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1.1

1 Computer Principles

Technology

The microprocessor is the culmination of the developments which
have been taking place in semiconductor technology since the first
production transistors produced in the early 1950s. Basically, a
transistor is produced by adding impurities to a semiconducting
material, usually silicon. It was soon realised that, by adding im-
purities to different areas of the same piece of silicon, it was possible
to produce a number of interconnected transistors on the same silicon
“chip’”. This became known as an integrated circuit.

Digital integrated circuits in the early 196Us involved small-scale
integration (SSI), a typical circuit being a few logic gates. Later came
medium-scale integration (MSI) with a complete integrated circuit
counter or register possible. Further refinements and changes in
technology have resulted in large-scale integration (LSI) devices
being commercially available at low cost which are comprised of
more than 10000 individual transistors on a single silicon chip.

In order that such a circuit is widely applicable it must be very
flexible: hence manufacturers have made these devices into paris of a
digital computer. A miCroprocessor is one such device that forms the
central part of a computer. Others include memory devices and
programmable input/output circuits. All these devices are produced
using the same semiconductor technology. The process consists of
several stages of exposing intricate patterns on regions on the surface
of the integrated circuit chip 10 gaseous impurities at high tempera-
ture. These regions are defined by a photographic procedure. The
impurities form the various parts of a transistor that are fnally
interconnected by a metallisation layer that is etched into the conduc-
tor paths by a further photographic process. |

A photomicrograph of a typical microprocessor chip is showni in
Fig. 1.1. After fabrication, the integrated circuit chip is..mﬁumed”ﬂ‘!}!ﬁ
a flat base containing a number of connection pins, and the terminal
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Fig. 1.1 Photomicrograph of 4 microprocessor
(Approx. size 5 mm
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1.2 Historical

(Courtesy Intel Corp.)
Y P Development

Square by 1 mm thick)

COMPUTER PRINCIPLES 3

C8755A
$6388
® INTEL' 7677

PB155
58258
@ INTEL' 7T

- - T

Fh;;'ii;“,.'
Lk WS 5

iw&-

_blﬁﬁ‘%ﬂ

Fig. 1.2 A microprocessor, memaory, and programmable input/output device

(Approx. 15 times actual size)

reas on the chip are connected to the L‘.GFTEEpUH{“ﬂg.j"lIHS on the base
by means of small gold wires. The entire assembly is then sealed to
form an integrated circuit package. | - - in

A photograph showing a 1’ul’:ppack:iqu mmmprucea_mr t_z. seen _
Fie. 1.2 topether with integrated circuit memory and prugrax?lm
able input/output devices. These three components can be used to
form a L'ﬂmph'lc and powertul computing system.

I'he basic structure and mode of prf'ﬂm“j of the hrs! :jlgllt,al L]??E‘-EI;
ter was proposed by the nmlh::nmlu:t;m Charles [33PhﬂgL t1:1 ';d s
1830s. However, 1l Was not unftil Irimzﬁiﬁlﬂri were L%wd ltID l:lm‘mj 1O
did computers become sufficiently reliable for their dopl

begin to be explored.
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1.3 Mode of
Oparation

Qnce the first trapsistor-based machine was produced, t‘“l.‘ll]’q[l@m
'] . - 1I
have been used in an nereusmy varety of appheations, Ih""‘-'“-’ inve

A ; .
Ceyity very lacge svstems such is those used by banks 1o "'Hli"[{llﬂﬂ |
nyromer accounts W GURTE S L systems that may, Foy ‘-""H'-uﬁl"llt‘, he £,
L ' . | | | .
asedd by an andividual 1o solve o complex engineering prablem, Thl.ﬁ

sdhvent of the mMucroprovessol however, means that i s NOW I'“«“'“ibléﬂ .

1y have the power ol a4 computer s sinple llltl‘_t‘,l-lll'l.l L‘il‘l.,‘l,li[‘ illlli' ‘I .
i

conseguently the range of applications s now victuallty unlimited i
widely predicts A that i the near tuture computers will be fnu"d iﬂ" E
Jrnost every areda of human endenvour, 1S 1o I‘lt\h‘\ltl[v 1O Use i |
microprocessar o control an automatc washing machine or a centrg)
nentiine svstem or 10 control th exhaust emission from a car or I,l.‘mlut1

ODEratuon ol 1 1T ll_l'!tlk the hist Of lnhhll‘lhllr\ 1S l'll‘l"l'-“i'\. I'I

E |

3

, .. .
Basicaliv, all dhgital computers operate in Lhe same way “'lllt‘h O g o
Iree extient 1s IH-1|.'1"-._H1.IN ol he L RN e -H‘!-'IH'HHUH (8] “'hil.ih lhuy

1
ll'.. I'.'l I_.'|.- n.“l-ll I |=:\ !11."».1. Sy Ir'l, L ,|'t:“\|.L h L |'T‘]“I'1‘. I Illl;“‘ t‘i hll‘l‘ll - iﬁ ﬂ- .
Hexible goneral PUTPMOSS 10 hine or device that can be Hll'ﬂﬂﬂﬂd (A .
Olve O implement o particular task atter it has been I'I'l\tlllt‘t‘ll |'.|'f' thg

manulaciures o)

\otask s implemeénted by deciding the sequence of operations
weeded 1o perlorm it Consider a bhasic clectrame ealculutor “'hilj—h “I
alters the user a variety of operations - add SUBEract, '”“I“]'I.‘:' ete, v
1S then up 10 the user o select the particular sequence "'“. I'l'li..'l'id'.l

OPCErinions necessary 1o salve o '-11L'1I|h 'I\I1'!|*|\'IH H]IH”.‘”I‘\ | iligil—ﬂl !
W :T

cammpator can perform a number of basic operations ealled maching g
i

instruchions which the user selects and orders i a way which solves i ||

seijuential st of operations is referred o S8

partcular prablem. This
| Program

1\' CreCine i ":
| | ome caleulntm CACCHISS cach ol s hasie t‘lpt.‘t':lliﬂl'lﬁ irnlf K

vonsequently the time taken to solveds :
1S determimed primarily by the rate ab rI:..
individual operations, 1 he lliil"if‘lﬁit'ﬁﬂj.'-'
ach operation is therefare lost, A dlﬂﬂﬂ!'

utihises the

i\
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1"I1||"h'1i]] with | l.'.Il-.Hl.lIlu

which the user Kevs 1n Lhy
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vamputer, however

muachine INStructiion = usualls L few

A Hieroseconds < by having  thes
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tueons, or program. stored within the
stored program concept and 18

# basic calenlator and a compus -
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dompuoter and the datas
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1.4 The Binary
System

COMPUTER PRINCIPLES &

the mput and subsequent output information will perhaps be numern-
cal, and the computer might simply perform some anthmetic opera-
tons on the mput values, An application typical of those 1o which
MUCTOPrOCcesSsOr based computers are  pul 15, for trmmpiu. i
tempoerature-control system. Here the input data might be an indica-
tron of the controlled temperature and the output & signal to turn a
henting element erther on or ofl.

Irrespective of the application, however, within the computer itself
the same means of stormg and coding information ax employed. In
order to achieve high levels ol accuracy this coding 18 based on the
binary (two-symbol) system. Information stored using this system in
an electronie circurt s capable of bemg precise. This 18 because the
information is not dependent on the exacr values of voltages and
current in the circuit provided these parameters can be unambigu-
ously interpreted as representing one or other of the two binary
syvimbols, Al input data fed into & computer must hirst be translated
into a binary coded form, and similarly the subsequent binary coded
output must also be translated into the required form.

e binary system can perhaps be best explained by first considering
a typical number in the decimal systeny This svstem uses ten symbols,
-9, The value of a symbol is weighted by its position (n relation (o
ather symbols making up a number;

(0* 10' 100 100 10" weighting
! Q 5 3 (v example

Phus 49536 = 4% 10"+ 9% 10"+ 5% 107+ 3x 10" + 6% 10°. Each of the
five digits of this example is one of the ten symbols (=4, The
welghting of each digit is a power of ten determined by the digit
position; henee decimal numbers have a base of ten.

Binary numbers are constructed in just the sime wiy except that
(they have o base of two, There are consequently only two symbols, O
and 1, and digit weightings are powers ol twvo:

20 2% weighting
I 0 | Il  example

Thus 10110 = 1% 2% 40525+ [ 2%+ 1 x2' + % 2% which IS equival-

ent to 23 in the decimal system.

All information within a digital computer is represented a bing;y
form - both the fnput data to be manipulated and the coded instrucs
tions which control the various machine operations, The 1_mmlligr ?f
binary digifs or bits used 1o make up the basic uit of i“fnmnﬂn W
4 computer varies from one machine to another: for e:gamplg 4. 8,
16, 24 and 32 bits haye all been used in different machines.

LY L]
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Microprocessol gystems olten use either 8 -n: L6 bits for lh(: bam“-
anit of informatien o word. An S-bit group is referred to gs g bﬁﬁ-‘
Sa a 16-bit word 15 uqnn;\lun tO w0 bytes o
When examining the operation ol u MICTOPrOCessor systemn, el A
fore. binary patierns dre always being considered, This can be a .. 1
tedious for the programimcr who is, when communicating this infn'r.: N
' mation, prone (o make errors. It is for these reasons that “ltﬂrﬂati\}'ﬂ ”I’
methods are oflen nsed to convey binary information between hu‘
mans |
Ihe method used 1s 10 group a number of bits together and e
represent that group with an equivalent coded number or ':h'dl'ﬂcl.ﬁr;

he most commonly used method is hexadecimal (base 16) Cﬂdil‘iﬁ ¥
which s based on a 4-bit group lhere are sixteen combinations e

X

four binary digits and hence sixtegn Sy mbols or characters are re<

quired. The sixteen symbols used are the ten numeric digits 0-9 plus
the six alphabetic characters A-F. The binary codes and U“rftfspﬂnd; >

. .
ine hexadecimal symbols are shown 1n Table 1.1,

A
Table 1.1 Hexadecimal numbers
5 R R : xadecimal symbo .I
4-bit binary pattern Hexadecimal symbol II
0000 0 3
0001 | I
0010 2 |
0011 3
0100 4
0101 5 |
0110 6 -I
0111 7 }
1000 8 :
1001 9 B
1010 A
1011 B
F 1100 C
1101 D -.
| 1110 E
{- 11 F
Some examples of binary p:
) mal (hex) r-:nrcamt-nin:: l-:?.r“”””“ and their equivalent hexadegis
‘ dic given below: 3
01101101 =
' '*—17—"’ 6D(hex) L1110010 =

F2(hex)

1.5 Basic
Structure and
Operation
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A digital computer executes a list of basic machine instructions (a
program) which have been selected and ordered by the user to solve
a particular task. In order to exploit the intrinsic high speed of
execution of each machine ipstruction, the program is stored within
the computer. In addition, all information stored within the
computer - both machine instructions and data - is represented in a
hinary coded form. Thus a basic digital computer is comprised of a
memory which is primarily used to hold or store the program, a
microprocessor (often referred to as the central processor unit or
CPU) which executes the individual machine instructions which make
up the program, and some input and output (1/O) ports. These poris
form the interface between the computer and the source of the input
data and the subsequent output data. The complete combination of
microprocessor, memory and input and output ports Is collectively
referred to as a microcomputer and is illustrated in Fig. 1.3

Inputs

Input/Ouiput \ |

| Ports 4}

Crutputs

MICROPROCESSOR
(CPL)

Memory

P r
r—l e
S

J
Computer Highway \
—— == v

Fig. 1.3 A microcomputer

Once the program has been evolved for the task, the complete
program is loaded into memory and is then exccuted. During prog-
ram execution. each machine instruction is accessed sequentially from
the memory and then executed by the miCroprocessor. The microp-
rocessor therefore operates in a two phase mode: during the first
phase, the fetch cyele, the next instruction is fetched from memory:
then. in the second phase or execution cycle, the microprocessor
executes (or performs) the action specified by the mstruction,

In order to remember which program instruction is to be executed
next. the microprocessor contains a register (or lemporary informa-
tion storage location) called the program counter (PC), the contents
of which points to the next sequential instruction to be fetched and
executed. ‘Thus, during a typical instruction cycle, the nexl instruction
(0 be executed is read from the memory location indicated by -~!he'
contents of the program counter. While this instruction 1s being




g COMPUTER PRINCIPLES

'  Instn y C3 2F 209E
[nstruction N+3
| § —
The Proeram Counter Regisier
C 1 I . EXecule
T — - —— — o e
| " 1 L Isliruciion "-‘-]
= = = -
t?ll I l”-lfh"l vecutle h‘l”li\ ot I"Eh_.’-dl;'ll.rn
Fig. 1.4 Program execution 2
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Stored Program

1.3 Convert the following decimal numbers into their equivalent hexadecimal

5 _| number:
A |
| 7« 133
P s T annter e —— e Instruction N =1 10 3354
| Instruction N+1 . 1.4 Convert the following hexadecimal numbers into their equivalent decimal
— — numbers

Instruction N+2

cxecuted, Lhe conlents of the P!”L-.’l:"l?ﬂ counter are iﬂﬂfﬂmﬂﬂtﬂd lﬁ =

his 1s summarised in Fig. 1.4. 1}
information: usually 1 ':*-Tl..'lill';“ h*?*'i'iuﬂ. f'«:ttmrc.nmn__-.[hun Ul:]e bYIﬂQf l‘{.
fetch cvele ks ']. g "'J'“"“‘ are required. Thus an Instruction -

LUp 10 5 memory read operations performed
veations. During the execution phase of this ';

: 3 p- ' . . . —
Program counter still points to the addresss
|-ﬂ"ﬂIUE[!—I1.|‘] 111111

PoInt 1o the next Instruction. 1

Microprocessor Instr

may consist «
U SUCCessive memory |
instruction iu_m.'u\r_-r_ -
%) |

the
the first byte of the

_
next, would normally be fetched
II
Exercises |
LY Conves N
i . N the fo e
i the fu 'IImung decimn) numbers inte (heir eauiy | i m- ol
15 AT € F : ers
15 6 191 | ent binary numi 3

I!?—

f_'um- S
WWert the WOlowing binary numbers into the; i
k. , i Eir ¢ Ili\ al 01 =" - rS

”Hl]u]]



2.1 Introduction

22 The
Microprocessor

10
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L

[he basic functional units of a microcomputer were discussedia
Chapter 1. These comprise the miCroprocessor itself (the CPU), thg"
memory which i1s used primarily to hold the stored program; a“d;fl

: | 2.3 Memory
some input and oulput ports which are used to interface the mici

rocomputer 10 the various H]'E"IUT and 1”.”],"'1]1 ii{f\'iL‘CS C”"Ifﬂ“ﬂd b?it.' I

['he microprocessor can execute a number of basi¢c machine inStriceng

tions. Examples are individual data byte manipulation instructions
\add, subtract, ete.) and memory transfer instructions (read data byte

from memory, write data byte to memory, etec.). Informationiss
transferred between external devices and the compulter system via the
~and output ports, and consequently the microprocessor |
machine instructions to both read (input) data from a speciﬁed Pﬂ
and to write \output) data to a POrt. | 1
Uil—*li'il”_% prised, as far as a user i.S-'i-'-.ﬂil
'Ll.‘{TI'I.L‘LI_ Of the three sections shown in Fie. 2.1 b

I'he I‘EE_i!-ilEf section conlains i Se o

Input

o H'II-._'I:H["'IIi‘-U_‘\‘v-.Ur IS COm

ir
J

hold or store a Hiﬂglﬂ b}'lﬁ or #

performs the actual data manipuld

_ntu:.'wu elements which ¢an each
I'he arithmetic logic unit (AL U)

L1on Operatons. a & a
= . and the llmmg and cont : 1 th
. 0 “'Iil seclhion co- es lli."‘ ]
Intemal vperation of the micro s co-orCl i

the ALU

]
I
y

Fal
¥
= |
»

pProcessor and controls operatiﬂj:_" ‘

and registe - :
* TCEISIErs 50 that the desired action specified by €
Iy

INStruction is performed

The mic :
rAprocessor ¢
| CESSOr L*J”““UIHL';;I[L"H W ]1l"| ‘ht’ memory b{)th 1O '.f:“_

tain the individual _
St Ividual structions which make up the o .';:1'.'
- A Store date. roeranit and
ok re data, and 1o transfer dat: r P = R
P POTTS using o highway or b ata 1o and from input af
. us.

More derail about the v
s _
& will be given in the ne

|

AHOUS microprocesse
Xl chapter.

r registers and thel
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MICROPROCESSOR

|
= Remsters
{ ook —‘JEJ

. |
L |
| ——i ALU {
Timing & |.
|  control |
| Highway _f
e . Y e e B ]

Fig. 2.1 A basic microprocessor

The memory consists of a number of locations each individually
identified by an address. Each location contains a binary pattern with
a number of bits corresponding to the word length of the computer
(typically 8 bits). The binary pattern stored at an address 1s referred
to as the contents of that address. In a microprocessor system the
memory is usually comprised of two types: random access memory
(RAM) and read only memory (ROM). Basically RAM (more ap-
propriately called read/write memory but universally referred to as
RAM) has the capability of having information both written into and
read out of each location and is often used for storing intermediate
results (data) during a computation. ROM has information fixed into
it either during its manufacture or by the user and consequently can
only be operated in a read-only mode.

For many dedicated microprocessor applications ROM is used to
hold the (fixed) program. It has the advantage of being non-volatile
which means that when its power supplies are removed the stored
information is not lost. RAM is normally velatile unless the special
design features of certain types are exploited. The memory pattern
programmed into a factory programmed ROM during its manufac-
ture cannot be changed and hence 1t is essential that the program to
be stored in it is correct and free from errors. This type of ROM is
widely used in large-volume applications since the cost per bit is then
very low.

Erasable programmable ROMS or EPROMS have a memory pat-
tern which can be changed by the user in a controlled manner, and
hence this is a particularly useful device during program develop-
ment. The memory pattern in an EPROM is erased either by
éxposure to intensive ultraviolet light through a “window™ on the
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MICROCOM

2.4 Highway
Structure

and P
\Caurtesy intel Corp.) i Programmer
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integrated circuit itself - UV EPROM —or by applying a voltage 10
specific pins on the integrated cireuit - EAROM or ¢lectrically altera-
ble ROM. The new memory pattern is then written into the device
using special hardware called a PROM programmer. An example of a
UV EPROM and a commercially available PROM programmer Is

shown in Fig. 2.2

The computer highway consists of three separale buses: the data
hus. the address bus, and the control bus. This is shown in Fig. 2.3.
The data bus is used to carry the data associated with a memory or
input/output transfer and is typically 8 bits wide. The address bus is
used to specify the memory location or input/outpul port mvolyed mn
4 transfer. The control bus is made up of the various contral lines
generated by the microprocessor and other system componenis 1o

synchronise transfers.

input
Output
Ports

L lnputs

1 i
MICROPROCESSOR  F j.;d':jm'lﬁ‘i ; ’;[ i

(" Data bus
( Dats

|l —
| Control bus
SR 1

Fig. 23 Highway structure

The data bus of many computers and particularly microprocessor-
based computers 18 bidirectional. That is, the processor can write data
on to the bus lines to be read by. for example. a memory device or it
can read data from the bus presented by such a device. Hence data
can be transferred from the processor toa device or from a deyice o
the processor over a single set of data lines. This is a particularly
desirable mechanism in @ MiCroprocessor system since i1t 1s not
for the microprocessor (o have both data input and output
he number of available pins on & pUCrO=
t for the manufaciurer o

necessary
pins. A practical limit 1o 1
processor integrated circuit makes it importan
use those available efficiently.

It becomes possible to make a single pin a logic input and output
by incorporating, within the microprocessor logic output gales, o
third output state in addition to the normal 0 and 1 signals. This third
state is a high impedance condition where the output is effectively
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Vorlw hen
select | I"'.
- a Cralputs B
Lomc inpul ———— i ) - Memory oy :
L UIECLEISs I .-'Jh-.!lf.lrn:s*;n{ll-:t-:_l - > bits —
when select 0 o r.
i FFFI
|Select :
Fig. 24 A three-state outpul | :
. E nor used
| !
| | =
MICROPROCESSOR , | : 2100
l } Memory orifin S 20FF e
| I ; RAM
= —— | : . oy 2000
l | < | FFF
| | ' not used
I ! 0800
| : 4 . 0TFF
— — | ’ ¥ 1 ROM
| | —_-— :
| L ' J < 0000
| ‘ 1 e ]
b l EJI:.-*- _I|"i| - . ;
. Select | A Fig. 26 A typical memory map
| .'“i:ﬂ I SE!L‘CI :'
P I direction
Flg 25 A bigirectional bus line h
2.5 Memory For many microprocessor applications it is not necessary to use all
switched off. A select i - Map the possible memory addresses in the system. The range of addresses
. . A Select input x A ta e e e — _ : o Y
this off state. This is :H” ' 2 Ih.L gdl€ 1s used to force the outputto that are used and the type of memory in each range is indicated by a
L . : ‘._-\ : - -_.r . - - ¢ . - T '_
Devices of this 1 i ited in Fig. 2.4, o memory map. A memory map for a small but typical microcomputer
A & _[ik can be used to form a bidirectional bus by’-' ! | system is shown in Fig. 2.6. The figure shows that the system has 2K
SN them in the arrangeme : : : < pheeSg = ki 156 (2000 —= 2
os angement - o & e . e tes : )56 (2000 — 20FF) bytes of
! single line of 3 by . shown in Fig. 2.5. This is fora : (0000 — 07FF) bytes of ROM and 256 ( y
The microp ! RAM.
. |.’I-I1L1{_"‘s.'§1']r = . ! F oELt - : . vy bt
Output (but not pest end of the bus can pe either an input or an In a small system of this type it is possible to allocate some of the
selection i:-:':-ntrh'l '!“h simultaneously) (iepcndmg on the direction 3 unused addresses to input/output ports. Data can then be transferred
0], % F g g & ] g | L . - -
end of the bus. v - >°me applies 1o the memory o input/output between the microprocessor and an input/output port using the same
at each engd _'f' l'h"’”;“'i SIENAIS ensure thar the direftion of das ﬁuﬁ" { machine instructions as are used for transferring data between the
- i) e us ] n : - I ; ; r ‘ ) L. ~ 5 s 1 E
The address by - > Synchronised, 5 microprocessor and a memory location. This technique is discussed in

Coded address SISLS upiﬁ'&i“} of 16 lin 2 e oy B Chapter 6.

: €an be prece €s on which a binary

rhhc range of possible at'idtr;n?m- “_;-, 9 Memory or input/output pﬂﬁh i

{ €x . | @ N oy alS 1§ ) cre = Ny —

rocessas on 20 (decimal) Separa - - ore from 0000 (hex) to FEER - { devices connected to the computer

PIOCESSOr can addrece Up to 65 ';IL addresses. Thus a typical micro- l: 2.6 Address dioe. et dre BalRL e e o devi tc. =it 1s
y i i - §& cro- - : , ; rices, etc.—it

~Ontaining X bits (or o 236 (decimal) memory locations eachil Decoding highway - ROM and RAM chips. mmput/output devices, €

byte) of INformat;

ation nECESSElI'}" 1O ensure thﬂ‘l ﬂﬂl}‘ lhe dﬂ'\"'i{:-ﬂ lnIEndEd for lht‘r dﬂ‘.lﬂ.

transfer responds when a request is made by the mi(:r_opr'uﬂessur..'mis
is accomplished by each device connected to the h!ghwa'y hg.w:-mg a
chip-select (CS) control inpul. and only when this input is activated
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2.7 Bus Control

Conirol Bus

L

Add ress

1 !\;]\ -
m.s | I}L'i_-"‘lf-'

Chip
Select

. hils ] Address

Bus

h‘i cm Q'}}l n.f
D put/Oupy

[1”!.!. ‘}evicc v

Duta Bu

Addreas

Control

QIMpuieT H'_ﬂhﬂ A%

Fig. 27 Address decoding

does a device I'L’.\;‘FHT'IJ (0 the various requests iﬁhUE‘(i on Ihe Cﬂ'l'lu'uif |

bus -

'he memory map, as previously described, is used to deﬁn:e-tlﬁ--
address range of each device connected to the bus. Each dEﬁﬁ;
therefore. has an additional logic circuit associated with 1 whwh

detects when an address intended for that device is present on the ®

bus. This is known as an address decoder and its output IS used (o
activate the chip-select input of the deyice N .
'n practice only the most significant address bits need be decoded
since the least signincant address bits are used by the device i[s&iféiﬁ-
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10wWn 1in Fig. 2.7. B
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Fig. 28 Timing diagram

Exercises

2.1 Determine the maximum memory space for an 8-bit microprocessor which has
4 14-bit address word. Express your answer in K bytes.

2.2 A microcomputer system requires 4K bytes of ROM and 256 bytes of RAM.
Determine the start and end addresses of each memory block if the two
memories are (o occupy contiguous blocks of memory starting at address 0000
hex, Express your answer in hex notation.

2.3 If the microcomputer system in 2.2 requires four additional input/output ports,
define suitable addresses for the ports assuming memory-mapped input/output.

2.4 A microcomputer system has the following memory map;

0000 — 0FFF ROM
2000—=21FF RAM
4000 —=400F /O

Determine the amount of ROM and RAM memory and the number of 1O
ports in the system,
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Tuction set are typical of an 8-bit micro-
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The majority of machine instructions available with a8 mMicroprocessor
operate on or affect the state of various internal registers which make
up the microprocessor. Before a program can be written for a
particular microprocessor, therefore, it is necessary 1o acquire a
knowledge of those processor registers which are accessible or are
affected by the machine instructions. The main registers for the Intel
RO8S, for example, are as shown in Fig. 3.2.

Further explanation and use of these registers will be given as the
various machine instructions are introduced in this and subsequent
chapters.

A

B C
D E
H L
F M
Stack Pointer SP
Program Counter PC

A is an 8-bit anthmetic register (accumulator)
B. C. D. E are four 8-bit general purpose registers.

F s an 8-bit flags register (modified by ALU
operations).

IM is an S-bit interrupt confrol register.

HL are two 8-bit registers which are normally used to
form a 16-bif memory pomnter

SP is the stack pointer register — this cun_lai_ns 2
16-bit memory address which displays poinis (o
the top of a system stack,

PC  is the program counler register which contains a
16-bit memory address which points to the next
instruction fo be executed.

Fig. 3.2 Main registers in the Intel 8085
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results in the contents of the B-register beimng transferred to the
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A-register.

Instructions in the data manipulation group perform anthmelic
d logical operations on data which is either in a specified processor

ark
register Or a memory location. For example.

ADD A B

results in the A-register (accumulator) containing the sum of s
previous contents and the contents of the B-register. All instructions

in this group normally medify processor flags.

Instructions in the transfer of comtrol group include unconditional

and conditional (flag dependent) jump instructions and subroutine
call and return instructions. All instructions n this group act on the
program counter and indeed it is this group of instructions which
sives the stored program machine its great flexibility. For example,

JMP LABEL]

results in the microprocessor breaking its normal mode of sequental
instruction execution and instead jumping unconditionally o sym-
bolic address LABEL1 for the next instruction 1o be executed.

varicus imput/output p

[nstructions in the input/output group move data between the
orts of the system and an intemnal processor

register — usually the A-register. For example,

OouUT 05

results in the contents of the A-register bemg transferred to cuiput
port O5(hex).

Instructions in the machine control group affect the state or mode

of operation of the processor itself. Some examples 1o be discussed
include interrupt enable and disable, processor bah (wait for an
interrupt), and no operation INSTUCUONS.

A typical machine instruction implies three addresses: two 10 specify
the location of the values to be manipulated (the source addresses)
and the third to specify the location where the result is to be stored

(the destination address):

Source |
\‘Opcration — Destination

Source 2/

In order to reduce the number of different addresses required for

an instruction, however, if two source addresses are required the
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36 Data
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aguently, most microprocessors = including the Intel 8085
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in place of an

addresses used vary for different Lypes o instruction Dat
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address.

Lhe type of source and destination addresses utilised [13.' edn iI‘IStmb-

all micrg.
The range
4 particular microprocessor 1
important since it can often result in considerable fexibihity when
wWrntimg a program and also leads to programs which require
mstructions to implement a eiven task.
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of .'ILhII'L“-*l!!'I;] modes 1‘1I'l?‘.itit‘ti Dy

fewer
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Hn,'_&jl‘all_'i .-'\Lh.iFL'HRHI_L'

, data transfer and manipulation
Immediate Addressine

instructions which involve only "

J the internal processor registers.
Direct (Extended) ] These are used primarily for

Addressing data transfer and m

anipulation
mstructions which mvolve t

) svsiem memory.

Register Indirect }

| he
-'*u,lalrraamp

B |
I“ oraer 1 - - .
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For example:

MOV B, A

{ 1——5(.1urce. address (A-register)
—————destination address (B-register)
——————oOperation (MOVe data)

This results in the contents of the A-register being transferred to the

B-register. The contents of the A-register remain unchanged. This is
often written as:

(B) «~—(A)

where the brackets mean *‘contents of".
Another example:

MOV C, B
means move or transfer the contents of the B-register to the C-
register:

(C) < (B)
In addition, there are a limited number of data transfer instructions

which involve combined 16-bit register pairs — for example. DE and
HL. A typical instruction is

XCHG

This results in the contents of register pair DE being exchanged with
the contents of register pair HL. This can be represented as

(DE) <= (HL)

3.6.2 Immediate Addressing

With this mode, the source address does not specify a register or

memory location but instead the actual source data is contained

within the instruction itself and is therefore immediately available.
For example:

MVI A, FE(hex)

T source data
destinauon address
operation

This results in the data value FE(hex) in this example being transfer-
red to the A-register:

(A) = FE(hex)
or A-11111110(binary)
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i 1 - - ay

Similarly. a 16-bit register pair (BC, DE or HL) may be Specifieg r

as the destination address and consequently these instructions reg o ;
. Uire.

rwo byvtes of immediate data.

11
3

i.

For example:
LXI H, 802D

This results in the 16-bit register pair HL being loaded with jm.
mediate data SO2D(hex): il
(HX(L) — SO2D(hex) |
Another example: :%rr
ILXI D, E627 :.i
which means

(DNE) «<— E&627(hex)

i.e. registers D and E are loaded as a pair.

Program Example 3.1: Register Data Transfer 't

The program example of Fig. 3.3 uses a combination of the above
instructions. The program loads a value into the A-register .ﬁsing- f

mmwdlaw addressing and then loads this value into two furth
registers, B and C, |

o

P - Er .
using register addressing. Finally, register pairs

—

HL _and DE are loaded using immediate addressing and their con- {
tents exchanged using register addressing. -
|I |
Assembly Instructions
MNEMONIC 0PI OP2 COMYENER \
5 1
MVI E I‘I.
A FE (A) = FE (hex)
MOV |
B A (B) = (A) 4
T ; !
B | (©) - (B) ‘s
LX1
I g
| i 802D (H) (L) = 802D (hex)
LX] D E627 (D) (E) = E627 (h
XCHG . e 3
(D) (E) == (H) (L) |
Fi

8- 3.3 Program Example 3.1

" The COMMENTS field

explain 1 : IS not used .'
Ne action of ap Instruction w:;c:‘ normal programming practice, to.

IS assumed understood.

'
e ——

e ——— S

) ;
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3.6.3 Direct Addressing

Using direct addressing, an operand may be either read from or
written to a memory location, the address of which is specified in the
instruction itself. Since all memory addresses are 16-bits, the address
requires two bytes and it is for this reason that this mode is often
referred to as extended addressing.

For example: LDA 20EA

This results in the A-register being loaded with the contents of the
memory location with address 20EA(hex) and is expressed as

(A) < (Z0EA)

Similarly., the contents of the A-register may be stored in a
specified memory location.

For example: STA 20F2
This results in the contents of the A-register being stored in memory
location 20F2(hex) and is expressed as
(20F2) < (A)

As the next section will show, the register pair H and L is
frequently used to hold a combined 16-bit memory address and
consequently two instructions are provided to enable the two regis-
ters (H and L) to be loaded using a single instruction and direct

addressing:

For example: LHLD 20A2

This results in register L being loaded with the contents of memory
location 20A2 and register H being loaded with the contents of the
next consecutive memory location, i.e. 20A3 in this example. This is
therefore expressed as

(L) < (20A2)

(H) < (20A3)

Similarly ~ SHLD 20AF

This results in the current contents of register L being stored m
memory location 20AF and the contents of register H being stored in
memory location 20B0. This is expressed as

(20AF) < (L)

(20B0) = (H)
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(A) =~ F'F (hex) . i

MVI A, Fl

STA  20A1 (20A2) = (A)
MV \. El (A= EE thex)
STA HIAS (P0A3) = (A)

LHLD 20AZ2 (L) = (20A2) ie. FF (hex)

(H) = (20A3) Lo ElX (hex)

SHLD 0A4 (20A4) = (L)

(P0AS5) = (H)

Fig. 34 Program Example 3.2 1
i

Program Example 3.2: Direct Addressing '
[he program of Fig, 3.4 vses @ combimauon of immediate and di ';_TIL| ,
vyl el
addressing, first (o store immediate data into two consecutive m@ﬁf
ory locations, then 1o load register pair HL with this data, and f ﬂ-n,,g_‘
lO store the Sdme data InNto i |'Iilil H[' (h”-'L'I'L‘['l'[ ”'IL'”‘H”')' |ﬂl‘.‘i’dtiﬂn]r;

I
"y

3.6.4 Register Indirect Addressing

Using direct addressing, only the A-revister may be used to ‘.-'."3
load a value to or from memory, Thus if a "--'Ji|[![.“ were Lo be &[ﬁl‘ﬁﬁi
d memory location from, say, the B- register, using direct addressing. it §
would first be necessary to transfer the contents from B to A *_:I_-.'- '
operation could be performed. A more efficient method
”.'L.”h”u' 510 use register indirect addressing since, with thi_-s-*__f
data may be ir cen any of the processor I'F

the store

dansferred bhetw
the svstlem memaory

llt”]r reerste .

J EIster indirect addressin , : 1 PR

' : i, the oper;: . o : from
operand 15 either read L

vewnten o the memory location, the address of which 18 ""}‘{!’I'
« The instruction does not "-J’-.T'*-';L
therefore, but instead im-,r;lies'-'ft'ﬁ"
v stored in the HL register pain 148
518 therefore obtained indirectly. 48

For example: MOV A M 3 .
1hiy |

stored in the registe pair Hi
dClu

al memory address jself
address 1o be u

L sed I8 currentl
deiudl memory addrey

resulls in the s . .
he A-register being loaded with the contents ofHE
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memory location whose address is specified in registers H and L. This
% represented as

(A) = ((H)L))
Similarly MOV M, B

This results in the contents of the B-register being transferred to the
memory location whose address is in registers H and L. This 18
represented as

((H)(L.)) < (B)

In addition to being able to load immediate data into a specified
processor register, there 18 also an ipstruction to epable immediate
data 1o be stored directly into a memory location. Again the memory
address is stored in the register pair H and L. Thus

MV1 M, FF

results in the value FF(hex) being stored in the memory location
whose address is in registers H and L. This is represented as

((H)(L)) <= FF(hex)

Program Example 3.3: Register Indirect Addressing

The program of Fig. 3.5 uses a combination of immediate and
register indirect addressing. A memory address is first loaded into
registers H and L using immediate addressing and then a value is
loaded into this memory location using register indirect addressing.
Finally, the value is loaded into two further registers again using
register indirect addressing.

Assembly Insrruceions Action

LXI H,20A0 (L) = AO (hex)
(H) + 20 (hex)
MVI M, AA ((H) (L)) = AA (hex) e (20A0)= AA (hex)

MOV B, M (B) = (20A0) ie. (B) =+ AAlhex)
MOV C, M () = (20A0) e (€) = AA(hex)

Fig. 35 Program Example 3.3
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DATA TRANSFER

The instructions which have so far been mmtroduced are by no means :

the . - o
thev are intended only as examples from the complete list of ingtry e
rions which is available. For instance, in the data transfer group there
are instructions 1o enable data to be transterred (moved) between any

anlv instructions available in the data transfer group, Indeeq

pair of processor registers selected from A, B, C, D, E. H and L

Similarly. immediate data may be loaded nto each of these registers,
The :;Irﬂ of this and \uhau'qucm l.'hﬂ]"nlct'\ 1S .\Il'llp]:‘,' 1O i"lmducg
examples of instructions from a particular instruction EToup, together
with :Ihuslr rm_-;miﬁ; and ;uuwin'uln,}n areas, so that the reader 1S ablé
firstlv to understand the function of each particular instruction grnuﬁ
and secondly to select those instructions from the group which are
required to perform a specific task. The complete list of inslructiuﬁs
which comprise the Intel SUES mstruction set 1s given 1n Appendix 1

A mICroprocessor executes instructions which are stored as binary-
coded numbers in 1ts program memory. Consequently, before any
programs can be executed, including the examples above, they must
first be converted from symbolic assembly to the equivalent binary
form.

General purpose computer systems, whether mainframe. minicomes
puter or microprocessor based systems, usuallv incorporate a suite of
programs (system programs) which have been designed to translate
programs written in higher-level languages (source code) into
machine (object) code.

If a line of source program in a high level language (e.g. Fortran)
usually vields more than one machine istruction, this translation
program 1s called a compiler. If the compiler program runs on one
machine and generates machine code for 4 |
reterred 10 as a cross-compiler. The
in Fig. 3.6.

nother computer, it is
compilation process is illustrated

If a line of source program usu I

I.lun_. the translation process is called assembly and a program that
pertorms this process is called '
host machines and produce
another computer. Further
in Chapter 9,

In many small

machine code output intended for
4SPECLs of systems programs are discussed

m:crnturﬂ[‘lult:r prﬂh}[ypirlg systems the rﬂﬁideh-ﬁl
{monitor) cannotl

OTOLESS ONn an sce 11
ti”n muainf‘ H assembly language propram and instead each instruc="
T gt ﬁ:hl‘*L ~onveried into an intermediate hexadecimal form.
U‘f - , e 5 o . . ; : !
Cn translates cach Pair of hexadecimal characters into:

-

Uperating Program

- r
f ¥
¥l L e . A J

— .

ally yields just one machine instruc="

i
N

e . I
perform a complete translation™

P

[ e

an assembler. Cross-assemblers run on

INTRODUCTION TO PROGRAMMING AND DATA TRANSFER 29

] Assembly Language Program '
SO [ |
P | :
| 5‘““”{*—’ | l Hand Conversion
Program |

=SS — =

| Compiles | _ Hexadeoimal Form |

*_ i Program

SRR S i ! I\‘lomtor Program
| Machine | f |
| Code ] 5 Binary Machine Code |
Fig. 3.6 The compilation process Fig. 3.7 The hand assembly process

the corresponding 8-bit binary pattern. Since the conversion from
symbolic assembly form to hexadecimal has to be frequently per-
formed by the programmer, the manufacturers list of machine in-
structions usually contains the corresponding hexadecimal code for
each instruction. The hand assembly process is summarised in Fig. 3.7.

3.8.1 Hand Coding

The list of instructions for the Intel 8085 in Appendix | shows that
each symbolic assembly language instruction requires from one to
three bytes in hexadecimal form. For example, the instruction

MOV A. B (A)—(B)
requires a single byte:

7 8 |

The instruction
MVI A. FE (A) < FE(hex)

requires two bytes:

3E —l Operation

FE [ Immediate data, e.g. FE(hex)

Similarly, the instruction
STA 20F2

requires three bytes:

32 Operation
F2 least significant byte of memory address
20 most significant byte of memory address
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r . l SSEMBLY i
LINE MEMORY LABEL \ I COMMENTS SRS
No \DORESS | CONT MNEMONIC | OPI Op2 i 3.1 Wnile an assembly language program 1o
Ij . e | —] | 1] load the B-register with immediate data RB7(hex)
I 2000 3IE | i) iransfer this value into registers A and €
i‘ | p— ! = MV A Fl (A)= FE (hex) ! mi load the D-regster with i;nmedi;nr.- data 2F(hex)
(- | 2001 . | | v transfer this value nto register E
. | |r ' v} load the HL register pair with immediate data 8EF2thex).
| 3.2 Write an assembly language program to:
2002 + | J MOY B A\ (B) = (A) | 1) load the A-register with immediate data FF(hex)
_ | l 1) store this in memory at location 20FF(hex) using direct addressing
ﬁ I J m) load register pair H and L with immediate data 20FF(hex)
r | ] . tv) load the B-register with the previously stored data using register indirect
g |J { i addressing
. T > v) transier the data in the B-register to registers € and D using register
. | | 5003 45 ‘ MO\ ( B (C) — (B) addressing.
; 3 | | | 3.3 List the above programs on & table simular to that shown in hgzure 3.8 and
‘ Jh obtain the hexadecimal code for each instruction using the mmformation in
! ! Appendix 1.
| 3.4 Denve the contents of processor registers A. B and C and the contents of
J 2004 II 5 . memory locations 2020, 2021 and 2080 after the following program has run
I{ | | | ' and obtain the hexadecamal code for the program from Appendix 1.
| 2003 | 20 | LX1 H 302D | (H) (L) = 802D (hex) ' X1 H. 2020
| | 100 g | | LXI D, 2080
| - : & I XCHG
,r | 2007 ] i . | MVI A, ZA
e - ‘ [ . MOV M, A
: 0K 27 [X] .' R i LA , MVI A, 20
i I . , ‘ I £H2 (DY (E) E627 (hex) MOV B. A
| 20010 E | _ XCHG
I. M00A EFB a2 | ) S a7
=a - | EB ACHG (D) (E) = (H) (L) XCHG
| & | MOV C, M
o F _ MOV A, C
| | A STA 2021
1 J "l HALT
Fig. 3.8 Hang coding example
I
|
I:I
As an example of the hand oi: 3
o vAample 3.1 in both awat.'!:fjgu:img process, Fig. 3.8 shows program
’rg i;‘ﬁ:;trum 5 dssumed to be :%“:j"-glh%};c.gmd huhadccimal form. Thﬂ g -
2000{kex) lored ap MEMOry starting at address
-
t\ .

' S 1/ 'ﬁ N\ 1 JI Y = el
= - ﬂ’d {":.sj.' ""*4“:'1 Com il ol el Gy =
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4 Data Manipulation

4.1 Introduction

4.2 Data
Representation

Since microprocessors may be used 1n a wide variety of applications,
Il is necessary to be able to represent data within a microcomputer in
a number of different forms. For example, in some applications a
simple unsigned binary representation is adequate but in others it
may be advantageous 10 represent the data in a binary coded dec-
imal form. This chapter, therefore, first describes the different
methods available for representing data within a microcomputer, and
then Introduces some typical arithmetic instructions from the data

manipulation group to illustrate their use with each form of number
representation

Hefnr.e: considering specific arithmetic instructions. it is necessary to
examine the different ways numb
rocomputer. In general.
binary, signed binary,
are considered in tum,

€rs can be represented in a miec-
numbers may be represented in unsigned
or binary coded decimal (BCD) form. These:

4.21 Unsigned Binary B
Unsi ina : 9
m"mﬁ:l.edfhmdr} s the most basic and. for microprocessors, the most

. N 1orm of number representation. In this re resentation all
numhcr:, are - p 1 1A

assumed positive and a b T : !
7 ' a byte 1s simply & i e
cquivalent of the number SO ply the 8-bit binary

- amples follow: A
2° 2° D2 R 0 )
P A S AL LT | weighting . r‘

: I 0 | ( |
) . b1 1 =43 (decimal) -I
0 0 g 1 1 0 =70 |
1 0 ( - |
0 0 0 1 =161 3
I | . N !l
I 0 o S PR 0 =204 |
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”'_'““ the range D_f numbers (in unsigned binary form) for an 8-bit
MICTOPTOCESSOr using one byte per number is from 0 to 255; numbers
in excess of 255 must therefore be represented by two or more hyfes,

4.2.2 Signed Binary

For some applications it is necessary to be able to represent both
positive and negative numbers, Moreover, when performing arithme-
tic operations on the numbers it i8 necessary to produce the correct
signed result. Thus with a signed binary form of number representa-
tion, one bit, usually the most significant. is used to indicate the sign
of the number.

The simplest form of signed binary representation is sign and
magnitude since in this form the most significant bit indicates the sign
(0 positive, 1 negative) and the other seven bits the magnitude.

For example: 0 0011010=+26
1 1100100=-100

Unfortunately, however, with this form it is not possible to periorm
simple arithmetic operations on numbers and automatically produce
the correct signed result. It is for this reason that the two’s comple-
ment form of representation is often used because, as will be shown
later, performing arithmetic operations on two’s complement signed
numbers automatically produces the correct two’s complement signed
result.

As before, with twe's complement the most significant bit, S, of
each number 1s used as a sign bit:

m.s. l.5.

S |6 5 4 3 2 1 0

S =0 for positive numbers and zero

S=1 for negative numbers

For positive numbers, the simple binary codes is used to represent
the number. For negative numbers, however, the number is rep-
resented in its two's complement form. To obtain the two’s comple-
ment of a number, the number is first inverted (complemented) and

the resulting number incremented by 1.

—— o — P

e

e —
S ]
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Another example:
For example:

15 =00001111 +89 = 01011001 o
15+ | |
]-IH'R‘” ] lnveﬂ J
1|IH'!IIIH" ]lHIII,Hlﬂ: B
| incremen! ‘iﬂcre"i- 1
1)4,a oy |
(5= 11110001 89 = 10100111« l]
B rlj
14

Nte that, after the complement process, the mosl significant bﬁ“é
autom J“k.-i”\ Tr For an S-hit IH!L‘IU}"I'HLCF«.M’FL [ht;?l‘cf(}re‘ lhE'-
ol Ligeicd . b [ =i - : (s K] L

kle one byie numbErs Is summarised i the Table 4.1. ﬂ

Of pOssh

Table 41 Two's Complement Representation

—

Decimal Two's compiement -}
numober representation 4
127 01111111 i
1 -
+3 0oco0011 .
+2 00000010 3
ki 00000007 |
U 00000000 & 'I'
1 111711111 ",
2 11111110 %
11111101 L
- I
05
L\ L
‘&=
K
U2 10000001 r
128 10000000 ¥
-
I'.II' I
o _l
' I .
Note I "-

t-rl o =1 . - L » . | Ny

P aT the table that the maximum positive number that canie
cpresented 1s +127 and ; ST
| =/ and the maximum nepative r i = Hae
When performine cgative number 15 =i

signed numt |mnhmult Operations on 8-bit two's: HLI \
B ers. therefore it ic : 15 wanghe i
elore, it is important not to exceed “—rij: :

swers will be obtained. For examples {"fj.
lm.'nf';-.;;i.'l result since the result f+144) '- . -
Positive number with 8-bits (+127), St
produce an incorrect result since the esu?

an 1h 3 r - T ) 1K
= Hasimum possible negative number '"-3-'55 |

Otherwise incorrect answ
16} will produce an
lhe mavs

the maximum possible

=08 = (+T76) wi
081 =(+76) will also

(=144) is more th

4

4.3 Arithmetic
Instructions
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4.2.3 Binary Coded Decimal (BCD)

[t is sometimes preferable in some applications to use decimal
number representation and arithmetic within the microcomputer; for
example, if the input data is from a decimal keypad and the subse-
quent output data drives a decimal display. Most microcomputers,
therefore, provide instructions for performing arithmetic on bmmary
coded decimal (BCD) numbers. BCD representation is a subset of
the hexadecimal system introduced earlier and is summarised in the

Table 4.2 BCD Code

Decimal digit BCD code

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

o~ besEWN=2O

Table 4.2. Thus an 8-bit binary number may be used to store two
BCD characters.

For example: 1000 0110 = B6 (decimal)
0101 0001 =51 (decimal)

Summarising, the programmer may choose one of three different
forms of number representation. It should be stressed, however, that
the type of representation being used is in many ways transparent (o
the microprocessor since this simply treats the data as an 2-bit binary
pattern and it is the responsibility of the programmer to process and
interpret this data in a form necessary to solve the particular task.

The basic arithmetic instructions provided by a microcomputer are
add. subtract, increment, and decrement. In general, with the S085.
these instructions always involve the A-register and either another
processor register or a memory location. Since programmers may
require to interpret the data within the microcomputer in dissimiliar
ways, @ MICTOProcessor contains a number of different forms of these
instructions so that data can be manipulated mn the selected manner.
[n addition. the microprocessor contains a number of flags (status or
condition bits) which are either set or reset depending on the particu-
lar arithmetic instruction being carried out and the programmer 1S
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m.s. - - . l

§ = Sign Flag This Nag is meaningful when signed numbers Bit 1 8it 2 Carry-in | sum  Carry-out
i i} . ire being used It 15 et when the result of an -

arithmetic operation 1s negative, 1.e. the ms. Table 4.3 Addition of Two. Hits =
bit of the A-registeris a |

Table 4.4 Addition of Two Bits and & Carry-in

r i 1

Bit 1 Bit 2 Sum Carry

e——

Z = Zero Flag This flag is set if the result of an anthmetic
operanon on the A-register 1s F:‘rlt'l. ol I_IEHUEE
it is reset. This is used with transfer of control
instructions

e el == N = |
D = =a )
- 00 O

0
1
0 !
1

-l =k -k DD

- i ek -

0
1
0
1
0
1
0
1

=t k) Y e el D

AC = Auxiliary Carry This flag 15s meaningiul when BCD number | |
representation 15 being used. It s set when the ]
result of an arithmetic operation produces g |
carry out from the least significant half of the
A-register

P = Pantv Fi'J}} This 15 used with I{rgiu;‘.'lj ul'!f-r.![h]!‘lﬁ'. the ﬂi]g of I]i[& -i-hl.lf'\' ‘-'-’hll'ﬂ
1s set if the result of a logical operation (AND,
OR, XOR) produces an even number of 1's, '

adding two binary numbers it is necessary to

consider not only each pair of bits but also the carry digit from the
Previous pair.
CY =Carry Flag This fag s the carry out from the m.s. bit of | table 4.4 5 8
the A-register. For example, CY 15 set after an
ADD instruction if a carry out was generated
from the A-register.

truth fable which summarises all the possible

combinations of two bits and a carry-in and the resulting sum and
carry-out.

|

For example:
\:_.\’ = Bit not defined . P

A=10011010= 154 (decimal)
B=01010111= 87 (decimal)
."rr { o
J!J'."f;i'!
Carry=00111100

Fig. 4.1 8085 flags register

y , A+B=11110001= 241 (decimal)

able 10 use and inter
the selected w ay.
I'he individyal fl
register, F.
Fig. 4.1
Some examples of
with their effect on

sret these flas in. ¢ , : All Add instructions on the 8085 use either register, immediate or
P €S€ Tlags in order to manipulate data in - el ‘ 10" bi

| register indirect addressing and affect all the flag bits. Examples of
ag bits are grouped each addressing mode are given below,

T together to form the flag
and as an example the F

“register for the 8085 is shown in Register Addressing
arithmetic Instructions

: are now given togeth ?._ B | Example: ADD B
1€ .‘rl'ldl'-.'l'duﬂi A 5 el

485 1n the flag register. ,_I‘, ' This results in the contents of the B-register heing added to the
"i current contents of the A-register, The result is placed in the A-
4.3.1 Add Instructions '.‘ | register and the contents of the B-register are unchanged:
Ih'- addi . : 2 A ; "
Ta!ii-dti“:n ;.‘f two bits js sUmmarised by the Table 1.3 ' I"l gl
; = %2 5h0ws that, becays ' o e i * R A e

ay ) duse the s ' , Aveail ter an ADD instruction the mdividual flag bits are affected as

s may be generated Which must he *UM can only be O or 1, a cartyas o i

ddded 1o the next higher order pair folloyws;
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immediate Addressing

Example: ADI OF

UNAY B o

(A) — (A)+ OF

All ﬂ'.‘i;_‘t« are affected

Register Indirect Addressing
? Example: ADD M

This results in the contents of the memory location whose address s
contained in the H and L registers being added to the Current

ni.s. bit)

current contents of the A-register:

m.s. bit of A 1s 1)
L"-”“C”h l,l:l .’\ dre 1.1” IISI

& et if result is negative (L&
o if result 15 zero (kL 1
Z set it resu | I -y
AC setl if carry generated from bit 3 (used with
/ CY set if carry from bit 7 (1€
P resetl

contents of the A-register. The result 1s placed in the A-rﬂgiﬁﬂf:

(A)—(A)+({(HIL))

.-\” ﬂd;_h. dal & ;1!?4:.1'&1].

4.3.2 Subtract Instructions

I'he subtraction of two binary numbers is similar to addition excep!

BED arithmg,,
-

* - |
ate data OF(hex) being ¢ - “l
This results in the immediate data F(he cing added g the

that the carry is now replaced by a borrow. The subtraction of (Wi
bits is summarised in the truth table given in Table 4.5. Both Eﬁl:il_

Table 45 Subtraction of Two Bits an

d a Borrow-in

Bit 1 Bit2 Borrow-in

.
Borrow-out ’

| Difference
0 {) 1 1
0 1 0 .
1 0 0 3
1 0 1 5
1 1 0 |
1 1 1 0

_:(:JD{:}.J._h_lt:
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and borrow-in are subtracted from bit 1 to produce the difference

and, if necessary, a borrow-out. For example.

A=10011011= 155 (decimal)

B=01010]111=
F o 5 Faat)
irfj;'aajj!

Borrow = 10001000

87 (decimal)

A=B 01000100 = 68 (decimal)

The subtract Instructions

are identical to the above add instructions
except th

al a subtraction operation is performed in place of the add
operation. Again, all flags are affected. The corresponding subtrac-
tion mstructions for each of the above addition examples are

SUB B
SUI 0OF
SUB M

4.3.3 Increment Instructions

The increment instructions use either register or register indirect

addressing to increment the contents of either a Processor register or

a memory location by unity. Al Hags except the carry flag are
affected.

Register Addressing

Example: INR A

results in the contents of the A-register being incremented by unity:
(A) < (A)+ 1

In addition to being able to increment the contents of a single
register, a number of instructions are provided to increment the
combined contents of a pair of registers.

For example: INX H

This results in the combined contents of register pair H and L being
incremented by unity:

(H)(L) < (H)(L) + 1

This is particularly useful when aceessing a series of values {rom
memory.
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Register Indirect Adaressing

’ Example INR M

This results in the contents Ol the memory location whose ilddregs

" n 1'1 ¥ "
contained in the H and L registers being mcremented by unity:

(L)) =— ((H)(L) + ]

434 Decremeaent Instructions

These instructions are identical to the mcrement instructions excqm

that the contents 0Ol either the processor IL“'IHILI[\'I or meﬂ'ﬂ]l‘?
lacation is decremented by unity. The corresponding dLUFﬂ‘mcm.
siTuculons a |

DCR A

DCX H

WR M

Program Example 4.1: Unsigned Arithmetic

; . . ) o § 7
he program example of kg, 4.

uses unsigned binary number
representation. The two registers A and B are first loaded with
mmediate data and their contents are added together. A third number
y subtracted from the contents of A using immediate addressmg
and hnally the new contents of A are decremented by unity. |

b - & - - : - . ;
.\‘ il ‘I.I\.'..'._ T...'-L"lT".\-*Ld. I.hi.. ML rl.‘-.!_‘!'[-tﬁk.'(:“;bl}r I!’* ﬂfﬂ sl“ﬂ.fﬁ' Of ﬂlﬂ' |

'ype ol number representation being used by the programmer; it
simply performs the indicated arithmetic operation and 1t is the
-_.-r-*-_*r;.rf-!rr.-hr who represents and interprets the binary patterns in the
required way. This can be seen from the following emm?le. ' |

15 1Nes

[
' Ass: i
'| MVl 5 | t
1w} - T || (Al =— .:‘_: LACX ) ]:‘ S'“::F ’ r
5’ MVI B, 3
1 ] | _'.‘l‘. 3 I !l
i E \H'I = JA Inex) = ;"\'1."1 b 0 .
| ADD B ' A ) ’
| ‘ - |—\| b 3 |B’ L.E I"’\' -14!|'[]' 7l
I S8l R ::
[ LA ) = (A) - BC (hex) 1..'.1.5.'!""1;0 5
IR A { :
L J A= {A)V=-1 §o tA)=( 14

"egram Example 4.1
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Assembly fnstructions

Acrion

! ' 173
MVI A, 23 (A) = 23(hex) e +351n

MV1 B, BR (B} == BS (hex) ie. 1210

ADD B re
(A) = (A)+(B) Le. (AY=-37q

SBI DB (A) = (A)-DB (hex) ie (A} =10

DCR A (A) = (A)-1 ie (A)=— -1

Fig. 43 Program Example 4.2

Program Example 4.2: Signed Arithmetic

The program example of Fig. 4.3 is the same as Example 4.1 except
that the mmtial numbers have been changed to represent a positive
and a negauve value and the final result is negative. Two's comple-
ment signed number representation is therefore used and particular
care should be taken to interpret the signs of the numbers in the
correct way.

44 Multiprecision Although 8 bits are sufficient to represent a data value for many
Arithmetic
Instructions

microprocessor applications, some necessitate the use of 16 or more
bits. Most 8-bit microprocessors, therefore, provide a number of
arithmetic instructions for manipulating numbers of more than S bits.

441 16-bit Arithmetic

In Chapter 3 it was mentioned that the SO85 provides some data
transfer instructions for loading 16-bit (2 byte) immediate data mto a
register pair—BC, DE or HL. There are also instructions for incre-
menting and decrementing the combined 16-bit contents of a register
pair and also for performing double length (16-bit) additon.

For example: INX B

This results in the combined contents of registers B and C being
incremented by unity. No flags are affected:

(BHC) = (B)(C) + 1
For example: DCX D
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This results in the combined contents of registers D and E l‘-'Eing" A=register and all Hags

. e e =
decremented by unity. No flags are affected:

| (A)—(A)+ ((HNLY+(CY)

NWE) —(DVE)

(DUE) ~—{ S . Another example: SBBE M

- g ni j - - -

For example Lhis is the same as the above except

i i Aot L g that a subtraction operation i
This results in the 16-bit contents of the register pair BC h{:lng addeg performed: el
to the 16-bit contents of the register pair HL, The result'is plaged In

. Ty S =l (A) +—(A)- —{CVY
the register pair HL. Only the carry flag 1s alfected: 1t 1s set if there i | WHIUL)=(CY)
a carry out from the most significant bit of H during the additipy

operation, otherwise 1t 1s reset;

Program Example 4.3: Multiprecision Arithmetic

I'he program example of Fig. 4.5 adds together the 24-bit (3 byte)
number which is stored in the three conseculive memory locations
starting at address 2080 to the 24-bit number which s stored in the

three memory locations starting av address 2083. The 24-bit result
. - - : : replaces the firs :
If more than 16-bit accuracy is required, there are no single Instrue- | place e first number.

ttons available for performing arithmetic operations and instead a

(HYL) == (H){L)+(B)(()

4.4.2 Multiprecision Arithmetic; The Carry Flag

number of instructions must be used. For example, consider the
addition of two 24-bit (3 byte) numbers. Each number would require |
three memory locations and also the total addition operation would
require three separate 8-bit additions as illustrated in Fig. 4.4,

Assembly Instructions Commients
M. |5 . LXI] H, 2083 Initialise HL to contain 2083
Number | bvte 3 hvte 2 I
Ead 2 LA byte I | LDA 2080
Number 2 byt byte 2 byte 1' E 1 b i
: = ADD M Add st pair of bytes,
r Ch --[ r Y ~4|

STA 2080

INX H increment HL.
Fig 4.4 fh"iLilel:rrEL‘i’c;n‘:}n ar”h”l‘?tlf_‘ L[)A :[‘}8]
ADC M Add 2nd pair of bvtes together with carry.

Fig. 4.4 shows that it is alse

STA 2081
when add;

! necessary to add the carry bit (CY)}
ng lup_uﬂ'lr:r the second

— e ———— e ——— i

ierefore, vroyic : and third pair of bytes. The 8085, INX  H Increment His |
-, provides additional add and subtract 1] 1 se
_ aad & act mmstructions which use - , 5
the wdiry (Or borrow) b i T LDA Sa08d
- : ML,
For ex ample; ADC M ADC M 5 Add 3rd pair of bytes together with carry.

This resylie in the conte
contained in registers
added 10 the contents

2082
nts of the Memor — J
H and L tnd the

of the A-re

v location whose addrcsﬂ.rﬁ"}
contents of the CY flag beng §
eister. The result is placed in thecg

Fig. 45 Program Example 4.3
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45 BCD
Arithmetic

1[ i -h-i\ t|‘l[‘;]ﬂ|~_'lt"lH"\ in SOMmMe ”'Iik"i'i_\i"l-[t"rfﬂ}-.\l'lr .l[\plll:w.ll"-]"'& [l] repres‘ent
- binary coded decimal (BCD) form. Most MICTOProcessyr

in instruction which, together with the .b&t"
- ST

allow binary coded decimal data 1o be May

pumbers
therefore., provide
arithmetic structions,
ipulated - .
Consider the addition of two I-digit BCD numbers;
vumber 1 01100010= 62 BCD

Fxample | i
Number 2 00100101 =25 BCD

Normal binary sum= 1000 011 1 (CY <0, AC <))
Required BCD sum= 10000111 =87BCD

-

e f-.
]; X L'._'rll"‘n; =

Number 1 0111 1001=79 BCD
Number 2 0001 0110=16 BCD

Normal binary sum= 1000 1111 (CY <10, AC <—0)
Reguired BCD sum= 10010 101 =95 BCD

-

Example 5 Number1 00111001=39BCD
Number 2 0100 1000=48 BCD

Normal binary sum= 10000001 (CY <0, AC<1)
Required BCD sum=10000111=87 BCD

[t can be deduced from these three examples that if the normal
binary addition of each 4-bit group produces an answer which 1S 1gs
than 9 and no auxiliary carry (AC) is generated when adding the two
least significant BCD digits, the result 1s correct. However. if the

result

the addition is greater than 9, or an auxiliary carry Gl

generaled. a correction must be made. [t can readily be shown that§

the required correction is the addition of +6 to the normal binany

sum. Consider example 2 above

Normal binary sum= 10001111 (CY —0, AC<0)
Add +6 =+0000 0110

Lorrected BCD sum= 1001 0101 = 95 BCD

Stmilarly, in example
ant pair of BCD digits
quently a simila

+ above. when adding the two least significs
an auxiliary carry is generated and conses
£ Correction must be made: 1

|
3 iy _::.:II
4-\ ;fm,:l_ AnEry sum= 10000001 (CY — 0. AC «— 1) k!
Add 6 =+00000110 | "j
-
Corrected BCD sym= | :;l'

10000111 =87 BCD
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Thus the Intel BOS5, for example.
which may be used o automaticall
normal binary addition operation
lated:

provides the following instruction
y adjust the result produced by a
when BCD d#fa is being manipu-

DAA (Decimal Adjust Accumulator)

This results 0 tht‘:_H-hit number in the A-register being adjusted to
form two 4-bit BCD digits by the following process: .

1 If the value of the |'s. 4 bits of the A-register is greater than 9

or if the AC flag is set, 6 is added to the A-register.
2 If the value of the m.s. 4 bits of the A-register is now greater

than ‘*). or if the CY flag is set, 6 is added to the m.s. 4 bits of the
A-register.

Since both halves of the A-register are corrected and also both the carry
(CY) and auxiliary carry (AC) flags are affected, it is clearly pmsibl;:
to perform multiprecision BCD arithmetic using the same instruction.
This 1s 1llustrated in the following example.

Program Example 4.4: BCD Arithmetic

The program example of Fig. 4.6 adds together two 3-digit (16-bit)
BCD numbers, and forms the corrected 4-digit BCD sum. The frst
number is stored in the two consecutive memory locations starting at
address 2080 and the second is stored in the two locations starting at
address 2082. The result replaces the first pumber:.

A correction must also be made when performing subtraction of
BCD numbers but it should be noted that this is different from the
correction required for addition. The correction can readily be de-
duced from examples and is summarised in Fig. 4.7. The table of Fig,
4.7 shows the state of the carry flags and the contents of the
A-register after the normal binary subtraction operation (SUB, SUI
DCR) has been performed.

Two example subtractions are now given (o illustrate the correc-
tions.

Example 1: Number 1= 0100 0111=4?_BCD
Number 2= 00110010=32 BCD

Normal binary difference= 00010101 (CY < 0. AC0)
Add 00 +0000 0000

Corrected BCD difference = 0001 01{]_1 =15BCD

i s M
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\ . \‘1.'”'1"(T | !”"IHHHHI H’[ [i[“['j
Exampie = im _
| (] i““' l."\*}l{l I)

N i 1 rv differenc O 1o (CY « ( 5\[.___ 1}
O Ok iic e
z vdd FA 1111 1010

N umber .

gno10010= 12 BCD

Corrected BCD difference

he decimal adjust mstruction ol some MHCTOPTOCESSOrS — the Zil
I LI L L el - .

"R Tor example Jl'!\"”hf[:k.*.‘ih P riorms TIH'I \l["l""i“[\rliﬂf ‘:‘-"I‘rtrcli%
mmmnhunng_ the

v of arnthmetic OPK ralion i\:INHHLd helore lI'IL' l;t{:;_‘in]al

Y

frer an additon and a subtraction operation by
LG ARl ARLARIAR {rit i :

ol -"-\.."l‘.'. Is L \k'\-[{:.\qk{ I‘“- l.."i.h\-.-.:- []t"‘-lji“l.‘:‘“'-""ﬁh“r“ i litL‘ ll‘lte' EI]HQ [nr
1. UL : -y

example =it is the responsibility of the programmer 1o dt‘-‘tu‘rmine_anﬂ

nerform the appropriate correction operanon when [‘*Cl‘fﬂrming Sub-

traction with BC D numbers
46 Lc}gicai S0 far in this and the previous -;_".J["'-.L:I |'1_ ‘1;1\ ]‘H.JL*H d.*-.“illn'l,(_'d lhﬂl lhiE
Operations data within the mucrocomputer 1S always representing numerical

value, In mam applications, however. the data ma\ Hil‘t‘lpf}' be in_{__ﬁ-
caung the state of, say, a controlled system. For example. ‘a single
anary bt mav mdicate th f

the state of a control valve: () =yalve vpen,
| =valve closed. Thus the S-bit binary value 01100111 may mean

control valves |, 2. 3. b ind 7 are closed whilslt control '\-'QI\'ES 4. 5
g & are open. In addition to the anthmetic instructions already
Introduced, a microj :

Icroprocessor has available a number of data manipu-

4bon Instrucnons which are primarily included to manipulate nop-
NUMenc adata ol LIS ?\.i”Li. ]-i}'u ot

are the logical instructions and some

cxamples are now considered

4.6.1 Logical AND

Fhe logical AND Instructio

B i = k|- . ]
OCiween the conienis ol

ns periorm the bit-by-bit AND. operation
the A-register and either immediate data on
ANOLNEr processor register or a memaory locanon. i
AND function is shown in 'Tablt 1.6. A

il l;‘r}“-i’u_.ﬁinn 0l T!i!‘« Inst

TS Fuction is 1o test the state of a speeis

i g .-:r":"J}'!' -.‘.r] SdVy. ~ '!-”T\

MIE Contents of
"y e L v
'he truth lable for the

f‘.l"

A

For « L - |

U example: ANI 40 %

.1-‘

.1I : 'I'f..l
oS results in

tne bi-by-bit loe

. : , 2
ontents of 11 ‘il AND operation between the
. 0l the e

\-repiste . -
i\ Sy : cilster .H"IJ“] “h.' ”n““:*th”f liﬂtll 4']| hL"\; Thc rﬂ“l!f{
Placed in the A-register | N :p

AY<{A) AND 31) il

DATA MANIPULATION

47

Lxsembiv Instruetions

Comments

adjus :

H. 2082

Y

LIDA JORD
ADD M
DAA

STA 2080
INX H
LDA  208|
ADC M
DAA

STA 2081

Initialise HL 1o contamn 2082,

Add 15t pair of bytes and form vorrecied sum

Inctement HL,

Add Znd pair of bytes and form corrected sum.

Fig. 4.6 Program Example 4.4

Corm U_;',r_rur hex Awxiliary Lower hex Corrsotion 1o
Y’ | g7 P ORI 4y | @ beadded
0 0-9 0 09 00
0 0-—8 ! 6-F FA
| 7 =1 0 0.-92 Al
| 6-F | b-F 9A
Fig. 4.7 BCD subtraction corrections

Table 4.6 AND Function Truth Table

Bit 1 Bit 2 [ Bit 1 AND Bit 2
0 0 0
0 1 0
1 0 i)
1 1 1
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Table 4.7 OR Function
For example : = Truth Table Table 48 XOR Function Truth Tahle
(A) = 0110 0100 Bit1 Bit2 |a Bit 1 OR Bit 2 Bit1 Bit2 | Bit1 XOR Bit 2
10 = 0100 000 ' 5 0 || 8 I|
0 0 4
(AY AND 40 = (100 0O I’ 18 reset (odd) 1 'i' l 1 1 0 | X
| 1 1 1 ‘ 0 I |
Chus if bit 7 of A was logical 1, the new contents of A are nON-zerg T I 1 I
i ‘k.“”\;_“_\fh i i""” oy 1"|l. \ WAS jm"_‘:."l.}‘i () Ihr new contents Ur A '“:-i" hﬂ"
- rero Y _ _
= A1l logical instructions affect the parity Hag P. It the number of 3 whoss ‘.“ Arsss, 15 L“,nh“m:d in the H and L registers. The result is .
Ty : : o : T ' T .
in the result (the new contents of the A-register) 18 odd, P is reset mL PldLui in the A regisier: !_
f ihe number of 1s1s even, P s set (1), Thus with the above cxumple‘ . (A)+«—(A) XOR ((HILNY
P 15 rescl
For example: h
3.2 cal OR
s [P AU gt = (A)= 10011011 .
! Fhe logical OR instructions are similar o the AND instructions ((H)L) = 11001101 )
? except that the bit-by-bit OR operation s performed. The truth table |
;‘ for the OR function is given 1n Table 4.7 (A) XOR ((HUL)=0101 0110 P 1s set (even)
' For example: ORA B

4.6.4 Rotate

I'he wm-.-mx: of the A-register are OR-ed ul.uh the contents of the The three previous instruction types —logical AND, OR and XOR -
B-register. The result is placed in the A-repister: :

performed the bit-by-bit logical operation between two 85-bit pat-
terns. In addition, the logical group contains instructions to rotate
For example (shift) a binary value left or right one place. This is useful, for
' example. when performing binary multiplication and division: a left
shift is a times 2 operation and a right shift is a divide by 2 operation.

(A= (A} OR (B}

(AI=01100100
(B)1=10010101 e : RLC
“Or example:
(AYOR (B)=11110101 ) 8 Tad )
£ 15 set (even) The contents of the A-register are rotated left one place. The least

4.6.3 Exclusive-OR (XOR) sienificant bit and the carry flag are both set to the value shifted out
I o I i I tl“ J = - - a = ".,_ 3 3 A I
' of the most significant bit position. This 1s shown in Fig. 4.8.
li [ > €XC - -y = =
1€ \.Llhl\:"u-.. QR operation differs from the normal logical OR
insomuch that with the former - ‘i |
: . when both b o oS -
result is 0. The truth table f Oth bits are logical 1s, the ! |
Table 4.8 The able Tor the exclusive-OR function is given in
u;mi.n; | ‘_“; range ol exclusive-OR  instructions provided are ) = |
. 1~ the OR instructions and are used extensively, for example, oy Jua o, ||
detectung and correcting error : L 4 ' | | T I '
: k : £ Crrors Il'h;” I s, 2 ] - : : §ow . (e | I____ | 1
binary information. 1y occur when transmitting |
' |
F For example (A) = 10010110
. - B L'\:ll'ﬂi‘nl;_': \R.r'\ M |

- This results in the
contents of the

i |
RLC (A) -‘-‘/3‘0‘10“61. T Yy~ |

bit-by-hit exclusive-OR

A-zacts operation between the
A-Tegister and |

the contents of the memory luc-ﬂtim,l_j,, Fig. 48 Rotate left
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3 - : 4.2 Perform the 1NE ari - .
465 Compare | N r:prﬂ”"'ﬂim?;lhmmg anthmetic operations uUsing unsigned binary numbers
e compare Instructans HAR tT“LL” “T[“'[-I I-I'ILF Et.‘-mpam o § 103427
values - the contents Ol theé A-register and €ithel Iﬂ111‘lr.;(:I|a|¢ daty or | 74 ;IH
the contents Of & I"'I'HL"".".'*"'-‘-"I regIsic! o IHL"IUI? l”Ldt](]n“withHUI- 105 '-.14-
odifving either value. The result of the comparison affects the flap S6—19
: " - he tested to determi
; G ' w1 chaptel SHOWS these may clermine .
and, as the next Chsprie lh_e 4.3 Perform the following anthmetic operations using 1wo's complement d
' oneration 1o he ;"-*»;Ill"l"ﬂh'ki- ITnmsy N e . Sing S complement signe
next O) nnary number representation:
For example: CMP B 105+ 94
: ‘ed with the ¢ -56+ 19
A The contents of the B-regisier arc compared with the contents of the 103-27
T - \-register. The Z flag 1s sel 10 | if the s.'t'lnh.'ﬂlb}lll't‘ equal; the CY flag | 67118
rl < et 1o 1 if the contents of \ are less than the contents of B, ' _ ,
- s 8 Y 4.4 Perform the following anthmetic operations using BOD number representation.
_ . First perform the normal binary addition/subiraction operation and then add
: tion . : ' : PrCiin o,
Program Example 4.5. Logical Opera S the appropriate corrections denved in section £.5:
[he program example given In Fig, 4.9 first loads immediate dayg 34 452
: mto recisters A and B and then performs a series of logical opera- 190 +27
ﬁ tions. First the contents of A and B are compared, the contents of A 7542
- ! ]1—30
t are then rotated left, the new contents of A are then AND-ed with'a PR
| / constant. and finally the resulting contents of A are OR-ed with the 4.5 Determine the number which 5 in the A-register after execution of each
} contents of B instruction in'the following sequence:
a'
MVI A, 138
1 ADI 41
issembiv [nsrruchions dchon Ij.“\a‘\
MVI A, FO 4.6 Write an assembly language program to perform the following arithmetic
3 i A} =-— i hes * . b - ! - . "
! s \ FO (hex) operation using two's complement signed binary number representanon:
: MVI B, Ot (BY = 0OF (hex) ~SH+(=2T)
. CMF B 7Z - 0 CY == D ' 4.7 Determine the result of performing the AND, OR and XOR logical operations
¢ - on the following pairs of hytes:
£ ) :
ANT 8l (A) = 81, CY =~ 0. P - 1 2B, SF
o 37, 48
ORA: B (A) = 8F, CY = 0, P = 0 1 AS. SA

4.8 Determine the number which 1s in the A-remster and the state of the

i - S > : + instruction in the followin
Fig. 49 Program Example 4.5 carry and parily flags after executjon of each msiruciic E
Sequence:
: MVL A, YE
Exercises s MVI B, Ad
RLC
21  Derve the eaiivalent T =
lnt.;n;q-q:dt:trlluzl*”Lﬂ.!.duumul numbers from the following 8-bit binary pattemss AN GE
g ¢ : ‘m.” 45 unsigned binary, two's complement signed hi'nan’- iIll_ﬂn' ORA B
i ' '-,H'dl..'i.! dli'ﬁﬂ];_}l h:!“-’rl-"""*--'rﬂlﬂjunh - X -

i 'I l |
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5.1 Introduction

52 Jump
Instructions
82

TR ETXsy WEYEm D AN "

5 Transfer of Control

e previous two chapters have been concerned with program -
structions from the data transfer and data manipulation 2roups. ThE

Nexibihity and versatility of the stored program concept on Whit‘;h

computers are based, however, results I‘JI'IHLII'II} from the Cumpu[er’g-

abtulity 1o transfer control. o1 branch, to an mHII'LlL‘IiUH that iS not 'in
sequential order, This is achieved with instructions from the transfter
ol control eroup All these Instructions act on the Program counter
as will be shown. 11 15 ]mnmlc O execute a |1|i'_‘!L‘F{ L‘lf instruclinn‘s

many tmes over with the number of times determined either b}'
program data or the state ol

and

say, a processor flap.

.‘\ jump instruction 15 used to break normal sequential execution and

I cl )} H . ' > » )T 2 o I

:mn_n 0 a different part of the program. This is accomphshed by
.L ading the address of the next Out-ol-sequence instruction into the
program counter. thus foremg the processor to letch the contents of

$hs e ot s next instruction. This new address is usually
.11'_&.‘.“{,1{ n 1_!]5 thllLI-._‘l_th I

this new lacation f

Or example,
IMP  20R3

W v " - q
h"._h in ﬁ'.t:"'_n ﬂ'l—il.l'lllh_' ‘\.l:’dLﬂ h,”.'k,\ IlI‘\I-

| Fig, 5.1
I'\u'ulu'm ol this itk -

Instruclior.
20B3 for the ne

red in memor :
¥ Sstarting at : . 3 : . "
after execution of the E a4l address 2000, for example:

fll.'itnu; '} " - : . ey
Contdimng 2 Hon-the program counter, instead of

V03 (the star 1l r
art addre el gy o
would contain 2083 €55 Of the next sequential instruction)

memory location

HON Wis <iq

When Writinge
U Le ..uidruhw of tl
Program h

4 PIORram in symbolic ass
e destin

5 . alion "‘Ih'll"UL'liﬂH I8
45 been fully C

. often not known until the
i:‘»".:luru;d_ It s for

|
.

T
P

ciauses an unconditional jump O
stanstruction. Thus if this fnstrues

embly language, the absos

this reason that the lﬂb-‘-"trf-'l

Memory address A C3 _]
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IMP operation

A+ B3 L5, byte of address

A+l 20

m.s. byte of address

Fig. 5.1 Unconditional jump

Absolute Address Instruction

2000

20B3 LAB! : Destination InsStruction ==——

Fig. 5.2 Symbolic addressing

field is provided with an assembly language ins'.tructiﬂn-. A label_?s
used to indicate the destination address of @ jump instruction gnd this
is only translated into its absolute hexadecimal form during the
assemiﬂy process. Thus the above instruction would take the form:

IMP LABI

where LABI1 is a label associated j.vith the in !
memory location 20B3. This 1s illustrated in Fig. 3.2.

struction stored at

5.2.1 Conditional Jump :

The above instruction is known as an uncondifional jump i“§trgcu:n
since, when executed, a branch to the address m“-;'gm?(-i-w“w : F-:
instruction will ulwa}'.s occur. The real flexibility _ﬂf jump mmsltngﬂfé?tf:é
however, is derived from the conditional jump instrucuon "




/

5.3 Flowcharts

—__;'J,n-. Condifion Flag Status )
INZ 100 201 L=
|7 ro Z=1
FINC no oury C=l)
il | \rTy C=}
PO parity odq P=0)
Pl parity oven P=]
IP plu $={)
» u S=1

Fig. 5.3 Conditicnal jump instructions

these result in a branch for the next instruction only if a specified

condition 1s satisfied. otherwise the next sequential instruction is

executed

The conditions which may pe 3'[":_'1.”iL'Li are determined by the stdte

of the vanous flags in the processor flag register. The conditions

which may be specified for the Intel 8085, for example, are showniin

Fig. 5.3
Lhus a typical conditional yump instruction is

INZ [ABI

.i nis 18 read as: jump if zero-flag not set to LAB1: and would result
in the next instruction being fetched from the address associated with

1€ 1d4D¢ AR 31| he vor . =
the label LAB1 only if the zero flag in the processor Aag register was

not : y ()} . B . - At
5¢t (Z=1), otherwise the next sequential instruction will be

fetched

Before any PTOEram nvolving branching

ary 1o plan the logical
dchieve the desired goal
the most

sequence of events to be carried oot 10

useful for assembly lan
4 flowchart. This is S| -
4nd actions required in.
required

iNguage programs is the construction of
4 diagram which indicates the sequence of
4 Program and the points where branching I8

ﬁ]tL

The symbols yse

d in a lowe
‘ Wchar
Mmeans tl-f ¢ 4zl

xamples are perhaps best illustrated by

=

can be written, It 1S neces-

A number of techniques may be used. Hut™

Subroutines
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Program Example 5.1: Flowecharts

Consider a simple program

t[’i Hdd lnﬂﬂthcr th -, N " |
flowchart for this program = € ten numbers 1-10. A

| : 1S shown in Fig. 5.4
et the C-register contain the number

. r to be added to the running
total and the B-register contain the ]

: Tunning total.

I'he assembly language instructions given n Fig. 5.5 for the pro-
gram have been evolved using the flowchart of Fi.;;_ bs_q_ The :{f‘Pl
(compare immediate) and INZ (jump not zero) instructions in Fig.
5.5 are used to determine when the count his reached 11. This

combination 1s frequently used to provide a conditional transfer of
control.

Program Example 5.2: Jump Instructions

A common requirement when a microcomputer is interfaced to other
equipment 1S to compute a time delay in the program. A
microcomputer-based road traftic light controller, for example. would
need to compute a time delay to implement the sequeéncing of the
light changes.

Since each machine instruction takes a specific amount of time to
he executed (typically a few microseconds), it is possible to compute a
time delay by executing a group of instructions a preset number of
times. The delay obtained is then approximately proportional to the
number of times this group of instructions (or loop) is executed. Let
the desired delay and hence loop count be held in the C-register.
A flowchart for this program is given in Fig. 5.6. This flowchart can now
he readily translated into the assembly language program of Fig. 5.7

The basic time delay is derived from the six no-operation instruc-
tions (NOP). These instructions do not affect any of the processor
revisters or memory and the delay can be readily extended by
u:iﬁ[itutiﬂg them with different instructions. Note that the compare
and conditional jump instructions are again used to determine the

transfer of control,

Frequently within a program it may be necessary _.tln pe.rfnrtrft a
particular sub-task many times over. ll_:s. highly c!csnmb e m.: Lo ;v‘e
to repeal the section of machine code each time the su I-ms_ ;5.
ssdry to be able to transfer control 1n a

required. It is therefore necessan e
program to a section of often-used code or subroutine designe

perform the sub-task and then return control to the maia instructon

sequence,
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Subroutines not only Save program memory becauge fthe

necessary 1o repeat o ['Ih‘H_:I';IH'I section every “I“E 4 Eubhl l'}.h'
bhut they also P;qHILiC the l*{‘}‘ﬂWhlﬂi[}’ Lo slrucluref'a.' ;;i
ons that can be writtén and teste

E

redu H'L‘n.1 :

rAnm intw convenient secu

dently
[he two basic instructions provided to call a subroutine andam
T€luy, &

. dindene
and then collected together Lo pertorm the overall laﬁk oo
from it are

CALL nnnn
and

RET
where nnan is the two-byte four hex character ‘*sl'ctrling address Oflﬁ’ =
subroutine. The RETurn instruction is the last instructian ,m;:--h

executed 1n the subroutine and 1t returns control Lo ”SIE' Ea,l ) |
program at the instruction following the CALL instruction ;n'];is;-_
: i3

illustrated in the program memory diagram of Fig. 5.8 In assembl
language 1t 1s usual to indicate the start address of a Suhrﬂuliﬁf:ht-

I -
= — i ‘i
|
—— |
: M CALL SUR —=== B
Prog 5
- 1)
I T —
I e —
! | 1
| -
I SuB e
Suly it ¢
T —— RIT iy
2= = SES i
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means of a label (symbolic name) and this

corresponding four hex character ahsolute
bly process.

i$ only translated into the
address during the assem-

- x::l}:i'ilt]i:}t: ::l:i‘:s:;:::::;r :c:l:frl:)tlﬂ A ‘iuhnj*mtine CALL instruction.

routine, 1t must also remember ih “U i 51'211'1 addmﬁ"ﬂ F‘f 2 ml?-

program so that 1t can return tDnLl C:”Em f‘dd"c_f*‘-‘ aL v it

instruction 1s executed. This is accg liﬂ I::I}l'ﬂlI P'f"f" }‘*’hﬂﬂ e

contents of the program tm:lnlf:r r&e:lp et 1‘*“"'1"‘4 el
L ¢ - gister (PC) on a stack.

A stack is simply 4 last-in first-out queue which is implemented as
a set of ffucccsswe locations either within the processor itself or. more
usually, in the system memory. The stack pointer register (SP) within
the processor always points to the address which currently holds the
entry at the top of the stack, and consequently its contents change 4s
each subroutine call and return instruction is executed. If the stack is
implemented in the system memory as on the Intel 8085, the initial
content of the stack pointer is arbitrary and 1t s usually initialised to
point to an unused area of memory.

The sequence of operations and the appropriate contents of the
stack pointer and program counter during a subroutine call are
illustrated in Fig. 5.9. It is assumed that the stack pointer (SP)
currently contains 20C2 and, as is shown, its contents are de-
cremented by two as the contents of the program counter (PC) - two
bytes —are saved when the subroutine call is executed.

Whenever a RETurn instruction is executed, the process illustrated
is reversed. The program counter is loaded (least significant byte first)
with the contents at the top of the stack, the stack pointer IS
incremented twice. and control returns to the instruction following
the subroutine call. Subroutine call and return instructions are availa-
ble that are conditional in just the same way and for the same range
of conditions as conditional jump iNstructions.

Program Example 5.3: Subroutines

The previous program example was a short program to compute a
time delayv. This can conveniently be made into & subroutine by
placing a 'RET instruction with the Jabel TIME at the end of the
program. In order to make this subroutine useful for other parts of an
imaginary applicaion program, it is desirable to set the dE%ay time
the main program and not in the subroutine itself. In this way the
same subroutine can implement & variety of delay times. To imple-
ment this. the C-register is used to pass the requ_irffil l:imﬁ' ﬁﬂiﬂ}'
parameter to the subronting (TIMDLY). This is shown in Fig. 5.10.

I S

o B ————
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Assembly Instructions

Commients

[ ' onle Svmbolic Instruction _""“--.\
Wemory Address contrents Y
1010 b
Main M1 i > CALI SUB PC = m
i]Ti‘_EF.1E'T': :
012 20
[ W48 A X SUB _‘-;iit1r|_1'.l1_|r|t.'
Instructions
Subrouline < 204 XX
20€0 XX
St < 6 \l'-. SF o 2:}(:2
0C2
(1) CALL instruction brought from memory — PC incremented

Memoary A

tddress

Contents

Symbaolic Instrucrions

Main
Program

Subroutine <

CALL SUB

PC 2048

I

Main
Program

Subroutine <'

LX1
MV

SP, 2002
C, 02

CALL TIMDLY

C TIMDLY: MVI

LOOP: CMP
17
NOP
NOP
NOP
NOP

NOP

JMP

| TIME: RET

A, 00
C

TIME

LOOP

Initialise stack pointer.
Load TIMDLY parameter,

Call Subroutine.

Time delay subroutine.

Delayroutine,

Return from subrouting.

Fig. 5.10 Assembly for Program Example 5.3

Fig. 5.9 Subroutine CALL implementation (oppesife)
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. . | A ac a temOrary Che oSt for the Crlnt{:n“‘
1 '™ i L
55 Stack
Omm!lﬂﬁﬁ
i' B A }' I 1I°r (8] Fidh I""r'-\--ll
HSH  ran . '
. s« combined 16-bit contents of the A-regigs
'k : i fact here 15 4 simils
s | f o of | wk. Th 15 4 SIMUAT nstre
ok of the nairs of registers BC, DE and HL. A registerpas
' \ ~omtents of the top of the stack h} o P()P
i i
) L
o conten ‘he address given by SP 1o register € and the
LT ceryl % he ': '; 'r ._J } \ I',i'. i 1) fl'__'_j'-lf_ [ }i_ }l !1‘; l)lJSH anﬁ
DO instruction re marticularly useful when writing subroutine
reisters A, B and € 10 perform its
sarticular sub-task, the contents of these regislers will be clearly
Lflerent after the ghroulingeg has been vecuted It s usual Whﬂﬂ
NV TrIting ubroutuine. therelare, 1o nrst sdave the current r.'nnlentsal'
Dose | i IS1CT hich re used h-_, the u.uhrr'rutinc on thc
’ no i y () the wed contents before the relurn
. o 15 2Ive [he programmer can therefore continue using
tents ol all the processor registers alter a ubroutineg has been
run in the knowledee that the PTEVIOU! conients will nol haw hﬂ-ﬂﬂ
rrupied
56 Parameter Uhie loop count used in the del
Pﬂ‘ﬁ;{nu i : in ne detays .l_”'nrrpljllr}.:.; in []r“gr:”" c‘amplﬂ 5.3

processing and ;;i.-,li;-j “'j : . [’?1'.“ data both to the huhrﬁll..llil:“: fﬂf
the calline Program hil.i-;-1 "j-""ﬁ H‘J““.I.hm;k from the subroutingss
cxample was Y £ ;jl-;-,‘,' tI“ Kessing, The mechanism UW{] in [hﬂ
Fegssier) but 4 rnf,n-ﬂ-ﬂ \ .””I' OF ‘the PrOCESssOr regisiers (the ¢
= Nexible

Isom 4 subrouting is b lution for passing parameters 10 and

Y means : i i |

SR st eans of a pointer 1o the start address in the

: e the parameters are stored, With the Intel
accomoliched : e
nplished by means of the HL register pair.

BOBS, this ie usually

. -
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program Example 5.4: Parameter Passing

Program example 5.3 has been rewritten in Fig 511 to illustrate the
ase of the HL register pair for passing the delay parameter and the
nee of the stack tor saving the contents of those Processor registers

which are used by the subroutine during execution. The memory
location used to store the deldy parameter 1s 2080, '

i Assembly [nstruciion Commenty
LXF - SP;-20C2 Initialise stack pomter.
LXI H, 2080 Store delay parametes in
Main memary location 2080.
Program MVl M, 02
CALL TIMDLY Call subroutine.
[ T ISH PSW Save contents of regisiers
FIMDLY ool A and C on stack.
PUSH B
MOV C M Read delay parameler from
: . memory.
MV1 A, 00
LOOP cMP C
JZ TIME
Subrouting 4 NOP Delay routing.
NOP
NOP _
pCr C
JjMp  LOOP | s
Restore contentis OF regisie
TIME: pop B } Amcﬁm stack.
pop  PSW _
RET = — = - p—
Fm_m.(ﬁmﬁlﬁlé 5.4)

Fig. 5.11 Parameter passing



d

5.7 Nested
Subroutines

TRANSFER OF CONTROL

It is quite in order for a subroutine to call another subroutine wip
1celf and indeed for that 1o call another. The last-in first-qy¢ .sla::
ays ensures that the correct return address js at th,
top of the stack w hen the RET instructions ar€ encountered. Sub.
routines may be nested in this way 10 4 depth determined only by the |
available read/write memory pros ided for the stack. This is illusuamd

mechanism alw

in Fig. 5.12

Main ]
program

CALL SUB |

| wNextinstruction Le—— n

Mazin

ProgTam q

SUR | . 51:,-1"1 ol
subrouline |

CALLSUB 2

—

Next instruction

RETum

————
o e—

Fi
19. 5.12 Nested Subroutines

Subroutine 2

PUSH

RET

[ ey Assembly Instruction
(===
r LXI SP, 2002 ae T
SP, 20C Initialss stack pointer.
LXI H, 2080
Main <| Store delay paramater in
Program MVI M, FF memory location 2080.
|_ CALL TIMDLY] Czll subroutine 1.
[ TIMDLY1: PUSH PSW |
- Save contents of regsters A
PUSH B and C.
MOV C M Read delay parameter from
memory.
MVI A, 00
LOOP: CMP C
Subroutine l<' 1Z TIME
LX1 H, 2081 Store delay parameter in
MVI M. EFF memory location 2081.
CALL TIMDLY?2 Call subroutine 2,
DCR C
JMP LOOP
TIME: POP B
POP PSW
L RET
TIMDLY2: PSW As for TIMDLY? except NOP

Call.

Fig. 5.13 Assembly for Program Exam

ple 5.5

e g g

— — e il
i . .
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sFER OF CONTROL

ple 5.5: Nested Subroutines

The maximum time delay r‘-rmlm.cd by the Subroutine 1n'ihe prc"‘iﬂlu
s mal i 5 % - -

. atly extended by making the basic delay Mstrye.
nme to be executed. A convenient way of di}in

Program Exam

example can be gre

L10NS rr{;ljlrf miorc

instructions with a call to another Simily

this is to replace the NEVR 5.13

ielay subroutine This 15 illustrated 1n Fig
Fxercises

€1 Find the final contents of the A-regisier after the following assembly Iangua#

progam has Been run

Myl A, FF

LAB] DCR A
INZ LABI]
HALL

&2 Determine the number of Instructions executed in the following assembly
Ianguage program
MV A, DD
L.AB2 INR A
INZ LABZ
HAL

§.3 Design a flowchant and write an assembly language program 10 sum t(ogether
the even numbers from O 1o 20

§.4 Modify the program in Example 5.1 to form a subroutine. Transfer the numbes

count o the subroutine as a paramecier

Design a flowehan and write an assembly language program for a subrouting 1o

compule a ume delay by incrementing the contents of the A-register by unity

until @ imil 1s reached which is passed to the subroutine as a parameter,

(] 1: ¥ [ Ty xample § § . !

Modify .h.r_ DTOEram In [..‘-.r!IIL;]Jt 2 10 Incorporate the above subroutine m

place of TIMDLY?2

ASsumuing each program instruction is executed 1n 2 ps, estimate the maximuimn

It A ET . : |

Hme delay that can be generated by program Example 5.5,

6 Digital Input angd Output

61 Introduction

6.2 Digital Input
and Output

A microcomputer 18 basically a digital component that can examine
digital input signals and perform functions as a consequence of these
inputs 1o yield digital output signals. Since the external devices
outside the microcomputer produce or accept signals which are not
necessarily digital in nature, special nterface circuitry is often re-
quired to transform these external signals into a form suitable for the
microcomputer. This chapter is concerned with the basic mechanisms
used in a microprocessor system 1o read digital inputs and produce
digital outputs. The following two chapters describe some of the
additional circuitry and control mechanisms which dre required 1o
interface the microcomputer to specific external input and output
signals.

A simple digital input to a microcomputer can be produced by 8
single pole switch. Fig. 6.1 shows how a logical ﬂ_or 1 m‘hagc Ieﬁwzl
can be presented to the microcompuier depending on the switch

position.

Logic | voltage level

Logic | orl

[o microcompuler 4——/

Logic 0 valtnge level

Fig. 6.1 Logical input
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LED on for logcal |

from mcT

I ! .'”} ol far ]:-;;_h_._'l f]'

Fig. 6.2 A simple logical circurl

Similarly, a simple logical output from a microcomputer can he
displayed using a light-emitting diode (LED) as illustrated in Fig. 63

An LED indicator or a switch cannot be connected {]ireclly to the
microcomputer bus, however, since the bus is used by the micro.
processor to communicate with all the devices in the system. The
mtormation on the bus is therefore t'i'irliinU'.'?LiH]}' chaﬂging a5 inslruc,
tions are fetched from memory and executed. Information intended
Lor an output indicator must therefore be latched by a suitable cireujt.
The processor can then send data to the output latching device which
captures the data at the dappropniate time determined hj‘ bus COntro|
signals and then provides a continuous Output until new data is SEMN!
toat. Similarly, an input from a switch must be solated from the data
bus until the MICTOProcessor 1s ready to read its lflgifal value,

Considerable flexibility is ay allable if a system Incorporates a
programmabple mput/output (PI/O) device to provide the ncccssan
latching um‘! iselaton. These devices are usually organised into por!;.
:.r STOUps ol inputs and outputs, often of & bits. Each port can usually
ﬁ; ‘:!-L:;_j:r-]:::;:{th f*;unzn'hlzfi;:.! t;:ﬁr: T an nulpul pr)rt or somctimes'a
] ]HCI:‘;’“H“ ;: ¥ sl .xa_hurnut;c. d:agram of a basic

porating a PI/O is shown in Fig. 6.3.

Logical Logical
Inputs Cutputs

*11 HE r'_;._

PROCESSOR

Address bus

: * Data bus

~Control bus

pr WCESSOT.

There are basically two approaches 1o organisin
associated with the transfer of inpuﬂnurpm dﬂﬁ
rocomputer bus and ap mput/outpyt device: memaor
input/output and programmed input/output. With memes - TP 4
input/output. the available memory address space
puter is partitioned into two areas. One 15 @ range of addresses
associated wilh actual system memory (ROM and RAM;. the other
area is reserved for input/output devices, A typical memory map
illustrating this approach is shown in Fig. 6.4 '

Address .
64K , !
l_-'f_J devices
System §
Memaory |
0
Fig. 6.4 Memory mapped input/output g 3
|
Each input or output operation with this mezha‘:! is similar I:;a '
normal memory access and indeed the same mMSIrUCHoNs are md i&_’ | l
both memory and input/output data transi::_'i. Tht appropraie . 2
dress is output on the address bus and;ewgﬂ:ﬁzgﬂih‘:;?oim . ’
ice (ROM and RAM) or an input/outpul devK | A
device (ROM an o the data. bus. THs ag |

and the approprniate data 15 tramfermdfi:;l
2 * antage O ddress
proach therefore has the advantage e et

modes used for memory access available for ¢ aof addresses available .~ §
fers. The major disadvantage is that the TRyt RugEE : |

for memory is restricted,

The aliernative approach is pr
input/output mapped _mpu!f._ﬂl_l.mh

data transfers are MPW‘;‘{ " . 085.
executed by the processor—IN QU Sor's i <

=

Ml 2
> |:l|'.-1?'| ey
o |l .

s
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6.5 Programmable
Input/Output
Devices

DIGITAL INPUT AND QUTPUT

Add ress
z't-”\
b, T 11! ‘l'l.ltﬁilr';-:-\
memory 385
Input/Output
) L

Fig. 65 Programmed input/output

|m.;-|.|pr.1-cr?«a“r generales an il!]ﬁlll,fiﬁulgﬁill request hignal O iﬂfﬂl‘m
mput/output devices (and memory) that the address on the address
bus 15 for an input/output device. This provision means that ng
system memory space has 1o be reserved for input/output devices,

A typical scheme is illustrated in Fig, 6.5.

_'\niu that although the Intel 8085 has, in common with most types
of MICrOprocessor, programmed nput/outpul instructions. it is alsp
possible to design a memory mapped input/output scheme around .[h;:
microcomputer bus

Digital input and output in most microprocessors is controlled by

programmable input/output devices and programmed input/output is
normally used. A PI/O device can control a number of indiv-idual
m.pm and output lines. These are normally grouped intﬂ a number of
ports, each comprised of eight lines whi;:h. may be pruaramm.ﬂd Lo
vperate either as INPULS Or as outputs. : L

Before data me: o .
¢ data may be read from or wrilten to a port, it is necessary

first or; —r :

spplication, Thi o aeio € 0 the configuration intended for the

mation iﬂll'.l a s[;u.'.u;‘ilzlri: uls:]c{.'[. oy “‘n[u'.:g appropriate command infor-

the system is being initi: if}:ﬁahlc register(s) within the device when

device will the . o et aker receiving this information, the
Cnorespond to further commands — either from the

external circuit

- Yy or from the mic

. T : NCTOProcessy itealf 3 -

- This is discussed further | R T oSChsOr HselCnptis spec-l_ﬁﬂd

6.5.1 Handshake Control

For some

dpplications i1 i
data betye 1S n

| ECESSATY ¢
°n the PI/O ang 4 Loe

I €xiern

synchronise the transfer of
al device and consequently mosk

DIGITAL INPUT AND Giliva |

Valid data j\

1
Data Lines—/
0

Data Available l’[].-‘l.\"}‘}

Data Accepted (DACC) *

Fig. 6.6 Handshake control

PI/Os provide (_.‘Dnlml lines for this function. Synchronisation is
usually accomplished by means of a handshake procedure and a
typical transfer sequence is illustrated in Fig. 6.6,

The data is first placed on the data lines by the sending device and
the *‘data available™ (DAV) line is set. The receiving device detects
the setting of the DAV line, accepts the data, and then responds by
setting the ““data accepted™ (DACC) line. The sending device inter-
prets the setting of the DACC line as an acknowledgement of receipt
of the data by the receiver and therefore resets the DAV line. Finally
the receiver detects that the DAV line has been reset and in tum
resets the DACC line to permit a further data transfer. These
features are shown in the schematic diagram of a PIJO i Fig. 6.7.

There is a chip enable input on all the devices which are cunnecleci
to the microprocessor bus — RAMs, ROMS, PI/Os —and they are used
(in conjunction with the system address map) to ensure that only one
device responds to each data transfer on the bus. Thus, whene‘v;:_?r an
microprocessor which is
intended for the P1/O —usually determined by the presence _ﬂf. a logic
' detected and is used 0
additional address bits - usually
sed to select the a‘ppmpriajte
rt B. The

then determined by the read

address is present on the address bus of the

| in a particular address bit position —this Is
drive the chip enable input line, Two
the least significant pair—are then u |
register within the PI/O itself-—cﬁmn:-lguﬂ. port A or po
appropriate input or outpul operation 1S
and write lines respectively.

6.5.2 Port Initialisation
ms each

In some microprocessor SyStems €888 F
freuit but 1n

device is a separale integmtgﬂ_ eir
into other system components = pPIBEEEE
Intel 8085 system, for example. .-t;tg_me%gnp"*fm
rated into each RAM memary; Cireuit 0555

programmable. input/output.
others it is incorporated

Dﬂﬁﬁ&ﬂrﬁf memﬂl’)'- In ? h 'T“',.1 Rl

her with a timer deviee

e e ey o e — . A S JR—

| —— — - S W -
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Chip Ensble

R
Regster
Select

Command
Register

i ) Port A
| : nterrupt

Yead & . Port B
Read (In) ——— .' interrupt

Wnte (Out)

Timer command, 00 = da not affect timer
11 = set for continuons operation

Reszt

Fig. 6.8 The 8155 command byte

Fig. 6.7 A Brogrammable input/output (Pi/0O)

Im.s.

[0 F 1 | =02thex)

—

1]”[&] 1\]_-:%? C‘l“ln."ﬂ = :

- -/~ LOnceptually, however the i Port A angt
IMer ars a: : : ' nput/output port ' ort A inpu
Lmer are Hulle separate from the R put ports and the

be considered independent]y i memory and can therefor Port B output

The additional port
may be used either a¢ - i : .
signals for Ports A and B — ' x Dis:hl:t?:tempt
Fupt contral. The latter ic Ample, he shak | M ra on po

The comm ] pa X 2 Disablci;tﬂl'rupl
on port

Port C input

= ssigned some o o s
the t; , . 8. 6.8. This command byte
The mmnl::er and 1he ‘NPut/output ports are programmed

> Iransferred (g the Intel 8155 using &
“fmed outpyt instruction, QUT. Thus

indicates that

together
| Fig. 6.9 Example command data

: - s, the i lon sequence:
| Ontents of eight lines of the address bus, the InStruction seq
i | Y e 1k
fPut/outpyy devige, € Processor A-register to the addressed ' MVI A, 02
ouT 20

iransfere the ¢

o bl OO register in the
transfers command data 02(hex) .lﬂ*: the command regisie g
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74 DIGITAL INPUT AND Assembly Instructions Commer ts t
[ (ddress (hex) Porr/Register MVI A, 02 Load command byte in A | l
50 Command/Status register OUT 20 Load mmmam_i register. :
51 Port A STPLRT IN 21 Rﬂd data from port AL I
I -
33 Port B ouT 22 Output data to port B, '
33 Port C JMP START Repeat.
dd Sing i s
¥ Tunical 1 freqister aadressing
Fig. 6.10 Tvypical port/req gler a Fig 6.11 F'I'D'gfﬂm ExaleE‘. 6.1 t
1 N 44
: - : this command data 1s shown in Fi 4 .
celected 8155, The significance of this commi vl nFig I -
6.9. This would therefore configure port A to be 8 inputs, port B tq 1
8 outputs and port C to be a second input port. The timer would | -
be 8 outputs and por Assembly Instructions Comments _
not be affected. = N
Data is then transferred between the processor and these ports by A 07 Load command byte in A. | B
o OYIT C ith ; >cific address for each port MV ’
using an IN or OUT instruction with a specific address f¢ POIL. o s
= ; T 4
Thus the nstruction: OUT 20 Load command regist |
M - T J [ -
IN addres: MVI A, 24 s o pat
transfers data from the addressed port to the A-register. The specific OUT 21 .i
port or register 1s determined by the least significant 8-bits of the |
address bus. Fig. 6.10 shows a typical range of addresses. MVI A, 93 L Output 93 to port B.
' our 22
Program Example 6.1: Digital Input and Output
~ ! . A, 07 : -3
In the example of Fig. 6.11 the same address assignments as above MVI - 3 Qutput 07 to port € _
have been assumed. Port A is first configured as an input pert and our 23 & 1
port B as an output port. Data is then input from port A and the § B
sdme data is then output to port B. This process is repeated continu- :
ously. Hence if, for example, a set of eight switches were connected | Fig. 6.12 Program Example 6.2 '
10 port A and a set of & LEDs 1o port B. the LEDs would
continuously display the state of the corresponding eight switches. JI
Program Example 6.2 Digital Output dshake Control ‘
Z . P T - 1 | . . : s Hﬂﬂ . L ) ;
A.m an additional example the program given in Fig. 6.12 initialises Program Example 6.3 naliL, Hlustrate how digial unlp“l i
ports A, B and € as outnut socie . - s the decimal is intended 0 1 s procedure. This IS
A Ber 94077 pPul ports and then outputs the dec This program example 1s iniel . handshake procedur Ly
| n BCD form. The three ports are used as follows: (and input) can be g{}ntrﬂllﬂdl- b{vhaﬂ the receiving dﬁﬂmm;ﬁ L
* : x ~aful. | CXAMPIG, XEEET L puter can P.r-q,d-_"l""._ =3
: Port A Port B Port C particularly useful, for € st which the mict@eOmMPTEE © o jower i
FLWLH’ ‘ ' 1 | accept data at the same rate & produced by a device al &=
B 10 01000 ool opae L o if new data is producec By = -
LB LOOL 0011 xxxx 0111 it or, conversely, if l‘“ﬁw d - pllm can absorb 1t
' — =5 . . mm . ot
- = 4 9 3 7 than the rate the mieroco -




Fig. 6.13 Handshake example

initialise port A & an output
port and port C for made 3
Initialise HL to start of rable

e [ e
AL TRCRS

T ™ X i
ek next value from table

nid outpul to port A

s bit'] of SLATUS register

sel (buffer fuint

—_
{°
Ingrement table ad

=

dress

1§ content of = 10 (hex )

] l‘_l s

END

Fig. 6.
g 6.14 Handshake control fowehart

'he program uses the handshak
16 values from a table in mamary .
an external device connected Ih
diagram of the arrangement

\ssuming port C has been nitinkised '
shake mode), after daw has been output Aol ik

. ta ~ |
will automatically go to Togie )} indieating t6 t:‘:I:iLbIIII of pont €
new data s available (DAV), The device will then r:g:\tf::ml:?m

bit 2 of port C 1o logie 0 (DACC), Indicating that it has read
which 18 t‘ul‘[ﬂn[.‘\_‘ nulpm on port A NUI_L" ﬂ'H.lI !ﬂ;r !hﬂ II::l 8_':;:“&“
DACC signal is active low (e logie O indicates data & ted;
Since the microprocessor must not outpul & new \'nlm\ '-rt N
until the previous value has been read. the Progeam must pcr?::nn .
loop wanting for the DACC signal 1o he received. The 8158 lhcr‘c--
fore, curtt.’ﬂﬂﬁ il_'::cp;lmtt: status register which COntiuns a mlr;tbu; of
status bits associated with port A and B datn transfers. For instance,

Assembly Instruciions Comments

our 20 port B = mode 3

LXI 2000 Initialise rable pointer address.

MOV M Gt next value and output (o

A
QL .

ANI is logic 1
INZ LOOP

i Increment talilo address,

All values output?

MVI A, 03 } Initialise port A = autpit
i

Pl
INZ  NEXT | - Noiopeat
HLT e Yoo

}
}

H
MOV A, L
10
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- saicter is set whenever data is output to po : '
bit 1 of this register is set whenever « o POTLA — 7 A | g l '
buffer full —and this is only reset when the DACC input sy, ?:” nalogue nputIOUtPUt
i : jr e H
port A goes low. d I t
Thus, after the microprocessor outputs a data value to pory A th an nterruP s
 the

program must loop until bit 1 of the status register goes to logic o
apain before outputling a ncw value. The required status word fﬁr th
1/C ! ¢
PI/O (address 20(hex)) 18
n o0 o0 o0 1 0 1

| ——Port A = output
] . — Port C=mode 3

It should be noted that the contents of the status r‘:giﬂﬁff are algg |
examined using address 20(hex). A fowchart for the Program i

shown in Fig. 6.14 and an associated program listing i ' - o -
: Pro; g in Fig. 6.15. 71 Introduction  The previous chapter was concerned with the transfer of digital data

huu_reen the minoprncessur and an input or output ( peripheral)
| device. In many microprocessor applications, however, the input data
6.1 :.jul‘rr:t: :1; t:;;nrI:I:!I[L:!ni?;:m.tr}_:}f}riru;j:;: ;:-,:,””th ports A, B and C ac inpul [l.'l_hh'i.f [jrﬂlu:ﬁhi:d IS 4 cnntmuuu&l}' varymg an,aingug sig]'{a]-fm exam-
6.2 Write an assembly language program to first initialise port A as an i Pl BSOS voitage fﬂ-}m . Iﬂmpﬁrﬂl:ure lfﬂl’lSﬂuci,-!r. Sif’ﬂil&l‘l}'. the
and port B as an output port, and then to input data from port A e P'C'I'I O mlcruprﬂces.‘sur iEorEn KEqiEred ot fnabogue
the data and output the result 1o port B 3 + complemat form —for example a voltage to drive a motor, It is necessary there-
Wrile an assembly language Program 1o initialise ports A and C as input ports | fore in these circumstances to have additional iﬂlﬁffm Ell‘imftn'
:Ihi l‘:rr{! B :. JP ﬂu-!put I’H-]j-l I-'n:; program should then input the data on ports between the input,’nutpul poris of the micmpmcessar and the con-
o SIS L. sum the values together and output the result to port B, | trolled peripheral devices, both to convert analogue signals into digital
form and vice versa. A circuit that converts a digital signal into an
equivalent analogue form is known as a digital-to-analogue converter
(DAC) and the circuit that converts an analogue signal into a digital
form is an analogue-to-digital converter (ADC). This chapter first
describes the theory and operation of typical DACs and ADCs and
then considers the interrupt facility provided by microprocessors for
controlling input/output daia transfers.

Exercises

12 Digital-to- A digital number can be conyerted 1o an analogue voltage by

Analogue selectively adding voltages which are propartional 1o mﬂwmghtlngdi
Conversion cach binary digit. This is done by means gg-ta g:vﬁ;::r'*ﬂﬁﬂﬂ R
and, as an example. Fig. 7.1 shows a8 3-DIL CORVERAEE

The three inpfts A. B and C are each _mﬂmit‘f E‘Mﬂ vﬁ%
or V volts depending on the digital output from the 'm.l."'['; volts. The
a logic | corresponds to V' volts and a logic ﬂhi::lhe Ve e
accompanying truth table (Table 71)mmt“t W T T
output voltage increases in steps—=¢&e e 5
binary digits— equivalent to the magmnitu




80 ANALOGUE

Tshie 7.1

INPUT/QUTPUT AND INTERRUPTS

7 (Analogug
“output

?

R
1]

Digital input

(rom mioro processol
Logic | = V voltx

l aoc =0 'hl"ll["?

Fig. 7.1 Digital-to-analogue converter: outline operation

. e
Analogue
output

vollage

—— —_ — — ———

MICPROPROCESSOR BUS

Fig. 7.2 A DAC driven from a PI/O part

Converters
form.
binary

for eight or more
These are often based

weighted voltage inc
directly to the Output port of
such an dIrangement is show

bits are available in integrated circuit
on & R-2R ladder network to produce
r€Ements, and they may be Cﬂﬁﬂw-'
@ PI/O device, A schematic diagram of
nmm Fig 72

Pr iqi
99ram Example 7. 1- D:grtaf-tu~Analugue Conversion
The Program of Fig 7 2
. E- 7.3 illustrates
SawWtooth Waveform. Iy i5 it DAG

assume - . . T
PorLB of a PI/g which is i " ned that an 8-bit DAC is connected !

N turn addresseq as 12 (hex) [see F’ﬂ'ﬁ"ml -I

process by generating® £

13 Analogue-to-
Digital
Conversion

ANALOGUE INPUT/OUTpyy e )
AND INTERRUPTS 81

Assembly Instructions

MVI A O
ouT 20

MVI A 0D Set contents of A to zers.

ouTr 22 Output SUrTent count.

INR A Increment count

JIMP  COUNT Loop back.

Fig. 7.3 Program Example 7.1

Start count
(A =0)

Fig. 74 Sawtooth waveform

p- 74]. A sawtooth waveform 1s th#f‘ m_:adxl : genet;la&ﬂl_ﬂﬂ bymnsu:g nere-
A-register as a counter and outputting '“-mw& zero, the process
ment. When the contents overflow and retum s

repeats itself, as shown in Fig. 7.4.

= e e - a
The conversion of an analogue 513951 to - mﬂ“ﬂ;‘“;zxm
represent a changing analogue ugntakcamlaﬁ myElungmm
However, the conversion process may sy -

| | 1 r . T;Sll
'l . A m
resulting sampling process 1s illustrated in Fig.

7.3.1 The Shannon Sampling The




g2 ANALOGUE

-
INPUT JOQUTPUT AND INTERRUPTS

AT '|r|l|,"!||'|.'u:',‘

e =—= T'ime

e 75 Signal samplina: binary value represents signal only at i"dicatm

Lmeas

Analogue signal

Reconstruction’

Fig. 7.6 Distortion due to under-sampling

analogue signal by sampling it too infrequently. The effect of under-
sampling 18 shown in Fig. 7.6

The Shannon sampling theorem provides that an analogue signil
can be completely reconstructed if it is sampled at a uniform rafe
greater than twice the highest frequency component of the ongind

o ; g - .
signal. It is usual to sample a signal much more frequently than this
theoretical minimum

Fig. 7.6 shows a reconstructed signal which clearly has frequency

:;-‘"W*’-Hitﬂl% 1ot present in the onginal signal due to under-sampling
S privce A o i 1 3 .
PIOCess is called aliasing. Care must be taken to ensure thit

Sysle - anc ' '
“\hi‘-:.:n Pertormance will not he impaired by this type of distortion
€0 performing analogue-to-digital conversion.

132 A Cuunter-based ADC

An i.iniih_'lﬂ Yyl ot s -
gue-to-digital converter employs a digital-to-analogue €0

verter in a feedback
i ¢k loop. One o : ! -
shown in Fig. 77 P- One common and INExXpensive scheme B

Clock

Binary
Counter

Fig. 7.7 A counter-based ADC

The sequence of operation is as follows. The counter is imtially
reset at the start of a conversion. Counter clock pulses are then
enabled until the DAC output just exceeds the analogue input, ;
causing the comparator to inhibit further counter clock pulses. The
digital representation of the analogue input is then the binary number |

output of the counter. | | I
During conversion the DAC output follows a stepped ramp (simi-

lar to that of Fig. 7.4) until it reaches a ?31_11@: appmmfmat‘ely cq_uzfl_ o :
the analogue input of the circuit. This type of conversion Ii __slnw gﬂe ﬂ |
the DAC has to be allowed to settle aft_er.sach.c:l_oc % ts"paﬂ; .
conversion times are around 1 numsecond Even s_!nwer.,,m l;_ u:ed = |
sarily so, are ADCs based on the dual-ramp te:ch_nu_iluc? e el ¥ |

‘ has useful “noise” rejecuon i

121 1 erter
digital voltmeters. This type ﬂf*mm:'e as £ £ S
properties if the slow conversion ume (20200 millisecon )

tolerated.

7.3.3 Successive Approximation ADC e
This type of converter is widely uS:? ‘:hﬂ_l f::I  approximating
quired. The basic technique is ONE th% 3 vf‘“i;  time in such 3
value for the digital output. altering this VIR

way as to approach the correct mq;:;t W s imple-
Converters are widely ﬁ"ﬂ'lahhm oot times
ment this successive approXimaiivs _.E'_tgd

range from subnﬁcmm
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Fig. 7.10 4-bjt approximation sequences

im

. inlement analogue-to-digial conversion .
Hatish. . anslathine witiwarlir Snd B AT _ - ‘ﬂﬂg 2 Lipward decision f DAC QUTpUt nOt greater than i
A :_-'-' vk SYRES L :ﬁ_- L LW .1'| el A iy " | l_'l._llu‘t;! ,'.[‘]T_‘_\i 1 hL‘\ ai}pr‘mch " g ‘nm‘.

"L'i';\-ti!'i L‘\.i'”!‘nnl”'l::}: :}h"::‘. :_L\ AN

gain an understanding of the SUCCessive Downward decision if DAC output grester than input.
dpproximation felhnique and as an exercise in appreciating the

are possible in a micrm“nmpum
syslem. An outhne of the hardware for an S-bit converter is ‘ihﬂ‘ﬁ}ﬂ I

LR |
st

1ardware-software trade-offs that

[he algonthm consists essentially of setting first the most signific-
ant bit of the DAC input to | and then succsssive bits in order of
signihicance. At each step the comparator output is examined 1o see if
the resulting DAC output is greater than or less than the analogue
imput. I it 1s greater, the current bit that is being tested is reset and
the next most significant bit tested. If it is less, the bit being tested is
held at 1 and the next bit is tested. The process repeats until all bus
have been tested. A flowchart for the algonthm s shown 18 Ff%» 7.9
and the approximation sequence for a 4-bit converter is givea in Fig.
7.10. |

An alternative statement of the algorithm is given htl&*ﬂmiﬂ? w
illustrate a possible alternitive representation of an algonthm.

i:"_‘:‘\

L]
-

Successive Approximation Algonthm ,
Start with m.s.b. of DAC set to 1, all other bits .
REPEAT

Quiput DAC dara.
Read comparator outpat. e dAe
IF DAC output is greater cthﬂ l:!:‘@"-' pat
THEN reset current DAC test 9,
Set next most signiﬁc_am- blt‘-"f D&Cdﬂm«
UNTIL all DAC data bits haye been tested.

Current DAC fhti'isim?-w;al

N 79 Sueer
I ADPCON EMation ﬁmwha*t




7.4

g6 ANALOGUE INPUT

Interrupts

JOUTPUT AND INTERRUPTS

program Example 7.2 Analogue-to-Digital Conversion

7.11 implements the above successive Approy;
assumes that the S-bit DAU 15 connected 1O popy

mation algorithm. It _ |
¢l " aralc yut 18 connected to ,
I% L".if 1 '[&IJJ{'} und IhL‘- L{‘jrﬂi-‘drdll\r l”ll‘ L L™ L thc m.ﬁ; b"

(bit 7) of port A. The comparator output is assumed high (logical 1)

the DAC output is greater than the analogue mput and low “ngi{:a]
0) if it is less than the analogue input. The processor registers re

The program of Fig,

used as follows:

A 1s a working register

B contains the current DAC data

C contains the present test bit

D contains the bit count,

A number of additional devices are available which are frequent)y
used for interfacing analogue devices to a microcomputer. Three U'I
these devices are mentioned below

1 Sample and hold circuits. These are used (0 sample a signal at 2
precise time and hold the value constant during the conversion
Proccess.

2  Analogue mulnplexers. These devices permit one analogue

signal out of several to be selected by logical control signals,

Real-time clock. Signal sampling and construction is often

performed in conjunction with an interrupt driven real-time

clock, This device relieves the processor of the burden of
computing time delays.

fad

Typically the INput and OUTput instructions of a MICrOProcessor
hax-u_ an execution time of a few microseconds. In the majority of
uppllwum'_ms, however, the controlled input and output devices
\Penpherals) operate at a much slower rate: for example, a Keypad
may be pressed once every few seconds, or a control valve mdy
change stale, say, once every minute. It is potentially inappropriate
for the microprocessor to continuously monitor the state of the
ICTOPrOCessor might then spend most of the
¢ h.‘nl}p. waiting for a change of state to ocuur,
'CEssing could-be carried out.

* 9T not this is a prablem depends on the application; there

: S50 1ime (o permi T fent of
the microprocessor ) permit this inefficient use

an input Iﬁuking
implement.

control valve since the m
Lime in a non-productiy
and hence no other prc

Whethe
may be

for a Change of stat

us L\‘r, - . r | l_u'
If there is not 4n be a simple procedure

ddequate {ime available, a similar effect

| it

fisem

|

-

REPEAT

If there is time available, repeatedly examining

COMZ

bly Instructions Commenyy

MVI A, 02 Initiafise P/ ~ pory & it

our 20

Port B ourput

MVI A, 80

MOV B, A Initialise DAC data,

MOV C, A Initialise DAC test bt 1

MVI D, OB Initialise bit count.

ouT 22 Output DAC data.

IN 2] Read comparator oulput,

ANA A Set flags,

o COMZ Jump if comparator autput zero,

XRA C Reset current DAC fest hit. ‘ J
MOV B, A Save DAC dala, |
MOV A, C i
RAR Update DAC test bit, 'l

MOV C, A
B

ORA Set next ma. bit of DAC data.

DCR D Decrement bit count

JNZ REPEAT Jump if not Zero.

Fig. 7.11 Program Example 7.2

can be obtained by causing the MicTopro

I
status of a peripheral directly. = 0 oo interrapt, 10
Most microprocessors provide a [am:-::?‘- Hmmﬂ ssor when It
enable a peripheral device 10 inmmmwr; scessor performs:
wishes to transfer data. Tﬂ:lcam’ﬁ:m m | Ar i-a
useful processing task until it receives 80 HEEL ooprosesor | B
peripheral device. On receipt of the m!ﬁ'm -.-.J_m"--“ g |

temporarily suspends .its.,eumméammy,.tpam_

e e e R
Or output operation, and 'Ihlltl returns | ,—“P

Al [!LJ

cessor 10 respond (o the |

£
— =

{ . .
il
HIs

- | Cw 1=
_| . ,'-'l | ||U|
,||'-‘ B

S e
1

PipEiibe e

II . E———




88 ANALOGUE INPUT/OUTPUT AND INTERRUPTS

| —— e ——
Mazin Program Running l

I_

 Return
| ram mtermupt

Intermupt
L received

!

—
R“.F‘. [n[;r‘fll{‘!
Service Routine

Fig. 7.12 Interrupt service

program which performs this operation i1s known therefore g the
interrupt service routine and its activation is illustrated in Fig. 7.12

In order 1o implement this scheme, on receipt of an interrup; the
microprocessor must perform a number of tasks:

1 Save the contents of the program counter —usually an e
system stack —so that 1t can return to the correct poInt i the
main program after the interrupt has been serviced.

Load the program counter with the start address (the memon
location which holds the first instruction) of the interrupt -
¥Vicc roufine

Run the interrupt service routine.

Note: a) the first group of instructions in the routine usually
Saves the current contents (again on the system stack) of lh::ts;'
processor registers which are used by the service routine itsell
This ensures that the action of the interrupted program is nol
corrupted. Similarly at the end of the routine these contents are
restored.

sty e o roesin e s
i TuplL, to indicate the interrupt has been
Finally, return control

the saved contents ¢
stack.

O the interrupted program by restoring
f the program counter from the system

Prog Famming with Interru pts

An important Consider
4n interrupt seryice routy
M3y be generated and th

Hlftin _th:n wrjli,ng d program Whil:h mlﬂﬁﬁ-
ne is Eher frequency at which the interruptt
- € g:isnc1atad processing time required @

€ MICroprocessor is overloaded if !ﬁﬂmd

sC

rvice each interrupt,

ANALOGUE INPUT/OUTPUT Ane
8

genecration Of Interrupts is such
cervice them all. It is essential that
time both to pe :

each interrupt,

Table Address + 0

+ 1

Table Offsat

Fig. 7.13 Circular buffer

To ensure that this is the case, it Is necessary to estimate the m
run time of each code segment - main pProgram andintur_n:tpt “mm
routine(s) — by summing the individual instruction execution fmes i
each segment together. The manufaciurer mmfm& proviges tl;
execution time for each machine instruction. TWIM3+MHMW |
machine clock cycles required to execute each instruction is speciied
by the manufacturer and hence, because the time fercuhﬁ_ﬁ
known — this is determined by the l}'Pe-‘ﬂ'dnfk' mﬂ ba_“s s
is an easy task to determine the execununnmﬂf #m wﬁeﬁ wﬁm i

As an example, consider an intml_-‘-:tls_ - m““""" . FEo )
activated reads a value from an input port and < a circular
memory. Typically, the table may bﬁmmﬂ:;;‘- -
which always contains,thﬁ'lﬂﬁts"ﬁ}f@i@fﬂ"@' RS
shown in Fig. 7.13. Assuma_.th'atihﬁfm IS Gl e
the values in the table togcthﬂfmtﬁ |
values), and outputs this value to an GEEEE-
complete program is therefore as shown |
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15 Multiple
aterrupts

in this example,
(pilerrupts for bath ”'II.: maimn

average value and also the interny
slue into the table. Thus if the
Program s, nay LM ws and L

(e SO0 s, As thée amount of Pff’wlﬁng time -

cement IDCreases l::‘.[H:i."iu."}‘ i[ the.n,-, n e gm

ource - the corresponding rate at which ;
n 5
vill be reduced. lerrupt

I'he above scheme illustrates the 2etions
munl carry out on receipt

wiich the MICTOPEOCES T
of a single imterrupt. In many applicaticons.
however, the IMICTOProcessor may requi]"c to EE_FHII'I‘}! a number of
mput or output devices each with s own in{gﬂuln capabﬂnym
[ntcl BORS, for example, is provided with five separate interrup input
lines. When an interrupt 18 received, the MUCTOPTOCEWOT Can automat-
ically determine from which dévice the interrupt has been sent since
115 caused 1o branch 10 a different fixed dedicated location in
memory for each of the hve interrupt hines, These dedicated locatons
arc known 4s the veclor addresses and for the Intel BURS are o
shown in the table of Fig. 7.15,

Interrupt Inpul Vector Address

HET 4.5 (TRAP) 0024 (hex)
RST 5.5 002¢
RST 6.5 0034
RST 7.5

INTR

Lw "EY
= Irg

. "y
" L




and s d}’“-d?!& i-cn.;b.

ecety ,,1 The three [
Y whnen the mltrﬂprﬂcmw*
- ":": rrd I‘lﬁ‘-

[
%

Jetermine when mtcrrg-u.
ar'r'fJ Even though interrup

ossble [or the programmer w

¥ -
] =Truni

rrupts and therefore preves
This is used, for example, ¥ &

upt s serviced complétely befors
ccognised. The interrupt enable fas

= -
L Fpe” WFiF

eessor of a valid interrupt,

interrupt Masks

[nterrupt Ecable Fig

Fig. 7.16

M Feghstier format

The statgs
held in the
-FiE 7y 16

of the interry
!J' Eriab = - !
IM. FEgIster of the . ﬂdg and the three mask e

Processor and its format is shown if

=

t lozded with the Tequired mack
. opificant bit ‘;)‘j"sﬂ';lﬂ“i !ﬂeihcrird!a I

RIM (Read Interrupt Mask)

After 2 RIM instruction. the least sssmficans three bits of the A-
ﬁ.._;-;,u-__-._f;—_:- indicate the state of the comresponding mask it

7 5.1 Interrupt Priority Levels
Since the MICFOPTOCESSOr can only SeIvice One MatsITept 2t 2 e, ns
necessary for the programmer. when Writing cach mieaupt, 1o deode
the r:ian' priority of each interrupt and Beace comtzolled devxe.
For instance. an nterrupt Intﬁcmmgana]armmcﬁmm&i&m:z
higher priority and hence precedence oves the service of aa mierrapt
from a device operating normally. e
To illustrate the use of priority assignment of different mterrupt

inputs, assume the following assignment scheme: |

TRAP  power fallure Hi

RST 7.5 over-temperature alarm 1

RST 6.5 real-time clock

RST 5.5 read new temperatureset 1O

value

In the Intel 8085 the TRAP interrupl has the |
non-maskable. This means that it will 31’“"5‘
mediately it occurs and s therefore

alarm conditions such as power failure 3:“,

other interrupts, RST 7. 5, 6.5 and 5-5' .
the order indicated above. This ¢ ka\ .

three interrupts ogcur simultd ﬂ ilﬂ: nﬁ: ne cl
the over-temperature alarm. th# cnally the 1

discussed in detail in m 3]4- M
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If a lower priorily nterrupt routing has started before the hig)
level interrupt. OCCurs the latter will only be recognised thngm
currently running routine re-enables nterrupts (EI) and resets ::ﬂ
appropriate mask bil (SIM). It 15 therelore possible for the Proprs ;
mer 1o determine when to allow |h'.:' |‘J'rn"u.'1_‘_‘-_.lknr o FCCognse lljrt}ml
interrupts within each interrupl service r.:llJIJl]t.’. Hence n the a]}.‘:?r
example, at the start of the RST 6.5 service routine, the pml.lfﬂlnn:-c
would typically reset the 7.5 mterruptl mask and set the 5.5 and rL:
masks before giving the enable interrupt instruction. This woy]g th:;-h
allow RST 7.5 interrupts to be immediately recognised (and hen:
interrupt the RST 6.5 service routine) but will delay inh‘:rrupts on th:.:
RST 5.5 and 6.5 lines from being recognised. At the end of fhe
routine. the programmer would then reset both mask bits to allow
Interrupts irom either source 1o be recognmised. This s ShﬂWﬂ diz-
grammatically in kig, 7.17 and the instructions to implement it are given

|8

in Fig. 7

RST 6.5 RST 7.5 TRAF RST 5 5

MAIN PROGRAM

!

HST 5.5 ISR

BST 6.5 18R

KST 7.5 ISR

AP ISR

' ]Huuuiny

;.'1'.ta pended

Fi .
a 717 Priaritorige Interruptg

Assembly Instructiong

Main
Program Q

5.5 Interrupt
Service Routing ¢

6.5 Interrupt
Service Ruu[ineﬁ

1.5 Interrupt

BEGIN:

ISR 5.5:

Service Routing ﬁ

L.

and enable 6.5 and 7 5
mizrrupts.

| Disable 5.5 and 65

intérrupts and
¢nable 7.5 infemupts

| Dissble 5.5, 6.5 and 75
 ((intermipts.

Ill - I .|I - . L
" I e DT P
ot SRS e S
T S g LI O
ST

"
]




¥ Oy rr..lhll.ll

nsiriciions

Comments

-

Inmihalist
Segment

/

Main

Program

Interrupl
Service
Rouline

ADC
Subroutine

Aldrm

Subroutine =

.

[ LooP

:

L

1

-

[ALARM- ~T

LXI  SP, 20C2
LXI H. 2040
MVI A, 08 I
SIM J
MVI M,

El

MOV A, M ]
CPI  THRES f
CP  ALARM
IMP  LOOP
PUSH PSW L
PUSH B

PUSH D
CALL ADC
MOV M. A
POP D

POP B

POP

RET

|
!
RET

|
!
RET

Fig. 7.19 Program Example 7.3

Initialise memory poimter
Reset interrupt mask hits

Initiahise ADC data
Enable interrupts.

Compare ADC data with ll'lr::ﬁ'.hum
'i.ijl.];' ‘

Call ALARM subroutinge if result
posihive. i
Continue

SAve registers

Perform A to B conversion

Store ADC data in Memory

Restore registers

Return 1o interrupted program.

As program example 7.2.

Rurum_ to calling program with
digitised value in A-register.

Unspecified subroutine to indicate
alarm threshold exceeded (eg
Nash LED),

Initialise. stack l“‘l[“ur\\

program Example 7.3: Interrupts

o

ANALOGUE INPUT/OUTPUT A
- AL 7 A

The program example of Fig. 7.19 is imﬁ'ﬁded-m-ii- o

4 microprocessor with an interrupt. The
area of memory as a stack and resets the
continuously compares the data return
example the successive approximate p
preset threshold value (THRES). If
ceeded, subroutine ALARM is called which is
unspecified way, to indicate that this condition

this value i

digital conversion is performed on receipt of an int

7.5 interrupt line. The instruction IMP [SR must
in memory starting at the interrupt vector addr

Exercises

Program fir ﬂmlim an

ample 7,2 - with 5

-~

equalled or ex.

CXIsts,

ess 003C(hex)

7.1 Modify the assembly language program of example ?-;l.tﬁ-m&;;mh_
waveform, both positive and negative ramps. i
Modify program example 7.1 (0 make the ramp rate selectable by & digital
value read from a set of eight switches connected (o port A of the PLO.
Assuming an average instruction execution time of 3.0 us determine the
conversion time of the 8-bit ADC program listed in program example 7.2
Modify program example 7.3 so that a LED indicator connected to a P10 wall
alternately turn on and then off when the threshold value has been exceeded.




8.1

8 Application Examples

Introduction

8.2 Basic
Sequencing

I'his chapter 1s intended to demonstrate how a ”“CFGPTGCEHKH

] ul”h
e be used iy
a variety ol diflerent applications. These applications arc‘jﬂa“'wﬂhln

a simplified way to present application programming lEL‘hniquEg In &
direct a way as possible. The frst two examples are concerned

the aid of n|1un1hfr1ldehH1h1nul11urﬂﬁhcrﬂltjuvlcc5,rnay

With

sequence controllers. The third example js a digital clock for which

the microprocessor performs the complete timing sequence ang
drives a numeric display directly with simple digital outputs, The Lise
of o digital-to-analogue converter is demonstrated in the fourt
cw;;m'tph-' which illustrates the use of a MICTOProcessor Lo generale
waveforms typical of those used in many electronic systems. The fipal
example uses an analogue-to-digital converter to monitor the outpi|

of a temperature transducer in 2 microprocessor-based temperature
controller

Chapter 6 introduced the Instructions provided by a MICrOProCessor

‘O Input and output logical data to or from an external device 4nd
4150 showed how a Programmable input/output (P1/O) port may be
used to provide the necessary iutuhinﬂ_ and isolation functions.

In many industrial applications a logical input may be derived from
a thermostat. indicating whether or not @ certain temp-
Or perhaps a function selection switch oo
ndicating that a certain mode of operali
logical outputs may be used to activate a reldy
the state - ON o OFF - of a pump or heate!

Lor example.
Erature has been reached,
the equipment fron panel
IS required. similarly,
which in turn controls
for example,

! I.“ Mustrate a simple application of this type, which uses ol
Ogical outputs ¢ it

nsider a basie sequencer. Typically, a sequence!

APPLCATION Biappres g

Lctivates a number of devicey i_n a preset sequence
delay between cach NEWCHENIss State. For Example, a “ﬂt‘uﬂlt
sequencer changes the state of each lighi'in 3 gep o traffic lights in 5
preset sequence wnhﬂ a time delay between each stafe, 3L

A MICTOPTOCESSOT is l_ls.cd as 4 basic SeqUEnce contre Ay
ing the appropriate lngu;‘:’al output lii:lﬁs on or off - logieal | or O=in
he specified sequence with the required fime delay &‘Wﬁﬁﬁﬁﬁu
computed by the microprocessor,

g 2.1 A Traffic Light Sequencer

R EETEART B

As an example of a basic sequencer ansid‘ar the sequencing of a set of
;Filllit‘ lights. The U.K. sequence is: red; red ané"mhf;;mﬂhm
yreen: amber; red again; ete. The cﬂnlmllfx} road jurction is shown
g Fig, %.1. It compnrses the four roads labelled Nuﬂ__h, South, East
1:“] \1’:.—:«1 and a set of traffic lights at each corner (RA._G};_

North

o»x
.=

Fig. 8.1 Controlled road junction

North and South chﬂﬂgﬂmtmmmm@m RNQ ST
seen by traffic approaching fFOEE =2

..
pia) =
I -

same sequence. - ]ler.,qf_l"usﬁ': plem
The sequence the controliet = are used du

Note that two different HEk 5 o
cycle.

__ _
N i

P

= "
P - "

- ——

p— N e Ry




100 APPLICATION EXAMPLES

Program Example 8.1: Traffic Light Sequence

The sequence of Fig. 8.2 is presented in a computer-compayip ;
€ for

by the state tablé given in Table 8.1. Note that two ﬁag bit
S hac
‘“E

been used to indicate if the delay following the respective
slate

delay 1 (D1) or delay 2 (D2). (Only one flag is strictly necessy
Y. In

Is

the table a 1 indicates the corresponding light should be ON dnd
d (]

indicates the light should be OFF

Fig. 82 Traffic light sequence
Detay 1= y
y long delay between overall direction changes (~2 mins)

Delay 2=short delay it
ort delay between transitional light settings (~3 secs)

Table 8.1 Traffic light state table

—
| e ——

N/ |
State 2 E/W Delay 7

-:u
b=
&

=)
>
o

D1 D2

—_—

- DO =
OO0 =000 o
Qo000
- 5O

1
0
0
0
1
0
0
0

U
1
1
1
0
1
1
i

/"“Jﬂ]mpﬁWMHG
OO0

|
|

--.___'—I—I

APPLCATION Exaomeics 11

The sequencer can be implemented R o
memory and stepping through it. The appromns; *;::Thi'“ :t:tfemh

are then output, writing the Appropriate delay d gh
rhis is shown in the flowchart of Fig. 83, ?’hhm bﬂ“ﬂim

that the most significant three bits of port A of an Tnret m
Jevice drive the North/South lights (RAG) and m:'_'ﬂ::msgf PIIO
.nt three bits drive the East/West lights (RA'G), signific-
The delay times are implemented in two sta With _
state, a delay of D2 is executed and then, if mqﬁ'll‘éd,a M&
of D1-D2 is executed. (A program implementing thhhﬁeh;iﬁ@

8.4.)

( BEGIN )

[nitialise stack pointer.
[nitialise port A a8

outpul.

Initialise pointer
to start of state table.

;/ Output new stale. /

Delay time 2
(short delay).

Delay time |
required?

ol

Increment memory
pointer fo next
state address.

l

End of table?
i

Tra 2
’ = 1
' i

i
: s Ak _L-': |

¥
e -
|




<

Commenis

2083 DI
2084 32
2085 51
2086: 9]
2087 g4

[ dsxembl) [y fruchions
1xi SP, 20C2
MV A D}
ouT 20
SEQ LXI H, 2080
NEWSTATE MOV A, M
QUT 21
CALL DELAY2
ANI 02
17 NEXT
CALL DELAY!
NEXT INX H
MOV A, L
CPI 88
INZ NEWSTATE
IMP  SEQ
DELAY] :
'
RET
DELAYZ

=

Initialise stack pointer.
Initialise port A a8 outpul.

[nitialise memory pointer to starg
of state table

Update state

Short delay subrouline,

Is DI required?

No: skip DI «call

Yes: call Jong delay subroutine.

Update memaory pointer.
End of tahle?

No: loop for next state.

Yes: loop to start of table.

Delay subroutines similar to
those of Program Example 5.3

Table of light states.

102

Fig. 84 Program Example 8.1

g GO

qditional

In some sequencing applications, instead
ring after a preset delay. a change of g
occurrence of an external eveny:
reaching a certain level or temperatyr
conditional sequencing. The state g
monitored by a microprocessor S1 .
on a particular logical input line wais:

8.3.1 A Washing Machine Controller

A washing machine controller is a condity
involves lmll:s external condition mputs and internal preset time.
lays. ]_‘he pru_]ciples encompassed by this exam"pl'e aré ﬁpplic“;:{g#ﬁ;
many industrial sequencer applications. The controlled écvlees tmer
faced to the logical outputs and the input condition signals for ;
simplified controller are shown in Table 8.2, A typical ééqﬂénﬁ of
actions for the controller is therefore as given in Table 8.3. This
sequence can be directly translated into the state table of Table 8.4
This table is arranged such that the next entry in the table after a
state with no time delay is the necessary input condition information.

onal sequencer whick

Table 8.2 Controlled devices and logical inputs for :
washing machine : X

Logical outputs Controlled device

Pump motor (for emptying tubl

0 Hot water control valve | e

1 Cold water control valve T N
2 Water heater o S
3 Tub motor—wash/rinse speed | - 'J“ .
4 1] ==

5

Tub motor - spin speed. iy
B . -y Tl
Logical inputs  Significance [ 'r_; '.'r."‘l ” IllIn.' o
1 Tub full I' = 5 ol
p II ) = |l“.I o Ijl -1 ™ | u"é

2 Water thermostat '

i ———— e H= e i
- -III:;;: I ': :::";l“ :='.
= 4
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\ yram corresponding 1O the flowchart of F'F—' 8.5 is
A ["Irl ..I" [y

STAR1T LXI

_ re

. %7 The program terminates with a H{\LT i"i.‘:lr::‘?::d MV
“ I'r,',._. : .I . nrogram is achieved by a processor RESET With a|] i
restarting 1 I & ;{l"}l:[ vector ltlcmﬂf)r add?’lp | OuT
tﬁm,:: - LX]
_ : M0Ces,. | ooy,
control functions are reset. It 15 ;'HIH‘.IHI‘IH U:*?f:t_j Lo establigh the NEWSTATE MOV
processor in a known condition after the application of Power.

< : truction at the
START instructior s or AN Tap
(0000{hex)). R]-g}-; 1S 4 Processor inj h ¥ ":ﬂlih{:h ay

! like an enabled RST input, except that varioug P
rather i

OUT

- ANI

——— ot waler control valve

Is delay requjredo
)Z

No; skip 1o conditional #¢lion
—— Cold water control valve

= Water heater

Yes st D2
———= Tub motor (wash/rinse speed)

Yes: compute Dy,

M I ] p—= Pump motor
ICTOPTO eSS

Skip conditional ghion
bus —— Tub motor (Spin speed)

No: then b2

Skip conditional section.

~——— Wilter Jovel , COND Increment state table pointer

o ThermosLit COND Read conditions

Test conditions.
Fig. 86 PI/O signals for washing machine controller Loop until conditions ane met

INCM a H Paint to next state

AL
End of sequency?

8C
8.4 Digital Clock Many

.I'Iiln','r't'};'ll'{=Ecwhl1r dpplications are Ci)l’ll:'fl‘ﬂ.ﬂ'd with performing T L e

Specilic control functions or actions at preset times throughout the

day. For example, an Irrigation control system may require a water

SUpply 1o be turned on af specific intervals, a domestic central heating .

tontroller may require 2 boiler to be switched on at preset times, and | DELAY1; Suh_mplfnt implementing program delay
1ent for this type of application, therefore, 182 : fime DI

often with a displayed output of the curren!

Yes: finish.

Y00n. A basic requiren

real-time digital clock

lime DELAY2 | Submutine implementing delay time:
I'he delay subroutine described earlier in Chapter 5 demonstrated | : 4

how 4 nhnr_t lime delay can be generated with software by executing 8

z-l:mfim-flt Instructions fepetiuvely in 2 loop. Although this 'Ea

“HIYement method for generating 4 single delay, an alternative and

belte st : . N _
“Hermethod for gener £ @ continuous timing function is o s Fig. 8.7 Program Example 8.2

atn
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1ditional hardware device called a programmable ﬂmer.
- aic : - . VB . . 7 :
. v available from most microprocessor manufactyrere Cither
dre now avdlis RN Tles. - : ) : e FPHDC =y
separate devices or combined with other 'melrdm ry .and mput_{““fiﬁut Add1 60T j
i 'u The Intel 8155, for example, IS a single integrated g Uy |
crrouits. i

hich incorporates & programmable timer with a 256x g8 bit Static l
Wi

& . I /output ports. _ = —)
RAM and three programmable input '-”p‘ qp e . = COUNT 007 | RS
Fhe programmable timer within the Intel 8155 is typical of lhesg

= -/
devices. It consists of a 14-bit counter which may h‘e PTOgramme o 'y:s.
senerate either a square wave of a ﬁ::]::cta!jlc period or g tenﬂinal : T
count pulse. The counter operates in Th"f h'"."”?y_ count down Mode Add 1 to SECS and
and counts the “timer input” pulses. The initial Cour}t length iy adiust or decianl
programmable and when the count becomes zero a pulse is generated ——
on the “timer output" line : l

The timer input is normally driven from the microprocessor gener. | e -
ated clock and hence, if this has a period of, say. 0.5 S, the time : IS SECS = 60)? —
interval may be varied up to a maximum of '

% — =

yes
14 1V se () & at 15, Tmee=8.1915 ms l
(2 1)x0.5 ps that s, Tr Reset SECS to 0

t T may be programmed either to stop after the terminal coy Add 1 to MINS and
The timer may prog _ | |
pulse is generated or to continue counting and hence g€nerate a new adjust for decimal.
count pulse every, say, 8.1915 ms. 1

Since the microprocessor clock is normally quite stable. a conve-
nient method of producing a digital clock is to use the programmabhle
Limer to continuously generate a count pulse every, say, Sms and to \
connect the timer output to one of the interrupt input lines (RST 7.5) lm
of the microprocessor. The Interrupt service routine must then count —
the interrupts and convert these first into seconds (after 200 inter- Reset MINS ta 0.

FUpIS) and then into minutes and hours. A suitable flowchart for such Add | to HOURS and
T e : . 0 ' | adjust for decimal.
4 Toutine 1s shown in Fig, 8.8,

IS MINS =602

The routine uses the following symbolic names which correspond |
10 successive locations in RAM:

IS HOURS =247

YONT  men o _ il | /85
COUNT  contains the -urrent number of interrupts since the last l}

change in SECS
SECS contains the two B

Reset HOURS to 0.

CD digits corresponding to seconds.

The contents are incremented by 1 each time COUNT
r€daches 20().

MINS contains the two

: BCD digits corresponding to minutes.
The contents dre incremented by 1 each time SECS
reaches 6f(),

HOURS Contains the
The contents
reaches 6()

W0 BCD dijgits corresponding 1o h““-ﬁf_ Fig. 8.8 Interrupt service routine
are Incremented by 1 each time MINS
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at time in hours and minutes itis possih

the 8155 to drive four BCD-to-seven.
jfecoder drnivers directly. Again these circuits are readily
eCouUlt L . i s 1 | i

{ her of manutacturers and can be used to drive R skie

The latter uses an array of seven light .

' o €mity
ay each decimal digit. The arml‘lgemﬁmn.g
_ ;

To display the curre

o (U
e
the two S-bit ports of

stgﬂwm

from 4 num
segment LED dihplm.
diodes (LEDs) 1O disp!

shown in Fig. 8.9

S—— —ﬁ
BCD to
BCD digit —e seven-segment Sﬂﬁ'ﬂﬂﬁtgmunl
|:r1_-’n1 = ._;]r{":“ll.'j't‘l- LED d[splay
R153 - dnver
i |

Fig. 89 Seven-segment display and driver

Program Example 8.3: Digital Clock

A program for the clock system can now be written. The Program is
made up of three parts: an initialisation segment, the main program,
and an interruplt service routine.

The initialisation segment is run when the system is first switched
on, It mitalises the stack pointer and clears the VArious memory

locations used for COUNT. SECS and MINS to zero. HOURS 5

preset to 12:

| this gives a simple means of starting the clock after
switching

on with the clock programmed to start at noon. (Any
current ume could be preset into these locations by means of a
keypad and a short program.) Ports A and B are then initialised as
Outputs (the timer mode is selected for continuous nperatiﬁn) aﬂﬂ"thﬂ
tmer count length is loaded to produce 5 ms interrupts. Intﬂrrupis
.':il'fr.“lht:ﬂ enabled and the program is run.
m;::ﬁ;‘:il‘“ Pl“n,l_z_rarn1~_~'.1mpl}' Outputs the current time in hours and
4 poris A and B. but clearly additional control funetions

could be included i
d if the clock were i
controlled system. O S "

Fina]_ljr. the Interrupt sery
shown in Fig. 8.8 an
€ach interrupt. The

vl Ice routine implements the flowcharl
f ]hlmplﬁ' updates the current time on receip! of
ollowing addresses are used in the program:

Availih),

[]'.'[t:‘.' J’deftﬂl_\_u_:.
8085 p
ﬁ‘ ~ Data bus
Clock out pur :
RST 7.5 :
'——J—‘ |nl=irupl1r|pu1 #1 {

Fig. 8.10 Digital clock schematic

RAM addresses: -I

20C2 stack pointer
2080 COUNT
2081 SECS

20082 MINS

2083 HOURS

st | 5

8155 addresses: .

Command Register 20 (hex)

Port A data 21

Port B data 22

Low order byte of count length 24
High order byte of count length 25

The program may be stored in any area of memory but an interrupt
vector instruction (JMP ISR) must be stored in the vegtor address
corresponding to the interrupt line used by the timer. f‘ﬂ“ m’? Sy f
MICrOProcessor is reset, it starts program Ek&““ﬁq “I W‘b m‘ _
The instruction at this address should therefore bﬁaiump‘mt@ﬂ@t N } o -
of the initialisation segment. The '!Iﬂﬂllil_e'ﬁf,'_“'; IS W?%GL B :
8.11. In any application using interrupts it is important (o en

interrupts can be serviced at least as quickly as they can ® ISR.
ated. For the clock this means that the interrupt ¢ e
must take less than 5ms to be executed. My A

B | -
Zoa- A -J.I |

1:" II_ H
oy
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Fig. 8.11 Digital clock program

Cammenrs
r--J'!'n .:'.'.'a:lr'lll (TARLS

LXI Sp, 20C2 [nitilise stack pointer, _\-_-\‘\‘

LXI

MV

INX Clear COUNT, SECS and MINS

{0 Zero

MV] ,
INX Is SECS = gn?

MVI
No: END

Preset HOURS to 12, Yes: resat SECS 1o zero.

INX

MV
Interrupt
Service 4

Initialise count length for Sms Routint

inferrupts (0.5 us clock), Add 1 to MINS and adjust
for decimal.

Initialise ports A and B as outpuy
and timer for continuaus operation.

Is MINS = 607

Resel interrupt mask bits. No: END

Yes: reset MINS (o 2ero.

El Enable interrupts:

LXI' H, 2082

MOV A M Load minutes digits into A and

output to port B _ .

OuT 22 Add | to HOURS snd adjust
for decimal. '

Main
Program NX H
MOV A Load hours digits into A and
output to port A

OuUT 21

[s HOURS=24?
IMP  LOOP

PUSH PSW ] g , No END,
PUSH H l—‘ SAVE register contents. e e mmﬁ’ﬂﬁi‘

LXI H, 2080 Add | to COUNT | 1 | e
INR M ) | Eﬁ!ﬂﬁ’.ﬂﬁ’!ﬁgmur& -

+ 1 e |

-
-
| I
- -
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8.5 Waveform
Generation

~ATION EXAMPL ES

example has been chosen to ‘J‘-"“f"*ﬂﬁtr;n'e. firsify
[ A ‘ l

e digital outputs from g mifl‘npn,{; €
: : =2 &,

- analogue form and. secondly, 1o iustrate Iht: use of i }ﬁﬂk I
1n i i LR s . " - ) . o

he latter 15 ”..,.Lpd 111 Mmany MICTOPracessor dpph{:ﬂ“lﬂ"g 'dnd P

ion with the p';.-;wu.-iw hincarisation algorithm also df!'ﬁcn'b' ::I
. Seriye

I'he following
usc of a l].\,i toy convert th
! ‘

1able.

gonjunct .
. particularly useful techmque.

18 '
ive sawtooth wavelorm usin

The gencration Ol @ repeti . y £ a Eimrik-.
binary counter and a DAC was described in Program ERHHIPIE 1]
The A-register within the microprocessor was used asa COUNter ancj
s contents were incremented by unity within & Program Iﬂﬂp_ The
sontents were output to the DAC alter each count incrumcm_

Alternative waveforms may be readily produced by using the
contents of the counter, not to drive the DAC f-.““f'i'-'”}' but nslead I
orovide addresses to CLCCESSiVE Memory _Im‘u_lmns. the contents of
which store the required digital value ‘-%'ll!t:h IS to be Oultput g the
DAC. The contents of the block of successive memaory IL‘rcatiuns, Used
in this way are often referred to as a table and this procedure as 3
table loop-up process. This 15 Hlustrated 1in Fig. 8.12,

To illustrate the above process, consider the generation of a
sinewave. Since the A-register contains 8 bits there dre 2° or 255
count states. Similarly, assume that the DAC also has 8 Bits, and
consequently the S-bit digitised values corresponding 1o each of the
256 count states are first determined and stored in a table comprising
256 successive locations 1in memory as indicated in Fig. 8.13.

A repelifive sinewave can then be generated by simply increment-
ing the contents of the A-register by unity in a program loop, and
using the contents as an offset address to find the corresponding
digitised value in the table, which is then output to the DAC,

Program Example 8.4: Waveform Generation

The following program example generates a repetitive sinewave using
a4 lable look-up process. The table is stored. in memory starting it
address 200010 and register ]'Hlil' I“_ is iﬂill::l“.’it‘:d to “'liﬁ va'lue. Rﬂgiﬁlff
L 1s then used as the 8-bit counter and the combined contents of
register pair HL therefore provides the complete 16-bit memory
address automatically. Moreover, on reaching FF, the contents ol
I'L'?ll'-:it‘r L will return to 00 and hence the combined contents of HL
will return to 2000 and the process will repeat. See Fig. 8.14 for
Program.
I.E:‘lﬂ:;;:ﬁ: 1‘* FE:::I:E ;:::dﬂl-tnd-[hu size of the table shuu_ldlsﬂfﬂ“f'
use, for example, a combined register pat

ds 4 coy . 3 ’ - Tk v .
b ner. Far many applications, however, it is possible to reduc
€ number of luu]-.-up

u'.'\- ] 5P i ] I
INE piecewise linear interpolation

I h
Binary Addr h T'ﬁlhlg o
Counter ddress Digitised
. “L; Values
—

Fig. 8.12 Waveform generation

ble
—

stored 1nta

D hised values

2536:count states

Fig. 8.13 Sinewave table generation

values (and hence the size of the table) b y

Assembly Instructions Corments
MVI A, 01 | -.
Initialise port A asdn putput por. i
ouUT 20 |
- R |
LXI H, 2000 Initialise register pair HL to point (o |
’ sturt of table, (
| Ogp rﬂov ﬁ‘. M I_uﬂk 'I..l'p YﬂIU.E ﬁ‘mﬂ lﬂh‘l&' : l.
OUT 21 Output value to DAC.
INR L Inerement table offset.
JIMP  LOOFP A

Fig. 8.14 Waveform generation hv‘;ﬂ-,xtah_l_ﬁ_lﬂ'f_!_lt-uﬂ_‘

e 10

T e m e

| I _ .! 1 O™ 1l
I,

=

' l_-ll

7 ——

Aim e

11

fu'
y

l
!
.|
& |
b |
{

ek
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8.5.1 Piecewise Linear Interpolation

a4 look-up table storimg relatively few
S L ke Fihge GLithe required function. l'“’-’-‘ffm':dime

spread across the - . R I e o)

'ui"j[ud by a..;r;“;;hl line IHILI[_"H 4110n.

Io illustrate this process k’\'tl‘lﬁli‘lt"! the gcnurallnn of an expﬂn(&mm

aveform using 3 laok-up table Cl.‘.rﬂ'iilli"llli!.j'_‘ only 17 ‘h“HIU'ES “ﬂ:{tead of this !‘,__.’,”““.ing each itﬂfalil}n

15p), The function 1§ t‘i‘jjlﬁldeﬂq ﬁPDI'i‘*xlmately ﬁlltﬂ!’ ' ;

hetween adjacent values as shown ]:I‘I Fig. H.I__‘\. . — ment value i held

‘o 17 stored values are often referred to uh. chords and the fifteey divided by 16 to form each interm d'-.and the combined contents are

' between adjacent chords are L‘-.':-l-“-'-“:d steps. The fifyeg, . ['lfll'li.‘i].'irlﬂ by shiftire ke l':urren{t': tatle value. This is accomplished

intermediate values 1“”-“"'1”_] arjacen’ dmr.d \aiuc~5 s ﬂbtaiﬂﬂd by right but, Rint:TE no Ehhifl Instructj m.CTEmenE Value four places 1o the

first evaluating the chord difference (that 1s the d.lﬂere"cﬂ betwee, this process is performed i e ot available with Tegister pairs,
adjacent lower and higher flmr.d values) and :1]UITI1PI}‘Ing this by the _-].hi: ,_.ur}:m; gL v:] a S'EParate subroutine.

step number divided by 16. The complete function value js they ue 15 passed to the subroutine in Tegister

“dding this to the lower chord value as in Fig. 8i¢ pair BC ind the 8-bit result of the division operation is retumed o
5 | register A. |

Thus, if (B) = 0X (hex) (m.s. 4 b; |
(C) =YZ l‘.hex)]( i SR e aaG)

then (A) —result=XY

A flowchart for the subroutine is shown in Fig. 8.17 and the
corresponding program is given in Fig, 8.18,

A flowchart for the complete program using this subroutine is
shown in Fig. 8.19. The corresponding program for the Bowchart of
Fig. 8.19 is given in Fig. 8.20. The register usage is:

HIL. = Table Address (initialised to 2080 hex)
SP = Stack Pointer (initialised to 20C2 hex)
BC = Current Increment Value

Sample points > D = Chord Difference

| E = Step Count

lhe following program E€nerates
A table look-up process and precew;s
Valug, above. The program does not actyal
cach intermediate value, but jnste
value (chord difference % n) and s

- w " l.l'
This involyes having

are then cals

as l'qn_'\, ii‘i“'H]"u

values

abtained by

stordd In tnhli

-
-
—

Ly iged Lise

Fig. 815 Piecewise linear interpolation
DIV

= Higher chord value |
' Shift (B) 4 placesleft i.e (B) = X0

il > nienpdist s Ehs |  Mask off lower 4 bits of (C) Le, (€) = Y0

e Shift (C) 4 places right ie. (C) — 0OY

|
—_ T —=—— Loawer chord value

Logical OR (B) and (C) together ie. (A)= XY

Fig 8.16 Linear interpolation process :
chnrlr?tj:f?:rs:l’:[e ‘-’zl_ue = lower chord value + chord difference # n/1BwheE N
“ . 5, SN
'aher chord valse — lower chord valte Fig. 8.17 Flowchart for diulﬁa&hm_sﬁ!lﬁf““ﬁ“?
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RLC
RIL
RLC
MON
MOV
ANI
RR(
HRR(
KRR(
RRI
ORA

POP

RET

Fig. B.18 Program

e L ymricHis __--‘-H“-
LS
= = __‘_‘--__‘.\
B Save Current Increment Vallie pn Slack,
A B (R} = OX
) Rotate D4 ploces lefr e (B) = X0
B. A
A (C)= XL
0
Mask all 1.s. 4 bits of € and rotate
4 places neht
(A)Y=0%
(A} = (A) OR (B) =
0 Restore Current Increment Value from stack
H

carresponding to Fig, 8.17

Set Current Increment Value to zero. B

Read Lower and Higher Chord Values from tahle

Compute Chord Difference.

Init

APPLICATION EXAMPLES 119
(BEGIN)
Imitialise Table Offset 1o Zero I
|’

| —-.-_._________-“_J

ulise Step Count to 15,

Add Chord Difference to Temporary
Increment Value, '

Divide result by 16 (subroutine DIV)
and add to Lower Chord Value.

Output result to DAC,

Decrement Step Count

Fig. 8.19 Flowchart for Program Example 85

10 7 IsStepCount=07 )
i
l}'us
L Increment Table Offset
' no
{ Is Offset = 167 }

i




apph

P [his application example s e nded
rempef processor, with the addition of an -
ADC). can be used a8 2 process con
system has been selected bt the s
different processes. A simple ON
although 1t is possible 10 extend

oller

5V

The required lemperature j assumed
stored in a location in RAM Smnhﬂy the
required temperature, AT, are also assumed voss
Obtain Higher Chord Valve from Table SEECDY RA;\I[ Iﬁatiﬂn. A schematic di
shown in Fig. 8.21

The controlled temperature is monitored by & -
analogue voltage proportional to the temperatare — from 2 ierisings
Lower Chord Vzalue to form and associated ampliticr, for example —and mwh'ﬂ-
Chord Difference and save in D. tage into an 8-bit digital value by means of 20 ADC.

The supply to the heater s controlled by 2 ungle disital outpst
from the MICTOProcessor via a2 snitable driver Iﬁﬂlﬁthm 1
switches the heater on, a logical 0 smitches the beater off. Thus, # the
input temperature T, is greater than (T +AT) the bester s tormed
off, whilst if the input temperature is less than (T—AT) the beater is
turned on. This control action = Sﬂmm&nsedm&cwﬂ?g
Add Chord Difference to 1651t S22
Current Increment Value,

~urrent Increment Value by
add to Lower Chord Valus.

o U

o
—
Y by

% .

0 - )

Output vzlue to DAC.

N AN

RN

——
i e e e e

-

Test if Step Count = 0

Increment Table Offset and ' Power s
test if = 16. N R

10

-~
-

CONT :
No — continue

START

Tes — reinitialise Table Offset and = L
repeat. Fig. 8.21 Temperature mnﬂﬁw o e

—— N L
P8-829 Program Exampie 8.5 . ' S
o ARE

a
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195 APPLICATION EXAMPLE

L The purpose of this chapter has heen 1o |
Su processor application examples and the

lustrate som
: T It assoct
techniques. The examples have been = SsOCiated

€ basic micro-
. I’fﬂgramming.
esent 1 = |

without a plethora of refinements which a]tﬁduul'n 5 El“_"ﬁh'.elal form
practical system. mask the essenti; ' gh fecessary in a

Starl conversion and

wall sanvert ume

|

- Reud diw tised il \Ul]cn ln]plemﬂnleiﬂ Wi ':h 2 r.llicruprﬂcmot' a s’equmcefﬂﬂﬂﬁiﬁmm .
emersture fromADL tially of a program which simply steps thrﬂugh the relevant seqy q-
of output states with either a computed :

: - Ime delay between
state — basic sequencing —or & delay whilst the relevan each

v t input condi-
tion occurs — conditional sequencing. i =

LIONS.

The digital clock application is in mary ways similar. In this case
) _ —~ the delay between each new output state is constant and is required
Switch healer {ON lin =1 r"i'," tAT)? ) |

e |

| to be an exact real-time period. The new output state is thus.
l computed at each step.

| : A further development of this concept involves converting the
| Switeh heater OFF digital output states into an  analogue quantity. The m'uiting
_ r ' analogue waveform may be generated from either a fully tabulated
set of output states —table look-up - or by using intermediate compu-
tation to reduce the table size - linéar interpolation-or indeed by
fully computing each required output state - Program Example 1.1
The temperature controller provides an example of an application
where the output state is dependent on dn analogue input condition.

Fig. 8.22 Temperature controller flowchart

Program Example 8.5: Temperature Controller

Uhe program given in Fig. 8.23 implements the flowchart of Fig
BI%. The rs WA AR - :
Y X ll‘li._. TLl_lUIrLll tt.'[n‘rlu[',"”_“]‘{: I"'f 15 HHHUI‘I‘EEd to bc stnred mn
memory location' 2080 and the digitised tolerance limit, AT, in

2081, Registers B and C are used to hold the upper

location
(T ATV + T - Sl
i _'”i and lower (T,,~AT) temperature limits respectively and
n.;;xi_u D_:a used to hold the current state of port B.
or == [ ;
Im”_:nl;\ ala Programmed as an input port and port B as an output
cnmj- -'“ -0t port B s pulsed by software to start the ADC
CIS10n eycle and bit 1 is used o drive the supply relay 10 the
heater. suppty ¥
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—

|

ADD

MVI

QL]
MV
MOV

OUT
START MOV

ORI
OLf]
ANI

OouUT

I

——

H

A, 02

‘I'l'rl

. 00

o I |

Ul

02

|

HTON

START

(Rt
F_ LX] H, 2080
F
f MOV A, M Read 7 0r into A and save in i

Form !.'rh.! - AT and sLore 1n B.

5 Form (T,.r + AT) and store in 1

Initialise Port A as inpul
J Port B as output.

switch heater OFF

Recall state of Port B

Start ADC
Switch bit 0 of|

] switch hit 0 an
f J
l

|

Wail convérsion lLime.

Read F.m irom ADC,

3 Ty, < (T,py = AT), jump to
switch heater on (HTON).

DELAY

CMP (¢ ]
JC  START \
JZ  START
MVI
MOV D, A S

OuUT 232

MOV D, A

IMP START

RET

|
PLICATION Exampies 1%

WT, < fTrcI* &n, jyrnp.tu-.ﬂ&n_

Switch fieater OFF

Switch hester ON

Time delay subroutine |see
Program Example 5 3), delay qual
'G Or greater than converion time

of ADC

Fig. 8.23

Program Example 85
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9.2 Single Boarg
Systems

Although many microprocessor applications require only a Miifimg]
amount of hardware and software for the actual working system il?
Inecessan t,ll.ll'lﬂg;1 the Lfi;“»-c,'fﬂ["vn*tr.;‘l‘ui [\h'dm;: Of A Prﬂ‘dllfl 1O hé‘,e a\:ﬂn;
ble both hardware and software development aids. :

Consequently
MICTOPTOCEssOr quently,

mu_nuf;n*iurcrm. and indeed many other suppliers
offer a selection of development facilities for MICTOPrOCessor prn;
_ or those applications and evaluation EXEercises
which require only a small amount of software (typrcally <4K b les)
and input/output facilities, manufacturers usually ;:ﬁﬂr a ready myadé-
up [urm_tr;-.d circuit board which is a complete miumcnmputer System
;:1 ‘-.nl.dnu_rn o the basic microcomputer the board Incor iuratﬂ';
tacilities for loading, running and modifying small pmgramsplﬁ aid

ducts. For example, f

their development.

__.I‘“r those Li[‘rp_[ii;‘alilinh which require a significant amount of soft-
ware, however, it is advantageous to have more sophisticated soft-
R L-,_,n];;;jt:;;If{lﬂ,wnI ards. ('{.H]Stqu.ﬂn‘tl}r' manufacturers
dmounts of memory for [ti. t Pm‘f.m h}”m‘ll’:ms- which  contain large
28K by ten itonsthe <ot 111 _L_luxui-.wpmunt Of user programs (often
aid the writing and t:f_]- %ﬂt_‘.,m programs and hardware facilities to
describes the facilities L?_‘.'_I_]gr“] User software. This chapter firstly
systems and second]y :ﬁ :;'L hldr_c_ normally available with single board
ble with a typical “’I-irr: ]'lfjf“_*‘_‘*”1"‘-‘ of the facilities which are availa-

! pracessor development system.

ware and hardw
also

The use of 4 sin
advantage that il
build the dclu
on the

gle board sys
= ' sVsiem r’."l]' d‘:‘ 3 - :

s Aot g - elopment purposes has the
1€ dﬂblgncr is free I purp

al ‘microco d from the design tasks required (0
application pmhl_“:lpuu;r SYstem and instead can concentrale
=S ol the overall svs
system.
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Fig. 9.1 A single board system (Courtesy [ntel Corp.)

An example of a single board system is shown in Fig 9.1, This
board is based on the Intel 8085 microprocessor and is typical of such
systems. It contains. in addition to the microprocessor. the system
clock source, a quantity of read-only memory for holding & 33*31'*_2111
monitor program, a quantity of random access memory o _hql_dlp_’g
user programs, a number of input/output poFs. & kegpﬂd&llﬂ a0
sociated numeric display, and all the necessary bus mnu?llagln _

Although in the final system the application ﬁwsmm’“’ﬂ'i”?“@"ﬂ?
be stored in ROM. it 18 advantagcgus-_g:lﬁrihg'_t:ﬁ#'ﬂﬁ?ﬂﬁw_r_pﬁ?
for the program to be stored in RAM since it may buon MI& li
changed if any errors are found when the program R R T

addition, since a typical pra_gram-'-('milﬂhi_ﬂﬁ]t m‘mﬁmﬂ“m W .

few microseconds to execute, it is also: ﬁﬂﬁfﬁl‘m dt!ﬁil&

The monitor program in & typical single L i "E'I.- Vo

i |
.

S
1 -
I =

. - '-Fi L

e al Al "

LM ” EJJIG-!_- . _k

e

= e )
I -‘I i .__l.;lw;!F‘.'j':'IJI:f_l-' |

_'|fl
U

e ooz can be contralled
development, the rate G-f'“&gmlﬂﬂ-ﬂf-th&pmmﬁaﬂ m‘m |

|

= |
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provides, via the keypad and nun_mril: display, a number of i
mands to enable the operator {0 write and ?;mre 4 Program into RAM
and readily follow and monitor the stale ol t'he complete system - the
s of the various MICroprocessor rep_wtcl‘*a, mﬁ‘nlﬂr}r Iﬂﬂali(jnq
and input/output ports - during program execution.

g 21 Monitor Commands

Commands to the monitor of the system of Fig. 9.1 are selected by
pressing keys on the push button keypad and the response of the
monitor is displaved on the numerical display. This response s either
an echo of the particular key pressed or a prompt character o
indicate that further inputs are required from the user. Al the
displaved digits are in hexadecimal code and are split into two fields:
the left-most four digits are the address field and the right-most two
digits the data or contents field. Thus a memory address, for example,
is specified by four hexadecimal digits (16-bits) and the eorrespond-
ing contents by two digits (8-bits).

Typical monitor commands which are available with a single hoard
system are listed below:

Reset

Substitute Memory
Run

Examine Register
Single Step

The Reset command enables the user to force the monitor to restart
from the beginning of the program. It is used when power is first
applied and, after giving the command, the monitor is ready to accepl
further commands,

The Substitute Memory command allows the user to examine the
cun.i-;:nrr. of successive memory locations and. if required, to modify
their contents. This command is therefore particularly useful for
ERIETINg @ user’s program into RAM. The user first writes a program
I assembly language form, converts this into hexadecimal form with

the aid of a coding sheet (as was described in Chapter 3), and then
uses the substitute

RAM. The cuber: Memory command to load the program Into
mrdt' hf:.':?ui}ﬁmu[e memory command also allows the user 10
» % S . . ¥
1y specific RAM locations - and hence program instructions —if

any errors are I
Ahrr Jj"&- are found in the Program during execution.
€T a program has been ;

the program c written, coded and loaded into memory;
Can be execute Or run using the Run (or GO) com-
Which is already stored in RAM, the

m: O :
and. To execute 4 program

83
$ystems

Development

run key is first pressed, followed by the 4-digit start addrese o
memory of the program. Once a user program i rua T
monijtor only regains Cl?n{r(!l of the system either if the r::;:‘g]: ﬂ'l:&
prt‘ﬁscd or 1if certain nstructions are executed - for exarﬁ IE}' 15
restart or halt instructions. ple the

The Examine Register command allows the y

equired, modify the contents of each of the mi _ :
.l:l.hliq is a particularly useful facility when use;rz’:xﬂf;:p;;elg:tirs.
command since it enables the user to monitor i Stat'usgofslzz
microprocessor during user program execution and hence can be used
to identify possible program errors. :

When a program has been loaded into RAM it is usually executed
using the run command outlined above. If the program contains
errors, however, and does not perform the required task. it is
necessary to find the erroneous instructions so that they may be
corrected. This can often be a particularly time consuming and,
without any software aids, a very difficult task.

The Single Step command is such a software aid since it enables 2
user to examine the state of the complete system as each program
instruction is executed. Thus any program instructions which do not
produce the required effect may be readily identified. To step
through a program which 1s already stored in memory, the single step
key is first pressed followed by the start address of the program. This
causes the processor to execute the first instruction but, instead of
continuing execution, the program is suspended and control returned
to the monitor,

Since control is now with the monitor, before proceeding the user
may, if required, examine the contents of the various processor
registers and/or memory locations to verify correct operation of the
previous instruction. The user may then return to the single step
mode by pressing the single step key as before.

S€T 10 display and, if

The process of handeoding a program into its 'hex-adgcml-.-fﬂm;:
extremely tedious and time consuming. Moreover, ﬂllm aprﬁsrﬂ:l"-
in hexadecimal form, any errors found in the ;_:mg_rfmdllﬂﬂg ﬂgﬁlﬂl
tion often result in a significant amount of -modlﬁcﬂtlﬂﬂ.-tﬂ'ﬂiﬁ‘ﬂ ot
code. To overcome these problems, manul?@ﬁlll'm also Pdifm R
velopment systems which contain additional software 4 hardwar i

=y
- ire i axcesk ob 1 -
to facilitate the development of Ey5wm’wm XRQUIS 1 T

sav, 1K bytes of program. T A
i _IIII_ > il

l.'_ ||I I

L KR

P H ——
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Fi
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An example of a microprocessor development system (MDS) s
shown n Fig. 9.2, A typical development system contains, in addition
1o [IILI' MUCTOPIocessor. a large quantity of RAM (usually >16K), a
quantty of permanent storage mnrmail_j. on dual floppy discs: one for
S software and one for user software), a visual display‘unit for
communicating with the user, a printer for hardcopy output, and

possibly 2 PROM A i y
: ) i programme ; v iyl
into PROMS. mer for writing developed code directly

System  software 1S the
PIOErams which are provided by
ment of user (application)
Programs 1o perform Ih;:
dssembly fanguage
level language ir;tcj
also a prog

‘erm used to collectively describe the
the manufacturer 1o aid the develop-
Programs. Typical system software includes
complete translation process from either
0 machine code (an assembler). or from a high-
rpreter or compiler), and
cation of programs (an editor).

machine code (an inte
ram 1o tacilitate the modifi
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9.3.1 Assemblers

An assembler program Fwerfmms _the complete translation process of
;i yser program written in symbolic assembly language into its equiv-
alent machine language form. When using an assembler. however. a
sumber of additional facilities are often available to the programmer.
For example, it 1s rm:t necessary to define memory addresses where
data is to be stored in absolute hexadecimal form but instead sym-
bolic names may be used (e.g. HOURS, MINS, SECS). Thus to
increment the contents of a memory location which has

: the symbolic
name SECS. the following code could be used:

LLDA SECS Increment contents of memory
INR A location with symbolic name SECS
STA SECS by unity.

SECS: DS ] Define one storage location

for SECS.

The DS 1 (define storage) statement is used to reserve a single
location in memory to be associated with the symbolic name SECS.
Alternatively, the same operation can be achieved by using register
indirect addressing and the EQUate statement:

LX] H SECS This loads the absolute value

2800(Hex) into register pair HL.
INR M Contents of memory location

SECS (2800(Hex)) are incremented

by 1.

Define SECS to be the absolute
value 2800(Hex).

SECS: EQU 2800H

Another useful feature is the use of maeros. If the .51:.llil'l!f-'.’-li5_It Uf
‘istructions is required many times in a program, a macro may be

defined to specify that block of instruetions. Then, each time the

same list of instructions is required in the program, only the macro
tame need be written. For example, a macro, SHIFT, may be defined
to shift the contents of the A-register four places right:

L
il

|




%

ll|”

SHIFT VIACRO start of macro SHIFT
RRC
RRC
RRC
RRC
MEND end of macro

Once the macro has been defined. it is then only necessary 1o give (k

PTG kS : 2 . - = M

aame SHIFT whenever, say. the contents of the A-register are 14 be
{ nlaces nneht "

- S e L slk. e

Since no absolute addresses need be specified in ap assemb)

E _ W
language program. it is necessary for the user to define the TEQU'EI&-&
start address in memory where the translated machine language code
< 1o he stored. This is done by means of the ORG statement Singe it

defines the origin address of the program. For example:

= A g

would result in ihe assembled machine language code being stored in
:Ii (i Jllh!:__k'.'

- - - -~
Vv startme at ad

The ORG. EQU, DS and MACRO statements are referred to as
assembler directives or pseudo-ops since these are commands to the

¥

assembler and do not translate into executable machine code. It

=10uid b emphasised, however. that the features outlined here are
D Ly means com

-omplete and MDS assemblers offer many additional

PrO E S a program listing produced by an
MDS assembler is shown in Fig. 6.3

3.3.2 Compilers and Interpreters
With assembiy language, each

correspondence

: program mstruction has a one-for-one
MSITBCtions urll.:rfl,]: ,.}..ie ﬂ_ﬁ-cmc,d. machine. onde ang hgﬂm,lhe
by those proy :écj-;—; -r{:f:ﬁ um—?’ assembly language are determined
. - "h= spealic microprocessor being used. Thus,
WaVs yery 'n!}bjrif:iun: DF dxﬁf;en; MICIOProcessors are in many
11 e 7 J;“ differ in detail, and consequently a program
which ;—1:;:,.-% L}ufnnj;mﬂ;;['::i"lr-‘a:"n;}f:l‘- run on those micCroprocessors
O € Instruction sets.
In addi \ !anguage_ an MDS usually supports 2

1 10 assemb
numbder of b S raoy : )
gher-level Programming languages. One advantage of
uage

USing such 3 lang

dlthough the

wWniten

UBmodified on 2 o5 - Ihgx the resulting program can be 1uf
ange of microprocessor systems. Moreover, it 15
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; THIS IS AN EXANPLE OF A PROGRAM USING AN ASSENILES
PROGRAN DETERWINES THE LARGEST L
PAUGRSHE VALUE 1IN A TABLE COWTAINING

THE PROCESSOR RESISTERS USED ARE

P HOLDS NUMBER OF VALUES IN TABLE
C HOLDS WAXIAUM VALUE
THE WAXINUK VALUE IS STORED

IN THE MEMDRY
SYNBOLIC NAME HMAX LOCATION VITH T

_— ORG 28904 ySTART ADDRESS OF PROGRAN 'IH
2548 #4584 AVI = = s TNUNBER OF UALUES IN TARE
o292 GERF RVI C, 8 y INITIALISE (C) 10 Zegg !
rgg4 212828 LXI H, TABLE sLOAD TABLE START ADDRESS 1N ML 'I
:.:;T‘ IE LOOF: MoV AN JBET NEXT vaLus
2888 B9 CHP ’ sLARGER THAN () 7
2389 DABD28 JC NEXT sNO : JUWP TO NEXT
s5§C AF NGV L,h ;UPDATE (C)
:5” 23 NEXT: INX H s INCRENENT TABLE ADDHESS !
I6HE 15 DCR B sMORE T0 CONPARE ? '
1867 C28728 JINI LOOP JYES : LOOP FOR NEXT vaLUS S
* END OF SCAN , STORE MAXIMUM VALUE IN mAX
¢ I
7812 7% AoV A,C yGET LARGEST VALUE i
2813 321728 §TA HAX STORE IN LOCATION MAX ‘

2816 74 ALT

: THE CONTENTS/USE OF THE SYNBOLIC NAMES USED IN THE PROGRAN
: ARE NOW DEFINED :

2828 - TABLE: EQU 2826H sHAGNITUDE OF ADUIRESS TABLE IS '-'
+DEFINED USING ERU BDIRECTIVE .
2817 MAX: bS 1 +DEFINES 1 MEAORY LOCATION TD
“HOLD WAXINUN VALUE ON EXIT |
2818 END .
R
.1
Fig- 9.3 An assembler listing | I|
I {‘
|
|
R - |
eenerally easier for a user to write a program in a high-level languag;c )

since each program ‘‘statement” usually translates into several
machine language instructions. Examples of high-level languages are
PL/M. Basic, Fortran, Cobol and, more recently, Pascal. ,
The translation of high-level language program statements Iﬂtﬂ
cxecutable machine code is often performed by 2 system Program
called a compiler. In general, compilers are complex programs which
require large amounts of memory (>16K bytes) and indeed it is the
size of the compilers which determines the quantity of RAM required
by an MDS. | |




- » i} :r'.l (I e l_ A" NN ‘1‘I:=:!'.t_| in “»hic‘h i&m r?;
high-level language into machine cod Wing,
e STYEYY 3 |"' IS T ug:‘;-: a m-?.'

does not perform a

: oy,
-ode beloTe execution by o

-hine code as each program Stalere.,

program normaily used with Basic ;
rather than a compiler, Iﬂlﬁprucn;
n compilers and can require g -

e ¥l 1)
- o b

. Fig. 9.4 Flowchan segment
i f 5 Ve
isadvantage s thal 2 progras .
than the object code prodessds

age will provide the following dewde '

write single complex arnthmetic sialemess TEMP < TLOW THEN HEATER := :

IF
» EN HEATER =0
s 10 subroutines. ELSE IF TEMP = THIGH THEX

yolic name to 2z data m

——— e ———
| variables.

corresponding cond-

liv only possible to =2 aﬂ_ tional statement = execuled an 3 : men
i - oy -‘ ESIE-.

sngle machine apctmmﬁ{ . thereby bypassing the rEManin 2 subroutine using 3 high-level

it is not necessary to break @ SOSSEE g The transfer of paramieet™ =~ iy necessary fo inchude the list
g ) it ) : nas is also simplificd sipce Bree 4 i For exampic, @
| components parts and inSteadites la"?fh“:gc ‘ez names with ihe subrouine call.
: “ EL_ | o8 . L
S Fortran:
J -“II- il ' I

sing Fortran where P. O, R.S -'—"*':-IL-—-

- [

b ol

HAMmES. i =

Ac advantage of using more poweriil COBEESES CALI DELAY (COUNT)
¢ code required 1o implement the HONSEESESE

72- .4, used in the temperature CORMIONCEEES

115 may be implemented in the high- e
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~ould be used 1O transfer a value - stored 1n mem
OFY wi |
) 9.3.4 Editors

~ame COUNT-10 @ subroutine which, s:
delay Simularly results can also be rn:;'Iurnts'n:idf?,'llr';r‘n1:‘:3:1“'puitmt 4 vay I ] . :
s WAV - Subroy e, :} ) :’i._r'h}er‘; a Trlog_ram ha:a' ttrr_c:en wnt:j&n either in assembly language oOr a
" yigh-level language, | is entered into the MDS via a ke board and,
for example, a visual display. The latter is used simply :n show the
sser what has been typed and hence what has been input Into the
e | ﬁgrﬁ_icm memory. The source prf_::gram, therefore, appears simply as a

E 2 RES§y. , string of characters corresponding to each program statement.

T) The compiler program is then run and this reads and translates
each program statement into its equivalent machine language form. If
the resulting machine language program does not perform the re-

10 a list of itk quired task. however, there are clearly errors in the source program
reads 100 values from an input device and stlz - B?sic dnd g . WHIEHTIEREEE FOrEERe, ' : Eaes :
which has a single name TABLE: res them ip g ¢ By All translator programs have diagnostic facilities which help the
' | user to identify programming errors. In addition. there is a system
program called the editor which enables the user 10 readily modify
the source program code. This therefore avoids the user having to
SOR 1=1:0000 r;-.vise and type nutilhe entire program aggin. An editor program is
= 'x,[;T~ ?_wen c:nmmanda*uta ll'.lE keyboard and is therefore said to run
INPUT TABLE (1) interactively. Typical editor commands available are:

NEXT | list

CALI COMPUTE (VALUE 1]

[he ability to assign a single symbolic name t
illustrated in the following example. The cod QO a
. . yde

a specified number of lines of source code on the
visual display screen
to a specified line in the source program

a specified line(s) of code
one or more lines of code

I'he FOR stat '
| | atement 18 used to repe :
tor I=1 to 100. 0 repeat the input operation 100 fins

9.3.5 In-circuit Emulators

Many micro
: Processors provi y
tor addition anc 5 provide only the two an i o
ol g on and subtraction and consequently ita'lthm'cn.; ﬂﬂ@ﬂ@_ |
SMdll programs to ¢ . i | is necessary 10 write
0 compute additional arithmetic fi al}l1g_ .
arithmetic functions. High

IL”'.L'! I3

- S rétore fie .

of ¢ of AL , often =" . IR e
f Li!-.dr. which compute freque provide previously written setions
pressions. These cquent el e

All the facilities mentioned so far have been programming aids which

are intended 1O help the user 1O develop and write application

software. An MDS also optionally provides a hardware development
are known sl ly required complex arithmetic e facility called an in-circuit emulator {IC}F:L ' o

‘nown as library functions and it is :j:-'r-.{ | An ICE is designed 10 emulate the microprocessor being used 10

_ 5 POSSIMEEES S the system under development, but since it is itself part of the MDS

3 Y 52 = .
Ply use the function names in normal arithm ﬁi’* . |
Wes s and therefore under the control of the MDS processor, it is possible

ments, For ex:
: Xample, assumj 2
sine and coi - dssuming two libra - o PR
sine orary functi 1 : ; _ Sl
ne Yy ons 10 compuis &8 to monitor the pehaviour of the system under development while 1t 1s

: 0 ; J
arithmetic f an angle are available, the following Bpets : et .
1 gL operating. This 15 ustrated in Fig. 9-5.

f‘-talﬁlﬂﬂnl may hl.' used: & WX i
: L = The system under test is often referred to as the target system and

SUM = SIN 08 it
o Ly 4 the ICE behaves exactly as tpc target SS0Tr. It reads the ¢
o all symbolic Lk - sequence of program instructions s S mgﬂ mﬂsﬂuq ami sl
al ol variable names. In addifit ates the correct bus signals during their execution. It ﬁhﬁ"_ﬁmblﬁ
own 'd.nthmeuc functions and.tae (hesé | 10 keep a record, in an area of the MDS memory, of m:—_.se.nuemg-q:
1;,.!11.9 gdll‘ﬂ, lheg:.e features are .#!.l';'-i',!:""' actions of the target Processor. This record is known asa:ul-m
e with a high-level language. '

USErs may A and B dre
the progr. WIILe their ow

.
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Memory and 1O

LI Ss
MDS processor, memory and 1/0
, |

|

=1

Fig. 95 In-circuit emulation

trace : it c: P
ind it can be examined later by the MBS system software {i

locate possible err

rors. The real-ti : :
R ' real-time trace can include some loge
signals obtained from include some logk
. obtained from ;-m}-“.]“_,re in the lﬂi"g&l S}’S[ﬂm ThiS iSﬂII 1

facility for de _
: determining ha :
¢ hardware faults. The completle s
: e complete sequens

usually required tc
\ ed 1o L!t:'n.‘r_‘ll.":ep 4 DI
p a piece of applicati | using &
jon software using &

MDS ¢ : '
43 €an be summarised as follows: N

1 Il 1

Design a fi
: =1y - L t_’“{:]]ar' 1_!.'hic=h = 3 - . -l iy ¥
2 Code the progr performs the required task.

g 5 : Tk
m using either assembly language ﬁfﬂmn_.

level 1 :
Ilnuu’ Fgk X,
GHABE. A -

EI‘JIL‘]' ER T _
‘hwm::m SOurce program into the MDS memory |
JASS € Or {_‘nmp“t& the et A - N

" € source ¢ > OIS
ponding machine T uhrf.,e code to produce the .u.l_l__j_
[ & = = o l: !T": u EC ] 1-. E TH
I{un the object program ject) code. - -
f ”t‘i.'{:‘,:.;ar#. ) y l 1

. debug (je R
ICE g (1e. locate errors i : ~am usiiE
: n) the Elﬂ&‘ﬁ'f‘ o

Edit the Source o

v program i : ey i
tarrectly works gram and return to 4. until the TArgetaEs
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Summary

For those applications which require only a small amount (<1K
bytes) of software it is feasible to use a single board system for 1t
development. For larger applications, however. it 18 advantageous to
use a development system (MDS).

When using a single hoard system it is necessary to write all
software in assembly language and perform a partial translation
process by hand.

When using an MDS. in addition to assembly language it is
possible to use d high-level [anguage. This can result in a considera-
hle reduction In program development time.

An MDS also contains an editor program which facilitates the
modification of a source program and possibly an in-circuit emulator
(ICE) to aid the development of the application hardware.

|
!.
.

i

A T S
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Appen di)( 1 The This group of instructions transfers data to and from regsters and
- | mgm._;ry No condition flags are affected by any instructions ta this
Instruction Set

grtfﬂ.lp.

Move Move (contd.) Move !mediﬂe

'E,A 5F A.byte 3E
5 B, byte 06
C, byte 0OE
| D,byte 1o
E. byte IE
H.byte 26
L, byte 2E
| M.byte 36

PrEEEEEY
ZHE DO Om>

mm mm m
- nmon W

o

Th

s

—

LOourtesy ol

Load Immediate
{Reg. Pair)

B.dble 01
LXI{D. dble 11
H.dble 21
SP.dble 3]

{10NS are used.

L‘r et [ [ ll” } ‘[h =
qkl

represents the me .
_ mory address cy :
register pair HL rrently held g

O¥ie represents an S-bit (2

Load/Store A direct
it < hex character) data quap.

LDA addr 3A
STA addr 32

—

-

Z2EImoOwp

1
~ REREEEEEE

L.fhft
addr
port

"B.A
B.B
B.C
B.D
B.E
B.H
B, L
B, M
-

represents a 16-bit (2 byte) data quantity

byte) memory address
O port address

‘epresents a 16-hijt (2 Load/Store A indirect
LDAX B OA
LDAX D 1A
STAX B 02
STAX D 12

represents an 8-bit 1/

Register pairs are g
sWIET DaIrs are denoted as follows:

-

PSW
B

D

H
SP
PC

e

repre

-
< =

“ENLs register pair AF
'epresents register pair BC
EPresents register pair DE
TEpresents register pair HL
'Cpresents the 16-
fCpresents the 16-

SeleNelslokeke

Load/Store HL direct
SHLD addr 22

bit stack pointer
bit program counter

-
L

ZIZ2RE

I h".r_ Dre

Exchange HL/DE
XCHG EB

Hrmmg NS e

"ESSor flae

=
—
L

bits are

-

[elcieRel=l-Rele)
ZrIimgowy TCETMOO®E >

ll

CY carry fiag
fETO ﬂaﬂ

Sign flag
parity flap
auxilliary carry
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- - At ata In
D Ihin roup ol InsLrECion s |2 rlorms g Hllil‘ll..-”l;' “”L" Ihl' ]Flf'lll'|."l l_‘lf I!'I'.\-“'Ul'“”nf‘ pl‘lf“"rn Iugltd] up{:]‘,[“{:ﬂﬂ im dd
ato &

Fatioms
iy
Manipulation registers and MeMon 0 dary i pa , repisters and memory

Group - Arithmetic = e st OR®
AL byt ('t ] A

| ACL byie ] }} ! B

X1 SUI hyre D6 DAY D - | ~

s §1. SH1 byle | 3} H
g LSp

ad* Add/Subtract Immediate®

Double Agq; AND*

-

Increment/Decrement ™

A 1

& ()

| 3 ' ORI Dbyte

1) | 4

I x : Rotate |

| ) . :

[ | .}[i . A RLC 07
h " B

vi 34 ;

]

Increment/Decrement Register Pairit 3

Subtract® 3 ()3 }
[ 13

I 13 i "

D Im
g Lo | l}(_ =l M
H: 773 X H n i
) 13 S in Pl hyte

Decimal Adjost A Complement/Set CY!

DA L .
oe DA 27 CMIC I

U 31 a Nuol
Compleme w , ol
" { M,,: ement A : | * All flags affected
hE 5  Only carry aflected

UN
L)
"Ja'\h :\'rrh'

OB * Al -

Ea ' a:::: ::’1 WYL 2,5, P, AC) affected

01 i Ay “ACept carry aflected 2 Transfer of

Onlv e EaC
o] . Nnh carry affecred Control Group
O Hagsy atlected

enti m flow. The
{nstructions alter normal sequential proges

Thi Ol ol -k
I'his group dition codes are used:

following con

.'.
St e b —

arity odd
201 L= 1)) PO panty o
N% ";‘:“a‘r“"l :; = 1) o parit.y even (P= L)
¥ o

: fus (S = )
> rey (CY = 0) P, pa
N:‘ ::1::: ' (CY = 1) M minus (S=1)

—
= —
e — p——

. g '
Wl gl =)

somy "=-——-'?.._-" e A ——
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Input/Output
Group

Machine Control
Group

THE INTEL 80

Jump
IMP addr C3
INZ addr o2
JZ addr CA
INC addr D2
JC addr DA
PO addr E2
JPE addr EA
1P addr 2
JM addr FA
Jamp Indirect
PHCI E9

This group of instructions pertorm /O ¢ .
| /A operauons bet
. Ween th
€ A.

g5 INSTRUCTION SET

Call

CALL addr
CNZ addr

CZ
CNC
OC
CPO
CPE
CP
CM

register and a specified port.

IN port

DB

OUT port D3

addr
addr
addr
addr
addr
addr
addr

R
CD o
C4 RF?T 0y
CC RNZ Co
RNe O
DC C Dy
Fd RC
Dy
E RPo |
- RPg 0
F4 Rg E
FC F()

This group of instruct ipulat ¢
S QI ctions manipulate the cont e
ntents of the stack an
ck and

alters/controls the state of the processor

Stack Operations (Register Pairs)

[ B
PUSH
H

L PSW

XTHL E3

SPHL FO

Interrupt Control

El FB
DI F3
RIM 20
SIM  3p

D5
ES

F5

—

POP-

(L) < ((SP))
(H) < ((SP)+ 1)
(SP) — (H) (L)

l[-:l.lahit.‘. Interrupts)
(Disable Interrupts)
(Read Interrupt Mask)

B
D
H
PSW

C1
D1
El
F1

Restart Control

0 C7 0
CF ' Jit

D7 - S

Pr“[‘ﬁﬁﬁﬂl’ C{}ntr."

NOP (g
HLT 76 (Hal

(Set Interry pt Mask)

(No Operation)
!

RST- DE S

I Operations

M
-J
& |
[

A21 Unsigned
Multiplication

Appendix 2 Binary
Multiplication and Division

Since many 8-bit microprocessor applications require only the basic
arithmetic operations of addition and subtraction, most 8-bit micro-
processors do not have multiplication or division instructions. If mul-
tiplication or division is required it IS necessary therefore to write
subroutines to perform these functions. This appendix presents,
firstly, an algorithm for the binary multiplication of two 8-bit num-
bers to produce a 16-bit product and an algorithm for the binary
division of a 16-bit number by an 8-bit number to produce an 8-bit
quotient. Unsigned binary number representation is assumed for each
algorithm. Secondly, signed binary multiplication is presented.

The following example given in Fig. A2.1 shows that the multipli-
cation of two 8-bit binary numbers produces a 16-bit product, Each

bit of the multiplier is tested in turn, starting with the least significant
bit. The operation to be performed as each bit is tested is to simply
add the multiplicand — suitably shifted — to the partial (running) pro-
duct if the multiplier bitisa 1 orto add zero if the multiplier bitis a
0. This is shown in Fig. AZ.1. ‘
To implement this process in an 8-hit microprocessor efficiently, it
is advantageous to modify the sequence in which the partial products
maximum use of the instructions
available. For example, since the final product requires 16 bits. 1t Is
convenient to use a combined register pair to hold the accumulated
pmduct. Thus. if this is register pair HL and the multiplicand is held
the double add instruction can be used 1o
ain the appropriate weighting of
to shift the combined contents of
This can best be accomplished by

are produced in order 1O make

in another register pair,
sum each partial product. To obt
each partial product, it is necessary
HL as each multiplier bit is tested.
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BINARY sMULTIPLICATION AND DIVISION

1111011 - \'\
A = 2|g .

00110101 1-
' c. 53

1011011 Multinliss &3
000000001 1011011 itiplier bit = |

00000000 | {O1101 ]

11011011 Multiplier bit = |

ooO00 100010001 1 )

~O000D00 _

00000 100010001 1T Multiplier bit </g
11011011

ATENLTIY — Multiplier bit = |

| :;'.n 101 1
2110114 Multiplier hit = f

01010111

-"‘.':'-“'I"'.'.'I'I
i, Wik ¥ { nti i
UL L YIB N

5.1 ¥ I--: [
_" _L__I.-:l'_l|'1|.'i:|
__LOULOO00 Multiplie '
WIio110101010111 Tl bl
00000000
00000000 Multiplier bit =0

0010110101010111 |
== Le. 11607

i
Ormenis

(B) - .
(HY(L)=—10
"HHLr-HHHLrHHnLJ
Rotate mo i

4ic mualtiphier bit to CY.
f";':f’
Yes

(H) (L)=(H} (L) + (D) (E)

(B} =— (By=1
lrT-".IJZI' 2RIy !

Yes. halt.

g
li " QZ J 5- L] g

-

Tnats
Initialise HL Lo z&ro ,

o

—

shift (H) (L) left 1 place.
Shift (A) lzft | place.
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(BEGIN)

&

Jlise partial product count.]
|

J

|

Is carry flag = 12

ll. -

o

Add multiphcand o
running product.

Decrement count.

Fig. AZ3 Unsi

|

Is count =07

’Jf

( END )
e

gned multiplication fiowchan

arting with the maosi significant and
again using the double add
« 2. 1f the multipher 1 keld
by shifting the contenis left
lete algorithm 15 3s

plier bits si
nts of HL left by
he contents to tself {
may be tested
rry flag. The comp

testing the mulli
shifting the conte
instruction to add
- the A-register, each bit
one place and testing the ca

follows.

Let A hold the multipher
B hold a count of the number

DE hold the multiplicand —m.s.
HL hold accumulated product

A flowchart can now be developed. as sh
corresponding program is given in Fig. A2.2.

of partial products
byte is zeT0

own in Fig. AZ2.3. The
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A2.2 Division

BINARY MULTIPLICATION AND DIVISION

I'he division process is analogous to the multiplicat;
- TY e A e, - = C
considered except that, with division, repeated 'iuh?[‘ﬂﬂ Proges Juig
b rﬂCtiﬂn :
5 dre

Per-
Mus [ : : In ;*;l u edns of
tlustrates the division of a 16-bit number (the divid B A24 and

Idend) b '
Y an 8.p;
“on

hrst subtraction operation does 1n fact I"ﬂ‘-rhm;- Al tif]].IUﬂliEn[]_ 'n_]f
' 1 quotie
nt hj
byte
: Of the
* IS eventygy,

formed in place of additions. The process s tHust

Fe % . = y - : - '_ﬁ

an example. The example considered is show rate
& [ 'n

N he » diva ; ;
umber (the divisor) to produce an 8-hit result (th
- ¢

} i ths : .
it this 1s normally zero unless the most sionif
S [ R - l . . by nl ¥
dividend is greater than the divisor. To allo gf i
however. the ; i : S 4HOW [0
owever, the additional (ninth) quotient bit is «
in the Program w hl-’.‘h follows. i 5 S1Or

00000000 = Remainder (i.e zera)

ﬂMH‘]{” = Quotient e 41

JODOI0TTTII0ITOIOR = Div
CY =] - 0= - 10010100 | 3TIH|__I11 = Dividend i 6068
Reésiore P.R : flll_'!lu'rml“ ‘
o101 1 1]
L

HVIe:® ) 140 ==
v JI | L:E 1dR]) .|II|_|‘1':|J”,:I,

100110117 |
QI011110

~ 10010100 Ir
'-li'n:}im_ﬁ”

| 111101 ]|

AL = 1) = = Elll_':j:_‘}“_m'rJ

01010011

| y = - 10010100
}{L"hl- He P H “” 4 r r [ ‘
10100110
- 10010100Y
2 000100101
];:cﬂ -__ ] : Q = _ln”]{,}ll}ﬂg
itore PR 10010001y
_— 01001010
0=0 - 10010100
Restore P.R 101101 10'

) 10010

e i J10100
: : LoI0100

S that the indjyi
1dual

E the ap ., : 4

der (P.R.). If [h:pr(!mmﬂf" shifted dj

uptien[ bits are determined by
divisor is |egs th: fcgu“ of the sublreu::?:?lr if:um thE partial remain-
and the qunzu'n.-nfr;ﬂt:hf Partial remainder, Henga the At b
; » the di‘-'ihiﬂr}h i ] ,” the result of the subtmclis:r'l ) ‘_:-DHFCI
and the Preévious panl-t.' correct and hence the quotie lsbpegallvq

lal remainder IS restored. T*hisL;;er::t;zna ig

#_

repeated nine times until all the quotient bits have been derived.
To implement this process with an 8-bit microprocessor it is
convenient to leave the divisor in a register unchanged and modify
and shift the partial remainder. The result of each subtraction nperai
tion can be determined by first complementing the carry flag before
testing and then using the state of the flag to form the appropnate
quotient bit. The algorithm uses the following register assignments.

Let AB
C
D
E

repl
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hold the dividend - m.s. byte in A

hold the divisor

is used as a lemporary register
holds a count of the number of quetient bits.

The quotient is held i the B-register (and hence

aces the s, byte of the dividend) with the

m.s. (ninth) bit in the carry.

The flowchart is

ram is given

in Fig. A2.5.

shown in Fig. A2.6 and the corresponding prog-

Assembly fnsrrucivons

Comments

|

MVI E, 09 {(Ey= 9
LABI: stB C© 1A= (A)=(C)
CMC Complement CY
JC LAB2 cY =17
ADD C Nor (A) = [A) = (0)
LABZ: MOV D, A Save A
LA Mave CY 1quutu:_nl hit) into 1.
R
MOV B. A
MOV A, D Restare A
RLA Move CY into A
DCR E iky=— (E) -1
INZ LARI Count zera! No: repeal
HLT Yes: halt.

Fig. A25 Division program
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Binary

Multiplicatjgn

The

j”liﬁ-!l‘alﬂ-d "I}

PIOCEss is simply
Partial producr

BEGIN.

|

[ninabs guoticnl colunt
1

Subtract divisor fron

partial remainder

|

I.Li.‘

0 i
nestore partial remainder

e

Rotale combined carry

and 16-bit partial re

I ._= ; ;-:-l:i:'.'h_: cr
Place ieil.

E'\[}-.

Fi Vi
8. A26 Division flowechart

Chis sectic
IS Section déscribes

IWo 3
= » Complement gjpn
omplemeny signe )

d ]‘rﬂ A
2] hiiﬂ-r for the multiplication of two S-hit
d oot ALY numbers to produce ¢ o ot
product. produce a 16-bit two's
A2.3 I
1 The Algorithm
bacic
asic mul[ip!itatj(;."
the e
ach muhi

process for rwo

Since @ xample of Fig. A2 7 8-bit positive numbers 18

_ n only
O add the multi} 4

S if the i ils:
Multiplier big ig « nm;h”‘"'“ﬂlicr bi

IS process IS repe

0 or 1, the multiplicati

" 1, ultiplication o

:mic_dqd (suitably shifted) to the
s al or to add zero if the
ated eight times until all the
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Multiplicand
Multiplier

Partial product
Add multiplicand
Partial product
Add multiplicand
Partial produdct

01001001

GoooI L] L

0nH0000e0 00000000

1001001

Q00D0000 01001001
0 100100]

00000000 11011011

= 473
= 41§

Multiplier bit = |

Multiplier i = |

Add multiplicand 0l 001001 Multiplier bit = |
Partial product 00Do0oDO1 11111111
Add multiplicand 010 01001
Partial product = 00000100 01000111
Add zero 0On0 0000
Partial product = (0000100 01000111
Add zero 00000 D00
Partial product - 00000100 0100D11]
Add zero poOLoo 00

Partial product 0000100 01000111
Add zero 0000000 o Multiplier bit =0
Final product - pooontno 01000111l = #1095

—_—

Multiplier bit = |

Multiphier bit =0

Multiplier bit =0

Multiplier bit=0

Fig. AZ.7 Signed multiplication (Example 1)

multiplier bits have been considered, The correct signed 16-bit

product 1S produced.

Unfortunately, the above progess does not hold for the multiplica-
tion of mixed two's complement signed numbers and certain COrree-
have to be made (O produce the correct signed product. A

tons '
matically obtaining these corrections 15

convenient method for auto

1 Extend the multiplicand by copies of its most significant bit — Ds

if the multiplicand 15 positive, 1s if it is negative.
2 Subtract the final partial product.

This 18 Mustrated. in Fig. A2.8. by an example involving a negative

multiplier and multiplicand,

A23.2 The Subroutine

Since the multiplicand and the accumulated product both require 16
bits. it is conyenient 10 Use iwo pairs of registers 1@ hold them during
the multiplication Process. The processor regisier assignments are

DE holds the multiplicand

ML holds the accumulated product
A holds the muluplier
B holds the bit count
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- rnirnl] 10101011 = -?3[1"*‘-[{'11(];;[]\

] | J‘ hl ] m
i _______111gool = 15 of ite 1 g ek
Mulliphei ) 00000000 00000000 . bif)

Wartinl product 2
: Ii;.lfur— -r~-'| 1Jn]! 4nd ‘I ]_! ”LU_I,UI_J '_)_I_i I
e . [L111111 10110111

14l product =i P :
ESTALINOVE 00000000 0000000

Multiplier bit = |

Multiplierbit = 0

,wl ; ;r'._-,ij.,l.,; : 11111111 10110111
\dd zero 00000000 0000000 Multiplier bit =@ i
Partial product = [T111111 T01TOTTI f
Add zero 00000000 000VD ___ Multiplier bit =

= [TI11111 10110111 ,

Partial product

Add multiplicans

Partial product

Add multiphcand 1eno i

Partial product = 11110010 0000011
1101101 11

= 11011111 11000111
11011011 1 Multiplier bit = |
00000100 01000111 = 41095 i

11111011 01l

22 Multiplier bit = |
11111011 Q0100111

Multiplier bit = |
Add multiplicand Multiplier bit = |
| Partial product

Subtract multiplicand

. Final product

Fig. A28 Signed multiplication (Example 2)

The multiplication process used in the program is Slightly diff.

from that described above 1n that the Dﬂ”ial Prﬂ'dUCIS are p[ﬂduged

in the reverse order and start with the most significant. This hag ke
done F_wraur;u. in the Intel 8085. the contents of a register pair :ﬂ.m
on be shifted left. This is accomplished by using the double :::I]
nstruction 10 add the contents of the register pair to itself.

the HL register pair is also used as a parameter passing mechan-

Ism when the subroutine is entered. The contents of HL point to the

area of memory where the multiplicand and the multiplier are stored
and. « : Ahe = S .
: d n leaving the subroutine. the product is stored immediately
rollowing these values as llustrated in Fig. A2.0 <ol

A Howch: FOT 5 : : :
Or : md.}dn tor the algorithm is given in Fig. A2.10 and the
orre - Arci ; . = » L
cofresponding assembly language subroutine shown in Fig. A2.11

H MY o v o e e
H”-'*”k-'~-‘--"ﬂl_u‘- —a multiplicand

multiplier

m.s. byte of product
(H) (L) on i:m’ng — -_!: .I_r-}i-:!’p J_
IS, A prodluct

Fig. A29 M.

Mory pointer yge o
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Initialise
register <
contents

Subtract final
partial product

Extend multiplicand
by copies of its m.s, |
bit

Set hit cuunl{

Test remaining ¢
T hits

L m———— ~

(GECI)

Load multplicand into E.

Load multiplier info A.
Clear (D).

~ Clear (H) (L)

— e ]

l

e

[s m.s. bit of muoltiplier= 17

no

1'/-._._._..

lm

fHY (L) —(H) (L) — (D) (E)

]-

A

s m.s. bit of multiplicand = 17 '}_

na
J

ly 25

Load FFihex)into D.

=

Set bit count =7,

3

Shift (H) (L) left 1 place.
Shuft (A) left 1 place.

|

ms. bitof A=1{7

l'}-b

(H) (L)=(H} (L) + (D)(E)

o —

t-f

Decrement bit counl.

Signed multiplication flowchart

|

Count =07

Vs
(END )

&,
.

no

=1

-

——

=T RSN T

-

R

___.-I
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MO .M

|I 'A_!r | 1', 1 lI|I

| Wiy A ]

I & I‘r
¥

-

".11 .|- l- i i

MOV A §

MULTIPLICATION AND DIVISION

f__\,___l

wad mulhphicand into | and save in B

Nt A and saye in{

L nd clear (HY (L)

>ubltract hinal partial product,

oil ol multiplicand = 12

Hore multipheand into E and multiplisn® lr
O \ ! |

i 0

I
load FF thex)inta D (extend sign). !

 E—

Set bit count =7

APPENDIX 2 BINARY MLUILTIPLICATION AND DIVISION

NEX] DAD H Shift (H) (L) left | place
RLC Shai't (A) feft | place.
ANA A
IP ZERO m.5. bit A =17
DAD D Yes — add multiphcand.
ZERO: DCR B Decrement count,
JNZ NEXT Branch back if count not zero.
XCHG Save product in DE.
POP H Restorz memory pointer.
INX H Increment.
MOV M, D ]
INX Store product in memary.
MOV M, E I
pOP D
pPOP B Restore regster confents:
POP PSW
RET Return.

Fig. A2 11 Signed multiplication subroutine

Al —
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a31 Other 8-bit A3.1.1 Zilog Z80

Appendix 3 Mlcroprocesso,.
. - Microprocessors Although the instruction mnemonics used by Zilog are different from
CharaCte"St'cs the BOSS, the instruction set of the Z&0 microprocessor embodies all

the instructions of the 808s (except RIM and SIM) plus some
additional instructions. These include bit manipulation instructions
which allow individual bits within a byte to be set, reset or tested with
a single instruction, and also some block transfer instructions which
allow multiple bytes of data to be moved from one area of memory to
another. In addition, the Z80 contains over twice the number of
internal processor registers as the RORS. mainly organised as an
alternative register set, These are shown in Fig. A3.1.

Although the complete instruction set operates with the main block
of registers, it is possible to exchange the contents of the two sets

- SN T P N on , . : -
type ol MICTOProcessor and another. the maimm ht_\‘d}’ Ur IhE '-E‘Xl h&: wi{h ju5[ two iI'ISlI'l.IE[IﬂﬂS. Hence an :nlcrrupl service routine. for
example, can use one set of registers for data manipulation whilst the

concentrated on a single popular mMicroprocessor system - the Inte
y 1 . ! ; : : i [ &)
SUSS. Itas thus possible 1o illustrate simply the fuﬂdamcntal charag main program uses the other set.

teristics which are applicable to any mirrnpwun‘ﬁmr: the tﬂchniqugs
LOr pre r‘;:r;immrrl_;_' one device apply, in general. to dny other type. T]ﬁ_q
appendix has been included, however. to give a brief summary of the
main teatures of some of the other popular MICTOProcessors which
are L-u_rn.-nm dvallable and, where dppropriate, to indicate hﬁw-thc
differ from the Intel 8085. !

It is convenient to hbre: :
: reak other MICTOProcessors into  th
- SSOrs In
categories L HU'QE

|
i
J
|

In order 1o avoid describing the many small differences betwee

Main Regster Set Alternate Register Sei

A

Al

B’

D

B
b
H

L Other 8-bit microprocessors - this includes devices like the
Rockwell R6500, Zilog Z80 and Motorola MC6800/9 which ack Poifiter SP
fcquire nlul[lhlu' t.‘?‘lipx — mIL‘rnprt'lt:c:HSE'lr, memaory PI}'O*ID i I i
Credle i*.'?i“-'l't"'u‘”ml""uI('r svstem. & Progrum Counter PC Uigeniass -
.::;:_it"‘;::i'“I::L:*'[‘:*“"‘I."_-'Pii:rjr,x - this inr.:!ude:.-i devices like the Index Register IX
MC6801 wlim-h - MS 1000, lnle.l 8048 and Motorols o T

incorporates the microprocessor, a limited.

ot - memory (ROM and RAMY), 1/0 facilities st
'-!";‘l*;ih:r mer on a single Integrated circuit cl‘;ip. o Fig. A3.1 ZBO processor registers
lr|1tr}::m:;;[rwlj:};-f'::;”h 71 .in_ﬂudt"s' devices like the Texas
Sl :‘.h; -H\ 900, Intel o086, Zilog Z8000 and Motorola’
Primarily for Ii:n -{Im-lsi.mc' h!!.’.h+pt:r[nrmancc chips inlﬁﬂﬂ_ﬁlﬁ
require either -.u: !:Hlnllmm[mler-t}'pe application areas whmh

(64K byte u.r xlnim_ul 4amounts of random access memary LDIX +6). C

O Mndre £ h.“Tiu:J”n_.a:mhlx.ucatud computational fﬁciliﬁﬁ.ﬁﬂﬁ_-’i". o _ =rlipe et ot
o TEENAre multiply and divide, ele.). =) = Il Re the continls DEEEBRICANITOANE bit index
: location whose address is the current contents of the L6-bit index

—
L

The two index registers can be used to provide additional register
indirect addressing features. For example, the instruction

SOme of the ch

_ draclteristics S r o o ,
discusse 0 the 5 Of the devices in these caregories m : b . register IX plus 6,

fl_;‘l 'I gy .
,““lﬂg sCClions. .-
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A3.2 Single-chip

SSOR CHARACTERISTICS

e Z80 also has available additional relative ump ingg ‘
. _ o | FUetip
I'hese are pariic ularly useful since they allow the Pl't'*ﬂr:immurln'ﬁ“?m-
' |

- F . I . -
«tination branch address relative (& 1.28) to the ump =

a de NSyt
itself and hence a program segment employing only relative 504
can bhe relocated without affecting 1ts operation. Mmpg

A3 12 Motorola MCE800/9

he MC6809 is a development of the earher MCGROO Like th 78
_ i € Z8N
it has two 16-bit index registers and two separate 16-bit stae :
: ' ack poiny
nter

repisters. The latter are used 1n the conventional ms
& — anner hUI ‘
dre

SyStem
i | b,{':pﬁ_

useful when the system contains two types of Program - g
program _‘_n:nl a user program. Each program may then yse
rately dehned area of memory as a stack.

Like the earlier 6500, the 6809 employs only two R-bit workin
registers but the instruction set mcludes some 16-bit iﬂﬁtructinns Hns
also an unsigned 8x8 bit multiply instruction which produces g
16-bit product. It also has available extensive relative addressip
instructions to allow the programmer o write p“’ﬁi'i“"*iﬂd{:pende“ﬁ:

code.

A summary of the MC6809 register set is shown in Fig. A3.2

Data Manipulation
Regsters

Progrum Counter IX
Svetem Sich Pointer SP
Liver Stnel Painler SP°

ess Negisters

f:’l-J X }1.'._-}'1-.l-_'! 1"".

I|I||| A Hrri\lt'l" II\I

Fig. A3.2 MCss09 processor registers
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Single working regster

RAM areld sre softwars
selected 1o be active

Bank | Oongé ar @ Lime; ik

iwo registers in each bank
dreg memory polnten:

the 8085 and includes individual bit set and re

A3.21 Intel 8048 Family

The RO48 family en
4K bytes of

|

s tOmpasses a4 number of devices with from 1“‘”
Program ROM or EPROM and 64 to 256 bytes of RA"M” A

on the chip. In addition,

the chj wides < : gt
stparate timer/event 'P prayides three 8-bit4/O pqns,and-ﬁ“l T

counter.

- InlcrTapt

:{?}“ '-:"II:RD"-! Timer/Event Counter

Fig. A3.3 The Intel 8048

The 8048 implements many of the instruction types provided by
' ser instructions, The

a is obviously limited but can 5upp‘:1rt up o 8 h:x.els of
subroutine calls. Similarly, there 1s just u_-.am%lf mt::rrupl input Im;. A
schematic diagram of the BU45 IS r-hmn.-r? In f-i;_;. .ﬁu'j, Orhs.?r mz;;ﬁ
of the 8048 family include versions ‘L\'I[h hPRUh‘! 'I"rﬂ"t plm.f:_ L:l‘ o
for program development and also a device — the 8022 —which has

additional ADC on the chip.

stack are

A3.2.2 Motorola MCoB801/5

The 6801 is a single chip version of the earhier m-‘.pﬁ with «:J;TE
gdditional instructions. It contains 2K byvtes of urrch:p RF)I%*L ;.d
hytes of RAM. four parallel 1JO ports, lhref: sen!:alkl!(j_l_ h_mj:a. lai“iq
three: 16-bit timer/event couniers. The processor architecture iisel k
similar to the 6800, consisting of a L6-bit program counter, s‘?;

pointer and index register, and also an N-hit wurkmg n.:,gmc-r. i€
instruction set is in general similar in character 10 the 8085 but in
addition contains an 8% 8 bit multiply instruction,
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A3.3 16-bit
Micruprun&ssurs

I he 6801 can readily be expanded at additional memaory

Iy

i "-P'“Hl"” I‘ll"\l.'\

cannol

MICITHO

S«bit timer and a single anterrupt input ling. The S6() ]

converting two ol the I‘?”'-'“L'I /() POFLS into l'lltﬂ'll!l‘}'

MICROPROCESSOR CHARACTERISTICS

'he 6805, however, is a simpler devige

cxpanded and also has o reduced dmount o '

[LIK byies of ROM and 64 bvies ol RAM It hae
. i

AT

mterrupt wpots, A schematic diagram 1s shown n l"ip. A3 4

Lhe

1_1.‘N'“|I lilu

sel, clear or test a bit or byte with a single Instruction

y8UOS, although mstruction-set compatible with the
es not have all the instruchions of the latter. It L

for small size. nnmmum cost .'l]'l|1|n'.lt|ur'm

I"-'ﬁ '\-Il R Ix Il'i‘:{! |

! Program Counter M

alack Painter SP

I X Hl'_['l.f:'l "l_

!

1K 2K

N ICGuirgg
SPace

“""L‘hip
h iy Wiy

Cirligy
an, h““'ﬂ‘r’('r

Limer/Event oL o

ROM/LEPROM |
| | e Inte | nputis)

i

Fig. A3 4

e Serial 11O

The Motarola 6801/5

A3.3.1 Texas 98900 Family

| he YU )

l‘l|'ljt'~. COde ¢ ampat Il‘”ll‘h

ditference
'-"*-r”l\["h',

# ¢ N L, faany

mily eny “Ipasses a number of devices with virtual y full
O3 i i PR = i
4CTOss the complere ranpe. The H'.-"-' .1)

in ' g , . -
rehitecture hetween the 9900 and the 8-bit 8O8S ok
15 that the ' 1

g T : !
Y0 progessor does. not inelude any we
N

g
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registers (A, B, C, D, ¢te) but instead contains a pointer - the
workspace pointer - to a 32-byte area of RAM which is then used ta
provide sixteen 16-bit processor registers. This has the disadvantage
that different segments of a program must first choose the workspace
in memaory that contains the appropnale set of working registers used
by the instructions in that segment, The major attraction, however. is
that it allows rapid switching between a large number of alternative
register groups. This is particularly helpful if a large number of
different interrupts are 1o be serviced - the 99010 provides for sixteen
levels of prionity vectored interrupt. Each INterrupt service routine
simply switches to its own workspace area thus leaving other work-
space areas intact.

The 9900 like other 16-bit microprocessors contains a much
richer - more sophisticated - instruction set than the 8-bit micro-
processors, For example, the data manipulation group includes multi-
ply and divide instructions, logical and multiple bit shifts, and also
istructions to operate on words, bytes or bits.

The 9900 itself 1s just the processor chip and thus requires external
ROM, RAM and I/O circuitry. The 9940, however, is the single-chip
version and contains 2K bytes of EPROM/ROM and 128 bytes of
RAM on the same chip. The RAM is divided into four 32-byte
workspace areas to support the four levels of priority vectored
mterrupt that can be serviced. The 9940 also provides up to 32
parallel I/O lines and two additional serial-in, semal-out lines. A
schematic diagram of this device is shown in Fig. A3.5,

Program Counter PC

Waorkspdee Palnter WP

32 x 8

PrpE— “1‘::'—_ Faur Wudnp'mx areas
24 cach containing L&
-———--1~— gepenl purpose

I2x 8 16-hil regasters

3258

 ——

%32 1O lines

2K x B \-—--——r'

ROM/EPROM

- = Serial 1/O

Fig. A35 The Texas 9940
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APPENDIX 3 MICROPROCESSTRE !
A3.3.2 Intel 8086 Frogram Counter PC i 5
The 8086 has a directly addressable memory space pf | mﬂgahy; | i = 5
e it - - x 5 . fa-%
:f « rieh instruction sel I ﬁ'il\]hinfl.w d h-h_\[L 'l"“i.TL-ﬂhcad 'pre"fﬁli‘.‘h] ' sfack Pomter
R ] '.i'-‘ e which ensures fast instruction EXecution tilTIE:*- dandg ool I il o 33
instruction quc : : 1 - : 2 ointers
AR e :ii""]""‘—';’“mh which require Ellhﬂl‘ d high ? } 7] Index R Si
it 1S ik 3 ' o £X Kegister S
- Tog T o | afle e | ( ].' d ' — !
system Tfn-mg_‘f'u"ll[ bl L’--}J" 'n"‘q?”n RS R M dﬂd. -RAI’J). ThE '
nrocessor 1s divided into two sections: the C."ét."-'.'ullf'm unit (EQ) Which ] Index Remster D
: sntains four 16-bit data ||.l,,-._:]'i-Lgr]£I regisiers, two II'IE,IC'\E fﬂgiﬁlﬂrsq dangl l AH |r Al 1
1 nier registers: and a bus interface unmit (BI1U) which COntaine | ;
WO poniel e , = : . :
the 6-bvle T‘i"-!«.'ft'h instruction queuce and the rt-lm.tcaunn register ﬁl{: I BH : BL l
LIl e - . . - %
ontaining the program counter and four scgment registers, The ' H : cL
latter can be used by the programmer to set up four dreas of Imtruction } ! :
memory: a program area, a stack area, and two data areas. Each arca G hyles ’ P::'*:fh:h I DH ! DL
PV RNy s~ . ! queue
or segment can be up o 64K bytes. l
While the 8086 is internally decoding and Executing the curreny ! EV
: : T 4 Y 1 - BIU
instruction, the BIU fetches the next sequential mstructlﬂn—up o f
pytes — from memory and stores this in the I'”_'f'f'f“-"h qUEUf:. Thus, Fig. A3.6 The Intel 8086
dssuming that the current mstruction is not a Jump instruction, 15
instruction. If the current instruction is a Jump instruction, however. 16
the next imstruction 1s f;‘l!gh::-.l from mumnr_x in [h-_:., a.,nm-f.,ntlﬂnal.?vay_ = Generzl purpose register 0 ,
The instruction set includes 8 and 1 6-bit signed and unsigned Segment Address 8 :
_ ] - ] : . T _ =~ral pu ST
arithmetic in binary or decimal. including multiply and divide. In Program Counteér General purpose reg |
addiuon, it contaimns extensive bit, byte, word and block inslructiuns. Normal Stack pointer
A schematic diagram of the processor is shown in Fig. A3.6.

Normal Stack painter ‘

System Stack pomter

1

. ster 15
5 = System Stack pointer Genenal purpose register ‘]:
A3.33 The Zilog 28000 |

-;_II‘]'L' Z-\.i“”i ]H 'II:L' ‘.'f !h';. n_!'
the M( OSO000) wi

5t powerful 16-bit mi::mprncessurs-{&s-ip o e e

th a VEry advanced architecture comparable with Fig. A3.7

Hany minicomputers, The Processor c¢an address up to 8M words of

memory mn 64K word MeEments, A schematic diagram of the proges- bytes. 16-bit words, or 32-bit double words. Similarly. the :ala

SOr Tegisters is shown in Fig. A3.7. hytes. =L o | e T cnm;'.ll-'ﬂ: en-
'he processor maintains 'WO separate types of stack: one for use in -ﬂ?uvémcr;thll?;t;u;::,‘i“::rif;l:::;ilp of characters) transfer instructions,

*Petial mode by the system's programmer — this is useful, for exam- Siyesela & b

ple. when 'mplementing the *¥stem software for sophisticated multi-

I‘”*ﬂdmmmg appliuarm:'n—and the

stack poInters.

q ' he sixteen L6-bil general Purpose registers can be used cither as "
ddla registers OT as 3':11_“(_‘ el - ; 2 PR |
= : SS régisters — =¥ 3 WTile SIErs.

The data manipla: &isters fur' example, as index registerse
Vi 4 Mmampulation nstructions include signed multiply ;m‘lﬂ”‘_ :”.-.ll_
1 . . - . - | _ - P -
Uivide and can aperate on single bits, BCD mbbles (half-bytes), 8-0il

other for use as normal user
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since the m.s. bits of the address spice v

RAM), suitable 10 port am?rtll;;;’ :1::;. are not used for memory (ROM or
1 100

2100

41040

8100

(G000 —DFFF = ROM = 12 hits= 4K bvies
200 —=21FF = RAM= Obis=512 hytes
4000 = J00F =1/O = 4 bils= 16 ports

1.2 00010111 =23
10101101 =85

1011011 =219

1B (hex) Assembly hstructions Comments

bl (hex)
MVl B, 87 (B) =— B7 thex)

D06 thex)

MOV A, B (A) = [B)

211

47 MOV € B (€) = (B)

MVI D, 2F (D) = 2F (hex)
E. D (E) — (D)

H, 8EF2 (HY (L)=3EF2 (hex)

IN) binary combinations

* OUS have 16 bmary combinations (0000—= 1111

M1is can address 16K byies of memon

79 L™

=+ (1K) locations require 10 bits

=U%6 (4K) locations require 12 bits.

-

Sk e T _ ! .
— ocations require S bits

Agwembly Insrruchions Comments

MVI A FF (A} = FF thex)
STA 20FF {20FF) — (A)
M, 20FF (H)(L) = Z0FF (hex)
B, M (B) = (2UFF)
B (C) =— (B
() =— (B)
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4.1

3 f MEMOR) ; ASSEMBLY
| ] ;
I.’ \DDRESS | CONT | MNEMONIL oP| oFa
i
i -.-_ __'_‘———_.______-
|’ noo | bie
- —
B [ 5 MVI B 87
.J-: r __‘—\—___l__‘__-
| ii h | "\ f
If |I J MO\ A 8
| |
!_ Kl |r = ]
| | ol
.Ir J MOV o H
| |
i|- M) !i Y T
I - | .
| 2005 2] MVI D F
; 1[ f
3 | & [
L | 3
: MO F D
|
2007 7]
[ : -
J L 72 |' LXI H SEF2
L -r“"__'” o
.:""'-' gy [ A) :"i.
HY2() _?‘, |H| )
Az A (i A
nd Bl N LR 2H) [ii I A
/7, 3E20. 47, EB. 70, EB, 4E. 79
3931 30y,
CHAPTER 4
Binar ._ _. = ey T =
. Sinary \ Unsigned Binar, 2's complement BCD
10 1007 ln-'._ e — : :
LR CUR TN THTY a0 + 105 (Y
| £ 4() 28
Illlll]ilr.l l].‘-: -
00 1000 136 gl B B 76
]Im“,“]; 147 ~12() ﬂs
OO0 0111 {35 — 104 U3 _
— ' - 121 87 >

4.2 103 = D10l
+ 27= 40001 101

——— e

ﬂ]_ = 10000010

105 = G110 10071
—jﬂ——nlnt L1111

1] OO00-1011

43 +105= 01101001

~105= 10010111
Y4d= 0101 1110

+ 36= 0011 1000
= 56= 11001000
149 00010011

103=" 01100111
= 27=-0001 1011

+ o= 0100 1100

e —

67= 0100001
—118==01110110

- 51 11001101

4.4 %=

+5

Normal Binory Sum =
s Correction =

Carrected BCD Sum =

149 =
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h7 = D100 00 1
§ '_'_”j: +(M 1107110

L85 =

S56=

- 19=

17

=]05=

LT 1hin
I-___--——___-_

QOLL 1onio
=000 D011

e

DOT00T0])

e s —

1O 0111
FOI0T 111N

- 11
SR
+ 19=.

=S b =

oLl 0100
=010 001D

—

0000110
+ OO0

IO 1D

G 1001

+27=+00100111

Normal Binary Sum = 0100 0000
= Correction =-+0000 0110

Corrected BOCD Sum =

Q10007 10

111 010}

L1100 1000
=0T 0011

e ——— R —

101 1011

CY=0, AC=I)
= Sb
CY=0,AC=|
=40

e

Ll
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_!_l

Narmi! Binary Diff

Correcinm

Corrected BOCD Diff. =

Narmal Binary Dnil

Larmectiunmn

i OITCL Tt"i1 l]h{ !] {-'Iff

1110101
100

anii1an1l CY =10 AL

(WML

011 el l
L0 OO 4
0011 1oul

01000 10000 CY=0,AC= |

=+ 1111 1010

ANV A RNINR T

ekl QoL

gt 0o

ol oo

OO 1004 =

g 11 =

A.B

A= IHTI! 11 1“
B =0001 100

—

A=00101011
B=1000 1113

B -

A=00110111
B =0100 1001

e -

A= 10100101
B=0101 1010

——
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4.8

Assembily Insrructions

MVI A .9E ; 1001 V110 CY, P not affected
MVI B, Ad 1010 0100 CY. P not affected
RLC 0011 1101 CY =1, Pnot aflected

ANl (2 Al 0000 DODO CY=0,P=1

ORA B 1010 0100 CY=0,P=0

A AND B AORB

A XORB

OO0 0100 10111110

1011 1010

—_—

000 1011 1010 1111

1010 0100

—— ——

G000 000n OI11 1111

0111 1111

11111117

1111111

CHAPTER 5

5.1 The program will Joop on the mmstruchons

LABI: DCR A
INZ LAB1

until the contents of A become zero. The program will then halt

The program will loop on the instructions
LAB2: INR A
INZ LAB2

until the contents of A increments up to FF and then overflows to 00. The zero
flag becomes set and the program will therefore loop 256 times

BEGIN

Let B hold SUM,
C hold INCVALL

INCVAL to zero

I‘

Add INCVAL to SUM,

r [nitialise SUM and
I
{

Add 2 1o INCVAL.

|

I \
(CVAL =227 H—
g Is Ih{'“'t"_




L1

M

Yes

Jise SUM and INCVAL

Add INCVAL 1o SUIM

\dd 2 to INCVAL

INCVAL reached 227
loop back to LAB]

end: sum inB

he terminal number count be transferred 10 the subroutine in the

register and Lhe resulbing tolal re

turmed 10 the B-repiste:

Fhe numbers in the
following subroutine are then summed together in the reverse order;

LX1 SP, 2002 Initialise stack pointer

]_L]_Hl [.If_.'||.|'...- et
i

CALL SUM

sum relumed in B

et

Initinhise running total

Add number count to rmnning total.

Decrement numbior count.

Laop il count not zero.

W to calling progmm,

SOLUTIONS TO EXERCISES 171

5.8 Let A hold COUNT
B hold LIMIT (passed 1o subroutine as = parameter)

e ———

(BEGIN)

Clear COUNT to zero

Wikea

Increment COUNT by |

§=
¢ Is COUNT =LIMIT?

jycs

fRETURNJ

Asvembly Instructions Commenlis

R A —

LXI  SP. 2002 Fiiihia e stk pomtes

Load LIMIT in B

CALL DLAY

PLISH PSW Save (A) und (F) on stack.
MVE A 00 Clear COUNT.,

INR A

TN P — e — e

Increment COUNT and compare with LIMIT.
B

-

Loop it not equal

Restors (A)and (F) fram stack.

= =

i

—
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Cormmenis

MDLY | PLISH PSW

|

[XI H, 208 l

Store LIMIT value in memory location 1081
MVI M, .’_l:'me .

S.Ti':f-,‘“i'::-“ :\[
CALL DLAY

RET
PUSH PSW
MVI A 00

INR A

subroutine 2 CMP M . At above excepl {‘{_ILEN'I' Eﬂm[mrﬁd with
conients of location 2081
INZ LARI

POP ' PSW

RET

3.7 The maximum run time of FIMDLY?2 is approximatels 256 times (00— FF) the

tnstructions n the loop. Therefore

T!_-. ___:lfl-

11§ 1 ik — ol : e - '
Similarly, the maximum run time of FIMDLY1 is dpproximately 256 times

L — FF} o ) . ' s ' .
FF) the maximum run me of TDLY?2, Therefore

R 115

._]J":

Ins

I.JI!'L"! } - ””I."' ITh ! i o3 b ITi) I ] ' I;
' X1 THLI] LUTIC O . .
1 ]t L | | ..‘_! ¥ ] I.i _1I \qll}IIiILI.. r n =

CHAPTER 6

6.1
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Awembly fnstructions

Comiments

MVI A00 |
oUT 20 |

IN

ol
oy

Initialise ports A, B & C x5
mputs.

Input dita from port C and SANE
mn register C.

Input dats from port B and wave
in register B

Input data from port A Lo
A register

Assembly Instruciions

Commeénits

MVI A0 }
oUT

IN

Imtialise port A a5 input and
port B as output.

[nput data from part A.
Complement data in A.

Quiput result to port B,

Assembly Insfructions

Comments

MVI A, 02 }
ouT

IN

Initialise ports A and € as imputs
and port' B asoutput

[nput data from port C and save
in C rezister.
[nput data from port A.

Add contents of €.

Output result to port B,
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CHAPTER 7
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Vesembly Inseriiciiong

Commvnts

The f!-’!l'-'-‘»l.’"-'..'
tor a delay subroutine [seg
1!'..‘!].-":1'._ the If"':'l.‘x"i'

r::nlipl Wil L'r! T

Initinlise port B as an oulput port

Inilialse (A) Lo 00
Output (A) to port B.

Increment . (A)

Loop if (A) have naot overilowed to DO

initulise (A) to FF
Crutput (A) to port B

Decrement (A)

i.'-.n,F" jI |.|.II.| “-:‘.. _r|_,._.|| “”Jﬂri‘]”':';fl! IJ.’ FF

Repeat

LX]1
MV

OuT

REPEAT I

MOV
MVI
Out
CALL
INR
CPl
INZ
IMP
PUSH
MVI
INR
CMP
INZ
Pop

RET

SP, 2002
A, 02

0

e |

1.7

- -

DELAY
A

(0

LARI
REPEAT
PSW

A, 00

A

B

Initalise slack pointer
Initialise port A as inpot

port B as output.

Kead ramp rafe purame fer and sive n
B nigister

Initialise COUNT

Output COUNT.

Call delay

Increment COLUNT.

Has COUNT overflowed 1o 007
Na: jump to autpul new COUNT

Yesread tnew pdelay panometes

Delay subrouting
[sel exerviie 5.35)

Prooram reads 3%

dlue from port A and uses this 45 4 parameter
CACTCIse 33) The computed delay is then used to

\.]’-_:;: H"-n"'.--' .,
€p duranon for the DAC CGuiput and hence the e of the

The ADC program listed in Fig. 7.11 dernives each of the 3-bits of the digitised
analogue input by performing the instruchions in the loop

REPEAT:

OuT

INZ

Py

-

REPEAT

& rimes. The dpproximate ome for each canversion is therefore

R 2% 3) ps= 288 us
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7.4

gl - +
———
! Asrembly Instre {ammer
r .
! LXI NP 2002 / Init@mhise stack pointé;
LX] H, 2040 ! Inifalse memory pointer
’ MV A 07 l l
" b | initialise Port B ac autput
{ OUT 20 J IJ
Iutiafise | MV A, 05 l | -
= [ - J Reset mterrupt mask bits
SIM J
| MV M, 00 |I Imitialixe ADC diats
| |
\11-' a. (] -' .
l ' r initialise LED op
J sta 2041 | '
| L.
{ [ LOoP:  Ej ﬂ Enable interrupts.
I MON A M l
> Compare ADC data with threshold valus.
]J g < (Pl THRES J
[ P ALARM r Conditional CALL to subs ALARM.
I
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