

ရာရေးသူ၏အမှာစာ

ယနေ့ နိုင်ငံတော်၏ တံခါးဖွင့်ဝါဒ ဈေးကွက်စီးပွားရေးစနစ်နှင့်အညီ မြန်မာနိုင်ငံအတွင်းသို့ နိုင်ငံပေါင်းစုံ၊ကုမ္ပဏီပေါင်းစုံမှ ဒီဇယ်အင်ဂျင်များစွာတို့ ဝင်ရောက် လျက်ရှိပါသည်၊ ၎င်းဒီဇယ်အင်ဂျင်များကို ကိုင်တွယ်မောင်းနှင် အသုံးပြုလျက်ရှိကြပါသည်။ သို့သော် ၎င်းအင်ဂျင်များ၏ အခြေခံသဘောတရား တည်ဆောက်မှုနှင့် အလုပ်လုပ်ပုံ အမျိုးမျိုးပြောင်းလဲကြသဖြင့် ကိုင်တွယ်မောင်းနှင်ရာတွင် အခက်အခဲများ ကြုံတွေ့ရတတ် ပါသည်။

ထို့ပြင် မြန်မာနိုင်ငံမှ အင်ဂျင်နီယာများ အတတ်ပညာရှင် ကျွမ်းကျင်သူများ အနေဖြင့် နိုင်ငံရပ်ခြားတွင်ဒီဇယ်အင်ဂျင်များနှင့်ပတ်သက်သောလုပ်ငန်းများတွင် တာဝန် ထမ်းဆောင်လျက် ရှိပါသည်။ ၎င်းတို့ကြုံတွေ့ ရမည်ဖြစ်သောအခက်အခဲများရှိနိုင်ပါသည်။ ထို့အခက်အခဲများကို ကျော်လွှားနိုင်ရန် မြန်မာဘာသာဖြင့် ပြုစုထားသော "ဒီဇယ်အင်ဂျင်" စာအုပ်တစ်အုပ် အထူးလိုအပ်လျှက် ရှိပါသည်။

ထို့ကြောင့် ဤစာအုပ်သည် လိုအပ်ချက်နှင့်အညီ ထွက်ပေါ်လာခြင်း ဖြစ်ပါသည်၊ ထို့ပြင် စက်မှု လက်မှုသိပ္ပံ၊ စက်မှုအင်ဂျင်နီယာ(စွမ်းအား)ကျောင်းသားများ၊ စက်မှုလက်မှုအထက်တန်းကျောင်း၊ မော်တော်ယာဉ် မက္ကင်းနစ်သင်တန်းသားများ၊ E.T.E.C နှင့် အလုပ်ခွင်၊ ဒီဇယ်သင်တန်းသားများအတွက် ဤစာအုပ်မှများစွာအထောက် အကူပြုမည် ဖြစ်ပါသည်။

ဤစာအုပ်ဖြစ်မြောက်ရေးအတွက် အဖက်ဖက်မှ ဝိုင်းဝန်းကူညီကြသူများအား ဤစာအုပ်ဖြင့် ဂုဏ်ပြုမှတ်တမ်းတင်အပ်ပါသည်။

ဤစာအုပ်တွင် ပါဝင်သောအကြောင်းအရာ၊ အချက်အလက် တစ်ခုခု မှားယွင်းပါက၊ ကျွန်တော်၏အားနည်းချက်သာဖြစ်ပါကြောင်း ဝန်ခံအပ်ပါသည်၊ ဝေဖန် အကြံဉာဏ်များ ပေးပို့ပါက ဝမ်းမြောက်စွာ ကြိုဆိုလက်ခံပါမည် ဖြစ်ကြောင်းအမှာစာပါး အပ်ပါသည်။

စာရေးသူ

ဦးအုန်မြင့် စက်မှုအင်ဂျင်နီယာ (စွမ်းအား)

REFERENCE BOOKS

- AUTOMOTIVE ENCYCLOPEDIA (GOODHEART - WILLCOX)
- 2. MARINE DIESEL ENGINES (SIXTH EDITION CT WILBUR. DA WIGHT)
- 3. DIESEL ENGINE MAINTENANCE A PRACTICAL GUIDE FOR THE SERVICE ENGINEER (D. I. HARTLEY-SMITH)
- AUTO MOTIVE MECHAINES (JOSEPH HEITNER)
- DIESEL AND HIGH COMPRESSION GAS ENGINES 3RD EDITION (EDGAR J. KATES)
- WORKSHOP MANUAL (HINO EK 100 ENGINE)
- SHOP MANUAL FOR KM AND BM
- 8. YANMAR DIESEL ENGINE
- 9. DIESEL OPERATOR'S GUIDE (C. MORGAN JONES)
- 10. DIESEL AND HIGH COMPRESSION GAS ENGINES FUNDAMENTALS (EDGAR. J. KATES)

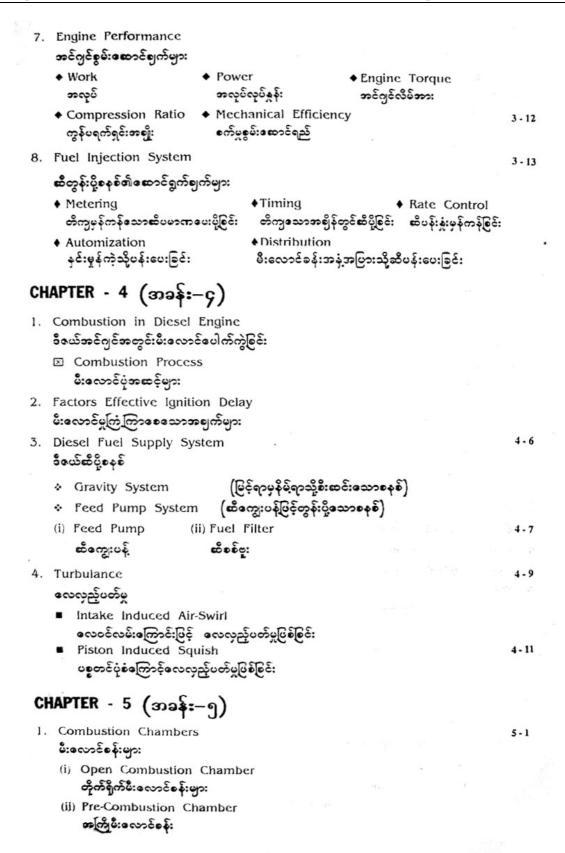
"ဤစာအုစ်ဖြင့် ကျေးစူးရှင်မိဘနှစ်ပါးနှင့် သင်ဆရာ ဖြင်ဆရာ ကြားဆရာအားလုံးကို ရှိသေစွာ ဦးညွှတ်ကန်တော့ပါ၏ ။" စာရေသူ "မျိုးဆက်သစ်စက်မှုအင်ဂျင်နီယာများနှင့်သမီးကြီးအေးသန္တာမြင့်သို့"

INDEX

P	2	C	1	5
٠	-			

. Diesel Engine ອິດເມີສາຣັຕຣັ	1-1
. Four Stroke Cycle Diesel Engine စိုးစရာတ်ဆိုင်ကယ်ဒီဖယ်အင်ဂျင်	1 - 2
. Four Stroke Cycle Valve Timing Diagram ဗိုးစတုတ်ဆိုင်ကယ်ဗားတိုင်မင်ပုံ	1-4
. Two Stroke Cycle Engine ဟူးစတုတ်ဆိုင်ကယ်အင်ဂျင်	1 - 5
. Scavenging Two Cycle Engine တူးစတုတ်ဆိုင်ကယ်လေသွင်းစြင်း	1 - 6
. Two Cycle Port and Valve Timing Diagram တူးဆိုင်ကယ်အင်ဂျင်ဗါးနှင့်အပေါက်များအကြောင်း	1 - 8
. Two Cycle and Four Cycle တူးဆိုင်ကယ်အင်ဂျင်နှင့်ဖိုးဆိုင်ကယ်အင်ဂျင်နိုင်းယှဉ်ဈက်	į - 10
. Petrol Engine and Diesel Engine ဓါတ်ဆီအင်ဂျင်နှင့် စီဖယ်အင်ဂျင်နိုင်းယှဉ်ရက်	1 - 11

СНАРТЕR - 2 (အခန်း–၂)


•

•••	Engine Constructions	2 -
	အင်ဂျင်တည်ဆောက်ပုံများ	
2.	Engine Parts (Stationary Parts) အင်ဂျင်အစိတ်အဖိုင်းများ (တည်ငြိမ်နေသောအစိတ်အဖိုင်းများ)	2
	• Cylinder Block • Crank Case • Cylinder Head ဆလင်ဒါဘလောက် ကရိုင်းကေ့စ် ဆလင်ဒါဟက်	
	• Head Gasket . ဟက်ဂတ်စကက်	
	Major Moving Parts (လွှစ်ရှားခနစသာအစိတ်အဖိုင်းများ) • Piston • Piston Ring • Connecting Rod ပစ္စတင်	
	ပစ္စတင် ပစ္စတင်ရင်း ကွန်နက်တင်းရောဒ် • Crank Shaft • Flywheel • Valve and Valve Mechanisms ကရိုင်းရှပ် ဖလိုင်းဝိုး ဗားနှင့်ဗားဖွင့်ပိတ်အစိတ်အပိုင်းများ • Cam Shaft • Bearing	

CHAPTER - 3 (အခန်း–၃)	
1. Types of Fucl Injection System ဒီဇယ်ဆီတွန်းမို့စံနစ်အမျိုးမျိုး	3-1
 2. Mechanical Injection စက်မှုအားဖြင့်ဆီတွန်းဖို့ခြင်း Common Rail System တွန်မွန်းခရးစနစ် 	
Pump Control Injection System ပန်ဖြင့်ဆီတွန်းဖို့စနစ်များ	
- Individual Plunger Pumps တလုံးစျင်းတွန်းပို့သောပန့်များ	
(i) Control Bypass Pump ဆီပြန်ပိုက်ဖြင့်ထိန်းပေးသောပန့်	3 - 2
(ii) Control Suction Pump ဆီဝင်အနည်းအများဖြင့် ထိန်းဖေးသောပန့်	2 2
(iii) Variable Metering Orific Pump ဆီဝင်ဝေါက်ဖြင့်ထိန်းပေးသောပန့် (iv) Varible Stroke Pump	* 3-4
ဆီတွန်းစတုတ်ပြင့် ထိန်းပေးသောပန့် (v) Port and Helix Metering Pump	
ဆီဝင်ပေါက်နှင့် စရှပတ်မြောင်းဖြင့် ထိန်းပေးသောပန့် 3. Delivery Check Valve	3 - 5
ဆီထွက်ဗား	
4. Distributor Pump ခစ်စတီဗျတာပန့်	3 - 7
(i) High Pressure Distributor Pump စိအားဖြင့်စစ်စတီဗျူတာပန့်	
(ii) Low Pressure Distributor Pump မိအားနိမ့်စစ်တိဗ္ဗုတာမန့်	
5. Operation of Fuel Injection Pumps အင်ဂျင်ရှင်းပန့်များ၏အလုပ်လုပ်ပုံများ	3 - 8
.6. Calculation of Fuel Quantity Required လိုအပ်သေးဆီပမာဏတွက်ချက်ခြင်း	3-9

http://khtnetpc.webs.com

For Knowledge & Educational Purposes

	(iii) Turbulance Combu တာဗူလ င်အကြိုမီး လောင်			5 - 2
	(iv) Air Cell (or) Energy အဲယားဆဲလ်အကြိုမ်းလေ	y Cell Chamber		5 - 4
C	снартея - 6 (зээई:-	-6)		
1	. Fuel Injection Pumps ဆီတွန်းပို့ပန့်များ			6 - 3
	(i) Multi - Plunger Pun အတွဲလိုက်ပန့်	пр		
	O American Bosch (ii) Individual Pump တစ်လုံးထိုးပန့်	O C.A.V	O Simms	
	* Robert Bosch	* C.A.V	* Scintilla	6 - 9
	(iv) Caterpillar Pump ကယ်တာပီလာပန်			6 - 6
	(v) Distributor Pump ၁ခ်စတိဗျူတာပန့်			6 - 12
	 American Bosch ⇒ C.A.V - D.P.A Put ⇒ International Har 	mp (D.B Pump)		
2.	Unit Injector			6 - 15
	ယူနစ်အင်ဂျက်တာ			
	(i) Scintilla	(ii) General Motors		
3.	Maintenance of Fuel In	· 같은 것에서 같은 것은 것이 같은 것이 같은 것이 같은 것이 같은 것이 같은 것이 같은 것이 같이 같이 있다. 것이 같은 것이 같은 것이 같은 것이 같은 것이 같은 것이 같이 있다. 것이 같은 것이 같은 것이 같은 것이 같이 있다. 것이 같은 것이 같은 것이 같은 것이 같이 있다. 것이 같은 것이 같은 것이 같은 것이 같이 있다. 것이 같은 것이 같은 것이 같은 것이 같이 있다. 것이 같은 것이 같은 것이 같은 것이 같이 있다. 것이 같은 것이 같은 것이 같은 것이 같은 것이 같이 있다. 것이 같은 것이 같은 것이 같은 것이 같은 것이 같이	83 - E3	
	ဆီတွန်းပို့ပန့်များထိန်းသိမ်းစြင်း			
4	Installation of Pumps			6 - 18
	ပန့်မှားကိုပြန်လည်တပ်ဆင်စြင်	:		
5.	Phasing			6-19
	ဖလန်ဂျာထိပ်ညိ စြင်းလုပ်ငန်း			
6.	Calibration			6 - 20
	ထိမဟဏညိစြင်းလုပ်ငန်း			
C	IAPTER - 7 (အခန်း–	·••)		
1.				7 - 1
	နော်လေမ်များ			
	(i) Open Nozzle moge	နာ်ဖယ်		
	(ii) Closed Nozzle	နော်ဖယ်		
	· Inwardly Opening		1.22	
	1 Outwardte O			

· Outwardly Opening Poppet Type

http://khtnetpc.webs.com

2. Nozzle Tip දෛරියෝනාම්		7 - 3
3. Fuel Automization and Penetration		2)
ဆီအမွန်အမွှား ဖြစ်ခြင်းနှင့် ထိုးပေါက်ဝင်ရောက်ခြင်း		
4. Double Angle Valve Scat Nozzle		7 - 4
ဒီဂရီ ၂ဆ င်နပါ နော်စယ် – သူ့		
5. Nozzle Holder (Nozzle Body) శిళ్రశీయోగ్లి ప్రదామ		
6. Nozzle Holder Cooling		7 - 7
နော်ဖယ်ကိုယ်ထည်အအေးစံစြင်း		
7. Nozzles		2
နော်စယ်များ		
* Caterpillar * I.H * G.M		
8. Maintenance of Fuel Injection Nozzle		7 - 9
စနာ်စယ်မျှားထိန်းသိမ်းစြင်း		
9. Nozzle Testing		7 - 11
နော်ဖယ်စမ်းသပ်စြင်း		
(i) Open Nozzle Testing		
(ii) Closed Nozzle Testing		
10. Nozzle Repair		7 - 12
နော်နယ်ပြုပြင်ခြင်း		
11. Nozzie Replacement		
ခနာ်ဖယ်ပြန်လည်တပ်ဆင် ခြင်း		
CHAPTER - 8 (အခန်း–၈)		
1. Speed Governor		8 - 1
ဂါစနာ	4 ×	
(i) Mechanical (or) Direct Acting Governor	စက်မှုဂါဗနာ	
+ Limiting Speed Governor		
+ Variable Speed Governor		¹²
(ii) Hydraulic Governor		A 8-5
ဆီဂါဗနာ		
• Ball Head Control of Servo-motor	3	8 - 7
(iii) Pneumatic Governor		8 - 8
ဓလဂါဗနာ		
СНАРТЕР - 9 (эээई:-е)	1. T	
1. Super Charging စလဒိုဖို့ပေးထွင်းခြင်း		9-1

http://khtnetpc.webs.com

For Knowledge & Educational Purposes

	(i) Blower for Supe ဆလိုစါမြင့်လေမိုမိုသွမ				
	(ii) Rotary Blower ရှိထရီဘလိုဝါ (iil) Centrifugal Blowe	er .		n - Ser Ser Ser	
	ဗဟိုစွာအားဘလိုဓါ (iv) Efficiency of Cer ဗဟိုစွာအားဘလိုဝါ၏ (v) Turbo-Charger တာဘိုဈာဂျာ	0		-	
2.	Symbols သစင်္ကတမ္ဘား				9 - 7
	• Injection Pumps ဆီတွန်းပို့သည့်ပန့် • Nozzle Holder	• Governor ດໄອຊາ • Fuel Feed F	• Nozzle శానీలాు 'ump		
	နော်ဇယ်ကိုယ်ထည်	ဆီကျွေးပန <u>်</u>			

CHAPTER - 10 (3328:-30)

	arting System ခ်နိုးစခုစ်		10 - 1
+	Hand Starting	+Electric Motor Starting	
	လက်လှည့်ဂေါက်တံဖြင့်နှိုးစြင်း	လျှပ်စစ်ဖော်တာပြင့်နိုးစြင်း	
÷	Gasaline Engine Starting	+Compressed Air Motor	
	ဓါတ်ဆီအင်ဂျင်ငယ်ဖြင့်စက်နိုး <u>စ</u> ြင်း	လေဗိအားမော်တာပြင့်နှိုးခြင်း	
+	Compressed Air Admission	0.00	11 - 1
	လေဖီအားဖြင့်စက်နိုးစြင်း		

CHAPTER - 11 (3028:-00)

1.	Liners လိုင်နာများ			10
: .	* Dry Liners	★ Wet Liners	*Integral Liners	
	လိုင်နာအစစြာက်	လိုင်နာအစို	အတွင်းလိုင်နာ	
2	Dry Liners and Wat	Liner		

- Dry Liners and Wet Liners
 လှိုင်နာအချောက်နှင့်လိုင်နာအစိုနိုင်းယှဉ်ဈက်
- Liner Materials and Hardness လိုင်နာပြုလုပ်သော သတ္တုနှင့်မာကျောစြင်း
- 4. Liner Wear လိုင်စုဘွန်းစားဖြင်း

10-3

5	Liner Temperature			11 - 4
	လိုင်နာ၏အမှု၍န်			
6.	Scuffed and Scored	Liner		
	လိုင်နာဝွန်းစားမှုအမျိုးမျိုး			
7.	Recondition Liners	,		
	လိုင်နာကိုပြန်လည်ပြုပြင်ခြင်	E		
8.	Preventive Maintenan			
	အင်ဂျင်များကိုထိန်းသိမ်းစြင်	5	el l	,
	(i) Periodic Inspectio	on Maintenance		11 - 5
	အဈိန်ပိုင်းစစ်ဆေးထိန်	းသိမ်းစြင်း		
	(ii) Preventive Mainte	nance		
	ကြိုတင်ထိန်းသိမ်းစြင်း			
	(iii) Truck and Bus P.	.M Process		
	ဘတ်ခ်ကားနှင့်ထရပ်က	ားများအတွက် ထိန်းသိမ်းစြင်းစ	000:	11 - 6
C	HAPTER - 12 (အခ	કેઃ −ગ))		. I
	HAPTER - 12 (333	કેઃ −ગ))		12 - 1
Di	•			12 - 1
Di	esel Engine Servicing		*Valve Seat	12-1
Di	esel Engine Servicing ယ်အင်ဂျှင်ပြန်လည်မြုံပြင်ခြင်		* Valve Seat లా:అా:	
Di	esel Engine Servicing ယ်အင်ဂျင်ပြန်လည်ပြုပြင်စြင် * Crank Shaft	* Cylinder Head		
Di	esel Engine Servicing ယ်အင်ဂျင်ပြန်လည်ပြုပြင်စြင် * Crank Shaft ကရှိုင်းရှပ်	* Cylinder Head ຄວວະົອໄທກົ	စားများ	12- 3
Di	esel Engine Servicing ယ်အင်ဂျင်ပြန်လည်ပြုပြင်စြင် * Crank Shaft ကရိုင်းရုပ် * Valve Spring	* Cylinder Head စာလင်စါဟက် * Valve Operation ဗားဖွင့်ပိတ်အစိတ်အပိုင်းများ	စားများ *Cylinder Block	12- 3
Di	esel Engine Servicing ယ်အင်ဂျင်ပြန်လည်မြပြင်စြင် * Crank Shaft ကရှိင်းရှပ် * Valve Spring ဘာစပရင်	* Cylinder Head စာလင်စါဟက် * Valve Operation ဗားဖွင့်ပိတ်အစိတ်အပိုင်းများ	စားများ * Cylinder Block စာလင်စါဘလောက်	12- 3 12-6
Di	esel Engine Servicing ໝໍສະດັດຮູ້ບິຣ໌ແລນີບິເບີຣ໌ໂຣຣ໌ * Crank Shaft ຫຄູ້ຣີ:ອູບິ * Valve Spring ອາເອບຄຸຣ໌ * Main Bearing Bore	* Cylinder Head ఐ సాంర్ తిలాన్ * Valve Operation లా:ల్ల ర్గ్ లేంగ్రీ పాత్రి రేపాత్రి రేపాత్రి రేపాత్రి రేపాత్రి రేపాత్రి రేపాత్రి రేపాత్రి రేపాల్గి * Cam-shaft నార్యాల్	ອາ:ອຸກ: * Cylinder Block ສະດະວັດໄວກາດຈາກກີ * Gear Train	12- 3 12-6 12-7
Di	esel Engine Servicing ယ်အင်ဂျင်ပြန်လည်မြပြင်စြင် * Crank Shaft ကရိုင်းရှပ် * Valve Spring ဘေးစပရင် * Main Bearing Bore မိန်းတယ်ရာရင်ဘလိုင်	* Cylinder Head ໝາວຣົອໄຫາກົ * Valve Operation ຫາເຜູຣີບິດົງສາອິດົງສາຊິຣົະພູກ: * Cam-shaft ຫາຣົທູຍິ ting Rod Bearing	ອາ:ພູງ: * Cylinder Block ໝາວິດີອີອາຈານາດີ * Gear Train ຄືແນາພູງ:	12- 3 12-6 12:7 12:7
Di	esel Engine Servicing ພັສະວັດູຣ໌ບິຣ໌ແລະນິຍິເບີຣ໌ເອຣ໌ * Crank Shaft ຫຄູິຣ໌ເອູຍິ * Valve Spring ອາເອບຄຸຣິ * Main Bearing Bore ຜໍ້ສົ່າວະນິຍາຄຸຣ໌ລາຊິຣ໌ * Main and Connect ຜໍ້ສົ່າອຸຣ໌ຕູຣ໌ຣຸສົດກິດາຣ໌ເວດ * Conneting Rod Be	* Cylinder Head ဆလင်ခါဟက် * Valve Operation ຫးဖွင့်ပိတ်အစိတ်အပိုင်းများ * Cam-shaft ကင်ရုပ် ting Rod Bearing သိရာရင် raring Clearance	ອາ:ພຼາ: * Cylinder Block ໝາວິດີອາຈາດກີ * Gear Train ດໍ່ແກະພຼາ: * Bearing Clearance	12- 3 12-6 12:7 12:7
Di	esel Engine Servicing ယ်အင်ဂျင်ပြန်လည်ပြုပြင်ခြင် * Crank Shaft ကရိုင်းရှပ် * Valve Spring တာစပရင် * Main Bearing Bore မိန်းတယ်ရာရင်ဘလိုင် * Main and Connect မိန်းခှင့်ကွန်နက်တင်းတပ * Conneting Rod Be တွန်နက်တင်းတယ်ရာရင်	* Cylinder Head ဆေလင်ခါဟက် * Valve Operation ຫးဖွင့်ပိတ်အစိတ်အပိုင်းများ * Cam-shaft ကင်ရုပ် ing Rod Bearing သိရာရင် aring Clearance	ອາးမှား * Cylinder Block စာလင်စါဘလောက် * Gear Train ဂီယာမှား * Bearing Clearance ဘယ်ရာရဝ်ကြားလွတ်တန်တို့	12- 3 12-6 12:7 12:7
Di	esel Engine Servicing ယ်အင်ဂျင်ပြန်လည်မြပြင်ခြင် * Crank Shaft ကရိုင်းရုပ် * Valve Spring တားစပရင် * Main Bearing Bore မိန်းတယ်ရာရင်ဘလိုင် * Main and Connect မိန်းခွင့်ကွန်ခုက်တင်းတပ * Conneting Rod Be တွန်ခုက်တင်းတယ်ရာရင် * Piston Ring and C	* Cylinder Head ເວັດເວຣິດໄທກ໌ * Valve Operation ຫະຜູຣູ້ບິດ້ອາອິດ້ອາຍຸິຣ໌: ພຸກ: * Cam-shaft ກຣັຊູບິ ing Rod Bearing ໝໍຊາຊຣ໌ taring Clearance ໂຫຼກະດູດ້ອງຊີ Toove *Piston Pin	ອາ:ພູກ: * Cylinder Block ໝາວຍົດໄວກອາດາກກິ * Gear Train ຄືແກະພູກ: * Bearing Clearance ການໂຄງຄຸຍໂຫຼງ:ເບຼຍາກິດຊັ້ນ * Piston ຍອກຣິ * Pump and Nozzle	12- 3 12-6 12:7 12:7
Di	esel Engine Servicing ယ်အင်ဂျင်ပြန်လည်ပြုပြင်ခြင် * Crank Shaft ကရိုင်းရှပ် * Valve Spring တာစပရင် * Main Bearing Bore မိန်းတယ်ရာရင်ဘလိုင် * Main and Connect မိန်းခှင့်ကွန်နက်တင်းတပ * Conneting Rod Be တွန်နက်တင်းတယ်ရာရင်	* Cylinder Head ဆေလင်ခါဟက် * Valve Operation ຫးဖွင့်ပိတ်အစိတ်အပိုင်းများ * Cam-shaft ကင်ရုပ် ing Rod Bearing သိရာရင် aring Clearance	စားမျှား * Cylinder Block စာလင်စါဘလောက် * Gear Train ဂီယာများ * Bearing Clearance ဘယ်ရာရဝ်ကြားလွတ်တန်တို့ * Piston မစ္စတင်	12 - 3 12 - 6 12 - 7 12 - 7

CHAPTER - 13 (3395:- 32)

1.	Engine Trouble Shooting	
	အင်ဂျင်တွင် ဖြစ်တတ်သောအပြစ်များနှင့်ပြန်လည်မြုပြင်စြင်း။	
	(i) တစ်လုံးထိုးစက်ငယ်များတွင် ပြစ်တတ်သောအပြစ်နှင့် ပြန်လည်ပြုပြင်ခြင်း။	13 - 1
4	(ii) Diesel အင်ဂျင်စက်မနိုးစြင်း	13 - 6
	(iii) စက်နိုးသော်လည်းစက်သံမမှန်စြင်း	13 - 7
	(iv) အင်ဂျင်စွမ်းအားကျဆင်းစြင်း	12
	(v) အင်ဂျင်အပ္စစိန်များ နေ စြင်း	13 - 8
	(vi) လောင်စာဆီအစားများနေခြင်း	
	(vii) စျောဆီအစားများနေစြင်း	
	(viii) Exhaust Gas ပြူ–ပြာ ထွက်နေစြင်း	
	(ix) Exhaust Gas ညိုနက်ထွက်နေစြင်း	17.0
2.	Engine Knocking	13 - 9
	အင်ဂျင်မှစေါက်သံထွက်နေ့စြင်း	
	(i) Fuel Knocks	
	လောင်စာဆီကြောင့် ခေါက်သံထွက်ခြင်း	
	* Cylinder တစ်လုံးမှထွက်စနစ်ုင်း	
	* Cylinder တစ်လုံးထကိပို၍ထွက်စနစြင်း	12.14
	(ii) Mechanical Knocks	13 - 16
	စက်ဖွှပိုင်းဆိုင်ရာများမှစေါက်သံများ	

CHAPTER - 14 (အခန်း-၁၄)

Fuel Injection Pump and Nozzle Data and Specification 14-13 အင်ဂျက်ရှင်းမန့်နှင့်နော်ဖယ်တို့၏သတ်မှတ်ထားသောဆီမမာဏ၊နော်ဖယ်မိအား စသည့်သတ်မှတ်ဈက်များ။

>

DIESEL ENGINE

รื้ดယ်အင်ဂျင်များသည် အင်ဂျင်အတွင်း မီးလောင်ပေါက်ကွဲ၍ 'အား' ဖြစ်ပေါ်သော (INTERNAL COMBUSTION MILIONS) အမျိုးအစားဖြစ်သည်။ ဒီဇယ်အင်ဂျင်နှင့် ဓါတ်ဆီအင်ဂျင်ကို အလွယ်တကူ ခွဲခြားသိရှိ နိုင်သည်။

ဒီဖယ်အင်ဂျင်သည် ဓါတုစွမ်းအင်မှ စက်မှုစွမ်းအင်သို့ ပြောင်းလဲပေးခြင်းဖြစ်သည်။ ဒီဖယ်အင်ဂျင် များသည် POWER ထုတ်လုပ်မှု ကောင်းမွန်သဖြင့် ယခုအခါတွင် ကုမ္ပဏီများမှ ဒီဖယ်အင်ဂျင် အရွယ်အစား အမျိုးမျိုးကို အောင်မြင်စွာထုတ်လုပ်လျက်ရှိသည်။ POWERကောင်းမွန်ခြင်း၊ ကြာရှည်စွာ အသုံးခံခြင်း၊ ဆီစားသက် သာခြင်း၊ အချိန်ကြာ-မြင့်စွာ မောင်းနှင်နိုင်ခြင်းတို့ကြောင့် စက်မှုနှင့်ပတ်သက်သော လုပ်ငန်းအမျိုးမျိုးတို့တွင် အောင်မြင်စွာ အသုံးပြုလျက် ရှိကြသည်။

ဒီဇယ်အင်ဂျင်၏တည်ဆောက်ပုံ၊ မြန်နှန်း၊ တန်ဘိုး၊ အသုံးပြုသည့်ဒီဇယ်ဆီတို့ အပေါ်တွင်မူတည်၍ မီးရထားများ၊ မော်တော်ယာဉ်များ၊ သင်္ဘော်ကြီးများ၊ စက်ရုံကြီးများ၏ POWEKထုတ်လုပ်သည့်အင်ဂျင်ကြီးများတွင် ဒီဇယ်အင်ဂျင်များကို အသုံးပြုကြပါသည်။

1892- ခုနှစ်တွင် ဂျာမနီပြည်သား DR. RUDOLF DIESEL သည် HIGH COMPRESSION ENGINE တစ်မျိုးကို တီထွင်ထုတ်လုပ်ခဲ့သည်။ ၎င်း၏ ပထမဆုံးထုတ်လုပ်သောအင်ဂျင်တွင် လေကို မြင့်မားစွာ ဖိနှိပ်ပေးခြင်း ဖြင့် လောင်စာဆီကို အလိုအလျောက် မီးလောင်နိုင်သောအချိန်တွင် လောင်စာပေးသွင်းခြင်းဖြင့် မီးလောင်ကျမ်းမှု ကို ဖြစ်ပေါ်စေသည်။ လောင်စာဆီပေးသွင်းမှုပြီးဆုံးလျှင် အင်ဂျင်အတွင်း လောင်စာဆီများ ပြည့်စုံအောင်လောင် ကျွမ်းပြီး ဖြစ်ပေါ်လာသော ကျယ်ပြန့်မှု (EXPANSION) ကြောင့် PISTON ပေါ်သို့ အားများစွာ သက်ရောက်မှုကြောင့် POWER ကို ရရှိသည်။

၎င်း၏ ပထမဆုံးစမ်းသပ်သည့်အင်ဂျင်တွင် လေကို ဖိနှိပ်အား 1500 PSI အထိ ဖိနှိပ်မှုရရှိရန် ဆောင် ရွက်ရခြင်းနှင့် အင်ဂျင်အား လုံလောက်သော အအေးပေးစနစ် (COOLING SYSTEM) မရှိခြင်းတို့ကြောင့် အောင်မြင် မှုမရရှိခဲ့ပေ။

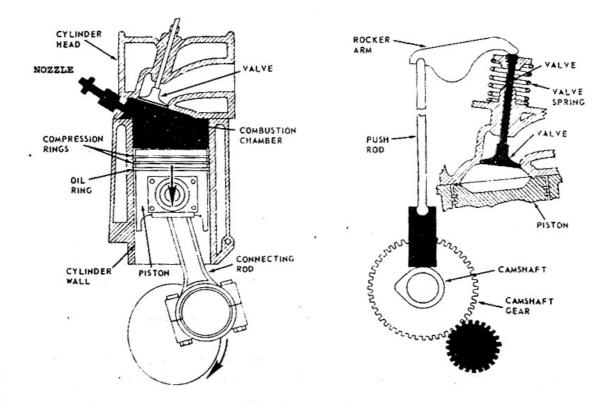
1895- ခု တတိယမြောက် တည်ဆောက်သော အင်ဂျင်မှသာ အောင်မြင်မှု ရရှိခဲ့သည်။ ၎င်းအင်ဂျင် သည် POUR STROKE CYCLE အခြေခံသဘောတရားပေါ်တွင် အခြေခံ၍ CYLINDER အတွင်းလေကို 450 PSI အထိဖိနှိပ်ပြီး လောင်စာဆီကို CYLINDER အတွင်းသို့ အလွန်မြင့်မားသော လေဖိနှိပ်အားဖြင့် မှုတ်သွင်းသော AIR INJECTION SYSTEM ကို အသုံးပြုသည်။ ၎င်းအင်ဂျင်အား အအေးပေးရန် ရေအအေးပေးစနစ်ကို အသုံးပြုခဲ့ သည်။ ၎င်းအင်ဂျင်သည် ယခုခေတ် ထုတ်လုပ်နေကြသော ဒီဇယ်အင်ဂျင်များ၏ မူလအစပင်ဖြစ်ပြီး ယခုခေတ်တွင် ပိုမိုကောင်းမွန်သော လောင်စာဆီပို့စနစ် (I'UEL INJECTON SYSTEM) များကို တီထွင်ကြံဆ၍ ခေတ်မီသော ဒီဓယ်အင်ဂျင်များကို ကုမ္ပဏီများမှ ထုတ်လုပ်နေကြပြီဖြစ်သည်။

ဒီဖယ်အင်ဂျင်သည် CYLINDEK အတွင်းရှိလေကို PISTON ၏ လှုပ်ရှားမှုဖြင့် ဖိအားနှင့်အပူချိန်များ အောင် ဖန်တီးသည်။ ထိုပူနေသောလေထဲသို့ လောင်စာဆီကို အမွှဲအမွှားအဖြစ် ပက်ဖြန်းပြီး လောင်ကျွမ်းမှုများ ဖြုသည်။ ထိုလောင်ကျွမ်းမှုကြောင့်ဖြစ်ပေါ်လာသော ဓါတ်ငွေ့များ၏ ကျယ်ပြန့်မှုကြောင့် ဖြစ်ပေါ်လာ**သောအား** (POWER) ကို PISTON မှတဆင့် စက်လည်ပတ်မှုဖြစ်ပေါ်စေသည်။ လောင်ကျွမ်းပြီးဓါတ်ငွေ့များကို အပြင်သို့ ထုတ်ပြီး နောက်ထပ်တစ်ကြိမ် မီးလောင်ပေါက်ကွဲမှုဖြစ်ပေါ်စေရန် လေများကို CYLINDER ထဲသို့ အသစ်အဖန့် ပြန်လည်ဝင်နေရာက်စေသည်။

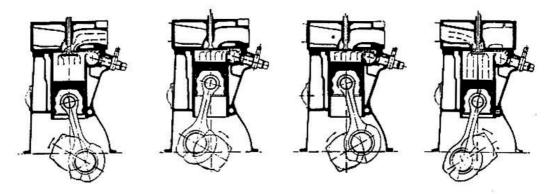
ဒီခယ်အင်ဂျင်များကို TWO STROKE CYCLE နှင့် POUR STROKE CYCLE အခြေခံသဆာဘာရာများ ဖြင့် တည်ဆောက်ထားသည်။ TWO STROKE CYCLE အင်ဂျင်ဆိုသည်မှာ PISTON သည့် အာဏာအိသို့အစိကြိမ်နှင့်

1 - 1

ဦးတူန်းမြင့်၏စီဖယ်အင်ဂျင်


အောက်သို့တစ်ကြိမ်ဆင်းတိုင်း အားတစ်ကြိမ်ရရှိပြီး ပြည့်စုံသော CYCLEတစ်ခုဖြစ်ပေါ်သော အင်ဂျင်မျိုးဖြစ်သည်။ FOUR STROKE CYCLE အင်ဂျင်သည် PISTON အထက်သို့ နှစ်ကြိမ်တက်ပြီး အောက်သို့နှစ်ကြိမ် ဆင်းတိုင်း အားတစ်ကြိမ်ရရှိပြီး ပြည့်စုံသော CYCLE တစ်ခုဖြစ်ပေါ်သော အင်ဂျင်မျိုးဖြစ်သည်။

FOUR STROKE CYCLE ဒီဇယ်အင်ဂျင်တွင် အား (POWER) တစ်ကြိမ် ရရှိရန် PISTON အတက်နှင့် အဆင်း စုစုပေါင်း (4) ကြိမ် (သို့) CRANK SHAFT နှစ်ပတ် ဒီဂရီအားဖြင့် 720 လည်ပတ်ရသည်။


INTAKE STROKE (SUCTION)

PISTON အမြင့်ဆုံးနေရာဖြစ်သော TOP DEAD CENTER မှ အောက်ဆုံးနေရာ BOTTOM DEAD CENTER သို့ ရွေ့လျားရာတွင် CYLINDER အတွင်းထုထည် ကျယ်ပြန့်လာသည်နှင့်အမျှ လေဖိအားလျော့နည်းလာ သည်။ ၎င်းအချိန်တွင် INTAKE VALVE ဖွင့်ထားသဖြင့် လေဖိအားမြင့်မားသော ပြင်ပလေထုမှ လေများသည် INTAKE MANIFOLD မှတဆင့် INTAKE VALVE ကို ဖြတ်ပြီး CYLINDER အတွင်းသို့ တိုးဝင်လာသည်။ PISTON B.D.C လွန်ပြီး INTAKE VALVE ပိတ်သွားချိန်တွင် INTAKE STROKE မှာ ပြီးဆုံးသွားသည်။

Engine fundamentals. Left. Arrangement of parts in one cylinder. Right. Camshaft drive and valve linkage.

ဦးအုန်းမြင့်၏ဒီဇယ်အင်ဂျင် 1-3

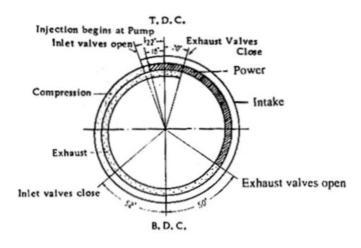
Events during two crankthaft resolutions of a four-cycle direct englos.

COMPRESSION STROKE

PISTON B.D.C မှ T.D.C သို့ ရွေ့လျားရာတွင် INLET နှင့် EXHAUST VALVE များ မိတ်ထားသည်။ ထို့ကြောင့် INTAKE STROKE တွင် CYLINDER အတွင်း ရောက်ရှိနေသော လေများမှာ ပိတ်မိနေပြီး PISTON မှ တဖြည်းဖြည်း မိနိပ်လာသဖြင့် လေ၏မိအားနှင့် အပူချိန်မှာ မြင့်မားလာသည်။ PISTON ဆက်လက်တက်လာရာ T.D.C သို့ ရောက်ရှိသောအခါ COMPRESSION STROKE မှာ ပြီးဆုံးသွားသည်။

POWER STROKE

၎င်း STROKE တွင် VALVE နှစ်ခုစလုံးပိတ်နေပြီး COMPRESSION STROKE ပြီးဆုံးခါနီး PISTON T.D.C မရောက်မီ ဒီဂရီအနည်းငယ်အလိုတွင် INJECTION NOZZLE မှုပူနေသောလေများအတွင်းသို့ လောင်စာဆီကို အမှုံအမွှားအဖြစ် ပန်းလိုက်သည်။ လောင်စာဆီနှင့်လေကို ထိတွေ့မှုကြောင့် လောင်ကျွမ်းမှုဖြစ်ပေါ်ပြီး ဓါတ်ငွေများ ၏ကျယ်ပြန့်မှုကြောင့် PISTON ကို အောက်သို့တွန်းချ၏။ PISTON B.D.C သို့ရောက်ခါနီးအချိန်တွင် EXHAUST VALVE စပွင့်သဖြင့် POWER STORE ပြီးဆုံးသွားသည်။


EXHAUST STROKE

POWER STROKE ပြီးဆုံးပြီးနောက် PISTON B.D.C မှ T.D.C သို့ ပြန်တက်လာရာတွင် EXHAUST VALVE ဖွင့်ထားသဖြင့် CYLINDER အတွင်းမှ လောင်ကျွမ်းပြီးဝါတ်ငွေ များ (EXHAUST QAS) သည့် EXHAUST VALVE မဖြတ်၍ အပြင်သို့တွန်းထုတ်သည်။ ထိုသို့တွန်းထုတ်ရင်း PISTON T.D.C သို့ရောက်သော့အခါ EXHAUST VALVE မဖြတ်၍ အပြင်သို့တွန်းထုတ်သည်။ ထိုသို့တွန်းထုတ်ရင်း PISTON T.D.C သို့ရောက်သော့အခါ EXHAUST VALVE ပိတ်၍ EXCHAUST STROKE ပြီးဆုံးသည်။ ထိုအချိန်တွင် INLET VALVE စပွင့်သဖြင့် နောက် CYCLE အသစ်စရန်အတွက် လေသစ်များသည့် CYLINDER အတွင်းသို့ ဝင်ရောက်လာပြီး EMGINE အတွင်းတွင် POWER ဆက်တိုက်ဖြစ်ပေါ်ပြီး EMGINE လည့်ပုတ်မှုများဆက်တိုက် ဖြစ်ပေါ်သည်။

ဦးအုန်းဖြင့်၏စီဖယ်တင်ဂျင်

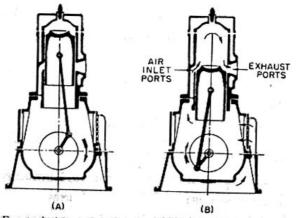
>

Valve Timing Diagram

ပုံသည် 4.CYCLE ENGINE တစ်လုံး၏ VALVE TIMING DIAGRAM ပုံဖြစ်သည်။ CYCLE တစ်ခု၏အစဖြစ်သော INLET VALVEသည် T.D.C သို့ မရောက်မီ 22*အရောက်တွင် စတင်ဖွင့်သည့်။ ကြိုတင်ပွင့် ခြင်းဖြင့် PISTON T.D.C သို့ ရောက်သောအခါ VALVEသည် လုံးဝပွင့်နေသဖြင့် လေအပြည့်အဝ ဝင်ရောက်နိုင်ပေ မည်။ PISTON သည် ဆက်လက်ဆင်းလာပြီး B.D.C ကျော်လွန်ပြီး 52 တွင် INLET VALVE ပိတ်သည်။

PISTON သည် ဆက်တက်ခြင်းဖြင့် COMPRESSION STROKE စသည်။ PISTON ဆက်တက်လာရာ T.D.C မရောက်မီ 18 အလိုတွင် NOZZLE မှ ဆီစ, ပန်းရာ T.D.C လွန်ပြီးမှ ပန်းခြင်း ပြီးဆုံးသည်။ ထိုကဲ့သို့ ကြိုတင်ပန်းပေးခြင်းဖြင့် လောင်စာဆီများ အပြည့်အဝ လောင်ကျွမ်းပြီး POWERအပြည့်အဝ ရရှိစေသည်။ (ထိုကဲ သို့ ဆီစောပန်းခြင်းကို INJECTION ADVANCE ဟု ခေါ်သည်။) ၎င်း POWER အားဖြင့် PISTON အောက်သို့ဆင်း လာရာ B.D.C မရောက်မီ 50: အလိုတွင် EXHAUST VALVE ပွင့်သဖြင့် လောင်ကျွမ်းပြီး EXHAUST QAS များ EXHAUST VALVE ကိုဖြတ်၍ MANIPOLD မှ တဆင့် အပြင်သို့ထွက်သွားသည်။ ၎င်း EXHAUST QAS များထွက် ချိန်ကို BLOW DOWN PERIOD ဟုခေါ်သည်။ PISTON အပေါ်တက်ချိန်တွင် ကျန်ရှိသော EXHAUST QAS များကို ဆက်လက်တွန်းထုတ်သည်။ PISTON T.D.C လွန်ပြီး 20 တွင် EXHAUST VALVE ပိတ်သည်။ ထိုသို့ နောက်ကျမှ ပိတ်ခြင်းသည် လောင်ကျွမ်းပြီး ဓါတ်ငွေများ အကုန်အစင်ထွက်စေပြီး CYCLE အသစ်အတွက် ဝင်လာသောလေသစ် များနှင့် မရောနှောစေရန်ဖြစ်သည်။

ပုံတွင်ဖေါ်ပြထားသည်အတိုင်း CYCLEတစ်ခု၏အစဖြစ်သော INTAKE STROKEအစနှင့် EXHAUST STROKEအဆုံးတွင် VALVE နှစ်ခုစလုံးသည် 22' + 20' = 42' ခန့် ပြိုင်တူပွင့်နေသည်ကို တွေ့ရသည်။ ၎င်းအချိန် ကို VALVE OVER LAD PERIOD ဟုခေါ်သည်။


အချို့ MARINE DIESEL ENGINE များတွင် အား POWER ပိုမို ရရှိစေရန်အတွက် EXHAUST STROKE နှင့် INTAKE STROKE များကို အချိန်များကြာရှည်နိုင်ရန် တည်ဆောက်ထားကြသည်။

ဦးအုန်းမြင့်၏ဒီရယ်အင်ဂျင်

TWO STROKE CYCLE ENGINE တွင် PISTON အပေါ်သို့တက်သော STROKE တိုင်းသည် COMPRESSION STROKE ဖြစ်၍ အောက်သို့ဆင်းသော STROKE တိုင်းသည် POWER STROKE ဖြစ်သည်။ PISTON B.D.C အနီးတွင် INLET နှင့် EXHAUST တပြိုင်တည်း ဖြစ်ပေါ်သည်။

TWO CYCLE ENGINE အမျိုးအစားအားလုံးတွင် လေဝင်ချိန်နည်းသည့် အလျောက် CYLINDER အတွင်း သို့ လေထုဖိအားထက် (2 TO 7 PSI) မြှင့်မားသော ဖိနှိပ်အားဖြင့် ပေးပို့ရန်လိုအပ်သည်။ ထိုသို့ပေးပို့ရန်အတွက် နည်းလမ်းတစ်မျိုးမျိုးကို အသုံးပြုသည်။ ပုံတွင် အရှင်းလင်းဆုံး TWO CYCLE ENGINE တစ်မျိုးကိုပေါ်ပြထားသည်။ ၎င်းလေပေးသွင်းမှုနည်းလမ်းကို CRANK CASE SCAVENQING ဟု ခေါ်သည်။ PISTON အထက်သို့ ရွေ့လျားသွား သောအခါ CRANK CASE အတွင်း ဖိနှိပ်အားကျဆင်း၍ ပြင်ပမှလေများ ONE WAY CHECK VALVE ကိုဖြတ်၍ CRANK CASE အတွင်းသို့ ဝင်ရောက်လာကြသည်။ PISTON ဆက်လက်တက်၍ INTAKE နှင့် EXHAUST PORT များကို ပိတ်မိသောအခါ CYLINDER အတွင်းရှိလေများကို ဖိနှိပ်၍ မြှင့်မားသောဖိနှိပ်အားနှင့် အပူချိန်ကို ဖြစ်ပေါ် စေသည်။ PISTON T.D.C ရောက်ခါနီး ဒီဂရီအနည်းငယ်အလိုတွင် INJECTION NOZZLE မှ ဆီပန်း၍ လောင်ကျမ်းမှု ဖြစ်ပေါ်စေသည်။ ထို့နောက် POWERဖြင့် PISTON အား အောက်သို့တွန်းချသည်။ PISTON အောက်သို့ ဆင်းလာ သောအခါ EXHAUST PORT သည် INTAKE PORT ထက်မြှင့်သည့်အလျောက် EXHAUST PORT ကို PISTON မှ ဖွင့်သည့်နှင့် EXHAUST QAS များ ပြင်ပသို့ထွက်သွားမည်။ PISTON ဆက်လက်ဆင်းလာ၍ CRANK CASE အတွင်း PISTON ဆင်းလာမှုကြောင့် ဖိနှိပ်အား၊ ဖြစ်ပေါ်နေသောလေသစ်များသည် PISTON မှ INLET PORT ကို

Events during one crankshaft revolution of a two-cycle diesel engine.

1-5

2-4-6

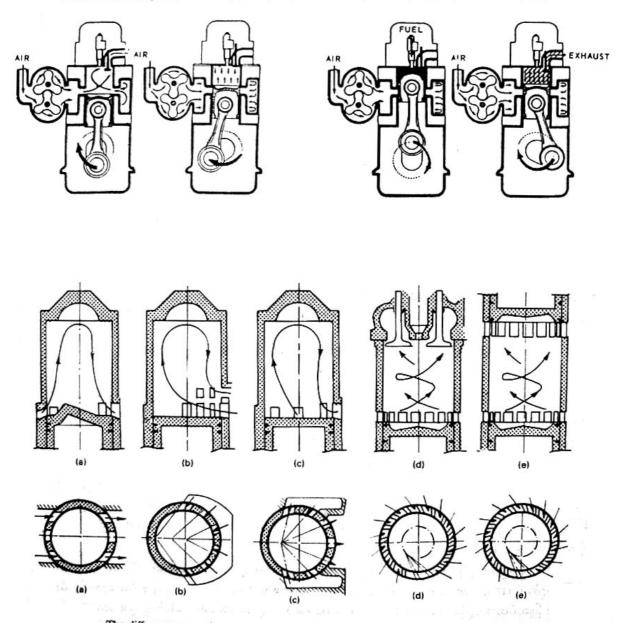
ි දී:ආණි:ලිදිනිරීයෝනරිගුරි

>

ဖွင့်လျင်ဖွင့်ခြင်း CYLINDER အတွင်းသို့ ဝင်ရောက်လာ၍ PISTON HEAD ကို ရိုက်ခတ်ကာ PISTON HEAD ၏ ပုံသဏ္ဌာန်အရ အပေါ်သို့တက်ပြီး ကျန်ရှိနေသေးသော EXHAUST များကို EXHAUST PORT မှ အပြင်သို့တွန်းထုတ် ၏။ ထို့ကြောင့် နောက် CYCLE အသစ်အတွက် ဝင်လာသောလေသစ်နှင့် EXHAUST GAS တို့ ရောနောမွ နည်းပါး သွားစေသည်။

CRANK CASE SCAVENOINO နည်းလမ်းသည် အင်ဂျင်သို့ လုံလောက်သော လေပမာဏ မပေးပို့နိုင် သည့်အပြင် EXHAUST OAS နှင့် လေသစ်တို့ ရောနောမှုကိုလည်း ကုန်စင်အောင် မဆောင်ရွက်နိုင်ပေ။ ၎င်းကို SINGLE CYLINDER, LOW PRESSURE OUT PUT ENGINE များတွင်သာ အသုံးပြုသည်။ POWER များသောအင်ဂျင် ကြီးများနှင့် MULTI CYLINDER ENGINE များတွင် ပြင်ပမှ BLOWER များကို အသုံးပြု၍ လေသွင်းမှု ပြုလုပ်လေ့ ရှိကြသည်။

TWO CYCLE ENGINE နှင့် FOUR CYCLE ENGINE တို့၏ လုပ်ဆောင်ချက်သဘောတရားကို ကြည့် ခြင်းအားဖြင့် TWO CYCLE ENGINE သည် အရွယ်နှင့် SPEED တူ FOUR CYCLE ENGINE ထက် ပါဝါ နှစ်ဆထုတ် ပေးနိုင်သည်ဟု ယူဆစရာအကြောင်း ရှိသော်လည်း လက်တွေ့တွင် ပါဝါနှစ်ဆမရရှိပေ။ အဘယ်ကြောင့်ဆိုသော် TWO CYCLE ENGINE တွင် CYLINDER အတွင်း၌ EXHAUST GAS များ အများအပြား ကြွင်းကျန်ခြင်းနှင့် ၎င်း EXH: GAS များသည် ဝင်ရောက်လာသောလေသစ်များနှင့် ရောနှောနေမှုကြောင့် ဖြစ်သည်။ ဆလင်ဒါအတွင်း EXHAUST GAS များနှင့် လေသစ်တို့ ရောစပ်မှုနည်းလေ SCAVING ENGINE EFFICIENCY မှာ ကောင်းလေ ဖြစ်သည်။ ဆလင်ဒါ၏ လေရှုရှိုက်မှုစွမ်းအား (BREATHING EFFICIENCY) ကို တိုင်းထွာသော အခြားနည်းမှာ VOLUMETRIC EFFICIENCY ပင် ဖြစ်သည်။ VOLUMETRIC EFF: ဆိုသည်မှာ CYCLE တစ်ခု၌ CYLINDER တလုံးသို့ ဝင်ရောက်လာသော လေ၏ထုထည်ပမာဏနှင့် ၎င်းဆလင်ဒါအတွင်း PISTON မှ ဖယ်ထုတ်သောထုထည် (PISTON DISPLACEMENT) တို့၏ အချိုးပင်ဖြစ်သည်။


TWO CYCLE ENGINE များတွင် SCAVENGING နည်းလမ်းကို INLETနှင့် EXHAUST PORT များ အသုံးပြုခြင်းဖြင့် ၎င်းပြုလုပ်ရရှိလေသည်။ TWO CYCLE ENGINE များတွင် ပြုလုပ်လေ့ရှိသော SCAVENGING နည်းလမ်း (၃) မျိုးရှိသည်။ ၎င်းတို့မှာ–

- (A) CROSS FLOW SCAVENGING
- (B) LOOP FLOW SCAVENGING
- (C) UNIFLOW SCAVENGING တို့ ဖြစ်ကြသည်။

(A) CROSS FLOW SCAVENGING

၎င်းအား ပုံ (A) တွင်ဖော်ပြထားသည့် ဆလင်ဒါ၏တဘက်တွင် INTAKE PORT များ ပါ ရှိ၏။ မျက်နှာ ခြင်းဆိုင် အခြားတစ်ဖက်တွင် EXHAUST PORT များရှိ၏။ လေသည် INTAKE PORT များမှ ဝင်ရောက်လာပြီး PISTON HEAD များအားရိုက်ခတ်၏။ PISTON HEAD ပုံသဏ္ဌာန်အရ အပေါ်သို့တက်လာပြီးလျှင် EXHAUST QAS များကို အခြားတဖက်ရှိ EXH: PORT များမှ အပြင်သို့တွန်းထုတ်သည်။ ၎င်းနည်းလမ်းများတွင် လေသစ်အချို လည်း EXH: QAS များနှင့် ရောနော၍ထွက်သွားခြင်းနှင့် EXH: QAS တချို့ ဆလင်ဒါအတွင်းကျန်ခဲ့ခြင်း စသည့်ပြစ်ချက် အချို့ရှိသည်။ ၎င်းနည်းလမ်းတွင် SCAVENGING EFF: ပိုမိုကောင်းမွန်ရန်အတွက် INTAKE PORT တို့၏ လေဝင်လမ်းကြောင်းနှင့် PISTON CROWN တို့၏ပုံသဏ္ဌာန်တို့ကို သေချာစွာ ဂရုပြု၍ DESIGN ပြု လုပ်ရန်လိုအပ်သည်။

In GM's two cycle diesel engine: Blower supplies air to cylinder through inlet ports. Hot compressed air fires fuel mixture. Fresh charge of air for next power cycle pushes exhaust gases out through open exhaust valves.

The different scavenging arrangements and the associated port geometry for two-stroke engines. (a) Cross-scavenging; (b) loop scavenging; (c) Schnurle loop scavenging; (d) uniflow scavenging with poppet exhaust valves; (e) uniflow scavenging with opposed pistons

ဦးအုန်းမြှင့်၏စီယေ်အင်ဂျှင်

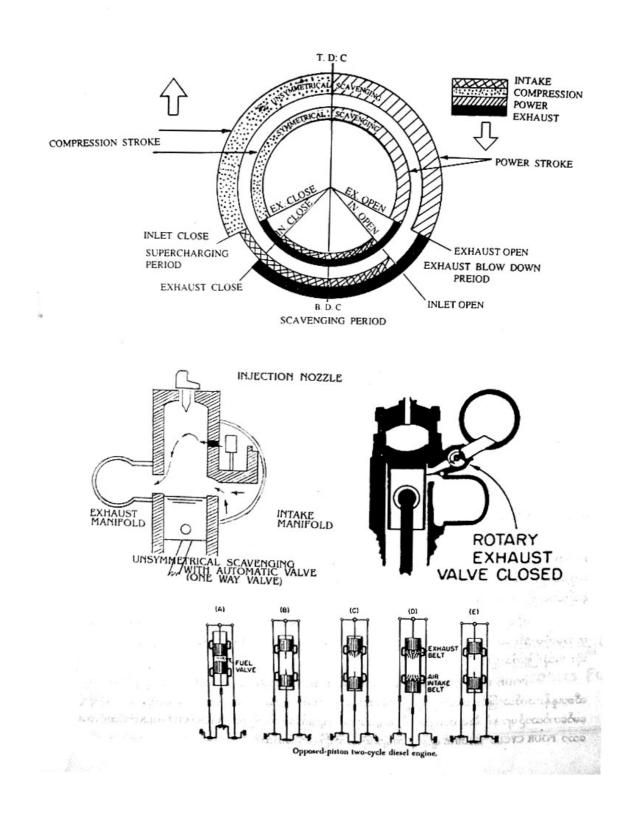
(B) LOOP FLOW SCAVENGING

၎င်းအား ပုံ (B.C.D) တို့တွင် ဖော်ပြထား၍ SCAV: EFF: ပိုမိုကောင်းမွန်စေရန် ကြံဆထားသော နည်း လမ်းဖြစ်သည်။ ဝင်လာသောလေသစ်များသည် ဆလင်ဒါအတွင်းရှိ EXH: QAS များနှင့် ရောနောမှုနည်းပါးနိုင်သမျှ နည်းပါးစေရန် EXHAUST QAS များကို တွန်းထုတ်နိုင်ရန် လေဝင်လမ်းကြောင်းများကို သေချာစွာ DESIGN ပြုလုပ်ထားသည်။

(C) UNIFLOW SCAVENGING

၎င်းနည်းလမ်းများကို ပုံ (1) နှင့် (2) တွင် ဖော်ပြထားသည်။ ပုံ (၁) တွင် လေများသည် ဆလင်ဒါ၏ အောက်ခြေပတ်လည်တွင် ဖောက်ထားသော အပေါက်များမှ ဝင်လာ၍ EX: GAS များအား HEAD ရှိ EXH: VALVE အား ဖြတ်၍တွန်းထုတ်သည်။

ပုံ (2) တွင် OPPOSED PISTON ENG: ၌ အသုံးပြုသော UNIFLOW SCAVENGING SYSTEM ကို ဖော်ပြထားသည်။ CYLINDER ၏ အစွန်းတဖက် ပတ်လည်တွင် ဖော်ထားသောအပေါက်များ (INLET PORTS) နှင့် မျက်နှာခြင်းဆိုင် ကျန်အစွန်းတဖက်တွင် EXHAUST PORT များဖော်ထားသည်။ ထို့ကြောင့် လေသစ်များသည် CYLINDER အစွန်းတဖက်ရှိ INLTET PORT များမှ ဝင်ရောက်လာပြီး CYLINDER ရှိ EXHAUST GAS များကို တွန်းထုတ်၍ ကျန်အစွန်းတဖက်ရှိ EXHAUST PORT များမှ ထွက်သွားစေသည်။ ၎င်းအမျိုးအစားတွင် INLET PORT များကို စောင်းလျှက် ဖော်ထားခြင်းဖြင့် ဝင်ရောက်လာသောလေများသည် CYLINDER အတွင်းသို့ TANGENTIAL FLOW (သို့) SWIRT ACTION လည်ပတ်လျက် ဝင်ရောက်စေသည်။ ဤကဲ့သို့ လေကိုလည်ပတ်မှု (SWIRT ACTION) ဖန်တီးခြင်းဖြင့် SCAVENGING EFFICIENCY နှင့် COMBUSTION ကို ပိုမိုကောင်းမွန်စေသည်။


ပုံတွင်ဖော်ပြသည့်အတိုင်း PISTON အောက်သို့ဆင်းသော STROKE တွင် EXHAUST PORT သည် INLET PORT ထက် မြင့်သည့်အလျောက် အရင်ပွင့်၍ EXHAUST QAS များ အပြင်သို့ထွက်ကြသည်။ ၎င်းအချိန်ကို BLOW DOWN PERIOD ဟု ခေါ်သည်။ PISTON ဆက်လက်ဆင်း၍ INLET PORT ကို ဖွင့်သောအခါ လေသစ်များ ဝင်ရောက်၍SCAVENGING ကိုဖြစ်ပေါ်စေသည်။

COMPRESSION STROKE တွင် PISTON အထက်တက်သောအခါ EXHAUST PORT ပိတ်ချိန်မှစ၍ COMPRESSION STROKE အစပြုသည်။ ၎င်းနည်းတွင် လေအချို့သည် EXHAUST PORT မပိတ်မီ အပြင်သို့ ပြန်ထွက်သွားသဖြင့် လေဆုံးရှုံးမှုရှိသည်။ ၎င်းနည်းကို SYMMETRICAL SCAVENGING ဟု ခေါ်သည်။ ၎င်းကို ပုံတွင်အတွင်းစက်ဝိုင်းဖြင့် ဖေါ်ပြထားသည်။

အချို့အင်ဂျင်ကြီးများတွင် လေဆုံးရှုံးမှု မရှိစေရန် PORT များအစား VALVE များကို တပ်ဆင်အသုံး ပြုကြသည်။ ပုံ (1) တွင် လေဝင်လမ်းကြောင်းအတွင်းတွင် ONE WAY VALVE ကို တပ်ဆင်၍ ဒုတိယလေဝင်လမ်း ကြောင်း ပြုလုပ်ထားသည်။ ၎င်း VALVE များသည် CYLINDER အတွင်းမှ EXHAUST ဓါတ်ငွေ့များ လေဝင်လမ်း ကြောင်းသို့ စီးဝင်ခြင်းမှ ကာကွယ်ပေးသည်။ PISTON အပေါ်သို့တက်သောအခါ EXHAUST PORT ကို ပိတ်ပြီး ဒုတိယလေဝင်လမ်းကြောင်းကို ပိတ်သည်အထိ လေများဝင်ရောက်ကြသဖြင့် ပိုမိုများသော လေများ CYLINDER အတွင်းသို့ ဝင်ရောက်စေနိုင်သည်။

ပုံ (2) တွင် ROTORY VALVE ကို EXHAUST လမ်းကြောင်း၌ တပ်ဆင်ထားသည်။ ၎င်း VALVE သည် BLOW DOWN နှင့် SCAVENGING PERIOD ၌သာ ပွင့်သည်။ PISTON ပြန်အတက် INLET PORT မပိတ်မီ ROTORY VALVE မှာ ပိတ်သွားသဖြင့် လေဆုံးရှုံးမှု မရှိတော့ပေ။

UNIFLOW SCAVENDING အင်ဂျင်များတွင် PISTON အထက်၌ EXHAUST VALVE များကို INLET

ဦးအုန်းမြှင့်၏စီဖယ်အင်ဂျှင်

>

PURT များနှင့် ပြိုင်ကျ(သို့) စောလျင်စွာ ပိတ်စေရန် ချိန်ဆထားခြင်းဖြင့် လေဆုံးရှုံးမှုကို ကာကွယ်ထားသည်။ ပုံ (3) တွင် OPPOSED PISTON အမျိုးအစားအင်ဂျင်တွင် EXHAUST PORT ဖက်ရှိ CRANK SHAITT ၏ CRANK ANGLE ကို 12 မှ 14 အထိ စောပေးထားခြင်းဖြင့် EXHAUST PORT ဖက်ရှိ PISTON သည် T.D.C နှင့် B.D.C သို့ ကျန်တဖက်ရှိ PISTON ထက်စောစွာ ရောက်ရှိစေသည်။ ဤနည်းဖြင့် PISTON များအဆင်းတွင် EXHAUST PORT သည် INLET PORT ထက်စောစွာပွင့်ပြီး အတက်တွင် INLET PORT ထက် စောစွာပိတ်ခြင်းဖြင့် လေဆုံးရှုံးမှုကို ကာကွယ်ထားသည်။

၎င်းနည်းလမ်းများ အသုံးဖြု၍ လေသွင်းခြင်းကို UNSYMMETRICAL SCAVENCING ဟု ခေါ်သည်။ ၎င်းနည်းလမ်းကို ပုံ၏အပြင်စက်ဝိုင်းဖြင့် ဖေါ်ပြထားသည်။

TWO CYCLE နှင့် FOUR CYCLE အင်ဂျင်များနှိုင်းယှဉ်ချက် ခုခုခုခုခ

TWO CYCLEနှင့် FOUR CYCLEအင်ဂျင်တို့တွင် ချို့ယွင်းချက်များရှိသဖြင့် ရွေးချယ်ရာတွင် အသုံးပြု လိုသော လုပ်ငန်းအနေအထား အင်ဂျင်အရွယ်အစား နှင့် မောင်းနှင်လိုသော အခြေအနေ စသည့်အကြောင်းအချက် တို့အပေါ်တွင် မူတည်သည်။

တု့အပေးတွင် မူတည်သည်။ စာတွေ့အရ TWO CYCLE အင်ဂျင်သည် အရွယ်နှင့်အလေးချိန်တူ ၊'OUK CYCLE အင်ဂျင်ထက် POWER နှစ်ဆထုတ်လုပ်နိုင်သည်ဟု ယူဆသော်လည်း လက်တွေ့တွင် မထုတ်လုပ်နိုင်ချေ။ သို့သော် ပို၍ POWER ထုတ်လုပ်နိုင်ကြောင်း တွေ့ရှိရသည်။ နှစ်မျိုးစလုံးတွင် TURBO-CHARER များတပ်ဆင်ပါက POWERထုတ်လုပ်မှု များတိုးတက်လာကြောင်း တွေ့ရှိရသည်။

မည်သည့် CYCLE အမျိုးအစား ENGINE များတွင်မဆို POWER ထုတ်လုပ်မှုမှာ CYLINDER အတွင်း ဝင်ရောက်နိုင်သော လေအလေးချိန်နှင့် CYLINDER အတွင်း ပိတ်လှောင်ထားနိုင်သော လေအလေးချိန်တို့ပေါ်တွင် မူတည်သည်။ ထိုလေများ CYLINDER အတွင်းသို့ သွင်းရန်အတွက် အင်ဂျင်၏ POWER အချို့ကို ပြန်လည်သုံးစွဲ ရသည်။ ထိုကဲ့သို့ POWER သုံးစွဲမှုတွင် TWO CYCLE အင်ဂျင်သုံးစွဲသော POWER ဆုံးရှုံးမှုသည် FOUR CYCLE အင်ဂျင်သုံးစွဲသော POWER ဆုံးရှုံးမှုထက် 30% မှ 50% ပိုမိုသည်။ FOURK CYCLE ENGINE တွင် POWER ဆုံးရှုံးမှုမှာ INTAKE နှင့် EXHAUST တို့တွင် ဖြစ်ပေါ်ကြသည်။

BLOWER SCAVENOINO တပ်ဆင်အသုံးပြုသော TWO CYCLE နှင့် POUK CYCLE အင်ဂျင်များတွင် RATED SPEED တစ်ဝက်အောက်တွင် မောင်းနှင်ပါက TWO CYCLE အင်ဂျင်မှ POWERဆုံးရှုံးမှု ပိုမိုနည်းပါးကြောင်း တွေ့ရသည်။ RATED SPEED တဝက် အထက်မောင်းနှင်ပါက POUR CYCLE အင်ဂျင်မှ POWER ဆုံးရှုံးမှု ပိုမို နည်းပါးကြောင်း တွေ့ရှိရသည်။

ထို့ကြောင့် TWO CYCLE ၏ ENGINE များကို SPEED ပြောင်းလဲမှု မရှိပဲ KATED POWEK ဖြင့် တသမတ်တည်း မောင်းနှင်သောနေရာများတွင် သင့်တော်၍ MAKINEနှင့် STATIONAKY အင်ဂျင်များအဖြစ် အများ ဆုံး အသုံးပြုကြသည်။

اال ဆီစားနွန်းသက်သာခြင်း၊ မောင်းနှင်မှုတွင် SPBBD အပြောင်းအလဲရှိသော နေရာများတွင် အသုံးပြုကြသည်။ ဆီစားနွန်းသက်သာခြင်း၊ မောင်းနှင်မှုတွင် SPBBD အပြောင်းအလဲရှိသော နေရာများတွင် အသုံးပြုနိုင်သောကြောင့် မော်တော်ယာဉ်များနှင့် မီးရထားများတွင် အများဆုံးအသုံးပြုကြသည်။ ထို့ပြင် TURBO CHAKOER တပ်ဆင်ထား သော FOUR CYCLE EMIDME များကို အများဆုံးအသုံးပြုလာကြသည်။ 2

1 - 11

ဒီဖယ်အင်ဂျင်နှင့် ဓါတ်ဆီအင်ဂျင် နှိုင်းယှဉ်ရျက် **ဂင်္ဂဂ**င်္ခနှင့် ဓါတ်ဆီအင်ဂျင် နှိုင်းယှဉ်ရျက်

ဒီဇယ်နှင့်ဓါတ်ဆီအင်ဂျင်နှစ်မျိုးစလုံးကို TWO CYCLEနှင့် FOUR CYCLE အင်ဂျင်များအဖြစ် ထုတ် လုပ်ကြသော်လည်း ကွဲပြားသောအချက်များစွာရှိသည်–

ဒီဇယ်အင်ဂျင်တွင် လေတစ်ခုတည်းသာ CYLINDERအတွင်း ဆွဲယူဖိနှိပ်ပြီး မီးလောင်နိုင်သော အပူချိန် ရောက်သောအခါ အဆိုပါလေအတွင်းသို့ လောင်စာဆီပန်းသွင်း၍ လောင်ကျွမ်းမှုပြုခြင်းဖြင့် POWER ရရှိသည်။ ဓါတ်ဆီအင်ဂျင်တွင် လောင်စာဆီနှင့် လေကိုလိုအပ်သော အချိုးအဆအတိုင်း ပြင်ပ (CARBURATOR) တွင် ရောစပ်၍ CYLINDER အတွင်း ဆွဲယူဖိနှိပ်ပြီး SPARK PLUG မှ မီးပွင့်ဖြင့် လောင်ကျွမ်းကာ POWER ရရှိသည်။

ဒီဇယ်အင်ဂျင်မှ ထုတ်လုပ်သော POWERအနည်းအများမှာ CYLINDERအတွင်းပန်းလိုက်သော လောင် စာဆီ အနည်းအများပေါ်တွင် မူတည်သည်။ ဓါတ်ဆီအင်ဂျင်တွင်မူ အင်ဂျင်မှထုတ်လုပ်သော POWERအနည်းအများ မှာ CYLINDERအတွင်း သွင်းယူသော လေအရောအနော (AIR FUEL MIXTURE) အနည်းအများပေါ် မူတည်သည်။ ဒီဇယ်အင်ဂျင်၏ CYLINDER အတွင်း ဖိနှိပ်အား PRESSURE သည် ဓါတ်ဆီအင်ဂျင်ထက်မြင့်သည့် အတွက် ပိုမိုခိုင်ခံစေရန် တည်ဆောက်သဖြင့် လေးလံပြီး တည်ဆောက်မှုစရိတ် ပိုမိုကုန်ကျသည်။ မောင်းနှင်မှုတွင် ဓါတ်ဆီအင်ဂျင်ထက် စက်သံ ပိုမိုကြမ်းတမ်းသည်။ HIGH LOAD တွင် ပိုမိုကြမ်းတမ်းသည်။

ဒီဇယ်အင်ဂျင်တွင်ပါဝင်သော လောင်စာဆီပို့စနစ် (FUEL INJECTION SYSTEM) ၏တန်ဘိုးသည် ဓါတ်ဆီအင်ဂျင်တွင်ပါဝင်သော FUEL SYSTEM နှင့် IGNITION SYSTEM တို့ထက် ပိုမိုကုန်ကျသည်။ HIGH SPEED ဒီဇယ်အင်ဂျင်များတွင် INJECTION SYSTEM ၏တန်ဘိုးသည် အင်ဂျင်တစ်ခုလုံး တန်ဘိုး၏ 1/3ပုံခန့် ရှိတတ်သည်။

ဒီဇယ်နှင့်ဓါတ်ဆီ အင်ဂျင်နှစ်မျိုးစလုံးတွင် MAXIMUM POWER၏ ¾ တွင်မောင်းနှင်သောအခါ ဆီစား အသက်သာဆုံးဖြစ်သည်။ ¾ မှ MAXIMUM ကြားတွင် ဒီဇယ်အင်ဂျင်သည် ဓါတ်ဆီအင်ဂျင်ထက် 20% ဆီစား သက်သာ၍ ¼ LOAD တွင် မောင်းနှင်သောအခါ ဒီဇယ်အင်ဂျင် ဆီစားနှုန်းသည် ဓါတ်ဆီအင်ဂျင် ဆီစားနှုန်းထက် 25% မှ 30% ခန့်သာရှိသည်။

ထို့ကြောင့် DIESEL ENGINE သည် PETROL ENGINE ထက်သာလွန်သော အချက်များမှာ ဆီစား သက်သာခြင်း၊ ပိုမိုကြာရှည်ခိုင်ခံခြင်း၊ LOW SPEED တွင် TORQUE ပိုမိုကောင်းခြင်း၊ ဆီဈေးနှန်းသက်သာခြင်း နှင့် မီးလောင်မလွယ်ခြင်း စသည့်အချက်များဖြစ်သည်။

00000000 "လူတိုင်းအတွက် အီလက်ထရောနစ်" လျှပ်စစ်သဘောတရားများကို အခြေခံကျကျလေ့လာသိရှိလိုပါလျှင် ဆရာဦးသန်းမောင် E.C လ/ ထ ကထိက(ငြိမ်း)၏ Electronics For Every One စာအုဝ် မကြာမီထွက်တော့မည်။

COMBUSTION

COMPOSITION OF ATMOSPHERIC AIR

BY-VOLUME			3Y-WEIGHT	
Section 20	PERCENT	RATIO	PERCENT	RATIO
NITROGEN	79	3.76	76.8	3.32
OXYGEN	21	1	23.2	1
TOTAL	100		100	

FUEL COMBUSTION WITH OXYGEN

လောင်စာဆီအရည်နှင့် အငွေ့များတွင် C နှင့် H₂ အများဆုံးပါဝင်သည်။ အောက်တွင် ၎င်းတို့ COMBUS-TION ဖြစ်ရာ၌ O₂ နှင့် ဓာတ်ပြုပုံကို ဖော်ပြထားသည်။

CHEMICAL REACTION BETWEEN H, AND O,

 $2H_2 + O_2 = 2H_2O$ 2 Mole $H_2 + 1$ Mole $O_2 = 2$ Mole H_2O 2 (2) + 32 = 2 x 18 = 36

COMBUSTION OF CARBON WITH OXYGEN C+O₂=CO₂ Complete combustion ဖြစ်ပါက -1 Mole C+1 Mole O₂ = 1 Mole CO₂ $1 \times 12 + 1 \times 32 = 44$ $2C + O_2 = 2CO$ Complete combustion မဖြစ်ပါက

2x + 12 + 1x 32 = (12+16) = 56

အထက်ဖော်ပြပါ ဓာတ်တုန့်ပြန်နည်းတူ O₂ သည် ဟိုက်ဒြိုကာဗွန်များဖြစ်ကြသော မီသိန်းနှင့်အော်တိန်း (METHANE AND OCTANE) တို့ ဓာတ်ပြုသော အခါ အောက်ပါဓာတ်တုန့်ပြန်မှုများ ရသည်။ CH. + 2O. = CO. + 2H.O

$$(12+4) + 2 \times 32 = (12 \times 32) + 2(2+16)$$

$$80 = 44 + 36$$

$$C_8H_{18} + 12.5 O_2 = 8CO_2 + 9H_2O$$

COMBUSTION WITH AIR

လောင်စာဆီများ COMBUSTION ဖြစ်ရာတွင် လေနှင့်ရောစပ်၍ လောင်ကျွမ်းမှု ဖြစ်ရ၏။ သို့ရာတွင် လေသည် O₂ နှင့် N₂ ဓာတ်ပေါင်းပေးခြင်း ဖြစ်သည်။ မယားအရ လေ၏ 3/4 ကျော်သည် N₂ ဖြစ်ေ တွေ့ရသည်။ လောင်စာဆီနှင့် ဓာတ်ပြုရာတွင် O₂ ဓာတ်ပြုမှုရှိပြီး N₂ သည် ဓာတ်ပြုမှု မရှိခြင်းေ COMBUSTION ဖြစ်ပြီး အချိန်တွင် ဓာတ်ငွေ့ အငြ တွေ့ရသည်။

လေတွင်ပါဝင်သော $O_2 \neq c N_2$ တို့၏ ထု အားဖြင့် အချိုးမှာ ${}^{21}/_{79} = 1:3.76$ ဖြစ်သည်။ ဆိုလိုသ O_2 1 Mole တိုင်းတွင် N_2 3.76 Mole ပူးတွဲ ရှိသည်။

CHEMICAL REACTION FOR CH₄ AND AIR C + O_2 + 3.76 N₂ -----> CO₂ + 3.76 N₂ 2H₂O + O₂ + 3.76 N₂ -----> 2H₂O + 3.76

Methane CH_4 သည် လေနှင့်ဓာတ်ပြု လေ့
ကျွမ်းသောအခါ အောက်ပါတုန့်ပြန်မှုများ ရရှိသည်။
$CH_4 + 2O_2 + 7.52 N_2 \longrightarrow CO_2 + 2H_2O + 7.52$
1 Mole CH ₄ 1 Mole CO,
+ 2 Mole O ₂ > + 2 Mole
+ 7.52 Mole N_2 H ₂ O + 7.52 Mole
WEIGHT အားဖြင့်-
(1x16) + (2 x 32) +> (44) + (2 x 18)
$(7.52 \times 28) + (7.52 \times 28)$
290.56> 290.56

အထက်ပါ ဓာတ်ပြညီမျှခြင်းအရ l Cu-ft CF သည် (2 + 7.52) လေ 9.52 Cu-ft လိုအပ်သည် (or) l lb CH₄ သည် လေ (4 + 13.16) 17.16 lb လိုအပ်သည်။ လောင်စာဆီများသည် C နှင့် H compound များဖြစ်၍ အလေးချိန် အားဖြင့် H₂ 14₉ 15% ပါဝင်သည်။ အကယ်၍ လောင်စာဆီတွင် အလေးချိန် အားဖြင့် H₂ 15% နှင့် 85% ပါဝင်သည်ဟု ယူဆပါက လောင်စာဆီ 100 lbs တွင် H₂ 15 lb နှင့် C 85 lb ပါရှိမည်။

Atomic ratio H ဘားဖြင့် ဒြပ်စင်တစ်ခု၏ အလေးချိန်ကို ၎င်းတို့၏ သက်ဆိုင်ရာ Atomic weight ဖြင့်စားလျက် ရှာဖွေနိုင်သည်။

$$\frac{H}{C} = \frac{15/1}{85/12}$$
 (or) $\frac{15 \text{ ATOMS}}{7.08 \text{ ATOMS}}$

၎င်းလောင်စာဆီ၏ Chemical equation မှာ C_{7.08} H₁₅ ဖြစ်သည်။ ၎င်းလောင်စာဆီတွင် ငြနှင့်လေဓာတ်

lbs

ဖြ၍ complete combustion ဖြစ်ရာတွင် chemical equation မှာ -

4¢	ဓာတ်ပြုမှုတွင်			
+(3.7	5 x 3.76)N,			
3.76)N,				
.83 C	, + 40.72N,		08 CO ₂ +7.5	
		Н	O+40.72N	
=	7.08 x 12+15	=	99.96 lbs	
=	10.83 x 32	=	346.56 lbs	
=	40.72x28	=	1140.16 lbs	
=	7.5x18	=	135 lbs	
+3	.46lbO	3	11 lbCO.+	
+11.4lbN ₂ 1.35lbH ₂ O+				
		1	1.41bN,	
	+(3.7) = = = 15+3	$= 7.08 \times 12+15$ = 10.83 x 32 = 40.72x28 = 7.5x18 $_{15}+3.461bO_2$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	

ထို့ကြောင့် 11b C_{7.08}H₁₅ သည် complete combustion ဖြစ်ရန် လေ 14.86 Jb လိုသည်။

DIESEL ENGINE COMBUSTION WITH EXCESS AIR

Diesel engine အားလုံးသည် maximum power တွင် အလုပ်လုပ် နေစေကာမူ စာတွေ့အရ complete combustion ဖြစ်ရန် လိုအပ်သော လေပမာဏ ထက် 15% မှ 20% အထိပိုသော လေပမာဏနှင့် လောင်ကျွမ်းမှု ပြႂကြသည်။ လိုအပ်သည်ထက် ပိုသွင်းသော လေပမာဏကို excess air ဟု ခေါ်သည်။ လေပိုသွင်း ရခြင်းမှာ အင်ဂျင်အတွင်း၌ တကယ်တမ်းလောင်ကျွမ်းရာတွင် လောင်စာဆီနှင့် လေကောင်းစွာရောစပ်မှု မရှိခြင်းကြောင့် ဖြစ်သည်။

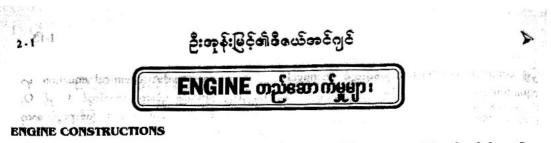
အကယ်၍ လောင်စာဆီ llb C_{7.08}H₁₅ သည် 20% excess air ဖြင့် လောင်ကျွမ်းမှုပြုသည်ဆိုပါက ၎င်း၏ ဓာတုဗေဒညိမျှခြင်းတွင် –

C_{2,4}H₁₅+ 13 O₂ + ---- 7.08 CO₂+7.5 H₂O+ 48.9N₂ 2.17O₃+ 48.9N₃

ဆီတစ်မျိုး၌ H₂ = 14%, C = 86% ပါဝင်ကြ သည်။ အကယ်၍ လောင်စာ 120 lb လောင်ကျွမ်းသော အခါ O₂ မည်မျှသည် ၎င်းဆီနှင့် ပေါင်းစပ်သနည်း။ လောင်ကျွမ်းပြီး ရရှိသောအလေးချိန်များ မည်မျှရရှိသနည်း။

$$\frac{H}{C} = \frac{14/1}{85/12}$$
 (or) $\frac{14 \text{ ATOMS } H}{7.166 \text{ ATOMS } C}$

၎င်းလောင်စာဆီ၏ chemical equation မှာ $C_{7.17}H_{14}$ ဖြစ်သည် ၎င်းလောင်စာဆီတွင် C နှင့် O_2 ဓာတ်ပြု၍ complete combustion ဖြစ်ရာတွင် ဓာတု ဗောညိမ္သခြင်းမှာ –


 $\begin{array}{c} C_{2,1}^{}+7.17O_{2}^{}---7.17\ CO_{2}^{}\\ H_{14}^{}+3.5O_{2}^{}---7\ H_{2}O\\ C_{2,17}^{}H_{14}^{}+10.67O_{2}^{}--7.17\ CO_{2}^{}+7\ HO_{2}^{}\end{array}$

 $C_{2,17}H_{14} = (12 \times 7.17) + (1 \times 14)$ 10.67 $O_2 = 10.67 \times 32$ = 100.04 lbs = 341.44 lbs $7.17 \text{ CO}_2 = 7.17 \text{ x44}$ = 315.48 lbs = 126 lbs 7H,O = 7x18.: 1 lb C_{2.17}H₁₄+3.413 lbs O₂ ----- 3.15 lbs CO₂+ 1.26lbs HO, ဖြစ်ရန်လိုအပ်သော O₂ မှာ 3.413lbs ဖြစ်သည်။ ဆီ 120 lb လောင်ကျွမ်းရန်လိုသောလေ O₂ = 409.56 lbs ဆီ 1 lb လောင်ကျွမ်းပြီး ရရှိသောအလေး = 4.41 lbs ဆီ 120 lb လောင်ကျွမ်းပြီး ရရှိသောအလေး = 529.2

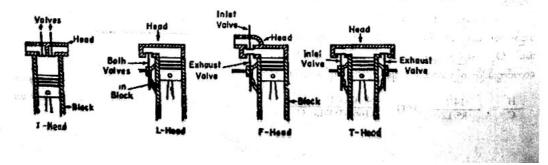
5. 5

တစ်နည်း C 86% H 14% $\frac{86}{100}$ x 120 = 103.2 lbs. $14 \times 120 = 16.8$ lbs 100 100 $C+O_2 = CO_2 C \ 12 \ y O_2 \ 32$ 12 + .32 = 44:. 103.2 = 103.2x32 = 275.2 2H20+02 = 2H20 02 32 40 H2 4 0, 10H, 16.8= 16.8x32 = 134.4 4 + 32 = 36စုစုပေါင်းလိုအပ်သောလေ O2 = 275.2 + 134.4 = 409.6 lbs လိုအပ်သော O2 = 134.4 + 275.2 = 409.6 lbs O, 1 lb yp N, 3.36 lbs 409.6 x3.36 $:: O_1 409.6 \text{ lbs } N_2 =$ = 1375 lbs

11.

ยทเมพิย များသည် အောက်ပါအချက်များပေါ်တွင် မူတည်၍ ยทเมพิย တစ်မျိုးနှင့်တစ်မျိုး ကွဲပြား ခြားနားကြသည်။

VALVE ARRANGEMENT (ອາ:ພຸກະວົນລະເພິ່ງສາຍສາຍລົງ)


- 2. NUMBER OF CYLINDER & ARRANGEMENT (ဆလင်ဒါအရေအတွက်၊အစီအစဉ်)
- 3. METHOD OF COOLING (အအေးပေးၿနစ်ကွာခြားမှု)
- 4. FUEL (အသုံးပြုသည့်လောင်စာဆီ)
- 5. CYCLE (အသုံးပြုသည့် CYCLE)
- 6. HORSE POWER (ထုတ်လုပ်သည့်မြင်းကောင်ရေ)
- 7. INJECTION (DIRECT AND INDIRECT)

DIESEL ENGINE များကို တစ်ကမ္ဘာလုံးရှိ တိုင်းပြည်များမှ ကုမ္ပဏီပေါင်းစုံတို့သည် အထက်ပါ အချက် (7) ချက်ပေါ်မူတည်၍ ENGINE များ၏ ပုံစံအမျိုးမျိုးကို ပုံစံပြု၍ထုတ်လုပ်လျက်ရှိသည်။ သို့သော် အထက်ပါ အချက်များတူညီသော်လည်း တခြား SYSTEM များကြောင့်လည်း ပုံသဏ္ဌာန်များ ကွဲပြားပြောင်းလဲမှုများရှိသည်။

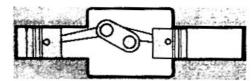
1. VALVE ARRANGEMENT (စားတပ်ဆင်မှုအစီအစဉ်)

ENGINE များတွင် အများအားဖြင့် VALVE တပ်ဆင်မှု အစီအစဉ် (4) မျိုးခန့် သာရှိသည်။ ၎င်းတို့မှာ– L- HEAD, I- HEAD, F- HEAD နှင့် T- HEAD ဟူ၍ ဖြစ်သည်။ L- HEAD နှင့် I- HEAD ကို အသုံးများကြသည်။ F-HEAD ကို ကားငယ်လေးများနှင့် ထရပ်ကားများတွင် အသုံးပြုကြသည်။

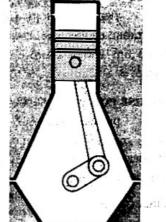
L-HEAD ဒီဖိုင်းသည် INLET နှင့် EXHAUST VALVE များကို CYLINDER ဘေးတဖက်တည်းတွင် ထားရှိပြီး CAM-SHAFT တစ်ချောင်းနှင့် အလုပ်လုပ်စေသည်။ I-HEAD တွင် VALVE များသည် CYLINDER HEAD ပေါ်တွင် တည်ရှိ၍ PUSH ROD နှင့် ROCKER ARM များမှတဆင့် အလုပ်လုပ်စေသည်။ T-HEAD မှာမူ INLET VALVE များ CYLINDER တဖက်စီတွင်ရှိ၍ EXHAUST VALVE များသည် CYLINDER ၏ အခြားတဖက်တွင် ရှိသည်။ ယခုအခါ ၎င်းဒီဖိုင်းကို အသုံးမပြုချေ။ F-HEAD တွင် INLET VALVE များကို HEAD တွင် တပ်ဆင်၍ EXHAUST VALVE များကို CYLINDER ဘေးတွင် တပ်ဆင်၍ CAM-SHAFT တစ်ချောင်းတည်းဖြင့် အလုပ်လုပ်စေသည်။ I-HEAD နှင့် F-HEAD ကို OVER HEAD ဟုခေါ်၍ L နှင့် T-HEAD ကို SIDE VALVE ဟု ခေါ်သည်။

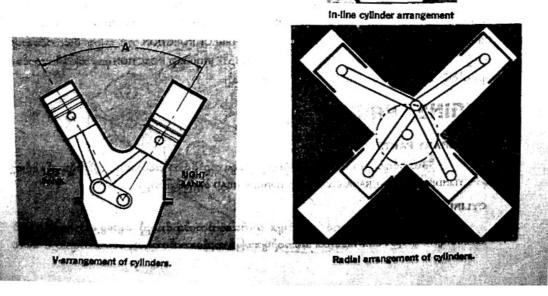
ဦးအုန်းမြင့်၏ဒီရယ်အင်ဂျှင်

2 - 2


(2) NUMBER OF CYLINDER AND ARRANGEMENT

ENGINE များတွင်အသုံးဖြုသော CYLINDER အရေအတွက် ကွာခြားမှုများကြောင့် ENGINE ပုံစံများမှာ လည်း ပြောင်းလဲသည်။ SINGLE CYLINDER ENGINE နှင့် 4 CYLINDER ENGINE တို့ ပုံစံမတူညီနိုင်ပေ။ ထို့ပြင် CYLINDER များထားသိုမှု အစီအစဉ်များကွဲလွဲသဖြင့် ပုံစံများလည်း ကွဲပြားကြသည်။ အောက်တွင် ဆလင်ဒါ ထားသိုပုံ အစီအစဉ်များကို ပုံများဖြင့် ဖေါ်ပြထားသည်။


CYLINDER များကို တတန်းတည်းစီ၍ တည်ဆောက်ထားသော ENGINE ကို IN-LINE ENGINE ဟု ခေါ်သည်။ ၎င်း IN-LINE များကို အချို့ကားများတွင် CYLINDEK များကို ထောင်လျက် တန်းစီထားသည်။ အချို့တွင် လဲ၍ထားတတ်သည်။ အချို့ ENGINE များတွင်မူ 30 (သို့) 45 စောင်း၍ တည်ဆောက်ထားသည်။


အချို့သော CYLINDER 8 လုံးနှင့် အထက် ENGINE များတွင်မူ CYLINDER များကို အတန်းနှစ်တန်း ခွဲ၍ V ပုံသဏ္ဍာန် တည်ဆောက်ထားသည်။ တတန်းနှင့်တတန်းကို 90 ခံဆောင်၍ တည်ဆောက်ထားသည်။ အချို့ V-6 နှင့် V-12 ENGINE များတွင် 60 ခံဆောင်၍ တည်ဆောက်ထားသည်။

အချို့ ENGINE များတွင် CYLINDER များကို BLOCK ၏ တဖက်တချက်စီတွင် တပ်ဆင်ထားသော HORIZONTAL OPPOSE ENGINE, လေယာဉ်ပျံ ENGINE များတွင်မှ RADIAL ENGINE နှင့် X-TYPE, W-TYPE စသည်ဖြင့် အမျိုးမျိုးတည်ဆောက်ကြသည်။

Flat arrangement of cylinders.

1 2-3

ဦးတုန်းဖြင့်၏စီဖယ်အင်ဂျင်

3. METTHOD OF COOLING

ENGINE များတွင် အအေးပေးစနစ် အမျိုးမျိုးအနက် တစ်မျိုးမျိုးကို အသုံးပြကြသည်။ ၎င်းတို့မှာ LIQUID COOLING SYSTEM (အရည်အအေးပေးစနစ်) နှင့် AIR COOLING SYSTEM (လေအအေးပေးစနစ်)ဟူ၍ နှစ်မျိုးဖြစ်သည်။

AIR COULING ENGINE များကို မော်တော်ယာဉ် ENGINE များတွင် အသုံးနည်းသော်လည်း AIR PLANE နှင့် မော်တော်ဆိုင်ကယ် ENGINE များတွင် အသုံးများကြသည်။ အရည်အအေးပေးစနစ်ကို မော်တော်ယာဉ် အင်ဂျင်များနှင့် MARINE အင်ဂျင်စသည်တို့တွင် အသုံးပြုကြသည်။ အအေးပေးစနစ် ကွာခြားမှုကြောင့် အင်ဂျင် တည်ဆောက်မှုများ ကွဲပြားခြားနားကြသည်။

4. FUEL (အသုံးပြုသောလောင်စာဆီ)

အသုံးပြုသောလောင်စာဆီများ ကွဲပြားမှုကြောင့် ENGINEပုံစံနှင့် တည်ဆောက်ပုံများ ကွဲပြားသည်။ ဓါတ်ဆီအင်ဂျင်အတွက် FUEL SYSTEM တွင် FUEL PUMP နှင့် CARBURETOR ပါရှိသော်လည်း ဒီဇယ်အင်ဂျင်၏ FUEL SYSTEM တွင် FEED PUMP, INJECTION PUMP နှင့် NOZZLE တို့ ဂါရှိကြသည်။ ထိုအတူ ရေနံဆီး လေယာဉ်ဆီ၊ အစရှိသဖြင့် အသုံးပြုသော လောင်စာဆီများ ကွဲပြားမှုကြောင့် ENGINE ပုံစံများ ကွဲပြားကြသည်။

5. CYCLE

TWO CYCLE ENGINE နှင့် FOUR CYCLE ENGINE တည်ဆောက်မှုများသည်လည်း ကွဲပြားကြသည်။ TWO STROKE ENGINE သည် ENGINE တပတ်လည်တိုင်း အားတခါရရှိရန် ဖန်တီးထားပြီး FOUR STROKE ENGINE သည် ENGINE နှစ်ပတ်လည်တိုင်း အားတခါရရှိရန် ဖန်တီးထားသည်။ ထို့ကြောင့် ENGINE CAM SHAITT တို့၏ တည်ဆောက်မှုများ ကွဲပြားကြသည်။

6. HORSE POWER

DIESEL ENGINE များကို ထုတ်လုပ်ရာတွင် အသုံးပြုသည့် လုပ်ငန်းများကိုလိုက်၍ HORSE POWER အမျိုးမျိုး ထုတ်လုပ်ကြသည်။ 5H.P မှ 10000 H.P အထိ ထုတ်လုပ်ကြသည်။ H.P အနည်းအများကိုလိုက်၍ CYLINDER အရေအတွက်၊ အစီအစဉ်၊ PISTON အကြီးအသေး စသည်ဖြင့် အမျိုးမျိုးပြောင်းလဲကြသဖြင့် ပုံစံနှင့် ဒီနိုင်းများ ကွဲပြားကြသည်။

7. INJECTION

ဒီဇယ်အင်ဂျင်ထုတ်လုပ်သူများသည် မိမိ၏အင်ဂျင် ဒီဖိုင်းများ ထုတ်လုပ်ရာတွင် ထုတ်လုပ်မှု၊ ကုန်ကျ စရိတ်၊ ကြာရှည်အသုံးခံမှုနှင့် အခြားအချက်များစွာတို့ကို တွက်ချက်၍ FUEL INJECTION တွင် DIRECT နှင့် INDIRECT INJECTION ဟူ၍ နှစ်မျိုးထုတ်လုပ်ကြသည်။ DIRECT INJECTION တွင် အကြို မီးလောင်ခန်းများ မပါရှိဘဲ တိုက်ရိုက် မီးလောင်ပေါက်ကွဲစေသောစနစ် ဖြစ်သည်။ INDIRECT INJECTION မှာမူ အကြိုမီးလောင်ခန်း များ ပါရှိပြီး နှစ်ဆင့်မီးလောင်ပေါက်ကွဲသော စနစ်ဖြစ်သည်။

ENGINE PARTS

STATIONARY PARTS

ဒီဇယ်အင်ဂျင်များတွင် အခြေခံကျပြီး တည်ငြိမ်စွာ တည်ရှိသော အစိတ်အပိုင်း(၃)ပိုင်းရှိသည်။ ၎င်းတို့ မှာ CYLINDER BLOCK, CRANK CASE နှင့် CYLINDER HEAD တို့ ဖြစ်ကြသည်။

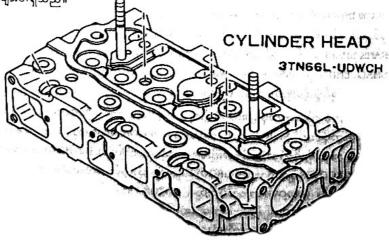
CYLINDER BLOCK

CYLINDER BLOCK တွင် ပစ္စတင်များ ထက်အောက်တက်ဆင်းသည့် ချောမွေ့သော အဝိုင်းပေါက် ဆလင်ဒါများပါရှိသည်။ L.T.P-NEAD ဗား အစီအစဉ်များအဖြစ် တည်ဆောက်ထားသော ဘလောက်များတွင် VALVE

ဦးအုန်းမြင့်၏စီဖယ်အင်ဂျင်

2.4

များမွင့်နိုင်ရန်အတွက် အပေါက်များပါရှိသည်။ အရည်အအေးပေးစနစ်သုံး BLOCK တွင် ရေသွားလမ်းကြောင်းများ WATER JACKETS ပါရှိသည်။ BLOCK ၏ အပေါ်ဖက်မျက်နှာပြင်ကို ချောမွေ့ညီညာအောင် စက်ဖြင့် သထားသည်။ တချို့ ဆလင်ဒါဘလောက်များတွင် ဖြုတ်တပ်နိုင်သော LINER ကို တပ်ဆင်ထားသည်။ LINER များတွင်လည်း WET LINER နှင့် DRY LINER ဟူ၍ နှစ်မျိုးရှိသည်။ ဆလင်ဒါဘလောက်ကို ORAY CAST IRON များနှင့် ပြုလုပ်ပြီး တချို့တွင် ပေါ့ပါးစေရန် ဘလောက်ကို ALUMINIUM ဖြင့် ပြုလုပ်၍ LINER များကို STEEL များဖြင့် ပြုလုပ်ထား သည်။ ဆလင်ဒါဘလောက်သည် ENGINE ၏ အဓိကအစိတ်အပိုင်းဖြစ်ပြီး ကျန်အစိတ်အပိုင်းများကို ပူးတွဲတပ်ဆင် ပေးခြင်းဖြင့် ပြည့်စုံသော ENGINE တစ်လုံး ဖြစ်ပေါ်စေသည်။


CRANK CASE

ငင်းသည် ENGINE ၏ အောက်ပိုင်းဖြစ်သည်။ အချို့အင်ဂျင်များတွင် CYLINDER BLOCK နှင့် ပူးတွဲ တည်ဆောက်ထားသည်။ မော်တော်ယာဉ်အင်ဂျင်များတွင် အများအားဖြင့် BLOCK နှင့် CRANK CASE ကို ပူးပေါင်း တည်ဆောက်ထားသည်။ မော်တော်ယာဉ်အင်ဂျင်များ၊ အင်ဂျင်စက်အငယ်များ၊ လေအအေးပေးစနစ်သုံး အင်ဂျင်များနှင့် သင်္ဘောက်ထားသည်။ တချို့ အင်ဂျင်များ၊ အင်ဂျင်စက်အငယ်များ၊ လေအအေးပေးစနစ်သုံး အင်ဂျင်များနှင့် သင်္ဘောက်ကြီးများ၏ အင်ဂျင်များတွင် သီးခြားတည်ဆောက်ပြီး CYLINDER BLOCK တွင် BOLT AND NUT များနှင့် တပ်ဆင်ထားတတ်သည်။ CRANK SHAFT အပိုင်းတွင် သင့်တော်သော BEARING များ ခံဆောင်၍ CRANK SHAFT နှင့် CAM SHAFT တပ်ဆင်ရန် နေရာများပါရှိသည်။ LUBRICATING SYSTEM အတွက် OIL PUMP အပိုင်းနေရာများ ပါရှိပြီး လည်ပတ်နေသော အင်ဂျင်အစိတ်အပိုင်းများသို့ ချောဆီပို့သော ဆီသွားလမ်းကြောင်း များ ပါရှိသည်။

CKANK CASE အောက်ပိုင်းတွင် OIL PAN ကို SCREW တို့ဖြင့် တင်းကျပ်ထားသည်။ ၎င်းကို PRESS STEEL(သို့) ALUMINIUM ဖြင့် ပြုလုပ်ထားသည်။ ၎င်းသည် ချောဆီများ သိုလှောင်ရာဖြစ်ပြီး အင်ဂျင်အပေါ်ပိုင်းမှ ပြန်ကျလာသော ဆီများသည် ၎င်းအထဲသို့ ပြန်လည်စီးဝင်သည်။ STEELဖြင့် ပြုလုပ်ထားသဖြင့် ပြင်ပလေအေး များနှင့် ထိတွေ့နိုင်ပြီး ချောဆီ၏ အပူချိန်ကို လျော့နည်းစေနိုင်သည်။

CYLINDER HEAD

၎င်းသည် သီးခြားပုံသွန်းလောင်းထားပြီး BLOCK အပေါ်တွင် BOLT & NUT များဖြင့် ဖမ်းထားသည်။ ၎င်းတွင် မီးလောင်ခန်း (COMBUSTION CHAMBER) များပါရှိသည်။ I & P HEAD VALVE အစီအစဉ်ပါဝင်သော HEAD များတွင် VALVE အထိုင်နေ ရာများနှင့် လေဝင်ပေါက်များ ပါဝင်သည်။ ၎င်းကို CAST ORAY IRON (သို့) ALUMINIUM တို့ဖြင့် ပုံသွင်း၍ အသုံးပြုလှေရှိသည်။ AIK COOL ENGINE များ ဖြစ်ပါက အင်ဂျင်အေးစေရန် COOLING PINS များပါရှိသည်။ ဓ

For Knowledge & Educational Purposes

State State States

ဦးစာန်းမြင့်၏စီဖယ်တင်ဂျင်

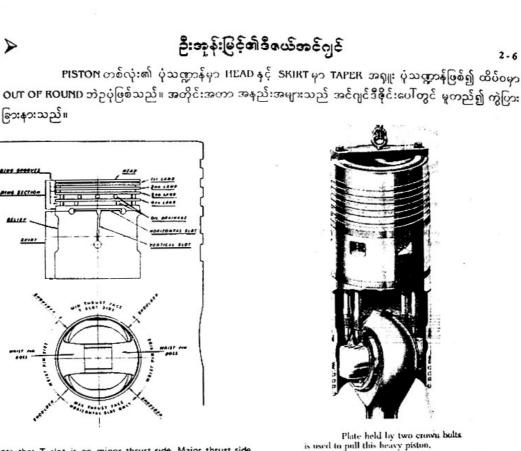
HEAD GASKET

CYLINDER BLOCK ပေါ်တွင် CYLINDER HEAD တပ်ဆင်လိုက်သော် မီးလောင်ခန်း (COMBUSTION

CHAMBER) ဖြစ်ပေါ်သည်။ ၎င်းနှစ်စုကြားနေရာသည် အပူချိန်နှင့်ဖိအား ဖြစ်ပေါ်သဖြင့် လုံခြုံရန် လိုအပ်သည်။ ထို့ကြောင့် ထိုကြားနေရာတွင် SEALING GASEKT ကို ထည့်သွင်းအသုံးပြုရသည်။ ၎င်းသည် CYLINDER HEAD မျက်နှာပြင်နှင့် တပုံစံတည်း ဖြစ်သည်။ အပေါက်ဖေါက်ထားသော နေရာများတွင် လုံခြုံမှုရှိရန် အနားစောင်းများကို ကွပ်ထားသည်။

OASKET တပ်ဆင်ရာတွင် မျက်နှာပြင် နှစ်ဖက်စလုံးကို တွယ်ကပ်တတ်သော ပစ္စည်းများသုတ်လိမ်းပြီး မှ တပ်ဆင်ရမည်။ OASKET ပြုလုပ်နိုင်သောပစ္စည်းများမှာ (1) CORK SHEET (2) COPPER SHEET (3) PAPER (4) RUUBBRR SHEET (5) SHEET (6) ALUMINIUM SHEET တို့ ဖြစ်သည်။

PISTON


CYLINDER ၏အချင်းထက် အနည်းငယ် ငယ်သော PISTON သည် CYLINDER အတွင်းသို့ အထက် အောက် လှုပ်ရှားသည်။ မီးလောင်နန်းအတွင်းမှ ဖြစ်ပေါ်သော ဓါတ်ငွေ့ကျယ်ပြန့်မှုကို CONITOINIO ROD မှ တဆင့် CRAINK SHAFT သို့ ပို့ပေးပြီး အင်ဂျင်ကို လည်ပတ်မှု ဖြစ်ပေါ်စေသည်။ PISTON သည် CONITOINIO ROD ၏ SMALL END တွင် PIOTORIY MICH (WRIST PIN) NITOR STOR သည် ROD ၏ SMALL END တွင် PIOTORIY (WRIST PIN) ROD ၏ SMALL END တွင် PIOTORIY နှင့် CYLINDER ကြားတွင် ဓါတ်ငွေ ျား ယိုစီးမှုကို ကာကွယ်ထားသည်။

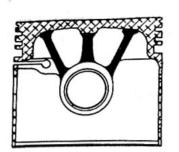
PISTON တည်ဆောက်ပုံများကို ပုံများနှင့်ဖေါ်ပြထားသည်။ PISTON ၏အထက်ပိုင်းကို CROWN ပိုင်းဟုခေါ်၍ အောက်ပိုင်းကို SKIRT ပိုင်းဟု ခေါ်သည်။ PISTON HEAD ကို မီးလောင်ခန်းများပုံစံကိုလိုက်၍ အပြား အခွက်နှင့် အခုံးတို့ကို ပုံသဏ္ဌာန် အမျိုးမျိုး တည်ဆောက်ကြသည်။ HEAD ၏အောက်ပိုင်းတွင် RINO LAND နှင့် RINO OROOVES များ ရှိသည်။ OROOVE များကို သုံးတွင်း၊ လေးတွင်းမှ ငါးတွင်း စသည်ဖြင့် တည် ဆောက်ထားတတ်သည်။ OROOVE အောက်ပိုင်းတွင် PISTON PIN ခွက်ထားသောနေရာ PISTON BOSS နေရာ ရှိသည်။ ၎င်းနေရာသည် PISTON ဖြန့်ကားမှု အများဆုံးဖြစ်၍ အငယ်ဆုံးနေရာဖြစ်သည်။ ၎င်းအောက်ပိုင်းသည် SKIRT ပိုင်းဖြစ်၍ PISTON ၏ အချင်းအကြီးဆုံးနေရာဖြစ်သည်။

http://khtnetpc.webs.com

For Knowledge & Educational Purposes

2-6

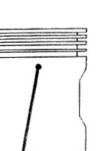
Note that T slot is on minor thrust side. Major thrust side has horizontal slot only.

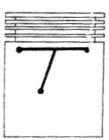

PISTON နှင့် CYLINDERကြားတွင်ရှိသော ကြားလွတ်တန်ဘိုးကို PISTON CLEARANCE ဟုခေါ်သည်။ ှင်းကြားလွတ်တန်ဘိုးရှိရန် လိုအပ်သည်။ အဘယ်ကြောင့်ဆိုသော် PISTON HEAD သည် အပူရှိန်အများဆုံး ထိတွေ့ ရသည့်အပြင် PISTONနှင့် CYLINDEKနံရံကြားတွင် ချောဆီရှိနေစေရန် နေရာ ချန်ထားနိုင်ရန် ဖြစ်သည်။ PISTON CLEAKANCE အနည်းအများသည် ဆလင်ဒါအချင်း ပစ္စတင်ပြုလုပ်သော သတ္တုနှင့် LINER ပြုလုပ်သော သတ္တုများ ပေါ် မူတည်၍ ပြောင်းလဲသည်။

PISTON များကို ALLUMINIUM ALLOY, CAST STEEL, CAST IKON နှင့် CHROME NICKEL သတ္တု များနှင့် ပြုလုပ်သည်။ တချို့ PISTON တွင် TIN (သို့) ZINE OXIDE များကို သုတ်လိမ်းထားတတ်သည်။ အများဆုံး အသုံးပြုသော PISTON သတ္တုမှာ ALLUMINIUM ALLOY သက္တုပင်ဖြစ်သည်။ ၎င်းသတ္တုသည် ပေါ့ပါး၍ အပူဒါဏ်ခံ နိုင်ရည်ရှိသည့်အပြင် အပူစီးနှုန်းမြန်သည်။

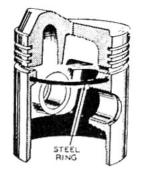
ပစ္စတင်များကို တည်ဆောက်အသုံးပြုပုံမူတည်၍ CAM GROUND PISTON , ROUND PISTON နှင့် AUTO THERMIC PISTON ဟူ၍ သုံးမျိုးခွဲခြားထားသည်။ CAM-OROUND PISTON သည် ပုံသွန်းလောင်းစဉ်ကပင် ဘဲဥပုံပြုလုပ်ထားသဖြင့် ENGINE OPEKATING TEMPEKATURE ရောက်သောအခါ BOSS နေရာ ပြန့်ကားလာမှု သည့် PISTON ၏ SKIRT အချင်းထက်မပိုတော့ချေ။ ROUND PISTON သည် CONSTANT CLEARANCE PISTON ဟူခေါ်သည်။ အဘယ့်ကြောင့်ဆိုသော် မီးလောင်ခန်းမှ အပူချိန်ကြောင့် SKIRTပိုင်းမှာ ပြန့်ကားလာမှုရှိသော်လည်းမဲ။ 🕬 ဆလင်ခါထဲတွင် တင်းကြပ်မှု (SEIZE) မဖြစ်အောင်ဖန်တီးထားသည်။ A'JTOTHERMIC FISTON သည် ပြန့်စားမှု အနည်းဆုံးဖြစ်သည်။ BOSS တွင် သမဏိကွင်းကို မြုပ်ထားခြင်းဖြင့် PISTON ပြန့်ကားမှု မရှိရန် ထိမ်းချုပ်ထား သည်။ ၎င်း PISTON တွင် HORIZONTAL နှင့် VERTICAL SLOTS များပါရှိသည်။

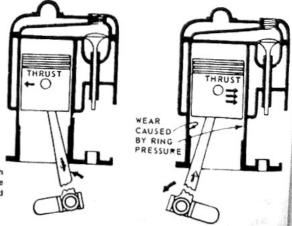
For Knowledge & Educational Purposes


2 - 7



Ribs are cast into inside piston to strengthen area between crown and piston boss.


A steel insert may be cast into an aluminum piston to help control expansion rate.



Top. Aluminum pistons may have a diagonal slot cut through on minor thrust side. Center, Some pistons have a slot shaped like cut in piston skirt. Bottom, Two slots may be connected by a third slot to form a U-shaped slot design.

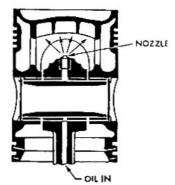
Instead of a vertical insert, a steel ring may be cast into piston to help control expansion.

Side thrust on piston is greater on explosion stroke that compression stroke, because of greater pressures on piston head.

http://khtnetpc.webs.com

>

For Knowledge & Educational Purposes


ဦးအုန်းဖြင့်၏ဒီဇယ်အင်ဂျင်

2 - 8

၎င်း PISTON အမျိုးအစားတွင် ပစ္စတင်၏ SKIRT အပိုင်းတွင် U-SLOT, T-SLOT, I-SLOT များ ပြုလုပ် ထားသည်။ ၎င်း SLOT များတွင် ပါဝင်သော HORIZONTAL SLOT သည် PISTON မှ အပူကို SKIRT သို့ လွယ်ကူ စွာ မရောက်ရှိနိုင်အောင်တည်ဆောက်ထားခြင်းဖြစ်သည်။ VERTICAL SLOT သည် PISTON ပူလာသောအခါ SKIRT ပြန့်ကားလာမှုကြောင့် PISTON ၏ အချင်းကြီးထွားမှုမရှိဘဲ SLOT အတွင်း စီးသွားပြီး CYLINDER နံရံနှင့် PISTON ကြားရှိ ကြားလွတ်တန်ဘိုးမှာ ခြားနားမှုမရှိပေ။ HORIZONTAL SLOT ကို POWER THRUST SIDE ဘက်တွင် ထားခြင်း VERTICAL SLOT နှင့် HORIZONTAL SLOT ပါရှိသည့် PISTON မျိုးတို့တွင် COMPRESSION THRUST SIDE ဘက်တွင် ထားတတ်သည်။

MARINE DIESEL ENGINE ကြီးများ၏ PISTON သည် ကြီးမားလွန်းသဖြင့် တဆင့်ဆင့်သွန်းလောင်း၍ တဆင့်ပြီးတဆင့် တပ်ဆင်ရသည်။ PISTON ကြီးသဖြင့် အအေးပေးစနစ်ကို PISTON ထဲတွင် ထည့်သွင်းပြုလုပ် ထားသည်။ MARINE ENGINE ၏ပုံကို ဖေါ်ပြထားသည်။

Piston and rod

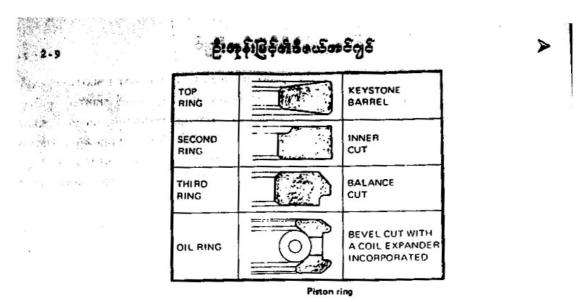
Piston Cooled by Oil Spray from Top of Connecting Rod

PISTON RING

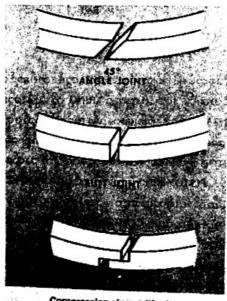
PISTON RING (ပစ္စတင်ရင်း)များကို PISTON တွင် တပ်ဆင်ထားသည်။ ချောဆီ၏အကူအညီဖြင့် CYLINDER အတွင်း အတက်အဆင်း ပြုလုပ်ရာတွင် RINQ ကို ပွန်းစားမှုနည်းခြင်းသည် COMPRESSION PRESSURE နှင့် EXPENSION GAS များကို လုံခြုံစေသည်။ အင်ဂျင်လည်ပတ်သောအခါ PISTON RINQ များသည် မီးလောင်ခန်းအတွင်း ချောဆီမရောက်ရှိစေရန် တားဆီးသည်။ အကယ်၍ ချောဆီရောက်ရှိပါက PISTON ထိပ်ဖျား တွင် PISTON RINQ သည် PISTON တွင် ဖြစ်ပေါ်လာသော အပူများကို သယ်ဆောင်ပြီး ဆလင်ဒါနံရံသို့ ဆက်လက် ရောက်ရှိစေသည်။ PSTON တွင် PISTON RINQ များတပ်ဆင်ရန် OROOVE များပါရှိသည်။ အချို့ PISTON တွင် GROOVE သုံးလေးခုနှင့် ငါးခုအထိ ပါရှိတတ်သည်။ အသုံးအများ ဆုံးမှာ OROOVE သုံးခုပါရှိသော PISTON များဖြစ်သည်။ PISTON ၏ထိပ်ဆုံးနှစ်ကွင်းမှာ COMPRESSION RINQ ဖြစ်သည်။ ကျန်(၁)ကွင်းမှာ OIL CONTROL RING ဖြစ်သည်။ COPRESSION RING သည် COMPRESSION STOKE တွင် COMPRESSION PRESSURE ကြောင့် လေမထိုအောင် လုံခြုံစေပြီး OIL CONTROL RING သည် CYLINDER နံရံတလျှောက်တွင် ပိုလျှံနေသော ဈောဆီများကို ခြစ်ချပြီး PISTON ၏အပေါက်များမှတဆင့် ဆိခံခွက် ထဲသို့ ပြန်လည်ကျဆင်းစေသည်။ PISTON ဖြားပါရားကို ခြစ်ချပြီး PISTON ၏အပေါက်များမှတဆင့် ဆိခံခွက် ထဲသို့ ပြန်လည်ကျဆင်းစေသည်။ PISTON

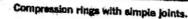
For Knowledge & Educational Purposes

and and and a second second


Here A House I and the second

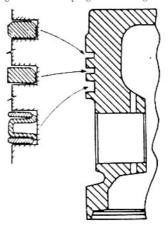
noten Chicanston


wiege Den.


್ಷಣಕ್ಕೆ ವಿಶ್ವಸ್ಥಾನ ತ

TRUE S

PISTON RING များကို GREY CAST IRON ALLOYED နှင့် ပြုလုပ်ပြီး တချို့ RING များတွင် CYLINDER နံရံနှင့် ထိတွေ့သော မျက်နှာဖြင်ကို အထူးပြု၍ ပွန်းစားမှုနည်းသော သတ္တု (သို့) ဓါတုဗေဒနည်းများ ဖြင့် ဒုံးအုပ်ထား သည်။ တချို့ RING များတွင် ၎င်းမျက်နှာပြင်ကို (1') မှ (2') အထိစောင်း၍ ပြုလုပ်ထားသည်။ PISTON KING စတပ်စဉ်တွင် ဧရိယာအနည်းငယ်သာ ထိတွေ့ပြီး ပွန်းစားမှုရှိလာသောအခါ PISTON RING နှင့် CYLINDER နံရံ မှာ လုံးဝထိတွေ့ပြီး အပြည့်အဝ လုံခြုံစေနိုင်သည်။ ထိပ်ဆုံး COMPRESSION KING ကို တခါတရံ CHROMINIUM PLATED ပြုလုပ်ထားသည်။ ထိုအတူ ထိပ်ဆုံး OIL CONTROL RING များတွင်လည်း ပြုလုပ်ထားသည်။ PISTON RING ထိပ်ခြင်း ဆက်ပုံဆက်နည်းသုံးမျိုးရှိသည်။ ၎င်းတို့မှာ ANGLE JOINT BUTT JOINT, နှင့် LAP JOINT တို ဖြစ်ကြသည်။


http://khtnetpc.webs.com

For Knowledge & Educational Purposes

ဦးအုန်းမြင့်၏ဒီဇယ်အင်ဂျင်

2 - 10

COMPRESSION RING နှင့် OIL CONTROL RING များကို ကုမ္ပဏီများမှ ပုံစံမျိုးစုံဖြင့် ထုတ်လုပ်ကြ သည်။ တချို့တွင်လေးထောင့်ပုံသဏ္ဍာန်ဖြစ်ပြီး တချို့တွင် OIL CONTROL RING များတွင် 3 PIECES, 4 PIECES စသည်ဖြင့် ထုတ်လုပ်ကြသည်။ တချို့ TWO STOKE CYCLE ENGINE တွင် PISTON RING သည် PISTON RING လည်မသွားစေရန် PISTON RING ၏ GROOVE တွင် PIN များ တပ်ဆင်ထားသည်။ PISTON RING အပေါ် မျက်နာပြင်တွင် TOP ဟူ၍၎င်းကုမ္ပဏီ အတိုကောက်နာမည်ကို၎င်း (သို့) PISTON RING SIZE ကို ဖေါ်ပြထားမည်။ ၎င်းဘက်ပိုင်းကို PISTON တွင် တပ်ဆင်ရာတွင် အပေါ်တွင်ထား၍ တပ်ဆင်ရမည်။

This cross section shows compression rings in two upper grooves; a three-piece oil control ring in lower groove.

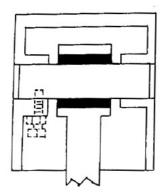
PISTON PIN (GUDGEON PIN) (WRIST PIN)

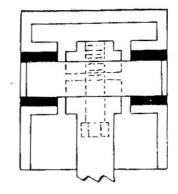
PISTON PIN သည် ပစ္စတင်နှင့် CONNECTING ROD တို့ ဆက်သွယ်ပေးသည်။ ၎င်းကို CASE-HARDENED STEEL ဖြင့် ပြုလုပ်၍ ခေါင်းပွဲဖြစ်သည်။ PISTON PIN အတွက် BEARING များကို PISTON BOSS အထံတွင်၎င်း၊ CONNECTING ROD SMALL END ထဲတွင်၎င်း (သို့) နှစ်မျိုးထဲတွင်၎င်း ပါရှိသည်။ ALLUMINIUM PISTON များတွင် BUSH မထားရှိဘဲ PISTON မျက်နှာပြင်မှ BEARING အဖြစ် တိုက်ရိုက်ထမ်းဆောင်သည်။ CAST IRON PISTON တို့၏ BOSS၌ BEARING အဖြစ် ထမ်းဆောင်ရန် BORNZED BUSH ပါရှိသည်။ BEARING များသည် PISTON PIN အား ထိမ်းချုပ်သည့်နည်းပေါ်မူတည်သည်။ ထိမ်းချုပ်နည်းများမှာ–

1. FULL FLOATING TYPE

PISTON PIN တွင် စွပ်ထားသော ပစ္စတင်တွင် ဘေးတိုက်ရှေ့လျားခြင်းမရှိအောင် PIN ၏ အစွန်းနှစ် ဘက်၌ CIRCLIP (SNAP RING) ဖြင့် ထိမ်းချုပ်သည်။ PISTON PIN သည် ပစ္စတင် BOSS BEARING နှင့် CONNECTING ROD ၏ BOSS ထဲ၌ လွတ်လပ်စွာ လှုပ်ရှားနိုင်သည်။ တပ်ဆင်ရာတွင် CIRCLIP ကျွတ်မထွက်စေ ရန် ရရတစိုက် တပ်ဆင်ရသည်။

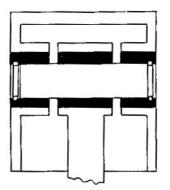
1. OSCZLLATING TYPE


ဤအမျိုးအစား PISTON နှင့် CONNECTING ROD ကို ဆက်သွယ်ရာတွင် ပစ္စတင်ပင်ကို CONNECTING ROD ၏ SMALL END ၌ CLAMPED SCREW ဖြင့် အကျပ်ထိမ်းချုပ်ထားသည်။ ထို့ကြောင့် ပစ္စတင်ပင်သည် ပစ္စတင် BOSS BEARING အတွင်းသာလွတ်လပ်စွာ လှုပ်ရှားနိုင်သည်။


For Knowledge & Educational Purposes

3. SET SCREW TYPE

2 - 11

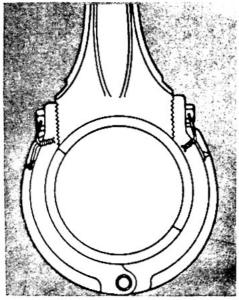

၎င်းအမျိုးအစားတွင် PISTON PIN အား BOSS BEARING တဘက်၌ SET SCREW နှင့် အကျင်ကင် ဆင်ယားသည်။ ကျန်တဘက်တွင်အကျပ်တပ်ဆင်ထားသည့် PISTON PIN သည့် CONNECTING ROD နှင့် BUSH ၌သာ လွှတ်လပ်စွာ လှုပ်ရှားနိုင်သည်။

Where pin is anchored in piston, bearing is located in upper end of connecting rod.

Where piston pin is anchored in connecting rod, a hearing is provided in each piston boss.

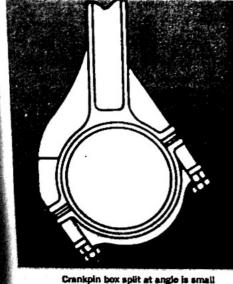
Where piston pin is held in place by snap rings or plugs, pia "floats" and bears in piston bosses and in rod and. This illustration shows principle involved, but actually pin would bear directly in piston bosses of an aluminum piston, and retaining ring grooves would be cut into piston.

CONNECTING ROD သည် PISTON နှင့် CKANK SHAFT ကို ဆက်သွယ်ထားသော LINKAGE ဖြစ် သည်။ ကွန်နက်တင်းရော့၏ SMALL END တွင် PISTON တပ်ဆင်ရန်အတွက် အပေါက်ပါ ရှိသည်။ ၎င်းအပေါက် တွင် BUSH (သို့) CLAMPED SCREW ပါ ရှိသည်။ ကွန်နက်တင်းရော့၏ BIG END တွင် CKANK PIN ၌တပ်ဆင် ရာတွင် လွယ်ကူစေရန် နှစ်ခြမ်းပြုလုပ်ထားသည်။ BEAKING အပေါ်ပိုင်းကို SADDLE ဟု ခေါ်၍ အောက်ခြမ်းကို BEARING CAP ဟု ခေါ်သည်။ BIG END အထဲ၌ INSEKT BEARING ကို တပ်ဆင်အသုံးပြုသည်။

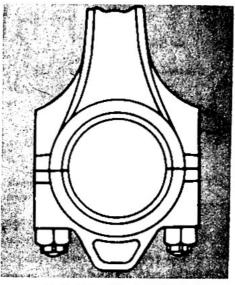

For Knowledge & Educational Purposes

P

ဦးအူန်းမြင့်၏ဒီဇယ်အင်ဂျင်

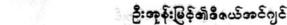

2 - 12

CONNECTING ROD သည် ပစ္စတင်မှအားကိုခံရသဖြင့် ပေါ့ပါးပြီးခိုင်ခံ့ရန်လိုသည်။ ၎င်းကို FORG ဗဂ ဖြုလုပ်ထားသော ALLOYED STEEL ဖြင့် ပြုလုပ်ထားပြီး I-BEAM CROSS SECTION ဖုံဖြင့် တည်ဆောက်အား သည်။ တချို့ကွန်နက်တင်းရော့များ၏ BIG END ကို OFF SET ပြုလုပ်ထားသည်။ CRANK PIN မှ PISTON PIN သို့ ရျောဆီတွန်းပို့နိုင်ရန်၊ CONNECTING ROD ကလျှောက်လုံးကို ဆီသွားလမ်းကြောင်း ဖေါက်လုပ်ထားသည်။ ာချို့ CONNECTING ROD တွင် ဆလင်ဒါနံရံများသို့ ချောဆီများပက်ဖျန်းရန် SEDDLE တွင် OIL SLOT ကို ပြ လုပ်ထားသည်။ တချို့ အင်ဂျင်များတွင် BEAKING CAP အားကပ်ဆင်ရာတွင် လွယ်ကူရန် BIG END ကို ဒီဂရီ အနည်းငယ်စောင်းပြီး ဖြတ်ထားသည်။



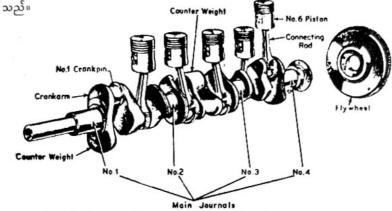
Hinged-strap construction is also

compact.


Crankpin box split at angle is small gh for withdrawal through cylinder.

Studs are used in place of bolts for compactness.

- Ring Pia ecting R Connecting-Red Bearing Shell or Inserts Piston and connecting-rod assembly


For Knowledge & Educational Purposes

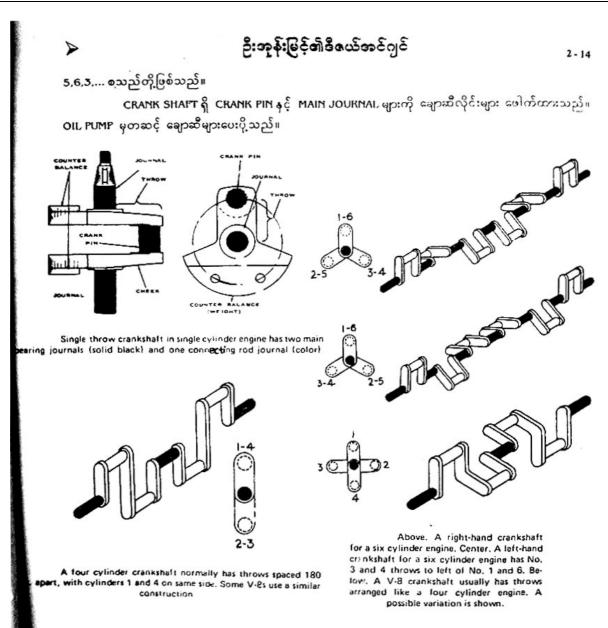
CRANK SHAFT

2-13

မီးလောင်ပေါက်ကွဲမှုကြောင့် ဖြစ်ပေါ်လာသော အားသည် ပစ္စတင်အပေါ်သို့ သက်ရောက်သည်။ ၎င်း ပစ္စတင်သည် အတက်အဆင်းပြုလုပ်ရာမှ လည်ပတ်မှုဖြစ်အောင် CONNECTING ROD မှတဆင့် CRANK SHAFT သို့ အားများကို ပေးပို့သည်။ ပစ္စတင်၏အားကြောင့် CRANK SHAFT လည်ပတ်မှုဖြစ်ပေါ်စေသည်။ CRANK SHAFT ကို FORGE STEEL (သို့) CASTING ပုံသွန်းလောင်းပြီးစက်ဖြင့် JOURNAL များဖြစ်သော CONNECTING ROD နှင့် MAIN BEARING အထိုင်များကို သ ထားသည်။ MAIN BEARING နှင့် CONNECTING ROD JOURNAL တို့ ဆက်ထားသော အစိတ်အပိုင်းကို CRANK ARMS (သို့) CHEEKS ဟု ခေါ်သည်။ CRANK ARM ၏ ဗဟိုအရှည်မှာ ENGINE ၏ STROKE ပေါ်တွင် မူတည်သည်။ CRANK ၏ ဒီဖိုင်းသည် CYLINDEK အရေအတွက်ပေါ်တွင် မူတည်

Six-cylinder crankshaft and piston assembly with one piston and connecting rod removed,

CONNECTING ROD တပ်ဆင်မည့်နေရာကို CRANK PIN ဟု ခေါ်သည်။ ENGINE တွင် MAIN BEARING ဖမ်းထားသည့်နေရာကို MAIN JOURNAL ဟု ခေါ်သည်။ ENGINEကြီးများတွင် CRANK PIN တခုလျှင် MAIN JOURNAL နှစ်ခုထားပြီး CRANK PIN အရေအတွက်ထက် MAIN JOURNAL တခု အမြံတန်းပိုထားသည်။ CRANK PIN နှင့် MAIN JOURNAL များတွင် BEARING များခံ၍ ဖမ်းထားသည်။ ၎င်း BEARING ၏ အောက်ခံ STEEL (သို့) BRONZE ပေါ်တွင် BABBITT တင်ထားသည်။ CRANK SHAFT ၏နောက်ပိုင်းတွင် FLY WHEEL တပ်ဆင်ရန် အထိုင်ပါရှိပြီး ရှေ့ပိုင်းတွင် တုန်လှုပ်မှုကို ထိန်းသိမ်းထားသော VIBRATION DAMPER ပါရှိသည်။ ထို့ပြင် CRANK PIN နှင့် ဆန့်ကျင်ဘက် CRANK ARM တွင် CRANK SHAFT တည်ငြိမ်မှုရှိစေရန် COUNTER WEIGHT များ တပ်ဆင်ထားသည်။ COUNTER WEIGHT များမှာ အရှင်ဖြစ်ပြီး ဖြုတ်၍တပ်၍ရအောင် စီစဉ်ထား သည်။ CRANK SHAFT တစ်ချောင်းထုတ်လုပ်ပြီးပါက BALANCE စမ်းသပ်ခြင်းနှစ်မျိုးစမ်းသပ်ရသည်။ ၎င်းတို့မှာ STATIC နှင့် DYNAMIC (သို့) RUNNING BALANCE တို့ဖြစ်သည်။


ENGINE ထုတ်လုပ်သူများသည် N.P ကိုလိုက်၍ ONE, TWO, THREE, FOUR, SIX, EIGHT, TEN, TWELVE, - CYLINDER စသဖြင့် ENGINE မျိုးစုံကို ထုတ်လုပ်ကြသည်။ CYLINDER (6) လုံးအထက် ENGINE များကို အများအားဖြင့် V-TAPE အမျိုးအစား ENGINE အဖြစ် V-6, V-8, V-10 နှင့် V-12 စသည်ဖြင့် တည်ဆောက် ကြသည်။ IN LINE အနေဖြင့် တည်ဆောက်ပါက CRANK SHAFT မှာ ရှည်သဖြင့် လိမ်ခြင်း၊ ကောက်ခြင်း စသည် တို့ ဖြစ်နိုင်သည်။ သို့သော် LOW SPEED DIESEL MARINE ENGINE များတွင် အသုံးပြုကြောင်း တွေ့ရသည်။ တချို့ ရှည်လွန်းသဖြင့် CRANK SHAFT ကို နှစ်ဝိုင်းပိုင်း၍ BLOT AND NUT များဖြင့် ဖမ်းကာအသုံးပြုကြာသည်။

CYLINDER ထားသိပ္ပံနှင့် အရေအတွက်ကိုလိုက်၍ မီးပေါက်စဉ် FIRING ORDER များ အမျိုးမျိုး တွေ့ရသည်။ CYLINDER သုံးလုံး ENGINE တွင် 1.3.2.... CYLINDR လေးလုံး ENGINE တွင် 1.3.4.2 နှင့် 1.2.4.3. CYLINDER ခြောက်လုံး ENGINE တွင် 1.5.3.6.2.4 နှင့် 1.4.2.6.3.5 တို့ဖြစ်သည်။ CYLINDER ရှစ်လုံး ENGINE တွင် 1.8.4.3.6.5.7.2.... 1.8.7.3.6.5.4.2.... 1.5.4.8.6.3.7.2. ... 1.5.4.2.6.3.7.8. နှင့် 1.2.7.8.4.

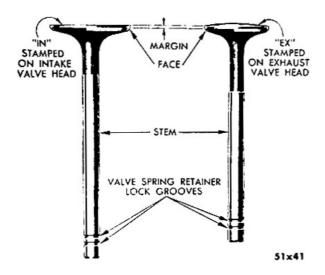
Service Operation how split of angle is a

http://khtnetpc.webs.com

For Knowledge & Educational Purposes

FLY WHEEL

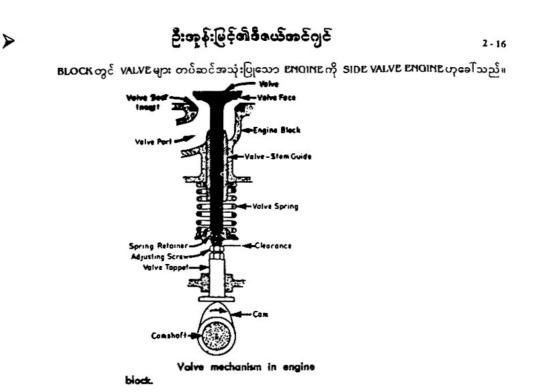
۲۱٫۲ WHEEL သည် PISTON မှ ရရှိသော အားများကို သိုလှောင်ထားပြီး အခြားအချိန်များတွင် ပြန် လည် အသုံးပြုစေသည်။ ۴۱٫۲ WHEEL အကြီးအသေးသည် CYLINDER အရေအတွက် အနည်းအများနှင့် အခြား တည်ဆောက်မှုများအပေါ် မူတည်၍ကွဲပြားသည်။ POWER OVER LAP များသော ENGINE နှင့် CYLINDER အရေ အတွက်များသော ENGINE များတွင် ပေါ့ပါးသော ۴LY WHEEL အသုံးပြုပြီး CYLINDER အလုံးရေနည်းသော ENGINE များတွင် လေးလဲသော ۴LY WHEEL ကို အသုံးပြုသည်။


۳LY WHEEL ပေါ်တွင် EMOINE TIMINO ချိန်ညှိရန် NO. ၊ PISTON T.D.C အမှတ်အသားပါရှိသည်။ ၎င်းကို CAST IKON ဖြင့် ပြုလုပ်ထားသည်။ ၎င်းတွင် CLIUTCH ASSEMBLY FLUID COUPLING (သို့) TORQUE CONVERTER တပ်ဆင်ရန် နေရာများရှိသည် ထိုပြင် EMOINEနှိုးရန်အတွက် FLY WHEEL ၏ ဘေးပတ်လည်တွင် KING GEAR ခေါ် ပင်နယ်အဝိုင်းတစ်ခုကို (PRESS IT) တပ်ဆင်ထားသည်။

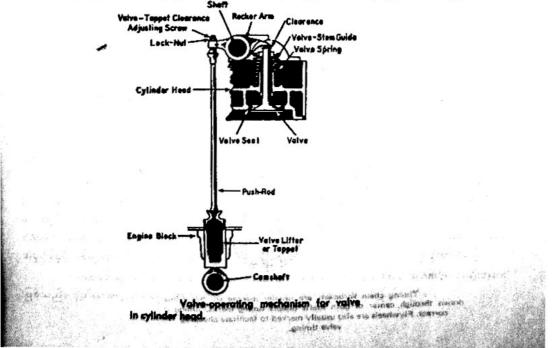
For Knowledge & Educational Purposes

2 - 15

CYLINDER တစ်လုံးတွင် များသောအားဖြင့် INLET (သို့) INTAKE VALVE ကရောင်းနှင့် EXHAUST VALVE တစ်ရောင်းစီ တပ်ထားသည်။ လေသည် ENGINE အတွင်းသို့ INLET VALVE ကိုဖြတ်၍ ဝင်ရောက်ပြီး လောင်ကျွမ်းပြီး ဓါတ်ငွေ့များသည် EXHAUST VALVE ကို ဖြတ်၍ အပြင်သို့ထွက်သွားသည်။ VALVE များ ပိတ် လိုက်ချိန်တွင် လုံနေရန် အရေးကြီးသည်။ ချောင်နေပါက COMPRESSION လျော့နည်းမည်ဖြစ်သည်။ VALVE များ၏လှုပ်ရှားမှုသည် CAM SHAFT ပေါ်ရှိ ECCECNTRIC ဖြစ်သော CAM မှ ပြုလုပ်ခြင်းဖြစ်သည်။ VALVE များကို CAM ဖြင့် တွန်းဖွင့်၍ SPRING အားဖြင့် ပြန်ပိတ်သည်။ VALVE SPRING မှာ သန်မာရန်လိုသည်။ HIGH SPEED ENGINE များတွင် POPPED VALVE များ အသုံးပြုကြသည်။ ပုံတွင်ပြထားသည့်အတိုင်း VALVE သည် မိုပွင့်ပုံသဏ္ဍာန်ဖြစ်သည်။ EXHAUST VALVE များကို SILCHROME ဖြင့်ပြုလုပ်၍ တချို့တွင် SILICON နှင့် CHROMIUM ALLOY များဖြင့် ပြုလုပ်သည်။ INLET VALVE ကို NICKEL CHROMIUM STEEL ဖြင့်ပြုလုပ်သည်။ VALVE မျက်နှာပြင်သည် အထိုင်တွင် သေးငယ်သော အစွန်းဖြင့် ပတ်လည်ထိနေမည်။ အများအားဖြင့် VALVE ၏မျက်နှာပြင်ကို 45 (သို့) 30 စောင်းထားသည်။ အချို့ ENGINE တွင် INLET VALVE ကို 45 ထား၍ EXHAUST VALVE ကို 30 ထားလေ့ရှိသည်။



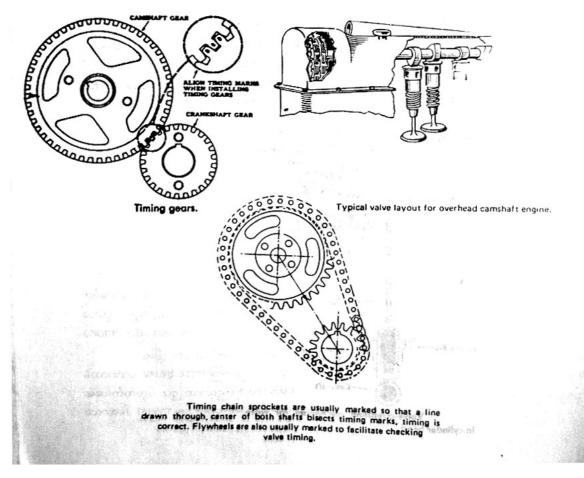
A valve margin of 1/32 in, is usually regarded as minimum suitable width.


VALVE များကို အဖွင့်အပိတ်ပြုလုပ်သော အစိတ်အပိုင်း VALVE MECHANISM များသည် VALVE တပ်ဆင်မှု အစီအစဉ်ပေါ်တွင် မူတည်သည်။ L.T.နှင့် F HEAD များတွင် VALVE များသည် CYLINDER BLOCK ပေါ်တွင် တည်ရှိသည်။ VALVE GUIDE ထဲတွင် VALVE STEM သည် ချောမွေ့စွာဖြင့် အထက်အောက် လှုပ်ရှားပြီး ENGINE ထဲမှ GAS များ မယိုထွက်စေရန်လိုသည်။

အချို့ VALVE SPRING များကို (2) ခု တပ်ဆင်ထားတတ်သည်။ ENGINE BLOCK နှင့် RETAINER ခံထားသော VALVE STEM ကြားတွင် တပ်ဆင်ထားသည်။ TAPPET (သို့) LIFTER ကို ENGINE BLOCK ၏ အပေါက်ထဲတွင် ထည့်ထားသည်။ CAM SHAFTမှ CAM ၏မျက်နှာပြင်နှင့် ထိထားသည်။ CAM SHAFT လည်ဖတ် သောအခါ TAPPET များ မြင့်တက်လာပြီး VALVE ကို တွန်းဖွင့်ပေးသည်။

For Knowledge & Educational Purposes

VALVE အဖွင့်အပိတ်ပြုလုပ်သော အစိတ်အပိုင်းများမှာ CYLINDER HEAD တွင် တည်ရှိသည်။(I နှင့် F HEAD) ဒီဇိုင်းများဖြစ်သည်။ ENGINE BLOCK တွင် CAM SHAFT, TAPPET သာရှိပြီး CYLINDER HEAD တွင် PUSH ROD နှင့် ROCKER အစိတ်အပိုင်းများ တပ်ဆင်ထားသည်။ CAM SHAFT လည်ပတ်မှုကြောင့် CAM သည် TAPPET ကို တွန်းသည်။ TAPPET သည် PUSH ROD မှတဆင့် ROCKER ARM ကို လှုပ်ရှားစေသည်။ ROCKER ARM လှုပ်ရှားမှုကြောင့် VALVE ကို ပွင့်စေပြီး SPRING ကန်အားဖြင့် VALVE ကို ပြန်ပိတ်စေသည်။

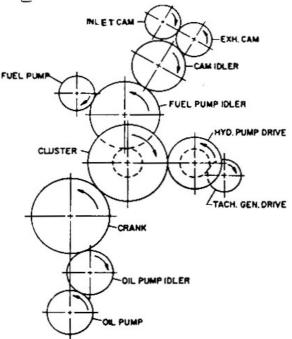

ဦးအုန်းမြင့်၏စီဖယ်အင်ဂျင်

VALVE TAPPET CLEARANCE

VALVE များသည် မီးလောင်ပေါက်ကွဲမှုမှ ရရှိသော အပူများကို အများဆုံး တွေ့ထိရသည်။ အထူးသဖြင့် EXHAUST VALVE မှာ ပို၍ အပူဒဏ်ခံရသည်။ ထို့ကြောင့် VALVE STEM များ ရှည်ထွက်လာသည်။ ထိုရှည်တွက် လာမှုကြောင့် VALVE အဖွင့်အပိတ်များကို ပြောင်းလဲစေနိုင်သည်။ ထိုကဲ့သို့ မဖြစ်စေရန်အတွက် CLEARANCE (ကြားလွတ်တန်ဘိုး) ထားပေးရသည်။ ၎င်းကို TAPPET CLEARANCE ဟု ခေါ်သည်။ SIDE VALVE ENGINE တွင် TAPPET နှင့် VALVE STEM ကြားတွင်ထား၍ OVER HEAD VALVE ENGINE တွင် ROCKER ARM နှင့် VALVE STEM ကြားတွင် ထားသည်။ TAPPET CLEARANCE အနည်းအများကို ADJUSTING SCREW ကို ချိန်ညှိ ခြင်းဖြင့် ရရှိနိုင်သည်။ TAPPET CLEARANCE ကိုမူ ENGINE ထုတ်လုပ်သူများမှ ညွှန်ကြားထားသည့်အတိုင်း ချိန်ညှိရမည်။

CAM SHAFT

CAM SHAFT သည် VALVE များကို အဖွင့်အပိတ်လုပ်သော အဓိကအစိတ်အပိုင်းဖြစ်သည်။ ၎င်းတွင် ပါဝင်သော CAM တခုသည် VALVE တရောင်းကို အလုပ်လုပ်စေသည်။ VALVE ပွင့်သော အမြင့်အကွာအဝေးသည် CAM ၏ LOBE (သို့) TOE ပေါ်တွင် မူတည်သည်။ CAM SHAFT ကို CKANK SHAFT မှ မောင်းနှင်သည်။ CAM SHAFT နှင့် CRANK SHAFT တို့ ချိတ်ဆက်ပုံ 3 မျိုးဖြင့် ချိတ်ဆက်သည်။ (1) MESHINE GEARS (2) CHAIN (3) BELT တို့ဖြစ်သည်။ ပုံတွင် ဖေါ်ပြထားသည့်အတိုင်း ဖြစ်သည်။ အချို့ CAMM SHAFT တွင် PUMP ကို မောင်းနှင် ရန် CAM တခု အပိုတပ်ဆင်ထားသည်။



>

ဦးတုန်းမြင့်၏စီရယ်အင်ဂျင်

2 - 18

POUR CYCLE ENGINE များတွင် CAM SHAPT လည်ပတ်မှုသည် CRANK SHAPT လည်ပတ်မှု၏ နှစ်ဆဖြစ်သည်။ GEAR TYPE ဖြစ်စေ၊ CHAIN TYPE ဖြစ်စေ၊ CAM SHAPT GEAR အရေအတွက်သည် CRANK SHAPT GEAR အရေအတွက်ထက် နှစ်ဆရှိသည်။ CAM SHAPT နှင့် CRANK SHAPT ဆက်သွယ်ရာတွင် VALVE အဖွင့်အပိတ်လုပ်သူများမှ CAM SHAPT မှ GEAR နှင့် CRANK SHAPT မှ GEAR များတွင် အမှတ်အသားများ မှတ်သားပေးထားသည်။ ပြန်လည်တပ်ဆင်ရာတွင် ၎င်းအမှတ်အသားများအတိုင်း တပ်ဆင်ရသည်။ ၎င်းကို VALVE TIMING ချိန်ညှိခြင်း ဟုခေါ်သည်။ ကြီးမားသော ဒီဖယ်အင်ဂျင်များတွင် အခြားသော GEAK များဖြင့် အဆင့်ဆင့် ဆက်သွယ်ထားသည်။

Gear train on Caterpillar vehicular 5.4 bore, V-12 engine.

ဒီဖယ်အင်ဂျင်ကြီးများတွင် အခြားသောအစိတ်အပိုင်းများပါ မောင်းနှင်ရသဖြင့် CRANK SHAFT QEAK နှင့် CAM SHAFT GEAR များကို GEAR များအဆင့်ဆင့်ဖြင့် ဆက်သွယ်ထားသည်။ ၎င်း GEAR များတွင် အမှတ် အသားများပါရှိသည်။ ၎င်းအမှတ်အသားများအား မှန်ကန်စွာတပ်ဆင်မှသာ PISTON အတက်အဆင်းနှင့် VALVE အဖွင့်အပိတ် မှန်ကန်မည်ဖြစ်သည်။

BEARING

ENGINE တစ်လုံးတွင် ပါပင်သော MAIN JOURNAL BEARING နှင့် CONNECTING BEARING အရည်အတွက်သည် CYLINDER အရည်အတွက်နှင့် ENGINE ဒီနိုင်းပေါ်တွင် မူတည်၍ ပြောင်းလဲသည်။ BEARING များသည် ပွန်းစားမှုနည်းသော သတ္တုများဖုံးအုပ်ထားသည်။ ၎င်းသတ္တုများမှာ CADMIUM, SILVER, COPPER BABBIT METAL များဖြစ်သည်။ ၎င်းသတ္တုများမှာ PRICTION (ပွန်းစားမှု) အနည်းငယ်သာဖြစ်ပြီး HIGH SPEED အပူရှိန်နှင့် ဝန်များစွာကို ထမ်းဆောင်နိုင်သည်။ BEARING များကို အကြမ်းအားဖြင့် နှစ်မျိုးခွဲထားသည်။ ပထမအမျိုးအစားမှာ အစားထိုးလဲလှယ် အသုံးပြု၍ရသော INSERT TYPE BEARING အမျိုးအစား

ဖြစ်သည်။ ဒုတိယအမျိုးအစားမှာ INTEOKAL (သို့) DIRECT CAST BEARING တို့ဖြစ်သည်။

Call, Children Marked

ဦး**အွန်းဖြင့်၏စီ**ပော်တင်ဂျင်

INTEGRAL (S) DIRECT CAST BEARING

၎င်းအမျိုးအစားသည် BEARING အထိုင်များပေါ်တွင် BEARING သတ္တုများကို တိုက်ရိုက်သွန်းလောင်း ပြီး လိုအပ်သော အရွယ်အစားရအောင် ပြန်သပြီး အသုံးပြုသည်။ ၎င်းအမျိုးအားတွင် BEARING CAP နှင့် အထိုင် ကြားတွင် SHIN(ရှင်းပြား) ခုထားတတ်သည်။ အကယ်၍ BEARING များချောင်လာပါက ၎င်းရှင်းပြားများကိုနှတ်၍ ပြန်လည်အသုံးပြုနိုင်သည်။ ၎င်းအမျိုးအစားသည် အင်ဂျင်များတွင် ကြာရှည်စွာ မသုံးသင့်ပေ။

INSERT TYPE BEARING

၎င်းသည် အသုံးအများဆုံး အမျိုးအစားဖြစ်သည်။ ကြာရှည်အသုံးခံသည်။ ENCINE SPEED နှင့် ဝန်များကိုလည်း ထမ်းဆောင်နိုင်သည်။ MAIN နှင့် CONNECTING BEARING များတွင်ပါသုံးသည်။ ၎င်းအမျိုး အစားတွင် STEEL (သို့) BRONZE ကို အောက်မှခံ၍ အပေါ်တွင်အောက်ပါ သတ္တုများပါသော LEAD. TIN, COPPER, SILVER, CADMIUM သတ္တုများကို အချိုးကျ ရောစပ်၍ လောင်းထားသည်။ ၎င်းကို နှစ်ခြမ်းပြုလုပ်လျက် SADDLE ပေါ်တွင် တခြမ်းနှင့် BEARING CAP ပေါ်တွင်တခြမ်းထပ်၍ အပိတ်တပ်ဆင်ထားခြင်း ဖြစ်သည်။

SADDLE နှင့် JOURNALကြားတွင် လိုက်မလည်စေရန်အတွက် BEARING ခြမ်း၏ တဘက်စွန်းတွင် LIP ခေါ် ကော်လာပါရှိပြီး SADDLE မြောင်းထဲတွင် အံဝင်ဂွင်ကျ ဖိ၍တပ်ထားသည်။

Rentwices for Andread Spectra de contra

Typical steel-backed main bearings.

MAIN BEARING CAP AND SEAL

MAIN BEARING များကို BOLT နှစ်ချောင်းစီဖြင့် ဖမ်းထားသည်။ အချို့ ENGINE ကြီးများတွင် (4) ချောင်းတပ်ဆင်သည်။ အလယ်ဆုံး MAIN BEARING ကို FLANGE တပ်ဆင်၍ CRANK SHAFT ရှေ့နောက် မပြေးနိုင် ရန် THRUST BEARING အဖြစ် အသုံးပြုသည်။ CRANK ၏ရှေ့နှင့်နောက်တွင် ဆီများအပြင်သို့ မယိုထွက်စေရန် အတွက် OIL SEAL များ တပ်ဆင်ထားသည်။ ရှေ့ပိုင်းအတွက် OIL SEAL ကို TIMING COVER များတွင် တပ်ဆင် ထားသည်။ နောက် MAIN OIL SEAL များကို နည်းမျိုးစုံဖြင့် မယိုစေရန် ဖန်တီးထားသည်။ တချို့တွင် OIL SEAL တိုက်ရိုက်စွပ်၍၎င်း၊ တချို့တွင် OIL SEAL ကို သတ်သတ်အထိုင်ပြုလုပ်၍ ENGINE BLOCK တွင် ထိုင် ထားတတ်သည်။ ENGINE ထုတ်လုပ်သူများ၏ ညွှန်ကြားချက်အတိုင်း ပြန်လည်တပ်ဆင်ရန် ဖြစ်သည်။

00000000

adverse the open of the last of

TYPES OF FUEL INJECTION SYSTEM

ဒီဖယ်အင်ဂျင်များ စတင်ပေါ်ပေါက်သည့်အချိန်မှစ၍ l'UEL INJECTION SYSTEM နှစ်မျိုးနှစ်စား သုံးကြသည်။ တစ်မျိုးမှာ လောင်စာဆီပမာဏကို မြင့်မားသောလေဖိအားနှင့် CYLINDERအတွင်းသို့ မှုတ်သွင်းသော ည်းဖြစ်သည်။ ၎င်းကို AIR INJECTION ဟု ခေါ်သည်။

ကျန်တစ်မျိုးမှာ မြင့်မားသော ဖိအားရှိသည့်လောင်စာဆီ (HIQH PRESSURE BULL) ကို INDECTION MOITDBLMI JIADIMAMM ကြင့်ကို ကြင်မြန်သည်။ ရင်းကို MICHAMI JIADIMATO ရိုက်စွဲကြန်း တို့ ခေါ်သည်။ ယခုခေတ် DISELE BNIDHE များတွင် MECHANICAL INJUSTION SYSTEM များကို အသုံးဖြု၍ အသုံးဖြုသော MACHANI JADIMATO များမှာ–

- (1) COMMON RAIL INJECTION SYSTEM
- (2) PUMP CONTROL SYSTEM
 - (A) INDIVIDUAL PUMP FOR EACH CYLINDER WITH METERINE BY (I) CONTROL BY PASS
 - (II) CONTTROL SUCTION
 - (III) VARIABLE SUCTION ORIFIC
 - (IV) VARIABLE STROKE
 - (V) PORT AND HELIX METERINE
 - (B) ONE HIGH PRESSURE PUMP, WITH DISTRIBUTOR CONNECTING DELEVERY TO CYLINDERS IN FIRING ORDER SEQUENCES.
- (3) LOW PRESSURE METERINE PUMP AND DISTRIBUTOR WITH MECHANICALLY OPERATED NOZZLE AT EACH CYLINDERS.

MECHANICAL INJECTION

(1) COMMON RAIL INJECTION SYSTEM

၎င်း INJECTION SYSTEM တွင် FUEL PUMP သည် လောင်စာဆီအား ဖိအား 500 PSIဖြင့် MANIFOLD (သို့မဟုတ်) COMMON RAIL သို့ ပို့ပေး၍ CYLINDER များမှ INJECTION VALVE (SPRAY VALVE) တို့ကို COMMON RAIL သို့ ဆက်ထားသည်။

CYLINDER သို့ ပေးပို့သော ဆီပမာဏကို SPRAY VALVE ပွင့်သည့်အချိန်ကိုပြောင်းလဲခြင်းဖြင့် ထိန်း သိမ်းသည်။ SPRAY VALVE ကို လိုအပ်သောအချိန်တွင် TAPPET ROLLER ကို မြှင့်တင်ပေးသောအခါ COMTROL WEDGE မှ တဆင့် PUSH ROD ကို တွန်းတင်ပေးပြီး KOCKER ARM သည် CYLINDER HEAD တွင် ထုပ်ဆင် ထားသော SPRAY VALVE ကို ဖွင့်ပေးသည်။ TAPPET KOLLEK နှင့် PUSH ROD ကြားတွင်ရှိသော CONTROL WEDGE ကို ဘယ်ညာရွေ့ပေးခြင်းဖြင့် SPRAY VALVE ပွင့်သည့်အချိန် အနည်းအများကို ဆောင်ရွက်သည်။ ဤ SYSTEM တွင် SPRAY VALVE အထိုင်များ ချို့ယွင်း၍ ဆီယိုခဲ့သော် COMMON KAIL တလျှောက်၌ ဆီဖိအား အခြံရှိနေသဖြင့် CYLINDER အတွင်းသို့ ဆီအခြယ့်ကျကာ ENGINE မှ မီးခိုးမဲများ ထွက်စေနိုင်သည်။ ထို့ကြောင့် ချို့ယွင်းသော SPRAY VALVE များကို အလွယ်တကူ ဆီပို့လမ်းကြောင်း ဖြတ်ထားနိုင်ရန်အတွက် ISOLATING VALVE များကို တစ်ဆင်ထားသည်။

(2) PUMP CONTROLLED INJECTION SYSTEM

(A) INDIVIDUAL PLUNGER PUMPS

DISEL ENGINE များကို ကောင်းမွန် တိုးတွက်၍ ကြံဆ DESIGN ပြုလုပ်ခဲ့ရာမှ ပိုရိုတိုးတက်ကောင်း မွန်သော INJECTION SYSTEM ကို အသုံးပြုလာကြသည်။ ဒီဖယ်အင်ဂျင်များကို လိုအပ်သော POWERနှင့် SPELLI

the off the should be the server a provide the

ဦးအုန်းမြင့်၏စီဖယ်အင်ဂျင်

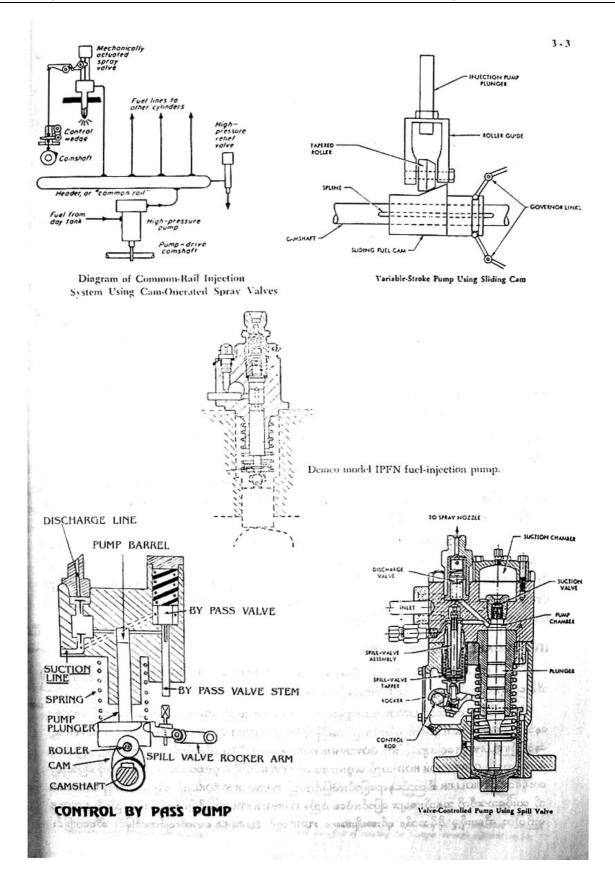
တို့တွင် မောင်းနှင်ရန်လိုအပ်သော အခြေအနေကိုလိုက်၍ INJECTION PUMP မှ တိကျမှန်ကန်သော လောင်စာဆီကို ပို့ပေးရသည်။ ထို့ကြောင့် CYLINDER တစ်ခုစီအတွက် INJECTION PUMP တစ်ခုစီတည်ဆောက်လာရသည်။ သေးငယ်သောဒီစယ်အင်ဂျင်များတွင် CYLINDER တစ်ခုစီအတွက် PUMPING ELEMENT တစ်ခုစီကို ပူးပေါင်း တည်ဆောက်လှေရှိသော်လည်း အင်ဂျင်ကြီးများအတွက် CYLINDERတစ်ခုစီတွင် PUMPING ELEMENT တစ်ခုစီကို သီးခြားတည်ဆောက်လေ့ ရှိသည်။ ဤ PUMP များသည် လောင်စာဆီကို CYLINDER တစ်ခုစီသို့ CYCLE တစ်ကြိမ်အတွက် လိုအပ်သော ပမာဏတိုင်းတာ၍ ဖိနှိပ်အားဖြင့် INJECTION NOZZLE သို့ ပို့ပေးသည်။ ဖိနှိပ်အား ရှိသည့် လောင်စာဆီသည် INJECTION NOZZLE ရှိ VALVEအား တွန်းဖွင့်၍ COMBUSTION CHAMBERအတွင်းသို့ ဆီပန်းပေးသည်။

၎င်း PUMP များသည် PIOTRI YTT NOTER များ ဖြစ်ကြ၍ သေးငယ်သော PIOTRI (OR) PLUTOR သည် CYLINDER (သို့) BARREL နှင့် အလုပ်လုပ်စေသည်။ အင်ဂျင် CYLIDNER များသို့ ပေးပို့ရန် လိုအပ်သော ဆီပမာဏကို နည်းလမ်းအမျိုးမျိုးဖြင့် ထိန်းသိမ်းသည်။

(I) CONTROL BY PASS PUMP

CYLINDER သို့ ပေးပို့သော ဆီအနည်းအများကို ထိန်းသိမ်းသော နည်းလမ်းဖြစ်သည်။ PLUNGER သည် BARRELအတွင်းတွင် CAM ၏တွန်းအားကြောင့် အပေါ်သို့တက်ရ၏။ SPRING ၏တွန်းအားကြောင့် အောက် သို့ ပြန်ဆင်းရ၏။

PLUGER အောက်သို့ဆင်းချိန်တွင် လောငံစာဆံများသည် SUCTION PORT ကို ဖြတ်၍ PLUNGER ၏အပေါ်ပိုင်း BARREL အတွင်းသို့ ရောက်ရှိလာကြသည်။ CAM မှ PLUNGER ကို အပေါ်သို့တွန်းတင်သောအခါ PLUNGER သည် ၎င်း၏အပေါ်ပိုင်းတွင် ရောက်ရှိနေသော လောင်စာဆီများကို ဖိနှိပ်၍ DISCHARGE VALVE မှ တဆင့် CYLINDER သို့ ပို့ပေးသည်။ SPILL VALVE ROCKER ARM သည် PLUNGER နှင့် အတူအပေါ်သို့ တက်လာ သည်။ BY PASS VALVE ကို ဖွင့်လိုက်သောအခါ PLUGER အပေါ်ပိုင်းရှိ ဆီများအား BY PASS LINE မှတဆင့် SUCTION LINE သို့ ပြန်ဝင်စေသဖြင့် ဖိနှိပ်အားကျဆင်းသည့်အချိန်တွင် ဆီပေးပို့မှု ပြီးဆုံးသွားသည်။


SPILL VALVE ROCKER ARM မှာ ECCENTRIC ပေါ်တွင် တပ်ဆင်ထားသဖြင့် ၎င်း PIN ကို အနိမ် အမြင့်ပြောင်းလဲပေးခြင်းဖြင့် CYLINDER သို့ပေးပို့သော ဆီအနည်းအများကို ထိမ်းသိမ်းနိုင်သည်။ အကယ်၍ PIN သည် မြင့်သောအနေအထားတွင်ရှိလျှင် PLUNCER သည် အပေါ်တက်၍ NOZZLE သို့ ဆီပေးပို့သော ROCKER ARM သည် BY PASS VALVE ကို စောလျင်စွာ ထိတွေ့မည်ဖြစ်သည်။ ထို့ကြောင့် ဆီအနည်းငယ်ကိုသာ ပေးပို့ လိမ့်မည်။ PIN ကို နှိမ့်ခဲ့လျှင် ROCKER ARM သည် BY PASS VALVE ကို နောက်ကျပွင့်မည်ဖြစ်၍ ဆီကို ပိုမို ပိုလျှံစွာ ပေးပို့မည်ဖြစ်သည်။ ဤအမျိုးအစား PUMP သည် CYCLE တိုင်းတွင် တူညီသောအချိန်၌ ဆီပန်းခြင်း START OF INJECTION အစပြုလိမ့်မည်ဖြစ်ပြီး ဆီပေးပို့မှု အဆုံးသတ်ခြင်း END OF INJECTION မှာမူ ပေးပို့သော ဆီပမာဏာကို မူတည်၍ပြောင်းလဲမည်ဖြစ်သည်။

(II) CONTROL SUCTION PUMP

၎င်း PUMP သည် CONTROL BY PASS PUMP ကဲ့သို့ပင် ဖြစ်သည်။ သို့ရာတွင် SUCTION VALVE ပိတ်သည့်အချိန်ကို ပြောင်းလဲပေးခြင်းဖြင့် CYLINDER သို့ ပို့ပေးသည့် ဆီပမာဏကိုထိမ်းသိမ်းသည်။ PLUNDER အထက်ရွေ့လျားမှုကို CAM နှင့် ROLLER FOLLOWER တို့မှ ဆောင်ရွက်ပေး၍ ပြန်ဆင်းရန်အတွက် BARREL ပတ်လည်ရှိ SPRING က ဆောင်ရွက်၏။ PLUNGER အောက်သို့ဆင်းသေအခါ ECCENTRIC SHAFT ပေါ်တွင် PIVOT လုပ်ထားသော ROCKER ARM သည် SUCTION VALVE ကို ဖွင့်ထားပေး၍ PLUNGER ၏အပေါ်ပိုင်း BARREL အတွင်းသို့ လောင်စာဆီများ ဝင်ရောက်လာကြသည်။

PLUNGER အထက်သို့ ရွှေ့လျားသောအခါ ROCKER ၏လက်ယာဖက်အဆုံးသည် PLUNGER နှင့်အတူ GB316 န. ####O

For Knowledge & Educational Purposes

ဦးအုန်းမြင့်၏ခီစယ်အင်ဂျင်

အပေါ်သို့ ရွေ့လျား၍ လက်ဝံဘက်အဆုံးသည် အောက်ဖက်သို့ရွေ့လျားသွားပြီး SUCTION VALVE ကို ပိတ်ရေ သည်။ SUCTION VALVE ပိတ်သွားသောအခါ PLUNGER အပေါ်ပိုင်းရှိဆီများကို CHECK VALVE အားဖြတ်၍ INJECTION သို့ ပို့ပေးသည်။ ECCENTRIC SHAFT လည်ပတ်မှုသည် ROCKER ARM ပတ္တာချက်ကို အနိမ့်အမြင့် ပြုလုပ်ပေးသည်။ ဤနည်းဖြင့် SUCTION VALVEပိတ်သည့်အချိန်ကို ပြောင်းလွဲစေပြီး လိုအပ်သော ဆီအနည်းအများ ကို ဖြစ်ပေါ်စေသည်။

(III) VARIABLE METERING ORIFICE

၎င်းအမျိုးအစားတွင် PUMP အား ENGINE CRANK CASE ပေါ်တွင် တပ်ဆင်ထား၍ ENGINE CAM SHAPT မှ မောင်းနှင်သည်။

PLUNGER ၏ကိုယ်ထည်တွင် ANNUAL RECESS (ပါတ်လည်အချိုင့်) တစ်ခုပါရှိ၍၎င်းကို PLUNGER ရှိ AXIAL HOLE (သို့) RADIAL HOLE မှ တဆင့် ဆက်သွယ်ထားသည်။ ENGINE CAM SHAFT မှ CAM အားဖြင့် PLUNGER အပေါ်သို့တက်ရပြီး SPRING အားဖြင့် အောက်သို့ ပြန်ဆင်းရသည်။ PLUNGER အောက်သို့ဆင်း၍ SUCTION PORT ကို ဖွင့်လိုက်သောအခါ PLUNGER အပေါ်ပိုင်း BARREL အတွင်းသို့ ဆီများ ဝင်ရောက်လာကြ သည်။ PLUNGER အထက်သို့ ပြန်တက်၍ SUCTION PORT ကို PLUNGER ဖြင့် ပိတ်လိုက်ပြီး အပေါ်ပိုင်းတွင် ဆီအပြည့်ရှိလျှင် CHECK VALVE ကို ကျော်လွန်၍ NOZZLE သို့ ဆီပိုပေးသည်။ PLUNGER ၏ကိုယ်ထည်ရှိ ANNUAL RECESS သည် SUCTION PORT ကို ဖွင့်လိုက်သောအခါ PLUNGER အပေါ်ပိုင်းရှိ ဆီများသည် AXIAL HOLE မှတဆင့် ANNUAL HOLE ကို ဖြတ်ပြီး SUCTION LINE သို့ ပြန်လည်ရောက်ရှိနိုင်သဖြင့် ဖိနှိပ်အားကျဆင်း သွားစေ၍ ဆီပေးပို့ခြင်း ပြီးဆုံးသွားသည်။ PUMP အတွင်း ဝင်ရောက်လာသော ဆီ၏ပမာဏကို လက်ဝဲဖက်ရှိ HORIZONTAL PIN အား ရှေ့နောက်ရွေ့လျားခြင်းဖြင့် SUCTION ORIFIC အရွယ်အစားကို ပြောင်းလဲစေ၍ ဆီအနည်း အများ ဖန်တီးပေးသည်။

SUCTION ORIFIC အရွယ်အစား ကျဉ်မြောင်းပါက SUCTION အချိန်တွင် PLUNGER အပေါ်ပိုင်းသို့ ဝင်ရောက်နိုင်သော ဆီပမာဏအားနည်းနေမည်ဖြစ်သဖြင့် INJECTIONပြုလုပ်ရန် PLUNGER တက်လာသောအခါ ဆီနှင့်ထိတွေ့ရန် နောက်ကျမည်ဖြစ်သည်။

SUCTION ORFIC အရွယ်အစားကြီးပါက PLUNDER အပေါ်ပိုင်းသို့ ဝင်ရောက်နိုင်သော ဆီပမာဏ များမည်ဖြစ်သည်။ INJECTION STROKE PLUNDER အပေါ်သို့ တက်လာသောအခါ ဆီနှင့်ထိတွေ့ ရန် စောမည်ဖြစ် ပြီး INJECTION သို့ ပိုမိုများပြားသော ဆီပမာဏကို ပိုမိုပေးပို့နိုင်မည်ဖြစ်သည်။ ဤအမျိုးအစား PUMP သည် CYCLE၌ ဆီစပေးပို့ချိန်သည် ဆီအနည်းအများအပေါ်မူတည်၍ ပြောင်းလဲမည်ဖြစ်သော်လည်း ဆီပေးမှု အဆုံးသတ် END OF INJECTION မှာ အတူတူပင်ဖြစ်သည်။

(IV) VARIABLE STROKE PUMP

CYLINDER သို့ ပေးပို့သည့် ဆီအနည်းအများကို PLUNGER ၏ STTROKE ပေါ်တွင် မူတည်၍ ထိမ်း သိမ်းပေးပို့နိုင်သည်။ ပုံတွင် ၎င်း PUMP အမျိုးအစားကို ဖေါ်ပြထားသည်။

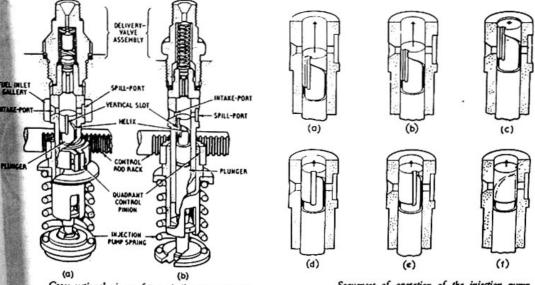
ကွေးထားသော LEVER တဗက်စွန်းတွင် တပ်ဆင်ထားသည့် ROLLER သည် CAM ကြောင့် ရွေ့လျား နေသည်။ CAM မှ ROLLER ကို မ'တင်သည့် အချိန်တိုင်းတွင် CONSTANT ANGLE တလျှောက်၎င်း LEVER ရွေ့ နေသည်။ PLUNGER ရွေ့လျားခြင်းကို GOVERNOR ROD ညာဖက် (သို့) ဘယ်ဖက်သို့ ရွေ့လျားခြင်းဖြင့် ပြောင်းလွဲ ပေးနိုင်သည်။ GOVERNOR ROD သည် ကွေးထားသော LEVER ပေါ်ရှိ ကွေးထားသော တည်နေရာကို ပြောင်းလွဲ ပေးနိုင်သည်။ ROLLER ၏ တည်နေရာပြောင်းလဲခြင်းသည် PLUNGER STROKE ကို ပြောင်းလဲစေ၍ CYLINDER သို့ ပေးပို့သောဆီကို အနည်းအများ ပြောင်းလဲစေသည်။ PLUNGER STROKE တိုပါက ဆီပေးပို့မှုနည်းပြီး STROKE ရှည်ပါက ဆီပေးပို့မှု ပိုမိုသည်။ ၎င်းအမျိုးအစား PUMP တွင် PLUNGER စတက်လျင်တက်ခြင်း ဆီစပေးခြင်း

>

Þ

ဦးအုန်းမြင့်၏ဒီရယ်အင်ဂျင်

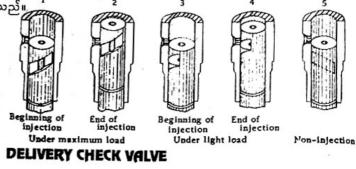
3 - 5


START OF INJECTION ဖြစ်၍ PLUNGER STROKE အဆုံးသို့ ရောက်ရှိလျှင် ဆီပေးခြင်း ပြီးဆုံးသွားသည်။

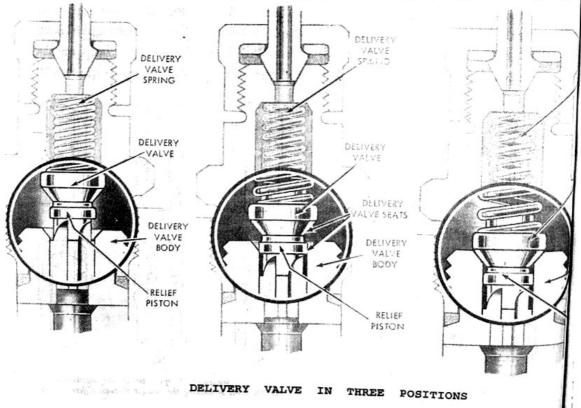
(V) PORT AND HELIX METERING PUMP

၎င်းသည် အသုံးအများဆုံး PUMP အမျိုးအစားဖြစ်၍တည်ဆောက်ထားပုံကို ပုံတွင်ဖေါ်ပြထားသည်။ PLUNGER တွင် VERTICAL SLOT, ANNULAR RECESS နှင့် MELIX တို့ ပါဝင်ကြသည်။ CAM မှ PLUNGER အား အပေါ်သို့တွန်းတင်ပြီး SPRING အားဖြင့် အောက်သို့ပြန်ဆင်းရသည်။ PLUNGER အောက်သို့ပြန်ဆင်းချိန် တွင် အောက်ဆုံးသို့ရောက်သောအခါ (ပုံ - A) ဆီတိုင်ကီမှဆီများသည် FEED PUMP (သို့) GRAVITY FEED အားဖြင့် BARKEL ရှိ PORT နှစ်ခုလုံးကိုဖြတ်ပြီး PLUNGER အပေါ်ပိုင်း BARKEL အတွင်းသို့ ဝင်ရောက်လာကြသည်။ CAM မှ PLUNGER ကို အပေါ်သို့ မ'တင်သောအခါ BARKELအတွင်းရှိ ဆီများကို PORT များမှ တဆင့်အပြင်ဆီ လိုင်းသို့ တွန်းထုတ်သည်။ PLUNGER အထက်သို့ ဆက်တက်လာ၍ PLUNGER ၏ထိပ်သည် BARREL PORT နှစ်ခုစလုံးကို စတင်၍ ပိတ်လိုက်သောအခါ BARRELအတွင်း ကြွင်းကျန်သောဆီများ လှောင်ပိတ်မိနေပြီး PLUNGER မှ ဆက်လက်ဖိနှိပ်၍ CHACK VALVE ကို ဖြတ်ကာ INJECTION NOZZLE သို့ ပို့ပေးသည်။ (ပုံ - B)

PLUNGER ရှိ HELIX မျဉ်းသည် PORT တစ်ခုခုကို စတင်၍ဖွင့်လိုက်သောအခါ အပေါ်ပိုင်းရှိဆီများ သည် VERTICAL SLOT နှင့် HELIX မှတဆင့် SUCTION LINE သို့ ပြန်ရောက်နိုင်သဖြင့် ဖိနှိပ်အား ကျဆင်းသွား ပြီး ဆီပေးပို့မှု ပြီးဆုံးသွားသည်။ ဤ PUMP အမျိုးအစားတွင် PLUNGER ၏ STROKE မှာ တသမတ်တည်း ဖြစ် သော်လည်း PUMPING STROKE (သို့) EFFECTIVE STROKE မှာ HELIX ၏ အနေအထားပေါ်မူတည်၍ ပြောင်းလွဲ သည်။


BARREL အတွင်း PLUNGEK ကို လှည့်ပေးခြင်းအားဖြင့် HELIX ၏အနေအထားကို ပြောင်းလဲစေပြီး PUMPING STROKE ကို ပြောင်းလဲစေ၍ ပေးဝို့သောဆီအနည်းအများကို ဖန်တီးနိုင်သည်။ BARREL အတွင်း PLUNGER ၏အနေအထားများကို ပုံ– D.E.F တို့တွင် ဖေါ်ပြထားသည်။ PLUNGER ၏အောက်ခြေတွင် LUG (သို့) FLANGE တစ်ခုပါရှိပြီး ၎င်းအား SLEEVE ရှိ အခွဖြင့် စွပ်ထားသည်။ ထို့ကြောင့် PLUNGER သည် SLEEVE အတွင်းတွင် အထက်အောက်ရွေ့လျားနိုင်သော်လည်း SLEEVE ကို လှည့်ပေးလျှင် PLUNGER လိုက်လည်ရသည်။ တဖန် SLEEVE ကို BARRELတွင် စွပ်ထား၍ အပေါ်ပိုင်းတွင် PINION တစ်ခု တပ်ဆင်ထားသည်။ ၎င်း PINION

Cross-sectional views of two similar types of fuel injection pump differing only in detail


Sequences of operation of the injection pump and the effect of rotating the plunger through different angles

ကို CONTROL RACK ဖြင့် ဆက်သွယ်ထားသည်။ CONTROL RACK ကို ရှေ့နောက်ရွှေ့လျားပေးခြင်းဖြင့် SLEEVE ၏လည်ပတ်မှုကို ဖန်တီးပေးသည်။ SLEEVE လည်သောအခါ PLUNGER သည်လည်း BARREL အတွင်း လည်ပတ်မှု ဖြစ်ရသည်။ ဤနည်းဖြင့် HELIX ၏ အနေအထားကို ပြောင်းလဲစေ၍ CYLINDER သို့ ပေးပို့သော ဆီအနည်းအများ ကို ထိမ်းသိမ်းနိုင်သည်။ CONTROL RACK ကို LEVER (သို့) OOVERNOR ဖြင့် ဆက်သွယ်ထား၍ ENGINE ၏ SPEED ကို ထိမ်းသိမ်းမောင်းနှင်နိုင်သည်။

INJECTION PUMP အမျိုးမျိုးတို့တွင် INJECTION NOZZLE သို့ ဆီပေးပို့ခြင်းကို တိကျလျင်မြန်စွာ ဖြတ်တောက်နိုင်ရန် DELIVERY CHECK VALVE ကို အသုံးပြုကြသည်။ ပုံတွင် PORT AND HELIX PUMP ၌ အသုံးပြုသော CHECK VALVE ကို ဖေါ်ပြထားသည်။ ၎င်း VALVE SEAT တွင် ပါဝင်သော ကိုယ်ထည်သည် VALVE QUIDE အဖြစ် ဆောင်ရွက်၍ ထိပ်တွင် ကတော့ပုံသဏ္ဌာန် အထိုင်တစ်ခု ပြုလုပ်ထားသည်။ DELIVERY VALVE ထိပ်ကို ကတော့ပုံသဏ္ဌာန် အထိုင် SEAT ၌ SPRINO အားဖြင့် ထိုင်နိုင်စေရန် ပြုလုပ်ထားသည်။ သာမန် အချိန်တွင် RELIEF PISTON နှင့် ဆီများ ဖြတ်သန်းစီးသွားနိုင်စေရန် မြောင်းများပြုလုပ်ထားသည်။ သာမန် အချိန်တွင် VALVE ပေါ်ရှိ SPRINO အားဖြင့် VALVE သည် ၎င်း၏ SEAT ပေါ်တွင် ထိုင်နေပြီး NOZZLE သို့ ဆီပို

For Knowledge & Educational Purposes

Þ

ဦးအုန်းမြင့်၏ဒီဇယ်အင်ဂျင်

3 - 7

လမ်းကြောင်းကို မိတ်ထားသည်။ PLUNGER မှ မိနှိပ်အားဖြင့် ဆီပေးပို့သောအခါ မိနှိပ်အားရှိသော ဆီများသည် VALVE SPRING ၏တွန်းအားကို ဆန့်ကျင်၍ VALVE ကို အထိုင်မှ ကြွစေပြီး INJECTION NOZZLE သို့ လောင်စာ ဆီကို ပေးပို့သည်။ ၎င်း HIGH PRESSURE FUEL တို့သည် NOZZLE သို့ ရောက်ရှိ၍ NOZZLE ရှိ VALVE ကို မ တင်ပြီး CYLINDER အတွင်းသို့ ဆီမန်းပေးသည်။ PLUNGER မှ ဆီပေးပို့မှု ဖြတ်တောက်လိုက်သည့်အချိန် (END OF INJECTION) တွင် CHECK VALVE အောက်ပိုင်း၌ မိနှိပ်အားကျဆင်းသွားရသည်။ ထိုအခါ SPRING ၏ တွန်းအားကြောင့် DELIVERY VALVE သည် ၎င်း၏အထိုင်သို့ မြန်လည်ရွေ့လျားရာတွင် VALVE ၏အောက်ပိုင်းရှိ RELIEF PISTON သည် ၎င်း၏ထုထည်နှင့် ညီမျှသောဆီမမာဏာကို အောက်သို့မယ်ထုတ်သည်။ (မယ်ထုတ်လိုက် သော ဆီထုထည်မှာ RELIEF PISTON ၏ CROSS SECTIONAL AREA နှင့် VALVE BODY အတွင်း ရွေ့လျားသော STKOKE တို့ မြှောက်ရခြင်းနှင့် တူညီသည်) ထို့ကြောင့် VALVE အထက်နှင့် NOZZLE အကြား ဆီလိုင်းထဲတွင် ရုတ်တရက် PRESSURE ကျဆင်းသွားပြီး ဆီပေးပို့မှု လျင်မြန်စွာ ပြတ်တောက်သွားရသည်။

DELIVERY VALVE ကို အသုံးပြုခြင်းဖြင့် NOZZLE သို့ ပေးပို့သော ဆီပမာဏာကို အတိအကျ ဖြတ် တောက်နိုင်သည့်အပြင် NOZZLEမှ COMBUSTION CHAMBER အတွင်းသို့ ဆီများမလိုအပ်ဘဲ ယိုစီးမှုကို ကာကွယ် သည်။

DISTRIBUTOR TYPE FUEL PUMP

DISTRIBUTOR TYPE FUEL PUMP နှစ်မျိုးနှစ်စား သုံးကြသည်။ ၎င်းတို့မှာ

(I) HIGH PRESSURE DISTRIBUTOR WITH ONE HIGH PRESSURE PUMP

(II) LOW PRESSURE DISTRIBUTOR MECHANICALLY OPERATED NOZZLE

တို့ ဖြစ်ကြသည်။

(I) HIGH PRESSURE DISTRIBUTOR WITH ONE HIGH PRESSURE PUMP

CYLINDER တစ်လုံးစီအတွက် PUMP တစ်လုံးစီသုံးသောအင်ဂျင်များတွင် CYLINDER များမှ တူညီသော POWER ရရှိစေရန် CYLINDER အားလုံးသို့ ညီမျှသော ဆီပမာဏပေးပို့ရန် လိုအပ်ပေမည်။

PUMP များစွာတို့တွင် HIGH PRESSURE METERING PUMP နှင့် DISTRIBUTOR ကို တွဲဖက်အသုံးပြု ၍ CYLINDER များသို့ ဆီဖြန့်ဝေသော နည်းစနစ်ကို အသုံးပြုထားကြောင်း တွေ့ရသည်။ ဤနည်းစနစ်တွင် PUMP ထုတ်လုပ်မှုအတွက် ကုန်ကျစရိတ်များစွာ သက်သာသည်။ သို့ရာတွင် FOUR CYLINDER ENGINE တစ်လုံး အတွက် ၎င်း PUMP မှာ ဆီလေးခါ ပေးပို့ရမည်ဖြစ်သည်။

၎င်းအမျိုးအစား PUMP များအနက် INTERNATIONAL HARVESTER'S MODEL B DISTRIBUTOR TYPE PUMP အမျိုးအစားကို ပုံတွင် ဖေါ်ပြထားသည်။ ၎င်းတွင် POKT AND HELIX အမျိုးအစား PUMP မှ CYLINDER အားလုံးအတွက် ဆီပမာဏာကို တိုင်းထွာ၍ DISTRIBUTOR BLOCK ရှိ MANIFOLD သို့ ပို့ပေးသည်။ ၎င်းတို့မှ တဆင့် CAM ဖြင့် မောင်းနှင်သော DISTRIBUTOR VALVE များသို့ ရောက်ရှိကာ INJECTION NOZZLE သို့ FIRING ORDER အရ ပေးပို့သည်။

(II) LOW PRESSURE DISTRIBUTOR MECHANICALLY OPERATED NOZZLE

၎င်းတွင် LOW PRESSURE PUMP မှ CYLINDER များအတွက် လိုအပ်သော ဆီပမာဏာကို တိုင်းထွာ၍ DISTRIBUTOR သို့ ပို့ပေးသည်။ ၎င်းမှတဆင့် လိုအပ်သော CYLINDER ရှိ NOZZLE များသို့ ပေးဝို့သည်။ CYLINDER အတွင်းသို့ ပေးဝို့ရရန်လိုအပ်သော HIQH PRESSURE ကို NOZZLE အတွင်းရှိ PLUNDER အား CAM ဖြင့် မှောင်း နှင်ခြင်းဖြင့် ရရှိသည်။

Þ

3 - 8

ဦးအုန်းမြင့်၏စီဖယ်အင်ဂျင်

ပုံတွင် ၎င်းအမျိုးအစား PUMP ကို မော်ပြထားသည်။ GEAR TYPE FEED PUMP သည် TANK မှ ဆီများကို VARIABLE STROKE METERING PUMP ကို ပို့ပေး၏။ ၎င်းမှ လိုအပ်သော ဆီပမာဏာကို တိုင်းထွာ၍ DISTRIBUTOR ကို ဖြတ်၍ FIRING ORDER အရ လိုအပ်သော NOZZLE သို့ ရောက်ရှိနေသော ဆီများကို CAM ၏တွန်းအားဖြင့် NOZZLE အတွင်းရှိ PLUNGER ကို မိနှိပ်ကာ CYLINDER အတွင်းသို့ ဆီပန်းပေးသည်။

OPERATION OF FUEL INJECTION PUMP

INJECTION SYSTEM တွင် CYLINDER သို့ ဆီစပေးခြင်းနှင့် အဆုံးသတ်ခြင်းမှာ လျင်မြန်စွာ ဖြစ် မြောက်ရန် လိုအပ်ပေသည်။ သို့မှသာ ဆီကိုကောင်းမွန်စွာ (ATOMIZE) အမှုံအမွှားဖြစ်စေ၍ မလိုလားအပ်သော ဆီများ CYLINDER အတွင်းသို့ ယိုကျခြင်းမှ ကာကွယ်နိုင်ပေမည်။ LOW SPEED DIESEL ENGINE များတွင် FAST LIFTING CAM များကို အသုံးပြုခြင်းဖြင့် ဆီစပေးခြင်းနှင့် အဆုံးသတ်ခြင်းကို လျင်မြန်စေရန် အထောက်အကူ ဖြစ်သော်လည်း HIGH SPEED ENGINE များတွင် ၎င်းအမျိုးအစား CAM များကို အသုံးမပြုနိုင်ပေ။

PUMP အမျိုးအစား တော်တော်များများတွင် ဆီစပေးခြင်း (သို့) ဆီပေးမှု အဆုံးသတ်ခြင်းကို လျင်မြန်စေ ရန် နည်းအမျိုးမျိုး အသုံးပြုကြသည်။ သို့ရာတွင် အချို့ PUMP များတွင်သာ ၎င်းအချက်နှစ်ခုစလုံး လျင်မြန်စွာ ဖြစ်မြောက်စေရန် ပြုလုပ်နိုင်ကြောင်း တွေ့ရှိရသည်။ CAM ဖြင့် မောင်းနှင်သော PLUNGER များသည် CYLINDER အတွင်း၌ PISTON ရွေ့လျားသည့်နည်းတူ အပေါ်သို့ စတက်ချိန်၌ နှေးကွေး၍ STROKE၏ တစ်ဝက်တွင် PLUNGER ၏အလျင်မှာ အမြန်ဆုံးဖြစ်သည်။ ၎င်းတစ်ဝက်မှ STROKE ၏ အဆုံးထိကိုမူ တဖြည်းဖြည်း နှေးသွားပေမည်။ ဆိုလိုသည်မှာ ၎င်း PUMP အမျိုးအစားတွင် CYLINDER သို့ ပေးပို့သောဆီမှာ အစတွင်နှေးကွေးမည်ဖြစ်ပြီး ပေးပို့မှု အဆုံးသတ်မှာလည်း နှေးကွေးမည်ဖြစ်သည်။ ဤအချက်နှစ်ချက်စလုံးသည် INJECTION SYSTEM တွင် မလိုလား အပ်ပေ။

CONTROL BY PASS PUMP အမျိုးအစားတွင် ဆီစပေးမှုမှာ PLUNGER ၏ ရွေ့လျားမှုအပေါ်မူတည် နေမည်ဖြစ်ပြီး BY PASS PORT ပွင့်သည်နှင့် ဆီပေးမှု လျင်မြန်စွာ ပြတ်တောက်သွားမည်ဖြစ်သည်။

CONTROL SUCTION PUMP အမျိုးအစားတွင် SUCTION VALVE ပိတ်သည်နှင့် ဆီပေးပို့မှု လျင်မြန် စွာဖြစ်မည်။ PLUNGER STROKE အဆုံးရောက်လျှင် ဆီပေးပို့မှု ပြီးဆုံးပြီဖြစ်၍ ဆီပေးပို့မှု အဆုံးသတ်ခြင်း နှေးကွေး မည်ဖြစ်သည်။

VARIABLE ORIFIC PUMP တွင် SUCTION PORT များကို PLUNGER ၏ထိပ်စပိတ်သည်နှင့် လျင်မြန် စွာ ဆီစပေးခြင်းဖြစ်မည်။ RELIEF GROOVE သည် SUCTION PORTကို ဖွင့်လိုက်သည်နှင့် လျင်မြန်စွာ အဆုံးသတ် မည်ဖြစ်သည်။

VARIABLE STROKE PUMP အမျိုးအစားတွင် ဆီစပေးမှုနှင့် အဆုံးသတ်ခြင်းမှာ နေးကွေးသည်။ PORT AND HELIX အမျိုးအစားတွင် PLUNCER STROKE ၏ 1/3 ထက် လျော့နည်းစွာ ဆီပေးမှုရှိလျှက် ဆီစ'ပေးမှုသည် PLUNCER ၏အလျင်မြန်ဆုံးနေရာတွင် ဖြစ်သည်။ တဖန် ဆီစပေးမှုနှင့် အဆုံးသတ်မှုသည် PLUNCER ၏ထိပ် PORT များကို စ'ပိတ်ချိန်နှင့် HELIX မှာ PORT များကို ဖွင့်လိုက်သည့်အချိန်များတွင် ဖြစ်စေ၍ ဆီစ'ပေးမှုနှင့် အဆုံးသတ်မှု နှစ်ခုစလုံး လျင်မြန်သည်။ ၎င်းအပြင် DISCHARCE CHECK VALVE များကို အသုံးပြု ခြင်းဖြင့် ပို၍ လျင်မြန်စေပြန်သည်။

HIGH PRESSURE DISTRIBUTOR PUMP အမျိုးအစားတွင် ဆီစပေးမှုနှင့် အဆုံးသတ်မှု လျင်မြန်ခြင်း သည် အသုံးပြုသော METERING PUMP အမျိုးအစားပေါ်တွင် မူတည်သည်။

LOW PRESSURE DISTRIBUTOR PUMP အမျိုးအစားတွင် NOZZLE သို့ရောက်လာသော ဆီများကို CAM မှတဆင့် NOZZLE တွင်းရှိ PLUNGER ကို ရိုက်၍ CYLINDER အတွင်းသို့ ဆီပန်းပေးခြင်းကြောင့် ဆီစ'ပေး P

ဦးအုန်းမြင့်၏ဒီဖယ်အင်ဂျင်

3-9

ခြင်း လျင်မြန်စွာ ဖြစ်ပေါ်သည်။ သို့ရာတွင် ဆီပေးမှုအဆုံးသတ်ခြင်းမှာ NOZZLE PLUNOER အဆုံးသို့ ရောက်ရှိ ချိန်တွင်ဖြစ်သဖြင့် ပိုမိုနေးကွေးသည်။

CALCULATION OF FUEL QUANTITY REQUIRED

လိုအပ်သောဆီပမာဏကိုတွက်ချက်ခြင်း

DIESEL ENGIRE တစ်လုံးသည် CYCLE တစ်ခုတွင် CYLINDER တစ်လုံးအတွက် လိုအပ်သော လောင်စာဆီပမာဏကို အောက်ပါ FORMULAR ဖြင့် တွက်နိုင်သည်။

> $Q = \frac{454\ 000\ x\ b\ h\ p\ x\ b\ s\ f\ c}{60\ x\ N\ x\ sp.gr}$ cu - millimeter $Q = \frac{7567\ x\ b\ h\ p\ x\ b\ s\ f\ c}{N\ x\ sp.gr}$ (m-m)³

Q = Quantity of Fuel per stroke of pump in cu-millimeter (m-m)3 b.h.p = Brake horse power of one cylinder b s f c = Brake specific fuel consumption (lb/b.h.p/hr) N = Pump speed (R.P.M) or injection per minute 454 000 = volume of 1-lb of air (m-m)³

as to so a volume of the or all (man)

1. FOUR CYCLE ENGINE တစ်လုံးသည် 1000 RPM ၌ CYLINDER တစ်လုံးစီမှ 100 b.h.p ရရှိသည်။ အကယ်၍ bsfc သည် 0.45 နှင့် လောင်စာဆီ၏ sp-gr သည် 0.85 ဖြစ်သော် INJECTION တစ်ကြိမ်အတွက် လို အပ်သော လောင်စာဆီပမာဏကို ရှာပါ။

 $Q = \frac{7567 \text{ x b.h.p x bsfc}}{\text{N x sp-gr}}$ $Q = \frac{7567 \text{ x100 x 0.45}}{500 \text{ x 0.85}}$

 $Q = 801.2 (m-m)^3$

APPROXIMATE METHOD FOR NORMALLY ASPIRATED ENGINES

 $Q = \frac{\text{piston displacement (in^3) x volumetric eff:}}{\text{Cu-ft of air required per cu-ft of fuel}}$

2. DIESEL ENGINE တစ်လုံးတွင် CYLINDER တစ်လုံး၏ PISTON DISPLACEMENT သည် 100in³ ဖြစ်၍ VOLUMETRIC EFF: သည် 85% ဖြစ်သော် INJECTION တစ်ကြိမ်အတွက် လိုအပ်သော လောင်စာဆီပမာဏ ကိုရှာပါ။

Survey and in anyold

လောင်စာဆီ 1 cu-ft သည် လေ 14170 cu-ft လိုအပ်သည်။

 $Q = \frac{\text{piston displacement (in^3) x volumetric eff:}}{\text{Cu-ft of air required per cu-ft of fuel}}$ $Q = \frac{100 \text{ x } 0.85}{14170} = 0.006 \text{ in}^3$ $= 0.006 \text{ x } 16387 = 98.4 \text{ m-m}^3$

အထက်ပါအဖြေအရ NORMALLY ASPIRATED ENGINE များတွင် 1-in³ PISTON DISPLACEMENT ရှိတိုင်း ဆီပမာဏ အကြမ်းအားဖြင့် 1 mm³ လိုအပ်ကြောင်းသိရသည်။

100 in³တွင် <u>ဆီ</u> 98.4 mm³

၊ in³တွင် ဆို ၊ mm⁹ (approximate) လို

အထက်ပါအဖြေကိုယူ၍ အခြား NORMALLY ASPIRATED ENGINE များအတွက် လိုအပ်_{သော} ဆီပမာဏကို တွက်ချက်နိုင်သည်။

APPROXIMATE METHOD FOR NORMALLY ASPIRATED ENGINES

 $Q = \frac{Pa + Ps}{14.7}$

Pa = ATMOSPHERIC PRESSURE PSI a (CYLINDER) Ps = SUPER CHARQINQ PRESSURRE PSI g (MANIFOLD)

3. SUPER CHARGE ပြုလုပ်သော DIESEL ENGINE တစ်လုံးတွင် CYLINDER အတွင်း PRESSURE 14.7 PSI နှင့် MANIFLOD PRESSURE 5 PSI gဖြစ်သော် PISTON DISPLACEMENT 1 cu-in ရှိသော CYLINDER တစ်လုံးအတွက် INJECTION တစ်ကြိမ်တွင် လိုအပ်သော ဆီပမာဏာကို ရှာပါ။

$$Q = \frac{Pa + Ps}{14.7}$$
$$= \frac{14.7 + 5}{14.7} = \frac{19.7}{14.7}$$

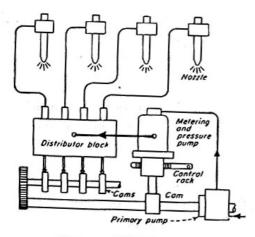
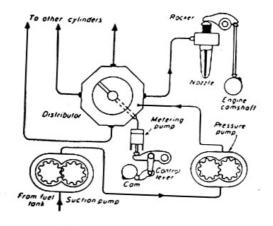
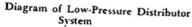




Diagram of High-Pressure Distributor System

>

3 - 11

ENGINE PERFORMANCE

WORK (20 αγύ)

အရာဝတ္ထုတစ်ခုသည် နေရာတစ်နေရာမှ အခြားတစ်နေရာသို့ ရွေ့လျားသွားလျှင် အလုပ်ဟု ခေါ်သည်။ အလုပ်၏ UNIT ကို FOOT_POUND (FT-LB) ဖြင့် ဖေါ်ပြသည်။ ဥပမာ– 3-LB လေးသော ပစ္စည်းတစ်ခုသည် အမြင့် 2 FT သို့ မြင့်တက်လာပါက ၎င်း၏အလုပ် = 3-LB X 2-FT = 6-FT-LB ဖြစ်သည်။ အလုပ်ဆိုသည်မှာ ပစ္စည်းများ မ,တင်ခြင်း၊ SPRING များဖိအားပေးခြင်း၊ SHAFT ကို လည်ပတ်စေခြင်း စသည်များဖြစ်သည်။

POWER (အလုပ်လုပ်နှန်း)

POWER ဆိုသည်မှာ အလုပ်လုပ်သောနှန်းကို ခေါ်ခြင်းဖြစ်သည်။ မြင်းတစ်ကောင် (1HP) ၏ အလုပ် လုပ်သောနှန်းမှာ တစ်မိနစ်အတွင်း 33,000 FT-LB ဖြစ်သည်။ ထို့ကြောင့် POWER ၏ URIT မှာ H.P ဖြစ်သည်။

> HP = FT-LB PER MIN 33,000 D W

33,000t

D = ပစ္စည်းရွေ့လျားသွားသောအကွာအဝေး

W = ပစ္စည်းအလေးချိန်

t = ထိုပစ္စည်း ထိုအကွာအဝေးသို့ ရွေ့လျားစဉ် ကြာသောအချိန်

- ceos

5000 LB လေးသောပစ္စည်းများကို 3-MIN အတွင်း 60-FT သို့ရွှေသွားစေလိုပါက H.P မည်မျှ လိုမည်နည်း။

D = 60IT, W = 5000 LB, t = 3 MIN

 $HP = \frac{D W}{33,0001} = \frac{60 \times 5000}{33000 \times 3} = 3.03 HP$

အင်ဂျင်များ၏ အားကို HP ဖြင့် ဖေါ်ပြကြသည်။ HP နှစ်မျိုးရှိသည်။ အင်ဂျင်မှ တွက်ချက်၍ ရရှိသော I.H.P (INDICATED HORSE POWER) ဟုခေါ်သည်။ အင်ဂျင်မှ အမှန်တကယ် အသုံးပြု၍ရသော HP ကို B.H.P (BRAKE HORSE POWER) ဟု ခေါ်သည်။ မော်တော်ယာဉ်အင်ဂျင်များ၏ B.H.P သည် I.H.P ၏ 70% မှ 85% သာရှိသည်။ ကျန်သောရာခိုင်နှုန်းများမှာ ပွတ်မှုကြောင့် ဆုံးရှုံးခြင်း၊ CYLINDER များအတွင်း လေသွင်းရခြင်းနှင့် အခြားသော အင်ဂျင်အစိတ်အပိုင်းများမှ အလုပ်လုပ်ရသောကြောင့် အားဆုံးရှုံးမှုများကြောင့်ဖြစ်သည်။

I.H.P ကို အောက်ပါ FORMULAR ဖြင့် တွက်ထုတ်နိုင်သည်။

I.H.P = PLANK

P = MEAN EFFECTIVE PRESSURE (PSI) (PISTON ပေါ်သက်ရောက်သောအား) မ = LENGTH OF STROKE (PT) (STROKE အရှည်) ပါစေ ခံမျက်နေ ခံမျက်နေ ခံမျက်နေ

n. 1993 and the state

```
ဦးအှန်းမြင့်၏စီရယ်အင်ဂျင်
```

 \geq

A = AREA OF PISTON HEAD (IN²)(PISTON ၏ထိပ်ဝအကျယ်)

N = No OF POWER STROKE / MIN (တစ်မိနစ်အတွင်းရရှိသောအား)

K = No OF CYLINDER (CYLINDER အရေအတွက်)

ထို့အတူ B.H.P ကို စမ်းသပ်မှုများ (PRONY BRAKE)ဖြင့် စမ်းသပ်၍ တွက်ယူနိုင်သည်။

 $B.H.P = \frac{2\pi \text{ RNW}}{33,000}$ RNW

5252

R - PRONY BRAKE လက်တံအရှည်

N - REVOLUTION/MIN (တစ်မိနစ်လည်ပတ်နှန်း)

W = BRAKE SCALE ပေါ်သက်ရောက်သောအား

ENGINE TORQUE

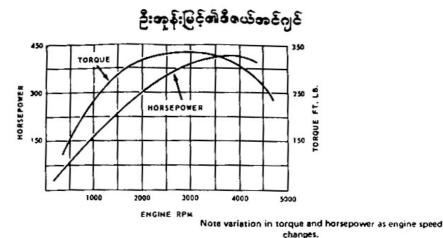
အင်ဂျင်၏စွမ်းအားကို လည်ပတ်မှုဖြင့် ပေးပို့သည်။ ပို့ရာတွင် အင်ဂျင်မြင်းကောင်ရေအပြည့် အင်ဂျင် ၏ လိမ့်နိုင်သော စွမ်းအား (သို့) ရုန်းနိုင်သောအားကို TORQUE ဟုခေါ်သည်။ ၎င်း၏ UNIT ကို POUND-FOOT (LB-FT) ဖြင့် ပြသည်။

စမ်းသပ်ချက်များအရ HIGH GEAR ကောင်းနေချိန်တွင် အင်ဂျင်အပတ်ရေ 1800 (သို့) တစ်နာရီလျှင် 30 မိုင် မောင်းနေချိန်သည် အများဆုံး TORQUE မှာ (208-POUND-FOOT) ဖြစ်သည်။ ၎င်းထက် TORQUE ပိုမို များလိုပါက GEAR အချိုးများ ပြုပြင်အသုံးပြုပါက TORQUE ပိုမိုများစွာအသုံးပြုနိုင်သည်။

COMPRESSION RATIO

PISTON B.D.C တွင် ရှိနေစဉ် ထုထည်နှင့် PISTON T.D.C တွင်ရှိနေစဉ် ထုထည်တို့အချိုးကို COMPRESSION RATIO ဟု ခေါ်သည်။ T.D.C တွင်ရှိ ထုထည်ကို CLEARANCE VOLUME ဟုခေါ်သည်။ ဓါတ်ဆီ အင်ဂျင်များတွင် COMPRESSION RATIO မှာ 7:1 မှ 10:1 အထိ ရှိသည်။ ဒီဇယ်အင်ဂျင်တွင်မူ 11:1 မှ 22:1 အထိရှိသည်။ အင်ဂျင်မှထုတ်လုပ်သည့် မြင်းကောင်ရေအပေါ်မူတည်၍ COMPRESSION RATIO များ ပြောင်းလဲမှု များ ဖြစ်ပေါ်သည်။

> TORQUE = F X R (LEVER ARM) T(LB-FT) = F(LB) X R(FT) ထို့အတူ TORQUE နှင့် B.H.P ဆက်သွယ်မှုမှာ အောက်ပါအတိုင်းဖြစ်သည်။ B.H.P = <u>TN</u> <u>5250</u>


T = TORQUE (LB-FT)

N = SPEED, (N-R.P.M)

ထို့ကြောင့် T – 5250XBHP ဖြစ်သည်။

ထို့ပြင် အင်ဂျင်မှ ထုတ်လုပ်သောမြင်းကောင်ရေနှင့်အတူ ဖြစ်ပေါ် လာသောအင်ဂျင်၏ TORQUEကို အောက်ပါ ပုံစံဖယားများဖြင့် ဖေါ်ပြထားသည်။

MECHANICAL EFFICIENCY

DIESEL အင်ဂျင်များတွင် တွက်ချက်၍ ရရှိသောမြင်းကောင်ရေ LILP နှင့် အမှန်တကယ် အသုံးပြု၍ ရသော B.H.P တို့ ကွာခြားမှုများရှိသည်။ DIESEL အင်ဂျင်များတွင် PISTON, PISTON KINO နှင့် CYLINDKE နံရံ များ ပွတ်တိုက်နေခြင်း၊ BEAKINO များပွတ်တိုက်ခြင်း၊ VALVE များဖွင့်ပိတ်ရခြင်း၊ INJECTION PUMP နှင့် NOZZLE များကို မောင်းနှင်ရခြင်း၊ ENGINE OIL နှင့် WATER PUMP များ မောင်းနှင့်ရခြင်းနှင့် SUPEK CHARGING များအတွက် အား ဆုံးရှုံးမှုများရှိသည်။ ထိုကဲ့သို့ စက်မှုဆိုင်ရာများကြောင့် အားဆုံးရှုံးမှုစုစုပေါင်းကို MECHANICAL EFFICIENCY ဖြင့် ဖေါ်ပြသည်။ ဒီဇယ်အင်ဂျင်များ၏ ဝန်အပြည့်ထမ်းဆောင်ချိန်ကွင် ဖြစ်ပေါ်သော MECHANICAL EFFICIENCY မှာ 70 မှ 80% ခန့် ရှိသည်။

MECHANICAL EFFICIENCY = $\frac{B.H.P}{1.H.P}$ X 100

တချို့အင်ဂျင်ငယ်များတွင် ပွတ်မှုကြောင့် ဆုံးရှုံးသော မြင်းကောင်ရေ (FKICTION HORSE POWER) ကို ရယူ၍ B.H.P ကို တွက်ချက်ယူနိုင်သည်။

I.H.P = B.H.P + F.H.P

အချို့သောဓါတ်ဆီအင်ဂျင်များတွင် အောက်ပါအတိုင်း HORSE POWER များကို တွက်ကြသည်။

R A.C FORMULA H.P = $\frac{D^2 N}{16.13}$

DENDY MARSHALL FORMULA H.P - D'SNK

S = STROKE IN CENTIMETER D = DIAMETER OF CYLINDER IN CENTIMETER R = REVOLUTION PER MINUTE N = NUMBER OF CYLINDERS

A.C.U FORMULA 1 H.P - 100 C.C

စီစယ်ဆီပို့စနစ် (FUEL INJECTION SYSTEM) ၏လုပ်ဆောင်ရက်များ

ဒီစယ်အင်ဂျင်တစ်လုံး ကောင်းစွာအလုပ်လုပ်စေရန် အောက်ဖေါ်ပြပါအချက် (5) ချက်ကို ပါဝင်အောင် တည်ဆောက်ရသည်။ သို့မှသာ ကောင်းမွန်တိကျ မှန်ကန်သော ဒီစယ်ဆီဝို့စနစ် (INJECTION) ဖြစ်မည်။

ဒီဖယ်ဆီပမာဏကို အတိအကျတိုင်းတာပြီး ပို့ခြင်း (က) CYLINDER တစ်လုံးနှင့်တစ်လုံး

(ခ) CYCLE တစ်ခုနှင့်တစ်ခု ကသမတ်တည်း တူညီရမည်။

ဦးအုန်းမြင့်၏စီဖယ်အင်ဂျင်

>

- 2. ENGINE ၏ SPEED နှင့် LOAD ကိုလိုက်၍ CYCLE ၏ လိုအပ်သောအချိန်တွင် ဆီပန်းပေးခြင်း။
- ဆီပန်းနှန်းမှန်ကန်၍ အစနှင့်အဆုံး လျင်မြန်စွာရှိခြင်း။
- 4. မီးလောင်ခန်းမှ အလိုရှိသော ဆီအမှုံအမွှား ဖန်တီးပေးခြင်း။
- မီးလောင်ခန်း အနှံ့အပြားသို့ ဆီပန်းပေးခြင်း။

အကျယ်ချဲရှင်းလင်းခြင်း

1. ဒီစယ်ဆီပမာဏကို အတိအကျ တိုင်းတာပြီးပေးပို့ခြင်း (METERING)

တိကျမှန်ကန်သော ဆီပမာဏဆိုသည်မှာ CYLINDER တစ်လုံးထက်ပိုသော အင်ဂျင်များတွင် မည့်သည့် အချိန်တွင်မဆို CYLINDER တစ်လုံးနှင့်တစ်လုံး၊ CYCLE တစ်ခုနှင့်တစ်ခုသို့ ပို့သောဆီပမာဏမှာ တူညီရမည်။ ထိုတူညီမှုကြောင့် ဖြစ်ပေါ်သောအား (POWER) သည်လည်း တူညီသည်။ ထိုကြောင့် စက်အနှေးအမြန်အလိုက် ဆီရရှိသောအားသည် တူညီပြီး စက်စွမ်းအားပြည့်မှုရှိပြီး စက်တည်ငြိမ်မှုရရှိသည့်အပြင် OVER LOAD ဖြစ်ခြင်းနှင့် OVER HEAT ဖြစ်ခြင်းတို့ မဖြစ်ပေါ်ချေ။

2. တိကျမှန်ကန်သောအရိန်တွင် ဒီဇယ်ဆီပန်းခြင်း (TIMING)

ဒီဇယ်အင်ဂျင်များတွင် မည်သည့် LOAD နှင့် SPEED အခြေအနေများတွင်မဆို စတင်ပန်းရန်အချိန် (TIMINO) ရှိသည်။ ၎င်းအချိန်တွင် ဆီစတင်ပန်းလျှင် လောင်စာဆီအားလုံးလောင်ကျွမ်းပြီး စက်အားအပြည့်အဝ ရမည်။ စော၍၎င်း၊ နောက်ကျ၍၎င်း ဆီပန်းခြင်းသည် ဆီအားလုံး မီးမလောင်နိုင်သည့်အပြင် စက်အား အပြည့်အဝ မရရှိဘဲ ဆီစားများပြီး EXHAUST မီးခိုး အလွန်အကျွံ ထွက်စေပြီး အပူချိန်မှာလည်း သာမန်အပူချိန်ထက် များသည်။

3. ဆီပန်းနွန်းမှန်ကန်ခြင်း (RATE CONTROL)

ဆီပန်းနှန်း(သို့) ဆီပို့နှန်းသည် (TIMING)ကဲ့သို့ပင် အရေးကြီးသည်။ ဆီပန်းချိန်အစနှင့် အဆုံးသတ် ခြင်း လျင်မြန်စွာ ပြီးမြောက်စေရသည်။ ဆီ 'စ'ပန်းချိန်မှန်ပြီး ဆီပန်းနှန်းမြန်လွန်းလျင် TIMING စောသကဲ့သို့ ဖြစ်စေသည်။ ဆီပန်းနှန်းနေးကွေးပါက TIMING နောက်ကျခြင်းကဲ့သို့ဖြစ်စေပြီး စက်အားအပြည့်အဝ မရရှိနိုင်ပေ။

4. လိုအပ်သော ဆီမှုန်အရွယ်အစား ပန်းပေးခြင်း (AUTOMIZATION)

လိုအပ်သော ဆီမှုန်အရွယ်အစား ပန်းခြင်းမှာ ဒီဇယ်ဆီကို မီးလောင်ခန်းနှင့် လျော်ညီစွာ ပန်းပေးခြင်း ဖြစ်သည်။ အချို့ မီးလောင်ခန်းများတွင် အလွန်သေးငယ်သော အမှုန်အမွှား ပန်းပေးခြင်းကို လိုလား၍ အချို့မှာ ကြီးသော အမှုန်အမွှားကို လိုလားသည်။ မှန်ကန်သော အမှုန်အမွှားဖြစ်ခြင်းသည် အပူရှိန်ကြောင့် အခိုးအငွေ ဖြစ်ကာ ဆလင်ဒါအတွင်းရှိ လေများနှင့် အလွယ်တကူ ပေါင်းစပ်ပြီး မီးလောင်ပေါက်ကွဲမှု ဖြစ်စေ၍ စက်အား အပြည့်အဝ ရရှိစေသည်။

5. မီးလောင်ခန်း အနှံ့အပြားသို့ ဆီပန်းပေးခြင်း (DISTRIBUTION)

ပန်းသွင်းသော လောင်စာဆီများ အပြည့်အဝလောင်ကျွမ်း၍ စက်အား အပြည့်အဝ ရရှိစေရန် မီးလောင် ခန်းအတွင်း လေသွင်းမှုနှင့် ၎င်းလေ အနံ့အပြားပေါ်တွင် လောင်စာဆီပန်းပေးခြင်းပေါ် မူတည်သည်။ ကြီးမားသော OPEN COMBUSTION CHAMBER တွင် အခက်အခဲ အများဆုံးရှိသည်။ ဆီပန်းမှုသည် မီးလောင်ခန်းနံ ရံများ(သို့) ပစ္စတင် HEAD သို့ မထိရိုက်စေရန် လိုအပ်သည်။ မီးလောင်ခန်းအနံ့အပြားသို့ ဆီမပန်းနိုင်ပါက လောင်စာဆီများကို အကုန်မလောင်ကျွမ်းဘဲ CRANK CASE အတွင်းစီးကျခြင်း (DILUCTION) ၊ အနယ်ထိုင်ခြင်း (DEPOSITE) ၊ PISTON RING များကပ်ခြင်း (STICKING) စသည်တို့ ဖြစ်ပေါ်စေသည်။

00000000

10

រ ាល់(កទុសដំណាច)

P

4 - 1

COMBUSTION IN DIESEL ENGINE

DIESEL ENGINE တွင် လေတစ်ခုတည်းကိုသာ CYLINDER အတွင်းဆွဲယူ၍ ဖိနှိပ်မှု ပြုလုပ်ခြင်းကြောင့် ဖိအားများစွာနှင့် လောင်စာဆီကို အလိုအလျောက် လောင်ကျွမ်းနိုင်သော အပူချိန်အထိ မြင့်မားစေရန်လိုအပ်သည်။ COMPRESSION STKOKE PISTON T.D.C မရောက်မီ ဒီဂရီ အနည်းငယ်အလိုတွင် MOZZLE မှ CYLINDER အတွင်းသို့ လောင်စာဆီပန်း၍ COMBUSTION ဖြစ်ပေါ်သည်။ CYLINDER အတွင်းသို့ လောင်စာဆီပန်းမှုသည် CRANK SHAFT လည်ပတ်ခြင်း၏ 15- မှ 30- အထိ ကြာမြင့်သည်။

COMBUSTION PROCESS

DIESEL ENGINE များတွင် COMPRESSION STROKE PISTON T.D.C မရောက်မီ ဒီဂရီအနည်းငယ် အလိုတွင် NOZZLE မှ ဆီစပန်း၍ မီးလောင်ခန်းအတွင်းသို့ လောင်စာဆီရောက်လျှင်ရောက်ချင်း လောင်ကျွမ်းမှု ဖြစ်ပေါ်၍ အောက်ပါအစီအစဉ်အတိုင်း COMPLETE COMBUSTION ဖြစ်သည်အထိ လောင်ကျွမ်းပေါက်ကွဲမှု ဖြစ်သည်။

NOZZLE မှ ဆီစပန်းထွက်လိုက်သည့် အချိန်မှစ၍ လေအားလုံးနှင့် လောင်စာဆီအားလုံး လောင်ကျွမ်း မှုဖြစ်ပေါ်သည့် ကြာမြင့်ချိန်ကို (DELAY PERIOD) ဟု ခေါ်သည်။ ထိုအထဲတွင် အောက်ပါအစီအစဉ်များ ပါဝင်သည်။

- 1. DELAY PERIOD အတွင်း စုပြုံနေသော ဆီများ လောင်ကျွမ်းရသောအချိန်
- CYLINDER အတွင်းသို့ ပန်းထည့်လိုက်သောဆီများအနက် ကြွင်းကျန်သောဆီများ လောင်ကျွမ်း ရသောအချိန်
- မီးလောင်ခန်းအတွင်းတွင် မလောင်ကျွမ်းဘဲ ကျန်သောဆီများ အောက်စီဂျင်နှင့်ထိတွေ၍ ထပ်မံ လောင်ကျွမ်းရသောအချိန်တို့ ဖြစ်သည်။

COMBUSTION သည် PISTON T.D.C မရောက်မီပင် စတင်၍ PISTON T.D.C ကျော်သည်အထိ မပြီး ဆုံးပေ။ ၎င်းအချိန်တွင် CYLINDER အတွင်းသို့ ဆီဆက်လက်ပန်းနေ၍ မီးလောင်ခန်းအတွင်းတွင် INJECTION VAPERIZATION နှင့် BURNING စသည့်အချက်များ ဆက်တိုက်ဖြစ်ပေါ် လျက် ရှိသည်။ ထို့ကြောင့် PISTON POWER STROKE ဖြင့် စတင်၍ ဆင်းသည့်တိုင်အောင် မီးလောင်မှု မပြီးဆုံးသဖြင့် PISTON ပေါ်တွင် အားအပြည့်အ၀ မရှိ သေးချေ။

DELAY PERIOD တွင် PHYSICAL DELAY နှင့် CHEMICAL DELAY ဟူ၍ နှစ်မျိုးရှိသည်။ PHYSICAL DELAY တွင် လောင်စာဆီကို အမှုန်ကလေးများဖြစ်အောင် ပြုလုပ်ခြင်း၊ လေနှင့်ရောစပ်ခြင်းနှင့် VAPERIZATION (အငွေ့ပျံခြင်း) တို့ဖြစ်သည်။

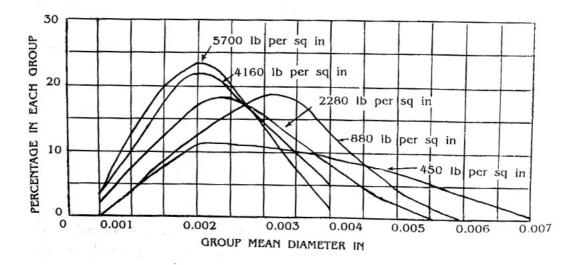
СНЕМІСАL DELAY မှာ မီးလောင်ခန်းအတွင်းသို့ ဆီပန်းလျှင်ပန်းခြင်း မီးလောင်ခန်းအတွင်းရှိ လေနှင့် စတင်လောင်ကျမ်းခြင်း၊ ထို့နောက် အပူချိန် 1000 F မှ 2000 F ထိ တက်စေပြီးလျှင် လေနှင့်ဆီအားလုံး လောင် ကျွမ်းနှုန်း တိုးတက်စေရန် လျင်မြန်စွာ COMPLETE COMBUSTION (ပြည့်ဝစွာ) လောင်ကျွမ်းခြင်း ဖြစ်စေသည်။

FACTOR EFFECTING IGNITION DELAY မီးလောင်မှုကြန်ကြာစေသောအဈက်မှား

မည်သည့် ဒီစယ်အင်ဂျင်မဆို DELAY PERIOD ကို တိုတောင်းစေရန် အမြံတန်း တည်ဆောက်ထား ^သည်။ အင်ဂျင်၏ဒီနိုင်း၊ မောင်းနှင်သောအခြေအနေနှင့် အသုံးပြုသောလောင်စာဆီများ ပြောင်းလဲစေကာမူ DELAY ^{PERIOD} တိုတောင်းရန် တည်ဆောက်ကြသည်။ သို့မှသာ ပြည့်ဝသော လောင်ကျွမ်းမှုဖြစ်၍ အားအပြည့်အဝ ရရှိ

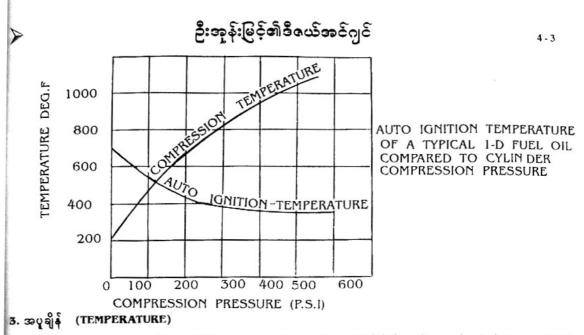
ဦးအုန်းမြင့်၏ဒီစယ်အင်ဂျင်

A


စေသည်။ အောက်ပါအချက် ငါးချက်သည် DELAY PERIOD ကို တိုတောင်းစေသည်။ ၎င်းတို့မှာ–

- မီးလောင်ခန်းအတွင်းသို့ ပန်းလိုက်သောဆီမှုန်ကလေးများ၏ အရွယ်အစားကို သေးငယ်အောင် ဆောင်ရွက်ခြင်း။
- 2. ဆီပန်းသည့်အချိန်တွင် CYLINDER အတွင်းရှိ လေဖိအား မြင့်မားစေရန် ဆောင်ရွက်ခြင်း။
- ဆီပန်းသည့်အချိန်တွင် မီးလောင်ခန်းအတွင်းရှိ လေ၏အပူချိန်ကို မြင့်မားအောင်ဆောင်ရွက်ခြင်း။
- 4. မီးလောင်ခန်းအတွင်းတွင် ပိုမိုကောင်းမွန်သော AIR TURBULANCE (လေလည်ပတ်မှု) ဖန်တီး ပေးခြင်း။
- 5. CETANE NUMBER မြင့်မားသော လောင်စာဆီကို အသုံးပြုခြင်း– တို့ဖြစ်ကြသည်။

I. ဆီမှုန်အရွယ်အစား (DROPLET SIZE)


ယေဘူယျအားဖြင့် ဆီမှုန်အရွယ်အစာ သေးငယ်ပါက လျင်မြန်စွာ အငွေ့ပျံနိုင်၍ မီးလောင်လွယ်ပြီး DELAY PERIOD ကို တိုတောင်းစေမည် ဖြစ်သည်။ ဆီမှုန်အရွယ်အစား သေးငယ်ရန် INJECTION PUMP ၏ ဒီဇိုင်း PUMP မှပေးပို့သော ဆီပမာဏနှင့် နော်ဇယ်၏ဆီထွက်ပေါက် အကျဉ်းအကျယ်တို့ပေါ် မူတည်သည်။

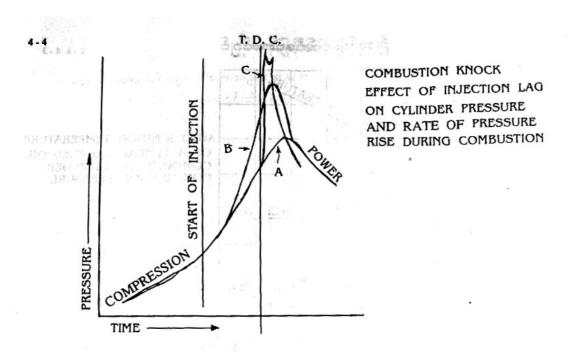
PUMP တစ်ခုမှ တူညီသောဆီပမာဏပေးပို့ရာတွင် နော်ဇယ်အပေါက်၏ ဧရိယာကျဉ်းပါက INJECTION PRESSURE များလာပြီး အပေါက်ဧရိယာကျယ်ပါက PRESCURE နည်းမည်ဖြစ်သည်။ ထိုပြင် အသုံးပြုသောဒီဇယ်ဆီ ပြစ်နှန်း (VISCOSITY) များပါက INJECTION PRESSUREမြင့်မားသော်လည်း ဆီမှုန်အရွယ်အစား ကြီးကြောင်းတွေ ရသည်။ မည်သို့ပင်ဖြစ်စေ အင်ဂျင်ထုတ်လုပ်သူများမှ မီးလောင်ခန်းနှင့်လျော်ညီစွာ အလိုရှိသော ဆီမှုန်အရွယ် အစားများကို ထုတ်လုပ်ပေးသော INJECTION SYSTEM များကိုသာ အသုံးပြုကြသည်။

၂.လေဖိအားမြင့်အောင်ဆောင်ရွက်ခြင်း (COMPRESSION PRESSURE)

CYLINDER အတွင်းဖိနှိပ်ထားသော လေဖိအား (သို့) လေ၏ သိပ်သည်းမှုများပါက CYLINDER အတွင်း ပန်းသွင်းလိုက်သော ဆိမှုံကလေးများ၏ အရွယ်အစားမှာ ပိုမိုသေးငယ်သွားစေသည်။ ထို့ပြင် COMPRESSION PRESSURE တိုးတက်လာပါက လေ၏အပူချိန်မြှင့်မားလာ၍ လောင်စာဆီ၏ မီးလောင်ကျွမ်းနိုင်သော အပူချိန်^{မှာ} နိမ့်လွန်းသဖြင့် အလျင်အမြန် မီးလောင်ပေါက်ကွဲသဖြင့် DELAY PERIOD ကို လျော့နည်းစေသည်။

CYLINDER အတွင်း လေဖိနှိပ်အားများလာ၍ လေ၏အပူချိန်မြင့်ပါက မီးလောင်ပေါက်ကွဲမှု လျင်မြန် ပေမည်။ ဖိနှိပ်ထားသောလေ၏ အပူချိန်မှာ COMPRESSION RATIO ပေါ်တွင် အဓိက မူတည်နေမည်ဖြစ်သော် လည်း CYLINDER အတွင်း ဝင်ရောက်လာသော လေ၏အပူချိန်၊ မီးလောင်ခန်းနံရံနှင့် ပစ္စတင် HEAD၏ အပူရှိန် ပေါ်တွင်မူတည်နေမည်။ မီးလောင်ခန်းနှင့် PISTON တို့၏ အပူချိန်ကို COOLING SYSTEM မှ ထိမ်းသိမ်းထား သည်။

4. လေလည်ပတ်မှု (TURBULANCE)


ကောင်းမွန်သောလေလည်ပတ်မှု TURBULANCE ရရှိရန်မှာ CYLINDER အတွင်းဝင်ရောက်လာသော လေဝင်လမ်းကြောင်း ပုံစံကြောင်သော်၎င်း၊ မီးလောင်ခန်းပုံစံကို အထူးပြုလုပ်ထား၍သော်၎င်း ရရှိနိုင်သည်။ ၎င်းပြင် ENGINE ၏ SPEED လျင်မြန်လာသည်နှင့်အမျှလေလည်ပတ်မှုလည်း ပိုမိုလျင်မြန်ကောင်းမွန်လာသည်။ CYLINDER အတွင်း ဖိနှိပ်ထားသော လေ၏လည်ပတ်မှု ပိုမိုလျင်မြန် ကောင်းမွန်လာပါက မီးလောင်ခန်းအတွင်းတွင် လောင်စာ ဆီသည် လျင်မြန်စွာ ပြန့်နှံ့နိုင်၍ လောင်စာဆီသို့ အပူသက်ရောက်မှုနှင့် အငွေ့ပျံနှန်း ပိုမိုမြန်လာသည်။ ထို့ကြောင့် မီးလောင်မှုလျင်မြန်ပြီး ကြန့်ကြာချိန်ကို လျော့နည်းစေသည်။

5. လောင်စာဆီ၏ CETANE NUMBER

အသုံးပြုသော လောင်စာဆီသည် CETANE NUMBER မြင့်၍ လောင်ကျွမ်းနိုင်သော အပူချိန်မှာ နိမ့် သဖြင့် မီးလောင်မှု လျင်မြန်ပြီး DELAY PERIOD ကို တိုတောင်းစေပါသည်။

COMBUSTION KNOCK

ဒီဇယ်အင်ဂျင်များတွင် ကောင်းမွန်ချောမွေ့စွာ မောင်းနှင်မှုသည် COMBUSTION ဖြစ်သည့်အချိန်တွင် ဆလင်ဒါအတွင်း၌ ဖြစ်ပေါ်သော PRESSURE တက်နှုန်းပေါ်တွင် မူတည်သည်။ ၎င်းသည် CRANK SHAFT 1 မတ်လည်မှုရှိတိုင်း တိုးတက်လာသော CYLINDER PRESSURE ပင် ဖြစ်သည်။ COMBUSTION အချိန်တွင် ဆလင်ဒါအတွင်း၌ PRESSURE တက်နှုန်းများလေလေ၊ အင်ဂျင်၏မောင်းနှင်မှု ကြမ်းတမ်းလေဖြစ်သည်။

CETANE NUMBER မြင့်သောဆီကို သုံးပါက INJECTION အချိန်တွင် ဆလင်ဒါအတွင်းသို့ ဆီစတင် ပန်းလျှင် ပန်းချင်း လောင်ကျွမ်းမှုဖြစ်၍ PRESSURE တဖြည်းဖြည်းတက်လာသည်။ PRESSURE တက်လာပုံကို ပုံတွင် CURVE A ဖြင့် ဖေါ်ပြထားသည်။

1.D အမျိုးအစား အသုံးပြုပါက ၎င်းသည်ကြန့်ကြာခြင်း၊ DELAY PERIOD ကို တိုတောင်းစေသဖြင့် လောင်ကျွမ်း၍ PRESSURE တက်နှုန်းသည် CURVE B တွင် ဖေါ်ပြထားသကဲ့သို့ ဖြစ်၏။ MAXIMUM PRESSURE သည် CURVE A ထက် မြင့်မားကြောင်း တွေ့ရသည်။ လောင်ကျွမ်းမှု ကြန့်ကြာချိန်တွင် ဆလင်ဒါအတွင်းသို့ ဆီ ပန်းမှု ဆက်တိုက်ဖြစ်နေသည်။ DELAY PERIOD ကြာမြင့်ပါက၊ COMBUSTION CHAMBER အတွင်း၌ စုပြုံနေ သောဆီများ တပြိုင်တည်းပြင်းထန်စွာ လောင်ကျွမ်းပြီး၊ ၎င်း၏ PRESSURE တက်နှုန်းကို CURVE C ဖြင့် ဖေါ်ပြ ထားသည်။ IQINITION မစမီ ဆီအားလုံးပန်း၍ ရုတ်တရက်ပြင်းထန်စွာ လောင်ကျွမ်းရသဖြင့် ဆလင်ဒါ PRESSURE မြင့်မားစွာတက်လာသည်။ ဤကဲ့သို့ ရုတ်တရက် PRESSURE မြင့်မားမှုသည် အတွင်းရှိဓါတ်ငွေ့များကို တုန်ခါစေ ၍ COMBUSTION KNOCK အသံ ဖြစ်ပေါ်စေသည်။

COMBUSTION KNOCK သည် SPARK IGNITION ENGINE များတွင် DE TONATION ကြောင့် ဖြစ် ပေါ်လာသော အသံနှင့်အလားတူပင် ဖြစ်သည်။

EXHAUST GAS COMPOSITION

HIGH COMPRESSION GAS ENGINE နှင့် DIESEL ENGINE များသည် COMPLETE COMBUSTION ဖြစ်ရန် စာတွေ့အရ လိုအပ်သော လေ ပမာဏထက် ပိုမိုသောလေ ၊ EXCESS AIR၊ ဖြင့် လောင်ကျွမ်းမှု ပြုကြ သည်။ DIESEL ENGINE များတွင် လောင်စာဆီနှင့် လေအချိုးသည် အလေးချိန်အားဖြင့် ၊ FUEL PER AIR RATIO BY WEIGHT၊ IDLE နှင့် FULL POWER ကြားတွင် .005 မှ .06 အကြားတွင် ပြောင်းလဲနေ၏။ လိုအပ်သည် ထက် ပိုမိုများပြားသောလေနှင့် လောင်စာဆီတို့ COMPLETE COMBUSTION ဖြစ်သောအခါ CO₂, H₂O, O₂, နှင့် N₂ ကို ရရှိသည်။

COMPRESSION IGNITION ENGINE များတွင် COMPLETE COMBUSTION မဖြစ်ခြင်း၏ အကြောင်း ရင်းတို့မှာ–

ဦးအုန်းမြင့်၏ဒီဇယ်အင်ဂျင်

(1). COMPRESSION STROKE အဆုံးတွင် ဆလင်ဒါအတွင်း၌ ဖိနှိပ်ထားသော လေ၏အပူချိန် နိမ့်လွန်းခြင်း။

(2). COMPLETE COMBUSTION ဖြစ်စေရန်အတွက် လိုအပ်သောအောက်ဆီဂျင် လုံလောက်စွာမရခြင်း။

(3). PREFLAME REACTION အတွက် လောင်စာဆီနည်းနေခြင်း။ အကြိုလောင်ကျွမ်း၍ အပူချိန်တက်စေပြီး လျင်မြန် စွာ COMPLETE COMBUSTION ဖြစ်စေရန်အတွက် ဆီနည်းနေခြင်း။

COMPRESSION IGNITION ENGINE များ၏ EXHAUST GAS များတွင် အထက်ပါခါတ်ငွေ့များ အပြင် CO; ALDEHYDES အနည်းငယ် (သို့မဟုတ်) မလောင်ကျွမ်းရသော လောင်စာဆီနှင့် ကာဘွန်များပါရှိ၏။

SMOKE LIMIT AND EXHAUST SMOKE

လောင်စာဆီနှင့်လေအချို့ FUEL/AIR RATIO မြင့်လာပါက အပူချိန်တိုးတက်စေ၍ EXHAUST တွင် ပါဝင် သော ALDEHYDES CO နှင့် မီးခို SMOKE များ လျင်မြန်စွာ လျော့ပါးသွားစေသည်။ ဆီနှင့်လေအချိုးသည် 0.05 ထက်ကျော်လွန်ပါက ဆီများနေ၍ CO နှင့် မီးခိုးများ ထွက်ပေမည်။ မီးခိုးသည် O₂ အလုံအလောက်မရရှိ၍ လောင်ကျွမ်းမှု မဖြစ်သော C များ ဖြစ်သည်။ DIESEL ENGINE များကို SMOKE LIMIT တွင် B.H.P ကို သတ်မှတ် လေ့ရှိသည်။ သတ်မှတ်ထားသော ENGINE SPEED တွင် ဆလင်ဒါအတွင်း ဝင်ရောက်သော လေပမာဏသည် ဆလင်ဒါအတွင်းသို့ ပန်းလိုက်သောလောင်စာဆီကို ကုန်စင်အောင် လောင်ကျွမ်းနိုင်ရမည်။ သို့ရာတွင် ဆလင်ဒါ အတွင်း၌ ဖြစ်ပေါ်သောလေ၏ TURBULANCE ; INJECTION SYSTEM နှင့် COMBUSTION CHAMBER ပုံစံတို့ပေါ် တွင်လည်း မူတည်သည်။

လိုအပ်သော ပမာဏထက် ပိုသောဆီကို ပန်းလိုက်ပါက၊ အင်ဂျင်၏ ပါဝါထုတ်လုပ်မှုမှာ သတ်မှတ်ထား သော B.H.P ထက်လျော့နည်းနေပြီးလျှင် မလောင်ကျွမ်းဘဲ ကြွင်းကျန်ရစ်သော ဆီများကြောင့် မီးခိုးများလည်း ထွက်ပေမည်။ အင်ဂျင်မောင်းနှင်စဉ် မီးခိုးထွက်ပါက၊ ဆလင်ဒါတစ်လုံး သို့မဟုတ် အချို့မှ ချို့ယွင်းမှုများကြောင့် လည်း ဖြစ်နိုင်သည်။ မီးခိုးထွက်သော ဆလင်ဒါများကို နည်းအမျိုးမျိုးဖြင့် ရှာဖွေနိုင်သည်။

l EXHAUST PORT များတွင် THERMO COUPLES များတတ်ဆင်၍ EXHAUST PRESSURE ဖြင့် စမ်း သပ်ပါက သာမန်ရှိရမည့် အပူချိန်ထက် လွန်ကဲသောဆလင်ဒါသည် မီးခိုးထွက်သော အခြေအနေကို မှတ်သားခြင်း ဖြင့်လည်း ရှာဖွေနိုင်သည်။ သို့ရာတွင် ၎င်းကို ENGINE FULL LOAD ထက်နည်းသည့် အလုပ်လုပ်သောအချိန်တွင် စမ်းသပ်ရမည်။ သို့မဟုတ်ပါက GOVERNOR ၏ အလုပ်လုပ်ဆောင်မှုကြောင့် ဆလင်ဒါအားလုံးသို့ ဆီများစွာ ပေးပို့စေပြီး ဆလင်ဒါအားလုံးမှ မီးခိုးများထွက်စေသည်။

အကယ်၍ ဆလင်ဒါအားလုံးမှ မီးခိုးများထွက်ပါက အသုံးပြုသော ဆီပမာဏ မမှန်ခြင်း၊ ENGINE OVER LOAD ဖြစ်ခြင်း၊ ဆလင်ဒါများ သိုလှောင်ပိတ်ဆို့ခြင်းနှင့် အခြား MECHANICAL ပိုင်းဆိုင်ရာ ချို့ယွင်းမှုများကြောင့် ဖြစ်သည်။ ဆလင်ဒါ တစ်လုံးတည်းမှသာ မီးခိုးထွက်ပါက ၎င်း ဆလင်ဒါသည် MECHANICAL ပိုင်း ဆိုင်ရာ ချို့ယွင်းနေ၍ဖြစ်သည်။ ဥပမာအားဖြင့် INJECTION SYSTEM ချို့ယွင်းခြင်း၊ NOZZLE တွင် ကာဗွန် သို့မဟုတ် အညစ်အကြေးများကပ်နေခြင်း၊ TIMING မှားနေခြင်း၊ VALVE များ အထိုင်မကျခြင်း (သို့မဟုတ်) RING များ ကပ် ညီနေခြင်း PISTON နှင့် LINER တိုက်စားမှုဖြစ်နေခြင်းကြောင့် COMPRESSION PRESSURE နှင့် TEMPERATURE ကျဆင်းနေသည့် အကြောင်းအချက်တို့ကြောင့် ဖြစ်နိုင်သည်။

the strategic and the second

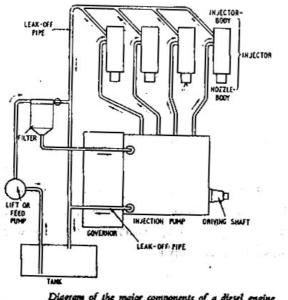
4 - 5

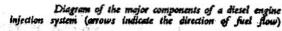
ဦးအုန်းမြင့်၏ဒီရယ်အင်ဂျင်

DIESEL FUEL SUPPLY SYSTEM

ແເເກັດສາສີບິອຊອີ

INESEL ENGINE များတွင် စက်များ၏ တည်ဆောက်မှုအရ လောင်စာဆီကို HIGH PRESSURE ဖန် တီးပေးသော INJECTION PUMP သို့ ဆီပိုခြင်းနှင့် နော်စယ်မှ ပိုလျှံသောဆီများ ဆီတိုင်ကီပြန်ခြင်းစသည့် ဆီသွား သည့်လမ်းကြောင်းများကို SYPPLY SYSTEM ဟု ခေါ်သည်။ ၎င်းစနစ်တွင် PUMP နှင့် နော်စယ်အစားသက်သာစေ ရန် FILTEK I-လုံး, 2-လုံး, 3-လုံး စသည်ဖြင့် ပါဝင် တည်ဆောက်ထားတတ်သည်။ ထိုပြင် PUMP ၏အဝင်တွင် ဆီစစ်ဆန်ကာကလေးများ တပ်ထားတတ်သည်။ ထိုစနစ်တွင် အဓိကအားဖြင့် (2) မျိုးရှိသည်။


- 1. GRAVITY SYSTEM (မြင့်ရှာမှနိမ့်ရာသို့ စီးဆင်း)
- 2. FEED PUMP SYSTEM (ဆီကျွေးပန့်ဖြင့် ပို့ခြင်း)


I. GRAVITY SYSTEM

၎င်းစနစ်တွင် လောင်စာဆီကို အမြင့်တွင်တင်ထား၍ ဆီအလေးချိန်နှင့် ကမ္ဘာ့လေထုဖိအားကြောင့် အမြင့်မှ PUMP ရှိရာ အနိမ့် စီးဆင်းခြင်းဖြင့် PUMP သို့ ဆီပို့သောစနစ်ဖြစ်သည်။ တစ်လုံးထိုးအင်ဂျင်စက်ငယ်များ၊ မော်တော်ဆိုင်ကယ်၊ သင်္ဘော်ကြီးများတွင် သုံးသည်။ ကစ်ချို့တွင် TEED PUMP စနစ်ပါ ပူးတွဲအသုံးပြုကြသည်။

2. FEED PUMP SYSTEM

၎င်းစနစ်တွင် အင်ဂျင်များ၏ တည်ဆောက်ပုံမြင့်မားခြင်း၊ ဝန်ကျယ်ခြင်းဖြစ်သော မီးရထား၊ သင်္ဘော နှင့် မော်တော်ယာဉ်များတွင် အသုံးပြုသော စနစ်ဖြစ်သည်။ ဆီသိုလှောင်ထားသော ဆီတိုင်ကီကို ENGINE နှင့် တတန်းတည်း (သို့) အနိမ့်ပိုင်းတွင် ထားရှိပြီး FEED PUMP တိုင်ကီမှ စုပ်ယူ၍ INJECTION PUMP သို့ တွန်းဖို့ သော စနစ်ဖြစ်သည်။ ၎င်းစနစ်တွင်လည်း FILTER များ တပ်ဆင်ထားရှိသည်။

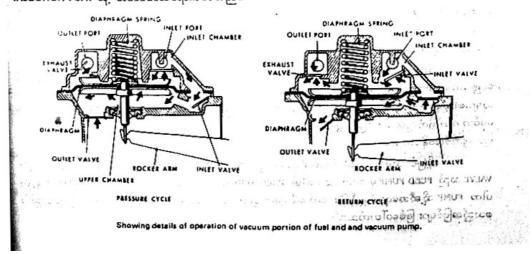
ဦးတုန်းမြင့်၏ဒီရယ်အင်ဂျင်

4-7

အနိမ့်ပိုင်းတွင်ထားသော ဆီတိုင်ကီထဲမှ လောင်စာဆီကို စုပ်၍ INJECTION PUPP သို့ တွန်းပို့ပေး သော ကိရိယာကို FEED PUMP (A.C. PUMP) ဟုခေါ်သည်။ DIESEL ENGINE များတွင် MECHANICAL FUEL FEED PUMP ကိုအသုံးများသည်။ ၎င်း FEED PUMP ကို အင်ဂျင်စွမ်းအား အသုံးပြု၍ အလုပ်လုပ်စေသည်။ တချို့ အင်ဂျင်တွင် ENGINE ၏ CAM-SHAFTမှ မောင်းနှင်ပြီး အချို့အင်ဂျင်များတွင် INJECTION PUMP တွင်တတ်ထား၍ ၎င်း PUMP ၏ CAM-SHAFT မှ မောင်းနှင်သည်။ PUMP တည်ဆောက်ပုံအရ (3) မျိုးရှိသော်လည်း PLUNCER TYPE နှင့် DIAPHRAOM TYPE များကို အသုံးများသည်။

PLUNGER TYPE FEED PUMP

ဆီကျေးပန် (FEED PUMP)


၎င်း IFEED PUMP သည် INJECTION PUMP တွင်တပ်ဆင်ထား၍ INJECTION PUMP ၏ CAM SHAFT မှ မောင်းနှင်သည်။ ၎င်းတွင် ဆီဝင်နှင့်ဆီထွက်ပေါက်များ ပါရှိပြီး VALVE များ တပ်ဆင်ထားသည်။ PLUNGER ကို QUIDE ထဲထည့်ပြီး TAPPET ROLLER ကြောင့် အပေါ်တက်ပြီး SPRING အားဖြင့် အောက် သို့ပြန်ဆင်းသည်။

SPRING တွန်းအားဖြင့် PLUNOEK အောက်သို့ပြန်ကျသွားသောအခါ INLET VALVE ပွင့်ကာ လောင်စာ ဆီများသည် SPRING CITAMBER ထဲရောက်လာသည်။ CAM LOBE ပြန်တက်လာသောအခါ SPRING အားကို ဆန့်ကျင်လျက် PLUNGEK ကို အပေါ်သို့တွန်းတင်သည်။ ထိုအခါ SPRING CHAMBER အတွင်းရှိ ဆီများသည် INLET VALVE ကို ပိတ်ပြီးအထွက် VALVE ကို တွန်းဖွင့်၍ FUEL INJECTION - PUMP သို့ရောက်သည်။

DIAPHRAGM TYPE FEED PUMP

၎င်း TYPE သည် ENGINE CAM SHAFT မှ တိုက်ရိုက်မောင်းနှင်သည်။ ENGINE ဘေးတွင် တပ်ဆင်ရန် အပေါက်ပါပြီး ဓါတ်ဆီအင်ဂျင် A.C PUMP ကဲ့သို့ပင်ဖြစ်သည်။ ၎င်းတွင် ပျော့ပြောင်းကွေးညွှတ်နိုင်သော ရာဘာ ခွက် (DIAPHRAGM) တစ်ခုကို အလယ်တွင်ထား၍ တဖက်တွင် SPRING ဖြင့် ကန်ထား၍ ၎င်းဖက်တွင် KOD နှင့် ROCKER ARM ကို ဆက်ထားသည်။ ROCKER ARM ကို အင်ဂျင် CAM SHAFT ၏ CAM ဖြင့် ထိစေရန် SPRING ဖြင့် ကန်ထားသည်။ အခြားတဖက်တွင် PUMP ၏ CHAMBER ရှိ၍ အဝင် VALVE နှင့် အထွက် VALVE ကို ဆန့် ကျင်ဘက် SPRING ကလေးများနှင့် တွန်းကန်၍ ပိတ်ထားသည်။

ENGINE လည်ပတ်သောအချိန်တွင် CAM-SHAIT ၏ CAM မှ ROCKER ARM ကိုတွန်းသဖြင့် ROD မှ DIAPHRAOM ကို ဆွဲချသည်။ ထိုအခါ CHAMBER အတွင်း လေဟာနယ်ဖြစ်လာ၍ ဆီတိုင်ကီမှဆီများအဝင် VALVE မ⁵ု ဖြတ်၍ CHAMBER အတွင်းဝင်လာသည်။ KOCKER မူလနေရာ ပြန်ရောက်သောအခါ CHAMBER အတွင်းမှဆီများသည် SPRINO ကန်အားကြောင့် အဝင် VALVE ကို ပိတ်စေ၍ အထွက် VALVE ကို တွန်းဖွင့်၍ INJECTION PUMP သို့ လောင်စာဆီရောက်စေသည်။

ဦးအုန်းမြင့်၏စီလော်အင်ဂျင်

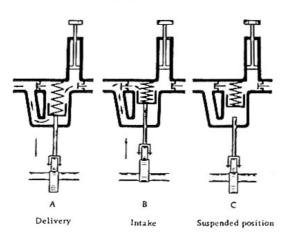
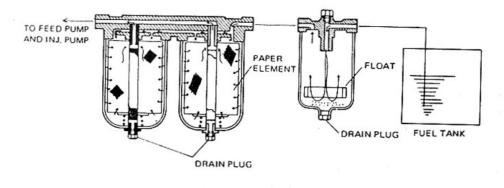



Illustration of Feed Pump Function

DUAL PRE-FUEL FILTER

SEDIMENTER

ဆီစစ်ဘူး (FUEL FILTER)

ဆီစစ်ဘူးများတွင် PKIMARY PILTER ခေါ် အခြေဆီစစ်ဗူးနှင့် FINAL STAGE FILTER ခေါ် အနဆုံး ဘီစစ်ဗူးဟူ၍ နှစ်ဆင့်ဆီစစ်သည်။ အခြေခံဆီစစ်ဗူးကို သတ္တုအမျိုးအစား (သို့) သက္ကလပ်များကို အသုံးပြုသည်။ ၎င်းသည် ရေနှင့်အမှိုက်ကြီးများ စစ်ပေးသည်။ အနုဆုံးဆီစစ်ကိုမူ စက္ကူဆီစစ်သာသုံးသည်။ စက္ကူဆီစစ်သည် တခါသုံး အမျိုးအစားဖြစ်သည်။ အခြေခံဆီစစ်ကိုသာ ဆေးကြောသန့်စင်ပြီး ပြန်လည်အသုံးပြု၍ရသည်။

ဆီစစ်ဗူးများ တပ်ဆင့်ခြင်းဖြင့် INJECTION PUMP နှင့် NOZZLEသို့ ရေနှင့်အမှိုက်များကို မရောက်ရှိ စေ၍ သက်တမ်းကို ကြာရှည်စေသည်။ အနုဆုံးဆီစစ်ဖြစ်သော စက္ကူဆီစစ်သည် မကြာခဏ ပိတ်သဖြင့် ထုတ်လုပ် သူများ၏ညွှန်ကြားချက်အတိုင်း လှဲလှယ်သင့်သည်။ အချို့ဆီစစ်ဗူးများသည် BY PASS VALVE ပါသဖြင့် ဆီကို မစစ်ဘဲ တိုက်ရိုက်လွှတ်ပေးသဖြင့် ညွှန်ကြားချက်အတိုင်း လှဲလှယ်သင့်သည်။ သို့မဟုတ်ပါက PUMP နှင့် NOZZLE များ ပျက်စီးစေနိုင်သည်။

ထို့ပြင် ယခုခေတ်ပေါ် ဒီဖယ်ဆီပို့စနစ်တွင် REQULATING VALVE ကို တပ်ဆင်ထားသည်။ ၎င်း VALVE သည် FEED PUMP မှ ပေးပို့သော ဆီ၏ PRESSURE ကို ထိန်းပေးခြင်းဖြစ်သည်။ ထို PRESSURE နည်း ပါက PUMP သို့ဆီအရောက်နည်းပြီး စက်အနှိုးရခက်ခြင်း၊ မီးခိုးထွက်ခြင်း၊ အင်ဂျင်အား အပြည့်အဝမရခြင်း စသည့်အပြစ်များ ဖြစ်ပေါ်တတ်သည်။

ဦးအုန်းမြင့်၏ဒီဇယ်အင်ဂျင်

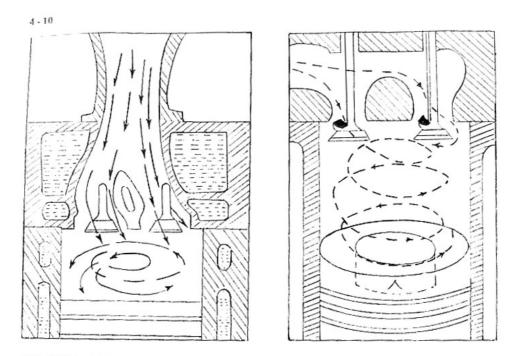
4 - 9

TURBULANCE

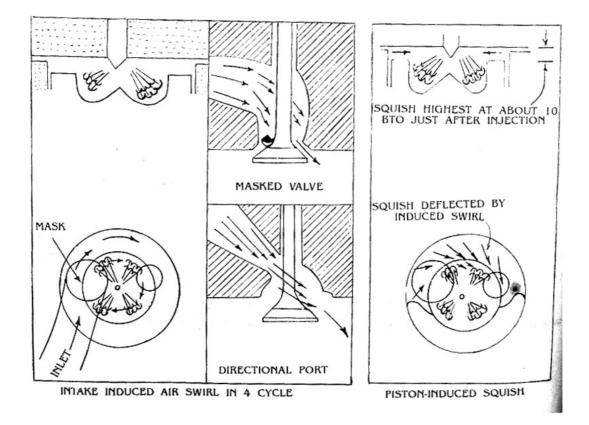
DIESEL ENGINEတွင် လေတခုတည်းကိုသာ CYLINDER အတွင်း ဖိနှိပ်၍ လောင်စာဆီကို အမှုန်အမွှား ကလေးများအဖြစ် CYLINDER အတွင်း ပန်းသွင်းခြင်းအားဖြင့် လေနှင့်ဆီထိတွေ့ရောစပ်မှုဖြစ်ကာ လောင်ကျွမ်း ပေါက်ကွဲမှုဖြစ်ရသည်။ ပန်းသွင်းလိုက်သောလောင်စာဆီများ ကောင်းမွန်စွာ လောင်ကျွမ်းမှုပြုနိုင်ရန် ပန်းသွင်း လိုက်သော လောင်စာဆီအမှုံများနှင့် လုံလောက်သောလေ ထိတွေ့ရောစပ်မှုရှိရန် လိုအပ်သည်။ ထိုကဲ့သို့ လုံလောက်

သောလေနှင့် ဆီများထိတွေ့စေရန်အတွက် COMBUSTION CHAMBER အတွင်းအလွန်ပြင်းထန်သော လေလည် ပတ်မှု (TURBULANCE) ရရှိရန် လိုအပ်သည်။

လေဝင်လမ်းကြောင်းဖြင့်လေလည်ဝတ်ခြင်း (INTAKE INDUCED AIR SWIRL)


မီးလောင်ခန်း၏ပုံသဏ္ဍာန်သည် လေနှင့်လောင်စာဆီ ကောင်းစွာရောနောမှု ရရှိရန် ဖန်တီးပေးပြီး CYLINDER အတွင်း လေများပြင်းထန်စွာလည်ပတ်မှု (TURBULANCE) ဖန်တီးခြင်းဖြင့် လေနှင့်လောင်စာဆီ ရော နောမှုကို ပိုမိုလျင်မြန်စွာ ကောင်းမွန်စေသည်။ TURBULANCE ကို အထောက်အကူပြုရန် CYLINDER အတွင်းသို့ ဝင်ရောက်သော လေဝင်လမ်းကြောင်း ပုံသဏ္ဍာန်ကို တည်ဆောက်ကြသည်။ လေဝင်လမ်းကြောင်းအတွင်းသို့ လေ ဝင်ရောက်ရာတွင် (SWIRL ACTION) ဖြင့် ဝင်ရောက်သည်။ COMPRESSION STROKE တွင် PISTON မှ ဖိနှိပ် သောအခါ ဆက်လက်၍ လေများကို လည်ပတ်မှုဖြစ်စေသည်။

ပုံတွင် INLET VALVE နှစ်လုံးနှင့် EXHAUST VALVE နှစ်လုံးပါဝင်သော OPEN COMBUSTION CHAMBER ပုံဖြစ်သည်။ မီးလောင်ခန်းမှာ အပြားဖြစ်ပြီး လေဝင်လမ်းကြောင်းပုံသဏ္ဍာန်အရ လေများသည် INLET VALVE နှစ်လုံးကိုဖြတ်၍ CYLINDER အတွင်းသို့ နာရီလက်တံလည်ရာနှင့် ဆန့်ကျင်ဘက်လည်၍ ဝင်ရောက်ကြ ပြီး ပစ္စတင်ဆက်လက် ဖိနှိပ်သောအခါ လည်ပတ်သော TURBULANCE ကို ရရှိသည်။


HIGH SPEED ENGINE များတွင် အသုံးပြုသော လေလည်ပတ်မှု (SWIRL ACTION) 2မျိုးကို ပုံတွင် ဖေါ်ပြထားသည်။ တစ်မျိုးမှာ– MASKED VALVE ကို အသုံးပြုထားသည်။ VALVE ၏ ပုံသဏ္ဍာန်အရ လေသည် ညာဖက်အောက်သို့သာ ဝင်ရောက်နိုင်သည်။ ဤနည်းဖြင့် ဝင်ရောက်သောလေကို လေလည်ပတ်မှု (SWIRL ACTION) ရရှိစေသည်။ ၎င်း VALVE ကို အသုံးပြုခြင်းသည် လေစီးဝင်မှုကို တားဆီးထားခြင်း၊ VALVE မလည်အောင် ထိန်း ချုပ်ရခြင်း စသည့် ပြစ်ချက်များကြောင့် ENGINE အတော်များများတွင် ၎င်းနည်းလမ်းကို အသုံးမပြုကြပေ။

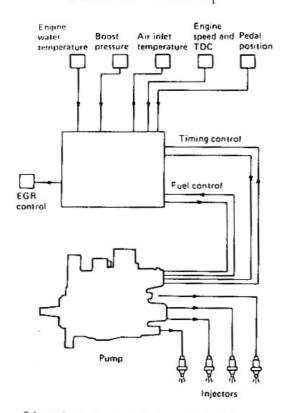
အခြားတစ်နည်းမှာ လေဝင်လမ်းကြောင်း၏ ပုံသဏ္ဍာန်အရ CYLINDERအတွင်းသို့ ဝင်ရောက်လာသော လေကို လည်ပတ်မှု (SWIRL ACTION) ရရှိရန် ဖန်တီးပေးထားသည်။ ၎င်းသည် လေစီးဝင်မှုကို တားဆီးမှုမရှိခြင်း၊ VALVE ကို ထိန်းချုပ်ရန်မလိုခြင်းတို့ကြောင့် ၎င်းနည်းလမ်းကို ပိုမိုအသုံးများကြသည်။

4 CYCLE ENGINE များတွင် MASKED VALVE များ အသုံးပြုခြင်းဖြင့် အင်ဂျင် RATED R.P.M ဖြင့် မောင်းနှင်စဉ်တွင် SWIRL VELOCITY မှာ 150 မှ 200ft/sec အထိ ရရှိကြောင်း တွေ့ရသည်။

JET SWIRL AS USED IN WORTHINGION MASKED INTAKE VALVES USED IN SW9 ENGINE FOR GREATING TURBO ALUS - CHALMERS DIESEL ENGINE LANGE - DUAL INTAKE VALVES ARE SHOWN OPEN

ဦးအုန်းမြင့်၏ခီဇယ်အင်ဂျင်

4 - 11


PISTON ပုံစံကြောင့် လေလည်ပတ်မှုဖြစ်ခြင်း (PISTON INDUCED SQUISH)

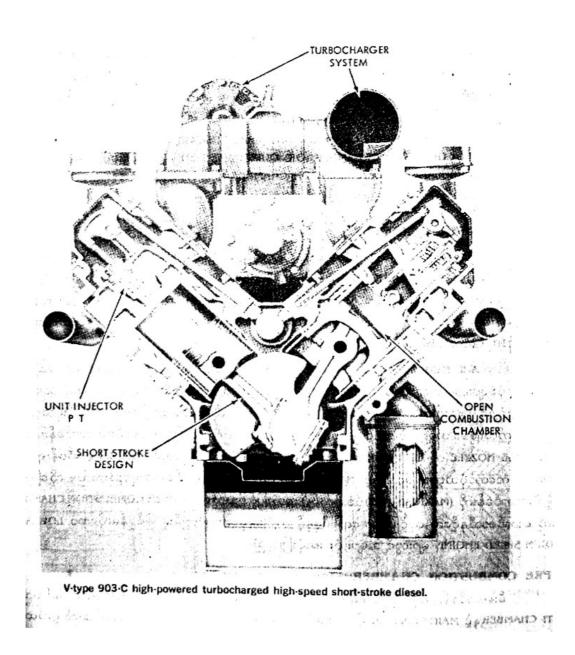
OPEN COMBUSTION CHAMBER အသုံးပြုသော မြန်နှန်းမြင့်ဒီဇယ်အင်ဂျင်များတွင် လေဝင်လမ်း ကြောင်းကြောင့် ဖြစ်ပေါ်သော AIR SWIRL နှင့် မလုံလောက်ချေ။ PISTON ၏ပုံစံကြောင့် ဖြစ်ပေါ်သော လေလည် ပတ်မှုပါ လိုအပ်သည်။ ထို့ကြောင့် ပစ္စတင်ထိပ်များကို အချိုင့်ပုံသဏ္ဍာန်များ ပြုလုပ်၍ လေလည်ပတ်မှုကို ရရှိ စေသည်။ COMPRESSION STROKE ပစ္စတင်အပေါ်တက်လာအခါ T.D.C မရောက်မီ ဒီဂရီအနည်းငယ်အလိုတွင် PISTON ၏ (SQUISH ACTION) ကြောင့် ပစ္စတင်၏အချိုင့်အတွင်း လေများ INWARD FLOW ဖြစ်ပေါ်၍ ပိုမို ပြင်းထန်သော အဟုန်ဖြင့် ပိုမိုလည်ပတ်စေသည်။ ထိုလည်ပတ်မှု (TURBULANCE) သည် ပစ္စတင် T.D.C မရောက် နီ 10' တွင် အမြင့်မားဆုံးသော SQUISH VELOCITY ကို ရရှိသည်။

PISTON ၏ ပုံစံကြောင့် ရရှိသော AIR VELOCITY အနည်းအများမှာ ပစ္စတင်၏ SQUISH ဧရိယာနှင့် မီးလောင်ခန်း၏ မျက်နှာပြင်ဧရိယာအချို့ပေါ်တွင် မူတည်သည်။ ENGINE ကို RATED SPEED ဖြင့် မောင်းနှင်စဉ် 100 မှ 400ft/sec ခန့် ရရှိသည်။ မီးလောင်ခန်းမျက်နှာပြင် ကျယ်ပြန့်ပါက ပိုမိုလျင်မြန်သော AIR VELOCITY ကို ရရှိပြီး ပစ္စတင်ထိပ်ရှိ အချိုင့်ကို ပိုမိုနက်အောင် ပြုလုပ်ထားပါက ENGINE အား ပိုမိုမြင့်မားစေသည်။ ထုတ်လုပ် သူများက လိုအပ်သော TURBULANCE အတွက် 50% ကို ပစ္စတင်ပုံစံမှ ရယူခြင်းသည် အကောင်းဆုံးဟု အဆိုပြု ကြသည်။ တချို့အင်ဂျင်များတွင် PISTON SQUISH ကို ပိုမိုယူကြသည်။ ဥပမာ– MACK TRUCK အင်ဂျင်များတွင် 30.2% ALLISCHAMBRE တွင် 75% နှင့် M-SYSTEM တွင် 80% ထိပင် ယူကြသည်။ ၎င်းနည်းလမ်းကို 2-CYCLE ENGINE များနှင့် OPPOSED PISTON အမျိုးအစား အင်ဂျင်များတွင် အသုံးပြုကြောင်း တွေ့ရသည်။

"នាលុប៍ពុំបា្តភាំខា្យភាំព្រួបញាមាះនូប៉ិនាទបា្តទល្លទូហ៍ខុមា្រះ" အင်ဂျင်နီယာများ ကုမ္ပဏီပိုင်ရှင်များ အိမ်တွင်းစက်မှုလက်မှုလုပ်ငန်းရှင်များ အင်ဂျင်နီယာကျောင်းသား/ ကျောင်းသူများ တိဳထွင်လိုသူများ အရက်အလက်စုဆောင်းလိုသူများအတွက် အကြောင်းအရာများစွာထဲမှ အရက်အလက် ပေါင်း (၂၀၀)ကျော်ကို တစ်စုတစ်ပေါင်းတည်းဖော်ပြထားသော ဆရာဦးအုန်းမြင်၏ Workshop Calculations & General Notes စာအုပ်ထွက်နေပါပြီး

DIESEL - EFI စံနစ်

Schematic arrangement of electronic fuel injection control


အထက်ဖော်ပြပါပုံသည် Diesel အင်ဂျင်အား Electronic နည်းဖြင့် ထိန်းချုပ်သော စနစ်ဖြစ်သည်၊ ၎င်းနည်းလမ်းသည် Control Unit မှရရှိလာသော အချက်အလက်များကို ခွဲခြားစိတ်ဖြာ၍ Pump နှင့် Pump ၏လိုအပ်သော လောင်စာဆိကို Control Unit မှပေးပို့စေရန် ဖန်တီးခြင်းဖြစ်သည်။ အကောင်းဆုံးသော Injection timing နှင့်ဆီအနည်းအများကို များပြားစွာသော အင်ဂျင်လိုအပ်ချက်များကို ခံစားပြီး Microprocessor မှ ပြုလုပ်ပေးခြင်းဖြစ်သည်။

များပြားစွာသော အင်ဂျင်လိုအပ်ချက်ဆိုသည်မှာ မောင်းနှင်သူ၏ တောင်းဆိုချက်၊ အင်ဂျင်လည်ပတ်နှုန်း turbocharger boost pressure ဝင်လာသော လေ၏ -အပူချိန်နှင့် အင်ဂျင်အအေးပေးစုနှစ်၏ အပူချိန်တို့ဖြစ်ကြသည်။

ထိုအပြင် Ignition timing sensor များကို ထည့်သွင်းအသုံးပြုခြင်းဖြင့် ပိုမိုကောင်းမွန်ခဲ့သည်၊ ထိုကြောင့် ၎င်းစနစ်သည် အင်ဂျင်၏ အခြေအနေအပေါ်လိုက်၍ လောင်စာဆီ အနည်းအများကို ပြောင်းလဲပေးခြင်းဖြင့် အင်ဂျင်၏ စွမ်းအားကို ဗိုမိုကောင်းမွန် စေသည်။

CAPI BURTER WE BARR

CHAPTER 5

COMBUSTION CHAMBER

မီးကောင်ခန်း

ဒီဇယ်အင်ဂျင်၏ FUEL INJECTION SYSTEM သည် TURBULANCE တစိတ်တဒေသကို ကူညီသော် လည်း ပြည့်စုံကောင်းမွန်သော TURBULANCE ရရှိရန်မှာ မီးလောင်ခန်း COMBUSTION CHAMBER တည်ရှိမှု များပေါ်တွင် များစွာမူတည်သည်။

NOZZLE မှ ပန်းလိုက်သော လောင်စာဆီများသည် မီးလောင်ခန်း၏ ခုံးခွက်နေသော မျက်နှာပြင်များ ေါ်သို့ မထိခိုက်မိစေရန် အရေးကြီးသည်။ ထို့ကြောင့် NOZZLE ၏ဆီပေါက် အရွယ်အစားနှင့် ပန်းသွင်းလိုက် သော လောင်စာဆီ၏ PRESSURE ကို အထူးချိန်ဆပေးရသည်။ မီးလောင်ခန်း၏ မျက်နှာပြင်များတွင် လောင်စာ ဆီများ ထိတွေ၍ ကျန်ရစ်ခဲ့ပါက မီးလောင်ကျွမ်းမှု နှေးကွေးခြင်း၊ မီးခိုးထွက်ခြင်းနှင့် မီးလောင်ခန့်းတွင် ကာဗွန် များ ဖြစ်ပေါ်ပေမည်။ ထိုအချက်များ ကာကွယ်ရန်နည်းလမ်းများဖြင့် မီးလောင်ခန်းများကို တည်ဆောက်ထားပါ သည်။ ယခုခေတ် ENGINE များတွင် အောက်ပါ မီးလောင်ခန်းအမျိုးအစားများကို အသုံးပြုလျက် ရှိသည်။ ၎င်း တို့မှာ–

- 1. OPEN COMBUSTION CHAMBER (OR) DIRECT INJECTION
- 2. PRE-COMBUSTION CHAMBER (OR) QUIESCENT COM; CHAMBER
- 3. TURBULANCE PRE-COMBUSTION CHAMBER
- AIR CELL (OR) ENERGY CELL CHAMBER တို့ဖြစ်သည်။

1. OPEN COMBUSTION CHAMBER

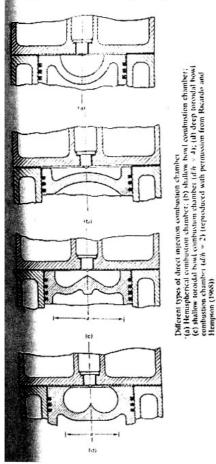
ပထမဆုံးထုတ်လုပ်သော ENGINE တွင် အပြားပုံသဏ္ဍာန်ရှိသော HEAD နှင့် CYLINDER HEAD ကြား လောင်စာဆီကို ပန်းသွင်း၏။ NOZZLE ကို CYLINDER HEAD ၏အလယ်တွင် ထောင်လိုက် ထားရှိသည်။ STROKE မှာ ရှည်ထားသဖြင့် PISTON HEAD နှင့် ထိတွေ့မှု မရှိချေ။ OPEN COMBUSTION CHAMBER များကို ပုံသဏ္ဌာန် အမျိုးမျိုးရှိသော PISTON CROWN နှင့် CYLINDER HEAD များကို အသုံးပြုသည်။ CYLINDER အရွယ် အစား 3" မှ 10" ရှိသော ENGINE များတွင် အသုံးပြုသည်။

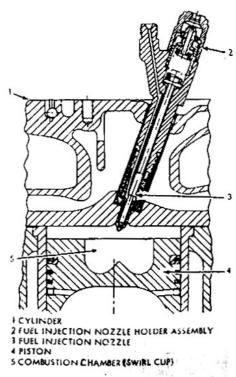
LOW AND MEDIUM SPEED ENGINE နှင့် GAS ENGINE တွင် ၎င်း CHAMBER ကို အသုံးများ သည်။ တချို့ ပုံစံများတွင် အထူးပြုလုပ်၍ HIGH SPEED ENGINE များတွင်လည်း အသုံးပြုသည်။ မီးလောင်ခန်းကို ပုံသဏ္ဌာန်မျိုးစုံဖြင့် ပြုလုပ်ကြသည်။ ၎င်းတို့ကို ပုံများတွင် ဖေါ်ပြထားသည်။ တချို့တွင် စက်ဝိုင်းပုံသဏ္ဌာန်၊ တချို့တွင် စက်လုံးခြမ်း၊ တချို့တွင် အဝိုင်းခွက်ပုံသဏ္ဌာန်တို့ဖြင့် တည်ဆောက်ကြသည်။ ၎င်းမီးလောင်ခန်းများသို့ MULTI HOLE NOZZLE ကို CYLINDER အလယ်တွင် တပ်ဆင်၍ အသုံးပြုကြသည်။ NOZZLE မှ ဆီပန်းရာတွင် (CONICAL) ကတော့ပုံသဏ္ဍာန်ဖြစ်သဖြင့် NOZZLE အောက်တည့်တည့်တို့သို့ ဆီရောက်မှုနည်းသည်။ ထို့ကြောင့် တချို့ မီးလောင်ခန်းကို (MAXICAN HAT) ပုံစံပြုလုပ်၍ အသုံးပြုကြသည်။ ၎င်း OPEN COMBUSTION CHAMBER များကို လောင်စာဆီနှင့်လေ လျင်မြန်ရွာ ရောစပ်မှုနှင့် လျင်မြန်စွာလောင်ကျွမ်းမှု ဖြစ်ရန်မလိုသော LOW AND MEDIUM SPEED ENGINE များတွင် အများဆုံး အသုံးပြုသည်။

2. PRE COMBUSTION CHAMBER

မီးလောင်ခန်း အပိုပါရှိသော မီးလောင်ခန်းများကို PRE COMBUSTION CHAMBER ဟု ခေါ်သည်။ ANTI- CHAMBER နှင့် MAIN CHAMBERကို သေးငယ်သော လမ်းကြောင်းတစ်ခု (သို့) များစွာနှင့် ဆက်သွယ်ထား သည်။ ANTI - CHAMBER ကို ဆလင်ဒါ HEAD (သို့) ဆလင်ဒါ BLOCK တွင် တပ်ဆင်ထားသည်။ NOZZLE ကို ANTI - CHAMBER တွင် တပ်ဆင်ထားသည်။ ၎င်း CHAMBER များကို MEDIUM နှင့် HIGH SPEED ENGINE များ တွင် အသုံးပြုကြသည်။

ဦးအုန်းမြင့်၏ဒီဇယ်အင်ဂျင်


5 - 2

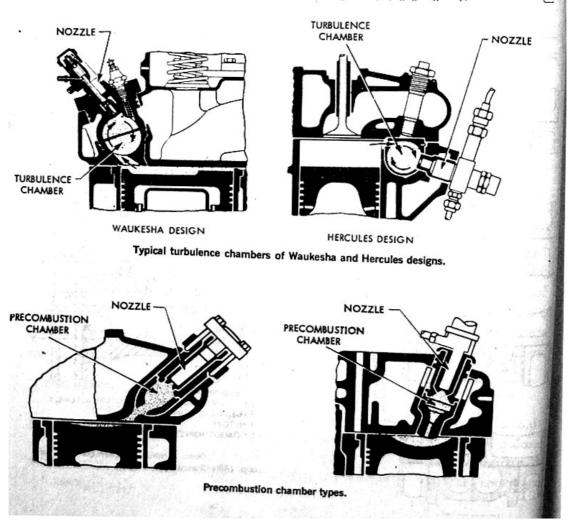

NOZZLE မှ PRE COMBUSTION CHAMBER သို့ လောင်စာဆီ ပန်းလိုက်သောအခါ ၎င်း CHAMBER အတွင်း လောင်ကျွမ်းမှုစတင်ပြီး အပူချိန်နှင့်ဖိအား များစွာဘက်လာသည်။ ၎င်းမှကဆင့် အလွန်မြင့်မားသောအဟုန် ဖြင့် MAIN CHAMBER အတွင်းကျန်သော လောင်စာဆီနှင့် လေတို့ ထိတွေ့ကာ COMPLETE COMBUSTION ဖြစ် ပေါ်စေသည်။ ၎င်း CHAMBER သည် မျက်နှာပြင်ဧရိယာကျယ်ပြန့်သည့်အလျောက် အပူဆုံးရွှံးမှုများသည်။ CLEAKANCE VOLUME ၏ 25% မှ 40% မှာ CHAMBER ဖြစ်သည်။

PRE COMBUSTION CHAMBER အင်ဂျင်များကို ကုမ္ပဏီများစွာမှ ဒီဖိုင်းမျိုးစုံဖြင့် တည်ဆောက်ထုတ် လုပ်ကြသည်။ CATERPILLAR ကုမ္ပဏီကမူ PRE CHAMBER ကို WATER JACKET အတွင်း ထည့်သွင်း၍ IIEAD တွင် အရစ်ဖြင့်ဖမ်းထားသည်။ PRE COMBUSTION CHAMBER သည် PISTON ၏အပေါ်တည့်တည့်တွင်ရှိပြီး CHAMBER အပေါ်ပိုင်းတွင် SINGLE HOLE NOZZLE ကို တပ်ဆင်တားသည်။

MWM မှ ထုတ်လုပ်သောအင်ဂျင်တွင် PRE CHAMBER နှင့် MAIN CHAMBER ဆက်သွယ် ထားသော လမ်းကြောင်းတွင် နှစ်ထပ်ပြုလုပ်ထားသည်။ ဤနည်းဖြင့် ဆက်သွယ်သော လမ်းကြောင်းသည် ကျယ်ပြန့်၍ ထွက် လာသော GAS များသည် LOW VELOCITY ဖြင့် PISTON ကို ထိရိုက်စေသည်။ THREAT အစိတ်အပိုင်းကို COBOLT - STEEL ဖြင့် ပြုလုပ်ထားသည်။

MERCEDES BENZE မော်တော်ယာဉ်အင်ဂျင်များတွင် သုံးသော PRE - COMBUSTION CHAMBER သည် MAIN နှင့် PRE CHAMBER ကို အရွယ်အစား အမျိုးမျိုးရှိသော KADIAL HOLE များစွာနှင့် ဆက်သွယ်ထား သည်။ အပေါက်ကလေးများ အရွယ်အစားသည် MAIN CHAMBER ၏ ထုထည်ပေါ်တွင် မူတည်သည်။

Open combustion chamber with swirl cup. (Allis-Chalmers)


ဦးအုန်းမြင့်၏ဒီရယ်အင်ဂျင်

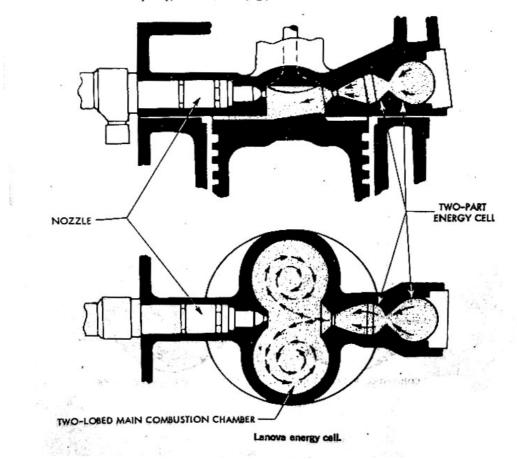
၎င်း CHAMBER များ၏ အကျိုးကျေးဇူးမှာ COMBUSTION ဖြစ်ပေါ်မှု ညက်ညောခြင်း၊ ဆလင်ဒါ၏ PEAK PRESSURE လျော့နည်းခြင်း၊ လောင်စာဆီအဆင့်အတန်း ရှေးချယ်မှု မရှိခြင်းနှင့် ဆီမှုံအရွယ်အစား သေး ငယ်ရန် မလိုအပ်ခြင်း စသည့် အကျိုးကျေးဇူးများ ရရှိသည်။

3. TURBULANCE CHAMBER

၎င်း CHAMBER အမျိုးအစားသည် CLEARANCE VOLUME ၏ 50% မှ 80% ကို ယူထားသည်။ ၎င်းသည် PRE - CHAMBER ဖြစ်ပြီး MAIN နှင့် PRE - CHAMBER ကို ကျယ်ပြန့်သော လမ်းကြောင်းဖြင့် ဆက်သွယ် ထားသည်။ ၎င်း CHAMBER ENGINE ကို RPM 1200-3000 ကြား မောင်းနှင်သော အင်ဂျင်များတွင် အသုံးပြုလေ့ ရှိသည်။ အေးသော ရာသီဥတုတွင် စက်နှိုးရလွယ်ကူရန် GLOW PLUG ခေါ် အပူပေးကိရိယာများကို တပ်ဆင် ထားသည်။

INTERNATIONAL HARVESTER အင်ဂျင်များတွင် TURBULANCE ရရှိစေရန် PRE CHAMBER ကို တစ်ဖက်သို့ စောင်းထားသည်။ PRE - CHAMBER ပေါ်တွင် SINGLE HOLE NOZZLE ကို တပ်ဆင်ထားသည်။ PRE - CHAMBER ကို GASKET ခံ၍ HEAD အတွင်း တပ်ဆင်ထားသဖြင့် အပူဆုံးရှုံးမှု မရှိစေရန် ဖန်တီးထားသည်။

>

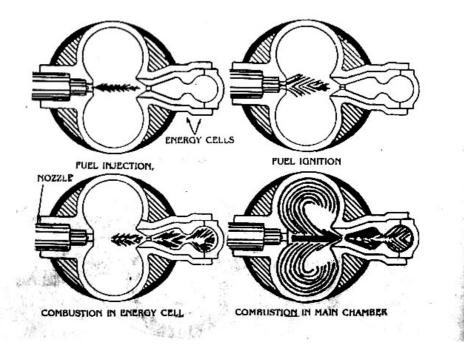

5-4

- ဦးအုန်းမြင့်၏ခီဇယ်အင်ဂျင်

JOHN DEERE နှင့် WAUKESHA အင်ဂျင်များတွင် PRE CHAMBER ကို MAIN CHAMBER ဖြင့် TENCIENTIAL အပေါက်ဖြင့် ဆက်သွယ်ထားသည်။ ထိုကြောင့် HIGH VELOCITY TURBULANCEဖြစ်ပေါ်စေသည်။ CHAMBER အပေါ်ပိုင်းကို COLLING SYSTEM ဖြင့် အအေးပေးထားသည်။ ပစ္စတင် HEAD တွင် '8' ပုံသဏ္ဌာန် အချိုင့်ထွင်းထားခြင်းဖြင့် TURBULANCE ပိုမိုကောင်းစေသည်။ NOZZLE ၏ ညာဖက်တွင် GLOW PLUG ကို တပ်ဆင်ထားသည်။

HERCULES ကုမ္ပဏီမှ ထုတ်လုပ်သော အင်ဂျင်တွင် CHAMBER ၏ အပေါ်ပိုင်းကို HEAD တွင် တပါတည်း ပုံလောင်းထားသည်။ အောက်ခြမ်းကို INSERT ထည့်သွင်းထားသည်။ NOZZLE မှ ထုလုံးပုံသဏ္ဍာန် ရှိသော CHAMBER အလည်တည့်တည့်သို့ ပန်းလိုက်သောအခါ INSERT ၏ အလွန်ပူပြင်းသော LIP အပိုင်းအား ရိုက်တော်ပြီး လျင်မြန်စွာ လောင်ကျွမ်းမှု ဖြစ်ပေါ်စေသည်။ TURBULANCE CHAMBER သုံး အင်ဂျင်များသည် HIGH POWER တွင် ငြိမ်သက်မှု ရှိကြောင်းတွေ့ရသည်။

ျာမန် DEUTZ ကုမ္ပဏီမှထုတ်လုပ်သော အင်ဂျင်များတွင် CHAMBER မှာ သစ်တော့သီးပုံသဏ္ဍာန် ဖြစ်၍ ALUMINIUM HEAD အတွင်း ORAY CAST IRON ဖြင့် သတ္တျများ ထိကပ်မှုမရှိပဲ ပုံလောင်းထားခြင်းဖြင့် အပူဆုံးရှုံးမှုနည်းသည်။ CLEARANCE VOLUME ၏ 60% ကို PRE - CHAMBER မှ ယူထားပြီး ကျန် 40% မှာ လမ်းကြောင်းနှင့် PISTON HEAD အပေါ်ပိုင်းတွင် ရှိကြသည်။ PINTE NOZZLE ကို အသုံးပြုသည်။ ၎င်းအင်ဂျင်ကို 80 OCTANE QASOLINE မှ ရေနံစိမ်းအထိ အသုံးပြုမောင်းနှင်နိုင်သည်။


ဦးအုန်းမြင့်၏ဒီဖယ်အင်ဂျင်

4. AIR CELL (OR) ENERGY CELL CHAMBER

၎င်း CHAMBER အမျိုးအစားတွင် CYLINDER HEAD ၌ MAIN CHAMBER ပါရှိပြီး ANTI CHAMBER နှင့် NOZZLE သည် တခုနှင့်တခု ဆန့်ကျင်ဘက်တည့်တည့်တွင် တည်ရှိကြသည်။ ၎င်း CHAMBER ကို CYLINDER အရွယ်အစား 5 ထက်ငယ်သော အင်ဂျင်များတွင် အသုံးပြုပါက အကျိုးသက်ရောက်မှု အများဆုံးဖြစ်သည်။ ၎င်း CHAMBER ကို အသုံးပြုခြင်းဖြင့် ရရှိသောအကျိုးကျေးစူးများမှာ (1) အခြား CHAMBER သုံး အင်ဂျင်များနီးပါး HIGH PERFOMANCE ရရှိခြင်း (2) PRE - CHAMBER များနည်းတူ လောင်စာဆီနှင့် အစဉ်မပြတ် ရောစပ်မှုရှိ၍ လောင်ကျွမ်းမှုဖြစ်ပေါ်ခြင်း (3) COMBUSTION ကို ထိမ်းသိမ်းနိုင်၍ OPEN နှင့် TURBULANCE CHAMBER သုံး အင်ဂျင်များထက် စက်သံပိုမိုငြိမ်သက်ခြင်း စသည့်အကျိုးကျေးစူးများ ရနိုင်သည်။

ENERGY CELL ၏ MAIN CHAMBER သည် အဝိုင်းပုံသဏ္ဍာန်ဖြစ်ပြီး ဆလင်ဒါ HEAD တွင် တည်ရှိ သည်။ ENERGY CELL တွင် အခန်းနှစ်ခုပါရှိပြီး တစ်ခုနှင့်တစ်ခု လမ်းကြောင်းငယ်များဖြင့် ဆက်ထားသည်။ MAIN CHAMBER သို့ ကတော့ပုံသဏ္ဍာန်အပေါက်ဖြင့် ဆက်သွယ်ထားသည်။ CLEARANCE ၏ 20% သည် ENERGY CELL တွင် ရှိ၍ CYLINDER HEAD တွင် ထည့်သွင်းထားသည်။

PINTLE NOZZLE မှ ကျဉ်းမြှောင်းသော SPRAY ပုံသဏ္ဍာန်ဖြင့် ၎င်း၏ဆန့်ကျင်ဖက်ရှိ ENERGY CELL သို့ MAIN CHAMBER ကို ဖြတ်၍ လောင်စာဆီကို ပန်းသွင်းသည်။ လောင်စာဆီအချို့နှင့် MAIN CHAMBER မှ လေများထိတွေ့ လောင်ကျွမ်းမှုဖြစ်ကာ ဖြစ်ပေါ်သောမီးတောက်သည် ENERGY CELL အတွင်း ဝင်ရောက်၍ ပြင်းထန်စွာ လောင်ကျွမ်းမှုဖြစ်ပေါ်သည်။ CELLများသည် INSEKT များဖြစ်သဖြင့် အပူချိန်မြင့်မားသည့်အတွက် CELL အတွင်း ပြင်းထန်စွာ လောင်ကျွမ်းပေါက်ကွဲသည်။ ထို CELL အတွင်းမှ MAIN CHAMBER သို့ ပြန်ထွက်လာ၍ MAIN CHAMBER အတွင်းတွင် ပြင်းထန်စွာ ပေါက်ကွဲပြီး COMPLETE COMBUSTION ကို လျင်မြန်စွာဖြစ်ပေါ် စေသည်။

FUEL INJECTION PUMP

ယခုခေတ်တွင် အသုံးပြုသော FUEL INJECTION များတွင် ဆီကို ဖိအားကြီးအောင်ပြုလုပ်ပြီး ေးပို့ သော INJECTION PUMP များကို ကုမ္ပဏီများမှ ဒီဖိုင်းပုံစံ၊ အလုပ်လုပ်ပုံ၊ တည်ဆောက်ပုံ အမျိုးမျိုးဖြင့် ပြုလုပ် ထားကြသည်။

ကုမ္ပဏီများဖြစ်သော C.A.V. BOSCH, ROBERT BOSCH MOTOPAL, DIESEL KI KI, NIPPON DENSO, BRYCE, ROOSA MASTER တို့မှ FUEL INJECTION SYSTEM ဆိုင်ရာ ပစ္စည်းများဖြစ်သော FILTER. FEED PUMP, INJECTION PUMP နှင့် NOZZLE စသော ပစ္စည်းများကို အင်ဂျင်၏ဒီဖိုင်းကိုလိုက်၍ အမျိုးမျိုး ထုတ်လုပ်ကြသည်။

ထို့ပြင် CATERPILLAR, I.H, CUMMINS စသောကုမ္ပဏီများသည် ၎င်းတို့ထုတ်လုပ်သော အင်ဂျင်များ တွင် ၎င်းတို့၏ FUEL INJECTION SYSTEM များကိုသာ အသုံးပြုကြသည်။

၎င်းတို့၏ တည်ဆောက်ပုံနှင့် အလုပ်လုပ်ပုံကိုလိုက်၍ အကြမ်းအားဖြင့် (၃) မျိုး ခွဲခြားထားသည်။

- 1. MULTI PLUNGER PUMP (အတွဲလိုက်ပန့်)
- 2. INDIVIDUAL PUMP (တစ်လုံးထိုးပန့်)
- DISTRIBUTOR PUMP (ဒစ်စတိဗျူတာပန့်)တိုဖြစ်ကြသည်။ ထိုသုံးမျိုးစလုံးကို ကုမ္ပဏီများမှ ထုတ်လုပ်ကြသည်။

1. MULTI PLUNGER PUMP (အတွဲလိုက်ပန့်)

ဆလင်ဒါတစ်လုံးထက်ပိုသော အင်ဂျင်များတွင် အသုံးပြုကြသည်။ ဆလင်ဒါတစ်ခုစီအတွက် PUMPING ELEMENT တစ်ခုစီပါဝင်၍ ဆလင်ဒါအားလုံးအတွက် PUMPING ELEMENT များကို စုပေါင်း၍ အိမ် တစ်ခုထဲတွင် ထည့်ထားသည်။ PLUNGER များ လှုပ်ရှားနိုင်ရန် CAM SHAFT တစ်ခုကို အဆိုပါအိမ်ထဲတွင် တပ် ဆင်ထားသည်။

PUMP တွင် ပါဝင်သော CAM SHAFT, TAPPET, BEARING နှင့် GOVERNOR စသည်တို့ကို အင်ဂျင် အတွင်းမှ ချောဆီနှင့်သော်၎င်း၊ PUMPထဲမှ ဒီဇယ်ဆီနှင့်သော်၎င်း၊ PUMPထဲတွင် သီးခြားထည့်ပေးခြင်းဖြင့်၎င်း ချောဆီပေးပို့ရန် စီစဉ်ထားတတ်သည်။ ကုမ္ပဏီအမျိုးမျိုးမှ ပုံစံအမျိုးမျိုးဖြင့် MULTI PLUNGER PUMP များကို ထုတ်လုပ်ကြသည်။ အားလုံးသော MULTI PLUNGER PUMP များသည် PORT AND HELIX စနစ်ကို အသုံးပြုကြ သည်။

1.A. AMERICAN 'BOSCH' DIVISION

အင်ဂျင်၏အရွယ်အစားကိုလိုက်၍ လိုအပ်သော ဆီပမာဏာရရှိရန် အချင်းနှင့် STROKE အမျိုးမျိုးရှိ သော PLUNGER များကို တပ်ဆင်အသုံးပြုကြသည်။ ၎င်းတည်ဆောက်ထားပုံနှင့် ပါဝင်သော အစိတ်အပိုင်းများကို ပုံတွင် ဖေါ်ပြထားသည်။

၎င်း PUMP ၏ အလုပ်လုပ်ပုံမှာ PORT AND HELIX စနစ်အတိုင်းပင်ဖြစ်သည်။ PLUNOER သည် SPRING ကန်အားဖြင့် အောက်သို့ဆင်းချိန်တွင် ဆီဝင်ပေါက်နှင့် BY PASS PORT ကို PLUNGER ထိပ်မှ လွတ်သည် နှင့် တပြိုင်နက် PEED PUMP မှ ဖိအားရှိသော ဆီများသည် ထိုနှစ်ပေါက်မှတဆင့် PLUNGER ရှေ့ပိုင်းသို့ ဝင်ရောက် ကြသည်။

CAM SHAFT လည်ပတ်မှုကြောင့် PLUNGER အပေါ်သို့ ပြန်တက်လာရာတွင် PLUNGER ထိပ်သည် ဆီပေါက်နှင့် BY PASS PORT နှစ်ခုစလုံးကို ပိတ်သည်နှင့်တပြိုင်တည်း PLUNGER ရှေ့ရှိ BARREL အတွင်းမှ

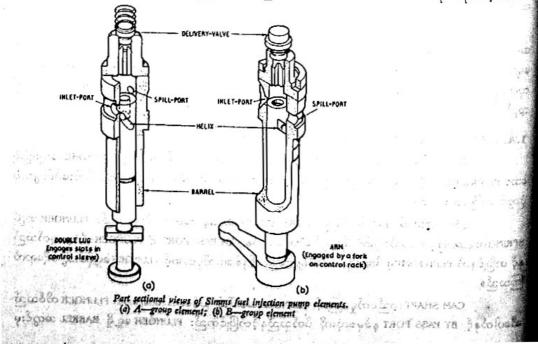
For Knowledge & Educational Purposes

ဦးအုန်းမြင့်၏ဒီဖယ်အင်ဂျင်

ဆီများကို ဖိအားပေးပြီး DELIVERY VALVE ကို အထိုင်မှကြွစေလျက် NOZZLE သို့ ရောက်ရှိကာ CYLINDER အကွင်းသို့ ဆီ ပန်းပေးသည်။

PLUNGER များ၏ HELIX သည် BY PASS PORT ကို ဖွင့်လိုက်သောအခါ PLUNGER အပေါ်ဝိုင်းရှိ ဆီများသည် PLUNGER ရှိ VERTICAL GROOVE မှတဆင့် BY PASS PORT သို့ ဆီများပြန်ဆင်းသဖြင့် ရုတ်တရက် ^{ဖိ}အားကျဆင်းသွားသည်။ တချိန်တည်းမှာပင် DELIVERY VALVE ပေါ်ရှိ SPRING သည် VALVE ကို အထိုင်တွင် ပြန်ထိုင်စေသဖြင့် NOZZLE သို့ ဆီပို့မှု ရပ်ဆိုင်းသွားသည်။

အင်ဂျင်၏ LOAD နှင့် SPEED အခြေအနေကိုလိုက်၍ ဆလင်ဒါသို့ STROKE တကြိမ်တွင် ပေးပို့ရန် လိုအပ်သော ဆီအနည်းအများကို PLUNOER များကို လှည့်ပေးခြင်းဖြင့် ရရှိသည်။ FOUR CYCLE အင်ဂျင်ကွင် PUMP CAM SHAFT လည်ပတ်နှုန်းမှာ အင်ဂျင်၏တစ်ဝက်ဖြစ်၍ TWO CYCLE အင်ဂျင်တွင် အင်ဂျင်၏လည်ပတ် နှုန်းနှင့် အတူတူပင်ဖြစ်သည်။


1.B. C.A.V PUMP (ENGLAND)

C.A.V ကုမ္ပဏီမှထုတ်လုပ်သော MULTI PLUNGER PUMP များတွင်လည်း အချင်းနှင့် STROKE အမျိုး မျိုးရှိသော PLUNGER များကို တည်ဆောက် အသုံးပြုကြသည်။ ၎င်း PUMP ၏ထူးခြားချက်မှာ PUMP အတွင်းသို့ ဖုံနှင့်အညစ်အကြေးများ မဝင်ရောက်နိုင်စေရန် PUMP ၏ ဆီဝင်သောနေရာတွင် FILTER တပ်ဆင်ထားခြင်းပင် ဖြစ်သည်။ PUMP TIMING အတိအကျ ချိန်ဆနိုင်ရန် ဒီဂရီအစိတ်များပါဝင်သော WASHER ပြားကြီးကို PUMP CAM SHAPT ၏အဆုံး (အင်ဂျင်ဖက်) တွင် တပ်ဆင်ထားသည်။

PUMP ၏တဖက်ဖက်တွင် MECHANICAL (OR) PNEUMATIC (OR) HYDRALLIC GOVERNOR - 1 ခု တပ်ဆင်ထားသည်။ ၎င်း PUMP သည် PORT AND HELIX စနစ်ကို အသုံးပြုထားသည်။ PLUNGEK ကို လှည့်ပေး ခြင်းဖြင့် HELIX အနေအထား ပြောင်းလဲစေပြီး CYLNDER သို့ ပေးပို့သော ဆီအနည်းအများကို ဖြစ်ပေါ်စေသည်။

1.C. SIMMS PUMP (ENGLAND)

၎င်း PUMP အိမ်ကို နှစ်ခြမ်းပြုလုပ်ထားသည်။ CAM SHAIT ပါဝင်သော အောက်ပိုင်းကို ပေါ့ပါးသော

>

ဦးအုန်းမြင့်၏ဒီရယ်အင်ဂျင်

6-3

သတ္တုရော (LIGHT METAL ALLOY) ကို ပုံသွင်း၍ အပေါ်ပိုင်းကို STEEL ဖြင့် ပြုလုပ်ထားသည်။ အပေါ်ပိုင်းတွင် ဆီဝင်လိုင်းများနှင့် PUMPING ELEMENT များ တပ်ဆင်ထားသည်။ ၎င်းအမျိုးအစားတွင် CAM SHAPT မဖြုတ်ဘဲ PUMPING ELEMENT များကို ဖြုတ်နိုင်တပ်နိုင်သည်။

၎င်း PUMP ၏ထူးခြားချက်မှာ PLUNGER တည်ဆောက်မှုပင်ဖြစ်သည်။ ပုံတွင်ပြထားသည့်အတိုင်း VERTICAL OROOVE အစား AXIAL HOLE ပါဝင်သည်။ ၎င်း HOLE နှင့် HELIX ကို ဆက်သွယ်ထားသည်။ PLUNGER FLANLE မှာ ပုံတွင် ဖေါ်ပြထားသည့်အတိုင်း တည်ဆောက်ထား၍ CONTROL PORK ဖြင့် စွပ်ထားသည်။ ၎င်း PORK ကို CONTROL ROD တွင် SCREW ဖြင့် ဖမ်းထားသည်။ ဆီအနည်းအများ ချိန်ညှိရာတွင် ၎င်း SCREW ကို လျော့၍ CONTROL ROD တလျှောက် လိုအပ်သလို ချိန်ဆနိုင်သည်။

၎င်း PUMP သည်လည်း PORT AND HELIX စနစ်အတိုင်းပင် ဖြစ်သည်။ ၎င်း PUMP များတွင် MECHANICAL GOVERNOR (သို့) PNEUMATIC GOVERNOR များကို တပ်ဆင် အသုံးပြုလေ့ရှိသည်။

2. INDIVIDUAL PUMP

၎င်း PUMP အမျိုးအစားများတွင် PLUNGER များ မောင်းနှင်ရန်အတွက် အင်ဂျင်ရှိ CAM SHAFT နှင့် TAPPET များမှ တဆင့် မောင်းနှင်သည်။ ၎င်း PUMP များကို CYLINDER များ၏အနှီး ကပ်လျက် တပ်ဆင်ထားသည်။ · NOZZLE သို့ HIGH PRESSURE LIME နှင့် ဆက်ထားသည်။ INJECTION တကြိမ်အတွက် ဆီပမာဏ 25 မှ

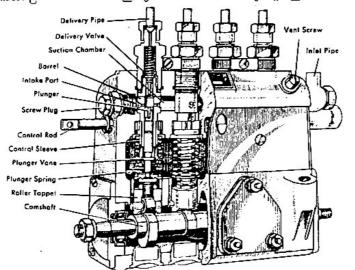
3800 MM³ အထိ ထုတ်လုပ်နိုင်သော PUMP အရွယ်အစား အမျိုးမျိုးရှိသည်။

A... ROBERT BOSCH

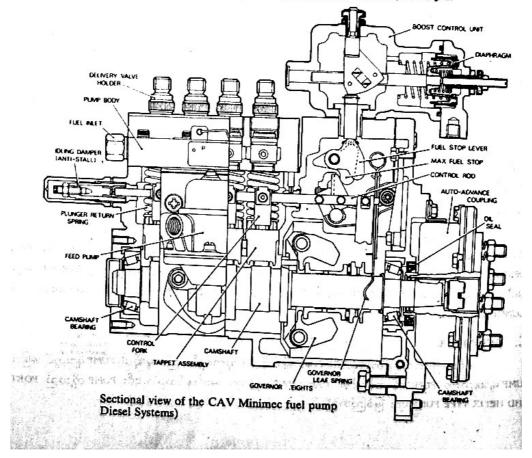
BOSCH ကုမ္ပဏီမှ ထုတ်လုပ်သော တစ်လုံးထိုး PUMPများ တည်ဆောက်ထားပုံကို ပုံတွင်ဖော်ပြထား သည်။ ၎င်း၏ PUMPING ELEMENT မှာ MULTI PLUNGER TYPE နှင့် အတူတူပင်ဖြစ်သည်။ ကွာခြားချက်မှာ PLUNGER ကို အင်ဂျင်၏ CAM SHAFT မှ တိုက်ရိုက် မောင်းနှင်ခြင်းဖြစ်သည်။ အင်ဂျင်အရွယ်အစား အမျိုးမျိုး အတွက် PLUNGER အချင်းနှင့် STROKE အရွယ်အစား အမျိုးမျိုးထုတ်လုပ်ကြသည်။ PLUNGER အချင်း 30MM နှင့် STROKE 35MM အထိ ထုတ်လုပ်ကြသည်။

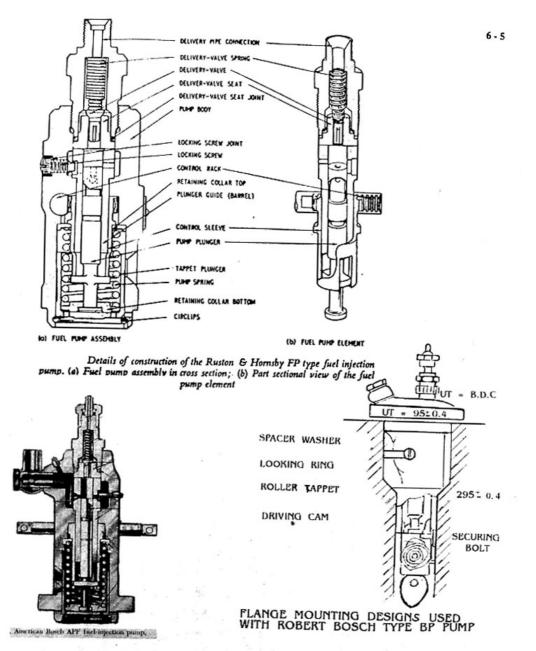
၎င်း PUMP များ၏ PLUNGER များကို အသုံးပြုမည့် အင်ဂျင်ပေါ်မူတည်၍ အလွယ်တကူ တပ်ဆင်နိုင် ရန် ပုံစံအမျိုးမျိုး ထုတ်လုပ်ကြသည်။ PUMP TIMING ကို TAPPET(သို့) SHIM များနှင့် တိကျမှန်ကန်စွာ ချိန်ဆ နိုင်သည်။

B.. C.A.V


C.A.V ကုမ္ပဏီမှထုတ်လုပ်သော တစ်လုံးထိုး PUMP မှာ I^eLANGE MOUTITED ဖြစ်ပြီး တည်ဆောက်ပုံ နှင့် အစိတ်အပိုင်းများကို ပုံတွင် မေါ်ပြထားသည်။ ၎င်းတွင်ပါဝင်သော PUMPM ELEMENT မှာ MULTI PLUNGER PUMP နှင့် အတူတူပင်ဖြစ်သည်။ အင်ဂျင်အရွယ်အစား အမျိုးမျိုးအတွက် PLUNGER အချင်းနှင့် STROKE အမျိုး မျိုးကို အသုံးပြုကြသည်။ INJECTION တစ်ကြိမ်အတွက် ဆီပမာဏ 3800 MM³ အထိ ထုတ်လုပ်ပေးနိုင်သော PLUNGER များလည်း ထုတ်လုပ်ကြသည်။

C.. SCINTILLA

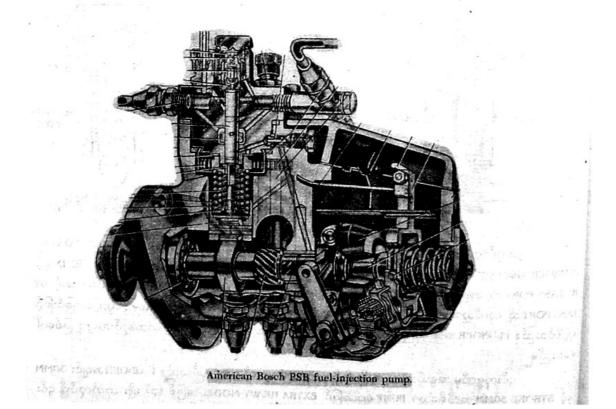

၎င်း ကုမ္ပဏီသည် တစ်လုံးထိုး PUMP များကိုသာ ထုတ်လုပ်သည်။ အဆိုပါ PUMP များတွင် အခြား PUMP များနည်းတူ PUMP ကို အင်ဂျင်၏ CAM SHAFT ဖြင့်သာ မောင်းနှင်သည်။ ၎င်း PUMP တို့သည် PORT AND HELIX TYPE PUMP များ ဖြစ်ကြသည်။ 6.4

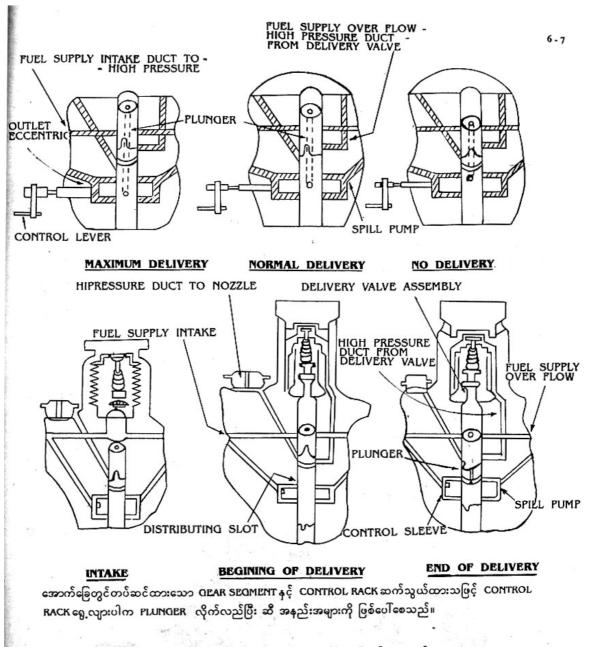

ဦးအုန်းမြှင့်၏စီဖယ်အင်ဂျင်

၎င်း PUMP များ၏ထူးခြားချက်မှာ PUMPING ELEMENT များဖြစ်ကြသော PLUNGER နှင့် BARKEL, တည်းတေက်မှုပင်ဖြစ်သည်။ ပုံတွင်ပေါ်ပြထားသည့်အတိုင်း BARREL တွင် အပေါက်သုံးပေါက် ပါရှိသည်။ PLUNGER တွင် AXIAL HOLE, RADIAL HOLE နှင့် HELIX ပါဝင်သည်။ AXIAL HOLE နှင့် RADIAL HOLE များ ဆက်ထားပြီး RADIAL HOLE သည် ထွင်းထားသော HELIX ထဲတွင် ရှိသည်။

American Bosch type APE diesel injection pump for four cylinder engine.

အလုပ်လုပ်ပုံမှာ ပုံတွင်ပြထားသည့်အတိုင်း PLUNGER အပေါ်တက်လာသောအခါ INLET PORTကို PLUNGER အပေါ်နှတ်ခမ်းဖြင့် ပိတ်သည်နှင့်တပြိုင်နက် ဆီစတွန်းသည်။ PLUNGER ဆက်တက်၍ HELIX နှင့် BY PASS PORT တို့ တည့်သောအခါ PLUNGER ရှေ့ရှိ ဆီများသည် AX IAL HOLE, RADIAL HOLE မှတဆင့် BY PASS PORT သို့ ထွက်သွားသဖြင့် ဆီတွန်းမှု ပြီးဆုံးသည်။ ဆီအနည်းအများကို PLUNGER အား လှည့်ပေးခြင်းဖြင့် ရရှိနိုင်သည်။ PLUNGER အား လှည့်ပေးခြင်းဖြင့် PUMP STROKE များ ပြောင်းလဲပြီး ဆီအနည်းအများ ဖြစ်ပေါ် စေသည်။


၎င်းကုမ္ပဏီမှ အရွယ်အစား အမျိုးမျိုးရှိသောPUMP များကို ထုတ်လုပ်သည်။ PLUNGER အချင်း 30MM နှင့် STROKE 30MM အထိရှိသော PUMP များအပြင် EXTRA HEAVY MODEL အဖြစ် (၃) မျိုး ထုတ်လုပ်၍ ၎င်း တို့ ကို ခွဲခြားထိရှိနိုင်ရန် ပုံစံနံပါတ် (MODEL NO) ရှေ့တွင် 'X' အမှတ်အသားဖြင့် ဖေါ်ပြလေ့ရှိသည်။ ဦးအုန်းမြင့်၏စီဖယ်အင်ဂျင်


6-6

CATERPILLAR

၎င်း CATTERPILLAR PUMP များသည် PORT AND HELIX TYPE ကို အသုံးပြု၍ လုပ်ဆောင်ပုံမှာ အတူတူပင်ဖြစ်သည်။ ၎င်း PUMP ၏တည်ဆောက်ပုံမှာ နှစ်ပိုင်းဖြစ်၍ အောက်ပိုင်းဖြစ်သော DRIVE HOUSING ပေါ်တွင် PUMPING ELEMET ကို BOLT များဖြင့် ဖမ်းထားသည်။ DRIVE HOUSING အပိုင်းသည် MULTI PLUNGER PUMP များတွင် တည်ဆောက်ထားသည့်အတိုင်း CAM SHAFT, TAPPET, GOVERNOR နှင့် CONTROL MECHANISM တို့ ပါဝင်ကြသည်။ အပေါ်ပိုင်းဖြစ်သော PUMPING ELEMENT တွင် PLUNGER, BARREL, DISCHARGE VALVE နှင့် VALVE BODY တို့ ပါဝင်သည်။

PUMP ၏ထူးခြားချက်မှာ FILTER နှင့် TRANSFER PUMP ပါဝင်ခြင်းပင် ဖြစ်သည်။ FILTER သည် ဝင်လာသောဆီများကို သန့်စင်ပေးပြီး TRANSFER PUMP မှာ PUMP ၏ လိုအပ်သော ဆီပမာဏ မှန်ကန်စွာရရှိ စေရန် ဖိနိပ်အားဖြင့် ပေးပို့ပေးသည်။ ဖိနှိပ်အား မှန်ကန်စေရန်အတွက် RELIEF VALVE မှ ဆောင်ရွက်ပေးသည်။ အင်ဂျင်၏ MODEL ကို လိုက်၍PUMP ကိုအင်ဂျင်၏ အရှေ့(သို့)အနောက်မှ GEAR ဖြင့် ဆက်သွယ် မောင်းနှင်သည်။ PUMPING ELEMENT ကို DRIVE HOUSING မှ လွယ်ကူစွာဖြတ်ယူနိုင်သည်။ TAPPET များကို DRIVE HOUSING တွင် တပ်ဆင်ထားလျက် CAM SHAFT ကို SPRING ဖြင့် ဖိလျက် တပ်ဆင်ထားသည်။ TAPPET အပေါ်ပိုင်းကို ခွ (YOKE) ပြန်လုပ်ထားသဖြင့် PLUNGER ကို လွယ်ကူစွာ တပ်ဆင်စေနိုင်သည်။ TAPPET အထက်အောက် ရွေ့လျား သောအခါ PLUNGER မှာလည်း အထက်အောက်ရွေ့လျားသည်။ PLUNGER ၏

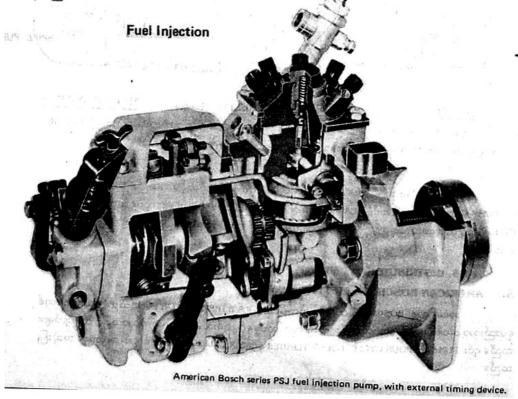
၎င်း PUMP များတွင် MECHANICAL GOVERNOR ကို တပ်ဆင်ထားသည်။ GOVERNOR SHAFT ကို PUMP CAMSHAFT မှတဆင့် GEAR ဖြင့် မောင်းနှင်သည်။ GOVERNOR ၏ လှုပ်ရှားမှုသည် CONTROL PACK ကို ရှေ့လျားစေသည်။ ဤနည်းဖြင့် အင်ဂျင်အတွက် လိုအပ်သော ဆီအနည်းအများကို CONTROLပြုလုပ် ပေးသည်။

3. DISTRIBUTOR TYPE PUMP A.. AMERICAN BOSCH (P.S.B) TYPE PUMP

အမေရိကန် BOSCH ကုမ္ပဏီမှ ထုတ်လုပ်သော P.S.B DISTRIBUTOR PUMP သည် PLUNDER တစ် ခုတည်းသာ ပါဝင်ပြီး တည်ဆောက်ပုံရှင်းလင်း၍ ထုတ်လုပိမှုနှင့် ထိမ်းသိမ်းစရိတ် သက်သာသဖြင့် လူကြိုက်များ သည်။ ၎င်း PUMP ကို POUR CYCLE, POUR CYLINDER နှင့် SIX CYLINDER အင်ဂျင်တွင် အများဆုံး အသုံးပြု သည်။

ဦးအုန်းမြင့်၏ဒီဇယ်အင်ဂျင်

PLUNGER မှာ CONSTANT STROKE ဖြစ်ပြီး SLEEVE CONTROL အမျိုးအစားဖြစ်သည်။ ၎င်းကို CAM ဖြင့် မောင်းနှင်သည်။ ၎င်း PUMP တွင် DELIVERY VALVE တစ်ခုတည်းသာ ပါသည်။ MECHANICAL GOVERNOR ပူးတွဲ တပ်ဆင်ထားသည်။


P.S.B PUMP တွင် အဓိကအစိတ်အပိုင်း (၃)ခု ပါဝင်သည်။ ၎င်းတိုမှာ–

- 1. HOUSING WITH DRIVE MECHANISM
- 2. HYDRULIC HEAD a c
- 3. GOVERNOR တို့ဖြစ်ကြသည်။

HOUSING တွင် အင်ဂျင်၌ တပ်ဆင်ရန်အတွက် အပေါက်(၃)ပေါက်ပါသော FLANGE ပါရှိသည်။ CAM SHAFT ကို BEARING များ ခံ၍ တပ်ဆင်ထားသည်။ CAM SHAFT တွင် CAM ပါရှိသည်။ ၎င်း CAM တွင် CYLINDER လေးလုံး PUMP ဖြစ်ပါက LOBE (၂) ခုပါရှိသည်။ CYLINDER ခြောက်လုံး PUMP ဖြစ်ပါက LOBE (၃)ခုပါရရှိသည်။ ထို့ပြင် QUILL SHAFT နှင့် ဆက်သွယ်ရန် CAM SHAFT ပေါ်တွင် SPIRAL GEAR ပေါ်ထားပြီး

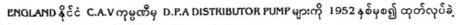
တဖက် အစွန်းတွင် DRIVE HUB တပ်ဆင်ရန် SPLING ဖေါ်ထားသည်။ QUILL SHAFT ၏ တဖက်စွန်းတွင် GEAR ခံလျက် PLUNGER ၏ GEAR နှင့် ဆက်သွယ်ထားသည်။ PLUNGER သည် GEAR အချိုးအရ CAM SHAFT SPEED တစ် ဝက်ဖြင့် လည်သည်။ PLUNGER အောက်ပိုင်းနှင့် CAM အကြားတွင် TAPPET ESSEMBLY တပ်ဆင်ထားသည်။

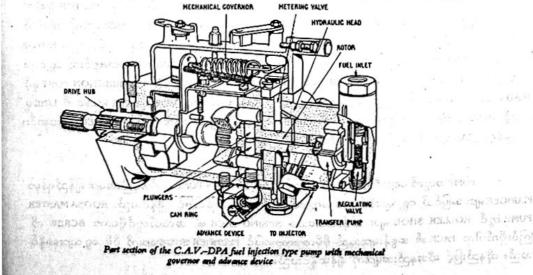
HYDRAULIC HEAD အား HOUSINGတွင် BOLT(၄)လုံးဖြင့် ဖမ်းထားသည်။ ထို့ကြောင့် HYDRAULIC HEAD ကို အလွယ်တကူ ဖြုတ်၍ ပြင်ဆင် လဲလှယ်နိုင်သည်။ ၎င်းတွင် HEAD-BLOCK, CONTROL SLEEVE, PLUNGER, DELIVERY VALVE ASSEMBLY, PLUNGER DRIVE GEAR နှင့် PLUNGER RETURN SPRING တို့ ပါဝင္ဂံသည်။

ဦးအုန်းမြင့်၏စီဇယ်အင်ဂျင်

6-9

HEAD အလယ်တည့်တည့်တွင် PLUNCER တပ်ဆင်ရန် အပေါက်ဖေါက်ထားသည်။ CYLINDER အရေ အတွက်ကို လိုက်၍ PLUNCER BORE တွင် ဆီထွက်ပေါက်များကို အညီအမျှ တိကျစွာဖေါက်ထား၍ ၎င်းတို့တွင် ဆီထွက်ခေါင်းများ တပ်ဆင်ထားသည်။ HEAD တွင် ရှိသော DELIVERY VALVE အပေါက်မှ အောက်ဖက်သို့ ဆီလိုင်းတစ်ခုဖေါက်ထားပြီး ၎င်းဆီလိုင်းသည် PLUNCER ၏ DISTRIBUTING ANNULUS ကို ဆီလိုင်းနှင့် ဆက်ထားသည်။


၎င်း PUMP ၏ PLUNGER တွင် AXIAL HOLE ဖေါက်ထားပြီး RADIAL HOLE နှင့် ဆက်ထားသည်။ KADIAL HOLE နေရာကို CONTROL SLEEVE ဖြင့် စွပ်ထားသည်။ PLUNGER ၏အလယ်ပိုင်းတွင် လိုင်းဖေါ်ထား သော DISTRIBUTING ANNULUS ပါရှိသည်။ ANNULUS တွင် ဆီဝေငှသော VERTICAL SLOT ပါရှိသည်။ ထို့ပြင် GEAR တပ်ဆင်ရန်နေရာပါရှိသည်။


၎င်း PUMP ၏ အလုပ်လုပ်ပုံမှာ ပုံတွင်ဖေါ်ပြထားသည်။ PLUNOER အောက်သို့ အဆင်းတွင် ဆီပို့ လိုင်းမှ ဆီများသည် INLET PORT များကိုဖြတ်၍ PLUNOER ၏ အပေါ်ပိုင်းသို့ ဝင်လာသည်။ PLUNOER အပေါ် ပိုင်းသို့ ပြန်တက်လာသောအခါ INLET PORT များကို PLUNOER မှ စတင်ပိတ်လိုက်သည့်အချိန်မှစ၍ ဆီစတွန်း သည်။ ဖိအားရှိသော ဆီများသည် DELIVERY VALVE ကိုဖြတ်၍ ဆီလိုင်းများမှတဆင့် PLUNOER ANNULUS သို့ ရောက်ရှိသည်။ ၎င်းမှတဆင့် ဆီဝေငှသော VERTICAL SLOT နှင့် တည့်နေသော ဆီထွက်ပေါက်ကို ဖြတ်၍ NOZZLE သို့ ရောက်ရှိကာ CYLINDER အတွင်းသို့ ဆီပန်းပေးသည်။

CYLINDER များသို့ ပေးပို့သော ဆီအနည်းအများကို CONTROL SLEEVE အား နေရာပြောင်းလဲပေးခြင်း ဖြင့် ရရှိနိုင်သည်။ PLUNGER ၏ EFFECTIVE STROKE မှာ CONTROL SLEEVE နှင့် FLAT တို့ အနေအထားပေါ် မူတည်၍ ပြောင်းလဲသည်။ PLUNGER အထက်သို့ တက်လာ၍ PLAT (RADIAL HOLE) ၏အပေါ်ပိုင်းသည် CONTROL SLEEVE ကို စတင်ဖွင့်လိုက်သောအခါ PLUNGER အပေါ်ပိုင်းရှိ ဆီများဖိနှိပ်အား ကျဆင်းသွား၍ ဆိ ပေးပို့မှု ပြီးဆုံးသည်။

၎င်း PUMP တွင် CAM SHAFT တဖက်စွန်း၌ MECHANICAL GOVERNOR ကို တပ်ဆင် အသုံးပြု ထားသည်။ GOVERNOR MECHANISM နှင့် CONTROL SLEEVE ဆက်ထားခြင်းဖြင့် CONTROL SLEEVE အား ရွေ့လျားစေ၍ ဆီအနည်းအများကို ထိမ်းသိမ်းပေးသည်။

B., C.A.V - D.P.A TYPE PUMP (D.B PUMP)

6 - 10

ဦးအုန်းမြင့်၏ဒီရယ်အင်ဂျင်

သည်။ စတင်ထုတ်လုပ်စဉ်က D.A PUMP များသာဖြစ်ပြီး နောက်ပိုင်းတွင် D.B နှင့် D.C PUMP များကို အင်ဂျင်ကို လိုက်၍ထုတ်လုပ်ခဲ့သည်။ D.B. PUMP ကို အများဆုံး အသုံးပြုကြသည်။

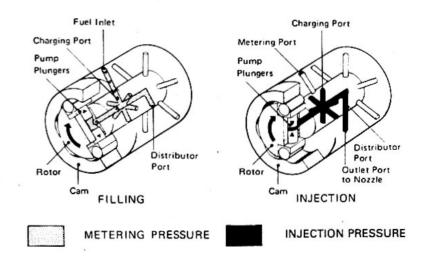
D.B PUMP များသည် ပေါ့ပါးခြင်း၊ COMPACT(ကျစ်လစ်သိပ်သည်းခြင်း) ဖြစ်ခြင်း၊ အင်ဂျင်အမျိုးမျိုး

တွင် အလွယ်တကူ တပ်ဆင်နိုင်ခြင်း တည်ဆောက်ပုံရှင်းလင်းပြီး PUMP ACLIBRATION နှင့် ADJUSTMENT[ပြု လုပ်ရန် လွယ်ကူသည်။ ၎င်း PUMP တို့ကို FOUR CYCLE, 2 CYLINDER, 4 CYLINDER, 6 CYLINDER နှင့် 8 CYLINDER အထိရှိသော အင်ဂျင်များတွင် အသုံးပြုသည်။

D.B PUMP များ၏ တည်ဆောက်ပုံမှာ ပုံတွင်ဖေါ်ပြထားသည့်အတိုင်း HOUSING, DRIVE SHAFT, GOVERNOR, ROTOR, HYDRAULIC HEAD, ADVANCE DEVICE, TWIN PLUNGER နှင့် TRASFER PUMP တို့ ပါဝင်သည်။ DRIVE SHAFT သည် RUBBER CUB(၂) ခုခံဆောင်၍ HOUSING တွင် တပ်ထားသည်။ နှစ်ဖက်စလုံး တွင် SPLING များဖေါ်ထားသည်။ အပြင်ဘက် SPLING သည် အင်ဂျင်တွင် တပ်ဆင်ရန်ဖြစ်ပြီး အတွင်း SPLINE ကို ROTOR ထဲတွင် စွပ်ထားသည်။

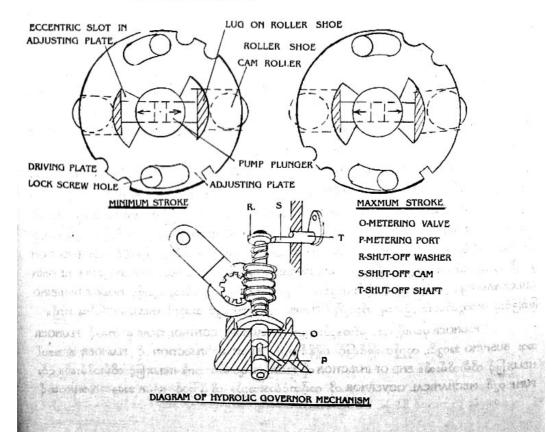
ROTOR သည် HYDRAULIC HEAD အလယ်တွင် စွပ်ထားသည်။ ROTOR ၏ အဆုံးတဖက်ရှိ ကန့်လန့်ဖြတ် အပေါက်ထဲတွင် (TWIN PLUNGER) PLUNGER နှစ်ခု တည်ရှိသည်။ အခြား တဖက်စွန်းတွင် TRANSPER PUMP ကို တပ်ဆင်ထားသည်။ ROTOR တွင် AXIAL HOLE ဖေါက်ထားပြီး ဆီဝင်ပေါက်များ (CYLINDER 4 – လုံး အင်ဂျင်ဖြစ်ပါက 4 - ပေါက်, 6 - လုံးအင်ဂျင်ဖြစ်ပါက 6 - ပေါက်) ဖေါက်ထားသည်။ ထို့ပြင် တစ်ပေါက်တည်း သော DISTRIBUTING PORT ကို ROTOR တွင် ဖေါက်ထားပြီး AXIAL HOLE နှင့် ဆက်ထားသည်။ PLUNGER များအား HOUSING တွင် တပ်ထားသော CAM RING (သို့) ROLLER SHOE များခံလျက် တပ်ဆင်ထားသည်။ CAM RING များတွင် အင်ဂျင်ရှိ CYLINDER အရေအတွက်နည်းတူ LOBE ပါရှိသည်။

၎င်း PUMP ၏ အလုပ်လုပ်ပုံမှာ ဆီစစ်အားဖြတ်၍ ဝင်လာသော ဆီများကို TRANSFER PUMP ၏ ဖိ နှိပ်အားဖြင့် HYDRAULIC HEAD တွင် ရှိသော SUPPLY ANNULUS သို့ ရောက်ရှိသည်။ ဖိနှိပ်အားကို REQULATING VALVE ဖြင့် ထိန်းထားသည်။ ထိုမှတဆင့် METEING VALVE သို့ ရောက်ရှိသည်။ VALVE သည် ဆလင်ဒါပုံဖြစ်ပြီး ဘေးဘက်တွင် မြှောင်းထွင်းထားသည်။ OOVERNOR မှတဆင့် VALVE ကို လှည့်ပေးခြင်းဖြင့် ဆီဝင်ပေါက်၏ ဧရိယာကို ပြောင်းလဲစေ၍ CHARING RHNO သို့ ရောက်ရှိသော ဆီအနည်းအများကို ထိန်းသိမ်းသည်။


ROTOR မှာ DRIVE SHAFT နှင့်အတူ လိုက်လည်သဖြင့် HEAD ရှိ ဆီပေါက်နှင့် ROTOR ရှိဆီဝင် ပေါက်တို့ တည်သောအခါ ဆီများသည် AXIAL HOLE အတွင်းဝင်ရောက်လာပြီး PLUNGER များကို အပြင်သို့ တွန်းထုတ်သည်။ ထိုအချိန်တွင် ROLLER SHOE များမှာ CAM RING ၏ အချိုင့်ထဲသို့ ရောက်ရှိနေသည်။ ROTOR ဆက်လည်၍ ROLLER များသည် CAM LOBE များပေါ် ရောက်သွားသောအခါ PLUNGER များအတွင်းသို့ ရွေ့လျား ပြီး ဆီများကို ဖိနှိပ်သည်။ ထိုအချိန်တွင် ROTOR ရှိ ဆီဝင်ပေါက်မှာ ပိတ်သွားပြီး DISTRIBUTION PORT နှင့် HEAD ရှိ ဆီထွက်ပေါက်တို့ တည့်သဖြင့် ဖိနှိပ်အားရှိသော ဆီများသည် DELIVERY CHECK VALVE ကို LINE မှ တဆင့် NOZZLE သို့ ရောက်ရှိသွားသည်။ ဆီပန်းခြင်းလျင်မြန်စွာ ပြီးဆုံးရန်အတွက် PLUNGER ပြန်အဆင်း လျင်မြန်ရန် CAM များကို အချွန်များ ပြုလုပ်ထားသည်။

PUMP အတွက် ရောဆီကို လောင်စာဆီဖြင့် ပြုလုပ်စေသည်။ PUMP မှ ဆီအနည်းအများ ချိန်ညှိရန်မှာ PLUNCER များ အပြင်သို့ ရွေ့လျားနိုင်သော အကွာအဝေးကို ချိန်ချပေးခြင်းဖြင့် ရရှိနိုင်သည်။ ROOSA MASTER PUMP တွင် ROLLER SHOE များ ထိန်းထားသော SPRING PACK ၏ အလယ်တွင်ရှိသော SCREW ကို ကြပ်လိုက်ပါက PACK ၏ အစွန်းများသည် ပိုမိုကားလာသဖြင့် PLUNCER SHOE များကို ပိုမို ရွေ့လျားစေနိုင် သည်။ ထိုနည်းဖြင့် ဆီအနည်းအများကို ချိန်ဆနိုင်သည်။

ဦးအုန်းမြင့်၏ဒီစယ်အင်ဂျင်


6 - 11

အင်ဂျင် SPEED မြန်လာသည်နှင့်အမျှ အင်ဂျင်၏ လုပ်ဆောင်မှု ကောင်းစေရန်နှင့် ဆီစားသက်သာ စေရန်အတွက် INJECTION TIMINO ပိုမိုစောပေးရန် လိုအပ်သည်။ အင်ဂျင် SPEED နှင့် လိုက်၍ TIMINO ပြောင်း လဲစေရန် CAM RINO ကို အလိုအလျောက် ရွေ့လျားစေရန် ADVANCE DEVICE ကို တပ်ဆင်ထားသည်။ CAM

Rotor and high-pressure pump from a rotary fuel pump (courtesy of Lucas Diesel Systems)

>

ဦးအုန်းမြင့်၏စီဖယ်အင်ဂျင်

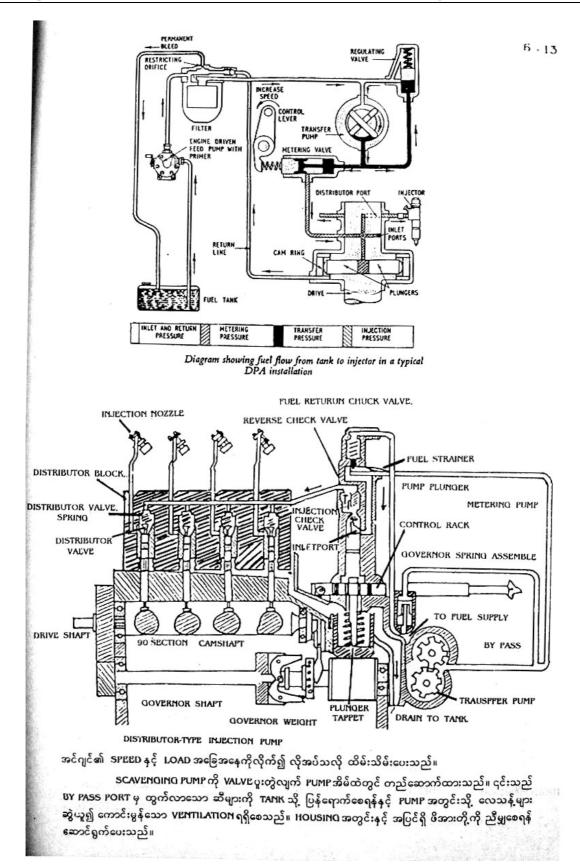
6-12

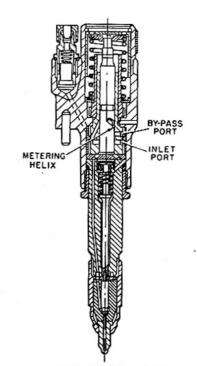
RING အား BALL PITTING တစ်ခု တပ်ဆင်ထား၍ SPRING ကန်ထားသော PISTON တစ်ခုဖြင့် ဆက်သွယ်ထား သည်။ အင်ဂျင် SPEED မြန်လာသောအခါ TRANSPER PUMP မှ ဆီဖိအားမြင့်မားလာ၍ ထို SPRING ကို တွန်းကန် ခြင်းဖြင့် CAM RING ကို ROTOR နှင့် ဆန့်ကျင်ဘက်သို့ လည်စေသဖြင့် TIMING စောလာသည်။ SPEED ကျသွား သောအခါ ဆီဖိအားနည်းသွားပြီး PISTON ကို SPRING မှ ပြန်တွန်းသဖြင့် မူလနေရာသို့ ရွှေ့လျားသည်။

၎င်း PUMP များတွင် MECHANICAL (OR) HYDRAULIC GOVERNOR တစ်ခုခု တပ်ဆင်အသုံးပြုသည်။

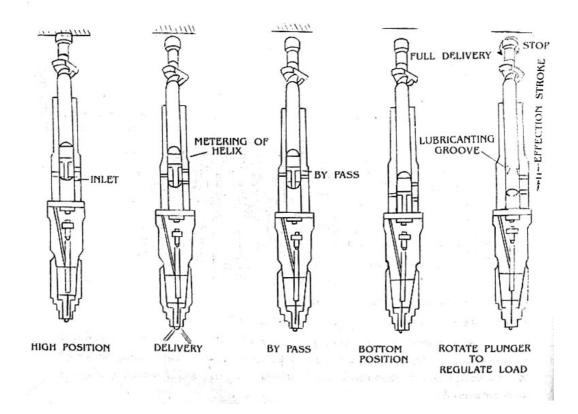
C.. INTERNATIONAL HARVESTER DISTRIBUTOR PUMP (I.H)

INTERNATIONAL HARVESTER ကုမ္ပဏီမှ ၎င်းတို့၏ CYLINDER လေးလုံးနှင့် ခြောက်လုံးအင်ဂျင်များ အတွက် DISTRIBUTOR PUMP များကို ထုတ်လုပ်ကြသည်။ CYLINDER လေးလုံးနှင့်ခြောက်လုံး အင်ဂျင်အတွက် လိုအပ်သော လောင်စာဆီပမာဏာကို PUMPING UNIT တစ်ခု(သို့) နှစ်ခုမှ တိုင်းထား၍ DISTRIBUTOR VALVE သို့ ပေးပို့ပေးသည်။ ၎င်းတို့မှ တဆင့် PIRING ORDER အတိုင်း သက်ဆိုင်ရာ NOZZLE များသို့ ပို့ပေးသည်။


PUMPING UNIT တစ်ခုဖြစ်စေး နှစ်ခုဖြစ်စေ၊ အခြေခံလုပ်ဆောင်ချက်မှာ အတူတူပင် ဖြစ်သည်။ I.H PUMP များကို အင်ဂျင် CRANK CASE အရှေ့ COVER တွင် PLANGE ဖြင့် တပ်ဆင်သည်။ ၎င်း PUMP တွင် PUMPING UNIT, DISTRIBUTOR UNIT, GOVERNOR, CAM, TAPPET နှင့် VALVE စသည်တို့ကို ပူးပေါင်း တည် ဆောက်ထားသည်။ PUMP အတွင်းသို့ အညစ်အကြေးများ မဝင်နိုင်ရန် FILTER များ ခံ၍တည်ဆောက်ထားသည်။ ၎င်း PUMP ၏ အလုပ်လုပ်ဆောင်ပုံမှာ TANK မှ ဆီများသည် FILTER အား ဖြတ်၍ PRIMARY PUMP


သို့ရောက်သည်။ ၎င်းမှတဆင့် FILTER တစ်ခုကို ထပ်မံဖြတ်၍ PUMPING UNIT ရှိ PLUNGER အပေါ်ပိုင်း RESER VOIR သို့ ရောက်ရှိသည်။ UNIT သို့ ပေးပို့သည့်ဆီ၏ဖိအား တသမတ်တည်းဖြစ်စေရန် REGULATING VALVE မှ ဆောင်ရွက်သည်။ PLUNGER အောက်သို့ ဆင်းသောအခါ PLUNGER BUSHING ရှိ PORT များ ပွင့်သဖြင့် ဆီများ သည် ဆီစစ်ကိုဖြတ်၍ PLUNGER အပေါ်ပိုင်းသို့ ဝင်ရောက်လာကြသည်။ GOVERNOR SHAPT ပေါ်ရှိ ECCENTRIC ၏ တွန်းတင်မှုကြောင့် PLUNGER အပေါ်ပိုင်းရှိ တက်သည်။ PLUNGER အပေါ်ပိုင်းရှိ HELIX သည် PORT နှစ်ခုစလုံး ပိတ်မိသောအခါ PLUNGER အပေါ်ပိုင်းရှိ ဆီများကို ဖိနှိပ်သည်။ ဖိအားရှိသောဆီများသည် PLUNGER အပေါ်ရှိ CHECK VALVE ကို ဖြတ်၍ DISTRIBUTOR BLOCK ရှိ VALVE များ၏ အပေါ်ပိုင်းသို့ ဝင်ရောက်လာကြသည်။ GOVERNOR SHAPT နှင့် ဆက်သွယ်ထားသော CAM SHAPT ၏ CAM များမှ FIREING ORDER အရ DISTRIBUTOR ရှိ VALVE များ တွန်းဖွင့်ရန် စီစဉ်ထားသည်။ ထို VALVE မှတဆင့် NOZZLE သို့ ရောက်ရှိကာ လို အစ်သော CYLINDER အတွင်းသို့ ပန်းပေးသည်။

DISTRIBUTOR CAM SHAFT သည် အင်ဂျင် SPEED ၏ တစ်ဝက်နှင့်လည်သည်။ PLUNGER နှစ်လုံး PUMP တွင် အင်ဂျင် SPEED အတိုင်းနှင့် PLUNGER တစ်လုံး PUMP တွင် အင်ဂျင် SPEED ၏ နှစ်ဆနှင့် လည်သည်။


PLUNGER ဆက်တက်၍ PLUNGER ရှိ HELIX အောက်နှတ်ခမ်းသည် BY PASS PORT ကို ဖွင့်လိုက် သောအခါ PLUNGER အပေါ်ပိုင်းရှိဆီများသည် VERTICAL SLOT နှင့် HELIX မှတဆင့် ဆီဝင်လိုင်းသို့ ပြန်လည် ရောက်ရှိသဖြင့် ဖိနှိပ်အား ကျဆင်းသွားသည်။ CHECK VALVE သည်လည်း အထိုင်တွင် ပြန်ထိုင်စေပြီး INJECTION မှာ ပြီးဆုံးသွားသည်။ တချိန်တည်းမှာပင် CHECK VALVE အတွင်း တည်ဆောက်ထားသော FUEL RETURN CHECK VALVE မှာ ပွင့်သွားသဖြင့် လိုင်းအတွင်းမှ ဆီများ၏ဖိအားမှာ ကျဆင်းသွားသဖြင့် NOZZLE DRIBBING ဖြစ်ခြင်းမှ ကာကွယ်ပေးသည်။ နောက်တကြိမ် PUMPING STROKE တွင် အဆိုပါ VALVE မှာ ပိတ်နေသည်။

PLUNGER မှပေးပို့သော ဆီအနည်းအများကို RACK နှင့် CONTROL GEAK မှ တဆင့် PLUNGER အား BUSHING အတွင်း လှည့်ပေးခြင်းဖြင့် ရရှိနိုင်သည်။ START OP INJECTION ကို PLUNGER ၏အပေါ် HELIX ဖြင့် ထိမ်းသိမ်း၏။ END OP INJECTION ကို PLUNGER များ၏အောက် HELIX ဖြင့် ထိမ်းသိမ်း၏။ ၎င်း PUMP တွင် MECHANICAL GOVERNOR ကို တပ်ဆင်ထားသည်။ ထို့ကြောင့် RACK အနေအထားမှတဆင့်

Bendix Scintilla unit injector.

P

ဦးအုန်းမြင့်၏ဒီရယ်အင်ဂျင်

6 - 15

UNIT INJECT OR

FUEL INJECTION PUMP နှင့် INJECTION MOZZLE တို့ကို ပူးပေါင်း၍ တစ်ခုတည်းအဖြစ် တည် ဆောက်ထားခြင်းကို UNIT INJECTOR ဟုခေါ်သည်။ တစ်လုံးထိုး PUMP များကဲ့သို့ပင် ၎င်းတို့အား အင်ဂျင်မှ CAM SHAFT ဖြင့် မောင်းနှင်သည်။ အကယ်၍ ချို့ယွင်းပါက အလွယ်တကူ ဖြုတ်၍ လဲလှယ်နိုင်သည်။

A. SCINTLLA DIVISION BENDIX CORPORATION

၎င်း PUMP သည် မှောက်လျက်အနေအထားတွင်ရှိပြီး NOZZLE HOLDER နှင့် တွဲလျက် UNIT တစ်ခု တည်း တည်ဆောက်ထားခြင်းဖြစ်သည်။ ပုံတွင် PUMP ၏ တည်ဆောက်ထားပုံကို ဖေါ်ပြထားသည်။ ၎င်းတွင် PLUNGER နှင့် BARREL, CONTROL RACK, SLEEVE နှင့် SPRING တို့ ပါဝင်သည်။ ၎င်း၏ အလုပ်လုပ်ပုံမှာ SCINTLLA BENDIX PUMP နှင့် အတူတူပင်ဖြစ်သည်။

ယခု UNIT INJECTOR တွင် DELIVERY CHECK VALVE မပါဝင်ချေ။ NOZZLE BODY နှင့် PUMP အိမ်ကို SLEEVE NUT ဖြင့် ဖမ်းထားသည်။ ထို့ကြောင့် NOZZLE သည် BARREL အောက်ရှိ ADAPTOR PLATE ပေါ်တွင် ခိုင်မြံစွာ ပူးတွဲနေသည်။ ၎င်း PLATE (STOP PLATE) တွင်စောင်းလျက် အပေါက်များ ဖေါက်ထားသည်။ ၎င်းအပေါက်တို့သည် NOZZLE HOLDER BODY ရှိ ဆီလိုင်းနှင့် တည့်နေသည်။ ၎င်းဆီလိုင်းတို့ကို NEEDLE VALVE အထိုင်အပေါ်နားတွင် ရှိသောအခန်း (CHAMBER) သို့ ဆက်သွယ်ထားသည်။

PUMP ၏ အပေါ်ပိုင်း ဘေးဖက်တွင် ဆီပိုက်တပ်ရန်နေရာ (၂) ခုပါရှိသည်။ တစ်ခုသည် ဆီအဝင်လိုင်း ဖြစ်၍ ကျန်တစ်ခုသည် ပိုလျံသော ဆီများ ဆီတိုင်ကီသို့ပြန်ရန် ဆီပြန်လိုင်း တပ်ဆင်ရန် ဖြစ်သည်။ ဆီထဲတွင် အညစ်အကြေးများ မပါဝင်စေရန် ဆီဝင်ပေါက်တွင် FILTER တပ်ဆင်ထားသည်။ အင်ဂျင်နှိုးထားသမျှ ကာလ ပတ်လုံး ဆီများသည် BARREL ရှိ ဆီဝင်ပေါက်မှ ဝင်လာပြီးနောက် ပိုလျှံသောဆီများသည် ဆီပြန်လိုင်းမှတဆင့် အပြင်သို့ပြန်ထွက်သွားခြင်းဖြင့် UNIT INJECTOR အတွင်းတွင် ဆီများ အဆက်မပြတ် လည်ပတ်မှုကို ဖြစ်စေသည်။ UNIT INJECTOR ကို CYLINDER HEAD တွင် ကြေး WASHER များခံလျက် ရိုးရိုး NOZZLE များကဲ့သို့ပင် တပ်ဆင် သည်။ HEAD တွင် ခိုင်မြံစေရန် တစ်နည်းနည်းဖြင့် ဖမ်းထားသည်။ PUMP အိမ်တွင် DOWEL PIN တပ်ဆင်ထား ခြင်းဖြင့် UNIT INJECTOR ကို အမြံတန်း နေရာအမှန်တွင် တပ်ဆင်စေနိုင်သည်။

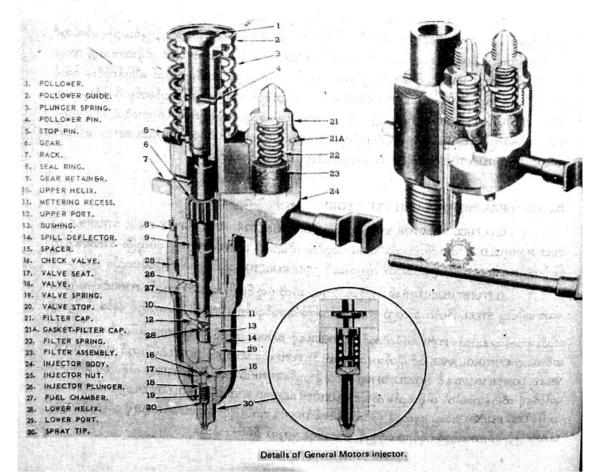
B.. GENERAL MOTORS UNIT INJECTOR

G.M FUEL INDECTOR SYSTEM တွင် UNIT TINDECTOR, FUEL SUPPLY PUMP, STRAINER နှင့် FUEL MANIFOLD တို့ ပါဝင်ကြသည်။ TANK အတွင်းမှ ဆီများကို SUPPLY PUMP မှ စုပ်ယူပြီး STRAINER ကို ဖြတ်ကာ MAINFOLD သို့ ပို့ပေးသည်။ ထိုမှတဆင့် UNIT TINDECTOR သို့ ဆက်လက်ပို့ပေးသည်။

G.M UNIT INJECTOR၏ တည်ဆောက်ထားပုံကို ပုံတွင်ဖေါ်ပြထားထားသည်။ FONOEပြုလုပ်ထား သော ခေါင်းပွ STEELကိုယ်ထည်သည် PUMP အိမ်အဖြစ် ဆောင်ရွက်၍ PUMP၏ အောက်တွင် နော်ဇယ်ကိုပူးတွဲ

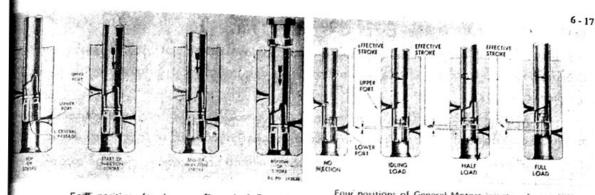
တည်ဆောက်ထားသည်။ PUMP အိမ်ထဲတွင် PLUNGER နှင့် BARKEL ထားရှိ၍ PLUNGER ပေါ်တွင် GEAR တပ် ဆင်ထား၍ CONTROL RACK ဖြင့် ချိတ်ဆက်ထားသည်။ PUMP ၏အောက်ဖက် NOZZLE ပိုင်းတွင် FLAT CHECK VALVE, LOWER VALVE နှင့် NOZZLE SPRAY TIP ပါရှိသည်။ PUMP အိမ်အပေါ်ပိုင်း FILTER ပါရှိသော ဆီအဝင် ပေါက်နှင့် ဆီပြန်အပေါက် ပါရှိသည်။ ထိုပြင် PLUNGER RETURN SPRING နှင့် FOLLOWER တို့ တပ်ဆင်ထား သည်။ UNIT INJECTOR အား နေရာမှန် တပ်ဆင်နိုင်ရန် DOWEL PIN ပါရှိပြီး CYLINDER HEAD ရှိ ၎င်းအထိုင်တွင် CLAMP ဖြင့် ဖမ်းထားသည်။ ၎င်းအားရေဖြင့် အေးစေရန်အတွက် စီမံထားသည်။

For Knowledge & Educational Purposes


6 - 16

ဦးအုန်းမြှင့်၏ဒီလယ်အင်ဂျင်

UNIT INJECTOR ၏ PLUNGER အား အင်ဂျင်၏ CAM သည် FOLLOWER နှင့် ROCKER ARM မှ တဆင့် မောင်းနှင်သည်။ SPRING အားဖြင့် အပေါ်သို့ပြန်ဝာက်သည်။ FUEL SYPPLY PUMP သည် လောင်စာဆီ များကို INJECTOR သို့ 20 P.S.I ခန့်ဖြင့် ပေးပို့သဖြင့် လောင်စာဆီများသည် FILTER ကို ဖြတ်၍ BARREL ပတ် လည်ရှိ ဆီမြောင်းထဲသို့ ရောက်ရှိသည်။ INTAKE STROKE တွင် SPRING ကန်အားကြောင့် PLUNGER အပေါ်သို့ တက်သောအခါ BARREL ရှိ INLET PORT များ ပွင့်နေသဖြင့် PLUNGER ရှေ့ရှိ BARREL အတွင်းသို့ ဆီများ ဝင် ရောက်ကြသည်။


INJECTION STROKE တွင် အင်ဂျင်၏ CAM သည် ROCKER ARM နှင့် FOLLOWER မှတဆင့် PLUNGER ကို အောက်သို့ ဖိပေးသောအခါ PLUNGER ရှေ့ရှိဆီများကို တွန်းထုတ်သည်။ PLUNGER ဆက်ဆင်းလာ ရာ BARREL ရှိ UPPER PORT ကို PLUNGER မှ စတင်ပိတ်သည်နှင့် ဆီများကို ဖိအားပေးသည် ဖိအားရှိသော ဆီများသည် FLAT CHECK VALVE ကိုဖြတ်၍ LOWER CHECK VALVE သို့ ရောက်သည်။ VALVE ကို အထိုင်မှ ကြွစေပြီး NOZZLE SPRAY TIP တွင် ရှိသော သေးငယ်သည့် လမ်းကြောင်းများမှတဆင့် အလွန်သေးငယ်သော ဆီမှုံကလေးများအဖြစ် CYLINDER သို့ ရောက်ရှိကြသည်။

CONTROL RACK နှင့် GEAR များမှတဆင့် PLUNGER များအား လှည့်ပေးခြင်းဖြင့် HELIX နှင့် PORT များ အနေအထား ပြောင်းလဲကာ ဆီအနည်းအများကို ဖြစ်စေသည်။ FLAT CHECK VALVE တပ်ဆင်ရခြင်း မှာ COMBUSTION CHAMBER မှ ဓါတ်ငွေ့များ ဆီပို့စနစ်အတွင်းသို့ ဝင်ရောက်ရောနှောခြင်းမှ ကာကွယ်ပေးရန် ဖြစ်သည်။

For Knowledge & Educational Purposes

http://khtnetpc.webs.com

For positions for downward travel of General Motors injector. Four positions of General Motors injector plunger from no injection to full injection.

FUEL SUPPLY PUMP သည် လောင်စာဆီများကို FUEL MANIFOLD နှင့် ဆီလိုင်းများမှတဆင့် INGECTOR များသို့ ပို့ပေးသည်။ ပေးပို့ရာတွင် လိုအပီသော ပမာဏထက် ပိုမိုပေးပို့သည် ထို့ကြောင့် ပိုလျှံနေ သောဆီများသည် INJECTOR BODY မှတဆင့် FILTEK ကို ဖြတ်ကာMANIFOLD သို့ပြန်ရောက်သည် ထိုကဲ့ သို့ဆီများလှည့်ပတ်ခြင်းဖြင့် INGECTOR ကို အေးစေသည့်အပြင် ဆီပို့စနစ်အတွင်းရှိ လေများကို အပြင်သို့ ထွက်သွားစေသည်။ အင်ဂျင်များ၏ အရွယ်အစားပေါ်မူတည်၍ G.M UNIT INJECTOR အမျိုးမျိုး တည်ဆောက် ထားသည်။ INJECTOR ၏ SPEED 1000 STROKE/ MIN တွင် STROKE တကြိမ်စီမှ ဆီပမာဏ 60.70 နှင့် 80cm' ထုတ်လုပ်ပေးနိုင်သော UNIT INJECTOR များ ဖြစ်သည်။

FUEL SUPPLY PUMP ေးပို့သော ဆီ၏ဖိအားတသမတ်တည်းဖြစ်စေရန် REOULATINO VAVLE (RELIVE VALVE) မှ ထိမ်းသိမ်းဝေးသည်။ ဆီ၏ဖိအားမှာ အကြမ်းအားဖြင့် 43 to 52 P.S.I ကြားတွင် ရှိသည်။ ၎င်းဖိအားထက် ကျော်လွန်ပါက BY PASS VALVE ပွင့်သွားပြီး PUMP ၏ ဆီအဝင်လိုင်းသို့ ပြန်လည်စီးခြင်းဖြင့် ဖိအားကို ထိန်းသိမ်းသည်။

MAINTAINCE OF FUEL INJECTION PUMPS

INJECTION PUMP များအား ပြုပြင်ထိန်းသိမ်းခြင်း

PUMP များကို ပြုပြင်ထိန်းသိမ်းရာတွင် နည်းလမ်းနှစ်မျိုးဖြင့် ထိန်းသိမ်းနိုင်သည်။ တစ်နည်းမှာ PREVENTIVE MAINTAINANCE ခေါ်ကြိုတင်ကာကွယ် ထိန်းသိမ်းခြင်းနှင့် တစ်နည်းမှာ PERIODIC INSPECTION, REPAIR AND OVERHAL ခေါ် အချိန်အလိုက် စစ်ဆေးပြုပြင်ခြင်းတို့ ဖြစ်သည်။

ကြိုတင်ကာကွယ်ထိန်းသိမ်းခြင်း၊ ကြည့်ရှစစ်ဆေးခြင်းနှင့် ပစ္စည်းအသေးစား လဲလှယ်ခြင်းများကို ၎င်း အင်ဂျင်အား ကိုင်တွယ်မောင်းနှင်သော OPERATORမှ ပြုလုပ်နိုင်သော်လည်း ပြင်ဆင်ခြင်းနှင့် တစ်စစီဖြုတ်ချ ပြင်ဆင်ခြင်းလုပ်ငန်းကိုမူ PUMPပြင်ဆင်ရန်အတွက် လေ့ကျင့်ပြီး အထူးကျွမ်းကျင်သည့်ပုဂ္ဂိုလ်များနှင့် စမ်းသပ်ရန် ပစ္စည်းကိရိယာများ ရှိမှသာ ပြုလုပ်ရမည်။

ကြိုတင်ကာကွယ်ထိန်းသိမ်းခြင်းလုပ်ငန်းတစ်ခုမှာ PUEL INJECTION EQUIPMENT များကို အထူး သန့်ရှင်းနေစေရန်ဖြစ်သည်။ အသုံးပြုသော လောင်စာဆီ၊ ဆီတိုင်ကီ၊ ဆီပိုက်များ၊ ဆီစစ်ဗူးများ၊ ဆီပို့ PUMP နှင့် INJECTION PUMP များကို သန့်ရှင်းစွာထားရမည်။ ဆီတိုင်ကီအတွင်းမှ သံချေးများနှင့် ရေများမပါစေရန် အထူးစစ်၍ အသုံးပြုရမည်ဖြစ်သည်။

လောင်စာဆီများကို သိုလှောင်ရာတွင် ရေခိုးရေငွေ့များ မဝင်ရောက်နိုင်စေရန် စီမံရမည်။ ပေပါဖြင့် ဖြစ်စေ၊ တိုင်ကီဖြင့်ဖြစ်စေ သိုလှောင်ရာတွင် တိုင်ကီအတွင်း ဆီကို အပြည့်ထည့်ပြီးမှသာ ထားရှိရမည်။ နေရာလွတ် ရှိနေပါက လေရှိမည်ဖြစ်သည်။ ၎င်းလေထဲရှိ ရေခိုးရေငွေ့များသည် ညအချိန် အအေးဓါတ်ကြောင့် အစက်အပေါက် များဖြစ်ကာ ဆီတိုင်ကီအောက်ပိုင်းသို့ ရေများအဖြစ် ရောက်ရှိသည်။ ထို့အတူ မော်တော်ယာဉ်များတွင် ညအိပ် ရဝ်နားမည်ဆိုပါက မောင်းမည့်တိုင်ကီအတွင်း ဆီအပြည့်ဖြည့်ပြီးမှသာ ရပ်နားသင့်ပေသည်။ ပေပါဖြင့် ဆီများကို သိုလှောင်ပါက ပေပါများကို 45 စောင်း၍ စင်များပေါ်တွင် တင်ထားပါ။ တစ်ပတ်ခန့် အနည်ထိုင်စေပြီး ပေ ပါ

>

6 - 18

ဦးအုန်းမြင့်၏ဒီရယ်အင်ဂျင်

တွင် ဆီ VALVE များကို တပ်၍ ပေပါကို မလှုပ်စေပဲ လေးပုံသုံးပုံကို ထုတ်၍အသုံးပြုပါ ဘုံဘိုင်ဖြင့်သော်၎င်း၊ ပိုက်ဖြင့်သော်၎င်း စုပ်၍ထုတ်ခြင်း မပြုပါနှင့်။ ပေပါအောက်ခြေမှ ရေနှင့်အမှိုက်များ ပါရှိပါက စက်ပစ္စည်း_{များ} ပျက်စီးစေနိုင်ပါသည်။

တိုင်ကီဖြင့်သိုလှောင်ပါက ဆီထုတ် VALVE ကို အခြေမှ အမြင့် 6° ခန့် အကွာတွင် တပ်ဆင်၍ အသုံးပြုပါ။ အောက်ခြေတွင် VALVE တစ်ခုတပ်၍ တိုင်ကီအတွင်းရှိရေနှင့်အမှိုက်များကို မကြာခဏထုတ်ပေးပါ။

ဆီပို့စနစ်တွင် ပါဝင်သော ပစ္စည်းများဖြုတ်တပ်ရာတွင် မဖြုတ်မီ ပတ်ဝန်းကျင်နေရာများတွင် အညစ် အကြေးများကို သေချာစွာ ဆေးကြောရမည်။ ဖြုတ်ပြီးပါက သေချာစွာ ဖုံးအုပ်ထားပါ။ သို့မဟုတ် ပြင်ပလေ မဝင်နိုင်ရန် စီမံထားသော SERVICING ROOMများ အတွင်းတွင်သာ ဖြုတ်တပ်ခြင်း၊ ပစ္စည်းလဲလှယ်ခြင်း၊ ချိန်ညှိခြင်း၊ စမ်းသပ်ခြင်းလုပ်ငန်းတို့ကို လုပ်ဆောင်ရမည်ဖြစ်သည်။

INSTALLATION OF PUMP (ပန့်များအင်ဂျင်တွင်တပ်ဆင်ခြင်း)

INJECTION PUMP များကို အင်ဂျင်ကို တပ်ဆင်သောအခါ ပထမဦးစွာ PUMP တပ်ဆင်မည့်_{နေ ရာကို} သန့်ရှင်းစင်ကြယ်အောင် ပြုလုပ်ရမည်။ အထူးသဖြင့် တစ်လုံးထိုး ပန့် (INDIVIDUAL PUMP) များ တပ်ဆင်ရာတွင် ပိုမိုသန့်ရှင်းရန် လိုသည်။ PUMP အိမ်သည် အင်ဂျင်၏ PUMP အထိုင်ပေါက်တွင် ကြပ်ခြင်းမရှိပဲ ကောင်းမွန် မှန်ကန်စွာ အထိုင်ပေါ်တွင် တည့်တည့်မတ်မတ် ရှိနေစေရန် ဂရုပြုရမည်။

တစ်လုံးထိုးပန့်များ TIMINO ချိန်ရာတွင် နည်း (၂)မျိုးရှိသည်။ တစ်နည်းမှာ TAPPET မှ ချိန်ဆပေး ခြင်းဖြစ်သည်။ အခြားတစ်နည်းမှာ PUMP အိမ်အောက်ဖက်တွင် SHIM ပြားခု၍ ချိန်ဆပေးခြင်းဖြင့် PLUNGER, ကို BARREL အတွင်း အထက်အောက် ချိန်ဆပေးခြင်းဖြစ်သည်။ PUMP QUIDE CUP မှ အမှတ်နှင့် PUMP အိမ် WINDOW မှ အမှတ်တို့ တည့်အောင် ချိန်ဆပေးခြင်းဖြစ်သည်။

MULTI PLUNGER PUMP များ တပ်ဆင်ရာတွင် ပထမဦးစွာ အင်ဂျင်၏ NO.1 CYLINDER အတွင်းရှိ PISTON ကို T.D.C မရောက်မီ START OF INJECTION နေရာရောက်ရှိရန် ချိန်ရမည်။ ချိန်ရာတွင် FLY WHEEL (သို့) PULLEY ပေါ်ရှိ အမှတ်နှင့် HOUSING ပေါ်ရှိအမှတ်တို့ တည့်အောင်ချိန်ရခြင်းဖြစ်သည်။ ထို့နောက် PUMP ၏ NO. 1 PLUNGER ကို ဆီစတွန်းချိန် (START OF INJECTION) နေရာရောက်အောင်လှည့်ပါ။ ထိုအချိန်တွင်

PUMP ကို အင်ဂျင်၏ PUMP အထိုင် COUPLING တွင် တပ်ဆင်ပါ။ တပ်ဆင်ရာတွင် PUMP အထိုင်ကျရန်လိုသည်။ အကယ်၍ အထိုင်မကျပဲ စောင်းနေပါက TIMING မမှန်ကနံမှုများ ဖြစ်ပေါ်နိုင်သည်။ TIMING ချိန်ညှိရန်အတွက် PUMP COUPLING တွင် ADJUSTING DEVICE ပါရှိသည်။

DISTRIBUTOR PUMP များတပ်ဆင်ရာတွင် PUMP TIMING မမှားစေရန်အတွက် DISTRIBUTOR PUMP SHAFT တွင် LINE ဖေါ်ထားခြင်း၊ OPP SET ပြုလုပ်ထားခြင်း စသည်တို့ ပြုလုပ်ထားသည်။ ထို့ကြောင့် TIMING လွဲမှားခြင်း မရှိပဲ တပ်ဆင်နိုင်သည်။

အချို့ DISTRIBUTOR PUMP SHAFT များတွင် OEAR များ တပ်ဆင်ထားပါက မဖြုတ်မီ GEAR အသွားများ ချိတ်ဆက်သည့် အနေအထားကို မှတ်သား၍ ဖြုတ်ပါ။ ပြန်တပ်ရာတွင် ၎င်း အမှတ်အသားအတိုင်း ပြန်လည်တပ်ဆင်ပါ။ ထို PUMP သုံးသော အင်ဂျင်များတွင် ၎င်း GEAR သွားများ ချိတ်ဆက်သည့် အနေအထားကို ကြည့် ရန်အတွက် အပေါက်များပါရှိသည်။

O.M UNIT INJECTOR များ TIMINO ချိန်ရာတွင် PLUNGER ၏ BARREL အနေအထားကို ၎င်းကို ဖိသောအင်ဂျင်၏ ROCKER ARM အနေအထားအား ချိန်ဆခြင်းဖြင့် ရရှိသည်။ ROCKER ARM အနိမ့်အမြင့် ချိန်ဆ ရန် TIMINO PIN များကို အသုံးပြုသည်။

မည်သို့ပင်ဖြစ်စေ PUMPထုတ်လုပ်သောအင်ဂျင်တို့မှ ညွှန်ကြားချက်ကို လိုက်နာ၍ ချိန်ဆရန်ဖြစ်သည်။

ဦးအူန်းမြင့်၏ဒီဇယ်အင်ဂျင်

6 - 19

PHASING

8

MULTI PLUNGER PUMP များတွင် CYLINDER တစ်လုံးစီသို့ လောင်စာဆီပေးဝိုသော PUMPING UNIT များကို ပူးပေါင်းထားပြီး PUMP ၏ CAM SHAFT မှ မောင်းနှင်ခဲ့သည်။ ထို့ကြောင့် PLUNGER တစ်လုံးနှင့် တစ်လုံး၏ START OF INJECTION (ဆီစတွန်းချိန်) သည် CYLINDER အရေအတွက်အတိုင်း ဒီဂရီ အချိန်ကျ ကွာခြားရမည်ဖြစ်သည်။

ဥပမာ– CYLINDER လေးလုံးပါသော FOUR STROKE ဒီဇယ်အင်ဂျင်တွင် POWER ဖြစ်ပေါ်မှုသည် တစ်လုံးနှင့်တစ်လုံး (720 ÷ 4 = 180') ကွာခြားသည်။ သို့သော် အင်ဂျင်နှစ်ပတ်လည်ပါက PUMP SHAFT သည် တစ်ပတ်သာလည်သည်။ ထိုအခါ PUMP SHAFT တစ်ပတ်လည်ပြီးတိုင်း PLUNGER အားလုံး အလုပ်လုပ်၍ ပြီးဆုံး မည်ဖြစ်သည်။ ထို့ကြောင့် ဆီစတွန်းချိန်မှာ တစ်လုံးနှင့်တစ်လုံး (360 ÷ 4 = 90') သာ ကွာခြားမည်ဖြစ်သည်။ PLUNGER တစ်လုံး ဆီစတွန်းပြီး 90' အကြာတွင် နောက်တစ်လုံး ဆီစတွန်းမည်ဖြစ်သည်။ ထိုကဲ့သို့ဖြစ်စေရန် ချိန်ညိုခြင်းသည် PHASING လုပ်ငန်းပင်ဖြစ်သည်။

အဆိုပါ PUMP များတွင် ချိန်ညှိရန်အတွက် PLUNGER အား တွန်းပေးသော TAPPET FOLLOWER တွင် ADJUSTING NUT နှင့် LOCK NUT ပါရှိသည်။ အချို့ PUMP များတွင် ချိန်ညှိရန်အတွက် SHIM ပြားများပါရှိ သည်။

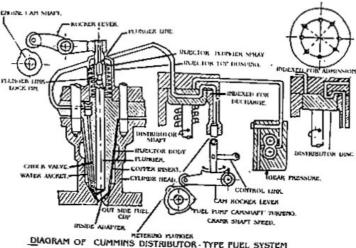
PHASING လုပ်ဆောင်ပုံအဆင့်ဆင့်မှာ ပထမဦးစွာ PUMP ကို PUMP TESTER ပေါ်တွင် တပ်ဆင်ပါ။ ထို့နောက် NO.1 PLUNGER STROKE ၏ အမြင့်ဆုံးရောက်အောင် PUMP SHAFT ကို လှည့်ပေးပါ။ TAPPET FOLLOWER ၏ LOCK NUT ကို လျော့၍ ADJUSTING NUT လှည့်ပေးခြင်းဖြင့် PLUNGER ကို တဖြည်းဖြည်း မြှင့်ပေးပါ။ ဆက်လှည့်၍မရသောအဆုံးသို့ ရောက်သောအခါ နောက်သို့ ½ TURM (သို့) 0.020 ပြန်လျော့ပါ။ ထိုနောက် LOCK NUT ကို ပြန်ကြပ်ပါ။

အဆိုပါ NO1. PLUNGER ဆီစတွန်းချိန်ကိုရှာပါ။ ရှာပုံမှာ NO.1 PUMPING UNIT ရှိ DELIVERY VALVE နှင့် SPRING ကို ဖြုတ်ထုတ်ပါ။ အထွက်နေရာတွင် ပိုက်ကောက်တစ်ခုတပ်ဆင်ပါ။ ထို့နောက် FEED PUMP ကို မောင်းပါ။ ထိုအချိန်တွင် PLUNGER သည် အောက်ဆုံးသို့ ရောက်နေသဖြင့် ဆီများသည် BARKEL ရှိ ဆီဝင်ပေါက်များမှ ဝင်၍ PLUNGER ရှေ့မှဖြတ်ကာ ဆီပိုက်ကောက်မှ ထွက်နေမည်။ ထို့နောက် PUMP SHAIT

ကို PUMP လည်ရာအတိုင်း တဖြည်းဖြည်း လှည့်ပေးပါ။ ထိုအခါ PLUNGER သည် တဖြည်းဖြည်း တက်လာပြီး BARREL၏ ဆီဝင်ပေါက်နှင့် ဆီလျှံပေါက်တို့ကို PLUNGER နှတ်ခမ်းဖြင့် တဖြည်းဖြည်းပိတ်ပေးမည်။ ထို့ကြောင့် ပိုက်ကောက်မှ ဆီထွက်မှုမှာ တဖြည်းဖြည်းရပ်သွားမည်။ စတင်ရပ်သွားသော အချိန်သည် ထို PLUNGER ၏ START OF INJECTION (ဆီစတွန်းချိန်) ပင် ဖြစ်သည်။ ထိုအချိန်၏ PUMP SHAFT အနေအထားကို PUMP TESTER ရှိ ဂိတ်တွင် 0" SETTING ချိန်ပါ။ ထို့နောက် PUMP SHAFT ကို လည်ရာအတိုင်းလှည့်ပါ။ FIRING ORDER အရ နောက် PLUNGER သည် 90" အကွာတွင် ဆီစတွန်းရမည်ဖြစ်သည်။ တွန်းချိန်ရာပြီး 90" မှန်အောင် ချိန်ပါ။ ထိုနည်းဖြင့် PLUNGER အားလုံးချိန်ညှိပါ။ ထို PHASING လုပ်ငန်းပြုလုပ်ပြီးမှသာ CALIBRATION ချိန်ညှိ ခြင်း လုပ်ငန်းကို ဆက်လက်လုပ်ဆောင်ရပါမည် ဖြစ်သည်။

ဦးအုန်းမြင့်၏ဒီဇယ်အင်ဂျှင်

CALIBRATION


PUMP CALIBRATION ဆိုသည်မှာ သတ်မှတ်ထားသော အင်ဂျင် SPEED နှင့် LOAD အခြေအနေတွင် PUMP မှ CYLINDERများသို့ လိုအပ်သော ဆီပမာဏပေးပို့နိုင်ရန်နှင့် CYLINDERအားလုံးသို့ တူညီသော ဆီပမာဏ ရရှိရန် ချိန်ဆခြင်းဖြစ်သည်။ ၎င်းကို TEST BENCH များပေါ်တွင် ကျွမ်းကျင်သော ပုဂ္ဂိုလ်များနှင့် ချိန်ဆရန် လိုသည်။ ချိန်ဆပုံမှာ PUMP အမျိုးအစားအလိုက် ကွာခြားသည်။

တစ်လုံးထိုး PUMP များတွင် ထုတ်လုပ်သော စက်ရုံမှ ချိန်ဆ၍ CONTROL RACK ပေါ်တွင် "mm"ဖြင့် အမှတ်အသားများ ရိုက်နှိပ်ထားသည်။ စက်ရုံမှထုတ်လုပ်သော အမှတ်အသားများအတိုင်း ပြန်လည်တပ်ဆင်ပါက ချိန်ဆပြီးဖြစ်သည်။

MULTI PLUNGER PUMP များကိုလည်း TEST BENCH ပေါ်တွင် CALIBRATION ပြုလုိရမည်။ TEST BENCH ပေါ်တွင် အင်ဂျင်၏ SPEED အနေအတိုင်း မောင်းနှင်၍ သတ်မှတ်သော ဆီပမာဏ ရမရ စစ်ဆေးရမည်။ စမ်းသပ်မှုကို SPEED နှစ်မျိုးတွင် ပြုလုပ်ရမည်။ ၎င်းအား GEAR SEGMENT နှင့် SLEEVE တွဲထားသော SCKEW အားလျော၍ SLEEVE မူတဆင့် PLUNGER ကို လှည့်ပေးခြင်းဖြင့် PUMPING UNIT တစ်ခုစီကို ချိန်ဆနိုင်သည်။ ထို့နောက် SCREW ကို တင်းကြပ်အောင်ပြန်လည် တင်းကြပ်ရမည်။ PUMPING UNIT အားလုံးမှ တူညီသော သတ်မှတ်ထားသော ဆီပမာဏရရှိအောင် ချိန်ဆရမည်။

G.M UNIT INJECTOR များတွင် ဆီချိန်ဆရန် မပါရှိပေ။ စက်ရုံမှထုတ်လုပ်စဉ်ကပင် ချိန်ဆပေးပြီး ဖြစ်သည်။ ၎င်းတို့ မကောင်းပါက စုံလိုက် လဲလှယ်လေ့ရှိသည်။ ဤနည်းဖြင့် CYLINDER များသို့ တူညီသော ဆီပမာဏရရှိသည်။

ထိုအတူ DISTRIBUTOR PUMP များတွင် ဆီအနည်းအများ ချိန်ညှိသော ကိရိယာပါသည်။ C.A.V နှင့် ROOSA MASTER PUMP များတွင် PLUNGER များကို STROKE ရှည်ပေးခြင်း ဆီများများ ရရှိနိုင်သည်။ တစ် ခါချိန်ရုံဖြင့် CYLINDER အားလုံးအတွက် ချိန်ပြီးသားဖြစ်သည်။ P.S.B PUMP တွင် CONTROL SLEEVE ကိုမြှင့်ပေးခြင်းဖြင့် ဆီများ ပေးနိုင်သည်။

CUMMINS DISTRIBUTOR PUMP

CUMMINS DIESEL ကုမ္ပဏီမှ ၄င်းတို့၏ ဒီဇယ် ခင်ဂျင်များ အတွက် PUMP သုံးမျိုးထုတ်လုပ်ခဲ့သည်။ 1932တွင် SINGLEDISC (S. D), 1949 တွင် DOUBLE DISC(D. D)နှင့် 1954တွင် P.T SYSTEM တိုဖြစ်ကြသည် အထက်ပါ SYSTEM(3) ရိုးလုံးမှာ LOW PRESSURE METERING SYSTEM အသုံးပြုပြီး MECHANICAL OPERATED NOZZLE များကို အသုံးပြု ကြသည်။

S. D နှင့် D. D PUMP တည်ဆောက်ပုံအနဲငယ် ကွာခြား ရက်မှလွဲ၍ အလုပ်လုပ်ဆောင်ပုံ အတူတူပင်ဖြစ်သည်၊ အသုံးပြုသော NOZZLE မှာအတူတူပင်ဖြစ်သည်။ P.T PUMP အလုပ်လုပ် ဆောင် ရီမှာ အဆိုပါ PUMP နှစ်မျိုးနှင့်ကွဲပြားပြီး ပိုမိုကောင်းမွန်သော MECHANICAL NOZZLE ကို အသုံးပြုထားသည်။

S. D AND D.D PUMP

၄င်းပန့်များတွင်အဓိကအားဖြင့် အစိဘ်အပိုင်း(၅)ခု ပါဝင် သည်။ ၄င်းတို့မှာ (I)PRESSURE AND SUCTION (2) FLOAT CHAMBER (3) METERING UNIT (4) DISTRIBUTOR (5) GOVERNOR တို့ဖြစ်ကြသည်။

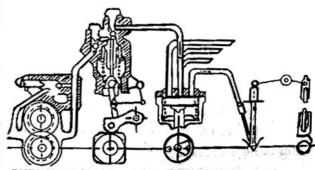
ဆီတိုင်ကိမ္ ဆီများကို METERING PUMP သို့ ပို့ဆောင် ရန်အတွက် HAND OPERATEP PRIMING PUMP တစ်ခုကို သီးခြားတတ်ဆင်ထားသည်။ ထိုပြင် PRIMING VALVE ကိုဖွင့် ထားပါက ဆီများသည် NOZZLE သို့တိုက်ရိုက်ရောက်ရှိသည် ကို ကြောင့်အင်ဂျင်စတင်နိုးပြီးနောက် PRIMING VALVE ပွင့်နေ ပါက ဆီများပြီး အင်ဂျင် SPEED ထိန်းမရဖြစ်တတ်သဖြင့် စက်နိုးပြီး ချိန်တွင် PRIMING VALVE ဖွင့်မထားမိစေရန်ဂရုပြုရမည်။

METERING PUMP ပေးပို့နိုင်သော ဆီအနဲအများကို PLUNGER ၏ STROKE အားပြောင်းလဲခြင်းဖြင့် ချိန်ဆနိုင်သည်။ GOVERNOR နှင့် THROTTLE LEVER တို့ကို သင့်တော် သော MECHANISM ဖြင့် ဆက်သွယ်ထားသည် PLUNGER အောက် တွင် ရှိသော ECEENTRIC LEVER အားရွေ့လျားစေခြင်းဖြင့် PLU-NGER STROKE အတိုအရှည်ပြောင်းလဲမှုဖြစ်ပေါ်စေပြီး NOZZLE များသို့ ပေးပို့သောဆီအနဲအများ ပြောင်းလဲစေသည်။

DISTRIBUTORသည် METERING PUMP သို့ဆီဝင် ရာက်စေရန်နှင့် METERING PUMP မှ ပေးပို့သောဆီကို FIR-NG ORDER အရ NOZZLE များသို့ ပေးပို့ရန် လုပ်ငန်းနှစ်ခုကို ဆာင်ရွက်သည်။

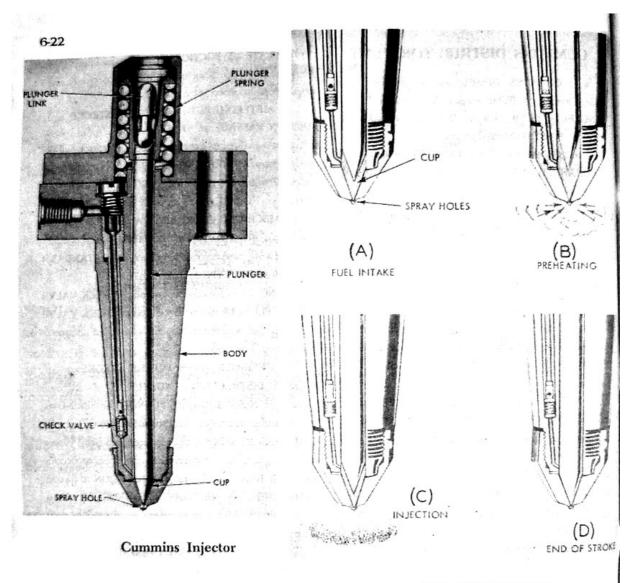
S. D PUMP တွင် ထိုလုပ်ငန်းနှစ်ခုစလုံးကို COVERP-ATE တွင် ထမ်းဆောင်ထားသော DISC တစ်ခုတည်းမှ ဆောင်ရွက် စည် D. D. PUMP တွင်မူ, သီးခြား DISTRIBUTOR DISC, (2)1 うんようひつきら)

- mainter -


6-21

COVERPLATE နှင့် SUCTION DISC တို့မှ ဆောင်ရွက်သည် ၄င်းတို့တွင် ရှိသော ဆီလိုင်းများနှင့် TIMING တိတိကျကျရှိစေရန် အထူးစီမံတည်ဆောက်ထားပါသည်။

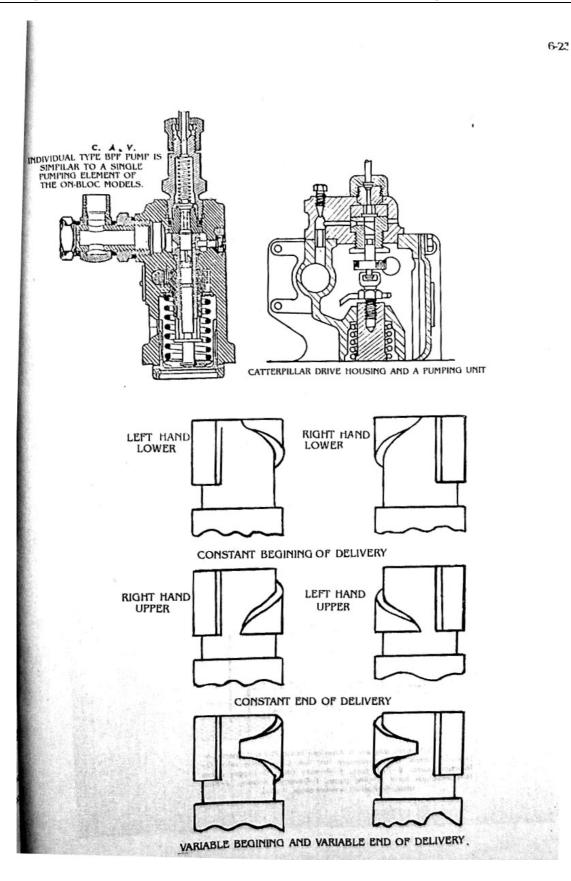
METERING PUMP on SUCTION STROKE on SUCTION PASSAGE နှင့် DISTRIBUTOR ရှိဆီဝင်ပေါက်တို့ တည်နေသဖြင့် ဆီများ ဝင်ရောက်ကြသည် PLUNGER အပေါ်သို့ တက်သောအခါ DISTRBUTOR ရှိအပေါက်သည် DISCHARGE PASSAGE နှင့်တည့်နေသဖြင့် METERING PUMP ရှိဆီများသည် သက်ဆိုင်ရာ NOZZLE များသို့ ရောက်ရှိသွားသည် ၄င်း PUMP တို့တွင် MECHANICAL(OR) HYDRAULIC GOVERNOR များကိုအသုံးပြုကြသည်။ S. D နှင့် D. D PUMP များနှင့်တွဲလျှက် NOZZLE နှစ်မျိုးအသုံးပြုကြသည်။ ၄င်းတို့မှာ (1) STANDARD နှင့် (2) TRACTOR TYPE တို့ဖြစ်ကြသည်။

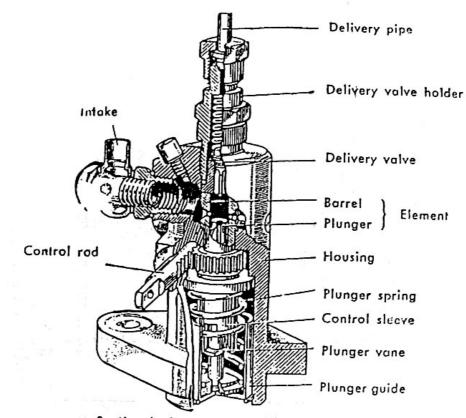

NOZZLE ဆီဝင်ပေါက်တွင် ဆီစစ်နှင့် CHECK VALVE တစ်ခုရှိ၍ PLUNGER ၏အောက်တွင် ဒုတိယ CHECK VALVE တစ်ခုရှိသည်။ ၄င်းသည်ဆီလိုင်းအတွင်းသို့ ဓါတ်ငွေများ မဝင်ရောက် စေရန် ကာကွယ်ပေးသည်။

CYLINDER အတွင်း INTAKE STROKE ဖြစ်ပေါ် နေချိန်တွင် DISTRIBUTOR မှ NOZZI.E သို့ ဆီပေးပို့သည် ထိုအချိန်တွင် NOZZLE အတွင်းရှိ PLUNGER မှာ SPRING ၏ တွန်းကန်အားဖြင့် နောက်သို့ဆုတ်နေသော အနေအထားတွင် ရှိသည်။ COMPRESSION STROKE သို့ရောက်သောအခါ ပူ၍ ဖိနိပ်အား ရှိသော လေများသည်အပေါက်ကလေးများမှ တစ်ဆင့်ဝင်ရောက်လာပြီး ဆီကို PRE HEAT ပြုလုပ်ပေးသည်။ INJECTION အချိန်တွင် CAM SHAFT GOT INJECTOR CAM 5 ROCKER ARM 9 မိနိပ်သဖြင့် PLUNGER အောက်သို့ ဆင်းလာကာဆီများကို မီးလောင် ခန်းအတွင်းသို့ ပန်းသွင်းသည်။ CAM နှင့် ROCKER ARM တို့ ကို ချိန်ဆဆက်သွယ်ပေးခြင်းဖြင့် INJECTION TIMING နှင့် ဆီပန်း သည့်နှုံးကို ထိန်းသိမ်းပေးသည်။

DISTRIBUTOR TYPE FUEL-INJECTION SYSTEM USED IN CUMMING DIESEL and the to be a series of the state of the second entopsisterones

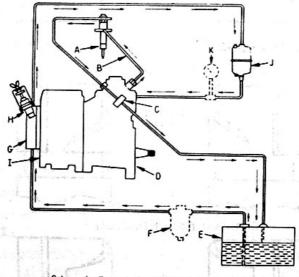
无语:"此时,

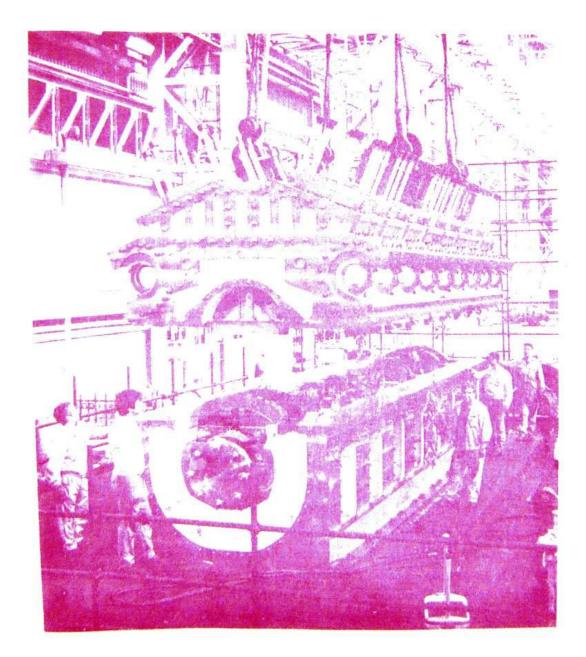

Action of Cummins Injector


LEAK PROOF PLUNGER AND BARREL

PORT AND HELIX METERING အသုံးပြုသော MULTI PLUNGER PUMP များတွင် ENGINE OIL ဖြ LUBRICATE ပြုလုပ်သည်။ ထို.ကြောင့် အချို့ MULIT PLUNGER PUMP များတွင် PLUNGER နှင့် BARREL ကြ^က ဆီယိုကျ၏။ ENGINE OIL နှင့် ရောနှောခြင်းမဖြစ်စေရန် BARREL တွင် DIAGONAL အပေါက်ဖောက်ထား၍ PLUN^{GB} နှင့် BARREL ကြားမှ စီးဆင်းလာသော ဆီများကို ဆီလိုင်တွင်း ပြန်လည်ဝင်ရောက် စေရန် စီစဉ်ထားတတ်သည်။ MULTI CYLINDER ENGINE များတွင် အသုံးပြုသော PUMP များတွင် LUBRICATION အတွက် ^{ဆီး} သီးခြားပေးပို.တတ်သေးသည်။

ပုံတွင် PLUNGER _နန် BARREL တို့မှ ယိုထွက်သော ဆီများကို ပိုက်လိုင်းအတွင်း ပြန်ဝင်ရန်နှင့် ပြုလု^{ပ်ကို} သောလမ်းကြောင်းနှင့် PLUNGER ၏ အောက်ပိုင်းကို LUBRICATE ပြုလုပ်ရန်အတွက် လမ်းကြောင်း တို့ကိုဖေါ်ပြထား^{သို့}


For Knowledge & Educational Purposes


Sectional view of Robert Bosch Type PF pump.

American Bosch series PSJ fuel injection pump, with external timing device.

Schematic diagram of American Bosch PSJ fuel system, A-Injection nozzle. B-High-pressure fuel line. C-Overflow valve. D-Injection pump. E-Fuel tank. F-Primary filter, G-Supply pump. H-Operational hand priming pump. I-Governor housing. J-Final filter. K-Fuel oil pressure gauge, if used.

>

INJECTION NOZZLE

7 - 1

NOZZLE နှင့် NOZZLE MAIN BODY တို့သည် ၎င်းတို့နှင့် တွဲဖက်အသုံးပြုခဲ့သော PUMP များ၏ အခြေအနေ၊ CYLINDER HEAD နှင့် မီးလောင်ခန်းတို့၏ အခြေအနေကို လိုက်၍ အရွယ်နှင့်ပုံသဏ္ဌာန် အမျိုးမျိုး ထုတ်လုပ်ကြသည်။ NOZZLE တို့ကို အကြမ်းအားဖြင့် နှစ်မျိုးခွဲခြားထားသည်။ (1) OPEN NOZZLE နှင့် (2) CLOSED NOZZLE တို့ဖြစ်သည်။ CLOSED NOZZLE ကို နှစ်မျိုး ထပ်မံခွဲခြားထားသည်။ (A) DIFFERENTIAL NEEDLE VALVE (OR) INWARDLY OPENING VALVE TYPE နှင့် (B) OUT WARDLY OPENING POPPET VALVE TYPE တို့ ဖြစ်သည်။

အထက်ပါအမျိုးအစားတို့တွင် မီးလောင်ခန်းနှင့် SPRAY ပုံသဏ္ဍာန်ကို မူတည်၍ PENTLE TYPE (သို့) MULTI HOLE TYPE နှစ်မျိုးစလုံးကို အသုံးပြုကြသည်။

OPEN NOZZLE

၎င်းကို ရှေးကျသော AIR INJECTION NOZZLE များတွင် အသုံးပြုသည်။ လိုအပ်သည့် ဆီပမာဏကို PUMP မှ တိုင်းထွာ၍ အင်ဂျင်၏ COMPRESSION STROKE တွင် ပေးပို့ထားသည်။ ၎င်း STROKE ဆုံးခါနီးတွင် INJECTION လုပ်ရန်အချိန်တွင် ဖိအားရှိသော လေများဖြင့် ဆီကို CYLINDER အတွင်း ပန်းသွင်းခြင်းဖြစ်သည်။ ယခုခေတ်ထုတ်လုပ်လျက်ရှိသော CUMMINS INJECTION SYSTEM များ၏ MOZZLE များမှာ PUMP မှ တိုင်းထွာ ပေးပို့လိုက်သော ဆီများသည် CHECK VALVE ကို ဖြတ်၍ NOZZLE ရှိ ဆီလိုင်းများမှတဆင့် NOZZLE ထိပ်ရှိ မြောင်းထဲသို့ ရောက်ရှိလာကြသည်။ လိုအပ်သောအချိန်တွင် MECHANICAL နည်းဖြင့် မောင်းနှင်သော PLUNGER မှ ၎င်းဆီများကို ရိုက်ချ၍ CYLINDER အတွင်းသို့ ပန်းပေးစေသည်။

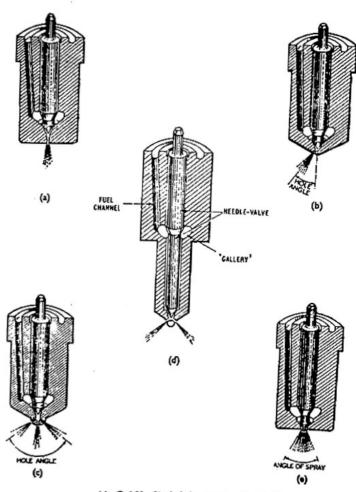
CLOSED NOZZLE

(A) DIFFERENTIAL NEEDLE VALVE (OR) INWARDLY OPENING VALVE TYPE

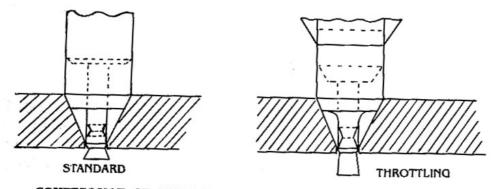
ဒီဇယ်အင်ဂျင်များတွင် အသုံးအများဆုံး NOZZLE မှာ SPRING အားဖြင့်ဖိနှိပ်မှုပေးထားပြီး HYDRAULIC အားဖြင့် အလုပ်လုပ်သော ဤ TYPE NOZZLE များဖြစ်သည်။ NOZZLE VALVE သည် သာမန်အချိန်တွင် SPRING ၏ ဖိအားဖြင့် ၎င်း၏ အထိုင်တွင် ပိတ်နေပြီး ဆီများကို လုံခြုံစွာ ပိတ်ထားသည်။ INJECTION PUMP မှဆီများ ကို ဖိနှိပ်အားဖြင့် ပေးပို့သောအခါ ဆီများသည် NEEDLE VALVE ၏ လွတ်နေသော မျက်နှာပြင်အား တွန်းကန်၍ အထိုင်မှကြွစေကာ NOZZLEထိပ်ရှိ သေးငယ်သော အပေါက်ကလေးများကို ဖြတ်၍ မီးလောင်ခန်းအတွင်း ရောက်ရှိ သွားသည်။ NEEDLE VALVE အထိုင်မှ ကြွသောအခါ လောင်စာဆီနှင့် ထိတွေ့နိုင်သော ဧရိယာ ပိုမိုကျယ်ပြန့်လာ၍ VALVE ကို ဆက်လက် ဖွင့်ထားစေနိုင်သည်။ ဆီလိုင်းတွင် ဖိအားရှိနေသမျှ ဆက်လက်ပွင့်နေပြီး CYLINDER အ တွင်းသို့ ဆီပန်းမှု ဖြစ်ပေါ်သည်။ INJECTION PUMP မှ ဆီပေးပို့မှု ပြီးဆုံးသောအခါ ဆီလိုင်းအတွင်း ဖိနှိပ်အား ကျဆင်းသွားသဖြင့် SPRING သည် NEEDLE VALVE ကို ၎င်း၏အထိုင်တွင် ပြန်ထိုင်စေခြင်းဖြင့် ဆီပေးပို့မှု ပြီး ဆုံးသည်။

(B) OUTWARDLY OPENING POPPET VALVE TYPE

OUTWARDLY OPENING POPPET VALVE NEEDLE သည် DIFFERENTIAL NEEDLE VALVE NOZZLE များထက် တည်ဆောက်ပုံ ပိုမိုလွယ်ကူ၍ ပါဝင်သော အစိတ်အပိုင်းနည်းပါးပြီး အကုန်အကျ သက်သာ သည်။ ၎င်းသည် FINTLE NOZZLE ကဲ့သို့ပင် ကတော့ပုံသဏ္ဌာန် ဆီပန်းပေးသည်။ ၎င်း NOZZLE ၏ထိပ် (TIP) တွင် အလုပ်လုပ်ဆောင်သော အစိတ်အပိုင်းအားလုံးပါဝင်၍ ၎င်းတို့ ချို့ယွင်းပါက ဖြုတ်၍ လဲလှယ်နိုင်သည်။ MOZZLE TIPတွင် FINTLE, SPRING နှင့် SPRING HANDER တို့ ပါဝင်၍ ၎င်းတို့အားလုံးကို NOZZLE


Þ

ဦးအုန်းမြင့်၏ဒီရယ်အင်ဂျှင်


7 - 2

BODY တွင် တပ်ဆင်ထားသည်။ PINTLE သည် SPRING ၏ ဖိအားကြောင့် NOZZI,E BODY တွင်ရှိသော အထိုင် တွင် ထိုင်လျက် ဆီများကို လုံခြုံစွာ ပိတ်ဆို့ထားသည်။ ဆီတွန်းချိန်တွင် INJECTION PUMP မှ ဖိအားရှိသော ဆီများသည် NOZZLE အတွင်း ဝင်ရာက်လာပြီး SPRING ဖိအားထက် ကျော်လွန်သောအခါ PINTLE သည် SPRING တွန်းအားကို ဆန့်ကျင်၍ အပြင်သို့ ရွေ့လျားသွားသည်။ ဆီများသည် NOZZLE အထိုင်ကိုဖြတ်၍ NOZZLE TIP ရှိ အပေါက်နှင့် PINTLE အကြားမှတဆင့် CONICAL အတွင်းသို့ ဝင်ရောက်သွားကြသည်။

NOZZLE TIP ရှိ PINTLE ကို CONICAL ပြုလုပ်ထားခြင်းဖြင့် PINTLE အပြင်သို့ ရွေ့သွားသောအခါ ဆီသွားလမ်းကြောင်း ဧရိယာ ပိုမိုကျယ်ပြန့်လာသဖြင့် PUMP မှ ဆီပို့နေသမျှ PINTLE သည် အထိုင်မှကြွကာ ဆီများကို CYLINDER အတွင်းသို့ ပန်းပေးနေမည်ဖြစ်သည်။ ၎င်း NOZZLE ကို PINE SPRAY မလိုအပ်သည့် PRE (သို့) TURBULANCE CHAMBER ရှိသော အင်ဂျင်များတွင် အသုံးပြုကြပေသည်။

(a) C.A.V. Single-hole nozzle.
 (b) C.A.V. single side-hole nozzle.
 (c) C.A.V. multi-hole nozzle.
 (d) C.A.V. Long sem nozzle.
 (e) C.A.V. 'pinile' nozzle.

COMPRESSION OF STANDARD AND THROTTLING PINTLE NOZZLE

NOZZLE TIP (OR) SPRAY TIP

SPRAY TIP များကို အဓိကအားဖြင့် နှစ်မျိုးခွဲခြား အသုံးပြုကြသည်။ ၎င်းတို့မှာ (1) PINTLE TYPE နှင့် (2) HOLE TYPE တို့ ဖြစ်သည်။

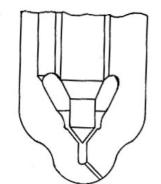
PINTLE TYPE ကို မီးလောင်ခန်း အပိုပါသော PRE (သို့) TURBULANCE (သို့) ENERGY CELL CHAMBER ပါရှိသော အင်ဂျင်များတွင် အသုံးပြုသည်။ HOLE TYPE ကို OPEN (သို့) DIRECT INJECTION TYPE များတွင် အသုံးပြုသည်။ အဓိက ကွာခြားချက်မှာ SPRAY (ဆီပန်းပုံသဏ္ဍာန်) ဖြစ်သည်။ HOLE TYPE ၏ ဆီပန်းပုံသဏ္ဌာန်မှာ ညီညာ၍ ကျစ်လစ်သည်။ PINTLE TYPE ၏ ဆီပန်းပုံသဏ္ဍာန်မှာ CONICAL ပုံစံဖြစ်သည်။ အလွန်သေးငယ်သော ဆီမှုံကလေးများဖြင့် ခေါင်းပွ (HOLLOW SPRAY) ပုံသဏ္ဍာန်လည်းဖြစ်သည်။ SPRAY ပုံ သဏ္ဍာန်၊ အပေါက်ရေိယာ၊ အရွယ်အစားနှင့် အပေါက်ထားရှိပုံ အမျိုးမျိုးကွဲပြား ခြားနားသည်။ HOLE TYPE NOZZLE တွင် အပေါက်တစ်ပေါက် (သို့) မြှောက်မြားစွာ ပါရှိ၍ အပေါက်၏ အရွယ်အစားများမှာ 0.006', 0.008'. 0.020', 0.030' ... စသည်ဖြင့် ရှိကြသည်။

PINTLE TYPE NOZZLE များတွင် NEEDLE VALVE သည် NOZZLE BODY ရှိ အပေါက်သို့ ကျော် လွန်လျက် ထွက်နေသည်။ ဤနည်းဖြင့် ANNUNAR ORIFIC ရရှိသည်။ PINTLE နောက်တစ်မျိုးမှာ THROTTLE TYPE ဖြစ်သည်။ BODY မှ အပြင်သို့ထွက်နေသော PINTLE မှာ ပို၍ ရှည်ထားသည်။ INJECTION အစပြုချိန်မှာ ဆီပန်းနှုန်းနည်းပြီး VALVE ပိုမိုပွင့်လာသည်နှင့်အမျှ ဆီပန်းနှုန်းပို၍ များလာသည်။ ထို့ကြောင့် INJECTIONအဆုံး တွင် ဆီကို ပိုမို၍ CYLINDER အတွင်းသို့ ပန်းစေသည်။ ထို NOZZLE များကို အထူး DESIGN ပြုလုပ်ထားသော PRE နှင့် AIR CELL TYPE သုံးသော ဒီစယ်အင်ဂျင်များတွင် သုံးသောအခါ အင်ဂျင်မောင်းနှင်မှု ပိုမိုညက်ညောပြီး ငြိမ်သက်ကြောင်း သိရှိရသည်။

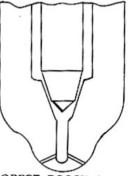
FUEL AUTOMIZATION AND PENETRATION

Soubacforce မူတည်၍ မောင်းနှင်သော SPEEDနှင့် မီးလောင်ခန်းပုံစံပေါ် မူတည်၍ မီးလောင် ခန်း အတွင်းသို့ ပန်းသည့်ဆီ အမှုံအမွှား (AUTOMIZATION)နှင့် CYLINDER အတွင်းသို့ ဆီထိုးပေါက်ဝင်ရောက်မှု (PENETRATION) အမျိုးမျိုးတို့ လိုအပ်သည်။ HOLE (သို့) PINTLE NOZZLE များတွင် ၎င်းတို့၏ ဆီပေါက်အရွယ် အစားကို လိုက်၍ AUTOMIZATION အမျိုးမျိုးကို ဖြစ်စေသည်။ ဆီပေါက်၏အရွယ်အစားငယ်ပါက ဆိမ္ခံအရွယ် အစား ပိုသေးငယ်၍ AUTOMIZATION အမျိုးမျိုးကို ဖြစ်စေသည်။ ဆီပေါက်၏အရွယ်အစားငယ်ပါက ဆိမ္ခံအရွယ် အစား ပိုသေးငယ်၍ AUTOMIZATION ပိုမိုကောင်းစေသည်။ သို့ရာတွင် မီးလောင်ခန်းအတွင်းသို့ ထိုးပေါက်ဝင် ရောက်နိုင်သည် အကွာအဝေး (PENETRATION) သည် နည်းမည်ဖြစ်သည်။ ဆီလုံးကြီးပါက ထိုးပေါက်ဝင်မှု များမည်ဖြစ်သည်။ ၎င်းအရျက်များအပြင် အင်ဂျင်၏ COMPRESSION PRESSURE, PUMP ၏ INJECTION

A Constant States and


ဦးအုန်းမြင့်၏စီယေ်အင်ဂျင်

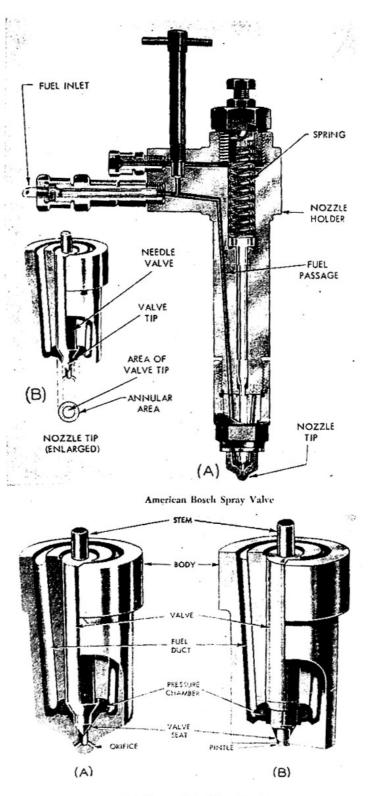
7 - 4


PRESSURE နှင့် COMBUSTION ဖြစ်ရန် လိုအပ်သော အကြောင်းအရာတို့ကို နိုင်းယှဉ်၍ အကောင်းဆုံး ကိုက်ညီ အောင် အသုံးပြုမည့် NOZZLE အမျိုးအစားကို ရွေးချယ်ရမည်။

DOUBLE ANGLE VALVE SEAT NOZZLE

NOZZLE များတွင် အသုံးပြုနေကျ VALVE SEAT များအပြင် DOUBLE ANGLE VALVE SEAT များကို အသုံးပြုကြသည်။ အသုံးပြုခြင်းကြောင့် SEAT စားခြင်းသက်သာသည့်အပြင် NOZZLE သက်တမ်းပိုမိုကြာလာ ကြောင်း တွေ့ရှိရသည်။ အခြားရရှိသော အကျိုးကျေးဇူးများမှာ (1) CUSHIN ACTION ရရှိသဖြင့် NEEDLE VALVE မှ SEAT ပေါ်သို့ ရိုက်သော IMPACT လျော့နည်းခြင်း (2) INJECTION CHARACTRISTIC ပိုမို ထိမ်းသိမ်းနိုင် ခြင်းတို့ဖြစ်သည်။

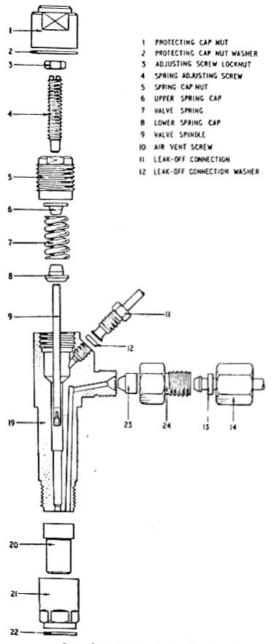
CONVENIOINAL VALVE AND SEAT


ROBERT BOSCH DOUBLE ANGLE VALVE AND SEAT

DOUBLE ANGLE VALVE SEAT NOZZLE

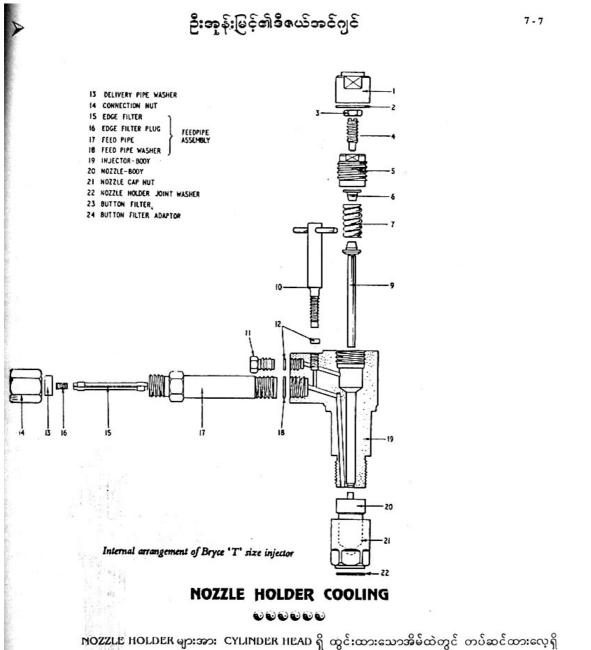
NOZZLE HOLDER

အင်ဂျင် HEAD တွင် NOZZLE များကို နေရာတကျ တပ်ဆင်နိုင်ရန်အတွက် NOZZLE HOLDER များ ကို အသုံးပြုကြသည်။ ၎င်းအတွင်းတွင် NOZZLE ၏ OPENING PRESSURE ချိန်ဆနိုင်ရန် ADJUSTER များ ပါရှိသည်။ NOZZLE ၏ OPENING PRESSURE ကို NEEDLE VALVE အား ဖိထားသော SPRING ၏ ဖိနှိပ်အား ကို ချိန်ဆခြင်းဖြင့် ရရှိနိုင်သည်။ SPRING အပေါ်တွင် ADJUSTING SCREW နှင့် LOCK NUT များ ပါရှိသည်။ ၎င်း SCREW ကို လျော့ခြင်း၊ တင်းခြင်းဖြင့် လိုအပ်သော PRESSURE ကို ချိန်ဆနိုင်သည်။ အချို့ NOZZLE များတွင် ADJUSTING SCREW အစား SPRING ပေါ်တွင် SHIM အပြားများပါရှိ၍ ၎င်း SHIM အပြားများကို လို အပ်သလို အတိုးအလျော့ ပြုလုပ်ခြင်းဖြင့် PRESSURE ကို ချိန်ဆနိုင်သည်။


ယေဘုယျအားဖြင့် PINTLE NOZZLE ၏ OPENINO PRESSURE မှာ 2000 P.S.၊ ခန့်ဖြစ်ပြီး HOLE NOZZLE ၏ PRESSURE မှာ 3000 P.S.၊ ခန့်ဖြစ်သည်။ သို့သော် အသုံးပြုသော NOZZLE နှင့် မီးလောင်ခန်းပုံစံ ပေါ်မူတည်၍ အပြောင်းအလဲရှိသည်။

Hole-Type and Pintle-Type Nozzle Tips

ဦးအုန်းဖြင့်၏ဒီ**ဖယ်အင်ဂျင်**



Internal arrangement of Bryce 'S' size injector

.

http://khtnetpc.webs.com

For Knowledge & Educational Purposes

NOZZLE HOLDER များအား CYLINDER HEAD ရှိ ထွင်းထားသောအိမ်ထဲတွင် တပ်ဆင်ထားလေ့ရှိ သည်။ NOZZLE အထိုင်တွင် COPPER GASKET တပ်ဆင်ထားခြင်းဖြင့် CYLINDER အတွင်းတွင် ဖိနှိပ်ထားသော လေနှင့် COMBUSTION ဖြစ်သော GAS တို့ကို အပြင်သို့ယိုထွက်ခြင်းမှ ကာကွယ်သည်။ အင်ဂျင်အအေးပေးစနစ် မှ ရေသည် CYLINDER HEAD ရှိ ရေသွားလမ်းကြောင်းနံရံများမှတဆင့် NOZZLE မှအပူကို သယ်ဆောင်သွားခြင်း အားဖြင့် အေးစေသည်။ ၎င်းနည်းကို INDIRECT COOLING ဟုခေါ်သည်။ အချို့အင်ဂျင်များတွင် NOZZLE ကို ရေနှင့်တိုက်ရိုက် ထိတွေ့ကာ အေးစေသည်။

NOZZLE များကို အအေးပေးစေရန် ပြုလုပ်ရမည်။ NOZZLE ၏ အလုဂ်လုပ်သော အပူချိန်မြင့်မားပါက NOZZLE အလုပ်လုပ်ပုံ မမှန်သည့်အပြင် သက်တမ်းတိုစေသည်။ NOZZLE ကို အအေးပေးခြင်းဖြင့် NEEDLE VALVE တွင် လောင်စာဆီ အညစ်အကြေးများကပ်ခြင်းနှင့် NOZZLE TIPတွင် CARBON များ ထွက်ခြင်းမှ ကာကွယ် သည်။ အချို့အင်ဂျင်ကြီးများတွင် LIQUID COOL NOZZLE များကို အသုံးပြုကြသည်။

http://khtnetpc.webs.com

8

- Aller

For Knowledge & Educational Purposes

<image><image>

Water-cooled injector.

ဦးအူနီးမြင့်၏ဒီဇယ်အင်ဂျင်

>

7 - 9

CATERPILLER NOZZLE

၎င်း NOZZLE ၏အောက်ပိုင်းတွင် မီးလောင်ခန်းပါရှိပြီး အပေါ်ပိုင်းတွင် NOZZLE ပါရှိသည်။ ၎င်းတို့ နှစ်ခုစလုံးကို CLAMPINO NUT ဖြင့် ဖမ်းလျက် ပူးတွဲတပ်ဆင်ထားသည်။ NOZZLE သည် CAPSULE ပုံသဏ္ဌာန် ဖြစ်ပြီး ၎င်းတွင် SPRINO အားဖြင့် ဖိနှိပ်မှုပေးထားသော POPPET VALVE ပါဝင်သည်။ PRE COMBUSTION CHAMBER အား အနောက်အယှက် မဖြစ်စေဘဲ CAPSULE အား ဖြုတ်၍ အသစ်လဲလှယ်နိုင်သည်။

INJECTION PUMP မှ ပေးပို့လိုက်သော ဖိအားရှိသည့် ဆီများသည် LINE မှတဆင့် NOZZLE ထိပ်ရှိ ဆီဝင်ပေါက်ကို ဖြတ်၍ NOZZLE VALVE BODY ရှိ အခန်းထဲရောက်ရှိလာကြသည်။ လုံလောက်သော ဖိအားရရှိ သောအခါ POPPET VALVE ကို ဖိထားသော SPRING ၏တွန်းအားကို ဆန့်ကျင်၍ အထိုင်မှကြွပြီး NOZZLE အထိုင်နှင့် NOZZLE ထိပ်ရှိအပေါက်မှတဆင့် မီးလောင်ခန်းအတွင်းသို့ ရောက်ရှိသွားသည်။

LH - NOZZLE

I.H DIESEL ENGINE တွင်သုံးသော POPPET VALVE NOZZLE တွင် NOZZLE FITTING, SPACER, VALVE ASSEMBLY နှင့် NOZZLE PLATE တို့ ပါဝင်ကြသည်။ VALVE ASSEMBLY တွင် VALVE BODY နှင့် SPRING အားဖြင့် ဖိနှိပ်ထားသော POPPET VALVE တို့ ပါဝင်သည်။ INJECTION PUMP မှ ဖိနှိပ်အားရှိသော ဆီများပေးပို့၍ ဆီများဖိနှိပ်အားသည် SPRING ၏ ဖိအားနှင့် COMPRESSION ဖိအားထက်ကျော်လွန်သောအခါ ဆီများသည် NOZZLE အထိုင်နှင့် NOZZLE PLATE အားဖြတ်၍ မီးလောင်ခန်းအတွင်းသို့ ရောက်ရှိသွားကြသည်။

G.M - NOZZLE

O.M DIESEL ENGINE တွင်သုံးသော UNIT INJECTION ၏ NOZZLE အစိတ်အပိုင်းများတွင် ရိုးရိုး ထုလုံး (SPHERICAL) နှင့် FLAT CHECK VALVE များကို အသုံးပြုသည်။ တချို့တွင် DUAL FLAT CHECK VALVE များကို အသုံးပြုသည်။ HIGH VALVE MODEL NOZZLE တွင် SPRING ကို အအေးပိုင်းသို့ရောက်ရှိရန် မြှင့်တင်ထားခြင်းဖြစ်သည်။

မီးလောင်ခန်းအတွက် လိုအပ်သော ဆီပန်းပုံသဏ္ဌာန် အမှုန်အမွှားဖြစ်မှုနှင့် ဆီထိုးဖေါက်ဝင်ရောက်မှု တို့မှာ INJECTION PUMP၏ ဖိအားနှင့် NOZZLE၏ထွက်ပေါက် အရွယ်အစားပေါ် မူတည်သည်။ UNIT INJECTOR တွင် ပါပင်သော FLAT CHECK VALVE မှာမူ မီးလောင်ခန်းမှ QAS များ ဆီလိုင်းအတွင်း မဝင်ရောက်စေရန် ကာ ကွယ်စေနိုင်သည်။ SPRINO၏ ဖိအားကို အတိအကျ မဟုတ်ဘဲ ချိန်ဆထားနိုင်သည်။ SPRINO ဖိအား လျော့နေ ပါက အသစ်လဲလှယ်ရမည်။ ယခင်ထုတ်လုပ်ခဲ့သော NOZZLE များ၏ PRESSURE မှာ 350 မှ 850 PSI ရှိသော် လည်း ယခုအခါ 450 မှ 850 PSI ခန့်ရှိသည်။ NOZZLE များ ပြုပြင်ရာတွင် NOZZLE များ ပိတ်နေခြင်း(သို့) မူလထက်ပို၍ ကျယ်မနေစေရန် သတိပြုရမည်။

MAINTAINANCE OF FUEL INJECTION NOZZLE

NOZZLE အား ချို့ယွင်းပ်ျက်စီးစေသော အကြောင်းအရာ (၃) ရပ်မှာ

- 1. NOZZLE အတွင်းသို့ အညစ်အကြေးများဝင်ရောက်ခြင်း
- 2. အပူရှိန်လွန်ကဲခြင်း
- 5. NOZZLE အတွင်းသို့ရေများဝင်ရောက်ခြင်း ဖြစ်သည်။

1. NOZZLE အတွင်းသို့ အညစ်အကြေးများ ဝင်ရောက်မြင်း

NOZZLE အတွင်းသို့ အညစ်အကြေးများ ဝင်ရောက်ကာ NEEDLE STEM နှင့် SEAT တို့ကို အလျင်အမြန်

ဦးအုန်းမြင့်၏ဒီဇယ်အင်ဂျင်

>

စားသွားစေနိုင်သည်။ NOZZLE ORIFIC များကို စားသွားခြင်းနှင့် ပိတ်ဆိုခြင်းတို့ ဖြစ်ပေါ်စေနိုင်သည်။ NEEDLE VALVE ၏ မျက်နှာပြင်နှင့် အထိုင်ကြားတွင် ချွေးများဝင်ရောက်နေပါက VALVE သည် SEAT ပေါ်တွင် လုံခြုံစွာ မထိုင်နိုင်သဖြင့် INJECTION အစေမြေမီနှင့် INJECTION ပြီးဆုံးသည့် အချိန်များတွင် CYLINDER အတွင်းသို့ ဆီများယိုကျနိုင်သည်။ INJECTION PRESSURE ဆုံးရှုံးမှု ဖြစ်ပေါ်၍ AUTOMIZATION မှာ ညံ့ဖျင်း၏။ ကောင်းမွန်စွာ မီးလောင်ကျွမ်းမှု မရ၍ အင်ဂျင်မှ မီးခိုးထွက်စေသည်။ ၎င်းပြင် CARBON များဖြစ်ပေါ်၏။ NOZZLE ပေါ်တွင် ၎င်း CARBON များ ကပ်လျက်ကျန်ရှိ၏။ အညစ်အကြေးများသည် NEEDLE VALVE အား ၎င်း၏ GUIDE တွင် ကျပ်နေစေ၍ ၎င်း၏လှုပ်ရှားမှုကို တားဆီးကာ INJECTION TIMINO နှင့် AUTOMIZATION ကိုလည်း ထိခိုက်စေ သည်။ အချို့ NOZZLE များတွင် VALVE STEM နှင့် GUIDE အကြား အညစ်အကြေးဝင်မှုကြောင့် စားသွားပါက DRAIN LINE သို့ ဆီများယိုစေ၍ CYLINDER များသို့ ပေးပို့သော ဆီပစာဏမှာ မတူညီနိုင်တော့ပေ။

2. အပူရိုန်လွန်ကဲခြင်း(OVER HEAT)

အင်ဂျင် OVER LOAD ဖြစ်ခြင်း၊ (သို့.) COOLING SYSTEM ကောင်းမွန်ခြင်းမရှိပါက NOZZLE များတွင် OVER HEAT ဖြစ်ပေါ်စေ၍ NOZZLE အပေါက်ပိတ်ခြင်း (သို့.) SPRAY PATTERN ပြောင်းလဲခြင်းများ ဖြစ် ပေါ်စေနိုင်သည်။ အကယ်၍ CARBON များသည် NEEDLE VALVE SEAT(သို့.) VALVE STEM များအကြားသို့ ရောက်ရှိပါက အထက်တွင် ဖေါ်ပြခဲပြီးသော NOZZLE အတွင်းသို့ အညစ်အကြေးများ ဝင်ရောက်ခြင်းနည်းတူ NOZZLE ကို ချို့ယွင်းပျက်စီးစေနိုင်သည်။

NOZZLE အား OVER HEAT မဖြစ်စေရန်အတွက် အောက်ပါအချက်များကို ဂရုပြုလိုက်နာရမည်။

- OVER LOAD ဖြင့် အင်ဂျင်အား ကြာမြင့်စွာ မောင်းနှင်ခြင်းမှ ရှောင်ရမည်။
- 2. COOLING WATER ၏ အပူရှိန်ကို သတ်မှတ်ထားသော အပူချိန်ထက် မကျော်လွန်စေရန် ဂရုပြု ရမည်။
- NOZZLE ကို အင်ဂျင်တွင် တပ်ဆင်သောအခါ NOZZLEနှင့် ၎င်း၏ အထိုင်ကြားတွင် ကောင်းမွန် သောသတ္ထုချင်းထိတွေ, မှ (GOOD METALINGE CONTACT) ရရှိရမည်။
- . 4. အကယ်၍ လိုအပ်ပါက LIQUID COOL NOZZLE များကို အသုံးပြုရမည်။

3. NOZZLE အတွင်းသို့ ရေဝင်ရောက်မြင်း

FUEL အတွင်း ရေရောနှော၍ NOZZLE အတွင်းသို့ ရောက်ရှိသွားပါက ၎င်းရေသည် NOZZLE အတွင်း ရှိ အစိတ်အပိုင်းများကို CORRSION ဖြစ်ပေါ်စေ၍ NOZZLE အပေါက်များကို ကျယ်စေခြင်း၊ NEEDLE VALVE များတိုက်စားခြင်း၊ ၎င်း၏ QUIDE တွင် ကြပ်စေခြင်း စသည်တို့ကို ဖြစ်စေနိုင်သည်။ အညစ်အကြေးနှင့် ရေမှ NOZZLE သို့ ပျက်စီးစေခြင်းမှ ကာကွယ်ရန် အကောင်းဆုံးနည်းမှာ ၎င်းတို့ကို FUEL SYSTEM သို့ မဝင်ရောက်စေရန် ကာကွယ်ခြင်းပင် ဖြစ်သည်။ သို့အတွက် FILTER များကို အသုံးပြုရမည်။ အသုံးပြုမည့်ဆီများကို သိုလှောင်စဉ် ကပင် ရေမဝင်စေရန် အထူးဂရုပြုခြင်းနှင့် FUEL SYSTEM တွင် SPECIAL FILTER များကို အသုံးပြုခြင်းဖြင့် အထက်ပါ ကာကွယ်မှုကို အကျိုးသက်ရောက်စေမည်ဖြစ်သည်။ သို့ရာတွင် ၎င်း FILTER များကို အသုံးပြုခြင်းဖြင့် အခါ FILTER WATER TRAP တွင် ရေများစုပြုခြင်း မရှိစေရန် အခါအားလျော်စွာ ရေများကို ဖေါက်ချပေးရမည်။

အပြစ်ရှိသော NOZZLE များ ရှာဖွေခြင်း

အင်ဂျင်သည် OVER LOAD မဖြစ်ပဲ မီးခိုများထွက်ခြင်း၊ အင်ဂျင်စွမ်းအားလျော့နည်းခြင်း၊ CYLINDER တစ်လုံးမှ ခေါက်သံထွက်နေခြင်း၊ အင်ဂျင်လည်ပတ်မှု မမှန်ကန်ခြင်း စသည် အပြစ်များဖြစ်ပေါ်ပါက NOZZLE ချို့ယွင်းနေသောကြောင့်ဖြစ်သည်။ အထက်ပါ ပြစ်ချက်များသည် အခြားအကြောင်းများကြောင့် ဖြစ်နိုင်သော်လည်း NOZZLE များ ကောင်းမကောင်းကို အလျင်ဆုံး စစ်ဆေးရမည်။ ချို့ယွင်းသော NOZZLE ရှာဖွေရာတွင် အင်ဂျင်ကို စက်အနေးလည် နိုးထားစဉ် NOZZLE သို့ ဝင်သည့် HIGH PRESSURE PIPE ၏ NUT ကို လျော့ပေးခြင်းဖြင့် စစ် ဦးအုန်းမြင့်၏ဒီရယ်အင်ဂျင်

7 - 11

;ဆ:နိုင်သည်။

ထိုသို့ ဖြုတ်လိုက်စဉ် အင်ဂျင်၏စက်သံ ပြောင်းလဲပါက အဆိုပါ NOZZLE ကောင်းမွန်သည်။ အကယ်၍ အင်ဂျင်စက်သံ မပြောင်းပါက ထို NOZZLE အလုပ်မလုပ်ကြောင်း သိရှိနိုင်သည်။ ထို့ကြောင့် ထိုမကောင်းသော NOZZLE ကိုဖြုတ်၍ TESTER တွင် စမ်းသပ် စစ်ဆေးရမည်။ စမ်းသပ်စစ်ဆေးရာတွင် ချို့ယွင်းချက်တွေ့ပါက ပြုပြင်ခြင်း (သို့) အသစ်လဲခြင်းတို့ ပြုလုပ်ပြီး အင်ဂျင်ပုံမှန် ကောင်းမွန်စေရန် ပြုလုပ်ရမည်။

NOZZLE TESTING

NOZZLE များကို NOZZLE TESTER ဖြင့် အောက်ပါအချက်များကို စမ်းသပ်စစ်ဆေးရမည်။

1. VALVE OPENING PRESSURE (သတ်မှတ်ထားသောဖိအားရှိမရှိ)

2. SPRAY CHARACTERISTICS (ဆီပန်းပုံသဏ္ဌာန်မှန်ကန်မှု ရှိမရှိ)

3. GENERAL LEAKAGE (ဆီယိုစီးမှု ရှိမရှိ)

4. DRIBBLING (TIP မှ ဆီတစက်စက်ကျခြင်း ရှိမရှိ)

5.POPPING

(အသံမည်ခြင်း ရှိမရှိ)

6. CHATTERING

အချို့ NOZZLE များတွင် အထက်ပါ အချက် (၆) ချက်စလုံး စမ်းသပ်ရန် မလိုအပ်ပေ။ NOZZLE များ စမ်းသပ်ရာတွင် OPEN TYPE NOZZLE စမ်းသပ်နည်းနှင့် CLOSE TYPE NOZZLE စမ်းသပ်နည်းဟူ၍ (2)မျိုး ရှိသည်။ OPEN TYPE NOZZLE မှာ SPRING အပျော့စားပါဝင်၍ ဆီဝင်ရာလမ်းကြောင်းအတိုင်း ဖွင့်၍ CLOSE TYPE NOZZLE မှာ HYDRAULIC နှင့် အလုပ်လုပ်၍ဆီဝင်ရာနှင့် ဆန့်ကျင်ဘက်သို့ ပွင့်သည်။ ၎င်းတို့တွင် HOLE နှင့် PINTLE TYPE နှစ်ခုစလုံး ပါဝင်သည်။

TESTING OPEN NOZZLE

OPEN TYPE NOZZLE တွင် OPENING PRESSURE နှင့် SEALING EFFECTIVENESS (2) မျိုးသာ စမ်းသပ်မှုပြုလုပ်သည်။ NOZZLE အား TESTER တွင် တပ်ထင်၍ ဆီပို့ပေးသည်။ QAUQE တွင် ဖိအား တဖြည်း ဖြည်းတက်လာပြီး NOZZLE VALVE ပွင့်သောအခါ ဖိအားကျဆင်းသွားမည်။ ထိုအချိန်တွင် QAUQE တွင် ပြသော ဖိအားသည် NOZZLE ၏ OPENING PRESSURE ပင် ဖြစ်သည်။ လိုအပ်သော OPENING PRESSURE ရရှိရန် ချိန်ညှိပေးရမည်။ ချိန်ညှိရန် မရှိသောအမျိုးအစားတွင် SPRING ကို လဲပေးရသည်။ CAPSULE TYPE အသုံးပြုသော CATERFILLAR NOZZLE များတွင် NOZZLE တစ်ခုလုံးကို အသစ်လဲရသည်။ UNIT INJECTOR များတွင် CONTROL RACK ကို NO FUEL POSITION အနေအထားတွင် ထား၍ စမ်းသပ်ရမည်။ သို့မှသာ ဆီများသည် PUMP CHAMBER ရှိ CHECK VALVE သို့ တိုက်ရိုက်ရောက်ရှိသွားမည် ဖြစ်သည်။

SEALING EFFECTIVE NESS (ဆီယိုမှုရှိမရှိ) ကို နည်း (2) နည်းဖြင့် စစ်ဆေးနိုင်သည်။ တစ်နည်းမှာ PUMP မှ ဆီဖိအားကို OPENING PRESSUREမရောက်မီအထိ မြှင့်တင်ပေး၍ ဆီယိုမှု ရှိမရှိ စစ်ဆေးပါ။ ၎င်းနည်းမှာ အမှန်သိသာရန် ခက်ခဲသည်။ နောက်တစ်နည်းမှာ NOZZLE TIP မှ တဆင့် ဆီဝင်လမ်းကြောင်းပြောင်းပြန် ဖိအားပေး စမ်းသပ်ခြင်းဖြစ်သည်။ ဖိအားဆုံးရှုံးမှု (PRESSURE DROP) ရှိပါက တစ်နေရာရာတွင် ယိုစီးနေကြောင်း သိရှိနိုင် သည်။

TESTING CLOSED NOZZLE

CLOSED NOZZLE များကို TESTER တွင် တပ်ဆင်၍ ဖိအားပေးပါ။ NEEDLE VALVE ပွင့်သောအခါ

7 - 12

ဦးအုန်းမြင့်၏ဒီရယ်အင်ဂျင်

ပြတ်သားသော POP ဟူသော အသံကြားရသည်။ အသံမကြားရပါက SEAT အထိုင် ချို့ယွင်းသောကြောင့်ဖြစ်သည်။ ပို၍ သေချာရန်မှာ DRY TEST ပြုလုပ်ရသည်။ ပြုလုပ်ပုံမှာ TESTER မှ ဖိနှိပ်အားကို OPENING PRESSURE မရောက်မီအထိ ပေး၍ NOZZLE TIP မှ ဆီယိုမှုရှိမရှိကို စစ်ဆေးရမည်။

နောက်စမ်းသပ်ရန်မှာ CHATTERING ဖြစ်သည်။ ဆီသည် NEEDLE VALVE ကို အထိုင်မှ တွန်းဖွင့်ပြီး နောက် VALVE အထိုင်ကို ဖြတ်၍ NOZZLE TIP သို့ လျင်မြန်စွာ ရောက်ရှိသွားရာတွင် CHATTERING အသံကြား ရမည်။ ဆီများသည် အပေါက်မှဖြတ်၍ အပြင်သို့ ထွက်သွားရသဖြင့် NOZZLE အတွင်းတွင် ဖိအားကျဆင်းသွား၍ NEEDLE VALVE ပြန်ပိတ်သွားသည်။ ဤနည်းဖြင့် PUMPING STROKE တိုင်းတွင် NEEDLE VALVE အဖွင့်အပိတ် လုပ်တိုင်း POPING နှင့် CHATTERING အသံကြားရသည်။

POPING နှင့် CHATTERING မဖြစ်သော်လည်း တချို့ NOZZLE များ ကောင်းနေတတ်သည်။ PINTLE THROTTLING NOZZLE များသည် တခါတရံ မဖြစ်ပေ။ THROTTLING NOZZLE များ စမ်းသပ်ရာတွင် 100 STROKE/MIN နှင်္ခုဖြင့် စမ်းသပ်ပါက ပုံမှန်သော ဆီပန်းပုံသဏ္ဍာန်ကို ရရှိနိုင်သည်။ ထို့ကြောင့် ၎င်း NOZZLE မျိုးကို TESTER မှ ဖိနှိပ်အား 300 PSI ခန့် ထိသာပေး၍ TIP မှ ဆီမယိုပါက ၎င်း NOZZLE ၏ VALVE အထိုင်များ ကောင်းမွန်သည်ဟု ယူဆပါ။

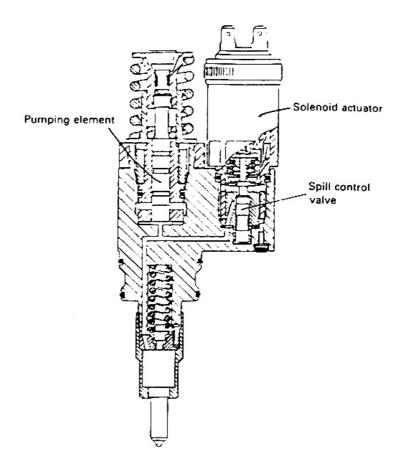
GENERAL LEAKAGE အတွက် PUMP TESTER မှ OPENING PRESSURE ရောက်အောင် ဆီပို့ပေးပြီး GAUGE ၏ မြားတံကို စောင့်ကြည့်ပါ။ စက္ကန့် 30 အတွင်း မြားတံသည် ' 0' အထိ မကျရပေ။ အကယ်၍ ကျပါက အတွင်းယိုစီးမှုများ၊ အထိုင်မကျမှုများကြောင့် ဖြစ်သည်။

NOZZLE မှ ဆီစပန်းချိန်တွင် ဖြစ်ပေါ်သောဖိအားသည် OPENING PRESSURE ဖြစ်သည်။ ၎င်းသည် သတ်မှတ်ထားသော ဖိအားဟုတ်မဟုတ် စစ်ဆေးပါ။ သတ်မှတ်သည်ထက် နည်းပါက ဆီအမှုံအမွှားကြီး၍ ဆီထိုး ဖေါက် ဝင်ရောက်မှုများမည်ဖြစ်သည့်အပြင် ဆီပန်းပုံသဏ္ဍာန်ပါ ထိခိုက်မည်ဖြစ်သည်။

NOZZLE REPAIR (ခုနာ်ဖယ်ပြန်လည်မြုပြင်ခြင်း)

NOZZLE များကို ပြုပြင်ရန် လိုအပ်ပါက ကျွမ်းကျင်သောပုဂ္ဂိုလ် စမ်းသပ်သောကိရိယာများနှင့် ထုတ် လုပ်သူများ၏ ညွှန်ကြားချက်များ ပြည့်စုံမှသာ ပြုလုပ်ရမည်။ အလုပ်ရုံတွင် VALVE များသွေးခြင်း၊ NOZZLE အပေါက်များဖေါက်ခြင်း၊ သန့်ရှင်းခြင်း၊ ပစ္စည်းလဲလှယ်ခြင်းနှင့် လိုအပ်သောချိန်ဆမှု (ADJUSTMENT) များကို ကျွမ်းကျင်သောပုဂ္ဂိုလ်များနှင့်သာ ပြုလုပ်သင့်သည်။

NOZZLE REPLACEMENT (စနာ်ဖယ်ပြန်လည်တပ်ဆင်ခြင်း)

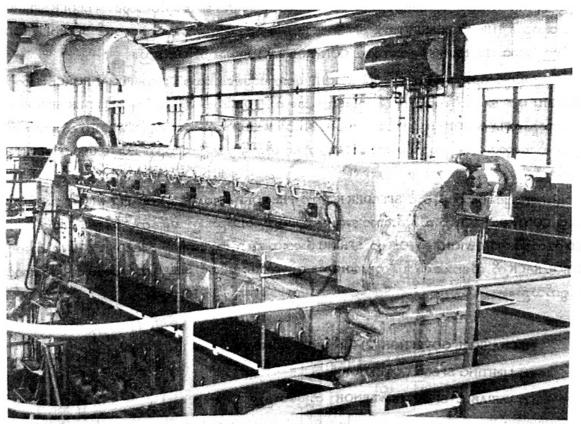

ချို့ယွင်းသော NOZZLE တွေ့ပါက အစားထိုးတပ်ဆင်ခြင်းသည် အမြန်ဆုံးပြန်လည်ပြုပြင်ခြင်းပင် ဖြစ်သည်။ NOZZLE ကို အင်ဂျင်မှ ဖြုတ်ရာတွင် တခါတရံ CARBON ချိုးများကြောင့် ဖြုတ်ရန် ခက်ခဲတတ်သည်။ ထိုအခါ PULLER (သို့) SPECIAL TOOLS များဖြင့် ဖြုတ်ရမည်။ ကလန့်၍မဖြုတ်ရ။ ဖြုတ်ပြီးသော NOZZLE အထိုင်ပေါက်များကို သန့်ရှင်းပါ။ ဖုန်များ မဝင်စေရန် သတိပြုရမည်။ NOZZLE အဖြုတ်အတပ် ပြုလုပ်တိုင်း OASKET အသစ်လဲရမည်။ ပြန်လည်တပ်ဆင်သောအခါ ကြပ်ခြင်း၊ ညိခြင်း မရှိစေရန် ဂရုပြုရမည်။ အတင်းအကြ^{ပ်} ဖိထည့်ခြင်း ရိုက်ထည့်ခြင်း မပြုလုပ်ရ။ NOZZLE အထိုင် BOLT များ တင်းကြပ်သောအခါ သတ်မှတ်ထားသော အားဖြင့် အညီအမျှ ကြပ်ရမည်။ BOLT များ လိုအပ်သည်ထက် ပိုမိုတင်းကြပ်ပါက NOZZLE အား DISTROSION ဖြစ်စေ၍ NOZZLE အထိုင်တွင် အားများစွာ သက်ရောက်ကာ CYLINDER HEAD ကွဲနိုင်သည်။

7 . 13

GOOD NOZZLE DIFFERENT BAD NOZZLE CHARACTERISTIC OF NOZZLE IN GOOD. INDIFFERENT AND BAD CONDITIONS 10 12 13 9 11 4 5 6 7 8 2 3 THE DEVELOPMENT OF THE SPRAY PATTERN IN A 4-HOLE LE YLAND INJECTOR THREE PLUMES CUT OFF FROM THE FIELD OF VIEW).

ဦးအုန်းဖြင့်၏ဒီဇယ်အင်ဂျင်

For Knowledge & Educational Purposes


Unit injector cross-section

Air Condition & Refrigeration

ទលទនះទបះលហ៍នុင្តិ ទេពុមិទលញ្ញា បញ្ញាရុបិញ្តិ នាញ្ទះទលុលាល្ថិ ល្អម្លាះនាញូញ នាញាញ់ញាញ់មួយស្រ្តស្នា ទលុលានិ៍្តិតែនិនាញូញ Air Condition & Refrigerationញាញ្ចបិន្នាះ ប្រុំឲ្យទនុប្រិ៍ប្រិសិញ្ញ៍ មញ្ញាមិញ្ញញាំរាទញាូមည៏!!

දී: කුදි: මුදි (යියෝ)

Turbocharged marine diesel engine in dredge. ROMREVOD GRENE OPPTIMEL (1)

SPEED GOVERNORS

OOVERNOR ၏ လုပ်ဆောင်ချက်မှာ အင်ဂျင်၏ SPEED နှင့် ထမ်းဆောင်သောဝန်ကိုလိုက်၍ လိုအပ် သော ဆီပမာဏ အနည်းအများကို အင်ဂျင်သို့ အလိုအလျောက် ထိန်းသိမ်းပေးပို့ရန်ဖြစ်သည်။

အင်ဂျင်အား လိုအပ်သော SPEED တွင် တသမတ်တည်း မောင်းနှင်နိုင်ရန် (သို့) သတ်မှတ်သော SPEED များအတွင်း မောင်နှင်နိုင်ရန် GOVERNOR မှ ဆောင်ရွက်ပေးသည်။ ၎င်းတွင် SPEED နှင့်အတူ လည်ပတ် သော WEIGHT တုံးများ ပါဝင်သည်။ လည်ပတ်မှုကြောင့် WEIGHT တုံးများတွင်ဖြစ်ပေါ်သော CENTRIFUGAL & FORCE ကို အသုံးပြု၍ GOVERNOR များ တည်ဆောက်ထားသည်။ ထို CENTRIFUGAL TYPE GOVERNOR (2)မျိုးမှာ

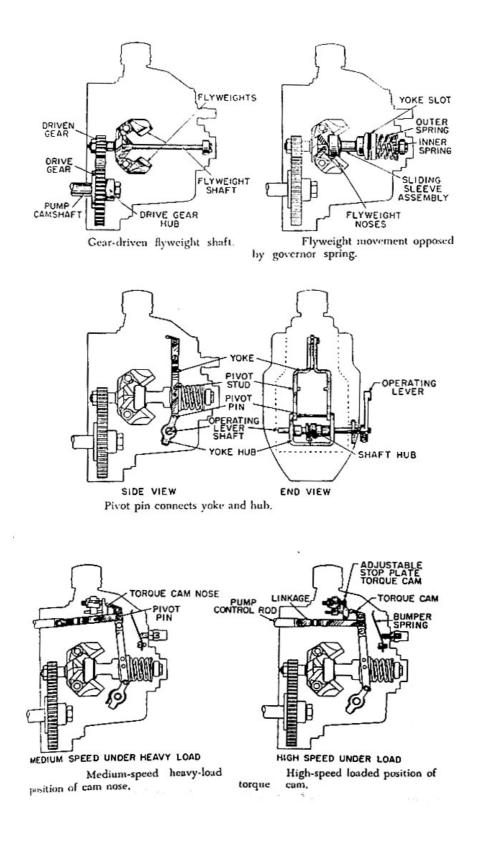
- 1. MECHANICAL (OR) DIRECT ACTING GOVERNOR
- HYDRAULLIC (OR) RELAY GOVERNOR တို့ ဖြစ်သည်။

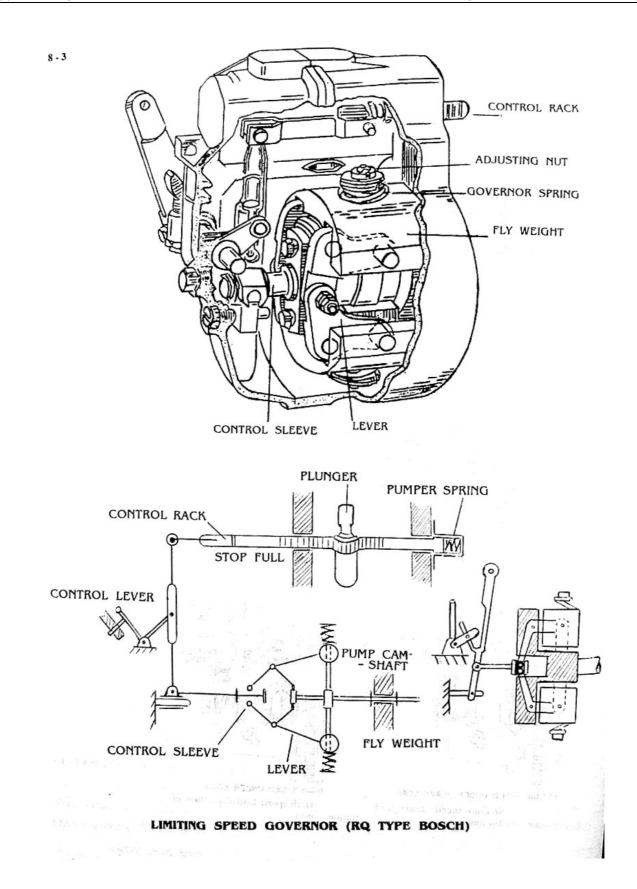
1. MECHANICAL (OR) DIRECT ACTING GOVERNOR

GOVERNOR တွင် ပါဝင်သော FLY WEIGHT များကို BALL CRANK အဆုံးတွင် တပ်ဆင်ထား၍ BALL CRANK ကို လည်ပတ်နိုင်သော BALL HEAD တွင် ပတ္တာချက်နှင့် တပ်ဆင်ထားသည်။ BALL CRANK ၏ ကျန်အစွန်းများကို THRUST BEARING ဖြင့် ဖိထား၍ THRUST BEARING ၏ အပေါ်ပိုင်းတွင် SPEEDER SPRING ဖြင့် ဖိထားသည်။ THRUST BEARING အား SPEEDER ROD ဖြင့် ဆက်သွယ်ထားသည်။ တဖန် SPEEDER ROD ကို သင့်တော်သော MECHANISM များခံလျက် CONTROL RACK ဖြင့် ဆက်ထားသည်။

အင်ဂျင်လည်ပတ်မှုကြောင့် FLY WEIGHT များတွင် ဖြစ်ပေါ်သော CENTRIFUGAL FORCE ကြောင့် FLY WEIGHT များ အပြင်သို့ကားထွက်ရန် ကြိုးစားသည်။ ထို FORCE ကို ဆန့်ကျင်၍ SPEEDER SPRING မှ တွန်းထားသည်။ FLY WEIGHT တွင် ဖြစ်ပေါ်သော C.F သည် WEIGHT တုံး အလေးချိန်၊ WEIGHT တုံးများ ဗဟို မှအချင်းဝက် အကွာအဝေးနှင့် လည်ပတ်သော SPEED တို့နှင့် တိုက်ရိုက်အချိုးကျသည်။ FC = 0.000,0248WN²R ဖြစ်သည်။

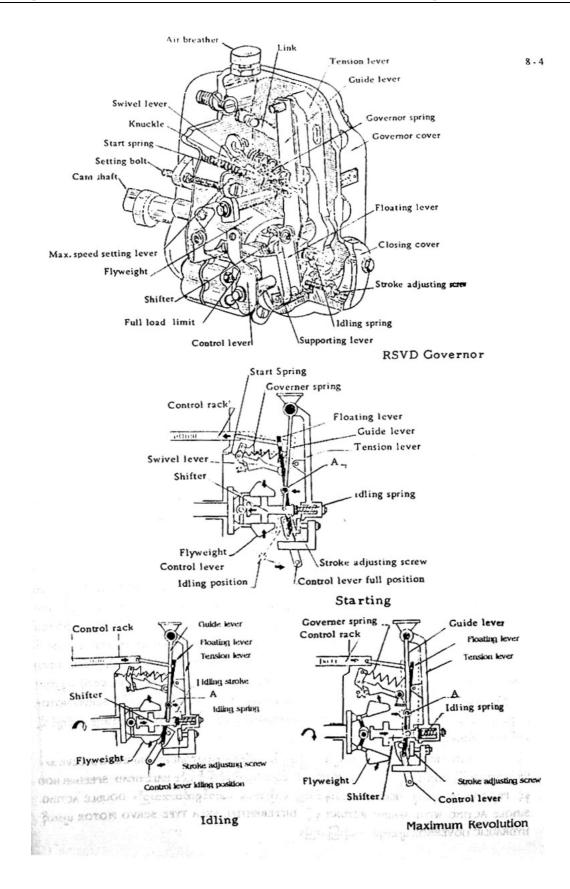
အင်ဂျင်ရပ်ထားချိန်တွင် SPEEDER ROD ကို PRE LOAD ပေးထားမှုကြောင့် FLY WIGHT အတွင်းသို့ စုပြုံနေ၍ CONTROL RACK ကို ဆီနည်းသော အနေအထားသို့ ပို့ပေးသည်။ ဤအချိန်တွင် ဝန်ရုန်းပါက အင်ဂျင် SPEED ကျလာပြီး FLY WIGHT ၏ C.F မှာ SPRING ဖိအားထက်နည်းသွားသဖြင့် SPEEDER ROD မှ တဆင့် CONTROL RACK ကို ဆီများစေရန် ပြန်တွန်းပေးမည်။ ဤနည်းဖြင့်အင်ဂျင် SPEED တသမတ်တည်းဖြစ်အောင် ဆောင်ရွက်သည်။


MECHANICAL GOVERNOR (2) မျိုးရှိသည်။ ၎င်းတို့မှာ–


(1) LIMITING SPEED GOVERNOR

(2) VARIABLE SPEED GOVERNOR တို့ဖြစ်သည်။

(1) LIMITING SPEED GOVERNOR


ဤ GOVERNOR တွင် အင်ဂျင်၏ IDEL နှင့် MAXIMUM SPEED ကို GOVERNOR မှ အလိုအလျောက် ထိန်းသိမ်းပေးသည်။ IDLE နှင့် MAXIMUM SPEED အကြား အလယ်အလတ် SPEED ကို EXTERNAL THROPTLE LEVER မှတဆင့် SPEEDER SPRING ၏ ဖိအားကို ပြောင်းလဲပေးခြင်းဖြင့် ထိန်းသိမ်းနိုင်သည်။ GOVERNOR SHAFT ပေါ်ရှိ INNER SPRING သည် အင်ဂျင်၏ IDLE SPEED ကို ထိန်းသိမ်းပေးပြီး

http://khtnetpc.webs.com

For Knowledge & Educational Purposes

ဦးအုန်းမြင့်၏ခီဇယ်အင်ဂျင်

>

di la

OUTER ရင့် INNER SPRING နှစ်ခုပေါင်းဖိအားသည် MAXIMUM SPEED ကို ထိန်းသိမ်းသည်။

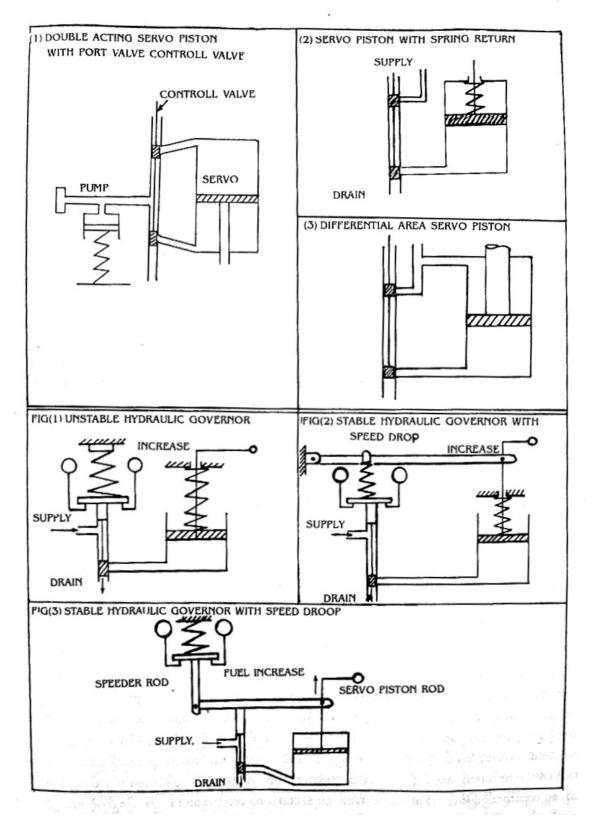
EXTERMAL LEVER သည် VERTICAL PALCRUM LEVER မှတဆင့် SPEEDER SPRING ၏ ဖိအား ခ**ြာင်းလဲပေး**ခြင်းဖြင့် IDLE နှင့် MAXIMUM SPEED အကြား လိုအပ်သော SPEED ကို ချိန်ဆနိုင်သည်။

GOVERNOR WEIGHT သည် VERTICAL FALCRUM LEVER ၏ အပေါ်ပိုင်းကို ရွေ့လျားစေလျက် လိုအပ်ောာ ဆီပမာဏကို SPEED အလိုက် ထိန်းသိမ်းပေးသည်။ ၎င်း GOVERNOR များကို SPEED နှင့် LOAD များစွာ ဂမ်းဆောင်ရသော အင်ဂျင်များ၏ FUEL INJECTION PUMP များနှင့် တွဲဖက်အသုံးပြုလေ့ရှိသည်။

(2) VARIABLE SPEED GOVERNOR

LOAD သာလျှင် အဓိကဖြောင်းလဲသော အင်ဂျင်များတွင် VARIABLE SPLED GOVERNOK ကို သုံး ကြသည်။ လိုအပ်သော SPEED ကို ချိန်ဆထားပြီးနောက် အင်ဂျင်၏ LOAD အခြေအနေကို လိုက်၍ လိုအပ်သော ဆီပမာဏကို GOVERNOR မှ အလိုအလျောက် ထိန်းသိမ်းသည်။ ၎င်းအား သင့်တင့်သော GEAR များနှင့် ဆက် သွယ်၍ GOVERNOR SILAIT ၏ SPEED ကို မြှင့်တင်ကာ WEIGHT များတွင် CENTRIFUGAL EFFECT ပိုခို ရရှိရန် ဆောင်ရွက်ထားသည်။

WEIOHT တုံး၏ ရွေ့လျားမှုသည် THRUST SLEEVE မှ တဆင့် ROCKER SHAFT သို့ရောက်သည်။ ၎င်း ROCKER SHAFTကို SPRINGဖြင့် ဆန့်ကျင်၍ ဆွဲထားသည်။ ADJECTING SCREW ကို လှည့်ပေးခြင်းဖြင့် SPRING ရှိတ်ထားသော BLOCK တုံးကို ရွေ့လျားစေခြင်းဖြင့် SPRING တင်းအား ပြောင်းလဲမှုဖြစ်ပြီး SPEED ကို ချိန်ဆနိုင်သည်။ ROCKER အပေါ်ပိုင်းကို ADJUSTING LINKAGE မှတဆင့် ဆက်ထားပြီး စက်ရပ်နိုင်ရန် MANUAL SHUT OFF LEVER ကို တပ်ဆင်ထားသည်။


စက်စနိုးချိန်တွင် SPRING ဆွဲအားသည် RACK အား FULL FUEL POSITION သို့ ဆွဲထားပြီး အင်ဂျင် SPEED မြန်လာသည်နှင့်အမျှ C.F သည် ROCKER LEVER နှင့် RACK အား SPRING ဆွဲအားနှင့် ညီမျှ သည်အထိ အပြင်သို့ တွန်းထုတ်သည်။ FULL LOAD နှင့် NO LOAD POSITION အကြားတွင် SPEED အလွန် အမင်း ပြောင်းလဲမှုကို REGULATING SCREW MECHANISM မှ ချိန်ဆနိုင်သည်။

2. HYDRAULIC GOVERNOR

ဤ GOVERNOR ၏ လုပ်ဆောင်ချက်သည် FLY WEIGHT ပေါ်တွင် သက်ရောက်သော C.F ပေါ်တွင် မူတည်သည်။ C.F သည် MECHANICAL GOVERNOR မှာကဲ့သို့ FUEL CONTROL MECHANISM ကို တိုက် ရိုက်မောင်းနှင်ခြင်း မပြုပေ။ SPEEDER ROD အား PISTON TYPE PILOT VALVE နှင့် ဆက်သွယ်ထား၍ ၎င်းမှ တဆင့် SERVO MOTOR သို့ စီးဝင်သော HIGH PRESSURE OIL ကို ထိန်းသိမ်းထားသည်။ SERVO MOTOR မှ တဆင့် PUMP ၏ FUEL CONTROL MECHANISM သို့ ဆက်သွယ်ထားသည်။ ENGINE SPEED အနည်းငယ် ပြောင်းလဲမှုသည် WEIGHT တုံးများ၏ C.F ကို ပြောင်းလဲစေ၍ SPEEDER SPRING ၏ ဖိအားနှင့် BALL HEAD ASSEMBLY ၏ FRICTION အားတို့ကို ဆန့်ကျင်ပြီးလျှင် SPEEDER ROD မှတဆင့် PILOT VALVE ကို ရွေ့လျား စေသည်။ ထို့ကြောင့် SERVO MOTOR အတွင်းသို့ HIGH PRESSURE OIL များ ဝင်ရောက်စေပြီး SERVO MOTOR အလုပ်လုင်စေကာ ၎င်းမှတဆင့် FUEL CONTROL MECHANISM ကို လိုအပ်သလို ထိန်းသိမ်း၍ အင်ဂျင်သို့ ပေးပို့သော ဆီအနည်းအများကို ဖြစ်ပေါ်စေသည်။

ANTI FRICTION BEARING များ အသုံးပြုခြင်းဖြင့်၎င်း၊ PILOT VALVE (OR) VALVE SLEEVE အား HIGH SPEED ဖြင့် လည်စေ၍ STATIC FRICTION ကို ဖျောက်ဖျက်ခြင်းဖြင့် ၎င်း BALL HEAD, SPEEDER ROD နှင့် PILOT VALVE များကို PRICTION နည်းနိုင်သမျှ နည်းစေရန် ဆောင်ရွက်ထားသည်။ DOUBLE ACTING, SINGLE ACTING WITH SPRING RETURN နှင့် DIPPERENTIAL AREA TYPE SERVO MOTOR များကို HYDRAULIC GOVERNOR များတွင် အသုံးပြုသည်။

WW.wales.

Þ

8 - 7

ဦးအုန်းမြင့်၏ဒီဖယ်အင်ဂျင်

ပုံတွင် DOUBLE ACTING SERVO MOTOR ကို ဖေါ်ပြထားသည်။ PRESSURE ရှိသော ဆီများကို PILOT VALVE ၏ အလယ်သို့ ပေးပို့သည်။ သို့ရာတွင် SERVO ၏ PGRT (2) ခုလုံးကို PISTON မှ ဖုံးအုပ်ထားသည်။ PISTON အောက်သို့ အနည်းငယ်ရွေ့လျားမှုသည် SERVO PISTON ၏ အောက်ပိုင်းသို့ ဆီများ ဝင်ရောက် စသည်။ SERRVO PISTON ၏ အပေါ်ပိုင်းကို လေထုသို့ ဖွင့်လိုက်ခြင်းဖြင့် လေထု PRESSURE သို့ ရောက်စေသည်။ ထို့ ကြောင့် PISTON သည် အောက်မှ ဆီ၏ဖိအားဖြင့် အပေါ်သို့ တက်သွာ ရသည်။ ဤနည်းအတိုင်းပင် PILOT VALVE အပေါ် ရွေ့လျားမှုသည် SERVO PISTON အား အောက်သို့ ရွေ့လျားစေသည်။

ပုံ (2)တွင် SINGLE ACTING WITH SPRING RETURN SERVO MOTOR ကို ဖော်ပြထားသည်။ PILOT VALVE အောက်သို့ ရွေ့လျားသောအခါ SERVO PISTON အထက်သို့ ရွေ့လျားစေမည်ဖြစ်ပြီး PILOT VALVE အပေါ်သို့ ရွေ့လျား၍ SERVO PORT DRAIN ကို ဖွင့်လိုက်သောအခါ SPRING ၏ ဖိအားဖြင့် SERVO PISTON အောက်သို့ ရွေ့လျားမည်ဖြစ်သည်။

ပုံ (3) တွင် DIFFERENTIAL AREA PISTON SERVO ကို ဖော်ပြထားသည်။ SERVO PISTON ၏ အပေါ်ပိုင်းတွင် DIAMETER ကြီးသော PISTON ROD တပ်ဆင်ထားခြင်းဖြင့် အောက်ပိုင်းရေိယာထက် တစ်ဝက်ခန့် ငယ်စေသည်။ PISTON ၏ အပေါ်ပိုင်းတွင် ဆီ၏ဖိနှိပ်အား အမြံ ရောက်ရှိနေသည်။ PILOT VALVE အောက်သို ရွေ့လျား၍ SERVO အောက်ပိုင်းရှိ အပေါက်ကို ဖွင့်လိုက်သောအခါ SERVO PISTON အောက်ပိုင်းသို့ ဆီများ ဝင် လာ၍ PISTON အပေါ်သို့ ရွေ့လျားသည်။ PILOT VALVE အထက်သို့ ရွေ့လျား၍ DRAIN ဖွင့်လိုက်သောအခါ ဆီဝင်လိုင်း ပိတ်သွားပြီးလျှင် DRAIN LINE ပွင့်သွား၍ PISTON အပေါ်ရှိ ဆီ၏ဖိအားဖြင့် SERVO PISTON အပေါ်သို့ ရွေ့လျားသည်။

မည်သည့် SERVO အမျိုးအစားတွင် ဖြစ်စေ PISTON VALVE အထက်အောက် ရွေ့လျား၍ ဆီပေါက် ဖွင့်ခြင်း၊ ပိတ်ခြင်း ပြုလုပ်ပေးပါက SERVO PISTON အထက်အောက် ရွေ့လျားသည်။

BALL HEAD CONTROL OF SERVO MOTOR

အင်ဂျင်မောင်းနှင်မှု ငြိမ်သက်ရန်နှင့် SPEED ထိန်းသိမ်းမှု တည်ငြိမ်စေရန်အတွက်BALL HEAD နှင့် PILOT VALVE တို့ကို အလွယ်ကူဆုံးနှင့် ရှင်းလင်းစွာ ဆက်သွယ်ရန် လိုအပ်သည်။

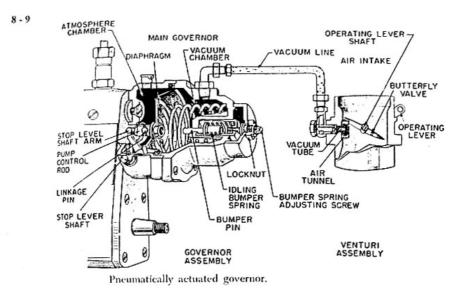
ပုံ ၊ တွင် SPEED ROD နှင့် PILOT VALVE တို့ကို တိုက်ရိုက်ဆက်သွယ်၍ SPRING LOADED SERVO PISTON ၏ ဆီဝင်လမ်းကြောင်းကို ထိန်းသိမ်းပုံ ဖေါ်ပြထားသည်။ ၎င်းအမျိုးအစားတွင် PILOT VALVE ပိတ်နေ၍ SERVO CYLINDER အတွင်းသို့ ဆီအဝင်အထွက် မရှိသောအချိန် တစ်ချိန်တည်း၌သာ ENGINE ငြိမ်သက်မှု ရှိသည်။ GOVERNOR SPEEDER SPRING အား ချိန်ဆထားသော PRESSURE နှင့် PILOT VALVE ပိတ်ထားသော အခြေအနေသည် SPEED တစ်ခု၌သာဖြစ်နိုင်သည်။ ကျန် SPEED များတွင် အင်ဂျင်လည်ပတ်မှု ငြိမ်သက်မည်မဟုတ်ပေ။ အင်ဂျင်၏ GOVERNOR SPEED SETTING ရောက်မီ PILOT VALVE သည် SERVO ရှိ ဆီဝင်ပေါက်အား ဖွင့်ထားသဖြင့် SERVO PISTON သည် အထက်သို့ ရွေ့လျား၍ အင်ဂျင်သို့ ဆီပေးပို့မှု များ လာမည် ဖြစ်သည်။ အင်ဂျင် SPEED တဖြည်းဖြည်း ဖြန်လာ၍ GOVERNED SPEED သို့ ရောက်သောအခါ ဆီမှာ အလွန်များပြားစွာ ပေးဝို့မည်ဖြစ်သဖြင့် OVER SPEED ဖြစ်နေသည်။ ဤနည်းဖြင့် PILOT VALVE ကို ဆန့်ကျင် ဖက် DIRECTION သို့ ရွေ့စေ၍ ENGINE သို့ ပေးပိုသော ဆီ၏ပမာဏ္ ချက်ခြင်းလျော့ကျလာမည် ဖြစ်သော်လည်း GOVERNED SPEED သို့ ရောက်ချိန်တွင် PUEL CONTROL MECHANISM သည် လွန်မင်းစွာ ဆီနည်းသည့်ဘက် သို့ ရွေ့လျားသွားပြီးဖြစ်၍ ENGINE မှာ GOVERIED SPEED ထက် လျော့ကျသွားသည်။ ထို့ကြောင့် အင်ဂျင်၏ လည်ပတ်မှုမှာ ငြိမ်သက်မှုမရှိပဲ HUNTING ဖြစ်နေသည်။ အင်ဂျင်ကို ငြိမ်သက်စွာ လည်ပတ်စေရန်အတွက် ယခု ထက် ကောင်းမွန်သော ထိန်းသိမ်းဆက်နွယ်မှုမျိုးများ လိုအပ်သည်။ Þ

ဦးအုန်းမြင့်၏ဒီဇယ်အင်ဂျင်

8.8

အင်ဂျင်ငြိမ်သက်မှ SPEED DROOP ရရှိရန်အတွက် အသုံးပြုသောနည်းကို ပုံ II တွင် ပေါ်ပြထား သည်။ ၎င်းနည်းတွင် SERVO PISTON နှင့် SPEEDER SPRING SETTING ကို LINKAGE တစ်ခုနှင့် ဆက်သွယ် ထားသည်။ ဤနည်းဖြင့် အင်ဂျင်သို့ ဆီပေးပို့မှု များလာသည်နှင့်အမျှ SPEED SETTINGမှာ လျော့နည်းလာသည်။ SPEED DROOP အနည်းအများမှာ SERVO နှင့် SPEEDER SPRING တွင် ဆက်သွယ်ထားသော LINKAGE အချို့ ပေါ်တွင် မတည်၍ အများအားဖြင့် ၎င်းကို ချိန်ဆနိုင်သည်။

အင်ဂျင်သည် GOVERNED SPEED ထက် နေးစွာလည်ပတ်နေချိန်တွင် PILOT VALVE သည် အောက်သို့ ရွေ့လျားလာ၍ SERVO ရှိ အပေါက်ကို ဖွင့်ပြီး ဆီများ SERVO PISTON အောက်သို့ ဝင်ရောက်လာသဖြင့် SERVO PISTON အပေါ်တက်လာသည်နှင့် SPEEDER SPRING ၏ PRESSURE လျော့နည်းသွားသည်။ ဤနည်းဖြင့် SERVO PISOTN အလွန်အမင်း ရွေ့လျားခြင်းမှ ကာကွယ်၍ အင်ဂျင် HUNTING ဖြစ်ခြင်းမှ ကာကွယ်ပေးသည်။


ပုံ III တွင် SPEED DROOP ကို ရရှိရန်နည်းလမ်းတစ်မျိုးကို ပေါ်ပြထားသည်။ ၎င်းတွင် FLOATING LINKAGE တစ်ချောင်းကို SPEEDER ROD PILOT VALVE STEM နှင့် SERVO PISTON ROD များကို ဆက်သွယ် ထားသည်။ ၎င်း၏အလုပ်လုပ်ဆောင်ပုံမှာမူ အထက်ပေါ်ပြပါ နည်းနှင့် အတူတူပင်ဖြစ်သည်။

PNEUMATIC GOVERNOR

PTIEUMATIC GOVERNOR အမျိုးအစားသည် ပေါ့ပါးခြင်း၊ လွယ်ကူခြင်းနှင့် တည်ဆောက်မှုစရိတ် အကုန်အကျ နည်းပါးသည်။ ၎င်းတို့ကို TRACTORများနှင့် မော်တော်ယာဉ်အင်ဂျင်များတွင် အသုံးပြုသည်။ ၎င်း၏ တည်ဆောက်ထားပုံကို ပုံတွင် ဖေါ်ပြထားသည်။

ACCELERATOR PEDALER ကို AIR HORM ရှိ BUTTER PLY VALVE ဖြင့် ဆက်သွယ်ထားသည်။ BUTTER FLY VALVE အဖွင့် အနည်းအများနှင့် အင်ဂျင်၏ SPEED အနည်းအများအားဖြင့် VENTURI UNIT အတွင်း ဖြတ်သန်းသွားသော AIR VELOCITY အနည်းအများကို ဖြစ်ပေါ်စေသည်။ GOVERNOR HOUSING အတွင်းတွင် DIAPHRAGM တစ်ခု ပါဝင်၍ ၎င်းအား FUEL CONTROL RACK ဖြင့် တိုက်ရိုက်ဆက်သွယ်ထားပြီး DIAPHRAQM သည် HOUSINO ကို နှစ်ပိုင်း ခြားထားသည်။ တစ်ခန်းအား လေထုတွင် ဖွင့်ထား၍ ကျန်တစ်ခန်း အား အလုံပိတ်ကာ VENTURI သို့ တိုက်ရိုက် ပိုက်ဖြင့်ဆက်သွယ်ထားသည်။ အင်ဂျင်ရပ်နေစဉ်တွင် CHAMBER အတွင်းရှိ DIAPHRAOM SPRING ၏ တွန်းအားကြောင့် DIAPHRAOM နှင့် RACK သည် FULL FUEL POSITION သို့ ရွေ့လျားနေပြီး STARTING အတွက် အဆင်သင့် ဖြစ်နေသည်။ အင်ဂျင်နိုး၍ SLOW (သို့) IDLE POSITION (BUTTER FLY VALVE အနည်းငယ် ပွင့်နေချိန်) တွင် CYLINDER အတွင်းသို့ ဝင်သောလေသည် VENTURI ရှိ ပိုက်လိုင်းကို ဖြတ်သွားရသည်။ ဝင်ရောက်သောလေ၏ HIQH VELOCITY နှင့် CYLINDER များ၏ လေစုပ်ယူမှု ကြောင့် GOVERNOR ၏ VACCUM CHAMBER တွင် LOW PRESSURE ဖြစ်နေသည်။ ထို့ကြောင့် တစ်ဖက်ခန်းမှ လေထုဖိအားသည် DIAPHRAOM ကို SPRINO ၏ တွန်းအားကို ဆန့်ကျင်၍ တွန်းသဖြင့် DIAPHRAOM နှင့် CONTROL RACK သည် LOW FUEL POSITION ဘက်သို့ ရှေ့လျားလာရသည်။ IDLE SPEED အတွက် DIAPHRAOM ၏ ရွေ့လျားမှုအဆုံးကို IDLE ADJUSTING SCREW အား ချိန်ဆူခြင်းဖြင့် ရရှိသည်။ ACCELERATOK PEDALကို နင်းလိုက်ခြင်းဖြင့် BUTTER PLY VALVE ကို ဖွင့်လိုက်သောအခါ VENTURI သို့ လေများစွာ ဖြတ်ဝင်၍ GOVERNOR VACCUM CHAMBER ရှိ PRESSURE ပိုမိုတက်လာပြီး DIAPHRAOM သည် FULL POSITION ဖက် သို့ ပြန်လည် ရှေ့လျားသွားသည်။ ဤနည်းဖြင့် THROTTLE VALVE ပွင့်လာသည်နှင့်အမျှ DLAPHRAQM နှင့် CONTROL RACK မှာလည်း FULL FUEL POSITION ဖက်သို့ ပို၍ ပို၍ တဖြည်းဖြည်း ရှေ့လျားကာ လိုအပ်သော အင်ဂျင် SPEED အတွက် ဆီပမာဏကို INJECTION PUMP မှ CYLINDER များသို့ ပို့ပေးသည်။

OOVERNOR များအကြောင်းလေ့လာရာတွင် OOVERNOR၏ ဂုဏ်သတ္တိနှင့် ပတ်သက်၍ အခေါ်အဝေါ် များကိုလည်း သိရှိရန် အောက်တွင် အကျဉ်းချုပ်ပေါ်ပြထားသည်။

္ (1) ISOCHRONCUS းအင်ဂျင်သည် ဝန်မည်မျှ ထမ်းဆောင်စေကာမူ ENGINE ၏ SPEED ကို တသမတ် တည်း ထိန်းထားခြင်း ဖြစ်သည်။

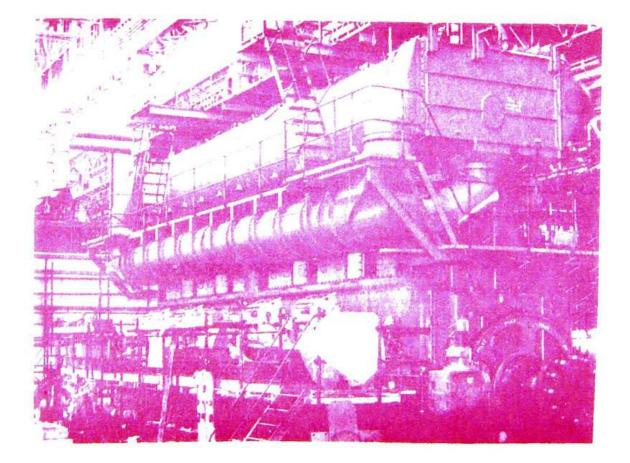
(2) SPEED DROP : အင်ဂျင်သည် ဝန်အပြည့် (FULL LOAD) နှင့် ဝန်ထမ်းဆောင်မှု မရှိသည့်အချိန် (LOW LOAD) အကြားတွင် ENGINE SPEED ကို တည်ငြိမ်ရန် ထမ်းဆောင်ခြင်း ဖြစ်သည်။

အင်ဂျင်၏ KATED POWER OUTPUT နှင့် RATED SPEED မှ ဝန်ကို ZERO POWER OUTPUT ထိ လျော့ချလိုက်သောအခါ တည်ငြိမ်သော SPEED အခြေအနေမှ တိုးတက်လာသော ENGINE SPEED ပင် ဖြစ်သည်။ ၎င်းအား RATED SPEED ၏ ရာနွန်းဖြင့် ဖေါ်ပြသည်။

SPEED DROOF = $\frac{n_0 \cdot n_r}{n_r} \times 100$ n_r = RATED SPEED (RPM) n_0 = SPEED AT NO LOAD (RPM)

မှတ်ချက်။

အင်ဂျင်တစ်လုံးသည် ဝန်အပြည့်ကမ်းဆောင်စဉ် ၎်း၏ RATED SPEED မှာ 1000 RPM ဖြစ်၍ ဝန် ထစ်းဆောင်ခြင်း မရှိသော SPEED မှာ 1060 RPM ဖြစ်လျှင်


SPEED DROOP - $\frac{1060-1000}{1000} \times 100$

(3) STABILITY

း အင်ဂျင်တစ်လုံးအား လိုအပ်သော ENGINE SPEED တွင် SPEED ပြောင်းလဲမှု မရှိပဲ ကည်ငြိမ်စွာ ထိန်းသိမ်းနိုင်သော ဂုဏ်သတ္တိဖြစ်သည်။

00000000

P

9 - 1

SUPER CHARGING

INTERNAL COMBUSTION အင်ဂျင်များမှ ရနိုင်သော POWER အနည်းအများသည် အောက်ပါအချက် များပေါ်မူတည်သည်။ ၎င်းတို့မှာ–

1. INTAKE STROKE ရှုသွင်းသော လေပမာဏ

2. COMPRESSION STROKE တွင် CYLINDER အတွင်း ပိတ်မိနေသောလေပမာဏ

3. အင်ဂျင် CYCLE ၏ THERMO- DYNAMIC EFFICIENCY တို့ဖြစ်ကြသည်။

အဓိကမှာ အင်ဂျင်အတွင်းသို့ တစ်မိနစ်အတွင်း ဝင်ရောက်လာသော လေပမာဏ တိုးလာပါက ၎င်း အင်ဂျင်၏ POWER ထုတ်လုပ်မှုမှာလည်း တိုးတက်လာကြောင်း တွေ့ရသည်။

အင်ဂျင်၏ SPEED မြန်လာပါက တစ်မိနစ်တွင် ဝင်လာသော လေပမာဏ တိုးလာသော်လည်း အင်ဂျင် များ၏ လိုအပ်သော လေပမာဏ မရနိုင်ပေ။ ထို့ကြောင့် ရိုးရိုး ရှူရှိုက်သောလေထက် ပိုမိုသိပ်သည်းသောလေကို ပို့ပေးရန်လိုသည်။ ထို ပို့ပေးသောနည်းလမ်းကိုပင် SUPER CHARGING ဟု ခေါ်သည်။

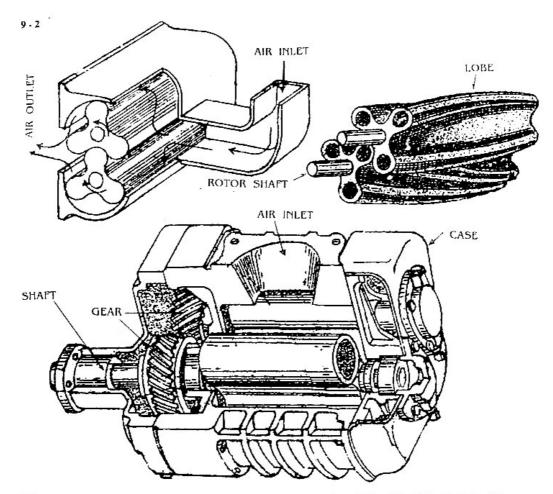
DIESEL အင်ဂျင်အမျိုးအစား အမျိုးမျိုးနှင့် အရွယ်အစား အမျိုးမျိုးတို့တွင် SUPER CHARGING ကို အသုံးများကြ၍ ၎င်းအင်ဂျင်များသည် ရိုးရိုးအင်ဂျင်များထက် အကျိုးကျေး**ဇူး များကြသည်**။

(1). မြင်းကောင်ရေတူသော ရိုးရိုးအင်ဂျင်များထက် အရွယ်အစားငယ်၍ ပေါ့ပါးသည်။

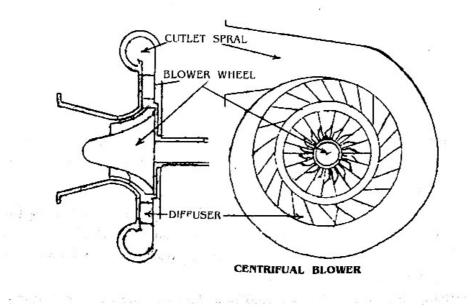
[STATIONARY အင်ဂျင်များနှင့် မော်တော်ယာဉ်သုံးအင်ဂျင်များတွင် ၎င်းအကျိုးကျေးဇူးရရှိသည်။]

- (2) SUPER CHARGEK တပ်ဆင်ထားသော သေးငယ်သည့်အင်ဂျင်၏တန်ဘိုးသည် မြင်းကောင်ရေတူ ရိုးရိုးအင်ဂျင် တန်ဘိုးထက် သက်သာသည်။
- (3) ကြီးမားသော DIESEL အင်ဂျင်နှင့် သေးငယ်သော HIGH SPEED DIESEL အင်ဂျင်များတွင် EXHAUST GAS ကို အသုံးပြုမောင်းနှင်သော TURBO CHARGER များ တပ်ဆင်အသုံးပြုခြင်းဖြင့် ဆီစားသက်သာကြောင်း တွေ့ရသည်။

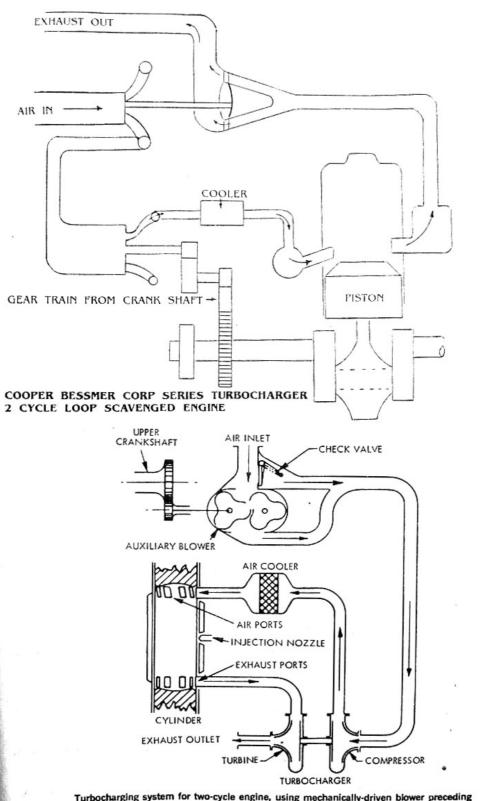
BLOWERR FOR SUPER CHARGING


SUPER CHARGNIG အတွက် BLOWER (2) မျိုး အသုံးပြုသည်။ ၎င်းတို့မှာ (1) POSITIVE DISPLACEMENT BLOWER (2) CENTRIFUGAL BLOWER တို့ဖြစ်သည်။

RECIPROCATING, ECCENTRIC VANE နှင့် ROTARY BLOWER များသည် POSITIVE DISPLACEMENT BLOWER များဖြစ်သော်လည်း အသုံးများသော ROTARY BLOWER ကိုသာ ဖေါ်ပြထားသည်။


(1) ROTARY BLOWER

KOTAKY BLOWEK ကို KOOT TYPE BLOWEK ဟုလည်း ခေါ်သည်။ ၎င်းတွင် LOBE နှစ်ခု (သို့) သုံးခုပါသော KOTEK (2) ခု ပါရှိသည်။ ၎င်း KOTEK နှစ်ခုသည် သီးခြား SHAFT တစ်ခုစီပေါ်တွင်တပ်၍ အိမ် တစ်ခုတည်းတွင် ပူးတွဲ တပ်ဆင်ထားသည်။ ၎င်း SHAFT တစ်ခုနှင့်တစ်ခု GEAK နှင့် ဆက်ထားပြီး SHAFT တစ် ရျောင်းကို အင်ဂျင်မှ အားတစ်ခုခုဖြင့် မောင်းနှင်သည်။


KOTEK များ လည်ပတ်စဉ် အိမ်အတွင်း လေဖိနှိပ်မှ မဖြစ်ပေါ်ပေ။ လေသွားလမ်းကြောင်းသို့ လေပို့

SECTIONED ROTARY BLOWER NOTE BONDED RUBBER GRID ON END-PLATES TO LEAKAGE AT ROTOR ENDS

9.3

Turbocharging system for two-cycle engine, using mechanically-driven blower preceding turbocharger. (Colt Industries, Fairbanks Morse Motor & Generator Operations)

ဦးအုန်းမြင့်၏ခီဖယ်အင်ဂျင်

P

ရာ၌သာ ဖိနှိပ်မှုဖြစ်ပေါ်သည်။ ROTARY BLOWER သုံးခြင်းဖြင့် အဓိကရရှိနိုင်သော အကျိုးကျေးဇူးမှာ ပေးပို့သော လေပမာဏသည် အင်ဂျင်၏ SPEED နှင့် တိုက်ရိုက်နီးပါး အချိုးကျ၍ အင်ဂျင်၏ SPEED တိုင်းတွင် CYCLE တစ်ခုစီအတွက် လေပမာဏာကို တသမတ်နီးပါး ပေးပို့နိုင်ခြင်းဖြစ်သည်။ ဤနည်းဖြင့် အင်ဂျင်၏ SPEED အမျိုးမျိုး တွင် ကောင်းမွန်သောလှည့်အား (TORQUE) ရရှိနိုင်သည်။ ၎င်း BLOWER များသည် CENTRIPUGAL BLOWER များနှင့် နိုင်းယှဉ်ပါက နေးကွေး၍ 2000 မှ 6000 RPM အကြားတွင် လည်ပတ် အလုပ်လုပ်သည်။

(2) CENTRIFUGAL BLOWER

၎င်းသည် အရွယ်အစား သေးငယ်၍ တည်ဆောက်ပုံ ရှင်းလင်းသည်။ HIGH EFFICIENCY SINGAL STAGE COMPRESSOR ဖြစ်၍ ဖိအားအချိုး 3:1 နှင့် အထက် လိုအပ်သော နေရာများတွင် သုံးသည်။ 10000 မှ 50000 RPM လည်ပတ် အလုပ်လုပ်သော HIGH SPEED MECHINE ဖြစ်၍ အင်ဂျင်မှ မောင်းနှင်ရန် ခက်ခဲသည်။ BLOWER အလယ်ရှိ BLOWER WHEEL သို့ ဝင်ရောက်လာသော လေများသည် အလွန်ဖြင့်မားသော အဟုန်ဖြင့် ရိုက်ခတ်၍ DIPFUSER များမှတဆင့် ဖြတ်သန်းသွားစေသည်။ ဝင်ရောက်လာသောလေများကို DIPFUSER မှ အလျင်လျော့ချ၍ ဖိနှိပ်အား တိုးတက်စေကာ SPIRAL CASING အပေါ်ဝိုင်းမှတဆင့် INLET MANIFOLD သို့ ပေးပို့သည်။ DIPFUSER များသည် ဖွင့်ထားသော လမ်းကြောင်း (OPEN PASSAGE) များဖြစ်၍ ၎င်း၏ CROSS SECTIONAL AREA သည် အပြင်ဖက်သို့ တဖြည်းဖြည်း ကျယ်ပြန့်သွားခြင်းဖြင့် လေ၏အလျင်သည် တဖြည်းဖြည်း လျော့နည်းလာပြီး ဖိအားတဖြည်းဖြည်း တိုးတက်စေရန် စီမံထားသည်။

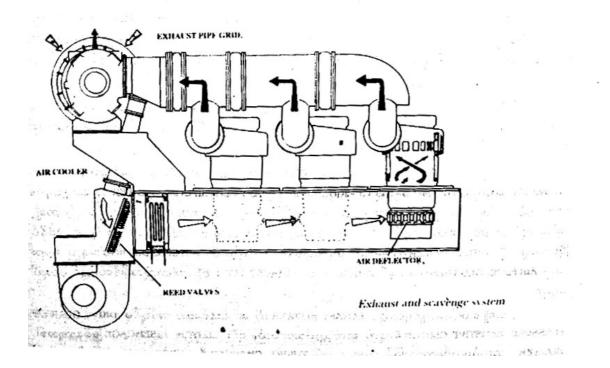
တချို့ BLOWER များတွင် BLADE DIFFUSER များကို အသုံးပြုကြသည်။ ထို BLADE DIFFUSER များသည် OPEN TYPE DIFFUSER များထက် EFFICIENCY ပိုမိုကောင်းမွန်သည်။ BLOWER များ၏ EFFICIENCY အနည်းအများသည် SPEED အပြောင်းအလွဲ လေဖိအားအချိုးနှင့် လေစီးနွန်းတို့အပေါ် မူတည်သည်။

BLOWER ၏ SPEED အား တသမတ်တည်းထား၍ THROTTLE VALVE ကို တဖြည်းဖြည်းပိတ်ခြင်း ဖြင့် လေစီးမှုကို တဖြည်းဖြည်းလျော့ချလိုက်သောအခါ လေဖိအားအချိုး တဖြည်းဖြည်းတက်လာသည်။ ထိုသို့ တက်လာရာ တချိန်တွင် BLOWER ၏ အနည်းဆုံးတည်ငြိမ်မှုရှိသည့် လေစီးနှုန်းသို့ ရောက်ရှိလာသည်။ ၎င်းအား SURGE LIMIT ဟု ဖေါ်ပြထားသည်။ ၎င်းလေစီးနှုန်းထက် လျော့ချပါက BLOWER သည် တည်ငြိမ်မှု ရှိတော့ မည် မဟုတ်ချေ။ ၎င်းအခြေအနေကို BLOWER SURGE ဖြစ်သည်ဟုခေါ်သည်။

အင်ဂျင်နှင့်တွဲဖက် အသုံးပြုသော BLOWER များသည် အင်ဂျင်မောင်းနှင်သော အခြေအနေ အမျိုးမျိုး တွင် လိုအပ်သော လေပမာဏနှင့် လေဖိအားအချိုးကို ပေးပို့နိုင်စွမ်းရှိရမည်။

EFFICIENCY OF CENTRIFUGAL BLOWER

သတ်မှတ်ထားသော SPEED တစ်ခုတွင် လိုအပ်သော လေပမာဏနှင့် လေဖိအားအချိုးရရှိရန်အတွက် CENTRIFUQAL BLOWER တစ်ခု၏ CASING, IMPELLER (သို့) ROTOR နှင့် DIPFUSER များကို DESIGN ပြုလုပ် ထားသည်။ အထက်ပါ အချက်အလက်ကိုကြည့်ခြင်းဖြင့် ၎င်း BLOWER များကို LOAD နှင့် SPEED အပြောင်းအလဲ ရှိသော အင်ဂျင်များတွင် သုံးရန်မသင့်ဟု ယူဆနိုင်သော်လည်း အောက်ပါအချက်များကြောင့် သုံးသင့်သည်။


* CENTRIFUGAL BLOWER ၏ MAXIMUM EFFICIENCY % မှာ 80% မှ 85% အထက်ရှိ၍ ROTOKY BLOWER ထက် 15% မှ 20% အထိ သာလွန်ခြင်း။

* အင်ဂျင်၏ LOAD နှင့် SPEED အသင့်အတင့် အပြောင်းအလဲရှိသည့်တိုင် CENTRIFUQAL BLOWEK ၏ EFFICIENCY သည် ROTARY BLOWER နှင့် နိုင်းယှဉ်နိုင်သည်။

* အင်ဂျင်၏ တသမတ်တည်းရှိသော LOAD နှင့် SPEED ဖြင့် မောင်းနှင်သောအခါ CENTRIFUCAL

in antisa sas e par

Constant pressure turbocharging of KSZ-B and KSZ C/CL engines

BLOWER ၏ လုပ်ဆောင်မှုများသည် ROTARY BLOWER ထက် ကောင်းမွန်သော အကျိုးကျေးစူးရရှိကြောင်း တွေ့ရသည်။

BLOWER DRIVES

ROTARY နှင့် CENTRIFUCAL BLOWER များအား အင်ဂျင်မှ တိုက်ရိုက်သော်၎င်း သီးခြား ELECTRIC MOTOR ဖြင့်၎င်း မောင်းနှင်သည်။ လည်ပတ်နှန်းမြင့်သော CENTRIFUCAL BLOWER ကို SPEED အပြောင်းအလဲ လုပ်သောအခါ SLIP PACE (ချော်နေရန်) ရရှိရန်အတွက် PRICTION CLUTCH (သို့) PLUID COPULING ခံ လျက် ဆက်သွယ်မောင်းနှင်သည်။ အင်ဂျင်မှ မောင်းနှင်သော CENTRIFUCAL BLOWER ကို မော်တော်ယာဉ်သုံး အင်ဂျင်အချို့တွင် အသုံးပြုကြောင်း တွေ့ရသည်။ အသုံးအများဆုံးနည်းလမ်းတစ်ခုမှာ အင်ဂျင်မှ ထုတ်ပစ်လိုက် သော EXHAUST GAS ကို အသုံးပြု၍ TURBINE များကို မောင်းနှင်ခြင်းဖြစ်သည်။ TURBINE နှင့် CENTRIFUCAL BLOWER ပါဝင်သော UNIT တစ်ခုလုံးကို TURBO CHARGER ဟု ခေါ်သည်။ EXHAUST GAS ကို သုံး၍မောင်း နှင်သော TURBINE (3) မျိုးရှိသည်။ ၎င်းတို့မှာ–

(1) IMPULSE

(2) REACTION

(3) MIX FLOW (IMPULSE AND REACTION) တို့ဖြစ်သည်။

TURBO CHARGER

လွန်ခဲ့သော နှစ်အနည်းငယ်မှစ၍ အင်ဂျင်ဖြင့် မောင်းနှင်သော BLOWER များအစား EXHAUST CAS ဖြင့် မောင်းနှင်သော TURBO CHARCER များကို အစားထိုးလာကြသည်။ BLOWER မောင်းနှင်ရန် အင်ဂျင်မှ POWER ကို အသုံးမပြုရသဖြင့် အင်ဂျင်၏ POWER ထုတ်လုပ်မှု တိုးတက်လာသည်။ IMPULSE TYPE သည် အင်ဂျင်စနီးသည့်အချိန်မှစ၍ FULL SPEED အထိ လိုအပ်သော လေပမာဏကို ပေးပို့နိုင်သည်။ CONSTANT PRESSURE TURBINE များကိုလည်း အသုံးပြုကြသည်။ မည်သို့ပင်ဖြစ်စေ အင်ဂျင်စက်စနိုးချိန်၊ ဝန်များစွာ ထမ်း ဘောင်ရချိန်နှင့် SPEED လျော့ချချိန်တို့တွင် လေအပိုထပ်ပေးရန် လိုသည်။

TWO CYCLE အင်ဂျင်များတွင် လေအပိုရရှိရန်နှင့် လေကို ပိုမိုအေးစေရန်အတွက် BLOWER နှင့် TURBO CHARGER များကို ပူးတွဲ၍ အသုံးပြုသည်။ BLOWER များကို အပြိုင် (သို့) စဉ်တိုက် ဆက်သွယ်၍ အသုံးပြုတတ်သည်။

အင်ဂျင်များတွင် SERIES TURBO CHARQER ကို အသုံးများကြသည်။ အချို့အင်ဂျင်တွင် TURBO CHARQER မှ လေကို ပထမဦးစွာ ဖိနှပ်၍ QEAR ဖြင့် မောင်းနှင်သော CENTRIFUQAL BLOWER သို့ ပေးပို့သည်။ ၎င်းမှ ထပ်မံဖိနှိပ်ပြီး လေများကို AFTER COOLER အား ဖြတ်ပြီးလျှင် CYLINDER များသို့ ပေးပို့သည်။ အချို့ အင်ဂျင်တွင် ROTARY BLOWER မှ လေကို ပထမ ဖိနှိပ်၍ TURBO CHARQER သို့ ပို့သည်။ ၎င်းမှ ထပ်မံဖိနှိပ် ပြီး လေများကို AFTER COOLER ကို ဖြတ်၍ AIR MAINFOLD သို့ပို့သည်။ SUPER CHARQING အနည်းအများ သည် AIR MANIFOLD PRESSURE နှင့် INTAKE AND EXHAUST PORT တို့ ပိုတ်သည့်အချိန်ပေါ်တွင် မူတည် သည်။

အချို့သော အင်ဂျင်များတွင် ROTARY BLOWER ကို မောင်းနှင်သော အင်ဂျင်မှ DRIVE GEAR ကို PRESSURE SEMSTIVE CLUTCH ခံလျက် ဆက်သွယ်ထားသည်။ ၎င်း CLUTCH DISENGAGE ဖြစ်သောအခါ BLOWER အလုပ်မလုပ်တော့သဖြင့် လေများသည် TURBO CHAKGER ရှိ CHECK VALVE မှ ဖြတ်၍ တိုက် ရိုက် ရှောက်ရှိစေသည်။ ဤနည်းဖြင့် လေသည် လုံလောက်သော ဖိနှိပ်အားရှိသောအခါ BLOWERမောင်းနှင်ရန်

>

P

ဦးအုန်းမြင့်၏ဒီဇယ်အင်ဂျင်

9-7

မလိုအပ်တော့ပဲ အင်ဂျင်မှ POWER ဆုံးရှုံးမှု သက်သာစေသည်။

SERIES TURBO CHARGER များ အသုံးပြုခြင်းကြောင့် အောက်ပါ အကျိုးကျေးဇူးများကို ရရှိနိုင်

သည်။

(1) BLOWER မောင်းနှင်ရန် အားကို အင်ဂျင်၏ EXHAUST GAS မှ ရရှိသည်။

(2) အင်ဂျင်မှ POWER ဆုံးရှုံးမှု မရှိ၍ B.H.P ထုတ်လုပ်မှု တိုးတက်သည်။

(3) လေများစွာပေးပို့နိုင်သဖြင့် POWER အပြည့်အဝ ရရှိသည့်အပြင် PISTON, CYLINDER နှင့် PORT များကို အေးစေနိုင်သည်။

(4) လောင်စာဆီ အကုန်အကျ သက်သာသည်။

အင်ဂျင်တစ်လုံးအား BLOWER အမျိုးမျိုး တပ်ဆင်စမ်းသပ်ရာ အောက်ပါ POWER OUT PUT များ ရရှိသည်။

RECIPROCATING BLOWER		2500 - H.P
TURBO CHARGER ONLY	2	2750 - H.P
CENTRIFUGAL BLOWER (GEAR DRIVEN)	-	2750 - H.P
SERIES TURBO CHARGER		3500 - H.P

SYMBOLS

FUEL INJECTION PUMP SYMBOLS - များလေ့လာခြင်း

PUEL INJECTION PUMP များအကြောင်း အလွယ်တကူ သိရှိနိုင်ရန် PUMP ၏ ဘေးတွင် ပါရှိသော ရည်ညွှန်းချက်များကို ဖတ်ယူကြည့်ခြင်းဖြင့် သိရှိနိုင်သည်။

အတွဲလိုက် INJECTION PUMP ၏ သင်္ကေတများ

2000 - BPE-6 B 70 N 320/3 S 144

–၎င်းကိုလေ့လာကြည့်ပါက–

Γ	в	P	E	6.	в	70	N	320	/3	144
-	ဗြိတိ	သျှနိုင်ငံ	တွင်ပြုရ	၃ပ်သည်။						

P - INJECTION PUMP

В

E = CAM SHAFT တပ်ဆင်အသုံးပြုထားသည်။

6 – CYLINDER လုံးရေဖြစ်သည်။

B = PLUNGER STROKE - 10mm (A = 7mm, BB = 12 mm, Z = 12 mm, C = 15 mm)

70 – PLUNGER ၏ အချင်းဖြစ်သည်။

N = PUMP ၏ အမျိုးအစားအား ပြောင်းလဲသော စာ ဖြစ်သည်။

NOS = အခြားအကြောင်းအရာများ

ရာဂဏန်း = CAM SHAFT အမှတ်အသားနှင့် FEED PUMP ပါမပါ

ဆယ်ဂဏန်း = GOVERNOR အနေအထား

ခုဂဏနိုး = TIMINO အနိမ့်အမြင့် ကိရိယာပါ–မပါ

100	-	CAM SHAFT အမှတ်အသား နံပါတ် (1) ဖက်ထားရှိသည်။ FEED PUMP တပ်ဆင်ရန် အပေါက်မပါ။
200		CAM SHAFT အမှတ်အသား နံပါတ် (2) ဖက်ထားရှိသည်။ FEED PUMP တပ်ဆင်ရန် အပေါက်မပါ။
300	-	CAM SHAFT အမှတ်အသားနံပါတ် (1)ဖက်ထားရှိသည်။ FEED PUMPတပ်ဆင်ရန် အပေါက်ပါဝင်သည်။
400	-	CAM SHAFT အမှတ်အသားနံပါတ် (2)ဖက်ထားရှိသည်။ FEED PUMPတပ်ဆင်ရန်အပေါက်ပါဝင်သည်။
00	-	GOVERNOR wol
10	-	GOVERNOR နံပါတ် (1) ဖက်တွင် တပ်ဆင်ထားသည်။
20	-	GOVERNOR နံပါတ် (2) ဖက်တွင် တပ်ဆင်ထားသည်။
0	-	TIMINO အနိမ့်အမြင့် ကိရိယာ တပ်ဆင်အသုံးပြုထားခြင်းမရှိ။
ì	-	TIMING အနိမ့်အမြင့် ကိရိယာ (1) ဖက်တွင် တပ်ဆင်ထားသည်။
2	-	ကျောက်က အနိမ့်အမြင့် ကိရိယာ (2) ဖက်တွင် တပ်ဆင်ထားသည်။
/3	-	BLANKING COVER, FITTED INSTEAD OF FEED PUMP
144	-	၎င်းသည် သုံးသူအတွက် မဟုတ်ပါ။ ထုတ်လုပ်သူအတွက် ရည်ညွှန်းချက်နှင့် ပစ္စည်းမှာယူရန်အတွက် ဖြစ်သည်။

GOVERNOR SYMBOLS

GOVERNOR သင်္ကေတများကို အောက်ပါအတိုင်း ဥပမာပေး၍ ခွဲခြားထားသည်။

၎င်း၏ ဥဂ	ပဓာမှာ	- BR 20	00/950 B	C 62	ကို အစိ	တ်အပိုင်း ဖ	ထပ်မံခွဲထ	ားသည်။
	В	R	200	950	В	c	62	

B = ဗြိတိသျှလုပ်

R = REGULATOR (OR) GOVERNOR

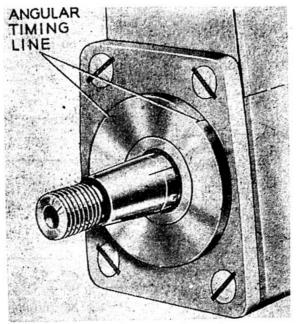
NOS - IDLING SPEED OF THE PUMP (R.P.M)

NOS - MAXIMUM SPEED OF THE PUMP (R.P.M)

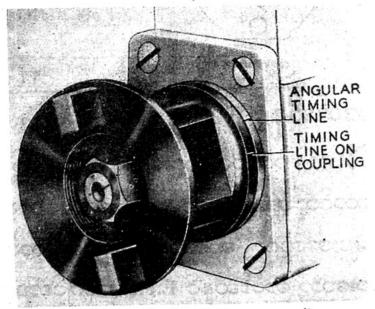
B - PLUNGER STROKE

C - ပုံစံပြောင်းလဲအမှတ်အသား

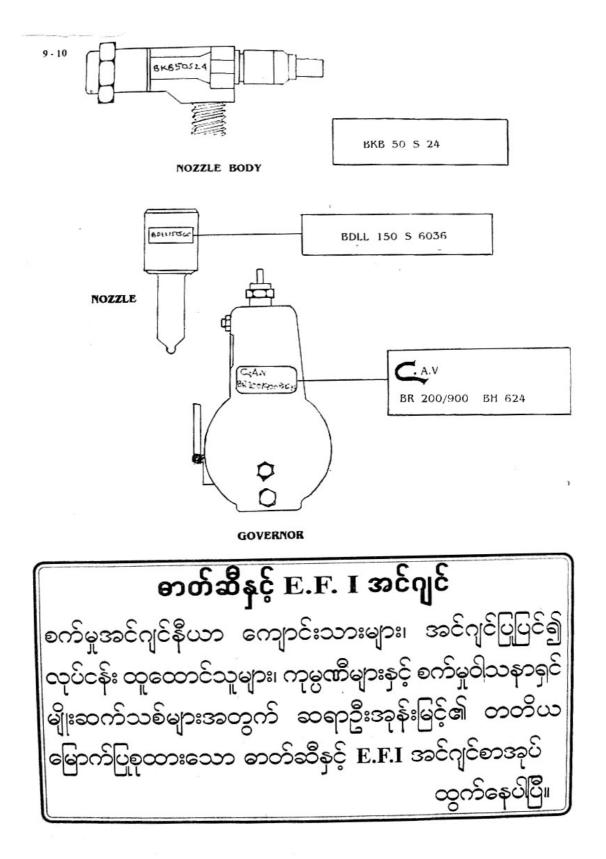
NOS -


25 - ထုတ်လုပ်သူ၏ ရည်ညွှန်းချက်နှင့် ပစ္စည်းမှာယူရာတွင် အသုံးပြုရန်

OOVERNOR ၏ သင်္ကေတနှင့် ပြန်ကြားချက်သည် အထက်ပါအတိုင်းဖြစ်သည်။ ထို့ကြောင့် ဗြိတိသျှ လုပ် GOVERNOR သည် IDLE SPEED တွင် 200 R.P.M, MAXIMUM SPEED တွင် 950 R.P.M နှင့် PUMP STROKE 10mm တို့ဖြစ်သည်။ ပုံစံပြောင်းလဲသောအမှတ်အသားနှင့် နောက်ဆုံးဂဏန်းတို့သည် ထုတ်လုပ်သူ၏ ရည်ညွှန်းချက်နှင့် သက်သေခံ အထောက်အထားမျိုးတို့အတွက် ဖြစ်သည်။


မှတ်ချက် 🔟 200/950 R.P.M သည် အင်ဂျင်လည်ပတ်နှန်း 400 နှင့် 1900 ကြား ရှိမှသာဖြစ်ပေမည်။

```
ဦးအုန်းမြင့်၏ခိဇယ်အင်ဂျင်
```


9.9

Timing marks on American Bosch APE pump.

Timing marks are transferred to the coupling.

P

ဦးအူန်းမြင့်၏ဒီရယ်အင်ဂျင်

9 - 11

PNEUMATIC GOVERNOR

အထက်ဖေါ်ပြပါ GOVERNOR အမျိုးအစား၏ သင်္ကေတမှာ B EP/MN 80 A 144 ဖြစ်သည်။ ၎င်းကို အသေးစိတ်ခွဲပြန်လျှင် အောက်ပါအတိုင်း တွေ့ရသည်။

в	EP	м	И	80	A	144

B = ဗြိတိသျှလုပ်

EP = PNEUMATIC GOVERNOR

- M = DIAPHRAOM TYPE
- N = IDLING SPEED ချိန်ညှိရန်အတွက် ဖြစ်သည်။
- 80 = DIAPHRAQM ၏ အချင်း mm ဖြစ်သည်။
- A = အရွယ်အစား (PUMP တွင် တပ်ဆင်အသုံးပြုရန်အတွက်ဆိုလိုသည်)
- 144 = အရံပစ္စည်းမှာယူရန်အတွက်နှင့် ထုတ်လုပ်သူကုမ္ပဏီအတွက်သာဖြစ်သည်။ သုံးသူအတွက်ညွှန်ကြား ချက် မဟုတ်ပေ။

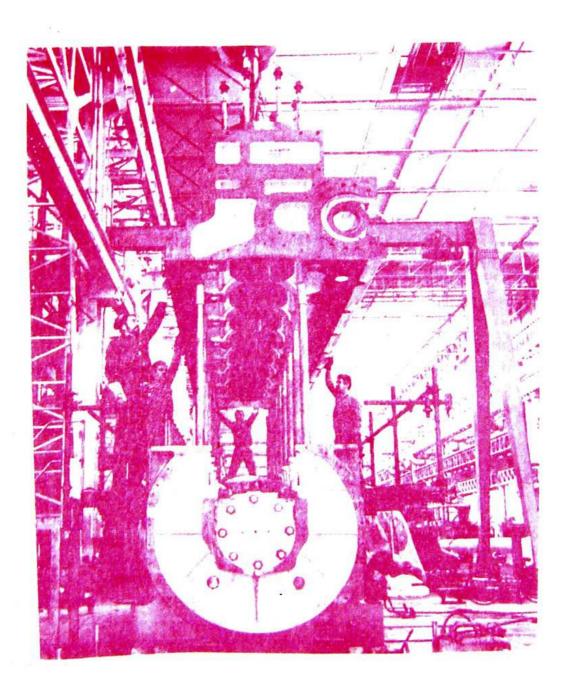
NOZZLE SYMBOLS

- NOZZLE ၏ သင်္ကေတများကို အောက်ပါအတိုင်း ရေးမှတ်ထားသည်။
 - (1) BND 30 S 2
 - (2) B D LL 150 S 523

၎င်းတို့ကို အောက်ပါအတိုင်း ထပ်မံခွဲစိတ်ထားသည်။

	В	D	ы	30	S	2
--	---	---	---	----	---	---

- B = ဗြိတိသျှလုပ်
- D = NOZZLE
- N = PINTLE
- L = HOLE
- LL 😑 👘 LONG STAM ဖြစ်ပြီး အပေါက်များပါသော အမျိုးအစားဖြစ်သည်။
- NOS = ဆီပန်းဒီဂရီထောင့် ဖြစ်သည်။


S,T,U (OR) V = NOZZLE HOLDER တွင် ဖော်ပြသည့်အတိုင်းဖြစ်သည်။

NOS – ထုတ်လုပ်သူအတွက်နှင့် ပစ္စည်းမှာယူရန်အတွက် ဖြစ်သည်။

- ဗြိတိသျှလုပ် PENTLE NOZZLE အမျိုးအစားဖြစ်ပြီး ဆီပန်းဒီဂရီသည် 30 ဖြစ်၍ Barrel ၏ အချင်းမှာ
 25 mm ဖြစ်သည်။ (2) ဂဏန်းသည် ထုတ်လုပ်သူအတွက် အရေးကြီးသော အမှတ်သားဖြစ်သည်။
- 2. ဗြိတိသျှလုပ်အပေါက်များသော အမျိုးအစားဖြစ်ပြီး ဆီပန်းဒီဂရီမှာ 150' ဖြစ်၍ Barrel အချင်းသည် 25 mm ဖြစ်သည်။

ဦးအုန်းမြင့်၏ခီဇယ်အင်ဂျင် 9-12 NOZZLE HOLDER SYMBOLS 24 1 8KB 35 S BKB 35 SD 51 2. BKBL 67 S 503 3. ၎င်းတို့ကို အောက်ပါအတိုင်း ပြန်လည်ခွဲစိတ်ထားသည်။ В KB 35 S 24 ဗြိတိသျှလုပ် В NOZZLE HOLDER KB NOS = Barrel အရှည် mm Barrel အချင်း 16 mm, S = 25 mm R т 22 mm, U = 30mm, V = 42mm (အရွယ်အစား 'D' ဆိုသော အမှတ်အသားပါလျှင် DELAY NOZZLE ဟု သတ်မှတ်ရမည်) ကုမ္ပဏီ၏ ရည်ညွှန်းချက်နှင့် ပစ္စည်းမှာယူ ရာတွင် အသုံးပြုသော နံပါတ်ဖြစ်သည်။ NOSS ၎င်းထုတ်လုပ်သူ၏ ပြန်ကြားချက်နှင့်သော့ချက် ဥပမာကို ကြည့်လျှင်– 1. ဗြိတိသျှလုပ် NOZZLE HOLDER ဖြစ်၍ 35mm အရှည်နှင့် အချင်း 25mm ဖြစ်သည်။ 24 ဂဏန်း သည် ပစ္စည်းမှာယူရန်နှင့် ၎င်းအကြောင်းကို ရှာဖွေသိရှိရန် လိုအပ်သောအခါ သုံးရန်အတွက် ဖြစ်သည်။ ဗြိတိသျှလုပ် NOZZLE HOLDER ဖြစ်၍ BAKREL ၏အရွယ်သည် 35mm ရှိပြီး အချင်းမှာ 25mm ဖြစ်သည်။ 2. 51 ဂဏန်းမှာ အထက်ဖေါ်ပြပါအတိုင်းဖြစ်သည်။ ဗြိတိသျှလုပ် NOZZLE HOLDER ဖြစ်၍ BARREL ၏အရှည်မှာ 67mm ဖြစ်ပြီး အချင်းမှာ 25mm ဖြစ်သည်။ 3. FUEL FEED PUMP SYMBOLS ၎င်းကို အောက်ပါအတိုင်း ထပ်မံခွဲခြားထားသည်။ KP = FUEL FEED PUMP = PLUNGER TYPE к NOS = PLUNGER အချင်း mm = ပုံစံပြောင်းလဲသောအမှတ်အသား в 56 – ထုတ်လုပ်သူ၏ ရည်ညွှန်းချက်နှင့် သက်သေခံအထောက်အထားများ Hydros and had at the photos with ignortigen tener ging att også hande i en angjorte er andere er

۶

STARTING SYSTEM

ဒီဇယ်အင်ဂျင်သည် ဆွဲအားလှည့်အားကြီးသော အင်ဂျင်မျိုးဖြစ်သည်။ ၎င်းအင်ဂျင်တွင် CYLINDER အတွင်း လေများသွင်းခြင်း၊ လောင်စာဆီပန်းပေးခြင်းနှင့် မီးလောင်ခန်းအတွင်း လေနှင့်ဆီ ထိတွေ့ပြီး မီးလောင်ရ သော လုပ်ငန်းများ လုပ်ဆောင်ရသည်။ ထိုကဲ့သို့ လုပ်ငန်းများ လုပ်ဆောင်သောအင်ဂျင်ကို စတင်နိုးရန်အတွက် ပြင်ပမှ အားတစ်ခုခုဖြင့် CRANK SHAFT ကို လှည့်ပေးနိုင်မှသာ စက်နှိုးမည်ဖြစ်သည်။ အကယ်၍ နှိုးရာတွင် ပြင်ပမှအားသည် အင်ဂျင်နှိုးနိုင်လောက်သော အပတ်ရည် လှည့်နိုင်ပါက နှိုးမည်ဖြစ်သည်။ အတယ်၍ နှိုးရာတွင် ပြင်ပမှအားသည် အင်ဂျင်နှိုးနိုင်လောက်သော အပတ်ရည် လှည့်နိုင်ပါက နှိုးမည်ဖြစ်သည်။ အပတ်ရည်မမှီပါက လိုအပ်သော အပူချိန်နှင့် လေများမရရှိနိုင်၍ နီးမည်မဟုတ်ပေ။ နှိုးနိုင်သော အပတ်ရည်မှာ အင်ဂျင်၏ SIZEနှင့် DFSIGN ပေါ်တွင် မူတည်သည်။ ဒီဇယ်အင်ဂျင်ကို နှိုးပုံနှိုးနည်း ငါးမျိုးရှိသည်။ ၎င်းတို့မှာ

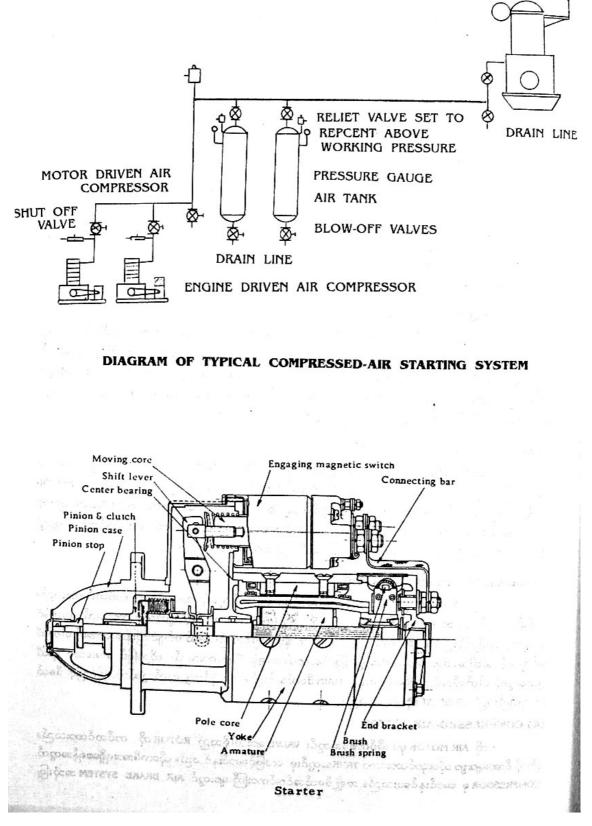
- (1) HAND STARTING
- (2) ELECTRIC MOTOR
- (3) QASOLINE ENGINE
- (4) COMPRESSED AIR MOTOR
- (5) COMPRESSED AIR ADIMISSION တို့ဖြစ်ကြသည်။

(1) HAND STARTING

တစ်လုံးထိုး ဒီဇယ်စက်များနှင့် မော်တော်ယာဉ်သုံး အင်ဂျင်ငယ်တချို့တွင် စက်လှည့်ဂေါက်တံဖြင့် လှည့်၍နိုးကြသည်။ ဒီဇယ်အင်ဂျင်၏ COMPRESSION ဖိအားမှာ များသဖြင့် ၎င်းဖိအားထက် ကျော်လွန်အောင် လှည့်မှသာ နှိုးမည်ဖြစ်သည်။ ထို့ကြောင့် ထိုအင်ဂျင်များတွင် VALVE များကို ဖွင့်ပေးသော VALVE LIFTER များ တပ်ဆင်၍ထားသည်။ ပထမဦးစွာ VALVE LIFTER များကို မ'၍ အင်ဂျင်နှိုးနိုင်လောက်သော အင်ဂျင်အပတ်ရည် ရောက်အောင်လှည့်ပြီး VALVE များကို ပြန်ပိတ်စေ၍ အင်ဂျင်ကို နှိုးရသည်။

(2) ELECTRIC MOTOR STARTING

မော်တော်ယာဉ်အင်ဂျင်များနှင့် အချို့စက်ကြီးများတွင် ELECTRIC MOTOR ဖြင့် နှိုးကြသည်။ မော် တော်ယာဉ်အင်ဂျင်များတွင် 24 - VOLT မှ 32 VOLT အထိ BATTERY အိုးကြီးများဖြင့် လျှပ်စစ်ရယူကာ MOTOR များကို လှည့်ပေးခြင်းဖြင့် နှိုးသည်။ အချို့အင်ဂျင်ကြီးများတွင် DIRECT CURRENT EQNERATOR များကို အင်ဂျင် MOTOR သဖွယ် အသုံးပြု၍ နှိုးကြသည်။ ထိုပြင် စက်ရုံကြီးများတွင် တပ်ဆင်သော အင်ဂျင်ကြီးများ၌ GENERATOR များကို မောင်းနှင်စေပြီး လျှပ်စစ်အားကို ရယူထားသည်။


(3) GASOLINE ENGINE STARTING

အချို့ ဒီဇယ်အင်ဂျင်ကြီးများတွင် ဓါတ်ဆီစက်ငယ်တစ်လုံးကို အင်ဂျင်တွင် တပ်ဆင်ထားသည်။ ဓါတ်ဆီအင်ဂျင်ငယ် SHAFT နှင့် ဒီဇယ်အင်ဂျင်၏ PLY WHEEL PINION ဖြင့် ချိတ်ဆက်ထားသည်။ ဓါတ်ဆီ အင်ဂျင်ကို စက်ဖြင့်နှီး၍ ဒီဇယ်အင်ဂျင်နှင့် ချိတ်ဆက်ကာ နှိုးခြင်းဖြစ်သည်၊ ဒီဇယ်အင်ဂျင်ကြီးနိုးသောအခါ ဓါတ်ဆီ အင်ဂျင်နှင့် အလိုအလျောက်အဆက်အသွယ်ဖြတ်တောက်ပေးရန် စီစဉ်ထားသည်။ ထို့အပြင် အေးသော ရာသီ များအတွက် ဓါတ်ဆီအင်ဂျင်၏ရေလိုင်းနှင့် MAIN ဒီဇယ်အင်ဂျင်၏ရေလိုင်းတို့ ဆက်သွယ်ထားခြင်းဖြင့် ဒီဇယ် အင်ဂျင်ကြီးတွင် PREHEAT ကို ရရှိစေသည်။

(4) COMPRESSED-AIR MOTOR

ထို AIR MOTOR မှာ အိမ်တစ်ခုအတွင်း VALVE များ ပါရှိသည် ROTOR ကို တပ်ဆင်ထားသည်။ ၎င်းကို ဖိအားများစွာ သိုလှောင်ထားသော TANKအတွင်းမှ လေဖြင့်မောင်းနှင်သည်။ ထိုလေဖိအားရရှိစေရန်အတွက် COMPRESSOR မှ မောင်းနှင်ပေးသည်။ အချို့ဒီဖယ်အင်ဂျင်ကားကြီးများတွင် AIR BRAKE SYSTEM အသုံးပြု

10-1

>

ဦးအုန်းမြင့်၏ဒီရယ်အင်ဂုင်

10-3

သဖြင့် COMPRESSOR ပါရှိပြီးဖြစ်သည်။ အကယ်၍ မပါရှိပါက COMPRRESSOR ကို အထူးတပ်ဆင်ရမည်။ ၎င်းစနစ်သည် TORQUE များစွာ ထုတ်ပေးနိုင်သည်။ 0.4 စက္ကန့်အတွင်း အင်ဂျင်ကို 280 RPM ခန့် လှည့်ပေးနိုင် သည်။ ELECTRIC MOTOR များမှာ 0.4 စက္ကန့်အတွင်း 180 RPM သာ လှည့်ပေးနိုင်သည်။

(5) COMPRESSED-AIR ADMISSION

၎င်းနည်းသည် အင်ဂျင်ကြီးများတွင် အသုံးများသည်။ လိုအပ်သော ဖိအားရှိလေများကို အင်ဂျင်မောင်း နှင့်စဉ်ကပင် TANK များတွင် သိုလှောင်ထားသည်။ အင်ဂျင် HEAD တွင် AUTOMATIC STARTING VALVE များ တပ်ဆင်ထားသည်။ အင်ဂျင်စနှိုးပါက PISTON တစ်လုံးသည် POWER STROKE ၏ T.D.C ရောက်ရှိပါက VALVE သည် လေကို အလိုအလျောက် ဖွင့်ပေးခြင်းဖြင့် PISTON ကို အောက်သို့ပြန်ဆင်းစေသည်။ အင်ဂျင်အရှိန် ရလာလျှင် စက်နှိုးသောအခါ ပေးသောလေကို ဖြတ်တောက်ပေးသည်။ အင်ဂျင်၏ CAM SHAFT မှ CAM ဖြင့် STARTING VALVE ၏ အဖွင့်အပိတ်ကို ချိန်ထားသည်။ STARTING AIR PRESSURE မှာ 250 TO 350 P.S.I ခန့်ရှိသည်။ ဖေါ်ပြပါပုံတွင် AIR COMPRESSION နှစ်လုံးအသုံးပြုထားသည်။ တစ်လုံးမှာ အင်ဂျင်ဖြင့်မောင်းနှင်၍ ကျန်တစ်လုံးမှာ MOTOR ဖြင့် မောင်းနှင်သည်။ MOTOR အပြစ်ရှိပါက ဓါတ်ဆီအင်ဂျင် (သို့) QAS အင်ဂျင်မှ COMPRESSOR ကို မောင်းနှင်ကာ လိုအပ်သောလေကို ရရှိစေနိုင်သည်။

(COLD WEATHER STARTING)

အေးသောရာသီဥတုတွင် ချောဆီများ ပျစ်နေ၍ (cranking lood) တိုးတက်နေခြင်း၊ ဘက်ထရီ၏ စွမ်းဆောင်နိုင်အား ကျဆင်းနေခြင်း၊ ဆလင်ဒါနံရံများ အလွန်အေးနေ၍ ဝင်ရောက်လေ၏ အပူချိန်မှာ လောင်ကျွမ်းပေါက်ကွဲနိုင်သော အပူချိန်သို့ မရောက်နိုင်ခြင်းကြောင့် အင်ဂျင်နိုးရန် အလွန်ခက်ခဲ၍ ပြင်ပနည်းလမ်းတစ်မျိုးမျိုး အကူအညီရယူ၍ နှိုးရန်လိုအပ်ပေသည်။ အေးသောရာသီဥတုတွင် ဒီဇယ်အင်ဂျင်အား နှိုးရန် နည်းလမ်းအမျိုးမျိုးကို အသုံးပြုကြ၍ ပတ်ဝန်ကျင်အပူချိန်ပေါ် မူတည်၍ နည်းလမ်းတစ်နည်းတည်းဖြင့် ဖြစ်စေ၊ နည်းလမ်းများပူတွဲ၍ဖြစ်စေ အသုံးပြုလေ့ရှိသည်။

1. Use of special fuel

မကြာမီ နှစ်များအတွင်းက အသုံးများသော နည်းလမ်းတစ်ခုမှာ Ethyl ether အား အင်ဂျင်အတွင်းသို့ ပန်းသွင်း၍ အင်ဂျင်အား လှည့်နှိုးသောနည်းစနစ် ဖြစ်သည်။ ether သည် Petroleum မှ ထုတ်ယူခြင်းမဟုတ်၍ ပတ်ဝန်းကျင်အပူချိန် အကျိုးသက်ရောက်မှုမရှိချေ။ ၄င်းသည် လွယ်ကူစွာ အငွေ့ပုံနိုင်၍ ၄င်း၏ ignition temperature လျော့နည်းမှုကြောင့် မီးလောင်ပေါက်ကွဲရန် လိုအပ်သော ignition temperature လျော့နည်း၍ အင်ဂျင်အား လှည့်ပေးရန် လိုအပ်မှုမှာလည်း လျော့နည်းသည်။

Ether အား instrument Pannel တွင် တပ်ဆင်ထားသော Can တစ်ခုအတွင်း ထည့်သွင်း၍ instrument Pannel မှ ထိန်းသိမ်းပြီး Manually ထိန်းသိမ်း၍ Air clearner(သို့မဟုတ်) Intake manifold အတွင်းသို့ ပန်းသွင်းနိုင်သည်။ သို့ရာတွင် ၄င်းနည်းလမ်း၌ Starting အတွက် Ether အလွန်အကျွံ အသုံးမပြုရန် ဂရုပြုရမည်။ အလွန်အကျွံအသုံးပြုပါက အင်ဂျင်အား ပျက်စီးစေနိုင်သည်။

COOLANT HEATER အသုံးပြုသောနည်းလမ်း

Heating The Coolant

အခြားအသုံးများသော နည်းလမ်းတစ်ခုမှာ Engine coolant (cooling water) အားအပူပေးသောနည်းလမ်း စြစ်သည်။ ၄င်းနည်း၏ ကောင်းမွန်သောအချက်မှာ အေးသောရာသီတွင် အင်ဂျင်မှာအေးနေ၍ ဆလင်ဒါအတွင်းဝင်ရောက် လေအေးနှင့် လောင်စာဆီတို့ကြောင့် ဆလင်ဒါနံ ရံတွင် ကပ်နေသောချောဆီများ ပျော်ဝင်၍ Oil sump အတွင်းကျဆင်းကာ ၄င်းအတွင်းရှိ ချောဆီ များနှင့် ရောနော၍ Dilution ဖြစ်ခြင်းမှ ကာကွယ်နိုင်ခြင်းဖြစ်သည်။

အင်ဂျင်၏ အောက်ဖက်(သို့မဟုတ်)ဘေးဖက်တွင် water tank တစ်ခုထားရှိ၍ ၄င်းtank အတွင်းရှိ ရေပူများအား အင်ဂျင်အတွင်း လည်ပတ်စေခြင်းဖြင့် အင်ဂျင်အားအပူပေးသည်။

ရေပူများ လည်ပတ်နိုင်ရန် Thermosiphon Circulation နည်းလမ်းကို အသုံးဖြုသော်လည်းး pump circulation နည်းလမ်းကိုလည်းအသုံးဖြုနိုင်သည်။

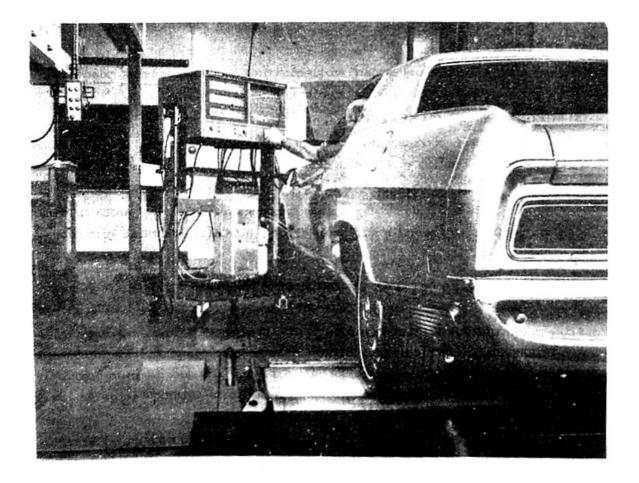
ရေပူများ အင်ဂျင်အတွင်း ဝင်ရောက်လည်ပတ်ရန် အင်ဂျင်၏ Radiator hose (သို့မဟုတ်) ရေထုတ်ခေါင်း (Drain Cock) သို့ဆက်သွယ်၍ ရေပူများပြန်လည်ထွက်သည့် လမ်းကြောင်းကို Cylinder head ရှိ water jacket များဖြင့် ဆက်သွယ်ထာသည်။ water trank အတွင်ရှိ ရေများအပူပေးရန် Propane gas (သို့မဟုတ်) လောင်စာ ဆီကိုအသုံးပြုသည်။ အင်ဂျင်ရပ်နားထားသော တစ်ညလုံး (သို့မဟုတ်) အင်ဂျင်နိုးရန်လိုအပ်သည်ထိ တပ်ဆင် အသုံးပြုနိုင်သည်။

ယာဉ်အစုလိုက် များပြားစွာရပ်နားသောနေ ရာများတွင် Boiler အတွင်း ရေပူများစွာ သိုလှောင်၍ Boiler မှ ရေပူများကို ပိုက်လိုင်းများဖြင့် ယာဉ်များသိုဆက်သွယ်တပ်ဆင်၍ ယာဉ်များမှပြန်ထွက်လာ သောရေများအား Boiler အတွင်းသို့ ဖြန်လည်ဝင်ရောက်စေ၍ အပူပေးသည်။

အမျို့အင်ဂျင်များတွင် Air heating system ဖြင့် အပူပေးသောနည်းစနစ်ကို အသုံးပြု၍ လေပူများကို crank case အတွင်း မှုတ်သွင်းသည်။ လေပူများသည် piston ၏အောက်ပိုင်များသို့ လည်ပတ်ရောက်ရှိစေခြင်းဖြင့် ချောဆီနှင့် အင်ဂျင်အားအပူပေး၏ အင်ဂျင်နိုးရန်လွယ်ကူသည့် အပူချိန်သို့ ရောက်ရှိရန် ထိန်သိမ်းနိုင်သည်။ အချို့အင်ဂျင်များတွင် ဓာတ်ဆီအင်ဂျင်မှ စွန့်ထုတ်သော Exhaust gas ဖြင့် အပူပေးသော နည်စနစ်ကိုအသုံးပြုသည်။

3. Battery Heaters

အေးသောရာသီများတွင် ဘက်ထရီ၏ effeciency ကျဆင်းသည်။ ထို့ကြောင့်အချို့ ဒီစယ်အင် ဂျင်များတွင် ဘက်ထရီအား Heater ဖြင့် အပူပေးသော နည်းစနစ်ကိုအသုံးပြုကြသည်။ Heater တွင် Heating Element နှစ်ခုပါဝင်၍ တစ်ခုအား မော်တော်ယာဉ် ဘက်ထရီ နှင့် ဆက်သွယ်၍ မော်တော်ယာဉ်မောင်းနှင်စဉ် ဘက်ထရီအား အပူပေးရန် ဆောင်ရွက်၍ကျန် element တခုအား မော်တော်ယာဉ်ရပ်နား ချိန်တွင် 110V Power supply ဖြင့်အပူပေးသည်။ ၄င်းတို့အား insulator များခံ၍ ဘက်ထရီ၏ အောက်ဖက်တွင်လည်းကောင်း၊ ဘေးဖက်တွင်တွယ်ကပ်၍သော်လည်းကောင်း တစ်ဆင်ထားသည်။


4. Glow plug Heating

CONTRACTION AND

Glow plug(or) Heat plug များအား အင်ဂျင်၏ combusion chamber တွင် တပ်ဆင်၍ အပူပေး သောနည်းလမ်းကိုအသုံးဖြုသည်။ ၄င်းတို့သည် Low Voltage Heater များဖြင့်၍ မော်တော်ယာဉ်မှ ဘက်ထရီ ဖြင့်အလုပ်လုပ်စေသည်။ ၄င်းအား အေးသောအချိန်တွင် အင်ဂျင်အား crank မလုပ်မီ ဓလုပ်ဖွင့်၍ အင်ဂျင်အားအပူပေးသည်။ Glow plug အားဖွင့်၍ အပူပေးရန် လိုအပ်သော အချိန်မျာ အင်ဂျင်၏ပတ်ဝန်းကျင် အပူချိန်ပေါ်တွင်မူတည်သည်။ ယေဘူယျအားဖြင့် Glow Plug အား တစ်ကြိမ်တွင် ၂ မိနှစ်ထက်ပို၍ အသုံးမပြုသင့်ပေ။

element runtere finder manually 24 of the clearact (5, and) inte

CHAPTER 11

LINERS

သေးငယ်သော IIIOII SPEED ဒီဖယ်အင်ဂျင်များမှလွဲ၍ ကျန်အင်ဂျင်များ၏ CYLINDER နံရံများသည် ဖြုတ်၍ လဲလှယ်နိုင်သော SLEEVE (OR) LINER များ ဖြစ်ကြသည်။ သေးငယ်သောတွန်စက်အင်ဂျင်များတွင် CYLINDER BLOCK အား သီးခြားပုံလောင်း၍ CRANK CASEတွင့် BOLT များနှင့် ဖမ်းထားသည်။ ၎င်းနည်းသည် အင်ဂျင်ပြန်လည် ဖြုပြင်ရာတွင် လွယ်ကူခြင်း၊ ပေါ့ပါးခြင်းနှင့် အကုန်အကျနည်းခြင်း ရှိသော်လည်း CYLINDER များစွာပါသောအင်ဂျင်ကြီးများတွင် အလွန်လေးလံမည်ဖြစ်သည်။ ထို့ကြောင့် အင်ဂျင်ကြီးများတွင် ရေသွား လမ်းကြောင်းပါ ပူးတွဲတည်ဆောက်သည့် သီးခြား CYLINDER တစ်လုံးစီကို အင်ဂျင်တွင် တပ်ဆင်အသုံးပြုကြသည်။

> LINER ອຸງະດຸຈິ (1) DRY LINER (2) WET LINER (3) INTEGRAL WATER JACKET LINER ဟຸ ຈູ້ອີງວະຊີຣົລລຸວົ່າ

(I) DRY LINER

DRY LINER ဆိုသည်မှာ ၎င်းသည် CYLINDER အတွင်းရှိ CYLINDER နံရံအဖြစ် ဆောင်ရွက်ရန် LINER တစ်ခုအဖြစ်သာ ထည့်ထား၍ အအေးပေးစနစ်၏ အရည်နှင့်တိုက်ရိုက်ထိတွေ့မှု မရှိသော LINER မျိုးကို ခေါ်သည်။

(2) WET LINER

၎င်းမှာ CYLINDERနံရံ၏ တာ၀န်ကို ဆောင်ရွက်သည့်အပြင် အအေးပေးစနစ်၏ အရည်နှင့်တိုက်ရိုက် ထိတွေ့မှုရှိကာ ရေသွားလမ်းကြောင်းအဖြစ် ဆောင်ရွက်သော LINER မျိုးကို ခေါ်သည်။

(3) INTEGRAL WATER JACKET LINER

CYLINDER နံရံများအား ရေသွားလမ်းကြောင်းပါ ပူးတွဲပြုလုပ်ထား၍ ၎င်းတို့သည် သီးခြား CYLINDER အဖြစ် ဆောင်ရွက်သည်။ အင်ဂျင်တွင် CYLINDER BLOCK နှင့် CYLINDER HEAD တို့ဖြင့် ညှပ်၍၎င်း၊ LINER များတွင် FLANG ပြုလုပ်၍ BLOCK (သို့) FRAME တွင် BOLT များဖြင့် ဖမ်း၍၎င်း တည်ဆောက်ထားသည်။

၎င်း LINER အသုံးပြုသော အင်ဂျင်များတွင် အအေးပေးစနစ် လည်ပါတ်ရန် WATER MANFOLD များကို အသုံးပြုကြသည်။ ၎င်းအင်ဂျင်များတွင် ရေသည် အင်ဂျင် BLOCK (သို့) FRAME နှင် လုံးဝ ထိတွေ့မှု မရှိပေ။

DRY LINER နှင့် WET LINER တို့နိုင်းယှဉ်ရက် *****

DRY LINER သည် CYLINDER အတွင်းတွင် PISTON ရှေ့လျားပွတ်တိုက်သော မျက်နှာပြင်အဖြစ် အပြင် CYLINDERအတွင်း ဖြစ်ပေါ်သော COMPRESSION နှင့် မီးလောင်ပေါက်ကွဲမှုများကိုပါ ခံဆောင်ထားသည်။ LINER ၏ အပြင်အချင်းကို အနည်းငယ်ကြီးထားပြီး BLOCK အတွင်းသို့ ဖိအားဖြင့် ဖိ၍ တပ်ဆင်ထားသည်။ အင်ဂျင်ပူလာသောအခါ LINER အပူချိန်ဖြင့်မားသည့်အလျောက် LINER သည် CYLINDER နံရံတွင် ခိုင်မြံစွာ ရှိ နေသည်။

DRY LINER တပ်ဆင်သော အင်ဂျင်တွင် အအေးပေးစနစ်နှင့် တိုက်ရိုက်မထိဘွေ့ ရသဖြင့် WET LINER ထက် အပူချိန် မြင့်မားစွာ အလုပ်လုပ်ရသည်။ အပူစီးနှန်းများတွင် အသားတစ်ခုတည်းဖြစ်သော WET LINERစီး နှန်းမှာ ပို၍မြန်သည်။ DRY LINER ၏ အထူသည် WET LINER ထက် ပါးသော်လည်း LINER နှင့် CYLINDER နှစ်ခုပေါင်းအထူသည် WET LINER ထက် 30% မျှ ကြီးသည်။

WET LINER များ၏ နံရံများသည် DRY LINER ထက် အပူချိန်နည်းသော်လည်း LINER အပေါ်ပိုင်းရှိ FLANQ ကို အေးစေရန် မဆောင်ရွက်နိုင်ချေ။ ထို့ပြင် ရေလုံခြုံမှုရှိစေရန်နှင့် ဓါတ်ငွေ့များလုံခြုံမှုရှိစေရန် LINER 8

ဦးအုန်းမြင့်၏ဒီရယ်အင်ဂျှင်

11 - 2

အပေါ်ပိုင်းတွင် FLANG များကို နိုင်ခံစွာပြုလုပ်ထားသည်။ ထို့ပြင် အောက်ပိုင်းတွင် SEALING 'o' များ တပ်ဆင်ထား ရသည်။ အချို့အင်ဂျင်ကြီးများတွင် LINER ထိပ်အောက်ပိုင်းတွင် ဒုတိယအဆင့် FLANG တစ်ခုပါ တပ်ဆင်ထားတတ် သည်။

LINER MATERIAL AND HARDNESS

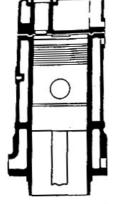
LINER များအား CAST IRON ALLOY ဖြင့် ပြုလုပ်ထားသည်။ NICKLE CHROMINIUM MOLYBDENUM နှင့် TITANIUM စသည့် သတ္တုများရောစပ်ခြင်းဖြင့် ပိုမိုကောင်းမွန်သည်။ သေးငယ်သော ဒီဇယ်အင်ဂျင် LINER များအား CENTRIFUCIAL နည်းဖြင့် ပုံလောင်းလေ့ရှိသည်။ CAST IRON ဖြင့် ပုံသွင်းထားသော CYLINDER နံရံ များသည် 200 BRINELL နှင့် အထက် ပိုမိုမာကြောကြောင်း တွေ့ရသည်။

သေးငယ်သော HIGH SPEED DIESEL ENGINE များအတွက် LINER များကို မာကြောရန် INDUCTION HARDENED ပြုလုပ်ထားသည်။ DRY LINER အတွက် 640 BRINELL အထိ မာကြောရန်ပြုလုပ်ပြီး WET LINER အတွက် 555 BRINELL အထိ မာကြောရန် ပြုလုပ်ထားသည်။

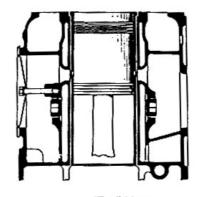
အချို့ LINER ထုတ်လုပ်သော ကုမ္ပဏီများသည် PARKER LUBRITE COATING (သို့) ဓါတုဗေဒနည်း ဖြင့် မျက်နှာပြင်များ မာကြောရန် စီမံထားသည်။ ကြီးမားသော LOW SPEED အင်ဂျင်များတွင် ALLOY CAST IRON ဖြင့် ပြုလုပ်၍ မျက်နှာပြင်ကို PROUS CROME ဖြင့် ဓါတ်ရည်စိမ်ထားသည်။ အချို့ LINER အကြီးစား များကို အထူးပြုလုပ်ထားသည့် CAST IRON ဖြစ်သည့် MEEHANITE ခေါ် သတ္တုတစ်မျိုးဖြင့် ပြုလုပ်ထားသည်။

စမ်းသပ်ဆဲ LINER တစ်မျိုးမှာ ALLUMINIUM ALLOY များကို မျက်နှာပြင် 1/32 အထိ HARD IRONခံ၍ MOLYBDEMUM PLATING ပြုလုပ်ထားသည်။ 600 BRINELL အထိ မာကြောသည်။ ၎င်းကို HONING ဖြင့် အချောကိုင်ခြင်းဖြင့် ပွဲသော မျက်နှာပြင် (POROUS SURFACE) ရရှိစေသည်။ ဤနည်းနှင့် အလားတူ AIR COOL DIESEL နှင့် ဓါတ်ဆီအင်ဂျင်များတွင် DIECAST ALLUMINIUM CYLINDER များအား အပေါ်ယံမျက်နှာ ပြင်တွင် HARD IRON 0.005 မှ 0.006 အထူခံ၍ အသုံးပြုကြသည်။

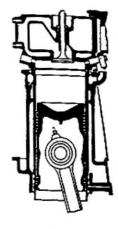
LINER WEAR

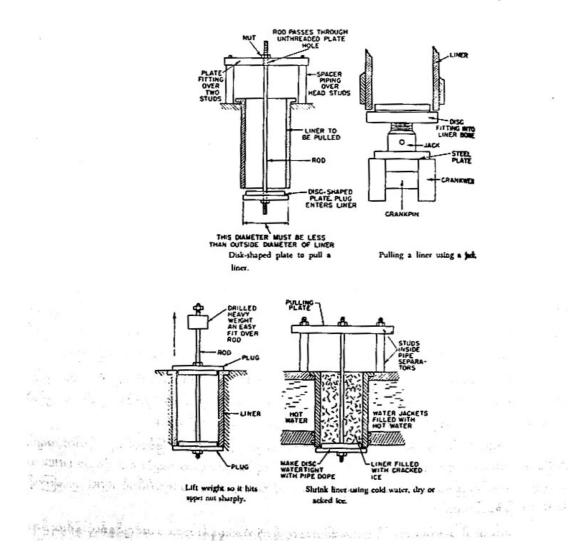


အင်ဂျင်များတွင် အခါအားလျော်စွာ LINER များ၏ ပျက်စီးမှုနှင့် တိုက်စားမှုများကို စစ်ဆေးရမည်။ PISTON RINO အရွေ့တလျောက် အင်ဂျင်၏ အရွယ်အစားပေါ် မူတည်၍ 2 ခြားစီဖြစ်စေ၊ 4 ခြားစီဖြစ်စေ၊ CKANK SHAFT အပြိုင်နှင့် ကန့်လန့်နှစ်နေ ရာစလုံးတွင် တိုင်းတာစစ်ဆေးရမည်။ LINERတိုက်စားနှုန်းမှာ ချောဆီ၊ လေစစ်မှု အခြေအနေနှင့် အသုံးပြုသော လောင်စာဆီ စသည့် အကြောင်းအချက်များပေါ် မူတည်သည်။


တိုက်စားမှု အများဆုံးနေ ရာမှာ CYLINDER အတွင်း PISTON RINO ထိပ်ဆုံးရောက်သောနေ ရာဖြစ် သည်။ တိုက်စားမှုမည်မျှအထိ ခွင့်ပြုနိုင်မည်ဆိုသောအချက်မှာ LINER၏ တိုက်စားပုံတိုက်စားနည်း၊ အင်ဂျင်၏ ၁န်ထမ်းဆောင်မှုအခြေအနေနှင့် CYLINDER အရွယ်အစားတို့ပေါ်တွင် မူတည်သည်။

LINER ၏ တိုက်စားနှုန်းသည် နာရီ 1000 မောင်းနှင်ပြီးချိန်တွင် 0.001 ဖြစ်ပေါ်သည်ဆိုပါက အချင်း 4.5. ရှိသော LINER နှင့် အချင်း 20 ရှိသော LINER တို့ကို နှိုင်းယှဉ်လေ့လာပါက အချင်း 4.5. ရှိသော LINERက ပိုမိုမြန်စွာ လလှယ်ရမည်မှာ ထင်ရှားသည်။ ထို LINER ၏တိုက်စားမှု 0.010 မရောက်မီပင် RINO များကြောင့် BLOW BY ဖြစ်ပေါ်ပေမည်။


အထက်ပါအချက်များအပြင် ၎င်းအခြေအနေတူ၍ တိုက်စားမှုနှန်းတူသော အင်ဂျင်နှစ်လုံးရှိုင်းယှဉ်ရာ တွင် HIQH SPEED အင်ဂျင်၏ LINERသည် LOW SPEED အင်ဂျင်၏ LINERထက် စောစွာတိုက်စားမှုများပြီး မကြာခဏ လဲလှယ်ရကြောင်း တွေ့ရှိရသည်။


Cylinder and Water-Jacket Cast in One Piece

"Dry" Liner Liner makes metal-to-metal contact with cylinder casting containing water jacket.

"Wet" Liner Liner is inserted into cylinder casting to form water jacket.

4

ဦးအုန်းမြင့်၏ဒီဇယ်အင်ဂျင်

11 - 4

LINER TEMPERATURE

အင်ဂျင်မောင်းနှင်နေစဉ် LINER ၏ အပေါ်ပိုင်း FLANGE နေရာသည် အပူဆုံးဖြစ်၍ အပူချိန် LIOOT အထိ ရှိ၍ LINER ၏ အအေးပိုင်းဖြစ်သော CYLINDER နံရံများတွင် 400 Pခန့် ရှိကြောင်း တွေ့ရသည်။ ထို့ကြောင့် ပူသောအပိုင်းနှင့် အေးသောအပိုင်းတို့၏ အပူချိန်ကွာခြားမှုကြောင့် DISTORSION ဖြစ်နိုင်သည်။ LINER အပေါ်ပိုင်း တွင် မြင့်မားသောအပူချိန်ကြောင့် PISTON RING ထိတွေ့သောမျက်နှာပြင်အကြားသို့ ချောဆီပိုမှု ထိခိုက်စေမည် ဖြစ်သည်။ ထို့ကြောင့် PISTON RING များကို LINER ၏ အေးသောအပိုင်းမှ မကျော်လွန်၍ အပေါ်ဘက်သို့ မရောက်စေပဲ PISTON ပေါ်တွင် အောက်ဖက်ကျနိုင်သမျှ ကျစေရန် တပ်ဆင်ထားခြင်းဖြင့် ချောဆီရရှိနိုင်သည့်အပြင် DISTORSION ဖြစ်မှုကို ကာကွယ်စေသည်။

SCUFFED AND SCORED LINER

LINER မျက်နှာပြင် ချို့ယွင်းပျက်စီးမှုများကို SCUFFED (သို့) SCORED ဟု ခေါ်သည်။ SCUFFဖြစ် ပေါ်နေသော LINER ကို ဆက်လက် အသုံးပြုနိုင်သော်လည်း SCORED ဖြစ်နေပါက ပြန်လည်ပြုပြင်၍ အသုံးပြု ရမည်ဖြစ်သည်။ SCORED ဖြစ်နေသော LINER သည် ယခင်က SCUFF ဖြစ်ဖူးကြောင်း ထင်ရှားသည်။

ချောဆီပေးပို့မှု မလုံလောက်ခြင်းနှင့် အေးသောအချိန်တွင် အင်ဂျင်နှိုးခြင်းတို့ကြောင့် SCUPPED ဖြစ် ပေါ်သည်။ ချောဆီမလုံလောက်မှုကြောင့် CYLINDEK နံရံနှင့် PISTON ကြားတွင် သတ္တုချင်းပွတ်တိုက်မှုဖြစ်ကာ SCUPP ဖြစ်ပေါ်သည်။ ထို့အတူ အေးသောအချိန်တွင် နှိုးပါက ချောဆီချက်ခြင်း မရောက်နိုင်သဖြင့် PISTON, PISTON RING နှင့် CYLINDER နံရံအကြားတွင် ဆီပြတ်၍ သတ္ထုချင်း ပွတ်တိုက်ကာ SCUPP ဖြစ်ပေါ်စေသည်။

RECONDITIONINE LINERS

သေးငယ်သောအင်ဂျင်များတွင် LINER၏ တိုက်စားမှုသည် သတ်မှတ်သည်ထက် ပိုပါက တန်ဘိုးနည်း သဖြင့် အသစ်လဲလှယ်လေ့ရှိသည်။ အနည်းငယ်သာစားပါက LINER အထက်ပိုင်းတွင် ဖြစ်ပေါ်နေသော RIDGE ကို CUTTERဖြင့် ဖြတ်လျက် LINERကို HONING ပြုလုပ်၍ OVER SIZE PISPTON RINGကို တပ်ဆင် အသုံး ပြုသည်။

ကြီးမား၍ တန်ဘိုးကြီးသော LINER များတွင် ပွန်းစားမှုများပါက အနီးစပ်ဆုံး OVER SIZE အထိ BORING ပြုလုပ်သည်။ မှန်ကန်သော ကြားလွတ်တန်ဘိုးရရှိရန် TIONING လုပ်၍ အချောကိုင်ရသည်။

LINER များ၏ နံရံချောမွေ့မှု အမှန်ရရှိရန် အရေးကြီးသည်။ အကယ်၍ မျက်နှာပြင်များသည် လိုအပ် သည်ထက် ပိုမိုချောမွေ့ပါက RING များ အထိုင်ကျစေရန်အတွက် အချိန်ပိုမိုကြာမည်ဖြစ်ပြီး မျက်နှာပြင်လိုအပ် သည်ထက် ပိုကြမ်းပါက RING နှင့် PISTON များကို အမြန်စားသွားစေမည်ဖြစ်သည်။ LINER များကို BORING, HONING ပြုလုပ်ပြီးပါက သန့်ရှင်းစေရန် အထူးအရေးကြီးသည်။ သံမှုန်နှင့်ကျောက်မှုန့်များကြောင့် အင်ဂျင်အား ဒုက္ခများစွာ ပေးနိုင်သည်။

PREVENTIVE MAINTENANCE

INTERNAL COMBUSTION ENGINE များကို အစိတ်အပိုင်းများစွာနှင့် အလွန်တိကျသော အတိုင်း

ဦးအုန်းမြင့်၏ဒီဖယ်အင်ဂျင်

P

အတာတို့ဖြင့် တည်ဆောက်ထား၍ ၎င်းတို့အား ကောင်းမွန်စွာ ထိန်းသိမ်းမှုပြုလုပ်ပါက ENGINE၏ သက်တမ်း ရှည်၍ ကောင်းမွန်စွာ အလုပ်လုပ်ဆောင်နိုင်ကြသည်။ ၎င်း ENGINEများအား ထိန်းသိမ်းရာတွင် အစီအစဉ် (2)မျိုး ကို သုံးသည်။ ၎င်းတို့မှာ

(1) PERIODIC INSPECTION MAINTENACE

(2) PREVENTIVE MAINTENACE PROGRAM တို့ဖြစ်၏။

(1) PERIODIC INSPECTION MAINTENACE

အချိန်ပိုင်းအားလျော်ရွာ ကြည့်ရှုခရီဆေးခြင်း

၎င်းအစီအစဉ်တွင် အင်ဂျင်ထုတ်လုပ်သူများ၏လေ့လာချက်များနှင့် အင်ဂျင်မောင်းနှင်သူ (OPERATOR) တို့၏အတွေ့အကြုံအရ အင်ဂျင်များအား INSPECTION ပြုလုပ်ရန် အချိန်ကန့်သတ်၍ ကြည့်ရှုစစ်ဆေးခြင်းဖြစ် သည်။ ၎င်းစစ်ဆေးမှုတွင် အင်ဂျင်၏ အစိတ်အပိုင်းများအား ဟစိတ်တဒေသဖြစ်စေ၊ အားလုံးဖြစ်စေ ဖြုတ်၍ ကြည့်ရှုစစ်ဆေး ခြင်း၊ သန့်ရှင်းမှုပြုလုပ်ခြင်း၊ ချို့ယွင်းသောအစိတ်အပိုင်းများအား အသစ်လဲလှယ်ခြင်း တို့ပါဝင် သည်။ အရေးကြီးသော အချို့အစိတ်အပိုင်းများကို တိုတောင်းသော အချိန်ပိုင်းတိုင်းတွင် စစ်ဆေးမှုပြုလုပ်သော်လည်း MAJOR INSPECTION ကိုမူ အင်ဂျင် 4800 နာရီ မောင်းပြီးတိုင်း ပြုလုပ်လေ့ရှိသည်။ ဤသို့စစ်ဆေးခြင်းဖြင့် အင်ဂျင်၏ အစိတ်အပိုင်းများ အခြေအနေနှင့် တပ်ဆင်ထားမှု အထိုင်မှု ရှိမရိုကို သေချာစွာသိနိုင်၏။

၎င်းစစ်ဆေးမှု၏ ချို့ယွင်းချက်မှာ ကောင်းမွန်စွာ အလုပ်လုပ်ဆောင်နေသော အင်ဂျင်ကို မလိုလားအပ်ပဲ ဖြုတ်၍ စစ်ဆေးရသဖြင့် အထိုင်ကျနေပြီဖြစ်သော အစိတ်အပိုင်းများ ပြောင်းလဲခြင်း၊ ပြန်လည်တပ်ဆင်ရာတွင် ဖုံနှင့်အညစ်အကြေးများ ဝင်ရောက်ခြင်း စသည်တို့ဖြစ်ပေါ်စေသည်။ BEARINO ပျက်စီးမွှ၏ 90% သည် မကြာ

ခဏ INSPECTIONပြုလုပ်ရာမှ ဝင်ရောက်လာသော အညစ်အကြေးများကြောင့် ဖြစ်သည်ဟု အချို့သော BEARING ထုတ်လုပ်သော ကုမ္ပဏီများက ဖေါ်ပြကြသည်။ အင်ဂျင်များကို MAJOR OVERHAUL ပြုလုပ်ပြီးတိုင်းတွင် အင်ဂျင် အသစ်များကဲ့သို့ပင် မောင်းနှင်ထားတတ်သည်။ ဤနည်းဖြင့် အတွင်းရှိအစိတ်အပိုင်းများ အထိုင်ကျစေပြီး အင်ဂျင် ၏ အလုပ်လုပ်ဆောင်မှုတွင် စိတ်ချရသည်။

(2) PREVENTIVE MAINTENACE PROGRAM (P.M)

၎င်းအစီအစဉ်တွင် အချိန်အားလျော်စွာ စစ်ဆေးပြီးသော အစိတ်အပိုင်းများကို အားလုံးမှတ်တမ်း တင်ထားခြင်းပင် ဖြစ်သည်။ ထို့ကြောင့် အင်ဂျင်၏ အလုပ်လုပ်ဆောင်မှု ချို့ယွင်းလာပါက မည်သည့်အစိတ်အပိုင်း များ ချို့ယွင်းကြောင်းကို အလွယ်တကူ သိရှိနိုင်သည်။ P.Mပြုလုပ်ရခြင်း၏ ရည်ရွယ်ချက်မှာ အင်ဂျင်တစ်လုံးသည် ၎င်းအား OVERHAUL ပြုလုပ်ရန် အချိန်မကျမီ ပျက်စီးခြင်းမှ ကာကွယ်ရန်ဖြစ်သည်။ ကောင်းမွန်သော P.M PROGRAM တစ်ခုသည်–

1. အင်ဂျင်များ OVER HAUL ပြုလုပ်ရမည့် အချိန်အပိုင်းအခြားကန့်သတ်ရေး

2. အင်ဂျင်အား အလွန်အမင်း မပျက်စီးရန် လမ်းညွှန်မှုပြုလုပ်နိုင်ရမည်။

CROSS COUNTRY TRUCK LINE ၏ လေ့လာချက်အရ P.M PROGRAM စနစ်တကျ လုပ်ဆောင် ပေးခြင်းဖြင့် လမ်းပေါ်တွင် ယာဉ်ချို့ယွင်းမှု 40% မှု လျော့လာ၍ OVER HAUL ပြုလုပ်ရန် သတ်မှတ်သည့် မိုင် နှုန်းထက် 30% တိုးတက်လာကြောင်း တွေ့ရသည်။

P.M အစီအစဉ် တစ်ခုတည်းဖြင့် အင်ဂျင်အားလုံးအတွက် လုံလောက်မှု မရှိကြောင်းမှာ ထင်ရှားသည်။ လမ်းပေါ်တွင် မောင်းနှင်နေသောယာဉ်၏ HIGH SPEED ENGINE နှင့် STATIONARY အင်ဂျင်များအတွက် P.M အစီအစဉ်များကို ၎င်းတို့ အချိန်အပိုင်းအခြားအလိုက် ရေးဆွဲရမည်။ P.M အစီအစဉ်ရေးဆွဲရာတွင် အင်ဂျင်ထုတ် လှုပ်သော ကုမ္ပဏီမှ ညွှန်ကြားချက်တို့ကို လိုက်နာရမည်။ >

ဦးအုန်းမြင့်၏ဒီဇယ်အင်ဂျင်

11 - 6

TRUCK AND BUS P.M PROGRAM

P.M PROGRAM ပြုစုရန်တွင် INSPECTION ပြုလုပ်ပြီးသော အစိတ်အပိုင်းများကို ရှင်းလင်းသေရာစွာ အသေးစိတ်မှတ်တမ်း ပြုလုပ်ထားရန် အရေးကြီးသည်။

SCONY MOBILE OIL COMPANY မှ ပြုစုထားသော RECORD, SYSTEM များကို ပုံတွင်ပေါ်ပြထား သည်။ ၎င်းသည် အဓိကအားဖြင့် ဓါတ်ဆီအင်ဂျင်များအတွက် ရေးဆွဲထားခြင်း ဖြစ်သော်လည်း ၎င်းအစီအစဉ်တွင် ပါဝင်သော အချက်အနည်းငယ် ပြောင်းလွဲအသုံးပြုခြင်းဖြင့် TRUCK, BUS, TRACTOR များနှင့် အခြား DIESEL ENGINE များ၏ P.M PROGRAM RECORD SYSTEM အတွက် အသုံးပြုနိုင်သည်။ ၎င်း SYSTEM တွင် –

- 1. WORK SHEET
- 2. RECORD FOLDER
- 3. CONTROL BLAC-BOARD စသည်ဖြင့် အပိုင်းသုံးပိုင်း ပါဝင်သည်။

WORK SHEET သည် MECHANIC အတွက် စီစဉ်ထားခြင်းဖြစ်ပြီး CONTROL BOARD တွင် သတ် မှတ်ထားသော အချိန်အပိုင်းအခြားအရ ပစ္စည်းများကို စစ်ဆေး၍ မှတ်တမ်းတင်ထားရန် ဖြစ်သည်။ CONTROL BOARD တွင် QROUP (5) ခု ကို ၎င်းတို့၏ စစ်ဆေးရာကာလအပိုင်းအခြား (MILAGE) များဖြင့် ဖေါ်ပြထားသည်။ သတ်မှတ်ထားသောကာလအပိုင်းအခြား (MILAGE) သည် ENGINE အမျိုးအစား၊ ပစ္စည်း၊ အစိတ်အပိုင်းအမျိုးအစား နှင့် အသုံးပြုသောနေရာအနေအထား (TYPE OF SERVICE) တို့ပေါ်တွင် အခြေခံ၍ သတ်မှတ်ထားခြင်း ဖြစ်သည်။ အကယ်၍ ပစ္စည်းအစိတ်အပိုင်းများ ပြင်ဆင်ရန် လိုအပ်ပါက WORK SHIEET ၏ ကျောဖက်တွင်ရှိသော WORK ORDER FORMတွင် ရေးသွင်း၍ အသစ်လဲလှယ်ရသော ပစ္စည်းနှင့် အသုံးပြုရသော ပစ္စည်းများကိုပါ ရေးသွင်းထား ရမည်။

RECORD FOLDER ကို ပုံတွင် ဖေါ်ပြထား၍ ယာဉ်တစ်စီးအတွက် မှတ်တမ်းတစ်ခုစီ ထားရသည်။ ၎င်းတွင် သက်ဆိုင်ရာ ပစ္စည်းအစိတ်အပိုင်းများအတွက် INSPECTION DATA နှင့် SPECIFICATION များကို အကျဉ်းချုံး၍ ရေးသွင်းနိုင်ရန် စီစဉ်ထားသည်။ တစ်လအတွင်း ယာဉ်သွားခဲ့သော မိုင်ပေါင်း၊ အသုံးပြုရသောလောင် စာဆီနှင့် ချောဆီပမာဏတို့ကို မှတ်တမ်းတင်ထားသည်။ ဤနည်းဖြင့် လောင်စာဆီစားနှုန်း (MILES/GALLONS) နှင့် ချောဆီစားနှုန်း (MILE/QUT) တို့ကို သိရှိနိုင်သည်။ ရုတ်တရက် လောင်စာဆီစားနှုန်းနှင့် ချောဆီစားနှုန်း လျော့နည်းမှုဖြစ်ပေါ်လာပါက ENGINE တွင် ချို့ယွင်းမှုရှိနေ၍ (သို့) မောင်းနှင်မှုအခြေအနေ ပြောင်းလဲခြင်း ရှိ နေကြောင်း သိရှိနိုင်သည်။

			L:	eri buon relativitation O - REPA International International REPAI International WORL	R MADE K ORDER	1 00 15 (I	0005	
Γ	ITEM	CH	CCK RK	DISCRIPTION OF WORK	WORK DONE	TIME SPE		AMOUNT
	NO.	0	x	TO BE DONE	ignut BY II Y	the state of the second	RANK	
ŀ	1				eetin Ot		S 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	1		199	양 공원	.noilibna	i tio Burn	te yetz	
		_			2121	BOVE We	A BO TRU	e IMT
and the second			اندىنى مۇرى	ortos 10	5.5			
I	1012	(and	(and a	TOTAL LABOUR & TOTAL	HOUR COST	2. all photos - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		•

ဦးအှန်းမြင့်၏ဒီဇယ်အင်ဂျင်

P

TRU	CK AND BUS PREVENTIVE MAIN	TENACE WORK SHEET
DATE	EQUIPMENT	PRESSENT MILAGE
ADDRESS	YEAR AND MODEL	STATING MILAGE
2	SERVICE	MILAGE
25	SERVICE	
	SERVICE	MILAGE
47 SPECIAL 1 59. C	lean and repack wheel bearing	liles
GROUP A. GROUP B. GROUP C. OTHER	Service is usually done at 1000 to 1500 miles. Service is usually done at 2000 to 3000 miles. Service is usually done at 4000 to 6000 miles. Service are performed vanans interval generally in the range of 10000 - 20000 miles depending on condition.	After above work is Complete road test and note general condition.
TIME SPENT	ON ABOVE WORK	Mechanic

>

12 - 1

ະວີຊີເຕີງລະແລ ວຸ້ຮູະວີຊີະແລຍີຍວິເກລີແ

အင်ဂျင်တစ်လုံးအား မဆေးကြောမီ အပြင်ပိုင်းကို ကြည့်ရှုခြင်းဖြင့် မည်သည့်အစိတ်အပိုင်း ချို့ယွင်း ပျက်စီးနိုင်သည်ကို ကြိုတင်ခန့်မှန်းနိုင်သည်။ ဥပမာ– ENGINE HEAD ပေါ်ရှိ ROCKER ပေါ်တွင် ခြောက်သွေ့နေ ပါက ROCKER ARM ပေါ်သို့ ဆီမရောက်ကြောင်း သိရှိနိုင်သည်။ အင်ဂျင်များ ဆေးကြောရာတွင် ဆေးကြောနည်း အမျိုးမျိုးရှိသည်။

- 1. STEAM CLEANERS
- 2. COLD TANK
- 3. HOT TANK
- 4. MECHANICAL WASHERS
- 5. JET CLEANING
- 6. UNTRASONIC CLEANING
- 7. OLASS BEAD CLEANING 00

NG စသည်တို့အပြင် နည်းအမျိုးမျိုး ရှိလေသည်။

CRANK SHAFT ပြန်လည်ပြုပြင်ခြင်း

CRANK SHAFT အား မဆေးကြောမီ မျက်မြင်အနေဖြင့် ပထမဦးစွာ စစ်ဆေးရမည်။ BEARING JOURNAL များပေါ်တွင် လောင်ထားခြင်း ရှိမရှိ၊ အပူချိန်လွန်ကဲခြင်း ရှိမရှိ၊ အက်ကြောင်းများ ရှိမရှိ စသည့်ဖြင့် ကြည့်ရှစစ်ဆေးရမည်။ ၎င်းတို့အပေါ်တွင်မူတည်၍ CRANK SHAFT JOURNAL များအား သ,ရန် လိုမလိုနှင့် အသစ်ပြန်၍ WELDING ပြုလုပ်ကာ လိုအပ်သော SIZE များ ဖြစ်အောင် ပြန်သ,ရန်၎င်း စစ်ဆေးရမည်။ CRANK SHAFT များ ဆေးကြွောရာတွင် ဆီလိုင်းများ သန့်ရှင်းနေစေရန် အထူးဂရုစိုက် စစ်ဆေးရမည်။

ဆေးကြောပြီးပါက BEARING JOURNAL များ၏ TAPER (အရှူး) နှင့် OUT OF ROUND (ဘဲဥပုံ)ကို စစ်ဆေးပေးရမည်။ တိုင်းထွာပြီးပါက ထုတ်လုပ်သူများ၏ ခွင့်ပြုတန်ဘိုးဖြင့် ကိုက်မကိုက် စစ်ဆေးပါ။ ပုံစံအားဖြင့် ဆိုလျှင် CONNECTING နှင့် MAIN BEARING JOURNAL များတွင် အချင်း (1) လက်မရှိပါက OUT OF ROUND ၏ ခွင့်ပြုတန်ဘိုးမှာ 0.0005 လက်မဖြစ်ပေသည်။

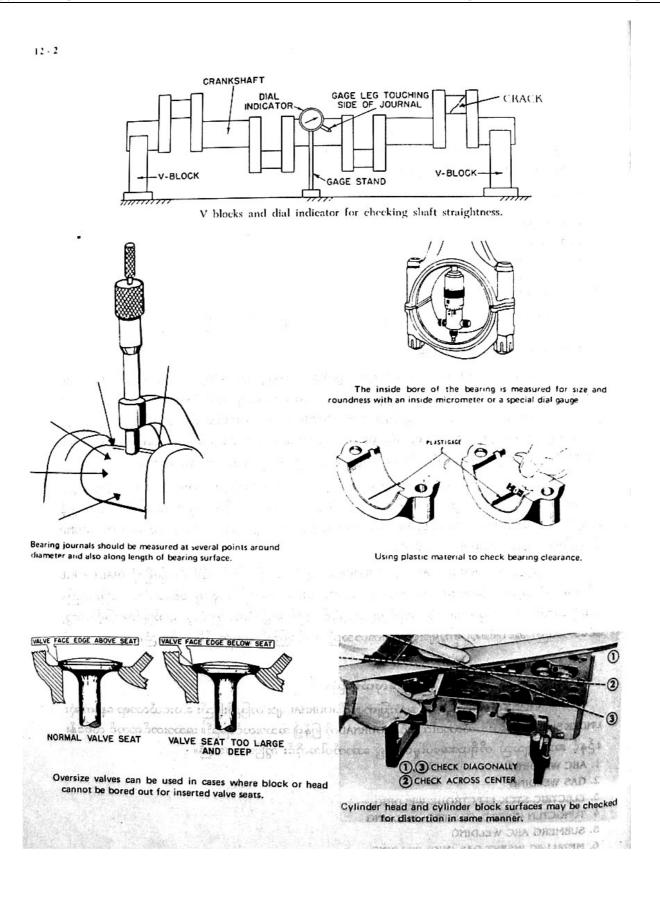
ထို့နောက် CRANK SHAFT ကို V-BLOCK ပေါ်တွင် တင်၍ ဖြောင့်တန်းခြင်း ရှိမရှိကို DIAL GAUGE ဖြင့် စမ်းသပ်ရမည်။ အခြားစစ်ဆေးမှု တစ်ခုမှာ CRANK SHAFT အက်ခြင်း ရှိမရှိ စစ်ဆေးခြင်းပင်ဖြစ်သည်။ ၎င်းကို သံလိုက်လမ်းကြောင်းများကို အသုံးပြု၍ ရှာဗွေနိုင်သည်။ အချို့အက်ကြောင်းမှာ မျက်မြင်အားဖြင့် မတွေ့ နိုင်သော်လည်း အင်ဂျင်အား ဒုက္ခများစွာ ပေးတတ်သည့် အက်ကြောင်းများ တည်ရှိတတ်သည်။

ထိုကဲ့သို့တွေ့ရှိပါက အသစ်လဲလှယ်ရမည်။

CRAMK SHAFT တခုအား အသုံးပြုရာတွင် JOUKNAL များ တဖြည်းဖြည်း သေးငယ်လာရာ နောက်ဆုံး UNDER SIZE ထက် သေးငယ်လာပါက ၎င်း JOURMALကို ပြန်၍ အသားတင်ရမည်။ အသားတင်ရာတွင် လုပ်ငန်း စဉ်နှင့် အသုံးပြုသည့် ကိရိယာအပေါ်မူတည်၍ အောက်ပါအတိုင်း ကွဲပြားလေသည်။

1. ARC WELDING

2. GAS WELDING


3. ELECTRIC STCK ELECTRODE WELDING

- 4. TUNGCTEN INSERT GAS (TIG) WELDING
- 5. SUBMERQ ARC WELDING

6. METALLAC INSERT GAS (MIQ) WELDING

http://khtnetpc.webs.com

For Knowledge & Educational Purposes

ဦးအုန်းမြင့်၏ဒီရယ်အင်ဂျင်

12.1

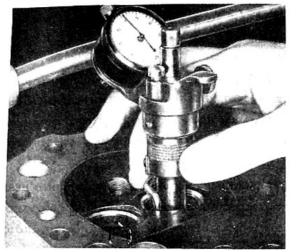
7. CROME PLATING တို့ဖြစ်ကြသည်။

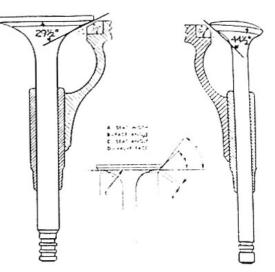
CYLINDER HEAD အား စစ်ဆေးခြင်း

CYLINDER HEAD အား စစ်ဆေးရာတွင် ပထမဦးစွာ အင်ဂျင်မှဖြုတ်ချပြီး ၎င်းအပေါ်တွင် တပ်ဆင် ထားသော အစိတ်အပိုင်းများအားလုံးကို ဖြုတ်ပါ။ ထို့နောက် CYLINDER HEAD တွင် COMPRESSION ယိုစီးမှု ရှိမရှိ စစ်ဆေးရမည်။ ထို့နောက် NOZZLE ကို သတိကြီးစွာဖြင့် ဖြုတ်ရပေမည်။ ဖြုတ်ရာတွင် ထုတ်လုပ်မှုများ၏ တည်ဆောက်ပုံ အမျိုးမျိုးရှိသဖြင့် ဖြုတ်ရန် ကိရိယာများ ရှိရပေမည်။ သို့မှသာ ENGINE HEAD နာမြင်းမှ သက် သာပေမည်။ ပုံစံမမှန်သောနည်းဖြင့် ဖြုတ်ပါက HEAD ကို ထိခိုက်ပေမည်။

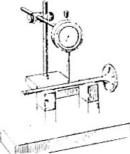
ထို့နောက် ရေသွားလမ်းကြောင်းများ (WATER JACKET) များကို ဆေးကြောရပေမည်။ ပြီးပါက HEAD တွင် အက်ကြောင်းများ ရှိမရှိ ထပ်မံစစ်ဆေးရမည်။ အက်ကြောင်းစစ်ဆေးရာတွင် နည်းအမျိုးမျိုးရှိသော်လည်း PRESSURE TEST ဖြင့် စစ်ဆေးပါက ပို၍ကောင်းမွန်သည်။ ရေသွားလမ်းကြောင်းများကို ပိတ်ဆိုပြီး အတွင်းထဲသို့ ဖိအားပေးပါက အက်ကြောင်းရှိလျှင် စိမ့်ထွက်ပေမည်။ အက်ကြောင်းဖြစ်ပေါ်သောနေရာမှာ VALVE SEAT ပတ်ဝန်း ကျင်တွင် အများဆုံးဖြစ်ပေါ်သည်။ VALVE SEAT နေရာတွင်ဖြစ်ပါက VALVE SEAT အသစ်ကို FIT လုပ်ကာ ပြန်ဖိသွင်းပါက တခါတရံ လုံတတ်သည်။

နောက်ထပ်စစ်ဆေးမှုတစ်ခုမှာ CYLINDER HEAD လိမ်ကောက်မှု ရှိမရှိဖြစ်သည်။ စစ်ဆေးပုံမှာ HEAD ကို ညီညာသောမျက်နှာပြင်တခု အပေါ်တွင်တင်ပြီး အပေါ်မှ STRAIGHT EDGE တခုတင်ကာ CYLINDER တစ်ခု စီကြားတိုင်းတွင် တခါတင်ကာ FEELER GAUGE ဖြင့် လွတ်သောနေရာများကို ထိုးကြည့်ပါ။ စစ်ဆေးရာတွင် အလျားလိုက်ရော အနံလိုက်ပါ စစ်ဆေးသင့်သည်။ ရရှိလာသော အဖြေပေါ်တွင် မူတည်၍ ထုတ်လုပ်သူများ၏ ခွင့်ပြုချက်နှင့် ကိုက်ညီမှုရှိမရှိ၊ မရှိပါက မျက်နှာပြင် ပြန်သပေးရမည်။ ဥပမာ– G.M.C-VB နှင့် V-6 တို့၏ ခွင့် ပြုချက်တန်ဘိုးမှာ 0.0055 inch ဖြစ်သည်။

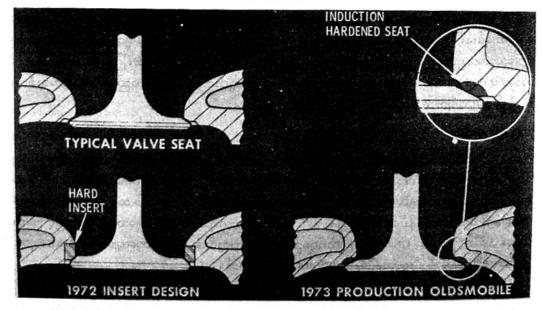

VALVE


VALVE တခု၏ ပထမဆုံးစစ်ဆေးမှုမှာ STEM များ စားနေခြင်း ရှိမရှိ ဖြစ်သည်။ ထို့နောက် STEM ကောက်ခြင်းနှင့် VALVE FACE လိမ်ကောက်ခြင်းနှစ်ခုကို စစ်ဆေးရမည်။ VALVE မျက်နှာပြင်လိမ်ကောက်ခြင်းမှာ များသောအားဖြင့် ခွင့်ပြုတန်ဘိုးမှာ 0.0015 INCH ဖြစ်သည်။ QUIDE နှင့် STEM ကြား၏ အများဆုံးခွင့်ပြုတန် ဘိုးမှာ 0.006 INCH ဖြစ်သည်။ VALVE QUIDE စားဖေား အလွယ်တကူ သိရှိနိုင်သည်မှာ VALVE အသစ်တရောင်း ထည့်၍ စမ်းသပ်ကြည့်ခြင်းပင်ဖြစ်သည်။

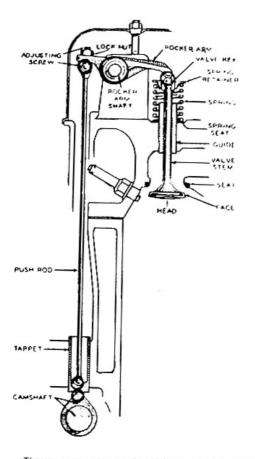
VALVE SEAT


ဒီဇယ်အင်ဂျင်များတွင် VALVE SEAT များကို INSERT များဖြင့် အသုံးပြုကြသည်။ ပထမဦးဆုံး VALVE SEAT RUN OUT ကို စစ်ဆေးရမည်။ VALVE QUIDE တွင် STEM ကို FIT လုပ်၍ DIAL INDICATER ဖြင့် တိုင်းတာ ရမည်။ ထိုအချိန်တွင် VALVE QUIDE မှာ ပြုပြင်ပြီးဖြစ်ရမည်။ SEAT ပြုလုပ်သော သတ္ထုမှာ ထုရိုက်သောဒဏ်နှင့် အပူချိန်ကို ကောင်းစွာခံနိုင်သော သတ္တုဖြစ်ရမည်။ ၎င်းကို ဖြုတ်ရာတွင် အသုံးပြုသော ကိရိယာဖြင့် ဖြုတ်ရမည်။ အသစ်တပ်ဆင်ပြီးပါက QRINDINQ ပြုလုပ်ရမည်။ ပြုလုပ်ရာတွင် အသုံးပြုသောကျောက်၏ ANQLE မှာ တိကျမှု ဖြစ်စေရန်ကျောက်ကို ဦးစွာသႇပြီးမှ QRINDINQ ပြုလုပ်ရမည်။

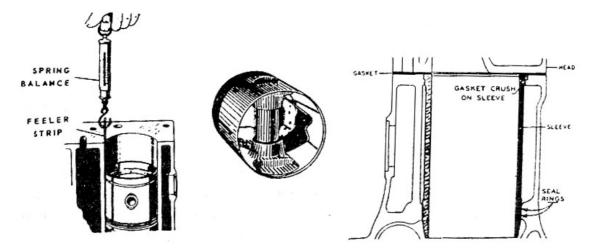
ORINDING ပြုလုပ်ပြီး SEAT ၏ အကျယ်မှာ 3/32 ခန့် ဖြစ်ရပေမည်။ ၎င်းအကျယ်ကို ရရှိစေရန် အတွက် 15 ကျောက်နှင့် 70 ကျောက်တို့ကို သုံး၍ ညှိပေးရမည်။ တပ်ဆင်ပြီးသော VALVE SEAT မှာ ချောင်နေ ခြင်း ရှိမရှိ စစ်ဆေးကာ ချောင်နေပါက ပြုပြင်ပေးရမည်။



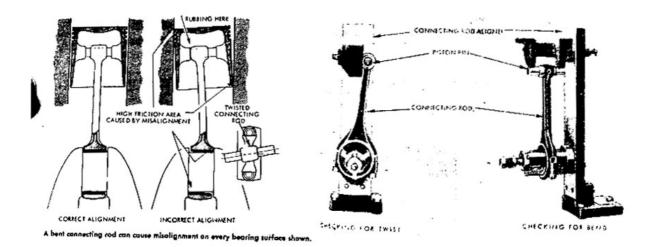
specially mounted dial gauge is used to check concentricity
 of valve seat with valve guide.

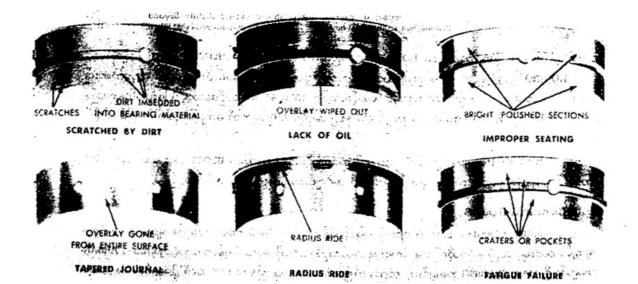

In many cases, a slight interference angle is out on valve face.

Method of mounting dial gauge to check valve stem for straightness


A comparison of different types of valve seats, with and without inserts.

For Knowledge & Educational Purposes


12 - 5


There are many points of wear (circled areas) in valve operating train. A little wear at each point adds up to a lot of wear in train.

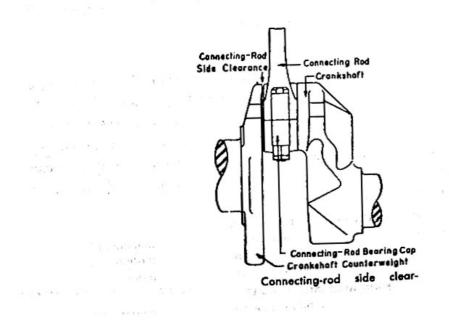
Left, Method of using spring scale with feeler strip to check aston clearance in cylinder. Pull required should be four to five pounds. Right, Piston expander pushes outward on piston bosses.

Rubber seals are used at bottom of sleeves in Oliver tractor engine.

ဦးအုန်းမြင့်၏ဒီဇယ်အင်ဂျှင်

12 - 9

GEAR TRAIN


အခြား အရေးကြီးသော စစ်ဆေးမှုမှာ ENGINE BLOCK တွင် တပ်ဆင်ထားသော TIMING GEAR အခြား GEAR များနှင့် ၎င်းတို့၏ BEARING များ အခြေအနေကို စစ်ဆေးကြည့်ရှုရန်ဖြစ်သည်။ TWO CYCLE G.M.C ENGINE တွင် BALANCE SHAFT နှင့် DRIVE GEAR တို့ကို တိုင်းတာရန် လိုအပ်၏။ တိုင်းတာပုံမှာ GEAR သွားများ၏ တခုနှင့်တခု အကွာအဝေးနှင့် အခြားအကြောင်းအရာများကို အထူတိုင်းကိရိယာနှင့် DIAL INDICATOR ကို အသုံးပြုပြီး တိုင်းတာရမည်။

အများဆုံး ခွင့်ပြုသော BACKLASH (ဂီယာသွားတခုနှင့်တခုအကွာအဝေး) မှာ 0.005⁻ ဖြစ်သည်။ BEARING CLEARANCE များမှာ 0.002 နှင့် 0.004 ထိ ခွင့်ပြုပေမည်။ အချို့ အင်ဂျင်များတွင် TAPER ROLLER BEARING များကို အသုံးပြုကြသည်။

MAIN AND CONNECTING ROD BEARING

MAIN နှင့် CONNECTING ROD BEARING များမှာ အစားထိုး တပ်ဆင်ခြင်းသာဖြစ်ပြီး ညှိပြီးတပ်ဆင် ခြင်းမျိုး မဟုတ်ပေ။ BEARING တခုစီသည် RADIAL MOVEMENT ကို ဖြစ်ပေါ်စေသည်။ MAIN BEARING သော် လည်းကောင်း၊ CONNECTING BEARING သော်လည်းကောင်း၊ မဖြုတ်မီ အမှတ်အသား ပြုလုပ်ပြီးမှ ဖြုတ်ရမည်။ သို့မဟုတ်ပါက ပြန်တပ်ရာတွင် အခက်အခဲများ ဖြစ်ပေါ်နိုင်သည်။ MAIN BEARING ဖြုတ်ရာတွင် ပထမဦးစွာ CAP အား ဖြုတ်ပြီး ကျန်ရစ်ခဲ့သော BEARING ခြမ်းကလေးများကို အထူးပြုလုပ်ထားသော PIN ကလေးဖြင့်သာ ဖြုတ်ရပေမည်။

BEARING ခြမ်းများ အသစ်တပ်ဆင်ရာတွင် အစီအစဉ်အလိုက် တပ်ဆင်ရမည်။ မတပ်ဆင်မီ BEARING

ဦးအုန်းမြင့်၏စီဖယ်အင်ဂျင်

ခြမ်း၏ ရှေ့ဘက်နှင့် နောက်ဘက်ကြောတို့တွင် သေချာစွာ စစ်ဆေး၍ သန့် ရှင်းမှသာ တပ်ဆင်ရမည်။ BEARING ခြမ်းများ အများဆုံးပျက်စီးစေသော အချက်များမှာ အောက်ပါအတိုင်း ဖြစ်ကြသည်။

1. ဖုံ၊အမှိုက်များ		42.9	ရာခိုင်နှုန်း	
2. အင်ဂျင်ဝိုင်နည်းပါးမှု		15.3	ရာခိုင်နှန်း	
3. တပ်ဆင်မှားယွင်းမှု		13.4	ရာခိုင်နှုန်း	
4. ချိန်ညှိမှားယွင်းမှု		9.8	ရာခိုင်နှုန်း	
5. ဝန်များစွာထမ်းဆောင်ရမှု		8.7	ရာခိုင်နှုန်း	
6. ရေနှင့်သံစ ကြေးစများ		4.5	ရာခိုင်နှုန်း	
7. အခြား အကြောင်းအရာများ	1.1.1	5.4	ရာခိုင်နှုန်း	

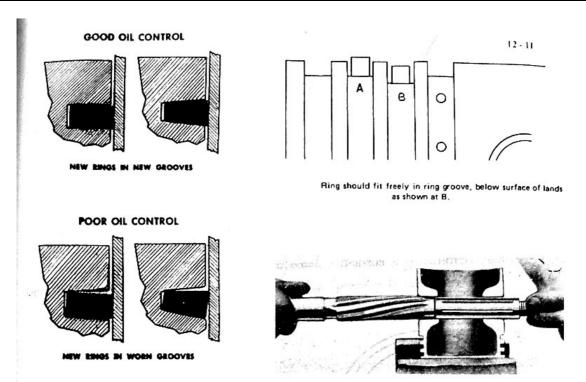
ထို့ပြင် CONNECTING ROD လိမ်ကောက်မှု (သို့) BLOCK လိမ်ကောက်မှုတို့ကြောင့် BEARING များကို ပျက်စီးစေနိုင်သည်။ ထို့ကြောင့် CONNECTING များကို ပြန်လည်မတပ်ဆင်မီ လိမ်ကောက်မှု ရှိမရှိ စစ် ဆေးပါ။ ရှိပါက HONING လုပ်ပြီးမှ ပြန်လည်တပ်ဆင်သင့်သည်။

BEARING များတပ်ဆင်ခြင်း

BEARING များ မတပ်ဆင်မီ ပထမဦးဆုံးအလုပ်မှာ CONNECTING ROD နှင့် MAIN BEARING အပေါက်များကို သေချာစွာ ဆေးကြော၍ ၎င်းတို့၏ SIZE ကို တိုင်းထွာကြည့်ပါ။ BEARING ခြမ်းများမှာ လုံးဝ သန့်ရှင်းနေရမည်။ BEARING ခြမ်းများကို ဖိ၍ တပ်ဆင်ရမည်။ တပ်ဆင်ရာတွင် ဆီပေါက်များကို ဂရုစိုက်ရမည်။ BEARING ခြမ်း အပြင်ဘက်နှင့် CONNECTING များ၏ အတွင်းပိုင်းတလျောက်လုံးကို ထိကပ်နေရမည်။ အပိတ် တပ်ဆင်ခြင်းမျိုး မဖြစ်တော့ပေ။ သို့မှသာ BEARING သက်တမ်းကို ရှည်စေနိုင်သည်။

BEARING ခြမ်း တပ်ဆင်ရာတွင် BEARING အပေါက်များနှင့် လုံးဝ အံဝင်ဝွင်ကျ ဖြစ်စေရမည်။ BEARING ခြမ်းတခုစီသည် BEARING အပေါက်တဝက်ထက် အနည်းငယ်စီ ပို၍ ရှည်ထားရမည်။ သို့မှသာ CAP ဖုံး၍ အားဖြင့်ဖိ၍ တပ်ဆင်မှသာ လုံးဝ အံဝင်ဝွင်ကျ ဖြစ်နေပေမည်။

BEARING CLEARANCE


BEARING CLEARANCE သည် BEARING JOURNAL များနှင့် BEARING ခြမ်းများ၏ အချင်းများ ပေါ်တွင် မူတည်သည်။ အလွယ်ကူဆုံးနည်းဖြင့် သိရှိနိုင်သည်မှာ MICROMETERဖြင့် တိုင်းကြည့်ခြင်းဖြစ်သည်။ နောက်တနည်းမှာ PLASTIC GAUGE ဖြင့် တိုင်းခြင်းဖြစ်သည်။ ၎င်းမှာ အချင်းသေးငယ်သော PLASTIC ROD တ ချောင်းကို BEARING မျက်နှာပြင်ပေါ်တင်ပြီး CAP ကို တပ်ဆင်ကာ သတ်မှတ်ထားသော တင်းကြပ်အားဖြင့် တင်းကြပ်ပါ။ ထိုအချိန်တွင် PLASTIC ROD သည် ရှိသော CLEARANCE အတိုင်း ပြားနေမည်။ ထို့နောက် CAP ကို ပြန်ဖြုတ်ကာ ၎င်း PLASTIC COL သည် ရှိသော GAUGE ဖြင့် တိုင်းကြည့်ခြင်းဖြင့် CLEARANCE ကို သိနိုင်သည်။ ၎င်း GAUGE တွင် တလွက်မ၏ ထောင်စိတ်ပိုင်းအထိ ပြထားသည်။

5. C.	COMMEC	TING	ROD	BEARING	CLEARANCE	
meter		1	N	clearan	ce	

	Bearing Journal Diameter	clearance	maximum
	2 - 24 inch	A Dentore bes-pa 0.0005 - 0.0015	0.0055
	$2\frac{13}{16} - 3\frac{1}{2}$ inch	MAIN BEARING CLEARANCE	0.005
g	2 - 2% inch	0.0005 - 0.0015	0.0045
	2 13 - 31/2 inch	0.0015 - 0.0025	0.0055
		and the second	

http://khtnetpc.webs.com

For Knowledge & Educational Purposes

Above. New rings in new grooves provide good oil and blow-by control. Below. When grooves are worn, oil will blow-by and ring life will be shortened. Aligning type of reamer used to insure straight holes in both piston bosses,

PISTON စစ်ဆေးခြင်းနှင့် ပြန်လည်တပ်ဆင်ခြင်း

အဟောင်းများကို ပြန်လည်အသုံးပြုမည်ဆိုပါက သေချာစွာ စစ်ဆေးကြည့်ရှုသင့်ပေသည်။ ၎င်းတွင် အက်ကြောင်းများ ရှိမရှိ၊ RING GROOVE LINE များ ကောင်းမကောင်းနှင့် PISTON PIN အပေါက်များ စားနေခြင်း ရှိမရှိ စသည်တို့ကို စစ်ဆေးရမည်။

ထို့နောက် PISTON ကို ဆေးကြောပါ။ ဆေးကြောရာတွင် အပူနှင့်ဆေးကြောပါက 212 F ထက် မကျော်လွန်ရပေ။ ပြီးသောအခါ PISTON SKIRT ၏ အချင်းကို PISTON PINနှင့် 90' အကွာမှ တိုင်းထွာပါ။ အချို့ PISTON များသည် TAPER (အရှူး) များ ဖြစ်နေတတ်သည်။ ၎င်းကို KING LAND ၏ အောက်ပိုင်းနေရာတို့တွင် တိုင်းတာရမည်။ BARREL OROOVE PISTON များကိုမူ SKIRT အလယ်ပိုင်းကို တိုင်းတာရမည်။

ထို့နောက် PISTON နှင့် CYLINDER ၏ CLEARANCE ကို တိုင်းရမည်။ ၎င်းကို MICROMETER တိုင်းနိုင်သည်။ တနည်းမှာ PISTON အား CYLINDER အတွင်း ပြောင်းပြန်ထည့်၍ ၎င်းတို့နှစ်ခုအကြားတွင် အထူ တိုင်းကိရိယာခံကာ SPRING SCALE ဖြင့် ချိတ်ဆွဲယူကာ တိုင်းတာပါ။

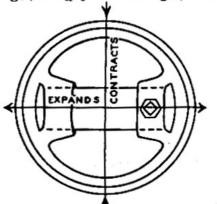
PISTON အမျိုးအစား	နွင့်ပြုကြားလွှတ်တန်ဘိုး
1. သွန်းသံ၊ သံမဏိတပိုင်း	0.0075 မှ 0.001 inch
2. ကွဲအောက်နား၊ သံမဏိဒေါက်	0.0006 ფ. 0.0095 lnch
3. တီ အက်ကြောင်း၊ ယူ–အက်ကြောင်း	0.0004 g 0.0006 inch
	20.0

မှတ်ချက်၊ ထုတ်လုပ်သူများ၏ညွှန်ကြားချက်မှာ အကောင်းဆုံးဖြစ်သည်။

PISTON RING AND GROOVES

RING OROOVE များ အခြေအနေကို စစ်ဆေးခြင်းမှာ အလွန်အရေးကြီးသည်။ မတိုင်းထွာမီ OROOVE များကို SCRAPER ပုံစံကိရိယာဖြင့် ခြစ်ထုတ်ရမည်။ ထို့နောက် OAUOE ဖြင့် OROOVE ၏ အထူနှင့်အနက်ကို တိုင်းထွာရမည်။ မှားယွင်းတပ်ဆင်မိပါက အင်ဂျင်ဝိုင်အစားများပြီး လေယိုစီးမှု ဖြစ်ပေါ်နိုင်သည်။ RING အသစ်ကို

ဦးအုန်းမြင့်၏ဒီဇယ်အင်ဂျင်


သုံးမည်ဆိုပါက OKOOVE ထဲတွင် ထည့်ပြီးလိုမ်ပေးရမည်။ လွတ်လပ်စွာ ရွေ့လျားပြီး SIDE CLEAKANCE မှာ 0.005 ခန့် ရှိရမည်။ RING များ တပ်ဆင်ရာတွင် KINO အဟများသည် ထပ်မနေဘဲ တခုနှင့်တခု 180 ခန့် ခြား နားနေရမည်။

KING အား CYLINDER ထဲတွင် တပ်ဆင်ပြီးပါက RING များ၏ အဟမှာ CYLINDER DIAMETER တလက်မရှိလျှင် 0.003 ခန့် ဟထားရမည်။ RING အား CYLINDERတွင် ထည့်ပြီး PISTONဖြင့် အထဲသို့တွန်း၍ အထူတိုင်းကိရိယာဖြင့် တိုင်းကြည့်ရမည်။ RING များ တပ်ဆင်ရာတွင် RING EXPANDER ဖြင့် တပ်ဆင်ရမည်။ PISTON ကို CYLINDER ထဲ ထည့်ရာတွင် COMPRESSOR ကို သုံး၍ သွင်းကာ တူဖြင့် ရိုက်သွင်းရမည်။

PISTON MIN အထိုင်ရှုခြင်း

PISTON PIN များ တပ်ဆင်ရာတွင် သေချာမှု ရှိရန်လိုသည်။ PISTON အချင်း 4 - လက်မရှိသော ဒီဇယ်အင်ဂျင်တွင် PISTON ပေါ် သက်ရောက်အားမှာ 2 - တန်ခန့်ဖြစ်သည်။ ၎င်းကို သေးသွယ်သော PISTON PIN ဖြင့် PISTON ပေါ်တွင်ရှိ BUSHING က ခံဆောင်ထားသည်။ ထို့ကြောင့် သေချာမှုရှိရန်လိုသည်။

PISTON PIN ကို ချုပ်ထားရန် နည်းပေါင်းများစွာဖြင့် ပြုလုပ်ထားသည်။ အချို့တွင် SNAP RING ဖြင့်၎င်း၊ အချို့တွင် SET SCREW ဖြင့်၎င်း ဖမ်းထားတတ်သည်။

As a cam ground piston expands, pattern of contact with cylinder wall progresses from cold piston at left to warm piston at right.

Expansion of piston occurs parallel with piston pin.

PISTON PIN ပွန်းစားခြင်းရှိပါက PISTON PIN အကြီးထည့်၍ PISTON BUSH ကို စားပေးရမည်။ စားရာတွင် ALIQMENT မှန်ကန်ရန် အလွန်အရေးကြီးပေသည်။ ၎င်းကို REAMINO ဖြင့်၎င်း၊ HONING ဖြင့်၎င်း၊ ချဲ့တွင်ပေးရသည်။ စားရာတွင်လည်း PISTON အား ဖမ်းထားမှု မှန်ကန်ရန်အတွက် မှန်ကန်သော TOOL ကို သုံးရမည်။ REAMERဖြင့် စားပါက နာရီလက်တံလည်သကဲ့သို့ လှည့်၍စားရမည်။ စေတ်မှီသောနည်းမှာ HONING ပြုလုပ်ခြင်းပင်ဖြစ်သည်။ ထို့နောက် PISTON BUSH ပေါ်တွင် ချောဆီသွားသောလမ်းကြောင်းများရှိပါက ပိုမို ကောင်းမွန်ပေမည်။

INJECTION PUMP နှင့် NOZZLE များ စစ်ဆေးပြုပြင်ခြင်း

အားလုံးသောပစ္စည်းများ ကြံ့ခိုင်ရေး၊ မထမဆင့်မှာ ဆေးကြောခြင်းဖြစ်သည်။ ထို့ကြောင့် PUMP နှင့် NOZZLE များကို CLEANERတွင် ထည့်၍ ဖုံ၊ အမှိုက်များ မကျန်အောင် ဆေးကြောရမည်။ ပြန်လည် တပ်ဆင် ပြီးသောအခါ စမ်းသပ်ကိရိယာဖြင့် နော်စယ်နှင့် ပန့်ကို စမ်းသပ်ရမည်။ ညွှန်ကြားချက်အတိုင်း အုရေအတွက်များ စစ်ဆေးရမည်။ SPRAY ပုံစံ၊ PRESSURE ပန်းပြီး ဆီဖြည့်သည့်အနေအထားတို့ဖြစ်သည်။ လျှောင်စာဆိုပ္ပမာ့ရျာနှင့် TIMINO တို့ကိုလည်း မှန်ကန်အောင် တိုင်းတာ ချိန်ညိုရမည်။

UNIT INJECTOR ကို စမ်းသပ်ရုန် သီးခြားကိရိယာဖြင့် စမ်းသပ်ရမည်။ ထိုကိုလုပ္ခ်ံသူများ ညွှန့်ကြား သည့် စမ်းသပ်ရု စမ်းသပ်နည်းအတိုင်း စမ်းသပ်ရမည်။ ကြာများကောင်ရှိသည်။ ကျောက်ရှိသည်။ ကျောက်ရှိသည်။

```
12-13
```

အတွဲလိုက်အင်ဂျက်ရှင်းပန့် (Multi plunger pump) စစ်ဆေးခြင်းနှင့် ပြုပြင်ခြင်း

() PLUNGER

plunger နှင့် barrel ကိုခွဲခြားပြီး အပူလောင်ခြင်း၊ ပွန်းစားခြင်းနှင့် အစင်းကြောင်းများ ရှိမရှိကို စစ်ဆေးပါ။ ပွန်းစားနေပါက ၄င်းနေရာကို အခြားနေရာများနှင့် ပွန်းစားမှုတူမတူကို စစ်ဆေးပါ။ ထို့နောက်ဆီထိမ်းနိုင်မှုကို စစ်ဆေးသော ကရိယာဖြင့် စစ်ဆေးပါ။ (၂) DELIVERY VALVE

valve ၏ plunger နေရာကို plungen များစစ်ဆေးသည့်နည်းတူစစ်ဆေးပါ။ valve အထိုင်နေရာတွင် အဝိုင်းလိုက်ပွန်းစားခြင်း၊ ကျိုးပဲ့ခြင်းနှင့် ဆီထိန်းနိုင်မှု ရှိ မရှိကို စစ်ဆေးပါ။ valve နှင့် plunger တို့တွင် ထိခိုက်မှုရှိပါက အသစ်လဲလှယ်ပါ။

(?) CONTROL RACK

control rack ဖြောင့်တန်းမှုရှိမရှိစစ်ဆေးပါ။ ကောက်နေပါက ပြုပြင်ပါ။ ထို့နောက် ချောင်မချောင်စစ်ဆေးပါ။ ချောင်နေပါက bush အသစ်လဲပါ။ control rack ချိတ်ဆက်သော pinion များစားနေပါက အသစ်လဲလှယ်ပါ။

(ç) CONTROL SLEEVE

control sleeve gear စားနေပါက အသစ်လဲပါ။ အသစ်လဲသော gear နှင့် rack pinion တို့ လိုက်လျောညီထွေမှု ရှိ မရှိ စစ်ဆေးပါ။

(j) TAPPETS

tappets တွင် plunger နှင့်ထိတွေ့သောနေရာများမှာ များသောအားဖြင့် စားနေတတ်သည်။ ထိုကြောင့်ပြန်လည်တပ်ဆင်ရာတွင် ချိန်၍တပ်ဆင်ပါ။ tappets တစ်ခုနှင့် တစ်ခုမှာလည်း အမြင့်ချင်းတူညီကြရပေမည်။ ပြန်လည်တပ်ဆင်ရာတွင် မူလသတ်မှတ်ထားသည့် အတိုင်းသာ ပြန်လည်တပ်ဆင်ပါ။

(G) SPING BEARING

၄င်းမှာ seat pluger နှင့်တွဲ၍ တပ်ဆင်ထားသဖြင့် ပြန်လည်တပ်ဆင်ရာတွင် plunger နှင့် seat ကြားတွင် ကြားလွတ်မရှိအောင် တပ်ဆင်ရမည်။

(7) CAMSHAFT AND BALL LEARING

camshaft ရှိ gear များပျက်ဆီးခြင်း၊ တနေရာတည်းတွင် ပွန်းစားခြင်း၊ keyway များစားနေခြင်းနှင့် ထိပ်အရစ်များ စားနေခြင်းရှိမရှိကို စစ်ဆေးပါ။ ball များပွန်းစားခြင်း၊ ချောင်နေခြင်းစသည်တို့ကို စစ်ဆေးပြီး ball အစုံလိုက်တပ်ဆင်၍ camshaft အလျားလိုက်ရွှေမှုကို စစ်ဆေးပါ။ ၄င်း၏ရွေ့လျားမှုမှာ ၀.၄လက်မခန့်ဖြစ်သင့်သည်။

(o) PLUNGER AND DELIVERY SPRING

spring များတွင် အက်ကြောင်းများရှိမရှိနှင့်အလွတ်တွင် ရှိသင့်သည့်အမြင့်ရှိမရှိ စစ်ဆေးပါ။

(e) INJECTION PUMP BODY

Injection pump body တွင် အက်ကြောင်းများနှင့် ကျိုးပျက်နေသောအရစ်ကြောင်းများ ရှိမရှိစစ်ဆေးပါ။

(po) TIMER

(A) drive lever shaft နှင့် bushing ချောင်မချောင်ကြည့်ပါ။

(B) Spline bushing ကို fork မှဖြုတ်၍ splie one flange နှင့် splie bushing များတပ်ဆင်မှုအထိုင်ကျမကျစစ်ဆေးပြီး ၄င်းတို့ကို ပြန်လည်တပ်ဆင်၍ ချောင်နေမှု ရှိမရှိစစ်ဆေးပါ။

(pp) GOVERNOR

- (A) bearing များကို ဖြုတ်၍ eccentric shaf ချောင်မချောင်စစ်ဆေးပါ။
- (B) eccentric shaft or float lever ကို ဖြုတ်၍ ၄င်းတိအတိုင်ကျမကျစစ်ဆေးပါ။
- (C) governor assembly ကိုဖြုတ်၍ အဆက်အသွယ်ချောင်နေခြင်းရှိမရှိစစ်ဆေးပါ။
- (D) sliding bolt assemly ကိုဖြုတ်၍ စစ်ဆေးပါ။

ထိပ်ချောင်နေပါက shifter အထူအပါး washer မရှိသည့်အထိထည့်ပေးပါ။

CHAPTER 13

ENGINE TROUBLE SHOOTING

အင်ဂျင်အပြစ်မျာ းနှင့်ပြုပြင်ခြင်း

ဒီဇယ်အင်ဂျင်များ စမ်းသပ်စစ်ဆေး အပြစ်ရှာဖွေရာတွင် ပထမဦးဆုံးလိုက်နာရန် လိုအပ်ချက်မှာ ၎င်း အင်ဂျင်အား မောင်းနှင်သော DRIVER(သို့) OPERATORအား ၎င်းအင်ဂျင်နှင့်ပတ်သက်သော အချက်များ မေးမြန်း စုံစမ်းရန်ဖြစ်သည်။ ၎င်းပြောပြချက်အပေါ် မူတည်ပြီး အပြစ်များကို ရှာဖွေရမည်ဖြစ်သည်။ သို့မဟုတ်ပါက ခလို လားအပ်သော ပစ္စည်းများ ဖြုတ်မိခြင်းအားဖြင့် အချိန်ကုန်ပြီး အပြစ်ရှာမတွေ့တတ်ပေ။ အမြံတန်းမောင်းနေသော DRIVER(သို့) OPERATORသည် ၎င်းအင်ဂျင်တွင် မကြာခဏ ပျက်ဘတ်သော အစိတ်အပိုင်းများ သိနေတတ်သည်။ ၎င်းအချက်ပေါ် မူတည်၍ စဉ်းစားပါက အပြစ်ကို အမြန်ဆုံး ရှာဖွေတွေ့ရှိနိုင်သည်။

ထို့ပြင် ဒီဇယ်အင်ဂျင်များကို SERVICINOပြုလုပ်သော အလုပ်ရံသို့ အောက်ပါအချက်များထဲမှ တင် ချက် (သို့) အချက်များကြောင့် ရောက်ရှိကြသည်။

idonatio ha fallogalka yimiseen idael anitade (C., 1

observations and the congress washer after a standard

၊. အင်ဂျင်မနိုးခြင်း

2. အင်ဂျင်အနိုးရခက်ခြင်း

- 3. အင်ဂျင်မဆွဲခြင်း
- 5. ລື່ອງ:ພຸງ:ອິດໍ່: ໂດຍການກາງອາຊາວຢູ່ແລະ ແລະການອາດາດ ເຈັດເຊິ່ງ ແຕ່ສະເລດ ແຕ່ເປັນການ
- 6. မီးခိုးလွန်မင်းစွာထွက်ခြင်း
- 7. အင်ဂျင်အပူချိန်များခြင်း
- 8. စက်ရှိုးသော်လည်းစက်သံမမှန်ခြင်း။

အထက်ပါအချက်များကြောင့် ရောက်ရှိလာသောအင်ဂျင်များကို မည်သည့်အချက်များကြောင့် ဖြစ်သည် ကို ခန့်မှန်းရမည် ဖြစ်သည်။ DRIVER(သို့) OPERATOR များ၏ ပြောပြချက်နှင့် စက်ကို စမ်းသပ်၍ ရရှိလာသော အချက်များပေါ် မူတည်၍ မည်သည့်အစိတ်အပိုင်းမှ အပြစ်ဖြစ်နိုင်ကြောင်း ခန့်မှန်း၍ ၎င်းအစိတ်အပိုင်းကို စတင် စစ်ဆေးပြုပြင်ရမည်ဖြစ်သည်။ ဖြစ်လာသော အပြစ်နှင့် ပတ်သက်သော ပစ္စည်းများကို မှန်မှန်ကန်ကန် ပြုပြင်နိုင်မှ သာ အချိန်မြန်ဆန်စွာ အင်ဂျင်ကို ပြုပြင်နိုင်မည်ဖြစ်သည်။

DRIVER (သို့) OPERATOR အား မေးမြန်းရမည့်အချက်များမှာ––

၊ . အင်ဂျင်အခြေအနေ။ ။ ၎င်းအင်ဂျင်အား မည်သည့်အခြေအနေတွင် ရောက်ရှိနေကြောင်း သိရှိရန်အတွက် ၎င်း အင်ဂျင် အသုံးပြုပြီးသောနာရီ (WORKING HOUR) မည်မျှရှိပြီး၊ အင်ဂျင်အသစ်ပြုပြင်

ပြီး (သို့မဟုတ်) ပြုပြင်သော အခြေအနေ ဥပမာ– RINO လဲခြင်း၊ VALVE အထိုင်ချခြင်း၊ PISTON BEAKINO အခြေအနေ စသည်များ ဖြစ်သည်။

2. လောင်စာဆီပို့စနစ်အခြေအနေ။ FILTER များ လဲခြင်းရှိမရှိ၊ NOZZLE များ ပြုပြင်ခြင်း ရှိမရှိ၊ INJECTION PUMP အခြေအနေ၊ QOVERNOK ပြုပြင်မှု ရှိမရှိနှင့် TIMINO အခြေအနေ၊

PUMP နှင့် NOZZLE နောက်ဆုံးချိန်ခဲ့သည့်ကာလ၊ အသစ်လဲလှယ်မှု ရှိမရှိ စသည်တို့ဖြစ်သည်။ အင်ဂျင်နှင့် လောင်စာဆီပို့စနစ် INJECTION SYSTEM အရ ဒီဇယ်အင်ဂျင်များတွင် အကြမ်းအားဖြင့်

အင်ဂျင်နှင့် လောင်စာဆံပို့စံနစ် ။ အင်င်ဂဂဂိဒ်၊ STER အရ ဒီယေအင်ဂျင်များဖွင့် အကြမ်းမားမျှေ အောက်ပါအချက်များ ပြည့်စုံပါက စက်နှိုးရလွယ်ပြီး အသုံးချရမည်ဖြစ်သည်။ (1) အင်ဂျင် COMRESSION ကောင်း ခြင်း၊ (2) လောင်စာဆီ အမှုန်အမွှားဖြစ်ခြင်းနှင့် (3) TIMINO မှန်ကန်ပါက ကောင်းမွန်သော ဒီစယ်အင်ဂျင်ဖြစ်ပေမည်။

ထို့ကြောင့် ပြုပြင်ရာတွင် အထက်ပါ အခြေအနေများနှင့် စမ်းသပ်တွေ့ရှိချက်များအပေါ်မူတည်၍ ပြုပြင်ရမည်ဖြစ်သည်။ အောက်တွင် ဖော်ပြထားသော အင်ဂျင်အပြစ်များကို ရှာဖွေရာတွင် ဖြစ်နိုင်သော အချက် နှင့် မဖြစ်နိုင်သော အချက်ကို အမြန်ဆုံး ခွဲခြားလျက် အဖြစ်နိုင်ဆုံးသော အချက်များကိုသာ စမ်းသပ်ရှာဖွေပြုပြင် ရမည်ဖြစ်သည်။

တခံလုံးထိုးစက်ငယ်များတွင် ဖြစ်တတ်သောအပြစ်များနှင့် ပြုပြင်ခြင်း

အင်ဂျင်မနိုးခြင်း

-	လောင်စာဆီပို့လိုင်းမကောင်းခြင်း–
	အင်ဂျင်ကိုလှည့်ပြီး NOZZLE သံ
	ကြားမကြား စမ်းသပ်ကြည့်ပါ။

COMPRESSION မကောင်းခြင်း-

That I go to be a

ရျောဆီ မမှန်ကန်ခြင်း

tour brought and the set

1. ဆီတိုင်ကီ ဆီမရှိခြင်း

- 2. လေခိုနေခြင်း
- 3. ပိုက်လိုင်းများကျိုးနေခြင်း
- 4. NOZZLE မကောင်းခြင်း
- 5. PUMP, PLUNGER ကပ်နေခြင်း
- 6. PUMP TAPPET ကပ်နေခြင်း

I.VALVE များ မပွင့်ခြင်း

- 2. HEAD QASKET ချောင်နေခြင်း
- 3. PISTON RING များ ကပ်နေခြင်း
- 4. HEAD GASKET လောင်နေခြင်း
- 5. VALVE များ အထိုင်မကျခြင်း
- 6. PISTON LINER စားနေခြင်း
- 1. ချောဆီပြစ်နှုန်းများနေခြင်း

P

ဦးအုန်းဖြင့်၏ဒီရယ်အင်ဂျှင်

13-3

ဒီဇယ်အင်ဂျင်များ စက်မနိုးသော အဓိကအချက်မှာ လေခိုနေခြင်းပင်ဖြစ်သည်။ NOZZLE သို့ ဆံ မရောက်ခြင်းဖြစ်သည်။ စက်ငယ်များတွင် ORAVITY နည်းဖြင့် ဆီပိုသဖြင့် ဆီတိုင်ကီကို အမြင့်တွင်ထား၍ PUMP ကို အနိမ့်ပိုင်းတွင်ထားသည်။ ကမ္ဘာ့လေထုမိအားဖြင့် ဆီများစီးဆင်းရသည်။ ဒီဇယ်ဆီပို့စနစ်များတွင် ဆီစစ်ဗူး တွင်၎င်း၊ PUMP တွင်၎င်း၊ လေချူခေါင်းများ ပါရှိသည်။ စက်ငယ်များ စက်မနှိုးခြင်းတွင် ပထမဆုံး အပြစ်ရှာဖွေ ရန်အတွက် ဆီတိုင်ကီရှိ အဖွင့်အပိတ် VALVE ကို ဖွင့်ပါ။ LEVER ကို MAX သို့ ရွှေ.၍ အင်ဂျင်ကို လှည့်ပေးပါ။ စက်မနိုးသော်လည်း NOZZLE သုံ ကြားရပါက လောင်စာဆီပို့ လိုင်းကောင်းသည်ဟု ယူဆနိုင်သည်။

ထို့နောက် VALVE LIFTကို မ၍ အင်ဂျင်ကို လှည့်ပေးပါ။ အရှိန်ရသောအခါ VALVE LIFTကို ချလိုက် ပါ။ ထိုအခါ FLY WHEELသည်လည်နေရာမှရပ်၍နောက်သို့ပြန်လည်သွားပါက ၎င်းအင်ဂျင်သည် COMPRESSION ကောင်းမွန်သည်ဟု ယူဆနိုင်သည်။ ဆက်လက်ပြီး လည်ပတ်သည်ကို တွေ့ရမည်။ ထိုစမ်းသပ်မှု နှစ်ခုပေါ်မူတည်၍ ကျန်သော အပြစ်များကို အမြန်ဆုံးရှာနိုင်မည်ဖြစ်သည်။

တစ်လုံးထိုး အင်ဂျင်စက်ငယ်များ စက်မနှိုးပါက ပထမဦးဆုံး စမ်းသပ်ချက်ဖြစ်သော နော်ဇယ်သံ ကြားမကြားစစ်ဆေးပါ။ မကြားပါက ပထမဆုံးအပြစ်ဖြစ်သည်။ ဆီတိုင်ကီတွင် ဆီရှိမရှိကြည့်ပါ။ မရှိလျှင်ဖြည့်ပါ။ အဖွင့်အပိတ် VALVE ကို ဖွင့်ပါ။ FILTER ရှိ ဆီချူခေါင်းကို လျော့ပါ။ ၎င်း ဆီချူခေါင်းမှ ဆီထွက်လာမည်။ အကယ်၍ မထွက်ပါက တိုင်ကီမှ FILTER သို့သွားသော လိုင်းပိတ်နေခြင်း၊ VALVE မပွင့်ခြင်း၊ တိုင်ကီတွင် ဂျီးပိတ် နေခြင်းဘို့ ဖြစ်မည်။ ထို့ကြောင့် FILTER အဝင်လိုင်းကို ဖြုတ်၍ တိုင်ကီရောက်သည်အထိ လိုင်းများကို ဆေးကြော သန့်စင်ပါ။ လိုင်းပွင့်သွားလျင် ပြန်တပ်ပါ။ ဆီချူခေါင်းမှ ဆီထွက်လာပေမည်။

ထို့နောက် PUMP ရှိ လေချူခေါင်းကို လျော့ပေးပါ။ ဆီထွက်လာရမည်။ မထွက်ပါက FILTER ပိတ် ခြင်း၊ PUMP အဝင်လိုင်း ပိတ်နေခြင်းဖြစ်မည်။ FILTER ELEMENT ကို အသစ်လဲပါ။ လိုင်းပွင့်အောင် ဆေးကြော သန့်စင်ပါ။ ဆီထွက်လာမည်။

ထို့နောက် PUMP မှ ထွက်သော ပိုက်လိုင်းကို ဖြုတ်ပါ။ LEVER ကို အမြင့်ဆုံးတင်ပြီး VALVE LIFT ကို 'မ'၍ အင်ဂျင်ကို လှည့်ပေးပါ။ PUMP မှ ဆီထွက်လာရမည်။ မထွက်ပါက (သို့) နည်းနည်းသာ ထွက်ပါက PUMP အပြစ်ကြောင့်ဖြစ်မည်။ PUMP ကို ဖြုတ်၍ စစ်ဆေးရမည်။ CONTROL ROD ကပ်နေခြင်း၊ PLUNGER ကပ်နေခြင်း၊ TAPPET စားနေခြင်း၊ PUMP SPRING ကျိုးနေခြင်း စသည့်အပြစ်များ ဖြစ်ပေါ်တတ်သည်။

PUMP ကို မလိုအပ်ပဲ မဖြုတ်ပါနှင့်။ ကျွမ်းကျင်နားလည်သော ဆရာရှိမှသာ ဖြုတ်၍ စစ်ဆေးပြုပြင်ပါ။ PLUNGER စားနေခြင်းနှင့် ဆီထွက်ဗား (DELIVERY VALVE) စားနေပါက အသစ်လဲပါ။ PUMP ကို ပြန်တပ်၍ စမ်းသပ်ပါ။ ဆီအပြည့်ထွက်လာပါက ပိုက်ပြန်တပ်၍ ပိုက်၏ အခြားတဖက်တွင် NOZZLE ကို အပြင်ထုတ်၍ တပ်ဆင်ပါ။ ထို့နောက် အင်ဂျင်ကိုလှည့်ပါ။ NOZZLEထိပ်မှ ဆီအမှုံအမွှားများ ထွက်ရမည်။ အမှုံအမွှားမဖြစ်ခြင်း၊ ပန်းပြီးဆီယိုခြင်း၊ ဆီပန်းပုံစံမမှန်ခြင်း၊ အသံမမည်ခြင်း တို့ဖြစ်လျှင် NOZZLE မကောင်း၍ ဖြစ်သည်။ ကျွမ်းကျင် သော ဆရာထံတွင် ပြုပြင်ပါ။ သို့မဟုတ် NOZZLE အသစ်ကို တပ်ဆင်ခြင်းဖြင့် အသုံးပြုနိုင်သည်။ NOZZLE မှ အမှုံအမွှားအဖြစ် ပန်းပါက အင်ဂျင်တွင် ပြန်လည်တပ်ဆင်ပါ။ အင်ဂျင်ကို လှည့်ကြည့်လျှင့် နော်ဖယ်သံ ကြား မည်ဖြစ်သည်။ အသံကြားပါက ဆီပို့လိုင်း ကောင်းမွန်သည်။

ဆီပို့လိုင်းကောင်းမွန်သော်လည်း စက်မနှီးသေးပါက အင်ဂျင်အား စစ်ဆေးရမည် ဖြစ်သည်။ အင်ဂျင် သည် အသစ်ဖြစ်နေပါက TAPPET CLEARANCE ကို မှန်ကန်အောင် ပြန်ချိန်ပါ။ အင်ဂျင် TIMINO မှန်မမှန် စစ်ဆေးပါ။ TAPPET CLEARANCE ကွာလွန်းလျှင် VALVE ပွင့်ချိန် နောက်ကျ၍ စောပိတ်မည်ဖြစ်ပြီး လေဝင် နည်း၍ စက်မနှိုးနိုင်။ နည်းလွန်းလျှင် VALVEကို ထောက်ထားသဖြင့် VALVE များ မပိတ်ပဲ ပွင့်နေသဖြင့် အင်ဂျင် COMPRESSION မရှိပဲ ဖြစ်နေမည်။ ထို့ကြောင့် သတ်မှတ်ထားသည့် အကွာအဝေးထားချိန်ရမည်။ အများအားဖြင့် 0.010 ခန့် ထားချိန်ရမည်။ တချို့ အင်ဂျင်များတွင် EXHAUST VALVE ကို ပို၍ထားသည်။အင်ဂျင်သည် လုံးဝ အသစ်ဖြစ်ပါက TIMINO မှားခြင်း မဖြစ်နိုင်ပေ။ သို့သော် အင်ဂျင်ကို တစစီဖြုတ်၍ ပြန်လည်တပ်ဆင်သော

ဦးအုန်းမြင့်၏ဒီရယ်အင်ဂျင်

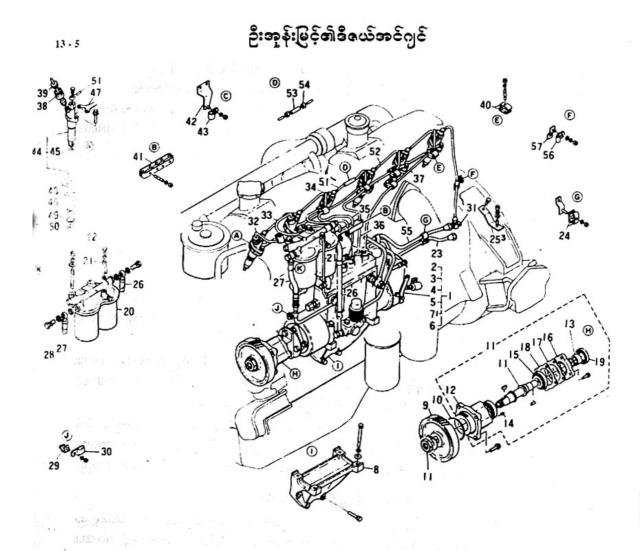
13 - 4

အသစ်ဖြစ်ပါက VALVE TIMINO မှန်ကန်မှု ရှိမရှိ စစ်ဆေးပါ။ အင်ဂျင်တိုင်းတွင် စက်ရုံထုတ် အမှတ်အသားများ ဝါရှိသည်။ ၎င်း အမှတ်အသားများ ကိုက်ညီမှုဖြစ်စေရန် စစ်ဆေးပြုပြင်ပါ။ ထို့နောက် PUMP TIMINO ကို စစ်ပါ။ PUMP ၏ အထိုင်နောက်တွင် TIMINO ချိန်ညှိရန် SHIM ပြားများ ပါရှိတတ်သည်။ TIMINO နိမ့်နေပါက မီးခိုးဖြူ များသာ ထွက်နေပြီး စက်မနိုးတတ်ပေ။ ထိုအခါ PUMP ကို ဖြုတ်၍ ထို SHIM ပြားများ လျော့ပေးခြင်းဖြင့် TIMINO မြင့်နိုင်သည်။ တိုင်ပင်မြင့်လွန်းပါက သံ KNOCKINO များ ထွက်နေပြီး အင်ဂျင်အတွင်း ရေဆူတတ်သည်။ ထို ကြောင့် SHIM ပြားများကို လိုအပ်သလို အလျော့အတင်း ပြုလုပ်ခြင်းဖြင့် TIMINO အနိမ့်အမြင့်ကို ချိန်ယူနိုင်ပြီး အင်ဂျင်ကို လွယ်ကူစွာ နွိုးနိုင်မည်ဖြစ်သည်။

HEAD GASKET မကောင်းခြင်း၊ အထိုင်မကျခြင်းတို့ဖြစ်ပါက အပြင်မှပင် လွယ်ကူစွာ တွေ့နိုင်သည်။ ရေအအေးပေးအင်ဂျင်ဖြစ်ပါက HEAD နှင့် BLOCKကြားမှ ရေယိုနေပေမည်။ သို့မဟုတ် ဓါတ်ငွေ့ ယိုစိမ့်မှုများကို တွေ့ရှိနိုင်သည်။ ထိုအခါ HEAD ကို ဖြုတ်၍ HEAD GASKET အသစ်လဲ၍ HEAD BOLT ကို သေချာစွာ တင်းကြပ် ပါ။ GASKET ကိုလည်း ဘက်မမှားစေရန် သတိပြုပါ။ တံဆိပ်ပါသောဘက်ကို HEAD ဘက်တွင်ထား၍ တပ်ဆင်ပါ။

အင်ဂျင်သိပ်ဟောင်းလွန်းပါက PISTON များ ပွန်းစားခြင်း၊ VALVE များ မလုံခြင်းတို့ ဖြစ်တတ်သည်။ ထိုအခါ NOZZLE ကို ဖြုတ်၍ NOZZLE အထိုင်ပေါက်မှ ENGINE OIL (ရောဆီ) အနည်းငယ်ထည့်၍ အင်ဂျင်ကို အနည်းငယ် ပူလာအောင် လှည့်ပေးပါ။ ထို့နောက် NOZZLE ကို ပြန်တပ်ပြီးနှိုးပါ။

အထက်ပါအတိုင်း ပြုလုပ်သော်လည်း မနိုးပါက အင်ဂျင်တစ်ခုလုံးကို ဖြုတ်၍ PISTON နှင့် LINER အသစ်လဲခြင်း၊ VALVE များ အထိုင်ချခြင်း၊ RINO လဲခြင်း၊ BEARINO များ အသစ်တပ်ဆင်ခြင်း၊ PUMP နှင့် LINER အသစ်လဲခြင်း စသော ENGINE OVERHAL လုပ်ငန်းများ လုပ်ဆောင်ရပေမည်။


ချောဆီ (ENGINE OIL) ပျစ်နှန်းများလွန်းပါက အင်ဂျင်လည်ပတ်မှုမှာ ထိုင်းနေတတ်သည်။ ပုံမှန် လည်ရမည့်အစား အင်ဂျင်မှာ ကျပ်နေသဖြင့် အင်ဂျင်နှိုးရစက်တတ်သည်။ ထို့ကြောင့် ပျစ်လွန်းသော ENGINE OIL များကို ဖေါက်ထုတ်၍ မှန်ကန်သောပျစ်နှန်းရှိသည့် ENGINE OIL များကို လဲလှယ်ပါက အင်ဂျင်နှိုးနိုင်ပေသည်။

:ວິຊີ:ຊີິຍ**ິ**ຕຄວິເງວິເະຝິ*ກ*ຮັ

ဒီဇယ်အင်ဂျင်စက်မနှိုးခြင်းမှာ ပြစ်ချက်များစွာကြောင့် ဖြစ်နိုင်သည်။ ဒီဇယ်စက်ငယ်များ အပြစ်ရှာဖွေ သည့်နည်းအတိုင်း ရှာဖွေရပေမည်။ ဒီဇယ်အင်ဂျင်တွင် COMPRESSION ကောင်းခြင်း၊ PUMP နှင့် NOZZLE ကောင်းခြင်းနှင့် PUMP TIMING မှန်ကန်ခြင်းတို့ ပြည့်စုံလျှင် ၎င်းအင်ဂျင်မှာ နှိုးရလွယ်သည်။ ထိုအချက်များထဲမှ ဟခုခု ချို့ယွင်းပါက အနှိုးရခက်မည်။ ထို့ကြောင့် အပြစ်ရှာဖွေရာတွင် ထိုအချက်ကြီး (၃) ချက်မှ မည်သည့်အချက် ကြောင့်ဖြစ်သည်ကို စမ်းသပ်စစ်ဆေးရပေမည်။

ဒီဇယ်အင်ဂျင် COMPRESSION မကောင်းပါက လိုအပ်သောအပူချိန် မရရှိနိုင်။ ထို့ကြောင့် အနှိုးရ စက်ပေမည်။ COMPRESSION မကောင်းသော အဓိက (2) ချက်မှာ PISTON နှင့် LINER ပွန်းစားနေခြင်းနှင့် VALVE မလုံခြင်းတို့ကြောင့် ဖြစ်သည်။ COMPRESSION ကောင်းမကောင်းကို COMPRESSOR GAUGE ဖြင့် စမ်း သပ်သိရှိနိုင်သည်။ သတ်မှတ်ဖိအားထက် လျော့နည်းနေပါက အထက်ပါအချက်များကြောင့် ဖြစ်သည်။ ထိုအချက် နှစ်ချက် ခွဲခြားသိရှိနိုင်ရန်မှာ အင်ဂျင်မှ NOZZLE များကို ဖြုတ်၍ CYLINDER တစ်လုံးခြင်းတွင်ရှိသော PRESSURE များကို စမ်းသပ်၍ မှတ်သားထားပါ။ ထို့နောက် CYLINDER အတွင်းသို့ ချောဆီအနည်းငယ်စီထည့်၍ PRESSURE ကို ထပ်မံစမ်းသပ်၍ မှတ်သားထားပါ။ ထို့နောက် CYLINDER အတွင်းသို့ ချောဆီအနည်းငယ်စီထည့်၍ PRESSURE ကို ထပ်မံစမ်းသပ်ပါ။ ထိုအချိန်တွင် PRESSURE မှာ ဖြင့်တက်လာပါက PISTON နှင့် LINER များ ပွန်းစား၍ ဖြစ်သည်။ အကယ်၍ PRESSURE မှာ ပထမစမ်းသပ်စဉ်ကအတိုင်း ဖြစ်ပါက VALVE များ မလုံ၍ဖြစ်ကြောင်း သိနိုင်သည်။ ထို့ကြောင့် ဖြစ်ပေါ်သော အခြေအနေကို မူတည်၍ ပြုပြင်ရမည်ဖြစ်သည်။

PISTON နှင့် LINER ပွန်းစားမှုများပါက အသစ်လဲလှယ်မှသာ ကောင်းမွန်မည်ဖြစ်သည်။ VALVE

- 1. Injection pump assembly
- 2. Coupling assembly
- 3. Auto timer assembly
- 4. Injection pump body assembly
- 5. Governor assembly
- 6. Fuel feed pump assembly
- 7. Control switch kit
- 8. Injection pump bracket
- 9. Injection pump compressor gear
- 10. O-ring
- 11. Injection pump drive shaft
- 12. Bearing holder case assembly 13. Sleeve

and a state to

- 14. Helisert
- 15. Cylindrical roller bearing
- 16. Bearing retainer
- 17. Bearing retainer gasket
- 18. Shim
- 19. Oil seal
- 20. Fuel filter assembly

- 21. Fuel leakage pipe assembly
- 22. Pipe joint bolt
- 23. Fuel feed pipe
- 24. Retainer
- 25. Clamp holder
- 26. Fuel feed pump to fuel filter hose
- 27. Fuel filter to injection pump hose
- Joint bolt 28.
- Fuel injection pipe holder sub-assembly 29. 30. Clip
- 31. 3-way tee
- 32. Injection pipe No.1
- 33. Injection pipe No.2
- 34. Injection pipe No.3
- 35. Injection pipe No.4
- 36. Injection pipe No.5 37.
- Injection pipe No.6 38. Fuel injection pipe skirt
- 39. Fuel injection pipe protector
- 40. Clip

- 41. Clip
- 42. Clip holder
- 43. Clip
- 44. Nozzle assembly
- 45. Throttle nozzle
- 46. Nozzle holder adaptor
- 47. Nozzle holder gauge
- 48. Packing ring
- 49. O-ring
- 50. Nozzle gasket
- 51. Nozzle leakage pipe sub-assembly (front)
- 52. Nozzle leakage pipe sub-assembly (rear)
- 53. Leakage hose
- 54. Clamp 55.
- Fuel leakage pipe 56. Clip
- 57. Clip holder
- and an use principle sets of some the panets

ဦးအုန်းမြင့်၏ဒီဇယ်အင်ဂျင်

13 - 6

မလုံခြင်းမှာ TAPPET CLEARANCE မမှန်လျင် ဖြစ်နိုင်သည်။ မှန်ကန်အောင် ပြန်ချိန်ပါ။ ချိန်ပြီးသော်လည်း မနှိုးပါက VALVE ပိုင်းဆိုင်ရာများကို စစ်ဆေးရမည်။ VALVE အထိုင်ကျမကျ၊ VALVE နှင့် VALVE OUIDE ချောင် မချောင်၊ VALVE SPRING များ အားနည်းမှု ရှိမရှိစသည့် စစ်ဆေးမှုများပြုလုပ်၍ ပြုပြင်ပါ။ ထို့နောက် GASKET ယိုစိမ့်မှ စစ်ဆေးပါ။ အပြင်ယိုစိမ့်မှုရှိပါက ဓါတ်ငွေ့နှင့်ရေများ စိမ့်ထွက်မှုကို တွေ့ရပေမည်။ အတွင်းယိုစိမ့်မှု ရှိပါက COMPRESSION စမ်းသပ်စဉ်ကပင် CYLINDER အတွင်းမှ ရေနှင့်ဓါတ်ငွေ့များ ပန်းထွက်လာသည်ကို တွေ့ရှိရမည်ဖြစ်သည်။

ထို့ပြင် အင်ဂျင်ရှိးစဉ် ရှိးနိုင်သောအပတ်ရေ ရရှိရန် BATTERY နှင့် MOTOR ကောင်းရန်လိုသည်။ BATTERY မကောင်းပါက မရှိးနိုင်ပေ။ ထို့အတူ MOTOR သည် သတ်မှတ်အပတ်ရေအတိုင်း မလည်ပါက ပြုပြင် ရမည်ဖြစ်သည်။သို့သော် အင်ဂျင်ကျပ်နေပါက MOTORနှင့် BATTERY ကောင်းသော်လည်း အပတ်ရေမပြည့်သဖြင့် မရှိးနိုင်ပေ။ ထို့ကြောင့် အင်ဂျင်ကြပ်မကြပ် စစ်ဆေးပါ။ အဓိက အင်ဂျင်ကြပ်နိုင်သောနေရာများမှာ CONNECTING BEARING, MAIN BEARING, PISTON နှင့် LINER တို့ ဖြစ်ကြသည်။

ထိုပြင် COMPRESSION အားနည်းစေသော အချက်တချက်မှာ လေဝင်နည်းခြင်းပင်ဖြစ်သည်။ လေ စစ်ပိတ်နေခြင်း၊ လေဝင်လမ်းကြောင်းကျဉ်းနေခြင်း၊ TURBO မကောင်းခြင်း စသည်တို့သည် အင်ဂျင်အတွင်းဝင် သောလေ ဝင်ရောက်မှုနည်းစေသော အချက်များပင်ဖြစ်သည်။ ၎င်းတို့ကို စစ်ဆေးဆေးကြာသန့်စင်ပါ။

ခုတိယအချက်ကြီးဖြစ်သော လောင်စာဆီပို့စနစ် FUEL INJECTION SYSTEM မကောင်းပါက အင်ဂျင် မရှိးနိုင်ပေ။ SYSTEM တွင် ပါဝင်သော ဆီတိုင်ကီပိုက်လိုင်း၊ ဆီပိုပန့် (FEED PUMP) ဆီစစ်ဗူး (FILTER) ၊ဆီတွန်း ပန့် (INJECTION PUMP) နှင့် နှော်ဇယ် (NOZZLE) တို့ ကောင်းမွန်နေမှသာလျှင် စက်နှိုးမည်ဖြစ်သည်။ ဒီဇယ် အင်ဂျင်များတွင် အများဆုံးဖြစ်တတ်သောအပြစ်မှာ လေခိုခြင်း (NOZZLE သို့ ဆီမရောက်ခြင်း) ပင်ဖြစ်သည်။ ဒီဇယ်အင်ဂျင်များ စက်မရှိးပါက ပထမဦးဆုံးစမ်းသပ်စစ်ဆေးမှုမှာ လောင်စာဆီလိုင်းအတွင်း လေခိုခြင်း ရှိမရှိ စစ်ဆေးရန်ဖြစ်သည်။ SYSTEM များတွင် လေချူရန်အတွက် လေချူခေါင်းများကို ဆီစစ်ဗူးနှင့် INJECTION PUMP တို့တွင် ပါရှိသည်။

လေချူပုံအဆင့်ဆင့်မှာ ပထမဦးစွာ ဆီစစ်ဗူးတွင်ပါသော လေချူခေါင်းကို လျော့ပါ။ FEED PUMP LEVER ကို ကစားပေးပါ။ ထိုအခါ လေချူခေါင်းမှ ဆီများထွက်လာရမည်။ လေပူပေါင်းများ မပါသည်အထိ ချူ ပေးပါ။ ချူပြီးပါက လေချူခေါင်းကို ပြန်ကြပ်ပါ။

ယခုခေတ်ပေါ် အင်ဂျင်ကြီးများနှင့် တချို့ SYSTEM များတွင် IFBED PUMP မှ ဆီပို့သောလိုင်းတွင် REQULATING VALVE ဆီဖိအားထိန်းဗားကို တပ်ဆင်ထားသည်။ ၎င်းဗားသည် IFBED PUMP မှ ပေးပို့သော ဆီ၏ ဖိအားကို ထိန်းထားခြင်းဖြစ်သည်။ အင်ဂျင်ကြီးများတွင် PLUNGER ၏အချင်းမှာ ကြီးမားသဖြင့် ဆီများ အလုံ အလောက် ဝင်ရောက်စေနိုင်ရန် ၎င်း VALVE မှ ဆီကို ထိန်းထားခြင်းဖြစ်သည်။ ၎င်း VALVE ကို IRJECTION PUMP ၏ ဆီပြန်ပိုက် (အထွက်) နေရာတွင် တပ်ဆင်ထားခြင်းဖြစ်သည်။ ၎င်း VALVE ကို နေရာမှားတပ်ခြင်းနှင့် VALVE မှ ဆီကို ထိန်းထားခြင်းမရှိပါက PLUNGER သို့ ဆီအလုံအလောက် မရောက်ရှိခြင်းကြောင့် စက်မနှိုးနိုင်ပေ။

PUMP သို့ ဆီရောက်ရှိပါက PUMP မှ NOZZLE သို့ သွားသော HIGH PRESSURE PIPE ၏ NOZZLE အဝင်နေ ရာရှိ ခေါင်းများကို လျော့ပါ။ PUMP ရှိ LEVER ကို ဆီအများဆုံးနေ ရာသို့ တင်ထားပြီး အင်ဂျင်ကိုလှည့် ပါ။ လျော့ထားသော ခေါင်းနေ ရာမှ ဆီများထွက်ကျမကျကြည့်ပါ။ ဆီထွက်ပါက ခေါင်းများကို ပြန်ကြပ်ပါ။ ဆီ မထွက်ပါက (နည်းနေပါက) INJECTION PUMP ကို ဖြုတ်၍ ကျွမ်းကျင်သော PUMP SERVICE သို့ ပို၍စစ်ဆေး ပြုံပြင့်ပါ။ ၎င်း PUMP တွင် ဖြစ်နိုင်သောအချက်များမှာ PLUINGER စားနေခြင်း၊ DELIVERY VALVE မကောင်းခြင်း၊ GOVERNOR အလုပ်မလုပ်ခြင်းစသည့် ပြစ်ချက်များကြောင့်ဖြစ်သည်။

INJECTION PUMP မှ ဆီထွက်သော်လည်း စက်မနိုးပါက NOZZLE များကြောင့်ဖြစ်သည်။ ထို့ကြောင့် NOZZLE များကို ဖြုတ်၍စစ်ဆေးပါ။ NOZZLE ထိပ်တွင် ဆီစိုနေပါက NOZZLE မကောင်း၍ဖြစ်သည်။ NOZZLE 13.7

ဦးအုန်းမြင့်၏ဒီဇယ်အင်ဂျှင်

ကပ်နေခြင်း၊ NOZZLE PRESSURE များနေခြင်း၊ NEEDLE VALVE အထိုင်မကျခြင်း တို့ကြောင့်ဖြစ်သည်။ NOZZLE ကို SERVICE တွင် ပို၍ပြပြင်ပါ။ မရပါက အသစ်လဲပါ။ သတ်မှတ်သော PRESSURE ရအောင် ပြန်ချိန်ပါ။

ထိုအချက်များအပြင် စက်မနိုးသောအချက်တခုမှာ TIMINT မမှန်ကန်ခြင်း ဖြစ်သည်။ INJECTION PUMP TIMINO မမှန်ခြင်းနှင့် အင်ဂျင်အတွင်း TIMINO OEAR များ တပ်ဆင်မှု မမှန်ခြင်းဖြစ်သည်။ PUMP TIMINO ကို စစ်ဆေးပါ။ အချို့ SYSTEM များတွင် PUMP TIMINO မမှားစေရန်အတွက် KEY များဖေါ်ထားခြင်း၊ OFFSET လုပ်ထားခြင်းများရှိသည်။ no.1 PISTON COMPRESSION T.D.C နှင့် INJECTION PUMP မှ no.1 PLUNGER ဆီစတွန်းချိန်တို့ ချိန်ကိုက်၍ တပ်ဆင်ရမည်။ ထို့ပြင် တပ်ဆင်ရာတွင် TIMING စောလွန်းခြင်းနှင့် နောက်ကျလွန်း ခြင်းတို့ပြစ်နိုင်သည်။ TIMINT နောက်ကျပါက မီးခိုးအဖြူများသာထွက်ပြီး စက်မနိုးနိုင်ပေ။ TIMINT စောလွန်းပါက ခေါက်သံများသာထွက်ပြီး စက်မနိုးပေ။ အင်ဂျင်နောက်ပြန်လည်ခြင်းများ ဖြစ်နိုင်သည်။ အင်ဂျင်များ တစစီပြန်လည် တပ်ဆင်သော အင်ဂျင်ဖြစ်ပါက စက်ရုံမှ ထုတ်လုပ်စဉ်က သတ်မှတ်ထားသော အမှတ်အသားများအတိုင်း ပြန်လည် တပ်ဆင်မှု ဟုတ်မဟုတ် စစ်ဆေးပြုပြင်ပါ။ ထို့ကြောင့် TIMINO အမှန်ရရှိစေရန် မဖြုတ်စဉ်ကပင် အနေအထား အမှန်များကိုစစ်ဆေးမှတ်သားထားသင့်သည်။ ထိုအချက်အလက်များအားလုံး ပြုပြင်ပြီးပါက စက်နှိုးရလွယ်ကူသော အင်ဂျင်ဖြစ်ပေမည်။

ထို့ပြင်အင်ဂျင်နှင့်မဆိုင်သော အပြစ်များကြောင့် စက်မနှိုးခြင်းများရှိသည်။ ၎င်းအပြစ်များမှာ ဒီဇယ်ဆီ တွင် ရေနှင့်အမှိုက်များပါခြင်းနှင့် ဒီဇယ်ဆီပျစ်နှန်းများနေခြင်းဖြစ်သည်။ ဒီဇယ်ဆီတွင် ရေပါရှိလျှင် PUMP နှင့် NOZZLE များ ပျက်စီးစေပြီး စက်မနိုးနိုင်ပေ။ အမှိုက်များပါလာပါက ဆီလိုင်းများပိတ်ဆို့ခြင်း ဖြစ်နိုင်သည်။ ထို ကြောင့် သန့်ရှင်းပြီး ရေမပါသော ဒီဇယ်ဆီအမှန်များကို သုံးခြင်းဖြင့် ၎င်းအချက်များကို ကာကွယ်နိုင်သည်။

:3**ຼີດ:**ຊິຍ**ິ**ທຄ3ເກລີຂຝຶກຂຶ

1. ဆီတိုင်ကီတွင်ဆီမရှိခြင်း

- 2. လောင်စာဆီတွင် ရေပါခြင်း
- 3. လောင်စာဆီပျစ်နှန်းများနေခြင်း
- 4. လောင်စာဆီပို့လိုင်းတွင် လေခိုနေခြင်း
- 5. PUMP TIMINO လွဲမှားနေခြင်း
- 6. AIR CLEAMER လေစစ်ပိတ်နေခြင်း
- 7. TAPPET CLEARANCE မမှန်ခြင်း
- 8. BATTERY အားနည်းနေခြင်း
- 9. စက်နိုး MOTOR မကောင်းခြင်း
- 10. FEED PUMP နှင့် FILTER စိတ်နေခြင်း
- 11. FEED PUMP မှ ဆီမပို့ခြင်း
- 12. NOZZLE မကောင်းခြင်းနှင့် PRESSURE များနေခြင်း။
- 14. HEAD GASKET ယိုစိမ်နေခြင်း

- 1. ဆီပြည့်အောင်ဖြည့်ပါ။
- 2. ສັສຸລຸລ໌ດັບ) 🛛
- 3. မုန်ကန်သော် ဆီကိုသုံးပါ။
- 4. လေ အဆင့်ဆင့်ချူထုတ်ပါ။
- 5. မှန်ကန်အောင်ပြန်ချိန်ပါ။
- 6. ဆေးကြောသန့်စင်ပါ။
- 7. ပြန်လည်ချိန်ကြည့်ပါ။
- 8. အားပြန်သွင်းပါ။
- 9. စစ်ဆေးပြုပြင်ပါ။
- 10. ဆေးကြောသန့်စင်ပါ။
- 11. စစ်ဆေးပြုပြင်ပါ။
- 12. NOZZLE ကို ပြုပြင်ပါ။ မှန်ကန်သော PRESSURE ຖຣາກວຣ໌ລິມູຊ໌ບໄຫ
- 15. INJECTION PUMP ဆီမပို့ခြင်း၊ ဆီနည်းနေခြင်း 13. PUMP ကို ပြုပြင်ပါ။ မရပါက PUMP PLUNGER နှင့် DELIVERY ဗားအသစ်လဲပါ။
 - 14. GASKET အသစ်လဲပါ။

http://khtnetpc.webs.com

For Knowledge & Educational Purposes

> ဦးအုန်းဖြစ်	င့်၏ဒီဇယ်အင်ဂျှင် ^{13 - 8}
15. INLET နှင့် EXHAUST VALVE များစားပြီး အထိုင်မကျခြင်း	15. အထိုင်ကျရန်ပြုပြင်ပါ။
16. PISTON KING များနှင့် CYLINDER နံရံတို့	16. အသစ်လဲပါ။
လွန်မင်းစွာ စားနေခြင်း 	
17. GOVERNOR အလုပ်မလုပ်ခြင်း	17. ပြုပြင်ပါ။
18. ဆီပို့လိုင်းအတွင်းရှိ REGULATINO VALVE ကပ်နေခြင်း	18. ဆေးကြောပြုပြင်ပါ။
ກດແລະຊີໃກຍ	ပည်းစက်သံမမ္ဒနီခြင်း
1. လောင်စာဆီမမှန်ခြင်း	1. မှန်သောလောင်စာဆီကိုထည့်ပါ။
2. လောင်စာဆီတွင်ရေပါနေခြင်း	2. လောင်စာဆီအသစ်လဲလှယ်ပါ။
3. NOZZLE မကောင်းခြင်းနှင့် NEEDLE VALVE ကပ်နေခြင်း	3. ဆေးကြောအထိုင်ချပြီးပြုပြင်ပါ။
4. PUMP DELIVERY VALVE ကပ်နေခြင်း	4. ဆေးကြောအထိုင်ချပါ။
5. AIR CLEANER လေစစ်ပိတ်နေခြင်း	5. သန့် ရှင်းပါ၊ လေဝင်နိုင်ရန်ပြုပြင်ပါ။
6. INJECTION PUMP ကို မောင်းနှင်သော	6. အသစ်လဲလှယ်ပါ။
CHAIN (သို့) ပင်နယ် ကျိုးပဲ့နေခြင်း	
7. PUMP TIMINO နေဘက်ကျနေခြင်း	7. မှန်ကန်အောင်ပြန်ချိန်ပါ။
8. PUMP COUPLING တင်းကြပ်မှုမမှန်ခြင်း	8. ပြန်လည်ပြုပြင်ပါ။
9. PISTON နှင့် LINER ပွန်းစားနေခြင်း	9. အသစ်လဲပါ။
10. INTAKE နှင့် EXHAUST VALVE များ	10. အထိုင်သေချာအောင်ပြုလုပ်ပါ။ မရပါက VALVEနှင့်
မလုံခြင်း	VALVE SEAT အသစ်လဲပါ။
၊ 1. PISTON နှင့် LINER ကြပ်နေခြင်း	11. စြုပြင်ပါ။
12. ချောဆီကြောင့် BEARING များ	12. BEARING များ ဆေးကြောသန့်စင်၍
ကြပ်နေခြင်း	ပြန်လည်တပ်ဆင်ပါ။
အင်ဂျင်ချွမ်းအားကျခ	ແລະເອີຍະ (ແລະບິນອອກສູງອີນອຸງ
1. လောင်စာဆီမမှန်ခြင်း	1. မူမှန်လောင်စာဆီကိုသုံးပါ။
2. CYLINDER များသို့လောင်စာဆီပိုမှုမမှန်ခြင်း	2. လောင်စာဆီပို့စနစ်ကိုစစ်ဆေးပြုပြင်ပါ။
3. FUEL INJECTION TIMINO မမှန်ခြင်း	3. မှန်ကန်အောင်ချိန်ညှိပါ။
4. AIR CLEANER လေစစ်ပိတ်နေခြင်း	4. သန့်ရှင်းပါ။
5. NOZZLE မကောင်းခြင်း	5. စစ်ဆေးပြုပြင်ပါ။
6. GOVERNOR လှုပ်ရှားမှုမှန်ခြင်း	6. စစ်ဆေးပြုပြင်ပါ။
7. အင်ဂျင် OVER HEAT ဖြစ်နေခြင်း	7. စစ်ဆးပြုပြင်ပါ။
8. TAPPET CLEARANCE မမှန်ခြင်း	8. ပြန်လည်ချိန်ညှိပါ။
9. အင်ဂျင် COMPRESSION ကျနေခြင်း	9. စစ်ဆေးပြုပြင်ပါ။

For Knowledge & Educational Purposes

ဦးအုန်းမြင့်၏ဒီဖယ်အင်ဂျင် 32 Contart States (ENGINE OVERHEAT) 1. အအေးပေးစနစ် ပုံမှန်လည်ပတ်မှုမရှိခြင်း 1. စစ်ဆေးပြုပြင်ပါ။ 2. ရေဖြည့်ပါ။ 2. ရေအအေးပေးစနစ်တွင် ရေနည်းနေခြင်း 3. ပန်ကာရွက် ရွဲ့စောင်းနေခြင်း၊ ကျိုးပဲ့နေခြင်း 3. အသစ်တပ်ဆင်ပါ။ 4. FUEL INJECTION TIMING စောနေခြင်း 4. ပြန်လည်ချိန်ညှိပါ။ 5. AIR CLEANER ညစ်ပတ်ပိတ်ဆို့နေခြင်း 5. သန့်ရှင်းပါ၊ အသစ်လဲပါ။ 6. ချောဆီမမှန်ခြင်း၊ ညစ်ပတ်ခြင်း 6. ဖေါက်ချ၍ မူမှန်သော ချောဆီထည့်ပါ။ 7. အင်ဂျင်ကြပ်နေခြင်း (PISTON သို့ BEARINO) 7. စစ်ဆးပြုပြင်ပါ။ 8. ထမ်းဆောင်သောဝန်ကိုလျော့ပေးပါ။ 8. အင်ဂျင် OVER LOAD ဖြစ်ခြင်း 9. စစ်ဆေးပြုပြင်ပါ။ 9. GOVERNOR မမှန်ခြင်း လောင်စာဆီအစားများနေခြင်း 1. လောင်စာဆီပို့လိုင်းတလျောက်ဆီယိုစီးခြင်း 1. အထိုင်ကျအောင်လုပ်၍ မယိုစီးရန်ပြုပြင်ပါ။ 2. စစ်ဆေး၍ ပြန်လည်ချိန်ပါ။ 3. INJECTION PUMP မှ ဆီပို့မှုများနေခြင်း 3. PUMP ကို စစ်ဆေးချိန်ညှိပါ။ 4. အင်ဂျင် COMPRESSION ကျနေခြင်း 4. စစ်ဆေးပြုပြင်ပါ။ 5. အင်ဂျင် OVER LOAD ဖြစ်ခြင်း 5. ထမ်းဆောင်နေသောဝန်ကိုလျော့ပါ။ 9. စစ်ဆေးပြုပြင်ပါ။ 6. GOVERNOR လုပ်ရှားမှ မမှန်ခြင်း ເຊິ່ງໝໍ້ໝອງ:ພຸງ:ເຊຊລີເວົ້: 1. ချောဆီ မမှန်ခြင်း၊ ညစ်ပတ်ခြင်း 1. ဖေါက်ချပြီးအသစ်လဲပါ။ 2. ချောဆီ PRESSURE နှင့် LEVEL မြင့်လွန်းခြင်း 3. GASKET များ OIL SEAL များ မလုံခြင်း 3. စစ်ဆေး၍ အသစ်လဲပါ။ 4. ထမ်းဆောင်နေသောဝန်ကိုလျော့ပါ။

- 5. PISTON RING များ စားနေခြင်း၊ ကျိုးနေခြင်း ကပ်နေခြင်းနှင့် မမှန်မကန် တပ်ဆင်ခြင်း
- 6. CYLINDER များ ဘဲဥပုံနှင့်အရှူးပုံဖြစ်နေခြင်း
- 7. MAIN 45 CONNECTING BEARING END PLAY များနေခြင်း 10次G身体的Catcolactale
 - EXHAUST នាលាខត្ត ឲ្យ__ប្រ លាក់នុង្គន៍ដ៏:
- 1. အင်ဂျင်ပုံမှန်အပူချိန်သို့မရောက်သေးခြင်း
- အင်ဂျင်ကို ပုံမှန်အပူချိန်ရောက်အောင် မောင်းပြီးမှ အသုံးပြုပါ။
- 2. မှုမှန်သောလောင်စာဆီကိုသုံးပါ။
- Up Alsteronio. လောင်စာဆီကို စစ်ဆေးပြီးမှထည့်ပါ။
- 2. လောင်စာဆီမမှန်ခြင်း
- 3. လောင်စာဆီတွင်ရေပါနေခြင်း

- 2. NOZZLE PRESSURE သတ်မှတ်သည်ထက် နည်းနေခြင်း။

- 2. စစ်ဆေး၍ ဆီ LEVEL အတိုင်း ထည့်ပါ။
- 5. အသစ်ကို မှန်ကန်စွာ တပ်ဆင်ပါ။
- 6. ပြုပြင်ပါ။

ျပင္ကုပ္ပါးထဲမွစ္

- - 7. စစ်ဆေးပြုပြင်ပါ။
- 4. အင်ဂျင် OVER HEAT ဖြစ်နေခြင်း

http://khtnetpc.webs.com

For Knowledge & Educational Purposes

13.10

ဦးအုန်းမြင့်၏စီဖယ်အင်ဂျင် 4. မီးလောင်ခန်းတွင်းသို့ချောဆီရောက်နေခြင်း 4. PISTON, PISTON RING, LINER, VALVE, VALVE OUIDE တို့ကို စစ်ဆေးပြုပြင်ပါ။ 5. အင်ဂျင် COMPRESSION ကျနေခြင်း 5. စစ်ဆေးပြုပြင်ပါ။ EXHAUST មានាត្រូ នាដ្ឋារត្រ នាងស្ថាន អ្នកទំនាំ TZUAHX3

- 1. လောင်စာဆီမှုမမှန်ခြင်း
- 2. AIR CLEANER လေစစ်ပိတ်နေခြင်း (လိုအပ်သောလေပမာဏ မရရှိခြင်း)
- 3. NOZZLE မကောင်းခြင်း ဆီယိုနေခြင်း
- 4. INJECTION TIMINO မမှန်ခြင်း
- 5. INJECTION PUMP မှ ဆီပို့မှုများနေခြင်း 5. သတ်မှတ်သည့်အတိုင်း ချိန်ညှိပါ။
- 6. အင်ဂျင် COMPRESSION မကောင်းခြင်း
- 7. VALVE နှင့် GASKET များ မလုံခြင်း

- 1. မှန်ကန်သောဒီဇယ်ဆီကိုအသုံးပြုပါ။
- 2. သန့်ရှင်းပါ၊ လေဝင်အောင်ပြုလုပ်ပါ။
- 3. သန့်ရှင်းစစ်ဆေးပြုပြင်ပါ။
 - 4. မှန်ကန်အောင်ပြန်ချိန်ပါ။
 - 6. စစ်ဆေးပြုပြင်ပါ။
 - 7. စစ်ဆေးပြုပြင်ပါ။

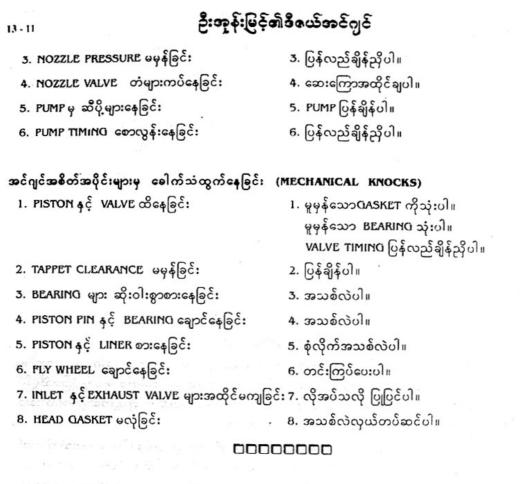
အင်ကျင်မှုခေါက်သံထွက်ခုနုခြင်း (KNOCKINO)

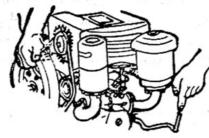
ဒီဇယ်အင်ဂျင်များ စက်^{လူ}းစမ်းသပ်ရာတွင် ခေါက်သံများ ထွက်ပေါ်တတ်သည်။ ခေါက်သံမှာ လောင်စာ ဆီမှ ထွက်ပေါ်လာသော ခေါက်သံနှင့် အင်ဂျင်အစိတ်အပိုင်းမှ ထွက်ပေါ်လာသောခေါက်သံများကို ခွဲခြားသိရှိနိုင် ရန် လိုသည်။ ၎င်းခေါက်သံများမှာ ဆင်တူသလို ဖြစ်နေသည်။ ဥပမာ– NOZZLEကပ်၍ ထွက်ပေါ်လာသောအသံ နှင့် BEARING ချောင်၍ ဖြစ်နေလောအသံမှာ ဆင်တူနေတတ်သည်။

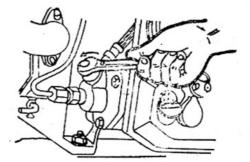
လောင်စာဆီမှ ဖြစ်ပေါ်သောအသံနှင့် အင်ဂျင်အစိတ်အပိုင်းများမှ ထွက်ပေါ်လာသောအသံကို လွယ် ကူစွာ ခွဲခြားသိရှိနိုင်သည်။ အင်ဂျင်ကို စက်အနေးလည် အနေအထားတွင် ခေါက်သံထွက်နေပါက NOZZLE သို့ ဝင်သော HIGH PRESSURE PIPE ၏ ခေါင်းများ တခုချင်းလျော့၍ စမ်းသပ်ပါ။ လျော့သွားချိန်တွင် ခေါက်သံ ပျောက်မပျောက် နားထောင်ပါ။ ပျောက်သွားပါက ၎င်း CYLINDER များကို ဆက်လက်စမ်းသပ်ပါ။ အသံပျောက်သွား သော CYLINDER မှ NOZZLE ကို ဖြုတ်၍ စမ်းသပ်ပါ။ NOZZLE ကောင်းမွန်လျှင် အဆိုပါ CYLINDER ၏ CONNECTING BEARING ချောင်ခြင်း ဖြစ်နိုင်သည်။ BEARING ကြောင့် ဖြစ်ပေါ်သောအသံ ဖြစ်ပါက အင်ဂျင် SPEED ပိုမြန်လေ အသံမှာ ပိုမိုပြင်းထန်လေဖြစ်သည်။

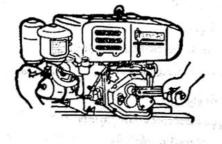
<mark>ຣດກຣັສສວີບິສຊສິຣເທົາຣຸ້ເອສິຣປໂຣລາຣລຳຕົ</mark>ລ່າ (FUEL KNOCKS)

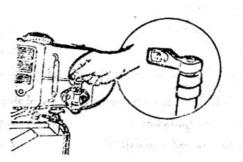
(က) CYLINDER တစ်လုံးတည်းမှ အသံထွက်နေခြင်း

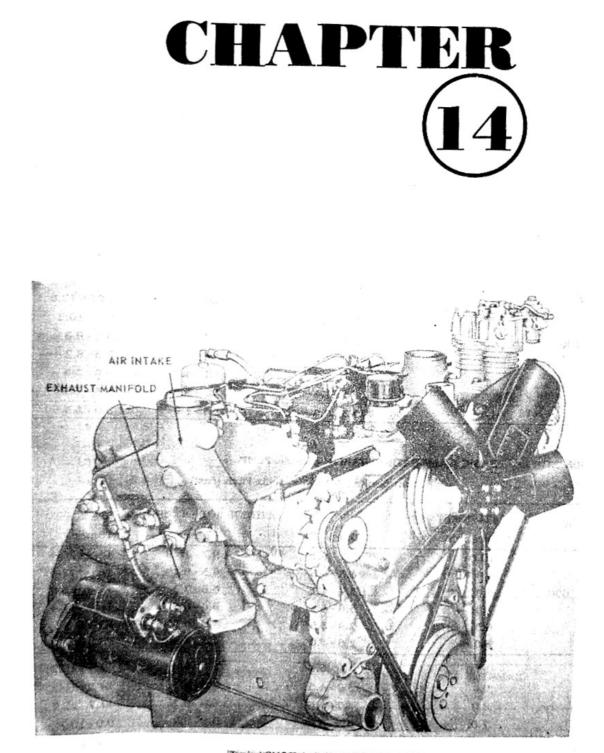

- 1. NOZZLE VALVE တံကပ်နေခြင်း
- 2. NOZZLE SPRING ကျိုးနေခြင်း
- NOZZLE PRESSURE မမှန်ခြင်း
- 4. NOZZLE မူမမှန်ခြင်း


2. အသစ်လဲပါ။ 3. ပြန်ချိန်ပါ။


1. ဆေးကြောအထိုင်ချ၍ပြန်လည်တပ်ဆင်ပါ။


- 4. မှန်ကန်သော NOZZLE ကို သုံးပါ။
- 5. PUMP ၏ DELIVERY VALVE ပွင့်၍ကပ်နေခြင်း 5. ဆေးကြောအထိုင်ချပါ။
- (e) တစ်လုံးထက်ပိုသော CYLINDER များမှ ခေါက်သံထွက်နေမြင်း
- 1. လောင်စာဆီမှုမမှန်ခြင်း
- 1. မူမှန်သောလောင်စာဆီကိုသုံးပါ။
- 2. လောင်စာဆီတွင် ရေပါနေခြင်း
- 2. လောင်စာဆီအသစ်လဲပါ။


For Knowledge & Educational Purposes



Typical GMC Toro-flow V-Six disul engine

14 - 1	۱	4	-	1
--------	---	---	---	---

ဦးအုန်းမြင့်၏ဒီဖယ်အင်ဂျင်

PRODUCT: ALL FUEL PUMP TEST BENCHES

SUBJECT;

BASIC CALIBRATIION TABLE 'B' SIZE PUMP

10 mm Stroke , 20mm Helix Pitch (Normal)

RPM	PLUNGER CONTROL ROD OPENING				
	Dia;mm	6mm	9mm	12mm	
	10.0	4.0 - 5.2	10.0 - 11.5	15.8 - 17.6	
	9.0	2.8 - 3.6	7.6 - 8.7	12.5 - 13.8	
	8.0	2.2 - 2.8	6.0 - 6.9	9.8 - 10.9	
600	7.5	2.2 - 2.8	5.5 - 6.3	8.8 - 9.8	
	7.0	2.0 - 2.6	4.9 - 5.7	7.8 - 8.8	
	6.5	2.0 - 2.6	4.5 - 5.2	7.1 - 7.9	
	6.0	1.2 - 1.6	3.3 - 3.9	5.4 - 6.1	
	5.0	0.4 - 0.7	1.8 - 2.2	3.2 - 3.7	
	10.0	2.8 - 3.6	8.7 - 9.9	14.6 - 16.2	
	9.0	1.8 - 2.3	6.6 - 7.4	11.5 - 12.6	
	8.0	1.7 - 2.2	5.4 - 6.2	9.2 - 10.2	
200	7.5	1.7 - 2.2	5.4 - 5.9	8.4 - 9.3	
	7.0	1.7 - 2.2	4.5 - 5.2	7.3 - 8.2	
		1.7 - 2.2	4.1 - 4.7	6.6 - 7.3	
	6.5	1.1 - 1.4	3.2 - 3.6	5.3 - 5.9	
<u></u>	5.0	0.3 - 0.6	1.4 - 1.9	3.0 - 3.5	

SUBJECT;

BASIC CALIBRATIION TABLE 'B' SIZE PUMP

10 mm Stroke , 14.89mm Helix Pitch (Fast)

R.P.M	PLUNGER	CONTROL ROD OPENING		
	Dia;-mm	9mm	12mm	18mm
	10.0	5.2 - 6.1	9.7 - 10.8	18.9 - 20.4
	9.0	4.8 - 5.5	8.5 - 9.4	16.0 - 17.3
600	8.0	3.7 - 4.2	6.6 - 7.3	12.4 - 13.5
	7.0	3.6 - 4.2	5.8 - 6.6	10.4 - 11.4
	6.5	2.9 - 3.5	4.9 - 5.5	8.8 - 9.8
	6.0	2.6 - 3.0	4.3 - 4.8	7.6 - 8.3
	10.0	4.0 - 5.1	8.4 - 9.8	17.4 - 19.2
	9.0	3.9 - 4.5	7.6 - 8.3	14.9 - 16.2
200	8.0	3.2 - 3.6	6.0 - 6.7	11.7 - 12.7
	7.0	3.3 - 3.9	5.5 - 6.2	9.8 - 10.7
	6.5	2.7 - 3.2	4.6 - 5.1	8.1 - 9.1
	6.0	2.4 - 2.8	4.0 - 4.5	7.2 - 7.8

NOMAL -FAST -

Comence Adjustment at 9 mm Control Rod Opening at 600 R.P.M. Comence Adjustment at 12 mm Control Rod Opening at 600 R.P.M.

For Knowledge & Educational Purposes

ဦးအုန်းမြင့်၏ဒီရယ်အင်ဂျင်

14 - 2

PRODUCT: ALL FUEL PUMP TEST BENCHES

SUBJECT; BASIC CALIBRATION TABLE C.A.V 'N' TYPE PUMPS

R.P.M	CONTROL ROD	PLUNGER DIAMETER			
		9 mm	8 mm	7.5 mm	
Pumps fitte	ed with 5 mm delivery va	alves			
200	6 mm	1.4 - 2.1	0.8 -1.5	0.7 - 1.4	
600	9 mm	7.5 - 8.4	6.2 - 7.8	5.0 - 5.7	
900	12 mm	13.2 - 14.3	10.8 - 11.8	9.2 - 10.0	
Pumps fitte	ed with 7 mm delivery va	alves			
	6 mm	0.8 - 1.5			
	7 mm		1.0 - 1.7	0.7 - 1.4	
	9 mm	7.8 - 8.7	5.5 - 6.3	4.3 - 5.0	
	12 mm	13.3 - 14.4	10.0 - 11.0	8.5 - 9.3	

•

R.P.M		PLUNGER	CONTROL ROD OPENING		
		Dia; mm	9 mm	12 mm	18 mm
600	LK	6.0	3.0 - 3.4	7.6 - 7.8	17.4 - 18.0
	LW	6.5	5.0 - 5.8	10.4 - 10.6	21.4 - 22.2
	L2	7.0	7.2 - 7.8	13.6 - 14.2	26.4 - 27.4
	L3	10.0	16.0 - 17.6	30.3 - 30.8	54.8 - 55.6
	Lx	7.5	5.2 - 6.4	12.2	26.2 - 28.0
200	LK	6.0	1.7 - 2.1	6.2 - 7.0	15.2 - 16.0
	LW	6.5	3.8 - 4.6	6.8 - 7.4	19.6 - 20.4
	L2	7.0	6.0 - 6.4	12.0 - 12.6	24.8 - 25.2
	L3	10.0	13.8 - 14.2	24.8 - 25.6	44.4 - 47.2
	Lx	7.5	2.0 - 3.2	9.0 - 10.6	23.8 - 25.8

SUBJECT: CALIBRAT

CALIBRATIION COMMER T.S-5

R.P.M	CONTROL ROD OPENING	DELIVERY	MAX: TOERANCE
	mm	in-cc	in-cc
1,400	11	11.2 - 11.6	.5
1,900	11	12.0 - 13.6	.7
400	7	2.2 - 3.4	.6
2,400	2	.1	

14-3

ဦးအုန်းမြင့်၏စီလော်အင်ဂျင်

PRODUCT; BASIC CALIBRATIION TABLE 'A' SIZE PUMPS

ALL FUEL PUMP TEST BENCHES

SUBJECT:

9 mm Stroke, 12 mm Helix Pitch

R.P.M	PLUNGER			CONTROL	3	
N.T. 11	Dia; mm	5 (D) (C)	7 mm		9 mm	12 mm
	6.5		1.9 - 2.5	14.61	2.6 - 3.5	4.9 - 5.7
1,000	6.0	1.4.6	1.0 - 1.4		1.5 - 2.3	3.3 - 3.9
	5.0		0.9 - 1.2		1.2 - 1.9	2.4 - 3.0
	6.5		1.4 - 1.8		2.3 - 3.2	4.4 - 5.2
200	6.0		0.6 - 1.0		1.4 - 2.1	3.1 - 3.6
	5.0		0.3 - 0.9		1.1 - 1.7	2.1 - 2.7

SUBJECT:

BASIC CALIBRATIION TABLE 'A' SIZE PUMP

R.P.M 1,000	PLUNGER	CONT	ROL ROD OPENING	
	Dia; mm	9 mm	12 mm	18 mm
	7.0	4.0 - 4.5	6.3 - 6.9	11.0 - 11.3
1,000	7.5	4.6 - 5.3	7.3 - 7.9	12.7 - 13.4
	8.0	5.0 - 5.7	8.0 - 8.8	14.2 - 15.0
	7.0	3.4 - 3.9	5.5 - 6.1	9.8 - 10.5
200	7.5	3.9 - 4.5	6.4 - 7.1	11.3 - 12.1
	8.0	4.3 - 5.0	7.1 - 7.9	12.7 - 13.7

7 mm Stroke, 12 mm Helix pitch

SUBJECT; BASIC CALIBRATION TABLES AMERICAN BOSCH 'A' SIZE PUMPS

7 mm Stroke, 12 mm pitch

R.P.M	PLUNGER	CONTROL ROD OPENING			
K.F . P 3	Dia; mm	9 mm	12 mm	18 mm	
	6.5	2.5 - 3.2	4.7 - 5.6	8.0 - 9.8	
	7.0	2.6 - 3.4	5.0 - 6.0	9.4 - 10.9	
1.000	8.0	2.6 - 4.0	6.0 - 7.4	12.0 - 14.0	
	9.0	4.8 - 5.8	8.6 - 10.0	16.0 - 17.6	
	6.5	2.3 - 3.0	4.3 - 5.2	8.1 - 9.1	
200	7.0	2.3 - 3.2	4.5 - 5.7	9.0 - 9.9	
200	8.0	2.3 - 3.4	4.8 - 6.4	10.8 - 12.5	
	9.00	3.2 - 4.5	7.2 - 8.4	14.0 - 16.0	

.

ဦးအုန်းမြင့်၏စီဇယ်အင်ဂျင်

14 - 4

PRODUCT;	ALL FUEL INJECTION PUMP TEST BENCHES
SUBJECT;	BASIC CALIBRATIION TABLE 'Z' SIZE PUMP

12 mm Stroke, 16 mm Pitch Compound Hellx

R.P.M	PLUNGER		CONTROL	ROD OPENING	
	Dia; mm	6 mm	12 mm	18 mm	24 mm
600	13		18.0 - 20.5	31.0 -34.0	44.0 - 47.0
200	13	6.5 - 8.5	17.6 - 19.7		42.1 - 45.9

SUBJECT: BASIC CALIBRATIION TABLE AMERICAN BOSCH 'Z' PUMP

12 mm Stroke, 30 mm Helix Pitch

R.P.M	PLUNGER	CON		
	Dia; mm	6 mm	18 mm	24 mm
	12	9.0 - 12.6	52.0 - 53.4	69.5 - 79.5
600	13	10.5 - 14.3	60.8 - 62.5	82.0 - 92.0
	14	15.3 - 20.4	72.5 - 74.5	96.5 - 108.0
	12	9.0 - 12.5	45.0 - 54.0	65.5 - 75.5
200	13	10.8 - 13.5	55.0 - 67.5	77.5 - 88.0
	14	15.4 - 18.5	65.0 - 74.5	91.5 - 104.0

PRODUCT:

SUBJECT;

ALL FUEL TEST BENCHES BASIC CALIBRATION TABLE 'Z' SIZE PUMP

12 mm Stroke, 30 mm Helix Pitch

R.P.M	PLUNGER		CONTROL	ROD OPENING	
	Dia; mm	6 mm	12 mm	18 mm	24 mm
	10	7.4 - 7.8	15.2 - 16.5	29.0 - 31.5	42.5 - 46.0
	11	7.0 - 9.0	23.5 - 26.5	40.5 - 44.0	57.0 - 62.0
600	12	9.5 - 12.4	29.5 - 35.5	50.0 - 55.5	70.5 - 77.0
	13	11.0 - 14.0	35.0 - 39.5	59.0 - 64.5	83.0 - 90.0
	14	16.0 - 20.0	43.0 - 48.5	70.0 - 77.0	97.5 - 106.0
	10	6.3 - 7.7	14.5 - 16.0	27.5 - 30.0	40.0 - 46.0
	11	7.0 - 9.0	23.0 - 26.0	39.5 - 43.5	56.0 - 61.0
200	12	9.5 - 12.3	28.5 - 32.5	46.0- 53.0	67.0 -73.5
200	13	10.3 - 13.3	33.0 - 37.0	56.0 - 61.5	79.0 - 86.0
	14	14.0 - 18.0	40.0 - 45.0	66.0 - 73.5	93.0 - 102.0

E.1.8

1.0	1		-	
	4	-	5	
			-	

ဦးအုန်းမြင့်၏ခီယေ်အင်ဂျင်

104	PUPP TO ST WERE	ALL FUEL INSTORNOR	0.0016085
1.000	74.51.8 字 国家医中生的	BARKO CALIBBARHOM	SUBJECT:

PRODUCT: ALL FUEL TEST BENCHES SHI mar 31 should men 11

SUBJECT: BASIC CALIBRATION TABLES AMERICAN BOSCH 'A' SIZE PUMP 7 mm Stroke, 12 mm Helix Pitch

s. (31	1014 B1 .	mini Scioke, 12 1	men 8 men ella	
R.P.M	PLUNGER	2.00 0.00 9 mm	CONTROL ROD OPENING	600 200 mm 81
	6.5	2.5 - 3.2	4.7 - 5.6	8.9 - 9.8
1,000	7.0	2.6 - 3.4	5.0 - 6.0	9.4 - 10.9
	8.0	2.6 - 4.0	6.0 - 7.4	12.0 - 14.0
	9.0	4.8 - 5.8	8.6 - 10.0	16.0 - 17.6
. (° - 22.	6.5	2.3 - 3.0	4.3 - 5.2	8.1 - 9.1
1.1	7.0	2.3 - 3.2	4.5 - 5.7	9.0 - 9.9
200	8.0	2.3 - 3.4	4.8 - 6.4	10.8 - 12.5
	9.0	3.2 - 4.5	7.2 - 8.4	14.0 - 16.0
		. 7	,6) ³ .	-004

SUBJECT:

BASIC CALIBRATIION TABLE AMERICAN BOSCH 'B' SIZE PUMP

N-RONA

R.P.M	PLUNGER		CONTROL ROD OPENING	
	Dia; mm	9 mm	12 mm	18 mm
	7	4.2 - 6.0	7.8 - 9.1	13.4 - 16.2
	8	5.2 - 7.4	9.2 11.3	17.2 - 20.5
600	9	6.1 - 8.4	11.3 - 13.7	21.4 - 25.2
	10	8.3 - 11.4	14.9 - 17.9	27.4 - 31.9
	11	11.3 - 15.2	15.6 - 23.5	33.9 - 38.6
	- 1	19-34	0.02 3 41	
	7	3.6 - 5	6.7 - 8.2	12.7 - 15.5
	8	4.6 - 6	8.5 - 10.6	16.3 - 19.6
200	9	5.2 - 7	10.3 - 12.7	20.4 - 23.8
	10	7.1 - 10	13.2 - 16.6	25.8 . 30.3
	11	8.4 - 12	16.6 - 20.9	31.9 - 36.5

For Knowledge & Educational Purposes

ဦးအုန်းဖြင့်၏ဒီဇယ်အင်ဂျှင်

^{-.+}t 14:6

	NOTTI F	1.0 20.	(1771)	•	51) is		A 8.5	
	INE & NOZZLE ERNATIONAL HAR	VESTERY	PERK		RUST		HORNSBY	
		2900	RDL	1105 6133			150T6380	2600
BDL BDL		3000	BDL	1105 6267	1760	BDLL	150UV6413	3000
BDD		2350	BDLL	1405 6422	2700	BDLL	1355 6092	2500
BDN		1600	BDLL	1505 6225	2500	BDLL	1355 6424	2500
DLL	255 444	2380	BDLL	150\$ 6318	3000		1355 6303	3000
DLL	1505 264	3000	BDLL	1505 6329	2900	BDLL	140S 6183	2500
DLL	1505 518	3200	BDLL	1505 6872	2600	BDLL	1405 6233	2500
DLL	1505 2640	3000	BDLL	1505 6882	2600	BDLL	1405 6293	2500
DLL	1505 1990	2500	BDLL	150S 6385A	2900	BDLD	1508 6253	3100
DLLA	1505 2120	2900	BDLL	1505 6395	2500	BDLL	1505 6275	2500
DLL	1505 529	3670	BDLL	1505 6435	2500	BDLL	1508 6317	2600
DLLA	1505 266	3000	BDLL	150\$ 6472	2500	BDLL	1505 6448	3000
OLLA	1505 417	3000	RDLL	1505 6507	2900	F 65	-00051.B	3100
DLLA	1505 442	3000	BDLL	1505 6513	2500	F 67	-00085.A	3100
DLLC	1505 542	3200	BDLL	1505 6545	2900	FABC/B	-23030.A	3100
DLLC	1505 543	3200	BDLL	1505 6554	2500	FAPC/B	-23060 A	3100
DLLC	1505 581	3200	BDLL	1505 6555	2500	FAR	-23030	3100
DNO	D 187	1900	BDLL	150S 6656	2500	ГАРС/Ь	-23030C	3100
NL	466	1470	BDLL	1505 6561	2500	FVCB/B	-23030	3100
LEYL	AND		BDLL	1505 6573	2500	FVEB/B	-23030	3100
6054	101D (600)	2150	BDLL	1505 6560	2900	FVEB/B	-23030	3100
6054	02D (600 PP&65)	0) 2400	BDLL	150S 6580	2900	FVEBX/	D-23030A	3100
6054	403D (370)	2400	BDLL	1505 6591	2900	H140T3	5H528	3100
6054	104F (400 & 401)	2400	BDLL	1505 6649	2900	H150T2	25L530P3	3100
6082	292A (350 & 375)	2150	BDLL	1505 6472C	2900	NL 443		2600
6084	490D (680 PP)	2400	BDLL	150S 6500	2900	NL 597		3000
8019	916H (500)	2650	BDIN	4\$6157	2950	NL 603		
BDL	140S6250A	2400	BDN	4SD6346	2000	~ -4		
BDL	14056306	2500	BDN	12SD6236	2000		koris – Soky Alexandro († 1995)	
BDN	4SP6460	2100	BDN	12SD6459	1900	ens	139	
			NL 550		2600		1.2	
			NL 557	de c	2600		$p \rightarrow (p_1, p_2) \neq 0.13$	
		1.4.7.5	NL 558		2600			
1		6661 (166) 6681 (116)	NL 614	ł	2700			
		2000-04-00						

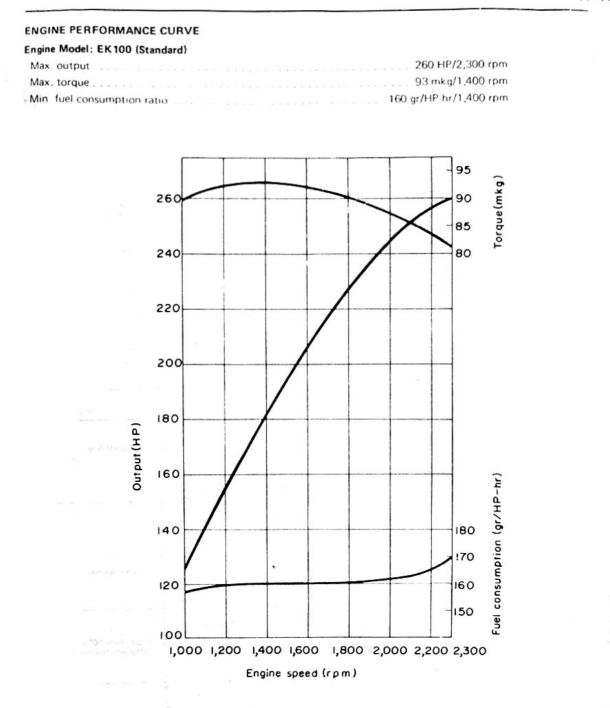
For Knowledge & Educational Purposes

14 - 7

ဦးအုန်းမြင့်၏စီဖယ်အင်ဂျှင်

	A.E.C	(PSI)	BEDFORD	(PSI)	HERCULES	(PSI)
	BDLL 1405 6471	2600	BDLL 170S 6173	2600	ADN8 R 48	1600
	BDLL 1505 6028	2600	NL 222	2500	ADN8 S 516	1800
	BDLL 1505 6064	2600	NL 478	2600	ADN8 SD 32	1600
	BDLL 1505 6318	2600	NL 597	2600	ADN 12 RD 507	1600
	BDLL 1505 6381	2600	DAVID BRIWN		JOHN DEERE	
	BDLL 150S 6397	2600	BDLL 1405 6417	2600	17579	3000
	BDLL 1505 6443	2600	BDLL 1405 6544	2600	18025	3000
	BDLL 150S 6774	2600	BDLL 1405 6592	2600	18457	3000
	BDLL 150S 6495	2600	NL 446	2600	18458	3000
	BDLL 150S 6550	2600	FORD		DLLA 155S 560	3400
	BDLL 1505 6575	2600	BDLL 1405 5422	2700	DLLA 1555 574	3400
	BDLL 150S 6564	2600	BDLL 1405 6423	2600	DLLA 1555 593	3400
	NL 110	2600	BDLL 1405 6603A	2800	DN4SD 140	1900
	NL 127	2600	BDLL 1405 6609	2900	LISTER	
	NL 183	2600	BDLL 1405 6611	2600	BDL 305 46	1500
	NL 298	2900	BDLL 150S 6443	2600	BDL 30S 406	1750
	NL 315	2600	BDLL 150S 6476	2600	BDL 30S 6232	2400
Ğ. 1	NL 473	2600	BDLL 1505 6571	2600	BDL 70S 6014	2900
. 2	NL 481	2600	NH 153A	2400	BDLI, 1405 6403	3000
	NL 533	2600	NH 389	2400	BDLL 1505 6502	2600
	ALLIS CHAMBER	2000	NL 123	2600	BDLL 1765 6204	2700
	ADN 4RD 502	2000	NL 179	2600	BDLL 1765 6297	2800
	ADN 4SI	2000	NL 413	2600	BDLL 1765 6414	2700
	ADN 452		NL 224	2600	BDN 4SDC 6453	2350
		2000	NL 455	2600	HL 1275 B 6D 662P3	2700
	ADN 4SD 504	2000	NL 461	2600	HL 134S 26D 656P2	2700
ē.	(economic contest)	1800	NL 582	2600	MERCEDES BENI	
	ADN 4T17	1800	5 C		DLL 1455 166	2600
	ADN 12SD12	2000	NL 588	2600	DLLA 195 246	3000
ē.	BDN 4SD 505	2000	NL 639	2600	DLLA 795 390	Carrowski M
	DLL 150S D123	2900	DNOSD 21	2100		2900
0	DLL 1505 D124	2900	HANOMAG		DLLA 144S 485	2600
5	DLLB 1505 153	2500	DLLA 150S 292	2900	DLLA 1505 186	2600
1.	DN 6TD 119	1800	DLLA 1505 392	2650	DLLA 150S 187	3000
	BEDFORD	e dat d	DLLA 1505 588	2600	DLLA 1505 196	
	BDLL 1405 62505A	2650	DNOSD 151	1750	DLLA 150S 2120	2900
	BDLL 150S 6443	2600	DNOSD 195	1900	MACK	a.r. n
	BDLL 1505 6472	2500	aoot ecatore	8.08	ADB 150S 103	2350
	BDLL 1605 6394	2650	DN4SD 24	2200	ADNOS D 508	3200
	BDLL 1605 6492	2600	DN4SD 128	1800	ADN 4SD 51	3200
	BDLL 1605 6519	2600	DN12SD 12	1800	ADN 4SD 504	1800
			2600	NL 558	ADN 4SD 518	3200
			2700	PHL 614	ADL 1505 424	3000
			*2		DLL 1558 368	3200

alama, as a successive components of a	e in an		14-8
DATA & SPECIFICAT		TANK OF LODIER CONTRACT	5 6 1 Carlos - C. M. P.
二年四日 建糖酸盐 机加工工具			
GENERAL	and the second		
Model		EK100	
Туре	·····	Diesel, 4-rycle, vertical 6-cylinder in-line	e, over hearl valve
Combustion sustan		water cooled	METANA
	•••••••••••••••••••••••••••••••••••••••		an internal a
Bore and stroke		. 137 x 150 mm (5.39 x 5.91 m)	
Piston displacement		13.267 liters (809.28 cu.in)	to an at the Lore
		. 30 ~ 36 kg/cm ² (427 ~ 511 lb/sq.in) at 20!	1.0
	e from fan side)		
이 이렇게 이 방법에는 것이 가지 않는 것이 많이 많이 많이 했다.	II load)		
		. 450 ~ 500 rpm . Approx. 980 kg (2,160 lb)	
weight	••••••••••••••••	. Approx, 980 kg (2,160 lb)	
	a ser a ser a	Constant and Constant	
CYLINDER HEAD			
Lyinder head		. In two blocks each one for three cylinders	, Cast iron in mate
	5 S. S.	rial	a observe
ALVE MECHANISM	- 20 - 10 - 10 - 10 - 10 - 10 - 10 - 10		
Valve seat angle; Inlet		. 30°	and the second
Exhaust	· · · · · · · · · · · · · · · · · ·	. 45°	1. A. A.
alve timing (flywheel trav	el); Inlet opens	15° before T.D.C.	() e
	inlet closes	. 45° after B.D.C.	1
	Exhaust opens		
	Exhaust closes	. 16° after T.D.C.	The first state of
/alve clearance when cold;	Inlet	. 0.4 mm (0.016 in)	1
	Exhaust	. 0.4 mm (0.016 in)	
			144 (25 C
YLINDER BLOCK, CYLI	NDER LINER AND CAMS	HAFT	
		Single-piece casting, Cast iron in material	
Cylinder liner		. Wet type replaceable, special cast iron in ma ly cast	aterial, centrilugal
Caroshaft		. Induction-hardened carbon steel in material	S ASSOCION
		. 7, white metal with carbon steel in material	11
,	and the second starts		 (k) (w) (t)
CONNECTING ROD AND	PISTON	1. Ib .	en production de la companya de la c
		Cast phosphor-bronze, 50 mm (1.97 in)	
		. Heat resistant aluminium alloy	• • • • •
		"Three, chromeplated for top & third ring	a tan F
	ol	One, with chromeplated	$= - \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right)^2$
		an na sanga	$\phi_{1} = -\phi_{2}\phi_{1} - \phi_{3} - \phi_{3} - \phi_{3} - \phi_{3} - \phi_{3} + \phi_{3} - \phi_{3} $
	9.5° (2.15.1, 1.10) P.0	$\left[2h_{-1}(t_{1}^{-1})-h_{-1}(t_{1}^{-1})\right]^{2}$	intra-
			N3N7370 619
	1.00.000.000.00000	(1) Y KI	. 54¥


By type (paper comen-

For Knowledge & Educational Purposes

Crankshaft Induction hadrood special steel forging with balance weight Indium plated over this keinet. Crankshaft bearing Mumber 7 Diameter 90 mm (3:54 in) FUEL SYSTEM BOSCH line: type, driven by crankshaft gear 1/2 x engine rpm, counterclockwise seen from the drive side Injection timing Impection BOSCH line: type, driven by crankshaft gear 1/2 x engine rpm, counterclockwise seen from the drive side Impection timing T.D.C. 192 T.D.C. 193 Impection timing Course 1/13 Z2000-11/13 Covernor BOSCH type, centrifugal max, and min, speet course type, model ZA12, 466 Covernor BOSCH type, centrifugal max, and min, speet course type, drive side, max, advancing angle 4 ²⁴ Status Fuel leed pump Platon type driven by injection pump carshaft, max, feeding pressure 20 kg/cm ² (28 kl b/sg in) Replaceable paper element type Fuel teed pump Gear type Square section, seam weided LUBRICATING SYSTEM Square section, seam weided LUBRICATING SYSTEM Type Cost s/s/s s/s s/s s/s s/s Square section, seam weided LUBRICATING SYSTEM Furf. How type using paber element and bypass type using depth element Square section type Cooling system water capacity St s/s s/s	CRANKSHAFT AND CRANKSH	AFT BEARING			
Number 7 Diameter 90 mm (3.54 in) FUEL SYSTEM BOSCH line type, driven by stankshaft gear 1/2 x engine type, counterclockwise gene from the drive side Injection pump BOSCH line type, driven by stankshaft gear 1/2 x engine type, counterclockwise gene from the drive side Injection timing Injection pump assembly 22000/14/3 22000/14/3 22000/14/3 Chassis ZM403, 443 KY, Y, HY, Model K850, HE336 K850, HE336 Governor BOSCH type, centrifugal max, and min, speed control type finded to the side, max, advancing angle 4* K850, HE336 Fuel feed pump Priston type driven by injection pump carshaft, max, feeding pressure 2.0 kg/cm² (28.4 lb/sg in) Nozzle holder; Injection pressure 220 kg/cm² (28.4 lb/sg in) Nozzle holder; Injection pressure 220 kg/cm² (28.4 lb/sg in) Fuel tank Siguare section, seam weided LUBRICATING SYSTEM Pressure feed lubrication with oil pump Gear type Of a spat/6,34 US gal) Di pump Go fact 27.1 lb/sg in) Di fuegasity Aprox. 26.5 liters (5.28 lmp.gal/6,34 US gal) Di pressure 0.5 < 6.5 (kg/cm² (7.1 hb/sg in) Di fuegasity Aprox. 26.5 liters (5.28 lmp.gal/6,34 US gal)			Induction-hardenee	d special steel forg	ing with balance weights
Number 7 Diameter 90 mm (3.54 in) FUEL SYSTEM BOSCH line type, driven by stankshaft gear 1/2 x engins rpm, counterclockwise sem from the drive side Injection timing Image to the drive side Injection timing Image to the drive side Injection timing Image to the drive side Image to the drive side Image to the drive side Governor BOSCH type, centrifugal max, and min, speed control type driven by injection pump canshaft, max, feeding pressure 2.0 kg/cm ² (28.4 lb/sg in) Fuel feed pump Piston type driven by injection pump canshaft, max, feeding pressure 2.0 kg/cm ² (28.4 lb/sg in) Nozzle holder; Injection pressure 220 kg/cm ² (28.4 lb/sg in) Nozzle holder; Injection pressure 220 kg/cm ² (28.4 lb/sg in) Fuel filter Replaceable paper element type Chassis Square section, seam welded LUBRICATING SYSTEM Pressure feed lubrication with oil pump Type Pressure for driven Di apacity Approx. 26.5 liters (5.28 Imp.gal/6.34 US gal) Di fueng Cost kg/cm ² (7.1 m/sg, in) Di fueng Cost kg/cm ² (7.1 m/sg, in) Di fueng Cost kg/cm ² (7.1 m/sg, in) Di fueng Cost kg/cm ² (Crankshaft bearing Material .		Indium plated over	thin kelmet.	5 12 100
FUEL SYSTEM BOSCH line type, driven by crankshaft gear 1/2 x engine rpm, counterclockwise seen from the drive side Injection timing Impection generation of the drive side Injection timing Impection generation of the drive side Impection timing Impection generation of the drive side Impection generation of the drive side Impection generation of the drive side Impection generation of the drive side Impection generation of the drive side Governor BOSCH type, centrilugal max, and min, speed control type driven by injection pump canshaft, max, feeding pressure 20 kg/cm² (28.4 lb/sq.in) Fuel feed pump Piston type driven by injection pump canshaft, max, feeding pressure 20 kg/cm² (28.4 lb/sq.in) Nozzle holder; Injection pressure 220 kg/cm² (28.4 lb/sq.in) Fuel filter Replaceable paper element type Fuel tank Square section, seam welded LUBRICATING SYSTEM Pressure feed lubrication with oil pump Type Pressure for driven by using paper element and bypass type using dapth element Cooling system water capacity 0.5 % 50 kg/cm² (7.1 ~ 7.1, lb/sq.in) Dif form Pressure for driven by generation type Real state in the drive side side side side side side side sid	Number .		7		
Fuel injection pump BOSCH line type, driven by crankshaft gear 1/2 x engine type, counterclockwise seem from the drive side Injection timing Injection Injection Injection Governor BOSCH type, centrifugal max, and min, speed control type driven by crankshaft gear 1/2 x engine type driven by crankshaft gear 1/2 x engine type driven by injection pump assembly Z2000-11/3	Diameter .		90 mm (3.54 in)		
Fuel injection pump BOSCH line type, driven by crankshaft gear 1/2 x engine fpm, counterclockwise seen from the drive side Injection timing Injection Injection Injection Injection timing Injection Injection Injection Square seenbly 22000-11/3 22000-11/3 22000-11/3 Governor BOSCH type, centrifugal max, and min, speed control type Time Automatic timer, counterclockwise rotation seen from the drive side, max, advancing angle 4° Fuel feed pump Piston type driven by injection pump camshaft, max, feeding pressure 2.0 kg/cm ³ (28,40)37 x 2 Nozzle holder; Injection pressure 220 kg/cm ³ (23,128 lb/sq.in) Fuel tead pump Pressure feed lubrication with oil pump Nozzle holder; Ingection seam welded LUBRICATING SYSTEM Ype Type Pressure feed lubrication with oil pump Goli capacity O.5 ~50, kg/cm ³ (7, 1 lb/sq, in) Cooling system water capacity All flow type using paper element and bypass type using depth element Cooling system water capacity All flow type using paper element greesure Cooling system water capacity All flow type using base system Type Pressed steel blades Co	The second second second		•		
Injection timing Impletion Impletio	FUEL SYSTEM				
Injection timing Impection Before 1st cyl. T. D. C. 12 ⁹ T. D. C. 13 ⁹ Injection T. D. C. 12 ⁹ T. D. C. 13 ⁹ T. D. C. 13 ⁹ Injection ZC000-1491 Ump assembly ZC000-1491 Chassis KF 421, 466 KB501, HE 336 Governor BOSCH type, centrifugal max, and min, speed control type Time Automatic timer, counterclockwise rotation seen from the drive side, max, advancing angle 4 ^o Fuel feed pump Piston type driven by injection pump camshaft, max, feeding pressure 2.0 kg/cm ² (28.4 lb/sq.in) Nozzle holder; Injection pressure 220 kg/cm ² (23.128 lb/sq.in) Nozzle holder; Injection pressure 220 kg/cm ² (13.128 lb/sq.in) Nozzle holder; Injection seem weided LUBRICATING SYSTEM Square section, seam weided Type Pressure feed lubrication with oil pump Geartype Dil pressure 0.5 50, kg/cm ² (7.1 mogal/6.34 US gal) 0.5 ~ 50, kg/cm ² (7.1 mogal/6.34 US gal) Dil pressure 0.5 kg/cm ² (7.1 mogal/10.8 US gal) Ma 100 Difficience Dil flow type using paper element and bypass type using depth element Cooling system water capacity 41 liters (9.0 Img 24/10.8 US gal) MA 100 Difficie	Fuel injection pump		BOSCH line type	, driven by crank	shaft gear 1/2 x engine
Injection Before 1st cyl. Before 1st cyl. Injection T.D.C. 19 I.D.C. 19 Injection pump assembly 22000-11/3 22000-1491 Drawstion Z2000-11/3 22000-1491 Chassis KF 421, 466 KB501, HE 336 Governor BOSCH type, centrifugal max, and min, speed control type Chassis ZC121 ZC302, 312, 342 Governor BOSCH type, centrifugal max, and min, speed control type Automatic timer, counterclockwise rotation seen from the drive side, max, advancing angle 4° Piston type driven by injection pump campatit, max, feeding pressure 2.0 kg/cm² (18,4 kl/sg, in) Nozzle holder; Injection pressure 220 kg/cm² (3,128 lb/sg, in) Nozzle holder; Injection pressure 220 kg/cm² (3,128 lb/sg, in) Replaceable paper element type Square section, seam welded LUBRICATING SYSTEM Square section, seam welded Dil pressure 0.5 +5,0 kg/cm² (7,1 +7,1 lb/sg, in) BOSHI Dil filter Forced-recirculation type Square section type Cooling system 0.5 kg/cm² (7,1 +7,1 lb/sg, in) atmospheric pressure 0.5 kg/cm² (7,1 +7,1 lb/sg, in) atmospheric pressure Dil filter 0.5 kg/cm² (7,1 lb/sg, in) atmospheric pressure 0.5 kg/cm² (1,1 l			rpm, counterclocky	wise seen from the	drive side
timing T.D.C. 19 ² T.D.C. 19 ² Injection 22000-21/3 22000-21/3 Chassis ZMA03, 443 KY. 27, HY. Chassis ZKA03, 443 KY. 27, HY. Chassis ZKA03, 443 KY. 27, HY. Chassis ZKA03, 443 KY. 27, HY. Covernor BOSCH type, centrifugal max. and min. speed control type Timer Automatic timer, counterclockwise rotation seen from the drive side, max, advancing angle 4° Piston type driven by injection pump camshaft, max. feeding Presure 20.48,07m ² (28.4 lb/sq.in) Presure 20.48,07m ² (28.4 lb/sq.in) Nozzle holder; Injection presure 20.48,07m ² (28.4 lb/sq.in) Fuel tank Square section, seam welded LUBRICATING SYSTEM Pressure feed lubrication with oil pump Gear type Pressure feed lubrication type and 4.3 US gal) Dil pressure 0.5 ~5.0.0 kg/cm ² (7.1 ~7.1.1 lb/sq.in) Dil pressure 0.5 kg/cm ² (7.1 ~7.1.1 lb/sq.in) Dil filter Fuel flow type using paper element and bypass type using depth element Cooling system water capacity 41 liters (9.0 ling paper olement and bypass type using depth element Cooling system water capacity 41 liters	Injection timing		La la maiser d	0.4. 1. 1	0.4
Injection 22000-11/3 22000-14/31 Import passenbly 22000-14/31 22000-14/31 Chassis XFA21.466 KB501.HE336 model ZC121 ZXM302.312.342 Governor BOSCH type, centrifugal max, and min, speed control type Timer Automatic timer, counterclockwise rotation seen from the drive side, max, advancing angle 4° Fuel feed pump Piston type driven by injection pump camshaft, max, feeding pressure 20 kg/cm² (28.4 lb/sq in) Nozzle holder; Injection pressure Nozzle holder; Injection pressure Square section, seam welded Square section, seam welded LUBRICATING SYSTEM Free Type Pressure feed lubrication with oil pump Dil capacity Approx.26.5 liters (5.28 lmp.gal/6.34 US gal) Dil capacity Approx.26.5 liters (5.28 lmp.gal/6.34 US gal) Dil capacity Approx.26.5 liters (1.1 ~ 71.1 lb/sq in) Coolic capacity Approx.26.5 liters (9.0 lmp.gal/10.8 US gal) Dil filter Full flow type using paper element and bypass type using depth element. Cooling system water capacity 41 liters (9.0 lmp.gal/10.8 US gal) Cooling system water capacity 41 liters (9.0 lmp.gal/10.8 US gal) </td <td></td> <td></td> <td></td> <td></td> <td></td>					
Chassis ZM405, 443 KY, ZY, HY, KF336 Model ZC121 KF321, 466 KB501, HE336 Governor BOSCH type, centrifugal max, and min, speed control type Timer Automatic timer, counterclockwise rotation seen from the drive side, max, advancing angle 4° Fuel feed pump Piston type driven by injection pump camshaft, max, feeding presure 2.0 kg/cm² (2.8 4 b/3g in) Nozzle holder; Injection pressure 220 kg/cm² (2.8 4 b/3g in) Fuel filter Replaceable paper element type Fuel tank Square section, seam welded LUBRICATING SYSTEM Pressure feed lubrication with oil pump Dil pump Gear type Dil pressure 0.5 ~ 5,0 kg/cm² (7.1 ~ 71.1 tb/5g in) Dil filter Full flow type using paper element and bypass type using depth element COOLING SYSTEM Pressure feed lubrication type Cooling system water capacity A1 liters (9.0 lmp gal/10.8 US gal) Cooling system water capacity A1 liters (9.0 lmp gal/10.8 US gal) Coolant pump Contrigated fin type Radiator; Type Radiator; Pressed steel blades Bradiator; Type Coolant pump Contrugated fin type		etter tig in s	Injection		
Chassis KF 421, 466 KE 501, HE 336 Model ZC121 ZC121 ZM302, 312, 342 Governor BOSCH type, centrifugal max, and min, speed control type Time Automatic timer, counterclockwise rotation seen from the drive side, max, advancing angle 4° Fuel feed pump Piston type driven by injection pump camshaft, max, feeding pressure 2.0 kg/cm² (28.4 lb/sq in) Nozzle hole size ϕ .34 x 2 & ϕ .37 x 2 Nozzle holder; Injection pressure 220 kg/cm² (3.128 lb/sq in) Fuel filter Replaceable paper element type Fuel tank Square section, seam welded LUBRICATING SYSTEM Pressure feed lubrication with oil pump Gapting filter O 5 ~ 5.0 kg/cm² (7.1 ~ 71,1 lb/sq,in) Dil pump Gear type Oil opacity O 5 ~ 5.0 kg/cm² (7.1 ~ 71,1 lb/sq,in) Dil filter Full flow type using paper element and bypass type using depth element COOLING SYSTEM Forced-recirculation type Type Forced-recirculation type Cooling system water capacity 41 liters (9.0 Imp gal/10.8 US gal) Cooling system water capacity 41 liters (9.0 Imp gal/10.8 US gal) Far, Type Rubben shock insulators Brass pl				71403 443	KA JA HA
Governor BOSCH type, centrifugal max, and min, speed control type Fuel feed pump Automatic timer, counterclockwise rotation seen from the drive side, max, advancing angle 4 ^a Fuel feed pump Piston type driven by injection pump camshaft, max, feeding pressure 20 kg/cm² (2.8 tb/so in) Nozzle holder, Injection pressure 20 kg/cm² (3.128 tb/so in) Nozzle holder, Injection pressure 20 kg/cm² (3.128 tb/so in) Fuel tank Replaceable paper element type Fuel tank Square section, seam welded LUBRICATING SYSTEM Pressure feed lubrication with oil pump Type Os > 50.0 kg/cm² (7.1 ~ 71.1 tb/sq.m) Dil pape Os > 50.0 kg/cm² (7.1 ~ 71.1 tb/sq.m) Dil filter Forced-recirculation type Cooling system water capacity 0.5 kg/cm² (7.1 ~ 71.1 tb/sq.m) Type Os Stg/cm² (7.1 log agal) Far, Type Pressed steel blades Radiator cap pressure 0.5 kg/cm² (7.1 log agal) Cooling system water capacity 41 titers (9.0 Imp.gal/10.8 US gal) Far, Type Pressed steel blades Cooling system water capacity 41 titers (9.0 Imp.gal/10.8 US gal) Mounting Rubben shock insulators Brase place Brase place					
Governor BOSCH type, centrifugal max, and min, speed control type Timer Automatic timer, counterclockwise rotation seen from the drive side, max, advancing angle 4° Piston type driven by injection pump camshaft, max, feeding pressure 2.0 kg/cm² (28.4 lb/sq.in) 40.34 x 2 k 0.37 x 2 Nozzle holder; Injection pressure 20.2 kg/cm² (3.128 lb/sq.in) Fuel filter Replaceable paper element type Fuel tank Square section, seam welded LUBRICATING SYSTEM Pressure feed lubrication with oil pump Dil capacity Approx. 26.5 liters (5.28 Imp.gal/6.34 US gal) Dil pressure 0.5 ~ \$0.0 kg/cm² (7.1 ~ 71.1 tb/sq.in) Dil treessure 0.5 Kg/cm² (7.1 ~ 71.1 tb/sq.in) Cooling system water capacity 41 liters (9.0 Imp.gal/0.34 US gal) Cooling system water capacity 41 liters (9.0 Imp.gal/10.8 US gal) Cooling nump Centrifugal gear driven. Pressed steel blades Carrugated fin type Radiator: Type Pressed steel blades Radiator: Type Pressed steel blades Brast place Wax type bottom by pass system AIR CLEANER Type (paper element) Or, oil bath type with pre-cleaner Or, oil bath type with pre-cle			model	ZC121	ZM302, 312, 342
Timer Automatic timer, counterclockwise rotation seen from the drive side, max, advancing angle 4° Fuel feed pump Piston type driven by injection pump camshaft, max, feeding pressure 2.0 kg/cm² (28.4 lb/sq.in) Nozzle hole size \$\phi.34 x 2 & \phi.34 (b/sq.in) Nozzle hole size \$\phi.34 x 2 & \phi.34 (b/sq.in) Nozzle holder; Injection pressure \$\frac{20 kg/cm²}{3} (28.4 lb/sq.in) Fuel filter Replaceable paper element type Fuel tank Square section, seam welded LUBRICATING SYSTEM Pressure feed lubrication with oil pump Gear type Approx. 26.5 liters (5.28 lmp.gal/6.34 US gal) Dil parse 0.5 \stacked science Dil pressure 0.5 kg/cm² (7.1 \stacked science) Dil filter Forced-recirculation type COOLING SYSTEM Fuel flow type using paper element and bypass type using depth element COOLING SYSTEM Forced-recirculation type Cooling system water capacity 0.5 kg/cm² (7.1 lb/sq.in) atmospheric pressure Coling system water capacity 41 liters (9.0 lmp.gal/10.8 US gal) Goatin pump Rubbers hock insulators Fan; Type Rubbers hock insulators Badiator; Type Rubbers hock insulators Uper and lowe			4 A A		
Fuel feed pump drive side, max, advancing angle 4° Fuel feed pump Piston type driven by injection pump camshaft, max, feeding pressure 2.0 kg/cm² (28.4 lb/sq.in) Nozzle holder; Injection pressure 200 kg/cm² (21.8 lb/sq.in) Fuel filter 200 kg/cm² (3.128 lb/sq.in) Fuel tilter Replaceable paper element type Square section, seam welded Square section, seam welded LUBRICATING SYSTEM Pressure feed lubrication with oil pump Fige Pressure feed lubrication with oil pump Dil pump Gear type Dil pressure 0.5 ~ 5.0 kg/cm² (7.1 ~ 71.1 tb/sq.in) Dil filter Full flow type using paper element and bypass type using depth element COOLING SYSTEM Forced-recirculation type Radiator cap pressure 0.5 kg/cm² (7.1 lb/sq.in) atmospheric pressure Cooling system water capacity 41 liters (9.0 Imp gal/10.8 US gal) Cooling system water capacity 41 liters (9.0 Imp gal/10.8 US gal) Corrugated fin type Rubbers hock insulators Brass plate Wax type bottom bypass system AIR CLEANER Dry type (paper element) Type Dry type (paper element) Or ill bath type with pre-cleaner Dry type (paper eleme					
Fuel feed pump Piston type driven by injection pump camshaft, max, feeding pressure 2.0 kg/cm² (28.4 lb/sq in) Nozzle holder; Injection pressure 220 kg/cm² (3,128 lb/sq,in) Nozzle holder; Injection pressure 220 kg/cm² (3,128 lb/sq,in) Fuel filter Replaceable paper element type Square section, seam welded Square section, seam welded LUBRICATING SYSTEM Pressure feed lubrication with oil pump Square section, seam welded Square section, seam welded LUBRICATING SYSTEM Pressure feed lubrication with oil pump Square section, seam welded Square section, seam welded LUBRICATING SYSTEM Pressure feed lubrication with oil pump Square section, seam welded Square section, seam welded Dil pressure 0.5 × 5,0.kg/cm² (7,1 ~ 71,1 lb/sq in) Dil filter Full flow type using paper element and bypass type using depth element COOLING SYSTEM Stag/cm² (7,1 lb/sq,in) atmospheric pressure Collant pump O.5 kg/cm² (7,1 lb/sq,in) atmospheric pressure Collant pump Corrugated fin type Radiator, Type Pressed steel blades Radiator, Type Rubber shock insulators Brass plate Wax type bottom bypass system A			Automatic timer,	counterclockwise	rotation seen from the
Nozzle hole size					
Nozzle holder; Injection pressure ϕ 0.34 x 2 & ϕ 0.37 x 2 220 kg/cm² (3,128 lb/sq.in) Replaceable paper element type Square section, seam welded Fuel filter Replaceable paper element type Square section, seam welded LUBRICATING SYSTEM Type Pressure feed lubrication with oil pump Gear type Approx. 26.5 liters (5.28 lmp.gal/6.34 US gal) 0.5 ~ 5,0 kg/cm² (7.1 ~ 71.1 tb/sq.in) Dil titler Fuel flow type using paper element and bypass type using depth element COOLING SYSTEM Type Forced-recirculation type Radiator cap pressure O.5 kg/cm² (7.1 b/sq.in) atmospheric pressure Cooling system water capacity 41 liters (9.0 lmp.gal/10.8 US gal) MA use pitting Korsed steel blates Corrugated fin type Radiator; Type Rubper tanks Brass plate Wax type bottom bypass system AAR CLEANER Type Thermostat Wax type bottom bypass system AAR APR CLEANER Type Dry type (paper element) or oil bath type with pre-cleaner Social type with pre-cleaner Social type with pre-cleaner Social type with pre-cleaner Social type Social	Fuel feed pump				
Nozzle holder; Injection pressure 220 kg/cm² (3,128 lb/sq.in) Fuel filter Replaceable paper element type Fuel tank Square section, seam welded LUBRICATING SYSTEM Pressure feed lubrication with oil pump Dil pump Gear type Dil capacity Approx. 26.5 litters (5.28 lmp.gal/6.34 US gal) Dil pressure 0.5 ~ 5,0 kg/cm² (7.1 ~ 71.1 lb/sq.in) Dil filter Full. flow type using paper element and bypass type using depth element COOLING SYSTEM Forced-recirculation type Radiator cap pressure 0.5 kg/cm² (7.1 lb/sq.in) atmospheric pressure Coolant pump Geart filters (9.0 lmp.gal/10.8 US gal) Fan; Type Pressed steel blades Radiator; Type Corrugated fin type Mounting Rubber shock insulators Upper and lower tanks Brass plate Thermosita Wax type bottom bypass system AIR CLEANER Type Type Dry type (paper element) or oil bath type with pre-cleaner					and shake we we
Fuel filter Replaceable paper element type Square section, seam welded LUBRICATING SYSTEM Type Pressure feed lubrication with oil pump Dil pump Gear type Dil paper Pressure foed lubrication with oil pump Dil capacity Approx. 26.5 liters (5.28 Imp.gal/6.34 US gal) Dil pressure 0.5 ~ 5,0.kg/cm² (7.1 ~ 71,1 lb/sq.in) Dil filter Full. flow type using paper element and bypass type using depth element COOLING SYSTEM Forced-recirculation type Type Forced-recirculation type Radiator cap pressure 0.5 kg/cm² (7.1 lb/sq.in) atmospheric pressure Cooling system water capacity 41 liters (9.0 Imp.gal/10.8 US gal) Coolant pump Centrifugal gear driven Fan, Type Pressed steel blades Radiator; Type Rubber shock insulators Upper and lower tanks Brass plate Wax type bottom bypass system AIR CLEANER Type Dry type (paper element) or oil bath type with pre-cleaner or oil bath type with pre-cleaner					
Fuel tank Square section, seam welded LUBRICATING SYSTEM Pressure feed lubrication with oil pump Dil pump Gear type Dil capacity Approx. 26.5 liters (5.28 lmp.gal/6.34 US gal) Dil pump Dif pump Dil pump Gear type Dil capacity Approx. 26.5 liters (5.28 lmp.gal/6.34 US gal) Dil pump Dif filter Dil filter Dif flow type using paper element and bypass type using depth element COOLING SYSTEM Forced-recirculation type Radiator cap pressure D.5 kg/cm² (7.1 lb/sq.in) atmospheric pressure Cooling system water capacity 41 liters (9.0 lmp gal/10.8 US gal) Coolant pump Centrifugal gear driven Prissed steel blades Corrugated fin type Radiator; Type Rubber shock insulators Upper and lower tanks Brass plate Thermostat Wax type bottom bypass system AIR CLEANER Dry type (paper element) Type Dry type (paper element) or oil bath type with pre-cleaner Dry type (paper element)					
LUBRICATING SYSTEM Type Pressure feed lubrication with oil pump Oil qump Gear type Dil capacity Approx. 26.5 liters (5.28 lmp.gal/6.34 US gal) Oil pressure 0.5 ~ 5.0 kg/cm² (7.1 ~ 7).1 lb/sq.in) Dil filter Full flow type using paper element and bypass type using depth element COOLING SYSTEM Forced-recirculation type Type Forced-recirculation type Radiator cap pressure 0.5 kg/cm² (7.1 lb/sq.in) atmospheric pressure Coolant pump Centrifugal gear driven Fan, Type Pressed steel blades Radiator; Type Rubben shock insulators Upper and lower tanks Brass plate Thermostat Wax type bottom bypass system AIR CLEANER Dry type (paper element) Type Dry type (paper element) or oil bath type with pre-cleaner Or oil bath type with pre-cleaner					
LUBRICATING SYSTEM Type Pressure feed lubrication with oil pump Dil pump Gear type Dil capacity Approx. 26.5 liters (5.28 Imp.gal/6.34 US gal) Oil pressure 0.5 ~ 5.0 kg/cm² (7.1 ~ 71.1 lb/sq.in) Dil filter Full flow type using paper element and bypass type using depth element COOLING SYSTEM Forced-recirculation type Radiator cap pressure 0.5 kg/cm² (7.1 lb/sq.in) atmospheric pressure Cooling system water capacity 41 liters (9.0 Imp.gal/10.8 US gal) Fan; Type Pressed steel blades Radiator; Type Corrugated fin type Mounting Rubber shock insulators Upper and lower tanks Brass plate Thermostat Wax type bottom bypass system AIR CLEANER Dry type (paper element) Or oil bath type with pre-cleaner	ruel tank	•••••	Square section, sean	n welded	
Type Pressure feed lubrication with oil pump Oil pump Gear type Oil capacity Approx. 26.5 liters (5.28 Imp.gal/6.34 US gal) Oil pressure 0.5 ~ 5.0 kg/cm² (7.1 ~ 71,1 tb/sq.in) Oil filter Full. flow type using paper element and bypass type using depth element COOLING SYSTEM Forced-recirculation type Radiator cap pressure 0.5 kg/cm² (7.1 b/sq.in) atmospheric pressure Cooling system water capacity 41 liters (9.0 Imp.gal/10.8 US gal) Coolant pump Centrifugal gear driven Far, Type Pressed steel blades Radiator; Type Gorrugated fin type Mounting Rubber shock insulators Upper and lower tanks Brass plate Thermostat Wax type bottom bypass system AIR CLEANER Dry type (paper element) Type Or oil bath type with pre-cleaner			- 12	1.12	
Dil pump Gear type Oil capacity Approx. 26.5 liters (5.28 lmp.gal/6.34 US gal) Oil pressure 0.5 ~ 5.0 kg/cm² (7.1 ~ 71.1 lb/sq.in) Oil filter Full flow type using paper element and bypass type using depth element COOLING SYSTEM Forced-recirculation type Radiator cap pressure 0.5 kg/cm² (7.1 lb/sq.in) atmospheric pressure Coolant pump 6.5 kg/cm² (7.1 lb/sq.in) atmospheric pressure Coolant pump Centrifugal gear driven Far, Type Pressed steel blades Radiator; Type Corrugated fin type Mounting Rubber shock insulators Upper and lower tanks Brass plate Max type bottom bypass system AIR CLEANER Type Dry type (paper element) or oil bath type with pre-cleaner Or oil bath type with pre-cleaner					
Dil capacity Approx. 26.5 liters (5.28 lmp.gal/6.34 US gal) Dil pressure 0.5 ~ 5.0 kg/cm² (7.1 ~ 71.1 lb/sq.in) Dil filter Full. flow type using paper element and bypass type using depth element COOLING SYSTEM Forced-recirculation type Radiator cap pressure 0.5 kg/cm² (7.1 lb/sq.in) atmospheric pressure Coolant pump Forced-recirculation type Fai, Type Pressed steel blades Radiator, Type Pressed steel blades Radiator, Type Rubber shock insulators Upper and lower tanks Brass plate Market Brass plate Market Dry type (paper element) or oil bath type with pre-cleaner			Pressure feed lubrica	ation with oil pump	D
Oil pressure 0.5 ~ 5,0.kg/cm² (7.1 ~ 71.1 lb/sq.in) Oil filter Full flow type using paper element and bypass type using depth element COOLING SYSTEM Forced-recirculation type Radiator cap pressure 0.5 kg/cm² (7.1 lb/sq.in) atmospheric pressure Cooling system water capacity 41 liters (9.0 lmp.gal/10.8 US gal) Coolant pump Centrifugal gear driven Fan; Type Pressed steel blades Radiator; Type Rubber shock insulators Upper and lower tanks Brass plate Wax type bottom bypass system AIR CLEANER Type Dry type (paper element) or oil bath type with pre-cleaner		••••••	Gear type		
Full flow type using paper element and bypass type using depth element COOLING SYSTEM Type Radiator cap pressure 0.5 kg/cm² (7.1 lb/sq.in) atmospheric pressure Cooling system water capacity 41 liters (9.0 Imp.gal/10.8 US gal) Coolant pump Centrifugal gear driven Fan; Type Pressed steel blades Radiator; Type Corrugated fin type Mounting Bubber shock insulators Upper and lower tanks Brass plate Thermostat Dry type (paper element) Or oil bath type with pre-cleaner			ADDION 26 6 Litors I	5.28 Imp.gal/6.34	US call
COOLING SYSTEM Type Forced-recirculation type Radiator cap pressure 0.5 kg/cm² (7.1 lb/sq.in) atmospheric pressure Cooling system water capacity 41 liters (9.0 lmp.gal/10.8 US gal) Coolant pump Centrifugal gear driven Far; Type Pressed steel blades Radiator; Type Corrugated fin type Mounting Rubber shock insulators Upper and lower tanks Brass plate Thermostat Wax type bottom bypass system AIR CLEANER Dry type (paper element) Type or oil bath type with pre-cleaner		•••••••••••••••••••••••••••••••••••••••	Approx. 20.5 mers		30.7
COOLING SYSTEM Type Forced-recirculation type Radiator cap pressure 0.5 kg/cm² (7.1 lb/sq.in) atmospheric pressure Cooling system water capacity 41 liters (9.0 Imp.gal/10.8 US gal) Coolant pump Centrifugal gear driven Fan; Type Pressed steel blades Radiator; Type Corrugated fin type Mounting Rubber shock insulators Upper and lower tanks Brass plate Thermostat Wax type bottom bypass system AIR CLEANER Dry type (paper element) or oil bath type with pre-cleaner	Oil pressure	· · · · · · · · · · · · · · · · · · ·	0.5~5.0 kg/cm ² (7	1~71.1 lb/so int	1
COOLING SYSTEM Type Forced-recirculation type Radiator cap pressure 0.5 kg/cm² (7.1 lb/sq.in) atmospheric pressure Cooling system water capacity 41 liters (9.0 lmp.gal/10.8 US gal) Coolant pump Centrifugal gear driven Fan; Type Pressed steel blades Radiator; Type Corrugated fin type Mounting Rubber shock insulators Upper and lower tanks Brass plate Thermostat Wax type bottom bypass system AIR CLEANER Dry type (paper element) Type Or oil bath type with pre-cleaner	Oil filter	·····	0.5 ~ 5.0 kg/cm² (7 Full flow type usin	1~71.1 lb/so int	1
Type Forced-recirculation type Radiator cap pressure 0.5 kg/cm² (7.1 lb/sq.in) atmospheric pressure Cooling system water capacity 41 liters (9.0 lmp.gal/10.8 US gal) Coolant pump Centrifugal gear driven Fan; Type Pressed steel blades Radiator: Type Corrugated fin type Mounting Rubber shock insulators Upper and lower tanks Brass plate Max type bottom bypass system Wax type bottom bypass system AIR CLEANER Dry type (paper element) Type Dry type with pre-cleaner	Oil filter	·····	0.5 ~ 5.0 kg/cm² (7 Full flow type usin	1~71.1 lb/so int	1
Radiator cap pressure 0.5 kg/cm² (7.1 lb/sq.in) atmospheric pressure Cooling system water capacity 41 liters (9.0 lmp.gal/10.8 US gal) Coolant pump Centrifugal gear driven Fan; Type Pressed steel blades Radiator: Type Corrugated fin type Mounting Rubber shock insulators Upper and lower tanks Brass plate Max type bottom bypass system Wax type bottom bypass system AIR CLEANER Dry type (paper element) Type Dry type with pre-cleaner	Dil filter	160.000 (Gastaldin	0.5 ~ 5.0 kg/cm² (7 Full flow type usin depth element	1~71.1 lb/so int	1
Cooling system water capacity 41 liters (9.0 lmp.gal/10.8 US gal) Coolant pump Centrifugal gear driven Fan; Type Pressed steel blades Radiator; Type Corrugated fin type Mounting Corrugated fin type Upper and lower tanks Brass plate Thermostat Wax type bottom bypass system AIR CLEANER Dry type (paper element) Type Dry type with pre-cleaner	COOLING SYSTEM	nerse constants	0.5 ~ 5.0 kg/cm² (7 Full flow type usin depth element	7.1 ∼ 71.1 lb/sq.in) ng paper element	and bypass type using
Fan; Type	Dil pressure Dil filter	n na sea ann an sea	0.5 ~ 5.0 kg/cm ² (7 Full flow type usin depth element Forced-recirculation	7.1 ~ 71.1 lb/sq.in) ng paper element	and bypass type using
Radiator: Type Corrugated fin type Mounting Rubber shock insulators Upper and lower tanks Brass plate Thermostat Wax type bottom bypass system AIR CLEANER Dry type (paper element) Type Dry type with pre-cleaner	Dil pressure Dil filter COOLING SYSTEM Type Radiator cap pressure	tachte datatata 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.5 ~ 5.0 kg/cm ² (7 Full flow type usin depth element Forced-recirculation 0.5 kg/cm ² (7 1 lb/s	7.1 ~ 71.1 lb/sq.in) ng paper element type	and bypass type using
Mounting Mounting Upper and lower tanks Thermostat AIR CLEANER Type Type State Typ	Dil pressure Dil filter COOLING SYSTEM Type Radiator cap pressure Cooling system water capacity	120 - 120 -	0.5 ~ 5.0 kg/cm ² (7 Full flow type usin depth element Forced-recirculation 0.5 kg/cm ² (7.1 lb/s 11 liters (9.0 lmp.oz	7.1 ~ 71.1 lb/sq.in) ng paper element type q.in) atmospheric p	and bypass type using
Upper and lower tanks Brass plate Thermostat Wax type bottom bypass system AIR CLEANER Dry type (paper element) Type Or oil bath type with pre-cleaner	Dil pressure	ner ter internet inte	0.5 ~ 5.0 kg/cm ² (7 Full flow type usin depth element Forced-recirculation 0.5 kg/cm ² (7.1 lb/s 41 liters (9.0 Imp.ga	7.1 ~ 71.1 lb/sq.in) ng paper element type q.in) atmospheric p	and bypass type using
AIR CLEANER Type Dry type (paper element) or oil bath type with pre-cleaner	Dil pressure Dil filter COOLING SYSTEM Type Radiator cap pressure Cooling system water capacity Coolant pump Fan; Type	n - OBie - 2019 - 0	0.5 ~ 5.0 kg/cm ² (7 Full flow type usin depth element Forced-recirculation 0.5 kg/cm ² (7.1 lb/s 41 liters (9.0 lmp.ga Centrifugal gear drive Pressed steel blades	7.1 ~ 71.1 lb/sq.in) ng paper element type q.in) atmospheric p I/10.8 US gal).	and bypass type using arcessure MA GOR DIM(FD.Law(G)
AIR CLEANER Type Dry type (paper element) or oil bath type with pre-cleaner	Dil pressure	 A second s	0.5 ~ 5.0 kg/cm ² (7 Full flow type usin depth element Forced-recirculation 0.5 kg/cm ² (7.1 lb/s 41 liters (9.0 lmp.ga Centrifugal gear drive Pressed steel blades Corrugated fin type Bubber shock insula	7.1 ~ 71.1 lb/sq.in) ng paper element type q.in) atmospheric p I/10.8 US gal) en	and bypass type using arcessure MA GOR DIM(FD,Law(G) archite
AIR CLEANER Type Dry type (paper element) CD24 1605 F505 2000 00 bath type with pre-cleaner CD24 1605 F64 2000 775660	Dil pressure Dil filter COOLING SYSTEM Type Radiator cap pressure Cooling system water capacity Coolant pump Fan; Type Radiator; Type Mounting Upper and lower tanks	 A statistical sta	0.5 ~ 5.0 kg/cm ² (7 Full flow type usin depth element Forced-recirculation 0.5 kg/cm ² (7.1 lb/s 41 liters (9.0 lmp.ga Centrifugal gear drive Pressed steel blades Corrugated fin type Bubber shock insula	7.1 ~ 71.1 lb/sq.in) ng paper element type q.in) atmospheric p I/10.8 US gal) en	and bypass type using arcessure MA GOR DIM(FD.Low(G) sate
Type	Dil pressure Dil filter COOLING SYSTEM Type Radiator cap pressure Cooling system water capacity Coolant pump Fan; Type Radiator; Type Mounting Upper and lower tanks Thermostat	na series de la composition la composition la composition la composition la composition la composition augustion la composition la compositio	0.5 ~ 5.0 kg/cm ² (7 Full flow type usin depth element Forced-recirculation 0.5 kg/cm ² (7.1 lb/s 11 liters (9.0 lmp.ga Centrifugal gear drive Pressed steel blades Corrugated fin type Rubber shock insular Brass plate	7.1 ~ 71.1 lb/sq.in) ng paper element type q.in) atmospheric ; l/10.8 US gal) tors	and bypass type using pressure MA JOR DM(TOLLANG)
Solar 1605 minute 2000 and 2000 of oil bath type with pre-cleaner service and a solar	Dil pressure Dil filter COOLING SYSTEM Type Radiator cap pressure Cooling system water capacity Coolant pump Fan; Type Radiator; Type Mounting Upper and lower tanks Thermostat	na series de la composition la composition la composition la composition la composition la composition augustion la composition la compositio	0.5 ~ 5.0 kg/cm ² (7 Full flow type usin depth element Forced-recirculation 0.5 kg/cm ² (7.1 lb/s 11 liters (9.0 lmp.ga Centrifugal gear drive Pressed steel blades Corrugated fin type Rubber shock insular Brass plate	7.1 ~ 71.1 lb/sq.in) ng paper element type q.in) atmospheric ; l/10.8 US gal) tors	and bypass type using pressure MA JOR DM(TOLLANG)
Solar 1605 minute 2000 and 2000 of oil bath type with pre-cleaner service and a solar	Dil pressure Dil filter Type Radiator cap pressure Cooling system water capacity Coolant pump Fan; Type Radiator; Type Mounting Upper and lower tanks Thermostat AIR CLEANER	An	0.5 ~ 5.0 kg/cm ² (7 Full flow type usin depth element Forced-recirculation 0.5 kg/cm ² (7.1 lb/s 41 liters (9.0 lmp.ga Centrifugal gear drive Pressed steel blades Corrugated fin type Rubber shock insulat Brass plate Vax type bottom by	7.1 ~ 71.1 lb/sq.in) ng paper element type q.in) atmospheric r l/10.8 US gal) en tors	and bypass type using pressure MA JOR DM(TO, pM6-1 and bypass type using
Whit 1605 MAL . WE PRESS	Dil pressure Dil filter Type Radiator cap pressure Cooling system water capacity Coolant pump Fan; Type Radiator; Type Mounting Upper and lower tanks Thermostat AIR CLEANER	An	0.5 ~ 5.0 kg/cm ² (7 Full flow type usin depth element Forced-recirculation 0.5 kg/cm ² (7.1 lb/s 41 liters (9.0 lmp.ga Centrifugal gear drive Pressed steel blades Corrugated fin type Rubber shock insulat Brass plate Vax type bottom by	7.1 ~ 71.1 lb/sq.in) ng paper element type q.in) atmospheric r l/10.8 US gal) en tors	and bypass type using wessure MA GOR DM(10, 1996) and and an
	COOLING SYSTEM Type	 Antonio Perma Antonio	0.5 ~ 5.0 kg/cm ² (7 Full flow type usin depth element Forced-recirculation 0.5 kg/cm ² (7.1 lb/s 11 liters (9.0 lmp.ga Centrifugal gear drivi Pressed steel blades Corrugated fin type Rubber shock insular Brass plate Vax type bottom by	7.1 ~ 71,1 lb/sq.in) ng paper element type q.in) atmospheric ; I/10.8 US gal) en tors Pass system	and bypass type using
(第341年960日651年 したび、中国工作によっていた。 第351年9月1日6日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1日1	COOLING SYSTEM Type Radiator cap pressure Cooling system water capacity Coolant pump Fan; Type Radiator; Type Mounting Upper and lower tanks Thermostat	Anna Anna Anna Anna Anna Anna Anna Anna	0.5 ~ 5.0 kg/cm ² (7 Full flow type usin depth element 5 kg/cm ² (7.1 lb/s 41 liters (9.0 lmp.ga Centrifugal gear drive Pressed steel blades Corrugated fin type Rubber shock insulat Brass plate Nax type bottom by 0 y type (paper element of oil bath type with	7.1 ~ 71,1 Ib/sq.in) ng paper element type q.in) atmospheric ; I/10.8 US gal) en tors pass system ent) pre-cleaner	and bypass type using

For Knowledge & Educational Purposes

14 - 15

•

1	4	-	1	۱
	1.0			

REPAIR SPECIFICATIONS

.....

		liem	Nominal Dimensions	Assembly Standard	Repair Limit	Service Limit	Corrective Measures
der	Flatness	lainess		0.05 {0.002}	0.20 (0.0079)		Replace
head	Grinding limit	(thickness)	118 (4.646)	-	-	117.7 (-0.3) (4.6338)(-0.0	1 18)
block	Flainess			0.05 (0.002)	0.10 (0.0040)	-	
	Valve stem ou	tside diameter	12 (0.472)	-	-	11.9 (0.4685) 11.8 (0.4645)	Inlake Exhaust
	Valve sink	intake	-	0.75 ~ 1.0 10.0296 ~ 0.0393)	-	0.75 (0.0295)	0
	T DITE SILLS	Exhaust	-	0.45 ~ 0.70 (0.0178 ~ 0.0275)	-	0.45 (0.0177)	Replace valve seat
		Rocker arm shaft outside diameter	28 (1.10)		-0.08 (-0.0031)		Replace shaft
	Rocker arm	Bushing inside diameter	28 (1.10)	_	+0.08 (+0.0031)		Replace bushing
		Clearance	-	0.020 ~ 0.054 (0.0008 ~ 0.0021)		0.15 (0.0059)	Replace bushing
	Push rod bend		-	1	0.5 (0.0196)	-	Repair
	Inner spring	Setting length	50 (1.97)	-	-	-	
		Preload kg (lb)	17,47 (38.51)	:5%	-		
		Free.length	-	64.9 (2.5551)			Replace spring
Valve mechanism		Squareness 7	-	-	-	2.0 (0.078)	
ve mec		Setting length	55 (2.165)				
Val.	Outer	Preload kg (lb)	35.40 (78.04)	±5%	-	-	
	spring	Free length	-	70.0 (2.7559)			Replace spring
		Squareness	-	-	-	2.0 (0.078)	
	Intake valve	Seat angle	30°	-	-	-	
	seat	Face angle	30°	-	-	-	Repair with 30° or 45°
	Exhaust	Seat angle	45°		-	-	cutter and finish by lappin
	seat	Face angle	45°	ç .	Ŧ	-	
		Inside diameter	12 (0.47)	-	-	-	
	Valve	Clearance to	(Intake)	0.050 ~ 0.080 (0.0020 ~ 0.0031)	-	0.30 (0.0118)	Replace valve guide
	guide	valvë stern	(Exhaust)	0.070 ~ 0.113 (0.0028 ~ 0.0044)	-	0.35 (0.0137)	
	Tappet	Outside diameter	23 (0.906)	-	-	-	
	. sppc.	Clearance to guide	-	0.020 ~ 0.062	0.20	-	

14 - 12

r	and a state	tem viti	Nominal Dimensions	Assembly Standard	Repair Limit	Service Limit	Corrective Measures
nism	Valve clearance	Inlet	-	0.4 (0.0157)	-	-	Adjust at cold engine
mechanism		Exhaust	-	0.4 (0.0157)	-	-	
Valve	Crankcase flatness		-	0.06 or less (0.0024)	0.1 (0.0039)	0.3 (0.018)	Repair by grinding
Cylinder	Inside diamete	ŕ	137 (5.39)	-	+0.30 (+0.0118)	+1.50 (+0.059)	Use oversize piston if worn over +0.3 (0.0118)
Ş	Height		-	0.08 ~ 0.14 (0.0032 ~ 0.0055)	-	-	-
	Clearance	Piston crown	137 (5.394)	-	-	-	Oversize piston 0.50 (0.0197), 0.75 (0.029 1.00 (0.0394)
	to inner	Piston skirt	137 (5.394)	0.211 ~ 0.230 (0.0083 ~ 0.0090)	-	-	1.00 10.03341
	Piston pin out	side diameter	50 (1.97)	-	-	-0.2 (0.0079)	-
Piston	Clearance to p	iston pin		0.001 ~ 0.012 (0.000040 ~ 0.00048)	-	0.15 (0.0059)	Place piston or pin
	Ring groove No. 2	No1	-	-	-	-	
		No. 2 No. 3	3.5 (0.1378)	-	-	3.75 (0.1476)	-
	The	Oil ring	6.0 (0.2362)	-	-	6.05 (0.2382)	
	Ring No. thick ness No.	No. 1		-	-	-	
		No. 2 No. 3	3.5 (0.1378)	-	-	3.25 (0.1279)	-
		Oil ring	6.0 (0.2362)	-	-	5.95 (0.2343)	
5	Clearance to No. 3 ring groove	No. 2	-	0.07 ~ 0.11 (0.0028 ~ 0.0043)	-	0.25 (0.0098)	
Piston ring		No. 3	-	0.07 ~ 0.11 (0.0028 ~ 0.0043)	-	0.25 (0.0098)	Replace piston ring .
'n		Oil ring		0.04 ~ 0.08 (0.0016 ~ 0.0031)	-	0.10 (0.0039)	
	1	No. 1	-	0.45 ~ 0.65 (0.0177 ~ 0.0256)	-	3.0 (0.1181)	
Primat III	Ring gap	No. 2 No. 3	_	. 0.45 ~ 0.65 (0.0177 ~ 0.0256)	-	2.0 (0.0787)	Replace piston ring
	Oil ring		-	0.35 ~ 0.55 (0.0138 ~ 0.0217)	-	1.5 (0.0590)	
	Bushing to piston pin clearance		-	0.25 ~ 0.049 (0.00099~0.00192)	-	0.20 (0.0078)	Replace bushing or pin
Po	'End play	0.0 m 11.0 0 m 11.0 0 m	la com d	0.15 ~ 0.30 (0.0060~0.0118)	-	1.0 (0.039)	Replace connecting rod
Connecting rod	Bend twist	1 10 2105		a star in the	0.05 (0.0019) for each 200 mm (7.874)	i _	Repair
	Bearing spread	1 00 lbgsg int	- 1.	80.75 ~ 00.75 (3.5358,-3.5728)	-	-	211.1915 - 1

Item			Nominal Dimensions	Assembly Standard	Repair Limit	Service Limit	Corrective Measures
	Crank pin outs	Crank pin outside diameter			-0.20 (0.0079)	-1.20 (0.0472)	Repair by grinding or
	Journal outside	e diameter	90 (3.54)	-	-0.20 (0.0079)	-1.20 (0.0472)	replace
	Pin to connect clearance	ing rod bearing	· -	0.05 ~ 0.101 (0.0020~0.0039)	0.30 (0.0118)	-	Repair by grinding or
	Journal to cran clearance	ukshaft bearing	-	0.07 ~ 0.121 (0.0028~0.0047)	0.30 (0.0118)	-	replace bearing
shaft	Bend		-	-	-	0.10 (0.0039)	Repair
Crankshaft	End play		-	0.110 ~ 0.265 (0.0044~0.0104)	-	0.50 (0.0196)	Replace thrust bearing
	Bearing spread		-	96.75 ~ 98.00 (3.8091~3.8582)	-	-	Replace bearing
	Roundness	Journal	96 ^{+0.020} 0 (3.78 ^{+0.0008)}	-		0.06 (0.0023)	
		Crank pin	89+0.030 89+0.015 (3.504+0.0011, +0.0006	-		0.06 (0.0023)	
heel	Depth to friction face		48 (1.890)	-	-	50 (1.968)	Replace
Flywheel	Face runout		-	-,	0.20	-	Repair by grinding
	e Backlash Backlash	Crankshaft gear to idle gear		0.09 ~ 0.22 (0.0036~0.0086)	-	0.40 (0.0157)	
LOI		Idle gear to cam gear	-	0.10 ~ 0.22 {0.0040~0.0086}	-	0.40 (0.0157)	
Timing gear		Water pump to air compressor	- :	0.07 ~ 0.23 (0.0028~0.0090)	-	0.40 (0.0157)	Replace gear
F		Cam gear to injec- tion pump gear		0.07 ~ 0.25 (0.0028~0.0098)	-	0.40 (0.0157)	
		Idle to water pump	-	0.10 ~ 0.26 (0.0040~0.0102)	-	0.40 (0.0157)	i di s
	Journal outside	e diameter	No.1 66 (2.599)	O.D. is 0.2 by taper (0.0079)	1	-0.15 (0.0059)	Replace camshaft
	Bearing thickn	2 u (0 0 28 2) (1 6 6 6 6	No. 1 2.5 (0.0984)	Thickness is 0.1 by thicker (0.0039)	-	+0.15 (+0.0059)	Replace bearing
Ĭ	Journal to bea	ring clearance c (-	0.030 ~ 0.120 {0.0012~0.0047}	-	0.20 (0.0079)	Replace bearing
Cams	End play, or h	astgon 05.0	1 in	0.10 ~ 0.26 (0.0040~0.0102)	-	0 50 (0.0197)	Replace thrust bearing
1	Cam height	inlet ut	55.0011 (2.1654) 54.7651	08,0 - (1 .) -10.0 -0000	-	-0.8 (-0.031)	Replace comshaft
		Exheust	(2.1561)	· · · · · · · · · · · · · · · · · · ·		-0.8 (-0.031)	
0.1.1	Camshaft beni	hipeg.14	A state	-		0.05 (0.0019)	Straighten with press
Con	npression pressu	10	1010.012	30~36 kg/cm³ at 200 r.p.m. (427~511 lb/sq.in)		26 kg/cm ³ at 200 r.p.m. (370 lb/sq.in)	heater coments

		tem	Nominal Dimensions	Assembly Standard	Repair Limit	Service Limit	Corrective Measures	
		Gear outside diameter	61 48 (2 4205)	-	-	-		
	Gear to case	Case to gear clearance	-	0.050 ~ 0.130 10.0020~0.0051)	-	0 18 10 0070)		
		Gear end play	-	0.060 ~ 0.105	-	0 15 (0 0059)	Beplace gear on case	
	Gear tocklash		-	0.12 ~ 0.26 (0.0048~0.0102)	-	0 40 (0 0157)	Replace gear	
chuid	Drive gear and shaft	Shall outside diameter	22 (0.866)					
5		Case cover inside diameter	22 (0.866)				Replace drive gear or shall	
		Clearance		0 043 ~ 0.077 10 0017~0.00301		0 19 (0 0074)]	
		Shall outside diameter	26 (1.024)		-			
	Driven gear and shall, case	Gear inside diameter	26 (1.024)		-		Replace driven over or shaft	
		Shaft to gear clearance	-	0.045 ~ 0.091 (0.0018~0.0035)	-	0 19		
Between cooling fan and galternator			20 ~ 25 10.788 ~ 0.984)	-	-	Apply force 10 kg (22 lb		

TIGHTENING TORQUE

.

NOTE: Cost * marked part with engine oil before tightening (A: threaded part, B: bearing surface)

Tightening position	kg-cm	lb.ft.	Remarks
Coolant pump retainer setting bolt	200	14	
Coolant pump cover setting bolt	200	14	
Coolant pump setting bolt	450 ~ 500	33 ~ 36	
Thermostat case setting nut	350 ~ 400	26 ~ 28	
Cooling fan setting bolt	350 ~ 400	26 ~ 28	
Fan damper setting nut	400 ~ 500	29 ~ 36	
Air compressor drive gear satting nut	1,400 ~ 1,500	101 ~ 108	
Oil pan setting bolt (for the oil pan made of aluminium	250 ~ 350	18 ~ 25	
Fuel filter setting nut	350 ~ 400	26 ~ 28	
Air compressor setting bolt	450 ~ 500	32 ~ 36	
Flywheel housing bracket setting bolt	2,200 ~ 2,400	159 ~ 173	

Tightening position	kg.cm	lb.ft.	Remarks
Cylinder head bolt	2,700 ~ 2,900 800 ~ 900	196~209 58~65	16¢ *(A, B) 12¢ *(A, B)
Crankshaft bearing cap bolt	2,400~2,600	174 ~ 188	*(A, B)
Connecting rod cap bolt	2,000 ~ 2,200	145 ~ 159	* (A, 8
Flywheel setting bolt	2,600~2,900	189~209	• (A)
Flywheel housing bolt	1,300 ~ 1,400	95~101	
Nozzle holder	150 ~ 180	11~13	
Rocker arm support bolt	1,500 ~ 1,700	108 ~ 122	• (A, B
Cam gear bolt	1,300 ~ 1,400	95~101	• (A)
lale gear bolt	2,900 ~ 3,100	209 ~ 224	• IA)
Injection pump drive gear setting bolt	2,000 ~ 2,200	145 ~ 159	• (A)
Crankshaft pulley setting bolt	7,000~7,500	507~542	• (A)
Torsional damper setting bolt	1,000 ~ 1,200	73~86	
Engine mounting front, rear nut	1,400 ~ 1,500	102~115	
Engine mounting nut (chassis side)	1,300 ~ 1,400	95~101	
Power steering pump gear out	1,000 ~ 1,100	73 ~79	
Oil pan setting belt (plate)	130~180	10~13	
Fuel filter center bolt	250~350	19 ~25	
Power steering tank bracket setting bolt	450 ~ 500	33 ~ 36	×.
Power steering tank bracket setting nut	750 ~ 800	55 ~ 57	
Power steering pump setting bolt	450~500	33~36	
Magnetic valve bracket bolt (for intake air heater)	130~180	10~13	
Pressure regulator setting bolt	130~180	10 ~ 13	
Front mounting bracket setting boli	1,300~1,400	95~101	
Oil pump safety valve plug	700~850	51~61	
Oil pump cover bolt	250~300	19~21	
Oil pump setting bolt	t 100 ~ 1,200	80~86	•
Strainer setting bolt	450~500	33~36	
Oil cooler setting bolt	130~180	10~13	
Oil cooler element setting bolt	200 ~ 303	15~21	
Oif filter relief valve plug	200~200	15~21	
Oit filter safety valve plug	250~350	19~25	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
Oil filter center bolt	400~500	29~36	
Oil filter setting bolt	350~400	26~28	
Coolant pump vane	1,200 ~ 1,300	87~94	