Using D flip-flops, design a modulo-5 synchronous counter. The counter

counts only when its enable input x is equal to 1; otherwise, the counter is

idle.

9.54 Using D flip-flops, design a modulo-6 synchronous counter. The counter

counts only when its enable input x is equal to 1; otherwise, the counter is idle.

9.55 Using D flip-flops, design a modulo-10 synchronous counter. The counter

counts only when its enable input x is equal to 1; otherwise, the counter is

idle.

9.56 Using JK flip-flops, design a synchronous counter that counts in the sequence

1, 3, 0, 2, 1, . . .. The counter counts only when its enable input x is equal to 1;

otherwise, the counter is idle.

9.57 Using JK flip-flops, design a synchronous counter that counts in the sequence

0, 2, 4, 6, 0, . . .. The counter counts only when its enable input x is equal to 1;

otherwise, the counter is idle.

9.58 Using JK flip-flops, design a synchronous counter that counts in the sequence

1, 3, 5, 7, 1, . . .. The counter counts only when its enable input x is equal to 1;

otherwise, the counter is idle.

9.59 Using JK flip-flops, design a synchronous counter that counts in the sequence

0, 3, 6, 0, . . .. The counter counts only when its enable input x is equal to 1;

otherwise, the counter is idle.

9.60 Using JK flip-flops, design a synchronous counter that counts in the sequence

1, 4, 7, 1, . . .. The counter counts only when its enable input x is equal to 1;

otherwise, the counter is idle.

9.61 Using JK flip-flops, design a modulo-5 synchronous counter. The counter

counts only when its enable input x is equal to 1; otherwise, the counter is idle.

9.62 Using JK flip-flops, design a modulo-6 synchronous counter. The counter

counts only when its enable input x is equal to 1; otherwise, the counter is idle.

9.63 Using JK flip-flops, design a modulo-10 synchronous counter. The counter

counts only when its enable input x is equal to 1; otherwise, the counter is idle.

9.64 Using T flip-flops, design a synchronous counter that counts in the sequence 1,

3, 0, 2, 1, . . .. The counter counts only when its enable input x is equal to 1;

otherwise, the counter is idle.
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9.65 Using T flip-flops, design a synchronous counter that counts in the sequence 0,

2, 4, 6, 0, . . .. The counter counts only when its enable input x is equal to 1;

otherwise, the counter is idle.

9.66 Using T flip-flops, design a synchronous counter that counts in the sequence 1,

3, 5, 7, 1, . . .. The counter counts only when its enable input x is equal to 1;

otherwise, the counter is idle.

9.67 Using T flip-flops, design a synchronous counter that counts in the sequence 0,

3, 6, 0, . . .. The counter counts only when its enable input x is equal to 1;

otherwise, the counter is idle.

9.68 Using T flip-flops, design a synchronous counter that counts in the sequence 1,

4, 7, 1, . . .. The counter counts only when its enable input x is equal to 1;

otherwise, the counter is idle.

9.69 UsingTflip-flops, design amodulo-5 synchronous counter. The counter counts

only when its enable input x is equal to 1; otherwise, the counter is idle.

9.70 UsingTflip-flops, design amodulo-6 synchronous counter. The counter counts

only when its enable input x is equal to 1; otherwise, the counter is idle.

9.71 Using T flip-flops, design a modulo-10 synchronous counter. The counter

counts only when its enable input x is equal to 1; otherwise, the counter is idle.

PROBLEMS 211



INDEX

Absorption Property, 26

access types, 52

analog signal, 1

AND, 27, 56

AND array, 4

AND gate, 4, 35, 76, 155, 156

AND plane, 4

antifuse, EPROM, 6

Application-Specific Integrated Circuits, see

ASIC

arithmetic circuits, 120

arithmetic overflow, 19

array type, 53

ASIC, 3, 4, 6, 7, 47, 87

Associative Property, 26

Asynchronous Decade Counter, 151, 152

Asynchronous Sequential Circuits, 199

Asynchronous systems, 7

Asynchronous Up–Down Counters, 150

Attribute Declarations, 62

base 16, 10

base 8, 10

base-2, 10

BCD, 13, 19, 20, 21, 118, 119, 120,

151, 155, 156,

BCD Counters, 153

BCD-to-Excess-3 Code Converter, 118

BCD-to-Gray Code Converter, 118

BCD-to-Seven-Segment Code

Converter, 118

bidirectional shift registers, 148

binary, 9

binary representation, 97

binary-coded decimal representation, 19

binary-to-octal and hexadecimal

conversions, 12

bistable, 134, 138

bit and bit_vector types, 52

boolean algebra, 24, 25, 33, 34, 36, 87, 88,

89, 105

boolean theory, 24

boolean type, 53, 55

byte, 13, 15, 134

CAD, 1, 46, 47, 48, 50, 61, 175, 179

carry look-ahead adder, 125

Case Statement, 59, 61

CLBs, 6

Clk, 136

CMOS, 7, 38, 73, 75

CMOS Inverter, 73

CMOS Logic Gates, 72

CMOS Logic Networks, 75

CMOS NAND Gate, 73

CMOS NOR Gate, 73

Combinational Logic Circuits, 105

Commutative Property, 26

comparison circuits, 128

Complement Property, 26

Complementary Metal–Oxide

semiconductor, see CMOS

Complex Logic Nlocks, see CLBs

Complex Programmable Logic Devices. see

CPLDs

Component declarations, 62

Component Statement, 63

Composite types, 52

computer-aided design, 1, 8, 46

Consensus Theorem, 26

Introduction to Digital Systems: Modeling, Synthesis, and Simulation Using VHDL, First Edition.
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Constant Declaration, 62

counters, 149, 151, 153, 155, 189, 191, 193

CPLDs, 4, 5, 6, 8

D Flip-Flop, 140, 141, 142, 143, 191

D Latch, 137

data latch, 137

decimal, 9, 10, 11, 12, 13, 14, 15, 16,

19, 20, 117

decimal representations, 9

decimal-to-hexadecimal conversion, 12

decoders, 113

DeMorgan’s Theorem, 27

demultiplexers, 112

designated signed numbers, 16

designated unsigned numbers, 16

digital circuits, 2, 5, 25, 47, 48, 78

digital signal, 1

digital system, 1, 2, 7, 9, 17, 19, 20, 28, 31,

46, 49, 94,

Distributive Property, 26

dynamic power dissipation, 79

EEPROM transistors, 6

encoders, 115

enumeration type, 53

fan-in and fan out, 76

Field-programmable gate arrays, see FPGA

Field-Programmable Interconnect, see FPIC

file and alias declarations, 62

file types, 52

finite-state machine, 167

five-variable Karnaugh Map, 93

flip-flops, 138–149

For Loop Statement, 59

four-variable Karnaugh Map, 91

FPGA, 4, 6, 7, 47, 48

FPIC, 4

full-adder, 35, 49, 64, 121, 122, 124, 125

full-subtractor, 124

GAL, 4

Gated SR Latch, 136, 137

Generate Statement, 58

Generic Array Logic, see GAL

half-adder, 35, 49, 64, 120, 121, 122

half-subtractor, 123

hardware description language , see HDL

HDL, 3, 7, 47, 48

hexadecimal, 10, 12, 13, 15, 19

I/O blocks, see IOBs

Idempotent Property, 26

Identity Property, 25

If–Then–Else Statement, 59, 60

implicants, 97, 98, 179

integer type, 52

integrated circuit, 2, 47, 48

interconnection array, 5

Involution Property, 26

IOBs, 6

JK Flip-Flop, 142, 143, 144, 191, 193

Karnaugh Maps, 87

Latches, 134

Law of Identity, 24

Law of Noncontradiction, 24

Law of Rational Inference, 24

Law of the Excluded Middle, 24

least significant bit, see LSB

logic complement, 25

logic product, 25

logic signals, 68

logic sum, 25

logic switches, 69

lookup table memory, see LUT

Loop statements, 59

LSB, 11, 12, 13, 120, 125, 156

LUT, 6

maxterms, 31, 32, 33, 94

Mealy model, 167, 175

metal–oxide semiconductor field-effect

transistors, see MOSFETs

minterms, 31, 32, 33, 88, 89, 90, 91,

96, 97, 98, 99

Moore model, 167, 171

MOSFETs, 69

most significant bit, see MSB

MSB, 11, 13, 14, 17, 18, 19, 125, 129

multiplexer, 34, 35, 51, 62, 64, 79, 106,

108, 109, 110

NAND, 27, 56

n-channel MOSFET, 70

negative logic system, 69
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negative number representation, 15

next-state and output logic functions, 170

nibble, 13, 20, 134

NMOS Inverter, 70, 71

NMOS NAND Gate, 71

NMOS NOR Gate, 72

noise margins, 77

NOR, 27, 56

NOT, 27

NXOR, 27, 56

octal, 10, 11, 12, 13

one’s-complement representation, 14

one-hot encoding method, 180

OR, 27, 56

OR gates, 3, 4, 36, 127

overflow, 17, 19, 120

Package Statement, 61, 62

PAL, 4, 5, 47

p-channel MOSFET, 70

physical type, 53

PLA, 4, 5, 47

PLD, 3, 4, 6, 48, 87

positive logic system, 69

Power Dissipation, 79

prime implicants, 97, 98, 99

product-of-sums, 31, 95

Programmable Array Logic, see PAL

Programmable Logic Array, see PLA

Programmable Logic Devices, see PLDs

programmable switch matrix, 5

propagation delay, 5, 31, 38, 76, 77, 78, 125,

127, 152,

Quine–McCluskey Minimization, 96

real type, 52

registers, 145, 147

ring counter, 157

ripple-carry adder, 125

scalar types, 52

sequential circuit counters, 188

Sequential Declaration, 59

sequential logic circuits, 133

sequential serial adder, 184

Sequential Statement, 58

serial-in, parallel-out shift registers, 147

serial-in, serial-out shift registers, 146

set–reset latch, 134

shared variables, 62

Signal Declaration, 56

Signal Statement, 56

sign–magnitude representation, 14

Simple Programmable Logic Devices, see

SPLDs

Simplification Property, 26

SOP, 32, 42, 75, 88, 94, 97, 98

special counters, 156

SPLDs, 4

SR Flip-Flop, 139, 140, 141

SR Latch, 134

standard chips, 1, 2, 3, 8, 37

state diagram, 167

state optimization, 195

state table, 168

static power dissipation, 79

static RAM, 6

std_logic and std_logic_vector types, 53

sum of products, 4, 24, 31, 32, 88,

94, 95

synchronous sequential circuits, 165

synchronous systems, 7

T Flip-Flop, 144, 145, 146, 193, 195

three variable Karnaugh Map, 90

threshold voltage, 68, 69

timing diagram, 31,

transmission gates, 79

truth table, 28

two’s-complement representation, 14

two variable Karnaugh Map, 89

Type and Subtype Declarations, 62

Use Statement, 63

VHDL, 46–64

VHDL Arithmetic Operators, 56

VHDL Logical (Boolean) Operators, 55

VHDL relational operators, 55

VHDL Relational Operators, 56

VLSI technology, 75

While Loop, 60

word, 13

XOR, 27, 56

XOR AND NXOR Karnaugh Maps, 94

XOR Gate, 80
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