
CPPCON: September 22, 2016

David Schwartz, Chief Cryptographer

Developing Blockchain Software

1

About Me

David Schwartz

Chief Cryptographer at Ripple

One of the original architects of the
Ripple Consensus Ledger

Known as JoelKatz in many online communities

2

Global Leader in Distributed
Financial Technology

3

4

135
Team members
⅔ engineering talent

Our Experience

Financial Services
J.P. Morgan
Citi
Merrill Lynch
BlackRock
Visa
Fiserv
Paypal
Prosper

Technology
Google
Apple
Yahoo
Bloomberg
NASA

Regulation
Federal Reserve
SEC
DTCC
NSA

San Francisco | NYC | London | Sydney | Luxembourg

4

Sample of our Customers and Partners

Banking Partners

Consulting Partnerships

Technology Partnerships

5

Blockchains

6

Blockchains record state and history

State is modified by transactions

Everyone eventually agrees on the transactions

Can be used to transfer tokens

What is a blockchain and what is one good for?

7

Assets are owned by identities

Identities are public keys

Authority is proven by digital signatures

Transactions are signed

Integrity is protected by secure hashes

What is a blockchain and what is one good for?

8

So it’s just a database?

9

What is a blockchain and what is one good for?

Double Spending

If Alice has $10, she can send it to Bob

Or she can send it to Charlie

But, if she can do both, we have a problem

Sending to Charlie must stop her from sending to Bob

10

What is a blockchain and what is one good for?

What’s the Problem?

The usual solution is a central authority

Banks, for example

They prevent double spending by reconciling

against a ledger

Can also be done with secure hardware

Ultimately, you need a central authority

11

What is a blockchain and what is one good for?

Before blockchains:

Hashcash: Currency generated by proof of work

B-Money: Trust the servers

Ripple classic: Lots of authorities

12

Bitcoin

13

What is a blockchain and what is one good for?

Bitcoin

The first blockchain

Literally a chain of blocks

Each block contains the hash of the previous block

Transactions transfer a native token

14

What is a blockchain and what is one good for?

UTXO Model

UTXO = Unspent transaction output

Network state is a set of valid UTXOs

Payments gather UTXOs into a pile

Payments create new UTXOs

We assume the network agrees on the set of UTXOs

15

What is a blockchain and what is one good for?

Bitcoins are currency

Scarce

Fungible

Divisible

Durable

Transferable

16

What is a blockchain and what is one good for?

Bitcoin Mining

Mining generates bitcoins

Miners are incentivized to lengthen the longest chain

The longest chain “wins”

We have eventual consistency

Double spend problem solved

17

What is a blockchain and what is one good for?

Bitcoin

Currency plus payment system

Payment system provides ultimate grounding

System regulates introduction of new currency

Supply is ultimately fixed

18

What is a blockchain and what is one good for?

Bitcoin

Rules are notionally set in stone

They can be changed by social consensus

The past can be rewritten

Mining uses a lot of power to secure transactions

UTXO model

19

A platform for issuing, holding, transferring, and

trading arbitrary assets.

Ripple

20

Some history

Began in 2011

Distributed agreement protocol instead of proof of work

Replace blocks with ledgers

Allow arbitrary assets

Ripple
A platform for issuing, holding, transferring, and trading arbitrary assets.

21

Ledger

Ledger replaces UTXO

Ledgers form a secure hash chain

Ledger contains all current state information

Transaction sets advance the ledger

Prior ledgers can be forgotten

Ripple
A platform for issuing, holding, transferring, and trading arbitrary assets.

22

Ripple

Ledger

Contains transactions

Contains metadata

Supports more complex transactions

A platform for issuing, holding, transferring, and trading arbitrary assets.

23

Ripple

Consensus

Distributed agreement protocol similar to PBFT

Does not require 100% agreement on the participants

Does require substantial agreement on the participants

A platform for issuing, holding, transferring, and trading arbitrary assets.

24

Ripple

Key Points of Consensus

Ripple’s method of solving the double spend problem

Validators agree on a group of transactions to be applied in a given ledger

Validators sign each ledger they build

Analogous to a room full of people trying to agree

All honest servers place a high value on agreement, second only to correctness

A platform for issuing, holding, transferring, and trading arbitrary assets.

25

Establishes transaction ordering

Consensus

26

Why is transaction ordering important?

Transaction validity is deterministic

Transaction execution is deterministic

Transactions either conflict or they don’t

If they do, the second one must fail

Consensus
Establishes transaction ordering

27

What do validators do?

Agree on the last closed ledger

Propose sets of transactions to include in the next ledger

Avalanche to consensus

Apply agreed transactions according to deterministic rules

Publish a signed validation of the new last closed ledger

Consensus
Establishes transaction ordering

28

Why is consensus robust?

If a transaction has no reason not to be included, all honest validators will vote to

include it

If a transaction has some reason not to be included, it is okay if it is not included

Valid transactions that do not get into the consensus set will be voted into the

next set by all honest validators

Algorithm is biased to exclude transactions to reduce overlap required

Consensus
Establishes transaction ordering

29

Advantages of consensus

No rotating dictators

Choose who to trust

Fast

Past cannot be rewritten

Ripple
A platform for issuing, holding, transferring, and trading arbitrary assets.

30

Advantages of ledgers

Reliable agreement on network state

Control over the growth of state

Faster spin up of new nodes

Ripple
A platform for issuing, holding, transferring, and trading arbitrary assets.

31

Key Features

Open source, ISC license

Public ledger, public transactions, public history

Equal access, peer-to-peer, no central authority

Fast transactions with reliable confirmation

Sophisticated cross-currency and cross-issuer payments

Ripple
A platform for issuing, holding, transferring, and trading arbitrary assets.

32

How RCL Works

33

How RCL Works

Arbitrary assets

Assets are identified by issuer and currency

You must choose to hold an asset

Assets have counterparties

Assets can reflect legal obligations

34

Accounts
Identities in the network

Alice Carol Bob

Dave Edward

35

Trust Lines
A directed graph

Alice Carol Bob

Dave Edward

36

Balances
Having money

$100

Alice Bob

Physical World

37

Balances
Having money

Alice Bob

$100

Physical World

38

Issuance
Digitizing money

Alice Bob

$100

Physical World

Digital World $100

39

Issuance
Digitizing money

Alice Bob

$100

Physical World

Digital World $100

40

Transfer
Payments work

Alice Bob

Charlie

$100

41

Transfer
Payments work

Alice Bob

Charlie

42

Transfer
Payments work

Alice Bob

Charlie

43

Usability?
Not so much

Alice Carol Bob

Dave Edward

44

Gateways
Hubs of trust

45

Gateways
Islands of trust

46

Gateways
Islands of trust

Offers

47

How RCL Works

Arbitrary assets

Money does not really move

Payments swap ownership of assets

Sender loses custody of the asset they sent

Recipient gains custody of the asset they wanted

Payments “ripple through” intermediaries

48

How RCL Works

Social credit

Instead of borrowing money, exchange IOUs of equal value

Balances are tracked automatically

Settlement is done as needed

Default requires abandoning the currency, account, or system

Defaults do not propagate

49

Allowance
Social credit

$100

$100

50

Allowance
Social credit

$100

$100

51

Allowance
Social credit

$100

$40

$20$20 $20

52

How RCL Works

Social credit

Works on RCL today

Considered a pretty crazy idea

53

Private Blockchains

54

Private blockchains

Participants are controlled

Transactions can be private

No need for a native token

Why would anyone want a private blockchain?

55

Private blockchains

Attacks can be mitigated

Can react to legal process

Can be managed

Why would anyone want a private blockchain?

56

Private blockchains

Good for organizations of frenemies

Redundancy is built in

Can be self-governing

Why would anyone want a private blockchain?

57

One Ledger to Rule Them All

58

The great thing about ledgers

Banks have ledgers

People want different things from ledgers

We want innovation in ledgers

One ledger cannot satisfy everyone

One Ledger to Rule Them All

59

The great thing about ledgers

Ledgers should not be islands

We need a way to make payments across ledgers

It has to be a neutral standard

One Ledger to Rule Them All

60

61

Sender (Alice) Recipient (Bob)
Ledger

Ledgers track accounts and balances

62

But not everyone is on the same ledger

Sender (Alice) Recipient (Bob)

63

Connectors relay money

Connector (Chloe)Sender (Alice) Recipient (Bob)

64

Connectors relay money

100

Chloe 0

Alice’s Bank Ledger

Chloe 100

Bob’s Bank Ledger

100

Sender (Alice) Recipient (Bob)Connector (Chloe)

65

What if the connector drops it?

66

Money would be lost

100

Chloe 100

?

Sender (Alice) Recipient (Bob)

Alice’s Bank Ledger Bob’s Bank Ledger

Connector (Chloe)

67

Escrow provides security

68

Ledger-provided escrow reduces risk

Escrow 0 Escrow 0

Sender (Alice) Recipient (Bob)

Alice’s Bank Ledger Bob’s Bank Ledger

Connector (Chloe)

69

Funds are escrowed from left to right

Sender (Alice) Recipient (Bob)

Alice’s Bank Ledger Bob’s Bank Ledger

Escrow

Connector (Chloe)

70

Sender puts funds into escrow

Alice 100

100

Sender (Alice) Recipient (Bob)

Alice’s Bank Ledger

Connector (Chloe)

71

Connector put funds into escrow

100

Chloe 100

Sender (Alice) Recipient (Bob)

Alice’s Bank Ledger Bob’s Bank Ledger

Connector (Chloe)

72

Transfers are executed right to left

Sender (Alice) Recipient (Bob)

Execution

Alice’s Bank Ledger Bob’s Bank Ledger

Connector (Chloe)

73

Recipient signs receipt

Sender (Alice) Recipient (Bob)

Alice’s Bank Ledger Bob’s Bank Ledger

Connector (Chloe)

74

Receipt releases funds from escrow

Escrow 100

Sender (Alice) Recipient (Bob)

Alice’s Bank Ledger Bob’s Bank Ledger

100

Connector (Chloe)

75

Receipt releases funds from escrow

Bob 100

Sender (Alice) Recipient (Bob)

Alice’s Bank Ledger Bob’s Bank Ledger

Connector (Chloe)

76

How does the connector get reimbursed?

Sender (Alice) Recipient (Bob)

Alice’s Bank Ledger Bob’s Bank Ledger

?

Connector (Chloe)

77

Connector gets receipt from ledger

Sender (Alice) Recipient (Bob)

Alice’s Bank Ledger Bob’s Bank Ledger

Connector (Chloe)

78

Connector passes on the receipt

Sender (Alice) Recipient (Bob)

Alice’s Bank Ledger Bob’s Bank Ledger

Connector (Chloe)

79

Receipt releases funds from escrow

Escrow 100

Sender (Alice) Recipient (Bob)

Alice’s Bank Ledger Bob’s Bank Ledger

100

Connector (Chloe)

80

Payment is complete

Chloe 100

Sender (Alice) Recipient (Bob)

Alice’s Bank Ledger Bob’s Bank Ledger

Connector (Chloe)

81

Transfers are escrowed L2R, executed R2L

Sender (Alice) Recipient (Bob)

Execution

Escrow

Connector (Chloe)

82

Interledger

The ledger just needs to support two operations

Lock: Hold funds

Transfer: Release funds

Most ledgers can easily do this

83

Interledger

Cryptoconditions specify the release rules

Precise specification ensures agreement

One ledger’s receipt is another ledger’s release condition

84

Interledger

Leverages the trust that already exists

Anyone who has funds on a ledger trusts that ledger

Anyone willing to receive funds on a ledger trusts that ledger

Nobody has to trust the connectors

85

Bob

Sender (Alice)

Alice’s Bank Ledger Bob’s Bank Ledger

Connector (Chloe) Recipient (Bob)

86

Must trust his ledger, since it will hold his money

Does not want Alice to have proof of payment unless he is assured funds

Does not trust Alice or Chloe

Bob

87

Alice

Alice’s Bank Ledger Bob’s Bank Ledger

Recipient (Bob)Connector (Chloe)Sender (Alice)

88

Must trust her ledger, since it has her money

Does not want to lose funds without a receipt Bob must honor

Does not trust Chloe

Alice

89

Chloe

Alice’s Bank Ledger Bob’s Bank Ledger

Recipient (Bob)Sender (Alice) Connector (Chloe)

90

Must trust both ledgers

Does not trust Alice or Bob

Does not want to pay Bob unless he gets paid by Alice

Chloe

91

Mission Accomplished!

Sender (Alice) Recipient (Bob)

Execution

Escrow

Connector (Chloe)

92

Is it really that simple?

93

Sometimes

94

Sender puts funds into escrow

Alice 100

100

Sender (Alice) Recipient (Bob)

Alice’s Bank Ledger

Connector (Chloe)

Bob’s Bank Ledger

95

Release condition is payment to recipient

Alice 100

100

Sender (Alice) Recipient (Bob)

Alice’s Bank Ledger

Connector (Chloe)

Bob’s Bank Ledger

96

But what is the failure condition?

Alice 100

100

Sender (Alice) Recipient (Bob)

Alice’s Bank Ledger

Connector (Chloe)

Bob’s Bank Ledger

97

Failure conditions

Connector cannot meet payment terms

Connector loses connectivity

Ledger loses connectivity

Some component stops operating

98

Failure conditions

Sender wants fast release

Otherwise, sender must trust connector or take risk

Connector does not want to incur risk

Risk stems from inability to get receipt to the other ledger

99

Low-value payments

You can use a release time

Connector can price in the risk of failure

Sufficient for small payments

100

High-value payments

Must ensure agreement on transaction success or failure

Long lock times are a problem

Need proof that something did not happen

Simple schemes cannot provide this “proof of absence”

101

Byzantine Generals

102

Byzantine Generals Problem

Each side should commit if, and only if, the other side will

At some point, at least one side must commit irrevocably

But that will never happen unless one side commits irrevocably first

But we cannot commit irrevocably until we know the other side has

103

PBFT

Byzantine agreement protocol

Can tolerate some faulty nodes

Non-faulty nodes agree

Combines nicely with crypto

104

Byzantine Generals Problem

High-value payments in ILP is a BG problem

Consensus is a BG problem

The double-spend problem is a BG problem

Actually, lots of problems are BG problems

105

Byzantine Generals in ILP

Very easy to solve

We have algorithms like PBFT

Arrangement can be private, ephemeral

106

What about blockchains?

Easy for private blockchains

Harder problem for public blockchains

Proof of work is a solution

Distributed agreement is another

107

Now that we’re all experts

108

Development Challenges

109

Attack surface

Public blockchains must be fortresses

Code is public

Vulnerabilities are painful

This makes development much slower, maybe 10X

Public APIs

110

Resource Management

We have to keep up with the network

We have to respond to remote queries

We have to respond to local queries

We have to cache

Blockchain development challenges

111

Binary Formats

Transactions need to be signed

All kinds of objects need to be hashed

This requires unique binary representations

Data Representation

112

Binary Formats

Non-binary representations are convenient too

Humans like them

Javascript likes them

Data Representation

113

Performance

Some tasks are embarrassingly parallel

Some tasks don’t parallelize at all

It is all important

Blockchains do not scale horizontally … yet!

Blockchain development challenges

114

Isolation

Transaction operations must be deterministic

Some designs fail catastrophically otherwise

It is easy to get non-deterministic behavior by accident

This is a hard problem for smart contracts

Blockchain development challenges

115

Meeting challenges with C++

116

Move semantics

Expensive types can have value semantics

Copies are only made when necessary

Often requires no code changes

When it does, they’re usually minimal

C++ features

117

Lambdas

Enables visitor patterns

Allows you to preserve layering

Allows work to be deferred and dispatched

Makes coroutines simple

C++ features

118

Compile-time polymorphism

Polymorphic code gets fully-optimized

It can even inline

Responsibilities can be separated

C++ features

119

Type composition

Write code once

Get excellent API

boost::optional

std::shared_ptr / std::weak_ptr

C++ features

120

Code isolation

Namespaces

Separation of implementation from API

API for use, API for derivation

C++ features

121

Mature tools

We have at least three solid compilers

Great tools for performance analysis

Tools for finding concurrency violations

Libraries for just about everything

C++ features

122

Maybe not so much

C++ features

123

Hand-optimized primitives

Very little code is worth hand-optimizing

But for the code that is, the payoff is enormous

Digital signatures are worth it

Calls are cheap, sometimes even inline

Leverage work across projects

C++ features

124

Slicing Problem

Had to include one bad thing

Programmers like value semantics

Polymorphism and value semantics mix badly

C++ features

125

Not great solutions

Raw pointers

Unique pointers

Shared pointers

Clone idiom

Slicing

126

We don’t need one great solution

Compile-time polymorphism, templates

Maybe std::variant in C++17?

Slicing

127

Winning

128

#Winning

129

Use of strong and weak pointers

Cache holds strong and weak pointers

Access promotes a weak pointer to a strong pointer

Time demotes a strong pointer to a weak pointer

Use pins an item in the cache, good things happen for free

Caching

130

Algorithmic complexity attacks

You have to use hashing

Attackers can, to some extent, choose the hashes

You cannot keep the scheme secret

Solution: salted hashes

Caching

131

Key / Value Store

Fixed length keys

Variable length data

Retrieve by key only (or traverse)

NuDB

132

Key / Value Store

Transactions

Bits of hash trees

Ledger state entries

NuDB

133

What’s out there

Memory demand scales with data size

Relies on caching for performance

Performance drops as data size increases

NuDB

134

Tradeoffs

Assumes caching is useless

Performance levels off as data size increases

Then no penalty for massive databases

Memory use scales with write rate

NuDB

135

Tradeoffs

What is the best you can do?

For fetches of data not present, 1 I/O

For fetches of data present, 2 I/Os

Performance limit is SSD IOPs

NuDB comes really close to that

NuDB

136

Design features

Data is append only

Two or three files are used

Writes are journaled

NuDB

137

Design features

Index consists of hash buckets

Bucket count is dynamically increased

Writes do not block reads

Reads do not block each other

NuDB

138

C++ features

Header only

Templated visitor

Compile-time asserts

NuDB

139

Templated visitor

NuDB

template <class Codec, class Function>

bool

visit(

path_type const& path,

std::size_t read_size,

Function&& f)

{

140

Static assert

NuDB

using hash_t = uint48_t;

static_assert(field<hash_t>::size<=sizeof(std::size_t),"");

141

Beast

Header only

Provides Boost-like API

Supports HTTP and websockets

Asynchronous and synchronous

Using C++

142

Using C++

Beast

143

Polymorphic currency types

Ripple has both a native currency and arbitrary assets

Some objects can hold a currency of either type

Some objects can only hold one kind of currency

Virtual functions not a good fit, partly due to slicing

Using C++

144

Solution: templates

Concepts are light

Concepts cannot slice

Common code stays simple and easy to understand

Using C++

145

Solution: templates

Using C++

template <class TIn, class TOut>

class TOfferStreamBase

{

...

protected:

TOffer <TIn, TOut> offer_;

boost::optional <TOut> ownerFunds_;

146

Fin

147

