

An Introduction to

Digital Signal Processing:

A Focus on

Implementation

This page intentionally left blank

An Introduction to
Digital Signal Processing:

A Focus on
Implementation

Stanley H. Mneney

University of KwaZulu-Natal
Durban

South Africa

Aalborg

Published, sold and distributed by:
River Publishers ApS
PO box 1657
Algade 42
9000 Aalborg
Denmark
Tel.: +4536953197

ISBN: 978-87-92329-12-7
c© 2008 River Publishers

All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted in any form or by any means, mechan-
ical, photocopying, recording or otherwise, without prior written permission
of the publishers.

EISBN: 978-87-92982-03-2

Dedication

To my wife Edith, my daughter Thecla and my son Dan

v

This page intentionally left blank

Acknowledgments

The author would like to acknowledge the contribution made by Cen-
tre for TeleInFrastruktur at Aalborg University in Denmark in making
their facilities available and for the support the center has provided in
hosting the author during the development of this book. Special thanks
to the Director of the centre Prof Ramjee Prasad who had the initial
vision and encouraged and supported this work.

Stanley H Mneney
University of KwaZulu-Natal

vii

About the Author

Prof S. H. Mneney
Pr. Eng., B.Sc.(Hons)Eng., M.A.Sc., Ph.D., SMSAIEE, MIET

Stanley Henry Mneney was born in Arusha in Tanzania and attended
primary and secondary school in the same town. He completed the
Cambridge O-level and the Tanzania National form 6 examinations
with the maximum passes possible. He was admitted to the University
of Science and Technology in Kumasi, Ghana, in 1972 to study Electri-
cal Engineering and graduated in 1976, winning the Charles Deakens
award for being the best engineering student in that year.

While under the employment of the University of Dar es Salaam, in
Tanzania, he pursued a Master of Applied Science Degree at the Uni-
versity of Toronto in Canada and later did a sandwich PhD program
between the University of Dar es Salaam and the Eindhoven University
of Technology, in the Netherlands. In the early stages of his PhD work,
he was awarded the 1984 Pierro Fanti International prize by INTEL-
SAT and TELESPAZIO based on one of his publications.

Prof. S. H. Mneney has worked at the University of Dar es Salaam, the
Universty of Nairobi, the University of Durban Westville, the Univer-
sity of Natal and is currently employed by the University of KwaZulu-
Natal as Professor of Telecommunications and Signal Processing and
is the current Head of School of Electrical, Electronic, and Computer
Engineering. He is married with two children, now young adults.

ix

x

He has been involved in the teaching of Electromagnetic Theory,
Microwave Engineering, Digital Signal Processing and Telecommunica-
tions. His research interests include theory and performance of telecom-
munication systems, low cost rural telecommunications services and
networks, Digital Signal Processing applications, and RF design appli-
cations using software and hardware.

Preface

In the past signal processing appeared in various concepts in more tra-
ditional courses like telecommunications, control, circuit theory, and in
instrumentation. The signal processing done was analog and discrete
components were used to achieve the various objectives. However, in
the later part of the 20th century we saw the introduction of comput-
ers and their fast and tremendous growth. In the late 1960s and early
1970s a number of researchers resorted to modeling and simulation of
various concepts in their research endeavors, using digital computers,
in order to determine performance and optimize their design. It is these
endeavors that led to the development of many digital signal processing
algorithms that we know today. With the rapid growth of computing
power in terms of speed and memory capacity a number of researchers
wanted to obtain their results from near real-time to real time. This saw
the development of processors and I/O devices that were dedicated to
real-time data processing though initially at lower speeds they are cur-
rently capable of processing high speed data including video signals.
The many algorithms that were developed in the research activities
combined with software and hardware that was developed for process-
ing by industry ushered in a new course into the Universities curricula;
Digital Signal Processing.

For many years the course Digital Signal processing was offered as
a postgraduate course with students required to have a background
in telecommunications (spectral analysis), circuit theory and of course
Mathematics. The course provided the foundation to do more advanced
research in the field. Though this was very useful it did not provide
all the necessary background that many industries required; to write
efficient programs and to develop applications. In many institutions

xi

xii

a simplified version of the postgraduate course has filtered into the
undergraduate programme. In many cases that we have examined this
course is a simplified version of the postgraduate course, it is very the-
oretical and does not pass the necessary tools to students that industry
requires.

This book is an attempt to bridge the gap. It is aimed at under-
graduate students who have basic knowledge in C programming, Circuit
Theory, Systems and Simulations, and Spectral Analysis. It is focused
on basic concepts of digital signal processing, MATLAB simulation and
implementation on selected DSP hardware. The candidate is introduced
to the basic concepts first before embarking to the practical part which
comes in the later chapters.

Chapter 1 introduces the students to discrete-time signals and sys-
tems hopefully for the first-time. It shows how such signals are rep-
resented and related through the sampling process. Some applications
are introduced and the motivation for digital signal processing is given.
Chapters 2, 3, and 4 introduce the concept of the transform domain.
The reason for sampling a continuous spectrum of discrete-time sig-
nals is developed and the speeding up of computations using the Fast
Fourier Transform is elucidated. Chapter 4 introduces an important
tool the z-transform that is used to present, analyze, and manipulate
DSP structures.

It is important that the students are able to design analog filters
as this is the starting point for some type of digital filters. Chapter 5
provides the necessary background to achieve this goal. The use of
MATLAB in the design is also introduced. Chapter 6 deals with the
design of digital filters. There are many different design methods but
in this book we focus on only the most common methods.

Chapter 7 deals with implementations issues in the processors. It
deals with problems related to quantization of signal variables and
coefficients, number representations and problems of overflow. Chap-
ter 8 deals with existing implementation hardware and focuses on the
most common hardware used in academic institutions and industry.
The student is introduced to Code Composer Studio. We have noticed
that most of the students assigned to do DSP projects are not aware
of the existence of these features and therefore do not make use of

xiii

them. Chapter 9 winds up the book with a number of implementation
examples.

Each chapter ends with some theoretical and in some cases prac-
tical problems. At the end of Chapter 9 are some proposed projects.
The book is recommended for use at the final year of the undergrad-
uate electrical engineering programme for a one semester course. It is
essential that the necessary equipment is made available.

This page intentionally left blank

Contents

1 Introduction to Digital Signal Processing 1

1.1 A Brief Introduction to Digital Signal Processing 1
1.2 Signal Classification 2
1.3 The Sampling Process 4
1.4 Discrete-Time Signals 11

1.4.1 Examples of Discrete-Time Signals 11

1.4.2 Arithmetic Operation on Sequences 12
1.5 Discrete-Time Systems 16
1.6 Properties of Discrete-Time Systems 20
1.7 Some Applications of Digital Signal Processing 23
1.8 Problems 25

2 The Transform Domain Analysis: The
Discrete-Time Fourier Transform 29

2.1 The Discrete-Time Fourier Transform 29
2.2 The Inverse Discrete-Time Fourier Transform 35
2.3 Properties of the Discrete-Time Fourier Transform 37
2.4 Linear Convolution 40

2.4.1 Graphical Implementation of
Linear Convolution 42

2.4.2 Implementation of Linear Convolution
Using DTFTs 44

2.5 MATLAB Plots of DTFTs 44
2.6 Problems 46

xv

xvi Contents

3 The Transform Domain Analysis: The Discrete
Fourier Transform 49

3.1 The Discrete Fourier Transform 49
3.2 MATLAB Plots of DFTs 53

3.2.1 MATLAB Program for Plotting DFT 53
3.2.2 MATLAB Program for Plotting an IDFT 55
3.2.3 MATLAB Program for Estimating

the DTFT From the DFT 56
3.3 Discrete Fourier Transform Properties 58
3.4 Circular Convolution 63

3.4.1 Graphical Implementation 64
3.4.2 Computation using Matrices 64
3.4.3 MATLAB Computation of Circular

Convolution 67
3.4.4 DFT Implementation of Circular

Convolution 68
3.5 The Fast Fourier Transform 68

3.5.1 The Decimation-in-Time FFT Algorithm 70
3.5.2 Properties of the FFT Flow Graphs 77

3.6 Problems 79

4 The Transform Domain Analysis: The z-Transform 81

4.1 Introduction to the z-Transform 81
4.2 The Inverse z-Transform 86

4.2.1 The Method of Residues 87
4.2.2 Method using Partial Fraction Expansion 88

4.3 Properties of z-transforms 92
4.4 Transfer Functions of Discrete-Time Systems 96
4.5 Poles and Zeros 97
4.6 Realization Structures 99

4.6.1 Finite Impulse Response (FIR) filter 99
4.6.2 Infinite Impulse Response (IIR) Filters 101
4.6.3 Cascade Realization 104
4.6.4 Parallel Realization 105

4.7 Problems 106

Contents xvii

5 Review of Analog Filter Design 109

5.1 Introduction 109
5.2 Specification of Analog Filters 109
5.3 The Analog Lowpass Filters 110

5.3.1 Butterworth Filters 110
5.3.2 Chebyshev Filters 115
5.3.3 The Elliptic Filters 120
5.3.4 The Bessel Filters 123

5.4 The Analog Highpass, Bandpass, and Bandstop Filters 125
5.4.1 Design Procedure for a Highpass Filter 126
5.4.2 Design Procedure for a Bandpass Filter (BPF) 126
5.4.3 Design Procedure for a Bandstop Filter (BSF) 129

5.5 Problems 132

6 Digital Filter Design 135

6.1 Introduction 135
6.2 IIR Filter Design 137

6.2.1 The Bilinear Transformation Method 137
6.2.2 Lowpass Digital Filter Design 141
6.2.3 Design of Highpass, Bandpass,

and Bandstop IIR Digital Filters 144
6.3 FIR Filter Design 153

6.3.1 The Windowed Fourier Series Method 153
6.3.2 The Gibbs Phenomenon 154
6.3.3 Window Functions 158

6.4 Problems 164

7 Digital Signal Processing Implementation Issues 169

7.1 Introduction 169
7.2 Fixed Point Number Representation and Arithmetic 169

7.2.1 Fixed Point Multiplication 173
7.3 Floating Point Number Representation and Arithmetic 174

7.3.1 Multiplication of Floating Point Numbers 175
7.4 Fixed and Floating Point DSP Devices 176
7.5 Overflows Resulting from Arithmetic Operations 177

xviii Contents

7.6 Impact of the Quantization Process 178
7.6.1 Quantization Errors in Fixed Point Processors 180
7.6.2 Quantization Errors in Floating-Point Processors 182
7.6.3 Effects of Coefficient Quantization 184

7.7 Scaling in Fixed-Point DSPs 184
7.8 Problems 191

8 Digital Signal Processing Hardware and Software 193

8.1 Introduction 193
8.2 The Dawn of DSP Processors 193
8.3 Memory Architectures 195
8.4 Advantages of DSP Processors 196
8.5 Selection of DSP Processors 197
8.6 TI DSP Family Overview 199
8.7 TMS320TMC5416 DSP Processor Architecture 201
8.8 The TMS 320CV5416 Development Kit 205
8.9 Code Composer Studio 207

8.9.1 Building and Running a Project 208
8.9.2 Debugging a Program 209
8.9.3 Data Visualization 210
8.9.4 Profiling and Optimization of a Program 210
8.9.5 DSP/BIOS 211
8.9.6 Real-Time Data Exchange 212
8.9.7 Visual Linker Recipe 212

8.10 Problems 213

9 Examples of DSK Implementations 215

9.1 Introduction 215
9.2 FIR Filter Implementation 215

9.2.1 Sample by Sample Filtering Process 216
9.2.2 Block by Block Filtering Process 220

9.3 IIR Filtering Implementation 221
9.4 Tone Generation 224
9.5 Harmonic and Fundamental Component Separator 226

Contents xix

9.6 The Spectrum Analyzer 230
9.6.1 FFT Computation 230

9.7 The Scrambler 235
9.7.1 Introduction to the Scrambler 235
9.7.2 The Scrambler Implementation 236
9.7.3 The Descrambler Implementation 237

9.8 Echo Generator 237
9.8.1 Single Echo Generator 237
9.8.2 Multiple Echo Generator 238

9.9 Reverberator 239

References 241

Appendix 243

Index 261

This page intentionally left blank

1
Introduction to Digital Signal Processing

1.1 A Brief Introduction to Digital Signal Processing

Signal processing is simply the manipulation of the properties of a
specific signal to obtain a signal with more desirable properties. Prop-
erties such as amplitude, phase, or frequency spectrum may be altered
to meet a specific requirement. In the early days electronic engineers
achieved signal processing using discrete hardware components such as
resistors, capacitors, inductors, transistors, diodes, and other semicon-
ductor devices. In such a case a signal variable that was continuous with
time was used as an input to a hardware device that produced a new
version of the signal variable where some of the properties have been
altered. In digital signal processing the processes that were achieved
using hardware are done using software.

In order to process signal variables that are continuous with time
using software the variables have to be converted to the correct for-
mat; normally a sequence of numbers. This is done using analog to
digital converters. A processor would then manipulate the signal in
some desired fashion. After going through the processors the result-
ing sequence of numbers has to be converted back to analog using
digital to analog converters. In the dawn of digital signal processing
the processors were slow and the applications of digital signal process-
ing were limited. Today, we have very fast and power efficient proces-
sors that the applications of digital signal processing have increased
dramatically.

In order to understand digital signal processing it is important to
first look at signal classification in the time-domain.

1

2 Introduction to Digital Signal Processing

1.2 Signal Classification

Signals can be classified in terms of the continuity of the independent
and dependent variables as follows:

(i) An analog signal: The independent and the dependent vari-
ables defining the signal are continuous in time and ampli-
tude. This means that for each specified time instance, the
signal has a specified amplitude value.

(ii) Continuous-time signal: The time variable is continuous in
the range in which the signal is defined. If the signal variable
is represented by x, time variable is t such a signal is denoted
as x(t).

(iii) Discrete-time signal: The time variable is discrete in the
range in which the signal is defined. If the signal variable is x

and the time variable has been sampled at time instances n,
where n = n’T then the signal is denoted as x(n). A discrete-
time signal is also referred to as a sampled signal since it is
obtained by directly sampling a targeted signal. It should be
noted that the amplitude of the sampled signal can take any
value within a specified amplitude range and we therefore
say that the amplitude of discrete-time signal is continuous.

(iv) A digital signal: This is a signal that is discrete in time and
discrete in amplitude. It is represented in the same way as a
discrete-time signal.

Signals can also be classified in terms of the predictability of the depen-
dent variables with respect to the independent variable as follows:

(i) A signal is said to be deterministic if the dependent variable
is predictable at any instance of the independent variable
time. A deterministic signal can be expressed by an explicit
mathematical expression.

(ii) A random signal, on the hand, has an unpredictable depen-
dent variable at any instance of the independent variable
time. Such a signal can only be defined in terms of its statis-
tical properties.

1.2 Signal Classification 3

All the above classifications of digital signals can further be classified
in terms of their dimensionality. Here, we will only elaborate this clas-
sification using discrete-time sequences and we will leave the rest to the
student.

(i) A one-dimensional signal has only one-independent vari-
able and one-dependent variable. A discrete-time signal x(n)
is a one-dimensional signal as it has only one-independent
variable, discrete-time (n), and one-dependent variable, the
amplitude of x(n).

(ii) A two-dimensional signal has two-independent variables and
one-dependent variable. The samples n and m are taken in
the spatial domain. The two-dimensional signal is discrete in
the spatial domain in two-dimensions. The independent vari-
ables are n, m which define the dependent variable x(n,m).
A good example is a photographic image where n,m define
the spatial location and x(n,m) defines the grey level at the
location.

(iii) A three-dimensional signal has three-independent variables
and one-dependent variable. A discrete-time signal x(n,m,τ)
is a three-dimensional signal as it has two-independent vari-
able in the spatial domain (n,m) and one-independent vari-
able τ in the time domain. The three-independent variables
define the one-dependent variable, the intensity of x(n,m,τ).
An example of a three-dimensional signal is video signal
where a signal at spatial location (n,m) is changing with
respect to time τ .

A system can be classified as analog, discrete-time or digital sys-
tems depending on the type of signals they handle. An analog system
would produce an analog signal from an analog input signal. On the
other hand, a discrete-time or digital system can produce a discrete-
time or digital signal from a discrete-time or digital signal. However, a
discrete-time or digital system can produce an analog signal from an
analog input with the aid of ADC and DAC. From now on we will not
distinguish between discrete-time signals and digital signals as these are
handled in the same way. We will also not distinguish between digital

4 Introduction to Digital Signal Processing

systems and discrete-time systems as there is technically no difference
between them.

Many natural phenomena produce analog signals and signal pro-
cessors are inherently digital systems. Thus in order to process analog
signals with digital processors the analog signals must be converted
to digital. The process whereby analog signals are converted to digital
signals involves sampling and quantization. In the next section, we will
discuss the sampling process.

1.3 The Sampling Process

Sampling a continuous-time signal implies taking snap shots of the
signal at specific instances of time as shown in Figure 1.1.

It is easy to note that if we take very few samples we will not be
able to obtain the original waveshape by interpolation as shown in
Figure 1.2.

If we sample at a rate similar or higher than that shown in Fig-
ure 1.1 it is possible to reproduce a wave shape almost identical to the
original wave shape. If we sample at higher rates we generate more
samples and hence we create a much larger demand for memory to
store the samples. We can represent the sampling process mathemati-
cally. Sampling is a process where an analog signal is multiplied by an
impulse train. Figure 1.3(a) represents an analog input signal x(t) that
is to be sampled and Figure 1.3(b) represents an impulse train which

Fig. 1.1 The sampling process.

1.3 The Sampling Process 5

Fig. 1.2 Impact of sampling at large time intervals.

mathematically is represented by Eq. (1.1).

s(t) =
∞∑

n=−∞
δ(t − nTs). (1.1)

The sampled signal is given by y(t) and is represented by Eq. (1.2) as
follows:

y(t) = x(t) ∗ s(t) = x(t) ∗
∞∑

n=−∞
δ(t − nTs) =

∞∑
n=−∞

x(nTs)δ(t − nTs).

(1.2)

In the sampled signal therefore the location of the samples are deter-
mined by the impulse train and its weight is determined by the value
of the analog signal at the specific instance.

We will get a clearer picture if we look at sampling in the frequency
domain. Suppose the spectrum of x(t) is given by X(f) as shown in

6 Introduction to Digital Signal Processing

Fig. 1.3 The sampling process in the time domain.

Figure 1.4. The spectrum of the impulse train is given by

S(f) =
1
Ts

∞∑
k=−∞

δ(f − k/Ts). (1.3)

We use the Fourier transform property that multiplication in the fre-
quency domain is achieved by convolution in the frequency domain.

1.3 The Sampling Process 7

Fig. 1.4 The sampling process in the frequency domain for a large sampling rate fs.

Thus the sampled signal in the frequency domain is given by

Y (f) = X(f) ⊗ S(f) = X(f) ⊗ 1
Ts

∞∑
k=−∞

δ(f − k/Ts)

=
1
Ts

∞∑
k=−∞

X(f − k/Ts). (1.4)

Equation (1.4) indicates that the spectrum of the sampled signal is
periodic with the spectrum of each period a replica of the original
spectrum centered around k/Ts and weighed by 1/Ts. This is shown in
Figures 1.4 and 1.5 for different sampling rates.

In Figure 1.4, the sampling rate fs = 1/Ts is high and the replica
of the original spectrum in each period do not overlap with each other.
For this to be true fs − fm ≥ fm as seen in Figure 1.4. This can be sim-
plified to fs ≥ 2fm and is referred to as Shannon’s law. In Figure 1.5,
a low sampling rate is selected such that fs − fm < fm or fs < 2fm.
Notice that the spectral components from the different periods over-
lap. It is not possible to recover the original signal through a filtering
process without any distortion. This leads to the sampling theorem.
The sampling theorem cannot be attributed to one researcher as there

8 Introduction to Digital Signal Processing

Fig. 1.5 The sampling process in the frequency domain for fs < 2fm.

are a number of claims from independent researchers including E. T.
Whittaker, H. Nyquist, K. Kupfmuller, and V. A. Kotelnikov. Claude
Shannon proved the theorem in 1949. The theorem has been referred
to in literature under various names and the most common are the
Nyquist theorem and the Shannon’s theorem. We will here refer to it
simply as the sampling theorem and it stated as follows:

The Sampling Theorem. For any baseband signal that is bandlimited
to a frequency fm, the sampling rate fs must be selected to be greater
or equal to twice the highest frequency fm in order for the original base-
band signal to be recovered without distortion using an ideal lowpass
filter with a cut-off frequency fc such that fm ≤ fc ≤ fs − fm.

In Figure 1.5, we notice that the “tails” and the “heads” of the
spectral components of adjacent periods overlap. In an attempt to
recover the baseband signal using an ideal lowpass filter it is impossible
to remove the error introduced by the spectral components from the
adjacent period. The inherent error is referred to as the aliasing error.
In order to eliminate the aliasing error the baseband signal must be

1.3 The Sampling Process 9

properly bandlimited and sampling done according to the sampling
theorem. The bandlimiting filters that are used are referred to as
anti-aliasing filters.

In practice when a sample is taken the sample value is maintained
constant until when the next sample is taken. This ensures that the
input value to the processor does not change during the sample period
as the reading of the input can be done at any time during this period.
A “sample and hold” circuit is normally used for this function. The
input circuit of a DSP processor has essentially the elements shown in
Figure 1.6; an anti-aliasing filter, a sample and hold circuit and ADC
circuit. The ADC circuit quantizes the output of the sample and hold.
In the simple case of Figure 1.6 the ADC can accept only four quanti-
zation levels. For this quantizer any voltage level that is between two
quantization intervals is truncated to the lower level. This is referred
to as quantization by truncation. It is possible for quantization to be
done by rounding to the nearest level. Each level is coded using 2 bits
in a four level quantization system. The output of the ADC is therefore
binary as shown in Figure 1.6.

Many ADCs available in the market also contain the sample and
hold circuit in the same integrated circuit. The four most popular ADCs
technologoies are the successive approximation ADC, the Dual slope
ADC, the flash ADC, and the Sigma delta ADC. The flash ADC con-
verts the input signal faster than other ADCs. The successive approx-
imation, dual slope and the flash ADCs are based on the principles
of sampling around the Nyquist frequency and thus require good anti-
aliasing filters. They achieve high resolution using precise component
matching and laser trimming. The sigma delta ADC, on the other hand

Fig. 1.6 The input stage of a digital signal processor.

10 Introduction to Digital Signal Processing

use a low resolution ADC (one bit quantizer) with a sampling rate many
times higher than the Nyquist rate.

The output of the processor is binary and may be required to be
converted to an analog signal. This is achieved using a DAC device.
The DAC devices are simpler and lower in cost compared to the ADC
devices. The most common form of the DAC devices are the multiplying
devices; both the current source multiplying DAC and voltage source
multiplying DAC. The multiplying DAC devices are fast with settling
times of about 100 ns or less. Most of the commercially available DAC
are “Zero-Order-Hold”; they convert the binary input to an analog
level and hold until the next sample arrives. This results “staircase”
waveform and requires the use of a reconstruction filter to smoothen
the waveform, Figure 1.7.

We have looked at the peripheral input and output circuits required
in the implementation of a DSP system. These two circuits feed into and
out of the DSP processor. The processor itself may contain several units
such as the arithmetic logic unit (ALU), volatile memory unit for data
and program (RAM), non-volatile memory units (ROM), and buses

Fig. 1.7 The output stage of a Digital Signal Processor.

Fig. 1.8 The essential elements of a DSP system.

1.4 Discrete-Time Signals 11

or conduits of data and programs. The essential elements of a DSP
system are thus shown in Figure 1.8, but these may vary depending on
the particular application.

1.4 Discrete-Time Signals

Discrete-time signals are a set of numbers or sequences formed from a
set of samples taken from an analog signal or they may be words taken
from digital binary data. Each word or sample may be represented by
a variable x(n), where n is a time index and is always an integer which
is defined in a specified range. The sequence or the discrete-time signal
itself is denoted by {x(n)}, with parenthesis used to differentiate the
sequence from the individual sample x(n). Where there is no ambiguity
between the sample and the sequence the parenthesis is dropped.

1.4.1 Examples of Discrete-Time Signals

(i) The unit sample sequence (see Figure 1.9)

δ(n) =
{

1 for n = 0
0 otherwise.

(1.5)

(ii) The unit step sequence (see Figure 1.10)

µ(n) =
{

1 for n ≥ 1
0 otherwise.

(1.6)

(iii) The discrete-time sinusoidal sequence

x(n) = sin(ω0n) for − ∞ < n < ∞, (1.7)

where ω0 is a normalized digital frequency in radians per
sample (see Figure 1.11).

Fig. 1.9 The unit sample sequence.

12 Introduction to Digital Signal Processing

Fig. 1.10 The unit step sequence.

Fig. 1.11 Discrete time sinusoidal sequence.

(iv) The discrete time exponential sequence

x(n) = Aαnµ(n). (1.8)

When multiplied by a step sequence we make the exponen-
tial sequence zero for n < 0 and Aαn for n ≥ 0. The plot of
the exponential sequence for A = 32 and α = 0.5 is given in
Figure 1.12.

The sequences introduced above (except the unit sam-
ple sequence) are either single sided or double sided infinite
length sequences. It is possible also to have sequences that
are of finite length. A typical example is given below.

(v) This example shows a finite length sequence of length 8. Here
x(0) = 2.0.

x(n) = {1.0,2.2,1.5,2.0,−3,−1.5,−0.5,1.2}
for − 3 ≤ n ≤ 4. (1.9)

1.4.2 Arithmetic Operation on Sequences

There are a number of arithmetic operations that can be applied to
sequences. In the paragraph below we show the arithmetic operations

1.4 Discrete-Time Signals 13

Fig. 1.12 Discrete-time exponential sequence.

Fig. 1.13 A finite length sequence.

and how they are represented in a signal flow graph:

(i) Multiplication: The multiplication of two sequences x(n) and
y(n) to form a new sequence z(n) is achieved by multiplying
corresponding samples. If the sequences are not of the same
length they are padded with zeros to make them defined in

14 Introduction to Digital Signal Processing

Fig. 1.14 Multiplication of two sequences.

exactly the same range

z(n) = x(n) · y(n). (1.10)

Schematic representation is shown in Figure 1.14
(ii) Multiplication by a constant : The multiplication of a

sequence x(n) by a constant α to obtain a new sequence y(n)
is achieved if each sample of the sequence x(n) is multiplied
by the same constant

y(n) = αx(n) for all n. (1.11)

Schematic representation is shown in Figure 1.15
(iii) Addition: The addition of two sequences x(n) and y(n) to

form a new sequence z(n) is achieved by adding correspond-
ing samples. If the sequences are not of the same length they
are padded with zeros to make them defined in exactly the
same range

z(n) = x(n) + y(n) for all n. (1.12)

Schematic representation is shown in Figure 1.16
(iv) Delay operation: A sequence x(n) is delayed by one unit delay

to give a new sequence y(n) if each sample of x(n) is delayed

Fig. 1.15 Multiplication by a constant.

1.4 Discrete-Time Signals 15

Fig. 1.16 Addition of two sequences.

Fig. 1.17 Delay operation.

by the same unit delay. A unit delay is represented by a
multiplication by Z−1 in the z-domain.

y(n) = x(n − 1). (1.13)

Schematic representation is shown in Figure 1.17
(v) Pick off node: This is a node where copies of the original

sequence are generated. Schematic representation is shown
in Figure 1.18

A combination of these operations can be obtained from
the following example. This example shows that the current
output is given by a linear combination of the current input
and past inputs. It is shown schematically in Figure 1.19.

y(n) = α0x(n) + α1x(n − 1) + α2x(n − 2)

+α3x(n − 3) + α4x(n − 4). (1.14)

Fig. 1.18 Copying operation.

16 Introduction to Digital Signal Processing

Fig. 1.19 A combination of basic operations.

1.5 Discrete-Time Systems

The combination of basic operations that formed Figure 1.19 repre-
sents a digital system. Depending on how the coefficients are selected
the system can be a digital filter or an equalizer. This system can be
implemented in digital hardware or in software. In the sections that
follow we will look at a few examples of simple systems.

(i) The Moving Average Filter is represented by the following
equation y(n) = 1

M

∑M−1
k=0 x(n − k), where x(n) is the input

and y(n) is the out sequence.
Here we show the impact of the moving average filter.

Noise d(n) generated from random noise generator function
is added on to the signal s(n) = 2sin(ωn) to give

x(n) = s(n) + d(n). (1.15)

This is shown in Figure 1.20. The resulting signal x(n) is
then applied to a moving average filter of length 4 and the
result is shown in Figure 1.21.

(ii) A Differentiator: Figure 1.22 shows a derivative y(t) given by
the slope of x(t) at time t0. The slope can be approximated
by y(nT) = x(nT)−x((n−1)T)

(nT)−(n−1)T . If we define T = 1 then we can
approximate differentiation using a difference equation as

y(n) =
1
T

{x(n) − x(n − 1)}. (1.16)

1.5 Discrete-Time Systems 17

0 5 10 15 20 25 30 35 40 45 50
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Time Index n

A
m

pl
itu

de

d(n)

s(n)

x(n)=d(n)+s(n)

Fig. 1.20 Random noise added to sinusoidal signal.

The differentiator expressed in a form of a difference equation
is an example of a discrete-time system (see Figure 1.23).

(iii) An Integrator: Integration can be represented by Eq. (1.17)
as shown in the graph of Figure 1.24.

y(t) =
∫ t2

t1

x(t)dt. (1.17)

Using the trapezoidal rule integration can be approximated
by

y(nT) = T

{
x(nT) + x((n − 1)T)

2

}
.

If we let n = n′T we can approximate integration using a
difference equation as follows:

y(n) =
T

2
{x(n) + x((n − 1)T)} + y(n − 1). (1.18)

18 Introduction to Digital Signal Processing

0 5 10 15 20 25 30 35 40 45 50
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time Index n

A
m

pl
itu

de

s(n)

y(n)

Fig. 1.21 The impact of the moving average filter on the noisy signal.

Fig. 1.22 Differentiation operation and approximation.

The approximation to the integrator using a linear difference
equation is an example of a simple discrete-time system. The
term y(n − 1) gives the initial condition (see Figure 1.25).

(iv) An up-sampler: The up-sampler is a discrete-time system
that will increase the sampling rate of a sequence. It does
this by inserting zero value samples in between samples of an

1.5 Discrete-Time Systems 19

2 3 4 5 6 7 8 9 10 11
0

2

4

6

8
(a) Sequence under test

2 3 4 5 6 7 8 9 10 11
0

0. 5

1
(b) Differentiated Sequence

Fig. 1.23 Input and Output of a discrete-time differentiator.

Fig. 1.24 Integration operation and approximation.

existing sequence (see Figure 1.25). The up-sampled sequence
y(n) of an input sequence x(n) is defined as

y(n) =
{

x(n/L), n = 0,±L,±2L,. . .

0 otherwise.
(1.19)

(v) A down sampler: The down-sampler is a discrete-time sys-
tem that will decrease the sampling rate of a sequence
(see Figure 1.27). It does this by selecting only the Mth

20 Introduction to Digital Signal Processing

2 3 4 5 6 7 8 9 10 11
0

0.5

1
(a) Sequence under test

2 3 4 5 6 7 8 9 10 11
0

5

10
(b) Integrated Sequence

Fig. 1.25 Input and output of a discrete-time integrator.

sample when down sampling by a factor of M . The down-
sampled sequence y(n) of an input sequence x(n) is defined as

y(n) = x(nM) for all n. (1.20)

(vi) A linear Interpolator: A linear interpolator is normally a com-
bination of an up-sampler and predictor (see Figure 1.28).
The up-sampler will determine the position of the samples
and the predictor would determine its value. A factor-of-two
interpolator is given by

y(n) = xup(n) +
1
2
{xup(n − 1) + xup(n + 1)}, (1.21)

where xup(n) is the up-sampled sequence.

1.6 Properties of Discrete-Time Systems

There is a set of properties relating the input and output that simplify
analysis or help to predict the behavior of discrete-time systems. These

1.6 Properties of Discrete-Time Systems 21

0 2 4 6 8 10 12 14 16 18 20
-1

-0.5

0

0.5

1
(a) Sequence under test

0 10 20 30 40 50 60 70 80
-1

-0.5

0

0.5

1
(b) Up-sampled sequence

Fig. 1.26 Operation of a factor 4 up-sampler.

properties are introduced below:

(i) Linearity Property
A discrete-time system is said to be linear if the superposition
principle holds. This implies that if the response to the input
x1(n) is y1(n) and the response to the input x2(n) is y2(n)
then the response to a linear combination αx1(n) + βx2(n)
is αy1(n) + βy2(n), where α and β are arbitrary constants
and x1(n) and x2(n) are signals of any value.

This property makes it possible to represent complex
sequences as a weighted sum of simple sequences and deter-
mine the response of the complex sequence as a sum of the
responses of the weighted simple sequences. Most complex
sequences, for instance, can be expressed in terms of the unit
sample sequence. A review is made in problem 1.3.

(ii) Time-Invariance Property
This property is sometimes referred to as the shift-invariance
property. A system is said to be time-invariant if the output is

22 Introduction to Digital Signal Processing

0 5 10 15 20 25 30 35 40
-1

-0.5

0

0.5

1
(a) Sequence under test

0 2 4 6 8 10 12 14
-1

-0.5

0

0.5

1
(b) Down sampled sequence

Fig. 1.27 Down sampling by a factor of 3.

independent of the time at which the input is applied. Math-
ematically we can state that the system is time invariant if
the response to the input x(n) is y(n) then the response to
the input x(n − n0) is y(n − n0).

A system that satisfies both the linearity property and
the time-invariance property is referred to as a Linear-Time-
Invariant (LTI) system. LTI systems are easy to model and
analyze. The input output relationship can be represented
by a convolution process.

(iii) Causality Property
A system is said to be causal if its output does not depend
on future inputs. Mathematically we can say that at the time
n0 the output y(n) depends on x(n) for n ≤ n0 only.

This property can further be extended to cover the general
situation for causal systems that whatever happens at the

1.7 Some Applications of Digital Signal Processing 23

1 2 3 4 5 6 7 8 9 10
-1

0

1
(a) Sequence under test

0 2 4 6 8 10 12 14 16 18 20
-1

0

1
(b) Up-sampled sequence

2 4 6 8 10 12 14 16 18 20
-1

0

1
(c) Interpolation by a factor of 2

Fig. 1.28 Interpolation by a factor of 2.

output must be preceded by what happens at the input. That
is changes in the input must precede changes in the output.
There can be no output before an input is applied.

(iv) Stability Property
A system is said to be stable if and only if a bounded input
produces a bounded output. This type of stability is referred
to as Bounded Input Bounded Output (BIBO) stability.

1.7 Some Applications of Digital Signal Processing

In the previous sections, we have introduced the discrete-time signals
and systems. We have seen how to obtain the discrete-time signal from
an analog signals through the sampling process. In this section, we
will briefly list the reasons for preferring digital signal processing over
analog signal processing before we look at some applications.

24 Introduction to Digital Signal Processing

The key reasons for use of digital signal processor are

(i) Applications are normally in the form of programs. One can
have the same hardware to process different applications. In
order to process a different application one simply loads the
relevant program. In analog signal processing different appli-
cations can only be processed with dedicated software.

(ii) If the same application is run in two different signal pro-
cessors the results are identical. This is not the case when
using analog systems. The components making analog sys-
tem are not identical due to tolerance, aging, and heating.
These variables do not affect software programs.

(iii) Digital systems are more stable than analog systems. Again
the discrete components that make analog systems change
in value due to heating, aging or influence of humidity. This
change causes a deterioration of the performance of the sys-
tem. This rarely happens to digital systems because the
greater part of a digital system is simply software.

(iv) It is possible to implement special applications with digital
systems that is not possible with analog systems. Examples
of these include the implementation of linear phase filters,
adaptive filters, and notch filters. To implement these with
analog systems will be very difficult or almost impossible.

The key reasons for still using analog signal processors are

(i) There is additional complexity in digital systems due to the
need for ADC and DAC converters. When two Digital Sig-
nal Processors communicate there is the added problem of
synchronization.

(ii) The additional circuits in (i) have an extra power require-
ment. It is possible to build analog filters using components
that do not require any power supply.

(iii) Whereas analog systems can be built to operate at very high
frequencies the best DSP processors can handle between 1
and 2 GHz.

1.8 Problems 25

Despite the demerits of DSP processors listed above we have seen
almost an exponential growth in their application. Below is a short
list only of DSP applications

(1) In high fidelity music reproduction. A good example is repro-
duction of sound from a compact disc where the following
can be achieved digitally: Eight-to-four decoding (EFM),
Reed Solomon coding, and rate conversion. The rest of the
processes are analog; DAC conversion, Bessel filtering, and
power amplification. DSPs are used in the reproduction of
special sound effects in music systems.

(2) Reproduction of synthetic speech where recorded speech can
be altered to sound differently for games or camouflage.

(3) Image processing where exotic images can be converted to
more conventional images that can be easily evaluated by
the eye. There are image processing procedures that result
in image enhancement (like sharpening the edges), reducing
random noise, correcting image blur and motion distortion.

(4) DSPs are used in all cellular phones for link control, power
control, channel selection, roaming, sim-card operations;
such as authentication and registration. DSPs are used in
nearly all advanced instrumentation; seismic detectors, mod-
ern radar applications, and in medical equipment.

1.8 Problems

1.7.1 An analog signal made from three sinusoidal components is
given by x(t) = 3sin(7Ω0t) + 5sin(5Ω0t) + 7sin(11Ω0t). The
signal is sampled to form a discrete-time signal.

(i) What is the recommended sampling frequency?

(ii) Give an expression for the discrete-time signal
formed.

(iii) Explain the consequence of sampling at a frequency
of 10Ω0.

26 Introduction to Digital Signal Processing

1.7.2 A discrete-time signal formed by a combination of three
sinusoidal components is given by x(n) = 2sin(ω0n) +
3sin(3ω0n) + 4cos(4ω0n).
Determine

(i) the period of each term on the left-hand side, and

(ii) the period for the three components together.

1.7.3 Express the following discrete-time sequences as a linear
combination of the unit sample sequence and their delayed
versions

(i) x1(n) = [1,2,−3,0,4,0,0,2] for −3 ≤ n ≤ 4, and

(ii) x2(n) = [1,2,−3,0,4,0,0,2] for 3 ≤ n ≤ 10

1.7.4 Express the following discrete-time sequences as a linear com-
bination of the unit step sequence and their delayed versions

(i) x1(n) = [1,2,−3,0,4,0,0,2] for −3 ≤ n ≤ 4, and

(ii) x2(n) = [1,2,−3,0,4,0,0,2] for 3 ≤ n ≤ 10.

1.7.5 An exponential sequence is given by x(n) = Aαnµ(n) for
α < 1.
Determine

(i) whether x(n) is absolutely summable, and

(ii) the energy in the sequence x(n).

1.7.6 Develop an expression between the input and output of the
following discrete-time systems.

(i)

1.8 Problems 27

(ii)

(iii)

1.7.7 Show whether a moving average system is
(i) linear (ii) stable (iii) causal, and (iv) time invariant.

1.7.8 Show whether a discrete time differentiator is
(i) linear (ii) stable (iii) causal, and (iv) time invariant.

1.7.9 An output y(n) from a discrete-time sequence x(n) is
given by a convolution process represented by y(n) =∑∞

k=−∞ h(k)x(n − k), where h(n) is the impulse response to
the system. Show that the condition for stability of the sys-
tem is that impulse response has to be absolutely summable.

1.7.10 Show how the integral y(t) =
∫ t
0 x(τ)dτ can be approximated

by linear constant coefficients difference equations.
1.7.11 Compute the energy of the following sequence x(n) =

sin(ω0n) for 0 ≤ n ≤ N − 1, where N is the length of the
sequence.

This page intentionally left blank

2
The Transform Domain Analysis: The

Discrete-Time Fourier Transform

2.1 The Discrete-Time Fourier Transform

The Fourier Transform of a continuous-time signal is given by

X(Ω) =
∫ ∞

−∞
x(t)e−jΩtdt, (2.1)

where Ω represents the analog frequency in radians/s. If x(t) is sampled
at a sampling frequency 1/T then the integration becomes a summation
over the variable n as

X(ejΩT) =
∞∑

n=−∞
x(nT)e−jΩnT . (2.2)

We can express ΩT as ΩT = 2πf/fs = ω, where fs = 1/T and ω is
defined as the normalized digital frequency in units of radians per
sample. If we define x(n) to represent sample x(nT) we obtain the
expression

X(ejω) =
∞∑

n=−∞
x(n)e−jωn. (2.3)

Equation (2.3) is the known as the Discrete-time Fourier Transform
(DTFT) of the sequence x(n). Note that the DTFT is a complex
function and can be expressed as a magnitude and phase as in
Equation (2.4).

X(ejω) =
∣∣X(ejω)

∣∣ejϕ. (2.4)

29

30 The Transform Domain Analysis: The Discrete-Time Fourier Transform

If we expand Equation (2.3) we obtain the real part and the imaginary
part of the DTFT

X(ejω) =
∞∑

n=−∞
x(n)cos(ωn) + j

∞∑
n=−∞

x(n)sin(ωn)

= Re(X(ejω) + Im(X(ejω). (2.5)

The phase angle of the DTFT is then given by

ϕ = tan−1
(

Im(X(ejω))
Re(X(ejω)

)
. (2.6)

Since sin(ωn) is an odd function with respect to frequency the imagi-
nary part of the DTFT is always an odd function with respect to fre-
quency. Also since cos(ωn) is an even function with respect to frequency
the real part of the DTFT is always even with respect to frequency. The
quotient of an odd function with an even function is an odd function
and therefore the phase angle ϕ is always an odd function.

The magnitude of the DTFT can be obtained from the expression
in Equation (2.7)

|X(ejω)|2 = (Re(X(ejω))2) + (Im(X(ejω))2). (2.7)

From Equation (2.7), |X(ejω)| = |X(e−jω)| making the magnitude an
even function.

From the above analysis we can conclude that the magnitude of
the DTFT is an even function, the phase angle of the DTFT is an
odd function, the real part of the DTFT is an even function and the
imaginary part of the DTFT is an odd function.

The phase is defined for the interval −π ≤ ϕ < π because if we shift
the phase by 2πk we get ejϕ+2πk = ejϕ. This implies that the phase
function is ambiguous, it cannot be specified uniquely for each DTFT.

The existence of the DTFT depends on whether X(ejω), as given
by Equation (2.3), converges or not. We can express a sufficient and
necessary condition for the existence of the DTFT as

lim
k→∞

∣∣X(ejω) − Xk(ejω)
∣∣ = 0, (2.8)

where Xk(ejω) =
∑k

n=−k x(n)e−jωn.

2.1 The Discrete-Time Fourier Transform 31

A sufficient condition for the existence of a DTFT is that the abso-
lute value of the DTFT has to be bounded. That is

|X(ejω)| =

∣∣∣∣∣
∞∑

n=−∞
x(n)e−jωn

∣∣∣∣∣ ≤
∞∑

n=−∞
|x(n)| < ∞. (2.9)

This implies that
∞∑

n=−∞
|x(n)| < ∞. (2.10)

A sufficient condition for the existence of the DTFT is the sequence
x(n) must be absolutely summable.

Here we will show some DTFTs of selected sequences.

Example 2.1. Determine the DTFT of the unit sample sequence

x(n) = δ(n) =
{

1 for n = 0
0 elsewhere.

Solution

X(ejω) =
∞∑

n=−∞
x(n)e−jωn =

∞∑
n=−∞

δ(n)e−jωn = 1.

Here the DTFT or the frequency spectrum of the unit sample sequence
is real and constant and with zero phase in the interval −π ≤ ϕ < π.

Example 2.2. Determine the DTFT of a causal exponential sequence
x(n) = αnµ(n) for α < 1.

Solution

X(ejω) =
∞∑

n=−∞
x(n)e−jωn =

∞∑
n=−∞

αnµ(n)e−jωn

=
∞∑

n=0

αne−jωn =
∞∑

n=0

(αe−jω)n

=
1

1 − αe−jω
since |αe−jω| < 1.

32 The Transform Domain Analysis: The Discrete-Time Fourier Transform

In order to extract the magnitude and phase angle we proceed as
follows:

X(ejω) =
1

1 − αe−jω
=

1
1 − αcosω + jαsinω

|X(ejω)|2 =
1

1 − 2αcosω + α2

and the phase angle

ϕ = tan−1
(

αsinω

1 − αcosω

)
.

The plots of the magnitude and phase response are shown in Fig-
ure 2.1 for α = 0.5. The program for plotting is given in the appendix
as Program 2.2.

Example 2.3. Determine the DTFT of an anti-causal exponential
sequence x(n) = −αnµ(−n − 1) for α > 1.

-4 -3 -2 -1 0 1 2 3 4
0.5

1

1.5

2
Magnitude Spectrum alpha = 0.5

ω/π

M
ag

ni
tu

de

-4 -3 -2 -1 0 1 2 3 4
-1

-0.5

0

0.5

1
Phase spectrum alpha = 0.5

ω/π

P
h

a
se

,R
ad

ia
n

s

Fig. 2.1 Plot for the magnitude and phase response for x(n) = αnµ(n) for α < 1.

2.1 The Discrete-Time Fourier Transform 33

Solution

X(ejω) =
∞∑

n=−∞
x(n)e−jωn = −

∞∑
n=−∞

αnµ(−n − 1)e−jωn

= −
−1∑

n=−∞
αne−jωn.

Let m = −n, then

X(ejω) = −
∞∑

m=1

α−mejωm = −α−1ejω
∞∑

m=0

(
α−1ejω

)m

= −α−1ejω 1
1 − α−1ejω

for |α−1ejω| < 1

=
1

1 − αe−jω
for |α| > 1.

The rest of the solution is identical to Example 2.3. The difference
between the two solutions is simply due to the regions of convergence
being different. The plots of the magnitude and phase response for are
shown in Figure 2.2.

The program for plotting the responses is included in the appendix
as Program 2.3.

Example 2.4. Determine the DTFT of a causal exponential sequence
x(n) = αnµ(n) for α = 1. Notice that the exponential function reduces
to a unit step function. Substituting α = 1 in the result of Exam-
ple 2.2 makes the geometric series nonconvergent. The solution will
be obtained by taking the limit as α approaches 1.

Solution

X(ejω) =
∞∑

n=−∞
x(n)e−jωn =

∞∑
n=−∞

αnµ(n)e−jωn =
∞∑

n=0

αne−jωn

=
∞∑

n=0

(αe−jω)n =
1

1 − αe−jω
since |αe−jω| < 1.

34 The Transform Domain Analysis: The Discrete-Time Fourier Transform

-4 -3 -2 -1 0 1 2 3 4
0.2

0.4

0.6

0.8

1
Magnitude Spectrum alpha = 2

ω/π

M
ag

ni
tu

de

-4 -3 -2 -1 0 1 2 3 4
-4

-2

0

2

4
Phase spectrum alpha = 2

ω/π

P
h

a
se

,R
ad

ia
n

s

Fig. 2.2 Plot for the magnitude and phase response for x(n) = αnµ(n) for α > 1.

For x(n) = µ(n) = lim
α→1

αnµ(n) and therefore

DTFT (µ(n)) = lim
α→1

1
1 − αe−jω

=
1

1 − e−jω
= ejω/2 1

sin(ω/2)
.

The plot is shown in Figure 2.3 and the program is in the appendix as
Program 2.4.

There are two important properties of the DTFT that needs to be
highlighted.

(i) Although the time domain sequence is discrete the magni-
tude and phase frequency spectrum are continuous. For DSP
processing this property poses a problem as a continuous fre-
quency spectrum has an infinite number of sample points and
would require an infinite memory capacity to store and an
infinite time period to process.

2.2 The Inverse Discrete-Time Fourier Transform 35

(ii) As a result of sampling the DTFT is periodic. This can be
verified analytically as follows:

Let X(ejω) be the spectrum of a discrete-time signal.

If the spectrum is shifted by 2πk we get
X(ejω+j2πk) = X(ejω) since ej2πk = 1.

This implies that the spectrum of a digital signal is
periodic with period 2π.

2.2 The Inverse Discrete-Time Fourier Transform

One of the properties of the DTFT which has been highlighted above
is that it is periodic. This implies that it can be expressed as a Fourier
series. In fact the DTFT expression of Equation (2.3) is a Fourier series

-4 -3 -2 -1 0 1 2 3 4
0

2

4

6
x 10

15 Magnitude Spectrum alpha = 1

ω/π

M
ag

ni
tu

de

-4 -3 -2 -1 0 1 2 3 4
-2

-1

0

1

2
Phase spectrum alpha = 1

ω/π

P
h

a
se

,R
ad

ia
n

s

Fig. 2.3 Plot for the magnitude and phase response for x(n) = αnµ(n) for α = 1.

36 The Transform Domain Analysis: The Discrete-Time Fourier Transform

Table 2.1 Some common DTFTs.

Sequence DTFT Condition
δ(n) 1

µ(n)
1

1 − e−jω
+

∞∑
k=−∞

2πδ(ω + 2πk)

αnµ(n)
1

1 − αe−jω
|α| < 1

−αnµ(−n − 1)
1

1 − αe−jω
|α| > 1

ce−αnµ(n)
c

1 − e−αe−jω
e−α < 1

with x(n) representing the Fourier coefficients. Thus in order to find
the inverse DTFT we can simply find the Fourier coefficients x(n) of
the Fourier series of X(ejω). The expression for Fourier coefficients is
given by

x(n) =
1
2π

∫ π

−π
X(ejω)ejωndω. (2.11)

Example 2.5. The DTFT of a sequence x(n) is given by X(ejω) =∑∞
k=−∞ 2πδ(ω − ω0 + 2πk). Determine x(n).

Solution

x(n) =
1
2π

∫ π

−π
X(ejω)ejωndω =

1
2π

∫ π

−π

∞∑
k=−∞

2πδ(ω − ω0 + 2πk)ejωndω.

Excluding samples outside the range −π ≤ ω ≤ +π the integral
reduces to

=
1
2π

∫ π

−π
2πδ(ω − ω0)ejωndω = ejω0n.

Example 2.6. The DTFT of a sequence x(n) is given by X(ejω) =
1−e−jω(N+1)

1−e−jω . Determine x(n).

Solution

1 − e−jω(N+1)

1 − e−jω
=

N∑
n=0

1−ne−jωn.

This implies that x(n) = 1 for 0 ≤ n ≤ N .

2.3 Properties of the Discrete-Time Fourier Transform 37

2.3 Properties of the Discrete-Time Fourier Transform

Some selected properties are verified here

(i) The Linearity Property: The discrete-time Fourier transform
is a linear transformation. This can be proved by showing
that the DTFT of a linear combination of two sequences is a
linear combination of their DTFTs.

Proof. Let the sequences x1(n) and x2(n) have the DTFTs
X1(ejω) and X2(ejω), respectively. Then

X1(ejω) =
∞∑

n=−∞
x1(n)e−jωn and

X2(ejω) =
∞∑

n=−∞
x2(n)e−jωn.

A linear combination of x1(n) and x2(n) is given by y(n) =
αx1(n) + βx2(n), where α and β are arbitrary constants. The
DTFT of y(n) is given by

Y (ejω) =
∞∑

n=−∞
y(n)e−jωn =

∞∑
n=−∞

(αx1(n) + βx2(n))e−jωn

=
∞∑

n=−∞
αx1(n)e−jωn +

∞∑
n=−∞

βx2(n)e−jωn

= α

∞∑
n=−∞

x1(n)e−jωn + β

∞∑
n=−∞

x2(n)e−jωn

= αX1(ejω) + βX2(ejω),

which is a linear combination of the DTFTs of x1(n) and
x2(n). Therefore the DTFT is a linear operator.

(ii) Time Shifting Property: If a sequence x(n) with a DTFT
X(ejω) is shifted in time by n0, to obtain a new sequence
x1(n) = x(n − n0), then the DTFT of the new sequence is
given by X(ejω) = e−jωn0X(ejω).

38 The Transform Domain Analysis: The Discrete-Time Fourier Transform

Proof. By definition X(ejω) =
∑∞

n=−∞ x(n)e−jωn and
also

X1(ejω) =
∞∑

n=−∞
x1(n)e−jωn =

∞∑
n=−∞

x(n − n0)e−jωn.

Let m = n − n0. Then

X1(ejω) =
∞∑

n=−∞
x(m)e−jω(m+n0)

= e−jωn0

∞∑
n=−∞

x(m)e−jωm = e−jωn0X(ejω).

(iii) The Differentiation Property: If a sequence x(n) has a DTFT
given by X(ejω) then the sequence nx(n) has a DTFT given
by j dX(ejω)

dω .

Proof. By definition X(ejω) =
∑∞

n=−∞ x(n)e−jωn. Differ-

entiating with respect to ω gives dX(ejω)
dω =

∑∞
n=−∞ −

jnx(n)e−jωn, which can be written as j dX(ejω)
dω =∑∞

n=−∞ nx(n)e−jωn. This shows that j dX(ejω)
dω is DTFT of

the sequence nx(n).

(iv) The Convolution Property: If a sequence x1(n) has a DTFT
X1(ejω) and a sequence x2(n) has a DTFT X2(ejω) then
the DTFT of the sequence x1(n) ⊗ x2(n) (i.e., convolution
of x1(n) and x2(n)) is given by X1(ejω)X2(ejω).

Proof. Let

X1(ejω) =
∞∑

n=−∞
x1(n)e−jωn and

X2(ejω) =
∞∑

n=−∞
x2(n)e−jωn

X3(ejω) =
∞∑

n=−∞
x1(n) ⊗ x2(n)e−jωn

2.3 Properties of the Discrete-Time Fourier Transform 39

=
∞∑

n=−∞

∞∑
k=−∞

x1(n − k)x2(k)e−jωn.

Changing the order of summation, we get

X3(ejω) =
∞∑

k=−∞

∞∑
n=−∞

x1(n − k)x2(k)e−jωn

=
∞∑

k=−∞
x2(k)

∞∑
n=−∞

x1(n − k)e−jωn.

Substituting m = n − k we get

X3(ejω) =
∞∑

k=−∞
x2(k)

∞∑
n=−∞

x1(m)e−jω(m+k)

=
∞∑

k=−∞
x2(k)e−jωk

∞∑
n=−∞

x1(m)e−jωm

= X2(ejω)X1(ejω).

(v) Modulation Property: If a sequence x1(n) has a DTFT
X1(ejω) and a sequence x2(n) has a DTFT X2(ejω) then the
DTFT of the sequence x1(n) · x2(n) (i.e., product of x1(n)
and x2(n)) is given by 1

2π

∫ π
−π X1(ejϕ)X∗

2 (ej(ω−ϕ))dϕ.

Proof. Let

Y (ejω) =
1
2π

∫ π

−π
X1(ejϕ)X∗

2 (ej(ω−ϕ))dϕ.

Then

y(n) =
1
2π

∫ π

ω=−π
Y (ejω)ejωndω

=
1
2π

∫ π

ω=−π

1
2π

∫ π

ϕ=−π
X1(ejϕ)X∗

2 (ej(ω−ϕ))dϕejωndω.

Changing the order of integration and rearranging, we get

y(n) =
1
2π

∫ π

ϕ=−π
X1(ejϕ)

1
2π

∫ π

ω=−π
X∗

2 (ej(ω−ϕ))ejωndϕdω.

40 The Transform Domain Analysis: The Discrete-Time Fourier Transform

Let θ = ω − ϕ and therefore ω = θ + ϕ

y(n) =
1
2π

∫ π

ϕ=−π
X1(ejϕ)

× 1
2π

∫ π−ϕ

θ=−π−ϕ
X2(ejθ)e−j(θ+ϕ)ndϕ(dθ + dϕ)

=
1
2π

∫ π

ϕ=−π
X1(ejϕ)e−jϕndϕ

1
2π

∫ π−ϕ

θ=−π−ϕ
X2(ejθ)e−jθndθ

= x1(n) · x2(n).

(vi) Parseval’s Relation: If a sequence x1(n) has a DTFT X1(ejω)
and a sequence x2(n) has a DTFT X2(ejω) then Parseval’s
relation gives the relation between the cross-product terms
in the time domain and the frequency domain

∞∑
n=−∞

x1(n)x∗
2(n) =

1
2π

∫ π

−π
X1(ejω)X∗

2 (ejω)dω. (2.12)

When x1(n) = x2(n) the relation reduces to the total energy
computed in the time domain in relation to the total energy
obtained from the integral of the energy spectral density in
the frequency domain

∞∑
n=−∞

|x1(n)|2 =
1
2π

∫ π

−π

∣∣X1(ejω)
∣∣2 dω. (2.13)

2.4 Linear Convolution

In LTI discrete-time systems the impulse response can completely char-
acterize the system. Given the impulse response the output of the LTI
discrete-time system can be computed for any arbitrary input. Sup-
pose the impulse response of an LTI system to an impulse δ(n) is given
by h(n). The impulse response to a delayed version of the impulse,
δ(n − k) will be given by h(n − k) since the system is time invariant.
In practice the input signal x(n) is expressed as a sum of weighted and
delayed impulses as in Equation (2.14).

x(n) =
∞∑

k=−∞
x(k)δ(n − k), (2.14)

2.4 Linear Convolution 41

Table 2.2 Summary of properties of DTFT properties.

Sequence DTFT

Property x1(n), x2(n) X1(ejω), X2(ejω)

Linearity αx1(n) + βx2(n) αX1(ejω) + βX2(ejω)

Time-shifting x1(n − n0) e−jωn0X(ejω)

Frequency-shifting ejω0x1(n) X(ej(ω−ω0))

Frequency differentiation nx1(n) j
dX(ejω)

dω

Convolution x1(n) ⊗ x2(n) X1(ejω)X2(ejω)

Modulation x1(n)x2(n)
1
2π

∫ π

−π
X1(ejϕ)X∗

2 (ej(ω−ϕ)dϕ

Parseval’s relation
∞∑

n=−∞
x1(n)x∗

2(n)
1
2π

∫ π

−π
X1(ejω)X∗

2 (ejω)dω

where x(k) is the weight and δ(n − k) gives location of the sample in
terms of the time instance the sample appears. Due to the linearity
property of the LTI system we can compute the response due to each
sample and add them up to obtain the output of the system as shown
in Equation (2.15).

y(n) =
∞∑

k=−∞
x(k)h(n − k). (2.15)

Equation (2.15) is what is referred to as the convolution sum. The
notation and the alternative form are given by Equation (2.16).

y(n) = x(n) ⊗ h(n) =
∞∑

k=−∞
x(k)h(n − k) =

∞∑
k=−∞

h(k)x(n − k). (2.16)

Equation (2.9) directs us to compute the output using the following
procedure for each output sample starting with n = 0:

(i) Obtain the time reversal of the impulse response h(−k).
(ii) For each value of n shift h(−k), n times to obtain h(n − k).
(iii) Multiply the overlapping samples of x(k) and h(n − k).
(iv) The sum of products x(k)h(n − k) of the overlapping samples

gives y(n) for the specific value of n.
(iv) Continue with the process until there are no more overlap-

ping samples.

42 The Transform Domain Analysis: The Discrete-Time Fourier Transform

The convolution process is feasible when the impulse response is of finite
length and the input signal is also of finite length. In such a situation
the output sequence will also be of finite length. It is also possible to
compute an output when the impulse response is of finite length and the
input is an endless stream of data. This is because in order to compute
each sample of the output there is a finite sum of products to add.
The convolution sum fails to compute the output when both the input
signal and the impulse response are of infinite duration. Whenever the
impulse response is of infinite duration the practice is to use linear
constant coefficients difference equations to compute the output.

2.4.1 Graphical Implementation of Linear Convolution

In the next example we show how the convolution process is achieved
graphically.

Example 2.7. An input sequence x(n) and an impulse response h(n)
to an LTI system are shown in Figure 2.4. By means of convolution
shown graphically in Figure 2.5 obtain the output of the system.

Solution

The output sequence is given by the convolution sum as

y(n) =
∞∑

k=−∞
x(k)h(n − k).

Fig. 2.4 Input sequence x(n) and impulse response h(n).

2.4 Linear Convolution 43

Fig. 2.5 Graphical linear convolution.

44 The Transform Domain Analysis: The Discrete-Time Fourier Transform

2.4.2 Implementation of Linear Convolution Using DTFTs

It is possible to implement linear convolution through the use of
DTFTs. If two sequences x1(n) and x2(n) are to be convolved to obtain
the result y(n) = x1(n) ⊗ x2(n), we can achieve the same result by
taking the inverse DTFT of the product of their DTFTs as shown in
Figure 2.6.

2.5 MATLAB Plots of DTFTs

Using some functions in MATLAB a program to plot DTFT or
frequency spectrum of any rational function can be written (see
Figure 2.7). The key MATLAB functions are freqs and freqz which
are used for analog and digital frequency spectrum, respectively. In
order to get the syntax and other variations of the syntax one must
type “Help freqs” or “Help freqz” in the MATLAB command window.

In our application freqz can be used to calculate the vector h rep-
resenting the magnitude and phase of the transfer function at spe-
cific frequency ω of a rational transfer function given the coefficients.
The syntax is given as

h = freqz(b,a,ω), (2.17)

where b and a are row matrices representing the numerator and denom-
inator coefficients, respectively.

A program is developed below to show how the MATLAB functions
are applied to plot the frequency spectrum of a rational function given

Fig. 2.6 Implementation of linear convolution using DTFTs.

2.5 MATLAB Plots of DTFTs 45

-1 0 1
-1

-0.5

0

0.5

1
Real Part

ω/π

A
m

pl
itu

de

-1 0 1
-1

-0.5

0

0.5

1
Imaginary Part

ω/π

A
m

pl
itu

de

-1 0 1
0

0.2

0.4

0.6

0.8
Magnitude Spectrum

ω/π

M
ag

ni
tu

d
e

-1 0 1
-4

-2

0

2

4
Phase spectrum

ω/π

P
h

a
se

,R
ad

ia
n

s

Fig. 2.7 Frequency spectrum from MATLAB functions.

in Equation (2.18)

H(ejω) =
0.0098 + 0.0393e−jω + 0.0590e−j2ω + 0.0098e−j3ω

1 − 1.9908e−jω + 1.7650e−j2ω − 0.7403e−j3ω + 0.1235e−j4ω
.

(2.18)

Program 2.1

% Plotting of the Frequency response of a rational function

% Enter the desired length of the DFT

k = input(‘Enter the number of frequency points = ’);

% Enter the numerator and denominator coefficients

num = input(‘Enter the numerator coefficients = ’);

den = input(‘Enter the denominator coefficients = ’);

% Compute the frequency response

w = -pi:pi/k:pi;

h = freqz(num, den, w);

46 The Transform Domain Analysis: The Discrete-Time Fourier Transform

subplot(2,2,1);

plot(w/pi, real(h)); grid

title(‘Real Part’);

xlabel(‘\omega/\pi’); ylabel(‘Amplitude’);

subplot(2,2,2);

plot(w/pi, imag(h)); grid

title(‘Imaginary Part’);

xlabel(‘\omega/\pi’); ylabel(‘Amplitude’);

subplot(2,2,3);

plot(w/pi, abs(h)); grid

title(‘Magnitude Spectrum’);

xlabel(‘\omega/\pi’); ylabel(‘Magnitude’);

subplot(2,2,4);

plot(w/pi, angle(h)); grid

title(‘Phase spectrum’);

xlabel(‘\omega/\pi’); ylabel(‘Phase, Radians’);

The Plots of H(ejω)

2.6 Problems

2.6.1 Determine the DTFTs of the following sequences:

(i) w(n) = βnµ(n − 2) for β < 1,

(ii) x(n) =
{

β|n| |n| ≤ L

0 otherwise
, and

(iii) y(n) = βnµ(−n − 4) for β > 1.

2.6.2 If x(n) is a real sequence with a DTFT X(ejω) determine the
DTFT of x(−n) in terms of X(ejω).

2.6.3 If X(ejω) is the DFFT of a real sequence x(n), determine the
inverse DFTS of

(i) Xre(ejω) (ii) Xim(ejω) in terms of x(n).

2.6.4 For a sequence x(n) = [121013] for −1 ≤ n ≤ 4, without com-
puting the DTFT evaluate

(i) the DC component of the frequency,

2.6 Problems 47

(ii) the integral
∫ π
−π X(ejω)dω, and

(iii) the integral
∫ π
−π |X(ejω)|2dω.

2.6.5 A finite length sequence is given by x(n) = [1 2 3 2 1] for
0 ≤ n ≤ 4 has DTFT X(ejω). Show that this sequence has a
linear phase.

2.6.6 The output of an FIR filter is given by the following equation:
y(n) = x(n) − 2x(n − 1) + 3x(n − 2) + 2x(n − 3) − x(n −
4). Show that the filter has linear phase.

2.6.7 If the complex sequence x(n) has a DTFT X(ejω) prove the
following symmetry properties

(i) the DTFT of x(−n) is X(e−jω),

(ii) the DTFT of x∗(−n) is X(ejω),

(iii) the DTFT of Re{x(n)} is 1
2{X(ejω) + X∗(e−jω)},

(iv) the DTFT of jIm{x(n)} is 1
2{X(ejω) − X∗(e−jω)}.

2.6.8 If the real sequence x(n) has a DTFT X(ejω) prove the
following symmetry properties

(i) X(ejω) = X∗(e−jω) (ii) Xre(ejω) = Xre(e−jω) (iii)
Xim(ejω) = −Xim(e−jω).

2.6.9 An IIR filter frequency response is given by

H(ejω) = 0.0124
(

1 + e−jω

1 − 0.6386e−jω

)

×
(

1 + 1.5975e−jω + e−j2ω

1 − 0.9621e−jω + 0.5708e−j2ω

)

×
(

1 + 1.12724e−jω + e−j2ω

1 − 0.5811e−jω + 0.8547e−j2ω

)
.

Using MATLAB to plot the following frequency responses

(i) magnitude response,

(ii) phase response,

(iii) of the real part of H(ejω), and

(iv) the imaginary part of H(ejω).

This page intentionally left blank

3
The Transform Domain Analysis: The Discrete

Fourier Transform

3.1 The Discrete Fourier Transform

In Chapter 2 we observed that the DTFT X(ejω) of a sequence x(n) is
continuous with respect to frequency. The continuous spectrum is made
up of an infinite number of samples that requires infinite memory to
store and infinite time to process. It is not feasible to process such a
signal in a DSP processor. The solution to this problem is to process
a finite number of samples taken from X(ejω). The number of samples
taken is normally made equal to the number of samples of the sequence
x(n). Such samples form what is referred to as the Discrete Fourier
Transform (DFT) which is defined only for finite length sequences as
follows:

The DFT of a finite length sequence x(n), 0 ≤ n ≤ N − 1 is
defined as

X(k) =
N−1∑
n=0

x(n)e−j2πkn/N for 0 ≤ k ≤ N − 1. (3.1)

It must be noted here that whereas n is a time index, k is a frequency
index. X(k)s are referred to as the DFT coefficients. The expression for
DFT is very similar to that of the DTFT with ejω being replaced by the
frequency samples ej2πk/N and the range limited to 0 ≤ k ≤ N − 1. The
process of finding the frequency spectrum of a signal using the DFT is
referred to as the analysis process and is represented by Equation (3.1).
On the other hand, knowing the spectrum it is possible to find the
original sequence. The process of finding the original sequence from
the spectrum here represented by DFT coefficients is referred to as
the synthesis process and is represented by Equation (3.1) which is an

49

50 The Transform Domain Analysis: The Discrete Fourier Transform

expression of the inverse DFT (IDFT).

x(n) =
1
N

N−1∑
k=0

X(k)ej2πkn/N for 0 ≤ n ≤ N − 1. (3.2)

In order to simplify the representation we define a twiddle factor as
W=

N e−j 2π
N . Substituting the twiddle factor into Equations (3.1) and

(3.2) we get more compact expressions for the DFT

X(k) =
N−1∑
n=0

x(n)W kn
N for 0 ≤ k ≤ N − 1, (3.3)

and the IDFT is given by

x(n) =
1
N

N−1∑
k=0

X(k)W−kn
N for 0 ≤ n ≤ N − 1. (3.4)

Example 3.1. Determine the DTFT of a length-4 sequence given by
x(n) = {(0 1 0 0)}.

Solution

X(k) =
N−1∑
n=0

x(n)W kn
N for 0 ≤ k ≤ N − 1

X(k) = 0W 0
4 + W k

4 + 0W 2k
4 + 0W 3k

4 = W k
4 for k = 0,1,2,3

X(0) = 1, X(1) = −j, X(2) = −1, X(3) = j or as a row matrix X(k) =
[1,−j,−1, j].

Example 3.2. Determine the DTFT of a length-4 sequence given by
x(n) = {(1,1,1,1)}.

Solution

X(k) =
N−1∑
n=0

x(n)W kn
N for 0 ≤ k ≤ N − 1

X(k) = for k = 0,1,2,3

X(0) = 1 + 1 + 1 + 1 = 4

3.1 The Discrete Fourier Transform 51

X(1) = W 0
4 + W 1

4 + W 2
4 + W 3

4 = 1 − j − 1 + j = 0

X(2) = W 0
4 + W 2

4 + W 4
4 + W 6

4 = 1 − 1 + 1 − 1 = 0

X(3) = W 0
4 + W 3

4 + W 6
4 + W 9

4 = 1 − j − 1 + j = 0.

As a row matrix as a row matrix X(k) = [4,0,0,0].
Sometimes writing Equations (3.1) and (3.2) in matrix notation

simplifies the computation of the DFT or its inverse. Equation (3.1)
can be written in matrix notation as follows:

X(0)
X(1)

...
X(N − 1)

 =

W 0
N W 0

N W 0
N . . . W 0

N

W 0
N W 1

N W 2
N . . . W

(N−1)
N

W 0
N W 2

N W 4
N . . . W

2(N−1)
N

...
...

...
...

...

W 0
N W

(N−1)1
N W

(N−1)2
N . . . W

(N−1)(N−1)
N

×

x(0)
x(1)
x(2)

...
x(N − 1)

, (3.5)

which can be written in vector form as

X(k) = WNx(n), (3.6)

where

X(k) = [X(0),X(1), . . . ,X(N − 1)]T ,

x(n) = [x(0),x(1), . . . ,(x(N − 1))]T ,

and

WN =

W 0
N W 0

N W 0
N . . . W 0

N

W 0
N W 1

N W 2
N . . . W

(N−1)
N

W 0
N W 2

N W 4
N . . . W

2(N−1)
N

...
...

...
...

...

W 0
N W

(N−1)1
N W

(N−1)2
N . . . W

(N−1)(N−1)
N

.

52 The Transform Domain Analysis: The Discrete Fourier Transform

We can also write Equation (3.4) as follows:

x(n) =
1
N

WN
−1

X(k), (3.7)

where WN
−1 = (WN)

∗
.

Example 3.3. We repeat part of Example 3.2 using matrices and go
further to obtain the IDFT also using matrices. The sequence used is
a length-4 sequence given by x(n) = {(1 1 1 1)}.

Solution

X(0)
X(1)
X(2)
X(3)

 =

W 0
N W 0

N W 0
N W 0

N

W 0
N W 1

N W 2
N W 3

N

W 0
N W 2

N W 4
N W 6

N

W 0
N W 3

N W 6
N W 9

N

x(0)
x(1)
x(2)
x(3)

 .

To simplify we must use the property of the twiddle factor that
for n > N,Wn

N = 〈Wn
N 〉N , where the operator 〈〉N implies modulo N

operation.
Therefore substituting W 4

4 = W 0
4 ,W 6

4 = W 2
4 ,W 9

4 = W 1
4 in the

matrix equation we obtain

X(0)
X(1)
X(2)
X(3)

 =

W 0
4 W 0

4 W 0
4 W 0

4

W 0
4 W 1

4 W 2
4 W 3

4

W 0
4 W 2

4 W 0
4 W 2

4

W 0
4 W 3

4 W 2
4 W 1

4

1
1
1
1

 .

Evaluating W 0
4 = 1, W 1

4 = e−i2π/4 = −j, W 2
4 = (−j)2 = −1, W 3

4 = (−j)
(−1) = j.

X(0)
X(1)
X(2)
X(3)

 =

1 1 1 1
1 −j −1 j

1 −1 1 −1
1 j −1 −j

1
1
1
1

 =

4
0
0
0

 ,

Therefore X(k) = [4,0,0,0], which is the same answer as we got in
Example 3.2.

3.2 MATLAB Plots of DFTs 53

In order to find the IDFT we need to find WN
−1 = (WN)

∗
. This is

obtained by conjugating each element of WN as follows:

x(0)
x(1)
x(2)
x(3)

 =

1
4

1 1 1 1
1 +j −1 −j

1 −1 1 −1
1 −j −1 +j

 =

4
0
0
0

 =

1
4

4
4
4
4

 =

1
1
1
1

 .

3.2 MATLAB Plots of DFTs

Using some functions in MATLAB a program to compute and plot
the DFT of any sequence can be written. The key MATLAB functions
are FFT(x) and IFFT(X) which make use of the efficient Fast Fourier
transform in the computation. An alternative syntax uses FFT(X,N)
and IFFT(x,N) which specifies the length of the DFT. If x has a length
less than N then x is padded with zeros.

3.2.1 MATLAB Program for Plotting DFT

Program 3.1

% A MATLAB programme to plot the input sequence,

compute and plot the

% magnitude and phase of the DFT. The length of

the sequence and the

% length of the desired DFT are entered as inputs

N = input(‘Length of sequence = ’);

M = input(‘Length of DFT = ’);

x = input(‘Enter the sequence as a row matrix x = ’);

% Obtain the M-point DFT

X = fft(x, M);

% Plot the time-domain sequence

l = 0:1:N-1;

subplot(3,1,1)

stem(l,x);

title(‘Sequence in the Time Domain’);

xlabel(‘Time Index n’); ylabel(‘Amplitude’);

54 The Transform Domain Analysis: The Discrete Fourier Transform

% Plot the Magnitude of the DFT samples

subplot(3,1,2)

k = 0:1:M-1;

stem(k, abs(X))

title(‘Magnitude of the DFT samples’);

xlabel(‘Frequency Index k’); ylabel(‘Magnitude’);

subplot(3,1,3)

stem(k, angle(X))

title(‘Phase of the DFT samples’);

xlabel(‘Frequency Index k’); ylabel(‘Phase’);

Example 3.4. Use of MATLAB functions to plot the DFT of a
sequence in Program 3.1 (see Figure 3.1).

0 5 10 15 20 25 30
0

0.5

1
Sequence in the Time Domain

 Time Index n

A
m

pl
itu

d
e

0 5 10 15 20 25 30
0

10

20
Magnitude of the DFT samples

Frequency Index k

M
a

gn
itu

de

0 5 10 15 20 25 30
-2

0

2
Phase of the DFT samples

Frequency Index k

P
h

a
se

Fig. 3.1 A 32-point DFT of a 32-point sequence.

3.2 MATLAB Plots of DFTs 55

3.2.2 MATLAB Program for Plotting an IDFT

Program 3.2

% A MATLAB programme to plot a given DFT,

compute and plot the real &

% imaginary part of its IDFT

% The length of the DFT and the desired IDFT

are read in

K = input(‘Length of DFT K = ’);

N = input(‘Length of IDFT N = ’);

X = input(‘Enter the DFT as a row matrix X = ’);

% Obtain the N-point IDFT

x = ifft(X, N);

% Plot the original DFT samples

k = 0:1:K-1;

subplot(3,1,1)

stem(k,X);

title(‘DFT Samples Provided’);

xlabel(‘Frequency Index k’); ylabel(‘Amplitude’);

% Plot the real part of the DFT samples

subplot(3,1,2)

n = 0:1:N-1;

stem(n, real(x))

title(‘Real part of x(n), the IDFT samples’);

xlabel(‘Time Index n’); ylabel(‘Amplitude’);

subplot(3,1,3)

stem(n, imag(x))

title(‘Imaginary part of x(n), the IDFT samples’);

xlabel(‘Time Index n’); ylabel(‘Amplitude’)

Example 3.5. Use of MATLAB functions to obtain the inverse DFT
of a sequence (see Figure 3.2).

56 The Transform Domain Analysis: The Discrete Fourier Transform

0 5 10 15 20 25 30
0

1

2
DFT Samples Provided

Frequency Index k

A
m

p
lit

u
d

e

0 5 10 15 20 25 30
-1

0

1
Real part of x(n), the IDFT samples

 Time Index n

A
m

p
lit

u
d

e

0 5 10 15 20 25 30
-0.5

0

0.5
Imaginary part of x(n), the IDFT samples

Time Index n

A
m

pl
itu

de

Fig. 3.2 A 32-point IDFT from a 32-point DFT.

3.2.3 MATLAB Program for Estimating the DTFT From
the DFT

Program 3.3

% A MATLAB programme to plot an estimated spectrum from

DFT samples

% of a 50 Hz square wave

% The programme input will be an analog input which

will be plotted

% The analog square wave at 50 Hz will be sampled

and plotted

% The DFT will be computed and plotted

% A DTFT will be estimated from the DFT

N = input(‘Length of input sequence = ’);

M = input(‘Desired Length of the DFT = ’);

% For example, generate a 50 Hz square wave:

3.2 MATLAB Plots of DFTs 57

t = 0:2/(50*1000):1/50;

subplot(5,1,1)

y = square(2*pi*50*t); plot(t,y);

% The analog signal\index{analog signal} is sampled

to obtain a

digital signal\index{digital signal}

n = 0:N;

x = square(2*pi*n*1/50);

% Plot the time domain sequence

subplot(5,1,2)

stem(n,x);

title(‘Sequence in the Time Domain’);

xlabel(‘Time Index n’); ylabel(‘Amplitude’);

% Obtain and plot the magnitude and phase of the DFT

X = fft(x ,M);

% Plot the Magnitude of the DFT samples

subplot(5,1,3)

k = 0:1:M-1;

stem(k, abs(X))

title(‘Magnitude of the DFT samples’);

xlabel(‘Frequency Index k’); ylabel(‘Magnitude’);

subplot(5,1,4)

stem(k, angle(X))

title(‘Phase of the DFT samples’);

xlabel(‘Frequency Index k’); ylabel(‘Phase’);

{\%} Compute 512-point DFT x

XE = fft(x,512);

% Plot the frequency response

L = 0:511;

subplot(5,1,5)

plot(L/512,abs(XE));

hold

plot(k/M,abs(X),‘o’)

title(‘Estimation Spectrum of a Square Wave’)

xlabel(‘Normalised Angular Frequency’)

ylabel(‘magnitude’)

58 The Transform Domain Analysis: The Discrete Fourier Transform

0 10 20 30 40 50
-1

0

1
Sequence in the Time Domain

Time Index n

A
m

p
lit

u
d

e

0 10 20 30 40 50
0

20
40

Magnitude of the DFT samples

Frequency Index k

M
a

g
n

itu
d

e

0 10 20 30 40 50
-2

0

2
Phase of the DFT samples

Frequency Index k

P
h

a
se

0 0.2 0.4 0.6 0.8 1
0

20

40
Estimation Spectrum of a Square Wave

Normalised Angular Frequency

m
a

gn
itu

d
e

Fig. 3.3 Estimation of the spectrum of a discrete-time square wave.

Example 3.6. Starting with a discrete-time square waveform its DFT
is computed and finally its DTFT or its spectrum is obtained. The last
plot shows the DFT superimposed on to the DTFT (see Figure 3.3).

3.3 Discrete Fourier Transform Properties

Before we introduce properties of the DFT we will first introduce the
concept of circular shift. Certain sequences are defined over a speci-
fied interval for instance in the range 0 ≤ n ≤ N − 1 and they are not
defined outside this interval. If a time shift is going to be made on a
sequence w(n) such as w(n − n0) the sequence will be extended into
the range in which it is not defined. To prevent this from happening
we define a different type of shift; a circular shift. This is similar to
having N samples of the sequence x(n) uniformly distributed on the

3.3 Discrete Fourier Transform Properties 59

circumference of a circle. Shifting a sequence n0 samples to the right is
the same as shifting the sequence n0 samples in the counter-clockwise
direction along the circumference with respect to a reference. This is
equivalent to the (N − 1)th (or last) sample before a shift moving to
the 0th (first) sample after a shift on a linear axes. Mathematically this
can be defined using a modulo arithmetic as follows:

wc(n) = w(〈n − n0〉N), (3.8)

where w(n) is the original sequence and the shifted sequence is
w(〈n − n0〉N). This is shown in Figure 3.4.

The properties of DFTs are similar to those of DTFTs and they are
useful in the simplification of DFT computation and implementation.
In this section, we have focused on the general properties which is
depicted in Table 3.1. The remaining properties based on symmetry
may be introduced in the exercises at the end of the chapter and some
can be found in more advanced text books [3].

(i) Linearity Property: The discrete Fourier transform is a lin-
ear transformation. This can be proved by showing that the
DFT of a linear combination of two sequences is a linear
combination of their DFTs.

Fig. 3.4 Circular shift of a finite length sequence.

60 The Transform Domain Analysis: The Discrete Fourier Transform

Table 3.1 Summary of the DFT properties.

Property Sequence DFT
Linearity αx1(n) + βx2(n) αX1(k) + βX2(k)

Circular shift x(〈n − n0〉N) W kn0
N X(k)

Frequency shift W −k0n
N x(n) X(〈k − k0〉N)

Convolution x(n) ©N h(n) X(k)H(k)

Modulation x1(n)x2(n) 1
N

∑N−1
m=0 X1(l)X2(k − l)

Parseval’s relation
∑N−1

n=0 |x(n)|2 1
N

∑N−1
k=0 |X(k)|2

Proof. Let the sequences x1(n) and x2(n) have the DFTs
X1(k) and X2(k), respectively. Then

X1(k) =
N−1∑
n=0

x1(n)W kn
N for 0 ≤ k ≤ N − 1, and

X2(k) =
N−1∑
n=0

x2(n)W kn
N for 0 ≤ k ≤ N − 1.

A linear combination of x1(n) and x2(n) is given by y(n) =
αx1(n) + βx2(n), where α and β are arbitrary constants. The
DFT of y(n) is given by

Y (k) =
N−!∑
n=0

y(n)W kn
N

=
N−1∑
n=0

(αx1(n) + βx2(n))W kn
N for 0 ≤ k ≤ N − 1

=
N−1∑
n=0

αx1(n)W kn
N +

N−1∑
n=0

βx2(n)W kn
N

= α

N−1∑
n=0

x1(n)W kn
N + β

N−1∑
n=0

x1(n)W kn
N

= αX1(k) + βX2(k) for 0 ≤ k ≤ N − 1,

which is a linear combination of the DFTs of x1(n) and x2(n).
Therefore the DFT is a linear operator.

3.3 Discrete Fourier Transform Properties 61

(ii) Circular Shift Property: If x(n) has DFT X(k) then the
DFT of the circular shift of x1(n) = x(〈n − n0〉N) is given
by X1(k) = W kn0X(k).

Proof.

X1(k) =
N−1∑
n=0

x1(n)W kn
N

=
N−1∑
n=0

x(〈n − n0〉N)W kn
n for 0 ≤ k ≤ N − 1

Let m = n − n0, then

X1(k) =
N−1∑
m=0

x(〈m〉N)W k(m+n0)
n

= W kn0
N

N−1∑
m=0

x(〈m〉N)W km
N for 0 ≤ k ≤ N − 1

= W kn0
N X(k) for 0 ≤ k ≤ N − 1.

(iii) Frequency Shift: If x(n) has DFT X(k) then the DFT of
x2(n) = W−k0n

N x(n) is given by X2(k) = X(〈k − k0〉N).

Proof.

X2(k) =
N−1∑
n=0

x2(n)W kn
N

=
N−1∑
n=0

x(n)W−k0n
N W kn

n for 0 ≤ k ≤ N − 1

=
N−1∑
n=0

x(n)W (k−k0)
N = X(〈k − k0〉N).

(iv) Circular Convolution: If y(n) is a circular convolu-
tion of two sequences x(n) and h(n), i.e., y(n) =∑N−1

m=0 x(m)h(〈n − m〉N) then the DFT of y(n) is given by
Y (k) = X(k)H(k).

62 The Transform Domain Analysis: The Discrete Fourier Transform

Proof.

Y (k) =
N−1∑
n=0

y(n)W kn
N

=
N−1∑
n=0

N−1∑
m=0

x(m)h(〈n − m〉N)W kn
N for 0 ≤ k ≤ N − 1.

Substituting l = 〈n − m〉N and therefore n = 〈l + m〉N and
changing the order of summation

Y (k) =
N−1∑
n=0

N−1∑
m=0

x(m)h(l)W (l+m)k
N

=
N−1∑
m=0

x(m)W km
N

N−1∑
n=0

h(l)W kl
N

= X(k)H(k) for 0 ≤ k ≤ N − 1.

(v) Modulation: If y(n) is the modulation product of two
sequences x1(n) and x2(n), i.e., y(n) = x1(n)x2(n), then the
DFT of y(n) is the frequency convolution of the DFT of x1(n)
and the DFT of x2(n), i.e., Y (k) = 1

N

∑N−1
m=0 X1(l)X2(k − l).

Proof.

Y (k) =
N−1∑
n=0

y(n)W kn
N

=
N−1∑
n=0

x1(n)x2(n)W kn
N for 0 ≤ k ≤ N − 1.

But

x1(n) =
1
N

N−1∑
l=0

X1(l)W−nl
N for 0 ≤ n ≤ N − 1.

Substituting we get

Y (k) =
N−1∑
n=0

(
1
N

N−1∑
l=0

X1(l)W−nl
N

)
x2(n)W kn

N .

3.4 Circular Convolution 63

Interchanging the order of summation

Y (k) =
1
N

N−1∑
l=0

X1(l)
N−1∑
n=0

x2(n)W−nl
N W kn

N

=
1
N

N−1∑
l=0

X1(l)
N−1∑
n=0

x2(n)W (k−l)n
N

Y (k) =
1
N

N−1∑
l=0

X1(l)X2(k − l).

(vi) Parseval’s Relation: If the DFT of x(n) is X(k) the Parseval’s
relation is given by

∑N−1
n=0 |x(n)|2 = 1

N

∑N−1
k=0 |X(k)|2.

Proof.

N−1∑
n=0

|x(n)|2 =
N−1∑
n=0

x(n)x∗(n) =
N−1∑
n=0

1
N

N−1∑
k=0

X(k)W−kn
N x∗(n)

=
1
N

N−1∑
k=0

X(k)
N−1∑
n=0

x∗(n)W−kn
N

=
1
N

N−1∑
k=0

X(k)

(
N−1∑
n=0

x(n)W kn
N

)∗

=
1
N

N−1∑
k=0

X(k)X∗(k) =
1
N

N−1∑
k=0

|X(k)|2.

3.4 Circular Convolution

The result of a circular convolution of two sequences each of length N

is also of length N . This is why it is referred to as N -point circular
convolution. To emphasize that it is N -point and to differentiate it
with linear convolution the notation used for circular convolution of
two sequences x(n) and h(n), each of length N is x(n) ©N h(n).

64 The Transform Domain Analysis: The Discrete Fourier Transform

3.4.1 Graphical Implementation

In Section 3.3, we defined a circular shift to account for the shift of
samples in a finite length sequence that has been defined over a specified
length. Samples cannot be shifted into an undefined range and hence
they are shifted in a cyclic manner. For a right shift the sample shifted
from the last location move to the first location and every other sample
moves one position in a counter-clockwise direction. Equation (3.9)
represents circular convolution.

y(n) =
N−1∑
m=0

x(m)h(〈n − m〉N). (3.9)

In the implementation of circular convolution, there is time reversal and
circular shift of one sequence, in this case when n is zero, h(〈−m〉N).
For the time reversal of the sequence h(n), the sample h(0) retains
its location as a reference and the remaining samples are mapped in
the mirror image as h(−n). From here the time reversed sequence is
circularly shifted n samples to the right as h(〈n − m〉N). For each shift
n, the sum of products is obtained to give the output sample y(n). This
operation is clarified in Example 3.7.

Example 3.7. Determine the circular convolution of two length 4
sequences given by w(n) = [2,1.5,1,0.5] and v(n) = [1,0,1,0] for 0 ≤
n ≤ 3

y(n) =
N−1∑
m=0

v(m)w(〈n − m〉N).

The two sequences represented graphically are shown in Figure 3.5.

3.4.2 Computation using Matrices

In this section, we will show the computation of circular convolution
using matrices for two length-4 sequences. The expression for circu-
lar convolution of a sequence h(n) and another sequence x(n) each of

3.4 Circular Convolution 65

(a)

(b)

Fig. 3.5 (a) Sequences for circular convolution. (b) Graphical circular convolution.

66 The Transform Domain Analysis: The Discrete Fourier Transform

length 4 is derived from Equation (3.9) and is given by

y(n) =
3∑

m=0

x(m)h(〈n − m〉4). (3.10)

This equation can be expressed in matrix form as follows:

y(0)
y(1)
y(2)
y(3)

 =

h(0) h(〈−1〉4) h(〈−2〉4) h(〈−3〉4)
h(1) h(0) h(〈−1〉4) h(〈−2〉4)
h(2) h(1) h(0) h(〈−1〉4)
h(3) h(2) h(1) h(0)

x(0)
x(1)
x(2)
x(3)

 .

If we use the relation that h(〈−n〉N) = h(N − n), we get

y(0)
y(1)
y(2)
y(3)

 =

h(0) h(3) h(2) h(1)
h(1) h(0) h(3) h(2)
h(2) h(1) h(0) h(3)
h(3) h(2) h(1) h(0)

x(0)
x(1)
x(2)
x(3)

 . (3.11)

It is very easy to generate the elements of the H-matrix in Equa-
tion (3.11) if one observes that the elements in each diagonal are equal
and that each succeeding row is a circular shift of previous row. We
can show how to apply this by re-doing Example 3.7 in Example 3.8
using the concept of a circulant matrix.

Example 3.8. Determine the circular convolution of two length-4
sequences given by x(n) = [2 1.5 1 0.5] and h(n) = [1 0 1 0] for 0 ≤ n ≤ 3
using a circulant matrix.

Solution

y(n) =
∑3

m=0 x(m)h(〈n − m〉4) can be written in matrix form using
the concept of a circulant matrix as

y(0)
y(1)
y(2)
y(3)

 =

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

2
1.5
1

0.5

 =

3
2
3
2

 .

3.4 Circular Convolution 67

3.4.3 MATLAB Computation of Circular Convolution

The MATLAB function that is used to implement circular convolution
is CCONV and the syntax is c = cconv(a,b,n), where a and b are the
vectors to be convolved and n is the length of the resulting vector. If n

is omitted the function defaults to length(a) + length(b) − 1 and the
circular convolution becomes equivalent to linear convolution.

Program 3.4

% Program to compute circular convolution

x = input(‘Input first sequence as a row matrix x = ’);

h = input(‘Input second sequence as a row matrix h = ’);

N = input(‘Desired length of output sequence N = ’);

k = 0:1:N-1;

% Plot the first Sequence

subplot(3,1,1)

stem(k,x,‘o’);

title(‘First sequence’);

xlabel(‘Time index n’); ylabel(‘Amplitude’);

% Plot the second Sequence

subplot(3,1,2)

stem(k,h,’o’);

title(‘First sequence’);

xlabel(‘Time index n’); ylabel(‘Amplitude’);

c = cconv(x,h,N);

subplot(3,1,3)

stem(k,c,‘o’);

title(‘First sequence’);

xlabel(‘Time index n’); ylabel(‘Amplitude’);

Example 3.9. Determine the circular convolution of two length-4
sequences given by x(n) = [2 1.5 1 0.5] and h(n) = [1 0 1 0] for 0 ≤ n ≤ 3
using MATLAB functions.

Solution
Use Program 3.4 above to obtain the following results (see Figure 3.6).

68 The Transform Domain Analysis: The Discrete Fourier Transform

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2
First sequence

Time index n

A
m

pl
itu

de

0 0.5 1 1.5 2 2.5 3
0

0.5

1
Second Sequence

Time index n

A
m

pl
itu

de

0 0.5 1 1.5 2 2.5 3
0

1

2

3
Result of Circular Convolution

Time index n

A
m

pl
itu

de

Fig. 3.6 MATLAB implementation of circular convolution.

3.4.4 DFT Implementation of Circular Convolution

The advantage of implementing circular convolution using the DFT
route is due to the use of the efficient and fast FFT algorithm that
is employed in the computation of the DFT. The DFTs of the time
domain sequence are multiplied and their IDFT is computed to obtain
the circular convolution. This is summarized in Figure 3.7.

Programs 3.1 and 3.2 can be modified and used to implement cir-
cular convolution.

3.5 The Fast Fourier Transform

The computation of the DTFT using DSP processors is not feasible
as the DTFT is a continuous function of frequency that would require

3.5 The Fast Fourier Transform 69

Fig. 3.7 DFT implementation of circular convolution.

an infinite amount of memory and infinite time to process an infinite
number of samples. In order to solve this problem a finite number of
samples of the DTFT in the frequency domain are taken for processing
in what is referred to as the DFT.

The DFT is a finite length transform of a finite length sequence and
would require a finite amount of memory to store the samples and a
finite amount of time to process the samples. Sometimes the length of
the sequence and the transform are too long such that the processing
time required is too long and the memory required to store the samples
is too large. Such sequences cannot be processed in DSP processors in
real-time. It is possible to use some properties of the DFT to reduce
the computation time and the memory required. The transforms that
are formed after such simplification are referred to as the Fast Fourier
Transforms (FFT). There are several version of the FFTs but we will
focus only on the Decimation in Time FFT algorithm.

In order to develop the FFT algorithm, we will first look at the
properties of the complex function W kn

N that can be used for its sim-
plification.

Properties the complex function W kn
N

(i) If N is the length of the sequence then

WnN
N = W kN

N = e−j2πkN/N = e−j2πk = 1 = W 0
N . (3.12)

(ii) The complex function W kn
N is periodic with respect to n.

W
k(n+rN)
N = W kn

N W rkN
N = W kn

N for − ∞ < r < ∞.

(3.13)

70 The Transform Domain Analysis: The Discrete Fourier Transform

(iii) The complex function W kn
N is periodic with respect to k.

W
n(k+rN)
N = W kn

N W rnN
N = W kn

N for − ∞ < r < ∞.
(3.14)

(iv) The even samples of the N -point complex sequence W kn
N can

be expressed as N/2-point sequence W kr
N/2, where n = 2r.

W kn
N = W 2kr

N = e2(−j2πkr/N)
= e−j2πkr/N/2 = W kr

N/2. (3.15)

Using these properties it is easy to show that a sequence
of length N has a DFT that is periodic, i.e.,

X(k + N) = X(k). (3.16)

3.5.1 The Decimation-in-Time FFT Algorithm

The Fast Fourier Transform (FFT) is used to compute an N -Point DFT
by computing smaller-size DFTs and taking advantage of the periodic-
ity and symmetry properties of the complex function W kn

N . Consider a
sequence x(n) of length N , where N is a power of 2 (i.e., N = 2µ). In
Equation (3.3) we have defined the DFT of a sequence x(n) as

X(k) =
N−1∑
n=0

x(n)W kn
N for 0 ≤ k ≤ N − 1, (3.17)

where WN = e−j2π/N .
The computation of X(k) requires N2 complex multiplications and

N(N − 1) complex additions.

The process of decimation-in-time

(i) Computation of X(k)
If N is a power of 2 it is possible to decimate x(n) into N/2-
point sequences such that one has samples which are even
numbered and the other has samples that are odd numbered.

X(k) =
∑

n even

x(n)W kn
N +

∑
n odd

x(n)W kn
N

or

X(k) =

N
2 −1∑
r=0

x(2r)W k2r
N +

N
2 −1∑
r=0

x(2r + 1)W k(2r+1)
N . (3.18)

3.5 The Fast Fourier Transform 71

Applying the properties of the complex function W kn
N we can

write

X(k) =

N
2 −1∑
r=0

x(2r)WN/2
kr + W k

N

N
2 −1∑
r=0

x(2r + 1)WN/2
kr

(3.19)
or

X(k) = Xo(k) + W k
NX1(k), (3.20)

where X0(k) and X1(k) are N/2-point DFTs and x0(n) =
x(2r) and x1(n) = x(2r + 1). For N = 8 eight equations can
be written relating N -point DFT X(k) to N/2-point DFTs
X0(k) and X1(k).

X(0) = X0(0) + W 0
NX1(0)

X(1) = X0(1) + W 1
NX1(1)

X(2) = X0(2) + W 2
NX1(2)

X(3) = X0(3) + W 3
NX1(3)

X(4) = X0(0) + W 4
NX1(0)

X(5) = X0(1) + W 5
NX1(1)

X(6) = X0(2) + W 6
NX1(2)

X(7) = X0(3) + W 7
NX1(3)

(3.21)

A flow graph representation of Equation (3.21) is shown in
Figure 3.8.

The computation of the N -point DFT using the modified
scheme requires two N/2-point DFTs which are combined
with N complex multiplications and N complex additions.
The total number of complex multiplications is 2

(
N
2

)2 +
N = N2

2 + N and the total number of complex additions is
2
(

N
2 − 1

)(
N
2

)
+ N = N2

2 . Compared to the original compu-
tation using Equation (3.7) the percentage reduction for both
complex multiplication and additions is close to 50% for large
values of N .

72 The Transform Domain Analysis: The Discrete Fourier Transform

Fig. 3.8 Flow graph of first stage of decimation-in-time FFT algorithm.

(ii) Computation of X0(k)
Further decimation of x(n) can be achieved as long as N/2
is a power of 2. It is possible to express X0(k) and X1(k) in
terms of N/4-point DFTs as follows:

X0[k] = X00[〈k〉N/4] + W k
N/2X01[〈k〉N/4], (3.22)

where X00(k) and X01(k) are N/4-point DFTs and x00(n) =
x0(2r) = x(4m) and x01(n) = x0(2r) = x(4m + 2). For N =
8 eight four equations can be written relating N/2-point DFT
X0(k) to two N/4-point DFTs X00(k) and X01(k).

X0(0) = X00(0) + W 0
N/2X01(0)

X0(1) = X00(1) + W 1
N/2X01(1)

X0(2) = X00(0) + W 2
N/2X01(0)

X0(3) = X00(1) + W 4
N/2X01(1)

(3.23)

A flow graph representation of Equation (3.22) is shown in
Figure 3.9.

3.5 The Fast Fourier Transform 73

Fig. 3.9 Flow graph N/2-point decimation-in-time FFT algorithm to produce X0(k).

(iii) Computation of X1(k)

X1[k] = X10[〈k〉N/4] + W k
N/2X11[〈k〉N/4], (3.24)

where X10(k) and X11(k) are N/4-point DFTs and x10(n) =
x1(2r) = x(4m + 1) and x11(n) = x1(2r + 1) = x(4m + 3).
For N = 8 eight four equations can be written relating
N/2-point DFT X1(k) to two N/4-point DFTs X10(k) and
X11(k).

X1(0) = X10(0) + W 0
N/2X11(0)

X1(1) = X10(1) + W 1
N/2X11(1)

X1(2) = X10(0) + W 2
N/2X11(0)

X1(3) = X10(1) + W 4
N/2X11(1)

(3.25)

A flow graph representation of Equation (3.24) is shown in
Figure 3.10.

(iv) The Combined Flow Graph
When the flow graphs for the computation of X0(k) (Fig-
ure 3.9) and X1(k) (Figure 3.10) are substituted into the
flow graph for the computation of X(k) (Figure 3.8), we get
the flow graph of Figure 3.11.

(v) A Two-point DFT
For N = 8 the N/4-point DFT is a two-point DFT
given by X00(k) =

∑N−1
n=0 x00(n)W kn

N =
∑1

n=0 x00(n)W kn
2 for

0 ≤ k ≤ 1,

74 The Transform Domain Analysis: The Discrete Fourier Transform

Fig. 3.10 Flow graph N/2-point decimation-in-time FFT algorithm to produce X1(k).

Fig. 3.11 Combined flow graph for the decimation-in-time FFT algorithm.

which can be simplified to

X00(0) = x00(0) + x00(1) = x(0) + x(4), and

X00(1) = x00(0) − x00(1) = x(0) − x(4).
(3.26)

The flow graph to represent Equation (3.26) is shown in
Figure 3.12.

3.5 The Fast Fourier Transform 75

Fig. 3.12 A flow graph of a two-point DFT.

Fig. 3.13 The complete flow graph for the decimation-in-time FFT.

(vi) The Complete Flow Graph
The flow graph for the two point DFT can now substitute
the N/4-point DFT in the flow graph of Figure 3.11 to give
to form the flow graph shown in Figure 3.13.

It can be observed that the complete flow graph has three
stages of computation; first to compute four two-point DFTs,
then two four-point DFTs and finally one eight-point DFT.
The number of computation stages depends on N and is given
by log2 N . For N = 8, log2 8 = 3. On each computation stage
there are N multiplications and N additions. Thus the orig-
inal number of complex multiplications N2 and the origi-
nal number of complex additions N(N − 1) is significantly
reduced to N log2 N for each operation. For large values of N

76 The Transform Domain Analysis: The Discrete Fourier Transform

Table 3.2 Reduction in arithmetic operations.

N
Original number of additions
and multiplications (≈ N2)

Number of additions and
multiplications after decimation

in time (= N log2 N) Reduction (%)
8 64 24 62.5

64 4096 384 90.6
512 262144 4608 98.2

the reduction in the number of complex operations is huge
compared to when N is small as shown on Table 3.2.

(vii) Further Reduction
On careful observation of the structure of Figure 3.13 one
notices that it is possible to reduce the number of multipli-
cation further by doing one multiplication before branching
rather than doing two multiplications in the branches. One
must also use the fact that W 7

8 = W 4
8 ∗ W 3

8 , W 6
8 = W 4

8 ∗ W 2
8 ,

W 5
N = W 4

N ∗ W 1
N , W 4

N = −1. The new flow graph that is cre-
ated is shown in Figure 3.14.

From Figure 3.14, we notice that the number has been
reduced further by 50% to N

2 log2 N . In fact when one
takes into account W 0

N = 1 the number of multiplications is
reduced by more than 50%.

Fig. 3.14 The FFT flow graph with further reduction.

3.5 The Fast Fourier Transform 77

Fig. 3.15 The butterfly computational module.

3.5.2 Properties of the FFT Flow Graphs

(a) The butterfly computation module: It can be observed from
Figure 3.13 that there is a basic two-input two-output com-
putational unit that is repeated 8 times in each stage. It has
the structure of a butterfly and is referred to as a butterfly
computational unit. The advantage of the butterfly compu-
tational unit is that the same butterfly function or subrou-
tine can be called at each stage of computation thus making
the FFT program simple and short. A general flow graph
for the butterfly computational unit can be developed if we
make the following observations:

(i) There are N input variables and N output variables
at each stage of computation.

(ii) If the number of computational stages is l then 0 ≤
l ≤ µ, where µ = log2 N .

(iii) Define the input variable to the butterfly as νl(m) and
the output variable as and υl+1(m), where 0 ≤ m ≤
N − 1. Notice the following identities ν1(0) = x(0),
ν1(1) = x(4), υ4(0) = X(0), and υ4(1) = X(4).

A general computational butterfly is then given in
Figure 3.15.

It should be noted that α and β are selected values of m.
The parameter � can be calculated as � = κγ, where κ is N

divided by the number of DFT computation points of each
stage (2-points for stage 1, 4 for stage 2, and 8 for stage 3)

78 The Transform Domain Analysis: The Discrete Fourier Transform

and γ is the number of the butterfly counting from 0. The
parameter � cannot exceed N/2.

We can express the butterfly output as follows:

υ�+1(α) = νl(α) + W �
Nνl(β)

υ�+1(β) = νl(α) + W
�+N

2
N νl(β).

(3.27)

Equation (3.27) can be simplified to

υ�+1(α) = νl(α) + W �
Nνl(β)

υ�+1(β) = νl(α) − W �
Nνl(β).

(3.28)

With this simplification Figure 3.15 can be redrawn such
that the two complex multiplications in the branches are
replaced by a single complex multiplication before branch-
ing as shown in Figure 3.16.

When this simplification of the butterfly computational
module is applied to the flow graph of Figure 3.13 the flow
graph of Figure 3.14 is obtained. This confirms the earlier
observation and simplification that were made to achieve the
flow graph of Figure 3.14.

(b) In-place computation: It is clear that the same butterfly
module is used for computation at each stage. The input that
is used for computation in a current stage is not required in
the next stage. The current output can be stored in the same
memory location to replace the input. Such computation that
makes use of the same memory for the input and output is
referred to as in-place computation. It achieves big saving in
memory usage.

Fig. 3.16 A simplified butterfly computational module.

3.6 Problems 79

Table 3.3 Order of input samples.

Location of sample
in decimal

Location of sample
in binary

The sample
number n in x(n)

0 000 000
1 001 100
2 010 010
3 011 110
4 100 001
5 101 101
6 110 011
7 111 111

(c) Order of samples in input and output sequences: It can
be seen from Figure 3.14 that the order of the samples in
the input sequence is not in sequential order as the output
sequence. It may be difficult to predict where the samples go
especially when the sequence length is large. In the exam-
ination of the order of the samples we can see the pattern
reproduced in Table 3.3.

It easy to see that the sample that is located at (n1n2n3)
is x(n3n2n1), where n1n2 and n3 are the bits that form the
binary number representing the location. The location of the
sample and the sample number are in bit reversed order.

(d) MATLAB computation: Programs 3.1 and 3.2 use the
MATLAB fft and ifft functions to compute the DFT and
the IDFT, respectively.

3.6 Problems

3.6.1 Suppose x(n) is a complex sequence of length N with
an N -point DFT X(k). Find the DFTs of the following
sequences in terms of X(k).

(i) x∗(n) (ii) Re{x(n)} (iii) jImx(n).

3.6.2 Given a real x(n) sequence of length N with an N -point DFT
X(k) prove the following symmetry relations

(i) X(k) = X∗(〈−k〉N).

(ii) Re X(k) = ReX(〈−k〉N).

(iii) Im X(k) = −ImX(〈−k〉N).

80 The Transform Domain Analysis: The Discrete Fourier Transform

3.6.3 Two length-4 sequences are given by x(n) = [1,2,0,1] for
0 ≤ n ≤ 3 and h(n) = [2,1,0,1] for 0 ≤ n ≤ 3. Determine the
following

(i) X(k) and H(k) for 0 ≤ k ≤ 3,
(ii) the product Y (k) = X(k)H(k) for 0 ≤ k ≤ 3,
(iii) the sequence y(n) the IDFT of Y (k),
(iv) the circular convolution of x(n) and h(n) using the

circulant matrix.

3.6.4 A sequence h(n) has a DFT H(k) = {1 + 2j,0.5 − j,3,0.5 +
j,1 − 2j}. Obtain the DFT of the sequence g(n) which is
related to h(n) according to g(n) = h(〈n − 2〉5) using the
DFT properties.

3.6.5 A length-8 sequence is given by w(n) = {2,0,1,3,2,1,4,1}. A
DFT of another sequence v(n) is related to the DFT of w(n)
according to V (k) = W (〈k − 4〉8). Determine the sequence
v(n) without computing the DFTs.

3.6.6 A sequence is given by w(n) = {2,0,1,3,2,1,4,1}. Determine
the following without computing the DFT

(i) X(0), (ii) X(4), (iii)
∑7

n=0 X(k), and (iv)
∑7

n=0 |X(k)|2.
3.6.7 The 6 sample of a 12-point DFT of a real sequence v(n)

are given as V (k) = {1 + j,3,7 − j,2,3 + j,1, . . .}. Find the
remaining DFT samples.

3.6.8 The DFT of a length-4 sequence is to be computed using the
decimation-in-time FFT algorithm. Develop the flow graph
for the computation from first principles. What is the mini-
mum number of additions and multiplications that is achiev-
able. Use the flow graph to compute the DFT of the sequence
x(n) = [1,0,1,0].

3.6.9 A program has been written to compute the DFT of a
sequence. It is intended to use the same program to compute
the inverse DFT of another sequence. Using block diagrams
explain how this can be achieved.

3.6.10 Using MATLAB write a program to compute and plot the
DFT magnitude and phase of any sequence of any length
including sequences whose length are not power of 2.

4
The Transform Domain Analysis: The

z-Transform

4.1 Introduction to the z-Transform

A powerful tool for the analysis of analog signals and systems is the
Laplace transform. Through sampling it should be possible to develop
a similar tool for discrete-time signals and systems.

The Laplace transform of an analog signal x(t) is given by

X(s) =
∫ ∞

−∞
x(t)e−stdt, (4.1)

where s = σ + jΩ.
If the analog signal is sampled at a rate 1/T , where T is the sampling

interval, to obtain a discrete-time signal then Equation (4.1) becomes

X ′(s) =
∞∑

n=−∞
x′(nT)e−(σ+jΩ)nT =

∞∑
n=−∞

x′(nT)(eσT ejΩT)−n. (4.2)

If we define r = eσT ,θ = ΩT radians (notice that θ has units of phase
angle) and if we define the sample x(n) = x′(nT) Equation (4.2)
reduces to

X ′(s) =
∞∑

n=−∞
x(n)(rejθ)−n.

We define the z-plane to be the plane spanned by z = rejθ for −π ≤
θ < π and X ′(s) becomes

X(z) =
∞∑

m=−∞
x(n)z−n, (4.3)

where X(z) represents the z-transform of the discrete-time signal x(n).

81

82 The Transform Domain Analysis: The z-Transform

Table 4.1 Some common z-transforms.

Sequence z-transform ROC
δ(n) 1 All values of z

µ(n)
1

1 − z−1
|z| > 1

αnµ(n)
1

1 − αz−1
|z| > α

−αnµ(−n − 1)
1

1 − αz−1
|z| < α

ce−αnµ(n)
c

1 − e−αz−1
|z| > e−α

rn cos(ω0n)µ(n)
1 − (r cos(ω0))z−1

1 − (2r cos(ω0))z−1 + r2z−2
|z| > r

rn sin(ω0n)µ(n)
1 − (r sin(ω0))z−1

1 − (2r cos(ω0))z−1 + r2z−2
|z| > r

X(z) is a complex variable in a complex plane. From Equation (4.3)
we notice that the z-transform is represented by a power series.
The z-transform will exist only where the power series converges.
The region in the z-plane where the power series converges is called
the region of convergence (ROC). We will look at z-transforms of
some discrete-time signals and explore their regions of convergence
(see Table 4.1).

Example 4.1. A unit sample sequence given by

x1(n) = δ(n) =
{

1 n = 0
0 elsewhere.

(4.4)

The z-transform is given by

X1(z) =
∞∑

n=−∞
x1(n)z−n

=
∞∑

n=−∞
δ(n)z−n = 1 for all values of z. (4.5)

ROC is everywhere on the z-plane.

4.1 Introduction to the z-Transform 83

Fig. 4.1 ROC for a unit step sequence.

Example 4.2. A unit step sequence is given by

x2(n) = µ(n) =
{

1 n ≥ 0
0 n < 0.

(4.6)

The z-transform is given by

X2(z) =
∞∑

n=−∞
x2(n)z−n =

∞∑
n=−∞

µ(n)z−n

=
∞∑

n=0

z−n =
1

1 − z−1 for z > 1. (4.7)

ROC is the region for which z > 1. X2(z) has a zero at z = 0 and
a pole at z = 1, Figure 4.1. ROC is bounded by the circle through the
pole on the inside.

The unit step sequence is a causal sequence which means that unit
step sequence has no nonzero valued samples for negative values on n.
Notice that the ROC is exterior to a circle of unit radius.

Example 4.3. A causal exponential sequence is given by

x3(n) = αnµ(n), (4.8)

where µ(n) is a unit step sequence.

84 The Transform Domain Analysis: The z-Transform

X3(z) =
∞∑

n=−∞
x3(n)z−n =

∞∑
n=−∞

αnµ(n)z−n =
∞∑

n=0

αnz−n

=
∞∑

n=0

(αz−1)n =
1

1 − αz−1 for |αz−1| < 1. (4.9)

Hence X3(z) = 1
1−αz−1 and ROC is |z| > α.

X3(z) has a pole at z = α and a zero at z = 0. The ROC is similar
to that of Figure 4.1 except that the pole position is at z = α instead
of z = 1.

The causal exponential sequence has a region of convergence that
is also exterior to a circle of radius α. In general, whenever a sequence
is causal or right-sided, the region of convergence of its z-transform is
always exterior to a circle of some specified radius.

A right-sided sequence is that sequence that has no nonzero val-
ued samples to the left of a reference sample m. The reference sample
m may be negative or positive. If it is positive then the sequence is
causal.

Example 4.4. An anti-causal sequence is given by

x4(n) = −αnµ(−n − 1), (4.10)

where µ(n) is a unit step sequence. Notice that µ(−n − 1) has unit
values to the left of n=0 and has zero values elsewhere. The neg-
ative sign on the sequence has been intentionally placed there for
the sake of comparison which will become clear after finding the
z-transform.

X4(z) =
∞∑

n=−∞
x3(n)z−n =

∞∑
n=−∞

−αnµ(−n − 1)z−n

=
−1∑

n=−∞
−αnz−n.

4.1 Introduction to the z-Transform 85

Fig. 4.2 ROC for an anti-causal exponential sequence.

Let m = −n

X4(z) =
∞∑

m=1

−α−mzm = α−1z1
∞∑

m=0

−α−mzm

= −α−1z1 × 1
1 − α−1z1 for |α−1z1| < 1,

which can be written as

X4(z) =
1

1 − αz−1 for |Z| < α. (4.11)

X4(z) has a zero at the origin and a pole at the z = α. The ROC is
bounded by the circle through the pole on the outside (see Figure 4.2).

Notice that the anti-causal sequence has a region of convergence that
is interior to a circle of radius α. Whenever a sequence is anti-causal or
left-sided the region of convergence of its z-transform is always interior
to a circle of some specified radius.

A left-sided sequence is that sequence that has no nonzero valued
samples to the right of a reference sample m. The reference sample
m may be negative or positive. If it is negative then the sequence is
anti-causal.

It should also be noted that the z-transforms of X3(z) and X4(z)
are the same except for their regions of convergence. In order to specify
the z-transform of a unique sequence the ROC must be given.

86 The Transform Domain Analysis: The z-Transform

Example 4.5. Consider a two sided sequence given by

x5(n) = αnµ(n) − βnµ(−1 − n).

From Examples 4.3 and 4.4 we note that the first term after the equal-
ity sign is similar to x3(z) and the second term is similar to x4(n).
Therefore the z-transfrom of x5(n) is given by

X(z) =
1

1 − αz−1 +
1

1 − βz−1 for |z| > α and for |z| < β.

(4.12)
The region of convergence will be where the two regions of convergence
overlap. Where there is no overlap then there is no region of conver-
gence. It is also noted that ROC is bounded by the pole positions.

4.2 The Inverse z-Transform

The z-transform of the sequence h(n) is given by

H(z) =
∞∑

n=−∞
h(n)z−n. (4.13)

However, if we define z = rejω then we obtain

H(rejω) =
ℵ∑

n=−∞
h(n)r−ne−jωn.

This implies that the z-transform of h(n) is the same as the Fourier
transform of the modified sequence h(n)r−n. We can obtain the inverse
Fourier transform using previous results thus

h(n)r−n =
1
2π

∫ ∞

−∞
H(rejω)ejωndω.

If we substitute for z = rejω the above equation becomes a contour
integral given by

h(n) =
1

2πj

∮
C′

H(z)zn−1dz, (4.14)

where C ′ is a contour of integration in the counter-clockwise direction
defined by |z| = r. The integral remains unchanged when C ′ is replaced
by another C that encircles the point z = 0 in the region of convergence.

4.2 The Inverse z-Transform 87

4.2.1 The Method of Residues [3]

The contour integral of Equation (4.14) can be evaluated using the
Cauchy residue theorem given by

h(n) =
∑

[residue of H(z)zn−1

at the pole of H(z)zn−1 inside C]. (4.15)

The residue of H(z)zn−1 at the poles z = pl can be calculated from
the formula

Rz=pl
=

dm−1

dzm−1

[
(z − pl)m

(m − 1)!
H(z)zn−1

]
z=pl

, m ≥ 1, (4.16)

where m is the order of the pole at z = pl.
This method of evaluating the inverse z-transform is referred to as

the method of residues.

Example 4.6. Determine the inverse z-transform of X(z) =
1

(z−2)(z−4) for |z| > 2 using the method of residues.

Solution

X(z)zn−1 =
zn−1

(z − 2)(z − 4)
.

The function has a simple pole at z = 0 when n = 0 and no poles at
z = 0 for n > 0. There are also simple poles at z = 2, and at z = 4 for
all values of n. The residue at z = 0 is given by

Resz=0 =
z

1!
zn−1

(z − 2)(z − 4)
=

1
8

for n = 0,

Resz=2 =
z − 2

1!
zn−1

(z − 2)(z − 4)
= −1

4
for n = 0

and

Resz=4 =
z − 4

1!
zn−1

(z − 2)(z − 4)
=

1
8

for n = 0

x(0) =
1
8

− 1
4

+
1
8

= 0

88 The Transform Domain Analysis: The z-Transform

For n > 0

Resz=2 =
z − 2

1!
zn−1

(z − 2)(z − 4)
= −1

2
2n−1,

Resz=4 =
z − 4

1!
zn−1

(z − 2)(z − 4)
=

1
2
4n−1.

x(n) = Resz=2 + Resz=4 =
1
2
(4n−1 − 2n−1) for n ≥ 0 or

=
1
2
(4n−1 − 2n−1)µ(n).

4.2.2 Method using Partial Fraction Expansion [5]

There are other simpler methods for finding the inverse z-transform
involving partial fraction expansion and long division. If H(z) is ratio-
nal function which is a z-transform of a causal sequence h(n) then it
may be easy to express H(z) as a sum of partial fractions involving
simpler terms whose inverse z-transforms can be read off from tables.
Expressing H(z) as rational function

H(z) =
C(z)
D(z)

, (4.17)

where C(z) and D(z) are polynomials in z−1 of degree M and N ,
respectively. If the degree of C(z) is greater than the degree of D(z)
then divide C(z) by D(z) and obtain

H(z) =
M−N∑
l=0

γlz
−l +

C1(z)
D(z)

. (4.18)

The ratio C1(z)/D(z), where the degree of numerator polynomial is
less than the degree of the denominator polynomial is referred to as a
proper fraction.

4.2.2.1 Partial Fraction Expansion of H(z)
with Simple Poles

We will first consider the case where H(z) is a proper fraction with
simple poles. Simple poles imply that there is only one distinct pole at
each location.

4.2 The Inverse z-Transform 89

Let N distinct poles of H(z) be located at ξk for 1 ≤ k ≤ N . The partial
fraction expansion of H(z) is then given by

H(z) =
N∑

l=1

λl

1 − ξlz−1 , (4.19)

where the constant λl, referred to as the residue is given by

λl = (1 − ξl)H(z)|Z=ξl
. (4.20)

If the ROC is exterior to a circle passing through ξl (i.e., z > |ξl|)
then the inverse z-transform of λl

1−ξlz−1 will be λl(ξl)nµ(n). The inverse
z-transform of H(z) is finally given by

h(n) =
N∑

l=1

λl(ξl)nµ(n). (4.21)

Notice that it is possible to obtain partial fraction expansions as a
function of z (instead of z−1). The approach leads to correct results
but you will not be able to use the table of standard z-transforms
provided in this book.

In the case where ROC is interior to a circle passing through ξl (i.e.,
z < |ξl|) then the inverse z-transform of λl

1−ξlz−1 will be −λl(ξl)nµ(−n −
1), see Example 4.4 in Section 4.1. The inverse z-transform of H(z) is
finally given by

h(n) =
N∑

l=1

−λl(ξl)nµ(−n − 1). (4.22)

It may be possible that ROC is bounded by two poles (i.e., ξk < |z| < ξj ,
then the inverse z-transform will have a combination of causal and anti-
causal sequences depending on whether ROC is exterior or interior to
a circle through the specific pole (see Figure 4.3).

Example 4.7. Determine the inverse z-transform of X(z) = 1
(z−2)(z−4)

for |z| > 2 using the method of partial fraction expansion.

90 The Transform Domain Analysis: The z-Transform

Fig. 4.3 ROC for a sum of a causal and an anti-causal sequences.

Solution

Expressing X(z) as a function of z−1 we get

X(z) =
z−2

(1 − 2z−1)(1 − 4z−1)
for |z| > 2.

Both the numerator and the denominator are second-order polyno-
mials of z−1 and X(z) must be converted to a proper fraction by long
division giving

X(z) =
1
8

(
1 +

6z−1 − 1
(1 − 2z−1)(1 − 4z−1)

)
.

The second term can be expanded using partial fraction expansion as(
6z−1 − 1

(1 − 2z−1)(1 − 4z−1)

)
=

λ1

1 − 2z−1 +
λ2

1 − 4z−1 .

λ1 = (1 − 2z−1)
(

6z−1 − 1
(1 − 2z−1)(1 − 4z−1)

)
|z−1 =

1
2

= −2.

λ2 = (1 − 4z−1)
(

6z−1 − 1
(1 − 2z−1)(1 − 4z−1)

)
|z−1 =

1
4

= 1.

X(z) =
1
8

(
1 +

−2
(1 − 2z−1)

+
1

(1 − 4z−1)

)
.

x(n) =
1
8
δ(n) − 1

4
(2)nµ(n) +

1
8
(4)nµ(n).

4.2 The Inverse z-Transform 91

This result can be shown to be equal to the result of Example 4.6. Notice
that x(0) = 0 giving the same answer as with the residual method. For
n > 0, δ(n) = 0 and the two expressions for x(n) obtained by the two
methods are identical.

4.2.2.2 Partial Fraction Expansion with Multiple Poles

If in general the rational fraction H(z) = C(z)/D(z) is an improper
fraction with the polynomial C(z) having order M it can be reduced
to an expression H(z) =

∑M−N−L
l=0 γlz

−l + C1(z)
D(z) , using long division,

in such a way that the ratio C1(z)/D(z), is a proper fraction with the
polynomial C1(z) having order N − L. It is possible that D(z) may
contain identical multiple poles at z = ξυ. Let the number of identical
poles at z = ξυ be equal to L and the remaining poles be simple poles.
We can express H(z) as follows:

H(z) =
M−N−L∑

l=0

γlz
−l +

N−L∑
l=1

λl

1 − ξlz−1 +
L∑

i=1

χi

(1 − ξυz−1)i
, (4.23)

where the constants λi are the residues and are computed in the same
manner as for simple poles, the constants χI are computed using the
formula

χi =
1

(L − i)!(−ξυ)L−1
dL−1

d(z−1)L−1

× [(1 − ξυz−1)LH(z)
] |z=ξυ for 1 ≤ i ≤ L. (4.24)

4.2.2.3 Method using Long Division

The z-transform of a causal sequence h(n) is a power series of z−1 as
seen in (4.25)

H(z) =
∞∑

n=0

h(n)z−n. (4.25)

The nth sample of the sequence h(n) is the coefficient of z−n. Hence if
a rational function H(z) = C(z)/D(z) is expressed as a power series of
z−n the coefficients of the series represent the sequence. H(z) can be
expressed as a power series by long division.

92 The Transform Domain Analysis: The z-Transform

Example 4.8. Determine the inverse z-transform of X(z) = 1
(z−2)(z−4)

for |Z| > 2 using the method of long division.

Solution

We can write

X(z) =
1

(z − 2)(z − 4)
=

z−2

1 − 6z−1 + 8z−2

z−2 − 6z−3 + 28z−4 + 120z−5+

1 − 6z−1 + 8z−2
)
z−2

z−2 − 6z−3 + 8z−4

+6z−3 − 8z−4

6z−3 − 36z−4 + 48z−5

+ 28z−4 − 48z−5

+ 28z−4 − 168z−5 + 224z−6

+ 120z−5 − 224z−6

+ 120z−5 − 720z−6 + 960z−7

496z−6 − 960z−7
...........................

The inverse z-transform of X(z) is then given by

x(n) = δ(n − 2) + 6δ(n − 3) + 28δ(n − 4) + 120δ(n − 5) + · · · .

The long division method does not give a closed form expression
while the methods of residue and partial fraction expansion give a
closed form expression.

4.3 Properties of z-transforms

In this section, we give the properties of z-transforms and show the
proofs of a selected number of them. The proofs of the rest are left as
an exercise to the student. The properties simplify the implementations
of certain concepts in the design and implementation of discrete-time
systems (see Table 4.2).

(i) The Linearity Property: The z-transform is a linear transfor-
mation. This can be proved by showing that the z-transform

4.3 Properties of z-transforms 93

Table 4.2 A summary of useful properties of the z-transform [3].

Sequence z-transform ROC
Linearity αx(n) + βy(n) αX(z) + βX(z) Rx ∩ Ry

Time reversal x(−n) X(1/z) 1/Rx

Time-shifting x(n − n0) z−n0X(z) Rx except z = 0

Multiplication by an
exponential sequence

αnx(n) X(z/α) |α|Rx

Differentiation nx(n) −z
dX(z)

dz
Rx except z = ∞

Convolution x(n) ⊗ y(n) X(z)Y (z) Rx ∩ Ry

Conjugation x ∗ (n) X∗(z∗) Rx

Let X(z) = Z{x(n)} with ROC Rx, and Y (z) = Z{y(n)} with ROC Ry .

of a linear combination of two sequences is a linear combina-
tion of their z-transforms.

Proof. Let the linear combination of two sequences x1(n)
and x2(n) be given by y(n) = αx1(n) + βx2(n). Let the
z-transform of x1(n) and x2(n) be X1(z) =

∑∞
n=−∞ x1(n)z−n

and X2(z) =
∑∞

n=−∞ x2(n)z−n. The z-transform of y(n) is
given by

Y (z) =
∞∑

n=−∞
y(n)z−n =

∞∑
n=−∞

(αx1(n) + βx2(n))z−n

= α

∞∑
n=−∞

x1(n)z−n + β

∞∑
n=−∞

x2(n)z−n

αX1(z) + βX2(z) which is a linear combination of the
z-transforms of x1(n) and x2(n).

(ii) The Time Shifting Property: If a sequence x(n) with a
z-transform X(z) is shifted in time by n0, to obtain a new
sequence x1(n) = x(n − n0), then the z-transform of the new
sequence is given by X1(z) = z−n0X(z).

Proof. By definition

X(z) =
∞∑

n=−∞
x(n)z−n

94 The Transform Domain Analysis: The z-Transform

and also

X1(z) =
∞∑

n=−∞
x1(n)z−n =

∞∑
n=−∞

x(n − n0)z−n.

Let m = n − n0. Then

X1(z) =
∞∑

n=−∞
x(m)z−(m+n0)

= z−n0

∞∑
n=−∞

x(m)z−m = z−n0X(z).

(iii) Differentiation Property: If a sequence x(n) has a z-transform
given by X(z) then the sequence nx(n) has a z-transform
given by −z dX(z)

dz .

Proof. By definition X(z) =
∑∞

n=−∞ x(n)z−n. Differentiat-
ing with respect to z gives dX(z)

dz =
∑∞

n=−∞ −nx(n)z−n−1,
which can be written as −z dX(z)

dz =
∑∞

n=−∞ nx(n)z−n. This
shows that −z dX(z)

dz is the z-transform of nx(n).

(iv) The Convolution Property: If a sequence x1(n) has a
z-transform X1(z) and a sequence x2(n) has a z-transform
X2(z) then the z-transform of the sequence x1(n) ⊗ x2(n),
(i.e., convolution of x1(n) and x2(n)) is given by X1(z)X2(z).

Proof. Let

X1(z) =
∞∑

n=−∞
x1(n)z−n

and

X2(z) =
∞∑

n=−∞
x2(n)z−n

X3(z) =
∞∑

n=−∞
x1(n) ⊗ x2(n)z−n

=
∞∑

n=−∞

∞∑
k=−∞

x1(n − k)x2(k)z−n.

4.3 Properties of z-transforms 95

Changing the order of summation we get

X3(z) =
∞∑

k=−∞

∞∑
n=−∞

x1(n − k)x2(k)z−n

=
∞∑

k=−∞
x2(k)

∞∑
n=−∞

x1(n − k)z−n.

Substituting m = n − k we get

X3(z) =
∞∑

k=−∞
x2(k)

∞∑
n=−∞

x1(m)z−(m+k)

=
∞∑

k=−∞
x2(k)z−k

∞∑
n=−∞

x1(m)z−m = X2(z)X1(z)

(v) Multiplication by an Exponential Sequence: If a sequence
x(n) has a z-transform X(z), then a sequence αnx(n) has a
z-transform X(z/α).

Proof. Let

X(z) =
∞∑

n=−∞
x(n)z−n

and

X1(z) =
∞∑

n=−∞
αnx(n)z−n

=
∞∑

n=−∞
x(n)

(z

α

)−n
= X

(z

α

)

(vi) Time Reversal Property: If a sequence x(n) has a z-transform
X(z), then a sequence x(−n) has a z-transform X(1/z)

Proof. If a sequence x(n) has a z-transform X(z), then a
sequence x(−n) has a z-transform

X1(z) =
∞∑

n=−∞
x(−n)z−n.

96 The Transform Domain Analysis: The z-Transform

Let m = −n. Then

X1(z) =
∞∑

n=−∞
x(m)zm =

∞∑
n=−∞

x(m)
(

1
z

)−m

= X

(
1
z

)
.

(vii) The Conjugation Property: If a sequence x(n) has a
z-transform X(z), then a sequence x∗(n) has a z-transform
X∗(z∗).

Proof. If a sequence x(n) has a z-transform X(z), then a
sequence x∗(n) has a z-transform

X1(z) =
∞∑

n=−∞
x∗(n)z−n

=

(∞∑
n=−∞

x(n)(z∗)−n

)∗
= X∗(z∗).

4.4 Transfer Functions of Discrete-Time Systems

An LTI discrete-time system is characterized by a linear constant coef-
ficients difference equation given by

N∑
k=0

aky(n − k) =
M∑

k=0

bkx(n − k), (4.26)

where x(n) is the input and y(n) is the output of the system, ak and
bk are constant coefficients. The order of the system is the max(N,M).
You can solve for the current output by making y(n) the subject of the
formula.

y(n) =
M∑

k=0

bkx(n − k) −
N∑

k=1

aky(n − k). (4.27)

Such a system has an impulse response of infinite length (IIR) but is
realizable since it is implemented using a finite sum of products terms
from the linear constant coefficient difference equation. It would not be
realizable if it is implemented using the convolution sum of the input
and the infinite length impulse response.

4.5 Poles and Zeros 97

We can obtain the z-transform of the system by using the linearity and
the time-shifting properties as follows:

Y (z)
N∑

k=0

akz
−k = X(z)

M∑
k=0

bkz
−k. (4.28)

The transfer function of the system is obtained as

H(z) =
Y (z)
X(z)

=
∑M

k=0 bkz
−k∑N

k=0 akz−k

=
b0 + b1z

−1 + b2z
−2 + · · · + bMz−M

a0 + a1z−1 + a2z−2 + · · · + aNz−N
. (4.29)

If all the denominator coefficients were zero except a0 = 1, H(z) will
have a transfer function given by H(z) = b0 + b1z

−1 + b2z
−2 + · · · +

bMz−M . This represents the transfer function of a Finite Impulse
Response (FIR) filter. In this case the impulse response will be of
finite length and the coefficients of z−1 represent the impulse response
samples. Instead of using the numerator coefficient of H(z) we will use
the values of the impulse response to write the z-transform of the FIR
system.

H(z) = h(0) + h(1)z−1 + h(2)z−2 + h(3)z−3 . . .h(M − 1)zM−1.

(4.30)
In the next section, we show how Equations (4.29) and (4.30) can be
used to obtain the realization diagrams for the IIR filters and FIR
filters, respectively. This is made possible because with the z-transform
it is possible to make simple algebraic manipulations.

4.5 Poles and Zeros

The transfer function of a discrete-time system H(z) given by Equa-
tion (4.29) may also be written in factored form as

H(z) =
Y (z)
X(z)

=
∑M

k=0 bkz
−k∑N

k=0 akz−k
= β

∏M
l=1 (1 − ξlz

−1)∏N
l=1 (1 − γlz−1)

. (4.31)

The roots of the numerator polynomial are called zeros since
H(z)|z=ξl

= 0. H(z) has M zeros at z = ξl for 1 ≤ l ≤ M . The roots

98 The Transform Domain Analysis: The z-Transform

of the denominator polynomial are called poles since H(z)|z=ξl
= ∞.

H(z) has N roots at z = γl for 1 ≤ l ≤ N . The LTI system described
in Equation (4.31) is a pole–zero system while the system described by
Equation (4.30) is an all zero system. The poles and zeros may be real
or complex. When they are complex they appear in conjugate pairs.
This is because the coefficients of the transfer function must be real for
the system to be realizable. Sometimes there may be multiple poles.

A MATLAB function z-plane (b,a) can be used to plot the poles
and zeros on the z-plane and relative to a unit circle. The parameters
b and a represent the row matrices of the numerator and denominator
coefficients of the transfer function, respectively. The location of the
poles relative to unit circle gives information about the stability of the
system. For a system to be stable all poles must lie inside the unit circle.

Example 4.9. A causal IIR transfer function is given by H(z) =
3z3+2z2+5

(0.5z+1)(z2+z+0.6) . Determine the stability condition of H(z).

Solution
Find the poles with respect to the unit circle. Factorize the denomina-
tor. Denominator polynomial = (0.5z + 1)(z + 0.5 + j0.59)(z + 0.5 −
j0.59). Pole positions at z = −2, z = −0.5 − j0.59 and −0.5 + j0.59
Pole–zero plot showing only poles.

4.6 Realization Structures 99

There is a pole outside the unit circle and therefore the system is
unstable.

4.6 Realization Structures

In Section 1.3.2, we were introduced to the basic building blocks for
discrete-time systems that were used to implement arithmetic oper-
ations and basic processes like delay. It is possible to use the same
building blocks to realize different structures or block diagram rep-
resentation from the transfer functions such as those represented by
Equations (4.29) and (4.30). There are several advantages of using block
diagrams and these include:

(i) It is easy to write down the computational algorithm from
the block diagram by inspection.

(ii) It is easy to develop the input–output relation.
(iii) It is easy to manipulate the block diagram to derive other

equivalent structures.
(iv) It is easy to determine the hardware requirements from the

block diagram.

It is possible to realize many different structures from the same
transfer function. Such structures will have identical performance if
the filter implementation is done with infinite precision. However, the
coefficients, the input and output signal and the intermediate signal
variables are quantized or we can say that the signal processing opera-
tions within the DSP are done with finite precision. The different real-
ization structures behave differently under finite precision arithmetic
and it is up to the designer to determine the best structure. It is easier
to do this through simulation.

4.6.1 Finite Impulse Response (FIR) filter

The FIR filter is represented by Equation (4.30). If we select a filter
order of 4 then the transfer function becomes

H(z) = h(0) + h(1)z−1 + h(2)z−2 + h(3)z−3 + h(4)z−4. (4.32)

100 The Transform Domain Analysis: The z-Transform

If we take the inverse z-transform of Equation (4.32) we get the impulse
response of the filter which is given by

h(n) = h(0)δ(n) + h(1)δ(n − 1) + h(2)δ(n − 2)

+h(3)δ(n − 3) + h(4)δ(n − 4). (4.33)

To obtain the output we must convolve the input and the impulse
response to get

y(n) = h(n) ⊗ x(n)

= (h(0)δ(n) + h(1)δ(n − 1) + h(2)δ(n − 2)

+h(3)δ(n − 3) + h(4)δ(n − 4)) ⊗ x(n)

= h(0)x(n) + h(1)x(n − 1) + h(2)x(n − 2)

+h(3)x(n − 3) + h(4)x(n − 4). (4.34)

The output y(n) can be obtained by the structure of Figure 4.4.
The structure of Figure 4.4 is a direct form realization structure

because the coefficients of the transfer function are the same as the
multiplier coefficients in the realization structure. This structure is also
known as the tapped delay line or a transversal filter. The number of
delays is 4 and the order of the transfer function is 4. When the number
of delays is the same as the order of the transfer function the structure
is referred to as canonic.

It is possible to realize an equivalent structure by taking the trans-
pose of this structure. The transpose operations is achieved through
the following steps:

(i) Replace all pickoff points with summers and vice versa.
(ii) Change the directions of all arrows.

Fig. 4.4 Direct form FIR realization.

4.6 Realization Structures 101

Fig. 4.5 The transpose of the direct form FIR realization.

(iii) Interchange input and output.
(iv) Rotate the figure to have the input on the left.

The transpose of the structure of Figure 4.4 is shown in Figure 4.5.

4.6.2 Infinite Impulse Response (IIR) Filters

Let us consider Equation (4.29) for the case when N = M = 2. it is
straight forward to extend this analysis to higher orders. The transfer
function will reduce to

H(z) =
Y (z)
X(z)

=
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2 , (4.35)

which we can write in the following format

H(z) =
(

Y (z)
W (z)

)(
W (z)
X(z)

)

=
(

b0 + b1z
−1 + b2z

−2

1

)(
1

1 + a1z−1 + a2z−2

)
.

Let

H1(z) =
W (z)
X(z)

= b0 + b1z
−1 + b2z

−2

and

H2(z) =
Y (z)
W (z)

=
1

1 + a1z−1 + a2z−2 .

102 The Transform Domain Analysis: The z-Transform

Fig. 4.6 Realization structures for H1(z) and H2(z).

Fig. 4.7 Direct form 1 Realization structure for H(z).

In the time domain we can write two equations

w(n) = b0x(n) + b1x(n − 1) + b2x(n − 2), and

y(n) = w(n) − a1y(n − 1) − a2y(n − 2).

The realization structures formed by the two equations to realize
H1(z) and H2(z) are shown in Figure 4.6.

Since the first structure generates w(n) which is the input to the
second structure the two structures can be joined as in Figure 4.7
to form the realization structure for H(z). Comparing the structure
to Equation (4.35) we notice that coefficient of the transfer function
H(z) are the multiplier coefficients in the realization structure. Hence

4.6 Realization Structures 103

Fig. 4.8 Direct form 1t.

this structute is a Direct Form 1 structure. We also note there are 4
delays and the order of the transfer function is 2. Hence the structure
is noncanonic.

The transpose of the Direct form 1 structure is shown in Figure 4.8.
The Direct form 1t is also noncanonic. It is possible with further

manipulations of these structures to obtain a canonic structure. For
instance, in Figure 4.8, moving all delays to be done before the multipli-

Fig. 4.9 Direct form II structure.

104 The Transform Domain Analysis: The z-Transform

ers it will not change the transfer function. It follows that the delays on
the parallel arms have the same inputs and will have the same outputs.
These delays can be merged to form the structure which is canonic
and is shown in Figure 4.9. This structure is referred to as Direct
form II structure. The transpose of Figure 4.9 gives the Direct form IIt
structure.

4.6.3 Cascade Realization

Direct form structures of higher order are more sensitive to quantization
errors. It is for this reason that a higher order structure is normally
implemented as a cascade or parallel connected lower order filters. In
cascade realization a high order direct form transfer function like that
represented by Equation (4.28) is factored into first- and second-order
polynomials.

H(z) =
Y (z)
X(z)

=
∑M

k=0 bkz
−k∑N

k=0 akz−k
= C

∏
k

(
b0k + b1kz

−1 + b2kz
−2

1 + a1kz−1 + a2kz−2

)
.

(4.36)

Figure 4.10 shows a cascade of two second-order sections using the
direct form II canonic realization. Either of the sections can be reduced
to first-order sections using the identity b2k = a2k = 0.

Fig. 4.10 A cascade of two second-order sections.

4.6 Realization Structures 105

4.6.4 Parallel Realization

It may also be possible to express Equations (4.29) as a partial fraction
expansion. In this case a high order direct form transfer structure is
expressed as a parallel realization of first- and second-order sections.

H(z) =
Y (z)
X(z)

=
∑M

k=0 bkz
−k∑N

k=0 akz−k

= D +
∑

k

(
d0k + d1kz

−1 + d2kz
−2

1 + c1kz−1 + c2kz−2

)
. (4.37)

One can obtain first-order sections if d2k = c2k = 0 for any section k.
In the Figure 4.11, a first-order section is connected in parallel to a
second-order section. The transfer function is given as

H(z) =
Y (z)
X(z)

= D +
(

d00 + d10z
−1

1 + c10z−1

)
+
(

d01 + d11z
−1

1 + c11z−1 + c21z−2

)
. (4.38)

Fig. 4.11 Parallel realization of H(z).

106 The Transform Domain Analysis: The z-Transform

4.7 Problems

4.8.1 Find the z-transforms and the regions of convergence of the
following sequences

(i) x(n) = (0.5)nµ(n − 2),

(ii) x(n) = −(0.4)nµ(−n − 3),

(iii) x(n) = (−0.4)nµ(−n − 3).

4.8.2 Derive the z-transform and the region of convergence of
the sequence y(n) = (rn cos(ω0n))µ(n). Hence obtain the
z-transform of the sequence w(n) = 2n cos

(
π
2 n
)
µ(n).

4.8.3 Does the following sequence have a z-transform? w(n) =
2nµ(−n − 1) + 3nµ(+n + 1). Explain your answer.

4.8.4 Using the method of residues obtain the inverse z-transform
of H(z) = z(z−1)

(z−2)(z−3) for the following regions of convergence:

(i) |z| > 3, (ii) 2 < |z| < 3, and (iii) |z| < 2.
4.8.5 Using the method of partial fraction expansion to find the

inverse z-transform of H(z) = z(z−1)
(z−2)(z−3) for the following

regions of convergence

(i) |z| > 3, (ii) 2 < |z| < 3, and (iii) |z| < 2.

4.8.6 Using the method of partial fraction expansion obtain

the inverse z-transform of H(z) = (1−1/2z−1)

(1−1/3z−1)(1−2z−1)2
for

|z| > 1/3.
4.8.7 The transfer function of a causal discrete-time system is given

by H(z) = z
3z2−4z+1 . Using long division find the first five

samples of the impulse response.
4.8.8 The impulse response of an LTI system is given

by h(n) = α0δ(n) + α1δ(n − 1) + α2δ(n − 2) + α3δ(n − 3).
Obtain the transfer function H(z) of the system.

4.8.9 A moving average filter is a linear time-invariant sys-
tem whose input/output relationship is given by y(n) =
1
M

∑M−1
k=0 x(n − k). Obtain its impulse response and hence

its transfer function H(z).
4.8.10 A sequence is given by y(n) = ce−αnµ(n), where µ(n) is a

unit step sequence. Making use of table for z-transforms of

4.7 Problems 107

simple functions obtain the z-transform and the region of
convergence of the following functions

(i) w(n) = ny(n), (ii) v(n) = βny(n), (iii) u(n) = y(−n),
(iv) s(n) = y(n − n0).

4.8.11 With the aid of a MATLAB program plot the location of
poles and zeros for the transfer functions of systems repre-
sented by

(i) H(z) = z−1−z−2

(1−z−1+z−2)(1+0.8z−1)
(ii) 3y(n) = 3.7y(n − 1) − 0.7y(n − 2)x(n − 1) for n ≥ 0
Comment on their stability.

4.8.12 A transfer function for an FIR filter is given by H(z) =
(1 − αz−1 − βz−2)3. Realize the transfer function using

(i) direct form realization, and
(ii) as a cascade of second-order sections.

4.8.13 A transfer function for an IIR filter is given by

H(z) =
(1 + 0.5z−1)(1 + 0.3z−1 + 0.02z−2)
(1 + 0.3z−1)(1 + 0.04z−1 + 0.2z−2)

.

Give canonic realization structures using

(a) direct form II realization,

(b) a cascade of a first-order and second-order structures,
and

(c) a cascade of two second-order structures.

4.8.14 A Transfer function can be expressed as a partial fraction
expansion as follows:

H(z) = γ0 +
0.3

1 + 0.5z−1 +
1 + 0.4z−1 + 0.33z−2

1 − 0.62z−1 + 0.43z−2 .

Implement a parallel realization structure using not more
than second-order structures.

This page intentionally left blank

5
Review of Analog Filter Design

5.1 Introduction

The reason for the review of analog filter design before pursuing with
digital filter design is twofold. Analog filters are used as anti-aliasing
filters and reconstruction filters in digital signal processing. Secondly, a
popular design method of IIR filters is through special transformation
of analog prototype filters to digital filters. Therefore, it is necessary
to be able to specify, design, and implement analog filters.

5.2 Specification of Analog Filters

The essential parameters used to specify an analog lowpass filter are
shown in Figure 5.1.

Figure 5.1 represents normalized magnitude response specifications
for a lowpass filter. The maximum values of the magnitude in the pass-
band is given by |H(jΩ)max| = 1.0 and the minimum value of the mag-
nitude in the passband (also referred to the as the passband ripple) is
equal to 1√

1+ε2 and is the value at the edge of the passband. The mini-
mum stopband attenuation (also referred to as the maximum stopband
ripple) is given as 1/A. The frequency Ωp is defined to be the passband
edge frequency and the frequency Ωs is defined to be the stopband edge
frequency. The passband is the region where 0 ≤ Ω ≤ Ωp, the transition
band is the region where Ωp ≤ Ω ≤ Ωs and the stopband is the region
where Ωs ≤ Ω ≤ ∞. We also define two more parameters that will help
us in the intermediate stages of the design as follows:

(i) The transition (or selectivity) parameter which is defined as
the ratio of the passband edge frequency Ωp and the stopband

109

110 Review of Analog Filter Design

Fig. 5.1 Normalized magnitude response filter specifications.

edge frequency Ωs, i.e.,

k =
Ωp

Ωs
. (5.1)

(ii) The discrimination parameter which is given by

k1 =
ε√

A2 − 1
. (5.2)

5.3 The Analog Lowpass Filters

The main characteristics that define a filter include the passband rip-
ple, the transition band (the cut-off frequency, and the roll-off), the
stopband attenuation and the phase response. The different types of
filters are designed to optimize one or more of these characteristics. In
this review, we will focus only on the four most common types of filters.

5.3.1 Butterworth Filters

The Butterworth filters have a flat magnitude response in the passband
characterized by a slow roll-off and a nonlinear phase response. The

5.3 The Analog Lowpass Filters 111

magnitude square response is given by

|H(jΩ)|2 =
1

1 +
(Ω

ΩC

)2N
, (5.3)

where ΩC is the cut-off frequency.
The magnitude response is referred to as maximally flat since the

first N − 1 derivatives of |H(jΩ)|2 are equal to zero at Ω = 0. The
magnitude response in dBs is given by

HdB = 10log10 |H(jΩ)|2 = 10log
1

1 +
(Ω

ΩC

)2N
dB

At Ω = 0,HdB = 10log1 = 0 and at Ω = ΩC , HdB = 10log 1
1+12N =

−3dB.
The frequency ΩC is referred to as the 3 dB cut-off frequency.

The impact of the order of the filter is more visible in the transition
band and in the stopband. To see this we will consider a frequency
range for which Ω � ΩC , where we can approximate the magnitude
response as

HdB = 10log
1(Ω

ΩC

)2N

= −20N log
(

Ω
ΩC

)
.

If we consider two frequency points one decade apart Ω2 = 10Ω1, where
Ω1 � ΩC then we can write

HdB2 = −20N log
(

Ω2

ΩC

)
= −20N log

(
10Ω1

ΩC

)

= −20N log
(

Ω1

ΩC

)
− 20N

= HdB1 − 20N dB. (5.4)

From this result we observe that the filter roll-off decreases by 20 dB
whenever the filter order N increases by 1. This is verified in the plots
of Figure 5.2, where the magnitude response is plotted for N = 2, 3,
and 8.

It is clear that the two parameters that are adequate in specifying
a Butterworth filter are the cut-off frequency ΩC and the order of the

112 Review of Analog Filter Design

0 2 4 6 8 10
-160

-140

-120

-100

-80

-60

-40

-20

0
Butterworth Filters of order 2,3 and 8

Normalized Frequency rad/s

M
ag

ni
tu

de
 in

dB
s

N = 2
N = 3
N = 8

Fig. 5.2 Butterworth filters with different orders.

filter N . In order to compute these two parameters we can use the
known values of the magnitude squared response at the passband-edge
frequency and the stopband-edge frequency as follows:

At the passband edge frequency

|HC(jΩP)|2 =
1

1 +
(Ωp

ΩC

)2N
=

1
1 + ε2 , (5.5)

and at the stopband edge frequency

|HC(jΩP)|2 =
1

1 +
(Ωs

ΩC

)2N
=

1
A2 . (5.6)

The two equations can be used to solve for the order of the filter giving

N =
1
2

log10
(A2−1)

ε2

log10
Ωs
ΩP

=
log10

(1
k1

)
log10

(1
k

) . (5.7)

5.3 The Analog Lowpass Filters 113

Despite the fact that the order of a filter must be an integer the
value of N computed from Equation (5.7) is rarely an integer. For this
reason the value of N computed from Equation (5.7) must be rounded
up to the next higher integer. The integer value of N can then be
used in either Equation (5.5) or (5.6) to solve for the cut-off frequency
ΩC . If Equation (5.5) is used then the passband specifications will be
met exactly and stopband specifications will be exceeded. On the other
hand, if Equation (5.6) is used the stopband specifications will be met
exactly and the passband specifications will be exceeded. The decision
on which equation to use is left to the designer who may base the
decision on the sensitivity of each band to the specific application.

The MATLAB function that uses the above equations to compute
the order and the cut-off frequency is buttord and the syntax is given as

[N,ΩC] = buttord(ΩP ,Ωs,RP ,Rs, ‘s’), (5.8)

where ΩP is the passband-edge angular frequency in rad/sec,
Ωs is the stopband-edge angular frequency in rad/sec,
RP is the maximum passband attenuation in dB,
Rs is the minimum stopband attenuation in dB, and
‘s’ must be used to indicate analog filter.

In the implementation of a filter we require the transfer function and
its coefficients. The expression of the transfer function of a lowpass
Butterworth filter in the s-plane is given by

Ha(s) =
1

DN (s)
=

ΩN
C∏N

i=1 (s − pi)
, (5.9)

where the poles are given by pi = ΩCejπ(N+2i−1)/2N , i = 1,2, . . . ,N . This
shows that poles of a lowpass filter are on a circle of radius ΩC at
different phase angles on the left-hand side in the s-plane. Poles have to
be on the left-hand side of the imaginary axis in the s-plane for the filter
to be stable. The expanded form of the polynomial DN (s) is tabulated
in many text books on circuit theory to simplify the design [6]. The
MATLAB function used to compute the transfer function giving the
numerator and denominator coefficients is “butter” and the syntax is

114 Review of Analog Filter Design

given as

[B,A] = butter(N,ΩC , ‘type’, ‘s’), (5.10)

where B represents a row matrix of numerator coefficients,
A represents a row matrix of denominator coefficients,
N order of the filter, ΩC is the cut-off frequency in rad/sec,
‘type’ specifies the filter type (low, high, bandpss or band-
stop), and
‘s’ must be used to indicate analog filter.

Example 5.1. Design and plot the magnitude response of an analog
Butterworth lowpass filter to have a maximum passband attenuation
of 0.5 dB at 500 Hz and 50 dB minimum stopband attenuation at 1 KHz
(see Figure 5.3).

0 500 1000 1500 2000 2500 3000
-140

-120

-100

-80

-60

-40

-20

0

20
Butterworth LPF of Example 7.1

Frequency in Hz

M
a

g
n

itu
d

e
 d

B

Fig. 5.3 Magnitude response of the Butterworth filter of Example 5.1.

5.3 The Analog Lowpass Filters 115

Solution

MATLAB Program

% Design Example 5.1

Wp = 500*2*pi;

Ws = 1000*2*pi;

Rp = 0.5;

Rs = 50;

[N, Wc] = buttord(Wp, Ws, Rp, Rs, ‘s’);

[B, A] = butter(N, Wc, ‘s’);

omega= [0:1:5*Wc];

h = freqs(B,A,omega);

plot(omega./(2*pi),20*log10(abs(h)),‘m’);

title(‘Butterworth LPF Example 5.1’);

xlabel(‘Frequency in Hz’); ylabel(‘Magnitude’);

5.3.2 Chebyshev Filters

The Chebyshev filter magnitude response has a much more steeper
roll-off at a penalty of an amount of ripples in the passband or stop-
band, depending on the type of Chebyshev transfer function. There are
two type of Chebyshev transfer functions; type 1 Chebyshev transfer
functions are equiripple in the passband and monotonic in the stop-
band while type II are monotonic in the passband and equiripple in
the stopband.

5.3.2.1 Chebyshev Type I Transfer Function

The squared magnitude response of the analog type I Chebyshev filter
is given by

|Ha(jΩ)|2 =
1

1 + ε2T 2
N

(
Ω
Ωp

) , (5.11)

where TN (x) is the Chebyshev polynomial of order N which is given by

TN (x) =
{

cos(N cos−1 x) |x| ≤ 1
cosh(N cosh−1 x |x| > 1

. (5.12)

116 Review of Analog Filter Design

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Plots of Chebyshev type 1 filters for N=2,3,8

Normalized Frequency

M
a

gn
itu

de

N =2
N = 3
N = 8

Fig. 5.4 Chebyshev type I filters with different orders.

The magnitude responses for different type I Chebyshev filters are
given in Figure 5.4 for N = 2, 3 and 8.

Figure 5.4 shows that the filter is equiripple in the passband, i.e.,
0 ≤ Ω ≤ 1, and monotonic for Ω > 1. The roll-off is also much more
than for the Butterworth filter.

The order N of the filter can be determined from Equation (5.11)
using the attenuation specifications as follows:

|Ha(jΩ)|2 =
1

1 + ε2T 2
N

(Ωs
Ωp

) =
1

A2 ,

which after substitution using (5.12) and solving for N we get

N =
cosh−1 (

√
A2−1)
ε

cosh−1 (Ωs
ΩP

) =
cosh−1 (1

k1

)
cosh−1 (1

k

) . (5.13)

5.3 The Analog Lowpass Filters 117

The MATLAB function that uses Equation (5.13) to compute the
order and the cut-off frequency is cheb1ord and the syntax is given as

[N,ΩC] = cheb1ord(ΩP ,Ωs,RP ,Rs, ‘s’), (5.14)

where ΩP is the passband edge angular frequency in rad/sec,
Ωs is the stopband edge angular frequency in rad/sec,
RP is the maximum passband attenuation in dB,
Rs is the minimum stopband attenuation in dB, and
‘s’ must be used to indicate analog filter.

The transfer function of the Chebyshev type I filter is of the same form
as that of the Butterworth filter given by Equation (5.9) and can be
expressed as a ratio of two polynomials. The coefficients of the rational
transfer function can be obtained by the MATLAB function cheby1
and the syntax is given by

[B,A] = cheby1(N,RP ,ΩC , ‘s’), (5.15)

where B represents a row matrix of numerator coefficients,
A represents a row matrix of denominator coefficients,
N order of the filter, ΩC is the cut-off frequency in
rad/sec, and
‘s’ must be used to indicate analog filter.

Example 5.2. Design and plot the magnitude response of an analog
Chebyshev type I lowpass filter to have a maximum passband attenu-
ation of 0.5 dB at 500 Hz and 50 dB minimum stopband attenuation at
1 KHz (see Figure 5.5).

Solution

MATLAB Program

% Design Example 5.2

Wp = 500*2*pi;

Ws = 1000*2*pi;

Rp = 0.5;

118 Review of Analog Filter Design

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Chebyshev LPF Example 7.2

Frequency in Hz

M
a

gn
itu

de

Fig. 5.5 Magnitude response of the Chebyshev type I filter of Example 5.2.

Rs = 50;

[N, Wc] = cheb1ord(Wp, Ws, Rp, Rs, ‘s’);

[B, A] = cheby1(N, Rp, Wc, ‘s’);

omega = [0:1:3*Wc];

h = freqs(B,A,omega);

plot(omega./(2*pi),(abs(h)),‘m’);

title(‘Chebyshev LPF Example 5.2’);

xlabel(‘Frequency in Hz’); ylabel(‘Magnitude’);

5.3.2.2 Chebyshev Type II Transfer Function

The magnitude-squared response for the type II Chebyshev transfer
function is given by

|Ha(jΩ)|2 =
1

1 + ε2
[

TN (γ)
TN (λ)

]2 , (5.16)

5.3 The Analog Lowpass Filters 119

where γ = Ωs
ΩP

and λ = Ωs
Ω . The magnitude-squared response is flat in

the passband and equiripple in the stopband. Equation (5.13) can be
used to compute the value of N . The same equation is used in the
m file cheb2ord of MATLAB to compute the order N and the cut-off
frequency WC as follows:

[N,WC] = cheb2ord(Wp,Ws,RP Rs, ‘s’). (5.17)

The transfer function Ha(s) can be written as a ratio of two polynomi-
als. In order to compute the coefficients the MATLAB function Cheb2
can be used as follows:

[B,A] = cheb2(N,Rs,WC , ‘type’, ‘s’). (5.18)

Example 5.3. Design and plot the magnitude response of an analog
Chebyshev type II lowpass filter to have a maximum passband attenu-
ation of 0.5 dB at 500 Hz and 50 dB minimum stopband attenuation at
1 KHz (see Figure 5.6).

Solution

MATLAB Program

% Design Example 5.3

Wp = 500*2*pi;

Ws = 1000*2*pi;

Rp = 0.5;

Rs = 50;

[N, Wc] = cheb2ord(Wp, Ws, Rp, Rs, ‘s’);

[B, A] = cheby2(N, Rs, Wc, ‘s’);

omega = [0:1:3*Wc];

h = freqs(B,A,omega);

plot(omega./(2*pi),20*log10(abs(h)),‘m’);

title(‘Chebyshev Type II LPF Example 5.3’);

xlabel(‘Frequency in Hz’); ylabel(‘Magnitude’);

120 Review of Analog Filter Design

0 500 1000 1500 2000 2500 3000
-140

-120

-100

-80

-60

-40

-20

0
Chebyshev Type II LPF Example 7.3

Frequency in Hz

M
ag

ni
tu

de

Fig. 5.6 Magnitude response of the Chebyshev type II filter of Example 5.3.

5.3.3 The Elliptic Filters

The elliptic filter transfer function is equiripple both in the passband
and in the stopband. The amount of ripple in each band can be indepen-
dently adjusted. The elliptic filter magnitude response has the steepest
roll-off compared to any other type of filter of the same order. The
analysis is complicated [7] and here we only make reference to some
interesting properties.

The magnitude-squared response is given by

Ha(jΩ) =
1

1 + ε2R2
N

(
ξ, Ω

Ω0

) , (5.19)

where RN is the nth order elliptic rational function, Ω0 is the cut-off
frequency, ε is the ripple factor and ξ is the selectivity factor. Whereas
ε defines the ripple in the passband, the combination of ε and ξ defines

5.3 The Analog Lowpass Filters 121

Fig. 5.7 Magnitude response of an elliptic filter.

the ripple in the stopband. In Figure 5.7

LN = RN

(
ξ,

Ω
Ω0

)
.

It is interesting to note that as ξ → ∞, the rational function RN

becomes a chebyshev polynomial and the magnitude response becomes
a Chebyshev type I response. Also as ξ → ∞, ε → 0, and Ω0 → 0 such
that ξΩ0 = 1 and εLn = α (constant), the magnitude response becomes
that of a Chebyshev type II.

In order to find the order we use the approximation from [9] which
requires following specifications: the passband edge frequency Ωp, the
stopband edge frequency Ωs, and the passband ripple ε. The approxi-
mation is given by

N =
2log10

(
4
k1

)

log
(

1
ρ

) , (5.20)

122 Review of Analog Filter Design

where k1 = ε√
A2−1

the selectivity parameter,

ρ = ρ0 + 2(ρ0)5 + 15(ρ0)9 + 150(ρ0)13,

k =
Ωp

Ωs
, k‘ =

√
1 − k2, and ρ0 =

1 − √
k’

2(1 +
√

k’)
.

The MATLAB m-file function used to compute the order of the
lowpass filter is

[N,WC] = ellipord(ΩP ,Ωs,RP ,Rs, ‘s’). (5.21)

In order to obtain the coefficients of the transfer function for the low-
pass filter we use

[B,A] = ellip(N,RP ,Rs,WC). (5.22)

Example 5.4. Design and plot the magnitude response of an ana-
log elliptic lowpass filter to have a maximum passband attenuation of
0.5 dB at 500 Hz and 50 dB minimum stopband attenuation at 550 Hz
(see Figure 5.8).

MATLAB Program

% Design Example 5.4 Elliptic Lowpass Filter

Wp = 500*2*pi;

Ws = 550*2*pi;

Rp = 0.5;

Rs = 50;

[N, Wc] = ellipord(Wp, Ws, Rp, Rs, ‘s’);

[B, A] = ellip(N, Rp, Rs, Wc, ‘s’);

omega = [0:1:3*Wc];

h = freqs(B,A,omega);

plot(omega./(2*pi),20*log10(abs(h)),‘m’);

title(‘Elliptic LPF Example 5.4’);

xlabel(‘Frequency in Hz’); ylabel(‘Magnitude’);

5.3 The Analog Lowpass Filters 123

0 500 1000 1500
-120

-100

-80

-60

-40

-20

0
Elliptic LPF Example 7.4

Frequency in Hz

M
ag

n
itu

d
e

 d
B

Fig. 5.8 Magnitude response for the Elliptic filter of Example 5.4.

5.3.4 The Bessel Filters

The four types of filter we have discussed so far are designed to
meet certain magnitude against frequency specifications. The phase has
been totally ignored. We have mentioned previously that the phase-
frequency characteristic in the passband is nonlinear for these filters
and the extent of nonlinearity is different with each one of them.
Figure 5.9 shows a comparison of the phase nonlinearity for the But-
terworth, Chebyshev 1, Chebyshev II, and the elliptic filters that are of
the same order. The black line at the moment is the reference line for a
perfectly linear filter. The phase discontinuity due to the plotting range
being limited to −π ≤ θ ≤ π has been removed by the function unwrap.
It can be observed that all the four filters have a significant degree of
nonlinearity in the phase frequency characteristics. The Butterworth
filter has the least nonlinearity followed by Chebyshev I, Chebyshev II,
and the elliptic filter has the most nonlinearity.

124 Review of Analog Filter Design

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-15

-10

-5

0
phase comprison 7.2

Normalized Frequency in rad/s

P
ha

se
 in

 ra
d

Butterworth
Chebyshev I
Chebyshev II
Elliptic
Bessel

Fig. 5.9 Comparison of Phase-frequency characteristics for different filter types.

The Bessel filters have a linear phase-frequency characteristic. The
transfer function is given by

H(s) =
θN (0)

θN (s/Ω0)
where θN (x) =

N∑
k=0

(N + k)!
(N − k)!k!

(x

2

)k
. (5.23)

For N = 3H(s) = 1
1+6x+15x2+15x3 where x = s/Ω0.

Notice that H(s) has only poles and no zeros. In order to deter-
mine the numerator and denominator of the transfer function we use
MATLAB function

[B,A] = besself(N,Wc).

The black line in Figure 5.9 is in fact the plot for phase-frequency
characteristics of the Bessel filter and is perfectly linear.

The penalty for perfect linearity in the phase-frequency character-
istic is in the magnitude response. This can be seen in the plots of

5.4 The Analog Highpass, Bandpass,and Bandstop Filters 125

0 0.5 1 1.5
-80

-70

-60

-50

-40

-30

-20

-10

0

10
Magnitude comprison 7.2

Frequency in rad/s

M
ag

ni
tu

de

Butterworth
Chebyshev I
Chebyshev II
Elliptic
Bessel

Fig. 5.10 Magnitude response for various types of filters.

Figure 5.10. The Bessel filter has the slowest transition from the pass-
band to the stopband, followed by the Butterworth filter. The elliptic
filter has the sharpest roll-off in the transition region compared to the
rest of the filter.

5.4 The Analog Highpass, Bandpass,
and Bandstop Filters

Other types of analog filters like the highpass, bandpass, and bandstop
filters can be designed from the lowpass filter by means of spectral
transformation. The spectral transformation will maintain the basic
characteristics of the lowpass filter in the transformed filter. If the orig-
inal lowpass filter is a Butterworth filter the transformed filter will also
be a Butterworth filter and so on. The derivations of these spectral
transformations have been done in [10]. In this section, we will only
revise the design process in a flow chart.

126 Review of Analog Filter Design

5.4.1 Design Procedure for a Highpass Filter

The following variables are used in the design flow Chart 5.1:
ΩP = passband-edge frequency in the prototype LPF
Ωs = stopband-edge frequency in the prototype LPF
Ω̂p = passband-edge frequency in the desired HPF
Ω̂s = stopband-edge frequency in the desired HPF
RP = Maximum passband attenuation in dB
Rs = Minimum stopband attenuation in dB
B = Row Matrix representing Numerator Coefficients of prototype

LPF
A = Row Matrix representing Denominator Coefficients of

prototype LPF
Num = Row Matrix representing Numerator Coefficients of desired

HPF
Den = Row Matrix representing Denominator Coefficients of desired

HPF

5.4.2 Design Procedure for a Bandpass Filter (BPF)

The following variables are used in the flow Chart 5.2:
ΩP = passband-edge frequency in the prototype LPF
Ωs = stopband-edge frequency in the prototype LPF

Ω̂p1 = lower passband-edge frequency in the desired BPF
Ω̂p2 = higher passband-edge frequency in the desired BPF
Ω̂s1 = lower stopband-edge frequency in the desired BPF
Ω̂s1 = higher stopband-edge frequency in the desired BPF
RP = Maximum passband attenuation in dB
RS = Minimum stopband attenuation in dB
B = Row Matrix representing Numerator Coefficients of prototype

LPF
A = Row Matrix representing Denominator Coefficients of

prototype LPF
Num = Row Matrix representing Numerator Coefficients of desired

BPF
Den = Row Matrix representing Denominator Coefficients of desired

BPF

5.4 The Analog Highpass, Bandpass,and Bandstop Filters 127

Chart 5.1 Flow Chart for the design procedure for analog highpass filters.

128 Review of Analog Filter Design

Chart 5.2 Flow chart for the design procedure for analog bandpass filters.

5.4 The Analog Highpass, Bandpass,and Bandstop Filters 129

5.4.3 Design Procedure for a Bandstop Filter (BSF)

The Design procedure for the Bandstop filter is similar to the design
procedure for the bandstop filter with the following differences

(1) For the lowpass prototype filter ΩS = 1 and ΩP = ΩS
Ω̂P Bw

Ω̂2
0−Ω̂2

P

.

(2) Bw = Ω̂s2 − Ω̂s1.
(3) The coefficients of the transfer function are obtained from

[Num, Den] = lp2bs(B,A,Ω0Bw].

At the end of this section a program to design a bandstop filter is given.

Example 5.5. An elliptic analog bandstop filter is to be designed to
eliminate an interfering radio armature transmission at 144 MHz. The
filter has the following specifications:

Passband edges: 115 MHz and 175 MHz
Stopband edges: 125 MHz and 165 MHz
Peak passband ripple is to be 0.5 dB
Minimum stopband attenuation is to be 30 dB

Determine the order of the prototype lowpass filter to be used in the
design. Determine the order of the bandstop filter and its transfer func-
tion. Plot the Magnitude response of the lowpass filter and the bandstop
filter.

Solution

MATLAB Program

% This programme will design an Analog elliptic

bandstop filter

Wp1 = input(‘the lower passband-edge frequency in Hz,

Wp1 = ’);

Wp2 = input(‘the higher passband-edge frequency in Hz,

Wp2 = ’);

Ws1 = input(‘the lower stopband-edge frequency in Hz,

Ws1 = ’);

130 Review of Analog Filter Design

Ws2 = input(‘the higher stopband-edge frequency in Hz,

Ws2 = ’);

Rp = input(‘the maximum passband attenuation in dBs,

Rp = ’);

Rs = input(‘the minimum stopband attenuation in dBs,

Rs = ’);

% Check for geometric symmetry

Wp1=Wp1*2*pi;

Wp2=Wp2*2*pi;

Ws1=Ws1*2*pi;

Ws2=Ws2*2*pi;

if Wp1*Wp2$>$Ws1*Ws2

Wp1=Ws1*Ws2/Wp2;

WoSquared =Ws1*Ws2;

else Ws2 = Wp1*Wp2/Ws1;

WoSquared = Wp1*Wp2;

end

% Specify the prototype LPF

Bw = Ws2 - Ws1;

Omegas =1;

Wo = sqrt(WoSquared);

Omegap = Omegas*(Wp1*Bw)/(WoSquared - Wp1ˆ2);

disp(Omegap);

% Obtain the order of the prototype LPF

[N,Wc]= ellipord(Omegap, Omegas, Rp, Rs, ‘s’);

disp(‘Order of the lowpass filter’); disp(N);

% Obtain the coefficients of the prototype LPF

[B,A] = ellip(N, Rp, Rs, Wc, ‘s’);

% Write the transfer function of the lowpass filter

disp(‘The transfer function of the LPF’);

hlpf = tf(B,A)

% Make a spectral transformation to the bandstop filter

[Num, Den] = lp2bs(B, A, Wo, Bw);

disp(‘The transfer function of the LPF’);

hbsf = tf(Num,Den)

% Plot the Magnitude response of the LPF

5.4 The Analog Highpass, Bandpass,and Bandstop Filters 131

Omega1 = [0: 0.01: 3*Wc];

HLP = freqs(B,A,Omega1);

subplot(2,1,1)

plot(Omega1,abs(HLP),‘m’);

title(‘Magnitude Response of the LP prototype Filter’);

xlabel(‘Frequency, Hz’);ylabel(‘Magnitude’);

% Plot the Magnitude response of the Bandpass filter

Omega2 = 2*pi*[0: Wo/100: Wo];

HBP = freqs(Num,Den,Omega2);

subplot(2,1,2)

plot(Omega2/(2*pi), abs(HBP));

title(‘Magnitude Response of the Bandstop Filter’);

xlabel(‘Frequency, Hz’);ylabel(‘Magnitude’);

Results
Order of the lowpass filter 4
Order of the bandstop filter 8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.5

1
Magnitude Response of the LP prototype Filter

Frequency, Hz

M
ag

ni
tu

d
e

0 1 2 3 4 5 6 7 8 9

x 10
8

0

0.5

1
Magnitude Response of the Bandstop Filter

Frequency, Hz

M
ag

ni
tu

d
e

132 Review of Analog Filter Design

5.5 Problems

5.5.1 An analog Butterworth lowpass filter is to be designed to
meet the following specifications:
Passband-edge frequency ΩP = 2π500 rad/s
Stopband-edge frequency ΩP = 2π1250 rad/s
Maximum passband attenuation = 1 dB
Minimum stopband attenuation = 30 dB
Determine the following

(i) the transition parameter,

(ii) the discrimination parameter, and

(iii) the order of the filter.

5.5.2 A second-order Butterworth lowpass filter with a cut-off fre-
quency of 1 kHz is to be designed. Obtain the transfer func-
tion of the filter and the pole positions on the s-plane.

5.5.3 An analog Chebyshev I lowpass filter is to be designed to
meet the following specifications:
Passband-edge frequency ΩP = 2π500 rad/s
Stopband-edge frequency ΩP = 2π750 rad/s
Maximum passband attenuation = 1 dB
Minimum stopband attenuation = 40 dB
Determine the following

(iv) the transition parameter,

(v) the discrimination parameter, and

(vi) the order of the filter.

Use MATLAB functions to verify the order of the filter.
Obtain the transfer function and plot the magnitude and
phase response of the filter.

5.5.4 Repeat Problem 5.5.3 if the desired filter is an elliptic filter.
5.5.5 A stage in a student project requires a highpass analog filter

that will remove the bass component of music from a CD.
Any music component below 500 kHz is to be attenuated by
at least 50 dBs and any music component above 550 kHz is

5.5 Problems 133

not supposed to be attenuated by more than 0.5 dB. The
student wanted to use a filter with the lowest order and
for that reason he selected an elliptic filter. Determine the
following:

(i) The specifications of the lowpass prototype filter used
in the intermediate stage of the design.

(ii) The order of the prototype filter and its transfer
function.

(iii) The order of the highpass filter and its transfer
function.

(iv) Plot the magnitude and phase response of the proto-
type and the Highpass filters.

(v) Comment on the suitability of the phase response
from this filter for the particular application.

5.5.6 A student who is designing an analog AM radio receiver
has to down-covert the radio-frequency (r-f) signal to an
intermediate frequency (i-f) signal. The i-f stage consists of
bandpass filter centered around 455 kHz and has a bandwidth
of 10 kHz. Within the passband the i-f signal should not be
attenuated by more than 1 dB. To ensure that adjacent chan-
nel interference is reduced to a minimum the carrier at the
adjacent channel must be attenuated by at least 40 dB. If
the channel spacing is 10 kHz design the filter that will give
adequate selectivity. Give the order of the filter, the transfer
function and plot the magnitude response if the student used
Chebyshev type II filter in his design.

5.5.7 The spectrum of an ECG signals spans the frequency range
from DC to 130 Hz. There is an interfering signal from a 50 Hz
power-line. A student makes an attempt to suppress this
signal using a narrowband bandstop filter centered around
50 Hz with a bandwidth of 5 Hz (i.e., the width between
stopband-edge frequencies). Any signal falling within the
stopband should be attenuated by at least 50 dB and any
signal falling within the passband should not be attenuated

134 Review of Analog Filter Design

by more than 0.5 dB. The width between the passband edge
should be about 10 Hz. Design the appropriate filter giving
the filter order, the transfer function and plot of the magni-
tude response of the final filter. Choose a filter-type that will
give you the lowest order and steepest roll-off.

6
Digital Filter Design

6.1 Introduction

The objective of filter design is to find a stable function that is realiz-
able using a suitable filter structure to estimate a specified frequency
response or impulse response. There are two classes of filters based on
the length of their impulse response. The first class includes any filter
whose impulse response is of finite length. Such filters are referred to as
Finite Impulse Response (FIR) digital filters. These filters are always
stable and can be designed to have exactly linear phase. The second
class of filters includes any filter whose impulse response is of infinite
length. Such filters are referred to as Infinite Impulse Response (IIR)
digital filters. These filters are not always stable and cannot be designed
to have exactly linear phase. However, IIR filters have one significant
advantage over FIR filters. It is possible to approximate a specified
magnitude response using an IIR filter of a much lower order than that
of an FIR filter. This means that the computational complexity in the
implementation of an IIR filter is much less than that of an FIR filter
in order to achieve the same objectives.

The design procedure requires that the specifications of the filter
are developed from the intended application. The specifications must
be given such that the filter will introduce minimum distortion in the
desired bands of the signal. The ideal filter will have a gain of unity in
the passband and zero in the stopband with the transition bandwidth
that is zero. Such a filter is not realizable in practice as it is unsta-
ble and noncausal. In order to get a stable and realizable filter the
specifications are relaxed to allow some tolerance in the passband and
stopband and a gradual transition from the passband to the stopband.
The resulting specifications are very similar to those for the analog

135

136 Digital Filter Design

Fig. 6.1 Magnitude specifications for a digital LPF.

filters except it must be taken into account that the magnitude response
of a discrete-time system is periodic. The normalized specifications
are shown in Figure 6.1. The specification parameters are defined as
follows:

The maximum passband deviation = 1√
1+ε2

The maximum passband attenuation = αmax = 20log(
√

1 + ε2)
The maximum stopband magnitude =1/A
The passband-edge frequency in radians/sample = ωp

The stopband-edge frequency in radians/sample = ωs.

It should be noted that frequencies are specified in Hz but digital fil-
ter are specified using normalized angular frequencies in units of radians
per sample. The normalization is done by dividing the analog frequency
by the sampling frequency FS . The analog passband edge frequencies
ΩP and ΩS , for instance, are normalized to give ωP = ΩP

FS
= 2π

(
fP
FS

)
,

and ωS = ΩS
FS

= 2π
(

fS
FS

)
.

The design methods for the two classes of filters are very different.
In Sections 6.2 and 6.3 we review the most common design methods
for the two classes of filters.

6.2 IIR Filter Design 137

6.2 IIR Filter Design

IIR filters are designed by a mapping process from the s-plane to the
z-plane. Initially the specifications of the digital filter are transformed
into specifications of an analog filter in the s-plane. An analog filter
is then designed before it is transformed back to a digital filter in the
z-plane. The advantage of designing an analog filter instead of a dig-
ital filter directly is mainly to make use of the mature and advanced
knowledge already available in the design of analog filters. The impor-
tant requirement in the mapping process is to make sure that essential
properties of the analog filters are maintained. The imaginary axis in
the s-plane must be mapped into the unit circle on the z-plane and a
stable analog filter must be mapped to a stable digital filter.

There are two common approaches used in IIR filter design; the
impulse invariance method and bilinear z-transformation method. The
impulse invariance method preserves the impulse response of the ana-
log filter as the impulse response of the digital filter is formed by sam-
pling the impulse response of the analog filter. However, the magnitude
response is not preserved due to aliasing. The impulse invariance
method is therefore not a good method for the design of highpass,
bandpass, and bandstop digital filters. On the other hand, the bilinear
z-transform method is suitable for preserving the magnitude response
but not the impulse response. It is therefore suitable for the design of
frequency selective filters. In Section 6.2, we will focus on the bilinear
z-transform method.

6.2.1 The Bilinear Transformation Method

The bilinear transformation is a mapping of points between the z-plane
and the s-plane and is given by the relation [1]

s =
2
T

(
1 − z−1

1 + z−1

)
, and (6.1a)

the reverse transformation is given by

z =
1 +

(
T
2

)
s

1 − (T
2

)
s
. (6.1b)

138 Digital Filter Design

This transformation represents a one-to-one mapping where points in
the s-plane are uniquely mapped onto points in the z-plane and vice
versa. The procedure for designing the IIR digital filter involves a two
way transformation. The digital filter specifications are transformed
into the analog lowpass filter specifications and this is followed by the
design of the analog lowpass filter. The transfer function of the analog
lowpass filter is then inverse-transformed into the transfer function of
the digital filter. In the process of transformation and inverse transfor-
mation the factor 2/T is canceled out. Thus it is sufficient to represent
the mapping with simply the following transformations

s =
(

1 − z−1

1 + z−1

)
, and (6.2a)

the reverse transformation is given by

z =
1 + s

1 − s
. (6.2b)

A digital filter transfer function H(z) can therefore be obtained from
the analog filter with a transfer function Ha(s) as

H(z) = Ha(s)| 1−z−1

1+z−1
. (6.3)

In order to determine whether the important properties of the analog
filter are retained by the digital filter after the transformation we inves-
tigate the mapping of the various regions of the s-plane into the z-plane.
If we substitute s = σ + jΩ into the expression for |z|2 obtained from
Equation (6.2b) we get

|z|2 =
|1 + σ + jΩ|2
|1 − σ − jΩ|2 =

(1 + σ)2 + Ω2

(1 − σ)2 + Ω2 . (6.4)

Consider the following cases from Equation (6.4):

(i) When σ < 0, |z| < 1
Points that are to the left of the imaginary axis in the s-plane
are mapped interior to the unit circle in the z-plane. A stable
analog filter transfer function with poles on the left-hand
side of the imaginary axis on s-plane is mapped into a stable
digital filter with poles inside the unit circle in the z-plane.

6.2 IIR Filter Design 139

(ii) When σ = 0, |z| = 1
When σ=0 then s = jΩ. The imaginary axis is mapped onto
the unit circle.

(iii) When σ > 0, |z| > 1
An unstable analog filter transfer function with one or more
poles on the right-hand side of the imaginary axis in the
s-plane is mapped into an unstable digital filter transfer func-
tion with poles exterior to the unit circle in the z-plane.

We have seen that the imaginary axis in the s-plane repre-
sented by s = jΩ is mapped into the unit circle represented
by z = ejω in the z-plane. If we use Equation (6.2a) and sub-
stitute s = jΩ and z = ejω we get the following:

s =
(

1 − z−1

1 + z−1

)
gives

jΩ =
1 − e−jω

1 + e−jω
=

e
−jω

2

e
−jω

2

(
e

−jω
2 − e

−jω
2

e
−jω

2 + e
−jω

2

)

Ω = tan
(

Ω
2

)
or

ω = 2tan−1 Ω. (6.5)

From Figure 6.2 it can be observed that the transformation is linear
in two locations with very −0.5 < Ω < 0.5; just before and just after the
origin and hence the name bilinear transformation. Beyond the linear
location the transformation is highly nonlinear. For instance one can
observe that the whole of the positive jΩ axis (0 < Ω < ∞) is mapped
into a range of digital frequencies Ω from 0 to π. Through the mapping
the analog frequency range is nonlinearly compressed to a much smaller
range. The mapping therefore introduces a frequency distortion referred
to as frequency warping. The effect of frequency warping on a frequency
magnitude response is shown in Figure 6.3.

In order to cancel the distortion due to frequency warping the band-
edge frequencies must be pre-warped using the relation Ω = tan(ω/2).
The analog filter design is then made with the pre-warped analog
angular frequencies. The distortion will be canceled when the analog

140 Digital Filter Design

-20 -15 -10 -5 0 5 10 15 20
-4

-3

-2

-1

0

1

2

3

4
mapping of angular frequencies to angualr digital frequencies

Angular analogue frequencies

A
n

g
u

la
r

d
ig

ita
l f

re
q

u
e

n
ci

e
s

Fig. 6.2 Mapping of angular analog frequencies to analog digital frequencies ω = 2tan−1 Ω.

Fig. 6.3 Frequency warping by the bilinear transformation.

6.2 IIR Filter Design 141

magnitude response is transformed into the digital filter using the bilin-
ear transformation.

It should be noted that the bilinear transformation preserves mag-
nitude responses that are piecewise linear and does not preserve the
phase response.

6.2.2 Lowpass Digital Filter Design

In practice the specifications of the digital filter are provided in terms
of the following parameters:

The passband-edge frequency = ωP

The stopband-edge frequency = ωs

The maximum passband attenuation = Rp, and
The minimum stopband attenuation = Rs.

If we design the analog lowpass filter using the digital frequencies
ωP and ωs we will obtain a transfer function Ha(s) for the filter. The
digital filter can be obtained by direct substitution of s by 1−z−1

1+z−1 in

the analog transfer function H(s) so that H(z) = Ha(s)|s = 1−z−1

1+z−1 . If
we use this process the resulting frequencies of the digital filter will
be incorrect because ωP and ωs will be warped to other frequencies.
For this reason the digital band-edge frequencies must be pre-warped
to obtain the analog frequencies using the relation Ω = tan(ω/2). The
design procedure using the bilinear transformation, therefore is accord-
ing to the following steps:

(i) Pre-warp the band-edge frequencies (ωP and ωs) to obtain
the corresponding analog frequencies (ΩP and ΩS) of the
prototype lowpass filter. The maximum passband attenua-
tion RP and the minimum stopband attenuation Rs remain
unchanged.

(ii) Using procedures for analog filter design in Chapter 5 com-
pute the order N and the cut-off frequency Ωc.

(iii) Using procedures for analog filter design in Chapter 5 deter-
mine the transfer function Ha(s).

142 Digital Filter Design

(iv) The transfer functions read from [1] given the filter order have
been normalized with respect the cut-off frequency. They
must be scaled up in frequency such that Ĥ(s) = H(s/Ωc).

(v) Apply the bilinear transformation to obtain the digital filter
transfer function H(z) = Ĥ(s)|

s= 1−z−1

1+z−1
.

Example 6.1 (Lowpass Filter Design). Design a digital Butter-
worth lowpass filter to have the passband edge frequency of 10 Hz, a
stopband edge frequency of 90 Hz, a maximum passband attenuation
of 0.5 dB and a minimum passband attenuation of 20 dB. The sampling
frequency is 200 Hz (see Figure 6.4).

Solution

(i) Compute the normalized digital frequencies

ωP = 2π
10
200

= 0.314rad/s and

ωs = 2π
60
200

= 1.8850rad/s

Pre-warp the digital frequencies to obtain the frequencies of
the analog LPF

ΩP = tan(0.314/2) = 0.1583rad/s and

Ωs = tan(1.8850/2) = 1.3764rad/s

Fig. 6.4 Realization diagram of Example 6.1

6.2 IIR Filter Design 143

(ii) Find the order of the LPF
The inverse transition ratio 1

k = Ωs
ΩP

= 1.3764
0.1583 = 8.6949.

From the specified ripple of 0.5 dB we have 10log10

(
1

1+ε2

)
=

−0.5 which gives ε2 = 0.1220. From the minimum stopband
attenuation we have 10log10

1
A2 = −20 which gives A2 = 100.

Therefore, the inverse discrimination ratio is given by 1
k1

=√
A2−1
ε = 28.4864. The order of the filter is given by

N =
log10

(1
k1

)
log10

(1
k

) =
log10 28.4864
log10 8.6949

= 1.55.

The order is rounded up to the next higher integer, N = 2.
In order to determine Ωc and to meet the stopband specifi-
cations exactly we use 1

1+(ΩP /ΩC)2N = 1
A2 which gives Ωc =

0.4364.
(iii) The normalized transfer function of the second-order analog

filter is given by H(s) = 1
s2+

√
2s+1

. In order to frequency scale
the transfer function we replace s with s

Ωc
which gives

Ĥ(s) =
Ω2

c

s2 + Ωc

√
2s + Ω2

c

=
0.1904

s2 + 0.6172s + 0.1904
.

(iv) Applying the bilinear transformation we get

H(z) = Ĥ|
s= 1−z−1

1+z−1
=

0.1904(1 + 2z−1 + z−2)
1.8076 − 1.6192z−1 + 0.5732z−2

=
0.105 + 0.210z−1 + 0.105z−2

1 − 0.896z−1 + 0.317z−2 .

(v) Implementation using direct form II structure

The problem can also be solved using MATLAB. The functions used
are shown in Program 6.1 in the appendix. In the bilinear transforma-
tion one can cancel out the impact of T by using T = 2. The program
does the pre-warping outside the bilinear function and therefore the
pre-warping option is not used.

144 Digital Filter Design

Results printed by the program
Ωp = 0.1584 rad/s, Ωs = 1.3764 rad/s,
Cut-off frequency of the analog filter = 0.4363 rad/s
Order of the analog filter = 2
Transfer function of the analog filter

H(s) =
0.1904

s∧2 + 0.6171s + 0.1904

Transfer function of the digital filter

H(z) =
0.1053z∧2 + 0.2107z + 0.1053

z∧2 − 0.8958z + 0.3172
.

6.2.3 Design of Highpass, Bandpass, and Bandstop IIR
Digital Filters

The procedure for the design of highpass, bandpass, and bandstop
filters using the bilinear transform method is summarized in flow
Chart 6.1. An example for each type of filter will be given. It is more effi-
cient to use MATLAB for the complete design. The procedure involves
the pre-warping of the digital filter frequencies to corresponding ana-
log frequencies of an equivalent analog filter (highpass, bandpass or
bandstop). The equivalent analog filter is then spectrally transformed
to a normalized prototype low pass filter. The analog prototype filter
is designed using the well known analog filter design techniques and
its transfer function HLP (s) is computed. By inverse spectral transfor-
mation a transfer function of the equivalent filter HD(s) is obtained.
By using the bilinear transformation, discussed above, HD(s) is trans-
formed to a digital filter. Table 6.1 gives the various spectral trans-
formations required and flow Charts 6.1 and 6.2 give a summary of
the design procedure at a glance for the Highpass and bandpass digital
filter.

Example 6.2 (Highpass Filter Design). Design a digital Cheby-
shev type II highpass filter using the bilinear transform method to
suppress the bass component of music coming from a HiFi system. The
spectrum of the bass component of music must be attenuated from

6.2 IIR Filter Design 145

Prewarp ()2tanˆ ω=Ω

Equivalent Analogue Filter Specifications

Obtain: SPSP R,R,ˆ,ˆ ΩΩ

Desired Filter Specifications
Specifications given: fP, fs, RP, Rs.

Normalise frequencies: ωP, ωs

Desired digital filter specs: ωP, ωs, RP, RS

Convert specs into LPF
specs. Frequency
transformation.

Prototype Lowpass Filter

(i) 1P =Ω whereas
S

P
PS ˆ

ˆ

Ω
ΩΩ=Ω , RP, RS (ii) Select filter type. (iii) Find Order N,

and cut-off frequency ΩC, (iv) Find the transfer function HLP(s).

Convert HLP(s) to obtain
HD(s). This is Inverse
frequency transformation.

Bilinear Transformation

Desired Digital Filter Transfer function H(z)

Equivalent Analogue Filter Transfer Function HD(s)
It is easier to use MATLAB functions: lp2hp

Chart 6.1 Procedure for the design of a digital highpass filters.

146 Digital Filter Design

Table 6.1 Spectral transformations.

From Lowpass to Spectral transformation MATLAB command to implement inverse
spectral transformation

Highpass Ω = ΩP
Ω̂P

Ω̂
[BT, AT] = lp2hp[B,A,WP]

Bandpass Ω = −ΩP
Ω̂2

P − Ω̂2

Ω̂Bw
[BT, AT] = lp2bp[B,A,W0,Bw]

Bandstop Ω = −ΩS
Ω̂Bw

Ω̂2
0 − Ω̂2

[BT, AT] = lp2bs[B,A,W0,Bw]

DC to 500 Hz by at least 30 dB. The remaining spectrum starting from
550 Hz must not be attenuated by more than 1 dB (see Figure 6.5).

Solution
Stopband edge frequency Ωs = 500 Hz
Passband edge frequency Ωp = 550 Hz
The minimum stopband attenuation Rs = 30 dB
The maximum passband attenuation RP = 1 dB
Select sampling frequency Fs = 1200 Hz.

Using MATLAB the following results are obtained using Pro-
gram 6.2 in the Appendix.

Results
Prototype LPF
Cut-off frequency Wc = 1.8190, Order N = 4
Transfer function:

H(s)LP =

0.03162s∧4 − 8.397e − 017s∧3
+0.8371s∧2 − 9.183e − 016s + 2.77

s∧4 + 3.21s∧3 + 5.179s∧2 + 4.904s + 2.77
.

Analog Highpass filter
Transfer function:

H(s)HP =

s∧4 − 2.528e − 015s∧3 + 39.48s∧2
−1.118e − 012s + 194.8

s∧4 + 20.24s∧3 + 244.3s∧2 + 1730s + 6161
.

6.2 IIR Filter Design 147

Prewarp ()2tanˆ ω=Ω

Desired Filter Specifications
Specifications given: fP1, fP2, fS1, fS2, RP, Rs.

Normalise frequencies: ωP1, ωP2, ωS1, ωS2

Desired digital filter specs: ωP1, ωP2, ωS1, ωS2, RP, Rs

Equivalent Analogue Filter Specifications

(i) Obtain: SP2S1S2P1P R,R,ˆ,ˆ,ˆ,ˆ ΩΩΩΩ (ii) If 2121
ˆˆˆˆ

SSPP ΩΩ>ΩΩ then decrease

2P2S1S1P
ˆˆˆˆ ΩΩΩ=Ω or increase 2S2P1P1S

ˆˆˆˆ ΩΩΩ=Ω . If 2121
ˆˆˆˆ

SSPP ΩΩ<ΩΩ then

increase 1P2S1S2P
ˆˆˆˆ ΩΩΩ=Ω or decrease 1S2P1P2S

ˆˆˆˆ ΩΩΩ=Ω

Spectral transform BPF to
LPF.

Prototype Lowpass Filter

(i) 1P =Ω whereas
Bwˆ

ˆˆ

1S

2

1s

2

0
PS Ω

Ω=ΩΩ=Ω , RP, RS (ii) Select filter type. (iii) Find

Order N, and cut-off frequency ΩC, (iv) Find the transfer function HLP(s).

Convert HLP(s) to obtain
HD(s). This is Inverse
frequency transformation.

Bilinear Transformation

Desired Digital Filter Transfer function H(z)

Equivalent Analogue Filter Transfer Function HD(s)
It is easier to use MATLAB functions: lp2bp

Chart 6.2 Procedure for the design of a digital bandpass filters.

148 Digital Filter Design

0 2 4
-60

-40

-20

0

20
Prototype LPF Example 8.2

Frequency in rad/s

M
ag

ni
tu

de

0 5 10 15
-100

-80

-60

-40

-20

0
Analogue HPF Example 8.2

Frequency in rad/s

M
ag

ni
tu

de

0 200 400 600
0

0.2

0.4

0.6

0.8

1
Chebyshev II Example 8.2

Frequency in Hz

M
ag

ni
tu

de

-1 0 1
-1

-0.5

0

0.5

1

Real Part

Im
ag

in
ar

y
P

ar
t

Pole-Zero Plot

Fig. 6.5 Magnitude response for the digital filter and the intermediate analog filters and
the pole–zero plot for the digital filter.

Digital Highpass filter
Transfer function:

H(z) =
0.02885z∧4 + 0.09505z∧3 + 0.1344z∧2 + 0.09505z + 0.02885

z∧4 + 3.44z∧3 + 4.473z∧2 + 2.601z + 0.5707
.

Example 6.3 (Bandpass Filter Design). A measuring equipment
is picking a telemetry signal using an ultrasonic carrier at 40 KHz. In
order to limit the channel noise the ultrasonic signal is filtered using a
10 KHz 1 dB bandwidth filter which is implemented in software using
a digital signal processing device. If the maximum attenuation in the
passband is not to exceed 0.5 dB and if the minimum attenuation at
±20 kHz from the center of the filter is to be 40 dB design an elliptic
IIR digital filter using the bilinear transformation method to perform
the task (see Figure 6.6).

6.2 IIR Filter Design 149

0 2 4 6 8 10
-100

-80

-60

-40

-20

0

20
Prototype LPF Example 8.2

Frequency in rad/s

M
ag

ni
tu

de

0 1 2 3 4 5
-80

-60

-40

-20

0
Analogue BPF Example 8.3

Frequency in rad/s

M
ag

ni
tu

de

0 1 2 3 4
0

0.5

1

1.5
Elliptic Bandpass Filter Example 8.3

Frequency in rad/s

M
ag

ni
tu

de

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Real Part

Im
ag

in
ar

y
P

ar
t

Pole-Zero Plot

Fig. 6.6 Plots for Example 6.3.

Solution
A bandpass filter is required.
The lower passband edge frequency fP1 = 35 KHz
The upper passband edge frequency fP2 = 45 KHz
The lower stopband edge frequency fs1 = 20 KHz
The upper stopband edge frequency fs2 = 60 KHz
The maximum passband attenuation Rp = 0.5 dB
The minimum stopband attenuation Rs = 40 dB
Let the sampling frequency is 120 KHz

Using MATLAB program the following results are obtained using
Program 6.3 in the appendix.

Results
Prototype LPF
Cut-off frequency Wc = 1; Order N = 3

150 Digital Filter Design

Transfer function:

HLP(s) =
0.07845s∧2 − 2.954e − 017s + 0.7555

s∧3 + 1.24s∧2 + 1.529s + 0.7555

Analog Bandpass filter
Transfer function:

HBP(s) =

0.08716s∧5 − 7.478e − 017s4 + 1.21s3 − 6.669e − 017s2

+0.08716s + 1.007e − 019
s6 + 1.377s5 + 4.887s4 + 3.791s3 + 4.887s2 + 1.377s + 1

Digital Bandpass filter
Transfer function:

0.07558z6 − 7.215e − 016z5 − 0.1506z4 + 1.197e − 015z3

+0.1506z2 + 1.181e − 015z − 0.07558

z6 + 3.858e − 015z5 + 1.235z4 + 2.644e − 015z3

+0.973z2 + 8.552e − 016z + 0.2854

The design of a bandstop filter is similar to the design of a bandpass
filter with the following difference:

(i) The bandwidth of the equivalent bandstop filter Bw =
ΩS2 − ΩS1.

(ii) For the prototype LPF ΩS = 1 and ΩP has to be calculated.
(iii) The MATLAB function for inverse frequency transformation

in lp2bs.

Example 6.4 (Bandstop Filter Design). A student’s project
involves transmitting data and speech over a telephone line in the same
voice band from a Security Company to a specific subscriber. This data
carries information that can be used to display intruded zones. The stu-
dent is to use a specified band 800 Hz to 1.2 KHz for data transmission
and the rest of the band should carry voice in the normal way. The
proposed transmission system is shown in Figure 6.7.

Design the bandstop filter for this project to have the following
specifications (see Figures 6.8 and 6.9).

6.2 IIR Filter Design 151

BPF

BSF

+

BSF

BPF

Fig. 6.7 Inband data and voice transmission system over a telephone line.

0 1 2
-60

-40

-20

0

20
Prototype LPF Example 8.3

Frequency in rad/s

M
ag

ni
tu

de

0 1 2 3
-80

-60

-40

-20

0
Analogue BSF Example 8.3

Frequency in rad/s

M
ag

ni
tu

de

0 500 1000 1500
0

0.5

1
Chebyshev II Bandstop Filter Example 8.3

Frequency in Hz

M
ag

ni
tu

d
e

-1 0 1
-1

0

1

Real Part

Im
a

g
in

a
ry

 P
a

rt

Pole-Zero Plot

Fig. 6.8 Bandstop filter to for Example 6.4.

Lower passband edge frequency = 750 Hz
Upper passband edge frequency = 1.25 KHz
Lower stopband edge frequency = 800 KHz
Upper stopband edge frequency = 1.2 KHz
Maximum passband attenuation = 0.5 dB.

152 Digital Filter Design

Fig. 6.9 Realization diagram for Example 6.4.

Minimum passband attenuation = 40 dB
Select a sampling frequency = 2.8 KHz.

Solution

Using MATLAB Program 6.4 in the appendix.

Results
Prototype LPF
Cut-off frequency Wc = 0.9149, Order N = 3
Transfer function:

HLP (s) =
0.02745s∧2 + 0.03063

s∧3 + 0.6172s∧2 + 0.1901s + 0.03063
.

Analog Bandstop filter
Transfer function:

s6 + 2.175e − 016s5 + 3.117s4 + 1.134e − 016s3

+2.609s2 − 9.191e − 017s + 0.5864
s6 + 5.104s5 + 16.14s4 + 26.71s3 + 13.51s2 + 3.576s + 0.5864

Digital Bandstop filter
Transfer function:

0.1097z6 − 0.05249z5 + 0.2712z4 − 0.09364z3

+0.2712z2 − 0.05249z + 0.1097

z6 − 0.208z5 − 0.6393z4 + 0.03381z3 + 0.4634z2

−0.02448z − 0.0623

6.3 FIR Filter Design 153

sos =

1.0000 −0.1775 1.0000 1.0000 −0.0743 −0.1629
1.0000 0.6275 1.0000 1.0000 1.2478 0.5965
1.0000 −0.9283 1.0000 1.0000 −1.3815 0.6411

g = 0.1097.

6.3 FIR Filter Design

FIR filter are not designed from analog filters. They are designed by
direct approximation of the magnitude or the impulse response and
may have a condition that the phase frequency characteristic be linear.
There are two common methods that are used; the windowed Fourier
series method and the frequency sampling method. In this section, we
will focus on the windowed Fourier series method.

6.3.1 The Windowed Fourier Series Method

FIR filters have a transfer function H(z) that is a polynomial of z−1

and is given as the z-transform of its impulse response

H(z) =
∞∑

n=−∞
h(n)z−n. (6.6)

When Equation (6.6) is evaluated on the unit circle, z = ejω, we obtain
the frequency response (or the DTFT) of the filter given as

H(ejω) =
∞∑

n=−∞
h(n)e−jωn. (6.7)

The frequency response of the discrete-time signal is periodic and there-
fore the expression of Equation (6.7) is a Fourier series and h(n) are
the Fourier series coefficients which can be given as

h(n) =
1
2π

∫ π

−π
H(ejω)ejωndω. (6.8)

Normally we aim at magnitude response of an ideal filter with a “brick
wall” response and this has an infinite length impulse response with
samples covering the range −∞ < n < ∞. Such a filter is noncausal and

154 Digital Filter Design

therefore unrealizable. The filter is also unstable. The design process
involves shortening the filter to a desired length and delaying it to make
it causal. The process of shortening the filter length is referred to as
truncation or windowing and is achieved by multiplication by window
function.

Let the truncated impulse response be denoted by ht(n) covering
the range −N ≤ n ≤ N . It is intended to make the DTFT (ht(n))
(or Ht(ejω)) approximate H(ejω) so that the integral-squared error
is minimized. If we apply Parsevals’ relation we can write

ε =
1
2π

∫ π

−π
|H(ejω) − Ht(ejω)|2dω

=
∞∑

n=−∞
|h(n) − ht(n)|2

=
N∑

n=−N

|h(n) − ht(n)|2 +
−N−1∑
n=−∞

|h(n)|2 +
∞∑

n=N+1

|h(n)|2, (6.9)

which shows that the integral squared error is minimized when ht(n) =
h(n) in the range − N ≤ n ≤ N . This implies that the process of trun-
cation results in a minimum integral squared error. In order to make
the filter causal we can delay the impulse response by N such that the
delayed samples are given by h1(n) = ht(n − N). Delaying the sam-
ples does not change the magnitude response but change the phase
response. The design procedure for FIR filters then involves truncating
the infinite-length impulse response h(n) of ideal filters and shifting
such impulse responses to make the filter causal. The expressions for
the impulse responses of ideal filters is summarized in Table 6.2.

6.3.2 The Gibbs Phenomenon

When an ideal impulse response h(n) of infinite length is truncated by
multiplication by a window function w(n) of finite-length the trans-
fer function of the ideal filter which was originally rectangular shows
oscillatory behavior. This oscillatory behavior is known as Gibbs phe-
nomenon. In order to explain Gibbs phenomenon the following func-
tions are specified:

6.3 FIR Filter Design 155

Table 6.2 Impulse responses of ideal filters.

π

1

 ω
0 ω c– ω c

H LP (e jω)

−π

hLP [n] =
sin(ωn)

πn
,−∞ ≤ n ≤ ∞

π
 ω

0 ω c–ω c

1

HHP(e jω)

−π

[hHP [n] =

1 − ωc

π
, n = 0

− sin(ωcn

πn
, n �= 0

π −π
 ω

11–

– c1 ω c1–ω c2 ω c2

HBP (e jω)

hBP (n) =
sin(ωc1n)

πn
− sin(ωc2n)

πn

for |n| ≥ 0|

−π π
 ω

1

–ω c1 ω c1–ω c2 ω c2

HBS(e jω)

hBS [n] =

1 − ωc2 − ωc1

π
, n = 0

sin(ωc1n)
πn

− sin(ωc2n)
πn

, n �= 0

The impulse response of the ideal filter is denoted by h(n) − ∞ <

n < ∞. The window function, in this case a rectangular window, is
defined as

w(n) =
{

1 −M ≤ n ≤ M

0 otherwise
, (6.10)

156 Digital Filter Design

which has a DTFT given by

W (ejω) =
sin
(

ω
2 (2M + 1)

)
sin
(

ω
2

) . (6.11)

The truncated impulse response will thus be defined as

ht(n) = h(n)w(n) =
{

h(n) −M ≤ n ≤ M

0 otherwise
(6.12)

Using the modulation property of DTFT it is observed that time
domain multiplication implies convolution in the frequency domain.
This we can write

Ht(ejω) =
1
2π

∫ ∞

−∞
H(ejϕ)W (ej(w−ϕ))dϕ, (6.13)

and is shown graphically in Figure 6.10. The DTFT of the window
function resembles a sinc function with a main lobe and smaller side
lobes. In the process of convolution a frequency reversal of this function
represented by W (e−jϕ) is shifted to the right as W (ej(w−ϕ)) by an
amount ω and the area under the curve y = W (ej(w−ϕ)) × H(ejϕ) from
−ωc to ω is taken. As ω increases the area under the curve y will be
increasing, and varying according to whether the lobes are shifting in
or not. The contribution from the main lobe is a slow transition to
a maximum and when fully in the overlapping region its contribution
is constant defining the passband of the truncated filter. As the main
lobe moves out of the overlapping region its contribution is defined by
a slow transition to zero. Meanwhile the sidelobes add ripples on top of
the main lobe contribution. The magnitude response of the truncated
impulse response has the following characteristics:

(i) There are ripples in both the passband and the stopband.
(ii) If the filter length is increased the number of ripples in both

the passband and the stopband increase with a corresponding
decrease in the ripple width.

(iii) If a sharp transition is required the main lobe width has to be
as small as possible. The main lobe width obtained from the
first zero crossings in Equation (6.11) is 4π/(2M + 1). Thus

6.3 FIR Filter Design 157

Multiplication in the time domain Frequency convolution

Fig. 6.10 The windowing process shown graphically in the time and frequency domains.

for a sharp transition M has to be as large as possible. How-
ever, this is undesirable as a large window length and hence
a large filter length, increases computational complexity.

It is the sharp transition to zero of the window outside −N ≤ n ≤ +N

that causes the Gibbs phenomenon in the magnitude response of the
windowed truncated filter. In order to reduce the Gibbs phenomenon
windows that tapers smoothly to zero on either side can be used.

158 Digital Filter Design

Such windows reduce the height of the sidelobes and increase the main
lobe width. When the window DTFT is convolved with the magni-
tude response of the ideal filter the result is a more gradual magnitude
response of the truncated filter.

6.3.3 Window Functions

Important parameters in the design of FIR filters using window
functions:

(i) Let ωp and ωs be the passband and stopband edge frequencies
of the desired filter. Then the cut-off frequency ωc = ωp+ωs

2
and H(ejωc) = 0.5.

(ii) The transition bandwidth ∆ω = ωs − ωp and is approxi-
mately given by ∆ω ∼= C/M .

(iii) The transition width of the window is always less than the
main lobe width.

In the following section, the window analysis tool “wintool” is used to
analyze selected windows. There are several other windows functions
in the toolbox.

(i) Rectangular window

w(n) =
{

1 −M ≤ n ≤ M

0 otherwise.
(6.14)

The graphical representation of rectangular window is shown
in Figure 6.11.

Main Lobe width = 4π/(2M + 1), Relative Sidelobe
Level = 13.3 dB.

Transition bandwidth = 0.92π/M, Minimum stop-
band attenuation = 20.9 dB.

(ii) The Hann window

w(n) =
1
2

(
1 + cos

(
2πn

2M + 1

))
for − M ≤ n ≤ M

(6.15)

6.3 FIR Filter Design 159

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-30

-20

-10

0

10

20

30

40

Normalized Frequency: 0.08984375
Magnitude (dB): 16.86818

Normalized Frequency: 0
Magnitude (dB): 30.103

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Frequency domain

Fig. 6.11 The frequency response of a rectangular window for M = 32.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-100

-80

-60

-40

-20

0

20

40

Normalized Frequency: 0.15625
Magnitude (dB): -7.827975

Normalized Frequency: 0.0078125
Magnitude (dB): 23.72441

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (d

B
)

Frequency domain

Fig. 6.12 Frequency response of a Hann window for M = 32.

The graphical representation of the Hann window is shown
in Figure 6.12.

Main Lobe width = 8π/(2M + 1), Relative Sidelobe
Level = 31.5 dB.

Transition bandwidth = 3.11 π/M , Minimum stop-
band attenuation = 43.9 dB.

160 Digital Filter Design

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-80

-60

-40

-20

0

20

40 Normalized Frequency: 0
Magnitude (dB): 24.51652

Normalized Frequency: 0.2128906
Magnitude (dB): -18.35497

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (d

B
)

Frequency domain

Fig. 6.13 Frequency response of a Hamming window for M = 32.

(iii) Hamming Window

w(n) = 0.54 + 0.46cos
(

2πn

2M + 1

)
for − M ≤ n ≤ M.

(6.16)
The graphical representation of the Hamming window is
shown in Figure 6.13.

Main Lobe width = 8π/(2M + 1), Relative Sidelobe
Level = 42.7 dB.

Transition bandwidth = 3.32 π/M, Minimum stop-
band attenuation = 54.5 dB.

(iv) Blackman window

w(n) = 0.42 + 0.5cos
(

2π

2M + 1

)

+0.08cos
(

2π

2M + 1

)
for − M ≤ n ≤ M. (6.17)

The graphical representation of the Blackman window is
shown in Figure 6.14.

Main Lobe width = 12π/(2M + 1), Relative Sidelobe
Level = 58.1 dB.

6.3 FIR Filter Design 161

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-120

-100

-80

-60

-40

-20

0

20

40 Normalized Frequency: 0
Magnitude (dB): 22.29222

Normalized Frequency: 0.2304688
Magnitude (dB): -35.87919

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (d

B
)

Frequency domain

Fig. 6.14 Frequency response of a Blackman window for M = 32.

Transition bandwidth = 5.56 π/M, Minimum stop-
band attenuation = 73.3 dB.

(v) The Kaiser Window
The main lobe of the Kaiser window hs the most energy for
a given relative sidelobe level compared to other windows.
This makes it an optimum window as it would provide
the smoothest transition from passband to stopband with
the smallest ripples. It is also an adjustable window as the
window can provide different transition widths for the same
window length L = 2M . The window function is given by

w(n) =
I0�β

√
1 − (n − M)2/M2�

I0(β)
for n = 0,1, . . . ,L − 1

(6.18)
where β is an adjustable shape parameter and

I0(β) =
∞∑

k=0

(

β
2

)k

k!

2

= zero-order modified function of the first kind.

In this summation only the first 25 terms provide an accurate
result.

162 Digital Filter Design

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-120

-100

-80

-60

-40

-20

0

20

40

Normalized Frequency: 0
Magnitude (dB): 21.67387

Normalized Frequency: 0.2265625
Magnitude (dB): -52.68411

Normalized Frequency: 0.1503906
Magnitude (dB): -2.699513
Normalized Frequency: 0.1523438
Magnitude (dB): -3.467335

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

d
B)

Magnitude Response of Kaiser Window Function

Fig. 6.15 Frequency response of a Kaiser window for M = 32 and β = 10.

The MATLAB function B = Kaiser(N , BTA) returns N

beta valued Kaiser window (see Figure 6.15). The tapering
property of the above windows in the time domain is dis-
played in Figure 6.16. The small difference in the taper pro-
duces a significant difference in the relative sidelobe and in
the width of the main lobe.

The MATLAB function b = fir2(N , f , m, window), where
N is the order of the filter, f is a vector of band-edge fre-
quency points in the range from 0 to 1 given in increasing
order. The variable m is a vector containing the ideal magni-
tude response at the points specified in f . The vector f and
m must be of the same length.

Example 6.5 Design a lowpass FIR digital filter with the following
specifications:

The passband edge frequency fp = 2 KHz
The stopband edge frequency fp = 2.5 KHz
Maximum passband attenuation = 0.1 dB
Minimum stopband attenuation = 50 dB
The sampling frequency Fs = 10 KHz.

6.3 FIR Filter Design 163

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Tapered Window Functions

Time Index n

M
ag

ni
tu

de

Kaiser

Hanning
Hamming

Blackman

Fig. 6.16 Characteristics of selected tapered window functions.

Solution

ωp = 2πfp/Fs = 0.5π, ωs = 2πfs/Fs = 0.4π

ωc = ωp+ωs

2 = 0.45π, ∆ω = ωp − ωs = 0.1π.

Select Hamming window since it has 54.5 dB of stopband atten-
uation and thus just exceeds the required stopband attenuation. For
the Hamming window ∆ω = 3.32π/M. Hence M = 3.32π

0.1π = 33.2. Choose
M = 34 and therefore N = 2M + 1 = 69.

The impulse response of the filter is given by

ht(n) = hLP (n) × w(n)|Hamming =
(

sin(ωn)
πn

)

×
(

0.54 + 0.46cos
(

2πn

2M + 1

))
for − M ≤ n ≤ M

164 Digital Filter Design

0 0.2 0.4 0.6 0.8 1
-100

-80

-60

-40

-20

0

20

Omga/pi

M
a

gn
itu

de
Magnitude Response for Example 8.5

Fig. 6.17 Magnitude response of an FIR filter designed using the Hamming window.

MATLAB Programme to design FIR filter using the Hamming window.

% FIR filter Design using the Hamming window

% f specifies the position of the band-edges and

m the ideal

% magnitude at those positions

f = [0 0.45 0.45 1]; m = [1 1 0 0];

b = fir2(69,f,m, hamming(70));

[h,w] = freqz(b,1,69);

plot(f,m,w/pi,20*log10(abs(h)))

legend(‘ideal’,‘fir2 Designed’)

title(‘Comparison of Frequency Response Magnitudes’)

6.4 Problems

6.5.1 Given the transfer function H(s) = 1
(1+3s+s2) , find H(z) using

the bilinear transformation method.

6.4 Problems 165

6.5.2 Determine the transfer function of a second-order lowpass
digital Butterworth filter with a cut-off frequency of 4 KHz
and a sampling frequency of 40 KHz.

6.5.3 Determine the transfer function of a second-order highpass
digital Butterworth filter with a cut-off frequency of 4 KHz
and a sampling frequency of 40 KHz.

6.5.4 Design a highpass digital elliptic filter using the bilinear
transform method to meet the following specifications:

passband-edge frequencies: 4.5 KHz

stopband-edge frequencies: 4 KHz

Maximum passband attenuation: 0.5 dB

Minimum stopband attenuation: 40 dB

Obtain the order, the transfer function, and plot the magni-
tude and phase response.

6.5.5 Design a bandpass digital Butterworth filter using the bilin-
ear transform method to meet the following specifications:

passband-edge frequencies: 2 kHz and 4 KHz

stopband-edge frequencies: 1.8 KHz and 4.5 KHz

Maximum passband attenuation: 0.5 dB

Minimum stopband attenuation: 40 dB

Obtain the order, the transfer function, and plot the magni-
tude and phase response of the digital filter.

6.5.6 Design a bandstop digital Chebyshev II filter using the bilin-
ear transform method to meet the following specifications:

passband-edge frequencies: 500 Hz and 750 Hz

stopband-edge frequencies: 550 Hz and 650 Hz

Maximum passband attenuation: 1 dB

Minimum stopband attenuation: 50 dB

Obtain the order, the transfer function, and plot the magni-
tude and phase response of the digital filter.

6.5.7 Another method that is deployed in the design of IIR fil-
ters is referred to as the impulse invariance method. In this

166 Digital Filter Design

case the impulse response of the digital filter h(n) is the
sampled version of the impulse response of the analog filter
ha(t). That is h(n) = ha(nT). Show that through the impulse
invariance method the causal first-order analog transfer func-
tion Ha(s) = A

s+α transforms to a causal first-order digital
transfer function given by G(z) = A

1−e−αT z−1 .
6.5.8 Starting with a numerical approximation to the integral

y(t) =
∫ t+T
t x(t)dt using the trapezoidal rule and the Laplace

transform of the integral, obtain the mapping from the
s-plane to the z-plane representing the bilinear z-transform.

6.5.9 A first derivative is approximated with a backward difference
equation as dy(t)

dt |t=nT
∼= 1

T [y(n) − y(n − 1)], where T is the
sampling period and y(n) = y(nT).

(i) Obtain the mapping from the s-plane to the z-plane.

(ii) Determine whether stable analog filter will be
mapped to stable digital filter.

(iii) Determine the relationship between the analog fre-
quency Ω and the digital frequency ω.

6.5.10 In this problem we would want to compare the design of
an IIR digital filter using the two common methods; the
impulse invariance method and the bilinear z-transform
method. The same prototype filter should be transformed
to a highpass filter and then to a digital filter using the two
methods. The specifications of the required highpass digital
filter: ΩS = 500Hz,ΩP = 550Hz,Rs = 30dB,RP = 1dB. Use
MATLAB functions to design the digital filter using the two
methods. Comment on the magnitude response, the phase
response, and the complexity of the two filters.

6.5.11 Design a highpass FIR digital filter with the following
specifications:

The passband edge frequency fp = 2.5 KHz

The stopband edge frequency fs = 2 KHz

Maximum passband attenuation = 0.1 dB

6.4 Problems 167

Minimum stopband attenuation = 50 dB

The sampling frequency Fs = 10 KHz.

6.5.12 Design a bandpass FIR digital filter with the following
specifications:

The passband edge frequencies fp1 = 2 KHz and fp2 =
4 KHz

The stopband edge frequency fs = 1.5 KHz and fs2 =
4.5 KHz

Maximum passband attenuation = 0.1 dB

Minimum stopband attenuation = 50 dB

The sampling frequency Fs = 10 KHz.

This page intentionally left blank

7
Digital Signal Processing Implementation Issues

7.1 Introduction

Numbers in digital signal processors, and in general, in computers are
represented in binary form using a string of symbols 1s and 0s which
are referred to as binary digits or in short bits A part of the string on
the right representing the integer portion is separated from the part
on the left that represents the fractional part by binary point. In gen-
eral the format takes the form:

aM−1aM−2aM−3 · · ·a1a0∆a−1a−2 · · ·a−N where,

ai = 0 or 1 and ∆ is the binary point.

The bit aM−1 is referred to as the Most Significant Bit (MSB) and the
bit a−N is the least significant bit (LSB). The bit string that represents
a specific value is referred to as the word and the number of bits in the
word forms the wordlength. The wordlength is normally selected as a
power of two; 4, 8, 16, 32, etc.

The decimal value represented by the word is given by

Valuedec =
M−1∑
i=−N

ai. (7.1)

In digital signal processors numbers are represented in either of two
forms; using fixed point numbers or using floating point numbers. In
the next two sections, we will discuss these two forms and show how
arithmetic operations are achieved.

7.2 Fixed Point Number Representation and Arithmetic

Many DSP processors use fixed-point number representation and arith-
metic. In this representation numbers can be represented as integers or

169

170 Digital Signal Processing Implementation Issues

as fractions. In the multiplication operations using mixed numbers it is
not obvious to determine where the binary point is going to be. How-
ever, with products of pure fractions or pure integers the binary point
is fixed. For this reason fixed point numbers are always represented as
fractions. The first bit is normally used to represent the sign of the
fraction. This bit is 1 for negative numbers and 0 for positive numbers.
There are three ways in which negative numbers can be represented:

(i) Sign and magnitude representation: The binary number
b = s∆a−1a−2a−3 · · ·a−N has a positive value given by

∑N
i=1

a−i2−i for s = 0 or a negative value given by −∑N
i=1 a−i2−i

for s = 1.
(ii) One’s complement representation: The binary number

b = s∆a−1a−2a−3 · · ·a−N has a positive value given by∑N
i=1 a−i2−i for s = 0 (as in sign and magnitude repre-

sentation) and the negative number is obtained by com-
plementing each bit of the positive fraction. The decimal
equivalent of the negative number is obtained from −(1 −
2−N) +

∑N
i=1 a−i2−i, where ai are the complemented values.

(iii) Two’s complement representation: The binary number
b = s∆a−1a−2a−3 · · ·a−N has a positive value given by∑N

i=1 a−i2−i for s = 0 (as in sign and magnitude represen-
tation) and the negative number is obtained by comple-
menting each bit of the positive fraction, and adding a 1
to the LSB. The decimal equivalent of the negative number
is obtained from −1 +

∑N
i=1 a−i2−i, where ai are the com-

plemented values.

It easier to show arithmetic operations using examples

(i) Addition/Subtraction operations using sign and magnitude
representations: Positive numbers are added modulo two
column by column. If the sum of any column exceeds one a
carry forward to the next column is made. If the addition
of two positive numbers results in a negative number, as in
Example 7.2, then this indicates an overflow. Subtraction is

7.2 Fixed Point Number Representation and Arithmetic 171

also done on a column by column basis. If the subtrahend
(number to subtract) is bigger than minuend (the number to
subtract from) then a borrow is made from the next column.
This is shown in Example 7.4.

Example 7.1.

Example 7.2.

Example 7.3.

Example 7.4.

172 Digital Signal Processing Implementation Issues

The important observation to make here is that the operation
of addition and subtraction are different and would require
different circuits or algorithms in their implementation. If in
Example 7.4 we treated subtraction as an addition of a neg-
ative number it would be necessary to convert the negative
number using either one’s or two’s complement representa-
tion as in (ii) and (iii) below.

(ii) Addition/Subtraction operations using one’s complement
representation: First represent the negative number
−0∆0101 as 1∆1010 using one’s complement representation
and add in the normal way. The extra bit created on the
left of the sign bit resulting from the carry bit is added to
the LSB as shown in Example 7.5. In this case subtraction
has been treated as an addition operation.

Example 7.5.

(iii) Addition/Subtraction operations using two’s complement
representation: In Example 7.6 the same subtraction is
implemented as an addition operation of a negative number
only this time the negative number is represented using two’s
complement representation.

Example 7.6.

7.2 Fixed Point Number Representation and Arithmetic 173

The conclusion here is that with negative numbers repre-
sented in one’s complements form or two’s complement form
subtraction can be treated as an addition operation and
hence the same algorithm or circuit can be used for addi-
tion and for subtraction.

7.2.1 Fixed Point Multiplication

Consider two binary numbers to be multiplied x = xs∆x−1x−2

x−3 · · ·x−n (the multiplicand) and y = ys∆y−1y−2y−3 · · ·y−n (the mul-
tiplier), where xs and ys represent the sign of the respective numbers.
The multiplication can be performed in n steps using the following
algorithm:

P (i) = (P (i−1) + y−n+i−1 × x) × 2−1 for i = 1,2, . . . ,−n, (7.2)

where P (0) = 0. When y=
−n+i−10 the current product is equal to the

previous product shifted once to the right and when y−n+i−1 = 1 then
the current product is equal to the sum of the previous product and
the multiplicand shifted one place to the right. The process is shown
in Example 7.7 where the fractions x = −∆110 and y =∆ 011 are mul-
tiplied. In this case xs = −1 and ys = +1 and the sign of the product
will be negative. The process of multiplication of the magnitudes of the
numbers is done in the following process:

Example 7.7.

174 Digital Signal Processing Implementation Issues

7.3 Floating Point Number Representation and Arithmetic

A floating point number α is represented using two parameters; the
mantissa m and the exponent e such that α = m × 2e, where the man-
tissa is a binary fraction in the range 1/2 ≤ m < 1 and the exponent e

is a positive or negative binary integer. The IEEE [11] has defined a
standard for the floating point number format. For the 32-bit format
the first bit is a sign bit, the next 8 bits are used for the exponent and
the remaining 23 bits are used for the mantissa as shown in Figure 7.1.
Thus a floating point number using the IEEE format is given by

α = (−1)S × 2e−127 × M. (7.3)

In this equation it should be noted that the exponent is biased and it
is within the range −127 < exponent < 128 and the mantissa in this
scheme has been defined to be in the range 0 ≤ m < 1.

Addition of floating point numbers

(i) Addition of two numbers with the same exponent is easily
accomplished by direct addition of the mantissa as shown in
Example 7.8.

Example 7.8.

Fig. 7.1 The IEEE 32-bit floating point format.

7.3 Floating Point Number Representation and Arithmetic 175

(ii) In the addition of numbers that have different exponents the
mantissa of the smaller numbers is shifted to the right to
make the exponent of the smaller number equal to that of
the larger number and then the mantissa of the two numbers
are added as in (i) above.

Example 7.9.

α1 = (0∆10101100)2101, α2 = (0∆01010001)2110

α1 has the smaller exponent, shift mantissa to the

right one step (equivalent to dividing by 2) and

add 1 to the exponent (equivalent to multiplying

same number by 2).

α1 = (0∆01010110)2110

sum = α1 + α2 = (0∆01010110 + 0∆01010001)2110

= (0∆10100111)2101

7.3.1 Multiplication of Floating Point Numbers

Multiplication of floating point numbers is achieved by multiplying
their mantissas and adding the exponents. If the product of the man-
tissa is below the range 1/2 ≤ m < 1 then the mantissa can be normal-
ized by shifting it to the right and making necessary compensation to
the exponent.

Example 7.10. Consider two floating point numbers

α4 = (0∆110)210 and α5 = (0∆011)201

Product of the mantissa is done as in Example 7.7. The resulting prod-
uct is given by

product = (0∆010010)211

It can be shown that the Mantissa of the product is equal to 0.28125 in
decimal notation. Since this is less than 0.5 normalization is necessary.

176 Digital Signal Processing Implementation Issues

Shift the mantissa to the left and subtract 1 from the exponent. This
gives the product as

product = (0∆100100)210

7.4 Fixed and Floating Point DSP Devices

The selection of a fixed-point or floating-point DSP depends, to a large
extent, on whether the computational capabilities using the floating
point format is required by the particular application. The degree of
accuracy required by the application is a significant factor. A good
example is in the processing of audio signals versus video signals. Audio
signals require much more accuracy than video signals as the ear is more
sensitive to details than the eye. Floating point devices are capable of
providing the accuracy that audio signals require as greater accuracy is
achievable in floating- point devices. On the other hand, in processing
video signals a huge amount of data is involved. In order to process such
data fast and in real-time fixed-point devices are the most appropriate.

Accuracy in floating point devices is achieved through the use of
24 bits or more for the mantissa to represent the signal variables and the
coefficients. In the majority of fixed point devices 16 bits are used [12].
A good example is the TI DSP C67xTM floating-point DSP processor
that uses 24 bits would achieve more accuracy than the C62xTM fixed
point processor that uses 16 bits. The exponentiation that is employed
in floating-point number representation increases the dynamic range
available for applications with large and unpredictable dynamic ranges.
In addition the use of longer word-lengths to represent the internal
product ensures more accuracy to the end product.

There are three important word-lengths in the internal architectures
of digital signal processors. The size of these word-lengths are carefully
chosen to ensure that the targeted applications are implemented with
the desired accuracy. These word-lengths are listed below and sum-
marised in Table 7.1 for selected TI DSPs.

(i) I/O signal word-lengths: In Table 7.1 a sample of TI DSP
shows that this word-lengths for fixed-point DSPs may be

7.5 Overflows Resulting from Arithmetic Operations 177

Table 7.1 Word-lengths for TI-DSPs [12].

Word-length
TI DSP(s) Format Signal I/O Coefficient Intermediate Result
C25x Fixed 16 16 40
C5xTM/C62xTM Fixed 16 16 40
C64xTM Fixed 8/16/32 16 40
C3xTM floating 24(mantissa) 24 32
C67xTM(SP) floating 24(mantissa) 24 24/53
C67x(DP) floating 53 53 53

16, 24, or 32. In the C64x one can select any of the three.
The mantissa of the floating point DSPs, on the hand, can
have 24 for the 32-bit format or 53 for the 64-bit format.

(ii) Coefficients word-length: The word-length is identical to the
I/O signal word-length except for the C64x DSP where only
the 16-bit option is available.

(iii) Intermediate products word-length: For a single 16-bit (from
signal) by 16-bit (from coefficient) multiplication a 32-bit
product is normally required. Also for a single 24-bit by
24-bit multiplication a 48-bit product is required. However,
the iterated MAC (multiply and accumulate) require addi-
tional bits for overflow headroom. The C62x fixed point
DSP the headroom is 8 bits. The intermediate product word-
length is therefore 40 bits (16 bits signal + 16 bits coefficients
+ 8 bits overflow). For the C67x floating point DSP only
the mantissa data path is considered. In theory the word-
length required is 64-bits (24 bits signal + 24 bits for the
coefficient +16 bits overflow). However, this is beyond the
accuracy required in most applications. Only 48 bits are kept
and due to exponentiation the accuracy achieved is much
more than for fixed-point DSPs.

7.5 Overflows Resulting from Arithmetic Operations

Fixed point digital signal processors can experience overflow conditions
resulting from addition of signal variables at the intermediate stages
as the signal goes through the processor. An overflow leads to severe

178 Digital Signal Processing Implementation Issues

Fig. 7.2 Graphs showing overflow control: (a) saturation overflow; (b) two’s complement
overflow.

distortion of the output signal and this must be prevented. In order to
prevent the distortion when the sum of the signal variables go beyond
the expected dynamic range the sum is assigned a different value that
is within the range. When the sum exceeds +1 it is assigned a value
equal to 1 − 2−b, where b is the number of the LSB and when the sum
is below −1 it will be assigned a value of −1. Therefore for the sign
and magnitude representation the saturation flow scheme is as shown
in Figure 7.2 (a). In two’s complement case when the sum goes outside
the range then the assigned value is given by

assigned value = 〈sum + 1〉2

7.6 Impact of the Quantization Process

Analog input to a digital signal processor is converted to a fixed word-
length digital signal using an ADC. In Section 7.3, we saw the various
word-lengths for the I/O signals for various TI DSP processors. We
have also seen that the coefficients are stored in registers with fixed
register lengths. Thus the I/O signals are not processed and/or stored
in the processor with infinite precision as this would require infinitely
large memory. Both the signals and the coefficients are quantized into
fixed word-lengths in order to fit into the available storage. During a
multiplication operation a b-bit signal sample is multiplied with a b-bit

7.6 Impact of the Quantization Process 179

Fig. 7.3 Quantization through truncation.

coefficient to produce a 2b-bit product. Such a product may be stored
or sent to DAC converter after the 2b bit word is shortened or truncated
to b bits.

The impact of quantization of the input signal, the coefficients and
the results of intermediate operations is that the signal at the output
will be different from that expected theoretically. This is because quan-
tization introduces errors in the input signal, in the coefficients and in
the products of the intermediate operations. The error that is intro-
duced to the output signal depends on how the numbers and the arith-
metic operations are done. The errors will be different depending on
whether fixed-point or floating-point number representation and arith-
metic operations are used. The errors will also be influenced by the way
the negative numbers are represented in fixed-point representation.

Figure 7.3 shows a signal x(t) that is quantized through truncation
to obtain the signal Q(x(t)). The quantization error is given by

εt = Q(x) − x. (7.4)

In the section below we show the range of the truncation errors for the
different type of arithmetic representation.

180 Digital Signal Processing Implementation Issues

Fig. 7.4 A fixed point fraction represented by b bits.

7.6.1 Quantization Errors in Fixed Point Processors

A fixed-point fraction can be represented as in Figure 7.4 where b bits
are used.

(i) Positive numbers: In all the three formats of fixed-point
representation the positive numbers are represented in the
same way. If, for instance, a positive fraction of length
ρ + 1 bits is truncated to b + 1 bits then the maximum value
of the magnitude of the truncation error has a decimal equiv-
alent given by εt = 2−b − 2−ρ. This occurs when all bits dis-
carded are ones. The magnitude will be equal to zero if all
bits to be discarded are zero. Since the unquantized variable
is always greater than the quantized value the error is always
negative. Thus the error is bounded by

−(2−b − 2−ρ) ≤ εt ≤ 0. (7.5)

For fixed-point negative numbers we have to examine each
format used in representing the negative number separately.

(ii) Negative numbers:

• Sign and magnitude representation: For negative
fraction the quantized variable is larger than the
unquantized variable. Hence the error is positive and
is bounded by

0 ≤ εt ≤ 2−b − 2−ρ. (7.6)

• For one’s complement representation: A nega-
tive fraction represented using one’s complement

7.6 Impact of the Quantization Process 181

representation by the numbers in Figure 7.4 with
S =1 can have a decimal equivalent value given
by −(1 − 2−b) +

∑b
i=0 ai2−i. This is the value after

truncation to b + 1 bits. If the number of bits
before truncation is ρ + 1 then the numerical value
of the negative fraction is −(1 − 2−ρ) +

∑ρ
i=0 ai2−i.

If in the process of truncation only ones are dis-
carded then the maximum quantization error given
by the difference between the two is εt = 2−b − 2−ρ −∑ρ

i=b+1 a−i2−i. Since we are subtracting a larger neg-
ative number from a smaller number the result will
always be positive and therefore the quantization
error is bounded by

0 ≤ εt ≤ 2−b − 2−ρ −
ρ∑

i=b+1

a−i2−i. (7.7)

• For two’s complement representation: A negative
fraction represented using two’s complement rep-
resentation by the numbers in Figure 7.7 with
S =1 can have a decimal equivalent value given by
−1 +

∑b
i=0 a−i2−i. This is the value after truncation

to b + 1 bits. If the number of bits before trunca-
tion is ρ + 1 then the numerical value of the negative
fraction is −1 +

∑ρ
i=0 ai2−i. If in the process of trun-

cation only ones are discarded then the maximum
quantization error given by the difference between
the two is εt = −∑ρ

i=b+1 a−i2−i, which is always neg-
ative. The maximum truncation error is bounded by

−(2−b − 2−ρ) ≤ εt ≤ 0. (7.8)

(iii) Rounding errors: In rounding the number to be quantized is
rounded to the nearest level. Normally only the magnitude is
considered and the format in which the negative number is
represented is irrelevant. Consider a word that is 1 + ρ bits
long that is to be rounded to the nearest number that is

182 Digital Signal Processing Implementation Issues

1 + b bits long, with ρ > b. The quantization step is given
by 2−b − 2−ρ. If |Q(x) − x| ≥ 1/2(2−b − 2−ρ), we round up to
the next higher magnitude level otherwise we round to the
lower magnitude level. It is therefore easy to see that the
rounding error range is given by

−1
2
(2−b − 2−ρ) < εr ≤ 1

2
(2−b − 2−ρ). (7.9)

7.6.2 Quantization Errors in Floating-Point Processors

The format for representing floating-point numbers was given in Equa-
tion (7.3). There is no quantization in the exponent as the purpose
of the exponent is to increase the dynamic range to a fixed maximum
range. Quantization is therefore done only on the mantissa which is a
fraction. Equation (7.4) is still valid for the quantization error compu-
tation and in terms of the mantissa M we can write

ε = Q(x) − x = 2E [Q(M) − M]. (7.10)

To determine the range of quantization errors we will consider positive
numbers and the different formats in which the negative numbers are
represented. Before quantization the mantissa is ρ + 1 bits long and
after quantization is b + 1 bits long. The first bit is the sign bit.

(i) Positive numbers: In all formats the positive numbers are
represented in the same way. The truncation error is given by

εt = 2E

(
b∑

i=1

a−i2−i −
ρ∑

i=1

a−i2−i

)
= −2E

ρ∑
i=b+1

a−i2−i.

Since for positive numbers Q(M) obtained after truncation is
always less than the M , ε is always negative. The maximum
value of the truncation error is when all the discarded bits
are ones and this is given by

εt = −2E(2−b − 2−ρ).

Therefore the truncation error range is given by

−2E(2−b − 2−ρ) ≤ εt ≤ 0. (7.11)

7.6 Impact of the Quantization Process 183

(ii) Negative numbers:

• Sign and magnitude representation: The truncation
error is given by

εt = −2E

(
b∑

i=1

a−i2−i −
ρ∑

i=1

a−i2−i

)
= 2E

ρ∑
i=b+1

a−i2−i.

Since for negative numbers Q(M) obtained after
truncation is always larger than the M , ε is always
positive. The maximum value of the truncation error
is when all the discarded bits are ones and this is
given by

εt = 2E(2−b − 2−ρ).

Therefore the truncation error range is given by

0 ≤ εt ≤ 2E(2−b − 2−ρ). (7.12)

• One’s complement representation: The truncation
error is given by εt = 2E

[
(2−b − 2−ρ) −∑ρ

i=b+1
a−i2−i

]
and the maximum values is given by εtmax =

2E(2−b − 2−ρ), which is always positive. Therefore
the truncation error range is given by

0 ≤ εt ≤ 2E(2−b − 2−ρ). (7.13)

• Two’s complement representation: The truncation
error is given by εt = 2E

[−∑ρ
i=b+1 a−i2−i

]
and the

maximum value of the truncation error is given by
εtmax = −2E(2−b − 2−ρ), which is always negative.
Therefore the truncation error range is given by

−2E(2−b − 2−ρ) ≤ εt ≤ 0. (7.14)

(iii) Rounding: Since it is only the mantissa that is subjected to
rounding and the range of the rounding error is given by

−1
2
(2−b − 2−ρ)2E < εr ≤ 1

2
(2−b − 2−ρ)2E . (7.15)

184 Digital Signal Processing Implementation Issues

7.6.3 Effects of Coefficient Quantization

There are two significant impacts of quantization on discrete-time sys-
tems and in particular digital filters. The transfer function that is
obtained after coefficient quantization is different from the theoretical
transfer function from the design that assumes infinite length word-
lengths. Quantization also has an impact on the poles and zeros posi-
tion. The location of zeros affects the phase of the system while the
location of the poles is more critical as it can make a theoretically sta-
ble filter to be practically unstable. A pole that is close to the unit circle
in the z-plane can be moved to be on or outside the unit circle making
the filter unstable. We will also look at the impact of quantization on
the pole positions through simulation.

To quantize coefficients we will use MATLAB that uses the dec-
imal number system. The MATLAB program will have to call func-
tions a2dT and a2dR that will compute the decimal equivalent of
the truncated or the rounding numbers. In this investigation we have
assumed that the 32-bit long word-lengths for the computer used to
run MATLAB represent infinite precision. Figure 7.5(a) shows magni-
tude response of an elliptical bandpass filter under two conditions. The
blue line is the magnitude response when the coefficients are imple-
mented with infinite precision. The red plot is the magnitude response
when the coefficients were truncated to 6 bits. It can be observed that
after quantization there is more attenuation in the passband and there
is a slight shift of the passband to the left. There is also much more
attenuation in the stopband. From Figure 7.5(b) we observe that the
poles have shifted only slightly but there is a more dramatic move of
the zeros. The program to plot the plots of Figure 7.5 are found in the
appendix as Program 7.1

7.7 Scaling in Fixed-Point DSPs

Overflows may occur at intermediate stages during signal processing in
fixed point discrete-time systems as a consequence of arithmetic opera-
tions. The overflow is an output at an intermediate node where addition
or multiplication is taking place. Such overflows can cause severe signal

7.7 Scaling in Fixed-Point DSPs 185

0 0.2 0.4 0.6

(a)

0.8 1
-80

-70

-60

-50

-40

-30

-20

-10

0

Impact of Coefficient Quantization

ω/π

G
ai

n,
 d

B

Infinite Precision Coefficients used
Coefficients Truncated to 6-bits.

Fig. 7.5 Impact of coefficient quantization (Blue: infinite precision, red: 6 bits).

186 Digital Signal Processing Implementation Issues

distortion to the output signal. Chances of the overflow can significantly
be reduced if the internal signal levels are scaled to appropriate levels
using scaling multipliers inserted at selected positions in the discrete-
time system structure. In many cases the scaling multipliers become
part of the coefficients and there is not much additional change in the
quantization error levels. Consider a discrete-time system whose struc-
ture is shown in Figure 7.6.

For the system of Figure 7.6, x(n) is the input signal and y(n) is
the output signal from the overall discrete-time system. The output at
node i for the same input is given by wi(n) and the impulse response
from the input to the output of node i is given by gi(n). Thus the
output at node i is given by a convolution sum as

wi(n) = gi(n) ⊗ x(n),

or

wi(n) =
∞∑

k=−∞
gi(k)x(n − k). (7.16)

In order to prevent overflows at node i

|wi(n)| ≤ 1. (7.17)

We present here three methods and their merits and demerits which
can be used to prevent overflows.

(a) Method 1 using the L1-norm: From Equation (7.16) if we
assume that input signal is bounded, i.e., |x(n)| ≤ 1 it follows

Fig. 7.6 Discrete-time system showing an intermediate stage.

7.7 Scaling in Fixed-Point DSPs 187

that

|wi(n)| ≤
∣∣∣∣∣

∞∑
k=−∞

gi(k)x(n − k)

∣∣∣∣∣ ≤
∞∑

k=−∞
|gi(k)| for all i.

(7.18)
If the L1-norm = ‖g1‖ =

∑∞
k=−∞ |gi(k)| ≤ 1 then Equa-

tion (7.17) is satisfied. A sufficient and necessary condition
to guarantee no overflow is that the sum of the absolute val-
ues of the impulse response is less than or equal to one. If
this condition is not satisfied then the input signal is scaled
by multiplying it by a factor K given by

K =
1

maxi
∑∞

k=−∞ |gi(k)| . (7.19)

This is a worst case condition and does not utilize fully the
dynamic range of the registers at the adder output. It reduces
the signal to noise ratio significantly.

(b) Method 2 using the L∞-norm: In the frequency domain
Equation (7.16) can be written as

Wi(ejω) = Gi(ejω)X(ejω). (7.20)

From Equation (7.16) we can obtain the wi(n) by taking the
inverse Fourier transform

wi(n) =
1
2π

∫ π

−π
Gi(ejω)X(ejω)ejωndω. (7.21)

|wi(n)| ≤ 1
2π

π∫
−π

|Gi(ejω)‖X(ejω)|dω

|wi(n)| ≤ max
−π ≤ ω ≤ π

|Gi(ejω)| 1
2π

π∫
−π

|X(ejω)|dω

|wi(n)| ≤ ‖Gi(ejω)‖∞
1
2π

π∫
−π

|X(ejω)|dω

|wi(n)| ≤ ‖Gi(ejω)‖∞ × ‖X‖1. (7.22)

188 Digital Signal Processing Implementation Issues

If ‖X‖1 ≤ 1, i.e., the mean of the absolute value of the
input spectrum is less than one then Equation (7.17) will
be satisfied if L∞-norm = ‖Gi(ejω)‖∞ ≤ 1 and there will be
no overflow. If this condition is not satisfied then the input
signal is scaled by multiplying it by a factor K given by

K =
1

max |Gi(ejω)| for − π ≤ ω ≤ π. (7.23)

The difficulty with this scaling scheme is that it is difficult
to obtain an input signal whose magnitude of the spectrum
is always less than 1.

(c) Method 3 using the L2-norm: The magnitude of wi(n) is
bounded by

|wi(n)| ≤ 1
2π

∫ π

−π
|Gi(ejω)||X(ejω)|dω. (7.24)

We can write

|wi(n)|2 ≤
(

1
2π

∫ π

−π
|Gi(ejω)‖X(ejω)|dω

)2

.

Using Schwartz Inequality we obtain

|wi(n)|2 ≤
(

1
2π

∫ π

−π
|Gi(ejω)|2dω

)
×
(

1
2π

∫ π

−π
|X(ejω)|2dω

)

|wi(n)| ≤ ‖Gi‖2‖X‖2 (7.25)

In Equation (7.25) ‖Gi‖2 = L2-norm for Gi, and ‖Xi‖2 =
L2-norm for X representing the input energy of the discrete-
time signal. If the input energy has a finite energy bounded
by ‖X‖2 ≤ 1 then the node overflow can be prevented by
scaling the discrete-time system such that the rms value of
the transfer function from the input to node i is bounded by
unity. The input signal and each of the numerator coefficients
are multiplied by the scaling factor K given by

K =
1

rms|Gi(ejω)| for − π ≤ ω ≤ π. (7.26)

The results are summarized in Table 7.2.

7.7 Scaling in Fixed-Point DSPs 189

Table 7.2 Scaling factors for discrete-time systems.

Norm Scaling factor K Location

L1-norm ‖g‖1 K = 1
maxi

∑∞
k=−∞ |gi(k)| From input to k node

L2-norm ‖g‖2 K = 1

(
∑∞

m=0 |g2
k
(m)|)

1
2

From input to k node

L∞-norm ‖G‖∞ K = 1
max |Gi(ejω)| −π ≤ ω ≤ π

(d) Scaling using MATLAB simulation: Scaling can be
achieved through simulation of the digital filter structure.
The simulation is done sequentially following the branch
order from the input to the output. Here we will use the
L2-norm. It is easier to use realization structure of the first
order and second order. If the impulse response from the
input to node i is given by gi(n) we can implement the scal-
ing according to the following procedure:

(i) Compute the L2-norm of g1(n) given by k1 = ‖g1‖2.

(ii) Divide the input by k1.

(iii) Compute the L2-norm of g2(n) given by k2 = ‖g2‖2.

(iv) Divide the multiplier feeding to the second adder
by k2.

(v) Continue with the process until the output node gives
an L2-norm =1.

A MATLAB program is developed to be used by a cascade of two
second-order structures. To obtain a first-order structure the appropri-
ate coefficients are made equal to zero. A cascade of two second-order
structures shown in Figure 7.7 is to be scaled.

The transfer function of the system in Figure 7.7 is given by

H(z) =
b00 + b01z

−1 + b02z
−2

1 + a01z−1 + a02z−2 × b10 + b11z
−1 + b12z

−2

1 + a11z−1 + a12z−2 . (7.27)

In order to achieve scaling a MATLAB program 7.2 [10] listed in the
appendix is used. The program can easily be modified to match any
available structure.

190 Digital Signal Processing Implementation Issues

Fig. 7.7 A cascade of two second-order structures.

Fig. 7.8 The digital filter structure for the scaling example.

Example 7.11. Using MATLAB simulation scale the digital filter
structure is shown in Figure 7.8.

The input coefficients to the program 7.2 in the appendix are shown
in Table 7.3. The program computes the scaling factors using the L2

norm. The scaling factors obtained and the filter structure, with the
new coefficients, is shown in Figure 7.9.

Table 7.3 The filter coefficients.

Coefficients for first section Coefficients for second section
a00 = 1 b00 = 3 a10 = 1 b10 = 2.7
a01 = −0.52 b01 = −2.1 a11 = −1 b11 = 4.2
a00 = 0 b02 = 0 a12 = 0.34 b12 = −5

7.8 Problems 191

Fig. 7.9 The scaled digital filter.

7.8 Problems

7.7.1 Represent the following decimal fraction in binary form using
sign and magnitude representation, one’s complement repre-
sentation, and two’s complement representation

(i) 0.65625, (ii) −0.65625, and (iii) −0.0500.

7.7.2 Perform the following operation represented by fractions
using binary numbers. Subtraction should be performed as
an addition of a negative number. Verify the result by com-
paring to a normal fraction operation.

(i) 7
8 − 1

4 , (ii) 1
5 − 3

5 , and (iii) 3
5 − 1

10 − 1
8 .

7.7.3 Using the multiplication algorithm for fixed-point binary
numbers perform the following multiplication showing all the
intermediate stages

(i) −3
8 × 5

8 , (ii)
(− 5

16

) × (−2
3

)
, and (iii)

(5
16

) × (2
3

)
.

7.7.4 Determine the maximum possible dynamic range for a sig-
nal variable when a microprocessor uses floating-point binary
numbers with the IEEE format.

7.7.5 Add the following floating-point numbers:

(i) (0∆11010101)2001 and (0∆01101010)2001.
(ii) (0∆11010101)2011 and (0∆11010101)2001.

192 Digital Signal Processing Implementation Issues

7.7.6 The maximum possible error when a negative 40-bit binary
number obtained after binary multiplication in the ALU is
truncated to 16 bits before being stored in the output regis-
ters is to be determined. Compute the error if the numbers
are represented and the arithmetic operation is done using

(i) sign and magnitude, (ii) one’s complement representation
or (iii) two’s complement representation.

7.7.7 Determine the maximum error that is obtained when the
mantissa of a floating point number at an intermediate stage
of processing is truncated from 32 bits to 24 bits. Compare all
the possible maximum errors for all types of number repre-
sentations. The truncated number can be a negative number.

7.7.8 A filter has got a transfer function given by H(z) =
0.44+0.36z−1 +0.02z−2

1+0.4z−1 +0.18z−2 −0.2z−3 . Plot the Magnitude responses for
infinite precision coefficients and when the coefficients are
quantized to 4 bits by truncation. For each case plot the
pole positions and comment on the impact of coefficient
truncation.

7.7.9 The transfer function H(z) = 0.44+0.36z−1+0.02z−2

1+0.4z−1+0.18z−2−0.2z−3 is to be
implemented using a cascade of a first and second-order
transfer function. Determine the following

(i) the new canonic realization structure,

(ii) the scaled coefficients to prevent overflow.

8
Digital Signal Processing Hardware and Software

8.1 Introduction

In this chapter, the DSP hardware and software are introduced. DSP
technology is developed by many different groups from academic insti-
tutions and industries. There are many common features in DSP
hardware and software developed by different vendors. Unfortunately
there are also significant differences. The objective of this chapter is
to highlight on some common features that can be found in any DSP
processor. Since we cannot cover the different features of all the DSP
hardware and software from all vendors, we have focussed on hardware
and software of a single vendor that we have found in many academic
institutions and industry. With a thorough knowledge of the processor
from one vendor we believe it will not be so difficult to convert to that
of another vendor.

8.2 The Dawn of DSP Processors

Digital signal processing started in the early 1950s out of a differ-
ent goal; designers of analog systems wished to simulate their designs
and investigate their performance before building expensive prototypes.
They did this using Digital Computers and this was the beginning of
Digital Signal Processing [13]. The majority of the supporting mathe-
matics and algorithms was developed around that time too. Initially,
it was sufficient for the simulations to be performed in good time but
later some applications required the results in real-time. This ushered
in the advent of real-time DSP.

At the moment DSP processors are available as single-chip pro-
cessors. The evolution of the architecture and technology that led

193

194 Digital Signal Processing Hardware and Software

Fig. 8.1 Architectures for processors.

to a single-chip processor took separate paths. Early computers had
separate memory spaces for program and data making it possible for
each to be accessed simultaneously. This architecture was developed
by Howard Aiken at Harvard University and was referred to as the
Harvard Architecture, [14], Figure 8.1. This architecture was found to
be complex as it had two separate memory spaces. Later a Hungarian
mathematician, John von Neumann, observed that there is no funda-
mental difference between instructions and data. In fact instructions
could be partitioned into two fields containing operations commands
and addresses of data to be operated upon. Thus only a single memory
space was essential for both instructions and data. This architecture
was referred to as the von Neumann architecture and processors could
be designed with only one memory space [15], Figure 8.1. The drawback
of this architecture is that access could be made to either instructions
or data at any one time.

The building blocks of a processor include the Arithmetic Logic Unit
(ALU), shift registers, and memory space. With these building blocks
it is possible to add and subtract by shifting left or right using a few
clock cycles but multiply and divide operations are more complex and
require a series of shift, add, and subtract operations. Multiply and

8.3 Memory Architectures 195

divide can be achieved in several clock cycles. In the decade starting
from early 1970 the multiply times was reduced from 600 ns to 200 ns
making real-time digital signal processing a reality [16].

In the early 1970s there was a great need to increase speed, reduce
size, and improve processing technologies of electronic devices that
were entering the market. This meant increasing the performance and
capabilities of integrated circuits. N -MOS was the core integrated cir-
cuit technology at the time. With N -MOS it was possible to support
device densities of up to 100 000 transistors. With the availability of
this technology single chip processors emerged into the market in the
early 1980s. With the use of CMOS technology it has been possible to
produce single chip processors having up to 4 000 000 transistors with
multiply times of 40 ns for 32-bit floating point devices and 25 ns for
some 16-bit fixed point devices [13].

8.3 Memory Architectures

It would require to make four accesses to memory in order to implement
a simple multiply-accumulate (MAC) instruction, using the von Neu-
mann architecture. The four accesses are made to fetch the instruction,
read the signal value, read the coefficient, and write the result. Since
the MAC instruction needs to be implemented in one instruction cycle
the von Neumann architecture is not suitable for DSP applications in
its basic form.

With the Harvard architecture two memory accesses can be made
in one instruction cycle. If the architecture is modified such that one
memory space holds program instructions and data and the other holds
data only then we obtain the ‘‘modified’’ Harvard architecture. Thus
the four accesses required in the MAC instruction operation can now
be achieved with two instruction cycles. The architecture is shown in
Figure 8.2 and is used in some DSP processor families such as Analog
Devices ADSP21xx [17].

It is also possible to modify the Harvard architecture further and
use three memory spaces each with its own set of buses where one space
will be used for program and two for data. The processor can then make
three independent memory accesses; one to fetch the MAC instruction

196 Digital Signal Processing Hardware and Software

Fig. 8.2 The modified Harvard architecture.

from the program memory, one to read the coefficients and one to read
the signal value. The final write instructions can be eliminated by using
a different technique referred as modulo addressing. An example of a
processor that uses this architecture is Motorola DSP5600x [18].

Yet another alternative to the one proposed above is to use fast
memories that support multiple, sequential accesses per instruction
cycle over a single set of buses. There are processors with on-chip mem-
ories that can complete an access in one half of an instruction cycle.
Such processors when combined with the Harvard architecture will be
able to make four accesses in one instruction cycle [18].

8.4 Advantages of DSP Processors

There are processors that are made for DSP applications and there
other processors that are made for computers or microcontroller
and other applications. DSP processors, unlike other processors, are
designed to be able to process signals in real time. In order to achieve

8.5 Selection of DSP Processors 197

this there are certain features that are unique to DSP processors only.
For instance DSP processors have the ability to multiply and accumu-
late (MAC) in one instruction cycle. This is achieved by embedding the
MAC instruction in hardware in the main data path. Other processors
take several instruction cycles to achieve the same operation.

Another feature is that DSP processors have the ability to complete
several accesses to memory in a single instruction cycle. For instance, a
processor can fetch an instruction while simultaneously storing results
of the previous instruction.

Some DSP processors provide special support for repetitive com-
putations, which are typical in DSP computations. A special loop or
repeat instruction is provided. Such features make DSP processors more
suitable for real-time digital signal processing even when faster proces-
sors are available in the market.

Some DSP processors have dedicated address generation units which
work in the background and allow the arithmetic processing to proceed
with maximum speed. Once the address register is configured it will
generate the address required for accessing the operand in parallel with
the execution of the arithmetic instruction.

Most DSP processors have one or more serial or parallel input and
output (I/O) interface and specialized I/O handling mechanisms such
as the direct memory access (DMA). The purpose of these peripherals
and interface is to allow a cost effective high performance input and
output [7].

8.5 Selection of DSP Processors

Over the years many Digital Signal Processing applications have
evolved. Unfortunately there is no single processor that can meet the
requirement of each application alone. Also in the market there are
many processors manufactured by different vendors. The problem that
faces designers is how to select appropriate processors for their specific
application. In the discussion below we raise a few issues that will assist
a designer in selecting a processor for a specific application.

Many DSP applications today involve portable devices like cellu-
lar telephones and portable audio devices. Such devices are battery

198 Digital Signal Processing Hardware and Software

powered and therefore consumption of power is critical. Suitable
processors for such applications would be those processors that con-
sume very little power.

On the other hand, there are applications that involve processing
of large volumes of data using complex algorithms such as in seismic
detection and sonar. Such applications would require high performance
processors in relation to speed, memory requirement, and power con-
sumption. It should be noted that the production volumes for proces-
sors for such applications are lower and the cost per processor is high.

The type of arithmetic used in the processor is an important fac-
tor in the decision on what processor to use for an application. There
are two types of arithmetic format that can be used; fixed point arith-
metic and floating point arithmetic. Many DSPs use fixed-point arith-
metic, where numbers, n, are represented as fractions in a fixed range;
−1.0 ≤ n ≤ 1.0. There are also many processors that use floating-point
arithmetic, where values are represented by a mantissa and an expo-
nent as m × 2l, where m is the mantissa and l is the exponent. The
mantissa is generally a fraction in the range −1.0 to +1.0, while
the exponent is an integer that represents the number of places that the
binary point must be shifted left or right in order to obtain the value
represented.

Processors using fixed-point arithmetic are normally low power and
faster because of the simplicity of implementing fixed-point arithmetic.
However, programming of such processors is more complex because of
the additional requirement to scale the intermediate signal variables to
prevent overflow. On the other hand, processors using floating-point
arithmetic have a wider dynamic range for the signal variables. They
are easier to program, they consume more power and are relatively
slower compared to their fixed-point arithmetic counter part. In the
market floating-point DSP processors cost more compared to the fixed-
point processors because the more complex floating-point arithmetic
require a larger processor, more memory, and more power.

From the above discussion it becomes clear then for high-volume,
embedded applications fixed-point processors would be the choice
because the focus is on low cost and low power. Applications that
require high dynamic range and high precision or where ease of

8.6 TI DSP Family Overview 199

development is significant then floating-point processors are more
attractive.

It should also be noted that the word-length to be used has an
impact on the cost of the final product. The word-length to be used
determines the size of the processor and the number of pins required. It
also determines the size of the memory peripheral devices that are con-
nected to the processor. Designers would therefore select the shortest
possible word-length if it gives satisfactory performance.

Different applications require different processing speeds. A desig-
ner, therefore, needs to determine the processing speed adequate for
an application before selecting the processor. The processing speed is
measured in terms of the number of million instructions that a processor
can perform in one second (MIPS), [19].

8.6 TI DSP Family Overview

There are many DSP vendors in the business and the most established
appear to be Analog Devices, Motorola and Texas Instruments (TI)
in random order. There are many similarities in the architectures of
their processors and the choice of which processor to use and from
which vendor is left to the user and his application. In Section 8.4, we
have provided a general guideline on their selection which can only be
used with the detail data sheet provided for each device. Within each
vendor family there are family members that need to be selected for
their specific capability. In the next paragraph we will look at the TI
TMS320TMDSP family as these are more broadly used than the others.

The TI TMS320TMDSP family can be found under three platforms;
TMS320C2000TMDSP platform, TMS320C5000TMDSP platform, and
TMS320C6000TMDSP platform. Within each platform there are sub-
families to support specific markets. Table 8.1 gives a summary of
the general characteristic of each platform and the target market.
C2000TMDSP platform is optimized for Digital Control. C5000TMDSP
platform are power efficient fixed-point DSP processors finding appli-
cation in low power portable devices. C6000TMDSP platform repre-
sents high performance DSPs operating at high speeds handling more
advanced systems involving more complex algorithms.

200 Digital Signal Processing Hardware and Software

Table 8.1 The TI TMS320TMDSP family [20].

Platform Sub-family Application
C2000 (high precision Control systems
(Lowest cost) control) Digital motor control

C242, F241, Digital control
F242, F243 Digital power supplies
C2401A, C2402A Intelligent sensor applications
C2403A, C2406A
C2407A
(fixed point)
F2810, F2812

C5000 (fixed point) Digital cellular communications
(Efficient: Best C5401, C5402, Personal communications systems
MIPS/Watt/size/ C5403, C5407, Pagers
dollar) C5409, C5410, Personal digital assistants

C5416 Digital cordless communications
Wireless data communications

C5501, C5502, Networking
C5509, C5510 Computer telephony

Voice over packet
Portable Internet audio
Modems
Digital audio players
Digital still cameras
Electronic books
Voice recognition
GPS receivers
Fingerprint/pattern recognition
Headsets

C6000 (fixed point) Multi-channel (e.g., OFDM)
(High C6201, C6202, Multi-function applications
performance) C6203, C6204, Communication infrastucture

C6205, C62xTM Wireless base station
C6411, C6414, DSL
C6415,C6415, Imaging
C64xTM Multimedia services
(floating point) Video
C6701,C6711,
C6712, C6713,
C67xTM

C64xTM (DaVinci
technology) Digital video systems

8.7 TMS320TMC5416 DSP Processor Architecture 201

8.7 TMS320TMC5416 DSP Processor Architecture [21]

The TMS320TMC5416 processor is a fixed-point digital signal processor
that uses an advanced modified Harvard architecture. Data and pro-
gram are stored in separate memory spaces but by changing the OVLY
status certain memory spaces can be set for both program instructions
and data. In order to maximize processing power there is one program
memory bus against three data memory buses. This makes it possible
to have several accesses to memory space in the same cycle. The pro-
cessor is able to achieve a high degree of processing efficiency because
of the following features (Figure 8.3):

(i) Arithmetic Logic Unit (ALU): ALU has a high degree of par-
allelism. It has a 40-Bit ALU including a 40-bit barrel shifter
and two independent 40-bit accumulators (ALU is not shown
in the diagram).

Fig. 8.3 The functional Block diagram of the TMS320CV5416 processor [21]. (with
permission from TI)

202 Digital Signal Processing Hardware and Software

(ii) MAC operation: It has a 17 by 17-Bit (16-bit signed) parallel
multiplier coupled to a 40-bit dedicated adder for non-
pipelined single-cycle MAC operation.

(iii) Application specific hardware logic: There are several appli-
cation specific hardware logic such as GSM codec, µ-law com-
pression, a-law compression, and Viterbi accelerator.

(iv) On chip memory: SARAM, DARAM, ROM. The on-chip
memory increases performance because it removes the need
for wait states and flow within the Central Arithmetic Logic
Unit and also this is a lower cost option compared to the use
of external memory.

(v) On chip peripherals: Example of these include software
programmable wait state generator, a programmable bank
switch, a host-port interface (HP18/16), three multichannel
buffered serial ports (McBSP), a hardware timer, a clock
generator with multiple PLLs, Enhanced extended parallel
interface(XIO2), and a DMA controller.

The C5416 processor uses a highly specialized instruction set which
allows it to be flexible and accounts for its high speed of operation. Sep-
arate program and data spaces allow simultaneous access to program
instructions and data, providing the high degree of parallelism. Two
reads and one write operation can be performed in a single cycle.
Instructions with parallel store and application-specific instructions
can fully utilize this architecture. In addition, data can be transferred
between data and program spaces. Such parallelism supports a power-
ful set of arithmetic, logic, and bit-manipulation operations that can
all be performed in a single machine cycle.

The C5416 processor has both on-chip RAM and ROM memories
which are divided as follows:

(i) Data memory: Addresses up to 64 k of 16-bit words. While
within its bounds it accesses on-chip RAM otherwise it will
automatically access external memory.

(ii) Program memory: When access is within program address
bounds the memory can be accessed directly. If address

8.7 TMS320TMC5416 DSP Processor Architecture 203

generated is outside the bounds then an external address is
generated. It is possible to configure memory allocation using
software to reside inside or outside program address map. By
setting the variable OVLY = 1 the DARAM memory space
can be shared for data and program instructions.

(iii) Extended Program Memory: C5416 uses a paged extended
memory scheme in program space to allow up to 8192 K of
program memory.

(iv) On-Chip ROM: The on chip ROM consists of 16 K word ×
16-bit maskable ROM that can only be mapped into pro-
gram. For specific applications request to program the ROM
can be made to supplier. A bootloader is available in stan-
dard on Chip-ROM and this can be programed to transfer
code from an external source to anywhere in the program at
power up.

The C5416 has 64 K-word × 16-bit of on-chip dual access RAM
(DARAM) and 64 K-word × 16-bit of on-chip single-access RAM
(SARAM). The DARAM is composed of eight blocks of 8 K words
each. Each block in the DARAM can support two reads in one cycle,
or a read and a write in one cycle. Four blocks of DARAM are
located in the address range 0080h--7FFFh in data space, and can
be mapped into program/data space by setting the OVLY bit to one
in the PMST register. The other four blocks of DARAM are located
in the address range 8000h--FFFFh in program space. The DARAM
located in the address range 8000h--FFFFh in program space can be
mapped into data space by setting the DROM bit in the PMST register
to one.

The SARAM is composed of eight blocks of 8 K words each. Each of
these eight blocks is a single-access memory. For example, an instruc-
tion word can be fetched from one SARAM block in the same cycle
as a data word is written to another SARAM block. This architecture
makes possible eight accesses to the SARAM in a single instruction
cycle. See Figures 8.3 and 8.4. The SARAM is located in the address
range 28000h--2FFFFh, and 38000h--3FFFFh in program space.

204 Digital Signal Processing Hardware and Software

Fig. 8.4 Program and data space memory map (Microprocessor mode).

Table 8.2 Memory mapping using the PMST register.

1 0
MP/MC On-Chip ROM not available On-Chip ROM is enabled and addressable
OVLY On-chip RAM is mapped into

program space and data space
On-Chip RAM is addressable in data

space but not in program space
DROM On-Chip DARAM4–7 is mapped

into data space
On-Chip DARAM4–7 is not mapped into

data space

The three bits of the PMST register MP/MC, OVLY, and DROM
determine the basic memory configuration as shown in the Table 8.2.

Figure 8.4 indicates the memory map for the program and for
the data.

Figure 8.5 indicates the input and output (I/O) space memory map.
There are eight Complex Programmable Logic Device (CPLD) regis-
ters that are used for software control of various board features. These
registers are mapped into the DSP’s lower I/O address space starting
at address 0x0000. The upper 32 K of the I/O address space is available
for daughter-cards.

8.8 The TMS 320CV5416 Development Kit 205

Fig. 8.5 Input and output memory space map.

The extended memory mapping has been left out. It can be found
in [22]. An understanding of the memory mapping is important as it is
required during program development in code composer studio.

8.8 The TMS 320CV5416 Development Kit

The TMS320CV5416 DSK is a development system whose block dia-
gram is shown in Figure 8.6. It enables designers to develop and test
applications for the TI C544xx DSP. The key features of the system
and their functions are summarized below:

(i) TMS320CV5416: A processor that is optimized for low power
operation and can operate at clock cycle of up to 160 MHz. It
can perform most operations in one clock cycle. It works with
a number of on-chip resources to improve functionality and
reduce development complexity. It has 128 K words mem-
ory, on chip-PLL, Timer, 6 channel Direct Memory Access
(DMA) controller, 3 multi-channel buffered serial ports and
a 16-bit bus for external memory interface, Figure 8.3.

(ii) SRAM: The DSK has one bank of 64 K×16-bit static RAM
that can be expanded to 256 K×16 bit and can run at
160 MHz.

206 Digital Signal Processing Hardware and Software

Fig. 8.6 The TMS 320CV5416 development kit [23].

(iii) FLASH: THE DSK has 256×16-bit external Flash memory.
This memory space can be used for both data and program.

(iv) EXPANSION CONNECTORS: There are three expansion
connectors used for a plug-in daughter-card. The daughter-
card adds flexibility to users allowing them to build on the
platform and extend its capabilities. The expansion con-
nectors are for the memory, peripherals, and the Host-port
interface.

(v) JTAG: There is an embedded JTAG emulator which can be
accessed through a universal serial port of a personal com-
puter and also for an external emulator. The JTAG emulator
is compatible with the Code Composer debugger. The JTAG
emulator can also be used with an external emulator.

(vi) BOARD LOGIC: The DSK uses the programmable logic
devices to implement memory mapping, address decoding
and assorted glue logic that ties board components together.

(vii) PCM3002 CODEC: The DSK uses a stereo codec for input
and output of audio signals. The codec converts the ana-
log input to digital data that can be used by the processor.

8.9 Code Composer Studio 207

The out of the DSP is also converted back to analog by
the codec.

(viii) Power supply: The board has voltage regulators that supply
1.6 V DC (core voltage, 3.3 V DC digital and 3.3 V DC analog
voltages.

8.9 Code Composer Studio [24]

CCStudio is a window based integrated development environment
developed by Texas Instruments. It is a software package that con-
tains basic code generation, debugging and real-time analysis tools.
The intention is to make development of DSP applications faster and
more efficient. The software development flow would normally follow
the following sequence:

(i) Conceptualization and design of the project from project
specifications.

(ii) Creating project with source code; normally assembly, C or
C++ codes are used.

(iii) Debugging; correcting syntax error and program logic using
various debugging features such as probe points, break
points, step-by-step execution of commands.

(iv) Analysis: various statistics will be used to analyze utilization
of memory, speed of implementation.

It is possible to configure the CCStudio software to work with different
hardware and simulator targets. Normally there is a default configu-
ration for a family of targets such as C55xx simulator for the C5000
series and C64xx simulator for the C6000 series. It is also possible to
use standard configuration files or modify these to create customized
configurations. The procedure for doing configuration can be read in
the help files in CCStudio. In order to get access to CCStudio see [25].
The rest of the chapter would not be useful if you have not purchased
a TI DSK kit or subscribed for CCStudio.

In order to familiarize oneself with CCStudio the first step would
be to go through the CCStudio tutorial in the Help files. This will help
you to discover how to create, edit, debug, and run a simple program.

208 Digital Signal Processing Hardware and Software

8.9.1 Building and Running a Project

To create a new project one must follow the procedure listed in the Help
files under the topic ‘‘Creating a New Project.’’ Initially you are guided
to open a new project with a name of your choice such as ‘‘newproject’’
in a specified location, e.g., ‘‘Myprojects,’’ and selecting a specified
target board. When you select ‘‘Finish’’ a project file is created with
the name ‘‘newproject.pjt’’ and this is displayed on the ‘‘Project View’’
window. The ‘‘newproject.pjt’’ file stores the project settings and refers
to all files that are used in the project.

Following the conceptualization and design of the project the source
code is developed and is written in c, c++ or assembly and may be
typed in text format in ‘‘notepad’’ or any other text file. If you now open
the ‘‘File’’ menu in CCStudio and select the ‘‘Creating New Source
File’’ a new page will open where you can paste the notepad text. This
is saved as the *.c or *.asm in the ‘‘newproject’’ directory.

The file you have developed must work with a number of files that
have different objectives. These are the files that are added in the pro-
cedure and they include

(i) Source files (*.c, c++): Normally in c or c++ code and they
consist of the new project.

(ii) Configuration files (*.cdb): these are created as New Config-
uration files from the ‘‘File’’ menu and selecting DSP/BIOS
configuration. Here a default simulator, or a standard simu-
lator or even a customized simulator is selected or created.
When this source file is added to the project two new files
are generated and displayed in the Project View window.

(iii) Linker command files (*.cmd): They consist of

• input files which specify object files, library, or other
command files,

• files that specify linker options,

• files that have memory directives that define the tar-
get memory configuration and section directives that
define how sections are built and allocated.

8.9 Code Composer Studio 209

(iv) Assembly source file (a* or .s*). May be assembled and
linked.

(v) Object Library files (.o* or .lib): May only be linked.
(vi) Include file(.h): These files are automatically added to the

project list.

When all the files have been added then one has to check on the build
options before ‘‘Building All.’’ The command ‘‘Building All’’ compiles,
assembles, and links all the necessary files in the project. A *.out (in our
example a newproject.out) executable file will be created. This file is
loaded into the target memory using the command ‘‘Load Program.’’ In
order to execute the program the command ‘‘RUN’’ from the DEBUG
menu is invoked.

8.9.2 Debugging a Program

Debugging of a program involves the use of certain tools provided by
CCStudio to detect departure from expected operation and perfor-
mance of a portion or the complete program. The tools available are
listed below:

(i) Probe Points: Using probe points it is possible to inject data
from a specified input file into a selected point of the c code
or extract data from a selected point of the c code into a
specified output file. Such data can also be displayed graph-
ically and analyzed. The procedure is found in the Debug
Tools in the Help Files. The operation of Probe points halts
the target execution momentarily.

(ii) Break Points: The use of break-points is the same as with
probe-points except that with break points the execution is
completely halted until when it restarted manually.

(iii) Symbol Browser: The procedure for using symbol browser
is found in the HELP file in the Code Composer Tuto-
rial/Debug Tools/Symbol Browser. Simply after Building
All and Loading Progam the *.out file is opened. From the
TOOLS menu select SYMBOL BROWSER and then select
the relevant tabs. The tool allows you to examine the project

210 Digital Signal Processing Hardware and Software

and its components such as all the source files, all functions,
all global variables, user defined data-types, and assembler
labels and directives.

(iv) Watch Window: The watch window is a debugging tool where
one can define and observe a group of variables. It is selected
from the VIEW menu and choosing WATCH WINDOW. It
is possible to drag and drop variables from a program into
the watch window. In the watch window the values of the
variable is displayed.

8.9.3 Data Visualization

Data Visualization is a software tool that is used to display selected
data in different graphical formats. The purpose of this tool is to aid
in debugging or simply have a means of looking at performance of a
software code at an intermediate stage. The tool uses probe points
and input and output files in the same manner as when probe points
were used for debugging. In order to use this tool a relevant project
that generates appropriate data has to be in operation. As a demo in
the HELP files the modem project has been used. The procedure for
setting data for visualization is given in the HELP files in the Data
Visualization folder. It is possible to display the following graphical
formats (i) time domain variation of amplitude, (ii) the eye-diagram,
(iii) constellation diagram, and (iv) the FFT plots.

8.9.4 Profiling and Optimization of a Program

Profiling an application is to provide a summary of properties and
activities of selected or all the functions in the program as the program
runs over a specified period of time.

To prepare a project for profiling the commands ‘‘BUILD’’ and
‘‘LOAD PROGRAM’’ must be invoked first. The *.out executable file
must be opened. From the profile menu one must then choose START
NEW SESSION. Here the profile Session name must be selected. When
acknowledged a dialogue box appears with the name and one must
select ‘‘functions.’’ The source code to be profiled must be opened.
The functions to be profiled are selected and dragged into the profile

8.9 Code Composer Studio 211

dialogue box. From the menu DEBUG select RUN. After a while select
HALT. The dialogue box will show the profile of the functions selected.
It is also possible to profile all function and a range containing certain
commands in the program.

8.9.5 DSP/BIOS

DSP--BIOS is an important tool that simplifies the design of DSP
applications. It consists of three components; real-time kernel, real-
time analysis tool and peripheral configuration and management tool.
DSP/BIOS has configuration tool that enables the graphical selection
of either the kernel or the analysis services and to configure the periph-
eral devices. The configuration allows efficient utilization of the kernel
memory. More information on the tools and how to access them is given
below.

(i) Real-time kernel: This tool makes it possible to create and
configure DSP/BIOS objects used by your program such as
scheduling of tasks, synchronization, etc. It is also possible
to configure memory, thread priorities, interrupt-handlers,
and Chip support library settings. On the FILE menu choose
NEW and select DSP/BIOS CONFIGURATION. This pro-
vides templates that have been provided for various standard
and default targets. One can use the default target or select
a specific standard target which can be used in its current
format or can even be customized.

(ii) Real-time analysis tool: This tool allows you to view the
program activity in real time. The tool can be used with
any project that contains DSP/BIOS configuration. Real-
time analysis is the real-time capture and display of data used
for the early detection and diagnosis of system-level bugs.
DSP/BIOS provides several mechanisms that allow you to
acquire, transfer, and display data in real-time with minimal
intrusion to the program’s operation. For instance you can
observe a thread activity using an execution graph. To open
a DSP/BIOS analysis tool, use the DSP/BIOS menu or the
Real Time Analysis toolbar within Code Composer Studio.

212 Digital Signal Processing Hardware and Software

(iii) Device configuration and Management Tool: Your C, C++,
and assembly language programs can call over 150 DSP/
BIOS API functions. API stands for Applications Program
Interface. The API functions area called by the program
header files. More information can be found on API header
files and how and when to include such files in your program
on the Content Part of the Help file on DSP/BIOS module
header files.

8.9.6 Real-Time Data Exchange

Real-time data exchange (RTDX) allows for the exchange of data
between a target board and a host computer without interferring with
the application of either of the two. RTDX forms a two way data-pipe
between the target and the host client. In fact the pipe can be viewed
as a collection of thinner pipes or channels. Data is tagged to a specific
channel and this makes it possible to distinguish the various data. Data
is transferred at any time asynchronously.

The transfer of data is achieved as follows. The target application
sends data to the host by calling functions in the RTDX Target Library.
These functions immediately buffer the data and then return. The
RTDX Target Library then transmits the buffered data to the host in
a way as to not interfere with the target application. The host records
the data into either a memory buffer or an RTDX log file, depending
on the specified RTDX host recording mode. The recorded data can
be retrieved by any host application that is a client of the RTDX host
interface. The RTDX host interface is provided as the COM interface.

Similarly data can be transferred from the host to the target as
shown in the Figure 8.7.

A number of lessons are provided in lesson S1L1 in CCStudio. To
understand the RTDX functionality is advisable to go through the
entire tutorial which has been written in increasing order of complexity.

8.9.7 Visual Linker Recipe

The visual linker provides a graphical means to configure system
memory. It gives a memory map showing the occupation of your

8.10 Problems 213

Fig. 8.7 Data exchange between the host and the target.

application and library object files on the target memory description.
The operations on the visual linker are made visible and simple by a
simple drag and drop of components into specific memory locations.
It provides a visual feedback in color showing areas of optimization.
When memory layout is satisfactory it generates an executable *.out
file. Migration from existing text linker to the visual linker is achieved
using a wizard. One must select from the ‘‘Option’’ menu ‘‘Link Con-
figuration’’ and change from ‘‘Text Linker’’ to ‘‘Visual Linker.’’

8.10 Problems

8.9.1 The first step to follow to be able to use CCS is to go
through the CCS tutorial in the Help files reached from
the CCS window. It will teach you how to load and run
a program, how to make simple changes and the use of
DSP/BIOS as a configuration tool [12].

8.9.2 Code Composer IDE will expose you to more advanced
concepts including; development of a simple programme,
project management, editing, the use of debugging tools,
data visualization, profiling, the use of the GEL language
and configuration of the target devices. It is not a good
plan to rush through this in one afternoon. Spend at least
a week, on a full-time basis, to understand and experiment
with these concepts and procedures properly [12].

8.9.3 DSP/BIOS Tutorial module will introduce you to a number
of concepts such as creating and profiling functions,

214 Digital Signal Processing Hardware and Software

debugging program behavior (scheduling of functions
and multi-threading), analysis of real time schedules and
connecting of input and output devices. This portion may
take up to a week, on a full-time basis, to understand
and experiment with the concepts and procedures in this
section [12].

8.9.4 Visual Linker will introduce you to its use and how to create
and open a recipe and how to manage the memory space.
Take your time to understand and do the experiment [12].

8.9.5 Work on a simple project.
Develop a variable gain audio amplifier using digital signal
processing software and hardware.

8.9.6 Work on a challenging project.
Develop a simple speech communication system. On one
board you develop the transmitter with source code, an FEC
(convolutional encoder), modulator. On the receiver board
develop a demodulator, synchronizer, and a Viterbi decoder.
At this stage I have left out the transmitter and receiver fil-
ters on purpose.

9
Examples of DSK Implementations

9.1 Introduction

DSK stands for Digital Signal Processing kit and represents the DSP
development kit. The TMS 320CV5416 development kit has been dis-
cussed in Section 2.7 and the Code composer studio used to develop
applications has been discussed in Section 2.8. The purpose of this
chapter is to develop the application file that is linked to library files
and the include file that define the board and some other useful func-
tions that make the application work in TMS320V5416. We will focus
on the development of the program in C and show how the various
processing algorithms are written. The key processes involve FIR filter
and the IIR filter and these will be developed in full. Other appli-
cations that we have developed and tested in our laboratory will be
included.

9.2 FIR Filter Implementation

The implementation of FIR digital filtering can be done using either of
the following two methods:

(i) Sample-by-sample processing: In this process an input sam-
ple is processed before another sample is taken in. The pro-
cessing must be completed and the output sample sent out
within one sample interval. Sample by sample processing is
suitable for real-time signal processing.

(ii) Block processing: In this process the input is segmented into a
number of blocks. Each block is processed separately creating
its output. The outputs from the various blocks are concate-
nated to produce an overall output. Block by block filtering

215

216 Examples of DSK Implementations

can be implemented using fast convolution implementation
that uses the Fast Fourier Transform.

In the coming sections we will discuss the two processing techniques in
the implementation of FIR filtering.

9.2.1 Sample by Sample Filtering Process

To demonstrate this processing method a direct form FIR filtering pro-
cess will be used with the input represented by x(n) and the output by
y(n) related by the equation

y(n) = x(n) ⊗ h(n) =
N−1∑
k=0

h(k)x(n − k), (9.1)

where h(n) for 0 ≤ n ≤ N − 1 represents the filter impulse response
samples which are also the coefficients of the filter. In the filtering
process the coefficients h(n) are constants and are stored in a fixed
coefficients buffer. The input x(n) is stored in the input buffer which
is refreshed every sampling period. Figure 9.1 shows the coefficients
buffer and the input buffer in the first and second sample intervals. It
is noted that each input signal is shifted to the next memory address
in the second sample interval. The current input sample x(n) is placed
in the memory location defined by the first address and the sample
x(n − L + 1) is discarded.

In every sampling interval the following three things happen in rela-
tion to the input signal in order to refresh the buffer

(i) The data in x(n − L + 1) is discarded.
(ii) The data in x(n − i) is shifted to x(n − i − 1).
(iii) New data from the ADC is shifted to x(n).

The refreshing process can easily be implemented by the following C
program

{
int i /∗ Loop Index ∗/
for (i = L-1; i>0; i - -) /∗Start with last sample and advance

back to first sample ∗/

9.2 FIR Filter Implementation 217

Coefficients Buffer

Time t

h(0)

h(1)

h(2)

h(L-1)

 h(L-2)

h(L-3)

x(n)

x(n-1)

x(n-2)

x(n-L+1)

x(n-L+2)

x(n-L+3)

Time t + T

x(n)

x(n-1)

x(n-2)

x(n-L+1)

x(n-L+2)

x(n-L+3)

Input buffer

New
sample

Discard
sample

Fig. 9.1 Input and coefficients buffer organization for FIR filtering.

{
xn(i) = xn(i−1) /∗Shift data to delay it by 1 sample time∗/

}
xn(0) = input; /∗input new data to obtain the zeroth

sample ∗/
return;

}
The process of refreshing the input buffer may be computationally

intensive particularly when the number of coefficients is large and the
process is not embedded in the hardware. A more efficient method is to

218 Examples of DSK Implementations

load the input signals into a circular buffer. Instead of shifting the input
data and holding the addresses constant the opposite is done. The data
is kept fixed and the addresses are shifted in the counter-clockwise
direction. In fact a pointer used to point to the address of the current
input is used. In the next sample only the pointer is shifted to point
to the address of the last data which in the current sample time would
be discarded. This is the new address of the current input sample. The
remaining addresses point to the delayed inputs in the clockwise direc-
tion. The positions of the coefficients remain fixed. This is shown in the
diagram of Figure 9.2. The advantage of using a circular buffer for the
coefficients is the wrap round once all the coefficients have been used.

The refreshing process is therefore implemented as follows:

(i) Initially x(n) is the current input from the ADC and all the
previous inputs are zero in line with the initial condition.

(ii) The signal buffer pointer points to address x(n), previous
data samples x(n − i) for 1 ≤ i ≤ L − 1 are loaded in a
clockwise direction.

(iii) The output y(n) is computed using Equation (9.1).
(iv) In the next sample interval at time t + T the pointer is

shifted in a counter-clockwise direction. The new sample
x(n) is loaded into position of x(n − L + 1). The value
of x(n − L + 1) at time t is discarded. The rest of the

Fig. 9.2 The use of circular buffers in the refreshing processing.

9.2 FIR Filter Implementation 219

samples remain in a fixed position. Thus the refresh process
is achieved by adjusting the pointer position only without
physically shifting the data values in the buffer.

The c-code functions that can implement the convolution process and
refresh the buffer are given below:

/∗ This function performs linear convolution between coefficients and
input signal samples to produce the sample output yn

∗/

float fir filter(float ∗x, float ∗h, int filter order);
/∗ ∗x points to the beginning of the array of input samples and
∗h points to the beginning of the coefficient array∗/
{

float yn = 0.0 /∗ Initialise output yn
∗/

int i
for (i = 0; i > N; i ++) /∗ Start from 0 to N-1 ∗/
{
yn = yn + h(i)∗x(i) /∗y(n) =

N−1∑
l=0

h(l)x(n − l) ∗/

}
return yn

/∗ This function refreshes the input signal samples x(n), x(n-1),
x(n-2), x(n-3). x(n-N+1) and inputs a new sample ∗/
void shift(float ∗x, int N, float in) /∗ N is filter order ∗/

int i; /∗ Loop index ∗/
for(i = N; i>0; i--) /∗Start with last sample and

advance back to the first
sample ∗/

{
x[i] = x[i – 1]; /∗ Delay each data sample by

one unit ∗/
}
x(0) = input; /∗ input new data to obtain the

zeroth sample ∗/
return;

}

220 Examples of DSK Implementations

9.2.2 Block by Block Filtering Process

In this program the input is segmented into blocks of M samples each.

void fir filter block (float ∗input, int M, float ∗h, int N, ∗output,
float ∗x)
{

float yn

int i, j;
for (j = 0; j < M; j++) /∗ From first to last sample in

the block ∗/
{
x[0] = input[j]; /∗Insert new M data

samples ∗/
/∗ FIR Filtering ∗/

{
for yn = 0.0, (i=0; i < N; i ++)
{

yn+ = h[i]∗x[i] /∗ Convolve x(n) with
h(n) ∗/

}
output[j] = yn ;
/∗ This function refreshes the samples x(n), x(n-1), x(n-2),. . . ,
x(n-N +1) ∗/
void shift(float ∗x, int N, float input)
{

for(i = N - 1; i > 0; i--)
{

x[i] = x[i – 1]; /∗ Delay each array data
sample by one unit∗/

}
}

return;
}

The program above written in c have an extension .c and can be used as
source files or functions that are called in applications that require FIR

9.3 IIR Filtering Implementation 221

filtering. The programs can be written in assembly language (with an
extension .asm) to make them more efficient as the assembly language
is closer to the machine language which is the final format in which the
code is used. In its final format before implementation in DSP hardware
the program has to be linked with other libraries and include file that
will define the board, input and output interface, memory mapping and
other functions as described in Section 2.8. The Final program is given
in the appendix as Program 9.1.

9.3 IIR Filtering Implementation

The general expression representing IIR filtering is represented by the
constant coefficient difference equation given by

y(n) =
L−1∑
i=0

b(i)x(n − i)−
M−1∑
j=1

a(i)y(n − j) (9.2)

and the transfer function is given by

H(z) =
Y (z)
X(z)

=
∑L−1

i=0 b(i)z−i

1 +
∑M−1

j=1 a(i)zi
, (9.3)

where b(i) represents the numerator coefficients and a(i) represents
the denominator coefficients. In order to calculate y(n) the processor
requires the following:

(i) current input x(n),
(ii) L-1 previous inputs,
(iii) M -1 previous outputs,
(iv) L numerator coefficients, and
(v) M -1 denominator coefficients.

The buffer organization will be as shown in Figure 9.3.
Though there are four different memory segments dealing with stor-

age this is much less memory compared to the case of FIR filters. For
the same performance the IIR filter has much shorter filter length than

222 Examples of DSK Implementations

Fig. 9.3 Input, output, and coefficients buffer organization for IIR filtering.

FIR filter. Despite this big advantage of IIR filters circular buffers are
still deployed with the intention of making the filtering process faster
and more efficient.

The c code below shows how the filtering and the shifting of the
signal samples can be achieved. It makes reference to Equation (9.2).

9.3 IIR Filtering Implementation 223

float IIR filter(float ∗x, int L, float ∗a, float ∗y, int M, float ∗b);

float yn

float yn1, yn2

int i,j

yn1 = 0.0 /∗ Initialise yn1
∗/

yn2 = 0.0 /∗ Initialise yn2
∗/

{
for (i = 0; i <= L-1, i++)

{
yn1 = yn1 + x(i) ∗ b(i); /∗Obtain first intermediate filter

values∗/
}

for (j = 1; j <= M-1, j++)
{

yn2 = yn2 + x(j) ∗ a(j); /∗Obtain second intermediate
filter values∗/

}
yn= yn1 – yn2;

return yn

}
/∗ This function refreshes the input samples stored in the registers
and reads new input value∗/

void shift1(float ∗x, int L, float input)
{

for(i = L - 1; i > 0; i--)
{

x[i] = x[i – 1]; /∗ Delay each array data sample
by one unit∗/

}
x(0) = input
}

/∗ This function shifts the output samples stored in the registers∗/
void shift(float ∗x, int M, float in)

224 Examples of DSK Implementations

{
for(i = L - 1; i > 0; i--).
{

y[i] = y[i – 1]; /∗ Delay each array data sample
by one unit∗/

}
y(0) = yn /∗ Insert current output into

register∗/
}

}

The Program 9.1 for the implementation of the FIR filter in the
appendix can easily be adapted to implement an IIR filter and will not
be reproduced.

9.4 Tone Generation

In this project we will generate a sine-waveform by using a lookup table
which has been created using a separate program in MATLAB. We have
made all the numbers to be positive. To deal with negative numbers
convert decimal to binary and use two’s complement representation.
The MATLAB program to generate the lookup table is as follows:

Theta = 0: 2*pi/50:2*pi;

data = 3168.*(1+ sin(Theta));

data = int16(data);

datah = dec2hex(data);

display(datah);

In the project we will generate a sine-wave by reading from a lookup
table into an input buffer. We will then scale up the sine-wave by
multiplication by a fixed gain and store it in an output buffer. You
can display the sine-wave using probe points or send it to the output
port. The frequency of the sine-wave is given by 1/(NT), where T is
the interval between samples and N is the Number of samples in one
period. You can reduce the frequency by adding a delay to increase T

or increase the number of samples in one period.

9.4 Tone Generation 225

/∗Function: tone.c ∗/
#define N 50 ∗/ N is the Buffer size∗/
const int sinetable[N]=
{0x0C60, 0x0DED, 0x0F74, 0x10EE, 0x1256, 0x13A6, 0x14D9,
0x15E9, 0x16D3, 0x1792, 0x1825, 0x1888, 0x18BA, 0x18BA, 0x1888,
0x1825, 0x1792, 0x16D3, 0x15E9, 0x14D9, 0x13A6, 0x1256, 0x10EE,
0x0F74, 0x0DED, 0x0C60, 0x0AD3, 0x094C, 0x07D2, 0x066A,
0x051A, 0x03E7, 0x02D7, 0x01ED, 0x012E, 0x009B, 0x0038, 0x0006,
0x0006, 0x0038, 0x009B, 0x012E, 0x01ED, 0x02D7, 0x03E7, 0x051A,
0x066A, 0x07D2, 0x094C, 0x0AD3, 0x0C60};

int input buffer[N];
int output buffer[N];
int Alpha; /∗ Alpha is the scaling factor ∗/

void main()
{

int i,j;
Alpha = 0x50;
while (1)
{

for (i = N-1; i>= 0; i--)
{

j = N-1-i;
output buffer[j] = 0; /∗ Clear the output buffer ∗/
input buffer[j] = 0; /∗ Clear the input buffer ∗/

}
for (i = N-1; i>= 0; i--)
{

j = N-1-i;
input buffer[j] = sineTable[i];
out buffer[j] = Alpha∗input buffer[i]; /∗ Multiply sine by a

gain ∗/
∗/ Include a statement to send sine to the output port if you
wish∗/

}
}

}

226 Examples of DSK Implementations

9.5 Harmonic and Fundamental Component Separator

Project: In this project a square-wave is an input to the TMS320C5416
at any selected frequency. Two filters need to be designed and imple-
mented such that one will isolate the fundamental component of the
square wave and feed it into the the right channel output port. The
other filter will isolate the third harmonic, amplify it and feed it to
the left channel port. It should be possible to display the outputs on
an oscilloscope or spectrum analyzer.

Two filters are designed using the fdatool in MATLAB to meet the
following specifications:

The Lowpass filter
Passband edge frequency = 1 kHz
Stopband edge frequency = 3 kHz
Maximum passband deviation = 1 dB
Minimum stopband attenuation = 40 dB

Filter Coefficients are placed in h files as follows:

#include “lpfcoeff.h”

const int BL = 8;
const real64 T B[8] = {

0.00979240904553, -0.05312757622004, 0.01644653849374,
0.5268886286808, 0.5268886286808, 0.01644653849374,
-0.05312757622004, 0.00979240904553
};

The Highpass filter
Passband edge frequency = 3 kHz
Stopband edge frequency = 1 kHz
Maximum passband deviation = 1 dB
Minimum stopband attenuation = 40 dB

9.5 Harmonic and Fundamental Component Separator 227

#include “hpfcoeff.h”

const int BL = 9;
const real64 T B[9] = {
-0.01127922557944, 0.00850167320085, 0.08571311020913,
-0.2585099772295, 0.3511156226834, -0.2585099772295,
0.08571311020913, 0.00850167320085, -0.01127922557944
}

The filter magnitude response is shown in the following figure.

0 0.5 1 1.5 2 2.5 3

-70

-60

-50

-40

-30

-20

-10

0

Frequency (kHz)

M
a

g
n

itu
d

e
 (

d
B

)

Magnitude Response (dB)

Lowpass FIR Window
Highpass FIR Window

The template for the program harmonics.c that will separate the
fundamental at 1 kHz from the 3rd harmonic component is given as

#include “harmonicscfg.h”

#include “dsk5416.h”
#include “dsk5416 pcm3002.h”

228 Examples of DSK Implementations

#include “lpfcoeff.h” /∗ will include low pass filter
coefficients ∗/

#include “hpfcoeff.h” /∗ will include high pass filter
coefficients ∗/

/∗ Configuration setup of registers of PCM3002 Codec ∗/

DSK5416 PCM3002 Config setup = {
0x1FF, / ∗ Set-Up Reg 0 - Left channel DAC attenuation ∗/
0x1FF, /∗ Set-Up Reg 1 - Right channel DAC attenuation ∗/
0x0, /∗ Set-Up Reg 2 - Various control such as power-down modes ∗/
0x0 /∗ Set-Up Reg 3 - Codec data format control ∗/
};

/∗ To be compatible with pcm3002 read / write, input and output
variables must be declared as Int16 or short int, rather than int. ∗/

Int16 left input;
Int16 left output;
Int16 right input;
Int16 right output;
Int16 mono input;

/∗ UserTask() is scheduled by DSP/BIOS

void UserTask()
{

DSK5416 PCM3002 CodecHandle hCodec;
unsigned long i;

/∗ Start the codec ∗/

hCodec = DSK5416 PCM3002 openCodec(0, &setup);
for (i = 0 ; i < 20000000 ; i++)

9.5 Harmonic and Fundamental Component Separator 229

{
/∗ Read left input channel∗/
while (!DSK5416 PCM3002 read16(hCodec, &left input));

/∗ Output to left output channel ∗/
while (!DSK5416 PCM3002 write16(hCodec, left output));

/∗ Read right input channel ∗/
while (!DSK5416 PCM3002 read16(hCodec, &right input));
/∗ Output to right output channel ∗/
while (!DSK5416 PCM3002 write16(hCodec, right output));

/∗ Where required, generate mono input from left input and
right input ∗/
mono input = stereo to mono (left input, right input);

/∗ Digital Signal Processing goes here ∗/

xnl = left input;

/∗ write the programme as in Section 9.2.1 which will use the
coefficients in lpfcoef.h and obtain the output ynl

∗/

left output = ynl

xnr = right input;

/∗ write the programme as in Section 9.2.1 which will use the
coefficients in hpfcoef.h and obtain the output ynr

∗/
right output = ynr

}
/∗ Finished processing. Close the codec ∗/

DSK5416 PCM3002 closeCodec(hCodec);

}

230 Examples of DSK Implementations

/∗ main() ∗/

void main()
{

/∗ Initialize the board support library ∗/

DSK5416 init();
}

9.6 The Spectrum Analyzer

In this design we will use the FFT to estimate the power spectral
density. A MATLAB function that is used to estimate power spectral
density is the periodogram, which is defined for an N -point sequence
x(n) as

PN (ω) =
1
N

|X(ejω)|2 =
1
N

∣∣∣∣∣
N−1∑
n=0

x(n)e−jωn

∣∣∣∣∣
2

.

When x(n) is a stationary random process and for large value of N the
periodogram oscillates and is not a good estimate of the power spectral
density. It can be shown that the mean of the periodogram converges
to the power spectral density. For this reason in order to estimate the
power spectral density L periodograms of L segments of the sequence
x(n) each of length N are obtained and averaged. The estimate of the
power spectral density is thus given by

Sx(ω) =
1
L

L−1∑
i=0

PN,i(ω).

One can use the FFT algorithm to compute the periodogram, and hence
the power spectral densities, at uniformly spaced frequency points
Sx(ωsk/N) for k = 0 to N − 1.

9.6.1 FFT Computation

The program for computing the FFT is available in the board support
library as fft.h and fftcpmplx.h and can be accessed as header files.

9.6 The Spectrum Analyzer 231

The task in this project is to design a simple spectrum analyzer
that will be able to show the power spectral density of speech using
the TMS320C5416 DSK. A guideline on how to write the program is
given here. The student should be able to write the various functions
that will be used by the main task.

The program guideline for power spectral density estimation is
obtained by modifying a program first written by Sakora [] to compute
the power spectrum of a sequence.

1. Specify files to include
“psd estimationcfg.h”, “dsk5416.h”, “dsk5416 pcm3002.h”,
“fft.h”, “fftcmplx.h”.

2. Configure registers of PCM3002 Codec.
3. Define the size N of the FFT (8,16,32,64,128,256, or 512)

and define the size of buffers:

input buffer[N]; Buffer for input samples from codec
COMPLEX y[N]; Variable passed to FFT and modified

by FFT output
power spectrum[N]; Power of each frequency component
total power[N]; To contain the accumulated FFT after

8 blocks of input
psd[N]; Divide total power by number of input

blocks (8)
4. Write Functions to be used by main task

4.1 Buffers initialize(): Fill up buffers with zeros to
avoid reading of incorrect values in input buffer[i],
power spectrum[i] , psd[i].

4.2 shift and read(): Shift input buffer by one place. Get
latest input into first buffer location after dividing by
4 to limit input range thus avoiding overloading the
FFT.

4.3 Copy input to complex(): Copy from input buffer to
complex structure y[N]. When the FFT is performed,
the complex structure is overwritten with the return
values of the FFT which are complex.

232 Examples of DSK Implementations

4.4 FFT computation: There is no need to write the pro-
gramme to compute the FFT as the fft.h and fftcm-
plx.h are available in board support library.

4.5 Calculate output power(): Calculate output power of
real and imaginary terms of the FFT. This gives sam-
ples of the periodogram.

4.6 Add and accumulate(): Add the samples of the peri-
odogram.

4.7 Estimate power spectral density(): simply divides
each sample by number of blocks used to obtain the
estimate of the power spectral density and stored in
array psd[].

/∗————————————————————————————–∗/
/∗ For compatibility with pcm3002 read / write, the following
variables must be declared as Int16 or short int, rather than int. ∗/
/∗————————————————————————————–∗/
Int16 left input;
Int16 left output;
Int16 right input;
Int16 right output;
Int16 mono input;

/∗————————————————————————————–∗/
/∗ UserTask() ∗/
/∗————————————————————————————–∗/
/∗ The main user task. ∗/
/∗ Note that this task is not called by main(). It is scheduled by
DSP/BIOS ∗/
/∗————————————————————————————–∗/

void UserTask()
{

DSK5416 PCM3002 CodecHandle hCodec;
long i;
unsigned int j;
unsigned int temp;

9.6 The Spectrum Analyzer 233

/∗ Start the codec ∗/
hCodec = DSK5416 PCM3002 openCodec(0, &setup);

buffers initialize();

for (i = 0 ; i < 120000000 ; i++)
{
/∗Compute FFT for 8 length-N segments of input sequence∗/

for l= 0 ; l< 8 ; l++

/∗ Read input multiple times and put into receive buffer ∗/
{ for (j = i+l ; j < i+N ; j++)

{
/∗ Read left input channel ∗/
while (!DSK5416 PCM3002 read16(hCodec, &left input));

/∗ Output to left output channel ∗/
while (!DSK5416 PCM3002 write16(hCodec, left output));

/∗ Read right input channel ∗/
while (!DSK5416 PCM3002 read16(hCodec, &right input));

/∗ Output to right output channel ∗/
while (!DSK5416 PCM3002 write16(hCodec, right output));
/∗ Copy inputs straight to outputs ∗/
left output = left input;
right output = right input;

/∗ Generate mono signal from two input signals ∗/
mono input = stereo to mono(left input, right input);

/∗ Read next value into straight buffer ∗/
shuffle and read (mono input);

}

/∗ Copy input samples from receive buffer to y[] ∗/
copy input to complex();

234 Examples of DSK Implementations

/∗ Perforn FFT for specified number of points ∗/
FFT(y[], N);
}

/∗ Determine power of outputs in y[] ∗/
calculate output power(y, &power spectrum[]); use this

statement to compute periodogram

/∗ Add and accumulate power for 8 segments ∗/

add and accumulate outpower(power spectrum, sum output[]);
}

/∗Estimate power spectral density

estimate power spectral density(sum output[], psd[])

}

/∗ Finished processing. Close the codec ∗/
DSK5416 PCM3002 closeCodec(hCodec);

}
/∗————————————————————————————–∗/
/∗ main() ∗/
/∗————————————————————————————–∗/

void main()
{

/∗ Initialize the board support library ∗/

DSK5416 init();
/∗ All other functions are scheduled by DSP/BIOS ∗/

}

The power spectral density can be viewed by observing the psd
buffer using a probe.

9.7 The Scrambler 235

9.7 The Scrambler

9.7.1 Introduction to the Scrambler

A scrambler is a telecommunication device that can be used to make
information coming out of a transmitter unintelligible. In order to be
able to interpret information the receiver has to have a descrambler.
A scrambler is normally applied to analog systems while an encryp-
tor, a device with the same objectives, is applied to digital systems.
A scrambler can also be applied to telecommunication system for a dif-
ferent purpose; to randomize an input data. When a bit stream consists
of a long sequence of 1s or 0s the clock in the transmitter fails to track
the receiver clock and the system loses synchronization. A scrambler
can be deployed to change a long string of 1s or 0s to a more random
sequence and hence aid in synchronization.

Scramblers can be classified into two classes; additive scramblers and
multiplicative scramblers. Additive scramblers use-modulo two addition
to transform the input data stream and in order to achieve synchro-
nization between the transmitter and the receiver a sync-word is used.
The sync word has a unique pattern which is placed at the beginning
of each frame and is known at the receiver. The receiver searches for it
and determines the beginning of incoming frame. Multiplicative scram-
blers have been named so because in order to determine the scrambled
output they perform a multiplication between the input signal and the
scrambler transfer function in the z-domain. They do not need a sync-
word for frame synchronization and that is why they are referred to
as self-synchronizing scramblers. Figure 9.4 shows an ITU-T standard
multiplicative scrambler and descrambler defined by the polynomial
1 + x18 + x23.

In general the scrambler output is given by

y(n) =
N∑

k=k

h(k)x(n − k) (9.4)

and the descrambler output is given by

x(n) =
N∑

i=1

h(i)y(n − i). (9.5)

236 Examples of DSK Implementations

Fig. 9.4 A standard ITU-T scrambler and descrambler.

For the ITU-T standard h(i) =

1 for i = 1,5,18
and N = 23.

0 otherwise.

9.7.2 The Scrambler Implementation

The program to implement the scrambler will be written using the
following steps:

Write the programs to implement the following functions:

Buffer-initialise to clear the buffer for the input and output
to avoid system reading spurious values.
Shift and read function to shift data in register to the
next location and read the new input and place it in the first
register.
Scramble input function to scramble the input sequence
using Equation (9.4).

9.8 Echo Generator 237

9.7.3 The Descrambler Implementation

The program to implement the descrambler will be written using the
following steps:

Write the programs to implement the following functions:

Buffer-initialise to clear the buffer for the input and output
to avoid system reading spurious values
Shift and read function to shift data in register to the
next location and read the new input and place it in the first
register.
Descramble input function to descramble the input
sequence using Equation (9.5).

9.8 Echo Generator

9.8.1 Single Echo Generator

A single echo generator would produce a single attenuated replica of
the input after a pre-determined delay. Figure 9.5 shows the model of
a single echo generator. In order to make the delay distinct the delay
must be at least a few tens of milliseconds. In the TMS320C5416 the
sampling frequency can be fixed and for the audio signal we can select
10 kHz or a sampling period of 0.1 ms. Each unit delay will correspond
to 0.1 ms. Thus to get a distinct echo we can use N = 100 to give 10 ms
delay.

Fig. 9.5 Single echo generator.

238 Examples of DSK Implementations

The proposed C code will therefore be
{
int (i,j)
for i = 0; >500, i++

{
y(i) = 0 /∗clear output buffer ∗/
x(i) = 0 /∗clear input buffer ∗/

}
{
for j = 500-1; >0; j - -

{
x(j) = x(j-1) /∗Shift sample ∗/
}

x(0) = input /∗ Input new sample ∗/
yn = x(0) + gain∗x(100); /Add echo to input, gain must be less

than 1 ∗/
output = yn
}

}

9.8.2 Multiple Echo Generator

A system with feedback that will recycle the delayed output over and
over and hence produce multiple echoes is shown in Figure 9.6.

The output is given by

y(n) = x(n − N) + αy(n − N)

Fig. 9.6 Multiple echo generator.

9.9 Reverberator 239

and the transfer function is given by

H(z) =
z−N

1 − αz−N
.

The c code for the generation of multiple echoes is presented below:

Define N 7 /∗ Define the location of the delay∗/

{
int (i,j)
for i = 0; >50, i++

{
y(i) = 0 /∗clear output buffer ∗/
x(i) = 0 /∗clear input buffer ∗/

}
{
for j = 50-1; >0; j - -

{
x(j) = x(j-1) /∗Shift sample ∗/
}

x(0) = input /∗ Input new sample ∗/
y(i) = x(i-N) + gain∗y(i - N); /Add echo to input, gain must be

less than 1 ∗/
output = y(i)
}

}

9.9 Reverberator

The multiple echo generator does not provide natural reverberations as
its magnitude response (which forms a comb filter magnitude response)
is not constant at all frequencies. This results in distortion of certain
frequency components and make music unpleasant to listen to. To over-
come this Schroeder [26, 27] introduced the use of an all-pass structure
as shown in Figure 9.7.

The transfer function is given by H(z) = z−N−α
1−αz−N , and the difference

equation is given by y(n) = x(n − N) − αx(n) + αy(n − N).

240 Examples of DSK Implementations

Fig. 9.7 Reverberator using an All-pass structure.

The C-code implementation is given by:

Define N 7 /∗ Define the location of the delay∗/
{
int (i,j)
for i = 0; >50, i++

{
y(i) = 0 /∗clear output buffer ∗/
x(i) = 0 /∗clear input buffer ∗/

}
{
for j = 50-1; >0; j - -

{
x(j) = x(j-1) /∗Shift sample ∗/
}

x(0) = input /∗ Input new sample ∗/
y(i) = x(i-N) - gain∗x(i) + gain∗y(i - N); /Gain must be less
than 1 ∗/
output = y(i)
}

}
To improve on the timber of the output sound one can have a cas-

cade implementation of Figure 9.7.

References

[1] Alan V. Oppenheim and Ronald W. Schafer, Discrete-Time Signal Processing,
second ed. Prentice Hall Signal Processing Series, 1999. ISBN 0-13-754920-2.

[2] Steven W. Smith, The Scientist and Engineer’s Guide to Digital Signal pro-
cessing, California Technical Publishing, 2007.

[3] E. Oran Brigham, The Fast Fourier Transform and its Applications. Englewood
Cliffs, NJ: Prentice Hall, 1988, ISBN 0-13-307505-2.

[4] Dragoslav Mitronivić, and Jovan, Kečkić, The Cauchy Method of Residues:
Theory and Applications, D. Reidel Publishing Company, 1984, ISBN 90-277-
1623-4.

[5] Partial Fraction Decomposition Wolfram Mathworld. http://mathworld.
wolfram.com/PartialFractionDecomposition.html. Last accessed 10th May
2008.

[6] Butterworth Filters; Polynomials, Poles and Circuit Elements, http://www.
crbond.com/papers/btf2.pdf. Last accessed 15th May 2008.

[7] S. K. Mitra and J. F. Kaiser, Handbook for Digital Signal Processing. John
Wiley & Sons, 1993.

[8] John G. Proakis and D. Manolakis, Digital Signal Processing — Principles,
Algorithms and Applications, Pearson, ISBN 0-13-394289-9.

[9] A Antoniou, Digital Filters: Analysis, Design and Applications. New York NY:
Mc-Graw-Hill, second ed., 1993.

[10] S. K. Mitra, Digital Signal Processing: A Computer Based Approach, McGraw-
Hill, second ed., 2001.

[11] IEEE Computer Society, IEEE Standard for Binary Floating-Point Arithmetic,
1985, IEEE Std 754-1985.

[12] DSP Selection Guide, SSDV004S, Texas Instrument Inc., Printed by Southwest
Precision Printers, Houston, Texas, 2007.

[13] G. Marven and G. Ewers, A Simple Approach to Digital Signal Processing,
Texas Instruments, 1994. ISBN 0-904 047-00-8

[14] Michael R. Williams, A History of Computing Technology, IEEE Computer
Society Press, 1997, ISBN 0-8186-7739-2.

[15] A. W. Burks, H. H. Goldstine, and J. von Neumann, Preliminary discussion of
the logical design of an electronic computing instrument, 1963.

[16] J. Eyre and J. Bier, “The evolution of DSP Processors,” A BDTI White Paper,
Berkely Design Technology Inc., 2000.

[17] ADSP-21xx Processor Architectural Overview, http://www.anlog.com/
processors/adsp/overview/overview.html, Last accessed 10th May 2008.

241

http://www.crbond.com/papers/btf2.pdf
http://www.crbond.com/papers/btf2.pdf
http://www.anlog.com/processors/adsp/overview/overview.html
http://www.anlog.com/processors/adsp/overview/overview.html
http://mathworld.wolfram.com/PartialFractionDecomposition.html
http://mathworld.wolfram.com/PartialFractionDecomposition.html

242 References

[18] P. Lapsey, J. River, A. Shoaham, and E. A. Lee, DSP Processor Fundamentals:
Architectures and Features, Berkely Design Technology Inc., 1996.

[19] BDTi, Choosing A DSP Processor. Berkely Design Technology Inc., 1996.
[20] DSP Selection Guide, SSDV004S, Texas Instrument Inc., Printed by Southwest

Precision Printers, Houston, Texas, 2007.
[21] TMS320VC 5416, Fixed-Point Digital Signal Processor, Data Manual. Litera-

ture Number SPRS0950, Texas Instruments. Revised January 2005.
[22] TMS320C54x DSP. Reference Set. Volume 1: CPU and Peripherals Literature,

Number: SPRU131G . Texas Instruments, March 2001.
[23] DSP Starter Kit (DSK) for the TMS320VC5416, Spectrum Digital Incorpo-

rated http://www.spectrumdigital.com/product info.php?&products id=100.
Last accessed, 10th May 2008.

[24] TMS320C5000 Code Composer Studio Manuals, Texas Instruments.
[25] Code Composer studio http://focus.ti.com/docs/toolsw/folders/print/ccstudio.

html. Last accessed 10th May 2008. (Access for a trial version or subscription).
[26] MR Schroeder, “Natural sounding artificial reverberation.” Journal of the

Audio Engineering Society, vol. 10, pp. 219–223, 1962.
[27] J. Frenette, “Reducing artificial eeverberation requirements using time vari-

ant feedback delay networks, MSc Thesis, University of Miami, Coral Cables,
Florida, December 2000.

http://www.spectrumdigital.com/product_info.php?&products id=100
http://focus.ti.com/docs/toolsw/folders/print/ccstudio.html
http://focus.ti.com/docs/toolsw/folders/print/ccstudio.html

APPENDIX

Program 2.2

% Plotting of the Frequency response of Example 2.2

% Enter the desired length of the DFT

k = input(‘Enter the number of frequency points = ’);

alpha = input(‘Enter the value of alpha, alpha = ’);

% Compute the frequency response

w = -4*pi:pi/k:4*pi;

h = 1./(1 - alpha.*cos(w)+ i*alpha.*sin(w));

subplot(2,1,1);

plot(w/pi, abs(h)); grid

title(‘Magnitude Spectrum alpha = 0.5’);

xlabel(‘\omega/\pi’); ylabel(‘Magnitude’);

subplot(2,1,2);

plot(w/pi, angle(h)); grid

title(‘Phase spectrum alpha = 0.5’);

xlabel(‘\omega/\pi’); ylabel(‘Phase, Radians’);

Program 2.3

% Plotting of the Frequency response of Example 2.3

% Enter the desired length of the DFT

k = input(‘Enter the number of frequency points = ’);

alpha = input(‘Enter the value of alpha less than 1,

alpha = ’);

% Compute the frequency response

w = -4*pi:pi/k:4*pi;

h = 1./(1 - alpha.*cos(w)+ i*alpha.*sin(w));

243

244 Appendix

subplot(2,1,1);

plot(w/pi, abs(h)); grid

title(‘Magnitude Spectrum alpha = 2’);

xlabel(‘\omega/\pi’); ylabel(‘Magnitude’);

subplot(2,1,2);

plot(w/pi, angle(h)); grid

title(‘Phase spectrum alpha = 2’);

xlabel(‘\omega/\pi’); ylabel(‘Phase, Radians’);

Program 2.4

% Plotting of the Frequency response of Example 2.4

% Enter the desired length of the DFT

k = input(‘Enter the number of frequency points = ’);

alpha = input(‘Enter the value of alpha greater than1,

alpha = ’);

% Compute the frequency response

w = -4*pi:pi/k:4*pi;

h = 1./(1 - alpha.*cos(w)+ i*alpha.*sin(w));

subplot(2,1,1);

plot(w/pi, abs(h)); grid

title(‘Magnitude Spectrum alpha = 1’);

xlabel(‘\omega/\pi’); ylabel(‘Magnitude’);

subplot(2,1,2);

plot(w/pi, angle(h)); grid

title(‘Phase spectrum alpha = 1’);

xlabel(‘\omega/\pi’); ylabel(‘Phase, Radians’);

Program 6.1

% Design a Digital Filter using the Bilinear

Transformation method

% Example 6.1

fp = 10;

% sampling frequency Fs = 200

Fs = 200;

Wp = fp*2*pi/Fs;

Appendix 245

fs = 60;

Ws = fs*2*pi/Fs;

Rp = 0.5;

Rs = 20;

% Pre-warp the normalised digital frequencies to abtain

the analogue

% filter frequencies

Omegap = tan(Wp/2)

Omegas = tan(Ws/2)

[N, Wc] = buttord(Omegap, Omegas, Rp, Rs, ‘s’);

disp(‘Cut-off frequency of the analogue filter’); disp(Wc);

disp(‘Order of the analogue filter’); disp(N);

[B, A] = butter(N, Wc,‘s’);

tf(B,A)

% Apply a bilinear transformation

[Num,Den] = bilinear(B, A, 0.5);

% Display transfer function of digital filter (must enter

sampling time)

tf(Num, Den, 0.005)

omega= [0:0.1:2*Omegas];

Hanalog = freqs(B,A,omega);

subplot(2,1,1)

plot(omega,20*log10(abs(Hanalog)),‘m’);

title(‘Butterworth LPF Example 8.1’);

xlabel(‘Frequency in rad/s’); ylabel(‘Magnitude’);

omegad= [0:pi/100:pi];

Hdigital = freqz(Num,Den,omegad);

subplot(2,1,2)

plot(omegad*Fs/(2*pi),abs(Hdigital),‘r’);

title(‘Butterworth LPF Example 8.1’);

xlabel(‘Frequency in Hz’); ylabel(‘Magnitude’);

Program 6.2

% Design a Highpass Chebyshev II Digital Filter using the

Bilinear

246 Appendix

% Transformation method Example 6.2. The sampling

frequency Fs = 120Hz

Fs = 1200;fp = 550;

Wp = fp*2*pi/Fs;

fs = 500;

Ws = fs*2*pi/Fs;

Rp = 1;

Rs = 30;

% Pre-warp the normalised digital frequencies to obtain

the analogue

% filter frequencies

Omega1 = tan(Wp/2);

Omega2 = tan(Ws/2);

% Obtain the specifications of the LPF

Omegap = 1;

Omegas = Omegap*Omega1/Omega2;

[N, Wc] = cheb2ord(Omegap, Omegas, Rp, Rs, ‘s’);

disp(‘Prototype LPF’)

disp(‘Cut-off frequency Wc = ’); disp(Wc);

disp(‘Order N = ’); disp(N);

[B, A] = cheby2(N,Rs,Wc,‘s’);

tf(B,A)

% Plot magnitude response of the prototype LPF

omega= [0:0.1:2*Omegas];

Hanalog = freqs(B,A,omega);

subplot(2,2,1)

plot(omega,20*log10(abs(Hanalog)),‘r’);

title(‘Prototype LPF Example 8.2’);

xlabel(‘Frequency in rad/s’); ylabel(‘Magnitude’);

% Transform the transfer function to an analogue highpass

filter

[BD, AD] = lp2hp(B, A, 2*pi*Wc);

disp(‘Analogue Highpass filter’)

tf(BD,AD)

% Plot magnitude response of the equivalent analogue HPF

omegaa = [0:0.1:2*pi*Wc];

Appendix 247

Hanaloghp = freqs(BD, AD, omegaa);

subplot(2,2,2)

plot(omegaa,20*log10(abs(Hanaloghp)),‘b’);

title(‘Analogue HPF Example 8.2’);

xlabel(‘Frequency in rad/s’); ylabel(‘Magnitude’);

% Apply a bilinear transformation

[Num,Den] = bilinear(BD, AD, 0.5);

% Display transfer function of digital filter (enter

sampling time)

disp(‘Digital Highpass filter’)

tf(Num, Den, 0.005)

omegad= [0:pi/100:pi];

Hdigital = freqz(Num,Den,omegad);

subplot(2,2,3)

plot(omegad*Fs/(2*pi),abs(Hdigital),‘r’);

title(‘Chebyshev II Example 8.2’);

xlabel(‘Frequency in Hz’); ylabel(‘Magnitude’);

subplot(2,2,4)

zplane(Num, Den);

title(‘Pole-Zero Plot’);

Program 6.3

% Design a Bandpass Elliptic Digital Filter using the

Bilinear

% Transformation method Example 8.3.

% sampling frequency Fs = 120 KHz

Fs = 120000;

fp1 = 35000; fp2 = 45000;

fs1 = 20000; fs2 = 60000;

Wp1 = fp1*2*pi/Fs; Wp2 = fp2*2*pi/Fs;

Ws1 = fs1*2*pi/Fs; Ws2 = fs2*2*pi/Fs;

Rp = 0.5;

Rs = 40;

% Pre-warp the normalised digital frequencies to obtain

the analogue

248 Appendix

% filter frequencies

Omegap1 = tan(Wp1/2); Omegap2 = tan(Wp2/2);

Omegas1 = tan(Ws1/2); Omegas2 = tan(Ws2/2);

% Check for geometric sysmmetry

if Omegap1*Omegap2>Omegas1*Omegas2

Omegap1=Omegas1*Omegas2/Omegap2;

WoSquared =Omegas1*Omegas2;

else Omegas2 = Omegap1*Omegap2/Omegas1;

WoSquared = Omegap1*Omegap2;

end

Bw = Omegap2 - Omegap1;

% Obtain the specifications of the LPF

Omegap = 1;

Omegas = Omegap*(WoSquared - Omegas1ˆ2)/(Omegas1*Bw);

[N, Wc] = ellipord(Omegap,Omegas,Rp,Rs,‘s’);

disp(‘Prototype LPF’)

disp(‘Cut-off frequency Wc = ’); disp(Wc);

disp(‘Order N = ’); disp(N);

[B, A] = ellip(N,Rp,Rs,Wc,‘s’);

tf(B,A)

% Plot magnitude response of the prototype LPF

omega = [0:0.1:2*Omegas];

Hanalog = freqs(B,A,omega);

subplot(2,2,1)

plot(omega,20*log10(abs(Hanalog)),‘g’);

title(‘Prototype LPF Example 8.2’);

xlabel(‘Frequency in rad/s’); ylabel(‘Magnitude’);

% Transform the transfer function to an analogue bandpass

filter

[BD, AD] = lp2bp(B, A, Wc, Bw);

disp(‘Analogue Bandpass filter’)

tf(BD,AD)

% Plot magnitude response of the equivalent analogue BPF

omegaa = [0.1:0.1:5];

Hanalogpb = freqs(BD, AD, omegaa);

subplot(2,2,2)

Appendix 249

plot(omegaa,20*log10(abs(Hanalogpb)),‘m’);

title(‘Analogue BPF Example 8.3’);

xlabel(‘Frequency in rad/s’); ylabel(‘Magnitude’);

% Apply a bilinear transformation

[Num,Den] = bilinear(BD, AD, 0.5);

% Display transfer function of digital filter (must enter

sampling time)

disp(‘Digital Bandpass filter’)

tf(Num, Den, 0.005)

omegad= [0:pi/100:pi];

Hdigital = freqz(Num,Den,omegad);

subplot(2,2,3)

plot(omegad, abs(Hdigital),‘r’);

title(‘Elliptic Bandpass Filter Example 8.3’);

xlabel(‘Frequency in Hz’); ylabel(‘Magnitude’);

subplot(2,2,4)

zplane(Num, Den);

title(‘Pole-Zero Plot’);

Program 6.4

% Design a Bandstop chebyshev II Digital Filter using the

Bilinear

% Transformation method Example 8.4.

% sampling frequency Fs = 2.8 KHz

Fs = 2800;

fp1 = 700; fp2 = 1200;

fs1 = 800; fs2 = 1000;

Wp1 = fp1*2*pi/Fs; Wp2 = fp2*2*pi/Fs;

Ws1 = fs1*2*pi/Fs; Ws2 = fs2*2*pi/Fs;

Rp = 0.5;

Rs = 40;

% Pre-warp the normalised digital frequencies to obtain

the analogue

% filter frequencies

Omegap1 = tan(Wp1/2); Omegap2 = tan(Wp2/2);

250 Appendix

Omegas1 = tan(Ws1/2); Omegas2 = tan(Ws2/2);

% Check for geometric sysmmetry

if Omegap1*Omegap2>Omegas1*Omegas2

Omegap1 = Omegas1*Omegas2/Omegap2;

WoSquared = Omegas1*Omegas2;

else Omegas2 = Omegap1*Omegap2/Omegas1;

WoSquared = Omegap1*Omegap2;

end

Bw = Omegas2 - Omegas1;

% Obtain the specifications of the LPF

Omegas = 1;

Omegap = Omegas*(Omegap1*Bw)/(WoSquared - Omegap1ˆ2);

[N, Wc] = cheb2ord(Omegap,Omegas,Rp,Rs,‘s’);

disp(‘Prototype LPF’)

disp(‘Cut-off frequency Wc = ’); disp(Wc);

disp(‘Order N = ’); disp(N);

[B, A] = cheby2(N,Rs,Wc,‘s’);

tf(B,A)

% Plot magnitude response of the prototype LPF

omega= [0:0.1:2*Omegas];

Hanalog = freqs(B,A,omega);

subplot(2,2,1)

plot(omega,20*log10(abs(Hanalog)),‘g’);

title(‘Prototype LPF Example 8.3’);

xlabel(‘Frequency in rad/s’); ylabel(‘Magnitude’);

% Transform the transfer function to an analogue bandpass

filter

[BD, AD] = lp2bs(B, A, Wc, Bw);

disp(‘Analogue Bandstop filter’)

tf(BD,AD)

% Plot magnitude response of the equivalent analogue BPF

omegaa = [0.01:0.1:2];

Hanalogbs = freqs(BD, AD, omegaa);

subplot(2,2,2)

plot(omegaa,20*log10(abs(Hanalogbs)),‘m’);

title(‘Analogue BSF Example 8.3’);

Appendix 251

xlabel(‘Frequency in rad/s’); ylabel(‘Magnitude’);

% Apply a bilinear transformation

[Num,Den] = bilinear(BD, AD, 0.5);

% Display transfer function of digital filter (enter

sampling time)

disp(‘Digital Bandstop filter’)

tf(Num, Den, 0.005)

omegad= [0:pi/100:pi];

Hdigital = freqz(Num,Den,omegad);

subplot(2,2,3)

plot(omegad*Fs/(2*pi), abs(Hdigital),‘r’);

title(‘Chebyshev II Bandstop Filter Example 8.3’);

xlabel(‘Frequency in Hz’); ylabel(‘Magnitude’);

subplot(2,2,4)

zplane(Num, Den);

title(‘Pole-Zero Plot’);

% Obtain second order section for cascade implementation

Hsos = tf2sos(Hdigital, g)

Program 7.1

% coefficient Quantisation Effects on the Frequency

response of a

% Direct Form IIR filter

clf;

[N,Wn] = ellipord(1, 2.8618058, 1, 40,‘s’);

[B,A] = ellip(N,1,40, Wn,‘s’);

[BT,AT] = lp2bp(B,A, 1.1805647, 0.777771);

[num,den] = bilinear(BT,AT,0.5);

[h,w] = freqz(num,den,512); g = 20*log10(abs(h));

bq = a2dT(num,6); aq = a2dT(den,6);

[hq,w] = freqz(bq,aq,512); gg = 20*log10(abs(hq));

plot(w/pi, g, ‘b’, w/pi, gg, ‘r:’); grid

title(‘Impact of Coefficient Quantisation’);

axis([0 1 -80 5]);

xlabel(‘\omega/\pi’); ylabel (‘Gain, dB’);

252 Appendix

pause

zplane(num,den);

title(‘Case with Unquantised Coefficients’);

pause

zplane(bq,aq);

Title(‘Case with Quantised Coefficients’);

function beq = a2dT(d,n)

% BEQ = A2DT(D,N) generates the decimal equivalent beq of

the binary

% representation of the decimal number D with N bits for

the magnitude part

% obtained by truncation.

%

m = 1; d1 = abs(d);

while fix(d1)>0

d1 = abs(d)/2ˆm;

m = m + 1;

end

beq = fix(d1*2ˆn);

beq = sign(d).*beq.*2ˆ(m-n-1);

function beq = a2dR(d,n)

% BEQ = A2DR(D,N) generates the decimal equivalent beq of

the binary

% representation of the decimal number D with N bits for

the magnitude part

% obtained by rounding.

%

m = 1; d1 = abs(d);

while fix(d1)>0

d1 = abs(d)/2ˆm;

m = m + 1;

end

beq = fix(d1*2ˆn + 0.5);

beq = sign(d).*beq.*2ˆ(m-n-1);

Appendix 253

Program 7.2

% program for scaling a discrete-time system

% Input filter coefficients.

disp(‘Coefficients of first cascade section’);

disp(‘aii are numerator and bii are denominator

coefficients’);

b00 = input(‘b00 = ’); b01 = input(‘b01 = ’);

b02 = input(‘b02 = ’); a00 = input(‘a00 = ’);

a01 = input(‘a01 = ’); a01 = -a01;

a02 = input(‘a02 = ’); a02 = -a02;

disp(‘Coefficients of second cascade section’);

b10 = input(‘b10 = ’); b11 = input(‘b11 = ’);

b12 = input(‘b10 = ’); a10 = input(‘a10 = ’);

a11 = input(‘a11 = ’); a11 = -a11;

a12 = input(‘a12 = ’); a12 = -a12;

format long

% Computing Scaling factor for signal to first adder of

first cascade

% section

k1 = 1; k2 = 1; k3 = 1;

x1 = 1/k1;

si1 = [0,0]; si2 = [0,0];

varnew = 0; k=1;

while k > 0.000001

y1 = a01.*si1(1) + a02.*si1(2) + x1;

x2 = (b00.*y1 + b01.*si1(1) + b02.*si1(2))./k2;

si1(2) = si1(1);

si1(1) = y1;

y2 = x2 + a11.*si2(1) + a12.*si2(2);

y3 = (y2.*b10 + si2(1).*b11 + si2(2).*b12)./k3;

si2(2) = si2(1);

si2(1) = y2;

varold = varnew;

varnew = varnew + abs(y1).*abs(y1);

% Compute approximate L2 norm square

254 Appendix

k = varnew - varold;

x1 = 0;

end

k1 = sqrt(varnew);

% Computing Scaling factor for signal to second adder of

first

% cascade section

x1 = 1/k1;

si1 = [0,0]; si2 = [0,0];

varnew = 0; k=1;

while k > 0.000001

y1 = a01.*si1(1)+ a02.*si1(2)+ x1;

x2 = (b00.*y1 + b01.*si1(1) + b02.*si1(2))./k2;

si1(2) = si1(1);

si1(1) = y1;

y2 = x2 + a11.*si2(1) + a12.*si2(2);

y3 = (y2.*b10 + si2(1).*b11 + si2(2).*b12)./k3;

si2(2) = si2(1);

si2(1) = y2;

varold = varnew;

varnew = varnew + abs(y2).*abs(y2);

% Compute approximate L2 norm square

k = varnew - varold;

x1 = 0;

end

k2 = sqrt(varnew);

% Computing Scaling factor for signal to second adder of

second cascade

section

x1 = 1/k1;

si1 = [0,0]; si2 = [0,0];

varnew = 0; k=1;

while k > 0.000001

y1 = a01.*si1(1) + a02.*si1(2) + x1;

x2 = (b00.*y1 + b01.*si1(1) + b02.*si1(2))./k2;

si1(2) = si1(1);

Appendix 255

si1(1) = y1;

y2 = x2 + a11.*si2(1) + a12.*si2(2);

y3 = (y2.*b10 + si2(1).*b11 + si2(2).*b12)./k3;

si2(2) = si2(1);

si2(1) = y2;

varold = varnew;

varnew = varnew + abs(y3).*abs(y3);

% Compute approximate L2 norm square

k = varnew - varold;

x1 = 0;

end

k3 = sqrt(varnew);

disp(‘Scaling factor k1 = ’); disp(k1);

disp(‘Scaling factor k2 = ’); disp(k2);

disp(‘Scaling factor k3 = ’); disp(k3);

Program 9.1

C Program to Implement FIR filtering.

/**/

#include <stdio.h> /* Required for functions printf() and

puts() */

/**/

/*

/* The next line takes the name of the module, here FIR.c

and creates FIRcfg.h */

/**/

#include ‘‘FIRcfg.h’’

#include ‘‘dsk5416.h’’

#include ‘‘dsk5416_pcm3002.h’’

#include ‘‘stereo.h’’

#include ‘‘FIR_low_pass_filter.h’’

/**/

/* Configuration setup of registers of PCM3002 Codec */

/**/

256 Appendix

DSK5416_PCM3002_Config setup = {

0x1FF, // Set-Up Reg 0 - Left channel DAC attenuation

0x1FF, // Set-Up Reg 1 - Right channel DAC attenuation

0x0, // Set-Up Reg 2 - Various ctl e.g. power-down modes

0x0, // Set-Up Reg 3 - Codec data format control

};

/**/

/* For compatibility with pcm3002 read/write, these

variables must */

/* be declared as Int16 or short int, rather than int. */

/**/

Int16 left_input;

Int16 left_output;

Int16 right_input;

Int16 right_output;

/**/

/* UserTask() */

/**/

/* The main user task. */

/* Note that this task is not called by main(). It is

scheduled by DSP/BIOS */

/* the purpose of this section is to read input from the

two input channels */

/* and to mix them to obtain a mono input */

/**/

void UserTask()

{

DSK5416_PCM3002_CodecHandle hCodec;

long l;

unsigned int switch_value;

signed int mono_input;

Appendix 257

signed long output;

/*Initialise the input signal registers*/

define filter_order 51

int k

{

for(k=0;k<filter_order; k++)

float x[k] = 0.0;

}

/* Start the codec */

hCodec = DSK5416_PCM3002_openCodec(0, &setup);

/* Read left input channel */

for (l = 0; l < 12000000; l++)

{

while (!DSK5416_PCM3002_read16(hCodec, &left_input));

while (!DSK5416_PCM3002_read16(hCodec, &right_input));

/* Merge two inputs from CD player into one */

mono_input = stereo_to_mono(left_input, right_input);

/* Perform thr filtering process*/

float fir_filter(float *x, float *h, int

filter_order);

/* *x and *h points to the beginning of the array

of input samples and input coefficients */

{

float yn = 0.0 /* Initialise output yn */

int i

for (i = 0; i > filter_order; i ++)

{

yn = yn + h(i)*x(i) /* Convolve input with

coefficients */

/*send same output to both channels*/

258 Appendix

left_output = yn;

right_output = yn;

while (!DSK5416_PCM3002_write16(hCodec,

left_output));

while (!DSK5416_PCM3002_write16(hCodec,

right_output));

/* This function refreshes the input signal

samples and inputs a new sample */

void shift(float *x, int Filter_Order,

float mono_input)

int i; /* Loop index */

for(i = filter_order-1; i>0; i--)

{

x[i] = x[i - 1]; /* Delay each data sample

by one unit */

}

x(0) = mono_input;

return;

}

}

/* Finished processing. Close the codec */

DSK5416_PCM3002_closeCodec(hCodec);

puts("TMS320C5416 DSK program has terminated.\n");

}

/**/

/* main() */

/**/

void main()

{

/* Initialize the board support library */

DSK5416_init();

/* All other functions are scheduled by DSP/BIOS */

Appendix 259

FIR low pass filter.h
This is the include file containing the filter

coefficients

***/

/* Lowpass FIR filter with 51 constants for 1200 Hz

cutoff frequency, */

/* based on 48000 Hz sampling frequency. */

/**/

#ifndef FIR_low_pass_filter_H

#define FIR_low_pass_pass_H

const signed int FIR_low_pass_filter[] = {

0x0000, /* H0 */

0x0000, /* H1 */

0xFFFF, /* H2 */

0xFFFE, /* H3 */

0xFFFE, /* H4 */

0x0000, /* H5 */

0x0005, /* H6 */

0x000F, /* H7 */

0x0021, /* H8 */

0x003C, /* H9 */

0x0063, /* H10 */

0x0098, /* H11 */

0x00DD, /* H12 */

0x0134, /* H13 */

0x019B, /* H14 */

0x0214, /* H15 */

0x029A, /* H16 */

0x032B, /* H17 */

0x03C1, /* H18 */

0x0456, /* H19 */

0x04E5, /* H20 */

0x0565, /* H21 */

0x05D1, /* H22 */

260 Appendix

0x0622, /* H23 */

0x0655, /* H24 */

0x0666, /* H25 */

0x0655, /* H26 */

0x0622, /* H27 */

0x05D1, /* H28 */

0x0565, /* H29 */

0x04E5, /* H30 */

0x0456, /* H31 */

0x03C1, /* H32 */

0x032B, /* H33 */

0x029A, /* H34 */

0x0214, /* H35 */

0x019B, /* H36 */

0x0134, /* H37 */

0x00DD, /* H38 */

0x0098, /* H39 */

0x0063, /* H40 */

0x003C, /* H41 */

0x0021, /* H42 */

0x000F, /* H43 */

0x0005, /* H44 */

0x0000, /* H45 */

0xFFFE, /* H46 */

0xFFFE, /* H47 */

0xFFFF, /* H48 */

0x0000, /* H49 */

0x0000, /* H50 */

};

#endif

/**/

/* End of FIR_low_pass_filter.h */

/**/

Index

ADC, 3, 9, 10, 24, 180, 218, 220
addition of two sequences. See Arith-

metic Operations
aliasing, 8, 9, 111, 139
analog filter, 115, 116, 119, 134, 139–

141, 143, 145, 146, 168
analog filters, 111
Analog Filters

Bandpass Filter, 128
Bandstop Filter, 131
Highpass Filter, 128

Analog Lowpass Filters, vi, 112
analog signal, 2–5, 10, 11, 23–25, 57,

81
anti-aliasing filters. See aliasing
arithmetic logic unit, 10
arithmetic operations, vii, 12, 101,

171, 179, 181, 186

Bessel Filters, vi, 125
bilinear transformation, 139, 141,

143–146, 150, 166
butterfly computation, 77
Butterworth Filters, vi, 112, 113, 243

canonic, 102, 105, 106, 110, 194
Causality, 22
CCStudio, 209–211, 214
Chebyshev Filters, vi, 117
Chebyshev Type I, 117
Chebyshev Type II, 120
Circular Convolution, 63
Computation using Matrices, 64
DFT implementation, 68
Graphical Implementation, 64
MATLAB computation, 67

coefficient Quantization, 186
Continuous-time signal, 2

DAC, 3, 10, 24, 25, 181, 230
Delay Operation. See Arithmetic

operations
DFT. See Discrete-Fourier Transform

Circular convolution, 61
Circular Shift Property, 61
Frequency Shift, 61
Linearity Property, 59
Modulation, 62
Parseval’s Relation, 63

Differentiator, 16
Digital Filter Design, vi, 137, 143

Bandpass, 150
Bandstop, 152
FIR Filter, 155
Highpass, 146
Lowpass, 143
Windowed Fourier Series, 155

digital signal, xi, 1–3, 9, 23, 24, 35, 57,
111, 150, 171, 178–180, 197, 199,
203, 216, 243

Discrete Fourier Transform, v, 49, 58
Discrete-Time Fourier Transform, v,

29, 37
Discrete-time signal, 2
Discrete-time system

Transfer function, 97
Discrete-time systems, v, 16
down sampler, 19
DTFT, 29

convolution property, 38
Differentiation Property, 38
linearity property, 37

261

262 Index

Modulation property, 39
Parseval’s relation, 40
Time Shifting property, 37

Elliptic Filters, vi, 122
exponential sequence, 12, 26, 31–33,

83–85, 96, 97

Fast Fourier Transform, 68
FFT. See Fast Fourier Transform

Decimation-in-Time FFT, vi, 70
finite length, 12, 42, 47, 49, 59, 64, 69,

99, 137
FIR Filter Implementation, 217
fixed-point, 171, 178, 179, 181, 182,

200, 203
arithmetic operations, 172
One’s complement representa-

tion, 172, 185
Sign and magnitude representa-

tion, 172, 182, 185
Two’s complement representa-

tion, 172, 185
Floating Point, vii, 176
flow graph, 13, 71–78, 80, 128

Gibbs Phenomenon, 156

IDFT. See inverse DFT IIR filter. See
Infinite Impulse Response

IIR Filter Design, vii, 139
impulse response, 27, 40, 41, 42, 98,

99, 102, 108, 137, 139, 155–158,
165, 168, 188, 189, 191, 218

Infinite Impulse Response, vi, 103,
137

Integrator, 17
interpolation, 4
interpolator, 20
inverse DFT, 50, 55, 80
Inverse Discrete-Time Fourier Trans-

form, 35
inverse z-transform, vi, 86, 88, 89, 90,

93, 102, 108
Method using Long Division, 92
Method using Partial Fraction

Expansion, 89
The method of residues, 88

Linear Convolution, v, 40, 44
Linearity, 21, 41, 60, 97
Linear-Time-Invariant, 22
LTI, 40, See Linear-Time-Invariant

MAC instruction, 197, 199
Memory Architectures, vii, 197
Moving Average Filter, 16
Multiplication by a constant. See

Arithmetic operations
multiplication of two sequences. See

Arithmetic operations

non-volatile memory. See volatile
memory Nyquist, 8, 9

Nyquist rate. See Nyquist

one dimensional, 3

Pick off node. See Arithmetic opera-
tions

Quantization errors, 182, 184
truncation error, 183, 184, 185

quantization, vii, xii, 4, 9, 180, 181,
186, 188

random signal, 2
Realization Structures, vi, 101

Cascade Realization, 106
Finite Impulse Response, 101
Infinite Impulse Response (IIR)

Filters, 103
Parallel Realization, 107

Reed Solomon coding, 25
refreshing, 219
Rounding Errors, 183

sampling, v, xi, 2, 4, 5, 7–9, 18–20, 23,
25, 29, 35, 81, 138, 139, 144, 148,
151, 154, 155, 164, 167–169, 218,
239

Scaling, vii, 186, 191
L1 norm, 188, 189
L2 norm, 190–192
L∞-norm, 189, 191
MATLAB simulation, xi, 191,

192

Index 263

Shannon, 7
sidelobes, 158, 160
sinusoidal sequence, 11, 12
Stability, 23

tapped delay, 102
three dimensional, 3
Time-Invariance, 21
TMS320CV5416 DSK, 207
Transfer function

IIR transfer function, 100
Poles and Zeros, 99

transversal filter, 102
truncation, 9, 156, 181–185, 194
twiddle factor, 50, 52
two dimensional, 3

unit step sequence, 11, 26, 83, 84, 109
up-sampler, 18–20

volatile memory, 10

warping, 141, 146
Window Functions, 160

Blackman window, 162
Hamming Window, 162
Hann window, 160, 161
Kaiser Window, 163
Rectangular window, 160

z-transform, 81
conjugation property, 97
convolution property, 95
Differentiation Property, 95
linearity property, 93
Multiplication by an exponential

sequence, 96
ROC, 83
Time Reversal Property, 96
time shifting property, 94

	Cover
	Contents
	1 Introduction to Digital Signal Processing
	1.1 A Brief Introduction to Digital Signal Processing
	1.2 Signal Classification
	1.3 The Sampling Process
	1.4 Discrete-Time Signals
	1.4.1 Examples of Discrete-Time Signals
	1.4.2 Arithmetic Operation on Sequences

	1.5 Discrete-Time Systems
	1.6 Properties of Discrete-Time Systems
	1.7 Some Applications of Digital Signal Processing
	1.8 Problems

	2 The Transform Domain Analysis: The Discrete-Time Fourier Transform
	2.1 The Discrete-Time Fourier Transform
	2.2 The Inverse Discrete-Time Fourier Transform
	2.3 Properties of the Discrete-Time Fourier Transform
	2.4 Linear Convolution
	2.4.1 Graphical Implementation of Linear Convolution
	2.4.2 Implementation of Linear Convolution Using DTFTs

	2.5 MATLAB Plots of DTFTs
	2.6 Problems

	3 The Transform Domain Analysis: The Discrete Fourier Transform
	3.1 The Discrete Fourier Transform
	3.2 MATLAB Plots of DFTs
	3.2.1 MATLAB Program for Plotting DFT
	3.2.2 MATLAB Program for Plotting an IDFT
	3.2.3 MATLAB Program for Estimating the DTFT From the DFT

	3.3 Discrete Fourier Transform Properties
	3.4 Circular Convolution
	3.4.1 Graphical Implementation
	3.4.2 Computation using Matrices
	3.4.3 MATLAB Computation of Circular Convolution
	3.4.4 DFT Implementation of Circular Convolution

	3.5 The Fast Fourier Transform
	3.5.1 The Decimation-in-Time FFT Algorithm
	3.5.2 Properties of the FFT Flow Graphs

	3.6 Problems

	4 The Transform Domain Analysis: The z-Transform
	4.1 Introduction to the z-Transform
	4.2 The Inverse z-Transform
	4.2.1 The Method of Residues
	4.2.2 Method using Partial Fraction Expansion

	4.3 Properties of z-transforms
	4.4 Transfer Functions of Discrete-Time Systems
	4.5 Poles and Zeros
	4.6 Realization Structures
	4.6.1 Finite Impulse Response (FIR) filter
	4.6.2 Infinite Impulse Response (IIR) Filters
	4.6.3 Cascade Realization
	4.6.4 Parallel Realization

	4.7 Problems

	5 Review of Analog Filter Design
	5.1 Introduction
	5.2 Specification of Analog Filters
	5.3 The Analog Lowpass Filters
	5.3.1 Butterworth Filters
	5.3.2 Chebyshev Filters
	5.3.3 The Elliptic Filters
	5.3.4 The Bessel Filters

	5.4 The Analog Highpass, Bandpass, and Bandstop Filters
	5.4.1 Design Procedure for a Highpass Filter
	5.4.2 Design Procedure for a Bandpass Filter (BPF)
	5.4.3 Design Procedure for a Bandstop Filter (BSF)

	5.5 Problems

	6 Digital Filter Design
	6.1 Introduction
	6.2 IIR Filter Design
	6.2.1 The Bilinear Transformation Method
	6.2.2 Lowpass Digital Filter Design
	6.2.3 Design of Highpass, Bandpass, and Bandstop IIR Digital Filters

	6.3 FIR Filter Design
	6.3.1 The Windowed Fourier Series Method
	6.3.2 The Gibbs Phenomenon
	6.3.3 Window Functions

	6.4 Problems

	7 Digital Signal Processing Implementation Issues
	7.1 Introduction
	7.2 Fixed Point Number Representation and Arithmetic
	7.2.1 Fixed Point Multiplication

	7.3 Floating Point Number Representation and Arithmetic
	7.3.1 Multiplication of Floating Point Numbers

	7.4 Fixed and Floating Point DSP Devices
	7.5 Overflows Resulting from Arithmetic Operations
	7.6 Impact of the Quantization Process
	7.6.1 Quantization Errors in Fixed Point Processors
	7.6.2 Quantization Errors in Floating-Point Processors
	7.6.3 Effects of Coefficient Quantization

	7.7 Scaling in Fixed-Point DSPs
	7.8 Problems

	8 Digital Signal Processing Hardware and Software
	8.1 Introduction
	8.2 The Dawn of DSP Processors
	8.3 Memory Architectures
	8.4 Advantages of DSP Processors
	8.5 Selection of DSP Processors
	8.6 TI DSP Family Overview
	8.7 TMS320[sup(TM)]C5416 DSP Processor Architecture
	8.8 The TMS 320CV5416 Development Kit
	8.9 Code Composer Studio
	8.9.1 Building and Running a Project
	8.9.2 Debugging a Program
	8.9.3 Data Visualization
	8.9.4 Profiling and Optimization of a Program
	8.9.5 DSP/BIOS
	8.9.6 Real-Time Data Exchange
	8.9.7 Visual Linker Recipe

	8.10 Problems

	9 Examples of DSK Implementations
	9.1 Introduction
	9.2 FIR Filter Implementation
	9.2.1 Sample by Sample Filtering Process
	9.2.2 Block by Block Filtering Process

	9.3 IIR Filtering Implementation
	9.4 Tone Generation
	9.5 Harmonic and Fundamental Component Separator
	9.6 The Spectrum Analyzer
	9.6.1 FFT Computation

	9.7 The Scrambler
	9.7.1 Introduction to the Scrambler
	9.7.2 The Scrambler Implementation
	9.7.3 The Descrambler Implementation

	9.8 Echo Generator
	9.8.1 Single Echo Generator
	9.8.2 Multiple Echo Generator

	9.9 Reverberator

	References
	Appendix
	Index
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

