
Computer, Network,
Software, and Hardware
Engineering with
Applications

 IEEE Press
 445 Hoes Lane

 Piscataway, NJ 08854

IEEE Press Editorial Board
 Lajos Hanzo, Editor in Chief

 R. Abhari M. El - Hawary O. P. Malik
 J. Anderson B - M. Haemmerli S. Nahavandi
 G. W. Arnold M. Lanzerotti T. Samad
 F. Canavero D. Jacobson G. Zobrist

 Kenneth Moore, Director of IEEE Book and Information Services (BIS)

Technical Reviewers

 Michael R. Lyu
 The Chinese University of Hong Kong

 Daniel Zulaica
 Naval Postgraduate School

Computer, Network,
Software, and Hardware
Engineering with
Applications
Norman F. Schneidewind

A John Wiley & Sons, Inc., Publication

IEEE PRESS

Copyright © 2012 by the Institute of Electrical and Electronics Engineers, Inc.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. All rights reserved.
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,
fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/
permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts
in preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifi cally disclaim any implied warranties of
merchantability or fi tness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profi t or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic formats. For more information about Wiley products, visit our web
site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Schneidewind, Norman.
 Computer, network, software, and hardware engineering with applications /
Norman Schneidewind.
 p. cm.
 Includes index.
 ISBN 978-1-118-03745-4 (cloth)
 1. Computer engineering. 2. Computer networks. 3. Software engineering.
I. Title.
 TK7885.S2564 2012
 005.1–dc23
 2011033591

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

v

Preface vii

About the Author ix

Part One Computer Engineering

1. Digital Logic and Microprocessor Design 3

2. Case Study in Computer Design 63

3. Analog and Digital Computer Interactions 83

Part Two Network Engineering

4. Integrated Software and Real-Time System Design
with Applications 99

5. Network Systems 125

6. Future Internet Performance Models 143

7. Network Standards 211

8. Network Reliability and Availability Metrics 228

Part Three Software Engineering

9. Programming Languages 263

10. Operating Systems 286

11. Software Reliability and Safety 303

Contents

vi Contents

Part Four Integration of Disciplines

12. Integration of Hardware and Software Reliability 315

Part Five Applications

13. Applying Neural Networks to Software Reliability Assessment 337

14. Web Site Design 354

15. Mobile Device Engineering 377

16. Signal-Driven Software Model for Mobile Devices 396

17. Object-Oriented Analysis and Design Applied to
Mathematical Software 420

18. Tutorial on Hardware and Software Reliability, Maintainability,
and Availability 443

Practice Problems with Solutions 1 466

Practice Problems with Solutions 2 504

Index 556

 Preface

There are many books on computers, networks, and software engineering but none
that integrate the three with applications . Integration is important because, increas-
ingly, software dominates the performance, reliability, maintainability, and avail-
ability of complex computer and systems. Books on software engineering typically
portray software as if it exists in a vacuum with no relationship to the wider system.
This is wrong because a system is more than software. It is comprised of people,
organizations, processes, hardware, and software. All of these components must be
considered in an integrative fashion when designing systems. On the other hand,
books on computers and networks do not demonstrate a deep understanding of the
intricacies of developing software. In this book you will learn, for example, how to
quantitatively analyze the performance, reliability, maintainability, and availability
of computers, networks, and software in relation to the total system . Furthermore,
you will learn how to evaluate and mitigate the risk of deploying integrated systems.
You will learn how to apply many models dealing with the optimization of systems.
Numerous quantitative examples are provided to help you understand and interpret
model results.

 The following topics are covered:

 • application of quantitative models to solving computer, network, and software
engineering problems

 • mathematical and statistical models of reliability, maintainability, and
availability

 • statistical process and product control

 • fault tree analysis

 • risk management

 • software metrics

 • resource allocation and assignment

 • software reliability models and tools

 • computer security

 • optimal network routing

 Solutions to problems that consider only a single facet of a problem are doomed to
be suboptimal. Because of its breadth, this book provides a new perspective for
computer, network, and software engineers to consider the big picture in order to
develop optimal solutions.

vii

viii Preface

 This book can be used as a text, handbook, and reference by advanced under-
graduates and fi rst - year graduate students in academia as well as by computer,
network, and software engineer practitioners in the worldwide industry.

 N orman F. S chneidewind
Professor Emeritus of Information Sciences
Department of Information Sciences
and the Software Engineering Group
Naval Postgraduate School

 About the Author

Dr. Norman F. Schneidewind is Professor Emeritus of Information Sciences in the
Department of Information Sciences and the Software Engineering Group at the
Naval Postgraduate School. He is now doing research and publishing articles and
books in software reliability engineering with his consulting company Computer
Research. Dr. Schneidewind is a Fellow of the Institute of Electrical and Electronics
Engineers (IEEE), elected in 1992 for “ contributions to software measurement
models in reliability and metrics, and for leadership in advancing the fi eld of soft-
ware maintenance. ” In 2001, he received the IEEE “ Reliability Engineer of the Year ”
award from the IEEE Reliability Society. In 2011, he received the “ Outstanding
Engineer ” award from the IEEE Santa Clara Valley Section. In 1993 and 1999, he
received awards for Outstanding Research Achievement by the Naval Postgraduate
School. Dr. Schneidewind was selected for an IEEE - USA Congressional Fellowship
in 2005 and worked with the Committee on Homeland Security and Government
Affairs, United States Senate, focusing on homeland security and cyber security (see
photo below).

 In July 2011, Dr. Schneidewind was named the Outstanding Engineer of Santa
Clara Valley by the IEEE Chapter of Santa Clara Valley. In addition, he has been
named Outstanding Engineer of the San Francisco Bay Area. Furthermore, he has
been named Outstanding Engineer of Region 6 of the IEEE.

 IEEE - USA ’ s four Government Fellows began their Fellowships in January
2005: Randall Brouwer (with Rep. Dana Rohrabacher); Gordon Day (with Sen. Jay
Rockefeller); Norman Schneidewind (on the Senate Homeland Security Committee);
and Nick Zayed (with the State Department Offi ce of Science and Technology
Cooperation).

 Shown at the Jefferson Memorial in Washington, D.C., are, from left to right,
IEEE - USA Government Fellows Norman Schneidewind, Nick Zayed, Randall
Brouwer, and Gordon Day.

ix

x About the Author

 In March 2006, he received the IEEE Computer Society Outstanding Contribu-
tion Award “ for outstanding technical and leadership contributions as the Chair of
the Working Group revising IEEE Standard 982.1, ” signed by Debra Cooper, Presi-
dent of the IEEE.

 He is the developer of the Schneidewind software reliability model that is used
by the National Aeronautics and Space Administration (NASA) to assist in the pre-
diction of software reliability of the Space Shuttle by the Naval Surface Warfare
Center for Tomahawk cruise missile launch and Trident software reliability predic-
tion, and by the Marine Corps Tactical Systems Support Activity for distributed
system software reliability assessment and prediction. This model is one of the
models recommended by the IEEE/AIAA Recommended Practice for Software
Reliability. In addition, the model is implemented in the Statistical Modeling and
Estimation of Reliability Functions for Software (SMERFS) software reliability
modeling tool.

 Dr. Schneidewind has been interviewed by several organizations regarding his
work in software reliability, including the following: a New York Times article, which
was published on February 7, 2003, about the Space Shuttle software development
process in conjunction with the Columbia tragedy and by the Associated Press about
the same subject; National Public Radio, Montgomery, Alabama on April 1, 2002;
and by The Bent , Tau Beta Pi ’ s (all engineering society) magazine, about his profes-
sional accomplishments on November 4. 2002. This article was part of a series about
prominent Tau Beta Pi members.

 He is a member of the IEEE - USA Committee on Communications and Informa-
tion Technology Policy (CCIP). The objective of the CCIP is to infl uence the com-
munication and information technology policies of the executive and legislative
branches of federal and state governments. His primary contribution is developing
policies and models to defeat cyber security attacks. He has also contributed to
IEEE - USA Committee on Communications Policy in the area of personal identifi ca-
tion privacy and security.

 Part One

Computer
Engineering

Chapter 1

Digital Logic and
Microprocessor Design

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F.
Schneidewind.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley &
Sons, Inc.

T his chapter focuses on the fundamentals of digital logic and design, with numerous
examples from both computer hardware design and “ everyday life ” events to demonstrate
that digital logic is not confi ned to designing computers. My objective is to equip the engineer
or student with suffi cient knowledge of design principles to be able to design a digital com-
puter. In addition, I integrate the important role that software plays in modern computer
systems with the hardware design principles. Numerous design examples and solved problems
are provided to support learning objectives.

MICROPROCESSOR DESIGN

Functions

 Using its arithmetic logic unit (ALU), a microprocessor can perform mathematical
and logic operations like addition, subtraction, multiplication, division, and com-
parison. Modern microprocessors contain complete fl oating - point processors that
can perform extremely sophisticated operations on large variable - length numbers.
In addition, a microprocessor can perform the following functions:

 Move data from one memory location to another.

 Make decisions and jump to a new set of computer program instructions based
on those decisions.

 Use an RD (read) and WR (write) line to tell the memory whether it wants to
read from or write to the addressed location.

 Use a clock line to transmit clock pulses (CPs) to sequence the microprocessor.
For example, when numbers are added by the microprocessor, which you

3

4 Computer, Network, Software, and Hardware Engineering with Applications

will see later, addition takes place bit by bit, and the clock triggers each
binary bit addition to ultimately form a decimal result.

 Uses a reset line to reset the program counter to zero and restart execution.

Components

 Microprocessor components are the building blocks of modern computers. These
components are the following:

• ALU. Consists of accumulators, registers, and control unit.

• The ALU executes instructions and manipulates data.

• An 8 - bit ALU can add, subtract, multiply, and divide two 8 - bit numbers,
while a 32 - bit ALU can manipulate 8 - bit, 16 - bit, and 32 - bit numbers.

• An 8 - bit ALU would have to execute four instructions to add two 32 - bit
numbers (four add instructions, each of which adds 8 - bit numbers), whereas
a 32 - bit ALU can do it in one instruction.

• Accumulator. Holds data and instructions for processing by the ALU.

• Register. Temporary storage of instructions and data.

• Program Counter (PC). Contains the address of next instruction to be
executed

• Instruction Register (IR). Holds address of current instruction being
executed

• General Registers. Holds operator (e.g., code for add instruction), operands
(e.g., numbers to be added), and data while an instruction is executed

• Stack. Temporary storage of instructions and data, usually on a last in, fi rst
out (LIFO) basis. Also called push - down stack.

• Control Unit. Fetches and decodes instructions, generates signals for the ALU
to execute instructions

• Busses

• Address Bus. Path over which addresses fl ow for directing memory and
 input/output (I/O) data transfers. An address bus may be 8, 16, or 32 bits
wide that sends an address to memory or I/O for accessing memory or I/O.

• Data Bus. Transfers data. A data bus may be 8, 16, or 32 bits wide that can
send data to memory or I/O and receive data from memory or I/O. The
number of address bus lines determine the amount of addressable memory
(n lines = 2 n addressable words).

• Control Bus. Communicates control and status information.

• Chip. A chip is also called an integrated circuit. Generally it is a small, thin
piece of silicon onto which the transistors making up the microprocessor have
been etched. A chip might be as large as an inch on a side and can contain
tens of millions of transistors. Simpler processors might consist of a few

Digital Logic and Microprocessor Design 5

thousand transistors etched onto a chip just a few millimeters square. Microns
are the width of the smallest wire on the chip. For comparison, a human hair
is 100 μ m thick. As the feature size on the chip goes down, the number of
transistors rises.

Characteristics

 Microprocessor characteristics govern the speed and functionality of computer oper-
ations. Important characteristics include the following presented in the succeeding
paragraphs.

 Smaller microprocessors can be combined into a larger one (four 4 - bit micro-
processors combined into one 16 - bit microprocessor).

 A crystal - controlled clock sequences the operations of a microprocessor (e.g.,
the sequence of computer program instruction execution) by generating CPs. Clock
speed is specifi ed in cycles per second, where 1 MHz is equal to 1 million cycles
per second. Clock speed is the maximum speed of the chip.

 Instructions require one or more clock cycles to execute the following, depend-
ing on its complexity: fetch instruction from memory, decode the operation code,
fetch operands from memory, execute the instruction, and store the result in memory.
In addition to clock speed, an important performance metric is the number of
fl oating - point operations per second or fl ops.

Complex instruction set computing (CISC). A single instruction can perform
several operations. This design simplifi es programming because, for example,
a single instruction can fetch instruction from memory, decode the operation
code, fetch operands from memory, execute the instruction, and store the
result in memory. However, the downside is the relatively slow speed of the
computer [RAF05] .

Reduced instruction set computing (RISC). Several operations are required to
execute a single instruction. This design provides high speed, for example,
well suited to real - time applications that must meet deadlines, but at the
expense of relatively complex programming.

Performance

 One measure of the computing power of a microprocessor is its clock speed, mea-
sured in millions of cycles per second (MHz). It usually takes from one to seven
cycles of a microprocessor ’ s internal clock to fully process an instruction. The faster
the internal clock, the more instructions can be processed per unit of time. For the
microprocessors in laptop and desktop computers, clock speeds are usually greater
than 100 MHz. The fastest microprocessors can run at a speed of 2 GHz. From a
user standpoint, the most important performance metric is program execution time,
defi ned as [HAR07] :

6 Computer, Network, Software, and Hardware Engineering with Applications

Program execution time Number of instructions in program= ()

∗∗ ∗() ().Clock cycles per instruction Time per clock cycle

 Another measure of performance is the number of instructions that can be processed
per second, referred to as MIPS, for million instructions per second. The MIPS rating
of a microprocessor depends on both the clock speed and the number of instructions
that can be executed per clock cycle. Simple microprocessors can execute a maximum
of one instruction per clock cycle. Advanced microprocessors can execute up to six
or eight instructions per clock cycle. The relationship between clock speed and MIPS
is not straightforward, however, because some instructions may take more than one
clock cycle to execute, depending on the program. The product of clock speed and
the number of instructions that can be executed per cycle may be greater than MIPS.
The maximum clock speed is a function of the manufacturing process and delays
within the chip. MIPS is proportional to the clock speed and inversely proportional
to the number of clock cycles per instruction.

 Another indication of microprocessor speed is the word length, as measured by
the number of bits of information that can be transferred simultaneously. Long words
allow the microprocessor to handle data and perform complex tasks more effi ciently.
The number of bits per word has been steadily increasing with the growth of circuit
technology. Thus 4 - , 8 - , 16 - , 32 - , and 64 - bit microprocessors are now common.
Some personal computers use 32 - bit microprocessors. More powerful computers use
64 - bit microprocessors. The 4 - , 8 - , or 16 - bit devices are usually employed in simple
embedded applications, such as microwave ovens, electric shavers, and televisions.
Figure 1.1 shows the microprocessor architecture.

Pipeline Systems

 An important aid to performance is the pipeline system. The purpose of a pipeline
system is to reduce delay caused by the computer processor having to wait for
instructions to complete. With a pipeline design, the processor begins the execution
of the next instruction while the current instruction is executing. Thus, various
phases of instruction execution are overlapped. The concept is to keep the pipeline
full, with as many execution sequences as possible. For example, due to overlapped
instruction execution, each instruction overlaps during (n − 1) clock cycles, and each
of m = 4 instructions requires one clock cycle, yielding (n − 1) + m = 7 clock
cycles, total, as shown in Figure 1.2 .

Problem: How is the increase in speed , obtained by a pipelined system over a
conventional system, computed?

Answer: Using Figure 1.2 as an example, the increase is computed as follows:

 The number of clock cycles required in conventional system is mn = 4 * 4 = 16 in
the example of Figure 1.2 . Thus, the decrease in number of clock cycles for a pipe-
lined system is:

 mn n m− − + = − =(()) ,1 16 7 9

Digital Logic and Microprocessor Design 7

Figure 1.1 Microprocessor architecture.

Instruction
Register

Instruction
Cache

Control
Unit

Data Buffers

ALU

Program
Counter

Instruction
Register

General
Registers

Accumulators

Stacks

Memory

Data Bus

Input
Devices

Data Bus

Clock

Control Bus

Operator and
Operand Bus

Output
Devices

Data Bus

Interrupt
Service
Routine

Operating
System

Application
Program

Resource
Allocation

 and the increase in speed (number of clock cycles required in conventional system/
number of clock cycles required in a pipelined system) is:

 () / (()) / ((() /)) / . .mn n m n n m− + = − + = =1 1 1 16 7 2 286

 If m is large, the increase in speed approaches n clock cycles per instruction —
 maximum speed increase.

 The pipeline throughput is defi ned as the number of instructions , m, per total
clock cycle time required to process m instructions:

8 Computer, Network, Software, and Hardware Engineering with Applications

m instructions

Number of clock cycles per instruction Time ∗ pper clock cycle

m

m n 1 T
=

+ −()
,

 where T is clock cycle time per instruction.

Problem: Compute the throughput of the pipeline microprocessor in Figure 1.2 .

Answer: For a clock speed of 10 Mhz (10 7 clock cycles per second), T = 1/10 7

seconds, the throughput is:

 m m n T MIPS/ (()) / (()(/)) ()() / . .+ − = = =1 4 7 1 107 4 107 7 5 71

Pipeline effi ciency is computed as: speed increase/maximum speed increase (n = 4
clock cycles per instruction) = 2.286/4 = 0.5715.

Pipeline System Delay

 When a pipeline instruction is unable to complete on the scheduled clock cycle, then

• Finish the earlier instructions on schedule and

• Delay the later instructions

• This is called stalling the pipeline

Structural hazard s are pipeline hardware delays.

Example: Memory does not respond to a request as fast as it is expected.

Data hazards arise when data are not ready in a pipeline at the time they are needed.

Figure 1.2 Pipelined system. n, clock cycle per instruction; m, instructions, each requiring one
clock cycle; (n − 1) + m = 7 clock cycles (each instruction overlaps for [n − 1] clock cycles).

Memory

1

Memory

2

Memory

3

Memory

4

Latch 1 Latch 2 Latch 3

Instruction Input

Bus

T1 T2 T3 T4 T5 T6 T7Clock Cycle

I1 I1 Done

I2 Done

Instructions I1 I1

I2 I2 I2

I3 I3 I3 I3 Done

Instruction Queues

Hold

Instruction

I4 I4 I4 I4 Done

Digital Logic and Microprocessor Design 9

Example: An instruction needs data in a register that a previous instruction is
still modifying.

Control hazards arise when the central processing unit (CPU) needs to manage a
pipeline but instead must increment the program counter.

Example: Nonpipelined conditional branch instruction jumps to a pipelined
instruction.

Problem: Delay in a pipelined operation is illustrated in this problem that
compares the clock cycle delay for nonjump instructions with that of jump
instructions.

 If a jump instruction is executed in the pipelined CPU in Figure 1.2 , what is the
clock cycle delay?

Answer: Since the target of the jump instruction (another instruction) cannot
be decoded (i.e., program counter updated) until the jump instruction is
executed, there is a delay of three clock cycles.

Problem: What cam be done in a pipeline system to maintain performance
when a structural hazard occurs?

Answer: More resources can be employed, if available, or the pipeline can be
stalled (i.e., no instructions executed until needed hardware is available).

Problem: Is the microprocessor architecture in Figure 1.1 a pipeline computer?

Answer: No, it is not because only one instruction can be executed at a time.

Problem: What determines the clock cycle frequency of a pipeline system?

Answer: The clock cycle frequency of a pipeline system is governed by the
pipeline with the slowest processing time. For example, whichever pipeline
queue in Figure 1.2 experiences the slowest processing determines clock
cycle frequency.

Operating System

 The operating system contains the software necessary to manage the resources of a
computer system. An example is a signal called an interrupt that is used to indicate
to the microprocessor that an I/O device needs attention (i.e., data input or data
output) or that there is an error condition (e.g., attempted divide by zero). The inter-
rupt service routine is shown in Figure 1.1 . In addition to managing resources, the
operating system is responsible for allocating resources, for example, allocating
memory to the application program, as depicted in Figure 1.1 .

Memory

 Because computer performance depends on the characteristics of memory systems
in addition to the microprocessor architecture, it is important to consider the former

10 Computer, Network, Software, and Hardware Engineering with Applications

 [HAR07] . Two important types of memory systems are main memory (random
access memory, RAM) and secondary memory (hard disk, USB fl ash). Main memory
can be divided between a relatively slow RAM for program and data access and a
fast cache memory for accessing recently used instructions and data. In addition,
secondary memory can be classifi ed as virtual, meaning that pages on a hard disk
can be mapped to main memory locations under the control of a memory manage-
ment unit. A microprocessor may be equipped with special hardware, called direct
memory access (DMA), which allows I/O devices to communicate directly with
memory rather than using intermediate devices (such as data buffers in Fig. 1.1).

RAM

 RAM contains bytes of information that the microprocessor can read or write,
depending on whether the RD or WR line is activated. One problem with RAM
chips is that they are volatile; the RAM contents are lost once the power goes off.
That is why the microprocessor needs read - only memory (ROM).

ROM

 All microprocessors contain ROM. A ROM chip is programmed with a permanent
collection of preset bytes. The address bus tells the ROM chip which byte to read and
place on the data bus. The RD line signal causes the ROM chip to transfer the selected
byte to the data bus. On a personal computer, the program in the ROM is called the
 BIOS (basic input/output system). When the microprocessor starts, it begins execut-
ing instructions it fi nds in the BIOS. The BIOS instructions test the hardware, and
then control is transferred to the hard disk to fetch the boot sector. The boot sector is
another small program that the BIOS stores in RAM after reading it from the disk.
The microprocessor then begins executing the boot sector ’ s instructions from RAM.
The boot sector program will tell the microprocessor to fetch more instructions from
the hard disk into RAM, which the microprocessor then executes, and so on. This is
how the microprocessor loads and executes the entire operating system.

Read/Write (R/W) Control Line

 This single wire is driven by the microprocessor to control memory functions. If the
R/W control line is asserted as a logical 1 (i.e., true), then the microprocessor per-
forms a read operation. If it is asserted as a logic 0 (i.e., false), then the microprocessor
performs a write operation. The relationship between logic level and voltage level
can vary, depending on the implementation. For example, a logical 0 corresponds to
a voltage of 0 V, and a logical 1 corresponds to a voltage of 5 V. Figure 1.3 is a block
diagram of the microprocessor and memory, showing the R/W control line.

Address Bus

 These wires are controlled by the microprocessor to select a particular location in
memory for reading or writing. The microprocessor in Figure 1.3 uses a memory
chip that has 15 address wires.

Digital Logic and Microprocessor Design 11

Problem: How many locations can be addressed in Figure 1.3 ?

Answer: Since each wire has two states (it can be a digital 1 or a 0), 2 15 = 32,768
locations are possible. Thus, the system is said to have 32K of memory
(1K = 1024 bytes).

Data Bus

 These wires are used to pass data between the microprocessor and the memory.
When data are written to the memory, the microprocessor drives the data bus; when
data are read from the memory, memory drives the bus. In the example, in Figure
 1.3 , there are eight data wires (or bits). These wires can transfer one of 2 8 or 256
different binary values per transfer. The data size of 8 bits is commonly referred to
as a byte. A data size of 4 bits is frequently referred to as a nibble.

Memory Enable Control Line

 This wire, called the Enable line, connects to the enable circuitry of the memory in
Figure 1.3 . When the memory is enabled, it performs either a read or write operation
as determined by the status of the R/W line.

Memory System Performance

 Memory system performance is computed by considering hit and miss rates and the
order of accessing memory components: cache memory, main memory, and hard
disk. These rates are related to whether the instructions or data that are required by
a program are available, fi rst, in the cache memory, or second, in the main memory.
If the instructions or data are in the cache, the access is scored as a cache hit;
otherwise, the access is scored as a cache miss. Similarly, if the instructions or data

Figure 1.3 Diagram of microprocessor and memory.

A0:14 A0:14

D0:7 D0:7

E

Microprocessor

R/~W

Enable

Memory

R/~W

Address Bus (15 bits)

Data Bus (8 bits)

Enable

Read/Write Control Line

12 Computer, Network, Software, and Hardware Engineering with Applications

are not in the cache but are in main memory, the access is scored as a main memory
hit; otherwise, the access is scored as a main memory miss because the instructions
or data are only available on the hard disk [HAR07] . Thus, hit and miss rates are
computed as follows:

 Cache hit rate (CHR)
Number of cache hits

Total number of m
=

eemory accesses
,

 Cache miss rate (CMR)
Number of cache misses

Total number o
=

ff memory accesses
,

 Main memory hit rate (MMHR)
Number of main memory hits

Tota
=

ll number of memory accesses
,

 Main memory miss rate (MMMR)
Number of main memory misses

T
=

ootal number of memory accesses
,

Number of hard disk accesses (HAD) Total number of memory = aaccesses

Number of cache memory hits Number of main memo− +(rry hits

Number of main memory misses).+

 Note that when there is a cache memory miss, the main memory access is attem-
pted. Thus, it is not necessary to count cache memory misses in the foregoing
computation:

 Hard disk access rate HDAR HAD Total number of memory ac() /= ccesses.

Problem: For example, consider the following case:

 4000 total number of memory accesses

 1200 cache accesses are hits and 800 are misses

 Of the 800 cache misses that require access to the main memory, 200 are hits
and 600 are misses

 Compute CHR, CMR, MMHR, MMMR, HAD, and HDAR.

Answer: CHR = 1200/4000 = 30%

 CMR = 800/4000 = 20%

 MMHR = 200/4000 = 5%

 MMMR = 600/4000 = 1%

 HAD = 4000 − (1200 + 200 + 600) = 2000

 HDAR = 1200/4000 = 50%

 Another memory performance metric is average access time (AAT), which is com-
puted as follows:

AAT CHR cache access time

MMHR main memory access time

= ∗
+ ∗

()

() ++ ∗HDAR hard disk access time().

Digital Logic and Microprocessor Design 13

Problem: For the following typical access times: cache = 2 ns, main memory =
60 ns, and hard disk = 35 ms, and using the above hit and miss access rates,
compute the AAT.

Answer: AAT = (0.30)(2) + (0.04)(60) + (0.50)(35 * 10 6) ns = 20.50 * 10 6 ns
(of course, hard disk access time dominates).

Multiplexing Data and Address Signals

 On the Motorola 68HC11 microprocessor, in Figure 1.4 , the 8 - bit address/data bus
takes turns acting as an address bus and a data bus. When a memory location is
accessed (for reading or writing), the bus fi rst acts as an address bus, transmitting
the 8 lower - order bits of the address. Then the bus functions as a data bus, either
transmitting a data byte (for a write cycle) or receiving a data byte (for a read cycle).
This kind of split - personality bus is referred to as a multiplexed address and data
bus. The support needed by the memory is provided by an 8 - bit latch (a device that
can store an address), using a multiplexed address/data bus. This chip (HC373)
performs the function of latching the lower 8 address bits, when combined with the
upper 7 address bits from the microprocessor, will provide the full 15 - bit address
for reading or writing data.

 Figure 1.4 shows how the latch is wired. The upper 7 address bits run directly
from the microprocessor to the memory. The lower 8 address bits are multiplexed
with 8 data bits . When an address appears on the wires AD: 07, the latch connects
the address bits of the microprocessor to the memory. On the other hand, when
data appears on the wires AD0:7, the latch connects the data bits of the micropro-
cessor to the memory. An additional signal, the address strobe (AS) output of the

Figure 1.4 Block diagram of microprocessor and memory with latch.

A8:14 A8:14

AD0:7

A0:7

D0:7

Microprocessor

(Motorola 6811)

R/~WE AS

AS

Enable

Memory

R/~W

Address Bus (upper 7 bits)

Multiplexed
Address/Data Bus

(8 bits)

Read/Write Control Line

(32K static RAM)

Address Bus (lower 8 bits)

Latch
(’HC373)

“Address Strobe” Signal

Enable

14 Computer, Network, Software, and Hardware Engineering with Applications

microprocessor, tells the latch when to obtain the address bits from the address/data
bus. When the full 15 - bit address is available to the memory (upper 7 bits direct
from the microprocessor (wires A8: 14) and lower 8 bits from the latch (wires AD:
07), the read or write access can occur. Because the address/data bus is also wired
directly to the memory, data can fl ow in either direction between the memory and
the microprocessor. The entire process is managed by the microprocessor. The
Enable (E) clock, the R/W line, and the AS line perform in tight synchronization to
make sure these operations happen in the correct sequence and within the timing
capacities of the microprocessor hardware.

Memory Mapping the RAM

 Memory mapping refers to allocating blocks of memory to different functions, such
as the operating system and the application program. If a microprocessor has 15
address bits, it has 32,728 (32K bytes) of addressable locations that can be mapped.
This address space would be used by the 32K memory chip in Figure 1.5 . The
technique used to map the memory is fairly simple. Whenever the microprocessor ’ s
A15 (the highest order address bit) is logic 1, the high - order address bit is selected.
The other 15 address bits (A0 through A14) determine the address within that 32K
block. If A15 is logic 0, the 32K block is not selected.

 A NAND gate (actually a portion of a programmable logic device called a PAL)
is used to enable the memory when A15 and the E Clock equal 1 in Figure 1.5 . (See
the “ Digital Logic ” section below for the explanation of NAND and other gates).

 The E Clock controls the timing of the chip enable line. Some memory chips
use an active low (sometimes called “ active false ”) signal to enable inputs, meaning
that they are enabled when the enable input is 0. The method for denoting an input
that is active low (i.e., 0) is shown in Figure 1.5 , where the chip enable input con-
nects to a circle; this circle indicates an active low input. Also, the name for the
signal, CE, is prefi xed with a ∼ symbol.

Interrupt Handling

 The microprocessor has a bank of interrupt vectors, as shown in Figure 1.5 , which
are hardware - defi ned locations in the memory address space where the microproces-

Figure 1.5 Enabling the memory.

Interrupt vectors

Microprocessor R/~W

A15

E clock

PAL 16L8

Functions as NAND gate

32K memory chip

R/~W read/write line

O~CE chip enable line

Digital Logic and Microprocessor Design 15

sor expects to fi nd pointers to interrupt handling routines, for processing input and
output data, arithmetic overfl ow, and so on. Also, when the microprocessor is reset,
it fi nds the reset vector to determine where it should begin running a program. These
vectors are located in the address space of the memory.

DIGITAL LOGIC

 The fundamental logic operations of a microprocessor are performed by the follow-
ing circuits. The results of those operations are represented in truth tables, where
the binary value 0 is considered “ low ” (e.g., low voltage) and the binary value 1 is
considered “ high ” (e.g., high voltage). While digital logic is used in the design of
microprocessors, “ everyday ” examples are provided to show that the logic opera-
tions are not restricted to microprocessors.

NOT : represented in Table 1.1 and implemented with an inverter in Figure 1.6 .

Application: The application is to complement the input A, producing the
output A.

Microprocessor example: the binary bit input was caused by an arithmetic
overfl ow condition, so it is ignored and not used in the computation.

Everyday example: if we are to leave on an automobile trip, where A = 1
represents leaving at 1000, A = 0 represents all times not equal to 1000.

OR : represented in Table 1.2 and implemented with OR gate in Figure 1.6 .

Application: The application is to produce a 1 output if any or both of the inputs
are 1.

Microprocessor example: the inputs are binary bits from memory stick or hard
disk, so the microprocessor can accept either or both to perform a computa-
tion, depending on the current computer program instruction.

Everyday example: if A = 1 represents the decision to purchase a house and
B = 1 represents the decision to purchase an automobile, Z = 1 represents
the decision to purchase a house or an automobile or both.

AND : represented n Table 1.3 and implemented with an AND gate in Figure 1.6 .

Application: The application is to produce a 1 output if all inputs are 1.

Table 1.1 NOT Truth Table

 Input Output

 A A
 0 1
 1 0

16 Computer, Network, Software, and Hardware Engineering with Applications

Table 1.2 OR Truth Table

 Input Input Output

 A B Z = A + B
 0 0 0
 0 1 1
 1 0 1
 1 1 1

Figure 1.6 Logic operations.

A –
A

B

A
Z = A + B

Inverter

OR Gate

AND Gate
A

B

Z = AB

o

A

B

NOR Gate

Z =

A + B

o

A

B

Z =

AB

A

B

XOR Gate

NAND Gate

Z = AB + AB
_ _

A
__
B

__
A
B

_
AB

Implementation of XOR Gate

o

Z =
_ _

AB + AB

XNOR Gate

A

B

Z = AB + AB

_

_ _

AB

Digital Logic and Microprocessor Design 17

Table 1.3 AND Truth Table

 Input Input Output

 A B Z = AB
 0 0 0
 0 1 0
 1 0 0
 1 1 1

Table 1.4 NOR Truth Table

 Input Input Output

 A B Z A B= +
 0 0 1
 0 1 0
 1 0 0
 1 1 0

Microprocessor example: the microprocessor uses a signal Z = 1 to tell it that
an interrupt has occurred on input line A and signifying that data input occurs
on B, which the microprocessor will transfer to its memory.

Everyday example: if A = 1 represents a gas station and B = 1 represents a
restaurant, we would stop our automobile at location Z, if Z has both a gas
station and a restaurant.

NOR : represented in Table 1.4 and implemented with NOR gate in Figure 1.6 .

Application: The application is to produce a 1 output if all inputs are 0.

Microprocessor example: the microprocessor Z = 1 output is recognized as
interrupt code AB = 00.

Everyday example: if A = 0 represents the decision to not purchase a home
and B = 0 represents the decision not to purchase an automobile, then Z = 1
represents the decision to neither purchase a home nor purchase an
automobile.

NAND : represented in Table 1.5 and implemented with NAND gate in Figure 1.6 .

Table 1.5 NAND Truth Table

 Input Input Output

 A B Z AB=
 0 0 1
 0 1 1
 1 0 1
 1 1 0

18 Computer, Network, Software, and Hardware Engineering with Applications

Application: The application is to produce a 1 output if all inputs are not 1.

Microprocessor example: the microprocessor program produces the comple-
ment of the product of binary bits. This would be the case, for example, when
Z = 1 signals that 0s occur on either or both of two input channels.

Everyday example: if A = 1 represents a gas station and B = 1 represents a
restaurant, we would stop our automobile at location Z, if Z has only a gas
station, or has only a restaurant, or has neither (i.e., rest stop).

Exclusive OR (XOR) : represented in Table 1.6 and implemented with EXCLUSIVE
OR gate in Figure 1.6 . The fi gure also shows how the gate can be implemented,
using AND and OR gates.

Application: The application is to produce a 1 output if any of the inputs is 1,
but not all inputs are 1, and not all inputs are 0.

Microprocessor example: the main microprocessor receives a signal Z = 1
from the output of the I/O microprocessor that a binary bit A = 1 from a
memory stick or B = 1 from a hard disk, and is ready for input, but these
inputs are not concurrent .

Everyday example: if A = 1 represents the decision to purchase a house and
B = 1 represents the decision to purchase an automobile, Z = 1 represents
the decision to purchase a house or an automobile, but not both at the same
time .

Exclusive NOR (XNOR) : represented in Table 1.7 and implemented with XNOR gate
in Figure 1.6 . The NOR gate is the negation of the XOR gate from Table 1.6 , as
indicated in Table 1.7 .

Table 1.6 EXCLUSIVE OR Truth Table

 Input Input Output

 A B Z AB AB= +
 0 0 0
 0 1 1
 1 0 1
 1 1 0

Table 1.7 EXCLUSIVE NOR (XNOR) Truth Table

 Input Input Output

 A B Z AB AB AB AB A B A B AA AB AB BB AB AB= + = = + + = + + + = +()() ()()
 0 0 1
 0 1 0
 1 0 0
 1 1 1

Digital Logic and Microprocessor Design 19

Application: The application is to produce a 1 output if all inputs are 0 or all
inputs are 1.

Microprocessor example: Two hard drives are identifi ed as A = 0 and A = 1;
two fl ash memories are identifi ed as B = 0, and B = 1. The microprocessor
is programmed to input data from a hard drive and a fl ash memory concur-
rently . Therefore, it reads A = 0 and B = 0 or A = 1 and B = 1.

Everyday example: if A = 1 represents a gas station and B = 1 represents a
restaurant, we would stop our automobile at location Z, if Z has neither a
gas station nor a restaurant (i.e., rest stop) or has both a gas station and
restaurant (i.e., get gas and eat).

De Morgan ’ s theorem [GRE80] is used to simplify complex logic equations and the
resultant digital logic. The theorem is used to simplify relatively simple expressions,
as contrasted with Karnaugh maps (K - maps), described in the next section. The
application of this theorem is shown in the following example:

 Theorem: A B AB and AB A B.+ = = +

 Suppose it is required to simplify F AB AB= (()()).
 Applying the theorem:

AB A B AB AB A B A B

A A A B A B B B A A B B A A

= + = + +

= + + + = + + = + +

,()() ()()

()1 BB A B

F A B A B A B A B AB AB B.

= +

= + + = + + + = + =()(() ()

 Then, use Table 1.8 to demonstrate the equivalence between (()())AB AB and AB.

 K -MAPS

 A K - map in Table 1.9 is used to minimize a complex Boolean expression [RAF05] .
Each square of a K - map represents a minterm (i.e., product terms). The process
proceeds by listing the binary equivalents of the terms A and BC on the axes of
Table 1.9 , ordering them so that there is only a 1 - bit difference between adjacent
cells. Then, the minimum number of cells is enclosed. Next, minterms are identifi ed

Table 1.8 Truth Table to Demonstrate Equivalence between F and AB

 A B AB ABAB F AB AB= (()()) AB

 0 0 1 1 0 0
 0 1 1 1 0 0
 1 0 1 1 0 0
 1 1 0 0 1 1

20 Computer, Network, Software, and Hardware Engineering with Applications

 In the K - map, B is common to the enclosed minterms. Therefore, F B= . Table 1.10
demonstrates this result. The considerable reduction from the original function
would result in signifi cant savings in circuitry to implement the function.

Prime Implicant

 A prime implicant is the product term obtained by enclosing the maximum number
of adjacent cells in a K - map. For example, in the K - map of Table 1.9 , F B= is a
prime implicant. The prime implicant is only useful for providing a name for the
maximum enclosure in a K - map.

Quine–McCluskey Method

 This method is an alternative to the K - map for minimizing a Boolean func-
tion. The method is illustrated in Table 1.11 by minimizing the function
F A B C A B C A B C A B C= + + + , where these minterms are placed in Table

Table 1.10 F Function Truth Table

 A B C F A B C A B C A B C A B C= + + + F B=

 0 0 0 1 1
 0 0 1 1 1
 0 1 0 0 0
 0 1 1 0 0
 1 0 0 1 1
 1 0 1 1 1
 1 1 0 0 0
 1 1 1 0 0

Table 1.9 K - Map for F ABC ABC ABC ABC= + + +

B— C— B—C BC BC—

00 01 11 10

A— 0 1 1

A 1 1 1

In minterm form, F = A— B— C— + A B— C— + A— B— C + A B— C = B—

according to terms that are common to all cells in the enclosure. Last, the product
terms are summed. Notice what a clever method this is. Minimization is achieved
by noting the combination of terms that yields the minimum difference!

Example: Simplify F A B C A B C A B C+A B C= + + .

Digital Logic and Microprocessor Design 21

 1.11 . This method is used to represent a difference of 1 between two adjacent minterms,
such as A B C and A B C, yielding A B- -= 00 . The symbol - is placed where there
is a difference in minterm bit values, such as between 00 - and 10 - in Table 1.11 ,
yielding - 0 - . This process continues until the four minterms 0, 1, 4, and 5 show a
difference of 1 (00 - compared with 10 -), yielding prime implicant B - -()0 . The same
result is obtained as was the case using the K - map in Table 1.9 . Of the two methods,
the K - map is easier to apply.

COMBINATIONAL CIRCUITS

 These are circuits that use logic gates to produce outputs at any time that are only
dependent on the current values of the inputs, meaning that it is not necessary to
use a CP to trigger outputs [HAR07] . A typical combinational circuit is the adder.

One-Bit Adder with Carry Out

 A and B are added, producing Q output and CO (carry out). Q and CO are imple-
mented according to the truth table shown in Table 1.12 .

Two-bit Adder with Carry In and CO

 What if you want to add two 8 - bit bytes? This becomes slightly harder. In this case,
you need to create a full binary adder. The difference between a full adder and the

Table 1.11 Quine – McCluskey Method for F A B C A B C A B C A B C B= + + + =

 Minterm ABC

 Difference of 1 Difference of 1
 Prime

implicant Minterms Minterms Minterms

 0 A B C 000 0,1 00 - 0,1,4,5 - 0 - B
 1 A B C 001
 4 A B C 100 4,5 10 -
 5 A B C 101

Table 1.12 One - Bit Adder Truth Table

 A B Q CO

 0 0 0 0
 0 1 1 0
 1 0 1 0
 1 1 0 1

22 Computer, Network, Software, and Hardware Engineering with Applications

1 - bit adder is that a full adder accepts A and B inputs plus a carry - in (CI) input.
Once you have a full adder, you can string eight of them together to create a byte -
 wide adder and cascade the carry bit from one adder to the next. The truth table for
a full adder is slightly more complicated than the previous truth table because now
there are 3 input bits.

 A combinational circuit minterm is represented by a product in a row of the
truth table as shown in Table 1.13 , corresponding to a 1 in the Q or CO output
columns; for example, the fourth row for CO and the second row for Q in Table
 1.13 [GIB80] . The values of Q and CO product terms are obtained by ORing the
products in each row of Table 1.13 where Q = 1 or CO = 1, and then summing these
terms, followed by simplifying the expressions, as demonstrated in Table 1.13 .
Further simplifi cation may be possible by using a K - map.

 As can be seen in Table 1.14 , the adder output Q cannot be simplifi ed by using
a K - map because there are no adjacent cells. However, simplifi cation is achieved

Table 1.13 Two - Bit Adder Truth Table

 Q = 1 CO = 1

 CI A B Q CO Minterms Minterms

 0 0 0 0 0
 0 0 1 1 0 CI A B
 0 1 0 1 0 CI A B
 0 1 1 0 1 CI A B
 1 0 0 1 0 CI A B
 1 0 1 0 1 CI A B
 1 1 0 0 1 CI A B
 1 1 1 1 1 CI A B CI A B

 Q Product Terms: CI A B CI A B CI A B CIAB+ + +
Q CI A B A B CI (A B AB)= + + +()

 CO Product Terms: CIA B CI A B CI A B CI A B AB (CI CI) CI(A B A B)+ + + = + + +
CO AB CI A B A B= + +()

Table 1.14 K - Map for Q CI A B CI A B CI A B= + + +

AB

CI 00 01 11 10

0 1 1

0 1 1

CIA— B— C—IA— B CIAB C—IAA B—

CIAB CI A B A B CI A B AB= + + +() ()

Digital Logic and Microprocessor Design 23

for CO, as shown in Table 1.15 , producing CO AB CI AB AB= + +() . The relevant
minterm cells in Table 1.15 that comprise the minimized function are outlined in
red. Minterm logic is called sum of products . The full adder logic that corresponds
to the minterms in Table 1.13 is shown in Figure 1.7 , showing the adder output Q
and the CO.

MULTIPLE OUTPUT COMBINATIONAL CIRCUITS

 Combinational circuits can have multiple outputs [RAF05] . Each output is expressed
as a function of the inputs, as shown in Table 1.16 , where the inputs are binary - coded
decimal (BCD) bits W, X, Y, and Z, corresponding to the decimal digits 0, … , 9. A

Figure 1.7 Adder circuit.

A B

XOR Gate

XNOR Gate

A

B

_ _
AB + AB

CI (Carry In)

__
CI

__

__ _ _ __
CI (AB + AB)

_ _

AND Gate

CI

__
AB + AB

CI (AB + AB)

Q = CI (AB + AB) + CI (AB + AB)

_ OR Gate

Inverter

AND Gate

AB

XNOR Gate

CI

A

B

A

B

CI

AND Gate

CO = AB +CI (AB + AB)

OR Gate

Adder Output

Carry Out

Inputs

_ _

CI (AB + AB)
_(AB + AB)

_ _
_

Table 1.15 K - Map for Carry Out ()CO CIAB CIAB CIAB= + + +

AB

CI 00 01 11 10

0 1

1 1 1 1

CI A� B C�IAAB CIAB AB CIA B�

CIAB AB CI(AB AB)= + +

24 Computer, Network, Software, and Hardware Engineering with Applications

binary coded decimal converter is an example shown in Figure 1.8 , showing how
the number 9 can be displayed. The outputs are computer display segment bits a, … ,
g that represent the 1s necessary to generate the display decimal numbers. The code
converter transforms the BCD numbers 0000, … , 1001 to display segments. The
converter does not represent decimal numbers greater than 9. The K - maps use “ don ’ t
cares” = Xs in order to simplify the logic; the “ don ’ t cares ” should not be confused
with the BCD bit = X in Table 1.16 . The “ don ’ t cares ” are used to advantage in
forming minterms, as, for example, in Tables 1.17 – 1.23 .

 In order to generate the K - maps, place a 1 in the K - map cells corresponding to
the 1s that appear in Table 1.16 . For example, for segment a in Table 1.17 , a 1 is
recorded in the cell WXYZ = 0000, corresponding to the 1 (bolded) in the segment
a column in Table 1.16 .

 The K - maps will lead to simplifying the equations for the seven - segment com-
puter display (Fig. 1.8). The equations will then be used to design the digital logic
circuit in Figures 1.9 and 1.10 .

Figure 1.8 BCD to seven - segment code converter.

BCD to Seven

Segment Code

Converter

W

X

Y

Z

a

b

c

d

e

f

g

a

b

c

g

de

f

Example: Number 9

BCD Input Bits
Computer Display

Segment Bits

Table 1.16 Truth Table for Binary - Coded Decimal (BCD) Converter

 Decimal
digit

 BCD input bits Computer display segment output bits

 W X Y Z a b c d e f g

 0 0 0 0 0 1 1 1 1 1 1 0
 1 0 0 0 1 0 1 1 0 0 0 0
 2 0 0 1 0 1 1 0 1 1 0 1
 3 0 0 1 1 1 1 1 1 0 0 1
 4 0 1 0 0 0 1 1 0 0 1 1
 5 0 1 0 1 1 0 1 1 0 1 1
 6 0 1 1 0 0 0 1 1 1 1 1
 7 0 1 1 1 1 1 0 1 0 0 0
 8 1 0 0 0 1 1 1 1 1 1 1
 9 1 0 0 1 1 1 1 0 0 1 1

Digital Logic and Microprocessor Design 25

Table 1.17 K - Map for Segment a

YZ

WX 00 01 11 10

00 1 1 1

01 1 1

11 X X X X

10 1 1 X X

W W
—

X
—

Z
—

XZ YZ

a W W X Z Z X Y= + + +().

Table 1.18 K - Map for Segment b

YZ

WX 00 01 11 10

00 1 1 1 1

01 1 1

11 X X X X

10 1 1 X X

Y
�

Z
�

W W
�

X
�

YZ

b W W X YZ Y Z= + + + .

Table 1.19 K - Map for Segment c

YZ

WX 00 01 11 10

00 1 1 1

01 1 1 1

11 X X X X

10 1 1 X X

W Y
�

X
�

YZ XY Z
�

c W Y X YZ XY Z W Y Y XZ XZ= + + + = + + +().

26 Computer, Network, Software, and Hardware Engineering with Applications

Table 1.20 K - Map for Segment d

YZ

WX 00 01 11 10

00 1 1 1

01 1 1 1

11 X X X X

10 1 X X

X
—

Y
—

Z
—

X Y
—

Z Y

d XYZ XYZ Y Y XZ XZ Y= + + = + +() .

Table 1.21 K - Map for Segment e

YZ

WX 00 01 11 10

00 1 1

01 1

11 X X X X

10 1 X X

X
—

Y
—

Z
—

YZ
—

e Z XY Y= +().

Table 1.22 K - Map for Segment f

f Z Y XY W XY= + + +() .

YZ

WX 00 01 11 10

00 1

01 1 1 1

11 X X X X

10 1 1 X X

Y
�

Z
�

XY
�

XY Z
�

W

Digital Logic and Microprocessor Design 27

Figure 1.9 Two - bit comparator block diagram.

>

=

<

a1a0 > b1 b0

a1a0 = b1b0

a1a0 < b1b0

Output comparisons

a1

a0

b1

b0

Input bits

(G)

(E)

(L)

Table 1.23 K - Map for Segment g

YZ

WX 00 01 11 10

00 1 1

01 1 1 1

11 X X X X

10 1 1 X X

W W
�

X Y
�

W
�

X
�

Y YZ
�

g W XY XY W YZ= + + +() .

Comparators

 A comparator is another type of combinational circuit. Its block diagram is shown
in Figure 1.9 and the corresponding logic diagram is shown in Figure 1.10 . For
example, as Figure 1.10 shows, a comparator can be designed to compare two 2 - bit
quantities for greater - than (G), equal - to (E), and less - than (L) conditions. By mini-
mizing the logic in Table 1.24 , as accomplished by the K - maps in Tables 1.25 – 1.27 ,
the logic circuit is designed in Figure 1.9 . The K - maps are generated by recording
a 1 in cells corresponding to 1s in Table 1.24 ; for example, placing a 1 in the cells
a1 , a 0 , b 1 , and b 0 = 0100 for G in Table 1.24 . Notice, as opposed to previous exam-
ples, there are no “ don ’ t care ” conditions because all four comparator bits are
relevant.

Decoders

 A decoder is a combinational circuit that, when enabled, selects one of 2 n inputs and
produces a 1 output, where n is the number of input bits, as shown in Figure 1.11 .
After this block diagram is displayed, the truth table (Table 1.28), is formulated,
showing the relationship between inputs and outputs, where an output term 1 is

28 Computer, Network, Software, and Hardware Engineering with Applications

Figure 1.10 Two - bit comparator logic diagram.

b1

b0

a1

a0 a0

__

1b

0b

a1

__

1b
__

1b

__

0b

a1a0

__

0b

__ __ __ __

G = a1b1 + a0b1b0 + a1a0b0

a1b1

__

1a __

1a
__

1b

__ __

1 1 1 1a b + a b

a0b0

0a __ __

0 0a b

__ __

0 0 0 0a b + a b

__ __ __ __

1 1 1 1 0 0 0 0(a b a b)(a b +a b)+E =

__ __

1 0 0a a b

__

0 1 0a b b

L = 1 0 0a a b +

0 1 0a b b +
__

11a b

generated according to the appearance of 0s and 1s in the inputs columns; for
example, d E x x for E x x3 1 0 1 0= = =1 100.

 Finally, Table 1.28 is used to design the logic diagram in Figure 1.11 . Applying
K - maps to minimize the logic of the truth table is not necessary because there is
only a single 1 output for each combination of inputs in Table 1.28 . However, the
truth table is used to generate the output equations, which will lead to the design of
the logic diagram in Figure 1.11 . An application of the decoder is to select an operand
(i.e., 4 - bit output d 0 d 1 d 2 d 3) in a computer instruction, based on the operation code
(i.e., 2 - bit input x 1 x 0) in the instruction, when the instruction execution enable is
high (E = 1).

Encoders

 Encoders produce n output bits in accordance with the value of 2 n input bits, as
shown in the block diagram of Figure 1.12 . Like the decoder, it is not necessary to
develop K - maps of the outputs as a function of the inputs because of the inherent
simplicity of the circuit logic in Figure 1.12 . Equations that emerge from the

Table 1.24 Truth Table for Two - Bit Comparator

 Inputs Outputs

 a 1 a 0 b 1 b 0 G: a 1 a 0 > b 1 b 0 E: a 1 a 0 = b 1 b 0 L: a 1 a 0 < b 1 b 0

 0 0 0 0 0 1 0
 0 0 0 1 0 0 1
 0 0 1 0 0 0 1
 0 0 1 1 0 0 1
 0 1 0 0 1 0 0
 0 1 0 1 0 1 0
 0 1 1 0 0 0 1
 0 1 1 1 0 0 1
 1 0 0 0 1 0 0
 1 0 0 1 1 0 0
 1 0 1 0 0 1 0
 1 0 1 1 0 0 1
 1 1 0 0 1 0 0
 1 1 0 1 1 0 0
 1 1 1 0 1 0 0
 1 1 1 1 0 1 0

Table 1.25 K - Map for Output G:a 1 a 0 > b 1 b 0

G a b b a b a a b0 1 0 1 1 1 0 0= + + .

Inputs Inputs b1b0

00 01 11 10

a1a0 00

01 1

11 1 1 1

10 1 1

a0
—
b1

—
b0 a1

—
b1 a1 a0

—
b0

Table 1.26 K - Map for Output E:a 1 a 0 = b 1 b 0

E a a b b a a b b a a b b a a b b

a b a b a b a b

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 1 0 0 0 0 1 1

= + + +

= + +() (() ()()a b a b a b a b a b a b0 0 0 0 1 1 1 1 0 0 0 0+ = + + .

Inputs Inputs b1b0

00 01 11 10

a1a0 00 1

01 1

11 1

10 1

�
a1

�
a0

�
b1

�
b0

�
a1 a0

�
b1 b0 a1a0b1b0 a1

�
a0 b1

�
b0

29

30 Computer, Network, Software, and Hardware Engineering with Applications

Figure 1.11 Two inputs and four outputs decoder block and logic diagrams.

x1

x0

E

Inputs

Enable

d3

d2

d1

d0

Outputs

Two Inputs and Four Outputs
Decoder Block Diagram

x1

x0

1x ___

0x

E

d3 =
___ ___

1 0E x x

E

1x
x0

d2 =

1 0E x x

E

0x
x1

d1 =

1 0E x x

E

x1

x0

d0 = E x1 x0

Two Inputs and Four Outputs
Decoder Logic Diagram

Table 1.27 K - Map for Output L:a 1 a 0 < b 1 b 0

L a a b a b b a b1 0 0 0 1 0 1 1= + + .

Inputs Inputs b1b0

00 01 11 10

a1a0 00 1 1 1

01 1 1

11

10 1

—
a1

—
a0 b0

—
a0 b1 b0

—
a1 b1

Digital Logic and Microprocessor Design 31

Table 1.28 Truth Table for Two Inputs and Four Outputs Decoder

 Inputs Outputs

 E (Enable) x 1 x 0 d 3 d 2 d 1 d 0

 1 0 0 1 0 0 0
 1 0 1 0 1 0 0
 1 1 0 0 0 1 0
 1 1 1 0 0 0 1

d Ex x ; d Ex x ; d Ex x ;d Ex x1 0 2 1 0 1 1 0 0 1 03 = = = = .

Figure 1.12 The 4 - bit to 2 - bit encoder block and logic diagrams.

d0

0d

d1

1d

d2

d3

3d

__ __ __

0 1 2 3d d d d

2d

__ __ __

0 1 2 3d d d d

__ __ __ __ __ __

1 0 1 2 3 0 1 2 3x = d d d d +d d d d

__ __ __

0 1 2 3d d d d

__ __ __ __ __ __

0 0 1 2 3 0 1 2 3x = d d d d + d d d d

4 Bit to 2 Bit

Encoder

d0

d1

d2

d3

x1

x0

Inputs Outputs

Block Diagram

Logic Diagram

relationships in the truth table (Table 1.29) are used to design the logic circuit in
Figure 1.12 . The outputs x 1 and x 0 are generated as the sum of the products of inputs
where there are 1 s in the x 1 and x 0 columns as signifi ed by the bolded quantities.

 An application of the encoder is data compression in which we could shrink
4 bits of input to 2 bits of output in a database application that deals with large
quantities of data. For example, representing d 0 d 1 d 2 d 3 = 0100 as x 1 x 0 = 01.

32 Computer, Network, Software, and Hardware Engineering with Applications

Figure 1.13 The 4 - to - 1 multiplexer block and logic diagrams.

4-to-1

Multiplexer

d0

d1

d2

d3

Z

Inputs Output
Block Diagram

S0 S1

Selectors

Logic Diagram

Z =
__ __ __ __

0 1 0 0 1 1 0 1 2 0 1 3S S d +S S d +S S d +S S d

S0

S1

__

0S

__

1S

d0

d1

d2

d3

__ __

0 1 0S S d

__

0 1 1S S d

__

0 1 2S S d

0 1 3S S d

Table 1.29 Truth Table for 4 - Bit to 2 - Bit Decoder

 Inputs Outputs

 d 0 d 1 d 2 d 3 x 1 x 0
 1 0 0 0 0 0
 0 1 0 0 0 1
 0 0 1 0 1 0
 0 0 0 1 1 1

x d d d d d d d d , x =d d d d d d d d1 0 1 2 3 0 1 2 3 0 0 1 2 3 0 1 2 3= + + .

Multiplexers

 A multiplexer acts as a data selector, meaning that if the multiplexer has n select
lines, one of 2 n inputs can be selected as the output. For example, in Figure 1.13 ,
using selector lines S 0 and S 1 , one of four inputs, d 0 , d 1 , d 2 , d 3 , can be selected at the
output Z. The output equation for Z is derived from Table 1.30 , noting that a given
output is produced for given values of the selectors, for example, Z = d 0 when

Digital Logic and Microprocessor Design 33

Table 1.30 Truth Table for 4 - to - 1 Multiplexer

 Selector Output

 S0 S1 Z
 0 0 d 0
 0 1 d 1
 1 0 d 2
 1 1 d 3

Z S S d S S d S S d S S d0 1 0 0 1 1 0 1 2 0 1 3= + + + .

S S0 1 11= . Multiplexers differ from decoders and encoders by virtue of select lines
that cause inputs to be produced at the output. An application is to combine data
received from the Internet on input lines d 0 , d 1 , d 2 , and d 3 onto a single microproces-
sor memory line Z, if an Internet interrupt has occurred, that has a code represented
by selector lines S 0 S 1 .

Demultiplexers

 A demultiplexer causes an input x to be transferred to one of 2 n output lines, where
n is the number of select inputs in Figure 1.14 . Output equations for a demultiplexer
with two select inputs and four outputs are shown in the truth table, Table 1.31 . The
demultiplexer does the reverse of the multiplexer; for example, it distributes Internet
data, which have been multiplexed on input line x, to each of four microprocessor
output ports d 0 , d 1 , d 3 , and d 4 .For example, Internet data will be distributed to output

port d 0 when S S0 1 = 11 in Table 1.31 .

SEQUENTIAL CIRCUITS

 A clocked synchronous sequential circuit uses fl ip - fl ops to store data, and its outputs
depend on both the previous and current values of inputs [HAR07] . These circuits
are called state machines, wherein states are stored in fl ip - fl ops, and state changes
are triggered by CPs. In an asynchronous sequential circuit , the completion of an
operation starts the next operation (i.e., a clock is not needed).

Flip-Flops and Latches

 A fl ip - fl op is a clocked synchronous sequential circuit with a 1 - bit memory. The
output of the fl ip - fl op can be changed by the rising or falling edge of a CP. A clock
prevents the fl ip - fl op from changing state when spurious inputs occur. Instability can
arise if inputs change during the CP. This problem is avoided by holding data stable
for specifi ed periods of time before and after the CP. The former period is called
setup time and the latter is called hold time .

34 Computer, Network, Software, and Hardware Engineering with Applications

Table 1.31 Truth Table for 1 - to - 4 Demultiplexer

 Select
inputs

 Data
input Data output

 S 0 S 1 d 0 d 1 d 2 d 3
 0 0 x S S x0 1 0 0 0
 0 1 x 0 S S x0 1 0 0
 1 0 x 0 0 S S x0 1 0
 1 1 x 0 0 0 S 0 S 1 x

d S S x; d S S x; d S S x; d S S x1 2 0 3 0 10 0 1 0 1 1= = = = .

Figure 1.14 The 1 - to - 4 demultiplexer block and logic diagrams.

1-to-4

Demultiplexer

Block Diagram

x

Data Input

d0

d1

d2

d3

Outputs

S0 S1
Select Inputs

1-to-4

Demultiplexer

Logic Diagram

S0

S1

__

0S

__

1S

x

d0 =
__ __

0 1S S x

d1 =
__

0 1S S x

d2 =
__

0 1S S x

d3 = S0S1x

Digital Logic and Microprocessor Design 35

 Flip - fl ops use storage circuits called latches. The term “ latch ” refers to the
ability to receive and hold data (set) until the latch is reset. The most common latch
is the SR (set – reset). An application of a latch is to set and hold an interrupt fl ag
when an input device needs attention by the microprocessor. A fl ip - fl op is a latch
with clock input (CLK). Flip - fl ops implement changes in circuit states that are trig-
gered by a CP. For example, when the CP and the input line cause the fl ip - fl op to
assume the set state, a computer program would execute a branch operation; when
the CP and the input line cause the fl ip - fl op to assume the reset state, a computer
program would return to the main line of the program. An interesting question is
how a latch or fl ip - fl op manages to be in the initial state. The answer is that the latch
or fl ip - fl op will be in the initial state determined by the initial state settings wired
into the fl ip - fl op.

SR Latch

 The logic rules of the SR latch are the following:
 NOR Gate output = 1, if all inputs = 0; output = 0, if any input = 1.
 These rules are applied in the truth table shown in Table 1.32 and the logic

diagram in Figure 1.15 . Notice in Table 1.32 and Figure 1.15 that there are illegal
next states in the case of S = 1 and R = 1 because it is not possible to simultaneously
set and reset the latch.

Reset–Set (RS) Flip -Flop

 The RS fl ip - fl op is a clocked SR latch. This fl ip - fl op is important because all other
fl ip - fl ops are derived from it. Figure 1.16 shows the implementation of this fl ip - fl op
using NAND gates and the truth table, Table 1.33 , shows the gate relationships for
present state at time t and next state at time (t + 1), including simultaneous set and
reset that should be avoided. In Figure 1.16 , notice that there is feedback from Gate
3 to Gate 4 of Q(t + 1) and from Gate 4 to Gate 3 of Q t 1()+ .

 The design in Figure 1.16 is obtained by employing the equations below, which
in turn are obtained from Table 1.33 and the K - map in Table 1.34 . The components
of the equations are annotated on Figure 1.16 . The K - map is constructed by noting
whether the next state output Q(t + 1) is a 1. If it is, the corresponding present state

Table 1.32 SR Latch Truth Table Using NOR Gates

 S
 Q(t) (present

state) R
Q t()

(present state)
 Q(t + 1) (Gate #1)

(next state)
Q t()+ 1 (next

state)

 0 0 0 1 0 (no change) 1(no change)
 1 0 1 1 0 (illegal) 0 (illegal)
 0 1 1 (reset) 0 0 (change state) 1(change state)
 1 (set) 0 0 1 1(change state) 0(change state)

36 Computer, Network, Software, and Hardware Engineering with Applications

output Q(t) is inserted into the K - map. The corresponding next state and present
state outputs are bolded in Table 1.33 . You can see that Table 1.33 contains eight
entries, corresponding to whether the Present State Q(t) (Gate #3) is 0 or 1 ; however,
Figure 1.16 shows fi ve cases, suffi cient to demonstrate the logic of the RS
fl ip - fl op.

 Based on Table 1.33 , the K - map is constructed in Table 1.34 . Then the K - map
is used to formulate the equations for the fl ip - fl op:

Figure 1.15 SR latch logic diagram.

R = 0

Q(t) = 0

Q(t) = 1

Q(t) = 1

Q(t) = 0

Q(t) = 0

S = 0

Q(t + 1) = 1

No Change in Output

R = 1

Q(t) = 1

Q(t) = 0

S = 0

Q(t + 1) = 0

Reset: Change Output

R = 0

S = 1

Q(t) = 0

Set: Change Output

R = 1

S = 1

Q(t) = 0

Q(t) = 1

Q(t) = 0

Q(t) = 1

Q(t) = 1

Q(t) = 0

Q(t + 1) = 0

Q(t + 1) = 0

Q(t + 1) = 0

Q(t + 1) = 1

Q(t + 1) = 0

Q(t + 1) = 1

Q(t + 1) = 0

Q(t + 1) = 0

Illegal States

Digital Logic and Microprocessor Design 37

Figure 1.16 RS fl ip - fl op.

CLK

S

R

1

2

3

4

Q(t)

Q (t)

0

0

1

1

1

0

1

1

CLK

S

R

Q(t) Q(t + 1)

1

1

1

0

Q(t)0

0

0

1

Q(t + 1)
S

CLK

R

Q(t) Q(t + 1)

Q(t)
1

1
1

0

0

1

1

0

0

1 # 3

1 # 3 # 1 # 3

2 # 4

2 # 4 # 2 # 4

Q (t + 1)

0

Q (t + 1)

1

1

0

Q(t + 1)

1

CLK

S

R 0

1

1

0
Q(t)

Q (t)

1 1

0

Q(t + 1)

1

Q (t+1)

0

Reset

Set

S 1

R 1

CLK

1

0

0

Q(t)

Q (t)

0

1

1 Illegal state

1 # 3

2 # 4

1

0

1 0

1

Q(t + 1)

1

Q (t+1)
1

S

R

R Q(t)

S+RQ(t)

___ ___

S (R+ Q (t))

1

Hold Hold

Table 1.33 RS Flip - Flop Truth Table

 S (Gate #1) R (Gate #2)
 Present state

Q(t) (Gate #3)

 Next state
Q(t + 1)

(Gate #3)

 Present
state Q t()
(Gate #4)

 Next state
Q t()+ 1

(Gate #4)

 0 0 0 0 (hold) 1 1
 0 0 1 1 (hold) 0 0
 0 1 (reset) 0 0 1 1
 0 1 (reset) 1 0 0 1
 1 (set) 0 0 1 1 0
 1 (set) 0 1 1 0 0
 1(illegal) 1(illegal) 0 1 1 0
 1(illegal) 1(illegal) 1 1 0 0

38 Computer, Network, Software, and Hardware Engineering with Applications

 Table 1.34a : (Gate #3): Q t 1 S R Q t() ()+ = +

 Table 1.34b : (Gate #4): Q t 1 S R Q t() (())+ = +
Problem: What are the illegal states of the RS fl ip - fl op?

Answer: The states S = 1 (set) and R = 1 (reset) are not allowed in an RS fl ip -
fl op because set and reset cannot exist simultaneously (indeterminate state).

Delay (D) Flip -Flop

 The D or delay fl ip - fl op, shown in Figure 1.17 , uses NAND gates. It is widely used
in computers for transferring data. Several of these fl ip - fl ops can be used to design
a CPU register, where each fl ip - fl op is used to store 1 bit [RAF05] . This fl ip - fl op
delays the input appearing at the output by one CP. The D input goes directly into
the S input and the complement of the D input goes to the R input. The D input is
sampled during the occurrence of the CP. If D is 1, the fl ip - fl op is switched to the
set state (unless it was already set). If D is 0, the fl ip - fl op switches to the clear state.
If CP = 1, the output Q(t + 1) of the upper fl ip - fl op is fed to the input of the lower
fl ip - fl op in Figure 1.17 . On the other hand, if CP = 0, Q(t) of the upper fl ip - fl op is
fed to the input of the lower fl ip - fl op.

Table 1.34a K - Map

S R Present State Q(t)
(Gate #3)

0 1

0 0 1

0 1

1 1 1 1

1 0 1 1

S R�Q(t)

Table 1.34b K - Map

S R Present State Q
�

(t)
(Gate #4)

0 1

0 0 1

0 1 1 1

1 1

1 0

S
�

R S
�

Q
�

(t)

Digital Logic and Microprocessor Design 39

Problem: Given the above rules for the behavior of the D fl ip - fl op, develop its
truth table.

Solution: These relationships are embodied in Table 1.35 .

 A D fl ip - fl op circuit can also be triggered by the negative - going edge of the CP, as
opposed to being activated by pulse duration. The timing diagram for such a circuit

Figure 1.17 D fl ip - fl op.

1

No change

No change

Set state

CP

D

Q(t + 1)

Timing diagram

Q(t + 1)

0

1

Q(t + 1)

Q(t + 1) = D

1

0

1

D0

CP

S
Q(t)

0

1

R
1

1

0

0

1

Q (t+1)

Q (t)

0

0

1

D0 S

1

1

R
0

1

1

0

1

CP

Q(t + 1) = D

Q (t+1)

Q (t + 1)

Q (t + 1)

Q(t)

Q (t)

D

CP

R

S Q(t)

Q (t)

1

0

1

0

1

0

1

0 1

D
S

R

Q(t)

Q (t)

1

1 0

1

CP

0

0

0
1

1

0

Clear state

0

0

1

1

0

0

1

0

1

1

1

40 Computer, Network, Software, and Hardware Engineering with Applications

is shown in Figure 1.17 . As the timing diagram shows, the D input is refl ected in
the Q(t + 1) (next state) output on the negative edge of the CP. Q(t + 1) follows the
D input regardless of the present state Q(t), if CP = 1 . If CP = 0, there is no change
in the output. This property can be applied, for example, to transferring data from
an input device (D) to microprocessor memory port Q(t + 1), according to the data
transfer rules of Figure 1.17 .

JK Flip -fl op

 A JK fl ip - fl op is a refi nement of the RS fl ip - fl op by defi ning and allowing the illegal
state of the RS fl ip - fl op. In Figure 1.16 , inputs J and K behave like inputs S and R
to set and clear the fl ip - fl op (note that in a JK fl ip - fl op, the letter J is for set and the
letter K is for clear). When logic 1 inputs are applied to both J and K simultaneously,
the fl ip - fl op switches to its complement state (e.g., if Q = 0, it switches to Q = 1 in
Figure 1.18).

 Note that because of the feedback connection in the JK fl ip - fl op, a CP signal
that remains a 1 (while J = K = 1) after the outputs have been complemented once
will cause repeated and continuous transitions of the outputs. To avoid this, the CPs
must have a time duration less than the propagation delay through the fl ip - fl op.

 Table 1.36 shows how the state of output Q at t + 1 changes as a function of
the original state of Q(t) and the set input J and the clear input K. The K - map for

Table 1.35 D Flip - Flop Truth Table

 D CP
 Present

state Q(t)
 Next state Q(t + 1) = D

when CP = 1
 Present

state Q t()
 Next state Q t D()+ =1

when CP = 1

 0 0 0 0 (no change) 1 1 (no change)
 0 1 1 0 (clear) 0 1
 1 0 1 1 (no change) 0 0 (no change)
 1 1 0 1 (set) 1 0

Figure 1.18 JK fl ip - fl op circuit.

K

CP

Q(t)

J

Q(t)

KQ(t) = 0

Q(t)

Q(t)

Q(t)

Q(t)

JQ(t)

___________ ________ _ ___ _
KQ(t) + Q(t) = KQ(t)Q(t) = (K + Q(t))(Q(t) = KQ(t)

____________ ____ ___
J Q(t) + Q(t) = (J + Q(t))(Q(t) = JQ(t)

___ _
Q(t + 1) = JQ(t) + KQ(t)

________________ _ _ __ _ __
Q(t + 1) = JQ(t) + KQ(t) = (JQ(t))(K + Q(t)) = (J(K + Q(t)) + KQ(t)

Next States

Digital Logic and Microprocessor Design 41

JK fl ip - fl op in Table 1.37 is derived from the truth table in Table 1.36 by plugging
1 s in the map wherever there is a Q(t + 1) = 1 in the Table 1.36 (bolded). For
example, when J = 0, K = 0, Q(t) = 1, and Q t + 1) = 1 in Table 1.36 , a 1 is placed
in the Q(t) = 1 column in Table 1.37 .

Problem: Based on the K - map, what are the next state equations for Q(t + 1)
and Q t 1()+ ?

Answer: Referring to Table 1.37 , the next state Q(t + 1) is governed by the
following equation:

 Q t 1 J Q t K Q t .() () ()+ = +

 Using this equation for Q(t + 1), the equation for Q t 1()+ can be computed as
follows:

 Q t J Q t K Q t J Q t K Q t J(K Q t K Q t .() () () (())(()) (()) ()+ = + = + + = + +1

 These equations are annotated on Figure 1.18 .

Table 1.36 JK Flip - Flop Truth Table

 J K CP
 Q(t) present

state
 Q(t + 1)

next state
Q t()

present state
Q t 1()+

next state

 0 0 1 0 0 1 1
 0 1 (clear) 1 0 0 1 1
 1(set) 0 1 0 1 1 0
 1 1 1 0 1 1 0
 0 0 1 1 1 0 0
 0 1(clear) 1 1 0 0 1
 1(set) 0 1 1 1 0 0
 1 1 1 1 0 0 1

Table 1.37 K - Map for JK Flip - Flop

J K Q(t) Present
State

Q(t) Present
State

0 1

0 0 1

0 1

1 1 1

1 0 1 1

J Q
—

(t) K
—

Q(t)

42 Computer, Network, Software, and Hardware Engineering with Applications

T Flip -Flop

 The T fl ip - fl op is a single input version of the JK fl ip - fl op [RAF05] . It is typically
used in the design of binary counters (covered later in the section “ Design of Binary
Counters,” where complementation of the output is required. For example, in Table
 1.38 when T = 1, the input Q(t) is toggled, producing its complement in output
Q(t + 1). By examining the gate operations in Figure 1.19 , at the Q output, we see that:

Q t TQ t T Q t TQ t T Q t T Q t T Q t T Q t() () () (())(()) (())(()) (+ = + = = + + =1)) ().+ T Q t

 Furthermore, the equation for Q t()+1 is derived as follows:

Q t T Q t T Q t T Q t T Q t

T Q t T Q t T Q

() () () (())(())

(())(())

+ = + =

= + + =

1

(() ().t T Q t+

 Note that in Figure 1.19 feedback from the fl ip - fl op outputs to the inputs is used to
obtain the desired outputs at time t + 1.

Problem: Based on the above equations, develop the T fl ip - fl op truth table.

Solution: The truth table is shown in Table 1.38 .

Triggering of Flip -Flops

 There are situations where it is useful to have the output change only at the rising
or falling edge of the CP, rather than during the CP. This stabilizes the circuit because

Figure 1.19 T fl ip - fl op circuit diagram.

T

CP

CP

Q(t)
Q(t) TQ(t)

_
T

Q(t)

Q(t)

TQ(t)

Q(t)

________ ________ ___ ____

______ ___ ______ ____ __

TQ(t) + TQ(t) = (TQ(t))(TQ(t)) = (T + Q(t))(T + Q(t)) = TQ(t) + TQ(t)

__________ _____
_______ _______ _______

__ _________ ___ ___ ____ __ ____

Q(t + 1) = TQ(t) + TQ(t) = (TQ(t)) (TQ(t) = (T + Q (t)) (T + Q(t)) = TQ(t) + TQ(t)

Table 1.38 T Flip - Flop Truth Table

 T CP Q(t) Q t 1 T Q(t) T Q(t)()+ = + Q t() Q t T Q t T Q t() () ()+ = +1

 0 1 0 0 (no change) 1 1 (no change)
 1 1 0 1 (toggle) 1 0 (toggle)
 0 1 1 1 (no change) 0 0 (no change)
 1 1 1 0 (toggle) 0 1(toggle)

Digital Logic and Microprocessor Design 43

all changes are synchronized to the rising or falling edge of the CP. For example,
when an input interrupt occurs, it should be held by the microprocessor until it can
be serviced during the CP and only released on the falling edge of the CP. An edge -
 triggered fl ip - fl op achieves this by combining a pair of latches in series. Figure 1.20
shows an edge - triggered D fl ip - fl op where two D latches are connected in series,
one directly, and one through an inverter. The fi rst latch is called the master latch.
When CLK is a 1 at Step 1, with a positive edge trigger, the master latch is enabled
but the second latch, called the slave latch, is disabled with a negative edge trigger,
so that a 1 is produced at the Q output of the master latch and a 0 is produced at the
output of the slave latch. A 1 is produced at the master latch output because when
CLK = 1, the Q output follows the D input. Contrariwise, when CLK is a 0 at Step
2, with a negative edge trigger, the master latch is disabled but the slave latch is
enabled with a positive edge trigger (a negative edge is made positive with an
inverter) so that a 1 is produced at the Q output of the slave latch by the Q output
at the slave latch following the D input. In Step 2 it is assumed that Q still equals
1 in the master latch from Step 1. The Q output of the master latch does not change
when CLK = 0, so that a 1 is transferred from the master latch to the slave latch.

Analysis of Asynchronous Sequential Circuits

 As you have seen, edge - triggered fl ip - fl ops change state at the edge of a synchro-
nizing CP. Many circuits require the initialization of fl ip - fl ops to a known state

Figure 1.20 Edge - triggered fl ip - fl op.

Q

QSET

CLR

DD

Q

QSET

CLR

D

Master Slave

Q

Latch Latch

Q
1

1

0

1

Positive Edge

Triggered

Q

QSET

CLR

D

Q

QSET

CLR

DD
1

1

1

Q

Q

1

Latch

Master Slave

Latch

Negative Edge

Triggered

0

1

disabled

enabled

CLK CLK

CLKCLK

CLK

CLK
0

disabled
enabled

Step 1: Q at Master = 1

Step 2: Q at Slave = 1

0

1

44 Computer, Network, Software, and Hardware Engineering with Applications

Figure 1.21 Analysis of asynchronous sequential circuit.

a

z2

z1

Z1 =

__

a

__

2z

__ __

2a + z

__

a

z2

a + z1

(a + z1)
__ __

2(a + z)

Z2 = (a + z1)
__ __

2(a + z)
a + z1

z2

__

a +

Next statesPresent states

z1

z2

independent of the clock signal. Sequential circuits that change states whenever a
change in input values occurs, independent of the clock, are referred to as asynchro-
nous sequential circuits . Synchronous sequential circuits, latches, and fl ip - fl ops, on
the other hand, change state only at the edge of the CP. For asynchronous sequential
circuits, inputs are used to either set or clear the circuit without using the clock.
Figure 1.21 is an example of an asynchronous sequential circuit. The next state
equations for Z 1 and Z 2— as a function of present states a, z 1 , and z 2— provide the
logic for the outputs of the circuit in Figure 1.21 . Feedback from outputs to inputs
in Figure 1.21 produces the desired next states. The output equation

 Z a z a z) a a a z a z z z a z a z z z1 1 2 1 2 1 2 1 2= + + = + + + = + +()(1 2

 can be reduced because the term a a = 0, and the last term z z1 2 does not change the
value of the equation, as demonstrated by the K - map in Table 1.40 that is used to
minimize this equation, producing Z a z a z1 1 2= + . Thus, the resultant terms a z1

and a z2 are identifi ed in the K - map. The validity of this transformation is shown
in the truth table for Z 1 , Table 1.39 . The K - map in Table 1.40 is produced by record-
ing 1s in the map corresponding to 1 s (bolded) that appear for Z 1 in the truth table.
This example demonstrates the fact that K - maps can accomplish Boolean expression
reduction that is not possible with algebraic manipulation.

Problem: Reduce output equation Z2 by developing the truth table and corre-
sponding K - map.

Solution: The output equation Z a z a z) a a a z a z z z2 1 2 1 2= + + = + + + =()(1 2

can be reduced, as shown above, because the fi rst term a a = 0
and the last term does not change the value of the equation, as demonstrated
by the K - map in Table 1.41 that is used to minimize this equation, producing
Z a z a z2 1 2= + ,where it is shown that the term z 1 z 2 is redundant. Thus, the
resultant terms a z1 and a z 2 are identifi ed in the K - map. The validity of this

a z a z1 + 2

Digital Logic and Microprocessor Design 45

Table 1.39 Truth Table for Z a z a z a z a z1 1 2 1 2= + + +()()

 a z 1 z 2
 Decimal

code = az 1 z 2 (a + z 1) ()a z2+ Z a z a z1 1 2= + +()() a z1 a z2 Z a z a z1 1 2= +

 0 0 0 0 0 1 0 0 0 0
 0 0 1 1 0 1 0 0 0 0
 0 1 0 2 1 1 1 1 0 1
 0 1 1 3 1 1 1 1 0 1
 1 0 0 4 1 1 1 0 1 1
 1 0 1 5 1 0 0 0 0 0
 1 1 0 6 1 1 1 0 1 1
 1 1 1 7 1 0 0 0 0 0

Table 1.40 K - Map for Z a z a z a z +a z1 1 2 1 2= + + =()()

z1 z2 a

0 1

0 0 0 1

0 1 0 0

1 1 1 0

1 0 1 1

a� z1 z1
�z2 a�z2

redundant

Table 1.41 K - Map for Z a z a z a z +a z2 1 2 1 2= + + =()()

z1 z2 a

0 1

0 0 0 0

0 1 0 1

1 1 1 1

1 0 1 1

a� z1 z1z2 az2

redundant

transformation is shown in the truth table for Z 2 (Table 1.42). The K - map is
produced by recording 1s in the map corresponding to 1 s (bolded) that appear
for Z 2 in the truth table.

 The state transition table, depicting the state changes in transitioning from input
variables a, z 1 , and z 2 to output variables Z 1 and Z 2 , is shown in Table 1.43 . This

46 Computer, Network, Software, and Hardware Engineering with Applications

table is constructed by noting the values of Z 1 corresponding to a = 0 and a = 1 and
values of Z 2 corresponding to a = 0 and a = 1 in Tables 1.39 and 1.42 , respectively,
and recording the relationships in Table 1.43 . Table 1.43 is used to indicate transi-
tions from microprocessor state Z 1 = 1 to state Z 2 = 1 and vice versa. Consider the
following application: when a = 1, z 1 = 0, and z 2 = 0 (decimal code 4), Z 1 is in the
next state = 1 processing transactions. However, when a = 1, z 1 = 0, and z 2 = 1
(decimal code 5), the microprocessor transitions to the next state Z 2 = 1 to receive
additional transaction input.

 Another application of the asynchronous sequential circuit is the occurrence of
asynchronous inputs to a microprocessor that arrive from the Internet, not on sched-
ule (not governed by CP), but unscheduled (i.e., asynchronously). For example, let
a, z 1 , and z 2 be the binary bits of a decimal transaction code, arriving from the
Internet, in a database application, where one type of transaction is processed by a
microprocessor at its input Z 1 and the second type at its input Z 2 . Suppose the allow-
able decimal codes at Z 1 are 2 , 3 , 4 , and 6 in Table 1.39 (bolded), and the allowable
codes at Z 2 are 2 , 3 , 5 , and 7 in Table 1.42 (bolded). Then, Tables 1.39 and 1.42
provide the required transaction processing logic for Z 1 and Z 2 , respectively.

Table 1.42 Truth Table for Z a z a z)2 1 2= + +()(

 a z 1 z 2
 Decimal

code = az 1 z 2 (a + z 1) (a z)2+ Z Z a z a z2 2 1 2= = + +()() a z1 az 2 Z a z a z1 22 = +

 0 0 0 0 0 1 0 0 0 0
 0 0 1 1 0 1 0 0 0 0
 0 1 0 2 1 1 1 1 0 1
 0 1 1 3 1 1 1 1 0 1
 1 0 0 4 1 0 0 0 0 0
 1 0 1 5 1 1 1 0 1 1
 1 1 0 6 1 0 0 0 0 0
 1 1 1 7 1 1 1 0 1 1

Table 1.43 State Transition Table for Asynchronous Sequential Circuit

 Present
state

 Next state

 a = 0 a = 1

 z 1 z 2 Z a z a z1 21 = + Z a z a z1 22 = + Z a z a z1 21 = + Z a z a z1 22 = +

 0 0 0 0 1 0
 0 1 0 0 0 1
 1 0 1 1 1 0
 1 1 1 1 0 1

Digital Logic and Microprocessor Design 47

Relationship among Inputs, Flip -Flops,
and Output States

 Figure 1.22 shows an example of analyzing the inputs, D fl ip - fl ops, and output states
of an asynchronous sequential circuit. The diagram shows the equations for the next
states Q x and Q y , as a function of the present states D x and D y , recalling that for D
fl ip - fl ops, output Q follows input D.

 The equations below produce the values shown in the state transition table,
Table 1.44 , which shows the relationships among components.

 Q X Y A D ,x x= + =()

 Q X Y A,x = +()

 Q A X D ,y y= + =

 Q A X AX,y = + =

 B AY AY.= +
 An application is the processing of transaction code bits occurring at microprocessor
input ports X, Y, and A. An output B = 1 is produced by setting a fl ag B in a micro-
processor register when correct transaction codes are received. For example, if
decimal interrupt code 1, 3, 4, 6, or 7, corresponding to X, Y, A = 001, 011, 100,

Figure 1.22 D fl ip - fl ops in asynchronous sequential circuit.

Q

Q
SET

CLR

D
X

Y

A
X + Y

XxQ = (X + Y)A = D
Dx

= (X + Y) A

Qy =

A + X = Dy

Q

Q
SET

CLR

D
X

A

X

A + X Dy

___ ___ ___

yQ =A + X = AX

(X + Y)A

B =
__ __

AY + AY

X

Y

X

Present

states
Next

states

Y

A

A

Y

___ ___

A Y

Y

Output

A

AY

CLK ___

xQ

Microprocessor input ports

Set flag in microprocessor

register

48 Computer, Network, Software, and Hardware Engineering with Applications

110, or 111 in Table 1.44 , respectively, is received, the fl ag would be set. The micro-
processor queries this fl ag to determine when to process transactions. The bolded
terms in Table 1.44 indicate when the fl ag B is set.

TYPES OF SYNCHRONOUS SEQUENTIAL CIRCUITS

Mealy and Moore Machines

 In the Mealy machine, the output states depend on the inputs and the present states
of the fl ip - fl ops [RAF05] . In the Moore machine, output states depend only on the
present states of the fl ip - fl ops. For example, a Mealy machine would be used to
control the execution sequence of a microprocessor that uses both data inputs and
the current state of the program (i.e., program address) to decide which instruction
to execute next (e.g., doing database management using input data from the Internet).
On the other hand, the Moore machine would be used to control microprocessor
program execution when only the current state of the program is relevant (e.g., doing
a matrix multiplication on data stored in memory). Thus, the Mealy machine is the
more versatile of the two.

Minimization of States

 Figure 1.23 shows a state diagram for a synchronous sequential circuit, which is
classifi ed as a Mealy machine because outputs depend on both present states and
inputs, where two of the paths are highlighted in red and green. It may be possible
to minimize the number of states in these circuits by developing the state sequence
diagram, based on Figure 1.23 , to see whether there are any redundant states. If there
are, the reduction in states is refl ected in the revised state sequence table. Using
Figure 1.23 and the original state sequence table, Table 1.45 , state Z is identifi ed as
being redundant because the next state for both states V and Z is W, and the state
changes have the same inputs and outputs (1, 1). Therefore, state Z is noted as

X Y A+() A X= +

Table 1.44 State Transition Table for the Analysis of Asynchronous Sequential Circuit

 Inputs Next state Flip - fl op inputs Output

 X X Y Y A A
 Qx =
 Dx Qx Qy = Dy Qy

D Qx x= = D Qy y=
B AY AY= +

 0 1 0 1 0 1 1 0 1 0 1 1 0
0 1 0 1 1 0 1 0 1 0 1 1 1
 0 1 1 0 0 1 1 0 1 0 1 1 0
0 1 1 0 1 0 0 1 1 0 0 1 1
1 0 0 1 0 1 1 0 0 1 1 0 1
 1 0 0 1 1 0 0 1 1 0 0 1 0
1 0 1 0 0 1 1 0 0 1 1 0 1
1 0 1 0 1 0 0 1 1 0 0 1 1

Digital Logic and Microprocessor Design 49

redundant in Figure 1.23 and Table 1.45 . Another state indicated as redundant in
Figure 1.23 and Table 1.45 is Y because both Y and W have the next state V, with
same state change inputs and outputs (1, 0). State Y is also noted as redundant in
Figure 1.23 and Table 1.45 . Therefore, states Z and Y do not appear in the revised
state sequence table, Table 1.46 .

 Figure 1.24 shows the result of eliminating redundant states in the state diagram.
It is important to note that it may not be possible to eliminate “ redundant states ”

Figure 1.23 State diagram for minimization of states.

V W X Y Z

0/0

1/0

1/1

1/0

1/0

0/0

0/0 0/0

1/1

States: V,W,X,Y,Z

Input
Output

Input Sequence: (0 1 0 1) (1 0 1) (1 0 0 0 1 1) (1 0 0 0)

0/0

1

2

3

4

5

6

7
8

9 10

1112

13

14

15

16

Path Sequences: (1,2,3,4) (5,6,7) (8,3,9,10,11,12) (13,14,15,16)

Branch Identifier

0/1

Output Sequence:(0 1 1 0) (1 0 0) (1 1 0 0 1 0) (1 0 0 0)

Redundant State

Table 1.45 Original State Sequence Table

 Originating state V V W X Y W V W Z
 States Y and Z
are redundant Branch 1 2 3 4 6 12 10 5 12

 Input 0 1 0 1 1 1 1 0 0

 Next state V W X V V V W Y V

 Output 0 1 1 0 0 0 1 0 0

Table 1.46 Revised State Sequence Table (Eliminating Redundant States)

 Next state Output

 Present state Input = 0 Input = 1 Input = 0 Input = 1

 V V W 0 1
 W X V 1 0
 X V 0

50 Computer, Network, Software, and Hardware Engineering with Applications

because these states could be associated with important functions. For example,
redundant states could be associated with two microprocessors — one the primary,
currently executing, and the other, a backup, redundant microprocessor, designed to
take over if the primary fails. However, in general, digital circuitry can be simplifi ed
by eliminating redundant states.

Design of Synchronous Sequential Circuits

 To design synchronous sequential circuits, or any circuit for that matter, start with
your objective. For example, suppose you want a microprocessor to produce an
output Z dependent on input A (e.g., input data A has arrived from the Internet, and
the microprocessor produces output Z); the present state of your computer program
is represented by X (e.g., ready to read input data A) and the present state of the
input buffer A is represented by Y (e.g., input buffer A empty). You need to identify
the transition to the next computer program state, X + , (e.g., fi ll buffer with input A
data) and Y + (e.g., input A buffer full). Thus, referring to the state diagram in Figure
 1.25 , if an input occurs on microprocessor line A = 1, and the present program state
are X = 1, Y = 1, representing instruction ready to execute and input buffer A empty,
respectively, output is produced on microprocessor line Z = 1, and the program
transitions to next state X + = 0 (fi ll buffer) and Y + = 0, (input buffer A full). The
state diagram in Figure 1.25 is an example of a Mealy machine circuit specifi cation
because outputs depend on both inputs and states of the circuit.

 To design your circuit, identify the states, inputs that cause state transitions, and
outputs produced by inputs and state transitions, as in the above example. Then, note

Figure 1.24 Reduced state diagram.

V W X

0/0

1/0

1/1

1/0

0/0

States: V, W, X

Input
Output

Input Sequence: (0 1 0 1) (1 1)

1

2

3

4

5

6

Path Sequences: (1, 2, 3, 4) (5, 6)

Branch Identifier

0/1

Output Sequence: (0 1 1 0) (1 0)

Digital Logic and Microprocessor Design 51

in Figure 1.25 and in Table 1.47 the present states X and Y and input A that generate
next state output X + = 1. For example X = 0, Y = 1, and A = 1 (or XYA) produce
X+ = 1. Next, for example, use the D fl ip - fl op, noting that the output corresponding
to next state X + is designated as D x and its formulation is the following:

 D XYA XYA XYA XY A A XY XYA.x = + + = + = +()

 Similarly, produce the next state Y + formulation in terms of a D fl ip - fl op output, as
follows:

Figure 1.25 State diagram for design of sequential circuit.

10

00

11

01

0/1

0/1

1/0

0/0

0/1

1/0

1/1

A: input

Z: output

X, Y: present state: ready to

execute. Input buffer A empty

X
+
, Y

+
: next state: fill buffer,

input buffer A full

1/1

Table 1.47 State Table for Sequential Circuit

 Present
states Input

 Next
states Flip - fl op inputs Output

 X Y A X + Y + D X XY XYAx = = ++ D Y YA YAy = = ++ Z YA X= +

 0 0 0 0 0 0 0 1
 0 0 1 0 1 0 1 0
 0 1 0 1 1 1 1 0
 0 1 1 1 0 1 0 0
 1 0 0 0 0 0 0 1
 1 0 1 1 1 1 1 1
 1 1 0 0 1 0 1 1
 1 1 1 0 0 0 0 1

52 Computer, Network, Software, and Hardware Engineering with Applications

 D XYA XYA XYA XYA YA X X YA X X YA YA .y = + + + = + + + = +() () ()

 Also, develop the equation for output Z by noting in Figure 1.25 the present states
X and Y and input A that generate Z = 1 output, producing the following equation:

 Z XYA XYA XYA XYA YA X X XY A A YA XY .= + + + = + + + = +() () ()

 Then, using these equations, develop the state table in Table 1.47 . Next, formulate
the K - maps in Tables 1.48 – 1.50 . Note that to construct the K - maps, 1s are placed
in the cells of the maps wherever 1s appear for D x , D y , and Z in the state table. Recall
that for D fl ip - fl ops, inputs are equal to the next states of the circuit. Last, based on
the fl ip - fl op and output equations, design the circuit in Figure 1.26 .

Message Processing Design

 Synchronous sequential circuits are highly adaptable to message processing systems,
as shown in Figure 1.27 . As shown in the fi gure, a message processing system

Table 1.48 K - Map for D XYA XYA XYA XY A A XY XYAx = + + = + = +()

YA

X 00 01 11 10

0 1 1

1 1

X Y
—

A X
—

Y

Table 1.49 K - Map for Dy = X
—

Y
—

A + XY
—

A + X
—

Y A— + XY A— =
Y
—

A(X
—

 + X) + Y A—(X
—

 + X) = (Y
—

A + Y A—)

YA

X 00 01 11 10

0 1 1

1 1 1

Y
—

A Y A—

Table 1.50 K - Map for Z XYA XYA XYA XYA= + + +

YA

X 00 01 11 10

0 1

1 1 1 1

Y
�

A
�

XY

YA X X XY A A YA XY= + + + = +() () ()

Digital Logic and Microprocessor Design 53

Figure 1.26 Logic diagram for synchronous digital circuit.

A
Dx

Q
x

xQ

X

X

Dy

Q
y

yQ

Y

X

Y A

Y

Y

X

X

Y

X Y

___ ___

X Y+X Y A

A

Y

___ ___

Y A Y A+

X

Y
XY

A

Y

XY

Y

A _____

(YA + XY)Z =

involves a sequence of inputs X with the objective of the circuit detecting a bit
pattern, such as 101. The circuit accomplishes this objective by changing state
according to the bit pattern received. When the desired bit pattern is recognized, the
sequence 101 is generated at the output. An application is the detection of computer
program operation codes by a microprocessor. For example, if the operation code
for the add instruction is the decimal 5 (binary 101), the output 101 would be gener-
ated in Figure 1.27 designating that the add instruction should be executed.

Figure 1.27 Message processing state diagram.

A B C

01 11 10

11 10

01

Input X Output Z

Present

state

Next

state

Detects message output sequence 101

State transitions

State A detects input X = 1 and outputs Z = 1 to state B

State B receives 1 from A and outputs Z = 0 to state C

State C receives 0 from B and outputs Z = 1 to state A

54 Computer, Network, Software, and Hardware Engineering with Applications

Figure 1.28 Message processing circuit.

T Q = 0

T Q = 0

T Q = 0

X = 1

1

1

Z = 1

Z = 0

Z = 1

1

1

Present

state
Next

state
Output

Output sequence = 101CLK

Table 1.51 State Transition Table

 Present
state

 Present T fl ip - fl op
binary state Q

 Input X = 1 Input X = 1 Input X = 1

 Next T fl ip - fl op
state Q

 Next T fl ip - fl op
binary state Q Output Z

 A 0 B 1 1
 B 0 C 1 0
 C 0 A 1 1

 The fi rst step in the design process is to specify the state transitions, as shown
in Figure 1.27 , where the desired detected bit pattern is shown. State transitions are
identifi ed that will serial process the incoming bit stream, looking for the desired
pattern in Figure 1.27 . Additional steps involve designing the state transition table
in Table 1.51 to represent the logic of Figure 1.27 in a tabular form and selecting a
fl ip - fl op type to implement state transitions. In this case, the T fl ip - fl op is selected
because its output toggles with each CP. If T = 1, the fl ip - fl op causes complementa-
tion of the present state. This is the logic required to detect the input sequence 101
in Figure 1.28 .

Digital Logic and Microprocessor Design 55

Figure 1.29 Binary counter state transition diagram and circuit.

00 01

Next state 01 recognizes
present state sequence 00

10

a1 a0Present state

a1+ a0+

11

Q

CLK

b1 = = 1001
Output

+

1a=T2

T4

__

1a 1100=

0 0b a 0101+= =___

0a += Q

0a 1010=

Output

Next state

Q

Q

Q

Q

0

1 1Q T Q (1)(a) 0011+ = = =

1

2 1Q T Q (a)(1) 1001++ = = =

1

T3 = 1

3 0Q T Q (1)(a) 0101+ = = =

a1

a0
0

4 0Q T Q (a)(1) 0101++ = = =

1a +

T1 = 1
1

Design of Binary Counters

Two-Bit Counter

 The binary counter is an example of a synchronous sequential circuit designed to
count a sequence of binary digits. For example, if the counter can count two binary
digits at a time, it would be able to process the following sequence of digits: 00, 01,
10, and 11. Thus, the counter can count 2 n binary numbers, using fl ip - fl ops (e.g., T
fl ip - fl ops), where n is the number of binary bits in the count. Figure 1.29 shows the
state transition diagram for a 2 - bit binary counter that implements the binary
sequence count rules (e.g., if the sequence is 00, it is recognized by the next state
01). After Figure 1.29 has been constructed, the state table (Table 1.52) for fl ip -
fl ops 1 and 2 is developed followed by the state table (Table 1.53) for fl ip - fl ops 3
and 4. The outputs b 0 and b 1 follow the logic rule: TQ(t) TQ(t)+ in Figure 1.29 . Note

56 Computer, Network, Software, and Hardware Engineering with Applications

that an inverter is inserted between the fl ip - fl ops in Figure 1.29 in order to achieve
the correct state transitions.

Three-Bit Counter

 A 3 - bit counter design proceeds by fi rst constructing the state diagram in Figure
 1.30 , with present and next states annotated. Next, using JK fl ip - fl ops, show the 3 - bit
counter excitation table (Table 1.54), noting fl ip - fl op states and fl ip - fl op inputs. The
salient state conditions can be summarized as follows: when Q = 0 and J = 0, no
change in state; when J = 1, set the fl ip - fl op; when K = 1, clear the fl ip - fl op; and
when Q = 1 and K = 0, no state change. The reader may wonder how the present
states are obtained in Figure 1.30 . The answer is that present states correspond to
the present states of the fl ip - fl ops that, in turn, correspond to the condition where
there is no CP (e.g., a 2 a 1 a 0 = 000).

 To demonstrate the validity of the JK fl ip - fl op transformations in Figure 1.30 ,

recall the fundamental property of the JK fl ip - fl op: Q next state) J Q(t) K Q(t)+ = +(.
For example, in the state transition a a a a a a2 1 0 2 1 0000 001= =+ + + , applying Q + (next
state) yields:

 a J Q t K Q t a a a a a a .2
+

2 2 1 0 2= + = +() ()2 2 1 0 2

 Thus,

 a a a a a a a 001 000 0,2
+

1 0 2 1 0 2= + = + =
 a J Q (t) K Q (t) a a a a .1

+
1 1 1 1 0 1 0 1= + = +

Table 1.52 Binary Sequence Counter State Table

 Present state Next state fl ip - fl op 1 Next state fl ip - fl op 2 Output

 a 1 a1
+ Q T Q 1 a1 1

+ = = ()() Q T Q a+ += =2 1 1()() b a1 1= +

 0 0 0 1 1
 0 1 0 0 0
 1 1 1 0 0
 1 0 1 1 1

Table 1.53 Binary Sequence Counter State Table

 Present state Next state fl ip - fl op 3 Next state fl ip - fl op 4 Output

 a 0 a0
+ Q T Q 1 a3 0

+ = = ()() Q T Q a+ += =4 0 1()() b a0 0= +

 0 0 0 0 0
 0 1 0 1 1
 1 1 1 0 0
 1 0 1 1 1

Digital Logic and Microprocessor Design 57

Figure 1.30 Three - bit counter state diagram and logic diagram.

000 001 010 011

111 110 101 100

a
2
a

1
a

0 a
2

+
a

1

+
a

0

+

Present states

Next state 001 recognizes present state 000

State diagram

J
2 Q

2

J
1

Q
1

J
0

Q
0

a
2

2a

2Q

a
1

1a___

1Q

0a

a
0

0Q

a
0
a

1

J
2

= a
0
a

1

K
2

K
2

= a
0
a

1

K
1

K
1
= a

0

J
1

= a
0

K
0

J
0

= 1

K
0

= 1

CLK

Logic diagram

0

0Q =

= =

= 1

Q
0

Next states

58 Computer, Network, Software, and Hardware Engineering with Applications

 Thus,

 a a a a a ,1
+

0 1 0 1= + = + =01 10 0

 a J Q (t) K Q (t) a a .0
+

0 0 0 0 0 0= + = + = + =1 0 11 00 1

 Thus, the state transition a a a a a a2 1 0 2 1 0000 001= =+ + + is demonstrated.
 Next, using Figure 1.30 , formulate the truth table (Table 1.54), incorporating

the state transitions from Figure 1.30 and the fl ip - fl op inputs that generate these
transitions. Next, the K - maps in Tables 1.55 – 1.60 , by noting the fl ip - fl op inputs that
are bolded in Table 1.54 , and resultant equations, are developed for the fl ip - fl op
inputs.

Table 1.54 Three - Bit Counter Truth Table

 Present
State Next state Flip - fl op inputs

 a 2 a 1 a 0 a2
+ a1

+ a0
+ J 2 = a 1 a 0 K 2 = a1 1 a 0 J 1 = a 0 K 1 = a 0 J 0 = 1 K 0 = 1

 0 0 0 0 0 1 0 0 0 0 1 1
 0 0 1 0 1 0 0 0 1 1 1 1
 0 1 0 0 1 1 0 0 0 0 1 1
 0 1 1 1 0 0 1 1 1 1 1 1
 1 0 0 1 0 1 0 0 0 0 1 1
 1 0 1 1 1 0 0 0 1 1 1 1
 1 1 0 1 1 1 0 0 0 0 1 1
 1 1 1 0 0 0 1 1 1 1 1 1

Table 1.55 K - Map for J 2

a1a0

00 01 11 10

a2 0 1

1 1

J2 = a1a0

Table 1.56 K - Map for K 2

a1a0

00 01 11 10

a2 0 1

1 1

K2 = a1a0

Digital Logic and Microprocessor Design 59

Table 1.57 K - Map for J 1

a1a0

00 01 11 10

a2 0 1 1

1 1 1

J1 = a0

Table 1.58 K - Map for K 1

a1a0

00 01 11 10

a2 0 X 1 1

1 X 1 1

K1 = a0

Table 1.59 K - Map for J 0

a1a0

00 01 11 10

a2 0 1 1 1 1

1 1 1 1 1

J0 = 1

Table 1.60 K - Map for K 0

a1a0

00 01 11 10

a2 0 1 1 1 1

1 1 1 1 1

K0 = 1

Shift Register Design

 The design process starts by documenting the elements of the basic building block
of the shift register — called the basic cell in Figure 1.31 — comprised of the multi-
plexer and the D fl ip - fl op. The D fl ip - fl op is used because the fl ip - fl op Q output
follows the multiplexer basic cell D input, thus enabling the shift operation. The

60 Computer, Network, Software, and Hardware Engineering with Applications

Figure 1.31 Basic cell and logic design of shift register.

Q

Q
SET

CLR

DS1

S8

D

C1 ENBC3C2

Multiplexer

s0

s1

External Inputs X

Operation Selectors

CLK CLR

Output

x3

x2 x1 x0

Operation
Selectors

Q3 Q2 Q1
Q0

Q0Q1

Q2
Q3

Q2

Q1

Left ShiftRight Shift

Shift Register Logic Design

Basic Cell

s0

s1

CLK

CLR

Multiplexer Multiplexer Multiplexer Multiplexer

x0 x1 x2 x3

c0

Q3

Q0

basic cell is replicated in the shift register logic design, also shown in Figure 1.31 .
The shift register operates in Figure 1.31 by shifting the least signifi cant bit, x 0 , for
a left shift, one fl ip - fl op output to the left on each CP. For a right shift, the most
signifi cant bit, x 3 , is shifted one fl ip - fl op output to the right on each CP. These shifts
are referred to as “ end around ” because for a right shift, the least signifi cant bit,
represented by Q 3 in Table 1.61 , is shifted to the most signifi cant bit position. More-
over, in a left shift, the most signifi cant bit, represented by Q 0 in Table 1.61 , is shifted
to the least signifi cant bit position. The type of shift is based on the values of the
operation selectors in Table 1.61 .

RAM DESIGN

 There are two types of RAM: static and dynamic. Static RAM stores data in fl ip -
fl ops. Dynamic RAM stores data in capacitors. Because capacitors gradually lose
their charge, dynamic RAM must be refreshed periodically. A RAM circuit is shown
in Figure 1.32 where 1 bit, 0 or 1, can either be read or written depending on whether
a read or write operation is selected and whether a 1 or 0 appears at the input.

Digital Logic and Microprocessor Design 61

Figure 1.32 Random access memory (RAM) circuit.

Q

QSET

CLR

D

R/ W

R/ W = 1 for read and 0 for write
Select = 1 : select flip flop for read or write

Read gate

Select

1

1

10

Write gate

Input

1 or 0

Read output gate

1, 0

1, 0

1

CLK

1

Write output gate

1 or 0
1 or 0

1 or 0

1 or 01

Red: read

Blue: write

Table 1.61 Truth Table for Shift Register

Operation
selectors

Clock Clear
input CLR

Operation Input Output

s0 s1

0 0 1 Clear Q0 Q1 Q2 Q3 0000

0 1 0 No
operation

Q0 Q1 Q2 Q3 Q0 Q1 Q2 Q3

1 0 0 Shift
right “end
around”

Q0 Q1 Q2 Q3 Q3 Q0 Q1 Q2

1 1 0 Shift left
“end
around”

Q0 Q1 Q2 Q3 Q1 Q2 Q3 Q0

input CLK

HARDWARE DESCRIPTION LANGUAGE (HDL)

 Given the complexity of some digital circuits, implementing them can be error
prone. Therefore, as a design aid, aimed to increase design productivity and reduce
errors, HDLs have been developed. In electronics, an HDL is any language from a
class of computer languages for formal description of electronic circuits, and more
specifi cally, digital logic. It can describe the circuit ’ s operation, its design and orga-
nization, and tests to verify its operation by means of simulation.

 Using the proper subset of virtually any HDL, a software program called a
synthesizer can infer hardware logic operations from the language statements and
produce equivalent hardware functions to implement the specifi ed logic. Synthesiz-
ers use clock edges as the way to time a circuit.

62 Computer, Network, Software, and Hardware Engineering with Applications

 HDLs are text - based expressions of the logical and timing characteristics of
electronic systems. Like concurrent programming languages, HDL syntax and
semantics includes notations for expressing concurrency. Languages whose only
purpose is to express circuit connectivity between blocks are classifi ed as computer -
 aided design languages.

 The automated steps in using an HDL are the following:

 Develop the logic diagram, using truth tables.

 Generate the logic equations corresponding to the truth table relationships.

 Minimize the logic equations, if necessary, using K - maps.

 Use the simulator component of the HDL to verify the correct operation of the
circuit logic, in particular, test timing constraints.

 More details on HDL can be found in Salcic and Smailagic [SAL08] .

SUMMARY

 This chapter has provided the reader with numerous microprocessor design fundamentals and
practical examples that lay the groundwork for the practicing engineer or student to design a
complete microprocessor. In addition to elucidating principles, the chapter explained why
circuits operate the way they do. Furthermore, there was a focus on design process to provide
the reader with a road map to successful design. Last, many examples of digital logic were
drawn from everyday experience to show the reader that the application of digital logic is not
limited to designing microprocessors.

REFERENCES

 [GIB80] G. A. Gibson and Y. Liu , Microcomputers for Engineers and Scientists . Englewood Cliffs, NJ :
 Prentice - Hall, Inc. , 1980 .

 [GRE80] S. E. Greenfield , The Architecture of Microcomputers . Cambridge, MA : Winthrop Publishers,
Inc. , 1980 .

 [HAR07] D. M. Harris and S. L. Harris , Digital Design and Computer Architecture . New York :
 Elsevier , 2007 .

 [RAF05] M. Rafiquzzaman , Fundamentals of Digital Logic and Microcomputer Design . New York :
 Wiley - Interscience , 2005 .

 [SAL08] Z. Salcic and A. Smailagic , Digital Systems Design and Prototyping: Using Field Program-
mable Logic and Hardware Description Languages . Boston : Kluwer Academic Publishers , 2000 .

Chapter 2

Case Study in Computer
Design

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F.
Schneidewind.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley &
Sons, Inc.

T he objective of this chapter is to provide the reader with a case study illustrating design
principles, design decisions, and the analysis of performance and reliability that are products
of the design process, using the computer - based design of an elevator system as an example.
This chapter builds upon the fundamentals of Chapter 1 : Digital Logic and Microprocessor
Design.

DESIGN PRINCIPLES

 According to Harris and Harris [HAR07] , the following design principles should be
used to develop an effective design:

Simplicity favors regularity , meaning that functions exhibiting regularity should
be implemented in simple hardware designs, as opposed to complex software
designs that would be the choice for functions exhibiting nonregularity. For
example, elevator push button controls would be implemented in hardware,
whereas the algorithm for determining direction of travel would be imple-
mented in software.

Make the common case fast , meaning that frequently executed functions should
be implemented in a design that provides for fast execution. For example,
the elevator door open and close function could be implemented in a fast
microprocessor.

Smaller is faster , meaning that small components, such as cache memory, are
smaller and faster than large and slow main memory. Thus, for example, the
data about frequently requested fl oors in an elevator system (e.g., lobby fl oor)
would be stored in the cache, as opposed to basement fl oor data that would
be stored in main memory.

63

64 Computer, Network, Software, and Hardware Engineering with Applications

DESIGN DECISIONS

 There are a number of decisions that must be made as part of the design process
that we explain as follows:

Control . If the elements (see Table 2.1) of a system can operate independently,
such as a Web system implemented on the Internet, control should be dis-
tributed. On the other hand, if there must be surveillance of the elements in
order to coordinate operations, such as users generating fl oor requests in an
elevator system, control should be centralized.

Storage . For systems with large storage demands and modest data access time
specifi cations, such as a database management system, secondary storage is
a requirement. However, for embedded systems in which the data volume
generated is small but access time must be short to meet user demands, fast
cache memory is the primary storage requirement. An example is an elevator
system that must store simultaneous user fl oor requests and have quick access
to those requests in a cache memory.

Communication . The major contenders for the system communication vehicle
are the bus and point - to - point connectivity. This is a very interesting design
decision because it is not obvious that one alternative would be better than
the other for a given application. The point - to - point alternative provides
dedicated communication but becomes unwieldy if applied to many compo-
nents because the hardware connectivity becomes complex and costly.
However, if high speed communication is essential, point - to - point commu-
nication would be used because competing for bus bandwidth would be
infeasible for meeting high speed communication requirements, such as
among the elevator system devices shown in Figure 2.1 . Bus communication
is attractive for applications that have modest speed requirements, but where
there is a multiplicity of devices that must communicate frequently, such as
an Ethernet local network.

Topology . Communication and topology are intimately related because com-
munication paths are the elements of a topology. For example, in point - to -
 point connectivity, nodes (e.g., components) are directly connected by links
(e.g., communication cables), whereas in a bus system, all nodes are con-
nected to a single link. In addition, topology is related to component and
device count, which, in turn, are related to system hardware cost. Thus, by
defi ning topology, designers can estimate hardware cost.

IDENTIFICATION OF SYSTEM ELEMENTS

 Using an elevator example, Tables 2.1 and 2.2 provide a manifest of the linkage of
elements to the computer design process, where elements are the objects comprising
a system. That is, the attributes of the elements are characterized in order to visualize
how elements are related. These attributes will be used in various facets of the design

65

Ta
bl

e
2.

1
 Id

en
tifi

 c
at

io
n

of
 S

ys
te

m
 E

le
m

en
ts

 E
le

m
en

t
 Pu

rp
os

e
 So

ur
ce

(s
)

 D
es

tin
at

io
n

 R
es

po
ns

e
tim

e
 T

ra
ns

fe
r

ra
te

 Fo

rm
at

 a
nd

 s
to

ra
ge

re

qu
ir

em
en

t
 C

om
pu

ta
tio

n

 Se
qu

en
ce

 j

 Id
en

tif
y

or
de

r
an

d
di

re
ct

io
n

of

el
ev

at
or

tr
av

er
sa

l

 Fl
oo

r
re

qu
es

t
i

N
 i ,

cu
rr

en
t

fl o
or

lo

ca
tio

n
N

 c

 D
es

tin
at

io
n

fl o
or

 N
 d

 Se
qu

en
ce

re

sp
on

se
tim

e
T

 j

 Se
e

Ta
bl

e
 2.

2
 2

bi
ts

 (
fo

ur

se
qu

en
ce

s)
 O

rd
er

 a
nd

 d
ir

ec
tio

n
of

 e
le

va
to

r
tr

av
er

sa
l

 Fl
oo

r
re

qu
es

t
i

N
i

 R
eq

ue
st

 s
er

vi
ce

 Pu

sh
 b

ut
to

n
 E

le
va

to
r

co
nt

ro
lle

r
 Se

qu
en

ce

re
sp

on
se

tim
e

T
 j

 Se
e

Ta
bl

e
 2.

2
 3

B
C

D
 i

nt
eg

er

di
gi

ts
 (

10
0

fl o
or

s)

 Id
en

tif
y

se
qu

en
ce

 j

an
d

tr
av

er
sa

l
di

re
ct

io
n

 C
ur

re
nt

 fl
 o

or

lo
ca

tio
n

N
 c

 Id
en

tif
y

el
ev

at
or

lo

ca
tio

n
 Fl

oo
r

de
te

ct
or

 E

le
va

to
r

co
nt

ro
lle

r

 Se

e
Ta

bl
e

 2.
2

 3
B

C
D

 i
nt

eg
er

di

gi
ts

 (
10

0
fl o

or
s)

 Id
en

tif
y

se
qu

en
ce

 j

an
d

tr
av

er
sa

l
di

re
ct

io
n

 D
es

tin
at

io
n

fl o
or

 N
 d

 Id
en

tif
y

de
st

in
at

io
n

fl o
or

 Pu

sh
 b

ut
to

n
 E

le
va

to
r

co
nt

ro
lle

r

 Se

e
Ta

bl
e

 2.
2

 3
B

C
D

 i
nt

eg
er

di

gi
ts

 (
10

0
fl o

or
s)

 Id
en

tif
y

se
qu

en
ce

 j

an
d

tr
av

er
sa

l
di

re
ct

io
n

 Pr
ob

ab
ili

ty
 o

f
tr

av
er

si
ng

se
qu

en
ce

 j
 P

 j

“ C
ha

nc
e ”

 o
f

tr
av

er
si

ng
se

qu
en

ce
 j

 E
le

va
to

r
co

nt
ro

lle
r

m
ic

ro
pr

oc
es

so
r

 4
B

C
D

 fl
 o

at
in

g -
 po

in
t

di
gi

ts

 U
se

s
N

 i ,
N

 c ,
N

 d

 Se
qu

en
ce

 j

re
sp

on
se

tim
e

T
 j

 Q
ua

nt
ifi

es
 u

se
r

ex
pe

ct
at

io
ns

 E
le

va
to

r
co

nt
ro

lle
r

m
ic

ro
pr

oc
es

so
r

 6
B

C
D

 fl
 o

at
in

g -
 po

in
t

di
gi

ts

 U
se

s
N

 i ,
N

 c ,
N

 d ,
P j

 ,
t f ,

 t
 oc

(C
on

ti
nu

ed
)

66

 E
le

m
en

t
 Pu

rp
os

e
 So

ur
ce

(s
)

 D
es

tin
at

io
n

 R
es

po
ns

e
tim

e
 T

ra
ns

fe
r

ra
te

 Fo

rm
at

 a
nd

 s
to

ra
ge

re

qu
ir

em
en

t
 C

om
pu

ta
tio

n

 Si
ng

le
 fl

 o
or

tr

av
er

sa
l

tim
e

t f

 Pa
ra

m
et

er
 i

n
co

m
pu

ta
tio

n
of

T

j

 E
le

va
to

r
co

nt
ro

lle
r

m
ic

ro
pr

oc
es

so
r

 1
B

C
D

 i
nt

eg
er

di

gi
t

 Sp
ec

ifi
ed

 a
s

5
se

co
nd

s
an

d
1

se
co

nd
 N

um
be

r
of

fa

ilu
re

s
n f

 U
se

d
in

co

m
pu

ta
tio

n
of

fa

ilu
re

 r
at

e

 E
le

va
to

r
co

nt
ro

lle
r

m
ic

ro
pr

oc
es

so
r

 1
B

C
D

 i
nt

eg
er

di

gi
t

 Sp
ec

ifi
ed

 a
s

1,
 2

, 3
,

4,
 a

nd
 5

 f
ai

lu
re

s

 Fl
oo

r
tr

av
el

di

st
an

ce
 f

or

te
st

 i
 n

 i

 U
se

d
in

co

m
pu

ta
tio

n
of

fa

ilu
re

 r
at

e

 E
le

va
to

r
co

nt
ro

lle
r

m
ic

ro
pr

oc
es

so
r

 6
B

C
D

 fl
 o

at
in

g -
 po

in
t

di
gi

ts

 U
se

s
N

 i ,
N

 c ,
N

 d

 D
oo

r
op

en
 a

nd

cl
os

e
tim

e
t o

c

 Pa
ra

m
et

er
 i

n
co

m
pu

ta
tio

n
of

T

j

 E
le

va
to

r
co

nt
ro

lle
r

m
ic

ro
pr

oc
es

so
r

 1
B

C
D

 fl
 o

at
in

g -
 po

in
t

di
gi

t
 Sp

ec
ifi

ed
 a

s1

se
co

nd

 Se
qu

en
ce

 j

fa
ilu

re
 r

at
e

λ j

 V
ar

ia
bl

e
in

pr

ed
ic

tio
n

of
 R

 j
 E

le
va

to
r

co
nt

ro
lle

r
m

ic
ro

pr
oc

es
so

r

 6

B
C

D
 fl

 o
at

in
g -

 po
in

t
di

gi
ts

 U

se
s

n f
 , n

 i ,
T

 j

 Se
qu

en
ce

 j

re
lia

bi
lit

y
R

 j
 Pr

ed
ic

ts

pr
ob

ab
ili

ty
 o

f
ze

ro
 f

ai
lu

re
s

 E
le

va
to

r
co

nt
ro

lle
r

m
ic

ro
pr

oc
es

so
r

 4
B

C
D

 fl
 o

at
in

g -
 po

in
t

di
gi

ts

 U
se

s
T

 j ,
 λ j

 , P
 j

Ta
bl

e
2.

1
(C

on
ti

nu
ed

)

Case Study in Computer Design 67

Figure 2.1 Elevator system architecture. N i , request fl oor location; N c , current fl oor location; N d ,
destination fl oor location; T j : sequence j response time; P j , probability of sequence j; t oc , door open/
close time; t f , single fl oor traversal time.

Floor request

1
2

5
Cache

memory

User

Push buttons

sensor

control

Elevator controller

(microprocessor)

Ni, Nd

Ni, Nd

Ni, Nd

Floor location

sensor

Nc

Sequence j

Elevator

UP, DOWN

Probability of sequence j: Pj

Long-term

storage

Nc

Nd

Elevator Architecture

Nc

Ni

Nd

Ni

Nc

Sequence 1

Nc – Ni

Nd – Ni

((Nd – Ni) + (Nc – Ni))) Floor travel

Response time: Tj

Floor traversal time: t f

Door open close time: toc

Sequence 1: Tj = (tf *((Nd – Ni) + (Nc – Ni)))*Pj + toc

Recover &

rollback

Halt

operation

Nc

Test

point

Test point

Elevator Sequences

Test

point

Interface test:

(3 BCD integer)

Test point

1
2

5

Error

signal

Exception handler
(microprocessor)

Sequence 2

((Ni – Nc) + (Nd – Ni))

Sequence 2: Tj = (tf *((Ni – Nc) + (Nd – Ni))*Pj + toc

Ni – Nc

Nd – Ni

Nd

Ni

Ni

Sequence 3: Tj = tf *((Ni – Nc) + (Ni – Nd))*Pj + toc

Nc

Nd

Ni – Nc Ni – Nd

Sequence 4: Tj = tf *((Nc – Ni) + (Ni – Nd))*Pj + toc

((Nc – Ni) + (Ni – Nd))((Ni – Nc) + (Ni – Nd))

Sequence 3

Ni – Nc

Ni – Nd

Pj = (Nd – Ni)/((Nc – Ni) + (Nd – Ni))

Pj = (Nd – Ni)/((Ni – Nc) + (Nd – Ni))

Pj = (Ni – Nd)/((Ni – Nc) + (Ni – Nd))

Pj = (Ni – Nd)/((Nc – Ni) + (Ni – Nd))

(Nc ≥ Ni, Nd ≥ Ni) (Ni ≥ Nc, Nd ≥ Ni) (Ni ≥ Nc, Nc ≥ Nd) (Nc ≥ Ni, Ni ≥ Nd)

Sequence 4

process. Some of the elements, such as fl oor request i , represent actions in an eleva-
tor system, while others, such as probability of traversing sequence j , are metrics
for evaluating elevator system performance; therefore, these elements have no
“ source ” nor “ destination. ” Element transfer rates are measured by fl oor travel dis-
tances relative to the time of travel:

68 Computer, Network, Software, and Hardware Engineering with Applications

Table 2.2 Transfer Rates (Floors per Second)

 Element Sequence
 5 seconds fl oor
traversal time

 1 second fl oor
traversal time

 Sequence j 1 0.3845 1.8490
 Sequence j 2 2.2082 10.2118
 Sequence j 3 0.5054 2.4605
 Sequence j 4 1.0765 5.1246
 Floor request i N i 1 0.8175 3.9309
 Floor request i N i 2 0.8166 3.9265
 Floor request i N i 3 0.8900 4.2796
 Floor request i N i 4 0.7054 3.3920
 Current fl oor location N c 1 0.7906 3.8013
 Current fl oor location N c 2 0.8025 3.8586
 Current fl oor location N c 3 0.7468 3.5911
 Current fl oor location N c 4 0.7455 3.5844
 Destination fl oor N d 1 0.8331 4.0060
 Destination fl oor N d 2 0.7705 3.7051
 Destination fl oor N d 3 0.8017 3.8550
 Destination fl oor N d 4 0.7955 3.8252

 Sequence j travel distance:

n

T i

,
i

i

n

j

i

n
=

=

∑

∑
1

1

()

 where n i is travel distance for fl oor request i; Tj(i) is the response time for
sequence j and fl oor request i; and n is the number of fl oor requests.

 Request fl oor travel distance N i :

N (j n)

T (i)

,
i

i 1

n

j

i 1

n

,
=

=

∑

∑

 where N i (j, n) is the request fl oor location i for sequence j and the number of
fl oor requests n.

Case Study in Computer Design 69

 Current fl oor travel distance N c :

N (j n)

T (i)

,
c

i 1

n

j

i 1

n

,
=

=

∑

∑
 where N c (j, n) is the current fl oor location for sequence j and number of fl oor

requests n.

 Destination fl oor travel distance N d :

N j n

T i

,
d

i 1

n

j

i 1

n

(,)

()

=

=

∑

∑
 where N d (j, n) is the destination fl oor location for sequence j and the number

of fl oor requests n.

 Transfer rates are computed using the above expressions and recorded in Table 2.2 .
Table 2.2 shows that, in general, sequence j transfer rates are higher for the shorter
fl oor traversal time alternative (1 second). This result is expected because more
fl oors are traversed during shorter response times. This result can be used to advan-
tage by anticipating prior to system implementation the transfer rates produced by
performance alternatives.

ARCHITECTURAL DESIGN

 Computer architecture involves the organization and functions of various elements
into a unifi ed system. Architectural design involves conceptualizing the subsystems
of a system in terms of components, units, functions, elements, and connections.
Table 2.3 documents the architectural relationships for the elevator example, where
elements from Table 2.1 and Figure 2.1 are related to the architecture. An important
architectural feature includes test points in Table 2.3 and Figure 2.1 for testing and
evaluating the reliability of the system.

TEST STRATEGIES

 An excellent test strategy is to view testing as a means of fault prevention
 [SIG90] , meaning that if we identify a system ’ s vulnerabilities before committing
to programming and detailed hardware design, we can avoid these weak spots when
actually committing to code and hardware implementation. For example, in an eleva-
tor system, the sequences of fl oor traversals are critical in realizing a reliable opera-
tion. Thus, a key strategy of fault prevention is to focus on critical sequences

Ta
bl

e
2.

3
 A

rc
hi

te
ct

ur
al

 R
el

at
io

ns
hi

ps

 Su
bs

ys
te

m

 C
om

po
ne

nt

 U
ni

t
 Fu

nc
tio

n
 E

le
m

en
t(

s)

 C
on

ne
ct

io
ns

 Pu
sh

 b
ut

to
n

se
ns

or
 Pu

sh
 b

ut
to

n
co

nt
ro

l
 Pu

sh
 b

ut
to

ns

te
st

 p
oi

nt

 G
en

er
at

es
 u

se
r

re
qu

es
ts

 Fl

oo
r

re
qu

es
t

i
N

 i ,
de

st
in

at
io

n
fl o

or
 N

 d
 E

le
va

to
r

co
nt

ro
lle

r

 Fl
oo

r
lo

ca
tio

n
se

ns
or

 E
rr

or
 s

ig
na

l
ge

ne
ra

to
r

 Te
st

 p
oi

nt

 Pr
ov

id
es

 fl
 o

or
 l

oc
at

io
ns

 C

ur
re

nt
 fl

 o
or

 l
oc

at
io

n
N

 c

 C
ac

he
 m

em
or

y
ex

ce
pt

io
n

ha
nd

le
r

 C
ac

he
 m

em
or

y

 Te

st
 p

oi
nt

 Sh

or
t -

 te
rm

 s
to

ra
ge

 o
f

N
 i ,

N
 d ,

an
d

N
 c

 C
ur

re
nt

 fl
 o

or
 l

oc
at

io
n

N
 c

 Fl

oo
r

lo
ca

tio
n

se
ns

or
 e

le
va

to
r

co
nt

ro
lle

r
 E

le
va

to
r

 E
le

va
to

r
co

nt
ro

lle
r

 M
ic

ro
pr

oc
es

so
r

 C
om

pu
te

s
se

qu
en

ce
 j

,
se

qu
en

ce
 j

 r
es

po
ns

e
tim

e
T

j ,
an

d
pr

ob
ab

ili
ty

 o
f

se
qu

en
ce

 j
 P

 j

 Se
qu

en
ce

 j
, s

eq
ue

nc
e

j
re

sp
on

se
 t

im
e

T
j,

an
d

pr
ob

ab
ili

ty
 o

f
se

qu
en

ce
 j

P j

 E
le

va
to

r
co

nt
ro

lle
r

ca
ch

e
m

em
or

y
lo

ng
 - t

er
m

st

or
ag

e
 L

on
g -

 te
rm

st

or
ag

e

 L

on
g -

 te
rm

 s
to

ra
ge

:
Se

qu
en

ce
 j

, s
eq

ue
nc

e
j

re
sp

on
se

 t
im

e
T

 j ,
an

d
pr

ob
ab

ili
ty

 o
f

se
qu

en
ce

 j

P j

 Se
qu

en
ce

 j
, s

eq
ue

nc
e

j
re

sp
on

se
 t

im
e

T
 j ,

an
d

pr
ob

ab
ili

ty
 o

f
se

qu
en

ce
 j

P j

 E
le

va
to

r
co

nt
ro

lle
r

 E
xc

ep
tio

n
ha

nd
le

r
 M

ic
ro

pr
oc

es
so

r
 E

rr
or

 s
ig

na
l

ge
ne

ra
to

r
 Pr

oc
es

s
er

ro
r

si
gn

al
s

 C
ur

re
nt

 fl
 o

or
 l

oc
at

io
n

N
 c

 R

ec
ov

er
 a

nd

ro
llb

ac
k

70

Case Study in Computer Design 71

 [GAN08] , emphasizing stress testing (e.g., simulating multiple concurrent user fl oor
requests).

 The test specifi cation should contain the functions to be tested, types of faults
expected, input data, expected outputs, pass/fail criteria, test environment, and test
schedule [SIG90] . The types of faults expected is critical and warrants elaboration
 [SIG90] . One type of fault is classifi ed as functional; it pertains to faults arising
from errors in designing and implementing functions, such as programming an
elevator to go down when it is supposed to go up. To avoid or correct this problem,
functional testing is designed to simulate critical functions and to compare the test
result with the expected result. If the two are unequal, the relevant documentation
is analyzed to identify the source of the error. For example, if a test result shows an
elevator going down when it is supposed to up, the fl oor traversal sequencing algo-
rithm would be investigated.

 System faults can arise due to components not being properly interfaced, such
as a system bus not having the bandwidth required to accommodate the myriad of
devices connected to it. Another type of system fault is failing to specify the correct
capacity of components, such as a cache size that is too small for storing fl oor tra-
versal information in Figure 2.1 . A key process fault is generated by incorrect pro-
cessing of sequences, for example, sequence j directing the elevator to go down,
when it is supposed to go up, in Figure 2.1 . Data faults are created by incorrect
specifi cation of value, limit, or format. For example, the user fl oor request data in
Table 2.1 is specifi ed as three binary - coded decimal (BCD) integer digits in a 100 -
fl oor elevator system. If only two BCD digits fl oating - point digits were specifi ed,
there would be a limit error (only 99 fl oors could be accommodated) and a format
error (fl oating - point representation). Values would also be incorrect if the sensor
control in Figure 2.1 reads request fl oor 5 instead of the correct fl oor 10.

Test Plan

 Now, we illustrate test planning by developing a sequence - oriented test plan for an
elevator system that includes the analysis of critical faults and test plan support
functions.

Critical Faults

 One type of critical fault occurs when boundary values are not processed correctly
 [SIG90] . For example, this fault occurs when elevator fl oor location processing
results in fl oor location exceeding 100 in a 100 - fl oor elevator system, or the location
is computed to be less than one. This problem can be mitigated by providing test
points at data entry locations in Figure 2.1 and checking for boundary value errors.

 Another type of critical fault can occur at the interface of two elements [SIG90] .
This type of fault occurs, for example, when two elements must match with respect
to transmitted data type. Using the interface between the fl oor location sensor and
the cache memory in Figure 2.1 as an example, the data type must be 3 BCD integer,

72 Computer, Network, Software, and Hardware Engineering with Applications

which was originally specifi ed in Table 2.1 . This problem is controlled by using
integration testing to ensure that every interface behaves properly.

Test Plan Support Functions

 In order to conduct tests in the absence of certain elements, drivers that substitute
for missing calling elements are used. In addition, stubs that substitute for missing
called elements are used. This would be the case, for example, in testing Sequence
1 in Figure 2.1 , when the request fl oor location (N i) element is to be tested, but both
the current fl oor location (N c) and destination fl oor location (N d) elements have not
been implemented. In this situation a driver would substitute for N c (calling element)
and a stub would substitute for N d (called element).

 Integration testing involves testing the hardware and software for each sequence
on an incremental basis, using the test points in Figure 2.1 . For example, once the
testing of the fl oor location sensor is completed, it is incorporated into the elevator
system and the cache memory is the next element tested. This process continues
until all elements have been tested. If any hardware or software changes are made
along the way, regression testing is invoked to retest all elements that had been tested
up to the point of the changes [SIG90] .

 Environmental testing, which can be equated to system testing and acceptance
testing, is designed to test and evaluate a system in its operational environment.
However, during system development, it may not be possible to test some systems
in their actual operational environment. Obviously, it would not be feasible to test
elevators in various buildings where they will be installed because these environ-
ments would be unknown during development. Instead, the elevator system manu-
facturer uses a test bed to create environmental conditions as close to the ultimate
environment as possible for testing the physical system. However, prior to this phase,
the operation of elements and their sequences is simulated, which will be described
in a later section. Environmental testing includes not only testing of functions, but
performance testing as well. For example, the elevator system in Figure 2.1 would
be tested for the correct ordering of sequences and, in addition, tested for the correct
computation of sequence response times.

Test Data Design

 The design of test data is as important as developing test plans because these plans
would be worthless if the test data do not support the plan. In addition to inputting
the correct fl oor location data (3 BCD integer) in Figure 2.1 , incorrect data (e.g., 2
BCD fl oating point) should be inputted to test the system response. Systems should
be equipped with an exception handler, as shown in Figure 2.1 , to be activated when
errors occur, such as incorrect data type. This is an excellent example of coordinating
test data design with test plans: erroneous test data are incorporated in the test plan
to test the system response — recover from the error and rollback to the last correct
operation, or halt the operation if it is impossible to recover from the error. Table
 2.1 is an excellent source for designing test data, because for each element, the
purpose, source, format, storage requirement, and computation are documented. This

Case Study in Computer Design 73

information can be correlated with the architectural perspective in Figure 2.1 (e.g.,
location of test points) to develop integrated test plans and data.

FAULT DETECTION AND CORRECTION

 In the design process, it is important to plan for both fault detection and correction.
Some methods, like simple parity detection, can only detect. Other methods, such
as the cyclic redundancy check (CRC), include suffi cient information to allow both
detection and correction.

Parity Error Detection

 If the number of one bits, including the parity bit P bit, is an even number, an even
parity error signal is generated; otherwise, if the number of one bits, including the
parity bit, is an odd number, an odd parity error signal is generated.

 For example, if it is desired to use even parity error detection in a digital circuit,
which of the data below would generate an even parity error signal? The solution is
shown below.

P

 0010 odd parity

 0100 odd parity

0101 even parity (solution)

 0111 odd parity

CRC

 Data can be represented by a polynomial M(x): x n + x n– 1 + x n− 2 + . . . + x 0 , x = 2 and
the exponents correspond to bit positions: 0 for position 0, 1 for position 1, and so
on. The degree of the polynomial is n that is equal to the highest bit position. For
example, if we consider fl oor 50 in the elevator system, the polynomial representa-
tion of M(x) = x 5 + x 4 + x 1 = 32 + 16 + 2 = 50 10 = 110010 2 , and the degree n = 5.

 Continuing the example, the sender and receiver must agree on a generator
polynomial G(x) of degree k ≤ n in advance of transmission. Both the high and low
bits of G(x) must be 1. M(x) must be longer than G(x). In addition, k zeros are
appended to M(x), yielding the augmented message T(x) = M(x) x k .

 The details of the example follow:

 M x x x x() .= + +5 4 1

 Use G(x) = x + 1 = 3 10 = 11 2 , because M(x) can be divided by G(x) (i.e., the degree
of G(x) = 1 ≤ degree of M(x) = 5).

 Degree k = degree 1; therefore, append one zero to M(x), yielding

 T x M x x x x xk() () .= = + + = =6 5 2
2 101100100 100

74 Computer, Network, Software, and Hardware Engineering with Applications

 Divide T(x) by G(x), using modulo 2 division, and record remainder R(x) using
modulo 2 division:

)11 1100100

11

0000100

11

100001

R x 01

.

() =

 Now, append the remainder R(x) = 01 to the original message M(x), using modulo
2 addition, and transmit M(x)R(x) = 11001001 2 = 201 10 (check: 201 10 is divisible by
3 with 0 remainder).

 At the receiver, divide (M(x)R(x)) by G(x) and check for zero remainder. If this is
the case, there is no error in transmission; otherwise, there is one error, so retransmit:

)11 1100100
11

0000100
11

11
11

0

100001

 (no error)

.

SEQUENCE ANALYSIS

Sequence Relationships

 We perform sequence analysis to provide a structure for predicting reliability, avail-
ability, and performance. Figure 2.1 shows the architecture for processing the data
that are used for constructing the sequences. In addition, the fi gure shows the details
of the sequences. These details are used for predicting reliability, availability, and
performance. This is accomplished by fi rst, identifying the relationships among the
request fl oor location, N i , the current fl oor location, N c , and the destination fl oor
location, N d . Using these relationships, fl oor travel is identifi ed in order to predict
the probability of the elevator system invoking sequence j. Once the probabilities
are predicted, the response time for each sequence is predicted for each of the fl oor
traversal times. Since the fl oor locations are unknown prior to implementing the
system, uniformly distributed random numbers, multiplied by 100, are used to gener-
ate fl oor locations for a 100 - fl oor system. In order to achieve statistical validity, 100
tests are simulated for each of the four sequences that are shown in Figure 2.1 . Then,

Case Study in Computer Design 75

the fl oor constraints (e.g., (N c ≥ N i , N d ≥ N i) for Sequence 1), which are documented
in Figure 2.1 , are used to identify the combinations of fl oor locations that are valid
for a given sequence. These valid combinations are used to generate fl oor travel
distances for each sequence. Next, the sequence probabilities are computed as a
function of fl oor travel distances as shown in Figure 2.1 .

 In addition to the sequence analysis of Figure 2.1 , the logic of the elevator opera-
tions are shown in Figure 2.2 to allow us to visualize how the elevator system exe-
cutes the logic steps to control to transport passengers from fl oor to fl oor. This
diagram would be the basis for the software design of the fl oor traversal algorithm.

SEQUENCE PROBABILITY AND SEQUENCE
RESPONSE TIME PREDICTIONS AND ANALYSIS

Sequence Probability

Sequence 1

 (1) Elevator goes down from current fl oor N c to request fl oor N i , then (2) goes
up from request fl oor N i to destination fl oor N d (N c ≥ N i , N d ≥ N i):

 P N N N N N Nj d i c i d i= − − + −() / (() ()).

Figure 2.2 Elevator logic diagram. N i, request fl oor; N d , destination fl oor; d(i), user - entered
destination fl oor; N t , top fl oor.

i = 1

Initialize floor

counter

i = N
i

Open door,
passenger(s)

enter,
close door

Y

i = N
d

NNi

Open door,

passenger(s)

exit,

close door

Y

Go up

one floor

N

i = i + 1

i < N
t

<

Go down
one floor

i = N
t
–1N

d
 = d(i)

d(i)

i > 1
>

i = N
t

=

=

Request floor

Desitination

floor

76 Computer, Network, Software, and Hardware Engineering with Applications

Sequence 2

 (1) Elevator goes up from current fl oor N c to request fl oor N i , then (2) goes up
from request fl oor N i to destination fl oor N d (N i ≥ N c , N d ≥ N i):

 P N N N N N Nj d i i c d i= − − + −() / (() ()).

Sequence 3

 (1) Elevator goes up from current fl oor N c to request fl oor N i , then (2) goes
down from request fl oor N i to destination fl oor N d (N i ≥ N c , N c ≥ N d):

 P N N N N N Nj i d i c c d= − − + −() / (() ()).

Sequence 4

 (1) Elevator goes down from current fl oor N c to request fl oor N i , then (2) goes
down from request fl oor N i to destination fl oor N d (N c ≥ N i , N i ≥ N d):

 P N N N N N Nj i d c i i d= − − + −() / (() ()).

Sequence Response Time

 Response time predictions are based on the above predictions of sequence probabil-
ity, which correspond to the sequences depicted in Figure 2.1 .Response time is
predicted for each sequence j and fl oor traversal time, t f , using the following
equations:

Sequence 1

 T t N N N N P tj f d i c i j oc= ∗ − + − ∗ +((() ())) .

Sequence 2

 T t N N N N P tj f i c d i j oc= ∗ − + − ∗ +((() ())) .

Sequence 3

 T t N N N N P tj f i c c d j oc= ∗ − + − ∗ +(() ()) .

Sequence 4

 T t N N N N P tj f c i i d j oc= ∗ − + − ∗ +(() ()) .

 The purpose of the predictions is twofold: (1) to assess in advance of implementation
which performance alternative would satisfy the performance requirement and (2)
to identify the sequence(s) that would satisfy the performance requirement. This
objective is accomplished by simulated testing. Figures 2.3 and 2.4 address this
purpose. Figure 2.3 pertains to the 5 - second fl oor alternative and shows that none
of the sequences satisfy the performance requirement over the complete range of
tests. Figure 2.4 is a little more encouraging, showing that Sequence 2 satisfi es the
requirement. Unfortunately, since it is infeasible to provide an elevator system with
a fl oor traversal time of less than 1 second, the performance in actual operation is

Case Study in Computer Design 77

Figure 2.3 Elevator system: sequence response time T j versus number of tests n for 5 seconds fl oor
traversal time. Series 1: Sequence 1: mean = 200.77 seconds, total = 6223.87. Series 2: Sequence 2:
mean = 95.53 seconds, total = 1083.85. Series 3: Sequence 3: mean = 295.97 seconds, total = 4735.48.
Series 4: Sequence 4: mean = 158.80 seconds, total = 2223.17. Series 5: required response time.

0.00

100.00

200.00

300.00

400.00

500.00

600.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

n

T
j
(s

ec
o

n
d

s)

Series 1

Series 2

Series 3

Series 4

Series 5

No sequence satisfies requirement

Figure 2.4 Elevator system: sequence j response time T j versus number of tests n for 1 second fl oor
traversal time. Series 1: Sequence 1: mean = 41.75 seconds, total = 129.37 seconds. Series 2: Sequence
2: mean = 21.31 seconds, total = 234.37 seconds. Series 3: Sequence 3: mean = 60.79 seconds,
total = 972.70 seconds. Series 4: Sequence 4: mean = 33.36 seconds, total = 467.03 seconds. Series 5:
required response time.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

n

T
j

Series 1

Series 2

Series 3

Series 4

Series 5

Only sequence 2 satisfies requirement

78 Computer, Network, Software, and Hardware Engineering with Applications

likely to be undesirable for some of the fl oor requests. However, this performance
may be acceptable because the majority of all sequence response times in Figure 2.4
satisfi es the requirement over all of the tests.

SEQUENCE FAILURE RATE

 In order to predict sequence reliability, it is necessary to estimate sequence j failure
rate λj , a parameter that is used in the prediction of sequence j reliability. This
parameter is estimated using the number of failures, n f , that is specifi ed to occur
during n tests of sequence j, and sequence j response time, T j . In addition, we pos-
tulate that the expected number of failures in sequence j is proportional to sequence
j fl oor traversal distance for test i, n i , with respect to total fl oor traversal distance
for sequence j, based on the premise that the larger the fl oor traversal distance, the
higher the probability of failure. Putting these factors together, we arrive at the
following:

 λ j f
i

i

i

n j

i=1

n

n
n

n

(T) .=

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⎛

⎝
⎜

⎞

⎠
⎟

=
∑

∑
1

/

 A key determinate of sequence failure rate is whether there are failures in delivering
information from source to destination [YOU09] , such as user fl oor request to sensor
control in Figure 2.2 . This factor is captured in the above failure rate prediction by
the specifi ed number of failures n f .

RELIABILITY

 In developing real - time reliability predictions, it is important that the predictions
refl ect operational reliability [SUN05] . That is, reliability must be cast in the context
of operational conditions, such as differences in fl oor traversal times in the elevator
system. Otherwise, the predictions will not represent user requirements. We adhere
to this principle by using sequence response time, which represents operational
conditions, in the formulation of reliability.

 The unreliability of sequence j, UR j , is predicted by using the probability of
sequence j, P j , sequence failure rate λj , and sequence j response time, T j , assuming
exponentially distributed response time. The distinction between normal and complex
operations is important in characterizing reliability [PET06] . This is why we assume
exponentially distributed response time, which is based on the premise that reli-
ability degrades fast with increasingly complex operations, as represented by increas-
ing fl oor traversal time and resultant increasing response time:

 UR ej jP .j jT= − −()()1 λ

Case Study in Computer Design 79

 Then, sequence j reliability R j can be predicted as follows:

 R ej j1 P jTj= − − −
(()()).1

λ

 Because numerous predictions of reliability are made due to the fact that sequences
are simulated n times during tests, it is appropriate to predict the mean value, as
follows:

MR

R

n
.j

j

j

n

= =
∑

1

 Figures 2.5 and 2.6 address the reliability issue, predicting sequence j reliability as
a function of a number of tests. Figure 2.5 shows that for a number of specifi ed
failures = 1 and fl oor traversal time = 5 seconds, all sequences satisfy the reliability
requirement. In addition, Figure 2.6 indicates that for a number of specifi ed fail-
ures = 5 and fl oor traversal time = 1 second, all of the sequences satisfy the reli-
ability requirement. Although the reliability requirement is satisfi ed in both Figures
 2.5 and 2.6 , if a high reliability system is desired, operating in a dense failure envi-
ronment, signifi cant testing would be required to bring the system into conformance
with the reliability requirement.

Figure 2.5 Elevator system: reliability of sequence j R j versus number of tests n for sequence j
number of failures = 1 and fl oor travel time = 5 seconds. Series 1: Sequence 1, mean = 0.9993. Series
3: Sequence 2, mean = 0.9984. Series 5: Sequence 3, mean = 0.9986. Series 7: Sequence 4,
mean = 0.9981. Series 9: required reliability.

0.9880

0.9900

0.9920

0.9940

0.9960

0.9980

1.0000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

n

R
j

Series 1

Series 3

Series 5

Series 7

Series 9

All sequences satisfy requirement

Figure 2.6 Elevator system: reliability of sequence j R j versus number of tests n for sequence j
number of failures = 5 and fl oor traversal time = 1 second. Series 1: Sequence 1, mean = 0.9964.
Series 2: Sequence 2, mean = 0.9921. Series 3: Sequence 3, mean = 0.9933. Series 4: Sequence 4,
mean = 0.9908. Series 5: required reliability.

0.9880

0.9900

0.9920

0.9940

0.9960

0.9980

1.0000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

n

R
j

Series 1

Series 2

Series 3

Series 4

Series 5

All of the sequences satisfy the requirement

Figure 2.7 Elevator comparator circuit. N i , request fl oor location; N d , destination fl oor location; i,
fl oor counter; N t , top fl oor; d(i), user - entered destination fl oor.

N
i
vs. i

comparator

N
d
vs. i

comparator

N
i0

–N
i6

i
0
–i

6

7-bit floor locations for 100 floors

N
d0

–N
d6

i
0
–i

6

N
0
N

1
N

2
N

3
N

4
N

5
N

6
 = i

0
i
1
i
2
i
3
i
4
i
5
i
6

Open door,
passenger(s)

enter,
close door

N
di
 = d(i)

N
0
N

1
N

2
N

3
N

45
N

6
 > i

0
i
1
i
2
i
3
i
4
i
5
i
6

N
0
N

1
N

2
N

3
N

45
N

6
 < i

0
i
1
i
2
i
3
i
4
i
5
i
6

N
d0

N
d1

N
d2

N
d3

N
d4

N
d5

N
d6

 = i
0
i
1
i
2
i
3
i
4
i
5
i
6

Open door,

passenger(s)
exit,

close doorN
d0

N
d1

N
d2

N
d3

N
d4

N
d5

N
d6

 < i
0
i
1
i
2
i
3
i
4
i
5
i
6

N
d0

N
d1

N
d2

N
d3

N
d4

N
d5

N
d6

 > i
0
i
1
i
2
i
3
i
4
i
5
i
6

N
t
 vs. i

comparator

i
0
–i

6

N
t0

–N
t6

N
t0

N
t1

N
t2

N
t3

N
t4

N
t5

N
t6

 = i
0
i
1
i
2
i
3
i
4
i
5
i
6

i = N
t Go down

one floor
i = N

t
–1

i vs. 1

comparator

i
0
–i

6

1

 i
0
i
1
i
2
i
3
i
4
i
5
i
6 = 1

Go up

one floor
i = i + 1

> 1 i
0
i
1
i
2
i
3
i
4
i
5
i
6

1

1

N
t0

N
t1

N
t2

N
t3

N
t4

N
t5

N
t6

 > i
0
i
1
i
2
i
3
i
4
i
5
i
6

Case Study in Computer Design 81

DETAILED DESIGN

 Next, the detailed design process is illustrated by implementing the logic processes
from Figure 2.2 , as shown in Figure 2.7 , where the detailed logic steps relate the
fl oor request variable N i and the fl oor counter parameter i. This is accomplished by
using shift register logic on these two quantities, as shown in Figure 2.8 , in order to
store and align all 7 bits of the quantities so that they can be compared for equality
and inequality, as governed by the relationships in Figure 2.2 .

SUMMARY

 A road map has been presented for guiding the engineer in making correct analyses and deci-
sions in developing computer - based systems. An elevator system was used to illustrate the
myriad of factors that must be considered in bringing a concept of a system to fruition as an
integrated hardware – software system.

Figure 2.8 Elevator detailed logic diagram. i, fl oor counter; N i , request fl oor bit number; D,
fl ip - fl op input; Q, fl ip - fl op output; CLK, clock input.

Left Shift

D
1

D
0D

2
D

3
D

4D
5

Q
0
 = N

i0

N
i

Q
1
 = N

i1
Q

2
 = N

i2
Q

3
 = N

i3
Q

4
 = N

i4

D
6

Q
5
 = N

i5

Q
6
 = N

i6

Shift Register for Floor Request Ni

CLK

Left Shift
i

Shift Register for Floor Counter i

Q
6
 = i

6

Q
0
 = i

0
Q

1
 = i

1
Q

2
 = i

2
Q

3
= i

3
Q

4
= i

4
Q

5
 = i

5

CLK

Operand Register

D
0

D
1

D
2D

3
D

4
D

5

D6

Operand Register

82 Computer, Network, Software, and Hardware Engineering with Applications

REFERENCES

 [GAN08] J. Ganssle (ed.), Embedded Systems: World Class Designs . New York : Elsevier , 2008 .
 [HAR07] D. M. Harris and S. L. Harris , Digital Design and Computer Architecture . New York :

 Elsevier , 2007 .
 [PET06] N. Russ , G. Peter , R. Berlin , and B. Ulmer , “ Lessons learned: on - board software test auto-

mation using IBM rational test realtime ,” Second IEEE International Conference on Space Mission
Challenges for Information Technology , 2006 , p. 305 .

 [SIG90] C. D. Sigwart , G. L. Van Meer , and J. C. Hansen , Software Engineering: A Project - Oriented
Approach . Irvine, CA : Franklin, Beedle, & Associates, Inc. , 1990 .

 [SUN05] Y. Sun , L. Cheng , H. Liu , and S. He , “ Power system operational reliability evaluation based
on real - time operating state , ” The 7th International Power Engineering Conference , Volume 2, Novem-
ber 29, 2005 – December 2, 2005 , pp. 722 – 727 .

 [YOU09] K. Mizanian , H. Yousefi , and A. H. Jahangir , “ Modeling and evaluating reliable real - time
degree in multi - hop wireless sensor networks . ” IEEE Sarnoff Symposium , March 30 – April 1, 2009 ,
pp. 1 – 6 .

Chapter 3

Analog and Digital Computer
Interactions

W hile digital computers dominate today ’ s computer marketplace, digital computers have
important interactions with analog devices; for example, a smart meter installed in a smart
electric grid requires interactions between an analog voltage sensor, an analog - to - digital
converter, a digital - to - analog converter, and a digital computer for computing power usage.
A communication system is also required for distributing power usage data to the customer ’ s
premises and to the electric utility offi ce. This chapter will provide the reader with the back-
ground in interfacing analog devices with digital computers that is necessary for designing
and evaluating such systems.

INTRODUCTION

Analog Computer Background

 An analog computer is a form of computer that uses the continuously changeable
aspects of physical phenomena such as electrical, mechanical, or hydraulic quantities
to model the problem being solved. In contrast, digital computers represent varying
quantities incrementally as their numerical values change. Mechanical analog com-
puters were very important in gunfi re control in World War II and the Korean War;
they were made in signifi cant numbers. In particular, development of transistors
made electronic analog computers practical, and before digital computers had devel-
oped suffi ciently, they were commonly used in science and industry. In particular,
perhaps the best known example of an analog computer is the slide rule.

 The similarity between linear mechanical components, such as springs and
dashpots (viscous fl uid dampers), and electrical components, such as capacitors,
inductors, and resistors, is striking in terms of mathematics. They can be modeled
using equations that are of essentially the same form. However, the difference

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F.
Schneidewind.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley &
Sons, Inc.

83

84 Computer, Network, Software, and Hardware Engineering with Applications

between these systems is what makes analog computing useful. If one considers a
simple mass – spring system, constructing the physical system would require making
or modifying the springs and masses. This would be followed by attaching them to
each other and to an appropriate anchor, collecting test equipment with the appropri-
ate input range, and fi nally, taking measurements. In more complicated cases, such
as suspensions for racing cars, experimental construction, modifi cation, and testing
is not so simple or inexpensive.

 The electrical equivalent of a physical system can be constructed with a few
operational amplifi ers and some components, such as resistors and capacitors;
all electrical measurements can be made with an oscilloscope. In the circuit, the
simulated stiffness of the spring, for example, can be changed by adjusting a poten-
tiometer. The electrical system is an analogy to the physical system, hence the name,
but it is less expensive to construct, generally safer, and typically much easier to
modify.

 An electric circuit can typically operate at higher frequencies than the physical
system being simulated. This allows the simulation to run faster than real time
(which could, in some instances, be hours, weeks, or longer). These electric circuits
can perform a wide variety of simulations. For example, voltage can simulate water
pressure and electric current can simulate rate of fl ow. Analog computers are espe-
cially well suited to representing situations described by differential equations.

Analog-to-Digital and Digital -to-Analog Components

Sensor

 A voltage sensor reads voltage at the input of an analog - to - digital (A/D) converter
circuit, as shown in Figure 3.1 , and the output of a digital - to - analog (D/A) converter
in Figure 3.6 . Note that Figures 3.1 and 3.6 depict a smart electric meter system
with the sensor reading the input voltage or output voltage, respectively; other
signals, such as current, could be sensed in other applications.

Operational Amplifi er

 An operational amplifi er produces an output voltage that is larger than its input. For
example, in Figures 3.1 and 3.6 , the voltage sensor does not have the capability to
read a full - scale voltage signal; its range is only 10 V. Therefore, an operational
amplifi er is used to boost the signal to the required level for conversion. Operational
amplifi ers are important building blocks for a wide range of electronic circuits.

Low-Pass Filter

 A low - pass fi lter is needed to reduce high frequency signal noise by only passing
signals to the multiplexer in Figure 3.1 and to the customer premise and public
electric utility in Figure 3.6 that have had the high frequency noise components
eliminated [GAN08] .

Analog and Digital Computer Interactions 85

Multiplexer

 Because both A/D converters and D/A converters are expensive, a multiplexer is
used in Figure 3.1 to allow several analog signals to be processed for conversion by
a single A/D converter, and a multiplexer is used in Figure 3.6 to provide several
channels to be fed to the D/A converter [GAN08] . In the Figure 3.1 example, the
several analog inputs could be voltage signals from several customers in the neigh-
borhood. In the Figure 3.6 example, the several digital outputs from the microcom-
puter could be destined for conversion to analog voltages for a voltage regulation
application in the customer premise and public electric utility.

Sample-and-Hold Circuit

 A sample - and - hold circuit is used to avoid having the input change while A/D con-
version is taking place in Figure 3.1 and having the digital output change while D/A
conversion is taking place in Figure 3.6 [GAN08] .

A/D Converter

 The details of the A/D converter and the conversion process are shown in Figure
 3.2 .The capacitor C in Figure 3.2 assists in the conversion of analog input to digital

Figure 3.1 A/D conversion system.

Multiplexer

Low-pass
Filter

Analog
Digital

Converter

Smart Meter
Microcomputer

Operational
Amplifier

Input
Voltage

Voltage Amplified

0 –110 V

Reduce high
frequency noise

Allows several
channels to be

fed to A/D Converter
Sample-and
-Hold Circuit

sample-and-hold
until conversion

complete

Digital signalVoltage
Sensor

Customer Premise

Public Electric Utility

1101110

1101100

1101101

110109108

Input Voltage

Output Binary
Code

Quantizing Analog Signal

(partial input)

107501 601

1101011

1101010

1101001

Left Shift Register

Vin

V

fi = 60 cycles per second

≥ 120 cycles per second

Vout

= 0 – 10 V

Voa =

= 0.1– 9.9 V

Vlp

Nlp

fsh Need

86 Computer, Network, Software, and Hardware Engineering with Applications

output by the duration of its charge. This is accomplished by measuring the time it
takes to charge and discharge the capacitor into the resistor R. The larger the value
of C, for a given value of R, the longer it takes to charge and discharge the capacitor,
and, hence, the slower the rise and fall in voltage, respectively. Conversely, the
smaller the value of C, the less time it takes to charge and discharge the capacitor,
and, hence, the faster the rise and fall in voltage, respectively. The converter inte-
grates the varying analog input signal voltage V in in Figure 3.2 during the time period
t1 , t 2 . At the end of this process, C has been charged by V in to generate the voltage
V across the resistance – capacitance (RC) circuit, given by:

 V
CR

V dt.in
t

t

= ∫1

1

2

 Finally, the voltage V is converted to the digital output.
 Figure 3.1 shows an example of the results of the conversion process called

“ quantizing analog signal ”— a process that converts an analog signal to a digital
binary code. For example, 110 V is transformed into 1101110. This process is not
perfect. There are errors that result because it is impossible for a conversion system
to perfectly represent the input. These errors are called “ quantizing errors, ” which
will be addressed in a later section.

Smart Meter Microcomputer

 This computer contains a left shift register that formats the bit - by - bit A/D conversion
so that the complete digital signal (e.g., 1101110 = 110 V) is ready for distribution
to customer premise and public electric utility in Figure 3.1 . In Figure 3.2 , the
microcomputer is assigned to provide its stored digital signal to the input of the D/A
converter.

Figure 3.2 A/D converter.

Sample-and-
Hold Circuit

R

C
Integrator

Binary counter

Analog-to-digital converter

2n = 27 = 128 counts for 110 V

n = 7-bit binary output

Clock

n = 7-bit binary output count

Digital output

V
in

V = in

2

1

t

t

1
V dt

CR ∫

t1 t
2

Database

Store digital data for future use

Analog and Digital Computer Interactions 87

Analog Computer Limitations

 Analog computers have limitations. An analog signal is comprised of three characte-
ristics: alternating current (AC) voltage and current magnitudes, frequency, and phase.
The range limitations of these characteristics limit analog computers. These limits
include operational amplifi er amplifi cation capability, gain, frequency response,
noise, and nonlinearities in A/D conversions.

Analog–Digital Computer Contrast

 The drawback of analog computers in imitating physical systems is that analog
electronics are limited by the range over which the variables may vary. This is called
dynamic range . They are also limited by noise levels. In contrast, digital computer
fl oating - point calculations have a comparatively huge dynamic range (good modern
handheld scientifi c/engineering calculators have exponents of 500).

 An electronic digital system uses two voltage levels to represent binary numbers.
In many cases, the binary numbers are simply codes that correspond, for instance,
to brightness of primary colors, or letters of the alphabet. In contrast, the electronic
analog computer manipulates electrical voltages that are proportional to the magni-
tudes of quantities in the problem being solved.

 The accuracy of an analog computer is limited by its computing elements as
well as quality of the internal power and electrical interconnections. The precision
of the analog computer display readout is limited chiefl y by the precision of the
readout equipment, generally three or four signifi cant fi gures. The precision of a
digital computer is limited by its word size and degree of precision arithmetic. While
the process is relatively slow, any practical degree of precision can be provided that
might be needed.

Quantizing Step Size and Error

 The quantizing step size for A/D conversion is defi ned by Q:

 Q R 2n= / ,

 where R is the range (110 V in Figure 3.1) and n is the number of bits used to code
the digital output [GAN08] . Thus, for the smart meter example in Figure 3.1 , where
n = 7 bits,

 Q V per bit= =110 128 0 8594/ . .

 Since Q is the smallest value recognizable by the A/D converter, it represents the
error of conversion. In order to evaluate the rate of error occurrence with respect to
the number of encoding bits n, the following derivative is produced:

d Q

d n

R n

2

R n R n Rn

n

n

n n n

()

() () ()()

() ()

= − ∗ ∗ = − ∗ ∗ = − ∗
∗

= − ∗− −2 2

2 2 2 2

1

2

1 nn
n2 1()

.+

88 Computer, Network, Software, and Hardware Engineering with Applications

Figure 3.3 Quantizing error Q versus number of digital code bits n.

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

7 8 9 10 11 12 13 14 15 16

n

Q
 (

v
o

lt
s
 p

e
r

b
it

)

Maximum error, minimum number of bits n = 7

Reasonable trade-off: accuracy versus cost, n = 12 bits

Figure 3.4 Rate of change of A/D conversion error, d(Q)/d(n) versus number of digital code bits n.

–3.5000

–3.0000

–2.5000

–2.0000

–1.5000

–1.0000

–0.5000

0.0000

7 8 9 10 11 12 13 14 15 16

n

d
(Q

)/
d

(n
)

(v
o

lt
s
/b

it
)

Minimum required value of n = 7 to encode 110 V

Start of diminishing returns on error prevention
(n = 12 bits)

 Figures 3.3 and 3.4 show that to encode 110 V in the smart meter application, 7 bits
are required. However, by using more than the minimum, say 12 bits, the quantizing
error can be signifi cantly reduced, but more than 12 bits would not be cost - effective
because at this point diminishing returns sets in.

Analog and Digital Computer Interactions 89

Microcomputer Input/Output (I/O) Applications

 An A/D converter is very useful for demonstrating the various methods that an I/O
device (e.g., A/D converter) can use to communicate with a microcomputer [RAF05] .
For example, Figure 3.5 shows the interaction between an A/D converter and micro-
computer, using interrupt processing. This method of I/O communication is very
effi cient because the microcomputer only has to be diverted from its main processing
task when there are data from an I/O device to be processed. In Figure 3.5 , this is
accomplished by the interchange of commands between the converter and the micro-
computer: the microcomputer commands the converter to start converting, the
microcomputer signals to the converter that transfer of digital data from converter
has been enabled, and the converter signals the microcomputer, via an interrupt, that
digital data are ready for transmission on the data lines.

D/A CONVERSION

 In addition to A/D conversion, it is important to understand how the reverse process
works— D/A conversion. For example, you have seen that A/D conversion is an
important component of smart meters in smart electric grid systems. But this is not
the end of the story because D/A conversion is needed in these systems to take the
digital voltage data as input to the D/A converter and use the resultant analog voltage
output to act as a voltage regulator of the electric distribution system in Figure 3.6 .
This function is required because power disruptions could cause the voltage deliv-
ered to customer premises to be of the wrong magnitude. D/A conversion will not

Figure 3.5 Interrupt processing with A/D converter. Start, microcomputer commands converted to
start A/D conversion; output enable, enables digital output from converter to microcomputer; interrupt,
converter signals microcomputer that it has digital data to transmit.

Microcomputer

data 6
data 5
data 4
data 3
data 2
data 1
data 0

Start

Output enable
Interrupt

Analog
digital

converter

data 6
data 5
data 4
data 3
data 2
data 1
data 0

110 V maximum

90 Computer, Network, Software, and Hardware Engineering with Applications

be addressed as an isolated subject. Rather, it will be treated as part of a unifi ed
system that includes A/D conversion.

D/A Description

 A D/A converter is a device for converting information that is in the form of a digital
signal comprised of discrete binary bits (e.g., binary coded voltage) to a continuously
varying analog signal (e.g., voltage sine wave) in Figure 3.6 . D/A converters are
used to present the results of digital computation (A/D voltage conversion in Figure
 3.1) and storage (digital data stored in database in Figure 3.2) as input to the D/A
converter in Figure 3.6 for eventual application in voltage regulation.

D/A Performance

Resolution

 This is the number of possible output levels the D/A is designed to reproduce. This
is stated as the number of bits it uses. For example, a 1 - bit D/A is designed to
reproduce two voltage levels while an 8 - bit D/A is designed to reproduce 256 voltage
levels. Thus the quantizing error Q is given by the following:

Figure 3.6 D/A conversion system.

Smart Meter
Microcomputer

Multiplexer

Allows several
channels o be

fed to D/A converter

Digital to
analog converter

Digital signal

Operational
amplifier

Low-Pass
FilterVoltage

sensor

Voltage amplified Reduce high
frequency noise

Output
voltage

Public electric utility
Customer premise

Regulated
voltage

Output
voltage

110

11
01

11
0

11
01

00
1

109

108

107

106

105

11
01

10
1

11
01

10
0

11
01

01
1

11
01

01
0

Converting Binary Input To

Analog Voltage

Input binary code

(partial output)

Vin

0.1–9.9 VVout =

= 0–10 V

0–110 VVoa =

Vlp Nlp

need fsh ≥ 120-cycles per second

Sample-and-hold input
until conversion

complete

60-cycle analog signal

Voltage
Regulation

Control: dynamic range
phase distortion

signal representation distortion

Analog voltage,
phase

Analog and Digital Computer Interactions 91

 Q 2 Rn= / ,

 where n is the number of binary bits produced by the digital signal in Figure 3.6
and R is the voltage range of the D/A output. Thus, the D/A quantizing error is the
inverse of the A/D quantizing error.

Maximum Sampling Frequency

 This is a measurement of the maximum speed at which the D/A (or A/D) circuitry
must operate to reproduce the correct output. As stated in the Nyquist – Shannon
sampling theorem, a signal must be sampled at least twice its frequency in order to
produce the desired output signal. The period is the duration of one cycle in a repeat-
ing event, so the period is the reciprocal of the frequency. For example, the 60 - cycle
input voltage in the A/D converter of Figure 3.1 must be sampled at least 120 cycles
per second. Correspondingly, in the D/A converter of Figure 3.6 , the digital repre-
sentation of the original 60 - cycle voltage from A/D conversion must be sampled at
least 120 cycles per second to reproduce a 60 - cycle signal at the output of the D/A
converter.

Monotonicity

 This refers to the ability of a D/A converter ’ s analog output to move only in the
direction that the digital input moves (i.e., if the input increases, the output increases)
This characteristic is very important when a D/A converter is used for low frequency
signals, such as 60 - cycle voltage, as shown in Figure 3.6 .

Distortion

 Distortion is the alteration of the original shape of the analog signal, such as a voltage
signal. Distortion can be minimized by using an adequate number of bits in the
digital representation of the analog signal, such as 7 bits, and a sampling rate of the
digital signal for D/A conversion of at least twice its original frequency (at least 120
cycles per second) in Figure 3.6 .

Dynamic Range

 This is the absolute ratio between the smallest and largest possible values of a signal -
 changeable quantity, such as between the smallest and largest values of an analog
voltage sine wave. In this example, if there is a perfect dynamic range, the
ratio = | + 110 V/ − 110 V| = 1. Deviations from the perfect ratio, either greater or
smaller, are indicative of signal distortion.

Phase Distortion

 This problem occurs when the original phase of a signal in the input of the A/D
converter is not faithfully reproduced in the output of the D/A converter. For example,

92 Computer, Network, Software, and Hardware Engineering with Applications

the phase of the voltage sine wave sensed in the A/D converter of Figure 3.1 may
not be faithfully reproduced at the output of the D/A converter in Figure 3.6 . Phase
distortion is measured by the difference between the correct phase and the phase
that is reproduced at the output of the D/A converter.

Signal Representation Distortion

 This problem occurs when, for example, a 1 - V difference in the A/D converter in
Figure 3.1 does not result in a 1 - bit difference in the digital encoding. The problem
would also occur when a 1 - bit difference in the input of the D/A converter in Figure
 3.6 does not result in a 1 - V change in the output in Figure 3.6 . Thus, this distortion
is measured by the difference between the correct signal change in adjacent values
and the actual change in adjacent values.

 Dynamic range, phase distortion, and signal representation distortion are con-
trolled by the voltage regulation function shown in Figure 3.6 .

Nonlinearity Distortion

 This occurs when the plot of the output signal versus the input signal is not a straight
line, which is measured by the difference between the correct value and the value
realized by D/A conversion [GAN08] . For example, in Figure 3.7 , using assumed
error values, the difference between actual and realized voltages values is plotted.
This type of plot is extremely useful because it indicates the range where the con-
verted voltage is either too high or too low. After these initial measurements
have been made, the gain of the microcomputer - controlled operational amplifi er in

Figure 3.7 Difference between correct voltage and actual voltage, Δ V, versus correct voltage V.

–8.00

–6.00

–4.00

–2.00

0.00

2.00

4.00

6.00

101 102 103 104 105 106 107 108 109 110

DV
 (

v
o

lt
s
)

V (volts)

Converted voltage too high

Converted voltage too low

Analog and Digital Computer Interactions 93

Figure 3.6 would be adjusted to bring the converted voltage in line with the desired
values.

CONVERSION SYSTEM ERRORS

 At this point in the development of A/D and D/A conversion, it is time to focus
on the errors that could arise in each component, whether A/D or D/A, and aggregate
the component errors to produce an overall system error that can be used to judge
the accuracy of conversion from analog input in the A/D converter in Figure 3.1 to
D/A analog output in Figure 3.6 .

A/D and D/A Converter

 The error attributed to this device was previously described as a “ quantizing error ”
in an earlier section and portrayed in Figures 3.3 and 3.4 .

Voltage Sensor

 A sensor is a device that receives and responds to a signal. A sensor ’ s sensitivity
indicates how much the sensor ’ s output changes when the measured quantity
changes. This sensitivity can be interpreted as sensor error. The sensor error, E s , is
computed by the following ratio:

 E
V

V
s

out

in

= Δ
Δ

,

 where Δ V out is the change in sensor output voltage in Figures 3.1 and 3.6 and Δ V in
is the change in sensor input voltage in Figures 3.1 and 3.6 . Ideally, this ratio should
equal one. Deviations from the ideal measure indicate sensor error. Additionally, the
resolution error is determined by the smallest change in Δ V in that can be detected at
the sensor output. For example, in Figures 3.1 and 3.6 , if the smallest change in
Vin = 0.1 V, can this change be detected in V out ?

 Another type of sensor error occurs when the input range exceeds the output
range. For example, in Figures 3.1 and 3.6 , while the input range of V in is 0 – 10 V,
the output range of V out is 0.1 – 9.9 V. Thus, V in = 0 and 10 V cannot be represented
by V out .

 Since the changes in sensor input and output voltages could be any values,
simulation can be used to generate random changes in voltage, say 100 times, and
compute the resultant values of E s . One example is shown in Figure 3.8 , where the
Excel random number generator RAND was used to generate random changes in
Vin and V out , and then E s was computed and plotted against the correct A/D voltage.
Because RAND generates uniformly distributed numbers between 0 and 1, these
numbers were multiplied by 10 — the maximum V in voltage — in order to compute
values of Δ V in and Δ V out .

94 Computer, Network, Software, and Hardware Engineering with Applications

Operational Amplifi er

 The operational amplifi er in Figures 3.1 and 3.6 may fail to produce a correct ampli-
fi cation of the signal produced by the sensor output, V out . This error is computed by
the expression E oa . A similar simulation error analysis can be performed to analyze
the operational amplifi er, as was the case for the voltage sensor:

 E A
V

V
oa

oa

out

= − Δ
Δ

,

 where A is the required amplifi cation factor, Δ V oa is the actual change in operational
amplifi er voltage, and Δ V out is the actual change in voltage sensor output voltage
that is delivered to the input of the operational amplifi er. Given the voltage sensor
output range and operational amplifi er output range in Figures 3.1 and 3.6 ,
A = (110 − 0)/(9.9 − 0.1) = 11.22.

Low-Pass Filter

 The low - pass fi lter in Figures 3.1 and 3.2 is also subject to error because it may not
faithfully eliminate high frequency noise generated by the operational amplifi er in
Figure 3.1 . The ability of the fi lter to eliminate this noise is measured by the signal -
 to - noise ratio, S/N. For the low - pass fi lter, S/N is computed by the following:

Figure 3.8 Sensor output voltage change/sensor input voltage change, E s , versus correct A/D input
voltage, V. Series 1: Actual E s . Series 2: Required E s .

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00

16.00

17.00

18.00

101 102 103 104 105 106 107 108 109 110

V (volts)

E
s

Series 1

Series 2

Sensor error when Es not equal 1

Analog and Digital Computer Interactions 95

 S N V Nip lp/ / ,=

 where V ip is the voltage signal and N lp is the high frequency noise signal produced
by the low - pass fi lter in Figures 3.1 and 3.6 . Thus, if V ip = 100 V and N lp = 0.1 V,
S/N = 1000.

Sample-and-Hold Circuit

 Since it was stated previously that the sample - and - hold circuit must sample input at
a rate at least twice the frequency of the input in order to produce the desired output,
the error, E sh , in the sample - and - hold circuit of Figures 3.1 and 3.6 can be formulated
as follows:

 E f fsh sh i= / ,2

 where f sh is the required sampling frequency and f i is the desired signal frequency
emanating from the input analog voltage in Figure 3.1 . An error arises if E sh < 0.5
(i.e., f sh < f i).

Summary of Conversion Errors

 Since there are a variety of errors associated with A/D and D/A conversions, these
errors are summarized in Table 3.1 in order to identify the key relationships that lead
to error occurrence. Now, examining Table 3.1 , the key fi ndings concerning error
analysis are the following:

 To achieve an optimal trade - off between quantizing error and cost, use 12 binary
encoding bits even though only 7 bits are required.

 To minimize voltage sensor error, the sensor should produce an output change -
 to - input change ratio = 1.

 To minimize operational amplifi er error, ensure that the output - to - input ratio,
Δ V oa / Δ V out , is equal to the amplifi cation factor A.

 To minimize low - pass fi lter error, maximize the S/N for given values of analog
signal voltage (i.e., minimize noise signal).

 To prevent sample - and - hold circuit error, ensure that the circuit can sample at
a frequency f sh > desired frequency f i .

CHAPTER SUMMARY

 The reader has been introduced to important concepts about devices that interconnect with
digital computers — the A/D converter and the D/A converter. This objective has been achieved
by considering these signal conversion circuits as a single integrated system, using a smart
electric meter system as an example. Circuit diagrams were developed illustrating various
facets of conversion logic. Extensive error analysis was performed on all converter circuit

96 Computer, Network, Software, and Hardware Engineering with Applications

components in order to identify the best circuit performance values consistent with achieving
cost - effective systems.

Reader Problem: You have learned that the number of bits n required to digitally encode
an analog signal with a range R is related by the equation R = 2 n . Suppose the range
is to be R = 120 V, what is the minimum number of bits required to encode this
signal?

Solution: log 10 R = nlog 10 2, n = log 10 R/log 10 2 = log 10 120/log 10 2 = 2.079/0.301 = 6.91 (7 bits
rounded up).

REFERENCES

 [GAN08] J. Ganssle (ed.), Embedded Systems: World Class Designs . Amsterdam : Elsevier , 2008 .
 [RAF05] M. Rafiquzzaman , Fundamentals of Digital Logic and Microcomputer Design . New York :

 Wiley - Interscience , 2005 .

Table 3.1 Summary of Conversion Errors

 A/D conversion
 D/A

conversion Figure(s)

 Optimal number
of binary

encoding bits
 Key

relationship

 Quantizing
error R/2 n

 Figure 3.3 12 Accuracy
cost– benefi t
trade - off

 2 n /R Quantizing
error

 12 Accuracy
cost– benefi t
trade - off

 Rate of change
of conversion
error

 Figure 3.4 12 Accuracy
cost– benefi t
trade - off

 Voltage sensor
error

 Voltage
sensor error

 Figures 3.1 ,
 3.6 , and 3.7

E
V

V
s

out

in

= =Δ
Δ

1

 Operational
amplifi er
error

 Operational
amplifi er
error

 Figures 3.1
and 3.6

E A
V

V
oa

oa

out

= − Δ
Δ

 A = 11.22

 Low - pass fi lter Low - pass
fi lter

 Figures 3.1
and 3.6

 S/N = V ip /N lp

 Sample - and -
 hold circuit

 Sample - and -
 hold circuit

 Figures 3.1
and 3.6

 E sh = f sh /2 f i
 Error if f sh < f i

 Part Two

Network Engineering

Chapter 4

Integrated Software and
Real - Time System Design
with Applications

A pproaches for designing real - time software and hardware on an integrated basis are pre-
sented. By “ integrated ” it is meant that the interaction of software and hardware during
program execution is addressed in the system design. For example, software outputs of the
executable system that are fed to the hardware subsystem are represented in the software and
hardware designs. Another aspect of this design approach is, fi rst, to develop the real - time
system generic design of a particular artifact, such as a state diagram, and then to use the
generic design to guide the development of the application - specifi c design. An elevator system
is used as the design example because it has interesting properties such as interruptible fl oor
traversal sequences. The series of design representations starts with generic and application -
 specifi c system - level functions and ends with integrated testing and performance evaluations.
An important aspect of the integrated design approach is that exclusive use of abstract rep-
resentations is unwise because it is important to consider the physical properties of the real -
 world system, such as elevator fl oor travel sequences. Without this perspective, critical aspects
of real - time system operations such as elevator direction of travel may be overlooked. Several
metrics of real - time system performance are modeled and evaluated.

INTRODUCTION

 Having learned the fundamentals of computer design, both digital and analog, in
previous chapters, you are prepared to learn a very important application area: real -
 time systems. Real - time control hardware and software has been applied to a wide
variety of real - world systems for diverse military, aerospace, industrial, medical,

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F.
Schneidewind.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley &
Sons, Inc.

99

100 Computer, Network, Software, and Hardware Engineering with Applications

and civil applications. Most real - time systems are comprised of heterogeneous com-
ponents including sensors, microprocessors, and actuators. These components inten-
sively interact with each other and with their environments. Thus, there are many
dynamic and uncertain factors in these systems. Such a system needs to satisfy all
the functional requirements and timeliness demands. In real - time systems, system
resources such as microprocessor cycles, communication bandwidth, and storage
memory are restricted, and thus effi cient resource allocation in different operational
scenarios is required. As a result, the design of complex real - time systems is quite
challenging and is distinct from the conventional non - real - time design [WAN08] .
As real - time computer systems become larger and more complex, so their analysis
becomes increasingly diffi cult. Much of the skill in developing these systems lies
in choosing the most appropriate theories and tools for different stages of develop-
ment and different aspects of the system [CAD98] . The approach in this chapter
is to use models, such as state diagrams, simulated testing, and event sequencing
(e.g., elevator fl oor traversal sequences) that are appropriate for real - time system
analysis.

Objectives

 While there are many worthy papers addressed to single aspects of real - time design,
such as scheduling [GUP10] , there is an absence of an integrated approach. Thus,
the aim of this chapter is to develop an integrated and comprehensive design
approach with the objective of providing engineers with a road map for improving
real - time system design. According to Wang et al. [WAN04] , model - based software
development has been shown to be a promising approach to real - time design prob-
lems. In this approach, the software is fi rst modeled abstractly without considering
its execution platform, and then transformed to a software design model on the target
platform. However, as mentioned in the abstract, this approach should not be carried
too far because if the abstract model is divorced from reality, it will do a poor job
of representing the real - world system.

Design Challenges

 Today, many computer systems are being used to measure and control real - world
processes. The execution of these systems and their control programs is therefore
bound to timing constraints imposed by the real - world process [PLA84 ; SID06].
Thus, timing constraints are addressed in analyzing real - time system performance.

 Unfortunately, real - time software is particularly diffi cult to design. In addition
to ever more complex functional requirements, real - time software has to satisfy a
set of stringent nonfunctional requirements, such as maximum permissible response
time (e.g., maximum elevator system response time) and throughput (e.g., elevator
system passenger throughput). Often, the inability of real - time software to meet its
primary nonfunctional requirements becomes apparent only in the later stages of

Integrated Software and Real-Time System Design with Applications 101

development. When this happens, the design may have to be heavily and hurriedly
modifi ed, even if all the functional requirements are satisfi ed, resulting in cost and
schedule overruns as well as unreliable and unmaintainable code. This unhappy situ-
ation is primarily due to the common practice of postponing all consideration of
so - called platform issues until the application logic of the software has been satis-
factorily designed. Although “ platform - independent design ” is a good idea in prin-
ciple, because it allows separation of application concerns and implementation, it is
often carried to extremes. In particular, it is dangerous in situations where the physi-
cal characteristics of the platform (e.g., elevator system fl oor traversal control) can
have a fundamental impact on the application logic (e.g., elevator system fl oor tra-
versal control software design) [SEL03] .Therefore, because an abstract representa-
tion of our design would be of limited value, the abstract analysis is illustrated with
an elevator system. I chose the elevator example because it presents many design
challenges and everyone can relate to this system. Recognize that an abstract
approach can only be applied for marrying software and hardware design. When
testing and performance evaluation are performed, the particular characteristics of
the application must be considered. For example, the response time to elevator fl oor
requests must be evaluated through simulated performance testing.

Steps in Real -Time System Design

 Real - time system design can be accomplished by the following steps [KOY90 ;
 OST98]:

 Elicit and document the service requirements in terms of the environment (e.g.,
elevator response time requirement geared to the number of user fl oor
requests during a specifi ed time).

 Using the environment - based service requirements, specify the system control-
ler characteristics (e.g., specify elevator controller properties for managing
effi cient fl oor traversal scenarios).

 Based on the controller specifi cations, develop software and hardware designs
that achieve system requirements and correct interaction among system com-
ponents (e.g., develop elevator system integrated software and hardware
designs that achieve response time requirements and correct interplay
between elevator system fl oor request control and motion control).

 Apply the rule of considering real - world operational details during abstract
design by using a mix of abstraction and operational detail views. For
example, observing how an elevator operates (e.g., processing service
requests) provides insight into how real - time systems must function in
general. That is, if you observe how an elevator control organizes operations
in order to service as many fl oors as possible in minimum time, in a given
traversal (i.e., using interrupts to develop an optimal schedule), you can apply
this observation to designing schedules for real - time systems.

102 Computer, Network, Software, and Hardware Engineering with Applications

REAL-TIME SYSTEM PROPERTIES

Execution Time

 Some researchers consider periodic real - time independent tasks with known periods
and worst - case execution times in their design approach [GUP10] . This view is quite
restrictive because it would be unusual for a real - time system to have “ known
periods and worst - case execution times. ” The more representative situation is periods
of operation and execution times that are driven asynchronously by inputs that occur
at unpredictable times, and, hence, produce unknown execution times (e.g., elevator
system).

Implementation Elements

 The reduced instruction set computing (RISC) architecture requires several opera-
tions to execute a single instruction. However, this design provides high speed; for
example, it is well suited to real - time applications that must meet deadlines, but at
the expense of relatively complex programming.

Objects . The objects in the elevator system are user, system controller, system
storage, operations, and error control, as shown in Figure 4.1 .

Asynchronous Circuits . Due to the unpredictable nature of inputs and opera-
tions in real - time systems, hardware design is accomplished with asynchro-
nous circuits

Performance

 The response time is the difference in time between completion of request and
initiation of request (e.g., difference in time between elevator reaching des-
ignated fl oor and user pushing the Up or Down button).

 Operations that must meet deadlines (e.g., elevator travel satisfi es response time
requirement).

 Operations schedule (e.g., elevator schedule maximizes number of fl oors tra-
versed in traveling from current fl oor to most distant fl oor).

Control Functions

 The following control functions are shown in Figure 4.1 :

 Interruptible sequence of operations causing interrupts to be processed out of
sequence (e.g., changing directions of elevator fl oor travel sequences).

 Multiple threads of control caused by concurrent inputs (e.g., multiple concur-
rent elevator fl oor requests) [MOO02] .

Integrated Software and Real-Time System Design with Applications 103

 Control commands are issued, for example, by System Controller to
Operations.

 Feedback control is the response time error is fed back from the Error Control
to Controller.

 System queues are used to store backlog of user requests (e.g., queues of eleva-
tor fl oor requests) [MOO02] .

Design Levels

 In Harris and Harris [HAR07] , advice is offered regarding using design levels to
accomplish system design as follows:

Hierarchy . Divide system into modules that are easer to understand than the
complete system.

Modularity . Produce modules that have well - defi ned functions and interfaces
that can easily interconnect.

Regularity . Find modules with common functions (i.e., interchangeable parts).

Figure 4.1 Generic real - time system design. TS i , time of service request i; RT, required response
time; TR i = TS i – TC i , response time of service request i; TC i , time of completion of service request i;
Pi , probability of completing service request i in required response time; n, number of services request
in operational time T; FC = TR i – RT, feedback correction; T, duration of service operations.

User System
System

Controller
Operations

TS
i

RT

TC
i

TR
i

Commands

Multiple Threads of Control

Pi

n

T

Elevator

in

Motion

User

Request

Present

State

Next

State

Arrive at

Destination

Floor
Next State

Interruptible Out-of-Sequence Event

System Storage

Event

Sequence

Objects

System Error if TRi > RT

Error

Control

FC =TR
i
 –RT

Schedule Operations

Service Request

Action i

T

Request Queue

Start

Up

Down

Open door

Close door

104 Computer, Network, Software, and Hardware Engineering with Applications

 This approach may be satisfactory for a general approach to design but does not
completely satisfy real - time requirements. Instead, it is suggested that real - time
system hierarchies are rare or nonexistent. Real - time module topology is essentially
fl at. For example, the user system and system controller in Figure 4.1 interact on
the same level. Real - time systems can have well - defi ned functions but interfaces
may not easily interconnect because inputs may arrive at unpredictable times, making
it diffi cult for the system controller to respond in a timely manner. For example, in
Figure 4.1 , user system requests must be queued because the system controller is
unable to respond to all requests immediately. Lastly, real - time systems are one - of -
 a - kind; they are not mass produced. Therefore, common functions with interchange-
able parts do not hold. These peculiarities of real - time systems will be recognized
when developing the design approach. The synopsis of requirements postulated at
three levels is listed below for both generic and application - specifi c cases.

Real-Time System Requirements

System Level

Generic

 Response time: variable response time, mean response time, maximum
response time, minimum response time, throughput

Application Specifi c

 Response time: time between elevator fl oor request and arrival at destina-
tion fl oor and mean value of these times

 Throughput: number of fl oor requests processed per elevator operational time

Software Level

Generic

 Map between system level requirements and software routines (see Fig. 4.8)

Application Specifi c

 For example, routines for optimally sequencing elevator fl oor requests.

Hardware Level

Generic

 Map between system - level requirements and hardware components and
between hardware components and software routines (see Fig. 4.4)

Application Specifi c

 For example, input/output (I/O) channels must have a suffi cient transfer
rate to satisfy elevator system response time requirements

Integrated Software and Real-Time System Design with Applications 105

DESIGN PROCESS ELEMENTS

 It is important to have a close relationship between the user system and the system
control functions [BOA77] , as demonstrated by the generic design process in Figure
 4.1 . To implement this approach, apply the following elements of the design process
that are listed below for both generic and application - specifi c (elevator) cases.

 Event sequence: series of state transitions

 Elevator responds to sequence of fl oor push - button events

 Interruptible event sequence causing state transition

 Sequence of elevator fl oor traversals is modifi ed to service as many requests
possible in a given fl oor traversal

 Time of service request

 Time when the following occur: user pushes Up button, user pushes Down
button

 States and state transitions

 User pushes Up fl oor button at request fl oor → elevator goes up or down
or is at request fl oor → door opens → door closes → elevator goes up to
destination fl oor

 User pushes Down fl oor button at request fl oor → elevator goes up or down
or is at request fl oor → elevator stops → door opens → door closes →
elevator goes down to destination fl oor

 Controls

 Down travel control, up travel control, start control, stop control, door open
control, door close control

 System storage

 Elevator event sequence storage requirements: present event, next event,
present state, next state, next state transition, and storage capacity neces-
sary for effective communication among software and hardware compo-
nents [BAG97] .

 Interrupts

 User fl oor request while the elevator is in motion

INTEGRATED SOFTWARE –HARDWARE DESIGN

 Putting software and hardware design in separate bins is a big mistake because the
operations of software and hardware are intimately related. For example, in interrupt
processing, an interrupt signal generated by hardware triggers software interrupt
processing routines. Thus, when designing systems, processing a requirement should
be considered as a resource allocation problem. For example, in an elevator system,
the signals generated by pushing buttons for fl oor requests are allocated to electronic

106 Computer, Network, Software, and Hardware Engineering with Applications

circuitry. These signals are fed to software routines for determining the direction
and distance the elevator must travel to service requests.

 A problem in system design is the appropriate allocation of functions between
software and hardware design [AYA02] . Resolve this problem by allocating logic
functions, such as identifying the elevator fl oor travel sequences in the architectural
design of Figure 4.4 and allocating the resulting control functions of elevator control
(Up, Down, and Open and Close doors) to the hardware design in Figure 4.5 .

Time-Driven versus Event -Driven
Software Design Styles

 Time - driven software design style corresponds to using cyclic activities triggered
by time. This software style is naturally suited for the implementation of periodic
activities, such as software implementation of control loop behavior in embedded
control systems. In contrast, software written in the event - driven style typically waits
for an event to occur, and then reacts to it by making an appropriate decision or
computation, and then enters a dormant state waiting for the next event [SEL96] .
Elevator systems are event - driven (i.e., elevator controller responds to fl oor request
event). Therefore, elevator controller software must be designed to develop a fl oor
traversal schedule when requests arrive. However, in doing so, elevator controller
software must be designed to achieve fl oor request response time requirements.

 In contrast to time - driven software style, the event - driven software style has
evolved largely to deal with the complexity arising from asynchrony, concurrency,
and the inherent nondeterminism due to the two. The system must respond to asyn-
chronous events in the external world, and the reaction must depend on the system
state [SAK98] . Thus, elevator controller software must be responsive to user service
requests that will occur asynchronously (fl oor push - button operations) and may occur
concurrently (push - button operations occurring on different fl oors at the same time).

 In the following integrated software – hardware design methodology, states and
state transitions form the core processes, because the real - time environment is one
of rapidly changing conditions, and state diagrams are effective for representing this
environment. In addition, when the detailed software logic is developed for the
elevator application, fl owcharts are used because they are useful for portraying deci-
sion logic, which is endemic to this application. The fl owchart is driven by the state
diagram transitions. Both the generic and application - specifi c software state dia-
grams are shown in Figure 4.3 . The generic software design is shown in Figure 4.8 .

SOFTWARE FUNCTIONS

Input Processing State

Generic System

 Input request i and service request time TS i in Figure 4.8 .

Integrated Software and Real-Time System Design with Applications 107

Elevator System

 Elevator fl oor sequencing controller identifi es and processes fl oor requests in Figure 4.2 .

Decision Analysis State

Generic System

 Identify sequence of service requests i and i + 1 based on its priority PR i and priority
PRi+ 1 , respectively, and process them in this order in Figure 4.8 .

Elevator System

 Sequences elevator travel so that throughput is maximized and response time T i is
minimized, as shown in Figure 4.2 . In contrast to the generic system, there is no
priority in the elevator system; all fl oor requests are treated equally.

Computation State

Generic System

 Compute response time TR i for service request i, mean response time TR, and
throughput for all service requests TP in Figure 4.8 .

Figure 4.2 Elevator system. N i , request fl oor; N d , destination fl oor; N c , current fl oor; TR i , response
time of request i.

N
c

N
i

N
d

N
c

N
i

N
d

ElevatorFloors

Nc ≥ Ni, Nd ≥ Ni Ni ≥ Nc, Nd ≥ Ni Ni ≥ Nc, Nc ≥ Nd

(1)

(2)

(1)

(2)

Elevator Controller Floor Sequencing Operations

N
i

N
d

N
c

(1)

(2)

N
i

N
d

N
c

(1)

(2)

TRi

TRi

Sequence 1 Sequence 2 Sequence 4 Sequence 5

TR
i

TR
i

N
i

N
c

N
d

(1)

(2)

Nc ≥ Ni, Ni ≥ Nd Ni ≥ Nc , Ni ≥ Nd

Sequence 3

108 Computer, Network, Software, and Hardware Engineering with Applications

Elevator System

 Computations of response time metrics as the result of state transitions are based on
comparison of fl oor locations in Figure 4.3 .

Output Processing State

Generic System

 Transfer results of decision analysis and computations to output devices in Figure 4.3 .

Elevator System

 Transfer results of computing performance metrics to output devices in Figure 4.3 .

Figure 4.3 State diagrams. N i , nearest request fl oor; N c , current fl oor; N d , destination fl oor
associated with N i ; T i : response time of request i; RD, response time difference with respect to
required RT; TP, throughput.

Decision

Analysis
Computation

Output

Processing

Input

Processing

Identification of

Sequence of Operations

States

Sequence i

Probability of Service Request i: P
i

Mean Response Time TR

Throughput for All

Requests: TP
Input i Identification and

Time of Service Request TR
i

Computation

Results

Output Devices

Generic Software State Diagram

Floor

Request

i

Elevator at

N
i
 or Goes

Up to

N
d

Sequence

4

Time of Completion of Service Request i: TCi

Response Time of Service Request i, TRi = TSi –TCi

Output

Processing

Compute:

 T
i
, TP

RD = RT–Ti

Nc ≥ Ni

< N
i

Nc ≥ Ni

N
c

N
d
 < N

iElevator

at N
i
or

Goes

Down to

N
i

Nd ≥ Ni

Nd ≥ Ni

Sequence 3

Sequence 1

Elevator-Specific Software State Diagram

Output Devices

Go up to N
i

Go down to N
d

Integrated Software and Real-Time System Design with Applications 109

Figure 4.4 Elevator system architecture. N i , request fl oor location; T j , sequence j response time; T f ,
single fl oor traversal time; N c , current fl oor location; P j , probability of sequence j; N d , destination fl oor
location; t oc : door open/close time; BCD, binary - coded decimal.

Floor request

Cache
memory

User

Push buttons
sensor

control

Elevator controller

(microprocessor)

Ni, Nd

Ni, Nd

Ni, Nd

Floor location
sensor

Nc

Sequence j

Elevator

UP, DOWN

Probability of sequence j: pj

Long-term
storage

Nc

Nd

Elevator Architecture

Nc

Ni

Nd

Ni

Nc

Sequence 1

Nc–N i

Nd–N i

((Nd –Ni) + (Nc–Ni)))

Floor Travel

Response time: t j

Floor traversal time: tf

Door open close time: t oc

Sequence 1: Tj = (tf*((Nd –Ni) + (Nc–Ni)))*Pj + toc

Recover
and

rollback

Halt
operation

Nc

Test
point

Test point

Elevator Sequences

Test
point

Interface test:
(3 BCD integer)

Test point

Error

signal

Exception handler

(Microprocessor)

Sequence 2

((Ni–Nc) + (Nd – Ni))

Sequence 2: Tj = (tf*((Ni–N c) + (Nd –N i))*Pj + toc

Ni–Nc

Nd –Ni

Nd

Ni

Ni

Sequence 3: Tj = tf*((Ni –Nc) + (Ni–Nd))*Pj + toc

Nc

Nd

Ni–Nc Ni –Nd

Sequence 4: Tj = tf*((Nc–N i) + (Ni–Nd))*Pj + toc

((Nc–Ni) + (Ni–Nd))((Ni – Nc) + (Ni –Nd))

Sequence 3

Ni –Nc

Ni –Nd

Pj = (Nd –N i)/((Nc–Ni) + (Nd –Ni))

Pj = (Nd –Ni)/((Ni–Nc) + (Nd –Ni))

Pj = (Ni –Nd)/((Ni –Nc) + (Ni–Nd))

Pj = (Ni–Nd)/((Nc –Ni) + (Ni–Nd))

(Nc ≥ Ni, Nd ≥ Ni) (Ni ≥ Nc, Nd ≥ Ni) (Ni ≥ Nc, Nc ≥ Nd) (Nc ≥ Ni, Ni ≥ Nd)

1
2

5

1
2

5

HARDWARE FUNCTIONS

 Generic System

 Microprocessor with suffi cient speed (clock rate) to satisfy the response time require-
ment. If this requirement is not satisfi ed, increase the microprocessor speed in
Figure 4.4 .

110 Computer, Network, Software, and Hardware Engineering with Applications

Elevator System

 Elevator fl oor sequencing controller with suffi cient speed to satisfy fl oor request
response time requirement. If this requirement is not satisfi ed, increase controller
speed in Figure 4.4 .

Generic System

 I/O channels with suffi cient transfer rate to keep up with real - time transaction input rate.

Elevator System

 Elevator I/O channels with suffi cient transfer rate to satisfy fl oor request response
time and mean value and throughput requirements.

Generic System

 Storage system with suffi cient capacity to support the input, storage, and output of
real - time transactions. Real - time systems do not have the luxury of inputting data
when convenient for the microprocessor. These systems must input data as it arrives,
with no loss of input, in Figure 4.4 .

Elevator System

 Many real - time designs impose hard real - time constraints on tasks. Thus, computing
an upper bound of execution time of the software (e.g., maximum fl oor traversal
time) is a critically important but diffi cult task. The diffi culty arises particularly
when the code is executed on processors with cache - based memory systems, which
may be limited in capacity [UM03] . Therefore, the elevator cache must have suffi -
cient capacity and speed to input and store fl oor requests, with no loss of fl oor
requests, as shown in Figure 4.4 .

Generic System

 System bus with suffi cient bandwidth to accommodate expected data transfer
requirements, as shown in Figure 4.5 .

Elevator System

 Elevator system bus with suffi cient bandwidth to achieve fl oor request response
time, mean response time, and throughput requirements, as shown in Figure 4.6 .

ELEVATOR SOFTWARE DESIGN

 The purpose of the elevator - specifi c software design is to identify the fl oor travel
sequences by comparing the values of the present fl oor location (N c), request fl oor

Integrated Software and Real-Time System Design with Applications 111

Figure 4.5 Generic hardware design and display. TS i , time of service request i; TC i , service request
i completion time; TR i , service request i response time; RT, required response time; FC, error control
(used if TR i > RT).

Arithmetic Logic Unit

(Compute TR
i

FC = RT–TR
i
)

System Bus

Display

Computations

Memory Unit

(Store TS
i
, TC

i
, RT, TR ,

i

FC)

TS
i
, TC ,

i
RT

TS
i
, TC

i

TS
i i
, TC , RT

TS
i
, TC

i

TR
i

TR
i

Error Controller

Speed Up Clock

Design so that:Clock

RT
FC

iTR RT≤

From Generic Software

Design Equations:

Response Time Example

Clock

Rate

FC

FC

Figure 4.6 Elevator system software design. P i , probability of completing service request i in
required response time; T fi , expected time of traversing all fl oors to respond a request i; T i , expected
time of traversing all fl oors to respond a request i plus opening and closing doors; TP, throughput; FC,
response time feedback correction; t f , time of traversing one fl oor; t oc , time of opening and closing
doors.

Locations of:

N
c
, N

i
, N

d

N
c
≥ N

i

N
d

≥ N
i

N
d

≥ N
i

N
d

≥ N
i

N
d

≥ N
i

N
c
 N

i
≥

Go

Down to

N
i
or

Stop at

N
i

Time

Parameters:

t
f
,t

oc

Compute

Pi, T
fi
, T

i,
TR

i

TP, FC for

Each Sequence

Ni ≥ Nc

Ni > Nc

Go Up to

N
i
or

Stop at N
i

Ni ≥ Nc

N
i
< N

c

Go Up to

N
i
or

Stop at N
i

Go Up

to

N
d

Go Up

to

N
d

N
c
 N

d
≥

Nc ≥ Nd Go

Down

to

N
d

Ni ≥ Nc

Floor Travel Sequences:

N
c
, N

i
, N

d
 and

Performance Equations to

Hardware

Design

Sequence 1

Sequence 2

Sequence 3

Go

Down

to

N
i

Go

Down

to

N
d

1

1

N
d
 < N

i
Sequence 4

2

2

Go Up to

N
i
or

Stop at N
i

Go

Down

to

N
d

Sequence 5

Ni > Nd

End3

3

N
i
 < N

d

Ni > Nd

Ni > Nd

Elevator Floor

Push Buttons
Up

Down

Asynchronous

Interrupts

112 Computer, Network, Software, and Hardware Engineering with Applications

location (N i), and the destination fl oor location (N d), which are inputted by the eleva-
tor fl oor push buttons in Figure 4.6 . In addition, the software design formulates the
performance equations that are transferred to the hardware design in Figure 4.7 for
implementation. According to Mok [MOK90] , in real - time programs, the time of
occurrence of events rather than the order of events is crucial in determining the
outcome of a computation. However, both event order and time of occurrence are
crucial in determining system performance . For example, the order of elevator fl oor
traversals and their traversal times are important determinants of elevator system
performance and must be included in the software design, as shown in Figure 4.6 .

Selected Hardware Designs

 Critical design functions are developed for both the generic and elevator systems.
The purpose is to demonstrate how an integrated software – hardware design is
achieved by mapping between software and hardware designs. Hardware - oriented
design has to deal with more problems than software - based design, especially the
progression of time [LU03] , such as manipulating the clock rate to achieve the
required response time in an elevator system, as shown in Figure 4.7 . Therefore,

Figure 4.7 Elevator system hardware design. N c , current fl oor; N i , request fl oor; N d , destination
fl oor.

N
c
 > N

i

Asynchronous Interrupt Travel Floor Sequences

from Software Design

N
d
 > N

i

Go Down to

N
i

Go Up to

N
d

Open and

Close Doors

at N
i

N
c
 = N

i

N
i
 > N

c

N
d
 > N

i

Go Up to N
i

Go Up to N
d

Elevator Controller

Sequence 1

Sequence 2

N
c
 > N

d

N
i
 > N

c
Go Up to N

i

Go Down to

N
d

Sequence 3

N
d
 < N

i

N
i
 < N

c

Go Down to

N
i

Go Down to

N
d

Sequence 4

N
i
 > N

c

N
i
 > N

d

Go Up to

N
i

Go Down to

N
d

Sequence 5

Up

Down

Open and Close

Doors

Computation Equations

from Software Design

Elevator Server

Elevator System Clock

Increase Clock Rate

if Response Time <

Specified Time

System

Bus

Integrated Software and Real-Time System Design with Applications 113

the emphasis in the design process is on hardware design, but not neglecting the
mapping between hardware and software designs.

Generic System

 Develop control logic for decoding (i.e., identifying) input service requests in Figure
 4.9 in order to demonstrate the mapping between generic software and hardware
designs in Figures 4.8 and 4.5 , respectively, where Figure 4.9 provides the decoder
logic for generating service request interrupts. Table 4.1 shows the truth table cor-
responding to the design logic in Figure 4.9 , where the bolded 1 s in the table cor-
respond to the decoder outputs. Then, a second critical hardware function is
designed— response time computation and display — if the response time require-
ment is not satisfi ed in Figure 4.7 .

Elevator-Specifi c System

 The elevator controller in the hardware design (Fig. 4.7) accepts the elevator fl oor
sequences from the software design (Fig. 4.6) and uses digital logic to translate the

Figure 4.8 Generic software design. TS i , time of service request i; TC i , service request i completion
time; TR i , service request i response time; P i , probability of service request i; RT, required response
time; FC, error control; T, duration of service operations; n, number of responses required in operation
time T; TP, throughput; PR i , priority of request i.

Identify and Queue

Service

Request i

and

TS
i

Identify

Sequence of

Service Requests i
PR

i
 > PR

i+1

Process Service

Request i

PR
i
> PR

i+1

Process

Service

Request i + 1

PR
i+1

 > PR
i

Service Request i

Switch Interrupt

Interrupts Processed Out of Sequence

Identify and Queue

Service

Request i + 1

and

TS
i+1

Service Request i + 1

Switch Interrupt

Multiple Concurrent Threads of Control

Compare Request Priorities

Process System

Controller

Commands

Operations

(Implement

Service Requests)

Commands

TCi

Compute:

TRi = TSi –TCi

Pi

Operations Schedule

T, n, TP

To Hardware Design

Error

Control

TRi > RT

TR
i ≤ RT

FC =TR
i
–RT

TRi > RT
TR

i

114 Computer, Network, Software, and Hardware Engineering with Applications

Figure 4.9 Input request decoder design.

2-to-4 Decoder

Block Diagram

Service Request i

Service Request i + 1

Enable

Inputs

x
0

x
1

Outputs

Enable

x
0

0x

0x

x
1

1x

1x

__ __

0 0 1o x x=

x
1

x
0

__

1 0 1o x x=

x
0

1x

__

0 1x xo
2
 =

o
3
 = x

0
x

1

x
0

x
1

2-to-4 Decoder Logic Diagram

Interrupt Signals to

Generic Software

Design

o0 = x0x1 (i = 0, i +1 =0)
_ _

o1 = x0x1 (i = 0, i +1 =1)
_

o2 = x0x1 (i = 1, i +1 =0)

o3 = x0x1 (i = 1, i +1 =1)

_

Table 4.1 Decoder Truth Table for Two Inputs (Request i and Request i + 1) and Four
Outputs (Request Interrupt Signals)

 Inputs Outputs

 E (Enable) x 1 request (i + 1) x 0 (request i) d 3 d 2 d 1 d 0

 1 0 0 1 0 0 0
 1 0 1 0 1 0 0
 1 1 0 0 0 1 0
 1 1 1 0 0 0 1

Integrated Software and Real-Time System Design with Applications 115

sequences into elevator control commands: Up, Down, and Open and Close Doors.
In addition, the elevator system is equipped with a server that implements the per-
formance equations delivered by the software design. One of these equations is the
response time error control function. In the event that a response time defi ciency
exists, the server uses the error control function to increase the clock rate. The
increased clock rate, in turn, allows the fl oor travel time to be reduced to satisfy the
response time requirement.

PERFORMANCE EQUATIONS DEVELOPMENT

 Now defi ne the variables, parameters, event sequences, and performance equations
that are used in evaluating the performance of both generic and application - specifi c
systems.

Defi nitions

Generic System

 Time of service request i: TS i
 Time of completion of service request i: TC i
 Required response time: RT

 Operational time: T

 Response time of service request i, TR i = TS i − TC i
 Maximum response time service request i: TR i (max)

 Minimum response time service request i: TR i (min)

 Probability of completing service request i in required response time: P i
 System error if TR i > RT

 System error feedback correction: FC = TR i − RT

 Number of responses to service requests required in operational time T: n

Elevator-Specifi c System

 The sequence of elevator system operations is complex with respect to the number
and type of fl oor requests and the number of stops — with door openings and
closings— over a given operational time. Therefore, this complexity is decomposed
so that request fl oor N i is considered to be the nearest request fl oor to the current
elevator fl oor N c , and destination fl oor N d is considered to be the destination fl oor
corresponding to N i in a given elevator traversal. This formulation is refl ected in the
list below. By considering the traversals in Figure 4.2 , the decomposition covers the
possible fl oor traversal sequences.

116 Computer, Network, Software, and Hardware Engineering with Applications

Estimated by Uniformly Distributed Random

Variable (Using Excel RAND Function)

 Probability of fl oor request i: P i
 Request i fl oor (fl oor that is nearest to current location N c of elevator): N i
 Current fl oor (current location of elevator): N c
 Destination fl oor associated with request i fl oor: N d

Specifi ed

 Time of traversing one fl oor: t f
 Time of opening and closing doors: t oc (these times are used at request fl oor N i

and again at destination fl oor N d)

 Number of fl oor requests processed in time T: n

Computed

 Expected time of traversing all fl oors to respond to a request i: T fi
 Elevator response time = expected time of traversing all fl oors to respond to

request i plus time of opening and closing doors: T i
 Maximum response time for service request i: T i (max)

 Minimum response time for service request i: T i (min)

Required

 Elevator response time: RT

 Response time difference: RD = RT − T i
 Mean response time difference (MRD), computed over n fl oor requests

 System error if T i > RT

 System error feedback correction: FC = T i − RT

 Elevator operational time: T

Event Sequences

 Event sequences are generated in Figure 4.2 based on the number of distinct com-
binations of fl oor locations (N i , N c , N d) and their travel directions. Note in the event
sequences that if the elevator is already at the request fl oor (N c = N i), there is zero
travel time from N c to N i . Also note, in Figure 4.2 , that the relative locations of the
elevator, the request fl oor, and the destination fl oor, are important in computing the
elevator travel distances in the event sequences.

Integrated Software and Real-Time System Design with Applications 117

Sequence 1
 (1) Elevator goes down from current fl oor N c to request fl oor N i , then (2) goes

up from request fl oor N i to destination fl oor N d (N c ≥ N i , N d ≥ N i):

 P N N N N N Ni d i c i d i= − − + −() / (() ()),

 T t N N N N)) Pfi f d i c i i= ∗ − + − ∗(() (,

 T t N N N N P ti f d i c i i oc= ∗ − + − ∗ +(() ()) .

Sequence 2
 (1) Elevator goes up from current fl oor N c to request fl oor N i , then (2) goes up

from request fl oor N i to destination fl oor N d (N i ≥ N c , N d ≥ N i):

 P N N N N N Ni d i i c d i= − − + −() / (() ()),

 T t N N N N)) Pfi f i c d i i= ∗ − + − ∗(() (,

 T t N N N N P ti f i c d i i oc= ∗ − + − ∗ +(() ()) .

Sequence 3
 (1) Elevator goes up from current fl oor N c to request fl oor N i , then (2) goes

down from request N i to destination fl oor N d (N i ≥ N c , N c ≥ N d):

 P N N N N N Ni i d i c c d= − − + −() / (() ()),

 T t N N N N)) Pfi f i c c d i= ∗ − + − ∗(() (,

 T t N N N N P ti f i c c d i oc= ∗ − + − ∗ +(() ()) .

Sequence 4
 (1) Elevator goes down from current fl oor N c to request fl oor N i , then (2) goes

down from request fl oor N i to destination fl oor N d (N c ≥ N i , N i ≥ N d):

 P N N N N N Ni i d c i i d= − − + −() / (() ()),

 T t N N N N)) Pfi f c i i d i= ∗ − + − ∗(() (,

 T t N N N N P ti f c i i d i oc= ∗ − + − ∗ +(() ()) .

Sequence 5
 (1) Elevator goes up from current fl oor N c to request fl oor N i , then (2) goes

down from request fl oor N i to destination fl oor N d (N i ≥ N c , N i ≥ N d):

 P N N N N N Ni i d i c i d= − − + −() / (() ()),

 T t N N N N)) Pfi f i c i d i= ∗ − + − ∗(() (,

 T t N N N N P ti f i c i d i oc= ∗ − + − ∗ +(() ()) .

System Performance Equations

 Both generic and elevator - specifi c performance equations are shown below. Later,
these equations will be used to evaluate elevator system performance and to design
tests of simulated performance.

118 Computer, Network, Software, and Hardware Engineering with Applications

 Generic

 Expected (mean) system response time, computed over n responses to service
requests, accounting for probability of occurrence of response time:

TR

P TR

n

i i

i

n

= =
∑()()

.1

 Elevator Specifi c

 Mean time for elevator controller to service fl oor requests, accounting for probability
of occurrence of response time:

TR

P T

n
.

i i

i

n

= =
∑()()

1

 Generic

 Total expected operational time, accounting for the probability of occurrence of
response time:

 T P TRi i

i

n

=
=

∑()().
1

 Elevator Specifi c

 Total expected elevator operational time over n operations, accounting for the prob-
ability of occurrence of response time:

 T P Ti i

i

n

=
=

∑ ()().
1

Generic

 Throughput (TP) = number of operations/operational time = n/T.

 Elevator Specifi c

 Number of service fl oor requests n processed by elevator controller during opera-
tional time T:

 TP n T= / .

Integrated Software and Real-Time System Design with Applications 119

Generic

 MRD for request i:

MRD

RD

n

i

i

n

= =
∑

1 .

 Elevator Specifi c

 Mean elevator response time difference for fl oor request i:

MRD

RD

n

i

i

n

= =
∑

1 .

REAL-TIME SYSTEM SIMULATED TESTING

 This section is comprised of observations by other researchers of problems in real -
 time system testing and our responses to these problems.

Achieving Visibility of Operations

 As complex devices such as elevator controllers are inserted into real - time systems,
traditional testing methods may be inadequate. A diffi cult obstacle to thorough
testing of real - time systems is achieving visibility into the operations of processing
elements, such as the elevator server of the hardware design in Figure 4.7 , while
application software is executing, such as fl oor sequencing control, in the software
design of Figure 4.6 [KIN98] . Resolve this problem by explicitly mapping Figure
 4.6 computations into computation execution in Figure 4.7 , and test the interaction
in terms of performance results, as discussed in the next section.

Test Case Selection

 Test case selection is designed to provide adequate coverage of system components
by deriving test cases from software designs [EN08] ; for example, the elevator
software design in Figure 4.6 . Test case selection is effective when software func-
tions are mapped to test cases, such as fl oor sequence traversal sequences mapped
to tests of sequence correctness. Test case selection can also be enhanced by using
state diagrams to identify state transitions that must be tested [SHU04] , such as the
elevator travel state changes in Figure 4.3 .

Verifying a Design

 It has been noted that the application of simulation to verifying a design does not
provide “ total confi dence ” that the design is correct [UMR83] . Actually, no verifi cation

120 Computer, Network, Software, and Hardware Engineering with Applications

method can provide “ total confi dence, ” but by replicating simulation tests a suffi -
ciently large number of times, say 100 elevator fl oor traversals, verifi cation error
can be minimized.

Achieving Realism in Testing

 The testing regimen approximates realism by mimicking the way the actual elevator
system would perform with respect to fl oor traversal scenarios [ZHE04] . The testing
of the elevator system is geared to the performance simulation results to be presented
in the next section. The objective is to ascertain whether performance objectives
such as required response time can be met. This is accomplished by simulating a
specifi ed number of fl oor requests that generate a series of elevator travel sequences.
Based on these sequences, performance metrics are computed and compared with a
specifi ed performance. If there is a performance error, the test is repeated using a
reduced fl oor traversal time, consistent with achievable performance of extant eleva-
tor systems. A key indicator of acceptable performance is that response time is satis-
fi ed for all fl oor requests.

Detecting Logical Errors

 The characteristics of real - time systems impose specifi c requirements on the test
system. The system must be capable of detecting logical as well as timing errors in
the design [TIM93] , for example the ability to detect incorrect elevator fl oor
sequences (e.g., elevator goes up to the highest destination fl oor and attempts to go
higher) and the ability to detect incorrect elevator timing computations (e.g., response
time is computed to be negative).

Maximum Response Time Criterion

 Maximum response time that occurs due to resource limitation [WED91] , such as
maximum elevator response time caused by the elevator not being available in a
timely manner, is another important test criterion. An example of the test of this
variable is shown in Figure 4.10 for elevator travel Sequence 1. Based on the test
results, fl oor travel time would be reduced to 3 seconds in Figure 4.10 to obtain the
required maximum response time of 60 seconds.

Complexity Caused by Interrupts

 Another consideration in real - time testing is complexity caused by interrupts occur-
ring in an asynchronous manner [PET07] , such as elevator travel in the down direc-
tion being interrupted by a request to go in the up direction. Handle this situation
by incorporating asynchronous interrupts into both the elevator software and hard-

Integrated Software and Real-Time System Design with Applications 121

ware designs in Figures 4.6 and 4.7 , respectively, and conducting performance simu-
lations in this environment.

ELEVATOR SYSTEM PERFORMANCE RESULTS

 Elevator system performance results are computed using performance metrics. These
metrics are functions of elevator travel sequences and the comparison of sequences.
As Figure 4.9 shows, performance improves with decreasing travel time for one
fl oor. These results were generated by simulating testing of travel sequences 100
times. For each sequence, current fl oor, request fl oor, and destination fl oor locations
were produced from uniformly generated random numbers, assuming there are 20
fl oors in the elevator system. Then, the fl oor location values were compared to
produce the travel sequences. Next, using the sequences, various metrics were com-
puted. Then, two sequences (1 and 4) were compared (see Fig. 4.2) to investigate
whether there is a difference due to direction of elevator travel, for the same values
of travel time for one fl oor. Indeed, as Figure 4.11 demonstrates, there are notable
differences for throughput and mean difference between required and achieved
response times. The lesson learned is that travel direction and distance is important
in assessing performance.

Figure 4.10 Elevator Sequence 1: Mean response time (TR), throughput (TP), MRD, maximum
response time T i (max), and minimum response time T i (min) versus one elevator fl oor traversal time
(tf). Series 1: TR (seconds). Series 2: TP (requests per minute). Series 3: MRD, mean difference
between required and achieved response time (seconds). Series 4: T i (max) (seconds). Series 5: T i
(min) (seconds).

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

1 2 3 4 5

tf (seconds)

Series 1

Series 2

Series 3

Series 4

Series 5

Response time requirement = 60 seconds, 20 floors assumed, n = 38 floor requests

Improvements with decreasing floor traversal time

122 Computer, Network, Software, and Hardware Engineering with Applications

SUMMARY AND CONCLUSION

 My aim was to develop an integrated and comprehensive design approach with the
objective of providing engineers with a road map for improving real - time system
design. My approach to real - time system design was to use models (e.g., elevator
fl oor traversal sequences) that are appropriate for real - time system analysis, such as
state diagrams, simulated testing, and event sequencing. Timing and schedule con-
straints were considered in order to analyze real - time system performance. I chose
the elevator example because it presents many design challenges and everyone can
relate to this system. I recognize that an abstract approach can only go so far in
developing real - time hardware and software designs, and in testing these designs.
Ultimately, the particular characteristics of the application must be considered.

 By applying the above principles of real - time system design, an application -
 specifi c system such as an elevator system can be developed to satisfy response time
requirements. The most important step in the development process is fi rst, to repre-
sent the generic view of the application design. Then, using the generic design as a
guide, develop the specifi c features of the application. This approach has the advan-
tages of providing real - time system design abstractions that can be used for design-
ing any real - time system, and at the same time providing suffi cient specifi city for
designing application - specifi c systems.

Question for the Reader: In the elevator system design, why not model the
complete, continuous scenario of elevator operations rather than dividing the
operations into discrete sequences, such as those shown in Figure 4.2 ?

Figure 4.11 Elevator: Mean response time (TR), throughput (TP), and MRD versus one fl oor travel
time t f . Series 1: TR, Sequence 1. Series 2: TP, Sequence 1. Series 3: MRD, Sequence 1. Series 4: TR,
Sequence 4. Series 5: TP, Sequence 4. Series 6: MRD, Sequence 4.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

1 1.5 2 2.5 3 3.5 4 4.5 5

tf (seconds)

Series 1

Series 2

Series 3

Series 4

Series 5

Series 6

TR

MRD

Sequence 4 (19 floor requests) performance better than

sequence 1 performance (38 floor requests):

less elevator travel in sequence 4

Integrated Software and Real-Time System Design with Applications 123

Answer: While at fi rst glance this may be a reasonable thing to do in order to
introduce more realism into the model, this approach would be counterpro-
ductive because excessive complexity induced by considering too large a
chunk of a system at one time leads to errors in design and, consequently, to
errors in the implemented system. The “ divide - and - conquer ” approach is a
superior design paradigm.

REFERENCES

 [AYA02] J. L. Ayala , A. G. Lomena , M. Lopez - Vallejo , and A. Fernandez , “ Design of a pipelined
hardware architecture for real - time neural network computations , ” The 2002 45th Midwest Symposium
on Circuits and Systems , August 4 – 7, 2002, Volume 1, pp. 419 – 422 .

 [BAG97] A. Baganne , J. L. Philippe , and E. Martin , “ Hardware interface design for real time
embedded systems , ” Proceedings. Seventh Great Lakes Symposium on VLSI , March 13 – 15, 1997,
pp. 58 – 63 .

 [BOA77] M. Boari , G. Grazia , and A. Bellman , “ A methodological approach to the real - time software
design and its use in a PCM toll offi ce , ” Proceedings of the IEEE , 1977 , 65 (9), pp. 1335 – 1342 .

 [CAD98] R. Cardell - Oliver and T. Glover , “ A framework for the test and verifi cation of real - time
systems , ” IEE Colloquium on Real - Time Systems (Digest No. 1998/306) , April 21, 1998, pp.
 5/1 – 5/4 .

 [EN08] A. En - Nouaary and A. Hamou - Lhadj , “ A boundary checking technique for testing real - time
systems modeled as timed input output automata , ” The Eighth International Conference on Quality
Software , August 12 – 13, 2008, pp. 209 – 215 .

 [GUP10] N. Gupta , S. K. Mandal , J. Malave , A. Mandal , and R. N. Mahapatra , “ A hardware
scheduler for real time multiprocessor system on chip , ” 23rd International Conference on VLSI Design ,
January 3 – 7, 2010, pp. 264 – 269 .

 [HAR07] D. M. Harris and S. L. Harris , Digital Design and Computer Architecture . New York : Else-
vier , 2007 .

 [KIN98] G. Walters E. King , R. Kessinger , and R. Fryer , “ Processor design and implementation for
real - time testing of embedded systems , ” Proceedings of the 17th AIAA/IEEE/SAE Digital Avionics
Systems Conference , 1998, Volume 1, pp. B44/1 – B44/8 .

 [KOY90] M. Koyamada and D. Iwado , “ A stepwise approach to behavior design for real - time soft-
ware , ” Proceedings of the First International Conference on Systems Integration , April 23 – 26, 1990,
pp. 789 – 796 .

 [LU03] L. Bin , A. Monti , and R. A. Dougal , “ Real - time hardware - in - the - loop testing during design
of power electronics controls , ” The 29th Annual Conference of the IEEE Industrial Electronics Society ,
Volume 2, 2003 , pp. 1840 – 1845 .

 [MOK90] A. K. Mok , “ Real - time software design — from theory to practice , ” IEEE Region 10 Confer-
ence on Computer and Communication Systems , September, 1990, Hong Kong, pp. 394 – 398 .

 [MOO02] V. Mooney and D. Blough , “ A hardware - software real - time operating system framework
for SoCs , ” Design & Test of Computers, IEEE , 2002 , 19 , pp. 44 – 51 .

 [OST98] J. S. Ostroff and R. F. Paige , “ Formal methods in the classroom: the logic of real - time soft-
ware design , ” Proceedings of Real - Time Systems Education III , 1998 , pp. 63 – 70 .

 [PET07] A. Pettersson , D. Sundmark , H. Thane , and D. Nystrom , “ Shared data analysis for multi -
 tasking real - time system testing , ” International Symposium on Industrial Embedded Systems , July 4 – 6,
2007, pp. 110 – 117 .

 [PLA84] P. Bernhard , “ Real - time execution monitoring , ” IEEE Transactions on Software Engineering ,
 1984 , SE - 10 (6), pp. 756 – 764 .

 [SAK98] M. Saksena , “ Real - time system design: a temporal perspective , ” IEEE Canadian Conference
on Electrical and Computer Engineering , May 24 – 28, 1998, Volume 1, pp. 405 – 408 .

 [SEL03] B. Selic and L. Motus , “ Using models in real - time software design , ” IEEE Control Systems
Magazine , 2003 , 23 (3), pp. 31 – 42 .

124 Computer, Network, Software, and Hardware Engineering with Applications

 [SEL96] B. Selic and P. Ward , “ The Challenges of Real - Time Software Design , ” Embedded Systems
Programming, 1996 , pp. 66 – 82 .

 [SHU04] S. Li , J. Wang , W. Dong , and Z. - C. Qi , “ Property - oriented testing of real - time systems , ” 11th
Asia - Pacifi c Software Engineering Conference , November 30 – December 3, 2004, pp. 358 – 365 .

 [SID06] S. H. Siddiquee and A. En - Nouaary , “ Two architectures for testing distributed real - time
systems , ”2nd Conference on Information and Communication Technologies , 2006 , Volume 2, pp.
 3388 – 3393 .

 [TIM93] M. Timmerman , F. Gielen , and P. Lambrix , “ A knowledge - based approach for the debugging
of real - time multiprocessor systems , ” Proceedings of the IEEE Workshop on Real - Time Applications ,
May 13 – 14, 1993, pp. 23 – 28 .

 [UM03] U. Junhyung and K. Taewhan , “ Code placement with selective cache activity minimization
for embedded real - time software design , ” International Conference on Computer Aided Design , 2003 ,
pp. 197 – 200 .

 [UMR83] Z. D. Umrigar and V. Pitchumani , “ Formal verifi cation of a real - time hardware design , ”
20th Conference on Design Automation , June 27 – 29, 1983. pp. 221 – 227 .

 [WAN04] S. Wang , J. R. Merrick , and K.G. Shin , “ Component allocation with multiple resource
constraints for large embedded real - time software design , ” Proceedings of the Real - Time and Embed-
ded Technology and Applications Symposium , 2004 , pp. 219 – 226 .

 [WAN08] L. Wang , “ Get real: real time software design for safety - and mission - critical systems with
high dependability , ” IEEE Industrial Electronics Magazine , 2008 , 2 (1), pp. 31 – 40 .

 [WED91] H. F. Wedde , B. Korel , and D. M. Huizinga , “ A critical path approach for testing distributed
real - time systems , ” Proceedings of the Twenty - Fourth Annual Hawaii International Conference on
System Sciences , January, 1991, Volume 2, pp. 400 – 407 .

 [ZHE04] L. , Zhen , M. , Kyte , and B. Johnson , “ Hardware - in - the - loop real - time simulation interface
software design , ” Proceedings of the 7th International IEEE Conference on Intelligent Transportation
Systems , 2004 , pp. 1012 – 1017 .

Chapter 5

Network Systems

T his chapter is dedicated to describing and analyzing the performance, reliability, maintaina-
bility, and availability of networks. With respect to the part of networks called the Internet, the
chapter builds upon Chapter 6 : Future Internet Performance Models. A smart grid application is
used to illustrate network functional and performance requirements. The chapter covers the various
types of networks, communication protocols, network services, and network architecture.

OVERVIEW

 First, an overview of different types of networks is provided in order to give the
reader a perspective on networks that will serve as a foundation for learning network
details. In addition, because contemporary texts do not always explain the “ why ” of
networks as opposed to the “ how, ” this chapter will explain the rationale of each
network concept.

Local Area Network

 A local network provides processing and communication services to a community
of users in a local area, typically within a corporate or residential geographical
domain. Why not have these users communicate directly to the Internet? The reason
is that some applications do not require access to the Internet. For example, users
may need access to servers that are part of a corporate local area network. In addi-
tion, even if access to the Internet is ultimately required in the application, prelimi-
nary communication and processing may be necessary in the local area network prior
to Internet access. For example, an electric utility may need to access smart meter
readings in a local area network prior to communicating them over the Internet to
various substations. Also, note that when possible, there is a performance advantage
in communicating in a local area network as opposed to using the Internet because
local networks employ higher speed communication lines and do not have to contend
with the traffi c congestion that is present on the Internet.

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F.
Schneidewind.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley &
Sons, Inc.

125

126 Computer, Network, Software, and Hardware Engineering with Applications

Wide Area Network

 The most prominent of this type of network is the Internet. However, there are many
private wide area networks that are part of corporate computer communication
systems. Due to the geographic extent of these networks, communication services
provided by communication carriers are necessary. This is not the case in local
networks because the communication distances are suffi ciently short that private
communication channels (e.g., Ethernet) suffi ce. The performance of wide area
networks is comparable to that of the Internet. Then, why not use the Internet
directly? The reason, again, is a question of congestion, since the congestion on a
private wide area network is much less than that on the public Internet.

Network Architecture

 This aspect of networks is addressed at this point because many texts and articles
use this model to explain network operations. It seems that the model is overused
because it can appear to readers to be the network rather than a representation of
network operations. The essence of the layered model is that corresponding layers
between two computers in a network communicate, for example, between applica-
tion layers. In actuality, the layers do not communicate. This is a software conception
of how the major parts of a network interoperate. Actual communication is accom-
plished by a combination of hardware and software, as shown in Figure 5.1 . This
fi gure shows the function of each layer using the smart meter application as an
example. The only actual communication that takes place in Figure 5.1 in the layered
architecture is in the physical layer. In contrast to layered, virtual communication,
the fi gure also shows the real communication between network computers.

NETWORK APPLICATION

 To provide context for the various facets of network analysis that are presented in this
chapter, a smart grid application is discussed. The smart grid is a network of comput-
ers and power devices that monitor and manage energy usage. Each energy producer —
 for example, a regional electrical company — maintains operational centers that
receive usage information from collector devices placed throughout the served area
(see the smart meter in Fig. 5.1). In a typical confi guration, a neighborhood contains
a single collector device that will receive periodic updates from each customer in the
neighborhood via the Internet. The collector device reports usage readings to the
operational centers using communication media such as the Internet.

Usage Reporting

 The electric utilities manage transmission and perform billing based on smart meter
readings and send this information to the database in Figure 5.1 . The usage - reporting

Network Systems 127

device at each customer site is called a smart meter. It is a computerized replacement
of the electrical meter attached to the exterior of many of our homes today. Each
smart meter contains a processor, nonvolatile storage, and communication facilities.
Although in many respects the smart meter ’ s look and function is the same as its
unsophisticated predecessor, its additional features make it more useful. Smart
meters can track usage as a function of time of day, disconnect a customer via soft-
ware, or send out alarms in case of problems. The smart meter can also interface
directly with “ smart ” appliances to control them, for example, turn down the air
conditioner during peak periods [MCD09] . Smart meters can collect a unique meter
identifi er, timestamp, usage data, and time synchronization every 15 – 60 minutes.

Data Requirements

 In the United States, there are 338 million meters in operation. To bring the electric-
ity grid into the digital era, every meter, and the millions of devices that connect to
them, must be smart. Devices need to measure and transmit data, act on incoming

Figure 5.1 Network architecture.

EthernetEthernet

Network

Computer

Network

Computer

Internet

Application

Layer

Presentation

Layer

Transport

Layer

Network

Layer

Data Link

Layer

Physical

Layer

Application

Layer

Virtual Communication

Session

Layer

Session

Layer

Presentation

Layer

Transport

Layer

Network

Layer

Data Link

Layer

Physical

Layer

Smart Meter Reading Message (Segments)

Electric Utility Database

Meter Reading Format Convert to Database Format

Establish Session Between Communicating Partners

Ensure Reliable Communication Between Partners

Meter Reading Data on Ethernet Utility Database Ethernet

Meter Reading Binary Bits Utility Database Binary Bits

Real Communication Electric Utility DatabaseSmart Meter

Smart Meter Software Control
TCP, UDP, IP, URL, DNS

Smart Meter Reading

Smart Meter Reading Packet

Acknowledgments

No Acknowledgments or Error Checking

Error Checking

No Error Checking

Source Destination

Virtual
Communication

128 Computer, Network, Software, and Hardware Engineering with Applications

information, and handle innovative applications. This will require a network that can
accommodate the sum of information that will be generated by the smart grid. For
example, if the 338 million meters already deployed in the United States digitally
reported the most basic electricity use information every 15 minutes, they would
generate anywhere from 274 to 548 GiB of information every day (http://
www.smartsynch.com/smartsynch_infrastructure.htm). Components such as those
shown in Figure 5.2 would require this capacity.

NETWORK PROTOCOLS

 Network protocols are rules of communication that govern how data are communi-
cated in a network. Most of the protocols are used in the Internet due to the com-
plexity of that network relative to local area networks. These protocols and ancillary
items that are related to protocols will now be described.

Transmission Control Protocol (TCP)
and Virtual versus Real Communication

 This protocol operates in the Transport Layer in Figure 5.1 and is responsible for
ensuring reliable end - to - end communication in the Internet. By “ end - to - end, ” it is
meant from network computer to network computer in Figure 5.1 . While this objec-
tive sounds good, realistically, it cannot be achieved; no system can be failure free.
An attempt is made at reliable communication by using acknowledgements. The
receiver acknowledges to the sender that a “ correct ” message was received. The

Figure 5.2 Network performance model. T i , node i processing time; ρ i, probability of node i being
busy; λuc , user computer input rate; W i : node i wait time; p, Web page packet request size or Web page
size; T p , packet input time; T ij , link ij processing time; S ij , link ij speed.

Local Network

Server
Local Network

Server Queue

Local Network

Router Server Queue

Local Network

Router Server

Not busy

Busy

Busy

Not busy
Internet

Internet Router

Server

Queue

Internet Router

Server

Domain Name

Server Queue
Domain Name

Server

Busy Not busy

Not busy

busy Internet Router

Server

Queue

Internet Router

Server

BusyNot busy

Web Server Queue

User Computer

Web Server

Busy

Not busy

Web page

Web page request

Tij

p

p

Ti
ρi

λuc

WiSij

Buffer

Tp

Network Systems 129

message is assumed to be incorrect if an acknowledgement is not received within a
specifi ed time called the “ time - out period. ” Since, as stated, no system is failure
free, correct messages cannot be guaranteed. Rather, an attempt is made at correct-
ness by appending error check data — which is computed over the message — to the
message and transmitting this package to the receiver. The receiver, in turn, com-
putes error check data over the received message, using the same algorithm that was
used at the sender. The reliability of this process will be addressed in a later section.
An interesting facet of TCP reliability is that a great deal of overhead is generated
when the odds are that a high percentage of messages will be transmitted without
error. This overhead injects additional congestion into the Internet, lowering the
performance of the entire Internet. It seems that reliability – performance trade - offs
were not considered in designing TCP. Also to be noted is that the Application Layer
provides TCP with the Smart Meter Reading in Figure 5.1 . Thus, in addition to the
“ horizontal ” virtual communication, there is “ vertical ” virtual communication
between layers. Of course, both “ horizontal ” and “ vertical ” virtual communications
are fi ctitious; these are modeling artifacts. The only true communication is the “ real
communication” in Figure 5.1 .

 Also note in Figure 5.1 that the concept of vertical virtual communication occurs
at both the source and destination. In the former, the Smart Meter Reading applica-
tion data is sent from the Application Layer to TCP, where the data become a TCP
message that is fortifi ed with acknowledgement, error checking, and sequencing
information. The last item is required because messages are actually comprised of
smaller segments for effi ciency in communication and processing (e.g., reduced
buffer space at both source and destination). Each segment is assigned a sequence
number because segments can get out of order when they are routed through the
Internet due to different delay times experienced by the segments. Then, the seg-
ments are sent to the Network Layer where they are transformed into a series of
packets in Figure 5.1 , where the packets contain source and destination Internet
Protocol (IP) addresses and routing information (e.g., IP address of next router).
Local networks such as Ethernet — usually owned by user communities — are required
at the source and destination in order to process and communicate data within the
user communities, and to interact with the Internet. Therefore, Network Layer
packets are “ virtually transmitted ” to the Data Link Layer. This layer ’ s protocol
provides error checking between source and destination local networks. Note that
up to this point in the discussion of the layering approach the functionality in Figure
 5.1 is implemented primarily in software. Now, at the Physical Layer, hardware is
used to transmit binary bits from source to destination. No error checking is neces-
sary in this layer because this function is performed in the Data Link Layer.

 At the destination, the raw bits in the Physical Layer are checked for correctness
by the Data Link Layer. Next, the packets that have been buried in the binary bits
of the Physical Layer and the data of the Data Link Layer are recovered. The
Network Layer also checks segment sequence, reassembling segments in the correct
order, and thus recovering the TCP message. This is not the end of the story because
the messages require error checking by the Transport.

130 Computer, Network, Software, and Hardware Engineering with Applications

User Datagram Protocol (UDP)

 In contrast to TCP, the UDP does not attempt to ensure reliable communication.
Operating in the Network Layer of Figure 5.1 , it transmits data with no acknowl-
edgements, thus providing higher performance compared with TCP. The term “ data-
gram” could be confusing to the reader; “ message ” would suffi ce. To add to the
confusion, “ message ” is used in TCP, wherein, in reality, both TCP and UDP transmit
messages. However, Internet working groups designate this terminology because
UDP transmits short messages, called datagrams, whereas TCP transmits messages
comprised of several packets, where a packet is defi ned as data that have a header
for an address and routing information, a body for the actual data, and a trailer for
error check information.

Internet Protocol (IP)

 This rule of communication is used in all Internet data transfers and is associated
with the Network Layer in Figure 5.1 . Interestingly, the TCP message is appended
to the IP packet, where a packet is simply a set of binary bits that is transmitted in
the Internet. Thus, in the literal sense, a TCP message is not transmitted in the
Internet. Rather, it is the IP packet that is transmitted.

NETWORK SERVICES

 Network services are network functions that provide services to users. In addition
to their functions, services are distinguished from protocols by virtue of being
affi xed, by servers, to one or more points in local networks, as opposed to protocols
that operate over communication channels between points in a network.

Domain Name Service (DNS)

 The DNS can be mystifying to readers because the natural question arises: why can ’ t
my data be communicated in the Internet by using the name of my computer and
the name of the resource I wish to access? The reason this is not feasible is that to
access a resource in the Internet, an IP address is required. The reason for this
requirement is that IP addresses provide generality in the Internet. That is, with each
resource in the Internet having an IP address, which may be assigned permanently
(e.g., Web server) or temporarily (e.g., duration of a network computer transaction),
any resource can be accessed. While it could be possible to maintain tables of
network computer names in order to access these resources, it would be ineffi cient
because the names would vary in length and not all network computers would remain
connected to the Internet over time. Thus, temporary assignment of an IP address
for the duration of a transaction has proven effective. However, users do not want
to remember IP addresses. It is more natural for them to deal with computer names.

Network Systems 131

Besides, as mentioned, IP addresses are only assigned temporarily. Therefore, DNS
converts from a network computer name to an IP address when the computer
accesses a resource (e.g., Web server) and performs the reverse conversion — from
IP address to Uniform Resource Locator (URL) — when the Web server is accessed.
The URL, a bureaucratic name if there ever was one, is the name of a Web server
that is used by the network computer for accessing the Web server. Once the DNS
converts network computer name to an IP address, the Web server uses it to respond
to the Network Computer ’ s request.

Web Site Services

 These services go into action when users request Web pages on the Internet. Users
are unaware of the many messages that transpire in the Internet when they access a
Web page. In addition to the user ’ s request, messages are required to perform DNS
name - to - IP address translation and to establish a session between user and Web site.
Thus, in assessing the user ’ s performance experience on the Internet, many support-
ing “ hidden messages ” must be accounted for in addition to application message.

Session and Presentation Layer Services

 Actually, these are nonservices because they are not needed by these layers! Then,
why are they present in the architecture? The answer is that the international stan-
dards group included them because they believed these functions would be per-
formed by distinct layers in the architecture. However, Internet architects assigned
TCPs to session establishment by virtue of acknowledgements and they designated
applications to format source data (e.g., user formatting of Web page requests) and
services to format response data at the destination (e.g., Web site formatting of
requested Web page). However, since the seven - layer architecture is the holy grail
of networks, it is incumbent for book authors to include it.

NETWORK PERFORMANCE

 In this section, network performance equations will be developed for each component
shown in Figure 5.2 . Later, relevant network performance data from Chapter 6 will
be used in the equations to estimate the performance of extant computer networks.

Link Delay Times

 These are the times required to transmit data on a link from the source point to the
end point; for example, the delay time from the user computer to the local network
queue in Figure 5.2 . Thus, T ij is link time, as computed below:

 T p Sij ij= / ,

132 Computer, Network, Software, and Hardware Engineering with Applications

 where p is the Web page request packet and Web page size and S ij is speed of link
ij. p is assumed to be exponentially distributed, with mean = 1000 bits for Web page
request packet and mean = 96,928 bits for Web page size (see Table 5.1 for this
information). The exponential distribution is justifi ed on the basis of higher probabil-
ity of small values of p and lower probability of large values. Values of p are gener-
ated by using the mean values in an exponential distribution, using a statistics
program (e.g., Minitab).

Question for Reader: Why not use the mean values of Web page request packet
and Web page size, rather than assume an exponential distribution and gener-
ate various values?

Answer: Single or mean values of p do not exist in real networks. Rather, in
real networks, there exists a distribution of sizes, where the exponential is
the most rationale distribution to use.

 In addition to individual link delay times, it is also important to compute the mean
of link delay, MT L , and time over all links, N L , to obtain a metric of network com-

Table 5.1 Network Performance Parameters

 Data item Source Value

 Asymmetric digital subscriber
line (ADSL) Internet
communication channel
speed

 www.webopedia.com/ λuc = 640,000 bits per
second

 Local network (Ethernet) link
speed

 [HAM02] S ij = 100,000,000 bits
per second

 Local network router
processing speed

 http://arstechnica.com/
hardware

 S i = 54,000,000 bits per
second

 Internet router link speed www.highspeedrouter.com/ S ij = 6,250,000 bits per
second

 Domain name server (DNS)
processing speed

 www.labnol.org/ S i = 143,000 bits per
second

 DNS processing time / www.labnol.org/ T i = 0.007 seconds
 Web server link speed www.google.com S ij = 2,418,500 bits per

second
 Web page size www.google.com p = 96, 928 bits
 User computer processing

speed
 [HAR07] S i = 2,000,000,000 bits

per second
 Local network server

processing speed
 Assume same speed as user

computer
 S i = 2,000,000,000 bits

per second
 Internet router server

processing speed
 Cisco S i = 100,000,000,000

bits per second
 Web server processing speed http://www.info - techs.com/

speedtest50.html
 S i = 12,439,000 bits per

second

Network Systems 133

munication performance that can be compared with individual link delay times to
see which link delay times are excessive and in need of performance improvement
by increasing link speed S ij . This metric is computed as follows:

 MT T N .L ij L

ij

NL

= ∑ /

 Figure 5.3 puts the metric MT L into action by identifying the Web server of exhibit-
ing anomalous behavior: excessive link delay time attributed to the Web server,
calling for an increase in its link speed. However, note that another contributor to
excessive link delay is the large Web page. Unfortunately, it may be infeasible to
reduce the size of the Web page. Therefore, the feasible option is to obtain a Web
service that can provide the desired speed, where this speed is computed as follows,
using the unchanged Web page size and the mean line delay:

 S p MTij L= / .

 Figure 5.3 shows the increased Web service link speed designed to correct the per-
formance defi ciency.

Node Processing Times

 Nodes in Figure 5.2 are any objects that are not a link (e.g., user computer). Thus,
Ti is the processing time of node i, as computed below:

Figure 5.3 Link delay time T ij versus link ij. Series 1: T ij . Series2: Mean of T ij .

–0.002000

0.000000

0.002000

0.004000

0.006000

0.008000

0.010000

0.012000

0.014000

0.016000

1 2 3 4 5 6 7 8 9 10 11 12

ij

T
ij

(s
ec

o
n

d
s)

Series 1

Series 2

Insufficient Web server link speed

or Web page too large;

increase link speed from 2,418,500 to 28,205,623 bits per

second

134 Computer, Network, Software, and Hardware Engineering with Applications

 T p Si i= / ,

 where S i is the processing speed of node i.
 In addition to individual node processing times, it is also important to compute

the mean processing time, MT N , and time over all nodes, N N , to obtain a metric of
network processing performance, computed as follows:

 MT T N .i i N

i

NN

= ∑ /

 Then, individual node processing times can be compared with the mean to identify
nodes that may be causing excessive processing time and, thus, are in need of pro-
cessing speed increase.

 Again, as was the case with link delay, Figure 5.4 demonstrates that the Web
server is a bottleneck.

 The remedies are to either increase the Web server processing speed or to
decrease the Web page size. Therefore, again the performance problem can be solved
by increasing the Web server processing speed, using the unchanged Web page size
and the mean node processing time as follows:

 S p MT .i i= /

 Figure 5.4 shows the increased Web service processing speed designed to correct
the performance defi ciency. Note, however, that since both the increased Web service

Figure 5.4 Node processing time T i versus server node i. Series 1: T i . Series 2: Mean of T i .

–0.001

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

1 2 3 4 5 6 7

i

T
i (

se
co

n
d

s)

Series 1

Series 2

Web server processing time excessive,

processing speed too slow and Web page

too large;

increase Web server processing speed from

1,249,000 to 85,713,163 bits per second

Network Systems 135

link speed and node processing speed are signifi cantly greater than the original
values, it may not be practical to achieve these rates. Thus, it may be necessary to
settle for improved Web server service but not to the extent suggested by Figures
 5.3 and 5.4 .

Node Probability of Being Busy

 Note in Figure 5.2 that nodes such as local network server may or may not be busy.
Being busy means that there are one or more items in a queue waiting to be pro-
cessed. Thus, the probability of node i being busy, ρi , is related to the data input
speed to node i, on link ij, S ij , and to the processing speed of node i, S i , as follows:

 ρi ij iS S= / .

 There is one exception to the application of this equation and that is the determina-
tion of ρi for the Domain Name Server (DNS). For the DNS, the Internet Router
link speed, in Figure 5.2 , which is the DNS link speed, is so much greater than the
DNS processing speed (see Table 5.1) that it would be necessary to provide at buffer
at the input of the DNS in Figure 5.2 . This is done to prevent the DNS from being
overrun by Internet traffi c. ρi = S ij /S i cannot be used because it would yield a value
much larger than 1.0, which would indicate queue instability. However, this is not
the case when the buffer is employed. To make the DNS operate in a stable manner
ρi = 0.8 is assigned as the DNS busy metric.

Packet Input Time

 Packet input time, T p , is a driver of network operations that is needed to estimate
its infl uence on wait time in a queue. Its infl uence is exerted because the rate of data
input generated by the user computer, λuc , may cause the links and nodes down the
line to be overwhelmed with data and, hence, increasing wait time. T p is computed
as follows:

 T pp uc= / ,λ

 where p is the packet size.
 Figure 5.5 demonstrates the infl uence packet input time on wait time, in that

wait time follows the pattern set by packet input time as a function of the node where
the wait time occurs. The utility of this plot is to identify the node associated with
anomalous high values, which in this case is the Domain Name Server (DNS), and
to correct this defi ciency by obtaining the services of a DNS provider that has a
DNS with the requisite speed.

Node Wait Time

 Node i wait time, W i , can be estimated by considering that if node i probability of
being busy, ρi . is 0, there are no items waiting for processing at node i. On the other

136 Computer, Network, Software, and Hardware Engineering with Applications

hand, if ρi is 1, the indication is that node i is in its maximum busy state and an item
would have to wait to be processed. If the probability of node i being busy is
0 < ρi < 1, it indicates the degree of busyness. Thus, on an expected value basis,
node i wait time, W i , is estimated as follows:

 W Ti i i= ρ .

 For example, if ρi = 0, then W i = 0; if ρi = 1, then W i = 1. That is, with ρi = 0, of
course there is no waiting and W i = 0. However, with ρi = 1, an item would have to
wait for the previous item to be processed for a time T i .

Node Processing Time plus Node Wait Time

 Processing time alone does not tell the entire story of node performance. What is
needed is to account for wait time, which could be signifi cant. Therefore, the sum
of these times, TW i , is computed as follows:

 TW T W p S Ti i i i i i= + = +/ .ρ

 In addition, to provide a standard for evaluating the performance of individual nodes,
the mean of TW i is computed over N n nodes as follows:

MTW

TW

N
.i

i

i=1

N

n

n

=
∑

Figure 5.5 Packet input time T p and node wait time W i versus node i. Series 1: W i . Series 2: T p .

0.00000000

0.00050000

0.00100000

0.00150000

0.00200000

0.00250000

0.00300000

1 2 3 4 5 6 7 8 9 10 11 12

i

T
p
, W

i (
se

co
n

d
s)

Series 1

Series 2

Wi tracks Tp Domain Name Server is out of bounds

Network Systems 137

 The value of TW i is compared with MTW i to identify node processing times that
may be excessive. This comparison is demonstrated in Figure 5.6 , where the Web
server is identifi ed as failing to meet the mean value test. In these cases, there would
be a need for node processing speed S i to be increased.

Summation of Link Delay, Processing Time,
and Wait Time

 To obtain a comprehensive performance metric of an entire network, T t , link delay,
node processing time, and wait time are summed over number of links, N L , and N n ,
number of nodes in a network, as follows:

 T T T Wt ij

ij

N

i

i

N

i

i

NL n n

= + +∑ ∑ ∑ .

 In addition, the mean MT i of T i is computed over all N N nodes and N L links as follows:

 MT T .i t

i,ij

N NN L

= ∑
 It is appropriate to compare total network time T t with the user expectation T e to see
whether the performance is meeting expectation. Furthermore, the relative error RE
between expected and realized times is computed as follows:

Figure 5.6 Node processing time plus wait time TW i versus node i. Series 1: TW i . Series 2: Mean
of MTW i .

0.00000000

0.00050000

0.00100000

0.00150000

0.00200000

0.00250000

0.00300000

1 2 3 4 5 6 7

i

T
W

i (
se

co
n

d
s)

Series 1

Series 2
Web server fails mean value test

138 Computer, Network, Software, and Hardware Engineering with Applications

 RE T T Te t e= −() / ,

 where positive or zero values indicate that the user expectation of T t ≤ T e is satisfi ed
and negative values indicate that the user expectation is not satisfi ed. By examining
individual link delay, node processing time, and node wait time, the source of per-
formance problems can be identifi ed that could be excessive link delay or node
processing time, or both. This comparison is performed in Figure 5.7 , where it is
shown that high RE is associated with the Web server failing to meet the total node
processing, wait, and link delay time expectation.

Network Performance Parameters Data

 The network performance parameter data that will be used in the network perfor-
mance equations is documented in Table 5.1 .

NETWORK RELIABILITY, MAINTAINABILITY,
AND AVAILABILITY PREDICTION

 In addition to performance, it is important to predict the reliability, maintainability,
and availability that can be achieved in a network.

Figure 5.7 Node processing time plus wait time plus link delay T t versus server node i. Series 1:
Tt . Series 2: Mean of T t .

–0.00500000

0.00000000

0.00500000

0.01000000

0.01500000

0.02000000

0.02500000

0.03000000

0.03500000

0.04000000

0.04500000

1 2 3 4 5 6 7

i

T
t(

se
co

n
d

s)

Series 1

Series 2

Web Server Fails to Meet User Expectation

Relative Error = –4.96

Relative Error = 0.80–0.84

Network Systems 139

Reliability

 The factors that govern reliability in a network are the following:

 Both links and nodes must be used in prediction equations.

 Because reliability is higher for small values of link delay and node processing
time than for large values, the appropriate reliability function is the
exponential.

 The probability of a node being busy must be included in reliability prediction
equations because when nodes are busy, not only are nodes busy but the
connecting links are also busy because the data on the links must be delayed
for processing until the nodes are no longer busy, thus exposing links to
increased possibility of failure.

 The failure rate λ is a random variable that is generated by using the Excel
RAND function.

 Thus, proceeding to use these factors in developing reliability prediction equations,
the link failure rate, λij , is computed as follows, applying the probability of node i
being busy:

 λ ρ λij i= .

 The exponential distribution is put to work to predict link reliability, R ij , where Tij
is link delay:

 R eij
Tij ij= −().λ

 Now node reliability is formulated in a manner similar to links. First, failure rate:
as in the case of links, failure rate is the product of probability of node busy and the
Excel RAND function, λ , generating difference values for this computation:

 λ ρ λi i= .

 Then, the exponential distribution is called on to predict node reliability, R i , applying
node processing time T i :

 R ei
Ti j= −().λ

Maintainability

 Maintainability is formulated by considering how the probability of maintenance
actions can be estimated. The concept is that maintainability is a probability, and
this probability is the ratio of the quantity of data processed by a given link or node
to the total quantity of data processed at all links and nodes in the network. The
quantity of data that is processed by each link and node is pij,i , the Web page request
size for all links and nodes, except for the Web server and its associated link, where
pij,i is the Web page size. Thus, maintainability is predicted as follows, where N L is
the number of links and N N is the number of nodes in the network:

140 Computer, Network, Software, and Hardware Engineering with Applications

M

p

p

.ij,i
ij,i

ij,i

ij,i

N NL N
=

∑
 The primary purpose of Table 5.2 is to account for the links and nodes in the main-
tainability predictions. See Figure 5.2 as an aid in making this accounting. The Web
page request packet and Web page sizes in Table 5.2 were generated from the afore-
mentioned exponential distribution process.

Availability

 Availability is important in all systems, including networks. It represents the fraction
of time that a network is operational for useful work. The fraction of time that the
network is not available is the time consumed in maintaining the system, and the
fraction of time the network is not being maintained and doing useful work is when
it is operating reliably. These fractions of times can be translated into corresponding
probabilities in order to produce a general availability expression as follows:

Maintainability . The probability that the network is not available.

Reliability . The probability that the network is available.

 Thus, link availability, A ij , is predicted as follows:

 A R R Mij ij ij ij i= +/ (),,

 and node availability, A i , is predicted as follows:

 A R R Mi i i ij i= +/ ().,

 The results of combining reliability and maintainability into availability predictions
are shown in Figure 5.8 , where the link and node availabilities are almost identical
so that only one availability plot is shown along with the required availability of
0.9800. This requirement means that the user expectation is that the network will be
unavailable for not more than 2% of the scheduled operating time. The fi gure delin-
eates the nodes and connecting links that satisfy the requirement and those that do
not. The problem in the latter case is excessive maintainability. Since both link and
node reliabilities are high, the remedy would be improved maintenance practices,
such as preventive maintenance.

SUMMARY

 This chapter has shown how to analyze and predict network performance, reliability,
maintainability, and availability. In addition, using the foregoing tools, the reader
learned how to identify anomalous performance and availability behavior, such as
that exhibited by the Domain Name Server and Web server. Thus, the reader is then
fortifi ed with tools for correcting these defi ciencies.

Network Systems 141

Table 5.2 Maintainability Data

 Link Node
 p (Web page request or
Web page size in bits)

 User computer to local
network server queue

 467.29

 Local network server queue 467.29
 Local network server queue to

local network server
 656.28

 Local network server 656.28
 Local network server to local

network router server queue
 491.06

 Local network router server
queue

 491.06

 Local network router server
queue to local network
router server

 938.72

 Local network router server 938.72
 Local network router server to

internet router server queue
 1,069.94

 Internet router server queue 1,069.94
 Internet router server queue to

internet router server
 1,115.03

 Internet router server 1,115.03
 Internet router server to

domain name server queue
 1,399.53

 Domain name server queue 1,399.53
 Domain name server queue to

domain name server
 943.51

 Domain name server 943.51
 Domain name server to

internet router server queue
 1,774.3

 Internet router server queue 1,774.3
 Internet router server queue to

internet router server
 887.43

 Internet router server 887.43
 Internet router server to Web

server queue
 1,231.98

 Web server queue 1,231.98
 Web server queue to Web

server
 385.84

 Web server 385.84
 Web page to Web server 33,181.3
 Web server 33,181.3
 Total 44,542.21

142 Computer, Network, Software, and Hardware Engineering with Applications

REFERENCES

 [HAM02] Matt Hamblen , “ 10 Gig Ethernet: Speed Demon , ” Computer World: Networking & Internet,
December 23, 2002 .

 [HAR07] David Money Harris and Sarah L. Harris , Digital Design and Computer Architecture . New
York : Elsevier , 2007 .

 [MCD09] Patrick McDaniel , Stephen McLaughlin , “ Security and privacy challenges in the smart
grid , ” IEEE Security and Privacy , 2009 , 7 (3), pp. 75 – 77 .

Figure 5.8 Link availability A ij and node availability A i versus node i. Series 1: A ij , A i . Required
Aij , A i .

0.960000

0.965000

0.970000

0.975000

0.980000

0.985000

0.990000

0.995000

1 2 3 4 5 6 7 8 9 10 11 12 13

i

A
ij,

 A
i

Series 1

Series 2
User computer

Local network server

Internet router server queue # 2

Web server

These nodes and connecting links satisfy requirement

Local network server queue

Chapter 6

Future Internet Performance
Models

H aving learned the fundamentals of computer design in Chapters 1 and 2 , which apply to
computers such as personal computers, you are ready to study a topic that is pervasive in the
world of information technology — the Internet. Since there are few computer applications
that do not use the Internet, I provide the reader with a perspective of the evolving Internet,
using the present Internet as a baseline. The performance and reliability of a proposed future
Internet — wired and wireless — is compared with the present Internet. Models of data transfer
and queuing dynamics are used to make the performance comparison. These models consist
of logic diagrams that express the sequence of data transfers in the Internet (e.g., local network
to local network router) and queuing logic diagrams, supported by queuing equations (e.g.,
probability of local network queue busy). These models represent the steady - state behavior
of the present and proposed future Internets. Computer programs are used to simulate the
variability in queue behavior. The results are used to identify the major variables in Internet
performance (e.g., Internet routing time as a major performance variable). Furthermore, the
results are used to compare present Internet and proposed future Internet performance. Reli-
ability analysis is performed by predicting cumulative Internet faults and failures and by
analyzing the complexity of present and proposed Internet confi gurations as an indicator of
reliability (i.e., number of points of failure in a confi guration). Model results demonstrate
signifi cant increases in performance and reliability for the proposed Internet, attributed to the
elimination of data transfer overhead (e.g., elimination of Domain Name Service) and simpli-
fi ed network confi gurations.

CHAPTER OBJECTIVES

 One objective is to compare the performance and reliability of the present Internet
with a proposed Internet of the future that could operate faster, more reliably, and
with improved security, by eliminating the overhead induced by a multiplicity of
protocols, intermediate networks, and interfaces that comprise the current Internet.

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F.
Schneidewind.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley &
Sons, Inc.

143

144 Computer, Network, Software, and Hardware Engineering with Applications

In order to illustrate the proposal, I developed analytic queuing models and simula-
tion models for comparing the performance and reliability of the current versus the
proposed Internet. The process starts by defi ning the network topology for present
and future Internet confi gurations. This leads to identifying and defi ning the perfor-
mance and reliability and variables of the model. In developing the prediction equa-
tions, the sequence of operations on the network — for example, an input request to
the Internet — provides the basis for computing the performance and reliability of
the present and proposed Internets.

 To add realism to the models, I use publicly available performance and reli-
ability data posted on the Internet. While the performance and reliability of present
and proposed Internets are of interest, it is the comparison of the two that is my core
objective that would demonstrate whether the proposed Internet is viable. Both wired
and wireless Internets are included in the analysis, in both upload direction (i.e.,
request for Web page) and download direction (i.e., delivery of Web page). Based
on extensive literature search, no one has proposed fundamental changes in the
Internet confi guration, as I propose. Rather, current research focuses on the present
Internet confi guration as a given, with proposals to improve quality of service, reli-
ability, and so on, on the existing platform.

PROPERTIES OF THE PROPOSED FUTURE INTERNET

 In today ’ s Internet architecture, the Internet Protocol (IP), Internet addresses, and
the Domain Name Service (DNS) implement core architectural principles that
restrict the Internet ’ s ability to adapt to improved performance and reliability require-
ments [GOE07] . In the future Internet, the current edge of the network (e.g., user
computers and mobile devices) will often be just one hop to the Internet [FAI08] .
That is, devices will be able to connect directly into the Internet, eliminating barriers
such as local networks, local network routers, and domain name servers. The trend
to connect more devices will also accelerate, facilitated by the increasing installation
of Internet Protocol version 6 (IPv6). In the future, the Internet will connect vast
numbers of tiny devices integrated into cell phones and other mobile devices [FAI08] .
These devices may challenge the traditional understanding of network topology as
a collection of networks and, instead, view the future Internet as a single unifi ed
network.

 According to Gokhale et al. [SWA06] , in a process - based Web server architec-
ture, the server consists of multiple single - threaded processes, each of which handles
one request at a time. In a thread - based architecture, the Web server consists of a
single multithreaded process; each thread handles one request at a time. However,
there is another Web server model — the one I use. This model uses multiple execut-
ing servers, each processing user requests concurrently.

 The proposed future Internet is comprised of the following capabilities:

• Rather than using local networks, such as Ethernet, communication between
user computers and Web servers and between mobile devices and Web servers
would be direct, via Internet routers.

Future Internet Performance Models 145

• Devices would be assigned permanent IP addresses, issued by the Internet
authority, thus eliminating the need for name - to - IP address translation, thereby
eliminating the need for Domain Name Systems. User computers and mobile
devices would access a Web server by providing a Universal Resource Locator
(URL) (Web site address) to the Internet service provider (Isp). The Isp, in
turn, would look up the Web server IP address in its directory and append it
to the IP packet. In case the IP address has not been recorded in the Isp direc-
tory, the Isp would broadcast a request to obtain the IP address.

• In order to provide increased security of data, every user computer and mobile
device would have its own IP address, requiring the replacement of Internet
Protocol version 4 (IPv4) with IPv6, in order to provide for a large address
space. IPv6 does not provide any better (or worse) support for quality of
service than IPv4, but it does have several important features that would
enhance the performance and security of the future Internet, including larger
address space, integrated security capabilities, easier confi guration, and a
simplifi ed packet header format [MET03] .

• Reliability would be increased because there would be fewer components that
could fail and fewer single points of failure (e.g., elimination of local networks
and Domain Name Systems). This is important because the Domain Name
System is reputedly one of the main causes of failure in the Internet [PAR] .

• Cyber security would be increased because there would be fewer components
that could be attacked and if attacks do occur, resolution would be simplifi ed
by pinpointing the location of an attack by virtue of using a much simpler
Internet confi guration than is presently the case.

NETWORK USAGE DATA

 In developing the Internet evaluation models, using queuing models, it is important
to use real - world data, as advertised on the Internet and documented in Table 6.1 .
Some items in the table are descriptive to indicate the magnitude of wired and wire-
less Internet traffi c and storage requirements. Other items are used to compute
quantities that are used in queuing and simulation analyses.

QUEUING MODEL (PRESENT INTERNET SYSTEM)

 In this section the various queuing model equations, computations, and plots [HIL01] ,
using data from Table 6.1 , are presented, encompassing upload of Web page requests
and download of Web pages, for both wired and wireless technologies, for the
present Internet system. The queuing models are based on a continuous timescale
of user computer and mobile device Web page requests and corresponding Web
server Web page deliveries in order to provide realistic portrayals of Internet per-
formance and reliability that would not be feasible with a discrete, time - sampled
approach ([JIN08] , [TAK93]).

Ta
bl

e
6.

1
 N

et
w

or
k

U
sa

ge
 D

at
a

 It
em

 R

ef
er

en
ce

 Pe

ri
od

 Q

ue
ue

 o
bj

ec
t

 Q
ua

nt
ity

 Q

ua
nt

ity
 c

om
pu

ta
tio

n

 M
ob

ile
 a

cc
es

s
po

in
t

(d
es

cr
ip

tiv
e)

 [I
N

S]

 20
08

 Se

rv
er

 3,

45
1,

68
0

 3,
45

1,
68

0
ac

ce
ss

 p
oi

nt
s

pe
r

ye
ar

/1
2

m
on

th
s

pe
r

ye
ar

 =
 2

87
,6

40
 a

cc
es

s
po

in
ts

 p
er

 m
on

th
 W

or
ld

w
id

e
m

ob
ile

Su

bs
cr

ib
er

s
(d

es
cr

ip
tiv

e)

 [I
T

U
09

]
 20

09

 In
pu

t
 4,

19
7,

54
4,

10
1

 4,
19

7,
54

4,
10

1/
36

5
da

ys

pe
r

ye
ar

/2
4

ho
ur

s
pe

r
da

y/
36

00
 s

ec
on

ds
 p

er

ho
ur

 =
 1

33
.1

0
su

bs
cr

ib
er

s
pe

r
se

co
nd

 M
ob

ile
 s

pe
ct

ru
m

us

ag
e

(d
es

cr
ip

tiv
e)

 [I
T

U
09

]
 20

10

 In
pu

t
ra

te

 12
80

 – 1
72

0
 M

H
z

 W
or

ld
w

id
e

m
ob

ile

da
ta

 t
ra

ffi
 c

(d

es
cr

ip
tiv

e)

 [I
V

A
09

]
 20

09

 St
or

ag
e

re
qu

ir
em

en
t

 10
0,

00
0

 T
bi

t/m
on

th

 10
0,

00
0

 T
bi

t/
m

on
th

/2
87

,6
40

 a
cc

es
s

po
in

ts
 p

er

m
on

th
 =

 0
.3

47
7

ac
ce

ss

po
in

t
 W

ir
el

es
s

ba
ck

bo
ne

 [I

V
A

09
]

 20
09

 D

ow
nl

oa
d

pr
oc

es
si

ng
ra

te

 1.
5 –

 34
 M

bi
t/s

 (
un

if
or

m

di
st

ri
bu

tio
n

as
su

m
ed

)
 M

ea
n

 =
 (3

4
 –

 1.
5)

/2
 +

1.

5
 =

 17
.7

5
 M

bi
t/

s

 A
sy

m
m

et
ri

c
di

gi
ta

l
su

bs
cr

ib
er

 l
in

e,

A
D

SL

 w
w

w
.w

eb
op

ed
ia

.c
om

/
 20

09

 W
eb

 p
ag

e
do

w
nl

oa
d

ra
te

, W
eb

pa

ck
et

 r
eq

ue
st

up

lo
ad

 r
at

e

 1.
5 –

 9
 M

bi
t/s

(d

ow
nl

oa
d)

, 0
.0

16
 –

 0.
64

0
 M

bi
t/s

(u

pl
oa

d)
, 2

 – 2
.5

 m
ile

ra

di
us

 (
un

if
or

m

di
st

ri
bu

tio
n

as
su

m
ed

)

 M
ea

n
 =

 (9
 –

 1
.5

)/
2

 +

1.
5

 =
 5.

25
 M

bi
t/

s
(d

ow
nl

oa
d)

 M
ea

n
 =

 (0
.6

40
 –

0.

01
6)

/2
 +

 0
.0

16
 =

0.

32
8

 M
bi

t/
s

(u
pl

oa
d)

 L

oc
al

 n
et

w
or

k
(E

th
er

ne
t)

 s
pe

ed

 [H
A

M
02

]
 20

02

 Pr
oc

es
si

ng
 r

at
e

 10
0

 M
bi

t/s
 <

 24
 m

ile
s

146

147

 It
em

 R

ef
er

en
ce

 Pe

ri
od

 Q

ue
ue

 o
bj

ec
t

 Q
ua

nt
ity

 Q

ua
nt

ity
 c

om
pu

ta
tio

n

 L
oc

al
 n

et
w

or
k

ro
ut

er
 ar

st
ec

hn
ic

a.
co

m
/h

ar
dw

ar
e

 N
ov

em
be

r
5,

20

07
 R

ou
te

r
sp

ee
d

 54
 M

bi
t/s

 In
te

rn
et

 r
ou

te
r

 w
w

w
.h

ig
hs

pe
ed

ro
ut

er
.c

om
/

 20
09

 R

ou
te

r
sp

ee
d

 1 –
 11

.5
0

 M
bi

t/s

(u
ni

fo
rm

 d
is

tr
ib

ut
io

n
as

su
m

ed
)

 M
ea

n
 =

 (1
1.

50
 –

 1
)/

2
 +

 1

=
 6.

25
 M

bi
t/

s

 Pe
rs

on
al

 d
ig

ita
l

as
si

st
an

t
(P

D
A

)
da

ta
 t

ra
ffi

 c

 W
ir

el
es

s
C

om
m

un
ic

at
io

ns

A
ss

oc
ia

tio
n

In
te

rn
at

io
na

l
 20

09

 W
ir

el
es

s
pa

ck
et

le

ng
th

 p
er

un

it
tim

e

 25
9.

20
 M

bi
t/m

on
th

(a

ss
um

e
pa

ck
et

s
tr

an
sm

itt
ed

 i
n

1 -
 se

co
nd

 b
ur

st
s)

 25
9.

20
 m

eg
ab

its
 p

er

m
on

th
/3

0
da

ys
 p

er

m
on

th
/2

4
ho

ur
s

pe
r

da
y/

36
00

 s
ec

on
ds

 p
er

ho

ur
 * 1

,0
00

,0
00

 b
its

 p
er

m

eg
ab

it
 =

 10
0

 bi
ts

 i
n

1
se

co
nd

 D
om

ai
n

N
am

e
Sy

st
em

 (
D

N
S)

 D

ig
ita

l
In

sp
ir

at
io

n
W

eb
 s

ite

 w
w

w
.la

bn
ol

.o
rg

/
 20

09

 Pr
oc

es
si

ng
 t

im
e

 Pr
oc

es
si

ng
 r

at
e

 0.
00

4 –
 0.

01
0

se
co

nd
s

pr
oc

es
si

ng
 t

im
e

(a
ss

um
e

W
eb

 p
ag

e
re

qu
es

t
pa

ck
et

le

ng
th

 =
 1

00
0

 bi
ts

)

 M
ea

n
 =

 (0
.0

10
 –

 0
.0

04
)/

2
 +

 0.
00

4
 =

 0.
00

7
se

co
nd

s
pr

oc
es

si
ng

tim

e
 10

00
 b

its
/0

.0
07

se

co
nd

s
 =

 0.
14

3
 M

bi
t/

s
pr

oc
es

si
ng

 r
at

e
 W

eb
 p

ag
e

si
ze

 w

w
w

.g
oo

gl
e.

co
m

 W

eb
 p

ag
e

si
ze

 12

,1
16

 b
yt

es
 =

96

,9
28

 b
its

 W

eb
 s

er
ve

r
 w

w
w

 g
oo

gl
e.

co
m

 20

09

 W
eb

 p
ag

e
pr

oc
es

si
ng

tim
e

 W
eb

 p
ag

e
pr

oc
es

si
ng

ra
te

 0.
04

00
77

 s
ec

on
ds

pr

oc
es

si
ng

 t
im

e
 96

,9
28

 b
its

/0
.0

40
07

7
se

co
nd

s/
1,

00
0,

00
0

 bi
ts

pe

r
m

eg
ab

it
 =

2.

41
85

 M
bi

t/
s

fo
r

W
eb

pa

ge
 p

ro
ce

ss
in

g
ra

te

 iP
ho

ne
 s

pe
ed

 ht

tp
://

w
w

w
.a

pp
le

.c
om

/
ip

ho
ne

/ip
ho

ne
 - 3

gs
/

hi
gh

 - t
ec

hn
ol

og
y.

ht
m

l

 20
09

 W

ir
el

es
s

pa
ck

et

up
lo

ad
 r

at
e

 7.
2

 M
bi

t/s

148 Computer, Network, Software, and Hardware Engineering with Applications

 Figure 6.1 shows the wired logic for upload of a packet that is requesting a
Web page. It is assumed that Web pages are downloaded from a Web server to the
user computer. Figure 6.1 also shows the wired logic of Web pages downloaded to
the user computer. Note that in the case of Internet routers, Domain Name Systems,
and Web servers, multiple servers are required in order for the probability of queue

Figure 6.1 Present wired Internet queuing model.

Local Network

Server

Local Network
Server Queue

User Computer

Local

Network

Server

Busy

packet N

Y

Local Network

Router Server Queue

Local

Network

Router

Server

Busy
Local Network

Router Server
Y

N

Internet

Internet Router

Server 1

Internet Router

Server

Queue

Internet

Router

Server 1

Busy

Internet

Router

Server 2

Busy

N

Internet Router

Server 2

Y

N

Y

Domain Name

Server 1

Domain Name

Server 2

Domain Name

Server 3

Domain

Name

Server 1

Busy

Domain Name

Server 2

Busy

Domain Name

Server 3

Busy

N

N

N

Domain Name

Server Queue

Y

Y

Y

Internet Router

Server 1

Internet Router

Server 2

Internet

Router

Server 1

Busy

Internet

Router

Server 2

Busy

N

N

Internet Router

Server

Queue

Y

Web Server 1

Web Server 2

Web Server 3

Web Server

1

Busy

Web Server

2

Busy

Web Server

3

Busy

Web Server Queue

N

N

N

ucλ = 0.328mps

tuc

Web page

p = 96,928 bits

t

ws 5.250 mpsλ =

Lnμ = 100 mps
tsLn = 0.0000100 seconds

twLn = 0.003039 seconds

Web page

tsLnd

twLnd = 0.001749 seconds

nsLn = 55.8 bits

nwLn = 944.20 bits nsLnd = 5407 bitsnwLnd = 91,521 bits

Lr 54 mpsμ =

Lr 0.1033ρ =

tsLr = 18.52 microseconds

tsLrd = 0.001750 seconds

twLrd = 0.016712 seconds

nsLr = 6.07 bits

nwLrd = 87,504 bits

tsir = 0.000080 seconds tsird = 0.0078 seconds

twir = 0.002969 seconds

twird = 0.0107 secondsnsir = 446.24

nwir = 553.76 bits

nsird = 43,253 bits

nwird = 53,675 bits

ns 0.7646ρ =

tsns = 0.0023 seconds

twns = 0.000749 seconds

nsns = 764.57 bits

nwns = 235.43 bits

ws 0.7688ρ =

tws = 0.000138 seconds

tswsd = 0.013359 seconds

twwsd = 0.005103 seconds

nsws = 723.59 bits

nswsd = 70,136 bits

nwws = 276.41 bits

nwwsd = 27.641 bits

nwwsd = 26,792 bits

ucd = 0.018462 seconds
p = 96,928 bits

d = 1000 bits
= 0.003049 seconds

= 0.00096928 seconds

Future Internet Performance Models 149

busy < 1 (i.e., server utilization < 1). Otherwise, the queue systems would become
unstable (i.e., the servers would become overwhelmed with traffi c).

 See the sections entitled “ Present Internet Wired Logic Sequences for Upload
and Download ” and “ Present Internet Wireless Backbone ” for the explanations of
the notations and quantities that appear on the queuing model fi gures.

 The queuing models provide a mean value analysis of the wired and wireless
performance. While important, mean values are not the whole story of Internet
system performance. Since performance will vary considerably from the means, as
a function of operating conditions in the Internet, this variation in Internet perfor-
mance is estimated using simulation queuing models. These estimates are computed
in a later section.

Present Internet Wired Logic Sequences
for Upload and Download

 This subsection contains the mean value equations and computations for the sequence
of data transfer and processing operations that are required to upload a request for a Web
page, as depicted in Figure 6.1 , and to deliver a Web page to the user computer (down-
load), as shown in Figure 6.1 , for the present Internet wired system, organized by the
components that comprise the system. The computations use the data in Table 6.1 .

User Computer

Mean Packet Upload Time tuc

 t
d

uc
uc

=
λ

, (6.1)

 where d is the packet size and λuc is the packet upload rate in Figure 6.1 :

 t
bits

Mbit/s
secondsuc = =

1000

0 328
0 003049

.
. .

Web Server

Mean Web Page Download Time tucd

 t
p

ucd
ws

=
λ

, (6.2)

 where p is the Web page size and λws is the Web page download rate in Figure 6.1 :

 t
bits

Mbit/s
secondsucd = =

96 928

5 250
0 018462

,

.
. .

150 Computer, Network, Software, and Hardware Engineering with Applications

Local Network

 Single - server equations apply for the local network, shown in Figure 6.1 , because
only one server is required for the probability of queue being busy < 1.

Probability of Queue Being Busy ρLn

 This probability is the ratio of the sum of the packet arrival rate λuc (upload) and
the Web page delivery rate λws (download) to the local network packet service rate ,
μLn , shown in Equation 6.3 . The result of this computation is shown in Figure 6.1 :

ρ
λ λ

μ

ρ

Ln
uc ws

Ln

Ln
Mbit/s

Mbit/s

=
+

=
+

=

,

. .
. .

0 328 5 25

100
0 055780

 (6.3)

Mean Upload Processing Time tsLn

 This is the mean time required for the local network in Figure 6.1 to process a packet
of size d, using the local network processing rate μLn , when the user computer
requests a Web page to be uploaded, as given in Equation 6.4 :

ts
d

ts
bits

Mbit/s
seconds

Ln
Ln

Ln

=

= =

μ
,

. .
1000

100
0 000010

 (6.4)

Mean Upload Wait Time twLn

 This is the mean time a packet has to wait to be processed in the local network queue
in Figure 6.1 when the user computer request for a Web page is uploaded, as given
by the packet upload time , from Equation 6.1 , and the local network upload process-
ing time , computed in Equation 6.4 :

tw t ts

tw seconds second
Ln uc Ln

Ln

= −
= − =

,

. . .0 003049 0 000010 0 003039 ss.
 (6.5)

Mean Download Processing Time tsLnd

 This is the mean time, computed in Equation 6.6 , required to process a Web page,
of size p, processed at the local network processing rate μLn , in the local network,
when a Web page is downloaded in Figure 6.1 :

ts
p

ts
bits

Mbit/s
seconds

Lnd
Ln

Lnd

=

= =

μ
,

,
. .

96 928

100
0 00096928

 (6.6)

Future Internet Performance Models 151

Mean Download Wait Time twLnd

 This is the mean time, computed in Equation 6.7 , a Web page has to wait to be
processed in the local network queue in Figure 6.1 , when a Web page is downloaded,
as given by the Web page download time, from Equation 6.2 , and the local network
processing time, computed in Equation 6.6 :

tw t ts

tw seconds
Lnd ucd Lnd

Lnd

= −
= − =

,

. . .0 018461 0 00096928 0 001749 sseconds.
 (6.7)

Mean Number of Packet Bits Being

Processed in the Upload Direction nsLn

 Equation 6.8 is the probability of the local network being busy from Equation 6.3
times the packet of length d, as shown in Figure 6.1 :

ns d

ns
Mbit/s

Mbit/s

Ln
uc ws

Ln

Ln

=
+⎛

⎝⎜
⎞
⎠⎟

=
+⎛

⎝⎜
⎞
⎠

λ λ
μ

,

. .0 328 5 25

100 ⎟⎟ =() . .1000 55 8bits bits

 (6.8)

Mean Number of Packet Bits Waiting to be

Processed in the Upload Direction nwLn

 If the result computed in Equation 6.8 is subtracted from the packet length, the
number of packet bits waiting to be processed can be computed in Equation 6.9 , as
shown in Figure 6.1 :

nw d ns

nw bits bits
Ln Ln

Ln

= −
= − =

,

. . .1000 55 8 944 20
 (6.9)

Mean Number of Web Page Bits Being Processed

in the Download Direction nsLnd

 In Equation 6.10 , we multiply the Web page size p by the probability of the local
network server being busy from Equation 6.3 , as shown in Figure 6.1 :

ns p

ns
Mbit/s

Mbit/s

Lnd
uc ws

Ln

Lnd

=
+⎛

⎝⎜
⎞
⎠⎟

=
+⎛

λ λ
μ

(),

. .0 328 5 25

100⎝⎝⎜
⎞
⎠⎟

=(,) .96 928 5407bits bits

 (6.10)

Mean Number of Web Page Bits Having to Wait

to Be Processed in the Download Direction nwLnd

 Equation 6.11 computes the number of Web page bits that are held up in the local
network queue waiting to be processed for download that is equal to Web page size
p minus the result from Equation 6.10 , as shown in Figure 6.1 :

152 Computer, Network, Software, and Hardware Engineering with Applications

nw p ns

nw bits bits
Lnd Lnd

Lnd

= −
= − =

,

, , .96 928 5407 91 521
 (6.11)

Local Network Router

 Single - server equations apply for the local network router, shown in Figure 6.1 ,
because only one local network router server is required in order for the probability
of queue being busy < 1. Also, note that the local router equations are applied twice —
 once for routing the Web page request in Figure 6.1 and again for routing the down-
loaded Web page in Figure 6.1 .

Probability of Local Network Router Being Busy ρLr

 This probability is the ratio of the sum of the packet upload rate λuc and the Web
server download rate λws to the local network router packet routing rate , μLr , com-
puted in Equation 6.12 , as shown in Figure 6.1 :

ρ
λ λ

μ

ρ

Lr
uc ws

Lr

Lr
Mbit/s

Mbit/s

=
+

=
+

=

,

. .
. .

0 328 5 25

54
0 1033

 (6.12)

Mean Upload Processing Time tsLr

 This is the mean time required for the local network to process a packet, of size d,
for routing in Figure 6.1 , as given in Equation 6.13 :

ts
d

ts
bits

Mbit/s
s

Lr
Lr

Lr

=

= =

μ

μ

,

. .
1000

54
18 52

 (6.13)

Mean Upload Wait Time twLr

 This is the mean time a packet has to wait to be routed in the local network router queue
in Figure 6.1 , computed in Equation 6.14 , as given by the packet upload time , from
Equation 6.1 , and the local network router routing time , computed in Equation 6.13 :

tw t ts

tw s s
Lr uc Lr

Lr

= −
= − =

,

. . .3049 18 52 3030 48μ μ
 (6.14)

Mean Download Processing Time tsLrd

 This is the mean time required to route a Web page of size p from a Web server to
the user computer, as given in Equation 6.15 and shown in Figure 6.1 :

Future Internet Performance Models 153

ts
p

ts
bits

Mbit/s
seconds

Lrd
Lr

Lrd

=

= =

μ
,

,
. .

96 928

54
0 001750

 (6.15)

Mean Download Wait Time twLrd

 This is the mean time, computed in Equation 6.16 , a Web page has to wait before
it can be routed in the download direction to the user computer, as shown in Figure
 6.1 . Equation 6.16 uses the Web page download time, t ucd , computed in Equation 6.2
and the download processing time computed in Equation 6.15 :

tw t ts

tw seconds se
Lrd ucd Lrd

Lrd

= −
= − =

,

. . .0 018462 0 001750 0 016712 cconds.
 (6.16)

Mean Number of Packet Bits Being Processed

in the Upload Direction for Routing nsLr

 Equation 6.17 is equivalent to the product of the probability of the local net-
work router being busy , from Equation 6.12 , and the packet size d, as shown in
Figure 6.1 :

ns
d

ns
Mbit/s bits

Mbit/s

Lr
uc

Lr

Lr

= ()

= () =

λ
μ

()
,

. ()
.

0 328 1000

54
6 07 bbits.

 (6.17)

Mean Number of Packet Bits Waiting to be Processed

in the Upload Direction for Routing nwLr

 If the result computed in Equation 6.17 is subtracted from the packet length, the
number of packet bits waiting to be processed for routing can be computed in Equa-
tion 6.18 , as shown in Figure 6.1 :

nw d ns

nw bits bits
Lr Lr

Lr

= −
= − =

,

. . .1000 6 07 993 93
 (6.18)

Mean Number of Web Page Bits Being Processed for Routing

in the Download Direction nsLrd

 In Equation 6.19 , compute the number of Web page bits being processed in the
download direction by utilizing the Web page download rate λws , Web page size p,
and local network router processing rate μ1r , as shown in Figure 6.1 :

154 Computer, Network, Software, and Hardware Engineering with Applications

ns
p

ns
Mbit/s bits

Mbit/s

Lrd
ws

lr

Lrd

= ()

= () =

λ
μ

()
,

. (,)5 25 96 928

54
94424 bits.

 (6.19)

Mean Number of Web Page Bits Waiting to Processed for Routing

in the Download Direction nwLrd

 This computation is made by subtracting Equation 6.19 from the Web page size p,
producing Equation 6.20 , as shown in Figure 6.1 :

nw p ns

nw bits bits
Lrd Lrd

Lrd

= −
= − =

,

, , .96 928 9424 87 504
 (6.20)

Internet Router

Probability of Internet Router Being Busy ρir

 This probability is the ratio of the sum of the packet upload rate λuc and the Web
page download rate λws to the Internet router packet routing rate , s μlr , as shown in
Equation 6.21 , where s = 2 is the number of Internet router servers. Whenever there
are multiple servers involved, this fact must be refl ected in the total service rate. The
Internet routers are shown in Figures 6.1 – 6.3 .

ρ
λ λ

μ

ρ

ir
uc ws

ir

ir

s

Mbit/s

Mbit/s

=
+()

=
+() =

,

. .

()(.)
.

0 328 5 25

2 6 25
0 44462.

 (6.21)

Mean Upload Processing Time tsir

 This is the mean time required for the Internet router to route a packet in the upload
direction, as given in Equation 6.22 , where again, the computation must account for
s = 2 servers, as shown in Figure 6.1 :

ts
d

s

ts
bits

Mbit/s
seconds

ir
ir

ir

=

= =

μ
,

()(.)
. .

1000

2 6 250
0 000080

 (6.22)

Mean Upload Wait Time twir

 This is the mean time a packet has to wait to be routed in the Internet router queue
in the upload direction, as given by the packet upload time , from Equation 6.1 , and
the Internet router processing time , computed in Equation 6.23 , as shown in Figure 6.1 :

Future Internet Performance Models 155

Figure 6.2 Present wireless queuing model (upload).

Web page

Web

Page

Request

Access Point Queue

Buffer

Access

Point

Busy

Y

N

Internet

Internet

Router Server 1

Internet

Router Server

2

Internet Router

Queue

YInternet
Router Server

2
Busy

Internet
Router Server

1
Busy

N

Y

N

Web Server 1

Web Server 2

Web Server 3

Web Server 4

Web Server 5

Web server 6

Web Server Router

Queue

Web

Server 4

Busy

Web

Server 5

Busy

Web

Server 6

Busy

Web
Server 1

Busy

Web

Server 2

Busy

Web

Server 3

Busy

N

Y

Y

N

N

N

N

N

Y

Y

Y

p = 96, 928 bits

wb = 100 bits

ws 0.8580ρ =
tswsb = 0.000006981 microseconds

ws 2.4185 mpsμ =

ws 5.25mpsλ =

nsws = 36.1795 bits

wb 7.2 mpsλ =

twb = 13.889 microseconds

ap 17.75 mpsμ =

Access Point

Mobile Device

tsapd = 0.0055 seconds

nsapd = 41,108 bits

twapd = 0.0130 seconds

nwapd = 55,820 bits

ir
6.25 mpsμ =

ir 0.996ρ =

tsird = 0.0078 seconds

twird = 0.0107 seconds

nwird = 388 bits

nsird = 96,540 bits

twwsd = 0.00117835 seconds nwwsd = 61,860 bits

156 Computer, Network, Software, and Hardware Engineering with Applications

Figure 6.3 Present wireless queuing model (download).

Mobile Device

Access Point Queue
Disk array

Access

Point

Busy

Y

Buffer

Internet

Internet

Router Server 1

Internet

Router Server 2

Access Point

Internet
Router Server

1
Busy

Internet
Router Server

2
Busy

Y

N

Internet Router
Queue Y

Web Server 1 Web Server 4

Web Server 2 Web Server 5

Web Server 3 Web server 6

Web

Server 1

Busy

Web

Server 2

Busy

Web

Server 3

Busy

Web

Server 4

Busy

Web

Server 5

Busy

Web

Server 6

Busy

Web Server Router

Queue

N

N

N

N

N

N

Y

Y

Y

Y

N

N

ws 0.8580ρ = tswsd = 0.00667695 seconds

twwsd = 0.00117835 seconds

nswsd = 35,068 bits

nwwsd = 61,860 bits

twb = 13.889 microseconds
wb = 100 bits

wb 7.2mpsλ =Web page

p = 96, 928 bits

ap 17.75 mpsμ =

tsapd = 0.0055 seconds

twapd = 0.0130 seconds

nsapd = 41,108 bits

nwapd = 55,820 bits

ir 0.996ρ =
ir 6.25mpsμ =

tsird = 0.0078 seconds

twird = 0.0107 seconds

Web page request packet

nsird = 96,540 bits

nwird = 388 bits

0.3477 terabytes

ap 0.7014ρ =

ws 5.25mpsλ =
Web Server 3

Future Internet Performance Models 157

tw t ts

tw seconds second
ir uc ir

ir

= −
= − =

,

. . .0 003049 0 000080 0 002969 ss.
 (6.23)

Mean Download Processing Time tsird

 This is the mean time required for the Internet router to process a Web page for
routing, using the Web page size p and the processing rate of s = 2 servers s μir given
in Equation 6.24 , as shown in Figure 6.1 :

ts
p

s

ts
bits

Mbit/s
seconds

ird
ir

ird

=

= =

μ
,

,

()(.)
.

96 928

2 6 250
0 0078 ..

 (6.24)

Mean Download Wait Time twird

 Equation 6.25 computes the mean time a Web page, downloaded in a time t ucd . must
wait for routing, using the processing time ts ird , computed in Equation 6.24 , as shown
in Figure 6.1 :

tw t ts

tw seconds second
ird ucd ird

ird

= −
= − =

,

. . .0 018461 0 0078 0 0107 ss.
 (6.25)

Mean Number of Packet Bits Being Processed for Upload Routing nsir

 Equation 6.26 is equivalent to the product of the probability of the Internet router
being busy , from Equation 6.21 , and the packet size d, as shown in Figure 6.1 :

ns
d

s

ns
Mbit/s bits

ir
uc ws

ir

ir

=
+()

=
+()

λ λ
μ

()
,

. . ()

()

0 328 5 25 1000

2 ((.)
. .

6 25
446 24

Mbit/s
bits=

 (6.26)

Mean Number of Packet Bits Waiting to be Processed for Routing

in the Upload Direction nwir

 If the result computed in Equation 6.26 is subtracted from the packet length d, the
number of packet bits waiting to be processed for routing in the upload direction
can be computed in Equation 6.27 , as shown in Figure 6.1 :

nw d ns

nw bits bits
ir ir

ir

= −
= − =

,

. . .1000 446 24 553 76
 (6.27)

158 Computer, Network, Software, and Hardware Engineering with Applications

Mean Number of Web Page Bits Being Processed for Download

Routing nsird

 Equation 6.28 is equivalent to the product of the probability of the Internet router
being busy , from Equation 6.21 , and the Web page size p, for s = 2 servers as shown
in Figure 6.1 :

ns
p

s

ns
Mbit/s bits

ird
uc ws

ir

ird

=
+()

=
+()

λ λ
μ

()
,

. . (,0 328 5 25 96 928))

()(.)
, .

2 6 25
43 253

Mbit/s
bits=

 (6.28)

Mean Number of Web Page Bits Waiting for Download Routing nwird

 Equation 6.29 is computed by subtracting the result in Equation 6.28 from the Web
page size p, as shown in Figure 6.1 :

nw p ns

nw bits bits
ird ird

ird

= −
= − =

,

, , , .96 928 43 253 53 675
 (6.29)

Domain Name System (DNS)

 Only the upload equations are computed because once the user computer has
obtained an IP address from the DNS, it can be used for downloading a Web page.
Note that because the DNS computations are mean values, a fraction of a packet
(i.e., number of bits) would be computed for name - to - IP address translation, as
opposed to an entire packet, which is the case in actual translations.

Probability of Domain Name System Being Busy ρns

 This probability is the ratio of packet arrival rate λuc to the DNS user computer
name to IP address translation rate , s μns , shown in Equation 6.30 , where s = 3 is
the required number of DNS servers. This probability and the DNS servers are
shown in Figure 6.1 :

ρ
λ
μ

ρ

ns
uc

ns

ns

s

Mbit/s

Mbit/s

=

= =

,

.

()(.)
. .

0 328

3 0 143
0 7646

 (6.30)

Mean Processing Time tsns

 This is the mean time required for a DNS in Figure 6.1 to do an address translation
for a packet of size d, as given in Equation 6.31 , where again, the computation must
account for multiple servers:

Future Internet Performance Models 159

ts
d

s

ts
bits

bits/s
seconds

ns
ns

ns

=

= =

μ
,

()(,)
. .

1000

3 143 000
0 0023

 (6.31)

Mean Wait Time twns

 This is the mean time a user computer Web page request packet must wait in the
DNS queue prior to name - to - IP address translation in Figure 6.1 , computed in Equa-
tion 6.32 , as given by the packet upload time from Equation 6.1 , and the DNS
processing time , as computed in Equation 6.31 :

tw t ts

tw seconds seconds
ns uc ns

ns

= −
= − =

,

. . . .0 003049 0 0023 0 000749
 (6.32)

Mean Number of Packet Bits Being Processed for Name

Translation nsns

 Equation 6.33 is equivalent to the product of the probability of the DNS being busy ,
from Equation 6.30 , and the packet size d, as shown in Figure 6.1 :

ns
d

s

ns
Mbit/s bits

Mbi

ns
uc

ns

ns

= ()

= ()

λ
μ

()
,

. ()

()(.

0 328 1000

3 0 143 tt/s
bits

)
. .= 764 57

 (6.33)

Mean Number of Packet Bits Having to Wait for Name

Translation nwns

 This quantity, computed in Equation 6.34 , is the difference between packet size d
and the number of bits being processed by the DNS from Equation 6.33 , as shown
in Figure 6.1 :

nw d ns

nw bits
ns ns

ns

= −
= − =

,

. . .1000 764 57 235 43
 (6.34)

Web Server Processing

 Some quantities involving Web pages were previously computed. This section pro-
vides computations for Web server processing (e.g., probability of server busy) for
both the wired system (Fig. 6.1) and the wireless system upload Web page request
(Fig. 6.2), and the wireless download Web page response (Fig. 6.3).

Probability of Web Server Being Busy ρws

 For wired systems, this probability is the ratio of the sum of the Web page wired
system request packet upload rate , λuc , and the Web page download rate , λws , to the

160 Computer, Network, Software, and Hardware Engineering with Applications

Web page processing rate , s μws , as shown in Figure 6.1 . For wireless systems, this
probability is the sum of the Web page wireless system request rate , λwb , and the
Web page download rate , λws , to the Web page processing rate , s μws , shown in Equa-
tion 6.35 , where s is the number of Web servers. Note that in the case of the wireless
system, twice as many servers (six) are required to maintain queue stability (i.e.,
ρws < 1.0) than in the case of the wired system (three), due to the high Web page
wireless system request rate , λwb , as shown in Figures 6.2 and 6.3 :

ρ
λ λ

μ

ρ
λ λ

μ

ws
uc ws

ws

ws
wb ws

ws

s
wired system

s
wireless

=
+()

=
+()

(),

(system

Mbit/s

Mbit/s
wws

),

. .

()(.)
. (ρ =

+() =
0 328 5 25

3 2 4185
0 7688 iired system

Mbit/s

Mbit/s
ws

),

. .

()(.)
.ρ =

+() =
7 20 5 25

6 2 4185
0 85800 ().wireless system

 (6.35)

Wired and Wireless Systems Mean Upload Processing Time tsws

 This is the mean time required for the Web servers to process requests for Web pages
received from the user computers, as computed in Equation 6.36 , for wired system
packet size d and number of servers s = 3 (Fig. 6.1) and wireless system packet size
wb and number of servers s = 6 (Fig. 6.2):

ts
d

s
ts

wb

s

ts
bits

bits/s

ws
ws

wsb
ws

ws

= =

= =

μ μ
, ,

()(, ,)

1000

3 2 418 500
00 000138

100

. (),

(

seconds three-server wired system

ts
bits

wsb =
66 2 4185

0 000006891
)(.)

. (
Mbit/s

s six-server wireless system= μ)).
 (6.36)

Wired and Wireless Systems Mean Download Processing Time tswsd

 This is the mean time required by the Web servers to provide the Web pages
requested by wired user computers (Fig. 6.1) and wireless mobile devices (Fig. 6.3),
as computed in Equations 6.37 and 6.38 , respectively, for Web pages of size p, again
accounting for multiple servers:

ts

p

s

bits

bits/s for three-server w
wsd

ws

= =
μ

96 928

3 2 418 500

,

* , , iired system

seconds= 0 013359. ,

 (6.37)

ts

p

s

bits

bits/s for six-server wir
wsd

ws

= =
μ

96 928

6 2 418 500

,

* , , eeless system

seconds= 0 00667695. .

 (6.38)

Future Internet Performance Models 161

Wired and Wireless Systems Mean Upload Wait Time twws

 This is the mean time a wired system user computer request for a Web page, and a
wireless system mobile device request for a Web page, must wait in a Web server
queue to be processed in Figures 6.1 and 6.2 , respectively, as computed by Equation
 6.39 , using the Web page upload time from Equation 6.1 and the wired and wireless
processing times from Equation 6.36 :

Wired system tw t ts wireless system tw t tsws uc ws wsb uc wsb: ; := − = − ,,

. . (tw seconds seconds wired systemws = − =0 003049 000138 0 002911)),

. . . (tw seconds seconds wirelwsb = − =0 003049 0 000006891 0 003042 eess system).
 (6.39)

Wired and Wireless Systems Mean Download Wait Time twwsd

 This is the mean time Web pages must wait in the Web server queue prior to being
downloaded to user computers (Fig. 6.1) and mobile devices (Fig. 6.3), using the
Web page download time from Equation 6.2 and the mean download processing
times from Equations 6.37 and 6.38 :

tw t ts

tw seconds se
wsd ucd wsd

wsd

= −
= − =

,

. . .0 018462 0 013359 0 005103 cconds wired system

tw secondswsd

(),

. . .= − =0 018462 0 00667695 0 001117835 seconds wireless system().
 (6.40)

Wired System Mean Number of Web Page Request Bits Being

Processed for Upload nsws

 Equation 6.41 is equivalent to the product of the probability of a Web server being
busy (Eq. 6.35), Web page packet request size d, and s = 3 servers, in the wired
system in Figure 6.1 :

ns
d

s

ns
Mbit/s bits

Mbi

ws
ws

ws

ws

= ()

= ()

λ
μ

()
,

. ()

()(.

5 25 1000

3 2 4185 tt/s
bits.

)
.= 723 59

 (6.41)

Wireless System Mean Number of Web Page Request Bits Being

Processed for Upload nswsb

 Equation 6.42 is equivalent to the product of the probability of a Web server being
busy (Eq. 6.35), and the wireless Web page packet request size wb, using s = 6
servers, in Figure 6.2 :

 ns
wb

s

Mbit/s bits

Mbit/s
wsb

ws

ws

= () = ()λ
μ

() . ()

()(.)

5 25 100

6 2 4185
== 36 1795. .bits (6.42)

162 Computer, Network, Software, and Hardware Engineering with Applications

Wired and Wireless System Mean Number

of Web Page Bits Being Processed for Download nswsd

 Equation 6.43 is equivalent to the product of the probability of a Web server being
busy (Eq. 6.35) and the Web page size p. This equation applies to both the wired
and wireless systems in Figures 6.1 and 6.2 , respectively, noting the different number
of servers used in the wired and wireless systems:

ns =
p

s

ns
Mbit/s bits

wsd
ws

ws

wsd

λ
μ

()

= ()

()
,

. (,)

()(.

5 25 96 928

3 2 41855
70 136

5 2

Mbit/s
bits wired system three servers

nswsd

)
, (),

.

=

=
55 96 928

6 2 4185
35 068

Mbit/s bits

Mbit/s
bits wireles

() =
(,)

()(.)
, (ss system six servers,).

 (6.43)

Wired System Mean Number of Web Page Bits Having to Wait for

Upload Processing by a Web Server nwws

 This quantity is the difference between Web page packet request size d and the
number of bits being processed by a Web server in the upload direction, which is
computed in Equation 6.44 . This equation applies to the wired system (Fig. 6.1):

nw d ns

nw bits bits
ws ws

ws

= −
= − =

,

. . .1000 723 59 276 41
 (6.44)

Wireless System Mean Number of Web Page Bits Having to Wait for

Upload Processing by a Web Server nwwbd

 Equation 6.45 is the difference between wireless Web page packet request size wb and
the number of bits being processed by a Web server in the upload direction, which is
computed in Equation 6.41 . This equation applies to the wireless system (Fig. 6.2):

nw wb ns

nw bits bits
wbd wsd

wbd

= −
= − =

,

. . .100 72 359 27 641
 (6.45)

Wired and Wireless System Mean Number of Web Page Bits Having

to Wait for Download Processing by a Web Server nwwsd

 This quantity is the difference between Web page size p and the number of bits being
processed by a Web server, which is computed in Equation 6.46 . This equation
applies to both the wired (Fig. 6.1) and wireless systems (Fig. 6.3), but note the
different results due to the difference in processing time caused by difference in
number of servers:

nw p nc

nw bits wired system
wsd ws

wsd

= −
= − =

,

, , , (),96 928 70 136 26 792

nnw bits wireless systemwsd = − =96 928 35 068 61 860, , , ().

 (6.46)

Future Internet Performance Models 163

Present Internet Wireless Backbone

 In this section, the important contribution of data traffi c generated by handheld
devices, communicating via the wireless backbone with the Internet, is assessed.
The importance of this data traffi c, and its attendant storage requirement, can be
seen by examining the high traffi c rates documented in Table 6.1 . See Figure 6.2
(upload) and Figure 6.3 (download) for the logic sequences.

Mobile Device

Mean Wireless Packet Upload Time twb

 This is the mean time required to upload a wireless backbone packet of size wb at
an upload rate of λwb in Figure 6.2 :

t
wb

t
bits

Mbit/s
s

wb
wb

wb

=

= =

λ

μ

,

.
. .

100

7 2
13 889

 (6.47)

Access Point

Probability of Access Point Being Busy ρap

 This probability is the ratio of the sum of wireless packet upload rate λwb and Web
page download rate λws to the access point processing rate μap in Figures 6.2 and 6.3 :

ρ
λ λ

μ

ρ

ap
wb ws

ap

ap

Mbit/s

Mbit/s

=
+()

=
+() =

,

. .

.
. .

7 2 5 25

17 75
0 7014

 (6.48)

Mean Access Point Processing Time in the Upload Direction tsap

 This is the mean time required for the access point to process a wireless backbone
packet of size wb at a processing rate of μap in the upload direction in Figure 6.2 :

ts wb ,

ts bits/ Mbit/s s

ap ap

ap

=
= =

/

. . .

μ
μ100 17 75 5 6338

 (6.49)

Mean Access Point Queue Wait Time in the Upload Direction twap

 This is the mean time a wireless backbone packet — transmitted in the upload
direction— must wait to be processed by the access point in Figure 6.2 . Equation

164 Computer, Network, Software, and Hardware Engineering with Applications

 6.50 uses the wireless packet upload time from Equation 6.47 and the access point
processing time from Equation 6.49 :

tw t ts

tw s s

ap wb ap

ap

= −
= − =

,

. . . .13 889 5 6338 8 2552μ μ
 (6.50)

Mean Access Point Processing Time in the Download

Direction tsapd

 This is the mean time required for the access point to process the Web page in the
download direction, using the Web page of size p and the access point processing
rate μap in Equation 6.51 , as shown in Figure 6.3 :

ts p ,

ts bits Mbit/s seconds

apd ap

apd

=
= =

/

, / . . .

μ
96 928 17 75 0 0055

 (6.51)

Mean Access Point Queue Wait Time in the Download Direction twapd

 This mean time, computed in Equation 6.52 , using Web page download time t ucd and
the processing time computed in Equation 6.51 , is the time the Web page must wait
in the access point queue prior to being processed, as shown in Figure 6.3 :

tw t ts

tw seconds second

apd ucd apd

apd

= −
= − =

,

. . .0 018461 0 0055 0 0130 ss.
 (6.52)

Mean Number of Wireless Packet Bits Being Processed in

the Upload Direction by the Access Point nsap

 This computation is made in Equation 6.53 by computing the probability of the
access point being busy (λwb + λws)/ μap , from Equation 6.48 , and multiplying it by
the size of the wireless packet size wb, as shown in Figure 6.2 :

ns
wb

ns
Mbit/s bits

M

ap
wb ws

ap

ap

=
+()

=
+()

λ λ
μ

()
,

. . ()

.

7 2 5 25 100

17 75 bbit/s
bits= 70 14. .

 (6.53)

Mean Number of Wireless Packet Bits Waiting to be Processed

in the Upload Direction by the Access Point nwap

 Equation 6.54 is computed by subtracting the number of wireless packet bits being
processed in the upload direction, computed in Equation 6.53 , from the wireless
packet size wb, as shown in Figure 6.2 :

nw wb ns

nw bits bits

ap ap

ap

= −
= − =

,

. . .100 70 14 29 86
 (6.54)

Future Internet Performance Models 165

Mean Number of Web Page Bits Being Processed in the Download

Direction by the Access Point nsapd

 This computation is made by computing the probability of the access point being
busy (λwb + λws)/ μap , derived from Equation 6.48 , and multiplying it by the size of
the Web page size p, as shown in Figure 6.3 :

ns
p

ns
Mbit/s bits

apd
wb ws

ap

apd

=
+()

=
+()

λ λ
μ

()
,

. . (,)7 2 0 328 96 928

177 75
41 108

.
, .

Mbit/s
bits=

 (6.55)

Mean Number of Web Page Bits Having to Wait for Processing in the

Download Direction by the Access Point nwapd

 Equation 6.56 computes the number of Web page bits having to wait to be processed
by the access point by subtracting the Web page bits being processed in Equation
 6.55 from the Web page size p, as shown in Figure 6.3 :

nw p ns

nw bits bits

apd apd

apd

= −
= − =

,

, , , .96 928 41 108 55 820
 (6.56)

Internet Router

 The Internet router computations in the succeeding sections are shown in Figure 6.2
(upload) and Figure 6.3 (download).

Probability of Internet Router Being Busy Processing

Wireless Packet ρir

 Equation 6.57 expresses the probability that the Internet router will be occupied
processing the wireless Web page request packet, transmitted at a rate λwb in the
upload direction, plus being busy when the Web page is downloaded at a rate λws ,
and the router processes at a rate μir , and the number of routers s = 2, as shown in
Figures 6.2 and 6.3 :

ρ
λ λ

μ

ρ

ir
wb ws

ir

ir

s

Mbit/s

Mbit/s

=
+()

=
+() =

()()
,

. .

()(.)

7 2 5 25

2 6 25
00 996. .

 (6.57)

Mean Time a Wireless Packet Spends Being Processed for

Routing by the Internet Router in the Upload Direction tsir

 Equation 6.58 computes this mean time by dividing the wireless packet of size wb
by the Internet router processing rate (s)(μir) as shown in Figure 6.2 :

166 Computer, Network, Software, and Hardware Engineering with Applications

ts
wb

s

ts
bits

Mbit/s
s

ir
ir

ir

=

= =

()()
,

()(.)
.

μ

μ
100

2 6 25
8

 (6.58)

Mean Time a Wireless Packet Spends Waiting to be Processed for

Routing by the Internet Router in the Upload Direction twir

 Equation 6.59 is computed by subtracting the processing time computed in Equation
 6.58 from the wireless packet upload time t wb , as shown in Figure 6.2 :

tw t ts

tw t ts s s
ir wb ir

ir wb ir

= −
= − = − =

,

. . .13 889 8 5 889μ μ
 (6.59)

Mean Time a Web Page Requested by a Wireless Packet Spends

Being Processed for Routing by the Internet Router in the Download

Direction tsird

 Equation 6.60 computes the mean processing time by dividing the Web page of size
p by the Internet router processing rate (s)(μir),as shown in Figure 6.3 :

ts
p

s

ts
bits

Mbit/s
seco

ird
ir

ird

=

= =

()()
,

,

()(.)
.

μ
96 928

2 6 25
0 0078 nnds.

 (6.60)

Mean Time a Wireless Packet Spends Waiting to be Processed for

Routing by the Internet Router in the Download Direction twird

 This mean time is computed by subtracting the processing time, computed in Equa-
tion 6.60 , from the Web page download time t ucd , as shown in Figure 6.3 :

tw t ts

tw seconds second
ird ucd ird

ird

= −
= − =

,

. . .0 018461 0 0078 0 0107 ss.
 (6.61)

Mean Number of Wireless Packet Bits Being Routed in the Upload

Direction nsir

 This quantity is computed in Equation 6.62 by multiplying the probability of the
Internet router being busy, from Equation 6.57 , by the wireless packet size wb, as
shown in Figure 6.2 :

ns
wb

s

ns
Mbit/s bits

ir
wb ws

ir

ir

=
+()

=
+()

λ λ
μ

()

()()
,

. . ()

(

7 2 5 25 100

22 6 25
99 6

)(.)
. .

Mbit/s
bits=

 (6.62)

Future Internet Performance Models 167

Mean Number of Wireless Packet Bits Having to Wait for Routing in

the Upload Direction by the Internet Router nwir

 This quantity is computed in Equation 6.63 by subtracting the number of bits being
processed, computed in Equation 6.62 , from the wireless packet size wb, as shown
in Figure 6.2 :

 nw wb ns bits bitsir ir= − = − =100 99 6 0 4. . (6.63)

Mean Number of Web Page Bits Being Processed in the Download

Direction by the Internet Router nsird

 Equation 6.64 is computed by multiplying the probability of the Internet router being
busy, derived from Equation 6.57 , by the Web page size p, as shown in Figure 6.3 :

ns
s

p

ns
Mbit/s

M

ird
wb ws

ir

ird

=
+()

=
+()

λ λ
μ()()

(),

. .

()(.

7 2 5 25

2 6 25 bbit/s
bits bits

)
(,) , .96 928 96 540=

 (6.64)

Mean Number of Web Page Bits Having to Wait for Routing in the

Download Direction by the Internet Router nwird

 This quantity is computed in Equation 6.65 by subtracting the number of Web page
bits being processed for routing, computed in Equation 6.66 , from the Web page
size p, as shown in Figure 6.3 :

nw p ns

nw bits bits
ird ird

ird

= −
= − =

,

, , .96 928 96 540 388
 (6.65)

Domain Name System (DNS)

 Only upload equations are computed because once the mobile device in Figure 6.2
has obtained an IP address from the DNS, it can be used for downloading a Web
page. Because the wireless upload rate of the mobile device in Figure 6.3 ,
λwb = 7.2 Mbit/s, is so much faster than the DNS processing rate, μns = 0.143 Mbit/s,
a buffer is used at the access point to slow the mobile device rate to a value that the
DNS can handle. This value, λns , called the DNS input rate, is computed in Equation
 6.66 by assuming that the probability of the DNS server busy ρns = 0.8 (i.e., as long
as a queue has ρ ≤ 0.8, the queue is considered stable), and using the DNS process-
ing rate μns . Note that because the DNS computations are mean values, a fraction of
a packet or Web page (i.e., number of bits) would be computed for translation:

λ ρ μ
λ

ns ns ns

ns

s

Mbit/s Mbit/s

=
= =

()()(),

(.)()(.) . .0 8 3 0 143 0 3432
 (6.66)

168 Computer, Network, Software, and Hardware Engineering with Applications

Mean Upload Time from Buffer of Wireless Packet to DNS tsns

 Since the DNS input rate has been computed in Equation 6.66 , now compute
the wireless packet upload time, ts ns , in Equation 6.67 , using the wireless packet
size wb. This is the upload time that results from using the DNS buffer in
Figure 6.2 :

ts
wb

ts
bits

Mbit/s
s

ns
ns

ns

=

= =

λ

μ

,

.
. .

100

0 3432
291 38

 (6.67)

Mean Processing Time for the DNS to Translate a Wireless Packet

Name to an IP Address tsns

 Equation 6.68 computes the name - to - IP address translation mean time for a wireless
packet, using the wireless packet size, wb, number of DNS servers, s, and DNS
processing rate, μns :

ts
wb

s

ts
bits

Mbit/s
s

ns
ns

ns

=

= =

()()
,

()(.)
. .

μ

μ
100

3 0 143
233 10

 (6.68)

Mean Time That a Wireless Packet Must Wait in the DNS Queue

Prior to Name -to-IP Address Translation twns

 This mean time is computed in Equation 6.69 by subtracting the processing time,
computed in Equation 6.68 , from the upload time, computed in Equation 6.67 , as
shown in Figure 6.2 .

tw tu ts

tw s s
ns ns ns

ns

= −
= − =

,

. . . .291 38 233 10 58 28μ μ
 (6.69)

Mean Number of Wireless Packet Bits That Are Processed for

Translation by the DNS nsns

 The number of wireless packet bits that are processed for translation is computed in
Equation 6.70 by multiplying the previously assumed probability of the DNS being
busy , ρns , by the wireless packet size wb. The result is shown in Figure 6.2 :

ns wb

ns bits bits
ns ns

ns

=
= =

()(),

(.)() .

ρ
0 8 100 80

 (6.70)

Future Internet Performance Models 169

Mean Number of Wireless Packet Bits That Are

Waiting for Translation by the DNS nwns

 The number of wireless bits waiting for translation is computed in Equation 6.71 by
subtracting the number of bits being processed, computed in Equation 6.70 , from
the wireless packet size wb. The result is shown in Figure 6.2 :

nw wb ns

nw bits bits
ns ns

ns

= −
= − =

,

.100 80 20
 (6.71)

SUMMARY OF QUEUING MODEL COMPUTATIONS
FOR PRESENT AND PROPOSED INTERNETS

 Now that the queuing model computations have been made for the present wired
and wireless Internets, it is time to summarize them in Table 6.2 (wired system) and
in Table 6.1 (wireless system) in order to identify the critical performance variables.
Also, the proposed wired and wireless Internet computations are shown in Tables
 6.4 and 6.5 , respectively. These computations are made in a later section entitled
“ Performance Analysis of Proposed Future Wired Internet, ” and are presented to
contrast with the present systems mean value performance results.

 Important results are shown at the bottom of each table: effective upload and
download processing rates. The effective rate includes all the delays encountered in
the various queues in the process of obtaining a Web page for the user computer or
mobile device. These results are the following:

 Table 6.2 : Effective processing rate for present wired Internet: 1.7936 Mbit/s.

 Table 6.3 : Effective processing rate for present wireless Internet: 2.0697 Mbit/s.

 Table 6.4 : Effective processing rate for proposed wired Internet: 113.35 Mbit/s.

 Table 6.5 : Effective processing rate for proposed wireless Internet: 2.0853 Mbit/s.

 Note that the effective rate of the proposed wired system is much greater than the
effective rate of the present wired system because the former is not subject to local
network, local router, and DNS delays. Also note that the effective rate of the pro-
posed wireless system is marginally greater than the effective rate of the present
wireless system because the former is not subject to the overhead introduced by the
DNS. This reduction in overhead is not nearly as signifi cant as the time saved by
eliminating several components in the case of the proposed wired system.

SIMULATION QUEUING MODELS

Local Network: Present Wired System

 In order to evaluate Internet performance, taking into account the variance in per-
formance variables, such as the variability in upload and download times, a series
of models is developed and designed to achieve this objective. The models include

Ta
bl

e
6.

2
 Su

m
m

ar
y

of
 Q

ue
ui

ng
 C

om
pu

ta
tio

ns
 f

or
 t

he
 P

re
se

nt
 W

ir
ed

 I
nt

er
ne

t
Sy

st
em

 (
M

ea
n

V
al

ue
s)

 V
ar

ia
bl

e
 C

om
po

ne
nt

 C

om
pu

ta
tio

n
 Fi

gu
re

(s
)

 Pa
ck

et
 u

pl
oa

d
tim

e
t u

c

 U
se

r
co

m
pu

te
r

 0.
00

30
49

 s
ec

on
ds

 Fi

gu
re

 6
.1

 W

eb
 p

ag
e

do
w

nl
oa

d
tim

e
t u

cd

 W
eb

 s
er

ve
r

 0.
01

84
62

 s
ec

on
ds

 Fi

gu
re

 6
.1

 Pr

ob
ab

ili
ty

 o
f

be
in

g
bu

sy
 ρ

L
n

 L

oc
al

 n
et

w
or

k
 0.

05
57

80

 Fi
gu

re
s

 6.
1

an
d

 6.
3

 U
pl

oa
d

pr
oc

es
si

ng
 t

im
e

ts
 Ln

 L

oc
al

 n
et

w
or

k
 0.

00
00

10
 s

ec
on

ds

 Fi
gu

re
 6

.1

 U
pl

oa
d

w
ai

t
tim

e
tw

 Ln

 L
oc

al
 n

et
w

or
k

 0.
00

30
39

 s
ec

on
ds

 Fi

gu
re

 6
.1

 D

ow
nl

oa
d

pr
oc

es
si

ng
 t

im
e

ts
 Ln

d

 L
oc

al
 n

et
w

or
k

 0.
00

96
92

8
se

co
nd

s
 Fi

gu
re

 6
.1

 D

ow
nl

oa
d

w
ai

t
tim

e
tw

 Ln
d

 L

oc
al

 n
et

w
or

k
 0.

00
17

49
 s

ec
on

ds

 Fi
gu

re
 6

.1

 N
um

be
r

of
 p

ac
ke

t
bi

ts
 b

ei
ng

 p
ro

ce
ss

ed
 i

n
th

e
up

lo
ad

di

re
ct

io
n

ns
 Ln

 L
oc

al
 n

et
w

or
k

 55
.8

 b
its

 Fi

gu
re

 6
.1

 N
um

be
r

of
 p

ac
ke

t
bi

ts
 w

ai
tin

g
to

 b
e

pr
oc

es
se

d
in

 t
he

up

lo
ad

 d
ir

ec
tio

n
nw

 Ln
 L

oc
al

 n
et

w
or

k
 94

4.
20

 b
its

 Fi

gu
re

 6
.1

 N
um

be
r

of
 w

eb
 p

ag
e

bi
ts

 b
ei

ng
 p

ro
ce

ss
ed

 i
n

th
e

do
w

nl
oa

d
di

re
ct

io
n

ns
 Ln

d

 L
oc

al
 n

et
w

or
k

 54
07

 b
its

 Fi

gu
re

 6
.1

 N
um

be
r

of
 w

eb
 p

ag
e

bi
ts

 h
av

in
g

to
 w

ai
t

to
 b

e
pr

oc
es

se
d

in
 t

he
 d

ow
nl

oa
d

di
re

ct
io

n
nw

 Ln
d

 L
oc

al
 n

et
w

or
k

 91
,5

21
 b

its

 Fi
gu

re
 6

.1

 Pr
ob

ab
ili

ty
 o

f
be

in
g

bu
sy

 ρ
L

r

 L
oc

al
 n

et
w

or
k

ro
ut

er

 0.
10

33

 Fi
gu

re
s

 6.
1

an
d

 6.
3

 U
pl

oa
d

pr
oc

es
si

ng
 t

im
e

ts
 Lr

 L

oc
al

 n
et

w
or

k
ro

ut
er

 18

.5
2

 μ s
 (

0.
00

00
18

52
 s

ec
on

ds
)

 Fi
gu

re
 6

.1

 U
pl

oa
d

w
ai

t
tim

e
tw

 Ln

 L
oc

al
 n

et
w

or
k

ro
ut

er

 30
39

 μ
 s

(0
.0

03
03

9
se

co
nd

s)

 Fi
gu

re
 6

.1

 D
ow

nl
oa

d
pr

oc
es

si
ng

 t
im

e
ts

 Ln
d

 L

oc
al

 n
et

w
or

k
ro

ut
er

 0.

00
09

69
28

 s
ec

on
ds

 Fi

gu
re

 6
.1

 D

ow
nl

oa
d

w
ai

t
tim

e
tw

 Ln
d

 L

oc
al

 n
et

w
or

k
ro

ut
er

 0.

00
17

49
 s

ec
on

ds

 Fi
gu

re
 6

.1

 N
um

be
r

of
 p

ac
ke

t
bi

ts
 b

ei
ng

 p
ro

ce
ss

ed
 i

n
th

e
up

lo
ad

di

re
ct

io
n

fo
r

ro
ut

in
g

ns
 Lr

 L
oc

al
 n

et
w

or
k

ro
ut

er

 6.
07

 b
its

 Fi

gu
re

 6
.1

170

 V
ar

ia
bl

e
 C

om
po

ne
nt

 C

om
pu

ta
tio

n
 Fi

gu
re

(s
)

 N
um

be
r

of
 p

ac
ke

t
bi

ts
 w

ai
tin

g
to

 b
e

pr
oc

es
se

d
in

 t
he

up

lo
ad

 d
ir

ec
tio

n
fo

r
ro

ut
in

g
nw

 Lr
 L

oc
al

 n
et

w
or

k
ro

ut
er

 99

3.
93

 b
its

 Fi

gu
re

 6
.1

 N
um

be
r

of
 w

eb
 p

ag
e

bi
ts

 b
ei

ng
 p

ro
ce

ss
ed

 f
or

 r
ou

tin
g

in

th
e

do
w

nl
oa

d
di

re
ct

io
n

ns
 Lr

d

 L
oc

al
 n

et
w

or
k

ro
ut

er

 94
24

 b
its

 Fi

gu
re

 6
.3

 N
um

be
r

of
 w

eb
 p

ag
e

bi
ts

 w
ai

tin
g

to
 p

ro
ce

ss
ed

 f
or

 r
ou

tin
g

in
 t

he
 d

ow
nl

oa
d

di
re

ct
io

n
nw

 Lr
d

 L
oc

al
 n

et
w

or
k

ro
ut

er

 87
,5

04
 b

its

 Fi
gu

re
 6

.1

 Pr
ob

ab
ili

ty
 o

f
be

in
g

bu
sy

 ρ
ns

 D

om
ai

n
N

am
e

Sy
st

em

 0.
76

46

 Fi
gu

re
 6

.1

 U
pl

oa
d

tr
an

sl
at

io
n

tim
e

ts
 ns

 D

om
ai

n
N

am
e

Sy
st

em

 0.
00

23
 s

ec
on

ds

 Fi
gu

re
 6

.1

 U
pl

oa
d

w
ai

t
tim

e
fo

r
tr

an
sl

at
io

n
tw

 ns

 D
om

ai
n

N
am

e
Sy

st
em

 0.

00
74

9
se

co
nd

s
 Fi

gu
re

 6
.1

 N

um
be

r
of

 p
ac

ke
t

bi
ts

 b
ei

ng
 t

ra
ns

la
te

d
in

 t
he

 u
pl

oa
d

di
re

ct
io

n
ns

 ns
 D

om
ai

n
N

am
e

Sy
st

em

 76
4.

57
 b

its

 Fi
gu

re
 6

.1

 N
um

be
r

of
 p

ac
ke

t
bi

ts
 h

av
in

g
to

 w
ai

t
fo

r
tr

an
sl

at
io

n
in

 t
he

up

lo
ad

 d
ir

ec
tio

n
nw

 ns
 D

om
ai

n
N

am
e

Sy
st

em

 23
5.

43
 b

its

 Fi
gu

re
 6

.1

 Pr
ob

ab
ili

ty
 o

f
be

in
g

bu
sy

 ρ
ir

 In
te

rn
et

 r
ou

te
r

 0.
44

62

 Fi
gu

re
s

 6.
1

an
d

 6.
3

 U
pl

oa
d

pr
oc

es
si

ng
 t

im
e

ts
 ir

 In

te
rn

et
 r

ou
te

r
 0.

00
00

80
 s

ec
on

ds

 Fi
gu

re
 6

.1

 U
pl

oa
d

w
ai

t
tim

e
tw

 ir

 In
te

rn
et

 r
ou

te
r

 0.
00

29
69

 s
ec

on
ds

 Fi

gu
re

 6
.1

 D

ow
nl

oa
d

pr
oc

es
si

ng
 t

im
e

ts
 ird

 In

te
rn

et
 r

ou
te

r
 0.

00
78

 s
ec

on
ds

 Fi

gu
re

 6
.3

 D

ow
nl

oa
d

w
ai

t
tim

e
tw

 ird

 In
te

rn
et

 r
ou

te
r

 0.
01

07
 s

ec
on

ds

 Fi
gu

re
 6

.3

 N
um

be
r

of
 p

ac
ke

t
bi

ts
 b

ei
ng

 p
ro

ce
ss

ed
 f

or
 r

ou
tin

g
in

 t
he

up

lo
ad

 d
ir

ec
tio

n
ns

 ir
 In

te
rn

et
 r

ou
te

r
 44

6.
24

 b
its

 Fi

gu
re

 6
.1

 N
um

be
r

of
 p

ac
ke

t
bi

ts
 w

ai
tin

g
to

 b
e

pr
oc

es
se

d
fo

r
ro

ut
in

g
in

 t
he

 u
pl

oa
d

di
re

ct
io

n
nw

 ir
 In

te
rn

et
 r

ou
te

r
 55

3.
76

 b
its

 Fi

gu
re

 6
.1

 N
um

be
r

of
 w

eb
 p

ag
e

bi
ts

 b
ei

ng
 p

ro
ce

ss
ed

 f
or

 r
ou

tin
g

in

th
e

do
w

nl
oa

d
ns

 ird
 In

te
rn

et
 r

ou
te

r
 43

,2
53

 b
its

 Fi

gu
re

 6
.1

(C
on

ti
nu

ed
)

171

 V
ar

ia
bl

e
 C

om
po

ne
nt

 C

om
pu

ta
tio

n
 Fi

gu
re

(s
)

 N
um

be
r

of
 w

eb
 p

ag
e

bi
ts

 w
ai

tin
g

fo
r

ro
ut

in
g

in
 t

he

do
w

nl
oa

d
di

re
ct

io
n

nw
 ird

 In
te

rn
et

 r
ou

te
r

 53
,6

75
 b

its

 Fi
gu

re
 6

.1

 Pr
ob

ab
ili

ty
 o

f
be

in
g

bu
sy

 ρ
w

s

 W
eb

 s
er

ve
r

 0.
76

88

 Fi
gu

re
 6

.1

 U
pl

oa
d

pr
oc

es
si

ng
 t

im
e

ts
 ws

 W

eb
 s

er
ve

r
 0.

00
01

38
 s

ec
on

ds

 Fi
gu

re
 6

.1

 U
pl

oa
d

w
ai

t
tim

e
tw

 ws

 W
eb

 s
er

ve
r

 0.
00

29
11

 s
ec

on
ds

.
 Fi

gu
re

 6
.2

 D

ow
nl

oa
d

pr
oc

es
si

ng
 t

im
e

ts
 ws

d

 W
eb

 s
er

ve
r

 0.
01

33
59

 s
ec

on
ds

 Fi

gu
re

 6
.1

 D

ow
nl

oa
d

w
ai

t
tim

e
tw

 ws
d

 W

eb
 s

er
ve

r
 0.

00
51

03
 s

ec
on

ds

 Fi
gu

re
 6

.1

 N
um

be
r

of
 w

eb
 r

eq
ue

st
 p

ac
ke

t
bi

ts
 b

ei
ng

 p
ro

ce
ss

ed
 i

n
th

e
up

lo
ad

 d
ir

ec
tio

n
ns

 ws
 W

eb
 s

er
ve

r
 72

3.
59

 b
its

 Fi

gu
re

 6
.1

 N
um

be
r

of
 w

eb
 r

eq
ue

st
 p

ac
ke

t
bi

ts
 w

ai
tin

g
to

 b
e

pr
oc

es
se

d
in

 t
he

 u
pl

oa
d

di
re

ct
io

n
nw

 ws
 W

eb
 s

er
ve

r
 27

6.
41

 b
its

 Fi

gu
re

 6
.1

 N
um

be
r

of
 w

eb
 p

ag
e

bi
ts

 b
ei

ng
 p

ro
ce

ss
ed

 f
or

 d
ow

nl
oa

d
ro

ut
in

g
ns

 ws
d

 W
eb

 s
er

ve
r

 70
,1

36
 b

its

 Fi
gu

re
 6

.1

 N
um

be
r

of
 w

eb
 p

ag
e

bi
ts

 w
ai

tin
g

fo
r

do
w

nl
oa

d
ro

ut
in

g
nw

w
sd

 W
eb

 s
er

ve
r

 26
,7

92
 b

its

 Fi
gu

re
 6

.1

 To
ta

l
de

la
y

tim
e

 0.
05

45
99

 s
ec

on
ds

 W

eb
 r

eq
ue

st
 p

ac
ke

t
le

ng
th

 +
 W

eb
 p

ag
e

le
ng

th

 10
00

 +
 9

6,
92

8
 bi

ts
 =

 9
7,

92
8

 bi
ts

 E
ff

ec
tiv

e
w

ir
ed

up

lo
ad

/d
ow

nl
oa

d
pr

oc
es

si
ng

 r
at

e

 97
,9

28
 b

its
/0

.0
54

59
9

se
co

nd
s

 = 1
 .7

93
6

 M
bi

t/s

Ta
bl

e
6.

2
(C

on
ti

nu
ed

)

172

Future Internet Performance Models 173

Table 6.3 Summary of Queuing Computations for the Present Wireless Internet System
(Mean Values)

 Variable Component Computation Figure(s)

 Wireless packet upload
time t wb

 Mobile device 13.889 μ s (0.000013889
seconds)

 Figures 6.2
and 6.3

 Probability of access
point being busy ρap

 Access point 0.7014 Figure 6.3

 Access point processing
time in the upload
direction ts ap

 Access point 5.6338 μ s (0.0000056338
seconds)

 Figure 6.4

 Access point queue wait
time in the upload
direction tw ap

 Access point 8.2552 μ s (0.0000082552
seconds)

 Figure 6.4

 Access point processing
time in the download
direction ts apd

 Access point 0.0055 seconds Figures 6.2
and 6.3

 Access point queue wait
time in the download
direction tw apd

 Access point 0.0130 seconds Figures 6.2
and 6.3

 Number of wireless
packet bits being
processed in the
upload direction ns ap

 Access point 70.14 bits Figure 6.4

 Number of wireless
packet bits having to
wait to be processed in
the upload direction
nwap

 Access point 29.86 bits Figure 6.4

 Number of web page bits
being processed in the
download direction
nsapd

 Access point 41,108 bits Figures 6.2
and 6.3

 Number of web page bits
having to wait for
processing in the
download direction
nwapd

 Access point 55,820 bits Figures 6.2
and 6.3

 Time to translate
wireless packet name
to IP address tu ns

 Domain Name
System

 291.38 μ s (0.00029138
seconds)

 Figure 6.4

 Time wireless packet
waits for name - to - IP
address translation tw ns

 Domain Name
System

 58.28 μ s (0.00005828
seconds)

 Figure 6.4

(Continued)

174 Computer, Network, Software, and Hardware Engineering with Applications

 Variable Component Computation Figure(s)

 Number of wireless
packet bits that are
processed for
translation ns ns

 Domain Name
System

 80 bits Figure 6.4

 Number of wireless
packet bits that are
waiting for translation
nwns

 Domain Name
System

20 bits Figure 6.4

 Probability of being busy
processing wireless
packet ρir

 Internet router 0.996 Figures 6.2
and 6.3

 Time a wireless packet
spends in being
processed for routing
router in the upload
direction ts ir

 Internet router 8 μ s (0.000008 seconds) Figure 6.1

 Time a wireless packet
spends waiting to be
processed for routing
in the upload direction
twir

 Internet Router 5.889 μ s (0.000005889
seconds)

 Figure 6.4

 Time a wireless packet
spends being
processed for routing
in the download
direction ts ird

 Internet router 0.0078 seconds Figures 6.2
and 6.3

 Time a wireless packet
spends waiting to be
processed for routing
the download direction
twird

 Internet router 0.0107 seconds Figures 6.2
and 6.3

 Number of wireless
packet bits being
processed in the
upload direction ns ir

 Internet router 99.6 bits Figure 6.4

 Number of wireless
packet bits having to
wait for routing in the
upload direction nw ir

 Internet router 0.4 bits Figure 6.4

 Number of web page bits
being processed in the
download direction
nsird

 Internet router 96, 540 bits Figure 6.2

Table 6.3 (Continued)

Future Internet Performance Models 175

Table 6.3 (Continued)

 Variable Component Computation Figure(s)

 Number of web page bits
having to wait for
routing in the
download direction
nwird

 Internet router 388 bits Figures 6.2
and 6.3

 Probability of being busy
ρws

 Web server 0.8580 Figures 6.2
and 6.3

 Upload processing time
tsws

 Web server 0.00006891 seconds Figure 6.4

 Upload wait time tw ws Web server 0.002980 seconds Figure 6.4
 Download processing

time ts wsd

 Web server 0.0013359 seconds Figure 6.1

 Download wait time
twwsd

 Web server 0.005103 seconds Figure 6.5

 Number of web request
packet bits being
processed in the
upload direction ns ws

 Web server 723.59 Figure 6.1

 Number of web request
packet bits waiting to
be processed in the
upload direction nw ws

 Web server 276.41 Figure 6.1

 Number of web request
packet bits being
processed in the
download direction
nswsd

 Web server 35,068 bits Figure 6.3

 Number of web request
packet bits waiting to
be processed in the
download direction
nwwsd

 Web server 61,860 Figures 6.2
and 6.3

 Total delay time 0.046879137 seconds
 Web request

packet + web
page

 100 + 96,928 bits =
97,028 bits

 Effective
wireless upload/
download
processing rate

 97,028 bits/
0.046879137 seconds =
2.0697 Mbit/s

176 Computer, Network, Software, and Hardware Engineering with Applications

Table 6.4 Summary of Queuing Computations for the Future Wired Internet System (Mean
Values)

 Variable Component Computation Figure

 Packet upload time t uc User computer 0.000050 seconds Figure 6.15
 Web page download time t ucd Web server 605.8 μ s

(0.000006058
seconds)

 Figure 6.15

 Probability of being busy ρir Internet router 0.0900 Figure 6.15
 Upload processing time ts ir Internet router 0.5 μ s (0.0000005

seconds)
 Figure 6.15

 Upload wait time tw ir Internet router 49.5 μ s (0.0000495
seconds)

 Figure 6.15

 Download processing time ts ird Internet router 46.464 μ s
(0.000046464
seconds)

 Download wait time tw ird Internet router 557.336 μ s
(0.0000557336
seconds)

 Figure 6.15

 Number of packet bits being
processed for upload routing
nsir

 Internet router 640 bits Figure 6.17

 Number of packet bits waiting
to be processed for routing
in the upload direction nw ir

 Internet router 360 bits Figure 6.17

 Number of web page bits being
processed for download
routing ns ird

 Internet router 2055 bits

 Number of web page bits
waiting for download
routing nw ird

 Internet router 94,873 bits Figure 6.15

 Probability of being busy ρws Web server 0.02120 Figure 6.17
 Upload processing time ts ws Web server 0.11779 μ s (≈ 0

seconds)
 Figure 6.15

 Upload wait time tw ws Web server 49.88 μ s
(0.00004988
seconds)

 Figure 6.15

 Download processing time ts wsd Web server 11.417 μ s
(0.000011417
seconds)

 Figure 6.15

 Download wait time tw wsd Web server 594.383 μ s
(0.000594383
seconds)

 Figure 6.15

 Number of web request packet
bits being processed in the
upload direction ns ws

 Web server 20.21 bits Figure 6.17

Future Internet Performance Models 177

 Variable Component Computation Figure

 Number of web request packet
bits waiting to be processed
in the upload direction nw ws

 Web server 978.80 bits Figure 6.15

 Number of web page bits being
processed in the download
direction ns wsd

 Web server 2055 bits

 Number of web page bits
waiting to be processed in
the download direction nw wsd

 Web server 94,873 bits Figure 6.15

 Total delay time 0.0008639356
seconds

 Web request packet
length + Web
page length

 1000 + 96,928 bits
= 97,928 bits

 Effective wired
upload/download
processing rate

 97,928 bits/
0.0008639356
seconds =
113.35 Mbit/s

Table 6.4 (Continued)

each component of the Internet, where Figure 6.4 — the local network and router
present system simulation model — is the fi rst of these. Now, develop the equations
that will be implemented in computer programs (C ++) for each of the performance
variables, using the mean values previously computed. The mean values and associ-
ated probabilities are used to simulate the exponential distribution of the various
Internet prediction equations shown below. As opposed to mean values, the predic-
tion equations permit the variation in queuing model variables to be evaluated. The
local network and router simulation equations are shown in Figure 6.4 .

 The probabilities referred to below are generated by using the Excel random
number function RAND. The simulation program checks for the possibility of queue
being busy. If it is not busy, zero time is assigned for the wait time, rather than using
the wait time equations below. We can use the simulation program to monitor queue
status for the steady - state condition (i.e., wait time does not become excessive). If
steady state is not reached, as the load increases, it would be indicative of a poorly
performing Internet (e.g., ineffi cient routing).

Local Network Processing Times

 Starting with the packet upload processing time (Ts Ln) that we assume is exponen-
tially distributed, with probability P(Ts Ln) and mean processing rate μLn , Equation

178 Computer, Network, Software, and Hardware Engineering with Applications

Table 6.5 Summary of Queuing Computations for the Future Wireless Internet System
(Mean Values)

 Variable Component Computation

 Wireless packet upload time t wb Mobile device 13.889 μ s (0.000013889
seconds)

 Probability of access point being
busy ρap

 Access point 0.7014

 Access point processing time in
the upload direction ts ap

 Access point 5.6338 μ s (0.0000056338
seconds)

 Access point queue wait time in
the upload direction tw ap

 Access point 8.2552 μ s (0.0000082552
seconds)

 Access point processing time in
the download direction ts apd

 Access point 0.0055 seconds

 Access point queue wait time in
the download direction tw apd

 Access point 0.0130 seconds

 Number of wireless packet bits
being processed in the upload
direction ns ap

 Access point 70.14 bits

 Number of wireless packet bits
having to wait to be processed
in the upload direction nw ap

 Access point 29.86 bits

 Number of web page bits being
processed in the download
direction ns apd

 Access point 41,108 bits

 Number of web page bits having
to wait for processing in the
download direction nw apd

 Access point 55,820 bits

 Probability being busy
processing wireless packet ρir

 Internet router 0.9960

 Time a wireless packet spends
in being processed for routing
in the upload direction ts ir

 Internet router 8 μ s (0.000008 seconds)

 Time a wireless packet spends
waiting to be processed for
routing in the upload direction
twir

 Internet router 5.889 μ s (0.000005889
seconds)

 Time a wireless packet spends
being processed for routing in
the download direction ts ird

 Internet router 0.0078 seconds

 Time a wireless packet spends
waiting to be processed for
routing in the download
direction tw ird

 Internet router 0.0107 seconds

 Number of wireless packet bits
being processed in the upload
direction ns ir

 Internet router 99.6 bits

Future Internet Performance Models 179

 Variable Component Computation

 Number of wireless packet bits
having to wait for routing in
the upload direction nw ir

 Internet router 0.4 bits

 Number of web page bits being
processed in the download
direction ns ird

 Internet router 96,540 bits

 Number of web page bits having
to wait for routing in the
download direction nw ird

 Internet router 388 bits

 Probability being busy
processing wireless packet ρws

 Web server 0.8580

 Time a wireless packet spends
in being processed in the
upload direction ts wsb

 Web server 0.000006891 seconds

 Time a wireless packet spends
waiting to be processed in the
upload direction tw wsb

 Web server 0.003042 seconds

 Time a wireless packet spends
being processed in the
download direction ts wsd

 Web server 0.0013359 seconds

 Time a wireless packet spends
waiting to be processed in the
download direction tw wsbd

 Web server 0.005103 seconds

 Number of wireless packet bits
being processed in the upload
direction ns wsb

 Web server 72.359 bits

 Number of wireless packet bits
having to wait for processing
in the upload direction nw ws

 Web server 27.641 bits

 Number of web page bits being
processed in the download
direction ns wsd

 Web server 701 bits

 Number of web page bits having
to wait for processing in the
download direction nw wsd

 Web server 96,227 bits

 Total delay time 0.0465294580 seconds
 Web request

packet + Web
page

 100 + 96,928 bits = 97,028 bits

 Effective wireless
upload/download
processing rate

 97,028 bits/0.0465294580
seconds = 2.0853 Mbit/s

Table 6.5 (Continued)

180 Computer, Network, Software, and Hardware Engineering with Applications

Figure 6.4 Local network and router present wired system simulation model.

Generate n

Random

Numbers for

Probabilities

P(TsLn)

Compute Processing rate Lnμ

Packet Upload Processing Time

Processing rate wsμ

LndP(Ts)

Compute

Web Page Download
Processing Time

LnP(Tw)

P(TwLnd)

Compute

Web Page

Download Wait Time

Compute Time in

Local Network

T = TsLn + TsLnd + TwLn + TwLnd

Compute Packet

Upload Wait Time

 (If the queue is not busy, assign zero wait time)

Local Network

Local Network Router

Compute

Upload Processing Time

Generate n

Random

Numbers for

Probabilities

P(TsLr)

LrμProcessing rate

Processing rate

Lnμ

wsμ

Processing rate

Compute

Download Processing Time

Processing rate

Input Sample
Size n, Packet

Size d, and
Web Page

Size p

1

1

Compute

Load Wait Time

 (If the queue is not busy, assign zero wait time)

Processing rate Lrμ

wsμ

Compute

Download Wait Time

Processing rate wsμ

Compute Time in

Local Network Router

T = TsLr + TsLrd + TwLr + TwLrd

Develop Statistical
Distributions
of d and p

P(TsLrd)

P(TwLr)

P(TwLrd)

TsLn = (– —)(log[P(TsLn)/μln])*dμln

1

TwLnd = (– —–)(log[P(TwLn)/μws])*d

TsLnd = (– —–)(log[P(TsLnd)/μws])*pμws

1

μws

1

TwLnd = (– —–)(log[P(TwLnd)/μws])*pμws

1

TsLr = ((– —–)(log[P(TsLr)/μLr]))*dμws

1

TwLrd = ((– —–)(log[P(TwLrd)/μws]))*pμws

1

TwLr = ((– —–)(log[P(TwLr)/μLr]))*dμLr

1

TsLrd = ((– —–)(log[P(TsLrd)/μws]))*pμws

1

Future Internet Performance Models 181

 6.72 is formulated. Then, solve for Ts Ln in Equation 6.73 , which is the upload time
per packet, by including the packet size d in the formulation. The assumption of
exponential distribution is based on the likelihood that there will be signifi cantly
more short times than long times.

 P Ts eLn Ln
TsLn Ln() () ,()= −μ μ (6.72)

 Ts P Ts dLn
Ln

Ln Ln= −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

1

μ
μ(log[() /]) * . (6.73)

 In a similar vein, develop Equation 6.74 for the Web page download processing time
Ts Lnd , with probability P(Ts Lnd), mean processing rate μws , and Web page size p:

 Ts P Ts pLnd
ws

Lnd ws= −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

1

μ
μ(log[() /]) * . (6.74)

Local Network Wait Times

 Since wait times should follow the pattern of processing times, again assume the
exponential distribution for wait times. Thus, Equation 6.75 is produced for the
upload wait time, using the probability P(Tw Ln):

 Tw
1

P Tw dLn
Ln

Ln Ln= −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟μ

μ(log[() /]) * . (6.75)

 Lastly, in a similar fashion, the download wait time Tw Lnd is developed in Equa-
tion 6.76 :

 Tw
1

P Tw pLnd
ws

Lnd ws= −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟μ

μ(log[() /]) * . (6.76)

Local Network Wait Times Time in System

 Finally the time packets and Web pages in the system, waiting and being processed,
is computed in Equation 6.77 by adding Equations 6.73 – 6.76 .

 T Ts Ts Tw TwLn Lnd Ln Lnd= + + + . (6.77)

Packet Lengths Being Processed and Waiting for
Processing by Local Network

 Similar to the situation for service and wait times, the distribution of packet bits
being processed in the upload direction can be estimated by assuming an exponential
distribution (i.e., high probability of small packet lengths and low probability of
large packet lengths). The distribution of packet length bits is generated by statistical
software, such as Minitab, using the mean ns Ln , computed in Equation 6.8 .

182 Computer, Network, Software, and Hardware Engineering with Applications

 In an analogous fashion the distribution of packet length bits having to wait to
be processed in the upload direction is generated by statistical software, using the
mean nw Ln , computed in Equation 6.9 .

 Also account for the distribution of Web page length bits that are processed in
the download direction generated by statistical software, using the mean ns Lnd , com-
puted in Equation 6.10 . Correspondingly, generate the distribution of Web page
length bits that must wait to be processed in the download direction, using a mean
of nw Lnd , computed in Equation 6.11 .

Local Network Router: Present Wired System

 Similar to the approach used for the local network, equations for processing time,
wait time, and time in the system are developed for the local network router, using
different service and wait time probabilities, mean local network router processing
rate μLr , and mean Web page download processing rate μws . These equations are
shown in Figure 6.1 .

Processing Times

 Upload processing time, using packet size d:

 Ts
1

P Ts dLr
Lr

Lr Lr= −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟μ

μ(log[() /]) * . (6.78)

 Download processing time, using Web page size p:

 Ts
1

P Ts pLrd
ws

Lrd ws= −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟μ

μ(log[() /]) * . (6.79)

Wait Times

 Upload wait time, using packet size d:

 Tw
1

P Tw dLr
Lr

Lr Lr= −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟μ

μ(log[() /]) * . (6.80)

 Download wait time, using Web page size p:

 Tw
1

P Ts pLrd
ws

Lrd ws= −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟μ

μ(log[() /]) * . (6.81)

Time in System

 Add Equations 6.78 – 6.81 to obtain time spent in local network router:

 T Ts Ts Tw TwLr Lrd Lr Lrd= + + + . (6.82)

Future Internet Performance Models 183

Packet Length Bits Being Routed and Waiting

for Routing by Local Network Router

 Once again, the distribution of packet length bits is generated using statistical
software— this time for the local network router, assuming an exponential distribu-
tion. To generate the upload packet length bits being routed, use the mean ns Lr from
Equation 6.17 . Correspondingly, generate the distribution of the packet length bits
that must wait to be routed in the upload direction by using the mean nw Lr from
Equation 6.18 .

 Also account for the distribution Web page bits that are routed in the download
direction generated by statistical software, using the mean ns Lrd computed in
Equation 6.19 . Correspondingly, generate the distribution of Web page bits that must
wait to be routed in the download direction, using the mean nw Lrd computed in
Equation 6.20 .

Internet Router: Present Wired System

 As before, processing time, wait time, and time in system are computed using the
simulation program and the Internet router upload processing rate μir and the Web
page download processing rate μws . The processing logic is shown in Figure 6.5 .

Processing Times

 Upload processing time, using packet size d:

 Ts
1

P Ts dir
ir

ir ir= −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟μ

μ(log[() /]) * . (6.83)

 Download processing time, using Web page size p:

 Ts
1

P Ts pird
ws

ird ws= −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟μ

μ(log[() /]) * . (6.84)

Wait Times

 Upload wait time using packet size d:

 Tw
1

P Tw *dir
ir

ir Lr= −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟μ

μ(log[() /]) . (6.85)

 Download wait time, using Web page size p:

 Tw
1

P Tw pird
ws

ird ws= −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟μ

μ(log[() /]) * . (6.86)

184 Computer, Network, Software, and Hardware Engineering with Applications

Figure 6.5 Internet router present wired system queuing model.

Develop Statistical

Distributions

of d and p

Input Sample

Size n, Packet

Size d, and

Web Page

Size p

Generate n

random

Numbers for

Probabilities

irP(Ts)

irdP(Ts)

irP(Tw)

irdP(Tw)

Compute

Packet Upload

Processing Time

Processing rate irμ

Compute

Web Page Download

Processing Time

Compute

Packet Upload

Wait Time

Processing rate wsμ

Processing rate irμ

Compute

Packet Download

Wait time

Processing rate wsμ

Compute

Time in Internet

Router

T = Tsir + Tsird + Twir + Twird

(If the queue is not busy, assign zero wait time)

(If the queue is not busy, assign zero wait time)

Tsi
r
 = ((– —–)(log[P(Ts

ir
)/μ

ir
]))*dμ

ir

1

Tsi
rd
 = ((– —–)(log[P(Ts

ird
)/μ

ws
]))*pμ

ws

1

Twi
r
 = ((– —–)(log[P(Tw

ir
)/μ

Lr
]))*dμ

ir

1

Twi
rd
 = ((– —–)(log[P(Tw

ird
)/μ

ws
]))*pμ

ws

1

Time in System

 Add Equations 6.83 – 6.86 to obtain time spent in Internet router:

 T Ts Ts Tw Twir ird ir ird= + + + . (6.87)

Packet Lengths Being Routed and Waiting for Routing by

the Internet Router

 Using the mean ns ir of the number of packet bits being processed for routing in the
upload direction from Equation 6.26 , statistical software is again called upon to
generate an exponential distribution of these data. Similarly, generate the distribution
of number of packet bits waiting for routing in the upload direction using the mean

Future Internet Performance Models 185

nwir from Equation 6.27 . Continuing in this vein, the corresponding download dis-
tributions are generated using the mean values ns ird , from Equation 6.28 , and nw ird ,
from Equation 6.29 .

Queue Effi ciency

 Because it is germane to simulation model analysis, we introduce the concept of
queue effi ciency. In addition to the various time, packet length, and Web page size
variables, queue effi ciency should be assessed for each Internet component (e.g.,
wired Internet router). Do this by computing an effi ciency metric, recognizing that
the queue count generated in the simulation models accounts for both upload and
download traffi c, where n is the number of Web page requests, nq is the queue count
(count of requests being processed plus requests waiting to be processed) for both
upload and download directions, and nd is the number of upload and download data
transfers in a sequence of Web page requests by an Internet component (e.g., Internet
router). For example, nd = 2 for an Internet router because it is involved in both
upload and download data transfers, whereas nd = 1 for a DNS because it is only
involved in upload data transfer. Then, queue effi ciency qe can be computed in
Equation 6.88 :

qe
Total number of upload and download Web data transfers

=
()) ()− Queue count

Total number of upload and download Web datta transfers

qe
nd*n nq

nd*n

nq

nd*n

,

()
.=

−
= −1

 (6.88)

 This metric can be used to pinpoint strengths and weaknesses in the ability of Inter-
net systems to process queue traffi c.

Domain Name System (DNS): Present System

 Consistent with the foregoing approaches, processing time, wait time, and time in
the system are developed for the DNS, using the appropriate processing and wait
time probabilities and the mean DNS processing rate μdn . The processing logic is
shown in Figure 6.6 .

Processing Time

 Ts
1

P Ts d using packet sins
dn

dn dn= −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟μ

μ(log[() /]) * , zze d. (6.89)

Wait Time

 Tw
1

P Tw d using packet sins
dn

dn dn= −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟μ

μ(log[() /]) * , zze d. (6.90)

186 Computer, Network, Software, and Hardware Engineering with Applications

Figure 6.6 DNS and access point present system simulation queuing model.

Develop a

Statistical

Distribution for

Wired Web

Page Request

Packet d

Generate DNS

Processing

and Wait

Time

Probability

dnP (Ts)

Processing rate

Compute

Packet

Translation

Processing

Time

Compute

Packet

Translation

Wait Time

Processing rate

dnμ

dnμ

(If queue not busy, assign zero wait time)

Compute

Time in DNS

T = Tsns + Twns

Input Wired

Web Page

Request

Packet d

Input Wireless

Web Page

Request

Packet wb and

Web Page p

Access Point

Domain Name Server (DNS)

Develop a

Statistical

Distribution for

Wireless Web

Page Request

Packet wb

and Web Page p

Generate

Access Point

Processing

and Wait

Time

Probability

apP(Ts)

Compute

Wireless

 Web Page

Request

Packet

Processing

Time

Processing rate apμ

Compute

Wireless

Web Page

Processing

Time

Processing rate apμ

Compute

Wireless

Web Page

Request Packet

Wait Time

Compute

Wireless

Web Page

Wait time

Processing rate

apμ apμ
Processing rate

Compute

Time in

Access Point

T = Tsap + Tw pd + Twapd

(If queue not busy, assign zero wait time)

ap + Tsa

Tsns = ((– —–)(log[P(Tsdn)/μdn]))*dμdn

1

Tsapd = ((– —–)(log[P(Tsapd)/μap]))*pμap

1

Tsap = ((– —–)(log[P(Tsap)/μap]))*wb

Twap = ((– —–)(log[P(Twap)/μap]))*wb

μap

1

μap

1
Twapd = ((– —–)(log[P(Twapd)/μap]))*pμap

1

Twns = ((– —–)(log[P(Twdn)/μdn]))*dμdn

1

Future Internet Performance Models 187

Time in System

 Add Equations 6.89 and 6.90 to obtain time spent in the DNS:

 T Ts Twns ns= + . (6.91)

Packet Bits Translated from Name -to-IP Address by the DNS and

Waiting for Translation

 Using the mean ns ns , from Equation 6.33 , of the number of packet bits being trans-
lated, statistical software is again called upon to generate an exponential distribution
of these data. Similarly, we generate the distribution of number of packet bits waiting
for translation, using the mean nw ns from Equation 6.34 .

Access Point: Present Wireless System

 For the wireless system, access point processing and wait times are computed using
the logic in Figure 6.6 , using the access point processing rate μap .

Processing Times

 This upload time accounts for the processing required to process Web packet size
wb, using the processing rate μap in Equation 6.92 :

 Tsap
1

P Ts wb
ap

ap ap= −
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟μ

μ(log[() /]) * . (6.92)

 Similarly, Equation 6.93 accounts for the time required in the download direction
to process Web page size p:

 Tsapd
1

P Ts p
ap

apd ap= −
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟μ

μ(log[() /]) * . (6.93)

Wait Tines

 Correspondingly, Equation 6.94 computes the wait time in the upload direction and
Equation 6.95 computes the wait time in the download direction:

 Twap
1

P Tw wb
ap

ap ap= −
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟μ

μ(log[() /]) * , (6.94)

 Twapd
1

P Tw p
ap

apd ap= −
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟μ

μ(log[() /]) * . (6.95)

188 Computer, Network, Software, and Hardware Engineering with Applications

Time in System

 Equation 6.96 computes the time in the system, accounting for both upload and
download processing and wait times:

 T Tsap Tsapd Twap Twapd= + + + . (6.96)

Wireless Packet Bits Processed by Access Point and Waiting for

Processing

 Using the mean ns ap , from Equation 6.53 , of the number of packet bits being pro-
cessed, statistical software is once again called upon to generate an exponential
distribution of these data. Similarly, generate the distribution of number of packet
bits waiting for processing, using the mean nw ap from Equation 6.54 .

Web Server Processing: Wired and Wireless

 Continuing the generation of processing time, wait time, and time in system, equa-
tions are developed for the Web servers, using the appropriate processing and wait
time probabilities, the mean Web server processing rate μws , the wired Web page
request packet size d, the Web page size p, and the wireless Web request packet size
wb. The processing logic is shown in Figure 6.7 .

Processing Times

 Wired upload, using wired packet size d:

 Ts P Ts dws
ws

ws ws= −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

1

μ
μ(log[() /]) * . (6.97)

 Wired and wireless download, using web page size p:

 Ts
1

P Ts pwsd
ws

wsd ws= −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟μ

μ(log[() /]) * . (6.98)

 Wireless upload, using wireless packet length wb:

 Ts
1

P Ts wbwsb
ws

wsb ws= −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟μ

μ(log[() /]) * . (6.99)

Wait Times

 The corresponding wait times are developed as follows:

 Tw
1

P Tw d wired uploadws
ws

ws ws= −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟μ

μ(log[() /]) * (), (6.100)

Future Internet Performance Models 189

Figure 6.7 Web server simulation queuing model (wired and wireless).

Input Wired

and Wireless

Web Page p

Input Wired

Web Page

Request

Packet d

Input

Wireless

Request

Packet wb

Generate

Web Server

Processing

and Wait Time

Probability

Develop

Statistical

Distributions

for d, p, and

wb

P(Tsws)

Compute

Wired Upload

Processing

Time

Processing rate μws

Compute

Wired and

Wireless

Download

Processing

Time

Processing rate μws

Compute

Wireless

Upload

Processing

Time

Processing rate μws

Compute

Wired Upload

Wait Time

Processing rate μws

(If queue empty, assign zero wait time)

Compute

Wired and

Wireless

Download

Wait Time

Processing rate μws

(If queue empty, assign zero wait time}

Compute

Wireless

Upload

Wait Time

Processing rate μws

(If queue empty, assign zero wait time}

T = Tsws + Tswsd + Tswsb +Twws + Twwsd + Twwsb

Compute

Time in

Web Servers

Tsws = ((– —–)(log[P(Tsws)/μws]))*dμws

1

Tswsd = ((– —–)(log[P(Tswsd)/μws]))*dμws

1

Tswsb = ((– —–)(log[P(Tswsb)/μws]))*wbμws

1

Twwsd = ((– —–)(log[P(Tswsd)/μws]))*pμws

1

Twwsb = ((– —–)(log[P(Twwsb)/μws]))*wbμws

1

Twws = ((– —–)(log[P(Twws)/μws]))*dμws

1

Tw
1

P Tw p wired and wirwsd
ws

wsd ws= −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟μ

μ(log[() /]) * (eeless download),
 (6.101)

Tw
1

P Tw wb wireless uplwsb
ws

wsb ws= −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟μ

μ(log[() /]) * (ooad). (6.102)

190 Computer, Network, Software, and Hardware Engineering with Applications

Time in System

 Time in the system for all three cases is computed by adding Equations 6.97 – 102:

 T Ts Ts Ts Tw Tw Twws wsd wsb ws wsd wsb= + + + + + . (6.103)

Web Page Lengths Being Processed and

Waiting for Processing by the Web Servers

 Using the mean ns ws , from Equation 6.41 , of the number of Web page bits being
processed in the download direction, the statistical software is again called upon to
generate an exponential distribution of these data. Similarly, we generate the distri-
bution of number of Web page bits waiting for processing in the download direction,
using the mean nw ws , from Equation 6.44 .

Summary of Simulation Model Computations

 The main benefi t of the C ++ simulation model results is to provide a comparison of
the performance and reliability of the present Internet with the proposed future
Internet. Thus, the following fi gures contrast the present with future Internet perfor-
mance; the latter is based on equations, queuing model diagrams, and simulation
logic diagrams that have been developed. In addition, we present additional results
that illustrate key performance characteristics of the present Internet. For example,
it is of interest to identify when the various Internet components achieve stability
as a function of number of uploads and downloads. This is illustrated in Figure 6.8 ,
where time in the present Internet system stabilizes (i.e., reaches steady state) after
n = 26 uploads and downloads. Thus, in this example, we would not be confi dent
of dependable performance until n > 26. Now, the shape of the plots is determined
by the assumption of exponentially distributed queue processing and wait times.
Other distributions could be assumed, which could result in different patterns, but
the important point is the effi cacy of the modeling methodology.

 Another interesting comparison is between the wired and wired present Internet
systems, again using time in the system as the basis of comparison. Figure 6.9 shows
an example in which the wireless has better performance (i.e., shorter time in the
system) because it is not encumbered by the overhead induced by the local network
and router required in the wired system (i.e., the wireless system access point is
much faster).

 Queue effi ciency computations identify the Internet components that are effi -
cient with respect to processing Internet traffi c — both upload and download — and
those that are ineffi cient, thus highlighting smooth traffi c fl ows and bottlenecks,
respectively. For example, Figure 6.10 shows that the proposed future wired Internet
is more effi cient than the present wired Internet. The reason for this, as shown in
Figure 6.10 , is the fact that queue count dominates the computation of queue effi -
ciency in Equation 6.87 , thus resulting in lower queue count and higher queue
effi ciency for the proposed future Internet components. By examining Figures 6.10

Future Internet Performance Models 191

Figure 6.8 Time in present wired Internet system T versus number uploads and downloads n.
Series 1: Local network. Series 2: Local network + local network router. Series 3: Local
network + local network router + Internet router. Series 4: Local network + local network
router + Internet router + DNS. Series 5: Local network + local network router + Internet
router + DNS + web server.

0.000000

1.000000

2.000000

3.000000

4.000000

5.000000

6.000000

0 10 20 30 40 50 60 70 80 90 100

n

T
 (

se
co

n
d

s)

Series 1

Series 2

Series 3

Series 4

Series 5

System stabilizes for n > 26

Figure 6.9 Time in present Internet system T versus number of uploads and downloads n. Series 1:
Wired system. Series 2: Wireless system.

0.000000

1.000000

2.000000

3.000000

4.000000

5.000000

6.000000

0 10 20 30 40 50 60 70 80 90 100

n

T
 (

se
co

n
d

s)

Series 1

Series 2

Wireless system does not suffer overhead caused by local network and router

192 Computer, Network, Software, and Hardware Engineering with Applications

and 6.11 , you can see that there is an inverse association between queue effi ciency
and queue count (i.e., small queue count leads to large queue effi ciency).

 Finally, we look at the patterns of data that wait to be processed by Internet
components. The rationale for this assessment is queue processing effi ciency from
the perspective of quantity of data waiting to be processed (i.e., stability) in Figure
 6.12 . This fi gure tells us that download processing of Web pages will eventually
deteriorate, and become unstable, as queue count increases. Figure 6.12 provides
another perspective: aided by the standard deviation that has been computed for each
component, we see that the wireless Web server has the highest standard deviation,
meaning that its distribution of queuing data has the most variability. This is due to
the great variety of mobile devices that connect to the Internet, resulting in the Web
server being less able to process data effi ciently than when responding to wired
system requests.

INTERNET RELIABILITY ANALYSIS

 Reliability is the probability of fault - free operation of an Internet component for a
specifi ed time in a specifi ed environment. A fault is an instance of any unanticipated
Internet component output (e.g., incorrect routing of a Web page request) caused by
errors in the component. Faults are the results of errors, which are design or coding
fl aws created inadvertently by hardware designers and programmers [NEU93] .

Figure 6.10 Queue effi ciency qe versus number of uploads and downloads. Series 1: Present wired
DNS. Series 2: Present wired local network router. Series 3: Present wired Internet router. Series 4:
Present Web server. Series 5: Present wireless access point. Series 6: Future wired Internet router.
Series 7: Future wired Web server.

0.000000

0.100000

0.200000

0.300000

0.400000

0.500000

0.600000

0.700000

0.800000

0.900000

1.000000

0 10 20 30 40 50 60 70 80 90 100

n

q
e Series 2

Series 3

Series 1

Series 4

Series 5

Series 6

Series 7

Lowest queue counts

Highest queue count

Next highest queue count

Low queue count

Low queue count

Queue efficiency significantly higher for future wired Internet

Future Internet Performance Models 193

Figure 6.11 Queue count nq versus number of uploads and downloads n. Series 1: Present wired
local network router. Series 2: Present wired Internet router. Series 3: Present wired Web server. Series
4: Present wired DNS. Series 5: Present wireless access point. Series 6: Future wired Internet router.
Series 7: Future wired Web server.

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

n

n
q

Series 1

Series 2

Series 3

Series 4

Series 5

Series 6

Series 7

Queue counts are significantly

lower with future wired Internet

Figure 6.12 Number of download bits waiting for processing and being processed Nwd + Nsd
versus queue count nq. Series 1: Present wired local network; standard deviation = 102301. Series 2:
Present wired local network router; standard deviation = 64914. Series 3: Present wired internet router;
standard deviation = 76006. Series 4: Present wireless web server; standard deviation = 108851.

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 10 20 30 40 50 60 70 80 90 100

nq

N
w

d
 +

 N
sd

Series 1

Series 2

Series 3

Series 4

Stable until nq = 5

Stable until nq = 11

Stable until nq = 45 Never stable: largest standard deviation

194 Computer, Network, Software, and Hardware Engineering with Applications

 Reliability modeling involves using fault data (e.g., records of faults occurring
per testing time of an Internet component) to fi t some parameters of a prediction
model, and then using this model to predict reliability of Internet components at a
future time. We can then determine when components will be ready for release to the
Internet, based on predicting when the number of faults and failures will drop below
a specifi ed threshold [FOO95] . Predicting the reliability of components means we can
estimate how many faults the Internet user is likely to encounter per unit time.

 Because Internet fault and failure data do not correspond to a theoretical distri-
bution (we made a test of the Poisson distribution of failures that failed), we fi t a
regression curve against the cumulative empirical data [FINK98] in Figure 6.13 that
yields a reasonable fi t of the upper bound by virtue of R 2 = 0.9447 and mean relative
error (MRE) = 0.1920. This source of fault and failure data [FINK98] does not break
the data down by component. Thus, Figure 6.13 represents the total present Internet
reliability in terms of cumulative faults and failures.

 When assessing Internet reliability — both present and proposed systems — it is
important to note the number of servers comprising a component in each part of the
Internet (e.g., number of Web servers comprising a Web site) because with multiple
servers, a degree of redundancy is provided, such that if one server fails, another can
be used. This fact is used in the reliability prediction equation to be developed.

Local Network and Router

 Local network failure data were obtained from Kalyanakrishnam et al. [KAL99] ,
involving Windows NT Local Area Network (LAN) systems. For a sample size of

Figure 6.13 Cumulative number of Internet faults and failures, F, versus time t. Series 1:
Empirical. Series 2: Predicted. MRE = 01920; R 2 = 0.9447.

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

t (months)

F

Series 1

Series 2

Upper bound

Future Internet Performance Models 195

1298, mean uptime = 354.6 hours and mean downtime = 1.97 hours, yielding a reli-
ability = 0.9945 (354.6/(354.6 + 1.97)). Local network router failure data were
obtained from reports about Cisco routers. For the Cisco 6500 router, 23 of the 805
routers failed, for a reliability 1 – (23/805) = 0.9714 [PAG] . The local network and
router comprise a single network because there is only a single router server, as
shown in Figure 6.1 . Thus, this network, lacking redundancy, has no backup capabil-
ity if a failure occurs.

Internet Router

 An Internet router reliability estimate based on 104 router outages out of a total of
1616 outages yields reliability = 1 – (104/1616) = 0.9356, as reported in the Inter-
domain Border Gateway Protocol data collection (01/98 ∼ 11/98) [LAB98] . The Inter-
net router uses two servers, thus providing a degree of redundancy against failures,
as shown in Figure 6.1 .

Domain Name System (DNS)

 The Domain Name System (DNS) is a ubiquitous part of everyday computing,
translating human - friendly machine names to numeric IP addresses. Most DNS
research has focused on server - side infrastructure, with the assumption that the
aggressive caching and redundancy on the client side are suffi cient. However,
through systematic monitoring, the authors found that client - side DNS failures are
widespread and frequent, degrading DNS performance and reliability [PAR] . In
support of this fi nding, we collected the following failure data:

 Number of successful DNS accesses: 5268. Number of failed DNS accesses: 153
(Cricket Liu ’ s Advisor, http://www.infoblox.com/services/cl_cookbook_5.14.cfm).
Reliability = 5268/(5268 + 153) = 0.9718.

 Successfully answered queries: 37,973. Failure responses: 348 (http://
www.daemon.be/maarten/dns.html). Reliability = 37,973/(37,973 + 348) = 0.9909.

 Total queries: 4,547,577. Total replies: 3,893,205. [PAP] . Reliability = 3,893,205/
4,547,577 = 0.8561.

Web Server

 The reliability for Web applications can be defi ned as the probability of failure - free
Web operation completions (i.e., successful completion of upload Web request and
download Web page delivery). We defi ne Web failures as the inability to correctly
obtain or deliver information, such as documents or computational results, requested
by Web users. This defi nition conforms to the standard defi nition of failures being
the behavioral deviations from user expectations [IEE90] . Based on this defi nition,
we can consider the following failure sources:

 Web server failures that prevent the delivery of requested information to Web
users.

196 Computer, Network, Software, and Hardware Engineering with Applications

 Web site content failures that prevent the acquisition of the requested
information by Web users because of problems such as missing or inacces-
sible fi les.

 Applying these defi nitions, we obtained failure data in terms of failures per hit,
where a hit is a successful access of Web server, from the School of Engineering,
Southern Methodist University, Dallas, Texas, USA (errors per hit = 0.09091) and
Unix desktop computers accessing Web servers (errors per hit = 0.0466). These data
yield reliability = (1 – 0.09091) = 0.90909 and (1 – 0.0466) = 0.9534, respectively
 [TIA04] .

 In our models, the number of Web servers varies depending on whether they
are used in a wired system (three servers) in Figure 6.1 or wireless system (six
servers) in Figure 6.3 . In both cases, reliability would be signifi cantly improved over
a single server system.

Access Point

 Given their convenience of user mobility, wireless networks are increasingly being
considered as the platform of choice for various applications. Critical applications,
such as health monitoring systems and so on, require the network to continue to
function even in the presence of faults. Unfortunately, current wireless networks are
notoriously prone to a number of problems, such as the loss of connectivity due to
user mobility combined with network failures, which makes it diffi cult to guarantee
their reliability. Today ’ s users are mostly content with their ability to access wired
networks conveniently from mobile devices, even if the access is unreliable.
However, as wireless networks become ubiquitous and start to support more critical
applications, users will expect wireless networks to provide the same guarantees of
reliability as their wired counterparts. Furthermore, providing wireless networks
with a certain degree of reliability will lead to more opportunities for wireless car-
riers to provide applications that can be run satisfactorily on mobile devices. Some
authors [GAN03] propose the signal - to - noise ratio as the metric to identify access
point failures. Unfortunately, they do not provide actual failure data that can be used
in our study.

 In a study of digital cellular systems [TIP02] , call blocking probability (i.e., the
chance that due to heavy wireless traffi c, calls will be blocked) was estimated. The
blocking probabilities range from a minimum of 0.0385 to a maximum of 0.226,
yielding from reliability = (1 – 0.0385) = 0.9615 to reliability = (1 – 0.226 = 0.774),
respectively.

 In our model, only a single access point is used because only a single mobile
device accesses the wired network, via the access point, as shown in Figure 6.3 . Of
course, in the real Internet, there are many mobile devices and access points that
would impose additional load on the Internet. However, our goal is not to model the
total Internet, which would be infeasible. Rather, our objective is compar e the
present Internet with the proposed Internet. In each case, our access point confi gura-
tion is the same.

Future Internet Performance Models 197

Present Wired Internet System

 Now use the above reliabilities to predict both the present and proposed Internet
component reliability R c in Equation 6.104 [SHO83] , where R is the reported server
reliability (e.g., 0.9945 for local network), 1 – R is the server unreliability, and n is
the number of servers for a given component. Then, to obtain the Internet system
reliability R s in Equation 6.105 , the component reliabilities are multiplied, refl ecting
the fact that Internet components operate in series. To apply R c to the entire Internet
would be incorrect because each component comprises a separate confi guration of
servers, where the components operate in series. Thus, R c is applied to each com-
ponent, and then R s is applied to the entire Internet.

 These equations take into account the use of multiple servers for some Internet
components in our model.

 R Rc
n= − −1 1() , (6.104)

 R Rs c

i

N

=
=

∏
1

. (6.105)

 We proceed by fi rst listing the server reliabilities, which were described above, for
the wired system and the number of servers that a given component uses, where for
components that have multiple reported server reliabilities, only the minimum and
maximum values are used in order to provide a range of Internet reliability
predictions:
Local network : 0.9945, n = 1 server:

 R Rc = = 0 9945. .

Local network router : 0.9714, n = 1 server:

 R Rc = = 0 9714. .

Domain Name Server (DNS) : 0.8561, 0.9718, 0.9909, n = 3 servers:

 R minimumc = − − =1 1 0 8561 0 997023(.) . (),

 R maximumc = − − =1 1 0 9909 0 999993(.) . ().

Internet router : 0.9356, n = 2 servers:

 Rc = − − =1 1 0 9356 2 0 99585(.) . .

Web server : 0.9091, 0.9534, n = 3 servers:

 R minimumc = − − =1 1 0 9091 3 0 99925(.) . (),

 R maximumc = − − =1 1 0 9534 3 0 99990(.) . ().

198 Computer, Network, Software, and Hardware Engineering with Applications

 Then, applying equation R s to the components in series:

 R minimums = =0 9945 0 9714 0 99702 0 99585 0 99925 0 95846. * . * . * . * . . (),

 R maximums = =0 9945 0 9714 0 99999 0 99585 0 99990 0 96194. * . * . * . * . . ().

 Thus, the reliability of the present wired system is predicted to be between 0.95846
and 0.96194 .

Present Wireless Internet System

 To obtain the reliability estimates for the wireless system, we need only to factor in
the access point reliability estimates (0.774, 0.9615) to the results for R s computed
above, as follows:

 R minimums = =0 95846 0 774 0 74184. * . . (),

 R maximums = =0 96194 0 9615 0 92491. * . . ().

 Thus, present wireless system reliability is predicted to range between 0.74184 and
0.92491. These results, combined with the total Internet cumulative faults and fail-
ures in Figure 6.13 , provide a comprehensive picture of present Internet reliability.
Figure 6.13 has the desirable feature of predicting an upper bound on total Internet
cumulative faults and failures. Thus, we are assured that it is highly unlikely that
reliability will be any worse than the upper bound. The overall picture that emerges
suggests that considerable improvement in reliability is needed, particularly with
regard to the wireless system.

Proposed Wired Internet System

 The equations for R c and R s are now applied to the proposed wired Internet system.
Recall that the proposed wired system does not include local network, local network
router, and DNS. Therefore, the following component reliabilities are used:
Internet router : 0.9356, n = 2 servers:

 Rc = − − =1 1 0 9356 2 0 99585(.) . .

Web server : 0.9091, 0.9534, n = 3 servers:

 Rc = − − =1 1 0 9091 3 0 99925(.) . ,

 Rc = − − =1 1 0 9534 3 0 99990(.) . ,

 Rs minimum= =0 99585 0 99925 0 99510. * . . (),

 Rs maximum= =0 99585 0 99990 0 99575. * . . ().

 Note the improvements over the present wired Internet system: 0.95846 → 0.99510
(3.83% increase, minimum) and 0.96194 → 0.99575 (3.51% increase, maximum)
(Figure 6.14).

Future Internet Performance Models 199

Proposed Wireless Internet System

 The equations for R c and R s are now applied to the proposed wireless Internet system.
Again, recall that the proposed wireless system does not include local network, local
network router, and DNS. However. It does require an access point. Therefore, the
following component reliabilities are used:
Access Point : 0.774, 0.9615, n = 1 server:

 R Rc = = 0 774 0 9615. , . .

Internet router : 0.0.9356, n = 2 servers:

 Rc = − − =1 1 0 9356 2 0 99585(.) . .

Web server : 0.9091, 0.9534, n = 6 servers:

 R minimumc = − − =1 1 0 9091 6 0 99999(.) . (),

 R maximumc = − − =1 1 0 9534 6 0 99999(.) . (),

 Rs minimum= =0 774 0 99585 0 99925 0 77021. * . * . . (),

 Rs maximum= =0 9615 0 99585 0 99990 0 95714. * . * . . ().

 Thus, the reliability of the proposed wireless Internet system is predicted to be
between 0.77021 and 0.95714. However, note the improvements over the present

Figure 6.14 Time in system T versus number of uploads and downloads n. Series 1: Present
Internet wired system. Series 2: Proposed Internet wired system.

0.000000

1.000000

2.000000

3.000000

4.000000

5.000000

6.000000

0 10 20 30 40 50 60 70 80 90 100

n

T
 (

se
co

n
d

s)

Series 1

Series 2

Dramatic improvement

200 Computer, Network, Software, and Hardware Engineering with Applications

wireless Internet system: 0.74184 → 0.77021 (3.82 % increase, minimum) and
0.92491 → 0.95714 (3.48 % increase, maximum). Thus, the relative reliability
improvements are approximately the same for the wired and wireless systems, with
the former yielding the greater absolute improvement.

PERFORMANCE ANALYSIS OF PROPOSED FUTURE
WIRED INTERNET

 As has been demonstrated, the proposed Internet would achieve improved perfor-
mance and reliability because its confi guration would have fewer components, thus
reducing performance overhead, single points of failure, and number of components
that could fail. The confi guration would be comprised of only a user computer,
Internet routers, and Web servers for wired systems. No DNS would be required
because each user computer and mobile device would be supplied with a permanent
IP address, using IPv6. For wireless systems, the access point is still necessary to
provide for mobile device access to the Internet.

 In order to provide a realistic model of the proposed future Internet, projected
future Internet speeds of Web page request packet upload rate λuc = 20 Mbit/s and
Web page download rate λws = 160 Mbit/s were obtained from the following source:
 http://www.livescience.com/technology /070522_cable_modem.html .

 Also, I found that the future Internet routing speed is projected as μir = 1000 Mbit/s
 [BAN] . These data are used to produce revised computations, using the equations
below.

 In addition, it is appropriate to use different probabilities of processing and
wait times than were used for the present Internet because these probabilities change
with changing operating conditions. The proposed future wired Internet system
queuing model, using the following performance computations, is shown in
Figure 6.15 .

User Computer

Mean Upload Packet Time tuc

 This mean time is computed in Equation 6.106 by dividing the Web page request
packet of size d by the packet upload rate λuc :

 t d/ bits/ Mbit/s suc uc= = =λ μ1000 20 50 . (6.106)

Mean Web Page Download Time tucd

 This mean time is computed in Equation 6.107 by dividing the Web page size p by
the packet upload rate λuc :

 t p/ bits/ Mbit/s sucd ws= = =λ μ96 928 160 605 8, . . (6.107)

Future Internet Performance Models 201

Figure 6.15 Future wired Internet system queuing model.

User Computer

HEWLETT

PACKARD

HEWLETT

PACKARDInternet Router 1
Internet Router 2

Internet

Web page

Internet

Router

Server 1

Busy

Internet

Router

Server 2

Busy Internet Router

Server

Queue

Web page
Request
Packet

HEWLETT

PACKARD

HEWLETT

PACKARD

Y

N

Y

N

Internet Router 1 Internet Router 2

Web Server

1

Busy

Web Server

1

Busy

Web Server

3

Busy

Web Server 1 Web Server 2 Web Server 3

Web page

N
N N

Web Server Queue

Y Y
Y

uc 20 Mbit/sλ =

d = 1000 bits

tuc = 50 μsp = 96,928 bits

p = 96,928 bits

wsλ =

tucd = 605.8 μs

irρ = 0.0900

tsir = 0.5 μs

twir = 49.5 μs

ir 1000 Mbit/sμ =

ir 1000 Mbit/sμ =

tsird = 48.464 μs

twird = 557.336 μs

nsir = 90 bits

nwir= 910 bits

nsird = 8724 bits

nwird = 88,204 bits

wsμ = 2830 Mbit/s

tsws = 0.11779 μs

tswd = 11.417 μs

ws 2830 Mbit/sμ =

twws = 49.88 μs

twwsd = 594.383 μs

nsws = 21.20 bits

nswsd = 2,055 bits

Download

Upload

nwws = 978.80 bits

nwwsd = 94,873 bits

160 Mbit/s

Wired System Internet Router

Probability of Being Busy ρir

 This probability is computed in Equation 6.108 by dividing the sum of packet upload
rate λuc and Web page download rate λws by the Internet router processing rate μir ,
accounting for the number of servers s:

 ρ
λ λ

μir
uc ws

irs

Mbit/s

Mbit/s
=

+() =
+() =

()() ()()
.

20 160

2 1000
0 0900.. (6.108)

202 Computer, Network, Software, and Hardware Engineering with Applications

Mean Upload Service Time tsir

 This mean time is computed in Equation 6.109 by dividing the Web page request packet
length d by the Internet router processing rate μir , accounting for number of servers s:

 t
d

s

bits

Mbit/s
ssir

ir

= = =
()() ()()

. .
μ

μ
1000

2 1000
0 5 (6.109)

Mean Upload Wait Time twir

 This mean time is computed in Equation 6.110 by subtracting the upload service
time computed in Equation 6.109 from the packet upload time t uc :

 tw t ts s sir uc ir= − = − =50 0 5 49 5. .μ μ (6.110)

Mean Download Service Time tsird

 This mean time is computed in Equation 6.111 by dividing the Web page length p
by the Internet router processing rate μir , accounting for number of servers s:

 ts
p

s

bits

Mbit/s
sird

ir

= = =
()()

,

()()
. .

μ
μ

96 928

2 1000
48 464 (6.111)

Mean Download Wait Time twird

 This mean time is computed in Equation 6.112 by subtracting the download service
time computed in Equation 6.111 from the Web page download time t ucd , computed
in Equation 6.107 :

 tw t ts s sird ucd ird= − = − =605 8 48 464 557 336. . . .μ μ (6.112)

Mean Number of Bits Being Processed in the Upload Direction nsir

 This quantity is computed in Equation 6.113 by multiplying the probability of Inter-
net router queue being busy, computed in Equation 6.108 , by the Web page request
packet size d:

 ns
d

s

Mbit/s bits

Mbit
ir

uc ws

ir

=
+() =

+()λ λ
μ

() ()

()(

20 160 1000

2 1000 //s
bits

)
.= 90 (6.113)

Mean Number of Bits Waiting for Processing in

the Upload Direction nwir

 This quantity is computed in Equation 6.114 by subtracting the number of bits being
processed in the upload direction, computed in Equation 6.115 from the Web page
request packet size d:

 nw d ns bits bitsir ir= − = − =1000 90 910 . (6.114)

Future Internet Performance Models 203

Mean Number of Bits Being Processed in

the Download Direction nsird

 This quantity is computed in Equation 6.115 by multiplying the probability of Inter-
net router queue busy, computed in Equation 6.108 , by the Web page size p:

 ns
p

s

Mbit/s bits

M
ird

uc ws

ir

=
+() =

+()λ λ
μ

() (,)

()(

20 160 96 928

2 1000 bbit/s
bits

)
.= 8724

 (6.115)

Mean Number of Bits Waiting For Processing in the Download

Direction nwird

 This quantity is computed in Equation 6.116 by subtracting the number of bits being
processed in the download direction, computed in Equation 6.115 from the Web page
size p:

 nw p ns bits bitsird ird= − = − =96 928 8724 88 204, , . (6.116)

 The statistical program is used to generate the distribution of wired system Internet
router number of bits being processed and waiting for processing, using the above
mean values.

Wired System Web Server Processing

 The probability of queue busy, using the IBM System x3250 M2 4194 Web server
processing rate μws = 2830 Mbit/s, is computed in Equation 6.117 :

 ρ
λ λ

μws
uc ws

wss

Mbit/s

Mbit/s
=

+() =
+() =

20 160

3 2830
0 02120

()()
. . (6.117)

Mean Upload Packet Processing Time tsws

 This mean time is computed in Equation 6.118 by dividing the Web page request
packet size, d, by the processing rate, accounting for number of servers, s:

 ts
d

s

bits

Mbit/s
sws

ws

= = =
μ

μ
1000

3 2830
0 11779

()()
. . (6.118)

Mean Download Web Page Processing Time tswd

 This mean time is computed in Equation 6.119 by dividing the Web page size, p, by
the processing rate, again accounting for number of servers, s:

 ts
p

s

bits

Mbit/s
swd

ws

= = =
μ

μ
96 928

3 2830
11 417

,

()()
. . (6.119)

204 Computer, Network, Software, and Hardware Engineering with Applications

Mean Web Page Download Time tucd

 This is the mean time required to download a Web page of size, p, using the Web
page download rate, λws , in Equation 6.120 :

 ts
p

s

bits

Mbit/s
swd

ws

= = =
μ

μ
96 928

3 2830
11 417

,

()()
. . (6.120)

Mean Web Page Upload Wait Time twws

 This mean time is computed in Equation 6.121 by subtracting the upload processing
time computed in Equation 6.119 from the Web page request packet upload time, t uc :

 tw t ts s sws uc ws= − = − =50 0 11779 49 88. . .μ μ (6.121)

Mean Web Page Download Wait Time twwsd

 Using Equation 6.122 , compute the mean Web page download wait time by subtract-
ing the download processing time computed in Equation 6.119 from the Web page
download time computed in Equation 6.120 :

 tw t ts s swsd ucd wsd= − = − =605 8 11 417 594 383. . . .μ μ (6.122)

Mean Number of Web Page Bits Being Processed in

the Upload Direction nsws

 This quantity is computed in Equation 6.123 by multiplying the probability of Web server
queue busy, computed in Equation 6.117 by the Web page request packet size d:

 ns
d

s

Mbit/s bits

Mbit
ws

uc ws

ws

=
+() =

+()λ λ
μ

() ()

()(

20 160 1000

3 2830 //s
bits

)
. .= 21 20 (6.123)

Mean Number of Web Page Bits Being Processed in the Download

Direction nswsd

 This quantity is computed in Equation 6.124 by multiplying the probability of Web
server queue busy, computed in Equation 6.117 by the Web page size p:

 ns
p

s

Mbit/s bits

M
wsd

uc ws

ws

=
+() =

+()λ λ
μ

() (,)

()(

20 160 96 928

3 2830 bbit/s
bits

)
.= 2055 (6.124)

Mean Number of Web Page Bits Waiting for Processing in the Upload

Direction nwws

 This quantity is computed in Equation 6.125 by subtracting the number of bits being
processed in the upload direction ns ws , computed in Equation 6.124 , from the Web
page request packet size d:

 nw d ns bits bitsws ws= − = − =1000 21 20 978 80. . . (6.125)

Future Internet Performance Models 205

Mean Number of Web Page Bits Waiting for Processing in the

Download Direction nwwsd

 This quantity is computed in Equation 6.126 by subtracting the number of bits being
processed in the download direction ns wsd , computed in Equation 6.125 from the
Web page size p:

 nw p ns bits bitswsd wsd= − = − =96 928 2055 94 873, , . (6.126)

 Again, statistical software is called upon to generate the distribution of wired system
Web server bits being processed and waiting to be processed, using the above mean
values.

COMPARISON OF PRESENT AND FUTURE WIRED
INTERNET PERFORMANCE

Time in System

 As can be seen by comparing the present wired Internet time in system with the
proposed wired Internet time in system in Table 6.6 , the latter ’ s performance is
dramatically better than the former. Table 6.6 contains the means and standard devia-
tions of the performance times of the two systems. The signifi cant performance
advantage of the proposed Internet system, which is not burdened with local router
and DNS overhead, is readily apparent, since both the means and standard deviations
are lower. In addition, because the DNS in the present Internet only has to deal with
upload traffi c, its time in system is the lowest.

Table 6.6 Performance Comparison of Present and Proposed Future Wired Internets

 Performance metric

 Present Internet Proposed future Internet

 Mean
(seconds)

 Standard
deviation
(seconds)

 Mean
(seconds)

 Standard
deviation
(seconds)

 Wired local network
time in system

 0.655720 0.140187 Does not apply Does not apply

 DNS time in system 0.178284 0.007516 Does not apply Does not apply
 Wired Internet router

time in system
 1.194493 0.224831 0.258607 0.029701

 Wired Internet Web
server time in
system

 0.797331 0.283792 0.000814 0.000115

 Total time in wired
system

 3.522262 0.584658 0.259421 0.029705

206 Computer, Network, Software, and Hardware Engineering with Applications

Internet Data Traffi c

 In addition to the time in system performance metric, it is important to include a
metric that measures the variation in data fl ow. This metric is the coeffi cient of
variation (standard deviation/mean) of the sum of bits being processed and bits
waiting to be processed for each component in Table 6.7 . This metric is computed
because there is a great deal of variation in data fl ows, thus it is appropriate to nor-
malize the standard deviation by the mean in order to obtain a representative picture
of variation across the components. We see that the proposed wired network has
consistently higher variation. This result is attributed to the fact that the proposed
wired system has much higher Web request packet upload and Web page download
rates, thus generating greater variation in data fl ows. The implication of this result
is that higher data transfer rates achieved in the proposed wired system comes at a
cost— lower stability of data traffi c in the Internet.

COMPARISON OF PRESENT AND FUTURE WIRELESS
INTERNET PERFORMANCE

 As a reader exercise, for the proposed wireless Internet system, develop the equa-
tions for the mean values and performance prediction equations similar to what was
done for the proposed Internet wired system. In addition, produce a future wireless
Internet system simulation queuing model similar to Figure 6.15 . Use the mean
values contained in Table 6.8 . In order to compare the present with the proposed
wireless system, document the logic of the proposed wireless system, for both the
upload and download directions. Notice that in contrasting the present wireless
systems in Figure 6.2 (upload) and Figure 6.3 (download) with your proposed
system, the difference is that the latter does not require the services of the DNS.
In addition, all the mean value equations and the equations for the distribution of

Table 6.7 Packet and Web Page Length Summary (Processed and Waiting to Be Processed)

 Component
 Present wired Internet

(coeffi cient of variation)
 Proposed future wired Internet

(coeffi cient of variation)

 Local network (upload) 0.9180 Does not apply
 Local network (download) 0.8985 Does not apply
 Local network router (upload) 0.9399 Does not apply
 Local network router

(download)
 0.7516 Does not apply

 DNS (upload) 0.9822 Does not apply
 Internet router (upload) 0.7903 0.9510
 Internet router (download) 0.6940 0.9059
 Web server (upload) 0.7774 0.9623
 Web server (download) 0.7382 0.8047

Future Internet Performance Models 207

processing and wait times remain the same, although the results of the distribution
value equations will change based on different sets of probabilities of those
distributions.

 By eliminating the DNS from the present wireless simulation queuing model in
the upload direction in Figure 6.2 , you can produce the future wireless simulation
queuing model. The components that would be included in the simulation queuing
model are: access point, Internet router, and Web server, both upload and download.
As in the case of the present wireless system, depicted in Figures 6.2 and 6.3 , twice
as many Web servers are required to maintain queue stability, compared with the
present and proposed wired systems.

 Eliminating the burden of DNS overhead on the proposed wireless system
improves total system performance, as shown in Figure 6.16 . However, not all
advantages would necessarily accrue to the proposed wireless Web server because
it could suffer from a higher queue load, which could be caused by a higher probabil-
ity of queue being busy, compared with the present Web server. This result is dem-
onstrated in Figure 6.17 , where even the present wired system is superior to the
proposed wireless system with respect to queue effi ciency. As has been suggested,
the result is caused by a higher queue load in the wireless system, which in turn is
the result of high Internet activity generated by wireless devices.

Time in System

 As was the case for the wired systems, we see in Table 6.8 that the proposed future
wireless Internet has superior performance with respect to the time metrics, again
as the result of not having to contend with the local network, local network router,
and DNS overhead.

Table 6.8 Performance Comparison of Present and Proposed Future Wireless Internets

 Performance metric

 Present Internet Proposed future Internet

 Mean
(seconds)

 Standard
deviation
(seconds)

 Mean
(seconds)

 Standard
deviation
(seconds)

 Wireless access point
time in system

 0.165121 0.044345 Does not apply Does not apply

 Wireless DNS 0.178284 0.007516 Does not apply Does not apply
 Wireless Internet router

time in system
 1.194089 0.225939 0.516090 0.032931

 Wireless Internet Web
server time in
system

 0.790009 0.281181 1.157510 0.233608

 Total time in wireless
system

 2.151653 0.406204 1.852345 0.257725

208 Computer, Network, Software, and Hardware Engineering with Applications

Figure 6.16 Time in system T versus number of uploads and downloads n. Series 1: Total present
wireless system. Series 2: Total future wireless system.

0.000000

0.500000

1.000000

1.500000

2.000000

2.500000

3.000000

3.500000

0 10 20 30 40 50 60 70 80 90 100

n

T
 (

se
co

n
d

s)

Series 1

Series 2

Figure 6.17 Queue effi ciency qe versus queue count nq. Series 1: Present Internet wired Web
server; probability of queue busy = 0.7688. Series 2: Future Internet wireless Web server; probability
of queue busy = 0.8580 (i.e., higher queue load).

0.000000

0.200000

0.400000

0.600000

0.800000

1.000000

1.200000

0 10 20 30 40 50 60 70 80 90 100

nq

q
e

Series 1

Series 2

Higher queue load causes disparity

Future Internet Performance Models 209

Internet Data Traffi c

 Again, as in the case of comparing present and proposed future wired systems, the
Web page length variations of the present and proposed wireless system are com-
pared in Table 6.9 , where we see the advantage of the future Internet, again as the
result of not being burdened by the variation in local network, local network router,
and DNS data traffi c.

SUMMARY

 By eliminating the local network and its supporting router, and eliminating DNS name - to - IP
address translation by virtue of providing every user computer and mobile device with its
own IP address, both wired and wireless performance are predicted to be improved, as mea-
sured by time in the system. It is also useful to model data fl ows in the present and proposed
Internets to gauge the relative variation in traffi c across components. This process spotlights
excessive component variation, for example, the present wireless Internet router in the upload
mode in Table 6.9 that is reduced in the future Internet. It is recognized that major organiza-
tional changes (e.g., elimination of domain name administration) and technical changes (e.g.,
elimination of local networks and routers) are required in order to realize this vision of the
future Internet. However, if the Internet were being built from scratch, it should closely
resemble this proposal.

 A performance metric that was not covered is the delay time among communicating
devices. This is particularly the case for wireless devices, where both human - made and nature -
 made interference can have a signifi cant effect on Internet performance [XYL99] . This factor
should be included in enhanced future Internet proposals.

REFERENCES

 [BAN] J. Bannister , J. Touch , P. Kamath , and A. Patel , “ An Optical Booster for Internet Routers , ”
University of Southern California, Information Sciences Institute, Los Angeles, California, U.S.A.,
 http://www.isi.edu/touch/pubs/hipc2001

Table 6.9 Packet and Web Page Length Summary (Processed and Waiting to be Processed)

 Component
 Present wireless Internet
(coeffi cient of variation)

 Proposed future wireless Internet
(coeffi cient of variation)

 Access point (upload) 0.7849 0.6970
 Access point (download) 0.7191 0.6554
 DNS (upload) 0.9822 Does not apply
 Internet router (upload) 1.1548 0.7611
 Internet router (download) 0.9247 0.7643
 Web server (upload) 0.7731 0.6774
 Web server (download) 1.0310 0.7303

210 Computer, Network, Software, and Hardware Engineering with Applications

 [FAI08] G. Fairhurst , B. Collini - Nocker , and L. Caviglione , “ FIRST: Future Internet — a role for
satellite technology , ” International Workshop on Satellite and Space Communications, IWSSC 2008 ,
October 1 – 3, 2008 , pp. 160 – 164 .

 [FINK98] R. A. Fink , “ Reliability modeling of freely - available Internet - distributed software , ” Proceed-
ings of the Fifth International Software Metrics Symposium , November 20 – 21, 1998, pp. 101 – 104 .

 [FOO95] M. A. Foody , “ When is software ready for release? ” UNIX Review , 1995 , 13 , pp. 35 – 41 .
 [GAN03] R. Gandhi , “ Tolerance to access - point failures in dependable wireless local area networks , ”

The Ninth IEEE International Workshop on Object - Oriented Real - Time Dependable Systems , October
1– 3, 2003 , pp. 136 – 136 .

 [GOE07] M. Siekkinen , V. Goebel , T. Plagemann , K. - A. Skevik , M. Banfield , and I. Brusic ,
“ Beyond the future Internet — requirements of autonomic networking architectures to address long term
future networking challenges , ” 11th IEEE International Workshop on Future Trends of Distributed
Computing Systems , March, 2007 , pp. 89 – 98 .

 [HAM02] M. Hamblen , “ 10 Gig Ethernet: speed demon , ” Computer World: Networking & Internet ,
December 23, 2002 .

 [HIL01] F. S. Hillier and G. J. Lieberman , Introduction to Operations Research , 7th ed. New York :
 McGraw Hill , 2001 .

 [IEE90] IEEE , “ IEEE Standard Glossary of Software Engineering Terminology , ” Number STD 610.12 -
 1990, IEEE, 1990 .

 [INS] In - Stat Market Research Corporation , www.instat.com .
 [ITU09] International Telecommunication Union , “ New ITU ICT development index compares 154

countries . ” Press Release, http://www.itu.int/newsroom/press_releases/2009/07.html , March 2, 2009.
 [IVA09] F. Ivanek , “ Mobile backhaul , ” IEEE Microwave Magazine , 2009 , pp. 10 – 20 .
 [JIN08] S. Jin , W. Yue , and N. Tian , “ Performance analysis of self - similar traffi c for future service -

 oriented Internet , ” 14th European Wireless Conference , June 22 – 25, 2008, pp. 1 – 5 .
 [KAL99] M. Kalyanakrishnam , Z. Kalbarczyk , and R. Iyer , “ Failure data analysis of a LAN of

Windows NT based computers , ” Proceedings of the 18th IEEE Proceedings of the Symposium on
Reliable Distributed Systems , 1999 , pp. 178 – 187 .

 [LAB98] C. Labovitz and A. Ahuja , “ Experimental study of Internet stability and wide - area backbone
failure . ” Merit Network, Inc., 1998 .

 [MET03] C. Metz , “ Moving toward an IPv6 future ” , IEEE Internet Computing , May/June, 2003 , p. 25 .
 [NEU93] A. M. Neufelder , Ensuring Software Reliability . New York : Marcel Dekker , 1993 .
 [PAG] R. A. Page , Jr. , M. Spence , and E. Tamson , “ Customer loyalty and LAN failure: a positive

relationship ? ” PDi Articles, Performance Dimensions International.
 [PAP] V. Pappas , D. Massey , A. Terzis , and L. Zhang , “ A comparative study of the DNS design with

DHT - based alternatives , ” Computer Science Department, UCLA; Computer Science Department,
Colorado State University; and Computer Science Department, Johns Hopkins University.

 [PAR] K. Park , V. S. Pai , L. Peterson and Z. Wang , “ CoDNS: improving DNS performance and reli-
ability via cooperative lookups , ” Department of Computer Science, Princeton University.

 [SHO83] M. L. Shooman , Software Engineering: Design, Reliability, and Management . New York :
 McGraw - Hill , 1983 .

 [SWA06] S. S. Gokhale , P. J. Vandal , and J. Lu , “ Performance and reliability analysis of Web server
software architectures ,” 12th Pacifi c Rim International Symposium on Dependable Computing , Decem-
ber, 2006 , pp. 351 – 358 .

 [TAK93] H. Takagi , Queueing Analysis (Volume 3: Discrete - Time Systems) . Amsterdam : North - Holland ,
 1993 .

 [TIA04] J. Tian , S. Rudraraju , and Li Zhao , “ Evaluating web software reliability based on workload
and failure data extracted from server logs , ” IEEE Transactions on Software Engineering , 2004 , 30 (11),
pp. 754 – 769 .

 [TIP02] D. Tipper , T. Dalhberg , H. Shin , and C. Charnsripinyo , “ Providing fault tolerance in wireless
access networks , ” IEEE Communications Magazine , 2002 .

 [XYL99] G. Xylomenos and G.C. Polyzos , “ Internet protocol performance over networks with wire-
less links , ” IEEE Network , 1999 , 13 (4), pp. 55 – 63 .

Chapter 7

Network Standards

T he primary objective of this chapter is to provide evidence of the fact that while there is
a myriad of network standards, they are lacking in some fundamental properties as predictions
of reliability, maintainability, and availability. For without these crucial properties being
included in network standards, you would question the utility of existing standards. Existing
standards do a reasonable job of specifying speed, range, signal properties, wireless device
mobility, and compatibility requirements. However, to a large extent these properties are
expressed sans user perspective. By user perspective I mean, for example, if a standard speci-
fi es a signal - to - noise ratio in the abstract, what does this mean in concrete terms for the user?
Will the user be able to access a Web server, via the Internet, when desired, and reliably
retrieve a Web page from the server within, say 5 seconds? Given the abstract nature of
standards, my goal is to equip the reader with practical methods for designing and evaluating
network standards with the goal of increasing user productivity in their use of computer
networks.

DESIRABLE PROPERTIES OF NETWORK STANDARDS

 First, the properties that are desirable in a network standard will be discussed and,
second, a comparison will be made between desired properties and existing standard
properties. Third, improvements designed to bring existing standards into confor-
mance with desired properties will be identifi ed. The reader may be surprised to
learn that common requirements such as reliability specifi cations and the means for
testing reliability are largely absent from current standards. Building on the founda-
tion of network principles learned in Chapter 5 , desirable properties of network
performance, reliability, maintainability, and availability will be specifi ed along with
test procedures to ensure compliance with the specifi cations. These specifi cations
will be formulated and used as a baseline for judging the utility of existing standards
from the user ’ s perspective .

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F.
Schneidewind.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley &
Sons, Inc.

211

212 Computer, Network, Software, and Hardware Engineering with Applications

Network Effi ciency

 The fi rst desirable property to be addressed is network effi ciency, defi ned as:
(total time a packet spends in a network to achieve the user ’ s goal)/(packet
input time).

 From Chapter 5 , you learned that the numerator, T t , is obtained as the summation
of link delay, T ij , node processing time, T i , and wait time, W i , summed over number of
links, N L , and nodes, N n , in a network. The numerator is T T T W,t ij

N
ij i

N
i i

N
i

L n n= ∑ + ∑ + ∑
and the denominator is T p = p/ λuc , where p is the Web page request packet size and λuc

is the user computer packet input rate. Thus, effi ciency E, which we desire to be as
high as feasible, is defi ned as follows:

 E T T W pij

ij

N

i

i

N

i

i

N

uc

L n n

= + +
⎛

⎝
⎜

⎞

⎠
⎟∑ ∑ ∑ () / .λ

 Thus, you can see that what was initially formulated as time effi ciency has become
data effi ciency because the above ratio is the quantity of data transmitted in a
network to achieve the user ’ s goal to the quantity of data inputted by the user; in
other words, the number of bits outputted per input bit. The network performance
evaluation model for making the effi ciency test is shown in Figure 7.1 . Figure 7.2
shows that only the Web Server Queue node is in conformance with the specifi cation
by virtue of having the smallest Web page request packet size, p, compared with the
other nodes. Recall from Chapter 5 that p is generated by an exponential statistical
routine. When this routine was applied in Chapter 5 , it generated a small value of p

Figure 7.1 Network performance evaluation model. λuc , user computer input rate; p, Web page
packet request size; T ij , link ij processing time; W i , node i wait time; T p , packet input time; T i , node i
processing time; pw, Web page size. Effi ciency = Output/Input = T t /T p .

Local Network

Server
Local Network
Server Queue

Local Network
Router Server Queue

Local Network
Router Server

Internet

Internet Router

Server

Queue

Internet Router

Server

Domain Name

Server Queue Domain Name

Server

busy Internet Router

Server

Queue

Internet Router

Server

Web Server Queue

User Computer

Web Server

Web page

Web page requestp

pw

λuc

W
i

Buffer

T
i

Tt =

L nN N

ij i
ij i

T T+∑ ∑ +

nN

i
i

W∑
Output

Tp = p/λuc

Input
Tij

Network Standards 213

Figure 7.2 Network effi ciency E versus node i. Series 1: E. Series 2: Specifi ed E.

–5.0000

0.0000

5.0000

10.0000

15.0000

20.0000

25.0000

1 2 3 4 5 6 7 8 9 10 11 12 13

i

E

Series 1

Series 2 Only Web Server Queue and Processing nodes

and Link satisfy specification

Packet input rate = 640,000 bits per second

Packet input rate must be increased to bring other nodes into conformance with specification

for the Web server queue (see Table 5.2 , Chapter 5). This means that the result in
Figure 7.2 is only one instance of computing effi ciency. To obtain a more representa-
tive result you would repeat the process of generating p and computing values of E,
say 100 times, and compute the mean value of E. Also, it is important to note, in
Figure 7.2 , that the packet input rate λuc must be increased to bring the other nodes
into conformance with the specifi cation.

Problem: What is the equation required to ensure that all nodes and associated
links will satisfy the effi ciency specifi cation?

Solution: Solve the effi ciency equation for λuc , the user computer input rate
from Figure 7.1 , as shown below, for all of the nodes and associated links,
setting E to your desired value, and use the values of p from Table 5.2 in
Chapter 5 for each computation of λuc . Use the maximum value of λuc as your
solution. Show a plot of λuc versus node identifi cation i:

 λuc ij

ij

N

i

i

N

i

i

N

E p T T W
L n n

() = () + +∑ ∑ ∑* / .

 Using an E = 10.0, the largest value of λuc = 950,118,764 bits per second. The
required plot is shown in Figure 7.3 . The maximum value of λuc corresponds to the
User Computer and Local Network Server Queue nodes and the link between them
(see node and link identifi cations in Fig. 7.4).

214 Computer, Network, Software, and Hardware Engineering with Applications

Figure 7.4 Reliability simulation process diagram.

Local Network

Server

1

Local Network

Server Queue

User Computer

Web page request

2
3 4 5

Local Network

Router Server Queue

6 7

Local Network

Router Server

8 9

Internet Router

Server

Queue #1

10 11

Internet Router

Server #1

12

13

Inject last fault and failure of sequence 1→12

Internet Router

Server #2

Domain Name

Server Queue

14 15

Domain Name

Server

16

17

18 19

Web Server QueueInternet Router

Server

Queue #2

20 21 22 23 24
25

Web page

Inject last fault and failure of sequence 1→17

Web Server

Figure 7.3 User Computer input rate λuc versus node or link i.

0

200,000,000

400,000,000

600,000,000

800,000,000

1,000,000,000

1,200,000,000

1 2 3 4 5 6 7 8 9 10 11 12 13

i

l u
c
 (

b
it

s
 p

e
r

s
e
c
o

n
d

)

Required efficiency = 10.0

Maximum input rate

RELIABILITY PREDICTION PROCESS

 The reason reliability prediction is important is that national and international regula-
tions may require that reliability specifi cations be achieved in network systems
 [MAR10] . The approach to reliability prediction is to simulate the injection of faults
and failures into a replica of a computer network. Faults such as garbled data on a
link, attributed to a noisy communication channel, cause failures such as the inability
to transmit data between two nodes. Injection of faults and failures is simulated by
randomly selecting links and nodes to be injected. This is accomplished by using
the Excel RAND function (uniformly distributed random numbers between 0 and

Network Standards 215

1) to generate random numbers that will identify where injection is to take place.
Specifi cally, since there is a total of 25 nodes and links, counting queues, in Figure
 7.1 , RAND is multiplied by 25 and then rounded to obtain the identifi cation of
injection location. Injection locations are identifi ed in Figure 7.4 , which will be used
for simulating network reliability. Note that the Internet icon in Figure 7.1 , which
is included for clarity of presentation, is not shown in Figure 7.4 because Internet
nodes and links are obviously components of the Internet; to show the Internet icon
would involve double counting of nodes and links. In addition, the buffer in Figure
 7.1 , which is included for clarity of presentation, is not carried over into Figure 7.4
because the buffer is part of the Domain Name Server, which, again, would result
in double counting.

 Table 7.1 is provided to document the results of the node and link identifi cation
process, where, for example, the link Internet Router Server Queue → Internet
Router Server is identifi ed as number 12. Therefore, this link receives a fault and
failure injection in Figure 7.4 .

Estimation of Failure Rate

 Continuing the process of reliability prediction, failure rate must be estimated. This
will be an interesting exercise in failure rate estimation because the failure rate will
be estimated for each sequence of the reliability simulation. The rationale for
sequences is that end - to - end transmission and processing of data in a network is
comprised of subsets of the total end - to - end chain called sequences. One of the
principles of computer engineering is to reduce the complexity of analysis by decom-
posing a system into its component parts. If this is not done, the complexity of large
systems overwhelms the engineer, leading to errors in analysis. To illustrate the
sequence prediction process, the fi rst estimate pertains to the last fault and failure
of the fi rst sequence injected at point 12 in Figure 7.4 ; the second estimate pertains
to the last fault and failure of the second sequence injected at point 17, and so on.
Duplicate sequences that may be generated by the random designation of injection
points are not repeated because this would bias the results in favor of repeated
sequences.

 The failure rate λ pertaining to each simulation test of a sequence of fault and
failure injection is estimated by summing the node and link times T i over the N
nodes and links, from node 1 to the last node or link of the sequence, N, where there
has been an injection, and dividing it into the number of failures occurring over the
sequence. For example, for injection at point 12 in Figure 7.4 , T i and n i are summed
from 1 to N = 12, where n i is the number of failures expected in node or link i. The
sequence failure rate equation follows:

 λ = =

=

∑

∑

n

T

i

i 1

N

i

i 1

N .

Ta
bl

e
7.

1
 Si

m
ul

at
ed

 R
el

ia
bi

lit
y

Te
st

in
g

D
at

a

 Se
qu

en
ce

 (
no

de

1
to

 d
es

ig
na

te
d

la
st

 l
in

k
or

 n
od

e)

 N
am

e
of

 l
as

t
lin

k
or

 n
od

e
in

se

qu
en

ce
 Se

qu
en

ce
 t

im
e

∑
=iN

iT
se

co
nd

s
1

(
)

 Se
qu

en
ce

 n
um

be
r

of
 f

ai
lu

re
s

 ∑
=iN

i
n

1

 Se
qu

en
ce

 f
ai

lu
re

 r
at

e
λ

(f
ai

lu
re

s
pe

r
se

co
nd

)
 M

ea
n

se
qu

en
ce

re

lia
bi

lit
y

 1
 →

 1
2

 Se
qu

en
ce

 1

 In
te

rn
et

 R
ou

te
r

Se
rv

er
 Q

ue
ue

#1

 t
o

In
te

rn
et

 R
ou

te
r

Se
rv

er
 #

1

 0.
00

03
76

43

 0.
00

07
19

03

 1.
91

01
48

45

 0.
99

99
99

50

 1
 →

 1
7

 Se
qu

en
ce

 2

 D
om

ai
n

N
am

e
Se

rv
er

 0.

00
08

84
27

 0.

00
10

40
17

 1.

17
62

95
91

2
 0.

99
99

99
30

 1
 →

 6

 Se
qu

en
ce

 3

 L
oc

al
 N

et
w

or
k

Se
rv

er
 t

o
L

oc
al

N

et
w

or
k

R
ou

te
r

Se
rv

er

Q
ue

ue

 0.
00

00
16

95

 0.
00

03
07

32

 18
.1

27
01

88
3

 0.

99
99

98
02

 1
 →

 1
5

 Se
qu

en
ce

 4

 D
om

ai
n

N
am

e
Se

rv
er

 Q
ue

ue

 0.
00

06
00

38

 0.
00

09
19

67

 1.
53

18
28

61
7

 0.
99

99
98

54

 1
 →

 1
9

 Se
qu

en
ce

 5

 In
te

rn
et

 R
ou

te
r

Se
rv

er
 Q

ue
ue

#2

 0.
00

13
19

13

 0.
00

11
62

59

 0.
88

13
33

87
6

 0.
99

99
98

00

 1
 →

 1
1

 Se
qu

en
ce

 6

 In
te

rn
et

 R
ou

te
r

Se
rv

er
 Q

ue
ue

#1

 0.
00

01
98

02

 0.
00

06
37

70

 3.
22

03
45

62
4

 0.
99

99
96

54

 1
 →

 2
4

 Se
qu

en
ce

 7

 W
eb

 S
er

ve
r

Q
ue

ue
 t

o
W

eb

Se
rv

er
 0.

01
80

32
74

 0.

00
14

52
02

 0.

08
05

21
34

8
 0.

99
99

98
41

216

 Se
qu

en
ce

 (
no

de

1
to

 d
es

ig
na

te
d

la
st

 l
in

k
or

 n
od

e)

 N
am

e
of

 l
as

t
lin

k
or

 n
od

e
in

se

qu
en

ce
 Se

qu
en

ce
 t

im
e

∑
=iN

iT
se

co
nd

s
1

(
)

 Se
qu

en
ce

 n
um

be
r

of
 f

ai
lu

re
s

 ∑
=iN

i
n

1

 Se
qu

en
ce

 f
ai

lu
re

 r
at

e
λ

(f
ai

lu
re

s
pe

r
se

co
nd

)
 M

ea
n

se
qu

en
ce

re

lia
bi

lit
y

 1
 →

 4

 Se
qu

en
ce

 8

 L
oc

al
 N

et
w

or
k

Se
rv

er
 Q

ue
ue

 t
o

L
oc

al
 N

et
w

or
k

Se
rv

er

 0.
00

00
11

80

 0.
00

02
01

74

 17
.1

00
34

81
5

 0.

99
99

94
51

 1
 →

 1
8

 Se
qu

en
ce

 9

 D
om

ai
n

N
am

e
Se

rv
er

 t
o

In
te

rn
et

 R
ou

te
r

Se
rv

er

Q
ue

ue
 #

2

 0.
00

13
19

11

 0.
00

10
68

75

 0.
81

02
03

02
7

 0.
99

99
88

97

 1
 →

 2
1

 Se
qu

en
ce

 1
0

 In
te

rn
et

 R
ou

te
r

Se
rv

er
 #

2
 0.

00
14

61
12

 0.

00
12

51
16

 0.

85
63

03
52

8
 0.

99
99

83
57

 1
 →

 1

 Se
qu

en
ce

 1
1

 U
se

r
C

om
pu

te
r

 0.
00

00
00

23

 0.
00

00
85

12

 36
4.

33
22

65
4

 0.

99
99

99
55

 1
 →

 2

 Se
qu

en
ce

 1
2

 U
se

r
C

om
pu

te
r

to
 L

oc
al

N

et
w

or
k

Se
rv

er
 Q

ue
ue

 0.

00
00

04
91

 0.

00
00

99
70

 20

.3
20

15
31

 0.

99
99

97
03

 1
 →

 5

 Se
qu

en
ce

 1
3

 L
oc

al
 N

et
w

or
k

Se
rv

er

 0.
00

00
12

04

 0.
00

02
73

78

 22
.7

33
76

92
5

 0.

99
99

95
57

 1
 →

 1
0

 Se
qu

en
ce

 1
4

 L
oc

al
 n

et
w

or
k

R
ou

te
r

Se
rv

er
 t

o
In

te
rn

et
 R

ou
te

r
Se

rv
er

Q

ue
ue

 #
1

 0.
00

01
98

01

 0.
00

05
62

55

 2.
84

09
88

16
9

 0.
99

99
65

49

 1
 →

 1
3

 Se
qu

en
ce

 1
5

 In
te

rn
et

 R
ou

te
r

Se
rv

er
 #

1
 0.

00
03

76
44

 0.

00
07

97
29

 2.

11
79

63
32

2
 0.

99
96

94
76

 1
 →

 2
0

 Se
qu

en
ce

 1
6

 In
te

rn
et

 R
ou

te
r

Se
rv

er
 Q

ue
ue

#2

 t
o

In
te

rn
et

 R
ou

te
r

Se
rv

er
 #

2

 0.
00

14
61

11

 0.
00

11
53

33

 0.
78

93
51

26
4

 0.
99

97
63

84

217

218 Computer, Network, Software, and Hardware Engineering with Applications

 The determination of failure occurrence is performed by again employing the RAND
function for estimating the number of failures, n i , at each node and link, using a
uniformly distributed number between 0 and 1. Of course, it is recognized that in
the real world the number of failures must be an integer value. However, as stated,
ni is an expected value, justifi ed by the fact that over a large number of operations
in the real - world network, an integer number of failures would occur over the nodes
and links. If the mean of these integer values were computed, the result would be
the expected fractional value.

Reliability Prediction

 Reliability is based on the sequence failure rate estimated above and the node or
link times, Ti, from node 1 to the node or link where the last fault and failure injec-
tion occurs in a sequence at N. Thus, for each simulation test, there will be predic-
tions from 1 to N. Again, the exponential distribution is used because there is a high
probability of short node and link times and low probability of long times. Then,
the sequence i reliability, R i , is formulated as follows:

 R ei
(Ti= −λ).

 Since there will be many values of reliability in a sequence — one for each node or
link— the mean value is computed in order to generate an overall sequence reliability
metric. The mean values are tabulated in Table 7.1 . This table will be used to identify
possible low sequence reliability values that would be indicative of low values of
node and link reliabilities.

 Analysis of Table 7.1 reveals that since all of the mean sequence reliability
values are very high, the prediction is that there should be no problem with reliability
per se in actual operation. However, note that some of the failure rates are relatively
high (bolded). In particular, this is the case for sequences associated with local
network components. A possible reason for this is that local network components
operate faster than Internet components. The higher speed can result in failures
occurring at a higher rate. Thus, you can see that Table 7.1 is valuable in pinpointing
reliability weak spots in a network. Notice that Table 7.1 results are consistent with
the results in Figure 7.2 , where only the Web Server satisfi es the effi ciency require-
ment. That is, both network performance — as measured by effi ciency — and reli-
ability are better at the service end of a network than at the input request end,
suggesting that network standards should focus on local networks.

Maintainability Prediction

 Recalling from Chapter 5 that maintainability was formulated as a probability, and
this probability was the ratio of the quantity of data processed by a given link or
node to the total quantity of data processed at all links and nodes in the network.
Now, since reliability has been predicted using network entities called sequences,
maintainability will also be predicted using sequences in order that availability,

Network Standards 219

which is a function of reliability and maintainability, will have consistent inputs for
its prediction in a later section. Thus, maintainability will be formulated as a ratio
of the quantity of data processed by a given sequence of nodes and associated links
(e.g., Local Network Server Queue and the link between it and the User Computer)
to the total quantity of data processed at all nodes and associated links in a network.
Note that nodes and their associated links process the same quantity of data. There-
fore, the maintainability of sequence i, M i , is predicted as follows, where p i is the
quantity of data transmitted or processed in a node and the associated link, N i is the
number of nodes and associated links in sequence i, and N is the total number of
nodes and associated links in a network:

 M

p

p
i

i

i 1

N

i

i 1

N

i

= =

=

∑

∑
.

Availability Prediction

 Similar to the formulation of availability in Chapter 5 , the availability of sequences
represents the probability that the set of nodes and links that comprise a sequence
will be available for operational use when needed. Equivalently, availability is the
proportion of operational time that maintenance is not being performed on a sequence
(i.e., the sequence is operating reliably). Thus, availability, A i , of a sequence is
predicted as follows:

 A R / R Mi i i i= +().

 Figure 7.5 shows the results of applying the availability prediction equation, results
that are opposite to those obtained for failure rate in Table 7.1 that showed local
network sequences with relatively high failure rates, whereas Figure 7.5 shows that
local network sequences are the only ones that satisfy the availability requirement.
What accounts for the discrepancy? Checking Table 5.2 of Chapter 5 , which records
Web page request and Web page size, we see that local network components have
smaller sizes that are the primary driver of maintenance actions. The lesson to be
learned from this exercise is that multiple dimensions of network quality must
be evaluated. If any one is defi cient, it is a signal that network quality should be
improved. In this case, local network sequences would be subject to further testing
to discover and remove additional faults.

Storage Capacity Prediction

 Due to the fact that there is a great deal of data transmitted and processed in a
network, storage requirements must be predicted. Since other metrics, such as avail-
ability, have been predicted on the basis of node and link sequences, consistency

220 Computer, Network, Software, and Hardware Engineering with Applications

Figure 7.5 Sequence i availability A i versus sequence i. Series 1: A i . Series 2: Required A i . Only
local network nodes and links satisfy requirement.

0.00000

0.20000

0.40000

0.60000

0.80000

1.00000

1.20000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

i

A
i Series 1

Series 2

Sequence 1 to 6
Sequence 1 to 1

Sequence 1 to 2

Sequence 1 to 5

requires that storage requirements predictions use the same approach. Thus, storage
capacity is predicted by noting that data is injected into the network (i.e., sequences)
in Figure 7.1 at a rate determined by the User Computer input rate, λuc . This sequence
input rate multiplied by the sequence operational time, ∑ =i

N
iT1 , generates the pre-

dicted sequence i storage capacity, S i , and computed over the N nodes and links of
the sequence, as follows:

 S Ti uc i

i

N

=
⎛
⎝⎜

⎞
⎠⎟=

∑() .λ
1

 Figure 7.6 shows the results of predicting sequence storage capacity requirements,
where the utility of the prediction is to delineate the maximum storage requirement,
which in this case occurs in the Local Network Router Server Queue. This result is
due to the relatively heavy traffi c load in the local network. As a minimum, the Local
Network Router Server Queue should be designed to accommodate this much data
(in this case, about 12,000 bits).

Software Compatibility Standards Issue

 An issue of great concern in network standards is whether various software systems
that are required in a network are compatible, meaning that, for example, user

Network Standards 221

requests for Web pages in Figure 7.1 can traverse all links and nodes to the Web
Server and return without disruption caused by software incompatibilities. Specifi -
cally, this refers to compatibility among the user operating system, Web browser,
Ethernet local network protocol, router software — both local network and Internet —
 Internet Protocol (IP), Domain Name Server software, Web Server, database man-
agement system, and network security software. My motivation for including this
issue is to identify for the reader improvements that would make standards more
valuable for the user . There is no standards issue more important from the user
standpoint than software compatibility because: (1) historically, software, due to its
complexity, has caused more problems than hardware and (2) unfortunately, network
standards do not address the software compatibility issue. This means that network
users must insist on receiving compatibility information when considering purchase
of network software from vendors.

EXISTING STANDARDS

 At this point, existing standards will be reviewed to see to what extent, if any, these
standards address performance, reliability, maintainability, availability, and software
compatibility.

 There are a lot of different network standards that the majority of computers
use. There are standards for both physical hardware and for signaling. For example,
IEEE 802.11g is a wireless networking standard. It includes specifi cations for the
type of radio that is used, how strong the signal can be amplifi ed, a standard set of
encryption schemes, and so on.

Figure 7.6 Sequence storage capacity S i versus sequence i.

0.00

2000.00

4000.00

6000.00

8000.00

10,000.00

12,000.00

14,000.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

i

S
i (

b
it

s
)

Local Network Router Server Queue: maximum

requirement

222 Computer, Network, Software, and Hardware Engineering with Applications

 Another standard is Ethernet, also known as IEEE 802.3. This is a standard for
hardwired networks. It defi nes what types of wiring can be used, transmission power
requirements, connector styles, and so on.

 There are also protocols. As you learned in Chapter 5 , Transmission Control
Protocol (TCP)/IP is a protocol that operates at the transport layer of the seven - layer
network. Note that TCP/IP is a protocol that interfaces with local network protocols
such as Ethernet.

 Today, virtually all networking standards are “ open ” standards, administered by
a standards organization or industry group. Open standards are more popular than
proprietary ones in the computer industry, and this is particularly the case for net-
working. In fact, the few technologies that have no accepted open standard have
been losing ground to those with open standards, particularly in the areas of wireless
local area and home networks (http://uk.answers.yahoo.com/question/index?qid = 20
091014025636AAOqcDy).

 Open standards are useful for helping to mitigate the problem of software com-
patibility because with open standards, software developers can incorporate compat-
ibility into standards. However, there is no assurance that individual developers will
address all compatibility issues.

WIRELESS STANDARDS

 As voice and data in wired networks increasingly converge to use the Internet,
similar convergence is happening with wireless access networks [CHA07] . Many
different wireless network standards have been developed or are under development
for metropolitan area network s (MAN s), local area network s (LAN s), and personal
area network s (PAN s).

 The wireless access networks are diverse but the major standards may be clas-
sifi ed as belonging to either a group of public land mobile networks (PLMNs) owned
by cellular phone operators or to another group of wireless networks under the IEEE
802 family of standards. The frequency spectrum used by these wireless systems
includes both unlicensed and licensed bands. The cellular networks and systems are
diverse, and efforts to standardize them include the 3G Wireless in the International
Mobile Telecommunication 2000 (IMT - 2000) standard.

 While the cellular networks have been moving from voice networks toward the
Internet packet network, the family of IEEE 802 wireless networks is attempting to
achieve the higher quality that is required in voice and other real - time applications.
Different wireless network systems have good technological reasons to exist. There
are different power requirements, distance ranges, data rates, and carrier frequencies.
Different systems are therefore needed to optimize the performance and cost accord-
ing to different requirements. Note that there is no mention of reliability and other
important metrics in this list!

 The most widely implemented wireless network standards fall into two major
groups. One group of wireless networks is the PLMN family of cellular networks.
Another group of wireless networks are the IEEE802 family of standards.

Network Standards 223

PLMNs

 The major wireless systems under the PLMN family are primarily operated by the
cellular telecom service providers. Cellular systems are usually designed with
maximum cell range exceeding 10 km, where a cell is a wireless geographical area
that has access to an access point, which has, in turn, access to the Internet. However,
the peak data rates may only be realized in favorable channel conditions, such as in
those areas close to the base station, where a base station contains a transmitter and
antenna for transmitting mobile device signals. Note that given the erratic channel
conditions, reliability should be predicted under these conditions to have a useful
standard.

Multimedia Services

 One key issue in providing multimedia services over a wireless network is the
 quality - of - service (QoS) support in the presence of changing network connectivity.
The concern here is user mobility and shared, noisy, highly variable, and limited
wireless communication links. Most wireless standard organizations are revising
existing standards or making new specifi cations to provide more bandwidth or QoS -
 related parameters and interfaces to meet requirements from highly demanded mul-
timedia applications, such as wireless video phone and multimedia message systems
 [GAN04] .

IEEE802 WIRELESS NETWORKS

 An important group of wireless networks is the IEEE802 family of standards. PAN
distance ranges are 10 m, for example the 802.15 Bluetooth standard. LAN distance
ranges that are within 100 m are the 802.11 Wireless LAN standards with data rates
of 11, 55, and 100 Mbit/s. MAN distance ranges are 3 – 8 km. While range is an
important network standard attribute, it is meaningless if not accompanied by speci-
fying the reliability that would be achieved at these ranges!

 The 3G Wireless networks, which provide wireless access to global and metro-
politan area data networks, are standardized according to the 3G Wireless require-
ments specifi ed in IMT - 2000. The IMT - 2000 3G Wireless goals are summarized
below [CHA07] . The purpose of describing this standard is to indicate what is cur-
rently feasible in this class of important wireless networks and what needs to be
improved by more mature standards.

1. Enable global roaming . Allow a mobile device to be used anywhere in the
world, without changing network cards. A noble objective, but currently
infeasible because of differing wireless technologies in different parts of the
world. This is a generalization of the software compatibility problem.

2. Use Standardized Interfaces . Use the same interface between mobile
devices and applications across mobile device developers.

224 Computer, Network, Software, and Hardware Engineering with Applications

3. Support Multimedia Services . This requirement has evolved into a very
mature set of services, given the extensive use of, for example, cameras,
social networking, and Web site access via mobile devices.

4. Have Minimum Data Rates . A minimum of 144 kbps in a vehicular envi-
ronment, 384 kbps in a pedestrian environment, and 2 Mbit/s in an indoor
offi ce environment; these specifi cations are not particularly useful because
they are arbitrary with no justifi cation provided. The performance methodol-
ogy presented in this chapter should be used to quantitatively estimate these
requirements. This example illustrates the defi ciency in some network stan-
dards: specifying a requirement, while neglecting to provide a rationale.

5. Operate in Multiple Environments . Indoor, outdoor, vehicular, and satel-
lite; this specifi cation should be tested by subjecting the wireless system to
operate in these environments and noting whether there is equal performance
and availability across the environments.

 A more advanced wireless network is 4G, which is designed to operate at 50 –
 250 MBit/s. Among other capabilities, 4G supports TV broadcast and interoperates
with the wired Internet.

Limited Range Wireless Network

 It is instructive to consider a limited range wireless network because the network
standard is decidedly different from its long - range cousin due to a different market
objective. The example is the Bluetooth wireless network.

 The Bluetooth network has no network infrastructure other than the nodes (i.e.,
mobile device) [CHA07] . A Bluetooth network, called a piconet, consists of one
master node and up to seven slave nodes within the radio frequency range of about
10 m. Adjacent piconets may interconnect with each other through nodes in overlap-
ping regions of the separate piconets to form a larger network. Bluetooth provides
packet switching links. The total data rate is in the1 Mbit/s range.

 Bluetooth provides rapid ad hoc connections without cable and without line - of -
 sight requirement. It uses small form factor, low power, and low cost devices. The
use of low power enables longer battery life applications such as a personal data
assistant (PDA). Applications include phones, pagers, modems, headsets, notebook
computers, handheld personal computers, and digital cameras.

 The salient issue in standardizing a network such as Bluetooth is to test it in the
environment described above to ascertain whether connectivity, performance, and
availability can be achieved in a limited range environment.

Spectrum Considerations

 Signal interference in the available spectrum, particularly in wireless systems, is a
network standards issue. The degree of interference that is tolerable in various geo-
graphical areas, using specifi ed network hardware and software, should be specifi ed

Network Standards 225

by signal - to - noise (S/N) ratio. Increasing the S/N ratio will increase the range of the
wireless system.

TEST BED FOR TESTING NETWORKS

 Having discussed a number of network - recommended performance and availability
metrics and having reviewed existing network standards, it is now appropriate to
show the reader how a test bed could be deployed to perform tests designed to ensure
the networks adhere to proposed and existing standards. It is important that the test
bed be automated [HOD99] , as portrayed in Figure 7.7 , where the test measurements
are instrumented.

 First, the important network requirements that would be subject to testing are
listed. These are shown in the network test bed in Figure 7.7 .

Compatibility of a local network, wired and wireless systems, with the Internet.
Test software records a compatibility result if the signal is received. An
incompatible result is recorded if the signal is not received.

Figure 7.7 Network test bed. T i = p/ λ , required time; R r , required range; S/N r , required signal/
noise; C, storage capacity; R ei

(Ti= −λ), required reliability; R s , specifi ed stability; S/N, actual signal/
noise; S r , storage requirement.

Local Network

Wired System

Internet

Signal
received

Y

N

Noise

Noise

Web page
request

Compatibility Test

Input Rate: λ
Packet Size: p

Web Server

Ti

T

Pass

≥

<

Fail

Time Test

Range Sensor

Clock T

Mobile Device Wireless Access Point

Rr ≥
R

Range Test

R

Pass

≥

<

Fail

R

Range

Compatible

Incompatible

Report failure

<

Ri ≥
RsReliability Test

≥ Pass

<
Fail

Compute

Ri = e (–λ Ti)

Ti

Signal S

N

Oscilloscope

S, N S/N
S/Nr

Compute
S/N ≥

S/N Test

Pass

Fail

≥

<

Database

Web pages

C

SrC
Sr

≥ Pass

Fail

Storage Test
≥

<

Maintenance

Activity

226 Computer, Network, Software, and Hardware Engineering with Applications

Time required to request a Web page from Web server. Test software computes
required time and compares it with clock time.

Range required by mobile device in wireless network. A sensor attached to
access point records the range between the mobile device and the access
point. Test software compares the actual range with the received range.

Reliability is assessed following a successful time test by using test software
that computes the required reliability, using the successful time obtained
from the previous test, and compares it with the specifi ed reliability. If the
reliability test fails, the failure is reported to the maintenance activity
 [BAL89] , as shown in Figure 7.7 .

S/N ratio is tested by propagating the signal and noise to an oscilloscope where
signal and noise are measured. The S/N ratio is computed and test software
is used to compare the required ratio with the ratio actual generated in the
network.

 The storage requirement test is conducted with test software by comparing the
database capacity with the Web page storage requirement.

 The standards tests in Figure 7.7 are the major ones that can be quantifi ed. Addi-
tional, important tests, such as the ability of a mobile device to roam and achieve
connectivity, the use of compatible interfaces, and the ability of wireless networks
to operate in multiple environments could also be tested in the test bed.

SUMMARY

 The main point I wish to leave with the reader is that there are many more crucial factors
involved in obtaining satisfaction in using networks than those factors contained in extant
network standards. From the review of existing network standards, you can see that dwelling
on speed, for example, is certainly not the whole story in assessing network standards. From
the user ’ s perspective, equally, if perhaps more, important are factors such as reliability,
maintainability, and availability that are not quantifi ed in existing standards reports [LEE06] .
In addition, while standards developers may assume that the products to which their standards
apply are reliable [SIE00] , there is no guarantee of reliability without the type of testing shown
in Figure 7.7 . Therefore, it is important for the user acquiring networks to ascertain whether
the network vendor has specifi ed these crucial factors. Furthermore, the engineer charged with
designing networks should include these crucial factors in the specifi cations and establish a
test system, such as the one described in this chapter, for verifying that the specifi cations can
be achieved.

REFERENCES

 [BAL89] R. Ballart and Y. - C. Ching , “ SONET: now it ’ s the standard optical network , ” IEEE Com-
munications Magazine , 1989 , 27 (3) pp. 8 – 15 .

 [CHA07] H. A. Chan , “ Comparing wireless data network standards , ” AFRICON , 2007 , pp. 1 – 15 .
 [GAN04] A. Ganz , Z. Ganz , and K. Wongthavarawat , Multimedia Wireless Networks: Technologies,

Standards, and QoS . Upper Saddle River, NJ : Prentice Hall , 2004 .

Network Standards 227

 [HOD99] J. Hodges and J. Visser , “ Accelerating wireless intelligent network standards through formal
techniques , ” IEEE 49th Vehicular Conference , Volume 1 , July 1999 , p. 737 .

 [LEE06] C. - S. Lee , N. Morita , et al. “ Next Generation Network Standards in ITU - T , ” The 1st Inter-
national Workshop on Broadband Convergence Networks , 2006 , pp. 1 – 15 .

 [MAR10] P. Mari ñ o , F. Poza , and M. Á . Dom í nguez , “ Instrumentation for an urban series - PHEV bus
with onboard - based sensors and automotive network standards , ” IEEE Transactions on Instrumenta-
tion and Measurement , 2010 , 59 (7) pp. 1900 – 1910 .

 [SIE00] T. M. Siep , I. C. Gifford , R. C. Braley , and R. F. Heile , “ Paving the way for personal area
network standards: an overview of the IEEE P802.15 Working Group for Wireless Personal Area
Networks , ” IEEE Personal Communications , 2000 , 7 (1), pp. 37 – 43 .

Chapter 8

Network Reliability and
Availability Metrics

H aving been introduced to the basics of reliability and availability in Chapters 5 and 7 , it
is time to turn to developing a detailed, quantitative modeling methodology for predicting
these variables in order to provide the reader with the tools that are needed to support complex
network development.

 Today, standalone computer applications are rare. Almost all applications involve a
network — the Internet in particular. Models are important for analyzing the reliability and
availability of networks. Therefore, in this chapter, you will learn how a model is developed
for predicting the probability of failure, reliability, and availability in a network comprised
of nodes, links, and subnetworks. This chapter provides a foundation for Chapter 15 : “ Mobile
Device Engineering. ” In addition to developing the quantitative models, a template, or road
map, is provided for modeling network reliability and availability. The process starts by defi n-
ing the network topology and subnetwork confi gurations. This leads to identifying and defi n-
ing the parameters and variables of the model. In developing the prediction equations, you
defi ne the sequence of operations on the network — for example, an input request to the
Internet — that provides the basis for computing the reliability and availability of nodes, links,
subnetworks, and network. Predicted failure and fault correction times are used to predict
revised probability of failure, reliability, and availability that result from the correction
process. These results are used to compute changes in these metrics that occur due to failure
and fault correction. In addition, you examine the possibility of employing alternate network
communication and processing paths to increase reliability and assess whether the increase
in reliability is warranted by the increase in cost. With respect to model validity, you will fi nd
that reliability predictions for the network yield very low error values with respect to the
actual network reliability (i.e., reliability computed from actual failure data).

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F.
Schneidewind.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley &
Sons, Inc.

228

Network Reliability and Availability Metrics 229

INTRODUCTION

Network Metrics

 Dependability of a system is the ability to deliver services that can be trusted.
Dependability can be divided into three properties: availability, reliability, and main-
tainability. It is expected that a dependable system will be operational when needed
(availability), that the system will keep operating correctly while being used (reli-
ability), and that the correction of failure and faults will leave the network in a stable
state (maintainability). This chapter covers reliability, availability, and maintain-
ability by developing prediction equations for these metrics for network nodes, links,
and subnetworks.

 There are various perspectives on network reliability, all of which are useful. The
perspective that is relevant depends on the characteristic to be emphasized, as follows,
where reliability is defi ned by various researchers and comments are made concerning
the relevance of the defi nitions to this chapter ’ s perspective on reliability:

• Reliability is the ability of the network to provide communication in the event
of a failure of a component in the network, such as a node or link, and it
depends on the reliability of both hardware and software. Historically, failures
were primarily due to hardware malfunctions. In current networks, many
failures are due to fi ber cable cuts, software faults, and malicious attacks
 [MED00] . Such failures can drop a signifi cant number of existing connec-
tions. Thus the network should have the ability, with low delay, to detect and
correct failures and the faults that cause the failures. The model in this chapter
predicts the time required to correct failures and faults.

• Reliability is the maintenance of connectivity between nodes via their inter-
connected links, as shown in Figure 8.1 . In this model, connectivity refers to
the availability of a path from a source node to a destination node, for
example, between nodes a and c, via link a, c, in Figure 8.1 [MEN] .

• Reliability in interconnected networks is defi ned as survivability. That is, the
network will not crash in the face of abnormal events. Reliability analysis
depends on probability models of the failure rate, operating time duration,
and severity of faults in hardware and software [NIC04] . In this chapter ’ s
model, reliability is cast in terms of probability of failure and associated reli-
ability of the nodes and links in a subnetwork.

• Reliability is the probability of no permanent critical system failures during
operating time t [ATH05] . Operating time is a key parameter in this chapter ’ s
model.

Software Dimension

 It is claimed by some researchers that network hardware reliability is a mature fi eld,
and that there has not been an equal maturation of network software reliability

230 Computer, Network, Software, and Hardware Engineering with Applications

 [BEN07] , despite the wealth of software reliability models and measurements
 [MUS04] . They claim that network software reliability quantifi cation remains an
open issue for a number of reasons. These include: confusion as to what to measure,
when to measure it, and how to measure it. However, network users are not interested
in software versus hardware reliability. They are just interested in enjoying reliable
networks! Therefore, this chapter does not distinguish between hardware and soft-
ware reliability in its model. Instead, this model uses failure rate and derivative
metrics that include both hardware and software failures.

Model Tasks

 The tasks that are required to develop this model were inspired by Chirivella et al.
 [CHI01] , and are comprised of the following:

1. Defi ne the network topology in Figure 8.1 .

2. Defi ne the subnetworks in Figures 8.2 – 8.4 .

Figure 8.1 Network topology. dc k , duty cycle of primary node; dc i , duty cycle of nonprimary node;
dcij , duty cycle of link.

a b

c

d

Desktop PC
Cable modem

Wireless LAN router

e

f

Internet router

RS CS TR RD TD CD
TALK / DATA

TALK

Laptop computer 1

Laptop computer 2

CISCOSYSTEMS

CISCOSYSTEMS

a,c

c,a

d,c

c,d

c, b b, c

b,f

f,b

c,e

e,c
Recovery

Database

G

c,g
g,c

Error data

Recovery data

dci = 0.325
dck = 0.75

dci = 0.20

dci = 0.10

dci = 0.325

dci= 0.0325

dci = 0.325

dci j= 0.325

dci j= 0.325
dcij = 0.25

dcij = 0.25

dcij = 0.067

dcij = 0.067

dcij = 0.325dcij = 0.325

dcij = 0.033 dcij = 0.033

dcij = 0.0325
dci j= 0.0325

Network Reliability and Availability Metrics 231

Figure 8.2 Subnetwork 1. dc k , duty cycle of primary node; dc i , duty cycle of nonprimary node; dc ij ,
duty cycle of link.

a b

c

Desktop PC
Cable modem

Wireless LAN router

f

Internet router

RS CS TR RD TD CD
TALK / DATA

TALK

CISCOSYSTEMS

CISCOSYSTEMS

a,c

c,a

c, b b, c

b,f

f,b

dci = 0.325
dck = 0.75

dci = 0.325

dci = 0.325

dcij= 0.325

dci j= 0.325
dcij = 0.25

dcij = 0.25

dcij = 0.325
dcij = 0.325

Alternate pathsdcij = 0.325

dcij = 0.325

Recovery

database

Error dataRecovery data

Figure 8.3 Subnetwork 2. dc k , duty cycle of primary node; dc i , duty cycle of nonprimary node; dc ij ,
duty cycle of link.

b

c

d

Cable modem

Wireless LAN router

f

retuortenretnI

RS CS TR RD TD CD
TALK / DATA

TALK

Laptop computer 1

CISCOSYSTEMS

CISCOSYSTEMS

d,c

c,d

c, b b, c

b,f

f,b

dci = 0.325

dci = 0.20 dci = 0.325

dci = 0.325

dci j= 0.325

dci j= 0.325

dcij = 0.067

dcij = 0.067

dcij = 0.325

232 Computer, Network, Software, and Hardware Engineering with Applications

3. Defi ne network components, parameters, and variables, as follows:

Node and Link

Successful Operation of a Node . The node must be able to communicate
with all nodes over the links to which it is connected [SHO02] . This
defi nition is adopted by predicting the reliability and availability of the
subnetworks in which a given node, and its connected links, must
communicate.

Path . The sequence of nodes and links in a subnetwork representing trans-
action paths to and from the Internet (e.g., user ’ s request for an Internet
Web page, issued in a local network, and response provided by the Web
site).

Successful Operation between a Pair of Nodes . One or more paths are
operating correctly between the nodes [SHO02] . In this chapter ’ s model,

Figure 8.4 Subnetwork 3. dc k , duty cycle of primary node; dc i , duty cycle of nonprimary node; dc ij ,
duty cycle of link.

b

c

Cable modem

Wireless LAN router

e

f

retuortenretnI

RS CS TR RD TD CD
TALK / DATA

TALK

Laptop computer 2

CISCOSYSTEMS

CISCOSYSTEMS

c, b b, c

b,f

f,b

c,e

e,c

dci = 0.325

dci = 0.10

dci = 0.325

dci = 0.325

dci j= 0.325

dci j= 0.325

dcij = 0.325dcij = 0.325

dcij = 0.033 dcij = 0.033

Network Reliability and Availability Metrics 233

it is not any path that is relevant but the specifi c path necessary to imple-
ment a network transaction.

 Many terms are defi ned in the following sections. The reader need
not focus on the defi nitions at this time. The terms are placed in here so
that when studying the equations that use the terms, you will have one
place to refer to the defi nitions, if necessary.

 k: primary node: node that governs the operation of the network (e.g.,
desktop PC)

 i: nonprimary node (e.g., cable modem)

Failure Rate and Failure Counts

Failure . One or more nodes cannot communicate with each other, either
because there are no physical links between them, or because the Inter-
net router in Figure 8.1 cannot select a route to reach the destination
node [CHI01] . In addition, there can be failures internal to nodes, such
as an operating system failure in a desktop computer.

 f(t): network failure rate

 F(t k): failure count at primary node k

 F(t i): failure count at nonprimary node i

 F(t ij): failure count on link i, j

 F(t s): failure count on subnetwork

 F(t n): failure count on network

 x: expected number of failures to occur in time t

 M(f(t)): mean network failure rate

 M(t k): mean failure count at primary node k

 M(t i): mean failure count at nonprimary node i

 M(t ij): mean failure count on link i, j

 MR(t k): revised mean failure count at primary node k based on failure
correction

 MR(t i): revised mean failure count at nonprimary node i based on failure
correction

 MR(t ij): revised mean failure count on link i, j based on failure
correction

Network Times

 t: network operating time

 t k : primary node k operating time

 t i : nonprimary node i operating time

 t ij : operating time of link i, j

 t s : subnetwork operating time

234 Computer, Network, Software, and Hardware Engineering with Applications

 tc k : mean fault and failure correction time of primary node k

 tc i : mean fault and failure correction time of nonprimary node i

 tc ij : mean fault and failure correction time of link i, j

Duty Cycles

 dc k : duty cycle of node k = fraction of time t that node k is operational

 dc i : duty cycle of node i = fraction of available time t that node i is
operational

 dc ij : duty cycle of link i, j = fraction of available time t that link i, j is
operational

Probabilities

 P(F(t k)): probability of failure at primary node k

 P(F(t i)): probability of failure at nonprimary node i

 P(F(t ij)): probability of failure on link i, j

 P(F(t s)): probability of failure on subnetwork

 P(F(t n)): probability of failure on network

 PR(F(t k)): revised probability of failure at primary node k based on failure
correction

 PR(F(t i)): revised probability of failure at nonprimary node i based on
failure correction

 PR(F(t ij)): revised probability of failure on link i, j based on failure
correction

 PR(F(t s)): revised probability of failure on subnetwork based on failure
correction

 PR(F(t n)): revised probability of failure on network based on failure
correction

Reliabilities

 R(t k) : reliability of primary node k

 R(t i): reliability of nonprimary node i

 R(t ij): reliability of link i, j

 R(t s): reliability of subnetwork

 R(t n): reliability of network

 RR(t k) : revised reliability of primary node k based on failure correction

 RR(t i): revised reliability of nonprimary node i based on failure correction

 RR(t ij): revised reliability of link i, j based on failure correction

 RR(t s): revised reliability of subnetwork based on failure correction

 RR(t n): revised reliability of network based on failure correction

Network Reliability and Availability Metrics 235

Availabilities

 A(t k): availability of primary node k

 A(t i): availability of nonprimary node i

 A(t ij): availability of link i, j

 A(t s): availability of subnetwork

 A(t n): availability of network

 RA(t k): revised availability of primary node k based on failure correction

 RA(t i): revised availability of nonprimary node i based on failure correction

 RA(t ij): revised availability of link i, j based on failure correction

 RA(t s): revised availability of subnetwork based on failure correction

 RA(t n): revised availability of network based on failure correction

Faults and Failures Corrected

 N(t k): number of faults and failures corrected in primary node k

 N(t i): number of faults and failures corrected in nonprimary node i

 N(t ij): number of faults and failures corrected in link i, j

Remaining Faults and Failures

 r(t k): number of faults and failures remaining in primary node after correc-
tion process

 r(t i): number of faults and failures remaining in nonprimary node after cor-
rection process

 r(t ij): number of faults and failures remaining in link node after correction
process

 r(t s): number of faults and failures remaining in subnetwork after correction
process

 r(t n): number of faults and failures remaining in network after correction
process

 p: priority of failure and fault correction

4. Select metrics that quantify the reliability and availability characteristic
that you want to study: Use probability of failure and actual and predicted
reliability and availability.

5. Compute probability of failure for nodes, links, subnetworks, and
network.

6. Use probability of failure to prioritize the order in which failure and faults
are corrected on subnetworks.

7. Predict reliability and availability for subnetworks and network.

8. Predict failure and fault correction times for nodes and links.

236 Computer, Network, Software, and Hardware Engineering with Applications

9. Use correction times to predict remaining failures for subnetworks and
network.

10. Use remaining failures to revise predictions of reliability and availability
for subnetworks and network.

11. Determine whether the revised predictions satisfy the reliability and avail-
ability specifi cations.

12. If the specifi cations are not satisfi ed, additional testing is required to correct
more failures and faults.

13. Determine whether the use of alternate network paths would increase reli-
ability and availability to the extent that the cost of additional paths would
be justifi ed.

MODEL DEVELOPMENT

 Table 8.1 shows how the duty cycle assignments for the example network topology
shown in Figure 8.1 are obtained, starting with the primary nodes a, d, and e that
are the drivers for nonprimary node and link duty cycle assignments. The data are
illustrative only. For example, link a, c is assumed to be active one - third of the time
that node a is active. Different data would apply to other topologies and applications.
If you have data from an existing system, use it! Otherwise, you must make assump-
tions. You could vary the assumptions to see how sensitive network solutions are to
the assumptions.

 Actually, there is only one physical connection between pairs of nodes in Figure
 8.1 , but I show two links to account for the two - way fl ow of data. You can assume
that the data fl ows between pairs of nodes are equal because the link speeds are
equal in the two directions. Thus, the duty cycles for these links are equal. Figures
 8.2 – 8.4 show subnetworks 1, 2, and 3, respectively, confi gured from Figure 8.1 . It
is these subnetworks that provide the platforms for the models to be described and
analyzed.

Node and Link Operating Times

 Operating time provides an accurate measure of fault discovery, is easy to measure,
and refl ects the time during which faults are discovered [DIS01] . Since operating
times will be needed in the computation of failure rates in the next section, they are
computed here for the primary nodes, nonprimary nodes, and links in Equations
 8.1 – 8.3, respectively, where the duty cycles in Table 8.1 are multiplied by the
network operating time:

 t t*dck k= , (8.1)

 t t*dci i= , (8.2)

 t t*dcij ij= . (8.3)

Ta
bl

e
8.

1
 D

ut
y

C
yc

le
 A

ss
ig

nm
en

ts

 N
od

e
 N

od
e

du
ty

 c
yc

le

 L
in

k
du

ty
 c

yc
le

 N
od

e

 a
 b

 c
 d

 e
 f

 g

 a
 0.

75

 0.
75

/3
 =

0.

22
5

 d
 0.

20

 0.
20

/3
 =

 0
.0

67

 e
 0.

10

 0.
10

/3
 =

 0
.0

33

 c
 0.

22
5

 +
 0.

06
7

 +

0.
03

3
 =

 0.
32

5
 0.

75
/3

 =
 0

.2
25

 0.

22
5

 +
 0.

06
7

 +

0.
03

3
 =

 0.
32

5

 0.

20
/3

 =
 0

.0
67

 0.

10
/3

 =
 0

.0
33

 0.

10
 *

 0
.3

25
 =

0.

03
25

 b
 0.

22
5

 +
 0.

06
7

 +

0.
03

3
 =

 0.
32

5

 22

5
 +

 0.
06

7
 +

0.

03
3

 =
 0.

32
5

 0.
22

5
 +

 0.
06

7
 +

0.

03
3

 =
 0.

32
5

 f
 0.

22
5

 +
 0.

06
7

 +

0.
03

3
 =

 0.
32

5

 0.

22
5

 +
 0.

06
7

 +

0.
03

3
 =

 0.
32

5

 g
 0.

10
 *

 0
.3

25
 =

0.

03
25

 0.
10

 *
 0

.3
25

 =

0.
03

25

237

238 Computer, Network, Software, and Hardware Engineering with Applications

Failure Rates and Failure Counts

 Using software and hardware failure data from the Computer Emergency Response
Team (CERT) Web site [MOO01] , based on a prominent router vendor ’ s experience,
the failure rate function in Equation 8.4 was fi tted with these data, using network
operating time t. Then, using Equations 8.1 – 8.3, the failure counts at primary
nodes k, nonprimary nodes i, and links i, j, are computed in Equations 8.5 – 8.7,
respectively:

 f t e t() . ,= 0 0868 35 (8.4)

 F t f t *tk k() () ,= (8.5)

 F t f t *ti i() () ,= (8.6)

 F t f t *tij ij() () .= (8.7)

Probabilities of Failure

 One of the measures of reliability is the probability of incurring failures at nodes
and on links and subnetworks. We assume that the probability of failure is governed
by the Poisson distribution. This assumption is justifi ed because although there is a
reason for failures, from the user ’ s perspective, failures appear to occur at random
(i.e., Poisson distribution [MUS87]).

 First, the mean number of failures must be estimated for primary node, nonpri-
mary node, and link, in Equations 8.8 – 8.10, respectively. Then, using these equa-
tions, the probabilities of failure at the primary node, nonprimary node, and link,
are computed in Equations 8.11 – 8.13, respectively, where x = f(t) * t is the expected
number of failures, based on the failure rate from Equation 8.4:

 M t
F t

n
k

k

k

()
()

,= ∑ (8.8)

 where n k is the number of failure counts recorded for primary node

 M t
F t

n
i

i

i

()
()

,= ∑ (8.9)

 where n i is the number of failure counts recorded for nonprimary node

 M t
F t

n
ij

ij

ij

()
()

,= ∑ (8.10)

 where n ij is the number of failure counts recorded for link

 P F t
M t e

x!
k

k
x M tk

(())
(())

,
()

=
−

 (8.11)

Network Reliability and Availability Metrics 239

 P F t
M t e

x!
i

i
x M ti

(())
(())

,
()

=
−

 (8.12)

 P F t
M t e

x
ij

ij
x M tij

(())
(())

!
.

()

=
−

 (8.13)

Reliabilities

 You can use the Weibull distribution to model reliability because it has the fl exibility
of representing decreasing, constant, or increasing reliability over operating time,
governed by the values of parameter α [LLO62] . You estimate the value α based on
minimizing the mean relative error (MRE) between predicted and actual reliabilities.
Error computations will be described later.

 Reliabilities are the “ bottom line ” of quality in that they predict the probability
that a node, link, subnetwork, or network will survive for a time greater than operat-
ing time t. The computation of the primary node, nonprimary node, and link reli-
abilities using Weibull distribution reliabilities [LLO62] are shown in Equations
 8.14 – 8.16, respectively:

 R t ek
f t tk() ,(())= − α

 (8.14)

 R t ei
f t ti() ,(())= − α

 (8.15)

 R t eij
f t tij() .

(())= − α
 (8.16)

 Now using these reliabilities, compute the subnetwork reliability in Equation 8.17 ,
based on a series confi guration (nodes and links are connected in series in the sub-
networks). These subnetworks are shown in Figures 8.2 – 8.4 , where only the nodes
and links that are relevant to the operation of the primary node are shown (i.e., the
primary node a is not directly concerned with the recovery database node g in Fig.
 8.1). Then, the network reliability is predicted in Equation 8.18 , again using a series
confi guration:

 R t R t R t R ts k i ij

k i ij

() (())(())(()),
, ,

= ∏ (8.17)

 R t R tn s

s

() ().∏ (8.18)

 In Figure 8.2 , the subnetwork reliability is equal to the reliability of the path (a, c,
b, f) in the upload direction, and the reverse path (f, b, c, a) in the download direc-
tion. Since these path reliabilities are equal, reliabilities are only computed for the
upload direction — input request transaction to the Internet, refl ecting the typical
scenario of request to an Internet Web server.

Fault and Failure Correction

 In formulating the fault and failure correction process, we assume the following: (1)
one - to - one relationship between faults and failures and (2) the times required to

240 Computer, Network, Software, and Hardware Engineering with Applications

correct faults and failures are exponentially distributed (i.e., high probability of small
correction times and low probability of large correction times). While it is true that
a fault could spawn multiple failures, this is the minority case. These correction
times are computed in Equations 8.19 – 8.23, for primary node, nonprimary node,
link, subnetwork, and network, respectively, by using the mean number of failures
divided by the mean failure rate M(f(t)):

 Based on assumption (1), the correction rate equals the failure rate f(t) from
Equation 8.4 . Using assumption (2), the correction time probabilities in Equations
 8.24 – 8.28 are based on the exponential distribution for primary node, nonprimary
node, link, subnetwork, and network, respectively, where tc k , tc i , tc ij , tc s , and tc n are
the corresponding mean correction times:

 tc M t /M f tk k= () (()), (8.19)

 tc M t /M f ti i= () (()), (8.20)

 tc M t /M f tij ij= () (()), (8.21)

 tc M t /M f ts s= () (()), (8.22)

 tc M t /M f tn n= () (()), (8.23)

 p t f t ek
f t tck() () ,(()*)= − (8.24)

 p t f t ei
f t tci() () ,(()*)= − (8.25)

 p t f t eij
f t tcij() () ,(()*)= − (8.26)

 p t f t es
f t tcs() () ,(()*)= − (8.27)

 p t f t en
f t tcn() () .(()*)= − (8.28)

 Once the correction time probabilities have been obtained, the next step is to
compute the expected number of faults and failures that can be corrected. These
quantities are computed by using correction time probabilities and the corresponding
failure counts, for primary node, nonprimary node, link, subnetwork, and network,
in Equations 8.29 – 8.33, respectively:

 N t p t *F tk k k() () (),= (8.29)

 N t p t *F ti i i() () (),= (8.30)

 N t p t *F tij ij ij() () (),= (8.31)

 N t p t *F ts s s() () (),= (8.32)

 N t p t *F tn n n() () ().= (8.33)

 Now that the number of faults and failures that can be corrected has been estimated,
the remaining number of faults and failures are computed for primary node, nonpri-
mary node, and link in Equations 8.34 – 8.36, respectively. Now, not all faults and
failures are of equal priority for correction. An example of a serious one is a com-
munication failure on links that connect the primary node to the Internet. An example
of a nonserious failure is a transient failure, such as a fi le that does not initially show

Network Reliability and Availability Metrics 241

on the desktop screen of the primary node but does appear after a refresh. The
computation of the priority code is based on the relative value of the mean number
of failures in the subnetworks. The priority code, pc, is applied to the nodes and
links that comprise a subnetwork, as shown in Equations 8.34 – 8.36, to account for
the relative priority of correcting remaining faults and failures.

 The subnetwork remaining failures in Equation 8.37 is computed by summing
remaining failures over primary nodes, nonprimary nodes, and links. Then, the
network remaining failures in Equation 8.38 is computed by summing the remaining
failures over subnetworks:

 r t F t N t *pck k k() (() ()) ,= − (8.34)

 r t F t N t *pci i i() (() ()) ,= − (8.35)

 r t F t N t *pcij ij ij() (() ()) ,= − (8.36)

 r t r t r t r ts k i ij

k i ij

() (()) (()) (()),
, ,

= + +∑ (8.37)

 r t r tn s

n

() ().= ∑ (8.38)

Revising Probabilities of Remaining Failures Based
on Fault and Failure Correction

 Once the remaining failures have been estimated, the revised probability of remain-
ing failures for the primary node, nonprimary node, link, subnetwork, and network
can be predicted by fi rst computing the mean remaining failures in Equations
 8.39 – 8.43 and substituting these values in Equations 8.44 – 8.48, respectively, and
using x as the expected number of failures in the Poisson distribution of remaining
failures:

 MR t
r t

n
k

k
()

()
,= ∑ (8.39)

 MR t
r t

n
i

i
()

()
,= ∑ (8.40)

 MR t
r t

n
ij

ij
()

()
,= ∑ (8.41)

 MR t
r t

n
s

s
()

()
,= ∑ (8.42)

 MR t
r t

n
n

n
()

()
,= ∑ (8.43)

242 Computer, Network, Software, and Hardware Engineering with Applications

 PR r t
MR t e

x
k

k
x MR tk

(())
(())

!
,

()

=
−

 (8.44)

 PR r t
MR t e

x
i

i
x MR ti

(())
(())

!
,

()

=
−

 (8.45)

 PR r t
MR t e

x
ij

ij
x MR tij

(())
(())

!
,

()

=
−

 (8.46)

 PR r t
MR t e

x
s

s
x MR ts

(())
(())

!
,

()

=
−

 (8.47)

 PR r t
MR t e

x
n

n
x MR tn

(())
(())

!
.

()

=
−

 (8.48)

Revising Reliabilities Based on
Fault and Failure Correction

 Since the failure count has been reduced by the correction process, it is necessary
to revise the reliabilities of the primary nodes, nonprimary nodes, and links, using
the remaining failures failure rates, rf(t k), rf(t i), and rf (t ij), and Weibull distribution,
as shown in Equations 8.49 – 8.51, respectively:

 RR t ek
rf t tk k() ,(()= − α

 (8.49)

 where primary node failure rate rf(t k) = r k (t) / t k (remaining primary node failures/
primary node operating time);

 RR t ei
rf t ti i() ,(()= − α

 (8.50)

 where nonprimary node failure rate rf(t i) = r i (t) / t i (remaining nonprimary node
failures/nonprimary node operating time); and

 RR t eij
rf t tij ij() ,

(()= − α
 (8.51)

 where link failure rate rf(t ij) = r ij (t) / t ij (remaining link failures/link operating time).
 Next, the revised subnetwork reliability can be predicted in Equation 8.52 as

follows, using Equations 8.49 – 8.51 and a series confi guration:

 RR t RR t RR t RR ts k i ij

k i ij

() (())(())(()).
, ,

= ∏ (8.52)

 Then, by using Equation 8.52 and a series confi guration, the revised network reli-
ability is predicted in Equation 8.53:

 RR t RR tn s

s

() ().= ∏ (8.53)

Network Reliability and Availability Metrics 243

Availability Analysis

 To predict availability of a new system, probabilistic models need to be formulated
 [MIL98] , and you need to account for the downtime attributed to fault detection,
isolation, and correction [EIS] . However, while these approaches are valid, it is
easier to defi ne availability as the expected fraction of time that a system is function-
ing acceptably [MUS04] , or alternatively, as the fraction of time that the network
delivers proper service (i.e., it is not engaged in correcting faults) during its operat-
ing time [ATH05] .

 In this chapter ’ s network model, t k /M(t k) is the mean time to failure for primary
nodes, computed from the operating time, t k , and the mean number of failures, M(t k),
and tc k is the mean fault correction time. Thus, using these quantities, the availability
of the primary node is computed in Equation 8.54 . Similarly, the availability of the
nonprimary nodes and the links are computed in Equations 8.55 and 8.56 , respec-
tively. Next, the subnetwork availabilities are computed in Equation 8.57 as the
product of primary node, nonprimary node, and link availabilities, using a series
confi guration. Finally, the network availability is computed in Equation 8.58 as the
product of the subnetwork availabilities.

 You must also account for revised availabilities, once faults and failures have
been corrected, by using the mean remaining failure counts. This is accomplished
for the primary node, nonprimary node, link, subnetwork, and network in Equations
 8.59 – 8.63, respectively, using the means of remaining failures (MR) that result from
fault correction actions:

 A t

t
M t

t
M t

tc tc t M t
k

k

k

k

k
k

k k k

() ()

()
((/) ())

,=
+

=
+

1

1
 (8.54)

 A t

t
M t
t

M t
tc tc t M t

i

i

i

i

i
i

i i i

() ()

()
((/) ())

,=
+

=
+

1

1
 (8.55)

 A t

t

M t
t

M t
tc tc t M t

ij

ij

ij

ij

ij
ij

ij ij ij

()
()

()
((/) ())

,=
+

=
+

1

1
 (8.56)

 A t A t A t A ts k i ij

k i ij

() () () (),
, ,

= ∏ (8.57)

 A t A tn s

s

() (),= ∏ (8.58)

244 Computer, Network, Software, and Hardware Engineering with Applications

 RA t

t
MR t
t

MR t
tc tc t MR t

k

k

k

k

k
k

k k k

() ()

()
((/) ())

,=
+

=
+

1

1
 (8.59)

 RA t

tc
MR t
tc

MR t
tc tc t MR t

i

i

i

i

i
i

i i i

() ()

()
((/) ())

,=
+

=
+

1

1
 (8.60)

 RA t

t

MR t
t

MR t
tc tc t M t

ij

ij

ij

ij

ij
ij

ij ij ij

()
()

()
((/) ())

,=
+

=
+

1

1
 (8.61)

 RA t RA t RA t RA ts k i ij

k i ij

() () () (),
, ,

= ∏ (8.62)

 RA t RA tn s

s

() ().= ∏ (8.63)

PROBABILITY OF FAILURE ANALYSIS RESULTS

 Typically, systems are unstable as they boot up when many processes and applica-
tions are invoked concurrently; later, the systems stabilize, hence the reason for the
decreasing probability of failure over operating time in Figures 8. 5 and 8.6 . Figure
 8.5 shows the ranking of probability of failure for the subnetworks, using the mean
failure count. The value of this fi gure is that it identifi es the order in which failure
and fault correction should take place for the subnetwork, according to the priority
code.

 Figure 8.6 shows that the revised probability of failure for the network does not
become favorable (i.e., crosses the original probability of failure curve) until operat-
ing time t > 17. The implication is that the network must be operated for a consider-
able time before the effect of failure and fault correction occurs. This concept is
reinforced in Figure 8.7 , where the changes in probability of failure between original
and revised are plotted for the subnetworks and network. Again, there is considerable
delay before the changes occur in the favorable direction.

FAULT AND FAILURE CORRECTION
ANALYSIS RESULTS

 This analysis is directed toward answering the question: Are there correction time
anomalies among the nodes and links such that a priority ranking for fault and failure
correction should be established? In looking at Figure 8.8 , the answer is “ yes ”

Network Reliability and Availability Metrics 245

Figure 8.5 Original subnetwork probability of failure P(F(t)) versus operating time t. Series 1:
subnetwork 1, mean failure count = 0.2953. Series 2: subnetwork 2, mean failure count = 0.2149.
Series 3: subnetwork 3, mean failure count = 0.3018.

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

t (hours)

P
(F

(t
))

Series 1

Series 2

Series 3

Priority code based on mean failure count:

Series 1: .3637

Series 2: .3647

Series 3: .3717

Figure 8.6 Original probability of failure P(F(t)) and revised probability of failure PR(r(t)) versus
operating time t. Series 1: P(F(t)): network. Series 2: PR(rt)): network.

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

t (hours)

P
F

(F
(t

))
, P

R
(r

(t
))

Series 1

Series 2

Probability of failure in favorable direction for t > 17

246 Computer, Network, Software, and Hardware Engineering with Applications

Figure 8.8 Subnetwork failure and fault correction time tc versus node and link identifi er i. Series
1: subnetwork 1: i = 1: node a; i = 2: link ac; i = 3: node c; i = 4: link cb; i = 5: node b; i = 6: link bf,
node f. Series 2: subnetwork 2: i = 1: node d; i = 2: link dc; i = 3: node c; i = 4: link cb; i = 5: node b;
i = 6: link bf, node f. Series 3: subnetwork 3: i = 1: node e; i = 2: link ec; i = 3: node c; i = 4: link cb;
i = 5: node b; i = 6: link bf, node f.

0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

12.0000

14.0000

16.0000

18.0000

20.0000

1 2 3 4 5 6 7

i

t c
 (

h
o

u
rs

)

Series 1

Series 2

Series 3

Figure 8.7 Change in probability of failure [P(F(t)) – P(r(t))] versus operating time t. Series 1:
subnetwork 1: change in favorable direction for t > 16. Series 2: subnetwork 2: change in favorable
direction for t > 15. Series 3: subnetwork 3: change in favorable direction for t > 16. Series 4:
network: change in favorable direction for t > 17.

–0.2500

–0.2000

–0.1500

–0.1000

–0.0500

0.0000

0.0500

0.1000

0.1500

0.2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

t (hours)

[P
(F

(t
))

–
P

(r
(t

))
]

Series 1

Series 2

Series 3

Series 4

Network Reliability and Availability Metrics 247

Figure 8.9 Remaining failures r (t) versus operating time t. Series 1: Subnetwork 1. Series 2:
Subnetwork 2. Series 3: subnetwork 3. Series 4: Network.

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

t (hours)

r(
t)

Series 1

Series 2

Series 3

Series 4

The greatest effect of failure and fault correction is for subnetwork 2

because there is considerable variation in the correction times for the primary node
(i = 1) and nonprimary node (i = 2), and connecting link (i = 3), whereas the cor-
rection time stabilizes for the remainder of the subnetworks. The reason for the
anomalies is that the software that is used in the home, such as desktop and laptop
computers, is usually more diffi cult to debug than, for example, a cable modem,
wherein a reset will usually clear the failure.

REMAINING FAILURES ANALYSIS RESULTS

 An important metric for judging the reliability of a network system is predicted
remaining failures. After all, predicted remaining failures of subnetworks and
network represent residual problems that signal the need for further failure and fault
correction. Figure 8.9 shows the relative effectiveness of the correction effort. The
process has been most effective for subnetwork 2 and less effective for subnetworks
1 and 3, and the network.

RELIABILITY ANALYSIS RESULTS

 After remaining failures have been predicted and plotted in Figure 8.9 , as the result
of failure and fault correction, reliability predictions, before and after failure and
fault correction, can be analyzed in Figures 8.10 and 8.11 , respectively, to identify

Figure 8.11 Revised actual reliability ARR(t) and predicted reliability RR(t) versus operating time t.
Series 1: ARR(t). Series 2: RR(t), subnetwork 1, satisfi es specifi cation for all t. Series 3: RR(t),
subnetwork 2, satisfi es specifi cation for all t. Series 4: RR(t), subnetwork 3, fails specifi cation for t > 17.
Series 5: specifi ed reliability = 0.9000. Series 6: network, MSE = – 0.0030, fails specifi cation for t > 17.

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

t (hours)

A
R

R
(t

),
 R

R
(t

)

Series 1

Series 2

Series 3

Series 4

Series 5

Series 6

Figure 8.10 Original actual reliability AR(t) and predicted reliability R(t) versus operating time t.
Series 1: AR(t). Series 2: R(t), subnetwork 1, fails specifi cation for t > 17. Series 3: R(t), subnetwork
2, fails specifi cation for t > 17. Series 4: R(t), subnetwork 3, fails specifi cation for t > 17. Series 5:
Specifi ed reliability = 0.9000. Series 6: R(t), network, mean squared error (MSE) = 0.0140, fails
specifi cation for t > 16.

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

t (hours)

A
R

T
(t

),
 R

(t
)

Series 1

Series 2

Series 3

Series 4

Series 5

Series 6

248

Network Reliability and Availability Metrics 249

improvements in reliability for the subnetworks. Comparing the fi gures, you can see
that improvements in reliability occur for subnetworks 1 and 2, no improvement for
subnetwork 3, and minor improvement in the network, as the result of failure and
fault correction. Thus, the correction process has proved partially benefi cial. Sub-
network 3 must be subjected to further fault correction. Also note that the predictions
for the network yield very low MREs with respect to the actual network reliability.
The value of Figures 8.10 and 8.11 is that network administrators can determine
whether failure and fault correction efforts are likely to succeed.

AVAILABILITY ANALYSIS RESULTS

 Figure 8.12 demonstrates that none of the subnetworks and the network satisfi es the
availability requirement. Therefore, action would be taken to correct failures and
faults and then revise the availability predictions. The predictions are revised in
Figure 8.13 , where it is demonstrated that the failure and fault correction process
has been very effective because now all subnetworks and the network satisfy the
availability requirement.

Figure 8.12 Original availability A(t) versus operating time t. Series 1: Subnetwork 2: fails
requirement for t > 6. Series 2: Subnetwork 3: fails requirement for t > 5. Series 3: Network: fails
requirement for t > 2. Series 4: Subnetwork 1: fails requirement for t > 5. Series 5: Specifi ed
availability = 0.9100.

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
(t

)

t (hours)

Series 4

Series 5

Series 1

Series 2

Series 3

250 Computer, Network, Software, and Hardware Engineering with Applications

Figure 8.13 Revised availability RA (t) versus operating time t. Series 1: Subnetwork 1. Series 2:
Subnetwork 2. Series 3: Subnetwork 3. Series 4: Network.

0.9900

0.9920

0.9940

0.9960

0.9980

1.0000

1.0020

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

t (hours)

R
A

(t
)

Series 1

Series 2

Series 3

Series 4

All subnetworks and network satisfy availability requirement = 0.9100 for all t

ANOTHER PERSPECTIVE ON
PROBABILITY OF FAILURE

 In this section a simplistic equation is developed for the probability of failures in a
subnetwork or network, using a binomial distribution that is a function of x, a speci-
fi ed number of nodes and links that could fail in a subnetwork or network. In Equa-
tion 8.64 , the constant probability of a node or link failing is p = 1/n, where n is the
number of nodes and links in a subnetwork or network. This formulation assumes
that nodes and links fail independently and that the probability of failure p is con-
stant. Thus, the probability of x failures, P(x), is expressed in Equation 8.68:

 P x
n

n x
p px n x()

!

()!
()(()).=

−
− −1 (8.64)

 While, admittedly, this is a crude formulation, it is useful for obtaining a rough
cut of the reliability of a subnetwork or network when individual node and link
failure data are not available. Even absent these data, Equation 8.64 provides the
likelihood that x number of nodes and links is likely fail, and the values of x where
P(x) will be a maximum. For example, the results in Figure 8.14 show that as the

Network Reliability and Availability Metrics 251

nodes and links are aggregated into subnetworks, and subnetworks are aggregated
into the network, the maximum probability of failure always occurs at one and two
failures. Thus, network users would only have to prepare for a small number of
failures.

Problem for Reader: Why are the probabilities of failure in Figures 8.6 and
 8.14 so signifi cantly different?

Answer: Notice that in Figure 8.6 , for the Poisson distribution, the probability
of failure is a function of operating time while in Figure 8.14 , for the binomial
distribution, the probability of failure is a function of number of failures —
 specifi ed number of link and node failures. In the case of Figure 8.6 , the
probability of failure is large because the network is exposed to long operating
times— up to 20 hours. Furthermore, the probability of failure is also driven
by the failure rate postulated in Equation 8.4 , whose source is an Internet
router company that reported a variety of network hardware and software
failures. During this prolonged exposure, there are opportunities for faults to
wreck havoc on the system. Contrast this situation with Figure 8.14 , where
the probability of failure is much smaller because the probability pertains to
a link or node failing — an occurrence rare compared to any type of failure in
Figure 8.6 .

Figure 8.14 Probability of x failures, P(x), versus x. Series 1: Subnetwork 1. Series 2: Subnetworks
1 and 2. Series 3: Subnetworks 1, 2, and 3. Series 4: Network.

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

0.3500

0.4000

0.4500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

x

P
(x

)

Series 1

Series 2

Series 3

Series 4

Maximum at x = 1 and 2

252 Computer, Network, Software, and Hardware Engineering with Applications

MEASURING PREDICTION ACCURACY

 Of course, it is important to measure the accuracy of predictions so that you can see
whether the models are validated. A frequently used measure is the relative error
(RE) of reliability predictions and the MRE [FEN97] . To illustrate the process, fi rst
estimate the actual reliability, AR(t), for a subnetwork, in Equation 8.65 , by summing
the original failure counts F(t) over the number of nodes and links in the network,
N, in the numerator, and then summing these counts over the number of operating
time periods, n, in the denominator. Then compute the RE in Equation 8.66 , using
the original predicted reliabilities R(t) and actual reliabilities AR(t). Next, compute
the MRE of the RE. It is also important to assess prediction accuracy after failure
and fault correction, using remaining failures r(t) in Equation 8.67 , as the actual
remaining failure count, and then compute the revised RE RRE(t) in Equation 8.68 ,
using the revised reliability predictions RR(t). Finally, compute the MRE of the
revised RE:

 AR t

F t

F t

i

N

i

N

i

n()

()

()

,= − =

==

∑

∑∑
1 1

11

 (8.65)

 RE t AR t R t /AR t() (() ()) (),= − (8.66)

 ARR t

r t

r t

i

N

i

N

i

n()

()

()

,= − =

==

∑

∑∑
1 1

11

 (8.67)

 RRE t ARR t RR t /ARR t() (() ()) ().= − (8.68)

METHODS FOR IMPROVING RELIABILITY

 The network should preserve connectivity in the presence of failures (i.e., fault toler-
ance in router subnetworks) [MEN] . One way to implement fault tolerance is to
provide redundant units that can replace failed units. This approach can extend the
mean lifetime of fault - free operation [KAI95] . Rather than switch in a fault - free unit,
a network can achieve equivalent fault tolerance by providing alternate paths for
data in the event of a router or link failure. This approach quickly plays to the
strength of routers: detecting network failures and routing data round them. Data are
routed between any two subnetworks on the lowest cost or shortest time - path basis.
Redirectors exist for different network protocols: sending, receiving, and processing
routing updates. Redirectors calculate a forwarding table from the available routing
information, including destination subnetwork interface on which data are bound for

Network Reliability and Availability Metrics 253

the destination subnetwork. During normal router operation, the forwarding table
indicates only the best path to a destination subnetwork. When a link or router fails,
routers exchange routing information to learn alternate paths. The period of time for
the routers to detect the link failure and discover new routes to all available subnet-
works is referred to as convergence time. Generally, convergence occurs within 1
minute [HEW93] . An example of this principal is shown in Figure 8.2 , for subnet-
work 1, where alternate paths would be provided by the Internet service provider
between the cable modem and Internet router.

 When an alternate path is provided on the link b, f in Figure 8.2 , assuming equal
reliabilities on the single and alternate paths, the alternate path original link reli-
ability APR(t ij) is the parallel reliability shown in Equation 8.69 , where R(t ij) is the
original single - path reliability [LYU96] . Thus, use Equation 8.69 to see whether
signifi cant improvement in reliability is obtained for subnetwork 1 by using an
alternate path. Then, the subnetwork original reliability, comprised of the reliability
on link b, f, from Equation 8.69 , and the reliabilities of the primary (R(t k)) and
nonprimary (R(t i)) nodes, are computed in Equation 8.70:

 APR t R t R tij ij ij() () () ,= −2 2 (8.69)

 APR t APR t R t R ts ij k i

ij k i

() (())(())(()).
, ,

= ∏ (8.70)

 In addition to the original reliabilities in Equations 8.69 and 8.70 , the revised reliabili-
ties resulting from failure and fault correction are computed in Equations 8.71 and
 8.72 for the alternate path provided by link b, f and the subnetwork, respectively.

 APRR t RR t RR tij ij ij() () () ,= −2 2 (8.71)

 APR t APRR t RR t RR ts ij k i

ij k i

() (())(())(()).
, ,

= ∏ (8.72)

 The fi rst test of reliability improvement is shown in Figure 8.15 where, for subnet-
work 1 , the revised alternate path and single path subnetwork reliabilities satisfy the
requirement for all values of operating time. The second test is shown in Figure
 8.16 , where original and revised alternate path link and single - path link reliabilities
satisfy the reliability specifi cation for all values of operating time, with the alternate
path confi gurations providing the higher reliability. The expense incurred by using
an alternate path would be justifi ed for a mission - critical application but, perhaps,
not for a commercial application.

 Network reliability can also be improved by dividing the network into subsets
that have high interaction and connectivity within a subnetwork. Subnetworks are
then interconnected, thus providing isolation of network domains that are likely to
experience high failure rates due to high interaction. This concept is shown in
Figures 8.2 – 8.4 for subnetworks 1, 2, and 3, respectively, where the subnetworks
have been created from the total network in Figure 8.1 .

Figure 8.16 Alternate path link reliability (APLR) and single path link reliability (SPLR) versus
operating time t. Series 1: Original APLR, specifi cation satisfi ed for all values of t. Series 2: Original
SPLR, specifi cation satisfi ed for all values of t. Series 3: Revised APLR, specifi cation satisfi ed for all
values of t. Series 4: Revised SPLR, specifi cation satisfi ed for all values of t. Series 5: Reliability
requirement = 0.9000.

0.9000

0.8800
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.9200

0.9400

0.9600

0.9800

1.0000

A
P

L
R

,
S

P
L

R

t (hours)

Series 1

Series 2

Series 3

Series 4

Series 5

Alternate path is provided by link b, f

Figure 8.15 Alternate path subnetwork 1 reliability (APSR) and single path subnetwork reliability
 SPSR versus operating time t. Series 1: Original APSR, fails specifi cation for t > 17. Series 2: Original
SPSR, fails specifi cation for t > 17. Series 3: Revised APSR, satisfi es specifi cation for all values of t.
Series 4: Revised SPSR, satisfi es specifi cation for all values of t. Series 5: Specifi ed
reliability = 0.9000.

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

t (hours)

A
P

S
R

, S
P

S
R

Series 1

Series 2

Series 3

Series 4

Series 5

Alternate path provided by link b, f

254

Ta
bl

e
8.

2
 Su

bn
et

w
or

k
M

et
ri

cs
 a

nd
 R

es
ul

ts

 M
et

ri
c

 Pu
rp

os
e

 Su
bn

et
w

or
k

 A
ct

io
n

 1
 2

 3

 O
ri

gi
na

l
 R

ev
is

ed

 O
ri

gi
na

l
 R

ev
is

ed

 O
ri

gi
na

l
 R

ev
is

ed

 O
ri

gi
na

l
pr

ob
ab

ili
ty

of
 f

ai
lu

re

(F
ig

. 8
.5

)

 D
et

er
m

in
e

pr
io

ri
ty

 f
or

fa

ilu
re

co
rr

ec
tio

n

 H
ig

he
st

pr

io
ri

ty

 L

ow
es

t
pr

io
ri

ty

 M

id
dl

e
pr

io
ri

ty

 A

pp
ly

 p
ri

or
ity

co

de
 t

o
fa

ilu
re

co
rr

ec
tio

n
 O

ri
gi

na
l

an
d

re
vi

se
d

pr
ob

ab
ili

ty
of

 f
ai

lu
re

(F

ig
. 8

.6
)

 C
om

pa
re

or

ig
in

al
 a

nd

re
vi

se
d

pr
ob

ab
ili

ty
 o

f
fa

ilu
re

 C
ha

ng
e

in

fa
vo

ra
bl

e
di

re
ct

io
n

fo
r

t
 >

 17

 C
ha

ng
e

in

pr
ob

ab
ili

ty
of

 f
ai

lu
re

(F

ig
. 8

.7
)

 C
om

pa
re

ch

an
ge

s
in

pr

ob
ab

ili
ty

 o
f

fa
ilu

re

 C
ha

ng
e

in

fa
vo

ra
bl

e
di

re
ct

io
n

fo
r

t
 >

 16

 C
ha

ng
e

in

fa
vo

ra
bl

e
di

re
ct

io
n

fo
r

t
 >

 15

 C
ha

ng
e

in

fa
vo

ra
bl

e
di

re
ct

io
n

fo
r

t
 >

 16

 C
or

re
ct

ad

di
tio

na
l

fa
ilu

re
s

 Fa
ilu

re
 a

nd

fa
ul

t
co

rr
ec

tio
n

tim
e

(F
ig

.
 8.

8)

 D
et

ec
t

an
om

al
ie

s
in

fa

ilu
re

 a
nd

fa

ul
t

co
rr

ec
tio

n
tim

e

 C
on

si
de

ra
bl

e
va

ri
at

io
n

in

th
e

co
rr

ec
tio

n
tim

es
 f

or

th
e

pr
im

ar
y

no
de

 a
nd

no

np
ri

m
ar

y
no

de
, a

nd

co
nn

ec
tin

g
lin

k

 C
on

si
de

ra
bl

e
va

ri
at

io
n

in

th
e

co
rr

ec
tio

n
tim

es
 f

or

th
e

pr
im

ar
y

no
de

 a
nd

no

np
ri

m
ar

y
no

de
, a

nd

co
nn

ec
tin

g
lin

k

 C
on

si
de

ra
bl

e
va

ri
at

io
n

in

th
e

co
rr

ec
tio

n
tim

es
 f

or

th
e

pr
im

ar
y

no
de

 a
nd

no

np
ri

m
ar

y
no

de
, a

nd

co
nn

ec
tin

g
lin

k

 Fo
cu

s
te

st

ef
fo

rt
 o

n
pr

im
ar

y
no

de
 a

nd

co
nn

ec
tin

g
lin

k

(C
on

ti
nu

ed
)

255

256

 M
et

ri
c

 Pu
rp

os
e

 Su
bn

et
w

or
k

 A
ct

io
n

 1
 2

 3

 O
ri

gi
na

l
 R

ev
is

ed

 O
ri

gi
na

l
 R

ev
is

ed

 O
ri

gi
na

l
 R

ev
is

ed

 R
em

ai
ni

ng

fa
ilu

re
s

(F
ig

. 8
.9

)

 Id
en

tif
y

re
si

du
al

pr

ob
le

m
s

in

ne
tw

or
k

 M
od

er
at

e
ef

fe
ct

 o
f

fa
ilu

re
 a

nd

fa
ul

t
co

rr
ec

tio
n

 G
re

at
es

t
ef

fe
ct

of

 f
ai

lu
re

an

d
fa

ul
t

co
rr

ec
tio

n

 M
od

er
at

e
ef

fe
ct

 o
f

fa
ilu

re
 a

nd

fa
ul

t
co

rr
ec

tio
n

 Fo
cu

s
te

st

ef
fo

rt
 o

n
su

bn
et

w
or

ks
1

an
d

3

 O
ri

gi
na

l
ac

tu
al

 a
nd

pr

ed
ic

te
d

re
lia

bi
lit

y
(F

ig
. 8

.1
0)

 Id
en

tif
y

op
er

at
in

g
tim

es
 w

he
n

su
bn

et
w

or
ks

fa
ils

sp
ec

ifi
ca

tio
n

 Fa
ils

sp

ec
ifi

ca
tio

n
fo

r
t

 >
 17

 Fa
ils

sp

ec
ifi

ca
tio

n
fo

r
t

 >
 17

 Fa
ils

sp

ec
ifi

ca
tio

n
fo

r
t

 >
 17

 Pr
ed

ic
t

re
vi

se
d

re
lia

bi
lit

y

 R
ev

is
ed

ac

tu
al

 a
nd

pr

ed
ic

te
d

re
lia

bi
lit

y
(F

ig
. 8

.1
1)

 Id
en

tif
y

su
bn

et
w

or
k(

s)
th

at
 f

ai
l

sp
ec

ifi
ca

tio
n

 Sa
tis

fi e
s

sp
ec

ifi
ca

tio
n

fo
r

al
l

t

 Sa
tis

fi e
s

sp
ec

ifi
ca

tio
n

fo
r

al
l

t

 Fa
ils

sp

ec
ifi

ca
tio

n
fo

r
t

 >
 17

 R
eb

oo
t

su
bn

et
w

or
k

3
fo

r
t

 >
 17

 O
ri

gi
na

l
pr

ed
ic

te
d

av
ai

la
bi

lit
y

(F
ig

. 8
.1

2)

 Id
en

tif
y

op
er

at
in

g
tim

es
 w

he
n

su
bn

et
w

or
ks

fa
il

sp
ec

ifi
ca

tio
n

 Fa
ils

re

qu
ir

em
en

t
fo

r
t

 >
 5

 Fa
ils

re

qu
ir

em
en

t
fo

r
t

 >
 6

 Fa
ils

re

qu
ir

em
en

t
fo

r
t

 >
 5

 D
et

er
m

in
e

w
he

th
er

re
vi

se
d

av
ai

la
bi

lit
ie

s
w

ill
 m

ee
t

sp
ec

ifi
ca

tio
n

Ta
bl

e
8.

2
(C

on
ti

nu
ed

)

257

 M
et

ri
c

 Pu
rp

os
e

 Su
bn

et
w

or
k

 A
ct

io
n

 1
 2

 3

 O
ri

gi
na

l
 R

ev
is

ed

 O
ri

gi
na

l
 R

ev
is

ed

 O
ri

gi
na

l
 R

ev
is

ed

 R
ev

is
ed

pr

ed
ic

te
d

av
ai

la
bi

lit
y

(F
ig

. 8
.1

3)

 Id
en

tif
y

su
bn

et
w

or
ks

th
at

 s
at

is
fy

av

ai
la

bi
lit

y
re

qu
ir

em
en

t

 Su
bn

et
w

or
k

sa
tis

fi e
s

av
ai

la
bi

lit
y

re
qu

ir
em

en
t

fo
r

al
l

t

 Su
bn

et
w

or
k

sa
tis

fi e
s

av
ai

la
bi

lit
y

re
qu

ir
em

en
t

fo
r

al
l

t

 Su
bn

et
w

or
k

sa
tis

fi e
s

av
ai

la
bi

lit
y

re
qu

ir
em

en
t

fo
r

al
l

t

 N
on

e

 Pr
ob

ab
ili

ty
 o

f
x

fa
ilu

re
s

(F
ig

. 8
.1

4)

 D
et

er
m

in
e

di
st

ri
bu

tio
n

of

fa
ilu

re
s

in

su
bn

et
w

or
ks

 M
ax

im
um

pr

ob
ab

ili
ty

fo
r

x
 =

 1
an

d
2

 M
ax

im
um

pr

ob
ab

ili
ty

fo
r

x
 =

 1
an

d
2

 M
ax

im
um

pr

ob
ab

ili
ty

fo
r

x
 =

 1
an

d
2

 Fo
cu

s
te

st

ef
fo

rt
 o

n
on

e
an

d
tw

o
fa

ilu
re

oc
cu

rr
en

ce
s

 A
lte

rn
at

e
pa

th
su

bn
et

w
or

k
re

lia
bi

lit
y

(F
ig

. 8
.1

5)

 D
et

er
m

in
e

w
he

th
er

 i
t

is

ad
va

nt
ag

eo
us

to
 u

se

al
te

rn
at

e
pa

th

su
bn

et
w

or
k

 Fa
ils

sp

ec
ifi

ca
tio

n
fo

r
t

 >
 17

on su

bn
et

w
or

k
al

te
rn

at
e

an
d

si
ng

le

pa
th

s

 Sa
tis

fi e
s

sp
ec

ifi
ca

tio
n

fo
r

al
l

va
lu

es
 o

f
t

on su
bn

et
w

or
k

al
te

rn
at

e
an

d
si

ng
le

pa

th
s

 N
on

e

 A
lte

rn
at

e
pa

th
 l

in
k

re
lia

bi
lit

y
(F

ig
. 8

.1
6)

 D
et

er
m

in
e

w
he

th
er

 i
t

is

ad
va

nt
ag

eo
us

to
 u

se

al
te

rn
at

e
pa

th

lin
k

 Sp
ec

ifi
ca

tio
n

sa
tis

fi e
d

fo
r

al
l

va
lu

es

of
 t

 o
n

lin
k

fo
r

al
te

rn
at

e
an

d
si

ng
le

pa

th
s

 Sp
ec

ifi
ca

tio
n

sa
tis

fi e
d

fo
r

al
l

va
lu

es

of
 t

 o
n

lin
k

fo
r

al
te

rn
at

e
an

d
si

ng
le

pa

th
s

 N
on

e

Ta
bl

e
8.

3
 N

et
w

or
k

M
et

ri
cs

 a
nd

 R
es

ul
ts

 M
et

ri
c

 Pu
rp

os
e

 O
ri

gi
na

l
 R

ev
is

ed

 A
ct

io
n

 O
ri

gi
na

l
an

d
re

vi
se

d
pr

ob
ab

ili
ty

 o
f

fa
ilu

re
 (

Fi
g.

 8.

6)

 D
et

er
m

in
e

w
he

n
th

e
ef

fe
ct

of

 c
or

re
ct

in
g

fa
ilu

re
s

oc
cu

rs

 Pr
ob

ab
ili

ty
 o

f
fa

ilu
re

 i
n

fa
vo

ra
bl

e
di

re
ct

io
n

fo
r

t
 <

 17

 Pr
ob

ab
ili

ty
 o

f
fa

ilu
re

 i
n

fa
vo

ra
bl

e
di

re
ct

io
n

fo
r

t
 >

 17

 Im
pr

ov
e

te
st

 p
ro

ce
ss

fo

r
ea

rl
ie

r
op

er
at

in
g

tim
e

 Pr
ob

ab
ili

ty
 o

f
fa

ilu
re

 c
ha

ng
e

(F
ig

. 8
.7

)
 C

om
pa

re
 c

ha
ng

es
 i

n
pr

ob
ab

ili
ty

 o
f

fa
ilu

re

 C
ha

ng
e

in
 f

av
or

ab
le

di

re
ct

io
n

fo
r

t
 >

 17

 C
ha

ng
e

in
 f

av
or

ab
le

di

re
ct

io
n

fo
r

t
 >

 17

 C
or

re
ct

 a
dd

iti
on

al

fa
ilu

re
s

 R
em

ai
ni

ng
 f

ai
lu

re
s

(F
ig

. 8
.9

)
 Id

en
tif

y
re

si
du

al
 p

ro
bl

em
s

in
 n

et
w

or
k

 M
in

im
al

 e
ff

ec
t

of

fa
ilu

re
 c

or
re

ct
io

n
 Fo

cu
s

te
st

 e
ff

or
t

on

ne
tw

or
k

 O
ri

gi
na

l
ac

tu
al

 a
nd

 p
re

di
ct

ed

re
lia

bi
lit

y
(F

ig
. 8

.1
0)

 Id

en
tif

y
op

er
at

in
g

tim
es

w

he
n

ne
tw

or
k

fa
ils

sp

ec
ifi

ca
tio

n

 Fa
ils

 s
pe

ci
fi c

at
io

n
fo

r
t

 >
 16

 Pr

ed
ic

t
re

vi
se

d
re

lia
bi

lit
y

 R
ev

is
ed

 a
ct

ua
l

an
d

pr
ed

ic
te

d
re

lia
bi

lit
y

(F
ig

. 8
.1

1)

 D
et

er
m

in
e

w
he

th
er

ne

tw
or

k
fa

ils

sp
ec

ifi
ca

tio
n

 Fa
ils

 s
pe

ci
fi c

at
io

n
fo

r
t

 >
 17

 R

eb
oo

t
ne

tw
or

k
fo

r
t

 >
 17

 O
ri

gi
na

l
pr

ed
ic

te
d

av
ai

la
bi

lit
y

(F
ig

. 8
.1

2)

 Id
en

tif
y

op
er

at
in

g
tim

es

w
he

n
ne

tw
or

k
fa

ils

sp
ec

ifi
ca

tio
n

 Fa
ils

 r
eq

ui
re

m
en

t
fo

r
t

 >
 2

 D
et

er
m

in
e

w
he

th
er

re

vi
se

d
av

ai
la

bi
lit

y
w

ill
 m

ee
t

sp
ec

ifi
ca

tio
n

 R
ev

is
ed

 p
re

di
ct

ed

av
ai

la
bi

lit
y

(F
ig

. 8
.1

3)

 D
et

er
m

in
e

w
he

th
er

ne

tw
or

k
sa

tis
fi e

s
av

ai
la

bi
lit

y
re

qu
ir

em
en

t

 Sa
tis

fi e
s

av
ai

la
bi

lit
y

re
qu

ir
em

en
t

al
l

t
 N

on
e

 Pr
ob

ab
ili

ty
 o

f
x

fa
ilu

re
s

(F
ig

. 8
.1

4)

 D
et

er
m

in
e

di
st

ri
bu

tio
n

of

fa
ilu

re
s

in
 n

et
w

or
k

 M
ax

im
um

pr

ob
ab

ili
ty

 f
or

x

 =
 1

an
d

2

 Fo
cu

s
te

st
 e

ff
or

t
on

on

e
an

d
tw

o
fa

ilu
re

s

258

Network Reliability and Availability Metrics 259

 Another method for improving reliability is to store recovery data in a database.
For example, when a problem is detected in a network, a recovery action is executed
by the wireless router in Figure 8.1 that is associated with the malfunctioning com-
ponent to guide the recovery procedure. A database in Figure 8.1 stores network
state data (e.g., node and node communication history) that is used to recover lost
data after a crash. Changes in the network are broadcast to dependent components
through the database ’ s publish mechanism in order to initiate recovery. When a
failure is detected, the defect is repaired, and the system continues running with
minimum disturbance to other processes [HER07] .

SUMMARY OF RESULTS

 A large number of metrics, analyses of metric results, and explanatory plots have
been used in modeling network reliability and availability. Therefore, it is necessary
to summarize the highlights in Tables 8.2 and 8.3 for the subnetworks and network,
respectively. The most important part of the tables is the action taken in response to
the metric results. The actions indicate what users can do to improve the reliability
and availability of their networks.

SUMMARY

 Based on the network confi guration diagrams, mathematical formulations and corresponding
plots, and analysis results summaries, a practical template has been demonstrated for model-
ing and analyzing the reliability and availability of networks — nodes, links, and subnetworks.
The specifi c numerical results that were obtained were for illustrative purposes. However, the
template, or road map, could be used for different network topologies, parameters (i.e. duty
cycle), and variables (i.e., failure rate).

REFERENCES

 [ATH05] E. Athanasopoulou , P. Thakker , and W. H. Sanders , “ Evaluating the dependability of a
LEO satellite network for scientifi c applications , ” Second International Conference on the Quantitative
Evaluation of Systems (QEST ’ 05) , 2005 , pp. 95 – 104 .

 [BEN07] S. Benlarbi and D. Stortz , “ Measuring software reliability in practice: an industry case
study , ” The 18th IEEE International Symposium on Software Reliability (ISSRE ’ 07) , 2007 , pp.
 9 – 16 .

 [CHI01] V. Chirivella , R. Alcover , and J. Duato , “ Accurate reliability and availability models for
direct interconnection networks ,” International Conference on Parallel Processing (ICPP ’ 01) , 2001 ,
p. 517 .

 [DIS01] D. Donovan , C. Dislis , R. Murphy , S. Unger , C. Kenneally , J. Young , and L. Sheehan ,
“ Incorporating software reliability engineering into the test process for an extensive GUI - based
network management system ” , Proceedings in 12th International Symposium on Software Reliability
Engineering , Volume, Issue, November 27 – 30, 2001 pp. 44 – 53 .

 [EIS] I. Eisenberger and F. Maiocco , “ A preliminary deep space station operational availability
model , ” JPL Deep Space Network Progress Report 42 – 21 .

260 Computer, Network, Software, and Hardware Engineering with Applications

 [FEN97] F. Norman , Fenton and Shari Lawrence Pfl eeger, Software Metrics: A Rigorous & Practical
Approach , 2nd ed. PWS Publishing Company , 1997 .

 [HER07] J. N. Herder , H. Bos , B. Gras , P. Homburg , and A. S. Tanenbaum , “ Failure resilience for
device drivers , ” 37th Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works , Volume, Issue, June 25 – 28, 2007, pp. 41 – 50 .

 [HEW93] Hewlett - Packard , “ Improving Network Availability , ” Update July 1993 .
 [KAI95] N. Gaitanis , P. Kostarakis , and A. Paschalis , “ Totally self checking reconfi gurable duplica-

tion system with separate internal fault indication , ” Proceedings of the Fourth Asian Test Symposium ,
November 23 – 24, pp. 316 – 321 .

 [LLO62] D. K. Lloyd and M. Lipow , Reliability: Management, Methods, and Mathematics . Englewood
Cliffs, NJ : Prentice - Hall, Inc. , 1962 .

 [LYU96] M. R. Lyu (ed.), Handbook of Software Reliability Engineering . Los Alamitos, CA : IEEE
Computer Society Press ; New York : McGraw - Hill Book Company , 1996 .

 [MED00] D. Medhi and D. Tipper , “ Multi - layered network survivability — models, analysis, architec-
ture, framework and implementation: an overview , ” Proceedings of the DARPA Information Surviv-
ability Conference and Exposition (DISCEX ’ 2000) , Hilton Head, South Carolina, 2000 .

 [MEN] V. B. Mendiratta , “ A Simple ATM Backbone Network Reliability Model , ” Bell Labs, Lucent
Technologies, Naperville, Illinois, USA, e - mail: veena@lucent.com.

 [MIL98] M. R. Wilson , Bell Laboratories , “ The quantitative impact of survivable network architectures
on service availability , ” IEEE Communications Magazine , 1998 .

 [MOO01] D. Moore , G. Voelker , and S. Savage , “ Inferring Internet denial of service activity , ” Usenix
Security Symposium , 2001 .

 [MUS04] J. D. Musa , Software Reliability Engineering: More Reliable Software, Faster, and Cheaper ,
 2nd ed. Authorhouse , 2004 .

 [MUS87] J. D. Musa , A. Iannino , and K. Okumoto , Software Reliability: Measurement, Prediction,
Application . New York : McGraw - Hill , 1987 .

 [NIC04] D. M. Nicol , W. H. Sanders , and K. S. Trivedi , “ Model - based evaluation: from dependability
to security , ” IEEE Transactions on Dependable and Secure Computing , 2004 , 1 (1).

 [SHO02] L. Martin , Shooman, Reliability of Computer Systems and Networks: Fault Tolerance, Analy-
sis, and Design . New York : John Wiley & Sons, Inc , 2002 .

 Part Three

Software Engineering

Chapter 9

Programming Languages

T his chapter is designed to provide the reader with valuable information, analyses, and
evaluations of programming languages. This is a vital topic because, after all, all the computer
hardware and system design tools in the world will not produce an implement application
without programming languages to support the implementation of software! An outstanding
feature of this chapter are the models for estimating the reliability, maintainability, and avail-
ability of computer programs. This feature does not exist in other texts. In addition, the reader
is led through various methodologies for designing programs, supported by graphical presen-
tations that render the methodologies understandable.

INTRODUCTION

 Programming languages are programmers ’ most basic tools. With appropriate pro-
gramming languages one can drastically reduce the cost of building new applications
as well as maintaining existing ones. There have been many advances in program-
ming languages technology. The main driving force was and will be to better express
programmers ’ ideas. Therefore, research in programming languages is an endless
activity and the core of computer science. New language features, new programming
paradigms, and better compile - time and run - time mechanisms can be foreseen in the
future [COM09] . This chapter will discuss programming language issues and show
the reader how languages can be evaluated and improved.

DESIRABLE PROPERTIES OF
A PROGRAMMING LANGUAGE

 A convenient way to think about desirable properties in a programming language is
to think about how the brain solves a problem. First, there should be a minimum of
syntax that has little relevance for how humans solve problems. The reason for this

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F.
Schneidewind.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley &
Sons, Inc.

263

264 Computer, Network, Software, and Hardware Engineering with Applications

criterion is that such excess baggage is a distraction to problem solving. The C ++
language will be used as the principle language for illustrating characteristics that
are benefi cial for problem solving and those characteristics that are detrimental to
this cause. I will couple the application of C ++ to solving a problem in searching a
Web site for desired information with the principles of the design process.

What is Design?

 Let us consider the question: what is design? Design is the process of making deci-
sions about an abstract representation of a system. The word “ abstract ” is used
because at this stage the system does not exist. It is a concept in the brain that is
later translated to a more concrete representation, such as a drawing, model, or
mathematical equation. Design involves making trade - offs among various design
alternatives [REI99] . For example, one alternative for searching a Web site is to
serially— in a brute - force fashion — search for the desired content. A second alterna-
tive is to use pointers that have been organized to map to various subject matters.
Yet a third alternative is to combine the second alternative with organizing the
subject matter in chronological sequence, on the presumption that the user is inter-
ested in seeing the latest content fi rst. Note that C ++ is irrelevant to the evaluation
of these design alternatives! This is an important point that you should be aware of:
too many books confuse design issues with programming language characteristics.
The correct process is to fi rst select the most appropriate design, independent of
programming languages. Then choose a programming language whose characteris-
tics are most representative of the selected design. Another design principle accord-
ing to some authors is avoiding details in the initial design process [REI99] . While
it is true that it is unwise to become mired in details at an early stage in design, thus
losing sight of the big picture, it is equally detrimental to the design process if
important details are considered too late in the process. For example, if the desir-
ability of presenting Web content in chronological order were put off until the design
is almost complete, it would be very diffi cult to include this important feature when
the design is almost complete.

System Decomposition into Components

 A very worthwhile design principle is to decompose a system into its constituent
components [REI99] . Doing so allows the designer to not become overwhelmed by
the complexity of the system, thus leading to errors in design. For example, the Web
search problem would be decomposed into search request interpretation , search
mechanization in the Web database , and Web page pointer management . Along with
decomposition, an important issue is the number of components and their hierarchy
 [REI99] . Again, using the Web search example, three components and a hierarchy
according to the above sequence, seem appropriate.

Programming Languages 265

Form of Design Presentation

 Another consideration is the form in which the design should be presented [REI99] .
This is particularly the case with respect to the purchaser and user of the system.
The purchaser of a Web system server may be primarily interested in cost and search
time, while the user would want to know the details of formatting a request and
browser specifi cations, and so on.

Functional-Oriented versus Data -Oriented Design

 There are two major design approaches: functional oriented and data oriented
 [REI99] . The emphasis in the former is the functions that must be executed to solve
a problem; in the latter, the focus is on the data that must be processed to obtain a
solution. For example, in the Web search application, functional - oriented design
would involve identifying search request interpretation , search mechanization in the
Web database , and Web page pointer management as procedures that must be exe-
cuted to locate the user ’ s desired Web page. In contrast, in the data - oriented design
approach, the search request data, the data in the Web database, and the data related
to pointers would be the focus of Web search processing. It is important to note that
each approach would arrive at the same result, but with different performances,
depending on the relative performance of computing (procedure - oriented) and com-
munication (data - oriented) resources at the Web site. These design alternatives are
shown in Figure 9.1 .

Object-Oriented Design

 Another design methodology, one touted by its advocates of solving the entire
world’ s problems, is object - oriented design. This approach is based on the premise
that systems are comprised of entities called objects that possess state, data that
identify the object, and can perform actions, accompanied by state transitions. An
example of a state is a Web server that is in the state of searching for a Web page.
An example of identifying data is the manufacturer of the Web server. An example
of an object action is a Web server object performing the action of delivering a Web
page to the requester when the server is in the state of having located the desired
page, as shown in Figure 9.1 .

 In this design methodology, objects are members of classes. Classes are entities
that are the parents of objects. Classes have the same data attributes as classes and
perform the same actions, but at a higher level. For example, a generic Web server
could be a class, and specifi c Web servers manufactured by companies A, B, and C
would be object members of the class.

266 Computer, Network, Software, and Hardware Engineering with Applications

Figure 9.1 Design alternatives.

Object
Web Server A

Function
Search

Request

Interpretation

Function
Search

Mechanization

Web

Database

Web pages

Function
Pointer

Management

Pointer List

Functional-Oriented Design

Web page
request

Web

Database

Pointer List

Web pages

Data-Oriented Design

Class
Generic

Web Servers

State:

Search

Request

Interpretation

Object
Web Server B

Object
Web Server A

State:

Search Mechanization

State

Transition

Object-Oriented Design

Object
Web Database

Object
Web Pages

State:

Pointer Management

Action:

Access Database

Data Flow

Input
Outputs

Data Flow

Analysis of the Design Alternatives

 It is tempting to examine Figure 9.1 and think that one alternative is superior to the
others, when in fact each can be used to advantage in a coordinated design approach.
The functional approach aids the engineer and programmer in identifying calling
sequences that can be used in C ++ , for example. That is, the functions identify
the second - level program functions (search mechanization and pointer mana-

Programming Languages 267

gement) that will be called by the top - level program function (search request
interpretation).

 Then, examining the data - oriented approach, this supports our use of data
resources in implementing the design in C ++ . Code will be needed for implementing
data fl ow between components in Figure 9.1 . Note that the functional - and data -
 oriented approaches are complementary because data fl ow must be mechanized in
order to accomplish the functional requirements. An important advantage of the data
fl ow approach, compared with the other two methods, is that inputs and outputs are
specifi ed [REI99] . This is crucial because computer programs involve more than
computation: they require input data to perform computations and the computation
must produce output data.

 Taking the analysis to the object - oriented level, this approach identifi es state
transitions. State transitions are an important way for organizing a computer program.
For example, the Web server can be programmed to sequence through the state
transitions in Figure 9.1 . Additionally, because our computer program may have to
handle multiple Web servers, the relationship between classes and objects is helpful
because the computer code that implements the Web server generic class can be
reused by multiple Web server objects by only changing the object name. Reusing
software is important because the effort and time of program development are
reduced and programming errors are reduced!

 All design methods should provide for placeholders in order to implement inter-
faces between subsystems of a system, for example, between user Web request
subsystem and local network subsystem [REI99] . This is a common technique in
computer programming for reserving space in a program for code that will be deter-
mined at a future time. An example in C ++ is to name an interface function, but leave
the details for a future time when interface requirements have been determined.

Problem Representativeness
in Programming Languages

 One of the most intriguing aspects of this process is the fact that information is lost
in transitioning from brain thought to a model of the system. For example, if it is
desired to add two quantities, this operation is easily understood in our brain. For
example, we “ know ” that the quantities are integer. We also know the length and
precision of the quantities. Unfortunately, C ++ and other languages do not know any
of this to begin with and must be told every bit of minutia! Aggravating this problem
is the fact that each compiler has its own syntax rules that do not always follow the
C++ standard.

A METHOD FOR ANALYZING COMPUTER
PROGRAM RELIABILITY

 The reliability of a computer program is tremendously important but unfortunately
is often overlooked in programming textbooks. In this chapter you will be introduced

268 Computer, Network, Software, and Hardware Engineering with Applications

to analyzing reliability as a function of the structure and complexity of the computer
code. A program such as the Web server application can be conceptualized as a
directed graph of logic in Figure 9.2 , whose structure and complexity can be ana-
lyzed, leading to the estimation of program reliability. Interestingly, the directed
graph of program logic does not correspond to any of the design methodologies
already discussed despite the fact that a primary aspect of most problems is decision

Figure 9.2 Program - directed graphs. R i , path i reliability; M i , path i maintainability; A i , path i
availability; p i , path i probability.

Best

Select path

Word processing

Ri = 0.7167

Mi = 0.1569

Ai = 0.5640

pi = 0.1793

Spreadsheet processing

pi = 0.2812

Ri = 0.8944

Mi = 0.0363

Ai = 0.7222

Ri = 0.7938

Mi = 0.1104

Ai = 0.5972

Ri = 0.9501

Mi = 0.0169

Ai = 0.7370

Ri = 0.9765

Mi = 0.0052

Ai = 0.8165

Ri = 0.9932

Mi = 0.0009

Ai = 0.8814

Ri = 0.6754

Mi = 0.2584

Ai = 0.4590

Graphics processing

pi = 0.0256

E-mail

pi = 0.1587

Presentation
processing

pi = 0.0894 pi = 0.1786

Worst

Mathematical
processing

Web searching

pi = 0.0872

Local Network

Local Network Queue

Local Network Router Queue

Internet

Internet Router Queue

Internet Router

Domain Name Server Queue

Domain Name Server

Web Server QueueWeb Server

Programming Languages 269

making. None of the three design approaches already discussed represent the deci-
sions made in a computer program. In contrast, the directed graph does an excellent
job in this regard because decisions, represented by nodes in a graph, are concerned
with the probability of deciding which logic paths to execute in a computer program,
where a path represents a sequence of instructions (edges in a graph) to be executed
to achieve a requirement (e.g., transmit a Web page request to a Web server). Once
a decision is made, the execution of the selected path may encounter one or more
faults, leading to one or more failures. Failure occurrence, in turn, provides the data
for estimating reliability. Note that this design approach, like the data - oriented
method, specifi es input data (input to the fi rst node on a path) and output data (output
from the last node on a path).

 Path probabilities and, hence, selected paths are dependent on input data. For
the purpose of path probability assessment, input data is characterized by the prob-
ability of selecting path i, p i , based on the frequency, f i , of input type i:

p

f

f
i

i

i

i

n=

=
∑

1

,

 where n is the number of input types in the program.
 For a new program, although the number of input data types n is known, the

frequency of the types f i is unknown; this factor would become known only after
the program has been executed for a considerable period of time, but to estimate
reliability, it is required that p i be computed now . Therefore, f i is generated from
random numbers using our old friend Excel RAND function.

 As stated earlier, paths are comprised of sequences of instructions. For programs
that we write, we can estimate the number of instructions required. However, these
days, the majority of software is that provided by software vendors where we have
no idea of the sizes. Therefore, we can resort to using the total estimated number of
instructions over all programs, N. How do we know the value of N? We do not know
its value, but this need not concern us because whatever value we choose will lead
us to the estimation of relative values of path reliability. Our interest is in estimating
path reliability on a relative basis so that maintenance actions and, hence, availability
can be estimated accordingly.

 The estimated expected number of instructions executed on path i, N i , is esti-
mated as follows, where N is specifi ed as 1000:

 N p Ni i= ∗ .

 Once the number of instructions on a path has been estimated, the number of instruc-
tions that are expected to fail, N f , is estimated as follows:

 N N r /Nf i i= ∗() (),

270 Computer, Network, Software, and Hardware Engineering with Applications

 where r i is the estimated failure rate of path i, for N number of instructions, using
the RAND random number generator. However, what is needed is the failure rate
per instruction, r i /N.

 Then, using the above formulations, path i unreliability, UR i , is estimated as the
ratio of the number of failed instructions, Nf, on a path to the total number of failed
instructions over all paths in the program:

UR

N

N
i

f

f

i

n=

=
∑

1

.

 Then the R i , reliability of path i, is estimated as follows:

 R URi i= −1 .

 The resultant unreliabilities and reliabilities are annotated on the directed graph of
path logic in Figure 9.2 . As you can see in this particular example that depends
upon the roll of the dice in random number generation, the path reliabilities are low,
suggesting that major maintenance actions would be required on a relative basis.
The term relative is used because, as mentioned earlier, it is the relative reliability
that is signifi cant for signaling the for - maintenance action, once the software is
implemented.

MODELING PATH MAINTAINABILITY
AND AVAILABILITY

 It is reasonable to suggest that path maintainability is proportional to path unreli-
ability on the basis that the greater the unreliability, the greater the need for main-
tenance action. Also, we can see that the frequency of maintenance actions, m i , is
an additional determinate of the probability of maintenance action (i.e., maintain-
ability of path i, M i). Thus, combining these two factors, we have:

 M m Uri i i= ∗ .

 Now, how is m i determined? Well, for one thing, it should have the same ordering
as unreliabilities. For example, the highest value of m i should be associated with the
highest value of UR i because, naturally, the higher the unreliability, the greater the
need for maintenance. Second, we do not know in advance of software implementa-
tion the frequency of maintenance activity. Therefore, m i will be estimated by gen-
erating uniformly distributed random numbers between 0 and 1 and associate them
with unreliability on an ordered basis. The resultant values of M i are annotated on
Figure 9.2 to provide visibility of the probable need for maintenance, by path, on a
relative basis.

Programming Languages 271

 Now that both reliability and maintainability have been estimated for each path,
availability, A i , of path i is estimated as follows:

 A R / R Mi i i i= +(),

 which expresses the fraction of software execution time during which there is a
reliable operation. Availability results, by path, are keyed to paths in Figure 9.2 .

 Because the Web Processing function is the focus of our analysis, the details of
its path are shown in Figure 9.2 , whereas the other functions do not have expanded
paths.

 Another view of the results is provided by Figure 9.3 , where you can see that
availability mirrors reliability because availability refl ects good operational time,
which is the time when the software operates reliably. In contrast, availability has
an inverse relationship with maintainability because the operational time lost to the
maintenance activity is a loss of the availability of the software. Furthermore, Figure
 9.3 is useful because it identifi es the most reliable and least reliable paths. This
information can be used to prioritize testing, allocating the greatest effort to the least
reliable paths.

EXECUTING TEST SCENARIOS

 It is necessary to test paths and combinations of paths that are called scenarios
 [REI99] . Scenarios represent sequences of path executions, where the scenario input
has been defi ned, the corresponding computation specifi ed, and the resulting output
defi ned. Thus, scenarios are the mechanism for validating a computer program (i.e.,
demonstrating that a program does what it is supposed to do [BAG97]).

Figure 9.3 Path i reliability R i (Series 1) maintainability M i (Series 2), and availability A i (Series 3)
versus path i.

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

1 2 3 4 5 6 7

i

R
i,

M
i,

A
i

Series 1

Series 2

Series 3

Availability tracks reliability

Availability does inverse tracking of maintainability

Presentation processing path is the best

Mathematical computation path is the worst

272 Computer, Network, Software, and Hardware Engineering with Applications

IMPLEMENTING COHESION AND COUPLING

 Cohesion means that, for example, paths should contain only the code that is relevant
to the path (e.g., Web searching should not contain word processing code). Coupling
refers to the maximization of the independence of paths. That is, there should be
only the minimum amount of interaction among paths. Following this principle
reduces faults and failures when software is updated in the future. Of course some
interaction is necessary; for example, when a document being created with a word
processor requires data from a Web site. However, if access to the Web site were to
be implemented by code in the document, as opposed to using a browser, problems
would arise in maintaining the document if the Internet location of the Web site
should change.

DETAILED ANALYSIS OF A PROGRAMMING
LANGUAGE

 It is diffi cult for the practitioner to know what design approach and programming
language is best for his or her application because there are many advocates for a
particular approach and language to the exclusion of other alternatives. The software
fi eld is plagued by faddism, where design models are proclaimed to be the only way
to implement software, only to be discarded when the next fad arrives! What is
needed is a balanced approach because there are properties of various design alterna-
tives that can be combined to support the software implementation of a given
problem. Therefore, this section is dedicated to providing the reader with a practical
road map for developing software solutions. I begin by describing the entities that
should comprise a design with the rationale given for each entity.

Program Objective

 This is the most important part of the design approach [PRA02] : a clear and succinct
statement of the program ’ s requirement; for example, to retrieve publications of
“ Schneidewind software reliability model ” in 5 seconds.

Objects

 This entity is the basis of a design because all problems involve objects, whether it
is a human user, database, mathematical equation, Web server, Web page, and so on.

Classes

 A class is a set of objects, such as all Web servers. Some authors advocate making
class the focus of design [REI99] . This seems strange because it is objects that are
the active entities in a problem; classes, as the name implies, are classifi cations of

Programming Languages 273

objects. Thus, I assign a class to the role of classifying objects. This is useful because
the same Web searching code can be used, for example, for a variety of Web servers,
by classifying each specifi c Web server object as a member of the generic Web server
class.

Functions

 Functions, for example mathematical functions, do not receive the attention they
merit in contemporary programming language texts [PRA02] . In these books, func-
tions are described as C and C ++ functions, the modules of these languages.

Decisions

 Decisions are the meat of many problems, for example determining whether a Web
searching algorithm has found the requested information. Again, decisions are given
the short shrift in many texts. Decisions can be represented by a directed graph or
by an old - fashioned fl ow chart, heaven forbid!

Input Data

 Objects and functions cannot operate in a vacuum. Input data, such as the user ’ s
specifi cation of the desired information required from a Web site, must be specifi ed
to the search algorithm. The origin of input data is specifi ed.

Output Data

 Output data refers to the data that the output units in a computer system will provide.
The destination of output data is specifi ed.

Control

 Program control is necessary because certain operations, such as iteration, must be
terminated, for example, the termination of Web searching when the desired Web
page has been found in Figure 9.4 .

Units

 These are physical computer system entities, such as a graphics display device.
Generally, units are only specifi ed in special - purpose computing, such as in space
applications, where specifi c hardware is assigned to processing specifi c software. In
general computer processing, such as Web searching, unit specifi cations are not

274 Computer, Network, Software, and Hardware Engineering with Applications

Figure 9.4 Reliability simulation process diagram.

Local Network

Server

1

Local Network

Server Queue

User Computer

Web page request

2
3 4 5

Local Network

Router Server Queue

6 7

Local Network

Router Server

8
9

Internet Router

Server

Queue #1

10 11

Internet Router

Server #1

12

13

Inject last fault and failure of sequence 1→12

Internet Router

Server #2

Domain Name

Server Queue

14 15

Domain Name

Server

16

17

18 19

Web Server QueueInternet Router

Server

Queue #2

20 21 22 23 24
25

Web page

Inject last fault and failure of sequence 1→17

Web Server

necessary because the user is only concerned with results, not the particular hardware
that produces the results.

Support Requirements

 In addition to these specifi cations, it is important to keep in mind the need to main-
tain the software in the future based on errors that occur and on the need for enhance-
ments that users require [PRA02] . Incidentally, the cost of software maintenance is
the largest of all software costs, including the cost of development.

 Now, the above entities of software design will be illustrated by producing Table
 9.1 , which will document each entity for the Web searching problem, and Figure
 9.4 , which shows the logic for Web searching. An important additional factor, which
contributes to high quality software, is the need to produce good documentation.
Document the software for other people to read, who may not be as familiar with
the details as you are! Poor or nonexistent documentation has been the bane of the
software fi eld. Do not contribute to this chaos!

PROGRAM LANGUAGE CHARACTERISTICS

Structure

 This section is dedicated to describing program language structure, using C ++ as
the example. My purpose is to not only describe, but, in addition, evaluate the effi -
cacy of the structures so that you can apply the structures with minimum diffi culty.
First, what is meant by program structure? Structure is required to control the

Ta
bl

e
9.

1
 Pr

og
ra

m
 O

bj
ec

tiv
e:

 P
er

fo
rm

 W
eb

 S
ea

rc
h

fo
r

D
es

ir
ed

 I
nf

or
m

at
io

n

 O
bj

ec
t

 C
la

ss

 Fu
nc

tio
n

 D
ec

is
io

n
 In

pu
t

D
at

a
 O

ut
pu

t
D

at
a

 U
se

r
 Pe

op
le

 Pr

ov
id

e
se

ar
ch

re

qu
es

t
 Is

 r
et

ur
ne

d
in

fo
rm

at
io

n
th

e
de

si
re

d
in

fo
rm

at
io

n?

 B
ra

in
 a

ct
iv

ity
:

ne
ed

in

fo
rm

at
io

n
 Se

ar
ch

 r
eq

ue
st

 t
o

In
te

rn
et

 o
bj

ec
t

 W
eb

 S
er

ve
r

A

 W
eb

 S
er

ve
r

 W
eb

 s
ea

rc
h

 W
eb

 p
ag

e
re

qu
es

t
fr

om
 u

se
r

 D
es

ir
ed

 W
eb

pa

ge
 t

o
us

er

 W
eb

 p
ag

e
on

 W
eb

 S
er

ve
r

A

 W
eb

 p
ag

e
 C

on
ta

in
s

ar
ch

iv
ed

in

fo
rm

at
io

n

 W
eb

 S
er

ve
r

A
 s

ea
rc

h
al

go
ri

th
m

 Se
ar

ch
 a

lg
or

ith
m

 Is

 t
hi

s
th

e
de

si
re

d
W

eb
 p

ag
e?

 Se

ar
ch

 c
om

m
an

d
fr

om
 W

eb
 S

er
ve

r
A

 D
es

ir
ed

 W
eb

pa

ge
 t

o
W

eb

Se
rv

er
 A

 W

eb
 S

er
ve

r
A

 d
at

ab
as

e
 W

eb
 s

er
ve

r
da

ta
ba

se
 St

or
es

 a
rc

hi
ve

d
in

fo
rm

at
io

n

 Se

ar
ch

 c
ri

te
ri

a
fr

om

se
ar

ch
 a

lg
or

ith
m

 R

et
ri

ev
es

 d
es

ir
ed

W

eb
 p

ag
e

 It
er

at
io

n
co

nt
ro

l
of

 W
eb

si

te
 s

ea
rc

hi
ng

 C

 ++
 c

la
ss

 o
f

 w
hi

le
in

st
ru

ct
io

ns
 Im

pl
em

en
ts

 w
hi

le
pr

og
ra

m
co

nt
ro

l

N
ot

 d
es

ir
ed

 W
eb

pa

ge
?

 W
eb

 p
ag

e
re

qu
es

t
an

d
W

eb
 p

ag
e

 Fo
un

d
 N

ot
 f

ou
nd

275

276 Computer, Network, Software, and Hardware Engineering with Applications

program statements to execute and the order of executing them [HAN97] . These
structures are sequential, selection, and repetition, using iteration control. Sequential
structures are sequences of statements that do not involve decision making. The
best example is a sequence of arithmetic statements programmed to solve an equa-
tion. Selection involves designing statements to make decisions, such as the decision
by the user in Figure 9.4 concerning whether the desired information has been
obtained from the Web site. Decisions are typically implemented with the if state-
ment. Repetition, controlled by iteration, is implemented with the while statement
in Figure 9.4 .

Conditions

 Conditions refer to the outcome of comparing quantities. The meaning of the condi-
tion operators, geared to Figure 9.4 , is defi ned in Table 9.2 .

Logical Operators

 There are some conditions that cannot be handled by the operators in Table 9.2 .
These are the Boolean operators and (& &) , or (||) , and not(!) . Using Figure 9.4 as
an example, suppose the user desires information by subject S and that the date D
of the information be greater than d. Then the condition can be written as follows;
statements must end in a semicolon and “ // ” indicates a comment:

 S & & (d > D) = true ; // if S and (d > D) are true, the result is true = 1, if the
result is not true, it is false = 0, so that the result can be checked by comparing with
constants 1 and 0.

 As another example, suppose the subject is still S and either (date d1 = D1) or
(date d2 = D2) is required. Then, these conditions are written as:

 (S & & ((date d1 = D1) || (d2 = D2))) = true ; // notice the liberal use of paren-
theses that renders the code readable.

 As the third example, suppose subject S is still desired but the date d = D is to
be excluded in the search:

 (S & & (d ! = D)) = true // ! = signifi es not equal .

Table 9.2 Defi nition of Conditions

 Operator Meaning Figure 9.4 example

= Equal Search information correct
 ! = Not equal Search information correct not correct
< Less than Web page not found
> Greater than Web page not found
<= Less than or equal to Web page found
>= Greater than or equal to Web page found

Programming Languages 277

Important Variable Types

 There are various types of variables that can be used in programming languages.
Among these are types bool (i.e., Boolean), integer , and double (i.e., fl oating point).
The variable type bool is used to keep track of events in a program ’ s execution
 [HAN97] . For example, in Figure 9.4 , suppose there is a variable of type bool called
search information correct . Then, when the if statement is executed, search informa-
tion correct = true , if the correct information found, and search information
correct = false , if the correct information not found. Variable types integer and
double are used in arithmetic operations to signify operands that have no fractional
part and operands that do have a fractional part respectively.

Detailed Design Example

 Now, in Figure 9.5 , a detailed software design is implemented for the Web search
problem in Figure 9.4 . This exercise will illustrate some very interesting design
aspects that are not covered well in programming texts. One aspect is that for a
design to be meaningful, it must not be limited to abstractions, such as classes!
Instead, for a design to be understood, there must be a combination of physical enti-
ties and program abstractions. For example, in Figure 9.5 the designer should not
limit the design to proclaiming an input specifi cation. Instead, it is critical to identify
the input device: keyboard, hard disk fi le, memory stick, and so on. The reason is
that C ++ and other languages are very fi nicky about such details because there are
different types of commands pertinent to different devices. Thus, where decisions
about physical components must be made, I ask questions in Figure 9.5 to stimulate
decision making. Note that I do not pose questions concerning Internet resources,
such as the brands of Internet browser, Web server, and search engine because these
components are outside the scope of this particular C ++ program. The browser and
search engine are human user choices and the search engine vendor specifi es the
server(s) to use on a particular search. Also, notice the need for “ housekeeping ”
declarations in Figure 9.5 , such as specifying the search request type, where “ type ”
refers to format, not the type of request. Additional C ++ syntax is shown in Figure
 9.5 in connection with the if statement. If the condition is false (e.g., the search has
been unsuccessful), the program branch executed is called else .

 Rather than attempt to write one program to cover all the logic in Figure 9.5 ,
experience has shown that when the programmer includes too much logic in a single
program, the programmer is overwhelmed by complexity and programming errors
grow exponentially. Therefore, the total logic should be divided into digestible
pieces [HON96] . Thus, three C ++ programs: #1 for user specifi cation of Web search
requirement, #2 for user analysis of Web search results, and #3 for Web server search
process are shown below. A major purpose of this presentation is to show the reader
that there is a great deal of housekeeping that must accompany the meat of a
program, if the program is to compile (translate from C ++ statements to machine
language that can be executed on a computer). It is imperative to understand that

278 Computer, Network, Software, and Hardware Engineering with Applications

Figure 9.5 Web search detailed design.

use Internet

browser to

specify request

to search Web

server by

subject code

input Web request

subject and date

specification

user brain

user

computer

(what is the input device?)

Web server

search

engine
Data
base

specify subject request as type char (character)

specify data being searched as type char

subject content

matrix B

while
Web

page not
found

specify matrix pointers as type int (integer)

return

initialize matrix pointers

declare matrix size

output data (what is the output data device?)

if
required
date ≥

date found

else
specify returned data as char

matrix A

while
subject not

found

Data
base

else
code

char

char
char

error

error

subject
code

subject 0

19

0

999

if
matrix
pointer

999

≤ error

≤

>

if
subject =
subject
request

≤

else

increment

matrix pointers

if
code =

required
code

≠

=

output data

increment

matrix pointers

if
matrix

pointer

19

≤

≠

>

subject code

=

return

char

date

char

≥<

date found

date and content

both the logic of the program and the housekeeping directives must be correct for
the program to work. This characteristic of software development is one of the
reasons that software is so costly and error prone.

 Note that by convention, the fi rst index value for an array or matrix is equal to
zero, hence the initialization of the matrix pointers in the following programs to
zero. Also note that matrix sizes must be assumed. This means that if a search
exhausts a matrix without fi nding the desired item, an error must be signaled. In
addition, Figure 9.5 shows that for both the user and Web site, a database is used
for search request and search content, respectively. The computer codes for these
functions are not included in the following programs because this processing would
be handled by separate software in database management systems. In addition, the

Programming Languages 279

code for the interaction between Internet browser and Web server for specifying
user - specifi ed subject code, as shown in Figure 9.5 , is included in the programs.

 Program #1

 // program specifying Web search request (good idea
to state purpose of program in first comment)

 # include < iostream > // specify input output library

 # include < math.h > // specify math library

 using namespace std; // allows C + + to allocated
computer space for names

 using std::cout; // specify standard screen output

 using std::cin; // specify keyboard input

 main() // beginning of main code, this is required in
every program

 { // opening bracket is needed at start of code

 const char * format_string; // pointer to type char
for processing alphanumeric data

 int i, j, imax // declare matrix A pointers and
maximum pointer value as type integer

 char A [20] [20] [20]; // declare matrix A as three
columns and 20 rows and type char that contains
subject, subject code, and date

 char subject; // declare search request subject

 char code; declare located subject code storage
area

 char date; declare storage area for search request
content date

 i, j, k = 0 // initialize matrix pointers

 imax = 19; // initialize maximum value of matrix A i
pointer

 cout < < endl; // start screen output on a new line

 cout < < “ search request subject = ” ; // tell user to
input search request subject from keyboard to screen,
the = sign means that input is expected after it

 cin > > subject ; // request subject inputted

 cout < < “ input required date of search results ” ; //
input required date of search results from keyboard
to screen

 cin > > date; // required date of search results
inputted

280 Computer, Network, Software, and Hardware Engineering with Applications

 while (subject ! = A [i]) // while subject request not
found, continue with search

 {

 if (subject = A [i]) // test for finding request
subject

 {

 code = A [j]; // if request subject found, store
located subject code for use by user computer

 date = A [k]; // store specified date of search
results for use by Web server

 else

 {

 if (i < = imax) // test for subject pointer being
less than or equal to maximum value

 {

 i = i + 1; // if subject pointer has not reached
maximum value, increment all matrix pointers

 j = j + 1;

 k = k + 1;

 }

 else

 cout < < “ error: subject not found ” ; // tell user that
request subject not found

 }

 return 0; // return to the operating system

 } // executable code ends here

 Program #2

 // program for analyzing Web search results
(good idea to state purpose of program in first
comment)

 # include < iostream > // specify input output library

 # include < math.h > // specify math library

 using namespace std; // allows C + + to allocated
computer space for names

 using std::cout; // specify standard screen output

 main() // beginning of main code, this is required in
every program

 { // opening bracket is needed at start of code

Programming Languages 281

 FILE * fp;//pointer to type FILE, C + + requires
pointers to files that are read or written, files
usually stored on hard disk or stick memory, fp
points to the file command in the next statement

 fp = fopen (“ c:/search results.txt ” , “ w ”); // file
for writing search results data output in text
format, the location is given for this file to be
written, signified by “ w ”

 const char * format_string; // pointer to type char

 char date; // declare date of search results in
alphanumeric format

 char requireddate; // declare required date of search
results in alphanumeric format

 if (date > = requireddate)

 {

 fprintf (fp, “ %s%\n ” , “ search results date ” , (char)
20); // write quoted text in c:/search results.txt
disk file, “ s ” specifies writing quoted text, 20
characters long, “ \n ” specifies line feed for next
line to be written

 fprintf (fp, “ %c%\n ” , date, (char) 8); // date of
search result written in c:/search results.txt disk
file, “ c ” means date is in alphanumeric format, 8
characters long, “ \n ” specifies line feed for next
line to be written

 fprintf (fp, “ %s%\n ” , “ search results content ” ,
(char) 20); // write quoted text in c:/search
results.txt disk file, “ s ” specifies writing quoted
text, 20 characters long, “ \n ” specifies line feed
for next line to be written

 fprintf (fp, “ %c%\n ” , date, (char) 1000); // search
results content written in file c:/search results.txt
disk file, “ c ” means content is in alphanumeric
format, 1000 characters long, “ \n ” specifies line
feed for next line to be written

 }

 else

 {

 cout < < “ search results date incorrect ” ; // tell user
that search results date incorrect

 }

 return 0; // return to the operating system

 } // executable code ends here

282 Computer, Network, Software, and Hardware Engineering with Applications

 Program #3

 // program for searching Web database (good idea to
state purpose of program in first comment)

 # include < iostream > // specify input output library

 # include < math.h > // specify math library

 using namespace std; // allows C + + to allocated
computer space for names

 main() // beginning of main code, this is required in
every program

 { // opening bracket is needed at start of code

 const char * format_string; // pointer to type char
for processing alphanumeric data

 int i, j, imax // declare matrix B pointers and
maximum value of subject code pointer as type
integer

 char B [20] [20]; // declare matrix B as two columns
and 20 rows and type char

 char subject; // declare search request subject code
that was inputted by Web browser

 char content; declare located content storage area

 i, j = 0 // initialize matrix pointers

 imax = 999; // initialize maximum value of matrix B i
pointer

 while

 {(subject ! = B [i]) // continue search while subject
code not found

 if (B [i] = subject) // test for finding subject code

 {

 content = B [j] ; // if subject code found, store
content in Web server

 }

 else

 {

 if (i < = imax) // test for subject code pointer
being less than or equal to maximum value

 {i = i + 1; // increment matrix B pointers, if
subject code not found

 j = j + 1;

 }

Programming Languages 283

 else

 {

 cout < < “ error: subject code not found ” ; // tell Web
server that request subject not found

 }

 return 0; // return to the operating system

 } // executable code ends here

EVALUATION OF PROGRAMMING LANGUAGES

 Factors to consider when evaluating a programming language are compile time,
execution time, understandability of error messages, and availability and quality of
help information. Some versions of C ++ , for example, produce unintelligible error
message and their help information is minimal. These are important considerations
that signifi cantly affect your productivity. To avoid these pitfalls, download free
copies of programming systems and test them against the above criteria for the same
program. Then avoid using systems that produce more noise than signal!

 One researcher investigated program length, programming effort, runtime effi -
ciency, memory consumption, and reliability [PRE00] . However, the validity of the
analysis was compromised by using several programmers in the tests, rather than
one, thus introducing programmer skill variability into the mix. Nevertheless, there
are some valuable aspects of this experiment that you should note. One is program-
ming effort: is the effort you expend in understanding and using the language rea-
sonable? Another good point is reliability: does the program produce the correct,
predetermined result. Of course. You must be careful that a perceived incorrect result
is not due to your programming errors! The other factors — program length, runtime
effi ciency, and memory consumption — are of little consequence, given the speed
and memory capacity of contemporary microcomputers. It is surprising that the
author did not evaluate compile time, execution time, understandability of error
messages, and availability and quality of help information.

Visual Language Alternative

 There have been numerous studies that have looked at the learning styles of engi-
neering students. These learning style preferences are consistent across populations.
What these studies have found is that engineering students tend to be more visual
in their learning styles. However, since most programming languages taught in
introductory courses are text based, a disconnect occurs between what is being taught
and how these students prefer to learn [BUC09] .

 Because many text - based languages use syntax that incorporates many English
terms, students often resort to using the models they have developed for the natural
language use of these terms. However, this poses a signifi cant problem for some
terms because the model for how the word is used in natural language differs from

284 Computer, Network, Software, and Hardware Engineering with Applications

how it is used in a programming language. For example, in natural language, the
term “ while ” has a slightly different meaning than it does in programming usage.
In natural language, “ while ” implies that as soon as the condition is no longer satis-
fi ed, the activity will cease. In a programming language, the conditional statement
associated with the “ while ” is only checked once during an iteration. This can cause
students problems if they believe that as soon as the condition is met, the loop will
exit [BUC09] .

 A promising avenue for the reader to explore to address these issues is the use
of graphical programming languages. Graphical programming languages allow the
user to create programs by connecting together graphical icons representing different
functions, similar to fl owcharts. Using these languages should help students learn
better from visual presentations [BUC09] . For, example, graphical programming
languages such as Simulink and Hypersignal, and others, have been coming into use
recently for rapid prototyping of digital signal processing algorithms. Using such
languages amounts to dragging functional blocks from libraries and connecting them
to form a block diagram, which is also a program [AMI00] .

Question for the Reader: Based on what you have learned about programming
language characteristics, what characteristic do you think is the most
important?

Answer: If a programming language is not representative of the problem to be
solved, programs that are produced using this language could be loaded with
bugs! For example, a program for doing numerical computation should have
a library of mathematical software (e.g., sine function) that the programmer
could invoke rather than having to program these functions, thus saving a
signifi cant amount of time and avoiding programming errors.

SUMMARY

 The reader has been exposed to many aspects of evaluating programming languages that are
not covered in contemporary texts. Among these aspects are lack of coherent compiler and
execution error messages and help aids. Techniques have been presented for testing a set of
programming languages against a specifi ed program in order to identify the language that is
best for the user. Armed with these tools, the reader will be able to combine previously learned
computer hardware design skills and knowledge with programming languages to develop
computer - based systems.

REFERENCES

 [AMI00] N. Amir , “ The role of graphical programming languages in teaching DSP , ” Proceedings of the
IEEE International Conference on Acoustics, Speech, and Signal Processing , Volume 6 , 2000 , p. 3514 .

 [BAG97] D. J. Bagert , “ A software engineering - oriented concepts of programming languages course , ”
Proceedings of 27th Annual Conference on Frontiers in Education: Teaching and Learning in an Era
of Change , Volume 2 , 1997 , p. 699 .

 [BUC09] G. Bucks and W. Oakes , “ Work in progress — using graphical programming languages in
the introductory programming course , ” 39th IEEE Frontiers in Education Conference , October, 2009 ,
pp. 1 – 2 .

Programming Languages 285

 [COM09] International Multiconference on Computer Science and Information Technology , October
12– 14, 2009 , p. 633 .

 [HAN97] J. R. Hanly , Essential C ++ for Engineers and Scientists . Reading, MA : Addison - Wesley
Longman, Inc. , 1997 .

 [HON96] J. W. Honchell and T. L. Robertson , “ Is the role of applied programming languages chang-
ing , ” Proceedings of 26th Annual Conference Frontiers in Education Conference , Volume 2, 1996 ,
pp. 791 – 794 .

 [PRA02] S. Prata , C. Primer Plus , 4th ed. , Indianapolis, IN : SAMS Publishing , 2002 .
 [PRE00] L. Prechelt , “ An empirical comparison of seven programming languages , ” IEEE Computer ,

 2000 , 33 (10), pp. 23 – 29 .
 [REI99] S. P. Reiss , A Practical Introduction to Software Design with C ++ . New York : John Wiley and

Sons, Inc. , 1999 .

Chapter 10

Operating Systems

T he aim of this chapter is to expose the reader to important facets of operating system (OS)
analysis and design that are missing from contemporary texts. Among these are quantitative
analyses of reliability, performance attributes such as memory management effi ciency, opti-
mization of time - slice allocation to processes, and deadlock detection and prevention. To
lay the foundation for these analyses, OS issues and OS architecture are discussed so that the
reader will understand why there is a focus on certain facets of OS behavior, such as
the difference in computing environments between general - purpose and real - time systems.
The dramatically different OS performance differences between these environments are
highlighted.

OPERATING SYSTEM ISSUES

 Operating systems (OSs) have become increasingly complex and thus very expen-
sive and time consuming to develop, maintain, and debug. Two diffi culties are
inherent in maintaining any large complex system: a large investment is required to
add new features rapidly enough to meet time - to - market requirements and another
is the effort required to preserve compatibility with prior versions. Continuing to
patch existing OSs in ad hoc ways to accommodate tomorrow ’ s needs (e.g., high
reliability) is not cost - effective. Interactions within the OS and between the OS and
application programs are very complex [HAM95] .

 The challenge to OSs designers is to deliver to applications the performance
available now only from dedicated hardware, combined with the ease of sharing
resources and data among multiple applications [AND92] . This issue is fascinating
because the original objective of OSs was to effi ciently manage multiple applications
in a complex computing environment. Unfortunately, OSs have grown to the extent
that their excess baggage can slow application execution to a crawl!

 The importance of OSs has motivated the development of this chapter, which
is designed to provide the reader with methodologies for analyzing and estimating

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F.
Schneidewind.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley &
Sons, Inc.

286

Operating Systems 287

the performance and reliability of these systems, with the goal of mitigating the
problems described above.

OS ARCHITECTURE

 OS architecture is comprised of processes (i.e., a process is a program in execution),
interprocess communication (e.g., instruction and data communication on a bus),
virtual memory (a fancy name for disk drive memory as opposed to random access
memory [RAM] devices), hierarchical fi le system, and access control to system
resources [REI04] . Three approaches have evolved for organizing structure and are
shown in Figure 10.1 . The monolithic architecture considers the OS as being com-
prised of modules wherein any module can call another module. The modules are
controlled by the supervisor so that they can have access to the hardware. All module
calls must be made under supervisor control. This organization is obviously complex
and leads to high overhead. In response to this problem the microkernel architecture
was developed [REI04] . This architecture simplifi es OS functions by centralizing
functions in the microkernel. This strategy reduces the complexity of OS design
because the numerous interactions that must transpire in the monolithic case can be
centralized in the microkernel in the microkernel case. A similar situation happens
in the client – server architecture, wherein simplicity is achieved by using a bus for
communication among system resources. However, as will be shown in the reli-
ability section. There is a price to pay for reducing architectural complexity because
reducing interactions among resources can lead to dependence on a single resource
(e.g., microkernel) for managing controlling OS actions. This dependency can lead
to reduced reliability.

OS PERFORMANCE EVALUATION

 An OS performance attribute is its ability to switch among various programs while
also allocating resources to these programs. This switching function is executed by
the supervisor and microkernel in Figure 10.1 , which switch among OS modules,
application programs, and computer hardware as the need for these resources arises
during system operation. Switching speed and time are important performance
metrics. Switching speed can be computed in two ways: one, by switch operation i,
Si , using the number of programs switched on switch operation i, n i ; and the second,
computed over the number of programs n. In both cases, since we do not know a
priori the probability of making a switch i, the probability, p i , must be included in
the equations. Thus, switching speed, S, and time for switching to program i, T i , can
be estimated by considering the number of programs, n, that must be switched for
a given user ’ s operation, as follows:

 S p n /Tii i i= () ,

 S p n T ni i i

i

n

=
=

∑(() /) / .
1

288 Computer, Network, Software, and Hardware Engineering with Applications

Figure 10.1 Operating system (OS) architectures.

OS

Module 1

OS

Module 4

OS

Module 2

OS

Module 3

System Memory

Supervisor Mode

Computer

Hardware

Supervisor
Application

Programs

Monolithic Architecture

Many points of failures

Modules and programs must

make hardware requests via

supervisor significant memory usage

Microkernel

Supervisor Mode

System Memory

OS

Modules

Application

Programs

User Memory Space

Few points of failure, but microkernel

must be highly reliable modules and

programs access hardware via

microkernel low memory usage

Microkernel Architecture

Client Process
User Memory

Space

Microkernel

Server Process
User Memory

Space

Microkernel

Bus

Server

Client–Server Architecture

Single point of failure Clients access server via microkernel and bus

System Memory System Memory

Low memory usage

Microkernel must be highly reliable

Operating Systems 289

 Since n i and T i are not known in advance of using an OS, their values must be simu-
lated by using the Excel RAND function (uniformly distributed random numbers
between 0 and 1) for n = 100 switch operations in order to achieve computational
validity. After executing the RAND function, both n i and S i are multiplied by 10 in
order to produce practical values. Since the relative values of S i will not be affected
by the choice of multiplication factor, readers are free to choose whatever value is
practical in their application.

 Furthermore, since S is the mean of S i , the standard error of the mean S ni can
be computed, which when combined with the mean S S ni± ∗()3 / provides confi -
dence intervals for S i . If any values of S i fall outside the mean plus or minus three
S ni , it is indicative of switching spends that are unlikely to be achieved. Thus, the
user can predict in advance of OS usage the bounds on this performance metric.
Figure 10.2 shows how the bounds on switching speed can be analyzed.

OS RELIABILITY EVALUATION

 Another important OS metric that we can relate to switching actions is reliability.
Again, prior to using an OS to manage our computer operations, it is possible to
estimate reliability by randomly injecting faults into the switching operation. Thus,
the reliability, R i , of switch operation i, is estimated by noting that the expected
number of faults that occur on switch operation i is the product of the probability

Figure 10.2 Switch operation i speed S i versus switch operation i. Series 1: S i . Series 2: Mean
Si + 3 * (standard error of mean) = 1.63. Series 3: Mean S i – 3 * (standard error of mean) = 0.48.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

1 11 21 31 41 51 61 71 81 91

i

S
i
(p

ro
g

ra
m

s
 p

e
r

s
e
c
o

n
d

)

Series 1

Series 2

Series 3

Most likely values of Si between 0.48 and 1.63

290 Computer, Network, Software, and Hardware Engineering with Applications

of the switch operation, p i , and the number of faults f i . Then, this term is related to
the total number of expected faults over n switching operations to produce the unreli-
ability of switch operation i. Finally, unreliability is subtracted from 1 to produce
reliability. As in the case of performance, confi dence intervals can be developed for
reliability so that the likely achievable range of reliability can be estimated:

R 1

p f

p f
i

i i

i i

i 1

n= −

=
∑

.

 Figure 10.3 shows the probable range of switching reliability that is likely to be
achieved in practice. In addition to the foregoing quantitative reliability assessment,
it is important to evaluate reliability on a quantitative basis, based on the competing
architectures shown in Figure 10.1 . Although the monolithic architecture is consid-
ered ineffi cient [REI04] , it can continue operation with reduced capability because
communication between surviving OS modules and application programs can con-
tinue in the face of one or more failed OS modules. In contrast, the microkernel
architecture, while compact and effi cient, is highly dependent on its namesake for
reliable communication because all traffi c fl ow must be managed by the microkernel.
A similar situation occurs with the client – server architecture because all communica-
tion must take place on the bus. Thus, the lesson to be learned is that the relationship

Figure 10.3 Switch operation i reliability R i versus switch operation i. Series 1: R i . Series 2: Mean
Ri + 3 * (standard error of mean) = 0.9922. Series 3: Mean R i – 3 * (standard error of mean) = 0.9876.

0.9600

0.9650

0.9700

0.9750

0.9800

0.9850

0.9900

0.9950

1.0000

1 11 21 31 41 51 61 71 81 91

i

R
i

Series 1

Series 2

Series 3

Most likely values of Ri between 0.9876 and 0.9922

Operating Systems 291

between architectural effi ciency and reliability is a subtle one. That is, effi cient
architectures can be relatively unreliable!

OS CHARACTERISTICS

 There are a number of characteristics of an OS that determine its ability to effectively
manage system resources. The fi rst is the scheduling algorithm. Scheduling refers
to the way processes are assigned to run on the available central processing units
(CPUs), since there are typically many more processes running than there are avail-
able CPUs. This assignment is carried out by software known as a scheduler and
dispatcher.

 The scheduler is concerned mainly with:

Throughput . The number of processes that complete their execution per time
unit.

Turnaround . The total time between submission of a process and its
completion.

Response Time . The amount of time it takes from when a request was submit-
ted until the fi rst response is produced.

Fairness . Equal CPU time to each process (or more generally appropriate times
according to each process ’ priority).

 In practice, these goals often confl ict (e.g., throughput vs. latency), thus a scheduler
will implement a suitable compromise.

 In real - time environments, such as mobile devices for automatic control in
industry (e.g., robotics), the scheduler must also ensure that processes can meet
deadlines; this is crucial for keeping the system stable.

Long-Term Scheduler

 The long - term scheduler decides which jobs or processes are to be admitted to the
ready queue; that is, when an attempt is made to execute a program, its admission
to the set of currently executing processes is either authorized or delayed. Thus, this
scheduler dictates what processes are to run on a system, and the degree of concur-
rency to be supported at any one time (i.e., number of processes are to be executed
concurrently), and how the split between input/output (I/O) - intensive and CPU -
 intensive processes is to be handled. This is used to make sure that real - time pro-
cesses get enough CPU time to fi nish their tasks [STA04] .

Mid-Term Scheduler

 The mid - term scheduler temporarily removes processes from the main memory and
places them on the secondary memory (such as a disk drive), or vice versa. This is

292 Computer, Network, Software, and Hardware Engineering with Applications

commonly referred to as “ swapping out ” or “ swapping in, ” respectively. The mid -
 term scheduler may decide to swap out a process which has not been active for some
time, or a process which has a low priority, or a process which is taking up a large
amount of memory, in order to free up main memory for other processes, swapping
the process back in later when more memory is available [STA04] .

Short-Term Scheduler

 The short - term scheduler decides which of the ready, in - memory processes are to
be executed next (allocated a CPU) following a clock interrupt, an I/O interrupt, or
OS call. Thus, the short - term scheduler makes scheduling decisions more frequently
than the long - term or mid - term schedulers. A scheduling decision will be made when
there is completion of an event, signaled by an interrupt, or periodically. This sched-
uler can be preemptive, implying that it is capable of forcibly removing processes
from a CPU when it decides to allocate that CPU to another, higher priority process,
or nonpreemptive, in which case the scheduler is unable to “ force ” processes off the
CPU [STA04] .

Dispatcher

 Another component involved in scheduling function is the dispatcher. The dispatcher
is the module that gives control to the process selected by the short - term scheduler.
This function involves the following:

 Switching among processes

 Jumping to the proper location in a program to start its execution

 The dispatcher should be as fast as possible, since it is invoked during every
process switch

Scheduling Effi ciency

 Scheduling effi ciency is an important OS performance metric. It is formulated by
considering that the number of programs that have been queued, waiting for service,
as the result of switch operation i, nq i , related to the number of programs that have
been scheduled as a result of switch operation i, n i , measures scheduling effi ciency,
Es , because programs waiting in a queue decrease the scheduling rate. Thus, E s is
computed as follows:

 E nq /ns i i= .

 Then, the number of programs queued, waiting for service, is equal to the program
input speed to the queue, S i , as a result of switch operation i, times the switch opera-
tion i wait time, tw i :

 nq S twi i i= ∗ .

Operating Systems 293

 To compute tw i , note that the probability, ρi , of a queue being busy, as the result of
switch operation i, is defi ned as:

 ρi i itw /T= ,

 where T i is the switch operation i time. This equation refl ects the fact that the
higher the lower the wait time for a given switch time, the lower the wait time.

 Now, combining the foregoing equations, the number of programs in the queue
generated by switch operation i is the following:

 nq S Ti i i i= ∗ ∗ρ .

 Last, scheduling effi ciency, E s , is computed by using the last equation as follows:

 E S Ti /nis i i= ∗ ∗() .ρ

 Note that the probability of the queue being busy is unknown when the OS is
designed. Therefore, this parameter must be estimated using the Excel RAND
function.

 By computing effi ciency over 100 programs and then computing its mean, the
value 0.2635 or 26.35% is produced. The utility of this analysis is that scheduling
effi ciency can be estimated during design, in advance of implementation, and
increased if warranted by the estimated value. In this example, an increase is needed,
which would be accomplished by increasing the switching speed, S i .

Annoying Messages

 An important distraction to user computing productivity is the plethora of annoying
messages concerning, for example, never - ending notifi cation of security settings and
offers to update software, which various vendors seem compelled to present to the
user whether the user is interested or not. In some cases, the messages can be turned
off. In other cases, it is very diffi cult or impossible to turn them off. The problem
is that rather than the default mode being “ no messages, ” the default mode is
“ maximum messages ” ! Thus, it is important for the prospective customers of OS
and application software to give the system a trial run before purchasing.

SCHEDULING ALGORITHMS

 OS scheduling algorithms can be classifi ed into two major categories related to
the computing environment. One pertains to personal computer processing where
program execution is triggered by user actions, typically with a mouse or Internet
browser. In this case, there is really no need for a scheduler because program invoca-
tion is preordained by user actions. The more interesting and challenging case is the
service computing environment: Web servers, fi le servers, e - mail processing, and so

294 Computer, Network, Software, and Hardware Engineering with Applications

on. In this environment, program invocation should be triggered by interrupts. The
reason is that in order to not waste time, the OS should only service a program when
the program needs servicing (e.g., a Web server receives a search request). However,
before rushing to conclude that an interrupt - driven scheduler is suffi cient to achieve
effi cient use of resources, consider the possibility that once a program gains control
of the microcomputer, it may execute for a long time, thus preventing other programs
from executing for a prolonged period of time. Then, how can this problem be
resolved? A solution is to allocate a time slice to a program once it has signaled the
need for service via an interrupt. The time slice is the amount of execution time
allocated to a program. In a generalized computing environment, such as Web
searching, all users have equal priority; thus, each program is allocated the same
fi xed time slice.

 Contrariwise, in a real - time environment wherein deadlines must be met, the
order and size of time slices is the order of deadlines. That is, the program with the
fi rst deadline receives the next time slice whose length is equal to the difference
between the deadline time and the current time (times are determined by the micro-
computer clock). In both cases, the scheduler performs interrupt - driven [WAN06]
time - slice allocation , and switching logic controls the execution of programs, as
shown in Figure 10.5 . While this strategy may result in some programs not meeting
their deadlines because a given program has control of the microcomputer until it
meets its deadline, it is a sound strategy because at least there is assurance that the
given program will meet its deadline.

 Next, the generalized computer environment scheduling process will be formu-
lated, using the following defi nitions and equations:

 TS i : length of time slice for switch action i

 NI i : number of instructions executed during time TSi

 Since in a generalized computing environment this quantity is unknown a
priori, it is estimated by using random number generation multiplied by
a practical factor, say 10,000.

 n i : number of programs allocated time slices as a result of switch operation i

 CR: microcomputer clock rate (1/CR = time of clock pulse)

 It is assumed that one instruction is executed per clock pulse.

 Typical values of CR are 2 and 4 GHz, yielding (1/CR) = 0.5 and 0.25 ns,
respectively.

 Using the above defi nitions, the length of the time slice is formulated as follows:

 TS /CR NI /ni i i= ∗(()) .1

 Figure 10.4 shows the result of the time - slice analysis wherein two factors drive the
length to decreasing quantities: one is that, of course, as the number of programs
that must be serviced increase, the length of the slice, necessarily, decreases. The
second factor, the microprocessor speed (clock rate), may not be so obvious. With

Operating Systems 295

a higher speed, less time is required per instruction. Therefore, the time slice
decreases.

 Since for real - time systems the time - slice length strategy is highly dependent
on deadlines that evolve with unpredictable events in real - time that cannot be pre-
dicted at OS design time, the next deadline, TD i , associated with switch action i, is
estimated by considering it to be randomly distributed, using the RAND function
and a multiplication factor of 10 to make the estimates realistic. Time slice TS i is
estimated by the difference between the next deadline and the previous deadline,
TDi– 1 , associated with switch action i – 1, as follows:

 TS TD TDi i i 1= − − .

 Since, as stated, assigning a time slice to one program may cause other programs to
miss their deadlines, it is necessary to estimate this blocking delay, TB i : the differ-
ence between the deadline associated with switch action i + 1 and the deadline
associated with switch action i, as follows:

 TB TD TDi i i= −+1 .

 A measure of real - time scheduler scheduling effi ciency, RT i , is the fraction of time
between deadline i + 1 and deadline i – 1 that is consumed by blocking time, com-
puted as follows:

 RT TD TD TD TDi i i i i= − −+ + −() /().1 1 1

Figure 10.4 Time - slice length of switch action i, TS i , versus number of programs switch action i,
ni . Series 1: Microcomputer speed = 2 GHz. Series 2: Microcomputer Speed = 4 GHz.

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10

ni

T
S

i (
n

a
n

o
s
e
c
o

n
d

s
)

Series 1

Series 2

Length of time slice must decrease with increasing number of programs to service

and with increasing microcomputer speed

296 Computer, Network, Software, and Hardware Engineering with Applications

 To obtain an overall estimate of the scheduler effi ciency and blocking delay over n
switching actions, the means of TS i , TB i , and RT i are computed. These values are:
0.0993, 0.1003, and 0.5057 seconds, respectively. The result suggests that with more
time spent in being blocked, over 50%, as opposed to productive computing (time
slice), the scheduler effi ciency should be improved. An appropriate solution would
be a very fast microcomputer. While signifi cant blocking may still occur, the time
lost to blocking would be signifi cantly reduced. Thus, in advance of scheduler
implementation, it is possible to estimate the penalty incurred by using a scheduling
policy that assigns time slices equal to the deadline requirements.

 The logic of time slicing in generalized computing is developed in Figure 10.5
along with the real - time system scheduling.

 PD i

Figure 10.5 Time - slice process. TS i , length of time slice for switch action i; n i , number of
programs allocated time slices as a result of switch operation i; NI i , number of instructions executed
during time TS i ; CR, microcomputer clock rate.

Switching

Logic

Scheduler

TSi

ni

i

Call scheduler

Interrupt from program i

NIi

CR

Generalized Computing Time-Slice Process

Clock pulse

One instruction

i–1 I I + 1Deadlines

Switching

Logic

TD
iTD

i–1

Time slice for program i

TBi = TDi+1 – TDi
TSi = TDi – TDi–1

Blocking of program i + 1

(TDi+1 – TDi–1)

Time slice plus blocking

RTi = (TDi+1 – TDi)/(TDi+1 – TDi–1): scheduling efficiency

Real-Time System Time-Slice Process

Scheduler
Call scheduler

Interrupt from program i

Operating Systems 297

MEMORY MANAGEMENT

 If all the memory requirements of all the programs that an OS must manage could
fi t into the main memory, there would be no need for memory management. However,
as the size of programs continues to grow due to increasing user requirements,
memory requirements expand exponentially. Thus, memory management has become
a major component of contemporary OSs. This section contains an important quan-
titative treatment of memory management that is missing from the mostly qualitative
coverage of OS texts. Consider the following defi nitions of memory management,
as related to switching actions, which trigger memory accesses:

 M: size of main memory (e.g., RAM) that is required by programs

 P: fi xed page size used in memory accesses triggered by switch operations,
where a page is a subset of M, designed to allow only the instructions and
data that are required for a given program ’ s memory requirement to be a
resident in M. This concept permits multiple processes, each of which has
memory requirements, to be active at the same time. Note that the use of
fi xed size pages does not utilize memory as effi ciently as variable size pages
(i.e., wasted space when a page does not fi t in M). However, because variable
size pages are diffi cult to implement, OS designers opt for fi xed size pages.

 N: number of page transfers from secondary storage to M required by a pro-
gram’ s operations, triggered by switch action i:

 N M/P= .

 PT: total paging time generated by n switching actions (n programs):

 PT T N T M Pi

i

n

i

i

n

= =
= =

∑ ∑
1 1

()(/),

 where T i is the time of switch action i (i.e., page transfer) and PT i = (T i)(M/P)
is the page transfer time per single program (i.e., switch action i).

 PR: paging rate PR = 1/PT

 C: page cost C = P * c, where c is the cost per megabyte

 Now, our objective is to achieve a relatively high benefi t – cost ratio, BC, consistent
with minimizing the page transfer time per single program. Doing this provides a
reasonable balance between BC and performance:

 BC PR/ P c= ∗().

 Figures 10.6 and 10.7 show how this balance is achieved, wherein Figure 10.6 docu-
ments the minimum single program page transfer time and corresponding page size.
Then this information is used in Figure 10.7 to identify the “ reasonable balance ”
BC. Last, Figure 10.8 provides the reader with a pictorial view of the mechanics of
memory management.

298 Computer, Network, Software, and Hardware Engineering with Applications

Figure 10.7 Paging benefi t – cost ratio BC versus page size P.

0.0000000000

0.0000100000

0.0000200000

0.0000300000

0.0000400000

0.0000500000

0.0000600000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P (megabytes)

B
C

BC for selected P = 3 MB (balance between performance and cost)

$70 per megabyte of page size P

Figure 10.6 Page transfer time for single program (switch action) PT i versus page size P.

–10.00

0.00

10.00

20.00

30.00

40.00

50.00

60.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P (megabytes)

P
T

i (
s
e
c
o

n
d

s
)

Minimum transfer time at P = 3 MB

DEADLOCK ANALYSIS AND PREVENTION

 A deadlock is a situation in which two computer programs sharing the same resource
are preventing each other from accessing the resource, resulting in both programs
ceasing to function.

 The earliest computer OSs ran only one program at a time. All of the resources
of the system were available to this one program. Later, OSs ran multiple programs

Operating Systems 299

Figure 10.8 Paging operation.

Database

Page
P: page size

M: main memory requirement

Main Memory

N page transfers

Memory

Management

Module
Program requires

memory space

Switching

Logic

Switch action i

Switch action i time: T
i

Switch action times

PT: total switch action time for all programs

single program

PR: paging rate

Call to operating system

at once, interleaving them. Programs were required to specify in advance what
resources they needed so that they could avoid confl icts with other programs running
at the same time. Eventually some OSs offered dynamic allocation of resources.
Programs could request further allocations of resources after they had begun running.
This led to the problem of the deadlock. Here is the simplest example:

 Program 1 requests resource A and receives it.

 Program 2 requests resource B and receives it.

 Program 1 requests resource B and is queued up, pending the release of B.

 Program 2 requests resource A and is queued up, pending the release of A.

 Now, neither program can proceed until the other program releases a resource. The
OS cannot know what action to take. At this point, the only alternative is to abort
(stop) one of the programs. Learning to deal with deadlocks has had a major impact
on the development of OSs. A solution to the deadlock problem is to allocate all the
resources the program needs to complete its processing [REI04] . While this solution
may prevent other programs from executing for a prolonged period of time, it does
have the advantages of being relatively simple to implement, thus avoiding program
failures, and of guaranteeing that at least one program will run to completion. Pre-
venting deadlock is diffi cult if the OS allows for programs to execute concurrently.
Note that this does not mean simultaneous execution; rather, it refers to two or more
programs executing during a period of time allocated by the scheduler.

300 Computer, Network, Software, and Hardware Engineering with Applications

 It is possible to estimate the probability, PD i , of deadlock in a concurrent com-
puting environment, when switch action i triggers execution of program i. The fi rst
factor that governs this probability is the probability of N i , the number of computer
resources (e.g., main memory) that are concurrently invoked by switch action i,
related to the total number of resources, N. Thus, this probability is Ni/N.

 The second factor that must be considered is the probability of n i programs
being invoked concurrently by switch action i, related to the total number of pro-
grams, n, invoked over all switch actions. Thus, this probability is:

n

n

i

i

i

n

=
∑

1

.

 The third and last factor is the number of complete computer systems (i.e., processor,
memory, and all peripheral devices), N s . The probability of deadlock is inversely
proportional to N s because the greater the number of computer systems, the lower
the resource confl icts that cause deadlocks. Putting these factors together, the prob-
ability of deadlock is estimated as follows:

 PD N N
n

n

Ni i
i

i

i

n s= () ⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
∑

/ * / .

1

 As we would expect, Figure 10.9 shows that the probability of deadlock increases
with the number of concurrent programs and decreases with the number of available
computer systems. Thus, this type of estimate is useful for planning resource utili-
zation to avoid deadlocks: moderate concurrency coupled with the availability of
several computer systems.

DISTRIBUTED OSS

 The development of distributed OSs was partly motivated by a desire to escape from
the limitations of centralized OSs, which has the disadvantage of centralizing
resource allocation management, such as memory management, with attendant
failure vulnerability (i.e., single point of failure) and lowered performance (i.e.,
slowdown caused by all programs competing for the attention of an OS function,
for example, a scheduler). Hence, the distributed OS was developed, which distrib-
utes the processing load across processing elements [THU79] . These processing
elements have their own interconnected memory and I/O units, thus achieving
modularity of design [THU79] . The performance penalty for achieving greater
autonomy of resource management is the time delay incurred when elements com-
municate via messages. Also, distributed systems virtually eliminate deadlocks by

Operating Systems 301

virtue of using several autonomous computing elements, each equipped with all the
resources needed to execute several program concurrently.

VIRTUAL OSS

 Virtualization enables installation and running of multiple virtual machines on the
same computer system. The OS that communicates directly with the hardware is
known as the host OS, whereas virtual OSs have all the features of a real OS, but
they run on virtual machines inside the host OS. A virtual machine is separated from
the host computer hardware and it runs in emulation mode (i.e., software emulates
hardware operations). The performance of a virtual OS running on the same com-
puter system as the host OS depends on the performance of the host OS [MAR10] .
The benefi t of virtual OSs is the isolation that they provide from faults occurring in
other virtual OSs and in the host OS. Thus, a high degree of reliability can be
achieved. With virtual OSs based on time - slice allocation, during which time a given
virtual OS has exclusive use of hardware resources, performance improvements ca
also be achieved.

SUMMARY

 The reader has been shown that it is important to estimate OS performance and reliability in
advance of acquiring these systems by simulating the operating conditions under which an

Figure 10.9 Probability of deadlock by switch action i, PD i , versus number of concurrent programs
executing by switch action i, n i . Series 1: number of computer systems = 1. Series 2: number of
computer systems = 2. Series 3: number of computer systems = 3.

0.0000

0.0020

0.0040

0.0060

0.0080

0.0100

0.0120

0.0140

0.0160

0.0180

1 2 3 4 5 6 7 8 9

ni

P
D

i

Series 1

Series 2

Series 3

Probability of deadlock increases with increasing number of

programs and decreases with increasing number of computer

systems

302 Computer, Network, Software, and Hardware Engineering with Applications

OS would function. While the actual performance and reliability may differ from the esti-
mates, nevertheless, statistical confi dence intervals can bound the estimates such that devia-
tions in operation from the estimates are very unlikely. Thus, the engineer who designs
systems, of which the OS is a part, can anticipate OS performance and reliability in advance
of committing time, effort, and funds to system implementation.

Question for the Reader: What OS characteristics would be appropriate for a
computer system that is to control space fl ights?

Answer: It should have the characteristics of a real - time OS, meaning that it is
imperative to meet deadlines (e.g., meeting launch schedule) by allocating
time slices to programs in accordance with the logic shown in Figure 10.5 .

REFERENCES

 [AND92] T. E. Anderson , “ The case for application - specifi c operating systems , ” Proceedings of the
Third Workshop on Workstation Operating Systems , 1992 , pp. 92 – 94 .

 [HAM95] D. Hamilton , “ Are we answering the right research questions for commercial operating
systems , ” Proceedings. of the Fifth Workshop on Hot Topics in Operating Systems , May 4 – 5, 1995 ,
pp. 142 – 144 .

 [MAR10] G. Martinovic , J. Balen , and S. Rimac - Drlje , “ Impact of the host operating systems on
virtual machine performance , ” Proceedings of the 33rd International Convention of MIPRO , May
24– 28, 2010 , pp. 613 – 618 .

 [REI04] E. D. Reilly (ed.), Operating Systems, Concise Encyclopedia of Computer Science . Chichester :
 John Wiley & Sons, Ltd , 2004 .

 [STA04] W. Stallings , Operating Systems Internals and Design Principles , 5th ed. . Upper Saddle
River, NJ : Prentice Hall , 2004 .

 [THU79] K. J. Thurber and G. M. Masson , Distributed - Processor Communication Architecture .
 Toronto : Lexington Books , 1979 .

 [WAN06] J. Wang , H. Zhao , P. Li , Z. Liu , J. Zhao , and W. Gao , “ The mechanism and performance
comparison of two wireless sensor network operating system kernels , ” Sixth International Conference
on Information Technology: New Generations , 2006 , pp. 1492 – 1446 .

Chapter 11

Software Reliability
and Safety

H aving laid a foundation of reliability principles in Chapter 8 , the reader is now prepared
to study important applications of reliability, such as the risk to system safety of unreliability.
Thus, the objective of this chapter is to develop and illustrate a software reliability risk profi le
that supports system safety. Understand that there is more to safety than reliability. However,
it is clear that achieving reliability goals will support safety. The problem to be addressed is
the development and analysis of a profi le of software reliability risk metrics designed to
measure the risk of software not meeting requirements with respect to reliability, time to
failure, and remaining failures. If these goals are not achieved, catastrophic failures could
occur that would jeopardize the mission. This problem is important because while there are
many papers and texts about various reliability prediction models, there is inadequate attention
to evaluating and responding to the risk to the mission of predictions that fail to achieve reli-
ability goals.

RISK EVALUATION

 During project development, risk is any threat to the development and delivery of
a reliable product. The primary goal of software developers is the production of
reliable systems that meet the needs of the user. To meet the goal of reliable software,
developers focus on particular risks, including reliability risks [GOT01] . Risk evalu-
ation is performed because the operation of software may not go according to plan.
Risk evaluation is essential for spacecraft software. Spacecraft software is particu-
larly critical, because its failure can directly jeopardize the mission (e.g., software ’ s
role in Ariane V ’ s demise [ARI96] , and as the most probable cause of loss of the
Mars Polar Lander [JPL00]). Thus, it is important to develop metrics that can quan-
tify risk and to consider the consequences of software operations that deviate from
plans [CHI96] .

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F.
Schneidewind.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley &
Sons, Inc.

303

304 Computer, Network, Software, and Hardware Engineering with Applications

 First, I defi ne risk as used in the analysis: Software risk is a measure of the
probability that faults and failures will occur in the development of software [CHI94] .
Thus, you can see that risk is related to reliability. Since testing is a key element of
project development, the objective is to minimize the probability of reliability risk
by testing the software to the extent that the predicted reliability exceeds the reli-
ability goal during operation.

 Then, I posit questions from the user ’ s perspective related to concerns about
risk.

 What are the questions users might ask about the risk of using their software?
Here are some of the major concerns:

 Will the software satisfy my reliability goals?

 Will the software operate without failure during my planned mission?

 Will there be residual faults and failures after testing that would jeopardize the
mission?

 The risk evaluation process focuses on these concerns.

 To provide for the evaluation of risk, each of the risk metrics must have a goal.
These goals are the following:

Reliability . Predicted reliability must exceed specifi ed reliability for the planned
duration of the mission.

Time to Failure . Predicted time to failure must exceed the planned duration of
the mission.

Remaining Failures . Predicted remaining failures must be less than a specifi ed
number of failures.

 In addition, the test time when remaining failures have been reduced to an acceptable
value is identifi ed.

 The consequences of not achieving these goals are the following: required reli-
ability is not attained during a mission; the software fails during a mission because
the time to failure is too short; and residual faults in the software lead to failures
during a mission.

 In addition to specifying the goals, the degree of risk computed by the risk
metrics is quantifi ed. In order to quantify risk, reliability prediction equations are
developed. These equations and the corresponding risk metrics use National Aero-
nautics and Space Administration (NASA) Space Shuttle fl ight software failure data,
related to orbital trajectory calculations. Because the Shuttle is a safety critical
system, using failure data from this system is appropriate for illustrating modeling
for achieving high reliability goals. A number of plots are made showing how, for
example, risk varies with test time. If the plots indicate that the degree of risk would
endanger the safety of the mission, corrective action is taken, for example, predict
the amount of test time that would be required to reduce risk and achieve reliability
goals.

Software Reliability and Safety 305

OBJECTIVE

 My objective is to develop and illustrate a software reliability risk profi le that sup-
ports reducing uncertainty in achieving user reliability goals [GUP08] . The motiva-
tion is to address this aspect of risk that needs more attention. To illustrate, consider
the following list of risks as presented in a research paper [ROP00] :

 scheduling and timing risks,

 system functionality risks,

 subcontracting risks,

 requirement management risks,

 resource usage and performance risks, and

 personnel management risks.

 I wonder what happened to reliability risk! Therefore, I am motivated to develop
the following reliability risk criteria:

Criterion 1 . The reliability R(t s) predicted to be achieved for test time t s must
exceed the specifi ed reliability R. The concept is that we must have confi -
dence that the software satisfi es reliability goals before it is released for
operational usage. The specifi ed reliability is made an increasing function of
test time based on the premise that the reliability goal should increase as
more faults are corrected with increased test time.

 The risk of Criterion 1 is measured by:

 Risk R R t /R R t /Rs s1 1= − = −(()) (()).

 If R(t s) < R, the risk is positive and undesirable; otherwise, it is zero or
negative and favorable.

Criterion 2 . The predicted time to failure T must exceed mission duration t m .
The concept is that we want to be assured that that the mission can be com-
pleted with no failures.

 The risk of Criterion 2 is measured by:

 Risk t T /t T/tm m m2 1= − = −() ().

 If T < t m , the risk is positive and undesirable; otherwise, it is zero or
negative and favorable.

Criterion 3 . The failures predicted to remain after the software is tested for a
time t s , r(t s), must not exceed r c , where r c is a specifi ed critical value. It is
also important that no residual failures remain when the software is released
for operational usage.

 The risk of Criterion 3 is measured by:

 Risk r r t /r r t /rc s c s c3 1= − = −(()) (()).

306 Computer, Network, Software, and Hardware Engineering with Applications

 If r(t s) > r c , the risk is negative and undesirable; otherwise, it is zero or posi-
tive and desirable.

SOFTWARE RELIABILITY PROFILE IMPLEMENTATION

 Now, each of the profi le criterions will be implemented, using the NASA Space
Shuttle Operational Increment OI8 (software release) as the source of failure data.
These data are shown in Table 11.1 . In order to implement the profi le, the prediction
equations of the Schneidewind software reliability model (SSRM) [SCH97, IEE08]
will be used. Other extant models [LYU96] could also be used.

Criterion 1 (Reliability Risk)

 Equation 11.1 is used to implement Criterion 1, where α , β , and s are parameters
related to failure rate, estimated from the data in the Table 11.1 . The long test times
are due to the fact that the software for a given release (e.g., OI8A) is included in
subsequent releases and undergoes additional testing in the combined software con-
fi guration. The procedure is to predict reliability R(t s) as a function of test time t s
and compare it with specifi ed reliability, R, in order to predict Risk 1. If Risk
1 = 1 – (R(t s)/R is positive, the prediction is less than the required reliability, and
there is a risk of mission failure; otherwise, Risk 1 predicts a safe mission. In addi-
tion, note that predicted reliability increases with increasing test time in accordance
with the concept that additional testing will remove additional faults.

 R t es

e ets s ts s

() ,
[]() ()

=
− −⎡

⎣⎢
⎤
⎦⎥

− − + − − +α
β

β β1 2
 (11.1)

Table 11.1 NASA Space Shuttle OI8A Failure Data

 Test time (days) Number of failures Cumulative failures

 56 1 1
 104 1 2
 119 1 3
 402 1 4
 412 1 5
 3077 1 6
 4896 1 7

 Model parameters
 Alpha Beta Xs – 1
 0.8747 0.0650 0
 Initial failure rate Rate of change of failure rate Number of failures in range

1, s – 1
 s = 2 Starting time for parameter estimation

Software Reliability and Safety 307

 where α , β , and s are failure rate parameters estimated from the Shuttle failure data
in Table 11.1 .

 The reason for the low failure count is that the Shuttle software is highly
reliable.

 It is important to assess risk related to requirements early in the software devel-
opment cycle so that corrective action can be taken before reliability problems are
frozen in the software [APP05] . In addition, testing should be conducted as soon as
possible to provide a quantitative assessment of risk suffi ciently early to take cor-
rective action, such as looking for potential software errors that could be generated
by risky requirements. Risk - based reliability prediction is accomplished by specify-
ing reliability R as a function of mission duration t m , based on the premise that higher
values of specifi ed reliability should correspond to higher values of planned mission
duration. Then, the software is tested to see how well predicted reliability matches
the specifi ed values, as shown in Figure 11.1 .

 Just predicting reliability does not tell the whole story about Criterion 1. We are
also interested in how much test time is likely to be required to achieve the reliability
goal. Thus, Equation 11.2 is produced by substituting R for R(t s) in Equation 11.1
and solving for t s . Equation 11.2 is used to predict the test time t s required to achieve
the reliability requirement R, using the Shuttle continuous software testing regimen
in the Shuttle simulators and in fl ight, as shown in Figure 11.2 . In addition, in order
to ensure a safe mission, it is required that testing continue for a time t s > t m . That
is, testing under simulated operational conditions should continue for a duration
longer than the planned mission duration:

Figure 11.1 NASA Space Shuttle (OI8A) (SSRM): predicted reliability R(t s) and specifi ed
reliability R versus test time t s . Series 1: R(t s). Series 2: Reliability risk. Series 3: R.

–0.2000

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

50 550 1050 1550 2050 2550 3050 3550 4050 4550

ts (days)

R
(t

s)

Series 1

Series 2

Series 3

308 Computer, Network, Software, and Hardware Engineering with Applications

 t
R

e
s = −⎛

⎝⎜
⎞
⎠⎟

−⎛
⎝⎜

⎞
⎠⎟

−()

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
−

1

1β

β
α

βlog
(log)

⎥⎥
⎥
⎥

+ −().s 1 (11.2)

 The fi rst step in the procedure for evaluating reliability risk is to plot Equation 11.1
as a function of test time and the specifi ed reliability R in accordance with Risk 1.
The purpose is to see whether the reliability objective has been achieved. As can be
seen in Figure 11.1 , it is achieved once there has been suffi cient testing at 104 days
when faults have been removed to the extent that the reliability goal can be achieved.
Once this has occurred, missions can be launched for durations t m < t s = 104 days.

 The second step is to see how fast risk can be decreased by achieving higher
reliability by increasing test time. Figure 11.1 attests to the strategy of achieving the
reliability risk goal by increasing test time.

 The third step is evaluate the cost of testing, using test time as the surrogate for
cost, to identify the value of achieved reliability where the cost becomes prohibitive.
We see in Figure 11.2 that R > 0.9800 would result in exorbitant cost of testing (i.e.,
relatively large test times). Thus R = 0.9800, requiring t s = 58 days of test time, is
a reasonable objective that balances safety against cost.

Criterion 2 (Time to Failure Risk)

 To address the risk posed by this criterion, predict the time to next failure as a
function of given number of cumulative failures F(T), and relate it to Risk 2:

Figure 11.2 NASA space shuttle (OI8A): SSRM: predicted time required to achieve specifi ed
reliability R, t s versus R.

0

10

20

30

40

50

60

70

80

90

100

0.9000 0.9100 0.9200 0.9300 0.9400 0.9500 0.9600 0.9700 0.9800 0.9900 1.0000

R

t s
 (

d
ay

s)

Software Reliability and Safety 309

RT = (t m – (T)/t m = 1 – (T)/t m) to see which mission durations constitute the highest
risk. To do this, the time to next failure(s) is needed in Equation 11.3 [SCH97] :

 T F T X s for F T Xs s 1= − − + ⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

+ − + ⎛
− −

1
1 11β

β
α

β
α

log (()) (())⎝⎝⎜
⎞
⎠⎟ < 1, (11.3)

 where F is the given number of cumulative failures and X s– 1 is the number of failures
in the range 1, s – 1. Figure 11.3 demonstrates that all mission durations are safe to
fl y because in all cases, T > t m , where the range of t m = 1, 13 days.

Criterion 3 (Remaining Failures Risk)

 This criterion uses Equation 11.4 [SCH97] to predict the number of failures remain-
ing, r(t s), after the software has been tested for a time t s . This prediction provides an
assessment of residual faults in the software as a function of test time, leading to
the identifi cation of test time required to predict the risk associated with the remain-
ing failures criterion. This time is predicted as 41 days in Figure 11.4 for a criterion
of one remaining failure. That is, a minimum test time of 41 days is required to
ensure that the remaining failures criterion is satisfi ed:

 r t t ss s() exp .= − − −()()()[]α
β

β 1 (11.4)

Figure 11.3 NASA space shuttle (OI8A) predicted time to failure, T, and time to failure risk, RT,
versus number of failures F. Series 1: T. Series 2: RT. Series 3: Mission duration: t m (days).

–10.0000

0.0000

10.0000

20.0000

30.0000

40.0000

50.0000

60.0000

1 2 3 4 5 6 7 8 9 10 11 12 13

F

T
(d

ay
s)

, R
T

Series 1

Series 2

Series 3

T > tm for all values of tm

310 Computer, Network, Software, and Hardware Engineering with Applications

Question for Reader: Why is the remaining failures criterion zero remaining
failures rather than one?

Answer: As can be seen in Figure 11.4 , predicted remaining failures decreases
asymptotically with increasing test time. Thus, it would require an infi nite
amount of test time to achieve zero remaining failures. In addition, from a
practical standpoint, no software of any consequence is error free. If it
appears error free because no errors have been experienced, either the
program has not been executed long enough or the code where the errors are
hiding has not been executed! Thus, a criterion of “ one ” is a practical goal.

Summary of Prediction Results

 The purpose of Table 11.2 is to assemble the prediction results corresponding to the
risk criteria in one place so that the summary results can be identifi ed. Based on the
results, the following are the key fi ndings:

Figure 11.4 SSRM: predicted remaining failures r(t s) versus test time t s .

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

1.4000

1.6000

1.8000

30 40 50 60 70 80 90

ts (days)

r(
t s

)

Unsafe region

Safe region

Table 11.2 Summary of Risk Prediction Results

 Risk criterion Figure Result

 Reliability Figure 11.1 R(t s) > R = 0.9797 at t s = 104 days
 Reliability Figure 11.2 Cost of testing high for t s > 58 days and R > 0.9800
 Time to failure Figure 11.3 T > t m for all values of t m
 Remaining failures Figure 11.4 Safe region: t s > 41 days for r c = 1

 t s , test time; R(t s), predicted reliability; R, specifi ed reliability; T, predicted time to failure; t m , mission
duration; r c , remaining failures criterion.

Software Reliability and Safety 311

 Reliability requirement is achieved at R = 0.9797 at t s = 104 days.

Cost - effective predicted reliability is approximately 0.9800.

 Test software for a minimum of 41 days to achieve the remaining failures
requirement.

 Test for a maximum of 58 days to avoid excessive cost of testing.

 All planned mission durations are safe.

 In summary, one must test for 104 days to achieve the reliability objective, even
though it is not cost - effective. This decision gives a higher priority to safety than
to cost.

Risk Control

 It is insuffi cient to predict risk. In addition, risk control and mitigation is necessary
for developing and implementing risk resolution plans (i.e., action to take if risk
goal not achieved), monitoring risk status (measuring current risk and comparing it
with planned risk), and correcting deviations from the plan [KHA09 , RUZ03] . For
example, there could be errors in predicting reliability, time to failure, and remaining
failures, resulting in inaccurate assessments of the conditions for safe missions.
Monitoring risk involves recording the actual future time to failure during test and
operation and comparing with predicted values. Then the mean relative error (MRE)
is computed. For example, an MRE in excess of ± 20% could be considered justifi ca-
tion for discarding the current model and evaluating others [LYU96] . Risk mitigation
can be implemented by refi ning predictions to improve their accuracy by using
additional failure data generated from future tests and operations, designed to
improve the accuracy of risk criteria computations.

 Another consideration in risk control is mapping failures to their causes [FEA04] .
To illustrate, the failures recorded for the NASA Space Shuttle software release
OI8A in Table 11.1 spans the range of category 1, mission - threatening failures, to
category 3, minor failures; workarounds are available for the latter. Thus, in the
examples, since reliability predictions are based on these data, the predictions are
representative of typical failure scenarios (e.g., time to failure predictions can
produce a mix of category 1 – 3 time to failure predictions).

CONCLUSIONS

 It is benefi cial for risk analysis to focus on reliability because, after all, if expected
reliability cannot be achieved, the software would be useless no matter what other
qualities it may possess. Mission success can be measured by predicting the extent
to which predicted reliability exceeds specifi ed reliability. Other reliability - related
metrics are time to failure and remaining failures . We would have confi dence in the
safety of the mission if predicted time to failure exceeds planned mission duration
and predicted remaining failures are less than a specifi ed critical value.

312 Computer, Network, Software, and Hardware Engineering with Applications

REFERENCES

 [APP05] K. Appukkutty , H. H. Ammar , and K. G. Popstajanova , “ Software requirement risk assess-
ment using UML , ” The 3rd ACS/IEEE International Conference on Computer Systems and Applica-
tions , 2005 , p. 112 .

 [ARI96] Ariane 5 Inquiry Board , “ ARIANE 5 Flight 501 Failure, ” 1996 .
 [CHI94] C. Chittister and Y. Y. Haimes , “ Assessment and management of software technical risk , ”

IEEE Transactions on Systems, Man and Cybernetics , 1994 , 24 (2), pp. 187 – 202 .
 [CHI96] C. Chittister and Y. Y. Haimes , “ Systems integration via software risk management , ”

IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans , 1996 , 26 (5),
pp. 521 – 532 .

 [FEA04] M. S. Feather , “ Towards a unifi ed approach to the representation of, and reasoning with,
probabilistic risk information bout software and its system interface , ” 15th International Symposium
on Software Reliability Engineering , November 2 – 5, 2004 , 391 – 402 .

 [GOT01] D. Gotterbarn , “ Enhancing risk analysis using software development impact statements , ”
Proceedings of the 26th Annual NASA Goddard Software Engineering Workshop , Greenbelt, MD, 2001 ,
pp. 43 – 51 .

 [GUP08] D. Gupta and M. Sadiq , “ Software risk assessment and estimation model , ” International
Conference on Computer Science and Information Technology , August 29 – September 2, 2008, Singa-
pore, 2008 pp. 963 – 967 .

 [IEE08] IEEE/AIAA P1633 ™ , “ Recommended Practice on Software Reliability , ” June 2008 .
 [JPL00] JPL Special Review Board , “ Report on the Loss of the Mars Polar Lander and Deep Space 2

Missions” , March 2000, JPL D - 18709, Jet Propulsion Laboratory, California Institute of Technology.
 2000 .

 [KHA09] S. Khan , “ An approach to facilitate software risk identifi cation , ” 2nd International Conference
on Computer, Control and Communication , February 17 – 18, 2009 , Karachi, pp. 1 – 5 .

 [LYU96] M. R. Lyu (ed.), Handbook of Software Reliability Engineering . Los Alamitos, CA : IEEE
Computer Society Press ; New York : McGraw - Hill Book Company , 1996 .

 [ROP00] J. Ropponen and K. Lyytinen , “ Components of software development risk: how to
address them? A project manager survey , ” IEEE Transactions on Software Engineering , 2000 , 26 (2),
pp. 98 – 112 .

 [RUZ03] R. Xu , L. Qian , and X. Jing , “ CMM - based software risk control optimization , ” IEEE Inter-
national Conference on Information Reuse and Integration , October 27 – 29, 2003 , pp. 499 – 503 .

 [SCH97] N. F. Schneidewind , “ Reliability modeling for safety critical software , ” IEEE Transactions
on Reliability , 1997 , 46 (1), pp. 88 – 98 .

 Part Four

Integration of
Disciplines

Chapter 12

Integration of Hardware and
Software Reliability

T he objective of this chapter is to integrate hardware and software into a unifi ed reliability
model by using several reliability models in order to identify an appropriate integrated model,
supported by failure data from several real - world projects. Several system confi gurations are
evaluated, including series, parallel, and series – parallel. The Weibull distribution, because of
its ability to model various failure rate patterns, is useful for identifying the reliability proper-
ties of each of the confi gurations. A reliability benefi t – cost ratio, with cost based on the
number of series and parallel components, is useful for evaluating model predictions. As a
by - product of the modeling process, several reliability relationships are revealed that might
be intuitively obvious, but are dramatized by quantitative analysis. For example, increasing
the degree of hardware parallelism will not produce the desired reliability if hardware and
software failure rates are excessive. In this situation, the only recourse to achieving acceptable
reliability is testing to correct faults. In addition, in a component - based system, component
failure rates must be extremely low in order to prevent the failure of even a single component
that could bring the system down. This chapter uses several reliability principles covered in
Chapter 8 . The reader may want to refer to Chapter 8 because topics such as series and parallel
reliability confi gurations and Poisson and Weibull distributions are used in this chapter.

INTRODUCTION

Objectives

 The primary objective is to show the reader how to integrate hardware and software
reliability into a single system reliability model. The reason for this is typically,
hardware and software are treated as disparate entities in reliability analysis, when
in fact they are intimately related. For example, an error in software causes a divide
overfl ow, leading to a hardware divide overfl ow interrupt, which, in the user ’ s view,

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F.
Schneidewind.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley &
Sons, Inc.

315

316 Computer, Network, Software, and Hardware Engineering with Applications

is a system failure. A second objective is to evaluate various software – hardware
confi gurations such as series, series – parallel, and pure parallel in relation to cost, so
that the reader can see which confi guration produces the most favorable reliability
benefi t – cost (BC) relationship. Third, the analysis is supported with failure data from
real - world projects in order to see how these data affect efforts to achieve high
system reliability by using redundancy, for example.

 A factor in achieving high reliability is that the quality of a product design is
dependent on the quality of the process in which it is inserted. Changes in process
evolve and this evolution should be taken into account when designing a product
for high reliability [BON98] . For example, achievable product reliability is a func-
tion of software testing methodologies (e.g., testing by software function versus
testing by program path). While this is true, process is beyond the scope of this
chapter because there is no information available on the relationship between product
and process quality.

Defi nitions

 As an aid in understanding the development of reliability models, the following
terms are defi ned:

Series Component (x i). Part of a series, or series – parallel, confi gured computer
system (see Fig. 12.1), hardware or software [MUS87] .

Parallel Component (x j) . Part of a parallel, or series – parallel, confi gured com-
puter system (see Fig. 12.1), hardware or software [MUS87] .

 Operational Mode. The operating characteristics of a component [MUS87] .

 Operational modes can have different requirements and reliabilities [MUS87] .

 Requirements include both functional (e.g., performance) and nonfunctional
(e.g., reliability) specifi cations [MUS87] .

Figure 12.1 Series – parallel reliability.

xj1

xj2

xj3

Rj

xi1

xi2

Ri

Input 1

Input 2

Input 3

Interrupt high

Clock transition

Input received

Parallel (OR) connection Series (AND) connection

S = (x1 + …+ xj + …+ xp) (x1 ^ … ^ xi ^ …^ xs)

RS = Rs Rp = (
s

i

i=1

R∏)(1 – (
p

j
j=1

(1 – R)∏))

RS: system reliability

Integration of Hardware and Software Reliability 317

 Concurrent System. Comprised of components that execute during the same
scheduled operational time, but not simultaneously (e.g., computer and appli-
cations software) [MUS87] .

 Sequential System. Comprised of components that execute at different sched-
uled operational times (e.g., input data component execution followed by
database management system execution) [MUS87] .

Functional Logic

 Reliability is related to the functions that are performed in a system. For example,
if the output S in Figure 12.1 of a series – parallel hardware and software system is
“ 1, ” it means that the input has been received and that system reliability of this event
is R S . The success of the input received function in Figure 12.1 of a series – parallel
hardware and software system is given in Equation 12.1 :

 S x x x x x xj p i s= + + + +()(^ ^ ^ ^),1 1… … … … (12.1)

 where x j and x i = 0 or 1.

RELIABILITY LOGIC

 Reliability logic refers to the ways in which reliability is computed for confi gurations
of series, parallel, and series – parallel hardware and software components. This
entails considering the way components are connected, as in Figure 12.1 , which
provides the logic for the number of terms and the operators (OR, AND) in the reli-
ability equations. In addition, the reliability models for individual components (e.g.,
exponential, Weibull) are integrated with the connection logic.

Series–Parallel Confi guration

 In viewing the following reliability equations, refer to Figure 12.1 for a pictorial
view of a series – parallel confi guration, where components can execute sequentially
(inputs followed by interrupt and clock transition) or concurrently (interrupt and
clock transition during scheduled operating time).

 The reliability of a series confi guration with s components, each with reliability
Ri , is computed in Equation 12.2 :

 R Rs i

i

s

=
=

∏
1

. (12.2)

 The reliability of a parallel confi guration with p components, each with reliability
Rj , is computed in Equation 12.3 . The rationale of this equation is that parallel con-
fi guration reliability is equal to 1 minus the parallel confi guration unreliability :

318 Computer, Network, Software, and Hardware Engineering with Applications

 R Rp j

j

p

= − −
⎛

⎝
⎜

⎞

⎠
⎟

=
∏1 1

1

() . (12.3)

 Then using Equations 12.2 and 12.3 , and assuming series system reliability R S , it is
computed in Equation 12.4 :

 R R R R RS s p i

i

s

j

j

p

= =
⎛
⎝⎜

⎞
⎠⎟

− −
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

= =
∏ ∏

1 1

1 1() . (12.4)

 Assuming series system reliability provides a conservative, or worst - case, computa-
tion, with the assurance that the system reliability will be no worse than predicted
by Equation 12.4 .

 When the failure rate λ is constant mean value (i.e., exponentially distributed
time t between failures), the reliabilities in Equations 12.2 – 12.4 are computed based
on the exponential distribution in Equation 12.5 :

 R t e(t() .)= −λ (12.5)

 In hardware reliability, Equation 12.5 is used during the operational phase (neither
burn - in nor wear out phases) when operating time is available [MIC05] . This cor-
responds to the Poisson failure count model in Equation 12.6 that is used when you
want to predict the probability of x failures occurring, with a failure rate λ , for an
operating time t. If you set x = 0 in Equation 12.6 , you arrive at Equation 12.5 :

 P x t
t e

x

x t

(,)
()

!
.

()

=
−λ λ

 (12.6)

 Equation 12.6 can also be used for evaluating the effect of failure rate of various
components on probability of failure and to identify the number of failures x when
the probability of failure becomes negligible. The latter analysis can be used to
advantage in determining how long to test components (i.e., terminate testing when
x failures have occurred and their faults removed).

Question for Reader: Can you think of an assumption that governs the struc-
ture of reliability Equations 12.2 – 12.4 ?

Answer: There is the assumption of independence of faults that cause failures,
thus allowing component reliabilities to be multiplied. However, this may
not be the cases because faults can be dependent. For example, one fault
can mask another. The masked fault cannot be detected until the masking
fault is removed [LYU96] . In such cases, the faults and failures and resul-
tant component reliabilities are not independent. However, by multiplying
component reliabilities, the salvation from this problem is that the assum-
ption of independence leads to lower, and, hence, conservative reliability
predictions.

Integration of Hardware and Software Reliability 319

Reliability When n Out of N Components Fail

 In the preceding discussion of reliability, notice that component reliability is not
taken into account — computations of reliability are at the system level. If N, the
number of components in a system, is available, you can use Equation 12.7 — the
binomial distribution — to predict the system reliability R S , based on n of the N
components operating without failure, each with a reliability R. The component
reliabilities, in turn, can be formulated on an exponentially distributed operating time
basis by using Equation 12.8 :

 R
N

n N n
S =

−
⎛
⎝⎜

⎞
⎠⎟ () −()−!

!()!
() ,()R Rn N n1 (12.7)

 where R e t= −().λ (12.8)

 To predict the operating time t corresponding to specifi ed reliability R and mean
failure rate λ , use Equation 12.9 , which is obtained by solving Equation 12.8 for t.
This equation is useful for predicting the duration of operating time that is feasible
for an application with a specifi ed reliability. If the time does not satisfy the opera-
tional requirement, it means that the specifi ed reliability would have to be reduced
to meet the requirement:

 t R /= −(log) .λ (12.9)

 The likelihood of processor failure during a long - running application that uses mul-
tiple processors increases with the number of processors, and the failure of a single
processor can crash the entire system. Detecting faults and recovering from faults
is thus a major concern in using these systems [CAR95] . On the one hand, based
on the reliability of individual components, R = e (–λ t) , reliability will decrease for a
long - running application. On the other hand, if each processor (component) runs the
same application, system reliability R S in Equation 12.7 will increase as the number
of processors, n, that do not fail increases. The net effect on system reliability
depends on values of failure rate, λ , operating time, t, and n.

Cost Considerations

 You should not evaluate the reliability of various computer confi gurations ignoring
cost. For example, in confi gurations that involve parallel redundancy in order to
increase reliability, there would be additional cost incurred compared with a series
confi guration. The penalty for using parallelism to achieve reliability improvement
is the additional processors that are required. For a serial – parallel confi guration
comprised of one processor to communicate with s serial components (e.g., input –
 output, memory) and p processors to communicate with p parallel components, the
total number of processors is c = p + 1. Since the cost of processors would be equal

320 Computer, Network, Software, and Hardware Engineering with Applications

Table 12.1 Disk Failure Rates (The Computer Failure Data Repository [CFDR], Carnegie
Mellon University)

 Failures per day per disk

 Type of cluster
 From
day To day Days Failures

 Number
of disks

 Failure
rate

 T f d λ

 High performance 37,104 38,838 1734 1263 3406 0.000214
 High performance 37,987 38,899 912 14 520 0.000030
 Internet server 38,000 38,031 31 465 26734 0.000561
 Internet server 38,231 38,808 577 667 39039 0.000030
 Internet server 38,353 38,687 334 346 3734 0.000277

for a given confi guration, the cost is proportional to c, so that the benefi t of increased
system reliability R S can be related to the cost c by the BC in Equation 12.10 :

 BC R /c R / pS S= = +().1 (12.10)

 If the confi guration is pure series, p = 0 and c = 1; if it is pure parallel, c = p = N,
number of components. A cautionary note is that since c = 1 for the series confi gura-
tion, BC = R S would look very favorable. However, the system reliability R S must
also satisfy the specifi ed reliability requirement R. That is, R S ≥ R. Thus, fi rst, the
reliability requirement must be satisfi ed. Then, BC can be computed.

RELIABILITY ANALYSIS RESULTS

Series–Parallel Confi gurations

 The disk failure rates used in the analysis of series – parallel confi gurations are shown
in Table 12.1 .

 Figure 12.2 shows that only the pure parallel confi guration satisfi es the reli-
ability requirement. While the reliability of the series confi guration is poor, it does
provide the worst case, so that you can be assured that reliability would be no worse
than this case. Finally, you can see that the series – parallel confi guration does not
provide a signifi cant advantage over the series confi guration.

BC Considerations

 Now, when the BC relationship is applied in Figure 12.3 , the superiority of the
series confi guration for all values of operating time is evident. However, for a
mission - critical application, operating for prolonged periods, and cost is a minor

Integration of Hardware and Software Reliability 321

Figure 12.2 Disk reliability R(t) versus operating time t. Series 1: 5 disks connected in series, 1
processor required. Series 2: 2 disks connected in series, 3 disks connected in parallel, 4 processors
required. Series 3: 5 disks connected in parallel, 5 processors required. Series 4: required
reliability = 0.9500 (only parallel confi guration satisfi es reliability requirement).

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

100 200 300 400 500 600 700 800 900 1000

t (days)

R
(t

)

Series 1

Series 2

Series 3

Series 4

Worst case

Figure 12.3 Reliability benefi t – cost ratio BC for disk confi gurations versus operating time t. Series
1: Series – parallel confi guration (2 disks connected in series, 3 disks connected in parallel, 4 processors
required). Series 2: Series confi guration (5 disks connected in series, 1 processor required). Series 3:
Parallel confi guration (5 disks connected in parallel, 5 processors required).

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

100 200 300 400 500 600 700 800 900 1000

t (days)

B
C

Series 1

Series 2

Series 3

Series configuration has best BC for all t

322 Computer, Network, Software, and Hardware Engineering with Applications

Figure 12.4 Disk probability of failure P(x, t) versus number of failures x. Series 1: failure
rate = 0.370816 failures per day. Series 2: failure rate = 0.004271 failures per day.

–0.2000

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

0 1 2 3 4 5 6 7 8 9 10

x

P
(x

, t
)

Series 1

Series 2

Reliability at x = 0

Probability of failure becomes negilible: terminate testing

consideration (e.g., nuclear power plant control), you would select the parallel
confi guration.

Probability of Failure

 It is important to study the effects of failure rate and number of failures on probabil-
ity of failure. In addition, since testing can be expensive, you want guidance for
determining how long to test. Both of these issues are illustrated in Figure 12.4 ,
where you can see that failure rate dramatically affects probability of failure, and at
x = 6 failures detected, you could stop testing.

 Figure 12.5 uses Equation 12.9 to estimate the operating time t that can be
achieved for specifi ed values of reliability R(t) for fi ve disk systems with different
failure rates. You can see that t decreases with increasing R(t) and failure rate. This
type of fi gure could be employed to estimate the operating time that could be
achieved for any hardware or software component whose reliability is described by
the exponential function.

Component Reliability Analysis

 Advances in multiprocessor technology have made possible the design of highly
fl exible parallel multiprocessor memory systems, such as the Los Alamos National

Integration of Hardware and Software Reliability 323

Figure 12.5 Disk operating time t versus required reliability R(t). Series 1: failure rate =
0.378016 failures per day. Series 2: failure rate = 0.013462 failures per day. Series 3: failure
rate = 0.005798 failures per day. Series 4: failure rate = 0.004271 failures per day. Series 5: failure
rate = 0.018532 failures per day.

0.0000

5.0000

10.0000

15.0000

20.0000

25.0000

30.0000

0.8900 0.9000 0.9100 0.9200 0.9300 0.9400 0.9500 0.9600 0.9700 0.9800 0.9900 1.0000

R(t)

t
(d

ay
s)

Series 1

Series 2

Series 3

Series 4

Series 5

Operating time decreases with increasing specified reliability and failure rate

Table 12.2 Component Failure Data (Los Alamos National Laboratory ’ s ASC Q
Supercomputer)

 Component
type failure
rate

 Memory
failures
per hour

 Cache
failures
per hour

 Parity
failures
per hour

 CPU
failures
per hour

 Hardware
failures
per hour

 Total failures
per hour

λ 0.0047 0.0061 0.0065 0.0075 0.0096 0.0127
 Number of
components

 N 22

 Operating time t 1.00 hour
 Operating time t 3.50 hours
 Operating time t 4.50 hours

Laboratory computer documented in Table 12.2 . High reliability is required for these
systems because a small degradation in a component (processor or memory) can be
catastrophic by signifi cantly lowering the overall system reliability. High reliability
of these systems has been commonly achieved by utilizing redundancy [CHO02] .
Therefore, the component - based reliability relationships are investigated, including
redundancy that applies when individual component reliabilities are predicted
and the results put into a larger framework of generating system reliabilities. This

324 Computer, Network, Software, and Hardware Engineering with Applications

analysis is informative because you can study the effects on system reliability of
failure rate, component reliability, operating time, and number of components that
do not fail. The data that were used to support this analysis are shown in Table 12.2 .
As can be seen in Figure 12.6 , when very few components fail (i.e., n is large) and
operating time is low, these are conditions for producing acceptable system reli-
ability (i.e., approximately 0.9000).

 Another perspective on component reliability evaluation can be obtained by
using the Poisson probability of failure that was introduced in Equation 12.6 , but
this time rather than number of failures, the focus is on number of failed components
n in Equation 12.11 :

 P n t
t e

n

n t

(,)
!

.
()

= () −λ λ
 (12.11)

 The purpose of this examination is to determine whether there is a signifi cant prob-
ability of multiple failed components. Using the same components, failure rates, and
operating times that were explored in Figure 12.6 , you can produce Figure 12.7 ,
revealing that for both memory and central processing unit (CPU) components, the
probability of multiple failed components is negligible. Therefore, the prospects are
good of achieving high reliability in this multiple component system.

Figure 12.6 System reliability R S versus number of components that do not fail n. Series 1: R S ,
memory failures, failure rate = 0.0047 failures per hour, operating time t = 1 hour, component
reliability = 0.9953. Series 2: R S , memory failures, failure rate = 0.0047 failures per hour, operating
time t = 4.5 hours, component reliability = 0.9790. Series 3: R S , CPU failures, failure rate = 0.0075
failures per hour, operating time t = 1 hour, component reliability = 0.9925. Series 4: R S , CPU failures,
failure rate = 0.0075 failures per hour, operating time t = 4.5 hours, component reliability = 0.9668.

–0.1000

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

n

R
S

Series 1

Series 2

Series 3

Series 4

• only a combination of high value of n and low value of t lead to acceptable system reliability
• failure rate has a minor effect on system reliability across systems
• component reliability has a major effect on system reliability

Integration of Hardware and Software Reliability 325

Figure 12.7 Probability of components failing at time t, P (n, t) versus n. Series 1: P(n, t): memory
failures, failure rate = 0.0047 failures per hour, t = 1 hour. Series 2: P(n, t): memory failures, failure
rate = 0.0047 failures per hour, t = 4.5 hours. Series 3: P(n, t): CPU failures, failure rate = 0.0075
failures per hour, t = 1 hour. Series 4: P(n, t): CPU failures, failure rate = 0.0075 failures per hour,
t = 4.5 hours.

–0.2000

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

3210

P
(n

, t
)

n

Series 1

Series 2

Series 3

Series 4

Reliability at n = 0

Probability of multiple failures is negilible

Assessing Reliability Model Predictive Accuracy

 If you possessed historical computed reliability data for the systems tabulated in
Tables 12.1 and 12.2 , you could compute the error between the prediction models
and the historical reliability data in order to assess the predictive validity of the
models. Lacking this information, you can make a qualitative assessment as follows:
If redundancy is used to improve hardware reliability, then a model with parallelism
is most appropriate. If the major concern is to predict worst - case reliability, the series
model should be used. If component failure data are available, the n out of N model
is the most appropriate. Complementing these models is the Poisson probability of
failure model that provides an additional quality perspective by predicting the prob-
ability of a specifi ed number of failures occurring. This information can be used to
determine how long to test (i.e., stop testing when a number of failures have been
detected corresponding to a low value of probability of detection).

COMBINED HARDWARE –SOFTWARE
RELIABILITY ANALYSIS

 One approach to reduce the complexity of systems and, hence, render them suitable
for reliability modeling is decomposition. To deal with the complexity of integrated

326 Computer, Network, Software, and Hardware Engineering with Applications

modeling, the functions of a computer system are successively divided by a func-
tional decomposition method. The decomposition of a function into subfunctions
stops when the smallest subfunctions cannot be divided further or dividing the sub-
functions further will be of no interest. When the smallest subfunction is achieved,
the next step is to represent the implementation of the function in terms of the hard-
ware function, software function, and some form of interaction [PUR99] . Unfortu-
nately, this is usually diffi cult to do because the functionality information to support
decomposition is not available.

 The classical reliability models that considered only hardware are no longer rel-
evant. Software, its operations, and resultant failures, are at least as important as
hardware failures. Interestingly, the author [PUR99] uses user - perceived reliability
and availability data rather than data recorded against the hardware and software. This
is a useful practice because who else is better to judge whether a system is up or down
than the user [WOO95] ? While you might like to use this concept, user - perceived
reliability and availability data are generally not available for most projects.

 Another approach is to provide strong partitioning of applications, which means
that the boundaries among applications are well defi ned and protected so that opera-
tions of an application will neither be disrupted nor corrupted by erroneous behavior
of another application [RUS99] . Each application is allocated to a single partition,
providing computational and memory resources and the means to access devices
 [ISL06] . Strong partitioning improves the reliability of individual applications and
the system as a whole.

Combining Hardware and Software Reliability

 In the case of a system with a real - time operational mode, such as the Los Alamos
CRAY - 1 computer, performance is affected by such factors as interprocess com-
munication, sequence of operations, and processor scheduling policies. On the other
hand, the reliability of the system is affected by random hardware and software
failures. In the event of the failure of some components, a real - time system must
still continue to function, and a subset of its time - critical tasks must meet the dead-
line [LSL92] . To respond to the continuous operation requirement, one of the
hardware– software models that will be explored provides parallel hardware redun-
dancy combined with software components in series. Note that software redundancy
is infeasible because the same fault will reside in all copies of the software, but you
can mitigate the risk of software failure by testing for a time to assure high reliability.
To aid this investigation, use the example hardware and software failure data from
the CRAY - 1 computer in Table 12.3 . These data will be used in the Weibull reliability
model in a later section.

System Validation

 Validation of computer system reliability during the development of the system is
an important activity. The validation process provides: (1) a measure of the ability

Integration of Hardware and Software Reliability 327

Table 12.3 Hardware – Software Failure Data (Los Alamos National Laboratory)

 CRAY - 1
reporting
period

 Total
failures

 Hardware
failures

 Fraction
software
failures

 Software
failures

 Hardware
failure rate

 Software
failure rate

 t f h = f – (s * fs) fs s = f * fs λ λ

 1 40 13.88 0.6529 26.12 0.69 1.31
 2 38 37.51 0.0128 0.49 1.88 0.02
 3 29 19.66 0.3219 9.34 0.98 0.47
 4 23 19.47 0.1534 3.53 0.97 0.18
 5 19 5.60 0.7055 13.40 0.28 0.67
 6 15 7.90 0.4733 7.10 0.40 0.35
 7 17 5.89 0.6533 11.11 0.29 0.56
 8 19 10.42 0.4516 8.58 0.52 0.43
 9 24 18.67 0.2219 5.33 0.93 0.27

 10 25 3.80 0.8479 21.20 0.19 1.06
 11 31 19.90 0.3581 11.10 0.99 0.56
 12 35 24.80 0.2914 10.20 1.24 0.51
 13 33 31.15 0.0561 1.85 1.56 0.09
 14 34 23.62 0.3052 10.38 1.18 0.52
 15 35 27.22 0.2224 7.78 1.36 0.39
 16 33 22.14 0.3290 10.86 1.11 0.54
 17 24 1.20 0.9500 22.80 0.06 1.14
 18 28 23.07 0.1761 4.93 1.15 0.25
 19 27 4.56 0.8313 22.44 0.23 1.12
 20 28 1.48 0.9471 26.52 0.07 1.33
 21 31 11.89 0.6163 19.11 0.59 0.96
 Totals 588 333.85 254.15

 20 days in reporting period.

of a system to detect, locate, and recover from errors; (2) confi dence in a system
before it is deployed; and (3) feedback during the development stage for improving
the design and implementation of a system. Fault injection has been recognized as
one of the best approaches for evaluating the behavior and performance of complex
systems. There are several advantages in adopting the fault injection approach for
evaluating these systems. These advantages include: (1) the effects of faults can be
determined when executing programs; (2) the overhead of algorithms that are used
to recover from faults can be evaluated; (3) the effects of additional faults occurring
during the recovery process can be studied; and (4) reliability models can be refi ned
by utilizing data, such as the distribution of faults in the hardware and software
 [KNA95] . These methods are powerful, but in order to use them, you need access
to software code that would allow you to do fault injection.

328 Computer, Network, Software, and Hardware Engineering with Applications

 In real - time systems, hardware and software interact to accomplish a specifi c
task. The presence of both hardware and software causes diffi culties in validating
real - time systems. A common obstacle is the lack of formal methods (e.g., correct-
ness proofs) that can be used to validate both hardware and software [HSI99] .
However, a method that you can apply to both hardware and software is predictive
validity (e.g., mean squared error [MSE] between actual [historical] and predicted
reliability [LYU96]). MSE has the advantageous property that it effectively measures
the variance between actual and predicted values and is useful for comparing the
prediction accuracy of various reliability models.

Structure of a Software Application

 The structure of a software application may be defi ned as a collection of components
comprising the application and the interactions among the components. A component
could be a single function, a class, an object, or a collection of these. The interac-
tions among the components may be procedure calls, client – server protocols, links
between distributed databases, or synchronous and asynchronous communication
among components [GOK05] . These software components are integrated with hard-
ware components to form a unifi ed suite of components that can be subjected to
reliability evaluation.

 Reliability evaluation is useful and important in designing computer systems,
while at the same time it is also diffi cult. The diffi culty becomes signifi cant when
the model combines hardware, software, and their interactions, due to the difference
in failure behavior between hardware and software [PUR99] . Despite this diffi culty,
the analysis now shifts to investigate one of the major objectives: the possibility of
developing a unifi ed hardware – software reliability model (i.e., a system reliability
model not limited to hardware or software).

Hardware and Software Failure Relationships

 You can consider hardware and software failure relationships to be based on the
following reasoning: It is extremely unlikely that hardware and software failures
would occur simultaneously. If they did, it would be a coincidence rather than cause
and effect. For example, an error in the software that causes the program to take a
wrong branch, would not, in itself, result in a hardware failure. Another example is
when there is a memory failure and, subsequently, the software “ fails ” in attempting
to access the defective memory. But the failure should be charged to the hardware
and not to the software. Now, it is possible for a permanent hardware failure to
render the software inoperable [KAN96] , but this is not the fault of the software.
The failure should be charged against the hardware. The consequence is that the
availability of the software would be decreased.

Integration of Hardware and Software Reliability 329

Assessing Predictive Validity

 In order to assess predictive validity of hardware, software, and system reliability
predictions, the corresponding actual (i.e., historical) reliability computations are
required in Equations 12.12 – 12.14 , respectively, over the scheduled operating time
T. Once these values have been computed, mean relative error, with respect to the
corresponding predictions, can be computed:

R

h

h
ah

t

t

t

T= −

=
∑

1

1

,
 (12.12),

 where h t is the actual number of hardware failures;

R

s

s
as

t

t

t

T= −

=
∑

1

1

,
 (12.13),

 where s t is the actual number of software failures;

R

f

f
af

t

t

t

T= −

=
∑

1

1

,
 (12.14),

 where f t is the actual number of system failures.

Weibull Reliability Model

 Due to the great variation in both hardware and software failure counts in Table
 12.3 , a fl exible failure function is needed to represent these phenomena. One of the
most widely used distributions for reliability is the Weibull failure distribution
 [SHO83] . It has the fl exibility of allowing for constant, increasing, and decreasing
failure rate functions. Thus, given the variability in hardware and software failure
rates in Table 12.3 , it is a good candidate for predicting the reliability of the CRAY - 1
computer. The reliability R(t) at operating time t is given in Equation 12.15 , where
λ is the failure rate and α is the shape parameter (i.e., the parameter that governs
the shape of the reliability function) [LLO62] :

 R t e t() .()= − λ α (12.15)

 The parameters of the Weibull distribution are estimated according to Lloyd and
Lipow [LLO62] in Equations 12.16 and 12.17 , where n is the number of failure
counts:

330 Computer, Network, Software, and Hardware Engineering with Applications

λ

α

=

=
∑

n

ti

i

n

1

,
 (12.16)

α

λ α

=
−∑ ∑

=

n

t t ti

i=1

n

i i

i

n

log log

.

1

 (12.17)

 However, trying to solve Equations 12.16 and 12.17 is not practical because in order
to solve for λ in Equation 12.16 , α is required, but to solve for α in Equation 12.17 ,
λ is required. A practical approach is to use the reliability function, Equation 12.15 ,
to solve for α , given values of λ and R(t), for a specifi ed value of t. Now, solving
Equation 12.15 for α results in Equation 12.18 :

 α
λ

= −⎡
⎣⎢

⎤
⎦⎥

log(())
.

R t
 (12.18)

 However, notice the constraint on the maximum value of R(t) that can be achieved
to avoid trying to take the log of a negative quantity: R(t) < e –λ because log R(t) = λ .
Therefore, set the limit on R(t) according to R(t) < e –λ and substitute this value in
Equation 12.18 and solve for α . Since the hardware and software failure rates λ and
failure time t (reporting period) are given in Table 12.3 , you have all the information
needed to estimate the parameter α .

Weibull Model Results

 If Equation 12.15 does not yield adequate hardware – software predictive reliability,
compared with actual hardware – software reliability, parallel and combined series –
 parallel reliability models can be brought into play to provide hardware redundancy,
thereby increasing both hardware and system reliability. Figure 12.7 shows these
concepts, where predicted system reliability is considerably below actual system
reliability and there is a large MSE difference between the two reliabilities. Using
fi ve hardware components in parallel, with software in series, while signifi cantly
reducing the prediction error, does not result in predicted system reliability approxi-
mating actual reliability. Therefore, in order to raise reliabilities to desirable levels,
hardware, software, and system failure rates must be reduced. This issue will be
addressed in the next section.

 Solving Equation 12.15 for failure rate λ (t), for values of operating time t and
mean value of parameter α , allows you to estimate the failure rate required to achieve
specifi ed reliability R(t) in Equation 12.19 . This estimate is made for hardware,
software, and system reliability:

 λ α() (log(()) ().t R t / t= − (12.19)

Integration of Hardware and Software Reliability 331

 Applying Equation 12.19 , the mean value of failure rates for CRAY - 1 hardware,
software, and system required to achieve the specifi ed reliability values are tabulated
in Table 12.4 . Surprisingly, there is negligible difference in failure rates among
hardware, software, and system, but signifi cant reductions when compared with the
failure rates where no reliability requirement is specifi ed. The reason for this is that
when there is a reliability goal, efforts to reduce faults and subsequent failures are
focused, such as testing to bring reliability into conformance with the specifi cation.
Whether an organization would opt to achieve these reliability levels would depend
on the mission reliability requirement and the cost of testing to remove faults to the
extent that required failure rate reduction would be achieved. The lack of distinction
between hardware and software failure rates may be explained by the fact that being
a super computer, the CRAY - 1 possesses both complex hardware and software,
contributing approximately equally to the generation of failures.

 It is also important to estimate the operating time t that could be achieved for
a specifi ed reliability R(t) and mean value of parameter α in the Weibull model, by
solving Equation 12.15 for t. The result is Equation 12.20 :

 t R t= ⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟1

1

λ
α

(log ()) . (12.20)

 Figure 12.8 shows the results of applying Equation 12.20 to the CRAY - 1 computer
data, where you can identify the maximum operating times that can achieved at
specifi ed values of reliability. The utility of this fi gure is that it shows the predicted
spread, and maximums of operating times, that could be achieved for a computer
and its applications.

SUMMARY AND CONCLUSIONS

 Using data from several real - world projects, evaluations were conducted with several
hardware, software, and system reliability models. The major result is that if the
project failure data are signifi cant, no amount of parallelism will salvage a reliability
disaster. Faults must be removed and failure rates reduced for the systems to come
into conformance with reliability specifi cations.

Table 12.4 CRAY - 1 Failure Rates

 Required reliability

 Mean failures per day

 Hardware Software System

 No requirement 0.794874 0.605126 1.400000
 0.8000 – 0.9900 0.107179 0.106992 0.107185

332 Computer, Network, Software, and Hardware Engineering with Applications

Figure 12.8 CRAY - 1 reliability R(t) versus operating time t, using Weibull distribution for
predictions. Series 1: Actual system reliability. Series 2: Predicted hardware – software system
reliability, no parallel hardware components, MSE = 0.4952. Series 3: Predicted hardware – software
system reliability, fi ve parallel hardware components, MSE = 0.0146.

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

t

R
(t

)

Series 1

Series 2

Series 3

 Although not a result, it was noted that only hardware is subject to parallel - based
reliability improvement because using software redundancy is no help because the
same faults will be repeated in multiple copies of the software.

 It was found that the reliability BC, where cost is based on number of confi gura-
tion components, is a good tool for deciding on a series – parallel confi guration that
provides both required reliability at a reasonable cost. This metric can be related to
operating time so that it is possible to see when one confi guration (e.g., pure parallel)
becomes superior to another (e.g., series).

 The probability of failure metric is useful because it allows you to identify the
accumulated number of failures where the probability of additional failures becomes
negligible and testing can be terminated.

 An important consideration of the user community is how long a system can be
operated at specifi ed values of reliability. Using various values of reliability, cor-
responding failure rates, and solving the reliability equation for operating time, the
community can predict the operating times that could be achieved. When both hard-
ware and software failure data are available, this prediction identifi es the maximum
operating time and corresponding reliability that can be achieved by hardware,
software, and system.

 It was seen that when component failure data are available so that system reli-
ability can be predicted as a function of number of components and their failure
rates, no components can be allowed to fail in order to achieve acceptable reliability.

Integration of Hardware and Software Reliability 333

Even a single component failure would put the system down. The solution to this
problem is to use very high reliability software and hardware components, combined
with hardware redundancy, in the system design. As the analysis showed, this
problem is mitigated by the fact that the probability of multiple component failures
at the same operating time is negligible.

 In accordance with the major objective of integrating hardware and software
into a system model, the Weibull distribution was chosen for this purpose because
it has the fl exibility of modeling various failure rate patterns. While the Weibull
distribution is useful for showing how parallelism can improve system reliability,
it did not match actual reliability very well; other models may provide better
accuracy.

REFERENCES

 [BON98] A. Bondavalli , A. Fantechi , D. Latella , and L. Simoncini , “ Towards a discipline of
system engineering: validation of dependable systems , ” Proceedings of Computer Security, Depend-
ability and Assurance: From Needs to Solutions , 1998 . pp. 144 – 165 .

 [CAR95] J. Carreira , H. Madeira , and J. G. Silva , “ Assessing the effects of communication faults on
parallel applications , ” Proceedings of the International Computer Performance and Dependability
Symposium , April 24 – 26, 1995 , pp. 214 – 223 .

 [CHO02] M. Choi , N. Park , and F. Lombardi , “ Hardware - software co - reliability in fi eld reconfi gurable
multi - processor - memory systems , ” Proceedings International of the Parallel and Distributed Process-
ing Symposium , 2002 , pp. 138 – 151 .

 [GOK05] S. S. Gokhale and M. R. - T. Lyu , “ A simulation approach to structure - based software reli-
ability analysis ,” IEEE Transactions on Software Engineering , 2005 , 31 (8), pp. 643 – 656 .

 [HSI99] P. - A. Hsiung , “ Hardware - software coverifi cation of concurrent embedded real - time systems , ”
Proceedings of the 11th Euromicro Conference on Real - Time Systems , 1999, pp. 216 – 223 .

 [ISL06] S. Islam , R. Lindstrom , and N. Suri , “ Dependability driven integration of mixed criticality
SW components , ” Ninth IEEE International Symposium on Object and Component - Oriented Real -
 Time Distributed Computing (ISORC ’ 06) , 2006 , pp. 485 – 495 .

 [KAN96] K. Kanoun and M. Borrel , “ Dependability of fault - tolerant systems — explicit modeling of
the interactions between hardware and software components , ” 2nd International Computer Perfor-
mance and Dependability Symposium (IPDS ’ 96), IEEE Computer Society , 1996 , pp. 252 – 261 .

 [KNA95] N. A. Kanawati , G. A. Kanawati , and J. A. Abraham , “ Dependability evaluation using
hybrid fault/error injection , ” Proceedings of the International Computer Performance and Depend-
ability Symposium , April, 1995 , pp. 224 – 233 .

 [LLO62] D. K. Lloyd and M. Lipow , Reliability: Management, Methods, and Mathematics . Englewood
Cliffs, NJ : Prentice - Hall, Inc. , 1962 .

 [LSL92] S. M. R. Islam and H. H. Ammar , “ Performability of integrated SW - HW components of real -
 time parallel and distributed systems , ” IEEE Transactions on Reliability , 1992 , 41 (3), pp. 352 – 362 .

 [LYU96] M. R. Lyu , (ed.), Handbook of Software Reliability Engineering . Los Alamitos, CA : IEEE
Computer Society Press ; New York : McGraw - Hill Book Company , 1996 .

 [MIC05] S. E. Michalak , K. W. Harris , N. W. Hengartner , B. E. Takala , and S. A. Wender ,
“ Predicting the number of fatal soft errors in Los Alamos National Laboratory ’ s ASC Q supercom-
puter , ” IEEE Transactions on Device and Materials Reliability , 2005 , 5 (3), p. 329 .

 [MUS87] J. D. Musa , A. Iannino , and K. Okumoto , Software Reliability: Measurement, Prediction,
Application . New York : McGraw - Hill , 1987 .

 [PUR99] Y. Purwantoro and S. Bennett , “ Decomposition technique for integrated dependability
evaluation of hardware - software systems using stochastic activity networks , ” in 25th Euromicro Con-
ference (EUROMICRO ’ 99) - Volume 2 , 1999 , p. 2142 .

334 Computer, Network, Software, and Hardware Engineering with Applications

 [RUS99] J. Rushby , “ Partitioning in Avionics Architectures: Requirements, Mechanisms, and Assur-
ance , ” NASA/CR - 1999 - 209347, SRI International, Menlo Park, California, 1999 .

 [SHO83] M. L. Shooman , Software Engineering: Design, Reliability, and Management . New York :
 McGraw - Hill , 1983 .

 [WOO95] A. P. Wood , “ An analysis of client/server outage data , ” Proceedings of the International
Computer Performance and Dependability Symposium , April 24 – 26, 1995 , pp. 295 – 304 .

 Part Five

Applications

Chapter 13

Applying Neural Networks
to Software Reliability
Assessment

W hile you have studied many reliability concepts — both software and hardware — in Chap-
ters 8 , 11 , and 12 , this material was based on traditional models. In this chapter, new models
are studied based on concepts from the fi eld of neural networks that are used to assess the
reliability of software, employing cumulative failures, reliability, remaining failures, and time
to failure metrics. In addition, the risk of not achieving reliability, remaining failures, and
time to failure goals are assessed. The purpose of the assessment is to compare a criterion,
derived from a neural network model, for estimating the parameters of software reliability
metrics, with the method of maximum likelihood estimation. The neural network method
proved superior for all the reliability metrics that were assessed by virtue of yielding
lower prediction error and risk. Considerable adaptation of the neural network model was
necessary to be meaningful for the software reliability assessment application — only inputs,
functions, neurons, weights, activation units, and outputs were required to characterize this
application.

INTRODUCTION

 Neural networks have attracted a great deal of attention from researchers because
they have many advantages over other models. For example, they have the ability
to learn. Given sample data, a neural network can learn rules from these sample data
with or without a teacher. They have the capability to adapt weights to changes in
the surrounding environment. That is, a neural network trained to operate in a spe-
cifi c environment can be retrained to deal with minor change in the operating envi-
ronmental conditions [WON08] .

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F.
Schneidewind.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley &
Sons, Inc.

337

338 Computer, Network, Software, and Hardware Engineering with Applications

 Neural networks have been successfully applied to many fi elds, such as pattern
recognition [FUK98] , system identifi cation [CHU90] , and intelligent control
 [NAR92] . Software engineering areas including risk analysis [NEU02] , cost estima-
tion [TAD05] , reliability estimation [KAR96] , and reusability characterization
 [BOB93] . However, they have not been applied as extensively to help programmers
fi nd bugs [WON07, WON08] . Since neural networks operate on the principle of
learning, no model is specifi ed a priori [KAR96] , meaning the models are evolved
by learning.

 Neural networks are comprised of the following components [KAR96] :

• Models of Neurons . Characteristics of the processing units used in neural
networks

• Models of Interconnection Structure . Topology of the network and strength
of interconnections that encode network knowledge

• Learning Algorithm . Steps involved in computing or assigning neural con-
nection weights in the network

 Biological neurons are single cells capable of crude computation. Neurons are
stimulated by one or more inputs and generate outputs that are sent to other neurons.
Outputs are dependent on the strength of inputs and the nature of input connections.
Some connections excite neurons and increase output; others inhibit neuron output
 [MAS93] . Neurons are connected together with weighted connections following a
specifi ed structure. Each neuron has an activation function that describes the rela-
tionship between its input and output [WON08] . Neural network learning is nor-
mally accomplished through an adaptive procedure, known as a learning algorithm
 [WON08] . The architecture of a generic neural network is shown in Figure 13.1 .

Figure 13.1 Generic neural network.

I1

I2

Inputs

Functions

F1

F2

F3

wF∑
Output

w1

w2

w3

Weights

Applying Neural Networks to Software Reliability Assessment 339

Back Propagation Algorithm

 Back propagation (BP), or propagation of error, is a common method of teaching
neural networks how to perform a given task. It is similar to feedback in a control
system that adjusts the input to achieve the desired output. The algorithm can cal-
culate the desired output for any given input. An important application of BP in
neural networks is fault localization s [LEE99, WAS93] . It is a learning method, and
is an implementation of the gradient descent (ascent) learning rule. Gradient descent
(ascent) refers to computing the rate of change of a function to fi nd where the rate
of change is minimum. For example, fi nding the time of testing software where the
rate of change between reliability and test time is a minimum, thereby achieving a
balance between improving reliability, by localizing faults, and the cost of testing.
Once this rule is learned for one software system, it can be applied to subsequent
software systems.

NEURAL NETWORKS APPLIED
TO FAULT LOCALIZATION

 Fault localization is the most expensive activity in program debugging. Traditional
ad hoc methods can be time consuming and ineffective because they rely on pro-
grammers’ intuitive guesswork, which may be neither accurate nor reliable. A better
solution is to utilize a systematic and statistically well - defi ned method to automati-
cally identify code that should be examined for possible fault locations. A statistical
method can be used to identify the coverage of each executable statement and the
execution result (success or failure) for each test case. A record is constructed for
each executable statement and a statistic is computed to determine the likelihood of
the corresponding statement containing bugs. Statements with a higher likelihood
of bugs are more likely to contain bugs and should be examined before those with
a lower likelihood [WON07] .

 A typical neural network has a feed - forward structure that can be trained to learn
the input – output relationship from a set of data. For example, the input is the
program statement coverage of a test case and the output is the corresponding state-
ment execution result (success or failure). After the network is trained, a test case
with only one statement covered is used as an input to compute the likelihood of
the corresponding statement containing bugs. The larger the output, the greater the
likelihood of statement bugs. Statements are then ranked in descending order based
on their likelihood of containing bugs. Programmers examine these statements from
the top of the rank, one by one, until the fi rst statement containing the bugs is
identifi ed.

 In fault localization, the output of a given input can be defi ned as a binary value
of 0 or 1, where 1 represents a program failure on this input and 0 represents a suc-
cessful execution. With this defi nition, the output of each input is known because
you know exactly whether the corresponding program execution fails or succeeds.
Moreover, two similar inputs can produce different outputs because the program

340 Computer, Network, Software, and Hardware Engineering with Applications

execution may fail on one input but succeed on another input. Thus, learning algo-
rithms that cannot adapt to the environment are inappropriate for fault localization.
Therefore, neural networks using adaptable learning algorithms are better candidates
for solving the fault localization problem.

NEURAL NETWORKS APPLIED TO SOFTWARE
RELIABILITY ASSESSMENT

 Another approach to software reliability improvement, in addition to fault localiza-
tion, is to adapt neural network concepts to reliability prediction. The idea is to use
gradient descent or ascent, depending on the nature of the activation function in
Figure 13.2 (i.e., relationship between inputs and outputs). In effect, the network is
trained to use the gradient method to identify the test time when the marginal reduc-
tion in failures and faults (benefi t) is just balanced by the marginal increase in test
time (cost).

Cumulative Failures

 Software reliability, as measured by cumulative failures during testing, is illustrated
in Figure 13.2 . The idea is to embody the neuron with the processing power to
aggregate the weighted failure counts x i in the test time intervals i, such that the

Figure 13.2 Neural network process function. x i , number of failures in interval i; w ij , severity of
failures in interval i for software system j; F l , cumulative failures limit; F ij , cumulative failures
Activation Function for test interval i and software system j; i s , scheduled test time; i l , test time at F l .

x1

xi

Inputs

xn

.

.

.

.

.

.

Fan in

Function

i

ij ij i
i=1

F = w x∑

w1j

w2j

w3j

Processing

Unit j
Processing

Unit j

Activation

Unit
Output

Fij = Fl

(if il = is,
release software)

Testing

il

Fij

Fl

Neuron

Fl = min [(Fi+1, j – Fij)/Fij]

is

Applying Neural Networks to Software Reliability Assessment 341

actual cumulative failures for a software system j, F ij , is compared with the limit
value, F l , where the limit value is equal to the slope of the curve in Figure 13.2 at
test time i l . If F ij ≤ F l , the software is released because at this test time i, marginal
benefi t equals marginal cost; otherwise, it is subjected to further testing. Equation
 13.1 shows the computation of cumulative failures and Equation 13.2 shows the
computation of weights, using the failure severity code:

 F w x ,ij ij i

i

i

=
=

∑
1

 (13.1)

 w
s

s
,ij

ij

m

= −1 (13.2)

 where s ij is the severity code of x i for software system j and s m is the maximum value
of the severity code (minimum severity). The limit F l is computed in Equation 13.3 ,
where the limit is the minimum rate of change over successive test intervals i. The
value of i corresponding to F l is the amount of test time required to achieve the
reliability objective. If this value of i, i l , is less than or equal to the schedule test
time i s , release the software system; otherwise, continue testing. Note that in order
for this policy to make sense, the faults causing the failures that have been detected
must be corrected:

 F F F .l i j j ij= −+min[], (13.3)

 In order to test the validity of Equation 13.3 as a criterion of a benefi t – cost limit for
cumulative failures, the equation for predicted cumulative failures is needed in order
to see whether F l is capable of identifying the amount of test time that should be
used to accurately estimate the parameters of the prediction model. The predicted
cumulative failures will be compared with the actual cumulative failures (unweighted)
in Figure 13.3 . The prediction equation from the Schneidewind software reliability
model (SSRM) [SCH97] for test interval i is shown in Equation 13.4 :

 F i e X ,i s
s() (/) ()= −⎡⎣ ⎤⎦+− − +
−α β β1 1

1 (13.4)

where α and β are failure rate parameters, s governs how much failure data are used
in parameter estimation, and X s– 1 is the observed failure data in the range (s – 1), i.

 Figure 13.3 shows how the neural network criterion limit of Figure 13.2 and
Equation 13.3 can be applied to identify the test interval i that is optimal for termi-
nating testing and releasing the software system. This is the test interval when the
rate of change of actual cumulative failures is minimum. In other words, this is the
point in test time when diminishing returns in fi nding and correcting faults has been
reached. The results of an experiment to test the validity of the neural network cri-
terion limit are shown in Figure 13.4 . The experiment was conducted by predicting
cumulative failures for a National Aeronautics and Space Administration (NASA)
Space Shuttle software system j = OI6, using SSRM. This model has a parameter s
that identifi es the fi rst interval of test failure data that is used in estimating model

342 Computer, Network, Software, and Hardware Engineering with Applications

Figure 13.4 NASA Space Shuttle OI6: cumulative failure F(i) versus test interval i. Series 1:
Actual F(i). Series 2: Predicted F(i), using neural network criterion for s = 12, MSE = 16.6306. Series
3: Predicted F(i), using parameter evaluation method for s = 2, MSE = 74.1375. s, fi rst test interval of
failure data used in predicted F(i) parameter estimation.

-5

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14

i (days)

F
(i

)

Series 1

Series 2

Series 3

Figure 13.3 NASA space shuttle OI6: actual cumulative failures F ij and criterion limit (F l × 5)
versus test interval i. Series 1: F ij . Series 2: F l .

0.0000

1.0000

2.0000

3.0000

4.0000

5.0000

6.0000

0 20 40 60 80 100 120 140 160 180 200

i (days)

F
ij,

 F
l

Series 1

Series 2

Minimum Fl = 0.2941 at il = 77

Fij = 4.5000 at il = 77, 13 faults removed,

stop testing, release software system

is

Applying Neural Networks to Software Reliability Assessment 343

parameters. Two criteria were used in selecting s: one is based on the neural network
criterion limit identifi ed in Figure 13.3 as i = 77 that corresponds to s = 13 (the 13th
failure count interval); the second is based on the maximum likelihood estimation
(MLE) method of parameter estimation [SCH07] that yielded s = 2. The mean
squared error between the actual and predicted cumulative failures was computed
for the two methods. As Figure 13.4 demonstrates, the neural network criterion limit
provides much better prediction accuracy.

Reliability

 A second validity test was conducted by experimenting with the reliability activation
function in test interval i, R i (i.e., R i output produced when input failure counts x i
occur). Unlike the case of cumulative failures, using weights does not apply because
reliability is not an additive function. Start by computing the actual reliability and
its reliability limit criterion, R l , in Equations 13.5 and 13.6 , respectively:

 R
x

x

,i
i

i

i

i
= −

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
∑

1

1

 (13.5)

 R R R R .l i i i= −+min[() /]1 (13.6)

 As in the case of cumulative failures, the equation for predicted reliability is needed
in order to compare it with actual reliability from Equation 13.5 , and to ascertain
whether Equation 13.6 provides an effective criterion for identifying the optimal
amount of test time. Predicted reliability, as obtained from SSRM, is shown in Equa-
tion 13.7 , where the parameters have been defi ned previously.

 In Figure 13.5 you see that the reliability criterion limit R l from Equation 13.6
is associated with the maximum actual reliability R i at a test time i l equal to the total
scheduled test time i s . This test time corresponds to the reliability parameter s = 13
that will be used in subsequent reliability evaluations.

 The superiority of the neural network reliability criterion limit in the early stages
of testing is demonstrated in Figure 13.6 , where this method produces a prediction
lower error, with respect to actual reliability, than in the case of the parameter evalu-
ation method. However, the latter method does have an advantage in yielding higher
reliability in the later stages of testing. Thus, in choosing reliability prediction
models, it would be prudent to evaluate more than one model because a given model
may not be superior for all test times.

 Another important formulation of reliability is shown in Equation 13.8 , where
the concept is to predict reliability at the end of the mission duration, t m . This is
done by predicting reliability for the test time i plus the mission duration (i + t m),
assuming the system becomes operational immediately after the completion of test
time i. The concept is to subject the system to increasing values of mission duration

344 Computer, Network, Software, and Hardware Engineering with Applications

Figure 13.6 NASA space shuttle OI6: reliability R(i) versus test time i. Series 1: Actual R(i).
Series 2: Predicted R(i), using neural network criterion for s = 13, MSE = 0.0414. Series 3: Predicted
R(i), using parameter evaluation method for s = 2, MSE = 0.0626. s, fi rst test interval of failure data
used in predicted R(i) parameter estimation.

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

0 20 40 60 80 100 120 140 160 180 200

i (days)

R
(i

)

Series 1

Series 2

Series 3

Figure 13.5 NASA space shuttle OI6: actual reliability R i (Series 1) and reliability criterion limit
RI (Series 2) versus text time i.

–0.2000

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

0 20 40 60 80 100 120 140 160 180 200

i (days)

R
i,

R
l

Series 1

Series 2

Minimum R
i
 = 0.0060 at i

l

Maximum Ri = 0.9286 at il = 181

Applying Neural Networks to Software Reliability Assessment 345

in order to identify the maximum mission duration (i.e., mission duration where
predicted reliability no longer achieves specifi ed reliability):

 R i e ,
e ei s i s

()
() ()

=
− −⎡⎣ ⎤⎦

⎡
⎣⎢

⎤
⎦⎥

− − + − − +α
β

β β1 2
 (13.7)

 R i t e .m

e ei tm s i tm s

()
() ()

+ =
− −⎡⎣ ⎤⎦

⎡
⎣⎢

⎤
⎦⎥

− + − + − + − +α
β

β β1 2
 (13.8)

Reliability Risk

 Risk is a major issue in software reliability assessment because there is a probability
(i.e., risk) that the predicted reliability of a software system, as given by Equation
 13.8 , will not achieve specifi ed reliability, R, at the end of the mission. Thus, reli-
ability risk, RR, is computed in Equation 13.9 :

 RR R R i t R R i t Rm m= − + = − +(()) / (()) / ,1 (13.9)

 where R is specifi ed reliability. The greater the relative difference between specifi ed
and predicted reliabilities in Equation 13.9 , the greater the risk. The best result is
when RR goes negative (i.e., predicted reliability > specifi ed reliability). Figure 13.7
demonstrates that the neural network criterion method involves lower reliability risk

Figure 13.7 NASA space shuttle OI6: reliability risk RR versus specifi ed reliability R. Series1:
RR, using neural network criterion for s = 13. Series 2: RR, using parameter evaluation method for
s = 2. s, fi rst test interval of failure data used in RR parameter estimation.

–0.1000

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

0.8800 0.9000 0.9200 0.9400 0.9600 0.9800 1.0000

R

R
R

Series 1

Series 2

Lower risk for higher specified reliability

346 Computer, Network, Software, and Hardware Engineering with Applications

Figure 13.8 NASA space shuttle OI6: reliability required to achieve mission duration R(i + t m)
versus test time i. Series 1: R(i + t m), using neural network criterion for s = 13. Series 2: R(i + t m),
using parameter evaluation method for s = 2. s, fi rst test interval of failure data used in predicted
R(i + t m) parameter estimation.

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

0 20 40 60 80 100 120 140 160 180 200

i (days)

R
(i

+
t m

)

Series 1

Series 2

Mission duration tm = 30 days

Higher reliability required

at higher values of reliability. This is important in a mission - critical application, such
as the Shuttle fl ight software, which requires high reliability at low risk.

 It is also important to compare the neural network and parameter evaluation
methods with respect to the reliability required to achieve the mission duration.
Figure 13.8 provides an interesting contrast between the methods because although
the required reliability produced by the parameter evaluation method is less, for the
given mission duration, this would not be desirable for a mission - critical application
where the reliability must be high. Thus, it is important to evaluate such results
in the context of the application: for a commercial application, where the cost of
achieving reliability is critical, the parameter evaluation method would be the choice,
but not in a mission - critical application.

 It is also of interest to predict the test time i R required to achieve specifi ed reli-
ability R. This quantity is predicted in Equation 13.10 by solving Equation 13.7 for
i, where R(i) becomes the specifi ed reliability R:

 i R sR = −() −() − −()()[][] + −()1 1 1/ log / log / exp .β β α β β (13.10)

 Figure 13.9 vividly shows that the neural network criterion is superior because its
use requires signifi cantly less test time to achieve specifi ed reliability. Thus, on
balance, considering the software reliability results shown in Figures 13.5 – 13.9 , the
neural network criterion is the better choice, particularly for the mission - critical
application that has been evaluated.

Applying Neural Networks to Software Reliability Assessment 347

Remaining Failures

 Another important reliability metric is remaining failures. The reason for the impor-
tance of this metric is that remaining failures represent residual problems buried in
the software code that could emerge when least expected — during operation. Thus,
it behooves us to include this metric in our arsenal of software reliability tools. Note
that remaining failures, expressed in Equation 13.11 (SSRM), is a predicted quantity
because you have no way of knowing the actual number of remaining failures. But
this begs the question of how to evaluate the neural network and parameter estima-
tion methods that were employed previously by comparing the method prediction
errors, using actual failure values. The solution is to approximate remaining failures
by using the known remaining failures, as shown in Equation 13.12 , where X s is the
total number of failures reported at the scheduled test time interval i s and x i is the
number of failures in test interval i. Since these are failure counts, it is appropriate
to weigh remaining failures in Equation 13.12 :

 r i i s ,() exp= − − −()()()[]α
β

β 1 (13.11)

 r w X xij ij S i

i

i

= −
⎛
⎝⎜

⎞
⎠⎟=

∑
1

. (13.12)

Figure 13.9 NASA space shuttle OI6: test time required to achieve specifi ed reliability i R versus
specifi ed reliability R. Series 1: i R , using neural network criterion for s = 13. Series 2: i R , using
parameter evaluation method for s = 2. s, fi rst test interval of failure data used in i R parameter
estimation.

0.0000

10.0000

20.0000

30.0000

40.0000

50.0000

60.0000

70.0000

80.0000

90.0000

0.8800 0.9000 0.9200 0.9400 0.9600 0.9800 1.0000

R

i R
 (

d
ay

s)

Series 1

Series 2

Significantly higher test time required

348 Computer, Network, Software, and Hardware Engineering with Applications

Figure 13.10 NASA space shuttle OI6: remaining failures r(i) versus test time i. Series 1: actual
r(i). Series 2: predicted r(i), using neural network criterion for s = 8, MSE = 1.1423. Series 3:
predicted r(i), using parameter evaluation method for s = 2, MSE = 4.4606.

0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

12.0000

0 20 40 60 80 100 120 140 160 180 200

i (days)

r(
i)

Series 1

Series 2

Series 3

 Then the neural network criterion r l can be computed by the usual process, with the
proviso that since remaining failures is a decreasing function, as opposed to the
increasing functions of cumulative failures and reliability, Equation 13.13 has been
formulated appropriately:

 r r r r .l i j i j i j= − + +min[() /], , ,1 1 (13.13)

 In addition, as in the case of reliability, predict the reliability risk using Equation
 13.14 (SSRM):

 rr i r i r ,c() (() /)= −1 (13.14)

 where r c is a specifi ed number of remaining failures. Values of r(i) < r c will render
rr(i) positive, and, hence, yield decreasing risk.

 Figure 13.10 again demonstrates the superiority of the neural network criterion
for parameter evaluation by producing a signifi cantly lower prediction error with
respect to the actual remaining failures. More evidence of this result is afforded by
Figure 13.11 that shows, for a specifi ed remaining failures r c = 1, that the risk is
lower (i.e., more positive) for the neural network criterion. Furthermore, by using
this criterion, the risk trends positive much earlier in test time.

Applying Neural Networks to Software Reliability Assessment 349

Time to Next Failure

Time to next failure is also an important software reliability metric because if the
predicted value is less than the mission duration, it could be disastrous for the
mission. Therefore, preceding as before, fi rst fi nd the neural network criterion t l by
using the actual time to failure, t i , as illustrated in Equation 13.15 . The prediction
metric is shown in Equation 13.16 , using SSRM as the source:

 t t t t ,l i i i= − +min[() /]1 (13.15)

 T(i)
F X

i s for F X
s i

s i=
− +()

⎡

⎣
⎢

⎤

⎦
⎥ − − + > +log

() /
() (),

,
,

α
α β β

α β1 (13.16)

 where F is the specifi ed number of failures (usually one) to use in predictions and
Xs,i is the observed failure count in the range s, i, and i is the failure count interval
when the prediction is made.

 As in the case of remaining failures, there is a risk associated with the time to
failure metric because, as mentioned earlier, a prediction less than the mission dura-
tion poses a risk. This relationship is expressed in Equation 13.17 , where T(i) < t m
represents risk in the risk criterion metric RCM T(i). When T(i) ≥ t m , the risk func-
tion in Equation 13.17 is negative (i.e., favorable):

Figure 13.11 NASA space shuttle OI6: remaining failures risk rr(i), for r c = 1, versus test time i.
Series 1: rr(i), using neural network criterion for s = 8. Series 2: rr(i), using parameter evaluation
method for s = 2.

–25.0000

–20.0000

–15.0000

–10.0000

–5.0000

0.0000

5.0000

0 20 40 60 80 100 120 140 160 180 200

i (days)

rr
(i

)

Series 1

Series 2

rr(i) > 0 for i > 24

rr(i) > 0 for i > 45

350 Computer, Network, Software, and Hardware Engineering with Applications

 RCM T(i
t T i

t

T i

t
.m

m m

)
() ()= − = −1 (13.17)

 Figure 13.12 shows that the safer (i.e., lower risk) alternative is the one produced
by the neural network criterion: the RCM is more negative and this metric goes
positive at a longer time. The implication is that the software system could be oper-
ated safely for a longer time, using the neural network criterion.

Mean Time to Failure

 The mean time to failure (MTTF) is the expected value of predicted time to failure
and is valuable for characterizing time to failure across various time intervals i. It
can be conveniently predicted in Equation 13.18 by using the interval i, and then
calling upon the predicted cumulative failures F(i) from Equation 13.4 :

 MTTF i F i= / (). (13.18)

 Further evidence of the superiority of neural network criterion is provided by Figure
 13.13 , wherein MTTF is higher for this method. The importance of this result is that
MTTF is well understood in the software industry and is typically used to character-
ize the reliability of software systems [MUS87] .

Figure 13.12 Predicted time to failure T(i), risk criterion metric RCM T(i), and mission duration t m
versus time i. Series 1: T(i), using neural network criterion for s = 8. Series 2: RCM T(i), using neural
network criterion for s = 8. Series 3: t m . Series 4: T(i), using parameter evaluation method for s = 2.
Series 5: RCM T(i), using parameter evaluation method for s = 2.

–10.0000

–5.0000

0.0000

5.0000

10.0000

15.0000

0 1 2 3 4 5 6 7 8 9 10 11T
(i

),
 R

C
M

 T
(i

),
 t

m

i (days)

Series 1

Series 2

Series 3

Series 4

Series 5

High risk

High risk

Applying Neural Networks to Software Reliability Assessment 351

Problem for Solution by Reader: Using Equations 13.11 and 13.14 for pre-
dicted remaining failures and remaining failures risk, respectively, compute
the risk for specifi ed remaining failures r c = 2. Then plot the following four
risk curves, with respect to test time i, which has been used on previous plots,
on one fi gure:

 risk for r c = 1, using neural network criterion with α = 1.0895 and β = 0.1250

 risk for r c = 1, using parameter evaluation method with α = 1.5953 and
β = 0.0650

 risk for r c = 2, using neural network criterion with α = 1.0895 and β = 0.1250

 risk for r c = 2, using parameter evaluation method with α = 1.5953 and
β = 0.0650

 Interpret the results: compare the four curves and indicate which factors lead
to the greatest risk.

Solution: Figure 13.14 shows the solution with the greatest risk factors indi-
cated. The neural network criterion leads to the lowest risk because the risk
function is more positive, and becomes more positive sooner, than using the
parameter evaluation criterion.

Figure 13.13 NASA space shuttle OI6: Predicted mean time to failure MTTF versus time i. Series
1: MTTF, using neural network criterion for s = 8. Series 2: MTTF, using parameter evaluation method
for s = 2.

0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

12.0000

0 1 2 3 4 5 6 7 8 9 10 11

M
T

T
F

i (days)

Series 1

Series 2

352 Computer, Network, Software, and Hardware Engineering with Applications

SUMMARY

 The basic concepts of neural networks, as exhibited in Figures 13.1 and 13.2 , proved helpful
in formulating the software reliability assessment problem. However, some properties of
neural networks, such as networks learning from a teacher and others [MAS93] , proved to
be obscure and of little practical value for the reliability problem that was analyzed. On the
positive side, a surprising and enlightening result is that for all software reliability prediction
metrics, the neural network prediction criterion was superior to the traditional reliability
model parameter estimation method.

REFERENCES

 [BOB93] G. Boetticher and D. Eichmann , “ A neural network paradigm for characterizing reusable
software , ” Proceedings of the 1st Australian Conference on Software Metrics , Sydney, Australia, 1993 ,
pp. 41 – 54 .

 [CHU90] S. R. Chu , R. Shoureshi , and M. Tenorio , “ Neural networks for system identifi cation , ” IEEE
Control Systems Magazine , 1990 , 10 (3), pp. 31 – 35 .

 [FUK98] K. Fukushima , “ A neural network for visual pattern recognition , ” Computer , 1998 , 21 (3),
pp. 65 – 75 .

 [KAR96] N. Karunanithi and Y. K. Malaiya , “ Neural networks for software reliability engineering , ”
in M. R. Lyu (ed.), Handbook of Software Reliability Engineering . Los Alamitos, CA : IEEE Computer
Society Press ; New York : McGraw - Hill Book Company , 1996 .

Figure 13.14 NASA space shuttle OI6: remaining failure risk rr(i) versus test time i. Series 1:
rc = 1, using neural network criterion for s = 8. Series 2: r c = 1, using parameter evaluation method for
s = 2. Series 3: r c = 2, using neural network criterion for s = 8. Series 4: r c = 2, using parameter
evaluation method for s = 2.

5.0000

–5.0000

0.0000

0 20 40 60 80 100 120 140 160 180 200 220

–15.0000

–10.0000

rr
(i

)

More risk for s = 2 and rc = 1

–25.0000

–20.0000

i (days)

Series 1

Series 2

Series 3

Series 4

Applying Neural Networks to Software Reliability Assessment 353

 [LEE99] C. C. Lee , P. C. Chung , J. R. Tsai , and C. I. Chang , “ Robust radial basis function neural
networks , ” IEEE Transactions on Systems, Man, and Cybernetics: Part B Cybernetics , 1999 , 29 (6),
pp. 674 – 685 .

 [MAS93] T. Masters , Practical Neural Network Recipes in C ++ . San Diego, CA : Academic Press , 1993 .
 [MUS87] J. D. Musa , A. Iannino , and K. Okumoto , Software Reliability: Measurement, Prediction,

Application . New York : McGraw - Hill , 1987 .
 [NAR92] K. S. Narendra and S. Mukhopadhyay , “ Intelligent control using neural networks , ” IEEE

Control System Magazine , 1992 , 12 (2), pp. 11 – 18 .
 [NEU02] D. E. Neumann , “ An enhanced neural network technique for software risk analysis , ” IEEE

Transactions on Software Engineering , 2002 , 28 (9), pp. 904 – 912 .
 [SCH07] N. F. Schneidewind , “ Predicting shuttle software reliability with parameter evaluation , ”

Innovations in Systems and Software Engineering , 2007.
 [SCH97] N. F. Schneidewind , “ Reliability modeling for safety critical software , ” IEEE Transactions

on Reliability , 1997 , 46 (1), pp. 88 – 98 .
 [TAD05] N. Tadayon , “ Neural network approach for software cost estimation , ” Proceedings of the

International Conference on Information Technology: Coding and Computing , Las Vegas, Nevada,
April, 2005 , pp. 815 – 818 .

 [WAS93] P. D. Wasserman , Advanced Methods in Neural Computing . New York : Van Nostrand -
 Reinhold , 1993 .

 [WON07] W. E. Wong , L. Zhao , and Y. Qi , “ Fault localization using BP neural networks , ” Proceedings
of SEKE , 2007 .

 [WON08] W. E. Wong ; S. Yan ; Y. Qi ; and R. Golden , “ Using an RBF neural network to locate program
bugs , ” 19th International Symposium on Software Reliability Engineering , November 10 – 14, 2008 ,
pp. 27 – 36 .

Chapter 14

Web Site Design

G iven the importance of Web systems in contemporary society, it behooves us to contribute
to improving their reliability. This chapter is just such a contribution. Much valuable research
on Web systems focuses on performance evaluation, failing to recognize that, in addition,
reliability should be considered. For example, if Web client - to - Web server access time is short,
while the system is up, the performance loses meaning if there is considerable downtime. You
can model the reliability of Web systems from the bottom up by developing component reli-
ability prediction equations for Web server, Web client, and the communication channels that
interconnect them. Then, the component models are integrated to produce total system reli-
ability models. Support your modeling efforts with real - world failure data. The prediction
equations identify weak spots in component and system reliability that assist organizations in
identifying corrective actions, such as fault removal, in order to achieve reliability goals.

INTRODUCTION

Background

 The paradigm of Web services has been gathering signifi cant momentum in both
academia and industry in recent years. This paradigm transforms the Internet from
a repository of data into a repository of services. Simply put, a Web service is a
programmable Web application that is universally accessible through standard Inter-
net protocols [FER03] . Web services opens a new cost - effective way of engineering
systems to quickly develop and deploy Web applications by dynamically integrating
other independently published Web services [HOL02] . However, it is not clear that
this new model of Web services provides any measurable increase in reliability
 [PAR90] . Thus, this is a motivation for this chapter to show the reader how the reli-
ability of Web services could be improved.

 The essential feature of dynamically confi gured Web services poses new chal-
lenges for Web system reliability. In a traditional system, all of its components and

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F.
Schneidewind.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley &
Sons, Inc.

354

Web Site Design 355

their relationships are decided before the system runs. Therefore, each component
can be thoroughly tested, and the interactions among the components can be fully
examined, before the system starts to execute. Web services dynamically locate and
assemble distributed Web services in an Internet setting. More precisely, when a
system requires a Web service component, the system will search Web services
providers to choose the optimal Web service that fulfi lls the requirements [GOL04] .
The challenge to reliability of this approach is that these components may not have
been subjected to rigorous reliability testing.

Web System Reliability Approach

 While there is much coverage of the performance characteristics of Web systems,
there has not been equal attention to the contribution of nonfunctional characteris-
tics such as reliability that plays an important role in the selection of Web services
by users [ZO07] . My objective is to improve nonfunctional properties, such as reli-
ability, by developing and analyzing comprehensive Web system reliability models.
To set the stage for Web system reliability models development, some characteris-
tics of Web systems that infl uence the design of Web - based models are described
below.

Fault-Tolerant Web Systems

 The Web Service – Fault - Tolerance Mechanism is an implementation of the classic
N - version redundancy model for Web services that can easily be applied to systems
with minimal change. The Web services are implemented in different redundant
versions. The voting mechanism, which decides whether a component has failed,
and, thus, requires replacement, is conducted in the client program (i.e., user)
 [CHA07] . The problem with this is that while it will work for hardware, it will not
work for software because a fault in one version will be a fault in another version!

Web System Communication

 In Web services, standard communication protocols and simple client – server requests
for Web pages are needed to facilitate service performance because standardization
simplifi es interoperability [CHA08] . It is necessary to ensure the reliability of Web
system communication and the interconnected components. Indeed, the use of net-
works, such as wireless to access Internet resources such as Web servers, causes
failures and degradation of the communication links between Web clients and Web
servers. In the Internet, problems such as the decrease of transmission speed due to
competing Web client access to Web servers, the decrease in processing performance
in Internet routers, and the degradation of the communication lines may occur. Also,
a decrease in quality of communication may be caused by changing distances and
locations between Web clients and Web servers [NAR05] .

356 Computer, Network, Software, and Hardware Engineering with Applications

Robotic Web Services

 Because Web services, implemented in robots, are moving, the distance between
clients and servers is likely to vary, and the position of clients and servers relative
to the signal will also change. This may affect the quality of communication lines.
If a client notices that the electric signal worsens, the client can move to fi nd a place
where the electric signal can be received better. The solution is to achieve reliable
messaging technology of Web services, combined with a standard for the recovery
of failed Web services [NAR05] .

Cyclomatic Complexity Analysis of Web System
Reliability

 The authors exploit the idea of cyclomatic complexity to cover the number of inde-
pendent paths interconnecting Web clients with Web servers, where cyclomatic
complexity is the number of independent paths (i.e., no additional paths can be
created from existing paths) in a directed graph representation of a system. Thus,
this process focuses on the most likely communication paths, and still maintains the
dynamic nature of Web surfi ng (i.e., communication paths can change rapidly)
 [WAN03] . This approach is very good, but Web system path data are needed to
support its implementation. These data may not be available.

 Therefore, based on the above Web system characteristics, you can develop
reliability prediction models for assessing the software, hardware, and system quality
of a Web system. In performing this assessment, be cognizant of the importance of
quality of service [LAK05] . Quality of service is dependent on the nature of Web
service client, communication links, and Web server interactions. In order to under-
stand the myriad of failures that can occur in a Web system, for example, on the
client side, it is instructive to consider the properties of an XHTML Web page and
its associated tree structure. This is advantageous because you can obtain a sense of
the types of failures that could occur in constructing a Web page by a Web server.
A partial XHTML tree structure is shown in Figure 14.1 [MAC09] . This diagram
provides a visual perspective of Web page syntax, which is not always easy to
understand in a linear text format. Note that errors in Web page design, in any path,
could lead to failure in Web page processing by the Web server.

Web Services State Transitions

 In composing Web services, the usual assumption is that invocations of Web service
operations are independent (i.e., the invocation of a given Web service does not
depend on the invocation of another Web service). This assumption, however, does
not hold in practice because the service requirements impose ordering on the invoca-
tion of operations. Therefore, the use of state machines to model the order of Web
service operations is appropriate [HWA07] . In the spirit of this advice, you can use

Web Site Design 357

the Web System State Transition Diagram in Figure 14.2 , and the supporting transi-
tion information in Table 14.1 .

 Measures for predicting reliability are calculated with the aid of system confi gu-
ration descriptions, as shown in Figure 14.2 [ALA02] . As shown in Figure 14.2 ,
system confi guration descriptions denote the sequence of interactions. In order to
obtain the state transition probabilities that will be needed later in predicting total
Web system reliability, Table 14.1 presents the state transitions involved when a Web
client interacts with a Web server, as portrayed in Figure 14.2 . The state transition
probabilities shown in this fi gure are developed in Table 14.3 in a later section. In
developing Figure 14.2 , note that a Web transaction consists of a client resolving a
Web server name to the corresponding Internet Protocol (IP) address — browser
accessing the Domain Controller in Figure 14.2 — establishing a Transmission
Control Protocol (TCP) connection to the Web server, and downloading the object
of interest, using Hypertext Transfer Protocol (HTTP) [PAD05] . In addition to fail-
ures due to interactions between client and server, failures in the disk storage unit
nodes, such as Web servers, account for a signifi cant number of failures [SCH071] .

Web Server Proxy

 Web server proxy is a well - developed scheme for improving the performance of Web
browsing. Users ’ requests can be supported by a proxy, instead of the processing

Figure 14.1 XHTML tree structure.

<html> Designates Web page

<head> <body>

Starts body of page

Defines header

portion of page

<title>

Specifies

page

title
<p>

Starts

paragraph

Starts

bulleted

list

Defines

list

item

358 Computer, Network, Software, and Hardware Engineering with Applications

Table 14.1 Web State Transitions

 Current state Next state Transition trigger

 Web Client doing local
computing s 1

 Web client uses browser s 2 Web client needs Web
Page

 Web Client uses browser s 2 Browser identifi es URL of
desired Web Page s 3

 Browser locates URL
name in Internet list

 Browser identifi es URL of
desired Web Page s 3

 Browser looks up IP
address of domain s 4

 Browser accesses Domain
Controller

 Browser obtains IP address
of domain s 4

 Browser sends IP address
to Web Server s 5

 Automatic state change in
browser

 Browser sends IP address
to Web Server s 5

 Web server looks for Web
page in XHTML Web
Service s 6

 Web Server receives
request from Web
Client

 Web Server looks for Web
Page in XHTML Web
Service s 6

 Web Server retrieves Web
Page s 7

 Web server fi nds Web
Page on XHTML Web
Service

 Web Server retrieves Web
Page s 7

 Web Server sends Web
page to Web Client s 8

 Web Server has found
requested Web Page

Figure 14.2 Web system state transition diagram. URL, Uniform Resource Locator; p s , probability
of state transition = probability of next state s.

s1

Web Client doing
local computing

s2

Web Client uses
browser

p2 = 0.034483

s3

Browser identifies URL
of desired Web Page

s4

Browser looks up
IP address of domain

p3 = 0.172414

Domain Controller

p4 = 0.862069

s5

Browser sends IP address
to Web Server

Web Server

p5 = 1.000000

1

1 s6

Web Server looks for Web Page
 in XHTML Web Service

XHTML Web Service

p6 = 0.586207

s7

Web Server retrieves
 Web Page

Web Page

p7 = 0.724138

s8

Web Server sends Web
 Page to Web Client

Web Client

p8 = 0.310345

p1 = 0.448276

Web Site Design 359

being performed by a Web server. In this instance, a proxy is a computer that per-
forms ancillary services on behalf of the Web server. These services are, for example,
identifying the initial search location in the Web database and formatting output for
the user. Performance studies show that a proxy is very effective in reducing the
response time of Web accesses [SHE04] . While this is true, the models in this chapter
are based on the Web client directly accessing the Web server to obtain a page. Also,
Web system service and reliability could be improved by transitioning to another
Web site or page in the event of failure of a given Web site [DHA08] .

Web Server Failure Data

 Web server failure data cannot be found in abundance, which is an understatement!
Vendors are not anxious to reveal their reliability problems. Therefore, we have to
settle for failure data from computers that could function as Web servers, such as
the data described below. Actually, the particular data that are used are not important
as long as they are representative of the Web environment. What is important are
the characteristics of models that predict Web service reliability. The available data
are used for explanatory purposes; any representative data could be used.

 One of the hardest problems in future high - performance computing (HPC)
installations, such as Web servers, will be avoiding, coping with, and recovering
from failures. HPC requires the simultaneous use and control of hundreds of thou-
sands or even millions of processing, storage, and networking elements. With this
large number of elements involved, element failure will be frequent, making it
increasingly diffi cult for applications to make progress. The success of HPC comput-
ing will depend on the ability to provide high reliability, supported by representative
failure data. The available data sets cover computer outages in HPC clusters, as well
as failures in storage systems [SCH07] .

 The data obtained were collected during 1995 – 2005 at Los Alamos National
Laboratory (LANL) and covers 22 high - performance computing systems, including
a total of 4750 computing systems and 24,101 processors at two sites. The data
contain an entry for any failure that occurred during the 9 - year time period. The
data cover all aspects of system failures: software failures, hardware failures, fail-
ures due to operator error, network failures, and failures due to environmental
problems (e.g., power outages). Hardware is the single largest component, with 50%
of all failures assigned to this category. Software is the second largest contributor,
with 20% of all failures at both sites attributed to software. Failure rate varies
widely across systems, from 10 failures per year per system to 1180 failures per
year per system. Note that a failure rate of 1180 failures per year per system means
that a Web server application will fail and require recovery action more than three
times per day, thus causing considerable disruption for Web clients. One might
wonder what causes the large differences in failure rates across the different systems.
The main reason for these differences is that the systems vary widely in size. Thus,
the failure rate of a system grows proportional to the number of processors in the
system (i.e., size) [SCH07] .

360 Computer, Network, Software, and Hardware Engineering with Applications

WEB SERVER RELIABILITY ANALYSIS

 The architecture of a Web Server has a profound impact on its performance and
reliability. One of the architectural characteristics of a Web server is its processing
method, which describes the type of process that is used to support Web Server
operations [GOK06] . While this is true, unfortunately, the available Web Server
failure data do not include information on processing architecture.

 As the authors attest [NIC05] , it is common to use statistical modeling theory
for the evaluation of Web - based system reliability. Keying on this idea, let us use
various statistical metrics to compute and predict reliability for illustrative Web
Servers, using the system, software, and hardware failure data shown in Table 14.2 .
Note that the numbers of software (20%) and hardware (50%) failures do not
add to the number of system failures. The reason for this is that there are other
types of failures that are not identifi ed in the Los Alamos failure data. In addition,
it is unusual to have a higher percentage of software failures compared with hard-
ware failures. The apparent reason is the complexity of supercomputer hardware
confi gurations.

 The probability distribution of choice is the Weibull, as elaborated and justifi ed
in the next section. Recall that you were introduced to this reliability distribution in
Chapter 12 . Based on the patterns of failure data tabulated in Table 14.2 , the Weibull
distribution proved appropriate for predicting system, software, and hardware
reliability.

Weibull Failure Distribution

 One of the most widely used distributions for predicting reliability is the Weibull
failure distribution [LYU96] . It has the fl exibility of allowing for constant, increas-
ing, and decreasing hazard functions (i.e., instantaneous failure rate), as demon-
strated by the hazard function in Equation 14.1 [LLO62] :

 Hazard function: h i i ,() ()()= −αλ α 1 (14.1)

 where α is a shape parameter, i is the system identifi cation in Table 14.2 , and λ is
a scale parameter.

 The parameter λ can also be considered to be the failure rate.
 Equation 14.2 represents the probability p(i) of system i failing. This equation

is fl exible because it can portray various patterns of probability of failure across
systems, depending on the values of α and λ [LLO62] :

 p i i e .i() ()= − −αλ α λ α1 (14.2)

 For the exponentially distributed pattern of failure data in Table 14.2 , the Weibull
reliability in Equation 14.3 is advantageous to use [LLO62] :

 R i e .i() ()= − λ α (14.3)

Ta
bl

e
14

.2

 So
ft

w
ar

e
an

d
H

ar
dw

ar
e

Fa
ilu

re
 D

at
a

(1
99

5 –
 20

05
, L

A
N

L
)

 Sy
st

em

ID

Sy
st

em
fa

ilu
re

s
pe

r
ye

ar

So
ft

w
ar

e
fa

ilu
re

s
pe

r
ye

ar

H
ar

dw
ar

e
fa

ilu
re

s
pe

r
ye

ar

 A
ct

ua
l

re
lia

bi
lit

y

 W
ei

bu
ll

sy
st

em
fa

ilu
re

 r
at

e
(f

ai
lu

re
s

pe
r

da
y,

 λ
)

 W
ei

bu
ll

sy
st

em
 s

ha
pe

pa

ra
m

et
er

 (
 α)

 W
ei

bu
ll

so
ft

w
ar

e
fa

ilu
re

 r
at

e
(f

ai
lu

re
s

pe
r

da
y,

 λ
)

 W
ei

bu
ll

so
ft

w
ar

e
sh

ap
e

pa
ra

m
et

er
 (

 α)

 W
ei

bu
ll

ha
rd

w
ar

e
fa

ilu
re

ra

te
 (

fa
ilu

re
s

pe
r

da
y,

 λ
)

 W
ei

bu
ll

ha
rd

w
ar

e
sh

ap
e

pa
ra

m
et

er
 (

 α)

 1
 10

 2

 5
 0.

99
82

 0.

02
74

 0.

00
55

 0.

01
37

 2

 10

 2
 5

 0.
99

82

 0.
02

74

 0.
00

40

 0.
00

55

 0.
03

54

 0.
01

37

 1.
33

20

 3
 10

 2

 5
 0.

99
82

 0.

02
74

 0.

00
25

 0.

00
55

 0.

02
24

 0.

01
37

 0.

84
04

 4

 80

 16

 40

 0.
98

57

 0.
21

92

 0.
00

03

 0.
04

38

 0.
00

19

 0.
10

96

 0.
66

17

 5
 55

0
 11

0
 27

5
 0.

90
20

 1.

50
68

 0.

00
02

 0.

30
14

 0.

00
03

 0.

75
34

 0.

56
94

 6

 38
0

 76

 19
0

 0.
93

23

 1.
04

11

 0.
00

01

 0.
20

82

 0.
00

04

 0.
52

05

 0.
51

16

 7
 11

80

 23
6

 59
0

 0.
78

97

 3.
23

29

 0.
00

06

 0.
64

66

 0.
00

02

 1.
61

64

 0.
47

10

 8
 11

50

 23
0

 57
5

 0.
79

50

 3.
15

07

 0.
00

04

 0.
63

01

 0.
00

02

 1.
57

53

 0.
44

08

 9
 12

0
 24

 60

 0.

97
86

 0.

32
88

 0.

00
02

 0.

06
58

 0.

00
05

 0.

16
44

 0.

41
74

 10

 12

0
 24

 60

 0.

97
86

 0.

32
88

 0.

00
02

 0.

06
58

 0.

00
04

 0.

16
44

 0.

39
83

 11

 12

0
 24

 60

 0.

97
86

 0.

32
88

 0.

00
02

 0.

06
58

 0.

00
04

 0.

16
44

 0.

38
25

 12

 20

 4

 10

 0.
99

64

 0.
05

48

 0.
00

06

 0.
01

10

 0.
00

37

 0.
02

74

 0.
36

99

 13

 90

 18

 45

 0.
98

40

 0.
24

66

 0.
00

01

 0.
04

93

 0.
00

07

 0.
12

33

 0.
35

76

 14

 12
0

 24

 60

 0.
97

86

 0.
32

88

 0.
00

02

 0.
06

58

 0.
00

04

 0.
16

44

 0.
34

75

 15

 11
0

 22

 55

 0.
98

04

 0.
30

14

 0.
00

02

 0.
06

03

 0.
00

07

 0.
15

07

 0.
33

87

 16

 15
0

 30

 75

 0.
97

33

 0.
41

10

 0.
00

02

 0.
08

22

 0.
00

05

 0.
20

55

 0.
33

06

 17

 10
0

 20

 50

 0.
98

22

 0.
27

40

 0.
00

01

 0.
05

48

 0.
00

05

 0.
13

70

 0.
32

37

 18

 14
0

 28

 70

 0.
97

50

 0.
38

36

 0.
00

02

 0.
07

67

 0.
00

03

 0.
19

18

 0.
31

72

 19

 35
0

 70

 17
5

 0.
93

76

 0.
95

89

 0.
00

01

 0.
19

18

 0.
00

02

 0.
47

95

 0.
31

13

 20

 70
0

 14
0

 35
0

 0.
87

52

 1.
91

78

 0.
00

02

 0.
38

36

 0.
00

02

 0.
95

89

 0.
30

60

 21

 40

 8
 20

 0.

99
29

 0.

10
96

 0.

00
03

 0.

02
19

 0.

00
18

 0.

05
48

 0.

30
15

 22

 60

 12

 30

 0.

98
93

 0.

16
44

 0.

00
03

 0.

03
29

 0.

00
06

 0.

08
22

 0.

29
68

361

362 Computer, Network, Software, and Hardware Engineering with Applications

 The parameters of the Weibull distribution are estimated according to reference
[LL062] in Equations 14.4 and 14.5 , where n is the number of systems:

λ

α

=

=
∑

n

i

,

j

j

n

1

 (14.4)

α

λ α

=
−

= =
∑ ∑

n

i i i

.

j j

j

n

j

j

n

log log
1 1

 (14.5)

 However, trying to solve Equations 14.4 and 14.5 is not practical because in order
to solve for λ in Equation 14.4 , α is required, but to solve for α in Equation 14.5 ,
λ is required. A practical approach is to use the reliability function, Equation 14.3
to solve for α , given values of λ and R for a specifi ed value of i.

 Now, solving Equation 14.3 for α results in Equation 14.6 :

 α λ=

−⎡
⎣⎢

⎤
⎦⎥

log
log(())

log()
.

R i

i
 (14.6)

 However, notice the constraint on the maximum value of R(i) that can be achieved
to avoid trying to take the log of a negative quantity: R(i) < e –λ because log R(t) = λ .
Therefore, set the limit on R(i) according to R(i) < e –λ , and substitute this value in
Equation 14.6 and solve for α .

 In order to examine the validity of reliability predictions using Equation 14.3 ,
the actual reliability R a (i), based on historical failure data, is computed in Equation
 14.7 , where f s (i) is the number of software failures for system i, computed over n
systems:

R i

f i

f i

.a
s

s

i

n
()

()

()

= −

=
∑

1

1

 (14.7)

 The error between the predicted and actual reliabilities is computed using the mean
relative error that is computed as: mean * ((actual – predicted)/actual) [FEN97] .

Factoring in Probability of State Transitions

 Now, although the reliability analysis that was presented is appropriate, it is only
relevant when, according to Table 14.1 , there is a state transition that causes a given
node (e.g., Web Server) in the Web system in Figure 14.2 to become active (e.g.,
Web server looks for Web page). Therefore, to predict total Web system reliability,

Web Site Design 363

each node and link system reliability (systems of Table 14.2) must be multiplied by
the weighted probability of state transition w(i) p s (i), where p s (i) is the unweighted
probability and w(i) are weights that sum to one. Then, the values of w(i) p s (i) R(i)
are summed to predict total system reliability R s . The result is Equation 14.8 :

 R w i p i R i .s s

i

n

=
=

∑ () () ()
1

 (14.8)

 A random number generator was coded in C ++ to produce random numbers from
which probabilities of state transitions were derived. These probabilities and weights
are shown in Table 14.3 . Note that these probabilities are for the purpose of illustrat-
ing the computation of Web system reliability. Other probabilities could be used in
other situations.

 Using the logic of Figure 14.2 — Web System State Transition Diagram — and
the state transition information in Table 14.3 , the Web Client and Server Interac-
tions is constructed in Figure 14.3 . With the probabilities of state transitions
appended, this fi gure will be used to predict total Web system reliability, as given
by Equation 14.8 .

Table 14.3 Web State Transition Probabilities

 Current state Next state

 Transition
probability = Probability

of next state

 Web Client doing local
computing s 1

 Web Client uses browser s 2 p 2 (1) = 0.034483
 w (2) = 0.008333

 Web Client uses browser s 2 Browser identifi es URL of
desired Web Page s 3

 p 3 (1) = 0.172414
 w (3) = 0.041667

 Browser identifi es URL of
desired Web Page s 3

 Browser looks up IP
address of domain s 4

 p 4 (2, 3, 4) = 0.862069
 w (4) = 0.208333

 Browser obtains IP address
of domain s 4

 Browser sends IP address
to Web Server s 5

 p 5 (4) = 1.000000
 w (5) = 0.241667

 Browser sends IP address to
Web Server s 5

 Web Server looks for Web
Page in XHTML Web
Service s 6

 p 6 (6, 7) = 0.586207
 w (6) = 0.141667

 Web Server looks for Web
Page in XHTML Web
Service s 6

 Web Server retrieves Web
Page s 7

 p 7 (7, 8) = 0.724138
 w (7) = 0.175000

 Web Server retrieves Web
Page s 7

 Web Server sends Web
Page to Web Client s 8

 p 8 (6, 5, 2) = 0.310345
 w (8) = 0.075000

 Web Server sends Web
Page to Web Client s 8

 Web Client doing local
computing s 1

 p 1 (1) = 0.448276
 w (1) = 0.108333

364 Computer, Network, Software, and Hardware Engineering with Applications

Figure 14.3 Web client and Web server interactions. i, node or link identifi cation.

Web Server

Web Page
XHTML Web Service

Web Client

Internet

1. Browser determines that
desired page is at URL

http://fellowoftheieee.com/
biographywebpage.html

Domain Controller

2. Browser looks up IP address
for domain

3. Browser sends IP address to
Web Server

4. Web Server looks for Web
Page

Web Server sends Web Page
to Web Client

I = 1

I = 2

I = 3

I = 4

I = 6

I = 5

I = 7

I = 8

g p y p g

I = 1

4

II =

Reliability Analysis Based on Web Systems

 The purpose of Figure 14.4 is to identify which Web systems are able to satisfy the
Web Server reliability requirement at the software, hardware, and system levels, and
to compute the prediction accuracy of software, hardware, and system with respect
to actual reliability. We see that only systems 1 and 2 satisfy the requirement and
that software has the best prediction accuracy as judged by the mean relative error
(MRE). This means that additional debugging of the faults in the system and hard-
ware is necessary, recognizing that system failures include user and computer opera-
tor errors. Traditionally, user and operator errors have not been analyzed because
the information may not be available. Since these errors could be signifi cant con-
tributors to unreliability, they should be tracked by using user and computer operator
logs. Note that these systems are the ones from the LANL, where the failure data
are documented in Table 14.2 , and the Web Server system is depicted in Figure 14.2 .

 It is also important to track the hazard function (i.e., instantaneous failure rate)
produced by Web servers in Figure 14.5 to determine whether there is any anomalous
behavior (i.e., sudden jumps in hazard function) that would jeopardize reliability.
As Figure 14.5 shows, indeed, there are cases of hardware and system showing
sudden jumps in hazard function, thus reinforcing the fi nding from Figure 14.4 that
hardware and system are candidates for additional fault removal.

 Another reliability metric of interest is the probability of failure of Web server
systems shown in Figure 14.6 , with software demonstrating the lowest probability,
once the probability of failure reaches steady state. Recall that the reliability plots

Web Site Design 365

Figure 14.4 Web server reliability R(i) versus system identifi cation i. Series 1: Actual reliability.
Series 2: Predicted software reliability, MRE = 0.0849. Series 3: Predicted hardware reliability,
MRE = 0.2225. Series 4: Predicted system reliability, MRE = 0.3608. Series 5: Required
reliability = 0.9500.

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

i

R
(i

)

Series 1

Series 2

Series 3

Series 4

Series 5

Only systems 2 and 3 provide required reliability

Figure 14.5 Web server hazard function h(i) versus system identifi cation i. Series 1: Software.
Series 2: Hardware. Series 3: System.

0.000000

0.000050

0.000100

0.000150

0.000200

0.000250

0.000300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

i

h
(i

)

Series 1

Series 2

Series 3

Hardware and system are subject to anomalous hazard functions—

detrimental to reliability

366 Computer, Network, Software, and Hardware Engineering with Applications

in Figure 14.4 showed that only systems 2 and 3 satisfi ed the reliability requirement,
but according to Figure 14.6 , it might be better to select system 9 as the Web Server
because at this point, the probability of failure has stabilized. This would be a false
choice because reliability is the primary metric; other metrics are of secondary
importance. Since the probabilities of failure are relatively small for systems 2 and
3 in Figure 14.6 , these systems would remain our choice for Web server.

 When predicted reliabilities do not satisfy the required reliability, as is the case
in Figure 14.4 , we can solve Equation 14.3 for λ to predict the required failure rate
λ that is necessary to achieve required reliability R(i). The result is Equation 14.9 .
Statistical testing and reliability analysis can be used effectively to assure quality
for Web applications [KAL01] . Therefore, Equation 14.9 helps us determine how
much testing must be conducted to remove faults in order to reduce the failure rate
λ to a value that will achieve the required reliability, R(i):

 λ α= − log ()R i

i
. (14.9)

Web Server Reliability Analysis
Based on Operating Time

 Up to this point we have used LANL data and made reliability predictions across
these systems. Now, we focus on using data and making predictions as a function
of Web server operating time . Failure phenomena of Web server systems depends

Figure 14.6 Probability of Web server failure p(i) versus system identifi cation i. Series 1: Software.
Series 2: Hardware. Series 3: System.

0.000000

0.000020

0.000040

0.000060

0.000080

0.000100

0.000120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

i

p
(i

)

Series 1

Series 2

Series 3

Probability of Web Server failure reaches steady state for i > 8

Web Site Design 367

on their workload characteristics. As a result, the number of user Web sessions
strongly affects the failure rate of Web servers [FUJ09] . While this is true, operating
time is a better metric of workload than number of sessions because it represents the
continued , not periodic, use of Web facilities. Therefore, to start the analysis, Table
 14.4 is presented showing the operating time - oriented data for system, software, and
hardware failure rates, where 20% of the failures are contributed by software and
50% by hardware. Typically, software accounts for a larger proportion of failures
than hardware. However, in the case of Los Alamos supercomputers, the hardware
confi gurations are very complex. This complexity contributes a disproportionate
share of failures.

 Note that in using operating time , all equations that have been developed
remain the same except that operating time variable t is substituted for system iden-
tifi cation i.

 Next, predict the operating time - oriented reliability of software, hardware, and
system and compare these predictions to the actual reliability by computing the
MRE, similar to our previous analysis of the system - oriented reliabilities. Figure
 14.7 shows that none of the reliability metrics — software, hardware, system —
 achieve the required reliability. This means that, again, we must call upon Equation
 14.9 to fi nd the reduced failure rates that would allow the required reliability to be
achieved. Figure 14.8 shows the dramatic reduction in system failure rate required
to bring predicted reliabilities into conformance with required reliability. The impli-
cation of this result is that a massive reduction in Web server faults must occur
through comprehensive testing.

WEB CLIENT RELIABILITY ANALYSIS

 The logic for developing the client - side Web probability of failure model is to con-
sider that, with a historical error rate of n errors per Web page operation, N number
of operations on the Web page, and an assumed exponential decrease in reliability,
as n and N increase, Equation 14.10 is produced refl ecting the logic of n Web page
errors occurring over N Web page operations. Admittedly, there are no data to prove
the behavior of Equation 14.10 . However, it seems reasonable that, as n and N
increase, the complexity of the Web page increases at an exponential rate, refl ected
in an exponentially decreasing reliability R c (n, N).

 The overall failure rate for a given server or a given client can be noticeable.
Failure rates in excess of 2% are not uncommon. The failure rate varies considerably
across servers and clients. About 30% of the failures can be traced to Domain Name
Server (DNS) problems, and most of the rest are due to the inability of the client to
establish a TCP connection to the remote Web server. (Note that the DNS lookup
accesses are included in Fig. 14.2 .) Client - side problems account for the overwhelm-
ing majority of DNS lookup failures, whereas server - side problems are the dominant
cause of TCP connection failures [PAD05] . Therefore, in predicting client - side prob-
ability of failure , based on the above failure history, assume various values of n — as
much as 2% in Figure 14.9 — to see how sensitive the result is to the size of n, for given

Ta
bl

e
14

.4

 Fa
ilu

re
 D

at
a

R
el

at
ed

 t
o

O
pe

ra
tin

g
T

im
e

(1
99

5 –
 20

05
, L

A
N

L
)

 Y
ea

r
op

er
at

in
g

tim
e

Sy
st

em
fa

ilu
re

s
pe

r
ye

ar

So
ft

w
ar

e
fa

ilu
re

s
pe

r
ye

ar

H
ar

dw
ar

e
fa

ilu
re

s
pe

r
ye

ar

 A
ct

ua
l

re
lia

bi
lit

y

 W
ei

bu
ll

sy
st

em
fa

ilu
re

 r
at

e
(f

ai
lu

re
s

pe
r

da
y,

 λ
)

 W
ei

bu
ll

sy
st

em
 s

ha
pe

pa

ra
m

et
er

 (
 α)

 W
ei

bu
ll

so
ft

w
ar

e
fa

ilu
re

 r
at

e
(f

ai
lu

re
s

pe
r

da
y,

 λ
)

 W
ei

bu
ll

so
ft

w
ar

e
sh

ap
e

pa
ra

m
et

er
 (

 α)

 W
ei

bu
ll

ha
rd

w
ar

e
fa

ilu
re

 r
at

e
(f

ai
lu

re
s

pe
r

da
y,

 λ
)

 W
ei

bu
ll

ha
rd

w
ar

e
sh

ap
e

pa
ra

m
et

er
 (

 α)

 1
 38

0
 76

 19

0
 0.

93
12

 1.

04
11

 0.

20
82

 0.

52
05

 2

 68
0

 13
6

 34
0

 0.
87

69

 1.
86

30

 0.
00

10

 0.
37

26

 0.
00

05

 0.
93

15

 0.
00

16

 3
 30

 6

 15

 0.
99

46

 0.
08

22

 0.
00

34

 0.
01

64

 0.
00

95

 0.
04

11

 0.
01

62

 4
 70

 14

 35

 0.

98
73

 0.

19
18

 0.

00
16

 0.

03
84

 0.

00
21

 0.

09
59

 0.

00
55

 5

 58
0

 11
6

 29
0

 0.
89

50

 1.
58

90

 0.
00

12

 0.
31

78

 0.
00

08

 0.
79

45

 0.
00

19

 6
 39

0
 78

 19

5
 0.

92
94

 1.

06
85

 0.

00
11

 0.

21
37

 0.

00
12

 0.

53
42

 0.

00
18

 7

 11
90

 23

8
 59

5
 0.

78
46

 3.

26
03

 0.

00
22

 0.

65
21

 0.

00
12

 1.

63
01

 0.

00
08

 8

 11
50

 23

0
 57

5
 0.

79
19

 3.

15
07

 0.

00
35

 0.

63
01

 0.

00
28

 1.

57
53

 0.

00
14

 9

 12
0

 24

 60

 0.
97

83

 0.
32

88

 0.
00

19

 0.
06

58

 0.
00

34

 0.
16

44

 0.
00

41

 10

 13
0

 26

 65

 0.
97

65

 0.
35

62

 0.
00

10

 0.
07

12

 0.
00

21

 0.
17

81

 0.
00

95

 11

 14
0

 28

 70

 0.
97

47

 0.
38

36

 0.
00

23

 0.
07

67

 0.
00

25

 0.
19

18

 0.
00

36

 12

 20

 4
 10

 0.

99
64

 0.

05
48

 0.

00
74

 0.

01
10

 0.

01
35

 0.

02
74

 0.

04
48

 13

 60

 12

 30

 0.

98
91

 0.

16
44

 0.

00
42

 0.

03
29

 0.

00
64

 0.

08
22

 0.

00
92

 14

 11

0
 22

 55

 0.

98
01

 0.

30
14

 0.

00
25

 0.

06
03

 0.

00
49

 0.

15
07

 0.

01
00

 15

 10

0
 20

 50

 0.

98
19

 0.

27
40

 0.

00
14

 0.

05
48

 0.

00
38

 0.

13
70

 0.

00
85

 16

 10

5
 21

 52

.5

 0.
98

10

 0.
28

77

 0.
00

29

 0.
05

75

 0.
00

60

 0.
14

38

 0.
00

95

 17

 90

 18

 45

 0.
98

37

 0.
24

66

 0.
00

23

 0.
04

93

 0.
00

60

 0.
12

33

 0.
01

04

 18

 11
0

 22

 55

 0.
98

01

 0.
30

14

 0.
00

29

 0.
06

03

 0.
00

57

 0.
15

07

 0.
01

17

 19

 70

 14

 35

 0.
98

73

 0.
19

18

 0.
00

36

 0.
03

84

 0.
00

47

 0.
09

59

 0.
01

22

368

Web Site Design 369

Figure 14.8 Web server system failure rate λ versus operating time t. Series 1: failure rate for
predicted reliability. Series 2: failure rate required to achieve required reliability = 0.9500.

0.0000

0.5000

1.0000

1.5000

2.0000

2.5000

3.0000

3.5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

l

t

Series 1

Series 2

Figure 14.7 Web server reliability R(t) versus operation time t. Series 1: Actual reliability. Series
2: Predicted software reliability, MRE = 0.0895. Series 3: Predicted hardware reliability,
MRE = 0.2332. Series 4: Predicted system reliability, MRE = 0.3744. Series 5: Specifi ed
reliability = 0.9500.

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

t

R
(t

)

Series 1

Series 2

Series 3

Series 4

Series 5

Predicted reliabilities do not satisfy specification

370 Computer, Network, Software, and Hardware Engineering with Applications

Figure 14.9 Web client reliability R c (n) versus Web page error rate n. Series 1: N = 100. Series 2:
N = 200. Series 3: N = 300. Series 4: N = 400. Series 5: Required reliability = 0.9500. N, number of
Web page operations.

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

0 0.005 0.01 0.015 0.02

n

R
c(

n
) Series 1

Series 2

Series 3

Series 4

Series 5

values of N. It is also of interest to see how reliability changes as a function of n as
reliability is increased by reducing the number of errors on a Web page. Therefore, the
rate of change of reliability with respect to n is predicted in Equation 14.11 :

 R n N e ,c
Nn(,) ()= − (14.10)

dR n N

d n
NR n N .c

c
(,)

()
(,)= − (14.11)

 Calling on Equation 14.10 in Figure 14.9 , we are able to determine whether the Web
client meets the reliability requirement for various values of number of errors n and
number of operations N. As can be seen, this is not the case. Therefore, considerable
debugging of client software and hardware is necessary to achieve the required reli-
ability. In order to determine the error rate n that would be required to achieve the
required reliability for a given value of N, manipulate Equation 14.10 to produce
Equation 14.12 :

 n
R n N

N
.c= −

log (,)
 (14.12)

 It is evident in Figure 14.10 that an excessive number of Web page operations
is bad news for reliability because the rate of change of reliability increases in the
negative direction as the number of Web operations increases.

Web Site Design 371

Figure 14.10 Web client rate of change of reliability dR c (n, N)/d(n) versus error rate n. Series 1:
N = 100. Series 2: N = 200. Series 3: N = 300. Series 4: N = 400. N, number of Web page operations.

−450.0000

−400.0000

−350.0000

−300.0000

−250.0000

−200.0000

−150.0000

−100.0000

−50.0000

0.0000

0 0.005 0.01 0.015 0.02

n

d
R

c(
n

)/
d

(n
)

Series 1

Series 2

Series 3

Series 4

Increasing values of N lead to rapid decreases in reliability

COMMUNICATION RELIABILITY ANALYSIS

 The last element in the Web system model to be subjected to reliability analysis is
the communication among Web system elements in Figure 14.2 . The Web system
error rate is defi ned as the frequency with which errors or noise are introduced into
communication channels. Error rate may be measured in terms of erroneous bits
received per bits transmitted B. The distribution of errors is usually nonuniform,
with a higher probability of small message size B and a lower probability of large
message size. Thus, use the exponential distribution to represent the error rate in
Equation 14.13 , where λ is the communication channel error rate in megabits per
second (Mbit/s), b m is the mean error rate, and B M is the maximum bandwidth in
megabits per second assumed available to the Web system. Given the exponential
decay in error rate in Equation 14.13 , the reliability, R cc (t), of the communication
channel in Equation 14.14 is expected to degrade exponentially with operating
time t:

 λ
−⎛

⎝⎜
⎞
⎠⎟()b e ,m

B

BM (14.13)

 R t e .cc
t() ()−λ (14.14)

 As Figures 14.11 and 14.12 attest, client and server are restricted in obtaining
required communication reliability to a bandwidth of 30 Mbit/s (Fig. 14.11) and an

372 Computer, Network, Software, and Hardware Engineering with Applications

Figure 14.11 Web communication channel reliability R cc (t) versus bandwidth B. Series 1:
Communication channel reliability. Series 2: Required reliability = 0.9500.

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

10 20 30 40 50 60 70 80 90 100

R
cc

(t
)

B (megabits per second)

Series 1

Series 2

Predicted reliability fails required reliability for B > 30 MBit/s

Figure 14.12 Web communication channel reliability R cc (t) versus operating time t. Series 1:
Predicted reliability. Series 2: Required reliability = 0.9500.

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

1 2 3 4 5 6 7 8 9 10

t (seconds)

R
cc
 (

t)

Series 1

Series 2

Predicted reliability fails reliability requirement for t > 3 seconds

Web Site Design 373

operating time of 3 seconds (Fig. 14.12). If higher reliability is required, Web
system providers and users would have to invest in higher reliability communication
facilities. While reliability performance is obviously not outstanding, the situation
is not quite so dire because operating time refers to the time required to complete
single communication functions, not all the Web system functions illustrated in
Figure 14.2 .

TOTAL SYSTEM RELIABILITY ANALYSIS

 Individual Web components can be used to form value - added total Web services.
The value of total Web services is directly infl uenced by the reliability of individual
components [YAN06] . Following this dictum, invoke the total system reliability
Equation 14.8 to predict total Web system reliability in Figure 14.13 . We see that
required reliability is satisfi ed for only a limited range of operating time. Further-
more, by including client, server, and communication component reliabilities in
Figure 14.13 , we are able to prioritize the components for reliability improvement,
yielding the result that the server component is the fi rst in line for reliability improve-
ment. In addition, Figure 14.13 provides us with the increase in system reliability
necessary to achieve the reliability goal for each value of operating time.

Question for Reader: Based on what you have learned in this chapter, what
process could you use to choose among existing Web services in terms of
performance and reliability?

Figure 14.13 Total Web system reliability R s versus operating time t. Series 1: System. Series 2:
Client. Series 3: Server. Series 4: Communication channel. Series 5: Required reliability = 0.9500.
Series 6: Required system reliability improvement.

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

2 3 4 5 6 7 8 9 10

t (seconds)

R
s

Series 1

Series 2

Series 3

Series 4

Series 5

Series 6

System reliability fails required reliability for t > 3 seconds

Server is the highest priority for reliability improvement

374 Computer, Network, Software, and Hardware Engineering with Applications

Answer: Probably the most important performance factor that was not covered
in the chapter is the relevance of search results to the user ’ s information
needs. It was not covered because search relevance cannot be generalized.
It is highly personable and only has meaning for the Web client. Thus, you
could evaluate the relevance, coupled with response time, for various searches
important to you, over various Web services, and compare the results.

 With respect to reliability, you could repeatedly access a group of Web systems in
rapid succession for the same search request, over an observed operating time, and
record any failures to provide search results. If failure counts are obtained, the data
would be used in the system actual reliability, Equation 14.7 , to compute the reli-
ability of each Web system. The result would be one basis for choosing a Web
system.

SUMMARY AND CONCLUSIONS

 In order to obtain a comprehensive and valid assessment of Web system reliability
and related metrics it is necessary to decompose the system into its component parts,
predict component reliabilities, and then do an integrative analysis to produce total
system reliability predictions. The reason for this is that there are different failure
properties for Web client, Web server, and the interconnected communication chan-
nels. This process includes the following steps:

1. Identify Web page operations so that the number of ways Web clients and
servers could fail can be ascertained.

2. Identify states and state transition probabilities so that components reliabili-
ties can be properly weighted to produce total system reliabilities.

3. Determine whether each component and the system satisfy the reliability
requirement.

4. When reliability requirements are not achieved, compute the failure rates
required to bring components into conformance with reliability
requirements.

5. Use rate of change of Web client and server - predicted reliability, with
respect to error rate, to identify the number of Web page operations that
cause reliability degradation.

6. Study the effects of increasing bandwidth and operating time on communi-
cation channel reliability.

7. Integrate component reliabilities into total system reliability predictions and
compute the reliability improvement necessary to achieve the reliability
goal.

 The above process not only yields important Web system reliability predictions, but,
in addition, allows the researcher and practitioner to understand how all the pieces
of the reliability picture fi t together, thus supporting reliability analyses.

Web Site Design 375

REFERENCES

 [ALA02] V. S. Alagar and O. Ormandjieva , “ Reliability assessment of WEB applications , ” 26th
Annual International Computer Software and Applications Conference , 2002 , p. 405 .

 [CHA07] Pat P. W. Chan , Michael R. Lyu , and Miroslaw Malek , “ Reliable web services: methodology,
experiment and modeling , ” IEEE International Conference on Web Services (ICWS 2007) , 2007 .

 [CHA08] Pat Pik Wah W. Chan and Michael R. Lyu , “ Dynamic web service composition: a new
approach in building reliable web service ,” 22nd International Conference on Advanced Information
Networking and Applications , 2008 , pp. 20 – 25 .

 [DHA08] Sanjeev Dhawan , and Rakesh Kumar , “ Analyzing performance of web - based metrics
for evaluating reliability and maintainability of hypermedia applications ,” Third International Con-
ference on Broadband Communications, Information Technology & Biomedical Applications , 2008 ,
pp. 376 – 383 .

 [FEN97] Norman F. Fenton and Shari Lawrence Pfleeger , Software Metrics: A Rigorous & Practical
Approach , 2nd ed. London : PWS Publishing Company , 1997 .

 [FER03] C. Ferris and J. Farrell , “ What are web services? , ” Communications of the ACM , 2003 . 46 (6),
p. 31 .

 [FUJ09] Toshiya Fujii and Tadashi Dohi , “ Statistical failure analysis of a web server system , ” Interna-
tional Conference on Availability, Reliability and Security , 2009 , pp. 554 – 559 .

 [GOK06] Swapna S. Gokhale , Paul J. Vandal , and Jijun J. Lu , “ Performance and reliability analysis
of web server software architectures , ” 12th Pacifi c Rim International Symposium on Dependable
Computing , 2006 , pp. 351 – 358 .

 [GOL04] N. Gold , C. Knight , A. Mohan , and M. Munro , “ Understanding service - oriented software , ”
IEEE Software , 2004 , pp. 71 – 77 .

 [HOL02] P. Holland , “ Building web services from existing application , ” eAI Journal , 2002 ,
pp. 45 – 47 .

 [HWA07] San - Yih Hwang , Ee - Peng Lim , Chien - Hsiang Lee , and Cheng - Hung Chen , “ On composing
a reliable composite web service: a study of dynamic web service selection , ” IEEE International
Conference on Web Services , 2007 , pp. 184 – 191 .

 [KAL01] Chaitanya Kallepalli and Jeff Tian , “ Measuring and modeling usage and reliability for
statistical web testing , ” IEEE Transactions on Software Engineering , 2001 , 27 (11), pp. 1023 – 1036 .

 [LAK05] Neila Ben Lakhal , Takashi Kobayashi , and Haruo Yokota , “ A failure - aware model for
estimating and analyzing the effi ciency of web services compositions , ” 11th Pacifi c Rim International
Symposium on Dependable Computing , 2005 , pp. 114 – 124 .

 [LLO62] David K. Lloyd and Myron Lipow , Reliability: Management, Methods, and Mathematics .
 Englewood Cliffs, NJ : Prentice - Hall, Inc. , 1962 .

 [LYU96] Michael R. Lyu (ed.), Handbook of Software Reliability Engineering . IEEE Computer Society
Press and McGraw - Hill Book Company , 1996 .

 [MAC09] Matthew MacDonald , Creating a Web Site , 2nd ed. Sebastopol, CA : O ’ Reilly Media, Inc. ,
 2009 .

 [NAR05] Masahiko Narita , Makiko Shimamura , and Makoto Oya , “ Reliable protocol for robot com-
munication on Web services , ” International Conference on Cyberworlds , 2005 , pp. 210 – 220 .

 [NIC05] Leticia Davila - Nicanor and Pedro Mejia - Alvarez , “ Reliability evaluation of web - based
software applications , ” Sixth Mexican International Conference on Computer Science , 2005 , pp.
 106 – 112 .

 [PAD05] Venkata N. Padmanabhan , Sriram Ramabhadran , and Jitendra Padhye , “ Client - Based Char-
acterization and Analysis of End - to - End Internet Faults , ” Technical Report MSR - TR - 2005 - 29 , Micro-
soft Research, March 2005 .

 [PAR90] D. L. Parnas , A. J. V. Schouwen , and S.P. Kwan , “ Evaluation of safety - critical software , ”
Communications of the ACM , 1990, 33 (6), pp. 636 – 648 .

 [SCH07] Bianca Schroeder and Garth A. Gibson , “ Understanding failures in petascale computers , ”
Computer Science Department, Carnegie Mellon University, Journal of Physics: Conference Series 78
(2007) 012022, IOP Publishing.

376 Computer, Network, Software, and Hardware Engineering with Applications

 [SCH071] Bianca Schroeder and Garth A. Gibson , “ Disk failures in the real world: what does an MTTF
of 1,000,000 hours mean to you? , ” FAST ’ 07: 5th USENIX Conference on File and Storage Technolo-
gies , San Jose, CA, February 2007 , pp. 14 – 16 .

 [SHE04] Bo Sheng and Farokh B. Bastani , “ Secure and reliable decentralized peer - to - peer web cache , ”
18th International Parallel and Distributed Processing Symposium (IPDPS ’ 04) , Vol. 1, 2004 , p. 54b .

 [WAN03] Wen - Li Wang and Mei - Huei Tang , “ User - oriented reliability modeling for a web system , ”
14th International Symposium on Software Reliability Engineering , 2003 , p. 293 .

 [YAN06] Yanping Yang , Qingping Tan , Yong Xiao , Jinshan Yu , and Feng Liu , “ Exploiting hierarchical
CP - nets to increase the reliability of web services workfl ow , ” 2006 International Symposium on Appli-
cations and the Internet , 2006 , pp. 116 – 122 .

 [ZO07] Hangjung Zo , Derek L. Nazareth , and Hemant K. Jain , “ Measuring reliability of applications
composed of web services , ” 40th Annual Hawaii International Conference on System Sciences , 2007 ,
p. 278c .

Chapter 15

Mobile Device Engineering

I ssues in mobile network reliability, performance, and context and network awareness are
examined. Based on mobile phone failure data reported in the literature, reliability models
for assessing mobile network reliability are explored from two perspectives: by type of failure
and by category of failure recovery action. This chapter builds on the foundation provided in
the Chapter 8 . Furthermore, the operational time corresponding to specifi ed reliability values
are predicted. Based on these calculations, you could conclude that current mobile networks
are unable to provide highly reliable service for more than a few months of operation. In
addition, a novel signal - to - noise ratio is developed and computed, and applied to assessing
mobile network stability. Where data were not available, such as in issues involving context
(i.e., environment in which mobile device is operational, such as a wireless hot spot) and
network awareness (i.e., mobile device having the intelligence to recognize its operational
environment), I have indicated with diagrams how mobile networks could respond to changes
in both context and network awareness.

INTRODUCTION

 The chapter ’ s objective is to discuss a number of issues in mobile computing, such
as risks of operating mobile devices, the problem of maintaining adequate power in
a mobile network, mobile device software reliability, context - aware and network -
 aware mobile computing, and mobile device performance. Because the mobile
environment involves many software and hardware components and technologies,
it is important to address many relevant issues. Thus, for each of these issues, where
appropriate, a quantitative approach is used for making assessments of the need for
mobile device improvement. Reliability is an example of where the quantitative
approach is applied, which uses failure data reported in the literature to develop
several quantitative assessments of mobile network reliability, based on types of
failures and responses to the failures. In other cases, such as context - aware mobile
computing, where there is no quantitative data relating reliability and performance
to the context of the mobile environment, a qualitative analysis is provided.

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F.
Schneidewind.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley &
Sons, Inc.

377

378 Computer, Network, Software, and Hardware Engineering with Applications

Major Risks Posed By Mobile Devices

Security

 While mobile devices are productivity - enhancing tools, they bring new security
threats to the enterprise. A security breach on the device can be expensive to the
user organization. The increasing numbers of mobile users and the explosion of
Internet connectivity have demolished the concept of a “fi xed ” information perim-
eter for organizations. A company network protected only by a central fi rewall is no
longer adequate. Users frequently travel outside the perimeter, where they can
expose confi dential data and risk attacks. Mobile devices are at risk of carrying
viruses and other malware. These information corruptions may be released into the
network [TRE] . In order to counteract security threats, a network fi rewall, light-
weight encryption, intrusion detection, and antimalware software should be
employed, as shown in Figure 15.1 .

Intrusion Detection

 Of particular concern in the protection of mobile networks is intrusion detection
because if intrusion is successful, it could disrupt an entire network. Intrusion detec-
tion techniques sense intrusions while they are acting on an information system.
Existing intrusion detection techniques fall into two major categories: signature
recognition and anomaly detection [DEL04, ESA98] . Signature recognition tech-
niques match entities in an information system with signatures of known entity

Figure 15.1 Mobile device connectivity for security and performance.

Mobile
Data

Network

peer-to-peer
connectivity

Personal Computer

synchronization with PC

wireless LAN or LAN

cell phone

IP phone

1 2 3

4 5 6

7 8 9

* 8 #

physical media: memory stick

encrypted

encrypted

encrypted

encrypted

encrypted

firewall

authenticated

intrusion detection

Antimalware software

antimalware software

application-
specific
buffers

signal

noise

tune RSS (received signal strength)

portable cache

device mobility

Radio tower

Radio tower

manage power budget

monitor power
S/N stable

Mobile Device Engineering 379

intrusions and signal an intrusion when there is a match. For example, consider the
entities: user, fi le, program, host, network, and so on. Signature recognition tech-
niques establish a profi le of the entity ’ s normal behavior, for example, the fi les a
user is authorized to access. Then, anomaly detection compares the observed behav-
ior of the entity with the profi le, and signals intrusions when the entity ’ s observed
behavior deviates signifi cantly from its profi le, for example, when the user is access-
ing unauthorized fi les [YE02] . A successful intrusion increases the noise in a mobile
network and, thus, lowers the signal - to - noise ratio (S/N).

Power Loss

 Another important risk of operating mobile devices is the challenge of power man-
agement and potential loss of power. These devices are increasingly being used in
multimedia streaming - type applications, common examples being on - demand movie
streaming and video conferencing. In spite of technological advances, battery life
still remains a major limitation of portable devices. The main power consuming
components of a mobile device are: central processing unit (CPU), display, and
network interface. Running multimedia applications further aggravates the situation,
because these programs are both CPU and network intensive. However, while the
CPU and network may benefi t from managing the power budget (see Fig. 15.1),
displays need to be on at all times and thus limits the possibilities for saving power
without severely impacting the user experience [COR06] . The risk of power loss
can be mitigated by the use of power monitoring, as shown in Figure 15.1 .

MOBILE DEVICE RELIABILITY

Software Mobile Network Products

 In mobile ad hoc networks, wireless media have limited and variable ranges, as
distinguished from wired media. Each mobile device moves in an arbitrary manner
and routes are subject to frequent breakage [QIN03] . In software mobile network
products, often the failure rate decreases after installation, eventually reaching a
steady state. The time it takes for a product to reach its specifi ed reliability depends
on different product parameters. Stabilization time is the operating time during
which specifi ed reliability is achieved [SAU06] . In mobile devices, achieving sta-
bilization is a function of parameters, such as quality of communication between
mobile devices and between mobile devices and mobile network, as represented by
S/N stability (i.e., S/N >> 1), in Figure 15.1 .

 Radio frequency (RF) interference, large - scale path loss, and fading cause
adverse channel conditions by reducing the S/N of the wireless communications.
When the S/N is lower than a certain threshold, the bit error rate of the wireless
communication rises over the acceptable limit, thus disrupting the wireless connec-
tion. Therefore, the key to maintaining wireless communication under adverse
channel conditions is to provide as high an S/N as possible [WAN07] . Furthermore,

380 Computer, Network, Software, and Hardware Engineering with Applications

this important parameter can be related to reliability, as will be shown later. Reli-
ability becomes even more important as new critical applications emerge for mobile
phones (e.g., robot control, traffi c control, and telemedicine). In such scenarios, a
phone failure affecting the application could result in a signifi cant loss or hazard
(e.g., a robot performing uncontrolled actions) [CIN07] . Thus, device mobility,
designed to make devices less dependent on particular locations and resources, is
essential, as illustrated in Figure 15.1 .

Wireless Communication

 Wireless communication must be maintained under adverse channel conditions.
Wireless channel conditions are inherently more vulnerable than those of wireline
communications due to the existence of problems such as multiple access conten-
tion, RF interference, large - scale signal path loss, and signal fading. Industrial
environments make these problems worse due to large obstructions and possible
 electromagnetic interferences (EMI). An example is the EMI from electric welding
or an electric motor that can last for hours or even days. Wireless local area net-
works (WLANs) require much higher reliability than wired local area networks
(LANs) for offi ce or home use. Most offi ce or home wired LANS allow a few
seconds or even minutes of adverse channel conditions. They just need to back off
or shut down until the channel condition recovers and then retransmit. However,
WLANs do not have the luxury of delay or shut down. Delay or shut down would
cause deadlines to be missed, which result in poor reliability and performance
 [WAN07] .

Reported Failure Data

 In this section, failure data reported in the literature are analyzed. Failure data were
obtained from the analysis of failure reports posted between January 2003 and March
2006. There were a total of 533 reports. Phone models from many major vendors
are represented: Motorola, Nokia, Samsung, Sony Ericsson, LG, Kyocera, Audio-
vox, HP, Blackberry, Handspring, and Danger [CIN07] . Twenty - two point three
percent (22.3%) of failure reports are from smartphones, although smartphones
represented only 6.3% of the market share in 2005. This is attributed to the fact that
smartphones: (1) have more complex architecture than voice - centric mobile phones
and (2) are open for users to download and install third - party applications or develop
their own applications, which results in high failure rates.

 Data for this study were obtained from publicly available Web forums, where
users post information on their experiences in using handheld devices. Symbian
 operating system (OS) - based smartphone failure data were collected from 25 phones
(in Italy and the United States) over a period of 14 months [CIN07] . Key fi ndings
indicate that: (1) the majority of OS kernel failures are due to memory access viola-
tion errors (56%) and memory management problems (18%) and (2) users experi-
ence a failure (freeze or self - shutdown) every 11 days, on average [CIN07] .

Mobile Device Engineering 381

Failure Types

 The following failure types are the way vendors classify failures [CIN07] :

• Freeze (Lock - Up or a Halting Failure) . The device ’ s output becomes con-
stant, and the device does not respond to the user ’ s input.

• Input Failure . User inputs have no effect on device behavior (e.g., device
keys do not work).

• Output Failure . The device, in response to an input sequence, delivers an
output sequence that deviates from the expected one. Examples include inac-
curacy in battery charge indicator, ring or music volume different from the
confi gured one, and event reminders going off at wrong times.

• Self - Shutdown (Silent Failure) . The device shuts down itself, and no service
is delivered to the user.

• Unstable Behavior (Erratic Failure) . The device exhibits erratic behavior
without any input from the user, (e.g., backlight fl ashing and device self -
 activation of applications).

Recovery Actions

 A disruption due to the failure of one of the participating (e.g., mobile device) or
intermediary (e.g., cellular network) systems typically results in the user having to
restart the application, often at signifi cant expense to both the user and to the service
provider For mobile users accessing digital cellular networks, such disruptions occur
frequently, as the wireless link is much less reliable than wired connections [VAN03] .
Therefore, it is important to discuss and evaluate actions to recover from a device
failure. Recovery actions are classifi ed as follows [CIN07] :

• Service the Phone . The user has to bring the phone to a service center for
assistance. Often, when the failure is fi rmware related (computer program-
ming instructions that are stored in a read - only memory unit rather than being
implemented through software), the recovery consists of either a master reset
(all the settings are reset to the factory settings and the user ’ s content is
removed from the memory) or a fi rmware update (i.e., uploading a new
version of the fi rmware).

• Reboot . The user turns off the device and then turns it on to restore the correct
operation (a temporary corrupted state is cleaned up by the reboot).

• Remove Battery . Battery removal is mainly performed when the phone
freezes. In this case, the phone often does not respond to the power on/off
button. Battery removal can clean up a permanent corrupted state; however,
this is a crude way to invoke power management. Improved power manage-
ment is needed in mobile devices to increase their utilization [YUK03] .

382 Computer, Network, Software, and Hardware Engineering with Applications

• Wait an Amount of Time . Often it is suffi cient to wait for a certain amount
of time to let the device deliver the expected service.

• Repeat the Action . Repeating the action is sometimes suffi cient to get the
phone working properly (i.e., the problem was transient).

• Optimistic Message Logging . In optimistic message logging, the task of
logging mobile device messages is assigned to a centralized mobile station,
so that in the event of a mobile device failure, the device may be able to
recover the message from the centralized mobile station. A number of message -
 logging algorithms have been proposed to support fault tolerance of mobile
computing systems. However, little attention has been paid to the optimistic
message logging scheme. Optimistic message logging has a lower failure - free
operation cost compared to other logging schemes [PAR02] .

• Automated Failure Data Logger . There is still little understanding of how
and why mobile phones fail or of the methods and techniques needed to
gain such understanding. A well - established methodology to evaluate the
reliability of operational systems and to identify its bottlenecks is fi eld
failure data analysis . However, today ’ s smartphones do not have a means to
detect and collect failures. A solution is the automated failure data logger.
Upon failure detection, the logger gathers useful information, such as the
phone’ s activity, the list of running applications, and error conditions
in system and application modules. The technique has been implemented
in Symbian OS smartphones. The main objective of the logger is to detect
and record the occurrences of freezes and reboots. It is important to detect
the status of the phone during a failure. For example, assume that a phone
freezes when a text message is received. It is important to answer questions
such as: (1) do we know that a text message was being received? (2) do we
know whether some module failed? and (3) are we aware of other applica-
tions running during the failure that may have contributed to the freeze)?
 [WAN07]

Failure Severity

 Failure severity is classifi ed according to the user perspective and defi nes severity
levels corresponding to the diffi culty of the recovery action(s) [CIN07] :

• High . A failure is considered to be high severity when recovery requires the
assistance of service personnel.

• Medium . A failure is considered to be of medium severity when the recovery
requires reboot or battery removal.

• Low . A failure is considered to be of low severity if the device operation can
be reestablished by repeating the action or waiting for a certain amount of
time.

 All failures occurring during emergency calls (e.g., 911) are high severity.

Mobile Device Engineering 383

 Table 15.1 shows the distribution of failures and recovery actions. Despite their
high occurrence, output failures are low severity, since repeating the action is often
suffi cient to restore the device to the correct operation. On the other hand, self -
 shutdown and unstable behavior are high - severity failures because they must be
corrected by servicing the phone or removing the battery. Phone freezes are medium
severity, since rebooting only occurs in 2.36% of the total number of failures. While
input failures are high severity because device keys do not work, their frequency of
occurrence is low.

 From the recovery action perspective, it should be noted that reboots are an
effective way to recover from output failures (8.80% of the total number of failures).
This indicates that output failures are often due to a temporary software corrupted
state, which is cleaned up by the reboot. This is also confi rmed by the fact that
repeating the action is often suffi cient to restore a correct device operation. Freezes
are usually recovered by pulling out the battery (9.01%), even if a signifi cant number
of them (4.29%) are recovered by simply waiting for the phone to respond. This
may indicate that a certain fraction of battery removals and reboots in response to
freezes is due to impatient users. In general, this leads to the conclusion that freezes
are more annoying than output failures.

 Additionally, failure occurrences can be associated with the user activity at the
time of the failure (not shown in Table 15.1). In particular, 13% of failures occur
during voice calls, 5.4% while creating, sending, and receiving text messages, 3.6%
while using Bluetooth, and 2.4% when manipulating images. Finally, several reports
provide insight into the failure causes. There are indications of loss of memory data,
incorrect use of the device resources, bad handling by software of indexes and point-
ers to objects, and incorrect management of buffer sizes.

Table 15.1 Failure Frequency and Recovery Action Distribution: Fraction of Total Number of
Failures

 Failure type Severity
 Service
phone

 Recovery Action

 Unreported Totals Reboot
 Remove
battery

 Wait for
response

 Repeat
operation

 Freeze Medium 0.0365 0.0236 0.0901 0.0429 0 0.0601 0.2532
 Input

failure
 High 0.0064 0.0064 0.0021 0 0.0064 0.0086 0.0299

 Output
failure

 Low 0.0687 0.088 0.0043 0.0064 0.0579 0.1373 0.3604

 Self -
 shutdown

 High 0.0665 0 0.0215 0.0043 0 0.0773 0.1696

 Unstable
behavior

 High 0.0687 0.0172 0.0021 0.0021 0.0064 0.088 0.1845

 Totals 0.2468 0.1352 0.1201 0.0557 0.0707 0.3713

384 Computer, Network, Software, and Hardware Engineering with Applications

 Further elaboration of failure types and corresponding recovery actions are
documented in Table 15.2 , showing expected number of failures and failure rates
for the various failure categories.

RELIABILITY CALCULATIONS

Probability of Failure

 Using the data from Tables 15.1 and 15.2 , and assuming that failures occur according
to a Poisson distribution, we are able to calculate several interesting reliability
metrics. The Poisson distribution is most often used in situations where the probabil-
ity of the next state in a process is only dependent on the present state — the so - called
memoryless systems. For example, when the probability of the next failure is only
dependent on the present state (e.g., loss of battery power) of the mobile phone when
a failure occurs [MUS87] . This is a reasonable assumption because, for example,
prior calls by the mobile device should have no effect on the current failure probabil-
ity of the device. Then the probability of x mobile phone failures occurring during
operating time t, is given by Equation 15.1 :

 P x t
e t

x
,

t x

(,)
()

!
=

−λ λ
 (15.1)

 where λ is the failure rate. Note that when x = 0, Equation 15.1 yields the classical
reliability expression R(t) = e −λ t .

 Using the fraction of failures in each category in Table 15.1 and the 533 total
failure reports that are available, you can compute the expected number of failures
shown in Table 15.2 by multiplying the fraction of failures by 533. In addition, the

Table 15.2 Expected Number of Failures, Failure Rates, and Recovery Rates

 Failure type
 Service
phone

 Recovery Action

 Unreported
 n

Totals
 Failure
rate λ Reboot

 Remove
battery

 Wait for
response

 Repeat
operation

 Freeze 19.45 12.58 48.02 22.87 0.00 32.03 134.96 9.64
 Input 3.41 3.41 1.12 0.00 3.41 4.58 15.94 1.14
 Output 36.62 46.90 2.29 3.41 30.86 73.18 193.27 13.80
 Self -

 shutdown
 35.44 0.00 11.46 2.29 0.00 41.20 90.40 6.46

 Unstable
behavior

 36.62 9.17 1.12 1.12 3.41 46.90 98.34 7.02

 Totals 131.54 72.06 64.01 29.69 37.68 197.90 n
 Recovery

rate
 9.40 5.15 4.57 2.12 2.69 14.14

Mobile Device Engineering 385

failure rate was computed for each failure type and recovery action by λ = n/t, where
n is the “ Totals ” column and row of Table 15.2 and t is equal to 14 months — the
length of time during which the failure data was collected. With the failure rate in
hand, you can compute the probability of one or more failures during the operational
time for each failure type (i.e., unreliability at operational time t). This is done in
Equation 15.2 :

 P x t
e t

x

t x

(,)
()

!
.> = − ⎡

⎣⎢
⎤
⎦⎥

−

0 1
λ λ

 (15.2)

 The result is shown in Figure 15.2 , where two of the high severity failure categories
are plotted. The fi gure indicates that over the life of a mobile phone — reports indicate
that phones are discarded every 18 months — it is highly unlikely that there would
be failure - free service for these failure categories. The same result was obtained for
the other failure categories but it was infeasible to include them in the same fi gure.
The results suggest that, given the fact that memory violations are the cause of the
majority of the failures, vendors should provide better protection against memory
violations, such as validity checks on memory access to ensure that the correct area
of memory is being accessed.

 Figure 15.3 shows an application of Equation 15.1 applied to the input failure
category where an improvement in reliability is achieved by switching from a failed
phone to a nonfailed phone in the backup network. This process is only possible in
the case of an organization with multiple cell phone users at various locations, such
that a user with a working phone can take over communication from a user with a
failed phone.

Figure 15.2 Mobile phone: probability of one or more failures P(x > 0) versus operating time t.
Series 1: Input failure, high severity; expected number of failures = 15.94; failure rate = 1.14 failures
per month. Series 3: Unstable behavior, high severity; expected number of failures = 98.74; failure
rate = 7.02 failures per month.

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

t (months)

P
(x

 >
 0

)

Series 1

Series 3

386 Computer, Network, Software, and Hardware Engineering with Applications

Figure 15.3 Context - and network - aware mobile data network. P(x, t), probability of x number of
input failures in operational time t; t 1 , cell phone 1: failure in 1 hour, cell phone 2: no failure; t 2 ,
network split. Improvement in reliability = 0.3592. Cell phone 2 exhibits context awareness and
mobile connectivity to obtain GPS location information.

Mobile
Data

Network

Backup
Mobile
Data

Network

failure

senses failure

cell phone 1

cell phone 2

connects with nonfailed phone at t 1

P(x > 0, t1) = 0.6796

P(x = 0, t1) = 0.3204

network awareness senses network split:
connects cell phones

to backup network at t2

Satellite

GPS

Radio towerRadio tower

nominal connectivity

mobile connectivity

 Another perspective of failure characteristics is shown in Figure 15.4 , where
interestingly, you can identify the best customer strategy, based on using the expected
number of failures and failure rates corresponding to the recovery action categories.
Figure 15.4 shows that for mobile phone usage time of less than 4 months, the best
customer action is to wait for a response from the phone. For extended usage (i.e.,
t > 4), none of the alternatives would be more advantageous than the others.

Stabilization Time

 It is of interest to compute the operating time during which a specifi ed reliability
requirement is achieved. This is the stabilization time mentioned earlier that increases
with decreasing failure rate for a specifi ed reliability. This time is computed by
solving R(t) = e −λ t for t, as follows:

 t
LN R t

,= − (())

λ
 (15.3)

 where R(t) is now the specifi ed reliability.
 Again using the high severity types of failures, Equation 15.3 is computed in

Figure 15.5 , where you can see that for low failure rate, input failures , the specifi ed
reliability is achieved for a longer stabilization time than for high failure rate,

Mobile Device Engineering 387

Figure 15.4 Mobile phone: probability of one or more failures related to recovery action P (x > 0)
versus operational time t. Series 1: Service phone, expected number of failures = 131.54, failure
rate = 9.40 failures per month. Series 2: Wait for response, expected number of failures = 29.69,
failure rate = 2.12 failures per month. Series 3: Repeat operation, expected number of failures = 37.68,
failure rate = 2.69 failures per month.

0.8600

0.8800

0.9000

0.9200

0.9400

0.9600

0.9800

1.0000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

t (months)

P
(x

 >
 0

)

Series 1

Series 2

Series 3

For t < 4 months, best customer strategy is to wait for response

Figure 15.5 Mobile phone: stabilization time t versus specifi ed reliability R(t) for failure types.
Series 2: Input failure, high severity, failure rate = 1.14 failures per month, meets reliability
requirement for 2.78 days of operation. Series 4: Unstable behavior, high severity, failure rate = 7.02
failures per month, meets reliability requirement for 0.45 days of operation.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000

R(t)

t
(d

ay
s)

Series 2

Series 4

Reliability requirement

388 Computer, Network, Software, and Hardware Engineering with Applications

unstable behavior failures . Figure 16.6 presents the corresponding information for
recovery actions, where the fi nding of Figure 15.4 is confi rmed: the best customer
strategy is to wait for a response. Doing so would result in the longest stabilization
time of the various recovery actions.

MOBILE DEVICE CONTEXT AWARENESS

 Information about the user ’ s environment offers new opportunities to improve per-
sonalized applications. Such applications constantly need to monitor the environ-
ment (e.g., connectivity to access points, as identifi ed by sending test signals) — called
context— to allow the application to react according to this context. Context aware-
ness is especially interesting in mobile scenarios where the context of the application
is highly dynamic in which the application must deal with the constraints of presen-
tation (e.g., small display screen) and communication restrictions (e.g., noisy signal
propagation conditions) [HOF03] . With regard to location awareness, most WLANs
positioning systems use received signal strength (RSS) as important information to
estimate the location of a mobile station (see Fig. 15.1). RSS can be obtained at the
access points or at the mobile device [YEU07] .

Figure 15.6 Mobile phone: stabilization time t versus specifi ed reliability R(t) for recovery actions.
Series 1: Service phone, failure rate = 9.40 failures per month, meets requirement for 0.34 days of
operation. Series 2: Wait for response, failure rate = 2.12 failures per month, meets requirement for
1.49 days of operation. Series 3: Repeat operation, failure rate = 2.69 failures per month, meets
requirement for 1.17 days of operation.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000

R(t)

t
(d

ay
s)

Series 1

Series 2

Series 3

Reliability requirement

Mobile Device Engineering 389

 A user who is moving with his or her mobile device is not permanently con-
nected to a network, as depicted in Figure 15.1 . In the case of WLAN, Bluetooth,
or other wireless connections, if a user gets out of range of access points, the user
is switched to other access points. Since permanent connections are not guaranteed,
an application cannot rely on remote servers. This discontinuity of network connec-
tions has to be taken into account when designing an architecture for mobile devices.
But the network connection is not the only difference of mobile versus nonmobile
applications. Mobile devices are much more personal, meaning that the user of a
mobile device seldom changes [HOF03] . This characteristic is a benefi t in disguise
because, unlike the case of nonmobile users, there is only a single user who can be
the source of user - injected errors.

 Regarding the need to save energy, a mobile device can be turned off, or some
features can be disabled when they are not required. While this saves energy, a
deactivated sensor cannot sense any information about the context and, therefore,
the context cannot be determined until the sensor is turned on again [HOF03] .

 On the basis of these special characteristics of a mobile device scenario, the
following requirements for an architecture to support context awareness on mobile
devices have been identifi ed:

• Lightweightness . The framework has to take into account the restrictions on
limited processing power. For example, current IEEE 802.11 power saving
schemes provide limited savings for Voice over Internet Protocol (VoIP) wire-
less traffi c. A novel scheme named Adaptive Microsleep (AMS) can be
applied to solve this problem. AMS is well suited for power saving on mobile
VoIP devices by adapting to power needs. For example, when power require-
ments are low, the amount of time that devices spend in a low power sleep
state is increased, but doing so without introducing additional delays that
would noticeably deteriorate voice quality [CHA07] .

• Extensibility . Since available sensors (i.e., a mobile device part that can sense
information, such as connectivity with an access point) and extension slots
are limited, it is not possible for a single device to sense all context informa-
tion. Therefore, the architecture should support connections to sensors that
are the most important for a given application.

• Robustness . The architecture has to guard against disconnections of remote
sensors (e.g., sensor associated with access point).

• Context Sharing . Provide a mechanism for sharing context information (i.e.,
information about wireless environment [S/N]) with other mobile devices.

 The context architecture comprises the following types of context:

• Time . The current time, as provided by the system clock of the mobile device.

• Location . Represents the current (physical) position of the mobile device
using Global Positioning System (GPS) coordinates. This context is typically
set by an adaptor, which reads a GPS receiver. This is illustrated in Figure
 15.3 where cell phone 2 obtains GPS - provided location information.

390 Computer, Network, Software, and Hardware Engineering with Applications

• Device Identifi cation . Consists of an identifi er, which should be unique, and
a device type, which can be used to distinguish between different types of
devices, such as desktop PCs, laptops, and personal digital assistants (PDAs).

• User . Identifi es the current user of the device [HOF03] .

• Network . Contains information about the available network connection types
of the device (e.g., access point, wired network). This context can provide
additional information, such as the likelihood of the abort of a connection and
the connection available bandwidth.

• Operating Context (OC) . This is defi ned by the device hardware and soft-
ware, the target user, and other characteristics, such as the communications
carrier. For example, consider the following two OCs:

• OC1: target device = Nokia N90 (defi nes device hardware and software),
target user = subscribers of carrier A.

• OC2: target device = Nokia N90 (defi nes device hardware and software),
target user = subscribers of carrier B.

 Note that both OCs are for the same physical device.

Interoperability of Mobile Devices with Other
Computing Infrastructures

 In the near future, personal mobile devices will become ingredients of other infra-
structures, such as electric power grids. Computing techniques have been devised
to enhance mobile devices so that their interoperability with grid infrastructures will
be achieved by employing Personal Augmented Computing Environment (PACE).
PACE characteristics include (1) collaborative mobile device visualization (e.g.,
electric utility and customer meter reading), (2) context - aware methods for mobile
devices to achieve effi cient utilization of grid resources (e.g., electric utility mobile
device senses power outage and invokes backup power supply), and (3) integration
of mobile devices and environmental infrastructures (e.g., amalgamation of electric
utility and customer mobile devices with electric utility substation to achieve effi -
cient power usage) [LUO07] . This development is important because it facilitates
the production of common power utility software and common customer software,
thus achieving software portability [MIK07] .

Context-Aware Migratory Service

 Due to the vagaries of context aware services, a model is needed of service interac-
tion in ad hoc networks, based on the concept of context - aware migratory service.
Unlike a regular service that always executes on the same node, a context - aware
migratory service is capable of migrating to different nodes in the network in order
to effectively accomplish its task. For example, a mobile device lacking connectivity
to an access point can migrate to another access point. The service migration is

Mobile Device Engineering 391

context aware because it is triggered by context changes of the nodes in the ad hoc
network [RIV07] . An example is cell phone mobility in Figure 15.1 , triggered by
sensing an intrusion.

 When failures occur, the mobile network has to try to fi nd other devices to
execute the mobile programs. If it is successful in fi nding such a device, it will
transfer program control to that device [KUN] . You can consider the probability
P(x > 0) of one or more failures x of the failing device versus the probability of
x = 0 failures P (x = 0) of the nonfailing device, and compute the improvement in
reliability. This process is illustrated in Figure 15.3 .

NETWORK-AWARE APPLICATIONS

 A network - aware application attempts to adjust its resource demands in response to
network performance variations. In most current network - aware applications,
changes in network environments refer to changes in the following parameters of
network quality: bandwidth, which is the minimum link capacity among all the links
from a source mobile device to a destination mobile device; throughput, which is
measured in rate of data transfer [CAO04]; and reliability. When these parameters
decrease, the network - aware application slows the utilization of resources to refl ect
the decrease in performance. Contrariwise, when parameters increase, resource
utilization is increased.

MOBILE DEVICE PERFORMANCE

User-Perceived Response Time

 Today, most personal mobile devices are multimedia enabled and support a variety
of concurrently running applications, such as audio and video players, word proces-
sors, and Web browsers. Media - processing applications are often computationally
complex. As a result, the user - perceived application response times are often poor
when multiple applications are concurrently executed. By using application - specifi c
buffering techniques, as shown in Figure 15.1 , the workload of these applications
can be “ shaped ” to fi t the available processor bandwidth [CHA06] .

Mobile Phone Performance Assessment

 Performance is an important quality attribute of a software system but it is not always
considered when mobile phone software is designed. Furthermore, software evolves
and these changes can negatively affect performance. New requirements could
introduce performance problems and the need for a different design. Performance
assessment is a way to highlight design fl aws or ineffi ciencies. Periodic performance
assessments can help to discover potential bottlenecks [DEL04] . For example, in
Figure 15.1 , a potential bottleneck to accurately locate the Internet Protocol (IP)

392 Computer, Network, Software, and Hardware Engineering with Applications

phone is the RSS. This parameter can be tuned to avoid a bottleneck by adjusting
receiver sensitivity in the phone.

Storage Capabilities

 Mobile computing devices with several networking interfaces have become com-
monplace (e.g., text messaging, Internet Web sites). Networked data storage facilities
greatly extend their use. The storage architecture for such devices is a critical per-
formance factor. A two - level structure is used in which one component, the mobile
memory cache, moves when the device is mobile [MAP07] , as illustrated in Figure
 15.1 . In addition, there is a fi xed location secondary storage component that is
capable of storing large amounts of mobile network data.

Signal-to-Noise Ratio

 As mentioned previously, and as shown in Figure 15.1 , S/N is an important perfor-
mance attribute of a mobile network. Data from mobile device vendors about actual
S/N are not available for this analysis; however, surrogates in Equation 15.4 are
based on the ratio of reliability (R(t) = signal) to unreliability (U(t) = noise):

 S N R t U t/ / .= () () (15.4)

 Using this metric, you can see in Figure 15.7 that the mobile phone customer would
not enjoy a good S/N for more than 4 months of usage.

Problem: Is there a limitation to computing S/N as shown above, and if so,
what is the limitation? Answer the question by formulating an equivalent
equation for S/N.

Solution: To obtain the answer, compute S/N as follows:

S

N

R t

U t

R t

R t
R t

= ()
()

= ()
− ()

=

()
−1

1
1

1
.

 Thus, S/N is only a function of reliability (i.e., signal) instead of signal and noise!
However, given the lack of signal and noise data, this is the best we can do.

SUMMARY AND CONCLUSIONS

 In conformance with the chapter objective, a variety of mobile device issues have
been addressed that differ dramatically from those of wired networks. Where data

Mobile Device Engineering 393

were available, as in the case of reliability, quantitative methods were employed to
assess reliability. A conclusion based on this analysis is that mobile device reliability
is only satisfactory for the fi rst few months of operation. If signifi cant advances are
to be made in reliability, it will be necessary to make improvements in both hardware
and software reliability, particularly as it relates to memory management.

 Where quantitative data were not available for issues such as context and
network awareness in mobile networks, it was shown how mobile networks can
adapt to changing conditions, such as a network split in Figure 15.3 , using a network -
 awareness approach. There is an urgent need for further research centered on col-
lecting and analyzing reliability and performance data related to context and network
awareness because these applications represent the greatest potential for improve-
ment in mobile networks, supporting, for example, the intelligent use of resources
in an electric grid network.

REFERENCES

 [CHA06] Samarjit Chakraborty , Balaji Raman , “ Application - specifi c workload shaping in multimedia -
 enabled personal mobile devices , ” Proceedings of the 4th International Conference on Hardware/
Software Codesign and System Synthesis (CODES + ISSS ’ 06) , 2006 , pp. 4 – 9 .

Figure 15.7 Mobile phone: signal - to - noise ratio S/N versus operational time t. Series 1: Input
failure, high severity, failure rate = 1.14 failures per month. Series 2: Wait for response, failure
rate = 2.12 failures per month.

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

0.3500

0.4000

0.4500

0.5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

t (months)

S
/N

Series 1

Series 2

Poor S/N for t > 4 months

394 Computer, Network, Software, and Hardware Engineering with Applications

 [CHA07] Shuvo Chatterjee , Shuvo Chatterjee , Shuvo Chatterjee , Shuvo Chatterjee , Dietrich
Falkenthal , Dietrich Falkenthal , Dietrich Falkenthal , Dietrich Falkenthal , Tormod Ree ,
 Tormod Ree , Tormod Ree , Tormod Ree , “ Exploring adaptive power saving schemes for mobile VoIP
devices in IEEE 802.11 networks , ” Second International Conference on Digital Telecommunications
(ICDT’ 07) , 2007 , p. 13 .

 [COR06] R. Cornea , A. Nicolau , N. Dutt , “ Software annotations for power optimization on mobile
devices , ” Proceedings of the Design Automation & Test in Europe Conference Volume 1, 2006 , p. 148 .

 [CIN07] M. Cinque , D. Cotroneo , Z. Kalbarczyk , and R. K. Iyer , “ How do mobile phones fail? A
failure data analysis of Symbian OS smart phones ,” 37th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN ’ 07), 2007 , pp. 585 – 594 .

 [DEL04] Christian Del Rosso , “ The process of and the lessons learned from performance tuning of a
product family software architecture for mobile phones ,” Eighth Euromicro Working Conference on
Software Maintenance and Reengineering (CSMR ’ 04) , 2004 , p. 270 .

 [ESA98] T. Escamilla , Intrusion Detection: Network Security beyond the Firewall . New York : John
Wiley & Sons , 1998 .

 [HOF03] Thomas Hofer , Wieland Schwinger , Mario Pichler , Gerhard Leonhartsberger , Josef
Altmann , Werner Retschitzegger , “ Context - awareness on mobile devices - the hydrogen approach , ”
36th Annual Hawaii International Conference on System Sciences (HICSS ’ 03) — Track 9 , January 2003 ,
p. 292a .

 [KUN] Christian P. Kunze , Sonja Zaplata , Mirwais Turjalei , and Winfried Lamersdorf , “ Enabling
context - based cooperation: a generic context model and management system , ” Distributed Systems
and Information Systems, Computer Science Department, University of Hamburg, Hamburg, Germany,
 http://vsis - www.informatik.uni - hamburg.de/getDoc.php/publications/314/BIS2008_kztl08.pdf

 [LUO07] X. Luo , “ PACE: augmenting personal mobile devices with scalable computing , ” Seventh IEEE
International Symposium on Cluster Computing and the Grid (CCGrid ’ 07) , 2007 , pp. 875 – 880 .

 [MAP07] Glenford Mapp , Dhawal Thakker , David Silcott , “ The design of a storage architecture for
mobile heterogeneous devices , ” International Conference on Networking and Services (ICNS ’ 07) ,
 2007 , p. 41 .

 [MIK07] Tommi Mikkonen , Programming Mobile Devices: An Introduction for Practitioners . Hoboken,
NJ : John Wiley & Sons, Ltd. , 2007 .

 [MUS87] John D. Musa , Anthony Iannino , and Kazuhira Okumoto , Software Reliability: Measure-
ment, Prediction, Application . New York : McGraw - Hill , 1987 .

 [PAR02] Taesoon Park , Namyoon Woo , Heon Y. Yeom , “ An effi cient optimistic message logging
scheme for recoverable mobile computing systems , ” IEEE Transactions on Mobile Computing , 2002 ,
 1 (4), pp. 265 – 277 .

 [QIN03] Liang Qin , Thomas Kunz , “ Increasing packet delivery ratio in DSR by link prediction , ” 36th
Annual Hawaii International Conference on System Sciences (HICSS ’ 03) — Track 9 , 2003 , p. 300a .

 [RIV07] Oriana Riva , Tamer Nadeem , Cristian Borcea , and Liviu Iftode , “ Context - aware migratory
services in ad hoc networks , ” IEEE Transactions On Mobile Computing , 2007 , 6 (12).

 [SAU06] Vibhu Saujanya Sharma , Pankaj Jalote , “ Stabilization time — a quality metric for software
products , ” 17th International Symposium on Software Reliability Engineering (ISSRE ’ 06) , 2006 , pp.
 45 – 51 .

 [TRE] http://us.trendmicro.com/imperia/md/content/us/pdf/products/enterprise/mobilesecurity/wp05_
tmms_080211us.pdf

 [VAN03] Debra VanderMeer , Anindya Datta , Kaushik Dutta , Krithi Ramamritham , Shamkant B.
Navathe , “ Mobile user recovery in the context of Internet transactions , ” IEEE Transactions on Mobile
Computing , 2003 , 2 (2), pp. 132 – 146 .

 [WAN07] Qixin Wang , Xue Liu , Weiqun Chen , Lui Sha , and Marco Caccamo , “ Building robust wire-
less LAN for industrial control with the DSSS - CDMA cell phone network paradigm , ” IEEE Transac-
tions on Mobile Computing , 2007 , 6 (6), pp. 706 – 719 .

 [YE02] Nong Ye , Syed Masum Emran , Qiang Chen , Sean Vilbert , “ Multivariate statistical analysis
of audit trails for host - based intrusion detection , ” IEEE Transactions on Computers , 2002 , 51 (7),
pp. 810 – 820 .

Mobile Device Engineering 395

 [YEU07] Wilson M. Yeung , Joseph K. Ng , “ Wireless LAN positioning based on received signal strength
from mobile device and access points , ” 13th IEEE International Conference on Embedded and Real -
 Time Computing Systems and Applications (RTCSA 2007) , 2007 , pp. 131 – 137 .

 [YUK03] Yukikazu Nakamoto , “ The next generation software platform for mobile phones , ” Sixth IEEE
International Symposium on Object - Oriented Real - Time Distributed Computing (ISORC ’ 03) , 2003 ,
p. 46 .

Chapter 16

Signal - Driven Software Model
for Mobile Devices

T here is a paucity of software models that deal with mobile devices. Therefore, the motiva-
tion for this chapter is to build on the mobile device material learned in Chapter 15 and apply
it to the development of important mobile device software models. Issues in mobile device
reliability are explored, using a signal - driven software model for mobile devices. Based on
mobile phone failure data reported in the literature, the model is implemented in two dimen-
sions: by type of failure and by type of failure recovery action. Based on these calculations,
it can be concluded that current mobile devices are unable to provide highly reliable service
for more than a few months of operation. In addition, a novel signal - to - noise ratio (S/N)
representation of reliability is developed and applied to the failure and recovery action data.
Having discovered that S/N infl uences test effectiveness, it can be shown that S/N can be
used to prioritize software modules for testing.

INTRODUCTION

 You may ask: what is so important about signal - driven software models? How do
they differ from plain old input - driven software models? Well, there are signifi cant
differences because mobile devices operate in a hostile communications environ-
ment, confronted by adverse atmospheric conditions and physical barriers to signal
propagation. Thus, software models for mobile devices must take these conditions
into account.

 The key issues in mobile computing include mobility - related reliability and
testing problems, such as loss or degradation of wireless connections, high latency
wireless networks, and low quality connections (e.g., caused by network failures)
 [POU06] . To address the reliability issue, a signal - driven software model for mobile
devices is developed and shown in Figure 16.1 . In the physical mobile device
system, signal strength is critical to effective communication. Mobile devices use

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F.
Schneidewind.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley &
Sons, Inc.

396

Signal-Driven Software Model for Mobile Devices 397

received signal strength to estimate the location of other devices and stations
 [YEU07] . Analogously, signal strength in a software model is important because,
with high signal strength S, representing the number of correct software modules,
and low noise strength N, representing the number of failed software modules, reli-
ability will be increased, as shown in Figure 16.1 , by decreasing the ratio N/S. This
formulation of signal - to - noise ratio (S/N) may seem strange because traditionally,
signal and noise are represented by electrical signals. This is appropriate for hard-
ware that can process signals represented by voltage, but, for software, a representa-
tion is needed that pertains to the correctness of the software production process.

Mobile Device Software Reliability and Testing

 In software products, often the failure rate decreases after installation, eventually
reaching a steady state. The time it takes for a product to reach its steady - state reli-
ability depends on different product parameters. Stabilization time is the time taken
after installation for the reliability of the product to asymptotically approach a con-
stant value [SAU06] . In mobile devices, achieving stabilization is a function of
parameters, such as quality of communication between mobile devices and between
mobile devices and mobile network, as represented by S/N. Interestingly, S/N does
not have to be limited to measurement in physical systems. It can be used as a
measure of software reliability in Figure 16.1 .

 Reliability becomes even more critical as new applications emerge for mobile
phones (e.g., robot control, traffi c control, and telemedicine). In such scenarios, a
device failure affecting the application could result in a signifi cant loss or hazard
(e.g., a robot performing uncontrolled actions) [CIN07] . The challenges to reliability
are amplifi ed because of the problems with current - generation wireless technologies.

Figure 16.1 Signal - driven software model for mobile devices.

Modulator
Negative

Amplifier

Translator for

GPRS to

Communications

Carrier
Demodulator

Noise

Suppression

Decrease N

Signal Generator

Module Requirements
for GPRS

Requirements Inspection

Noise Noise

Design Code Test Reliability

Analysis

Operation

Requirements Ambiguity

Feedback Correction Signal (Revised Requirements)

S/N = Signal/Noise = # Correct Modules/# Failed Modules

Failed Modules
Correct Modules

Reliability = 1–(N/S)

C = S–N

o User Interface

o Communications Interface

o Built in Resources (video)

o Software Defined Device

Freeze Failure in User Interface,

Severity: High

N
S

S

Correct Memory

Leakage of

Battery Software

Increase S

Test Cases

Predictions

Operational

Environment

Emulator Mobility Data

Stress

398 Computer, Network, Software, and Hardware Engineering with Applications

Whether it be due to signal dead zones, environmental conditions, a crowded con-
centration of mobile devices, or simply a device going offl ine to save data charge
costs, mobile wireless devices do not have the same communication reliability as
their wired counterparts [LAR07] .

Testing Challenges

 Users have high expectations for the reliability of the software on mobile devices.
Users require devices to be reliable and stable. They will not be comfortable with a
mobile device that crashes and loses personal data. This requires the device manu-
facturer and software vendors to guarantee the high quality of their products. Testing
is their most important tool. The testing of mobile devices is diffi cult because the
environment is complex . To be effective, the execution of tests should interact with
end users, wireless signals , and the wireless network. The diversity of mobile devices
reduces the reusability of test cases. The devices are highly resource constrained in
terms of processing and communication ability and in memory capacity; test plans
must recognize these constraints.

 The testing approach must be highly nonintrusive to the mobile device environ-
ment in order that test results refl ect realistic operating conditions. Also, device
behavior is highly interactive. The devices constantly accept activations from users
and send responses back for the user to take further action. Since it is diffi cult to
predict a user ’ s actions, many of the usage scenarios are diffi cult to automate.

 The development of software for mobile computing devices is very diffi cult due
to the limited computational resources of these devices (i.e., a great deal of func-
tionality must be squeezed into a small memory space). This highly compact func-
tionality must be refl ected in the testing strategy (i.e., testing must be performed in
the constrained memory of the mobile device, not in the software development
platform). Furthermore, mobile device tasks are susceptible to errors because
changes in network connectivity and locations may lead to sudden and unpredict-
able changes. A change in mobile network and mobile device location may imply
movement away from the servers currently in use, and toward new ones. For
example, a handheld computing device with a short - range radio link, such as IEEE
802.11b or Bluetooth, carried across the fl oors of an offi ce building, may have
access to different resources, such as printers and directory information for visitors,
on each fl oor. Therefore, to construct reliable application software, the developer
must test it in the operating environment of the mobile devices [SAT03] . However,
it is impractical to physically visit all the places where the device may operate.
Therefore, it is necessary to emulate the operational environment as shown in
Figure 16.1 .

 Another testing challenge is to include the number of active users connected to
mobile networks. This is an important aspect that affects the reliability of the con-
nection and the performance of the device, as perceived by the user. More active
users lead to fewer available communication timeslots, which decreases the through-
put per user and, as a result, the latency increases [HOL06] . Latency is defi ned as

Signal-Driven Software Model for Mobile Devices 399

the time required for the data signal to be transmitted through the communications
medium [ROU04] . Latency is the reciprocal of data rate that is tabulated for mobile
devices in Table 16.1 . A queuing model — not covered in this chapter — could be
developed, using message transmission rate as queue arrival rate, and a variable
number of active users, in order to estimate latency during performance testing.

MOBILE DEVICE CHARACTERISTICS

 Mobile devices have unique characteristics that must be taken into consideration
when modeling reliability and testing. These characteristics are the following
 [FIT07] :

Static versus Dynamic

 The static part of the mobile device is its hardware; the dynamic part that can respond
to changing operating conditions, is its software. The industry is developing a
software - defi ned device that can be dynamically defi ned in real time. The software -
 defi ned device provides needed functionality (e.g., short - range to long - range com-
munication). The specifi cation of requirements for such a device is suggested in
Figure 16.1 .

Interfaces

 Interfaces have been a major source of failures in computer systems because the
joining of disparate components of a system is a complex process, subject to many
failures, for example the interface between a mobile device and a mobile network.
Thus, interfaces represent the major software modules to be developed by the mobile
device process in Figure 16.1 : user interface (e.g., user keying of mobile device),
communication interface (e.g., mobile device to cellular communication), and built -
 in resources (e.g., interface between mobile device built - in video reception and its
display).

Communication Systems

 Various mobile device characteristics are tabulated in Table 16.1 . Assembling these
data helps us to identify a mobile device technology with a relatively low reliability
rating, appropriate for applying a reliability model for worst - case analysis — General
Packet Radio Service (GPRS). The reliability analysis of GPRS has general appli-
cability because it is used in several applications. An important characteristic of
mobile devices is that a given device may communicate with more than one com-
munications carrier [COM] . Thus, in Figure 16.1 we show GPRS requirements
being translated to software code compatible for operating with a communications
carrier.

Ta
bl

e
16

.1

 M
ob

ile
 D

ev
ic

e
C

om
m

un
ic

at
io

n
C

ha
ra

ct
er

is
tic

s

 G
en

er
at

io
n

 Ty
pe

 D

at
a

ra
te

 N

et
w

or
k

ac
ce

ss
 N

um
be

r
of

 t
im

e
sl

ot
s

pe
r

us
er

 N

et
w

or
k

co
m

m
un

ic
at

io
n

 E
rr

or

ch
ar

ac
te

ri
st

ic
s

 R
el

ia
bi

lit
y

ra
tin

g
 A

pp
lic

at
io

n

 2G

 C
SD

 9.

6
 kb

ps

 T
D

M
A

 1

 C
ir

cu
it

sw
itc

hi
ng

 N

o
er

ro
r

co
rr

ec
tio

n
 L

ow

 C
el

l
ph

on
e

 2G

 H
SC

SD

 9.
6

 kb
ps

 T

D
M

A

 1
 C

ir
cu

it
sw

itc
hi

ng

 Fu
ll

er
ro

r
co

rr
ec

tio
n

 H
ig

h
 C

el
l

ph
on

e

 2G

 H
SC

SD

 38
.4

 k
bp

s
 T

D
M

A

 1
 C

ir
cu

it
sw

itc
hi

ng

 Pa
rt

ia
l

er
ro

r
co

rr
ec

tio
n

 M
od

er
at

e
 C

el
l

ph
on

e

 2G

 H
SC

SD

 57
.6

 k
bp

s
 T

D
M

A

 4
 C

ir
cu

it
sw

itc
hi

ng

 N
o

er
ro

r
co

rr
ec

tio
n

 L
ow

 C

el
l

ph
on

e

 2.
5G

 G

PR
S

 17
1.

2
 kb

ps

 T
D

M
A

 8

 Pa
ck

et
 s

w
itc

hi
ng

 Po

or
 p

er
fo

rm
an

ce

in
 f

ul
ly

 l
oa

de
d

ce
lls

L
ow

 C

el
l

ph
on

e,
 e

 - m
ai

l,
W

eb
 b

ro
w

si
ng

 2.
5G

 E

D
G

E

 47
3.

6
 kb

ps

 T
D

M
A

 8

 M
od

ul
at

io
n

 U
nk

no
w

n
 U

nk
no

w
n

 C
el

l
ph

on
e,

 e
 - m

ai
l,

W
eb

 b
ro

w
si

ng

 3G

 U
M

T
S

 38
4

 kb
ps

 W

C
D

M

 8
 Pa

ck
et

 s
w

itc
hi

ng

 U
nk

no
w

n
 U

nk
no

w
n

 C
el

l
ph

on
e,

 e
 - m

ai
l,

W
eb

 b
ro

w
si

ng

 C
SD

, c
ir

cu
it

sw
itc

he
d

da
ta

;
H

SC
SD

, h
ig

h -
 sp

ee
d

ci
rc

ui
t

sw
itc

he
d

da
ta

;
E

D
G

E
, e

nh
an

ce
d

da
ta

 r
at

es
 f

or
 G

SM
 e

vo
lu

tio
n;

 U
M

T
S,

 u
ni

ve
rs

al
 m

ob
ile

 t
el

ec
om

m
un

ic
at

io
ns

sy

st
em

;
T

D
M

A
, t

im
e

di
vi

si
on

 m
ul

tip
le

 a
cc

es
s;

 W
C

D
M

, w
id

e
ba

nd
 c

od
e

di
vi

si
on

 m
ul

tip
le

xi
ng

.

400

Signal-Driven Software Model for Mobile Devices 401

 In order to understand how mobile devices fail and the consequent recovery
actions, the following defi nitions are provided in the succeeding sections, followed
by elaborations of failure and recovery action characteristics [CIN07] .

Failure Types

• Freeze (Lock - Up or a Halting Failure). The device ’ s output becomes con-
stant, and the device does not respond to the user ’ s input.

• Input Failure. User inputs have no effect on device behavior (e.g., device
keys do not work).

• Output Failure. The device, in response to an input sequence, delivers an
output sequence that deviates from the expected one. Examples include inac-
curacy in battery charge indicator, ring or music volume different from the
confi gured one, and event reminders going off at wrong times.

• Self - Shutdown (Silent Failure). The device shuts itself down, and no service
is delivered at the user.

• Unstable Behavior (Erratic Failure). The device exhibits erratic behavior
without any input inserted by the user (e.g., backlight fl ashing and self -
 activation of applications). Unstable behavior can be caused by programming
errors induced by the trend toward integration of complete systems on a chip
that requires the placement of larger and larger chips into complex and small
mobile devices [ZAN93] .

Recovery Actions

 User - initiated actions to recover from a device failure can be classifi ed according to
the following categories:

• Service the Phone. The user has to bring the phone to a service center for
assistance. Often, when the failure is fi rmware related, the recovery consists
of either a master reset (all the settings are reset to the factory settings and
the user ’ s content is removed from the memory) or a fi rmware update (i.e.,
uploading a new version of the fi rmware). Firmware is software instructions
embodied in a read - only memory as opposed to using a read – write memory.
Problems are fi xed by substituting malfunctioning components (e.g., screen,
keypad, fi rmware) or by replacing the entire device with a new one.

• Reboot (Reset the Mobile Device). The user turns off the device and then
turns it on to restore the correct operation (a temporary corrupted state is
cleaned up by the reboot). Related to reboot is a panic event. A panic event
represents a nonrecoverable error condition signaled to the mobile device
operating system kernel by either the user or by applications. Information
associated with a panic event is delivered to the operating system kernel,
which decides on the recovery action (e.g., system reboot).

402 Computer, Network, Software, and Hardware Engineering with Applications

• Remove Battery. Battery removal is mainly performed when the phone
freezes. In this case, the phone often does not respond to the power on/off
button. Battery removal can clean up a permanent corrupted state (e.g., cor-
rupted memory contents); however, this is a crude way to invoke power
management. Improved power management is needed in mobile devices to
increase their utilization [YUK03] . Battery problems can be mitigated by
using a power - saving technique that increases the amount of time devices
spend in a low power sleep state, but doing so without introducing additional
delays that would noticeably degrade performance [CHA07] .

• Wait for a Response. Often it is suffi cient to wait for a certain amount of time
to let the device deliver the expected service.

• Repeat the Action. Repeating the action is sometime suffi cient to get the
mobile device working properly (i.e., the problem was transient).

Failure Severity

 Failure severity is classifi ed according to the user perspective and defi nes severity
levels corresponding to the diffi culty of the recovery action(s).

• High. A failure is considered to be of high severity when recovery requires
the assistance of service personnel.

• Medium. A failure is considered to be of medium severity when the recovery
requires reboot or battery removal.

• Low. A failure is considered to be of low severity if the device operation can
be reestablished by repeating the action or waiting for a certain amount of
time.

Failure Characteristics

 Mobile device failure characteristics are compiled in Table 16.1 . Despite their high
occurrence, output failures are low severity, since repeating the action is often suf-
fi cient to restore the device to correct the operation. On the other hand, self - shutdown
and unstable behavior are considered to be high - severity failures because they must
be corrected by servicing the phone or removing the battery. Phone freezes are
medium severity, since rebooting occurs only in 2.36% of the freeze failures. While
input failures are high severity when device keys do not work, their frequency of
occurrence is low.

 Additionally, failure occurrences can be associated with the user activity at the
time of the failure. In particular, 13% of failures occur during voice calls, 5.4% while
creating, sending, and receiving text messages, 3.6% while using Bluetooth, and
2.4% when manipulating images. Finally, the history of mobile device usage indi-
cates that there are memory leaks (i.e., loss of data in mobile device memory),
incorrect use of the device resources (e.g., excessive activation of wireless com-

Signal-Driven Software Model for Mobile Devices 403

munication links by the user), bad handling by software of pointers to mobile device
instructions and data, and incorrect management of buffer sizes (e.g., too little
memory space allocated to buffers, resulting in buffer overfl ow).

Recovery Action Characteristics

 From the recovery action perspective, reboots are an effective way to recover from
output failures (8.80% of the total number of failures). This indicates that output
failures are often due to a temporary software corrupted state, which is cleaned up
by the reboot. This is also confi rmed by the fact that repeating the action is often
suffi cient to restore a correct device operation. Freezes are usually recovered by
pulling out the battery (9.01%) or recovered by simply waiting for the phone to
respond (4.29%). This may indicate that a certain fraction of battery removals and
reboots in response to freezes is due to frustrated user actions.

Probability of Failure and Recovery Action

 The empirical failure probability for different types of failures and the probability
of recovery action, given a failure, are shown in Table 16.2 [YUK03] . These prob-
abilities allow us to estimate both the signal (number of correct modules) and noise
(number of failed modules) in Figure 16.1 and, hence, the reliability of a mobile
device. For the purpose of illustration, assume that the data in Table 16.2 apply to

Table 16.2 Probability of Failure and Corresponding Recovery Action

 Failure type Severity

 Probability of recovery action given a failure

 Probability
of failure

 Recovery action

 Service
phone Reboot

 Remove
battery

 Wait for
response

 Repeat
operation Unreported

 Freeze Medium 0.0365 0.0236 0.0901 0.0429 0 0.0601 0.2532
 Input failure High 0.0064 0.0064 0.0021 0 0.0064 0.0086 0.0299
 Output

failure
 Low 0.0687 0.088 0.0043 0.0064 0.0579 0.1373 0.3626

 Self -
 shutdown

 High 0.0665 0 0.0215 0.0043 0 0.0773 0.1696

 Unstable
behavior

 High 0.0687 0.0172 0.0021 0.0021 0.0064 0.088 0.1845

 Totals
 Probability of

recovery
action

 0.2468 0.1352 0.1201 0.0557 0.0707 0.3713 0.9998

404 Computer, Network, Software, and Hardware Engineering with Applications

the GPRS mobile device whose communication characteristics were defi ned in Table
 16.1 . The reason for this is that, as mentioned previously, GPRS has a relatively low
reliability rating (see Table 16.1). Thus, it would be interesting to focus on this
device.

MOBILE DEVICE RELIABILITY MODEL

Focus on Failure Type

 Using the mobile device empirical probabilities of failure and recovery in Table 16.2 ,
construct a simple model of reliability based on the S/N shown in Figure 16.1 ,
focusing on failure type. This analysis will allow you to understand the relationship
between failures, recovery actions, and reliability. Assuming the probabilities P ij of
a recovery action of type j, given a failure of type i, are independent, the probability
of a failure of type i is estimated in Equation 16.1 . This equation sums the probability
of a failure of type i over all recovery actions n. Regarding the assumption of inde-
pendence, we have no reason to believe, for example, that rebooting, as the result
of a freeze failure, depends on servicing the device:

 P Pi ij

j

n

=
=

∑
1

. (16.1)

 Failure severity is refl ected in the model according to the following severity codes
that were defi ned earlier: severity high , code = 3; severity medium , code = 2; and
severity low , code = 1. Then, the expected number of failed modules of failure type
i, where M is the total number of modules in a mobile device, is given by Equation
 16.2 ; this is the noise factor N in Figure 16.1 :

 N P sMi i= . (16.2)

 The total number of modules M must be equal to the number of correct modules S i
(signal) plus the number of failed modules N i (noise). Thus the signal S, based on
failure type i, is computed in Equation 16.3 :

 S M N P s Mi i i= − = −() .1 (16.3)

 As indicated in Figure 16.1 , reliability R i of a mobile device when failures of type
i occur is related to the inverse of the S/N (i.e., unreliability). Using this fact and
Equations 16.2 and 16.3 , produce Equation 16.4 :

 R N /S P sM/ P s M for Ri i i i i i= − = − − ≥1 1 1 0() (()), . (16.4)

 Again, using Equations 16.2 and 16.3 , the S/N, based on failure type i, is computed
as follows:

 S /N P s M/P sM P s /P si i i i i i= − = −() () .1 1 (16.5)

Signal-Driven Software Model for Mobile Devices 405

 It is also important to estimate the feedback control signal C i in Figure 16.1 that
refers to the difference between number of correct modules (S i) and number of failed
modules (N i) for failure type i. This feedback would be used to revise mobile device
requirements for the purpose of driving N i to 0 and C i to = S i . This idea is imple-
mented for failure type i in Equation 16.6 . However, if C i is negative, it indicates
that there is more noise than signal and that the software is in need of signifi cant
software development process improvement to reduce failures of type i.

 C S Ni i i= − . (16.6)

Focus on Recovery Action Type

 Again, using the mobile device empirical probabilities of failure and recovery, P ij ,
in Table 16.2 , construct another part of the reliability model based on the S/N shown
in Figure 16.1 , focusing on recovery action type j. In this case, estimate P j in Equa-
tion 16.7 as the probability of failure across the failure types i associated with a
given recovery action type j:

 P Pj ij

i

f

=
=

∑
1

, (16.7)

 where f is the number of failure types.
 Whereas previously the interest was in assessing reliability as a function of

failure type, now the focus is on reliability as a function of recovery action type.
This assessment identifi es which recovery actions produce the highest reliability.
Analogues to the failure type analysis, develop the reliability and S/N equations for
recovery type as follows.

 Since the expected recovery action is a probabilistic function of the failure
types, compute a weighted sum of the probabilities P ij , weighed by the failure sever-
ity code s ij . The idea, as in the case of failure types, is to represent failure severity
in the computation of expected number of failed modules, where now severity
refl ects both failure type and recovery type. Thus, the expected number of failed
modules of recovery type j, where M is the total number of mobile device modules,
and f is the total number of failures, is given by Equation 16.8 :

 N M P s for j nj ij ij

i

f

= =
=

∑
1

1, , , .… (16.8)

 In order to compute the signal, use the fact that M must equal the sum of correct
modules S j and failed modules N j . Thus the signal S j , the number of correct modules,
based on recovery action j, is computed in Equation 16.9 by using Equation 16.8 :

 S M N M P sj j ij ij

i

f

= − = −
⎛
⎝⎜

⎞
⎠⎟=

∑1
1

. (16.9)

406 Computer, Network, Software, and Hardware Engineering with Applications

 Reliability R j , based on recovery action type j, is related to the inverse of the S/N,
as follows:

 R N S

M P s

M N
for Rj j j

ij ij

i

f

j
j= − = −

−()

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

≥=
∑

1 1 01(/) , . (16.10)

 In addition, the S/N, based on recovery type j and reliability R j , from Equation 16.10 ,
is computed as follows:

 S /N / Rj j j= −1 1(). (16.11)

 Again it is important to estimate the difference that exists between correct modules
and failed modules. This feedback would be used to revise requirements for the
purpose of driving the noise N j to 0 and C j to be equal to the signal S j . This idea is
implemented in Equation 16.12 for recovery action type j in Equation 16.12 .
However, if C j is negative, it indicates that there is more noise than signal and
that the recovery method j is dysfunctional and that other recovery options should
be considered, for example central server monitoring of the health of the mobile
device.

 C S Nj j j= − . (16.12)

Model Limitations

 In revising software requirements, it is important to recognize that there are both
explicit and implied requirements [MCC02] . In the case of mobile devices, this is a
tricky issue because there is no direct developer – customer relationship (i.e., develop-
ers produce for a mass mobile device market). Almost all requirements are implicit
(e.g., able to connect to a mobile network on demand) as opposed to explicit require-
ments, such as the obvious one of having power when the device is turned on. This
issue illustrates the fact that there are aspects of mobile device development that
cannot be quantifi ed in a model, such as the one in Figure 16.1 . For example, noise
in the fi gure, representing requirements ambiguity, and quantifi ed as number of
failed modules, may capture power failure but not unsatisfactory Web search results.

 Another limitation of the model is the absence of workload in Figure 16.1 .
Measurements show that software reliability results cannot be considered representa-
tive unless the system workload is taken into account [IYE85] . For example, the
reliability of a mobile device will decrease nonlinearly with the amount of interactive
processing (e.g., number of simultaneous mobile network connections). This prop-
erty could be simulated but is diffi cult to address in an analytical model.

Question for Reader: It was stated above that S/N would not be an appropriate
metric for evaluating Web search results if noise is represented by number

Signal-Driven Software Model for Mobile Devices 407

Figure 16.2 Noise N i (number of failed modules) versus total number of modules M. Failure types:
Series 2: Input: high severity; Series 3: Output: low severity; Series 4: Self - shutdown: High severity,
freeze: medium Severity; Series 5: Unstable behavior: high severity.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

10 20 30 40 50 60 70 80 90 100

M

N
i Series 2

Series 3

Series 4

Series 5

Excessive Noise in System

of failed modules. That being the case, is there an appropriate metric that
uses S/N for evaluating Web search results?

Answer: Signal could be represented by the number of successful Web search
results and noise could be represented by the number of unsuccessful Web
search results. The Web search application objective would be to maximize
the S/N.

Failure-Type Estimation Results

 Figure 16.2 identifi es major noise contributors: unstable behavior and self - shutdown
that the noise suppression process in Figure 16.1 needs to emphasize in order to
improve the S/N. In Figure 16.3 , the S/N indexes reliability (e.g., high S/N yields
high reliability). Only two failure types are shown because the others have negative
reliability (i.e., noise exceeds signal). Thus, S/N can be used to rank the reliability
of mobile device software.

 Figure 16.4 shows that the feedback signal C i = S i – N i is negative in Figure
 16.1 for freeze and unstable behavior failure types. Therefore, negative feedback
is needed to correct modules because in these cases there are more failed modules
than correct modules. Although positive feedback is also important, the modules
with failure types associated with negative feedback should receive priority
attention.

408 Computer, Network, Software, and Hardware Engineering with Applications

Figure 16.3 Signal - to - noise ratio S/N versus probability of failure P i for failure type i.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Pi

S
/N

Input Failure, Severity = High, Reliability = 0.90

Output Failure, Severity = Low, Reliability = 0.43

Self-shutdown, Failure Severity = High

Unstable Behavior Failure, Severity = High

Freeze Failure, Severity = Medium

Figure 16.4 Correction signal C i (number of modules) versus total number of modules M. Failure
types: Series 1: Freeze, medium severity; Series 2: Input, high severity; Series 3: Output, low severity;
Series 4: Self - shutdown, high severity; Series 5: Unstable behavior, high severity.

–20.00

0.00

20.00

40.00

60.00

80.00

100.00

10 20 30 40 50 60 70 80 90 100

M

C
i

Series 1

Series 2

Series 3

Series 4

Series 5

Significant correction required

noise > signal

Signal-Driven Software Model for Mobile Devices 409

EXPECTED NUMBER OF FAILURES AND FAILURE
RATE ANALYSIS

 In order to extend the modeling effort into the mobile device operating time domain,
use the expected number of failures and failure rate data, organized by failure type
and recovery type, in Table 16.3 [YUK03] . These data permit more than one dimen-
sion to be represented in the model. The dimension presented so far has been static,
confi ned to, for example, reliability as a function of module count. There has been
no accounting of mobile device operating time. Unfortunately, the distribution of
failures over time is not available. Only the expected number of failures shown in
Table 16.3 and the operating time t = 14 months, which were used to compute the
failure rates λ , were available. Thus, the model is limited to using a simple time -
 based reliability model, like the one based on the classical exponential distribution.
A justifi cation of the model is that it is conservative because it does not exhibit reli-
ability growth. In fact, it shows just the opposite — reliability decreasing with operat-
ing time. In addition, exponentially distributed failure times refl ect a high probability
of short times and a low probability of long times. Furthermore, my aim is to
compare reliabilities by failure type and recovery action type, and not to accurately
predict reliability for particular types. Therefore, any shortcoming in the model will
occur for all failure and recovery action - type predictions. Thus, predict reliability
over a specifi ed operating time of the mobile device t, using Equation 16.13 :

 R t e t() .= −λ (16.13)

Table 16.3 Expected Number of Failures and Failure Rates

 Failure type

 Recovery action

 Totals

 Failure
type failure

rate (λ)
 Service
phone Reboot

 Remove
battery

 Wait for
response

 Repeat
operation Unreported

 Freeze 19.45 12.58 48.02 22.87 0.00 32.03 134.96 9.64
 Input

failure
 3.41 3.41 1.12 0.00 3.41 4.58 15.94 1.14

 Output
failure

 36.62 46.90 2.29 3.41 30.86 73.18 193.27 13.80

 Self -
 shutdown

 35.44 0.00 11.46 2.29 0.00 41.20 90.40 6.46

 Unstable
behavior

 36.62 9.17 1.12 1.12 3.41 46.90 98.34 7.02

 Totals 131.54 72.06 64.01 29.69 37.68 197.90
 Recovery

action
recovery
rate

 9.40 5.15 4.57 2.12 2.69 λ Failures per
month

410 Computer, Network, Software, and Hardware Engineering with Applications

Operating Time

 It is of interest to compute the operating time during which a specifi ed reliability
requirement R(t) is to be achieved. This time is equal to the mission duration that
can be achieved for a specifi ed R(t). This time is computed by solving R(t) in Equa-
tion 16.13 for t as follows:

 t
LN R t

.m =
− (())

λ
 (16.14)

 You can see that for a specifi ed reliability requirement R(t), the larger the failure
rate λ , the shorter the mission duration that can be achieved.

Results Based on Failure Rate Analysis

 Figure 16.5 is interesting because it shows that only one failure type — Input — has
acceptable reliability, and, then, only at low operating times. The other types require
drastic reductions in failure rate by eliminating software faults to qualify as accept-
able. This result is reinforced by Figure 16.6 , which shows failure type Input being
the only type that achieves the required mission duration of one month.

Figure 16.5 Reliability R(t) versus operating time t. Failure types: Series 1: Freeze, failure
rate = 0.69 failures per month; Series 2: Input, failure rate = 0.08 failures per month; Series 3: Output,
failure rate = 0.99 failures per month; Series 4: Self - shutdown, failure rate = 0.46 failures per month;
Series 5: Unstable behavior, failure rate = 0.50 failures per month.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14

t (months)

R
(t

)

Series 1

Series 2

Series 3

Series 4

Series 5

Only acceptable reliability

Signal-Driven Software Model for Mobile Devices 411

Figure 16.6 Mission duration t m versus failure rate lambda.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Lambda (failures per month)

t m
 (

m
o

n
th

s)

Input Failure

Self-Shutdown Failure

Unstable Behavior Failure

Freeze Failure
Output Failure

Specified reliability = 0.90

Only acceptable tm

Mission duration requirement

MOBILE DEVICE TESTING EFFECTIVENESS

 Testing and reliability have a synergistic relationship, as shown in Figure 16.1 . That
is, module device failure data generated from test results drive reliability model
analysis and the analysis highlights the parts of the software that deserve priority in
testing, and reliability predictions infl uence the selection of test cases. The signal
and noise relationships can be used to quantify test effectiveness. Test effectiveness
of failure type i, E i , is defi ned as the ratio of the change in noise Δ N i (i.e., number
of corrected failed modules) to the total number of modules M. Test effectiveness
is expressed in Equation 16.15 :

 E
N

M
i

i=
Δ

. (16.15)

 To compute Δ N i , defi ne Ni
* as the reduced noise accomplished through testing of

failure type i (i.e., reduced number of failed modules):

 ΔN N Ni i i= − *. (16.16)

 Recalling from Equation 16.5 the computation of S/N, express Ni
* as shown in Equa-

tion 16.17 :

 N S P s / P si i i i
* () ().= −1 (16.17)

412 Computer, Network, Software, and Hardware Engineering with Applications

 Then Equation 16.16 is reformulated for failure type i, substituting Equation 16.2
for N i and Equation 16.17 for Ni

*, as follows:

 ΔN N N MP s S P s P si i i i i i i= − = − −()* () /() .1 (16.18)

 Finally, Equation 16.15 is recomputed in Equation 16.19 to obtain the fi nal form of
test effectiveness by failure type:

 E MP s S P s / P s Mi i i i i= − −(() ()) .1 (16.19)

 Note that E i > 0 corresponds to a small signal S i and E i < 0 corresponds to a large
signal. The fi rst case refl ects the fact that large gains in noise reduction would be
achieved through testing if the number of correct modules, due to eliminating fail-
ures of type i, is already small. The second case refl ects the fact that small gains in
noise reduction would be achieved through testing if the number of correct modules
is already large. Thus, test effectiveness can be used to prioritize modules for testing:
the higher the value of E i (low signal), the higher the priority of modules for testing.

 Using similar reasoning for recovery action types and calling on Equations
 16.8 – 16.10, test effectiveness for recovery action type j is computed in Equation
 16.20 :

 E
N

M
N N M P s S R M for Rj

j
j j ij ij

i

f

j j j= = −() =
⎛
⎝⎜

⎞
⎠⎟

− − ≥
=

∑Δ * / (() /), .
1

1 0 (16.20)

 In this case, note that E j > 0 corresponds to a small signal S j and E j < 0 corresponds
to a large signal. The fi rst case refl ects the fact that large gains in noise reduction
would be achieved through testing if the number of correct modules, due to recovery
action j, is already small. The second case refl ects the fact that small gains in noise
reduction would be achieved through testing if the number of correct modules, due
to recovery action j, is already large. Thus, again, test effectiveness can be used to
prioritize modules for testing: the higher the value of E j (low signal), the higher the
priority of modules for testing.

Test Time

 Related to test effectiveness is the duration of test necessary to achieve that effec-
tiveness. Estimate this time based on the reduction in number of failed modules Δ N i
achieved by test effectiveness E i , for failure rate λi and failure type i, which is tabu-
lated in Table 16.3 . Thus, test duration t i is estimated for failure type i, and number
of failures f, using Equation 16.15 , in Equation 16.21 that expresses the fact that
test time is equal to the number of failed modules that are corrected divided by the
failure rate. Test duration serves as a test stopping rule:

 t f E M / for Ei i i i= >() , ,λ 0 (16.21)

 where E i M = Δ N i and f is the number of failures per failed module.

Signal-Driven Software Model for Mobile Devices 413

 A similar equation is formulated for recovery action types:

 t f E M / for Ej j j j= >() , ,λ 0 (16.22)

 It is recognized that this formulation of test time may understate the time required
to identify all mobile device hazards. To adequately evaluate the reliability of a
mobile device, the analyst must stress it to identify both hardware and software
failures. Using failure data, such as that in Tables 16.1 – 16.3 , the analyst can run
realistic tests that stress the hardware and software to fail by using the test times
given by Equations 16.21 and 16.22 as baselines, and gradually increasing them
until the device fails [STA97] . Applying a stress test to a mobile device is shown in
Figure 16.1 .

FAILURE TYPE AND RECOVERY
ACTION TYPE RESULTS

Signal-to-Noise Ratio

 Figure 16.7 shows the plots of S/N failure type and S/N recovery action type along
with the S/N limit = 1 (i.e., number of correct modules = number of failed modules).
Failure types below the limit should be investigated to identify the cause of exces-
sive failures in the mobile device software development process. Correspondingly,
recovery action types below the limit need attention to identify why the recovery
software is not able to provide effective recovery.

Figure 16.7 Signal - to - noise ratio S/N versus probability of failure and probability of recovery
action. Series1: Failure type S/N. Series 2: Recovery action type S/N.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Probability

S
/N

Series 1

Series 2

Wait for Response Recovery

Action

Service Phone Recovery

Input Failure

Freeze Failure
Self-Shutdown Failure

Unstable Behavior Failure

Output Failure

Repeat Operation Recovery

Action

Reboot Recovery

Remove Battery Recovery

Service Phone Recovery Action

S/N Limit

414 Computer, Network, Software, and Hardware Engineering with Applications

Figure 16.8 Reliability R(t) versus operating time t. Series 1: Input failure type, failure rate = 0.08
failures per month. Series 2: Reliability limit. Series 3: Wait for response recovery action, failure
rate = 0.15 failures per month.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14

R
(t

)

t (months)

Series 1

Series 2

Series 3

Response lags failure

Reliability

 Figure 16.8 shows, as Figure 16.7 had shown, that one of the best user recovery
actions is to wait for a response. This strategy showed the second best S/N in Figure
 16.7 and the highest reliability in Figure 16.8 (the other recovery action reliabilities
are all lower, but are not shown). However, recovery action reliability lags the input
failure reliability and never achieves the reliability limit. This result indicates that
these example mobile devices need improved reliability even after responding to a
failure.

Mission Duration

 Assume that an acceptable mission duration for the mobile device user is 1 month
to achieve a specifi ed reliability of 0.90. Then Figure 16.9 demonstrates that the only
situation in which this could occur is when the mobile device is subject to an input
failure. All other failures would result in unacceptable mission duration at the speci-
fi ed reliability. Also note that all recovery actions are defi cient with respect to
achieving the desired mission duration after failures occur. Thus, mobile device
manufacturers should improve the quality of their recovery action software. In

Signal-Driven Software Model for Mobile Devices 415

Figure 16.9 Mission duration t m versus failure rate lambda. Series 1: Recovery action type. Series
2: Failure type.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0.00 0.20 0.40 0.60 0.80 1.00 1.20

Lambda (failures per month)

t m
 (

m
o

n
th

s)

Series 2

Series 1

Wait for Response Recovery Action

Input Failure

Output Failure

Service Phone Recovery Action

Specified reliability = 0.90

Only acceptable tm

Freeze Failure

Self-Shutdown Failure

Unstable Behavior Failure

Reboot Recovery Action

Repeat Recovery Action

Remove Battery Recovery Action

Unreported

particular, users should not have to wait for a response in order to recover from a
failure. Response to failures should be so effective that users should be unaware of
this strategy! The best way of avoiding user frustration is by designing in higher
quality.

Test Effectiveness

 Figure 16.10 demonstrates, perhaps counterintuitively, that test effectiveness
increases with lower S/N. The reason is that lower S/N means higher noise, which
represents many failed modules that are subject to correction. Figure 16.10 allows
one to identify the test effectiveness for a given number of modules that are being
tested for a mobile device. The other two failure types are not shown because their
test effectiveness are negative and do not plot well on the same graph.

Test Time

 Test time is modeled as a two - phase sequence: fi rst, test cases are based on type of
failure (e.g., freeze) followed by test cases that are based on recovery action (e.g.,
remove battery). In the fi rst phase, test time increases with decreasing S/N (i.e.,
many failed modules compared with the number of correct modules), as shown in

416 Computer, Network, Software, and Hardware Engineering with Applications

Figure 16.10 Test effi ciency E i for failure type i versus total number of modules M. Series 1:
Freeze failure, S/N = 0.97. Series 2: Self - shutdown failure, S/N = 0.88. Series 3: Unstable behavior
failure, S/N = 0.81.

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

10 20 30 40 50 60 70 80 90 100

M

E
i

Series 1

Series 2

Series 3

Lower S/N means higher effectiveness (higher noise = more failed modules)

Figure 16.11 . In the second phase, the focus of testing and debugging is recovery
actions. Recovery action testing takes less time than failure type testing because
many bugs have already been removed by failure type testing by the time recovery
action testing takes place. In addition, recovery type testing is based on test cases
under the control of the tester (e.g., try removing the battery, and see what happens).
In the case of failure type testing, the tester is at the mercy of the operating environ-
ment of the mobile device (e.g., failures caused by noise in the communications
network). Thus, failure type testing takes more time. Another characteristic of both
failure type and recovery action type testing is that decreasing reliability necessitates
increasing test time, as shown in Figure 16.11 .

SUMMARY OF RESULTS

 Whichever measure was being analyzed, whether noise, S/N, reliability, minimum
acceptable operating time (mission duration), or test effectiveness, and whether the
focus was failure type or recovery action type, the sample of mobile devices did not,
in general, meet requirements. Since this is a large, representative, and recent
sample, the results suggest that mobile devices should be improved so that they are
really usable by customers. While it is true that users discard mobile devices on
average every 18 months [CIN07] , results indicate that severe reliability problem
will prevail short of 18 months. For example, see Figure 16.5 .

Signal-Driven Software Model for Mobile Devices 417

FUTURE MOBILE DEVICE DEVELOPMENTS
AND RESEARCH

Grid Computing

 In the near future, personal mobile devices will become ingredients of other infra-
structures, such as the electric grid. Computing techniques have been devised to
enhance mobile devices so that their interoperability with other mobile devices and
electric grid infrastructure will be improved, such as the Personal Augmented Com-
puting Environment (PACE). PACE characteristics include (1) collaborative visual-
ization using display clusters composed by mobile devices, for example, electric
utility and customer mobile electric meter reading devices collaborating in the pre-
sentation of meter readings, and (2) context - aware methods for mobile devices to
achieve effi cient utilization of grid resources, for example, intelligent mobile meter
readers being aware of, and communicating with, electric substations [LUO07] .
Future research will be directed toward creating software development models
for mobile devices to communicate with the electric grid in a collaborative process-
ing mode.

Context-Aware Migratory Service

 Because a mobile process can involve context - aware migratory tasks (e.g., sudden
need for the mobile device to move with the user [context aware] and connect to a

Figure 16.11 Test time t for failure type and recovery action type versus total number of modules.
Series 1: Self - shutdown failure, S/N = 0.88. Series 2: Unstable behavior failure, S/N = 0.81. Series 3:
Freeze failure, S/N = 0.97. Series 4: Remove battery recovery action, reliability = 0.65. Series 5: Wait
for response recovery action, reliability = 0.88.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

10 20 30 40 50 60 70 80 90 100

t(
m

o
n

th
s)

M

Series 1

Series 2

Series 4

Series 5

Series 3

r

r

r

Three failures per module
Test Time increases with decreasing S/N for Failure Type
Test Time increases with increasing Reliability for Recovery Action Type

418 Computer, Network, Software, and Hardware Engineering with Applications

hot spot [migratory]) and heterogeneous mobile devices (e.g., smartphones, meter
readers), the mobile device model must account for context and migration. When
failures occur, the mobile network has to try to fi nd another mobile device to execute
the current process. If it is successful in fi nding such a device, it will transfer the
process to this device [KUN] . Unlike a stationary service that always executes on
the same node, a context - aware migratory service is capable of migrating to different
nodes in the network in order to effectively accomplish its task. Thus, the interaction
between a user application and a migratory service can continue uninterrupted,
except for small delays generated by the migration process. This model provides
two advantages. First, when a node becomes unsuitable for hosting a service, the
user application does not need to perform any new service discovery because the
current service can automatically migrate to a node that is qualifi ed for accomplish-
ing the current task (e.g., when an electric grid substation fails, the mobile meter
reader can be automatically connected to an operational substation). Second, the
migratory service incorporates all the state information (e.g., power usage reported
at the failed substation before it failed) necessary to resume the interaction with the
user when the migration to a different node has completed [RIV07] .

REFERENCES

 [CHA07] Shuvo Chatterjee , Dietrich Falkenthal , and Tormod Ree , “ Exploring adaptive power
saving schemes for mobile VoIP devices in IEEE 802.11 networks , ” Second International Conference
on Digital Telecommunications (ICDT’07) , 2007 , p. 13 .

 [CIN07] M. Cinque , D. Cotroneo , Z. Kalbarczyk , and R. K. Iyer , “ How do mobile phones fail? A
failure data analysis of Symbian OS smart phones , ” in 37th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN’07) , 2007 , pp. 585 – 594 .

 [COM] http://www.comp.nus.edu.sg/ ∼ damithch/df/device - fragmentation.htm
 [FIT07] Frank H. P. Fitzek and Frank Reichert (eds.) Mobile Phone Programming and Its Application

to Wireless Networking . Dordrecht, The Netherlands : Springer , 2007 .
 [HOL06] Magnus Holmqvist , Gunnar Stefansson , “ Mobile RFID — a case from Volvo on innovation

in SCM , ” in Proceedings of the 39th Annual Hawaii International Conference on System Sciences
(HICSS’06) Track 6 , 2006 , p. 141a .

 [IYE85] R. K. Iyer , D. J. Rossetti , “ Effect of system workload on operating system reliability: a study
on IBM 3081 , ” IEEE Transactions on Software Engineering , 1985 , 11 (12), pp. 1438 – 1448 .

 [KUN] Christian P. Kunze , Sonja Zaplata , Mirwais Turjalei , and Winfried Lamersdorf , “ Enabling
context - based cooperation: a generic context model and management system ” Distributed Systems and
Information Systems, Computer Science Department, University of Hamburg, Hamburg, Germany,
 http://vsis - www.informatik.uni - hamburg.de/getDoc.php/publications/314/BIS2008_kztl08.pdf

 [LAR07] Henry Larkin , “ Data representations for mobile devices , ” 13th International Conference on
Parallel and Distributed Systems — Volume 1 (ICPADS’07) , 2007 , pp. 1 – 6 .

 [LUO07] X. Luo , “ PACE: augmenting personal mobile devices with scalable computing , ” Seventh IEEE
International Symposium on Cluster Computing and the Grid (CCGrid ‘07) , 2007 , pp. 875 – 880 .

 [MCC02] Steve McConnell , “ Real quality for real engineers , ” IEEE Software , 2002 , 19 (2), pp. 5 – 7 .
 [POU06] Gilda Pour , Nivedita Laad , “ Enhancing the horizons of mobile computing with mobile agent

components , ” 5th IEEE/ACIS International Conference on Computer and Information Science and 1st
IEEE/ACIS International Workshop on Component - Based Software Engineering, Software Architecture
and Reuse (ICIS - COMSAR’06) , 2006 , pp. 225 – 230 .

 [RIV07] Oriana Riva , Tamer Nadeem , Cristian Borcea , and Liviu Iftode , “ Context - aware migratory
services in ad hoc networks , ” IEEE Transactions On Mobile Computing , 2007 , 6 (12).

Signal-Driven Software Model for Mobile Devices 419

 [ROU04] T. Ruohonen , L. Ukkonen , M. Soini , L. Syd ä nheimio , and M. Kivikoski , “ Quality and
reliability of GPRS connections , ” in Proceedings of Consumer Communications and Networking
Conference, Las Vegas, 5 – 8 January , 2004 , pp. 268 – 272 .

 [SAT03] Ichiro Satoh , “ A testing framework for mobile computing software , ” IEEE Transactions on
Software Engineering , 2003 , 29 (12), pp. 1112 – 1121 .

 [SAU06] Vibhu Saujanya Sharma , Pankaj Jalote , “ Stabilization time — a quality metric for software
products , ” 17th International Symposium on Software Reliability Engineering (ISSRE’06) , 2006 ,
pp. 45 – 51 .

 [STA97] Donald Staab , Eugene R. Hnatek , “ Diagnosing IC failures in a fast environment , ” IEEE
Design and Test of Computers , 1997 , 14 (3), pp. 70 – 75 .

 [YEU07] Wilson M. Yeung , Joseph K. Ng , “ Wireless LAN positioning based on received signal strength
from mobile device and access points , ” 13th IEEE International Conference on Embedded and Real -
 Time Computing Systems and Applications (RTCSA 2007) , 2007 , pp. 131 – 137 .

 [YUK03] Yukikazu Nakamoto , “ The next generation software platform for mobile phones , ” Sixth IEEE
International Symposium on Object - Oriented Real - Time Distributed Computing (ISORC’03) , 2003 , p. 46 .

 [ZAN93] Enrico Zanoni and Paolo Pavan , “ Improving the reliability and safety of automotive electron-
ics , ” IEEE Micro , 1993 , 13 (1), pp. 30 – 48 .

Chapter 17

Object - Oriented Analysis
and Design Applied to
Mathematical Software

O bject - oriented (O - O) methods are highly touted in the literature as the solution to the
world ’ s software reliability problems. While this may be true, there seems to be little support-
ing evidence. Also, based on O - O project results in the literature, you would wonder how
well earlier methods, such as structured analysis and design, would have fared. There is a
natural relationship between O - O attributes and the modeling of physical systems, such as
the software for controlling a nuclear reactor. However, such a relationship is not obvious for
modeling mathematical software, such as programs designed to predict software reliability.
The rationale for using mathematics as the basis of comparison with O - O methods is that the
solution of mathematical equations is a common computer application; indeed, it was the
reason the fi rst computers were developed. While some O - O diagrams are useful for provid-
ing high - level visibility of computer program structure, in the main, prediction equations,
coupled with a directed graph representation of the computer program, are better tools for
modeling mathematical software. Thus, it is important for the reader to learn for which appli-
cations O - O methods can be applied and for which applications O - O methods would be
misapplied.

INTRODUCTION

 It is assumed that the reader has a basic understanding of probability and statistics.
Where this is not the case, the following reference will be helpful: David M. Levine,
Patricia P. Ramsey, and Robert K. Smidt, Applied Statistics for Engineers and Sci-
entists (New York: Prentice - Hall, 2001).

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F.
Schneidewind.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley &
Sons, Inc.

420

Object-Oriented Analysis and Design Applied to Mathematical Software 421

Defi nitions

 First, defi nitions are presented to assist the reader in understanding the sections that
follow.

Object. In a computer program, any entity that can execute in a computer or
can support execution, such as an interrupt from an input device and the
software instructions that support interrupt processing.

Class. A classifi cation of objects, such as program interrupts , where an interrupt
from an input device is an object .

Inheritance. A property of object - oriented design that allows an object to
acquire the properties of its class (e.g., the object input device interrupt
inherits the property jump to fi rst interrupt processing instruction from the
class of interrupts).

Directed Graph. A graph whose edges are ordered pairs of nodes. That is, each
edge is preceded by a node and followed by another node. A directed graph
can be used to represent a computer program, where edges represent program
branches and nodes represent program statements.

Unifi ed Modeling Language (UML). Standardized notation and set of diagrams
for supporting object - oriented (O - O) analysis and design.

Activity Diagram. In the UML, activity diagrams are used to describe the
operational step - by - step workfl ows of software components in a system. An
activity diagram shows computer program control fl ows.

Sequence Diagram. A sequence diagram in UML is an interaction diagram that
shows how software processes (e.g., computer code for computing a math-
ematical function) operate with one another and in what order.

State Diagram. A diagram that shows states (e.g., a computer program is pro-
cessing an interrupt) and transitions between states (e.g., transition from the
state of processing an interrupt to the state of returning to the interrupted
program).

Cyclomatic Complexity Metric. (Number of edges – number of nodes) + 1 in
a directed graph. Cyclomatic complexity can be used to represent the
number of independent paths in a computer program, where an independent
path is one that cannot be formed by combining other paths in the directed
graph.

Information Hiding. A software design technique that “ hides ” system details
(e.g., disk format) in the interface between modules rather than in modules,
so that system changes will only affect the interface, and hopefully increase
software reliability, as a result.

Procedure. Portion of software code (e.g., subroutine) within a software program

Encapsulation. In O - O programming, encapsulation is the inclusion within a
program object of all the resources needed for the object to function. For

422 Computer, Network, Software, and Hardware Engineering with Applications

example, the object interrupt processing would include instructions for pro-
cessing an interrupt, pointer to the fi rst interrupt processing instruction in
memory, and the return address of the instruction that would have been
executed if the interrupt had not occurred.

CAN O-O METHODS BE APPLIED TO
MATHEMATICS?

 To see whether O - O methods can be applied to mathematical software, experiments
are conducted to compare this approach with using equations and directed graph
representations of computer program code to see whether O - O analysis, design, and
language are applicable in general to mathematical models and, in particular, to
developing the mathematics for software reliability models. It is recognized that
there are many applications of O - O methods other than mathematical models, but
this is such a fundamental computer application that it is expected that any design
method would do well.

 The perfect mathematical programming environment would automatically
transform systems of equations into effi cient symbolic and numerical programs. It
would select solution routines that have good convergence properties for the given
problem. It would also formulate equations from problem specifi cations. Although
it is easy to imagine such an automatic environment, it is more realistic to assume
that the user will interact with the system, supplying information to help it choose
the right algorithms and transformations. Such a system is ObjectMath, which is a
high - level programming environment with a modeling language based on the com-
puter algebra language Mathematica. The ObjectMath language augments Mathe-
matica with classes and other O - O language constructs. However, ObjectMath
focuses on mathematical modeling rather than on O - O programming [FRI95] . While
this development is impressive, it is focused on the mathematical modeling of physi-
cal objects rather than on mathematical software reliability, which is the application
that is evaluated for O - O applicability in this chapter.

O-O Approach versus Mathematics

 The ease of mapping real - world objects to the O - O model, enabling software reuse
and the support of various tools, have led to its wide acceptance [SEN07] . While it
is easy to see that the O - O approach is compatible with developing, let us say, an
elevator system or Web site, it is not clear how this approach applies to developing
mathematical functions. In the case of a Web site, there are activities (e.g., user
access to a Web server) so that an activity diagram would apply. Also, in the case
of an elevator system, there are the activities of passengers accessing and riding in
elevators. Interestingly, even in applications such as elevator systems, there can be
limitations to the O - O approach. For example, although the UML sequence diagrams
are capable of representing sequential interactions (e.g., only a single elevator fl oor
request at a time), they are not capable of properly representing concurrent interac-

Object-Oriented Analysis and Design Applied to Mathematical Software 423

tions (e.g., elevator passengers on different fl oors concurrently pressing up and down
buttons). Therefore, it is necessary to have a model capable of representing both
sequential and concurrent interactions between objects [RYA06] .

 Now, in the case of equations, would activity diagrams and state diagrams
apply? Would it make sense to consider an equation as an object? To pursue answers
to these questions, the O - O approach will be used to model facets of the software
reliability models and compare the result with the mathematical model approach.

 In explicating the mathematical model approach, you can use the directed graph
representation of the mathematical model. This approach has the advantages of
showing iteration, computing cyclomatic complexity metrics from the directed
graph, and identifying the key parts of the program to test [MCC76] . Interestingly,
there seems to be no comparable features of the O - O approach. For example, itera-
tion in O - O is defi ned as: an operation that permits all parts of an object to be
accessed in a well - defi ned order [BOO94] . Note that repetition is not explicitly
mentioned. This defi nition does not ring true for writing a mathematical program in
which we simply want to repeat the execution of an equation.

 Proponents of O - O claim many benefi ts. Unfortunately, these claims are not
accompanied by a discussion of disadvantages. An obvious one is that O - O is highly
abstract, and based on experience in teaching this model, students fi nd the abstrac-
tions diffi cult to grasp. In fact, some researchers employ UML without stating why
they are using it [SEL04] . The O - O approaches suffer because they are too syntax
oriented (e.g., emphasis on UML diagramming techniques) and lack a proper and
simple semantic foundation (e.g., mathematical equations that communicate the
meaning of the application). A precise description and common understanding of
the semantics, as well as the relations between the various UML diagrams for the
description of software systems, is missing [BRO01] .

 As claimed, the benefi ts of O - O analysis and design specifi cally include the
following [GRA] (comments added where the claim is challenged):

• Required changes are localized and unexpected interactions with other
program modules are unlikely. (How is this different from information hiding
and modular design?)

• Inheritance makes O - O systems more extensible, contributing to more rapid
development. (Equations have variables and parameters that can be made
extensible by changing the data used in the variables and parameters.)

• Object - based design is suitable for distributed, parallel, or sequential
implementation. (Equations can be used in any of the aforementioned
implementations)

• Objects correspond more closely to the products and processes in the con-
ceptual worlds of the designer and user, leading to greater traceability of
product and process. (This can be accomplished by effective software man-
agement requiring traceability among software products and the process steps
that produce them; also, mathematical models do not preclude the use of
objects.)

424 Computer, Network, Software, and Hardware Engineering with Applications

• Shared data areas are protected, reducing the possibility of unexpected modi-
fi cations or other update anomalies; this is an operating and security system
property, not a property of the design paradigm. (Independent of the design
paradigm, data can be protected by access controls and encryption.)

• O - O provides various views of a software system that are useful for under-
standing and maintaining the code [SAL04] . (While this is true, equations
provide an excellent view of its implemented software, which is useful for
debugging.)

• O - O can be effective for reengineering from a software system designed with
procedures to an O - O perspective to provide better code visibility [ZOU02] .

• O - O can be used for transforming the states of legacy software (i.e., software
that, while old, must be maintained because it is still valuable to the using
organization) to O - O software, thus providing greater clarity of system states
 [ZOU021] .

ELEMENTS OF A REQUIREMENT

 In analysis and design, models are built to seek an understanding of the requirements
or to specify the systems to be built. To be useful, the model should be abstract (does
not contain unnecessary details), complete (captures all relevant aspects), unambigu-
ous (meaning is clearly expressed), and well integrated (the various parts fi t together
to form a coherent whole) [KGU96] . Although a worthy statement of the objectives
of analysis and design, it is a tall order because it is diffi cult to not include unneces-
sary details and at the same time capture all relevant aspects. It is diffi cult, particu-
larly in the requirements phase of a project, to know what is unnecessary and what
is relevant. The following is an approach to identifying the elements of a requirement
for the purpose of making a requirement understandable.

Object. The focus of attention (e.g., software reliability).

Function. A function is the task that the object must achieve (e.g., software
reliability [object] must achieve its specifi cation [task] during test and operat-
ing time). In programming languages, a function is a subroutine that can, if
required, return a single value to the caller (the part of the program which
invoked the function). The strength of functions lies in the fact that they are
programs within a program. Functions are written for two major reasons: (1)
to provide frequently used operations that can be accessed by many programs
or from many points within a single program and (2) to modularize complex
programs and make the maintenance and understanding of such programs
easier. In C ++ , a function is a named, independent section of code that per-
forms a specifi c task and optionally returns a value to the calling program.
User - defi ned functions are functions that programmers create for specialized
tasks.

Limit. Constraint imposed on a function (e.g., software reliability must exceed
0.9500 for all operating times).

Object-Oriented Analysis and Design Applied to Mathematical Software 425

Parameter. A model numerical factor estimated from data (e.g., software reli-
ability parameters estimated from failure data).

Variable. A model predictor specifi ed in a function (e.g., predictor of software
reliability).

Equation. Mathematical implementation of a function: relationship among vari-
ables and parameters (e.g., reliability R t p t dtT= = ∫

∞
() (()), where p(t) is a

probability density function.

Model. Representation of objects, functions, limits, parameters, variables, and
equations.

Requirement Implementation

Programming Language Statements. Statements that implement a model on a
computer (e.g., C ++ statements).

Data. Historical data (e.g., failure counts in time intervals) for estimating model
parameters and for computing actual model quantities, based on historical
failure data (e.g., actual reliability).

Iteration. Repetition of an operation (e.g., reading failure data from a fi le).

Decision Operations. Control program fl ow (e.g., processing failure data depen-
dent on its value).

EXAMPLE OF COMPARING O-O WITH
MATHEMATICAL APPROACHES

 The mathematical concept of a function expresses dependence between two or more
quantities, one of which is known and the other which is produced. A function
associates a single output to each input element drawn from a fi xed set. In Equation
 17.1 , P(x t , t) is a function of x t and t.

 A variable assumes values based on a function, such as x t and t in Equation
 17.1 . The term usually occurs in opposition to parameter , which is a symbol for a
nonvarying value, such as λ in Equation 17.1 .

 You can use Equation 17.1 to see an example of how a Poisson failure occur-
rence model and its associated function, reliability, would be implemented with the
two approaches. In developing the implementation approaches, each facet of the
failure model is defi ned and analyzed in order to illustrate how well the two
approaches apply.

 In the Poisson distribution of failure occurrence, P(x t , t), in Equation 17.1 , λ is
the failure rate, x t is failure count at test or operating time t, and t is the time of
failure occurrence:

 P x t
t e

x
.t

x t

t

t

(,)
()

!

()

=
−λ λ

 (17.1)

426 Computer, Network, Software, and Hardware Engineering with Applications

 In order to compute Equation 17.1 , the failure rate λ must be computed in Equa-
tion 17.2 :

λ = =

∑ x

t
,

t

i

n

n

1
 (17.2)

 where t n is the last failure time.
 Now, reliability, with exponentially distributed operating times t, can be obtained

from Equation 17.1 by setting x t = 0. Reliability R(t) is shown in Equation 17.3 :

 R t e .t() = −λ (17.3)

Comparing O-O and Mathematical
Defi nition of Terms

 Table 17.1 contains defi nitions and comparisons of terms from the O - O and math-
ematical domains. Multiple defi nitions are valid because the appropriate defi nition
depends on the context of the application. For example, mathematical terms could
be cast in the context of developing a failure model, such as Equation 17.1 .

O-O CONCEPTS APPLIED TO POISSON
FAILURE MODEL

 At this stage in the comparison, the O - O representation of the Poisson failure
model is developed by fi rst defi ning the model objects and then showing how the
UML diagrams can be used to model the elements. In showing these diagrams, it is
not suggested that all of them are needed to model mathematical software (e.g.,
Poisson failure model). Rather, the goal is to illuminate the various perspectives
that the diagrams provide and determine which are the best for a mathematical
application.

Objects

 Objects have two characteristics: state and behavior [BOO94] (e.g., Poisson failure
model object is executed [state] and the result is stored [behavior]). Objects also
possess attributes (e.g., failure rate, failure count, and failure time).

Activity Diagram

 The purpose of the activity diagram is to model the procedural fl ow of actions in a
system. [DOU98] . Activity diagrams can be used to model the activities associated

Ta
bl

e
17

.1

 C
om

pa
ri

so
n

of
 O

 - O
 a

nd
 M

at
he

m
at

ic
al

 T
er

m
s

 Te
rm

 O

 - O
 d

efi
 n

iti
on

 O

 - O
 a

pp
lic

at
io

n
 M

at
he

m
at

ic
al

 d
efi

 n
iti

on

 M
at

he
m

at
ic

al
 a

pp
lic

at
io

n

 Fu
nc

tio
n

 1.
 M

et
ho

d,
 o

pe
ra

tio
n

 [D
O

U
98

]
 2.

A
n

in
pu

t/o
ut

pu
t

m
ap

pi
ng

re

su
lti

ng
 f

ro
m

 a
n

ob
je

ct
 ’ s

be

ha
vi

or
 [

B
O

O
94

]

 E
nc

ap
su

la
te

 a
 p

ro
ce

ss
 u

nd
er

on

e
na

m
e

 [U
L

L
06

]
 D

ep
en

de
nc

e
be

tw
ee

n
tw

o
qu

an
tit

ie
s

(W
ik

ip
ed

ia

en
cy

cl
op

ed
ia

)

 1.
 E

xp
re

ss
es

 d
ep

en
de

nc
e

be
tw

ee
n

tw
o

or
 m

or
e

qu
an

tit
ie

s
(W

ik
ip

ed
ia

 e
nc

yc
lo

pe
di

a)

 2.
 P

re
di

ct
or

 o
f

so
ft

w
ar

e
fa

ilu
re

P(

x t
 , t

)
 V

ar
ia

bl
e

 L
an

gu
ag

e
el

em
en

t
(W

ik
ip

ed
ia

en

cy
cl

op
ed

ia
)

 E
vo

lv
es

 d
yn

am
ic

al
ly

 o
ve

r
tim

e
 A

ss
um

es
 v

al
ue

s
ba

se
d

on
 a

fu

nc
tio

n
 x t

 :
fa

ilu
re

 c
ou

nt

 t:
tim

e
of

 f
ai

lu
re

 o
cc

ur
re

nc
e

 Pa
ra

m
et

er

 A
ttr

ib
ut

e
of

 o
bj

ec
t

 E
qu

at
io

n
fi x

ed
 e

le
m

en
ts

 i
n

C
++

 1.
 N

on
va

ry
in

g
qu

an
tit

y
 2.

 A
 m

od
el

 n
um

er
ic

al

fa
ct

or
 e

st
im

at
ed

 f
ro

m

da
ta

 (
e.

g.
, f

ai
lu

re
 r

at
e
λ)

 Po
is

so
n

fa
ilu

re
 m

od
el

 p
ar

am
et

er

co
m

pu
te

d
fr

om
 f

ai
lu

re
 d

at
a:

λ :

 f
ai

lu
re

 r
at

e

 O
bj

ec
t

 H
as

 s
ta

te
, b

eh
av

io
r,

an
d

id
en

tit
y

 [B
O

O
94

]
 O

rg
an

iz
in

g
co

m
po

ne
nt

s
th

at

ca
n

be
 c

on
ne

ct
ed

 t
o

fo
rm

a

co
m

pl
ex

 s
ys

te
m

 H
as

 s
ta

te
, b

eh
av

io
r,

an
d

id
en

tit
y

 [B
O

O
94

]
 T

he
 f

oc
us

 o
f

at
te

nt
io

n:
 P

oi
ss

on

fa
ilu

re
 m

od
el

 St
at

e
 O

ne
 o

f
th

e
po

ss
ib

le
 c

on
di

tio
ns

in

 w
hi

ch
 a

n
ob

je
ct

 m
ay

 e
xi

st

 [B
O

O
94

]

 C
ha

ng
e

co
nd

iti
on

 o
f

a
sy

st
em

 b
as

ed
 o

n
ev

en
ts

 Pr

op
er

tie
s

th
at

 a
 s

ys
te

m

di
sp

la
ys

 a
t

a
gi

ve
n

tim
e

 St
at

e
ch

an
ge

s
fr

om
 p

ro
pe

rt
y

 “ n
o

fa
ilu

re
 c

ou
nt

 i
np

ut
 ”

to
 p

ro
pe

rt
y

“ f
ai

lu
re

 c
ou

nt
 i

np
ut

 ”
at

 a

sp
ec

ifi
ed

 t
im

e
 B

eh
av

io
r

 H
ow

 a
n

ob
je

ct
 r

ea
ct

s
to

 s
ta

te

ch
an

ge
s

 [B
O

O
94

]
 Id

en
tif

y
th

e
ch

ar
ac

te
ri

st
ic

s
of

 a
n

ob
je

ct
 [

B
O

O
94

]
 H

ow
 a

n
ob

je
ct

 r
ea

ct
s

to

st
at

e
ch

an
ge

s
 [B

O
O

94
]

 Po
is

so
n

fa
ilu

re
 m

od
el

 O

bj
ec

t
is

 e
xe

cu
te

d
w

he
n

its
 s

ta
te

ch

an
ge

s
fr

om
“ n

o
fa

ilu
re

 c
ou

nt

in
pu

t”
 t

o
 “ f

ai
lu

re
 c

ou
nt

 i
np

ut
 ”

at

a
sp

ec
ifi

ed
 t

im
e

 C
la

ss

 T
he

 c
la

ss
ifi

ca
tio

n
of

 o
bj

ec
ts

 Sh

ow
s

th
e

re
la

tio
ns

hi
ps

 o
f

cl
as

se
s,

 o
bj

ec
ts

, a
nd

m

et
ho

ds
 i

n
a

sy
st

em

 T
he

 c
la

ss
ifi

ca
tio

n
of

 o
bj

ec
ts

 T

he
 c

la
ss

 o
f

pr
ob

ab
ili

ty

di
st

ri
bu

tio
ns

 o
f

w
hi

ch
 P

oi
ss

on
 i

s
a

m
em

be
r

(o
bj

ec
t)

 M

et
ho

d
 T

he
 o

pe
ra

tio
ns

 p
er

fo
rm

ed
 o

n
th

e
ob

je
ct

 o
f

a
cl

as
s

 [B
O

O
94

]
 Sh

ow
s

w
ha

t
op

er
at

io
ns

ex

is
t

in
 a

 s
ys

te
m

 a
nd

ho

w
 t

he
y

ar
e

pe
rf

or
m

ed

 T
he

 o
pe

ra
tio

ns
 p

er
fo

rm
ed

on

 t
he

 o
bj

ec
t

of
 a

 c
la

ss

 [B
O

O
94

]

 C
om

pu
te

 t
he

 f
un

ct
io

n
P

(x
 t ,

t)

(o
bj

ec
t)

 o
f

th
e

cl
as

s
pr

ob
ab

ili
ty

di

st
ri

bu
tio

n

427

428 Computer, Network, Software, and Hardware Engineering with Applications

with implementing a function, such as the Poisson failure model. The activity
diagram for the Poisson failure model is shown in Figure 17.1 . Notice that in addi-
tion to modeling the fl ow of producing the function, the diagram also includes deci-
sion activities such as determining when all of the input has been read.

Sequence Diagram

 Sequence diagrams show the sequence of operations between objects and the
sequence of program steps that are required to implement a model [DOU98] .
The sequence diagram for the Poisson failure model is shown in Figure 17.2 . While
activity diagrams are one dimensional, sequence diagrams provide both the sequence
of model operations on data and the sequence of steps that implement the model
operations.

State Diagram

 The state of an object represents the results of its behavior [BOO94] . For example,
once failure count data have been read in Figure 17.1 , this is a trigger (event) for
the Poisson failure model (object) to store the failure count (action), and go to the
“ sum failure count ” state. This is called a state transition. Each state transition con-

Figure 17.1 Activity diagram for Poisson failure model. t n , last failure time.

Read failure
count xt

Sum failure
count

Read failure

time t

Compute failure
function
P(xt , t)

End of data

input

N

Plot P(xt , t)
versus xt

Plot P(xt , t)
versus t

Y

n

t
i=1

x∑

Compute

failure rate

n

t
i=1

n

x
λ =

t

∑

Object-Oriented Analysis and Design Applied to Mathematical Software 429

nects two states [BOO94] . Before constructing the state diagram in Figure 17.3 , it
is useful to identify the model states, events, actions, and state transitions, as shown
in Table 17.2 .

Class Diagram

 A class diagram shows the relationships among classes, objects of a class, and the
methods (operations) performed on the classes. When a class is declared, it is identi-
fi ed by name, attributes, and methods. According to Eden [EDE02] , the absence of
variable symbols is one of the major shortcomings of class diagrams. However, this
does not have to be the case, as shown in Figure 17.4 , where mathematical symbols

Figure 17.2 Poisson model sequence diagram. t n , last failure time.

Failure count
xt

Failure time t
Failure function

P (xt ,t)

Read failure count

Program
steps

1

2

P (xt, t)
storage

3

4
Compute P (xt ,t)

Failure count
xt storage

n

t
i=1

x∑
Sum

xt

n

t
i=1

n

x
λ =

t

∑

Compute failure rate

Read
Failure

time

Store result

Figure 17.3 Poisson model state diagram.

Start Sum xi

Read failure count xi/
store xi

Compute
P(xt, t)

Read failure time t /
compute failure rate

Plot P(xt, t)
versus t

Store P(xt, t)/plot P(xt, t) versus xt

End

λ

430 Computer, Network, Software, and Hardware Engineering with Applications

Table 17.2 Poisson Failure Model State, Events, Actions, and State Transitions

 State Event/Action State transition

 start Read failure count x i /store x i Sum x i
 Sum x i Read failure time t/compute failure rate Compute P(x t , t)
 Compute P(x t , t) Store P(x t , t)/plot P(x t , t) versus x t Plot P(x t , t) versus t
 end

Figure 17.4 Poisson failure model class diagram.

Poisson
P(xt , t)

compute

parameter
variable

distribution

probability

read, sum

failure data

λ

Failure count
xt

Failure time
t

read

time

Failure rate
λ

compute

rate
name

attribute

method

class

object

message

for the Poisson distribution have been added. The primary usefulness of this class
diagram is to provide a template for using various objects (probability functions)
and their attributes (variables and parameters) in the same probability distribution
class in an O - O programming language.

Class

 A set of objects that have common attributes [BOO94] . For example, the class of
probability distributions is comprised of the objects Poisson, exponential, normal,
uniform, and so on.

Method

 An operation on an object that is part of the declaration of a class [BOO94] : the
read failure count x i operation performed on the Poisson failure model class diagram

Object-Oriented Analysis and Design Applied to Mathematical Software 431

in Figure 17.4 . Once the classes have been identifi ed in Figure 17.4 , the interfaces
with objects and between objects can be specifi ed. Then you would identify the
services the objects are to perform (e.g., read, sum), and messages they may send
(e.g., Object Failure Time t → Object Failure rate λ) and receive (e.g., Object
Failure rate λ ← Object Failure Time t) in Figure 17.4 [HOF97] . The relationship
between objects must be designed with great care, because they determine how
well the run - time program will perform [GAM95] . For example, in Figure 17.4 ,
an effi cient implementation is obtained by the objects failure count and failure
time feeding the object failure rate . Then, the failure rate λ is computed. Last,
objects failure count , failure time , and failure rate feed object Poisson for comput-
ing P(x t , t).

Summary of O-O Diagrams Properties

 Based on an analysis of the O - O diagrams, the activity and sequence diagrams were
the most useful for designing the Poisson failure model function in C ++ (see Appen-
dix for the code). The reason is that these diagrams portray the sequence of activities
in the code that are necessary to compute the function.

APPLYING MATHEMATICAL MODELING TO
THE POISSON FAILURE MODEL

 A modeling method has two major components: a model (e.g., Poisson failure
model) and a procedure (e.g., the steps below in implementing the Poisson failure
model). The model consists of the underlying concepts (e.g., failure occurrences
distributed according to a Poisson process) and associated notation (e.g., equations
and C ++ syntax). The procedure consists of a number of steps (e.g., failure data
identifi cation) required to construct the model [KGU96] . In the mathematical model-
ing approach, the equations suggest the steps to implement the program. In the O - O
approach, the sequence diagram (see Fig. 17.2) can be used to identify program
steps. However, the mathematical modeling approach has an advantage because in
all of the O - O references, there is no mention about the nasty details in writing
computer code of items such as iteration control, variable types, array bounds, and
sequence of computer code fragments, all of which can have a signifi cant effect on
correctness of program execution. The identifi cation of these coding details fl ow
more naturally from mathematical expressions. Furthermore, in the O - O paradigm,
data are sometimes relegated to an obscure role that has nothing to do with the col-
lection and processing of raw data (e.g., amassing failure data and identifying its
statistical distribution). For example, in Real - Time UML: Developing Effi cient
Objects for Embedded Systems [DOU98 , p.310], the author describes data collection
as assembling primitive data attributes that may be structured in a myriad of ways,
including stacks, queues, lists, vectors, and a forest of trees, to the exclusion of
discussing raw data collection and processing.

432 Computer, Network, Software, and Hardware Engineering with Applications

MATHEMATICAL MODELING DESIGN
APPROACH EXAMPLE

 The objective of this section is to show the reader the details of implementing soft-
ware, using the National Aeronautics and Space Administration (NASA) Space
Shuttle fl ight software as an example. The following approach is comprised of two
synchronized program development activities: Identify the several phases and steps
in program implementation and, in addition, construct a directed graph of the
program logic consisting of nodes (program functions While, If, Else, Set, Read,
Write, Store, and Compute) and edges (Transfer Control, Iteration Control, and
Return). The directed graph will serve as the vehicle for expressing C ++ program
logic, and, in addition, allow you to identify the key paths to test based on the cyc-
lomatic complexity metric [MCC76] .

Failure Data Identifi cation Phase

 Identify the number of failure counts that occur at test time t, x t . The NASA Space
Shuttle fl ight software OI6 failure data are used as an example, and identifi es the
times t when the failures occurred. These failure data (x t) were obtained from the
Shuttle contractor and are organized by the number of days (t) since the software
was released by the contractor to NASA. The data are listed in Table 17.3 along
with the test paths used to debug the C ++ program.

Table 17.3 Shuttle OI 6 Failure Data

 Failure time Failure count Factorial
 Poisson

failure model Reliability

 Test path t x t x t! P(x t , t) R(t)

 56 0 1 0.8658 0.8658 E
 71 2 2 0.0139 0.8330 A,B,C,D,F,G

 104 1 1 0.2048 0.7651 E
 105 0 1 0.7632 0.7632 E
 119 2 2 0.0345 0.7362 A,B,C,D,F,G
 293 1 1 0.3548 0.4704 E
 382 1 1 0.3678 0.3741 E
 525 1 1 0.3499 0.2589 E
 711 1 1 0.2935 0.1604 E

 1355 1 1 0.1066 0.0306 E
 1748 1 1 0.0500 0.0111 E
 1951 1 1 0.0331 0.0066 E
 2307 1 1 0.0157 0.0026 E
 5438 1 1 0.0000 0.0000 E

 Failure rate λ = 0.002574.

Object-Oriented Analysis and Design Applied to Mathematical Software 433

C++ Program Logic Development Phase

 This section is dedicated to developing the logic of the C ++ program that is used to
implement the Poisson failure model. The steps that follow correspond to the logic
in Figure 17.5 .

While 1 Component

 Node 1: While there is more failure data x t
 Edge 1, 2: Transfer Control

 Node 2: Store x t
 Edge 2, 3: Transfer Control

 Node 3: If not reached end of failure data x t input

 Edge 3, 1: Iteration Control , Return to While 1

 Edge 3, 4: Transfer Control to While 4 Component

While 4 Component

 Node 4: While there is more failure time data t

 Edge 4, 5: Transfer Control

 Node 5: Store t

 Edge 5, 6: Transfer Control

 Node 6: If not reached end of failure time data t input

 Edge 6, 4: Iteration Control , Return to While 4

 Edge 6, 7: Transfer Control to While 7 Component

While 7 Component

 Node 7: While there are more failure counts x t
 Edge 7, 8: Transfer Control

 Node 8: Compute cumulative x t
 Edge 8, 9: Transfer Control

 Node 9: Compute failure rate λ = cumulative x t /t n (last failure time)

 Edge 9, 10: Transfer Control

 Node 10: Write failure rate λ
 Edge 10, 11: Transfer Control to While 11 Component

While 11 Component

 Node 11: While there is more failure data x t
 Edge 11, 12: Transfer Control

 Node 12: If x t ≤ 1

 Edge 12, 12a: Transfer Control

434 Computer, Network, Software, and Hardware Engineering with Applications

Figure 17.5 Directed graph of Poisson failure model.

While more xt
1

1, 2

2 Store xt

3

3, 1

If not
reached
end of xt

While more t

Store t

If not
reached
end of t

4

5

6

2, 3

3, 4

4, 5

5, 6

6, 4

While there are more
failure counts xt

7

Compute
cumulative xt

8

6, 7

7, 8 8, 7

Compute
failure rate λ

Write failure
rate λ

9

10

8, 9

9, 10

While more xt

11

10, 11

If xt <=1

12

Else, xt > 1

Not reached

reached

Not reached

reached

13

While more xt

and xt>1

14

Compute xt!

15

11, 12

13, 14

12, 13

14, 15

16Compute
Poisson failure
model, P (xt, t)

15, 16

15. 14

Set xt = 0,
Compute

Reliability, R (t)

17

16. 17

Write t, xt, xt!,
P (xt, t)

18

17, 18

18, 11

Set
Xt! =

1

12a

12a, 16

Xt > 1

12, 12a

Independent paths:
Number of edges, e = 24
Number of nodes, n = 18
Cyclomatic complexity:

e – n + 1= 7:
Number of independent paths

A. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
B. 1, 2, 3, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
C. 1, 2, 3, 4, 5, 6, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
D. 1, 2, 3, 4, 5, 6, 7, 8, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18

E. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 12a, 16, 17, 18
F. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 14, 15, 16, 17, 18

G. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 11

Object-Oriented Analysis and Design Applied to Mathematical Software 435

 Node 12a: Set factorial x t ! = 1

 Edge: 12, 13: Transfer Control

 Node 13: Else , case for x t > 1

 Edge 13, 14: Transfer Control to While 14 Component

While 14 Component

 Node 14: While there is more failure data x t > 1

 Edge: 14, 15 Transfer Control

 Node 15: Compute factorial x t !, Iteration Control , Return to While 14

 Edge 15, 16: Transfer Control

 Node 16: Compute Poisson failure model, P(x t , t)

 Edge 16, 17: Transfer Control

 Node 17: Set x t = 0 in P (x t , t) and Compute Reliability, R(0, t)

 Edge 17, 18: Transfer Control

 Node 18: Write failure time data t, failure data x t , factorial x t !, Poisson failure
model, P(x t , t), and Reliability R(t), Iteration Control , Return to While 11
Component

Identifying Independent Paths and Evaluating
Program Test Coverage

 Cyclomatic complexity is computed as cc = e − n + 1, where e is the number of
edges (branches) and n is the number of nodes (statements) in the directed graph
representation of a program. In the directed graph of Figure 17.5 there are e = 24
edges and n = 18 nodes, so cc = 7. This is equal to the number of independent paths
 [MCC76] . An independent path is one that cannot be constructed from other paths.
This is why the last independent path G in Figure 17.5 does not repeat the logic
produced by other paths. Note that independent path E corresponds to x t ≤ 1 and the
other paths correspond to x t > 1.

 According to McCabe, a good test strategy is to exercise the independent paths
in debugging because this strategy does a good job of exercising many, but not all,
of the paths [MCC76] . This is the test strategy shown in Table 17.3 , where the test
paths associated with the program input variables t and x t are listed. Unfortunately,
the McCabe test strategy does not provide complete coverage of all code executions
that could result in a fault. Suppose you are working with a programming language
that supports exceptions (i.e., an automatic change in program fl ow control, such as
the reception of an interrupt). An exception will cause an automatic change in control
fl ow without the use of an instruction for testing a condition and branching on the
condition. Each statement in a program could potentially cause one or more excep-
tions to be raised, depending on conditions (e.g., incorrect input data or division by
zero). Testing for all possible exceptions in all possible places where an exception

436 Computer, Network, Software, and Hardware Engineering with Applications

could be raised is impractical. Therefore, a minimum acceptable level of coverage
must provide assurance that all possible exceptions are raised at least once [BER] .
One defense against this problem is to check the validity of input data before it is
stored and to check denominators for zero prior to division operations. Thus, no test
strategy is perfect, including McCabe ’ s. A combination of methods is required to
ensure adequate coverage.

 In addition to providing a method for identifying independent paths and, hence,
a testing strategy, cyclomatic complexity is a metric for evaluating the relative
quality of software systems [MCC76, MUN96], based on the theory that higher
complexity software has lower quality. For example, the cyclomatic complexity of
the Poisson failure model, which equals 7, could be compared with other failure
models (e.g., Weibull) in order to rank quality for the purpose of prioritizing the test
effort. That is, if the Weibull model cyclomatic complexity equaled 5, more effort
would be expended on testing the Poisson model.

Program Execution Results

 It is insuffi cient to limit verifi cation of the correctness of program output to the
identifi cation of independent paths and the associated test strategy, as in Figure 17.5
and Table 17.3 . In addition, it is important to see whether the computation results
appear to be reasonable. This is done in Figure 17.6 , where probability of failure
P(xt , t) and reliability R(t) are plotted against t. An important verifi cation step is to
match P(x t , t) with R(t) for x t = 0; the two quantities should be equal. Indeed, they

Figure 17.6 NASA space shuttle OI6: probability of failure P(x t , t) and reliability R(t) versus time
t. Series 1: P(x t , t). Series 2: R(t).

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

0 1000 2000 3000 4000 5000 6000

P
(x

t,
t)

, R
(t

)

t (days)

Series 1

Series 2

xt = 0

xt = 1

Decreasing probability with increasing test time

Decreasing reliability with increasing operating time

P(xt, t) = R(t)

Object-Oriented Analysis and Design Applied to Mathematical Software 437

are. Although not a part of verifi cation, you should note whether reliability, derived
from the Poisson failure model, is reasonable based on the software that the model
represents. In this case it is not reasonable because the Shuttle fl ight software exhib-
its reliability growth (i.e., increases with operating time). Thus, based on Figure
 17.6 , the software would never be able to achieve a specifi ed reliability, such as
0.9500. Therefore, alternate models (e.g., Weibull) would be evaluated.

Summary of Software Development Approaches

 The combination of the directed graph in Figure 17.5 and the failure data in Table
 17.3 provides detailed information for developing the computer code that is not
possible by using the UML diagrams in Figures 17.1 – 17.4 . However, these fi gures
do provide a baseline for starting the development process that is useful for showing
the big picture before getting mired in the details. Therefore, there is no “ one size
fi ts all ” solution to the problem of selecting the appropriate software development
paradigm. Rather, it depends on the phase of development, the system view that is
desired, and the level of detail that is compatible with the phase and view.

APPLYING O-O METHODS TO MATHEMATICAL
MODEL

 While it has been indicated that O - O techniques are not particularly appropriate for
modeling the mathematical software product , it can be valuable for portraying the
process that develops the product, as Figure 17.7 attests. The Poisson failure model
process activity diagram in Figure 17.7 documents all the steps necessary to defi ne
the components of the model and the outputs that result from each step. Thus an
optimal combination of methods would be the approaches depicted in Figure 17.5
and Table 17.3 for developing software product logic, integrated with the technique
portrayed in Figure 17.7 for the software development process.

Figure 17.7 Poisson failure model process activity diagram.

Identify failure
data xt

Identify time of
failure t and last

failure time tn

Select
probability of
failure model

Poisson: P(xt, t) Determine
equation for
cumulative xt

n

t
i=1

x∑
1

Determine
equation for
failure rate

1

λ

λ =

n

t
i=1

n

x

t

∑
, Determine

equation for
failure model

Determine
function for
factorial xt!

xt*(xt –1)....*1
P(xt , t) =

t

t

x –(λt)(λt) e
x !

2

Determine
equation for

reliability, R(t)
2

Identify output
requirements

Xt = 0

R(t) = –λte t, xt, xt!, P(xt, t), R(t)

438 Computer, Network, Software, and Hardware Engineering with Applications

Question for Reader: Is there any other factor in software development that
may be more important to achieving high software reliability than the factors
that have been discussed in this chapter?

Answer: The most important factor is the quality of the personnel developing the
software! Unfortunately, this is a factor that is infeasible to quantify. The best
that a developer organization can do is to have prospective development per-
sonnel design and program small, representative samples of the real system,
and execute the programs on a computer. Then, select personnel by evaluating
the results for accuracy, reliability, and quality of design documentation.

SUMMARY AND CONCLUSIONS

 Where there is a great deal of application state change (e.g., elevator goes down, then goes
up) accompanied by interaction of people with computerized systems (e.g., user pushes down
button and signal sent to elevator computer control), O - O analysis and design is quite appro-
priate. These applications can be modeled with the aid of activity, sequence, and state dia-
grams. On the other hand, when these attributes are absent and the goal is to develop
mathematical software, equations do just fi ne because they are the models of mathematics.
Also, the development of mathematical software can benefi t from using directed graphs to
represent program logic. The benefi ts are threefold: equations and directed graphs are a model
for writing code that is very close to the results that the equations must achieve, a model is
provided for developing test strategies, and a by - product of the directed graph is a complexity
metric that can be used to evaluate the reliability of the software design.

REFERENCES

 [BER] Edward V. Berard , “ Issues in the testing of object - oriented software ” , The Object Agency.
 [BOO94] Grady Booch , Object - Oriented Analysis, and Design with Applications , 2nd ed. Redwod City,

CA : The Benjamin/Cummings Publishing Company, Inc. , 1994 .
 [BRO01] Manfred Broy , “ Toward a mathematical foundation of software engineering methods , ” IEEE

Transactions on Software Engineering , 2001 , 27 (1), pp. 42 – 57 .
 [DOU98] Bruce Powell Douglass , Real- Time UML: Developing Effi cient Objects for Embedded

Systems . Reading, MA : Addison - Wesley , 1998 .
 [EDE02] Amnon H. Eden , “ A theory of object - oriented design , ” Information Systems Frontiers , 2002 ,

 4 , pp. 379 – 391 .
 [FRI95] Peter Fritzson , Lars Viklund , Johan Herber , and Dag Fritzson , “ High - level mathematical

modeling and programming , ” IEEE Software , 1995 , 12 (4), pp. 77 – 87 .
 [GAM95] E. Gamma , R. Helm , R. Johnson , and J. Vlissides , Design Patterns: Elements of Object -

 Oriented Software . Reading, MA : Addison - Wesley , 1995 .
 [GRA] Ian Graham and Alan Wills , UML — a tutorial , Trireme International.
 [HOF97] J. Hoffman , “ A practical notation for object oriented analysis with a formal meaning , ” Tech-

nology of Object - Oriented Languages and Systems — Tools - 25, 1997 , p. 225 .
 [KGU96] Kinh Nguyen , “ Towards a practical formal method for object oriented modelling , ” Third

Asia - Pacifi c Software Engineering Conference (APSEC ’ 96) , 1996 , p. 226 .
 [MCC76] T. McCabe , “ A software complexity measure , ” IEEE Transactions on Software Engineering ,

 1976 , SE - 2 (4), pp. 308 – 320 .
 [MUN96] J. Munson , and T. Khoshgoftaar , “ Software metrics for reliability assessment , ” in Michael

Lyu (ed.), Handbook of Software Reliability Engineering . New York : McGraw - Hill , 1996 , pp. 493 –
 529 . Chapter 12.

Object-Oriented Analysis and Design Applied to Mathematical Software 439

 [RYA06] Matt Ryan , Sule Simsek , Xiaoqing Liu , Bruce McMillin , and Ying Cheng , “ An instance -
 based structured object oriented method for Co - analysis/Co - design of concurrent embedded systems , ”
30th Annual International Computer Software and Applications Conference (COMPSAC ’ 06) , 1, 2006 ,
pp. 273 – 280 .

 [SAL04] M. Salah and S. Mancoridis , “ A hierarchy of dynamic software views: from object -
 interactions to feature - interactions , ” Proceedings of the 20th IEEE International Conference on Soft-
ware Maintenance , 11 – 14 September 2004 , pp. 72 – 81 .

 [SEL04] C. Riva , P. Selonen , T. Systa , and Jianli Xu , “ UML - based reverse engineering and model
analysis approaches for software architecture maintenance , ” Proceedings of the 20th IEEE Interna-
tional Conference on Software Maintenance , 11 – 14 September 2004 , pp. 50 – 59 .

 [SEN07] Sabnam Sengupta and Swapan Bhattacharya , “ Functional specifi cations of object oriented
systems: a model driven framework , ” 31st Annual International Computer Software and Applications
Conference , 1, 2007 , pp. 667 – 672 .

 [ULL06] Larry Ullman and Andreas Singer , C++ Programming . Berkeley, CA : Peachpit Press , 2006 .
 [ZOU02] Ying Zou and Kostas Kontogiannis , “ Quality driven transformation compositions for

object oriented migration , ” Ninth Asia - Pacifi c Software Engineering Conference (APSEC ’ 02) , 2002 ,
p. 346 .

 [ZOU021] Y. Zou and K. Kontogiannis , “ Migration to object oriented platforms: a state transfor-
mation approach ,” 18th IEEE International Conference on Software Maintenance (ICSM ’ 02) , 2002 ,
p. 530 .

APPENDIX

C++ Code for Poisson Failure Model and Reliability
Based on Poisson Failure Model

 // factorial (xt) = xt * (xt - 1) * 1

 // failure rate lambda = sum (xt) / tn

 // Poisson failure model: P (xt, t) = (((lambda *
t) ̂ xt) * exp (- lambda * t)) / xt!

 // Reliability: R (t) = exp (- lambda * t)

 #include < iostream >

 #include < math.h > // specify math library

 #include < stdio.h >

 #include < string.h >

 #include < fstream >

 using namespace std;

 using std::cout; // specify standard screen
output

 using std::cin; // specify standard screen input

 using std::endl; // specify standard end of line

440 Computer, Network, Software, and Hardware Engineering with Applications

 int main ()

 {

 double xt [40], fact, failurecount, t [40] ; //
declare failure count at time t array, factorial of
xt,

 // number of xt failure counts while loop control,
failure time array

 int factcount, i, j; // declare factorial while loop
control, xtarray and while loop control index,

 // index of number of xt failure counts

 int tn, n; // last failure time, index of last
failure time

 double cumfail, lambda, P, R; // declare summation
of xt, failure rate, Poisson failure model,
reliability

 FILE * fp;//pointer to type FILE

 fp = fopen(̋ c:/models/numbers1.txt ̋ , ̋ w ̋); // file
for writing factorial output

 ifstream infile ; // declare failure count xt input

 infile.open(̋ c:/models/modelfailuredata.txt ̋);

 ifstream infile1 ; // declare failure time t

 infile1.open(̋ c:/models/Tdata.txt ̋);

 i = 0;

 while(!infile.eof())

 // while eof not reached for xt failure count, store
data in array

 {

 infile > > xt [i];

 if(!infile.eof()) // if eof not reached for xt
failure count, increment xt data array index

 {

 i = i + 1; // increment xt data array index

 }

 }

 failurecount = xt [0]; // store number of xt failure
counts

 i = 0;

 while(!infile1.eof())

Object-Oriented Analysis and Design Applied to Mathematical Software 441

 // while eof not reached for time of failure t, store
data in array

 {

 infile1 > > t [i];

 if(!infile1.eof()) // if eof not reached for time of
failure, increment xt data array index

 {

 i = i + 1; // increment t data array index

 }

 }

 n = t [0] ; // store last failure time index

 tn = t [n]; // store last failure time

 i = 1; // initialize failure count index

 cumfail = 0; // initialize cumulative xt

 while (i < = failurecount)// iterate while
accumulating failure count xt

 {

 cumfail = cumfail + xt [i]; // sum xt

 i = i + 1; // increment sum xt index

 }

 lambda = cumfail / tn; // compute failure rate

 fprintf (fp, ̋ %s%\n ̋ , ̋ failure rate ̋ , (char) 6);

 fprintf (fp, ̋ %f%c%\n ̋ , lambda, (char) 6);

 j = 1; // initialize while loop index for each
factorial computation

 i = 1; // initialize while loop index for iterating
on each factorial computation

 while (j < = failurecount)// iterate while there are
still failure counts

 {

 if (xt [i] < = 1) // simple case

 {

442 Computer, Network, Software, and Hardware Engineering with Applications

 fact = 1;

 i = i + 1;

 }

 else // case for xt > 1

 {

 factcount = xt [i]; // initialize failure count xt

 fact = xt [j]; // initialize factorial value

 while (i < = factcount & & xt [i] > 1) // iterate while
there are still more factors xt > 1

 {

 fact = (fact) * (xt [i] - 1); // compute factorial

 i = i + 1; // increment second while loop index

 }

 }

 P = (pow (lambda * t [j], xt [j]) * (exp (- lambda *
t [j]))) / fact ; // compute Poisson model

 R = (pow (lambda * t [j], 0) * (exp (- lambda * t
[j]))) / 1 ; // compute reliability by setting xt =
0 and fact = 1 in P

 fprintf (fp, ̋ %s%\n ̋ , ̋ failure time ̋ , (char) 6);

 fprintf (fp, ̋ %f%c%\n ̋ , t [j], (char) 6);

 fprintf (fp, ̋ %s%\n ̋ , ̋ factorial of ̋ , (char) 6);

 fprintf (fp, ̋ %f%c%\n ̋ , xt [j], (char) 6);

 fprintf (fp, ̋ %f%c%\n ̋ , fact, (char) 6);

 fprintf (fp, ̋ %s%\n ̋ , ̋ Poisson failure model ̋ , (char)
6);

 fprintf (fp, ̋ %f%c%\n ̋ , P, (char) 6);

 fprintf (fp, ̋ %s%\n ̋ , ̋ reliability ̋ , (char) 6);

 fprintf (fp, ̋ %f%c%\n ̋ , R, (char) 6);

 j = j + 1; // increment second while loop index

 }

 return 0;

 }

Chapter 18

Tutorial on Hardware
and Software Reliability,
Maintainability, and
Availability

C omputer systems, whether hardware or software, are subject to failure. Precisely, what is
a failure? It is defi ned as: The inability of a system or system component to perform a required
function within specifi ed limits. A failure may be produced when a fault is encountered and
a loss of the expected service to the user results [IEE07] . This brings us to the question of
what is a fault? A fault is a defect in the hardware or computer code that can be the cause of
one or more failures [IEE07] . Software - based systems have become the dominant player in
the computer systems world. It is imperative that computer systems operate reliably, consider-
ing the criticality of software, particularly in safety critical systems. Software and hardware
do not operate in a vacuum. Therefore, both software and hardware are addressed in this
tutorial in an integrated fashion. The narrative of the tutorial is augmented with illustrative
solved problems.

 It is important for an organization to have a disciplined process if it is to produce high
reliability software. This process uses a life - cycle approach to software reliability that takes
into account the risk to reliability due to requirements changes. A requirements change may
induce ambiguity and uncertainty in the development process that may cause errors in imple-
menting the changes. Subsequently, these errors may propagate through later phases of
development and maintenance [SCH01] . In view of the life - cycle ramifi cations of the software
reliability process, maintenance is included in this tutorial. Furthermore, because reliability
and maintainability determine availability, the latter is also included.

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F.
Schneidewind.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley &
Sons, Inc.

443

444 Computer, Network, Software, and Hardware Engineering with Applications

RELIABILITY BASICS

 To set the stage for discussing software and hardware model, the following defi ni-
tions and concepts are provided:

 Component: Any hardware or software entity, such as a module, subsystem, or
system.

 t: Operating time.

 P(T ≤ t): Probability that operating time T of a component is ≤ t (also known as
 cumulative distribution function [CDF]).

λ : Failure rate (software or hardware failure rate).

 Reliability R(t): P(T > t): probability of software or hardware surviving for
T > t = 1 – P(T ≤ t) [LYU96] .

 Hazard function: letting operating time t have the probability density function
p(t), the instantaneous failure rate at time t, defi ned as [LYU96] :

 h t p t /R t() () (),= (18.1)

 where p(t) is defi ned as the probability that a failure will occur in the interval
t, t + 1.

 The hazard function is frequently described in reliability literature, but a reliability
metric that is more practical for calculations with empirical data is the failure rate
f(t). This is defi ned as the number of failures n(t) in the interval t divided by t:
f(t) = n(t)/t. The reason the hazard function may be impractical when dealing with
empirical data is that the probability density function p(t) may not be known.

HARDWARE RELIABILITY

 The exponential failure distribution with constant failure rate is particularly appli-
cable to hardware reliability because it is assumed that the failure rate remains
constant after the initial burn in period and before wear out occurs.

Exponential Failure Distribution: λe–λt

 This distribution has a constant failure rate λ . The exponential distribution is the
only failure distribution that has a constant failure rate λ and a constant hazard func-
tion h(t) in the operations phase of the life cycle. This failure rate is = 1/ t , where
t is the mean time to failure (MTTF).

 Then, the reliability is:

 R t e t() .= −λ (18.2)

 Then using Equation 18.1 , the hazard function for exponentially distributed
failures is:

Tutorial on Hardware and Software Reliability, Maintainability, and Availability 445

 h t p t /R t e /et t() () () .= = =− −λ λλ λ (18.3)

 Then adapting Equation 18.2 to use MTTF, Equation 18.4 is produced:

 R t e .t t() (/)= − (18.4)

 If we wish to solve for t for a given value of R(t), Equation 18.5 is solved for t:

 t R t t.= − ln(()) (18.5)

Problem

Specifi cations

1. Hardware in a computer system should have an expected (mean) life
t > 100, 000 (MTTF) hours at a reliability of R(t) = 0.85. What is the
minimum number of hours t the computer system would have to survive
to meet these specifi cations?

2. If the hardware should have a 0.85 probability of surviving (i.e., reli-
ability) for t > 50,000 hours, what is the MTTF required to meet these
specifi cations?

Solution

1. Use Equation 18.5 to compute t:

 t hours= − = − − =ln(.)(,) (.)(,) .0 85 100 000 0 1625 100 000 16, 250

2. Solve Equation 18.26 for t :

 t t hours= − = − =/[ln(())] , /[ln(.)] .R t 50 000 0 85 307, 692

MULTIPLE COMPONENT RELIABILITY ANALYSIS

 Due to the fact that the majority of computer systems in the industry employ multiple
components, the reliability analysis must be focused on predicting reliability for
these systems. Hardware (and software) components can be operated in serial or
hardware confi gurations. In hardware, the differences are more obvious because of
the physical connection between components. In software, the difference is not
obvious because there is no physical connection. The difference is based on how the
components execute, as indicated in Figure 18.1 .

Parallel System

 As Figure 18.1 shows, the purpose of a parallel system is to provide a redundant
confi guration so that if one component fails, another component can take its place,
thus increasing reliability. The reliability of a single component i, operating for a
time t, is designated by R i (t). The unreliability is then (1 – R i (t)).

446 Computer, Network, Software, and Hardware Engineering with Applications

 Referring to Figure 18.1 , the reliability of n components operating in parallel
is given by [MUS87] :

 R t R t .i

i

n

() (())= − −
=

∏1 1
1

 (18.6)

 This equation is obtained by observing that the unreliability of n components in
parallel is computed by the product of the individual component unreliabilities.
Then, the reliability of n components is obtained by subtracting this product from 1.

 The most common parallel confi guration involves using two components, so
using Equation 18.6 and some algebraic manipulation, the reliability of two compo-
nents operating in parallel is given by:

 R t R t R t R t R t R t R t2() [() ()] [() ()] [(())(())].= + − = − − −1 2 1 1 21 1 1 (18.7)

 If both components have the same reliability, then:

 R t 2R t R t() () ().= − 2 (18.8)

 A traditional assumption in reliability is that the time between failures is exponen-
tially distributed [LYU96] . This is based on the idea that there is a higher probability

Figure 18.1 Parallel and serial reliability confi gurations. Parallel hardware, components physically
connected in parallel; parallel software, components execute concurrently in time; serial hardware,
components physically connected in series; serial software, components execute serially in time.

Parallel Configuration

component 1 component 2

R(t) = 1–Π(1–Ri(t))
n

i=1

R(t) = 1–Π Ri(t)
n

i=1
Serial Configuration

component 3

component 4 component i component n

component 1 component i component n

Tutorial on Hardware and Software Reliability, Maintainability, and Availability 447

of small times between failures and a low probability of large times between failures.
Therefore, when failures are exponentially distributed with failure rate λ , then the
reliability in Equation 18.1 .2 becomes:

 R t e et t() .= −− −2 2λ λ (18.9)

 MTTF refers to the average time to the next failure [MUS87] . It is a common metric
for hardware reliability because the physics of failures is well understood. However,
it can be misleading because equipment will fail at specifi c times and not according
to a mean value! MTTF is even less applicable for software because the distribution
of time when software fails can be erratic. Before proceeding further, it is important
to note that just because the distribution of failure times for both hardware and
software is a better metric of reliability, it does not mean that MTTF and mean time
between failures (MTBF; see below) are not used! These metrics have become so
embedded in the lore of reliability that it is imperative to describe their usage.

 In the case of hardware, MTTF is used when components are not repaired (i.e.,
replaced). In other words, with no repair, the time to next failure is direct , with no
intervening repair time. In nonredundant software systems, the software must be
repaired to continue operation, unless the fault causing the failure is trivial. There-
fore, MTTF is not completely applicable for this type of software. On the other hand,
for redundant software systems (e.g., fault tolerant), MTTF is applicable, with the
caveat noted above.

 MTBF, defi ned as the average time between failures, is used when components
are repaired [MUS87] . Thus, it is the time between failures, with an intervening
repair time.

 The general form for MTTF, whether hardware or software, is derived from the
reliability function R(t), as follows: ∫

∞
0 R t dt() [LYU96] .

 Therefore, the MTTF for the two component parallel arrangement, from Equa-
tion 18.1 .3, is given by:

 t R t dt e e dt
e et t

t t

= = − =
−⎡

⎣⎢
⎤
⎦⎥

−
−⎡

⎣⎢
∞

− −
∞ − ∞ −

∫ ∫() ()
0

2

0
0

2

2
2

2
λ λ

λ λ

λ λ
⎤⎤
⎦⎥

=
∞

0

1 5.

λ
. (18.10)

Series System

 Often, particularly for software systems, in order to produce a conservative predic-
tion of reliability, components are assumed to operate in series for the purpose of
reliability prediction [KEL97] . This represents the weakest link in the chain concept
(i.e., the system would fail if any component fails).

 Then this conservative reliability approach of n components operating in series
is given by [MUS87] :

 R t R ti

i=1

n

() ().= ∏ (18.11)

448 Computer, Network, Software, and Hardware Engineering with Applications

 Using Equation 18.11 , the reliability of two components operating in series, with
equal reliabilities, is given by Equation 18.12 , if the failures are exponentially
distributed:

 R t R t e t() () .= = −2 2λ (18.12)

 Then, the MTTF for the series arrangement is given next:

 t R t dt e
e

.t
t

= = =
−[]

=
∞

−
∞

∞

∫ ∫()
0

2

0

2
0

2

1

2
λ

λ

λ λ
 (18.13)

 It is often of interest to predict the improvement that can be achieved by using a
parallel rater than a series confi guration. Then, using Equations 18.9 and 18.12 , the
improvement of the parallel system reliability over a series system, for two compo-
nents, can be shown as:

 RI 2e e e 2(e et t t t t= − − = −− − − − −()).λ λ λ λ λ2 2 2 (18.14)

 In addition, using Equations 18.10 and 18.13 , the increase in MTTF can be shown
to be:

1 5 1

2

.
\ .

λ λ
λ− = 1 (18.15)

 It is not only the improvement RI that is of interest. In addition, the rate of change
of RI will reveal the rate of change of RI that will indicate how fast the improvement
will occur. Then, differentiating RI (Eq. 18.14) with respect to t, and setting it = 0,
gives us Equation 18.16 :

d RI

d t
e e .t t()

()
() ()= − − − =− −2 2 2 02λ λλ λ (18.16)

 Noting that the derivative of Equation 18.16 is negative, because the fi rst negative
term decreases less rapidly than the second positive term, we know that Equation
 18.16 will provide a value of t that will maximize RI.

 Then, solving Equation 18.1 .10 for t yields t * as the value of t that maxi-
mizes RI:

 t* = −(/)(log(.)).1 0 5λ (18.17)

Problem: For a computer system with failure rate of λ = 0.001 failures per hour
and time to failure listed below, plot Equations 18.3 , 18.6 , and 18.14 on the
same graph, versus t, and indicate the value of t = t * that maximizes RI,
assuming an exponential distribution of time to failure t.

 t (hours)

 100

Tutorial on Hardware and Software Reliability, Maintainability, and Availability 449

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1400

 1500

 1600

 1700

 1800

 1900

 2000

Solution: Figure 18.2 contrasts parallel reliability, serial reliability, and the
improvement of parallel over serial reliability. The fi gure also delineates the
operating time where the greatest improvement is achieved. A reliability
analyst, using this plot, would understand that at t = 683 hours the greatest
gain in reliability would occur and that at operating times either below or
above this value, the gain falls off rapidly.

Number of Components that are Needed to Achieve Reliability Goals

 When the reliability of a system is required to be R n (t) in a parallel confi guration,
the required number n components, each with a reliability of R(t), is:

 R t R tn
n() (()) .= − −1 1 (18.18)

 Solving Equation 18.18 for n yields:

 n R t / R tn= − −ln(()) ln(()).1 1 (18.19)

Problem: How many components are needed to operate in parallel, if each
component has a reliability of R(t) = 0.80, and it is desired to achieve a
system reliability of R n (t) = 0.98?

450 Computer, Network, Software, and Hardware Engineering with Applications

Figure 18.2 Reliability R(t) versus operating time t.

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

t

R
(t

)

Two component parallel

computer system

Two-component series

computer system

Increase in reliability of parallel

over series system

Maximum at t = 693

Solution: Solving Equation 18.18 for n , yields:

n R t / R t /

/
n= − − =

= − −
ln(()) ln(()) (ln(.) ln(.))

. .

1 1 0 02 0 20

3 912 1 609 == =2 43. .components 3

COMPUTER SYSTEM MAINTENANCE
AND AVAILABILITY

Preventive Maintenance Strategy. Routine inspection and service activities
designed to detect potential failure conditions and make adjustments and
repairs that will help prevent major operating problems [MON96] .

 Two fundamental preventive strategies are differentiated, time - and
condition - based preventive maintenance . In time - based preventive mainte-
nance, after a fi xed period of time, a component is serviced or overhauled,
independent of the wear of the component at that moment. In condition - based
preventive maintenance, one inspects a condition of a component, according
to some schedule. If the condition exceeds a specifi ed critical value, preven-
tive maintenance is performed. With regard to the timing of the inspections,
there are two variants, constant and condition - based inspection interval . If
one applies a constant inspection interval, an inspection is performed after a
fi xed period of time, analogous to time - based preventive maintenance. When

Tutorial on Hardware and Software Reliability, Maintainability, and Availability 451

deciding to perform a condition - based inspection interval, the time until the
next inspection depends on the condition in the previous inspection. If the
condition in the previous inspection was good, the time until the next inspec-
tion will be quite long. If the condition in the previous inspection was bad,
the time until the next inspection will be quite short.

Predictive Maintenance Strategy. Predictive maintenance is a condition - based
approach to maintenance. The approach is based on predicting component
condition in order to assess whether components will fail during some future
period, and then taking action to avoid the consequences of the failures.

COMPONENT AVAILABILITY

 Now, in order to compute component availability, a number of quantities must be
defi ned:

 t p : duration of component preventive maintenance

 t o : duration of component operation

 t f : duration of component failure

 t r : duration of component repair

 f p : frequency of component preventive maintenance

 f o : frequency of component operation

 f f : frequency of component failures

 f r : frequency of component repair

t : mean time to component failure

 With the defi nitions in hand, availability A, can be computed:

 A
f t

f t f t f t f t
o o

o o p p f f r r

=
+ + +

. (18.20)

 Availability is also expressed by:

 A t t tr= +/(). (18.21)

 These quantities are portrayed graphically in Figure 18.3 .

Figure 18.3 Computer maintenance process. t p , duration of preventive maintenance; t o , duration of
operation; t f , duration of failure; t r , duration of repair.

tp to tf tr to tp

1

cycle

452 Computer, Network, Software, and Hardware Engineering with Applications

Problem: Given the data below for a system, compute the availability A.

 Duration of operation: t o = 10

 Duration of preventive maintenance: t p = 1

 Duration of failure: t f = 0.5

 Duration of repair t r = 2

 Frequency of operation: f o = 20

 Frequency of preventive maintenance: f p = 20 (for every operation there is
preventive maintenance)

 Frequency of failure: f f = 4

 Frequency of repair: f r = 4 (for every failure there is a repair)

 Then, using Equation 18.20 :

A

f t

f t f t f t f t
o o

o o p p f f r r

=
+ + +

=
+ +

()()

()() ()() ()(.

20 10

20 10 20 1 4 0 5)) ()()

. ().

+
=

4 2

0 870 system availability

SOFTWARE RELIABILITY ENGINEERING
RISK ANALYSIS

 Software reliability engineering (SRE) is an established discipline that can help
organizations improve the reliability of their products and processes. The IEEE/
American Institute of Aeronautics and Astronautics (AIAA) defi nes SRE as “ the
application of statistical techniques to data collected during system development and
operation to specify, predict, estimate, and assess the reliability of software - based
systems.” The IEEE/AIAA recommended practice is a composite of models and
tools and describes the “ what and how ” of SRE [IEE07] . It is important for an
organization to have a disciplined process if it is to produce high reliability software.
The process includes a life - cycle approach to SRE that takes into account the risk
to reliability due to requirements changes. A requirements change may induce ambi-
guity and uncertainty in the development process that cause errors in implementing
the changes. Subsequently, these errors may propagate through later phases of devel-
opment and maintenance. These errors may result in signifi cant risks associated with
implementing the requirements. For example, reliability risk (i.e., risk of faults and
failures induced by changes in requirements) may be incurred by defi ciencies in the
process (e.g., lack of precision in requirements). Figure 18.4 shows the overall SRE
closed - loop holistic process

 In the fi gure, risk factors are metrics that indicate the degree of risk in introduc-
ing a new requirement or making a requirements change. For example, in the
National Aeronautics and Space Administration (NASA) Space Shuttle, program
size and complexity, number of confl icting requirements, and memory requirements
have been shown to be signifi cantly related to reliability (i.e., increases in these risk
factors are associated with decreases in reliability) [SCH07] . Organizations should

Tutorial on Hardware and Software Reliability, Maintainability, and Availability 453

conduct studies to determine what factors are contributing to reliability degradation.
Then, as in Figure 18.4 , organizations could use feedback from operations, testing,
design, and programming to determine which risk factors are associated with reli-
ability, and revise requirements, if necessary. For example, if requirements risk
assessment fi nds that through risk factor analysis that defects are occurring because
of excessive program size, design and programming would receive revised require-
ments to modularize the software.

 A reliability risk assessment should be based on the risk to reliability due to
software defects or errors caused by requirements and requirements changes. The
method to ascertain risk based on the number of requirements and the impact of
changes to requirements is inexact, but nevertheless, it necessary for early require-
ments assessments of large - scale systems.

Criteria for Safety

 In safety - critical systems in particular, safety criteria are used in conjunction with
risk factors to assess whether a system is safe to operate. Two criteria are used. One
is based on predicted remaining failures in relation to a threshold and the second is
based on the predicted time to next failure in relation to mission duration [SCH97] .
These criteria are computed as follows:

 Compute predicted remaining failures r(t t) < r c , where r c is a specifi ed remaining
failures critical value, and compute predicted time to next failure T F (t t) > t m , where
tm is mission duration.

 Once r(t t) has been predicted, the risk criterion metric (RCM) for remaining
failures at total test time t t is computed in Equation 18.22 :

 RCM r t
r t r

r

r t

r
t

t c

c

t

c

()
() ()

.=
−

= −1 (18.22)

 In order to illustrate the remaining failure risk criterion in relation to the predicted
maximum number of failures in the software F(∞), the following parameter is
needed:

Figure 18.4 Software reliability engineering risk analysis.

Requirements

Risk Assessment

Software Design and

Programming
Testing Operations

field failure

rate
field failure

rate

field failure

rate

testing

failure

rate

defects

requirements

revise

requirements

based on

risk factors

consider risk factors in

design and

programming

adjust testing strategy

based on defects and

field failure rate

defects
release

software

454 Computer, Network, Software, and Hardware Engineering with Applications

 p(t): Fraction of remaining failures predicted at time t t in Equation 18.23 :

 p t
r t

F
t

t()
()

()
.=

∞
 (18.23)

 The RCM for time to next failure at total test time t t is computed in Equation 18.24
based on the predicted time to next failure in Equation 18.25 [SCH07] :

RCM T t
t T t

t
1

T t

t
F t

m F t

m

F t

m

()
() ()

,=
−

= − (18.24)

T t F t X s for F tf t t s t() log ((())) (), ((= − − + ⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

+ −−
1

1 11β
β
α

))) ,+ ⎛
⎝⎜

⎞
⎠⎟ <−Xs 1 1

β
α

 (18.25)

 where β and α are parameters estimated from the failure data. Parameter β is the
rate of change of the failure rate and α is the initial failure rate. The parameter s is
the starting failure interval count that produces the most accurate reliability predic-
tions, and X s– 1 is the observed failure count in the range of the test data from s to t t .
Finally, F(t t) refers to the specifi ed number of failures — usually one — that is used in
the prediction.

Problem

Part 1: Remaining Failures Risk

 Using one of the models in IEEE/AIAA [IEE07] , recommended for initial
use, and either the software reliability tool Statistical Modeling and Estima-
tion of Reliability Functions for Software (SMERFS) or CASRE, compute
Equations 18.2.3 and 18.2 .4 to produce Figures 18.5 and 18.6 for the NASA
Space Shuttle software release OI6. The failure counts for each value of test
time t t for OI6 are shown in Table 18.1 . Once you have inputted a text fi le
of these counts, one at a time, the software reliability tools will compute
r(tt) and F(∞)for each of the 10 cases. The tools can be downloaded at
 http://www.slingcode.com/smerfs/ for SMERFS and at http://www.
openchannelfoundation.org/projects/CASRE_3.0 for CASRE.

Part 2: Time to Next Failure Risk

 In this part, a specifi c recommended model in [IEE07] is used [SCH97] in
order to illustrate the use of this model ’ s predicted time to next failure and
the application of the prediction to evaluating the risk of not satisfying the
mission duration requirement, as formulated in Equation 18.24 . Other recom-
mended models could be used to perform the analysis.

 After using one of the tools to estimate the parameters in Equation 18.24 ,
predict T F (t t) for one more failure and plot it and the RCM, in Figure 18.7 ,
as a function of the test time t t in Table 18.1 .

Tutorial on Hardware and Software Reliability, Maintainability, and Availability 455

Figure 18.5 Predicted remaining failures r(t t) and risk criterion metric RCM r(t t) versus test time t t
for NASA space shuttle release OI6. Series 1: r(t t). Series 2: RCM r(t t). Series 3: remaining failures
critical value r c .

–1.5000

–1.0000

–0.5000

0.0000

0.5000

1.0000

1.5000

5 6 7 8 9 10 11 12 13 14

tt

r(
t t

),
 R

C
M

 r
(t

t)

Series 1

Series 2

Series 3
Software at risk for t = 5t

Figure 18.6 Cost of testing t t versus software quality p(t t) for NASA space shuttle release OI6. Test
time t t represents cost, fraction remaining failures p(t t) represents software quality.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0.0000 0.0200 0.0400 0.0600 0.0800 0.1000 0.1200 0.1400 0.1600 0.1800 0.2000

p(tt)

t t

High cost, high quality

Low cost, low quality

Solution to Part 1: Figure 18.5 delineates the test time = 5, where the risk of
exceeding the critical value of remaining failures is unacceptable. Therefore,
a test time of at least 6 is required. Figure 18.6 shows how the software reli-
ability analyst can do a trade - off of the cost of testing version with the quality
of software produced by testing. Since test time is usually directly related to

456 Computer, Network, Software, and Hardware Engineering with Applications

Table 18.1 Failure Counts for NASA Space Shuttle Software Release OI 6

 t t 5 6 7 8 9 10 11 12 13 14

 0 0 0 0 0 0 0 0 0 0
 2 2 2 2 2 2 2 2 2 2
 1 1 1 1 1 1 1 1 1 1
 2 2 2 2 2 2 2 2 2 2
 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0
 0 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0
 0 0 0
 1 1
 1

Figure 18.7 Predicted time to next failure T F (t t) and risk criterion metric RCM T F (t t) versus test
time t t . Series 1: T F (t t). Series: 2: RCM T F (t t). Series 3: Mission duration: t m .

–10.0000

–5.0000

0.0000

5.0000

10.0000

15.0000

20.0000

25.0000

30.0000

35.0000

40.0000

45.0000

5 6 7 8 9 10 11 12 13 14

tt

T
F(

t t)
, R

C
M

 T
F
(t

t)

Series 1

Series 2

Series 3

Software at risk in this region

Tutorial on Hardware and Software Reliability, Maintainability, and Availability 457

cost, the fi gure indicates that a very high cost would be incurred for attempt-
ing to achieve almost fault - free software. Therefore, tolerating a fraction of
remaining failures of about 0.0600 would be practical.

Solution to Part 2: Switching now to the evaluation of risk with respect to time
to next failure, Figure 18.7 demonstrates that unless the test time is greater
than 12, the time to failure will not exceed the mission duration. The engineer
using such a plot would use a mission duration appropriate for the software
being tested. The concept behind Figure 18.7 is that the software should be
tested suffi ciently long such that the RCM goes negative.

PARAMETER ANALYSIS

 It is possible to assess risk after the parameters α and β have been estimated by a
tool, such as SMERFS and CASRE [IEE07] , but before predictions are made. An
example is provided in Figure 18.8 , where remaining failures and its risk criterion
are plotted against the parameter ratio (PR) β / α [SCH07] . The reason for this result
is that a high value of β means that the failure rate decreases rapidly, and coupled
with a low value of α , leads to high reliability. High reliability in turn means low
risk of unsafe software. Furthermore, increasing values of PR are associated with
increasing values of test time, thus decreasing risk. Thus, even before predictions
are made, it is possible to know how much test time is required to yield predictions
that the software is safe to deploy. In Figure 18.8 , this time is 6, corresponding to
the same result in Figure 18.7 . A cautionary note is that the foregoing analysis is an

Figure 18.8 Risk criterion metric: RCM r(t t) and remaining failures r(t t) versus parameter ratio PR
(beta/alpha) for NASA space shuttle software release OI6. Series 1: Predicted r(t t). Series 2: RCM r(t t).

–1.5000

–1.0000

–0.5000

0.0000

0.5000

1.0000

1.5000

0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000 1.1000

PR

R
C

M
 r

(t
t),

 r
(t

t)

Series 2

Series 1

Risk decreases with increasing PR

Test time = 6

458 Computer, Network, Software, and Hardware Engineering with Applications

a priori assessment of likely risk results and does not mean, necessarily, that high
values of β / α will lead to low risk.

Problem: After obtaining estimates of β and α using one of the reliability tools
for each value of test time in Table 18.1 , plot Figure 18.8 to show that risk
decreases with the PR.

OVERVIEW OF RECOMMENDED SOFTWARE
RELIABILITY MODELS

 In IEEE/AIAA [IEEE07] , it is stated that there are “ initial models ” recommended for
using on an application, but if these models do not satisfy the organization ’ s need,
other models that are described in the document could be used. Since this tutorial has
included several practice problems, based in part on models, an overview is presented
of two of the initially recommended models: Musa – Okumoto and Schneidewind. The
third model — generalized exponential — involves a great amount of detail that cannot
be presented here. For readers interested in more detail on these models or to learn
about the other models, the recommended practice can be consulted.

MUSA–OKUMOTO LOGARITHMIC POISSON
EXECUTION TIME MODEL

Objectives

 The logarithmic Poisson model is applicable when the testing is done according to
an operational profi le that has variations in frequency of application functions and
when early fault corrections have a greater effect on the failure rate than later ones.
Thus, the failure rate has a decreasing slope. The operational profi le is a set of func-
tions and their probabilities of use [MUS99] .

Assumptions

 The assumptions for this model are:

• The software is operated in a similar manner as the anticipated operational
usage.

• Failures are independent of each other.

• The failure rate decreases exponentially with execution time.

Structure

 From the model assumptions we have:
λ (t) = failure rate after t amount of execution time has been expended λ0 e –θμ (t) .

Tutorial on Hardware and Software Reliability, Maintainability, and Availability 459

 The parameter λ0 is the initial failure rate parameter and θ is the failure rate
decay parameter with θ > 0.

 Using a reparameterization of β0 = θ− 1 and β1 = λ0θ , the estimates of β0 and β1

are made, as shown in Equations 18.26 and 18.27 , respectively:

 ˆ
ln(ˆ)

,β
β

0

11
=

+
n

tn

 (18.26)

1

1 1 11 1 1 1
ˆ ˆ (ˆ) ln(ˆ)

.
β β β β

1

t

nt

t tii 1

n
n

i i+
=

+ +=
∑ (18.27)

 Here, t n is the cumulative central processing unit (CPU) time from the start of the
program to the current time. During this period, n failures have been observed. Once
estimates are made for β0 and β1 , the estimates for θ and λ0 are made in Equations
 18.28 and 18.29:

 ˆ ln ˆ ,θ β= +()1
1 1

n
tn (18.28)

 ˆ ˆ ˆ .λ β β0 0 1= (18.29)

Limitation

 The failure rate may rise as modifi cations are made to the software violating the
assumption of decreasing failure rate.

Data Requirements

 The required data are either:
 The time between failures, represented by X i’ s.
 The time of the failure nth occurrences, given by t Xn i

n
i= ∑ =1 .

Applications

 The major applications are described below. These are separate but related applica-
tions that, in total, comprise an integrated reliability program.

Prediction. Predicting future failure times and fault corrections.

Control. Comparing prediction results with predefi ned goals and fl agging soft-
ware that fails to meet goals.

Assessment. Determining what action to take for software that fails to meet
goals (e.g., intensify inspection, intensify testing, redesign software, and
revise process). The formulation of test strategies is also a part of assessment.

460 Computer, Network, Software, and Hardware Engineering with Applications

It involves the determination of priority, duration, and completion date of
testing, and allocation of personnel and computer resources to testing.

Reliability Predictions

 In Musa et al. [MUS87] , it is shown that from the assumptions above and the fact
that the derivative of the mean value function of failure count is the failure rate
function, Equation 18.30 is obtained:

ˆ ()μ τ τ= mean number of failures experienced by time is expendeed .= +()1
10ˆ ln ˆ ˆ

θ
λ θτ

 (18.30)

Implementation and Application Status

 The model has been implemented by the Naval Surface Warfare Center, Dahlgren,
Virginia as part of SMERFS and in CASRE.

SCHNEIDEWIND MODEL

Objectives

 The objectives of this model [SCH97] are to predict following software reliability
metrics:

• F(t 1 , t 2): Predicted failure count in the range [t 1 , t 2]

• F(∞): Predicted failure count in the range [1, ∞]; maximum failures over the
life of the software

• F(t): Predicted failure count in the range [1, t]

• p(t): Fraction of remaining failures predicted at time t

• Q(t): Operational quality predicted at time t; the complement of p(t); the
degree to which software is free of remaining faults (failures)

• r(t t): Remaining failures predicted at test time t t
• t t : Test time predicted for given r(t t)

• T F (t t): Time to next failure predicted at test time t t

Parameters Used in the Predictions

• α : Initial failure rate

• β : Rate of change of failure rate

Tutorial on Hardware and Software Reliability, Maintainability, and Availability 461

• r c : Critical value of remaining failures used in computing the RCM for remain-
ing failures: (RCM) r(t t)

• t m : Mission duration (end time – start time) used in computing the RCM for
time to next failure: RCM T F (t t)

 The philosophy of this model is that as testing proceeds with time, the failure detec-
tion process changes. Furthermore, recent failure counts are usually of more use than
earlier counts in predicting the future. Three approaches can be employed in utilizing
the failure count data (i.e., number of failures detected per unit of time). Suppose
there are t intervals of testing and f i failures were detected in the ith interval, one of
the following is done:

• Use all of the failures for the t intervals.

• Ignore the failure counts completely from the fi rst s – 1 time intervals
(1 ≤ s ≤ t) and only use the data from intervals s through t.

• Use the cumulative failure count from intervals 1 through s – 1: F fs 1 i
s

i− =
−= ∑ 1

1 .

 The fi rst approach should be used when it is determined that the failure counts from
all of the intervals are useful in predicting future counts. This would be the case
with new software where little is known about its failure count distribution. The
second approach should be used when it is determined that a signifi cant change in
the failure detection process has occurred and thus only the last t – s + 1 intervals are
useful in future failure forecasts. The last approach is an intermediate one between
the other two. Here, the combined failure counts from the fi rst s – 1 intervals and
the individual counts from the remaining intervals are representative of the failure
and detection behavior for future predictions. This approach is used when the fi rst
s – 1 interval failure counts are not as signifi cant as in the fi rst approach, but are
suffi ciently important not to be discarded, as in the second approach.

Assumptions

• The number of failures detected in one interval is independent of the failure
count in another. Note that in practice, this assumption has not proved to be
a factor in obtaining prediction accuracy.

• Only new failures are counted.

• The fault correction rate is proportional to the number of faults to be
corrected.

• The software is tested in a manner similar to the anticipated operational usage.

• The mean number of detected failures decreases from one interval to the next.

• The rate of failure detection is proportional to the number of failures within
the program at the time of test. The failure detection process is assumed to
be a nonhomogeneous Poisson process with an exponentially decreasing
failure detection rate [SCH07] . The rate is of the form f(t) = α e −β (t − s + 1) for the
tth interval where α > 0 and β > 0 are the parameters of the model.

462 Computer, Network, Software, and Hardware Engineering with Applications

Structure

 The method of maximum likelihood (MLE) is used to estimate parameters. This
method is based on the concept of maximizing the probability that the true values
of the parameters are observed in the failure data [MUS99] . Two parameters are
used in the model that were previously defi ned: α and β . In these estimates, t is the
last observed failure count interval; s is the starting interval for using observed
failure data in parameter estimation; X k is the number of observed failures in interval
k ; X s– 1 is the number of failures observed from 1 through s – 1 intervals; X s,t is the
number of observed failures from interval s through t; and X t = X s– 1 + X s,t . The
likelihood function (based on MLE) is then developed as:

log log log

log

log

()

,

L X X e

e

t t
t

s
s

s t

= − − −()[]
+ −()[]

+

−

−
− −

1 1

11
1

β

βX

X 11 1
0

−()[]− + −−
+

=

−

∑e s k Xs k

k

t s
β β () .

 (18.31)

 Equation 18.31 is used to derive the equations for estimating α and β for each of
the three approaches described earlier. The parameter estimates can be obtained by
using the SMERFS or CASRE tools.

Approach 1

 Use all of the failure counts from interval 1 through t (i.e., s = 1). Equations 18.32
and 18.33 are used to estimate β and α , respectively:

1

e 1

t

e 1
k

X

Xt

k 1

tk 0

t 1

β β−
−

−
= +

=

−

∑ , (18.32)

 α
β

β=
− −

X

e
t

t1
. (18.33)

Approach 2

 Use failure counts only in intervals s through t (i.e., 1 ≤ s ≤ t). Equations 18.34 and
 18.35 are used to estimate β and α , respectively. (Note that approach 2 is equivalent
to approach 1 for s = 1.)

1

e 1

t s 1

e 1
k

X

Xt s

k s

s tk 0

t s

β β−
−

− +
−

=− +
+

=

−

∑()
,

,
1

 (18.34)

 α
β

β=
− − − +

X

e
s t

t s

,

()
.

1 1
 (18.35)

Tutorial on Hardware and Software Reliability, Maintainability, and Availability 463

Approach 3

 Use cumulative failure counts in intervals 1 through s – 1 and individual failure
counts in intervals s through t (i.e., 2 ≤ s ≤ t). This approach is intermediate to
approach 1, which uses all of the data, and approach 2, which discards “ old ” data.
Equations 18.36 and 18.37 are used to estimate β and α , respectively. (Note that
approach 3 is equivalent to approach 1 for s = 2.)

()

()
()

,s X

e 1

X

e 1

X

e
s k X ,s

s

s t t

m s k

k 0

t s−
−

+
−

− = + −−
− +

=

−

∑1
11

1β β β

t
 (18.36)

 α
β

β=
− −

X

e
t

t1
. (18.37)

Limitations

• Model does not account for the possibility that failures in different intervals
may be related

• Model does not account for repetition of failures

• Model does not account for the possibility that failures can increase over time
as the result of software modifi cations

 These limitations should be ameliorated by confi guring the software into versions
that, starting with the second version, the next version represents the previous
version plus modifi cations introduced by the next version. Each version represents
a different module for reliability prediction purposes. The model is used to predict
reliability for each module. Then, the software system reliability is predicted by
considering the N modules to be connected in series (i.e., worst - case situation), and
computing the MTTF for N modules in series [SCH02] .

Data Requirements

 The only data requirements are the number of failures, f i , i = 1, . . . , t, per testing
interval. A reliability database should be created for several reasons: input data sets
will be rerun, if necessary, to produce multiple predictions rather than relying on a
single prediction; reliability predictions and assessments could be made for various
projects; and predicted reliability could be compared with actual reliability for
these projects. This database will allow the model user to perform several useful
analyses: to see how well the model is performing; to compare reliability across
projects to see whether there are development factors that contribute to reliability;
and to see whether reliability is improving over time for a given project or across
projects.

464 Computer, Network, Software, and Hardware Engineering with Applications

Applications

 The major model applications are described below. These are separate but related
uses of the model that, in total, comprise an integrated reliability program.

• Prediction. Predicting future reliability metrics such as remaining failures and
time to next failure.

• Control. Comparing prediction results with predefi ned reliability goals and
fl agging software that fails to meet those goals.

• Assessment. Determining what action to take for software that fails to meet
goals (e.g., intensify inspection, intensify testing, redesign software, and
revise process). The formulation of test strategies is also part of assessment.
Test strategy formulation involves the determination of: priority, duration and
completion date of testing, allocation of personnel, and allocation of computer
resources to testing.

• Risk Analysis. Compute RCMs for remaining failures and time to next failure.

 Predict test time required to achieve a specifi ed number of remaining failures at t t ,
r(tt) in Equation 18.38 :

 t tt r t= [log[/([()])]] / .α β β (18.38)

Implementation and Application Status

 The model has been implemented in FORTRAN and C ++ by the Naval Surface
Warfare Center, Dahlgren, Virginia as part of the SMERFS. In addition, it has been
implemented in CASRE. It can be run on an IBM PCs under all Windows operating
systems.

 Known applications of this model are:

• IBM, Houston, Texas: Reliability prediction and assessment of the on - board
NASA Space Shuttle software

• Naval Surface Warfare Center, Dahlgren, Virginia: Research in reliability
prediction and analysis of the TRIDENT I and II Fire Control Software

• Marine Corps Tactical Systems Support Activity, Camp Pendleton, California:
Development of distributed system reliability models

• NASA JPL, Pasadena, California: Experiments with multimodel software
reliability approach

• NASA Goddard Space Flight Center, Greenbelt, Maryland: Development of
fault correction prediction models

• NASA Goddard Space Flight Center

• Hughes Aircraft Co., Fullerton, California: Integrated, multimodel approach
to reliability prediction

Tutorial on Hardware and Software Reliability, Maintainability, and Availability 465

SUMMARY

 The purpose of this tutorial has been twofold: (1) to serve as a companion to the IEEE/AIAA
Recommended Practice on Software Reliability and (2) to assist the engineer in understanding
and applying the principles of hardware and software reliability, and the related subjects of
maintainability and availability. Due to the prevalence of software - based systems, the focus
has been on learning how to produce high reliability software. However, since hardware faults
and failures can cause the highest quality software to fail to meet user expectations, consider-
able coverage of hardware reliability was provided. Practice problems with solutions were
included to provide the reader with real - world applications of the principles that were
discussed.

REFERENCES

 [IEE07] IEEE/AIAA , “ P1633 ™ /Draft 13, Recommended practice on software reliability , ” November,
 2000 .

 [KEL97] Ted Keller and Norman F. Schneidewind , “ A successful application of software reliability
engineering for the NASA space shuttle ” , Software Reliability Engineering Case Studies, International
Symposium on Software Reliability Engineering , Albuquerque, New Mexico, November 3 – 4, 1997 ,
pp. 71 – 82 .

 [LYU96] Michael R. Lyu , Handbook of Software Reliability Engineering . Los Alamitos, CA : IEEE
Computer Society Press ; New York : McGraw - Hill Book Company , 1996 .

 [MON96] Joseph G. Monks , Operations Management , 2nd ed. , New York : McGraw - Hill , 1996 .
 [MUS87] John D. Musa , Anthony Iannino , and Kazuhira Okumoto , Software Reliability: Measure-

ment, Prediction, Application , New York : McGraw - Hill , 1987 .
 [MUS99] John D. Musa , Software Reliability Engineering: More Reliable Software, Faster and Cheaper ,

 2nd ed. Bloomington, IN : Authorhouse , 1999 .
 [SCH01] Norman F. Schneidewind , “ Reliability and maintainability of requirements changes , ” Pro-

ceedings of the International Conference on Software Maintenance, Florence, Italy, 7 – 9 November ,
 2001 ,pp 127 – 136 .

 [SCH02] Norman F. Schneidewind , “ Body of Knowledge for Software Quality Measurement , ” IEEE
Computer, Computer Society Press, Los Alamitos, CA, February 2002 , pp. 77 – 83 .

 [SCH07] Norman F. Schneidewind , “ Risk - driven software testing and reliability , ” International
Journal of Reliability, Quality and Safety Engineering , 2007 , 14 (2), pp. 99 – 132 . World Scientifi c
Publishing Company.

 [SCH97] Norman F. Schneidewind , “ Reliability modeling for safety critical software , ” IEEE Transac-
tions on Reliability , 1997 , 46 (1), pp. 88 – 98 .

 Practice Problems with Solutions 1

 These practice problems are related to the following chapters:

 Chapter 1 : Digital Logic and Microprocessor Design

 Chapter 2 : Case Study in Computer Design

 Chapter 6 : Network Systems

 Chapter 9 : Programming Languages

 Chapter 10 : Operating Systems

 Chapter 11 : Software Reliability and Safety

 In addition, there are circuit analysis problems that support Chapters 1 and 2 .

CHAPTER 1 (DIGITAL LOGIC AND
MICROPROCESSOR DESIGN) AND CHAPTER 2
(CASE STUDY IN COMPUTER DESIGN)

Number Representation in Floating -Point Format

Problem 1

Given: S is a sign bit where 0 indicates positive 1 and 0 indicates negative;
exponent is a 7 - bit excess 64 power of 2; mantissa is an 8 - bit fraction.

Problem: A 16 - bit word, N = 4000 16 , represents what decimal numeric value?

Solution: 4000 16 = 0100 0000 0000 0000

 Sign 0 = positive, mantissa = 0000 0000, excess 64 power of 2 exponent =
1000000 – 1000000 = 0

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F.
Schneidewind.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley &
Sons, Inc.

466

Practice Problems with Solutions 1 467

Answer: N = 0 (2)0 = 0.0
Mantissa Exponent

 Problem 2

Given: The fl oating point format design shown in Figure 1 .

Problem: Can the decimal number 111.875 be stored in this format? If not, what
decimal values can be stored?

Solution: 111.875 cannot be stored because the mantissa 0.875 requires more
than 8 bits. However, 118.75 can be stored because this mantissa 0.75
requires only 7 bits, as shown in the following number conversions:

0 875 0 3611 0 110110 1011 10 0 75 0 411 0 10010 16 2 10 16. . . : , . . .= = = =bits 11011 7

3 6 11 4 11
2: bits

 These conversions are achieved by successively dividing the decimal number by 16,
recording the remainders, and assigning the remainders to the hexadecimal numbers
in reverse order.

Encoding

One-Hot Encoding

 One - hot encoding is a type of data encoding in which an individual fl ip - fl op is dedi-
cated to only one state of the data. Thus, only one fl ip - fl op, which stores the data,
can be active, or hot, at a time.

 Problem 3

Given: A central processing unit (CPU) is designed with one - hot encoding. This
CPU cycles through 16 states and produces 32 control signals (one for fl ip -
fl op output high and one for output low , for each of 16 states).

Problem: How many fl ip - fl ops are required?

Answer: Sixteen are required, corresponding to each of the 16 states.

Figure 1 Floating point format.

7 6 5 2 1 0 7 6 5 4 34 3 2 1 0

Byte 0 Byte 1

Normalized MantissaExcess 64 ExponentSign

2(e–64) × 0.1ffffffff

8 bits in Normalized Mantissa: “1” in left-most bit position

468 Computer, Network, Software, and Hardware Engineering with Applications

Table 1 Hamming Code Words

 D 6 D 5 D 4 D 3 D 2 D 1 D 0
 I 3 I 2 I 1 P 2 I 0 P 1 P 0
 1 1 1 1 0 0 0
 1 1 0 0 1 1 0
 1 0 1 0 1 0 1

Error Detection and Correction

 The Hamming Code is a type of error detection and correction code that uses parity
bits as a check for possible errors in the information bits. It is capable of detecting
two bits in error and correcting one.

 D 6 D 5 D 4 D 3 D 2 D 1 D 0 Data bit positions
 I 3 I 2 I 1 P 2 I 0 P 1 P 0 Code word

 Parity bits (P) are located in data bit positions P 0 , P 1 , and P 2.

 Information bits (I 3 , I 2 , I 1 , I 0) are located in the remaining bit positions.

 Problem 4

Given: Hamming code words in Table 1 . One of the code words has information
bits 1110 2 .

Problem: What is the correct Hamming Code word?

Solution: Only the fi rst code word has the required information bits (in red).
Therefore, the code word is 1111000 2 .

Parity Error Detection

 In even parity error detection, if the number of one bits, including the parity bit, is
an even number, the data are assumed to be correct; otherwise, a one - bit error is
assumed. In odd parity error detection, if the number of one bits, including the parity
bit, is an odd number, the data are assumed to be correct; otherwise, a one - bit error
is assumed. Thus, parity error detection can detect one - bit errors but cannot correct
these errors. If a parity error is detected at the receiver, a negative acknowledgement
is sent to the transmitter to retransmit the message.

 Problem 5

Problem: It is desired to use even parity error detection in a digital circuit, where P is
the parity bit. Which of the data below would generate even parity error signals?

 P

 0010 odd (error)

 0100 odd (error)

 0101 even (correct)

 0111 odd (error)

Practice Problems with Solutions 1 469

Cyclic Redundancy Check (CRC)

 This is a sophisticated error detection and correction process that uses mathematical
polynomials for detecting and correcting multiple errors.

 A message of degree n is the polynomial M(x) is: x n + x n− 1 + x n− 2 + . . . + x 0 .
 The sender and receiver must agree on a generator polynomial G(x) of degree

k ≤ n in advance of transmission.
 Both the high and low bits of G(x) must be 1.
 M(x) must be longer than G(x).
 k zeros are appended to M(x), yielding the transmitted message T(x) = M(x) x k .
 The remaining operations are shown in the following example:
Example :

 M x x x() = + + =2 1 111

 Use G(x) = x + 1 = 11 because M(x) can be divided by G(x) (i.e., the degree of
G(x) = 1 ≤ degree of M(x) = 2).

 k = degree 1, therefore append one zero to M(x), yielding the following trans-
mitted message:

 T(x) = M(x)x = x + x + x = 2 + 2 + 2 = 14 = 1110k 3 2 3 2 1
10 16.

 Divide T(x) by G(x), using modulo 2 division, and record remainder R(x), using
modulo 2 division:

)11 110

11

001

00

010

00

1R x 0

.

() =

100

 Now, subtract remainder R(x) = 10 from M(x)x k = 1110, using Exclusive Or sub-
traction (modulo 2):

 M x x R xk() () .⊕ = ⊕ =1110 10 1100

 At the receiver, divide (M(x)x k � R(x)) by G(x) and check for zero remainder. If
this is the case, there is no error in transmission; otherwise, there are one or more
errors, so retransmit:

470 Computer, Network, Software, and Hardware Engineering with Applications

)11 1100

11

000

00

00

100

 Check: 12/3 = 4.
 The remainder is zero, so there is no error in transmission.

 Problem 6

Given: CRC polynomial: x 16 + x 12 + x 5 + 1 = x 16 + x 12 + x 5 + x 0 = 2 16 + 2 12 + 2 5
+ 1 = 65536 + 4096 + 32 + 1

Problem: What is the hexadecimal equivalent of this CRC polynomial?

 The solution is obtained by placing ones in the power of twos positions, cor-
responding to the decimal numbers as follows:

x16 + x12+ x5 + 1 = 1 0001 0000 0010 0001 = 1102116

 65536 4096 32 1

Proof: x 16 + x 12 + x 5 + 1 = 69,665 10 . Convert 11021 16 to base 10:

 () () () () , , ,1 16 1 16 2 16 1 16 65 536 4 096 32 1 69 6654 3 1 0* * * *+ + + = + + + =

Instruction Formats

 Problem 7

Given: The instruction register below contains AB6 16 as the next instruction to
be executed. Assuming this is an add accumulator to operand at effective
address instruction, the instruction format is the following:

11 10 7 6 0
Op Code Address Instruction register

 1 0101 011 0110

Indirect address indicator

 Identify the op code bits:
 Bolded bits are op code bits: AB6 16 = 1 010 1 011 0110 (hexadecimal converted

to binary)

Solution: Using indirect addressing as signifi ed by bit 11 = 1: Op code bits = bits
10:7 = 0101 : add accumulator + operand at effective address 011 0110
(address located at 011 0110).

Practice Problems with Solutions 1 471

 Problem 8

Given: The above instruction format in Problem 7 of 12 bits per word.

Problem: What is the maximum memory size in bits?

Answer: There are 2 7 addresses, each of which is 12 bits long. Therefore,
memory size = 12 × 2 7 bits = 12 × 128 = 1536 bits.

Pipeline Systems

 Number of clock cycles required in pipelined system = Number of clock cycles
required in conventional system – Number of overlapped clock cycles in pipelined
system = mn – (m – 1)(n – 1), where m is the number of instructions and n is the
number of clock cycles required by the fi rst instruction. This is the case because for
the fi rst instruction, there is no preceding instruction to overlap with. Therefore,
there are m – 1 overlapped instructions. Also, the last clock cycle of the m – 1 over-
lapped instructions are not overlapped with a clock cycle of the preceding instruc-
tions, yielding (m – 1)(n – 1) overlapped clock cycles in a pipeline system.

 Problem 9

 There are four instructions in a pipelined system. How many clock cycles are
required to execute the four instructions?

Solution: The fi rst instruction requires n = 4 clock cycles and each of the remain-
ing (m – 1) instructions require only 1 clock cycle because these (m – 1) instruc-
tions are overlapped with the preceding instructions, yielding n + (m – 1) =
4 + 3 clock cycles.

 Problem 10

 What is the increase in speed of the pipelined system in Problem 9 versus a non-
pipelined system?

Solution: The speed ratio = Number of clock cycles required in conventional
system/Number of clock cycles required in a pipelined system = mn/
(m + n – 1) = 16/7 = 2.286. If m is large, the increase in speed approaches
the maximum speed of n clock cycles per instruction.

 Problem 11

 Pipeline throughput is defi ned as the number of instructions , m, per total clock cycle
time required to process m instructions = (m instructions)/((number of clock cycles
per instruction * time per clock cycle)) = (m)/(m + n – 1)T, where T is clock cycle
time per instruction. For a typical microprocessor with a clock speed of 10 MHz
(107 cycles per second), T = 1/10 7 seconds.

 What is the throughput for a four - instruction pipeline?
Solution: m/((m + n – 1)T) = 4/((7)(1/10 7))) = (4)(10 7)/7 = 5.71 million instruc-

tions per second.

 Problem 12

Pipeline effi ciency is computed as: actual speed increase/maximum speed increase.

472 Computer, Network, Software, and Hardware Engineering with Applications

 What is the effi ciency for the pipeline in Problem 10?

Solution: (mn/(mn/m + n – 1))/n = 2.286/4 = 0.5715.

 Problem 13

 What governs the clock cycle frequency of a pipeline system?

Solution: The pipeline with the slowest processing time.

 Problem 14

 What is needed to maintain performance in a pipeline system, when needed resources
such as hardware are not available?

Solution: More resources can be employed, if available, or the pipeline can be
stalled (e.g., no instructions executed until needed hardware is available).

 Problem 15

 How many instructions can a nonpipeline computer execute at a time?

Solution: Only one instruction at a time.

Shifting and Comparators

Problem 16
 What is the process and purpose of the arithmetic right shift?

Solution: Arithmetic right shifting is performed to divide a quantity by 2 n and
round down (“ 0 ” inserted in least signifi cant bit [LSB] position), where n is
the number of bits shifted. The sign bit is preserved in the right shift.

 Problem 17

 What is the process and purpose of the arithmetic left shift?

Solution: Multiply a quantity by 2 n . The sign bit is lost because the high order
data bit is shifted into the sign position.

 Problem 18

 What is the process and purpose of the right rotate logical shift and the left rotate
logical shift?

Solution: The right and left rotate logical shifts can be used, for example, to
identify whether database application A or B should be executed dependent
on a series of bits in a register (0 for application A and 1 for application B).
For each shift of one bit, A or B would be selected. See Figure 2 for details
of the four shifting operations, where for each operation, one bit is shifted.

 Problem 19

 How can a circuit be designed to analyze branch instruction logic in a program?

Solution: Figure 3 shows how a comparator and its accompanying shift control
logic can be designed to determine whether data originally in registers A and
B, and then transferred to busses A and B, have the relationships A = B,

Practice Problems with Solutions 1 473

Figure 2 Shifting operations.

0 0 0 0 0 11 1

1 0 10 0

Right Arithmetic Shift lost

sign bit preserved

0 0 00 0 01 1

0 0 10 1 00 1

0 0 00 0 11 1

0 0 00 0 11 1

0 0 10 1 00 1

1 0 00 1 10 0

+ 11

+ 5

divide by 2n and round down

Left Arithmetic Shift

inserted

sign bit lost

+ 11

+ 22

multiply by 2n

n = number of bits shifted

Right Rotate Logical Shift

Left Rotate Logical Shift

0 0 0

A > B, or A < B. Thus, in a program, branch 1 would be taken if A = B;
branch 2 would be taken if A > B; and branch 3 would be taken if A < B.

 Problem 20

 Figure 4 shows that the hexadecimal quantity 5A has experienced a rotated
left shift of 3 bit positions. What is the resultant quantity in hexadecimal and
decimal?

Solution: As the conversion operation in Figure 4 shows, the result is D2 in
hexadecimal and 210 decimal.

Figure 4 Rotate left shift operation.

0 1 0 1 1 0 1 0

1 1 0 1 0 0 1 0
Rotate 3 Bit Positions Left

5 A

D 2

Original

D216 (13 * 16) + 2 = 208 + 2 = 21010

Figure 5 Decoder circuit.

3-to-8

Decoder

A

B

C

Inputs

___ ___ ___

A B C
___ ___

A B C
_ __ _ __

A B C

A BC
___ ___

A B C

ABC

A B C

A B C

Outputs

Odd Parity (P)

= 1

Generator

___ ___ ___

A B C P

A BCP

A B CP

A B C P

Odd Parity (P)

= 0

Generator

___ ___ ___

A B C P
___ ___ ___

A B C P

___ ___

A B C P ABC

P23 (inputs) = 8 outputs

Figure 3 Comparator circuit.

Comparator

A

D

Q1

Q4

A

D

Q1

Q4

ENB

B Register

ENB

A Register

Shift

Control

A Bus

B Bus

A = B

A > B

A < B

474

Practice Problems with Solutions 1 475

Decoders

 A decoder is a combinational circuit that selects one of n inputs and produces 2 n

outputs, where n is the number of input bits, as shown in Figure 5 .

 Problem 21

Given: Decoder circuit in Figure 5 , showing selected n inputs and 2 n outputs,
with an odd parity generator that signifi es no error, if the number of output
bits, including the parity bit, is odd.

Problem: How many outputs are required to address the inputs A, B, C in the
decoder circuit?

Solution: Figure 5 shows that when there are three inputs to the decoder, eight
outputs are required. In addition, Table 2 shows the parity that is required to
ensure no error for the various input combinations.

Flip-Flop Circuits

 J - K fl ip - fl op next state output Q(t + 1) is a function of inputs J and K, and present
state fl ip - fl op outputs Q(t) and Q t():

 Q t JQ t KQ t() () ()+ = +1

 Problem 22

Given: Figure 6 shows a J - K fl ip - fl op circuit that includes six gates. The current
fl ip - fl op state Q 1 Q 2 Q 3 = 100.

Problem:

(a) Identify the types of gates.

Solution: EXCLUSIVE OR: Gates 1 and 3; NAND: Gates 2, 4, and 6; EXCLU-
SIVE OR: Gate 5.

Table 2 Decoder Circuit Parity Generation

 A B C P
 0 0 0 1
 0 0 1 0
 0 1 0 0
 0 1 1 1
 1 0 0 0
 1 0 1 1
 1 1 0 1
 1 1 1 0

476 Computer, Network, Software, and Hardware Engineering with Applications

Figure 6 J - K fl ip - fl op circuit.

J1

K2

Q1

1Q

Q3

A

B

C

D

_______ ___ ___

A B A B+ =

______ ___ ___

C D C D+ =

J2

K1

A

B

____ ___ ___

AB A B= +

Q1 (t + 1)

1Q (t 1)+

Q2

2Q

3Q

J3

K3

____ ___ ___

CD C D= +

Q2 (t + 1)

2Q (t 1)+

E

F

Gate 1 Gate 2

Gate 3

Gate 4

Gate 5
___ ___

E F E F+

Gate 6

E F

Q3 (t + 1)

3Q (t 1)+

___ ___

Problem:

(b) Determine the output of each gate.

Solution: See Figure 6 .

Problem:

(c) Determine the next state of the fl ip - fl op outputs.

Solution:

 Q t J Q t K Q t AB C D C D1 1 1 11 0 1() () () ()() ()()+ = + = + + = +
 Q t J Q t K Q t A B CD A B2 2 2 2 21 1 0() () () ()() ()()+ = + = + + = +
 Q t J Q t K Q t EF EF E F EF EF3 3 3 3 31 1 0() () () ()() ()()+ = + = + + + = +

Multiplexers

 The multiplexer circuit in Figure 7 produces a single output Y for four inputs, x 0 ,
x1 , x 2 , and x 3 , depending on the values of the selector bits, s 0 , s 1 , using an OR output
function.

 Problem 23

 Develop the output functions for the multiplexer circuit in Figure 7 .
Solution: Figure 7 shows the output function.

Practice Problems with Solutions 1 477

Figure 7 Multiplexer and demultiplexer circuits.

s1

s0

Selector

0s

1s

x0
___ ___

0 1 0s s x

x1

0 1 1s s x

Input

Selector

Input

x2

0 1 2s s x

x3

Input

s0s1x3

___ _________

0 1 0 0 1 1 0 1 2 0 1 3Y s s x s s x s s x s s x= + + +

Output

Multiplexer Circuit

s0

s1

x

___ ___

0 0 1Y s s x=

Demultiplexer Circuit

1 0 1Y s s x=

Selector

Input

Selector

Outputs

2 0 1Y s s x=

Y3 = s0s1x

Demultiplexers

 A demultiplexer causes an input x to be transferred to one of 2 n output lines, where
n is the number of select inputs in Figure 7 .

 Problem 24

 Develop the output functions for the demultiplexer circuit in Figure 7 .

Solution: Figure 7 shows the output functions.

Timing Relationships

 Problem 25

Given: Timing relationships pertaining to D fl ip - fl ops in Figure 8 .

Problem: What is the timing diagram for input signals A and M and what is the
value of the output?

478 Computer, Network, Software, and Hardware Engineering with Applications

Figure 8 Timing relationships.

D QInput A

5 Mhz

D Q

Input B 10 Mhz

AB

10 Mhz Clock

A

B

10 Mhz Clock

Input A

Input B

Output AB

5 Mhz

10 Mhz

5 Mhz

Solution: Figure 8 shows that by virtue of ANDing inputs A and B, the
output = AB. The timing diagram shows that output AB has a frequency of
5 MHz governed by the durations of the 10 MHz clock when both inputs A
and B are positive.

Programmable Logic Array (PLA)

 A PLA consists of programmable AND and OR gates. It can be programmed to
implement a Boolean sum of product terms.

 Problem 26

 Draw a logic diagram showing how the PLA should be designed to implement the

functions Z AB BC2 = + , Z AB AC1 = + , and Z AC BC0 = + .

Solution: The design is shown in Figure 9 .

Practice Problems with Solutions 1 479

Figure 9 Programmable logic array.

AND Gate
Array

OR Gate
Array

Inputs

Internal Structure of PLA

A

B

C

A

B

C

A

B

___ ___

A B

C

___ ___

A C

BC

AC

___ ___

2Z A B BC= +

___ ___

1Z A B AC= +

___ ___

0Z A C BC= +

Z2

Z1

Z0

Outputs

AND Array

OR Array

State Machine Diagrams

 As Figure 10 shows, state transition diagrams are useful for tracking state transitions
in a digital system. For example, in Figure 10 , state transitions are triggered by switch
openings and closings, which cause transitions from present states to next states.

480 Computer, Network, Software, and Hardware Engineering with Applications

Table 3 Switch State Transition Table

 Present switch condition Present state State transition condition Next state

 SW = 0 0 SW = 0 0
 SW = 0 0 SW = 1 1
 SW = 1 1 SW = 0 1
 SW = 0 1 SW = 1 2
 SW = 1 2 SW = 1 2
 SW = 1 2 SW = 0 3
 SW = 0 3 SW = 0 3
 SW = 0 3 SW = 1 0

Figure 10 Switch state diagram. SW, switch. SW = 0, closed; SW = 1, open.

State 0

State 3

State 1

State 2

Switch

SW = 0

SW = 1

SW = 0

SW = 1
SW = 0

SW = 1
SW = 0

State Transition Condition

SW = 1

SW: switch = 0, closed, switch = 1 open

 Problem 27

 Develop the state transition table corresponding to Figure 10 .

Solution: See Table 3 .

Edge-Triggered D Flip -Flop Circuit

 The output state Q(t + 1) of a D fl ip - fl op is governed by the falling edge of the clock
pulse in Figure 11 : Q(t + 1) = D on the falling edge.

 Problem 28

 Given the characteristic of the D fl ip - fl op, draw the timing diagram for the circuit
in Figure 11 .

Solution: See Figure 11 .

Practice Problems with Solutions 1 481

Figure 11 Edge - triggered fl ip - fl op circuit.

M N
D

1 Q
1
(t) = 0

Q
1
 (t + 1) = M Q

2
 (t + 1) = N

_________ ___

1Q (t 1) M+ =___

1Q (t) 1=

Clock

__________ ___

2Q (t 1) N+ =

Q
2
(t) = 0D2

2Q (t) 1=

Q
1
 (t + 1) = M

Clock

_________ ___

1Q (t 1) M+ =

Q
2
 (t + 1) = N

__________ ___

2Q (t 1) N+ =

Triggered on falling edge

State Machine Design

 The design of state machines involves identifying states, state transitions, and the
sequences of state transitions, where a sequence is the order in which transitions
occur.

 Problem 29

 For the elevator example in Figure 12 , identify the correct sequence of state
transitions.

Solution: As seen in Figure 12 and based on the logic of elevator operations,
the correct sequence is: (current fl oor (Nc) → request fl oor (Nr) → destina-
tion fl oor (Nd)) or (request fl oor (Nr) → destination fl oor (Nd)).

 Problem 30

 In Figure 12 , what are the next states for current state 3 and what are the correspond-
ing state transitions?

Solution: Referring to Figure 12 , the next state 3 is caused by elevator staying
at Nd1; the next state 4 is caused by elevator going to Nr2.

482 Computer, Network, Software, and Hardware Engineering with Applications

Figure 12 State machine example. Nc, current fl oor; Nr, request fl oor; Nd, destination fl oor.
Numbers designate specifi c fl oor.

State 1 State 2

State 5
State 4

State 3

Elevator at Nc1

Elevator at Nr1

Elevator at Nd1

Elevator stays at Nd1

Elevator stays at Nc1

go to Nr1

Elevator at Nr2

Elevator stays at Nr2

Elevator at Nd3

Elevator stays at Nd3

go to Nd1

go to Nr2

go to Nd3

go to Nd3

go to Nr2

START

FINISH

 Problem 31

 In Figure 12 , give an example of an illegal state transition.

Solution: State 2 → State 4 is illegal because it would be illogical to transition
from one request fl oor to another request fl oor without fi rst going to a des-
tination fl oor.

CHAPTER 9 (PROGRAMMING LANGUAGES) AND
CHAPTER 10 (OPERATING SYSTEMS)

Queue Data Structure

 One approach for managing data and instructions is the queue that uses a fi rst - in,
fi rst - out discipline. An application is the processing by a microprocessor, on a non-
priority basis, of a stream of inputs.

 Problem 32

 For an input of KJIHGFEDCBA, what is the output order for a fi rst - in, fi rst - out
discipline?

Solution: Figure 13 shows the output ordering of the input data.

Stack Data Structure

 Another one of the important software design approaches is to use the push - down
stack, which is particularly valuable when interrupts occur and it is necessary to
service the interrupts and later return to the main program. The stack facilitates this
process by pushing the contents of the program counter and special registers onto a

Practice Problems with Solutions 1 483

memory area called the stack. The stack operates on a last - in, fi rst - out basis, meaning
that the register contents that were last pushed are on the top of the stack, for
example, the program counter, so that the program is pointing to the address of the
next instruction to be executed.

 Problem 33

 For an input of ABCDEFGHIJK, what is the output order for a last - in, fi rst - out
discipline?

Solution: Figure 13 shows the output ordering of the input data.

Instructions Designed to Perform Functions

 Instruction sequences can be designed to perform certain functions such as generat-
ing a square wave in a register, using a set of binary bits to represent the output (i.e.,
square wave), or generating a Fibonacci number sequence.

 Problem 34

 Show how a square wave can be generated, using an accumulator, input register A,
and output register B.

Solution: See Figure 14 for the result.

Figure 13 Queue and stack processing.

K J I H G F E D C B A

Inputs
Computer

Queue

K J I FH G E D C B A

Outputs

Queue Processing

First-in, first-out

A

B

C

D

E

F

G

H

I

J

K

Stack

Stack Processing

Computer
Outputs

Last-in, first-out

Push down data on stack

Inputs

A B C D E F G H I J K

484 Computer, Network, Software, and Hardware Engineering with Applications

Figure 14 Square wave generation.

Accumulator

Clear
Accumulator

NOT
Accumulator

Logical Right Shift
Accumulator 2 Bits

Input Register A

Accumulator0000 1 1

Subtract Register A from Accumulator

Output Register B000

0 0 0 0 0 0

1 1 1 1 1 1 1 1

0 0 1 1 1 1

0 0 0 0 0

0 0

1 1

0 1 1

1 1

1 1 1 1 0

Transfer Accumulator to Register B

Output Square Wave

 Problem 35

 Produce a program to compute Fibonacci numbers, where a Fibonacci number is
defi ned as the sum of the previous two numbers, for example, 1, 1, 2, 3, 5, 8, and 13.

Solution: Table 4 shows the program.

Software Specifi cations

 Problem 36

 What must software specifi cations contain to be complete?

Solution: There must be details of expected inputs and outputs, details of pro-
cessing requirements, and details of design requirements.

Practice Problems with Solutions 1 485

 Problem 37

 The object - oriented design process involves specifying a conceptual model, which
consists of actors, uses cases, classes, objects comprising a class, and operations.
With this defi nition in mind, draw the design process for an elevator example.

Solution: The object - oriented design process is shown in Figure 15 .

Table 4 Fibonacci Number Program

 Command Description

 i = 0 Set fi rst Fibonacci number index
 n(i), n(i + 1) = 1 Set fi rst two Fibonacci numbers = 1
 While (i < N) do Functions F and C Keep inputting and computing while i < N

Fibonacci numbers
 Function F (input n(i)) Input Fibonacci number = n(i)
 Function C (n(i) + n(i + 1)) Compute Fibonacci number
 Function C (n(i) + n(i + 1)) → output Output Fibonacci number
 i = i + 1 Increment Fibonacci number index
 Return (While) Continue with Functions F and C

Figure 15 Object - oriented conceptual model.

Elevator
System

1. Request up elevator

2. Request floor 8

3. Queue passenger 1 request if queue > 0; if queue =0, go to floor 8

4. Request down elevator

5. Request floor 1

6. Queue passenger 2 request if queue > 0; if queue = 0, go to floor 1

7. Door opens

8. Door opens

Passenger 2

Passenger 1

Passenger Class

Object

Object Floor 8

Floor 1

Elevator Class

Object

Object

Class Diagram

Collaborative Diagram

Use Case

Use Case

Passenger 1

Passenger 2

486 Computer, Network, Software, and Hardware Engineering with Applications

Structure Chart

Problem 38

 For a structure chart, we need to know: (1) all the modules in the chart, (2) all the
data items in the chart, (3) the organization of the modules, and (4) all the com-
munications among modules.

 Using this concept, design a structure chart for the elevator system depicted in
Figure 15 .

Solution: The structure chart design is shown in Figure 16 .

CHAPTER 11: SOFTWARE RELIABILITY AND SAFETY

Quality Assurance

Integration Testing

 Integration testing can be accomplished either in a top - down or bottom - up fashion.
In bottom - up testing, drivers are required for modules at a higher level to call

Figure 16 Structured design diagram.

Elevator Request

Module

Passenger Floor Input

Elevator

System

Module

Floor

Module

Floor Requests

Queue

Analysis

Module

Floor Requests Parameters

(floor locations)

Floor Travel Operations

(travel direction

floor locations)

Outputs (arrive at desired floors)

Practice Problems with Solutions 1 487

modules at a lower level, and test cases are required for doing integrated testing
between modules at higher and lower levels. A disadvantage of bottom - up testing is
that the most important modules — those at the top level — are not tested fi rst. On the
other hand, top - down testing is more complex. For this type of testing, stubs are
required that simulate the lower level module data and instructions, which have not
yet been tested, for the benefi t of higher level modules.

 Problem 39

 Design top - down and bottom - up testing schemes for modules A, B, C, D, and E.

Solution: The testing schemes are shown in Figure 17 . These types of tests assist
in the verifi cation process that is aimed at assuring that the testing schemes
are faithful to the software design. In addition, these tests are augmented by
inspections, which are a peer review process for examining code to help
assure its correctness.

Array and Matrices

 Arrays are one - dimensional data structures with values and indices that point to the
values, such as the adjacency list in Figure 18 . Matrices are two - dimensional data
structures that have two sets of indices, one to point to values in one of the dimen-
sions, and another set to point to values in the second dimension. An adjacency list
can be used for this purpose.

 Some problems involving arrays and matrices are concerned with effi cient
processing when the matrix is sparse (i.e., many zero elements in matrix). In this
case, an adjacency list (pointers to nonzero elements) combined with a linked list
can be used. For an n × n matrix with zero elements, the number of nonzero elements
that would make the link list superior to a matrix can be computed.

 Problem 40

 Portray the two data structure alternatives, described above, and compute the storage
requirement for the two alternatives.

Solution: Figure 18 shows the logic of the alternatives and the computation of
the competing storage requirements.

 Problem 41

 Using the result obtained in Problem 39, compute the number of zero entries Z and
the number of nonzero entries N.

Solution:

 Matrix storage requirement (matrix plus pointers): 32n 2 + 32n
 Link list storage requirement (linked list plus pointers): 32n + 64(n 2 – Z)

 32 32 32 64 64 322 2 2n n n n Z Z n+ = + − =(), ,

 zero entries Z = 0.5n 2 , N = n 2 – 0.5 n 2 = 0.5 n 2

 In other words, for this problem, the number of nonzero entries equals the
number of zero entries. If Z were larger, the linked list would require less storage
than the matrix.

488 Computer, Network, Software, and Hardware Engineering with Applications

Figure 17 Integrated testing designs.

Test

A,B,C,D,

E,F, G

Test

B, E, F

Test C
Test

D, G

Test E Test F
Test G

Module A

Test Cases for

Modules A, B,

C, D, E, F, G

DeludoMCeludoMBeludoM

Module E Module F
Module G

Driver for Module B

Test Cases for

Modules B, E,

F

Driver fo Module E

Driver for Module F

Driver for Module C

Driver for Module D

Test Cases for

Modules D, G

Driver for Module G

Bottom-Up Testing

Test

A, B, E

Test A

Test

A, D, G

Test

A, B

Test

A, C

Test

A, D

Test

A, C, F

Module A

Test

A,B,C, D,

E,F,G

Module B Module C DeludoM

Test Case for

Module A

Stub for Testing A with B

Module E Module F Module G

Stub for Testing A with C

Stub for Testing A with D

Stub for Testing A, B, E

Stub for Testing A, B, E

Stub for Testing A, C, F Stub for Testing A, D, G

Stub for Testing A, C, F

Stub for Testing A, D, G

Top-Down Testing

Practice Problems with Solutions 1 489

Nested Program Logic

 The number of paths (i.e. number of program executions or number of calls) in a
nested program can be determined by drawing a fl ow chart, as shown in Figure 19 .

 Problem 42

 Based on Figure 19 , what is the formula for computing the number of paths?

Solution: See Figure 19 .

CHAPTER 6: NETWORK SYSTEMS

Network Diameter

 The network diameter is the maximum of the distances between all possible pairs
of nodes (e.g., computers) of a graph of a network, without backtracking (i.e., revisit-
ing a node on a path). This concept is used for identifying the maximum distance
data would have to travel in a network. The appropriate bandwidth would be pro-
grammed to meet this requirement.

 Problem 43

Given: Figure 20 showing network connections.

 Determine the network diameter.

Solution: The various paths, links, and maximum number of links are shown in
Table 5 , based on the network topology in Figure 20 , yielding diameter = 4
links (A → E → B → C → D).

Figure 18 Array and matrix data structure design. Z, number of zero elements.

n × n matrix

1

nonzero element

0 zero element

(32-bit elements)

32(n2 + n) bits storage requirement

n entries

32-bit pointer

adjacency list (pointers to nonzero elements)

linked list (64-bit elements)

1

32-bit pointer
only nonzero elements

n2 – Z nonzero elements

32n + 64(n2 – Z) bits storage
requirement

array

490 Computer, Network, Software, and Hardware Engineering with Applications

Figure 19 Flow chart problem.

i = 0

j = 0

For i = 1 to

ni

For j = 1 to

nj

Compute

Function

A(i)

Compute

Function

B(j)

i = i + 1

j = j + 1

Number of Paths = ni, nj

Practice Problems with Solutions 1 491

Figure 20 Network connectivity.

Node A Node B Node C

Node E Node D

Link A → B

Link A → E

Link B → C

Link D → C

Link C → D
Link E → B

Link E → D

Link D → E

Link B δ E

Paths:
A, B

 A, E, B
A, B, C

 A, E, B, C
A, E, D, C
A, B, C, D

A, E, B, C , D
A, E, D

A, E

A, B, C, D, E
A, B, E

B, C

B, E

B, C, D, E
B, E, D
B, C, D

C, D
C, D, E

C, D, E, B

D, E
D, E, B

D, E, B, C

E, B

E, B, C
E, B, C, D

E, D

 Problem 44

 What series of instruction functions will generate a square wave with a 50% duty
cycle to control the output of data on a network? Show the instructions and their
functions and the results of the instruction functions executions.

Solution: Table 6 shows the instruction functions and Table 7 shows the results
of the instruction functions executions.

Analog-to-Digital Conversion to Support Network
Operations

 Problem 45

Given: Analog - to - digital converter network support circuit diagram in Figure
 21 .

 What address is used to access network Channel B of the converter?

Solution: The circuit diagram shows how the address bits (01000000) are con-
fi gured to support the access of network Channel B at address 40 16 .

492 Computer, Network, Software, and Hardware Engineering with Applications

Table 5 Network Connectivity

 Path Links Number of links

 A → B A → B 1
 A → E → B A → E, E → B 2
 A → B → C A → B, B → C 2
 A → E → B → C A → E, E → B, B → C 3
 A → E → D → C A → E, E → D, D → C 3
 A → B → C → D A → B, B → C, C → D 3
 A → E → B → C → D A → E, E → B, B → C, C → D 4
 A → E → D A → E, E → D 2
 A → E A → E 1
 A → B → C → D → E A → B, B → C, C → D, D → E 4
 A → B → E A → B, B → E 2
 B → C B → C 1
 B → E B → E 1
 B → C → D → E B → C, C → D, D → E 3
 B → E → D B → E, E → D 2
 B → C → D B → C, C → D 2
 C → D C → D 1
 C → D → E C → D, D → E 2
 C → D → E → B C → D, D → E, E → B 3
 D → E D → E 1
 D → E → B D → E, E → B 2
 D → E → B → C D → E, E → B, B → C 3
 E → B E → B 1
 E → B → C E → B, B → C 2
 E → B → C → D E → B, B → C, C → D 3
 E → D E → D 1

Hubs versus Switches

Problem 46
 Figure 22 demonstrates that compared with hubs, switches increase bandwidth

(no collisions) and security (memory of switches provides security checking). Why
is this the case?

Solution: Because collisions are possible using hubs but not possible using
switches.

Connection Hijacking

 Transmission Control Protocol (TCP) session hijacking occurs when a hacker
takes over a TCP session during a session between two computers. Since most

Practice Problems with Solutions 1 493

Table 6 Instruction Functions

 Instruction Function

 CLR (clear accumulator) 0 → ACC
 IN B (transfer “ 1 ” from input device to

register B)
 1 → B

 ADD (add register B = 1 to accumulator) ACC = ACC + B
 SHR (shift accumulator logical right 4 bits) ACC [7:4] → ACC [3:0], 0 → ACC [7:4]
 SHL (shift accumulator logical lift 2 bits) ACC [7:2] ← ACC [5:0], ACC [1:0] ← 0
 OUT (out put accumulator to register C) ACC → C

Table 7 Square Wave Instruction Function Execution Results

 Instruction Instruction result Square wave result

 CLR (clear accumulator) 0 → ACC
 IN B (transfer “ 1 ” from

input device to
register B)

 1 → B

 ADD (add register
B = 1 to accumulator)

 ACC = ACC + B

 SHR (shift accumulator
logical right 4 bits)

 ACC [7:0] → ACC [3:0],
0 → ACC [7:4]

 SHL (shift accumulator
logical lift 2 bits)

 ACC [7:2] ← ACC [5:0],
ACC [1:0] ← 0

 OUT (out put
accumulator to
register C)

 ACC → C

Figure 21 Analog - to - digital converter circuit.

Computer

3 to 8 decoder

2n = 8, n = 3

A11 = 0

A10 = 1

A9 = 0

Address: A11,...,A0

D0

D1

D2

D3

D4

D5

D6

D7

D2 = 1

S0

S1

S2

Select

Analog-to-digital converter

B0 = 0

B1 = 0

B2 = 0

B3 = 0

B4 = 0

B5 = 0

B6 = 1

B7 = 0

Select

Address

Channel A

Channel B

A / B select 0=
A8

16Generated address = 40

494 Computer, Network, Software, and Hardware Engineering with Applications

authentications only occur at the start of a TCP session, this allows the hacker to
gain access to a computer. A popular hacking method uses source - routed Internet
Pro tocol (IP) packets. Source - routed packets identify the source address in the
packet. A hacker at node A listens for packets originating at nodes B or C. If such
traffi c passes through node A, it allows the hacker to participate in a conversation
between B and C. This is known as a “ man - in - the - middle attack. ” A common com-
ponent of such an attack is to execute a denial - of - service (DoS) attack against nodes
B and C.

 Problem 47

 Draw an Internet diagram depicting the connectivity that would permit the security
breaches described above.

Solution: Figure 23 shows the Internet vulnerabilities that would allow security
problems to occur.

Figure 22 Hubs versus switches.

Computer E Computer F

Computer G

Computer H

Computer A

Computer B

Computer C

Computer D

Hub HubRouter

Server

Collisions possible

Computer E

Computer F

Computer G

Computer H

Switch
Switch

Computer A

Computer B

Computer C

Computer D

Router

Server

Collisions not possible

Increase in bandwidth

Security improved because switch has memory for checking validity of data

Practice Problems with Solutions 1 495

RS 232 C Data Transmission

 Coding effi ciency is defi ned as the (number of data bits)/total number of bits (data
plus control).

 Problem 48

 Referencing the fi gure below, what is the coding effi ciency?

Solution: As can be seen in the fi gure, there are 8 data bits out of a total of 11
bits. Therefore, coding effi ciency = 8/11 = 73%.

 2 stop bits 8 data bits start bit

Topology and Hardware

 Various combinations of network topology and hardware are shown in Figure 24 .
The main characteristic of 10 Base T Ethernet is that each computer is individually
connected to a hub. The hub has no storage; therefore, data cannot be buffered.
This scheme does have an advantage over the bus because, with each computer
having its own connection to the hub, collisions of data on the network are avoided.
Because the bus is shared by many devices, collisions on the connected Ethernets
are unavoidable. However, the bus is the traditional way to connect Ethernets
because this type of connection is highly standardized and economical. A later
version of Ethernet uses switches to direct traffi c. This confi guration avoids
collisions.

Figure 23 Internet connections.

Ethernet
Ethernet

HEWL ET T

PACKARD

HEWL ETT

PACKARD

Internet

Router
Router

Physical

TCP TCP

Hacker

TCP SessionIP IP

Source Routed
IP Packets

Source Routed
IP Packets

kniLataDkniLataD

Physical

A

B C

496 Computer, Network, Software, and Hardware Engineering with Applications

 The most rudimentary connectivity device is the repeater. Its function is to
repeat a signal, necessitated by the fact that signals can lose strength in traversing
a network. The bridge has storage and routing capability that allows it to transfer
traffi c from one network to another. The primary application of the bridge is where
most of the traffi c is within the connected networks, with occasional traffi c between
networks.

Figure 24 Network connectivity alternatives.

EthernetEthernet

EthernetEthernet

EthernetEthernet

Hub

No collisions: dedicated
connections

10 Base T

Bridge

Light traffic

Heavy traffic Heavy traffic

No collisions: dedicated
connections

Switch

Switched Ethernet

No collisions: dedicated
connections

Bus

Collisions possible: no dedicated connections

RepeaterRepeater

Heavy trafficHeavy trafficHeavy traffic

Practice Problems with Solutions 1 497

 Problem 49

 In Figure 24 , indicate whether collisions will or will not occur for the various con-
nection methods.

Solution: See annotations on Figure 24 .

Adjacency Matrix in Network Topology

Defi nition: An adjacency matrix is a means of representing which vertices of a
network topology graph are adjacent (i.e., directly connected by edges).

 Problem 50

Given: Graph of vertices V i below.

 What is the adjacency matrix of vertices V i and edges e i ?

V1 e1 V2

e4 e5 e2

V4 e3 V3

Solution: Using the above defi nition, the adjacency matrix is shown in Table 8 ,
where “ 1 ” indicates a connection:

Data Compression

 Data compression is used to economize on data transmission or computation by
eliminating bits that are not required in an application. For example, rather than use
the hexadecimal format for the input number 16 in a computation, the binary repre-
sentation is used. Thus, rather than 8 bits in hexadecimal, 5 bits in binary are used
in the computation.

Table 8 Adjacency Matrix for Vertices V i and Edges e i

 V 1 V 2 V 3 V 4

 V 1 0 1(e 1) 0 1(e 4)
 V 2 1(e 1) 0 1(e 2) 1(e 5)
 V 3 0 1(e 2) 0 1(e 3)
 V 4 1(e 4) 1(e 5) 1(e 3) 0

498 Computer, Network, Software, and Hardware Engineering with Applications

 Using data transmission to illustrate the decompression technique, the time required
to transmit x bits of data in the noncompressed mode = x/B n , where B n is the bandwidth
in bits per second (bps) for uncompressed data. With a compression factor r ≥ 1, data
will be compressed by x/r. The time that it takes to compress and decompress x bits of
data is x/B c , where B c is the rate of compression/decompression. Thus, the time to com-
press, transmit, and decompress x bits of data is (x/B c) + ((x/r)/B n). Then, compassion/
decompression is benefi cial if the (time to compress, transmit, and decompress x bits of
data) < (time required to transmit x bits of data in the noncompressed mode):

 () (()) (), (((x/B x/r /B x/B which is equivalent to B r/ rc n n c+ < > −11)).Bn

 Problem 51

 What is the value of the above inequality for r = 2?
Solution: B c > 2 B n (rate of compression/decompression > (2 bandwidth in bps

for uncompressed data)).

Network Channel Capacity

Defi nitions

 C: Channel capacity (bps) (Shannon ’ s theorem)

 BW: Bandwidth (hertz, Hz, or megahertz, MHz)

 S: Signal power (watts)

 N: Noise power (watts)

 N o : Noise spectral density (watts/Hz or MHz)

 P 0 : Power in system 0 (watts)

 P 1 : Power in system 1 (watts)

 G: Gain or loss between P 0 and P 1 or between S and N (decibels)

 C BW= +⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟log2 1

S

N

Shannon Limit

 C S/N= 1 44 0. ()

 G
P

P
= ⎛

⎝⎜
⎞
⎠⎟10 10

1

0

log

 P PG
1

10
010= () /

 S N/ () /= 10 10G

 Problem 52

Given: Network channel capacity C = 22.368 bps, signal power S = 14 watts,
noise power N = 2 watts.

Practice Problems with Solutions 1 499

 What is the required bandwidth BW of the network channel?

Solution:

BW

C
S
N

=
+⎛

⎝⎜
⎞
⎠⎟

=
+⎛

⎝⎜
⎞
⎠⎟

= =
log

.

log

.

log ()

.

2 2
21

22 368

1
14
2

22 368

8

22 3368

3
7 456= . Hz

Problem 53
Given: A microwave link is used to transmit binary data and has the following

specifi cations: transmission bandwidth BW = 24 MHz, received signal - to -
 noise ratio = G = 20 dB.

 According to Shannon ’ s theorem, what is the network channel capacity C in mega-
bits per second?

Solution:

 C BW
S

N
S N G= +⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ = = =log , / () ()/ /

2
10 20 101 10 10 100

C MHz= + = ×

=
24 1 100 24 101 2

2 004 0 3010
2 10 10(log ()) (log () / log ())

. / . == 159 80. /Mbit s

Computer Circuit Analysis

Bode Plot and Amplifi ers

 A Bode plot relates the absolute value of the transfer function (|output/input|) = |V 2 /
V1 | in Figure 25 to ω = 2 π f, where f = signal frequency, for example, an audio circuit
that amplifi es sound in a laptop computer.

 Problem 54

Given: Amplifi er diagram in Figure 25 .

Problem: Identify the transfer function. Plot the transfer function versus ω .

Solution: Figure 25 shows the computation of the transfer function, according
to the above defi nition. In addition, the fi gure shows the Bode plot, whose
shape is governed by the fact that V 2 /V 1 = 1/ ω CR is an inverse function of
ω = 2 π f. Thus, V 2 /V 1 will continually decrease with f, and the 0 dB point
corresponds to ωc = 1/RC, where V 2 /V 1 = 1.

Operational Amplifi er

 This is a direct - current circuit amplifi er that can be used to, for example, boost the
signal derived from a sensor to a value that can be used in computer processing.

 Problem 55

 This problem, portrayed in Figure 26 , involves determining the operational amplifi er
output voltage, V o , given the temperature sensor input voltage V s and the various

500 Computer, Network, Software, and Hardware Engineering with Applications

resistor values. Develop equations for impedance of total circuit, voltages, and cur-
rents, using Figure 26 as a guide.

Solution:

 Impedance of total circuit, Z 1 , comprised of series and parallel resistance
circuits:

Figure 25 Amplifi er diagram and Bode plot.

R
C

Amplifier

V1

V2

+

_

+

_

I
I

Z1 =
2

1
Z

j C
=

ω

2 2

1 1

| V | IZ 1

| V | IZ CR
= =

ω

22
c

11

| V | 1 V
1 for ω

| V | CR V
= = =

2

1

V

V

0 dB

2

1

| V |
1

| V |
=

cω ω
Bode plot

Figure 26 Operational amplifi er circuit.

Vs

Rs

2000 ohms

I
1

R
1

3000 ohms

I
2

R
2

1000 ohms

Operational

amplifier

V
oI3

Temperature

sensor

Computer processing

of V
o

Practice Problems with Solutions 1 501

 Z R
R R

R R
s1

1 2

1 2

= +
+

⎛
⎝⎜

⎞
⎠⎟() ,

 then, the current I 1 is computed as:

 I V R
R R

R R
s s1

1 2

1 2

= () +
+

⎡
⎣⎢

⎤
⎦⎥

/ .

 The current I 2 is computed by dividing the voltage across it by its resistance:

 I
V V

R
s o

2
1

=
−

,

 additionally, I 3 = I 1 – I 2 , thus:

 I I
V V

R
s o

3 1
1

= −
−⎛

⎝⎜
⎞
⎠⎟ .

 The output voltage V o is across the resistor R 3 in Figure 26 :

 V I R I
V V

R
Ro

s o= = −
−⎡

⎣⎢
⎤
⎦⎥

3 2 1
1

2,

 then substituting I 1 in this equation produces:

 V V R
R R

R R

V V

R
Ro s s

s o= () +
+

⎛
⎝⎜

⎞
⎠⎟ −

−⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

/ .1 2

1 2 1
2

 The amplifi cation factor, V o /V s , in Figure 26 , is computed, using the foregoing equa-
tion, as follows:

V V
R R R

R R R R R R R

R

R R
o s

s

/
()

()[()()] ()

(

=
+

− + +
−

−

=
+

1 2 1

1 2 1 2 1 2

2

1 2

3000 10000 3000

3000 1000 2000 3000 1000 3000 1000

1000

30

)*

()[()() *] (− + +
−

000 1000

12 000 000

2000 2000 4000 3 000 000
0 5000

−

=
+

−

=

)

, ,

()[()() , ,]
.

112 000 000

22 000 000
0 5 0 5454 0 5000 0 0454

, ,

, ,
.− = − =

 The interpretation of this result is that 1 ° C measured by the temperature sensor cor-
responds to V s = 1 V on input, increased by the operational amplifi er to 0.0454 V
on output.

502 Computer, Network, Software, and Hardware Engineering with Applications

 Problem 56

 It is required to determine the clock frequency in Figure 27 , given that the output
frequency for the motors is 400 Hz.

Solution: Using the truth table in Table 9 , it can be seen that the fl ip - fl op next
state outputs Q 1 (t + 1) and Q 2 (t + 1), which are connected to the motors,
change state only when the motor variables change (X 1 = 0 → 1 and
X2 = 1 → 0), indicated by the bolded items, requiring two clock pulses.
Therefore, the input clock frequency = 800 Hz, as shown in Figure 27 .

 Shifting Circuits

 Problem 57

Given: Arithmetic right shifting circuit in Figure 28 , where the initial value of
D2 D 1 D 0 = 001.

Figure 27 Motor circuit.

X1(t)

X2(t)

motors generate 400 Hz flip-flop signals

D1(t)

Q1(t)

D2(t) =

Q2(t)

1Q (t)

2Q (t)
X1(t)

Q1 (t + 1) =

1X (t)

1X (t)

=

= X1(t)

=

1Q (t 1)+

= X1(t)

Q2 (t + 1) =

1X (t)

X2(t) X2(t)

=

=

___ ____

2 2Q (t 1) X (t)+ =

CLK

800 Hz

1X (t)

X t2()=X t1()= X t1()=X t1() X t1()

Table 9 D Flip - Flop Truth Table

 X 1 (t) X 2 (t)
D t1() = Q t1() = Q t1 1()+ Q t1 1()+ D 2 (t) =

X2 (t)
 Q 2 (t) =
X1 (t)

 Q 2 (t + 1)
= X 2 (t)

Q t2 1()+

 0 0 1 1 1 0 0 0 0 1
0 1 1 1 1 0 1 0 1 0
1 0 0 0 0 1 0 1 0 1
 1 1 0 0 0 1 1 1 1 0

Practice Problems with Solutions 1 503

 How many nonrepeating states are required for the counter to complete its cycle?

Solution:

 First, notice the XOR (Exclusive OR) logical property: D 2 = D 1 � D 0 (D 2 = 0,
if D 1 and D 0 are the same, and D 2 = 1, if D 1 and D 0 are different). Then, referencing
the truth table in Table 10 , you can see that the circuit transitions through seven
states when the initial state is repeated at the seventh state.

Figure 28 Right shift operation.

D0D1D2

D2 = D1 XOR D0

0 0 1

Right shift

Initial state

Table 10 Shifting Circuit Truth Table

Operation D2 D1 D0 D2 = D1 + D0

Initial state 0 0 1

D2 = D1 + D0 1 0 1 1

Right shift 0 (insert 0) 1 0

D2 = D1 + D0 1 1 0 1

Right shift 0 (insert 0) 1 1

D2 = D1 + D0 0 1 1 0

Right shift, repeated
state, with Initial state

0 (insert 0) 0 1

 Practice Problems with Solutions 2

 These practice problems are related to the following chapters:

 Chapter 1 : Digital Logic and Microprocessor Design

 Chapter 2 : Case Study in Computer Design

 Chapter 9 : Programming Languages

 Chapter 10 . Operating Systems

 Chapter 4 : Analog and Digital Computer Interactions

CHAPTER 1 (DIGITAL LOGIC AND
MICROPROCESSOR DESIGN) AND CHAPTER 2
(CASE STUDY IN COMPUTER DESIGN)

Hard Disk Properties

Areal Density = ((bits per track)(number of tracks))/(disk radius)

Average Access Time = average latency + average seek time

Average Latency = revolution time/2

Revolution Time = 1/(revolutions per unit time)

Average Latency = 1/((2)(revolutions per unit time))

Average Seek Time = time to move from a given track to adjacent track

 Problem 1(a)

Given: 10,000 bits per track, 1,000 tracks, disk diameter = 15.24 cm

Problem: What is the areal density?

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F.
Schneidewind.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley &
Sons, Inc.

504

Practice Problems with Solutions 2 505

Answer: Areal Density = ((bits per track)(number of tracks))/(disk radius) =
((10,000 bits per track)(1,000 tracks))/(7.62 cm) = 1.31 × 10 6 bits per
centimeter

 Problem 1(b)

Given: Average Seek Time = 20 milliseconds (ms), rotational speed = 2,000
revolutions per minute (rpm)

Problem: What is the Average Access Time?

Answer: Average Access Time = average latency + average seek time

Average Latency = 1/((2)(revolutions per unit time)) = (1/(2)(2,000 rpm/60
seconds per minute) = 0.015 seconds = 15 ms

Average Access Time = 15 ms + 20 ms = 35 ms

Disk Transmission Time = (data quantity)/(transmission rate)

 Problem 2

Given: The contents of a 20 megabyte disk are transferred at a rate of 2400 bits
per second.

Problem: What is the time required for this transmission?

Solution: Transmission Time = (data quantity)/(transmission rate) = (20 × 1,048,576
bytes × 8 bits per byte)/2400 bits per second = 69,905 seconds

 69,905 seconds/3,600 seconds per hour = 19.42 hours

Memory Properties

 Problem 3

Problem: For the following instruction format, what is the required memory
size?

Solution: 25 addresses × 12 bits per address = 32 × 12 = 384 bits

parity op code address
11 10-5 4-0

 Problem 4

 What is the Word Access Time for a random access memory (RAM)?
Answer: Time required to locate and read or write a word in RAM

Computer Software Fundamentals

Problem 5

Problem: Flow chart the following:

506 Computer, Network, Software, and Hardware Engineering with Applications

Figure 1 Problem 5.

C = B + C

(A > B) AND (A > C)

(B > A) AND (B > C)

(B > A) AND (B < C)

C = A + C

B = B – A

PLACE1
Start

PLACE2

Stop

Y
N

Y
N

Y
N

Input

A,B,C

 If (A > B) AND (A > C), (C = B + C), → PLACE1

 If (B > A) AND (B > C), (C = A + C), → PLACE2

 If (B > A) AND (B < C), (B = B – A), → PLACE1
Solution: See Figure 1 .

 Problem 6

Problem: Flow chart the following:

 If (A > 10) AND (A < 14), (A = A – X)

 If (A < 10) OR (A > 14), exit

Solution: See Figure 2 .

 Problem 7

Problem: Flow chart the following: fi nding the real roots of a second - degree
polynomial, where the coeffi cients a, b, and c are read from an input unit
and the results are printed. The equation is: ax 2 + bx + c = 0, and the roots
are computed in Figure 3 .

Practice Problems with Solutions 2 507

Figure 3 Roots of polynomial.

Read
c,b,c

t1 = – b
b

t2 = t1
2

Subroutine t1

Subroutine t2

a, c

3 2t = t – 4ac

Subroutine t3

22

21

–b+ b – 4ac –b– b – 4ac
x = ,x =

2a 2a

t4 = t1 + t3

Subroutine t4

t5 = t1 – t3

a

x1 = t4/2a

x2 = t5/2a

Main line

Print x1, x2

Subroutine t5

t3 > 0

“no real roots”

N

Y

Figure 2 Problem 6.

Start
Input

A,X

(A > 10) AND (A < 14)

A = A – X

Y

N

(A < 10) OR (A > 14)

Y

Exit

508 Computer, Network, Software, and Hardware Engineering with Applications

Bubble Sort

 This sort is performed by comparing x i with x i+ 1 . If x i > x i+ 1 , x i and x i+ 1 are inter-
changed (“ swapped ”); if x i ≤ x i+ 1 , no interchange takes place. This process continues
until there are no more swaps. Then the sorted list is printed in ascending order.

 Problem 8

Problem: Using a bubble sort, draw a fl owchart for this process, for sorting the
data in ascending order.

Solution: Figure 4 shows the fl ow chart process.

Binary Search

 Let n = number of items to sort and p = number of comparisons required. First, the
list to be searched must be sorted. Then, the search starts in the middle of the list
and tests this item for equality with the search key. If equal, the search is fi nished.
If search key > middle item, confi ne remaining search to lower half of list; other-
wise, confi ne remaining search to upper half of list.

 Problem 9

 Derive the expression for number of comparisons p required to search a list of n
items, using the binary search method, and compute p for n = 1, . . . , 10. Lastly, make
a plot of p versus n.

Solution: The derivation follows. The example is tabulated in Table 1 and the
plot is shown in Figure 5 .

 For n = 1, p = 0 (no items to sort); for n = 2, p = 1 (two items requiring one com-
parison); for n = 4, p = 2 (one comparison for two of the items and one comparison
for the other two items), and so on. Thus, n = 2 p .

 p n n= =log () log () / log ()2 10 10 2

Figure 4 Bubble sort.

Read xi

xi+1

xi > xi+1
si = xi+1

si+1 = xi

i = 0

Y

si = xi

si+1 = xi+1

N

Read n

I = n

Print sorted list si

Y

i = i + 1

N

Practice Problems with Solutions 2 509

Table 1 Binary Search

 Number of items Number of comparisons

 n p = log 10 (n)/log 10 (2)

 1 0.00
 2 1.00
 3 1.58
 4 2.00
 5 2.32
 6 2.58
 7 2.81
 8 3.00
 9 3.17
 10 3.32

Figure 5 Number of comparisons p versus number of items n in binary search.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

1 2 3 4 5 6 7 8 9 10

n

p

p = log2 n

Computer Architecture

Problem 10
 A control line with a width of 4 bits can control how many microprocessor
operations?

Answer: 2 4 = 16 operations (e.g., input, process, output).

 Problem 11

 A computer that has a single word size of 16 bits has how many bits in a double word?

Answer: 32 bits.

510 Computer, Network, Software, and Hardware Engineering with Applications

Digital Logic

Transistor–Transistor Logic

 Any voltage between + 2 and + 5 is considered to be binary 1; voltages outside this
range are considered binary 0.

 Problem 12

Problem: What binary value does 4 V in transistor – transistor logic (TTL)
represent?

Solution: As shown in Table 2 , the value = 1.

Memory Characteristics

Problem 13
 A 64K byte RAM can store how many bytes?

Answer: 64 × 2 10 = 65,536 bytes, where K = 2 10 = 1,024.

 Problem 14

 A 65,536 byte RAM can store how many bits?

Answer: 65,536 × 8 bits per byte = 524,288 bits.

Minterms

 A minterm is a product term of Boolean variables, such as AB C D. Adjacent min-
terms in Table 3 are separated by one bit, for example, AB C D and AB C D. This
formatting method provides for combining minterms into the minimum sum of
products Boolean function (see below).

 Problem 15

 Given the terms A, B, C, and D in Table 3 , what is the minterm m 5 = 0101 2 ?
Solution: Table 3 shows the required minterm = AB C D. Note that inverted

Boolean variables represent binary 0 (e.g., A = 0) and noninverted Boolean variables
represent binary 1 (e.g., A = 1).

Table 2 TTL Logic Voltage versus Binary Value

 Voltage Binary value

+ 5 1
+4 1
+ 3 1
+ 2 1
+ 1 0
+ 0.8 0

 0 0

Practice Problems with Solutions 2 511

Sum of Products and Product of Sums

 A sum of products is formed by summing the product terms obtained wherever there
is a 1 for the function F(A, B, C), as illustrated in Table 4 . The product terms are
called minterms . A product of sums is formed by fi nding the product of sums terms
obtained wherever there is a 0 for the function F(A, B, C), as illustrated in Table 4 .
The sum terms are called maxterms . Note that positive logic is used for Sum of
Products (e.g., A = 1 and A = 0) (minterms), and negative logic is used for Product
of Sums (e.g., A = 0 and A = 1) (maxterms). Also note that when there are only
single terms in the expressions, as in Table 4 , the sum of products in each cell is
simply a single product and the product of sums in each cell is simply a single sum.

 Problem 16

Given: Table 4 values of A, B, and C.

Problem: What is the sum of products (minterms) and product of sums (max-
terms) in Table 4 ?

Solution: Form the sum of products and the product of sums, according to the
relationships of the terms in Table 4 .

Table 4 Sum of Products and Product of Sums

 A B C
 Minterms: F(A,B,C), Sum
of Products, positive logic

 Maxterms: F (A,B,C), Product
of Sums, negative logic

 0 0 0 A B C = 1 A + B + C = 0
 0 0 1 ABC = 1 A B C+ + = 0
 0 1 0 A B C = 1 A B C+ + = 0
 0 1 1 A BC = 1 A B C+ + = 0
 1 0 0 A B C = 1 A B C+ + = 0
 1 0 1 A B C = 1 A B C+ + = 0
 1 1 0 AB C = 1 A B C+ + = 0
 1 1 1 ABC = 1 A B C+ + = 0

Table 3 Minterm Illustration

 D = =0 0 D = 1
 000 ABC

 001 A B C

 011 A BC
 010 AB C A B C D Required minterm: AB C D
 110 AB C
 111 ABC
 101 A B C
 100 A B C

512 Computer, Network, Software, and Hardware Engineering with Applications

Karnaugh Map

 The expressions for the sum of products and product of sums can be minimized by
creating a Karnaugh map that will capture both types of digital logic in one table
and show the relationship between the two. That is, the Product of Sums, using
positive logic , is equal to the Sum of Products, using negative logic .

 Problem 17

 Using the following example, demonstrate the above relationships in Table 5 .
 Minterms: F A B C ABC ABC m m BC A A BC(, ,) ()= + = + = + =3 7 (positive

logic)
 Maxterms:

F A B C A B C A B C A B C A B C A B C A B C

M M M

(, ,) ()()()()()()= + + + + + + + + + + + +
= 0 1 2MM M M negative logic BC4 5 6 () =

.

 Minterms Sum of Products = BC
 Maxterms Product of Sums = Product of Sums = BC

Logic Functions

 Logic functions are very useful for designing digital circuits. The truth table in Table
 6 gives the outputs of each function, based on the inputs.

 Negative OR: NOR: A B+
 Exclusive OR: XOR: A B A B+
 Invert XOR to obtain Exclusive NOR

Table 6 Truth Table for NOR, XOR and XNOR

 A B NOR: A B+ XOR: A B A B+ XNOR: AB A B+

 0 0 1 0 1
 0 1 0 1 0
 1 0 0 1 0
 1 1 0 0 1

Table 5 Karnaugh Map of Sum of Products and Product of Sums

BC

A 00 01 11 10

0 M0 = 0 M1 = 0 m3 = 1 M2 = 0

1 M4 = 0 M5 = 0 m7 = 1 M6 = 0

C B BC C

Practice Problems with Solutions 2 513

 XNOR:
A B A B A B A B A B A B A A AB A B B B

AB A B AB

+ = = + + = + + +

= + + + =

()() ()()

0 0 ++ A B

Problem 18

 Using Table 7 , and positive voltage logic , what are the binary values for the XOR
function, F(A, B) in Table 7 ?

Solution: Convert − 5 V to binary 0 and 0 V to binary 1 in Table 7 . This opera-
tion shows the F(A, B) = XOR, based on logic rules in Table 6 . Note that
for XOR, F(A, B) = 1 when either A or B = 1, but not both = 0 or = 1.

 Problem 19

 If negative voltage logic is used in the truth table, as shown in Table 8 , what func-
tion is produced for F(A, B)?

Solution: Convert − 5 V to binary 1 and 0 V to binary 0 in Table 8 . Referring
to Table 8 , and comparing it with the logic rules in Table 6 , it is seen that
the XNOR function is produced. Note that the Table 8 result is the inverse
of the Table 7 result (XNOR is inverse of NOR):

A B A B AB AB A B A B A A AB A B B B

AB A B 0 AB A

+ = = + + = + + +

= + + + = +

()() ()()

0 B

Logic Network Design

De Morgan ’ s theorem (A B A B+ = and AB A B= +) is used to simplify complex
logic equations and the resultant digital logic. The theorem is used to simplify

Table 7 Truth Table Using Positive Voltage Logic (F(A, B) = XOR))

 A B F A B : A B A B(,) +

– 5 V (0) – 5 V(0) (0)(1) + (1)(0) = 0: − 5 V (0)
– 5 V(0) 0 V (1) (0)(0) + (1)(1) = 1: 0 V (1)
 0 V (1) – 5 V(0) (1)(1) + (0)(0) = 1: 1 V (1)
 0 V (1) 0 V (1) (1)(0) + (0)(1) = 0: − 5 V (0)

Table 8 Truth Table Using Negative Voltage Logic (F(A, B) = XNOR)

 A B F A B AB A B(,) : +

– 5 V (1) – 5 V(1) (1)(1) + (0)(0) = 1: − 5 V (1)
– 5 V(1) 0 V (0) (1)(0) + (0)(1) = 0: V (0)
 0 V (0) – 5 V (1) (0)(1) + (1)(0) = 0: 0 V (0)
 0 V (0) 0 V (0) (0)(0) + (1)(1) = 1: − 5 V (1)

514 Computer, Network, Software, and Hardware Engineering with Applications

relatively simple expressions, as contrasted with Karnaugh maps, which can minimize
complex Boolean expressions. The application of this theorem is shown in Problem 20.

 Problem 20

 Suppose it is required to simplify F AB AB= (()())

Solution:

 Applying De Morgan ’ s theorem :

()() ()()

() ()

AB AB A B A B A A A B A B B B A B A B

A B A B A B

= + + = + + + = +

+ = (() ()()A B A B A B AB= + + =

Problem 21

 Then, demonstrate equivalence between (()())AB AB and AB in Table 9 .

Karnaugh Maps

Problem 22
 A Karnaugh map, showing maxterms , appears in Table 10 . A maxterm appears for
cells that contain 0: M 4 = 100, M 5 = 101, and M 6 = 110. Notice that negative logic
is used for labeling maxterms (e.g., M 3 corresponds to 100 = A BC).

 For maxterms M 4 , M 5 , and M 6 , which maxterms are adjacent in the Karnaugh
map?

Solution: Referring to Table 10 , maxterms M 4 and M 5 and M 4 and M 6 are adja-
cent (i.e., adjacent cells have a difference of 1 bit). M 4 and M 5 differ by
C = 0, 1. M 4 and M 6 differ by B = 0, 1.

Table 9 Truth Table to Demonstrate Equivalence between F and AB

 A B AB AB AB F AB AB= (()()) A B

 0 0 1 1 0 0
 0 1 1 1 0 0
 1 0 1 1 0 0
 1 1 0 0 1 1

Table 10 Karnaugh Map of Maxterms

BC

A 00 01 11 10

0

1 0 0 0

M4
M5 M6

Practice Problems with Solutions 2 515

Table 12 Sum of Products and Product of Sums Karnaugh Map

 Sum of Products = C A C B C A B+ = +()

 Product of Sums = C A B()+

AB

C 00 01 11 10

0 0 1 1 1

1 0 0 0 0

A + B C
—

C
—

B C
—

A
Maxterm Maxterm Minterm Minterm

Table 11 Sum of Products and Product of Sums Truth Table

 AB

 C 00 01 11 10
 0 0 1 1 1
 1 0 0 0 0

 Sum of Products
(Minterms) = C A B A B A B C A A B B A B C A B C A C B(() () ()) ((() () ())) ()+ + + + + = + + + + + = + = +

 Problem 23

 Given the values of 0 and 1 in Table 11 , what is the sum of products value?
Solution: The sum of products is formed, using the terms A, B, and C, wherever

1 s appear in the table, using positive logic . These are the minterms , bolded.

 Problem 24

 What digital logic is used to produce the product of sums in Table 11 ?
Solution: The product of sums is produced according to the cells that have 0 s

in Table 11 . These are the maxterms, italicized, as shown in Table 11 , using
negative logic .

 Product of Sums (Maxterms) = ()()()()C A B C A B C A B C A B+ + + + + + + +

 Problem 25

 In Table 12 , show the simplifi cation of both Sum of Products and Product of Sums,
based on the values recorded in the truth table, Table 11.

Solution: See the Karnaugh map solution for simplifying Sum of Products and
Product of Sums in Table 12 .

 Thus the sum of products and product of sums are equal.

()C A B+ +

516 Computer, Network, Software, and Hardware Engineering with Applications

Table 14 Karnaugh Map

AB

C 00 01 11 10

0 1 1 1 1

1 X X 1

X: don’t care
C
— A

F A C= +

 Problem 26

 Given the Karnaugh map in Table 13 that has 1s inserted, develop the Boolean
expression F.

Solution: Use the minimum number of enclosures to encompass the 1s in Table
 13 . This process yields the minimum expression for F.

 Problem 27

 In the Karnaugh map, shown in Table 14 , what is the minimum Boolean expression
that can be developed?

Solution: The key to the solution is to use the “don’ t care (X) cells to maximum
advantage. The meaning of “ don ’ t care ” cells is that the minimum Boolean
expression that can be developed is not affected by the cells with Xs. In this
problem, only one of the Xs is required to obtain the required coverage.

 Problem 28

 For the maxterm function ∏()M M M M1 3 4 7 , what is the logic that implements this
function?

Solution: Obtain maximum coverage by enclosing the minimum number of 0
cells in the Karnaugh map of Table 15 , taking advantage of the don ’ t care

Table 13 Karnaugh Map

 F = C D A B C D C A B BD C A B+ + + +

AB

CD 00 01 11 10

00 1 1

01 1 1 1 1

11 1 1

10 1

C D
—

A
—

B
— C

—
D C

—
A
—

B BD C
—

A B
—

Practice Problems with Solutions 2 517

Table 16 Truth Table

 Inputs Outputs

 A B C D E F
 0 0 0 0 1 1
 0 0 1 0 X 1
 0 1 0 X 1 0
 0 1 1 0 0 0
 1 0 0 1 1 X
 1 0 1 1 1 X
 1 1 0 0 X X
 1 1 1 X 1 X

Table 17 Karnaugh Map: D Output

 Sum of Products: D A B=
 Product of Sums: D A B=

BC

A 00 01 11 10

0 0 0 0 D = X

1 D = 1 D = 1 D = X 0

A B
—

A B
—

Table 15 Karnaugh Map

AB

C 00 01 11 10

0 M4 = 0

1 M1 = 0 M3 = 0 M7 = 0 X

C
—

A
—

 + B

F A C= +

term X. The negative logic product of sums solution is shown at the bottom
of Table 15 .

 For the truth table in Table 16 develop the Karnaugh map for the outputs D (Table
 17), E (Table 18), and F (Table 19), taking into account the don ’ t care conditions
(X), for both sum of products and product of sums . Then use the Karnaugh maps to
write the Boolean expressions for the outputs. In addition, show the Veitch diagram
in Table 20 for the outputs D, E, and. F. (A Veitch diagram shows the Boolean logic

518 Computer, Network, Software, and Hardware Engineering with Applications

Table 20 Veitch Diagram

BC

00 01 11 10

B
— B

C
— C

C
—

0 A
—

D = 0 D = 0 D = 0 D = X

E = 1 E = X E = 0 E = 1

F = 1 F = 1 F = 0 F = 0

1 A D = 1 D = 1 D = X D = 0

E = 1 E = 1 E = 1 E = X

F = X F = X F = X F = X

Table 18 Karnaugh Map: E Output

 Sum of Products: E A C= +
 Product of Sums: E A C= +

BC

A 00 01 11 10

0 E = 1 E = X 0 E = 1

1 E = 1 E = 1 E = 1 E = X

A + C
—

A C
—

Table 19 Karnaugh Map: F Output

BC

A 00 01 11 10

0 F = 1 F = 1 F = 0 F = 0

1 F = X F = X F = X F = X

Sum of Products: F = B
—

Product of Sums: F = B
—

for the relationships between input variables A, B, and C and output variables D, E,
and F.)

Solution: Tables 17 – 19 show how the Karnaugh map is used to obtain the
minimum Boolean expressions for the outputs D, E, and F, using the 1 and
X values for sum of products (positive logic) and 0 and X values for product

Practice Problems with Solutions 2 519

Figure 6 OR gate logic.

A + B + C ___

C
F =

B

A

C

Figure 7 NAND gate logic.

B

A

B

AB

D = AB

F =

B

A

C

___ ___

E = A C

E = A+ C

Figure 8 NOR gate logic.

A

A

B
F =

C
E =

___ ___

A C A C= +

___ ___

D A B A B= + =

_ _ _

B

C

A

__ ___

A C A C+ =

of sums (negative logic) in Table 16 . We see in every case that sum of prod-
ucts = product of sums .

 Problem 29

 For the sum of products Karnaugh maps in Tables 17 – 19 , develop the digital logic
diagram.

Solution: This digital logic is shown in Figures 6 – 8 , corresponding to Tables
 17 – 19 , respectively, for implementing the sum of products (minterms)
circuits.

 Problem 30

 Now develop the digital logic in Figures 6 – 8 to implement the product of sums
(maxterms).

Solution: The logic Figures 6 – 8 is used to implement the product of sums (max-
terms) circuit. The implementations are the same because sum of prod-
ucts = product of sums .

520 Computer, Network, Software, and Hardware Engineering with Applications

Decoders

 A decoder generates 2 n possible outputs for n inputs, when enabled.

 Problem 31

Problem: Considering the block diagram of the 4 - to - 16 decoder circuit shown
in Figure 9 , develop a circuit using NAND gate logic to implement the
outputs to the microprocessor ports.

Solution: Based on the design of the decoder block diagram shown in Figure 9 ,
the NAND gate logic for the outputs to the microprocessor ports is shown
in Figure 9 .

 Problem 32

Problem: Produce a 4 - to - 16 decoder, but only the outputs Y = 1 in the truth
table, Table 21, are required. Use a Karnaugh map in Table 22 to minimize
the complexity of the circuit.

Figure 9 Decoder circuits. I/O, input/output.

select output

A7 A6 A5 A4 A3 A2 A1 A0

Address Lines

D C B A

2
4
 = 16 addresses

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1G

2G

enables

active low outputs (output low when address low)

to microprocessor I/O ports Decoder Block Diagram)

o

_________ ___ ___ ___ ___

DCBA D C B A= + + +

1

A7

A6

A5
A4

D
C
B
A

G1

G2

1G

2G

0

0

1

1

Decoder Selection of Microprocessor Ports

Practice Problems with Solutions 2 521

Table 21 A 4 - to - 16 Decoder Truth Table

 Address Output

 A 3 A 2 A 1 A 0 Y
0 0 0 0 Y 0 = 1
 0 0 0 1 Y 1 = 0
0 0 1 0 Y 2 = 1
 0 0 1 1 Y 3 = 0
0 1 0 0 Y 4 = 1
 0 1 0 1 Y 5 = 0
0 1 1 0 Y 6 = 1
 0 1 1 1 Y 7 = 0
1 0 0 0 Y 8 = 1
 1 0 0 1 Y 9 = 0
1 0 1 0 Y 10 = 1
 1 0 1 1 Y 11 = 1
 1 1 0 0 Y 12 = 0
1 1 0 1 Y 13 = 1
 1 1 1 0 Y 14 = 0
1 1 1 1 Y 15 = 1

Table 22 Karnaugh Map of 4 - to - 16 Decoder

 Proof of Y Y Y Y A A

A A A A A A A A A A A A A A3 2 1 0 3 2 1 0 3 2 1 0 3

0 2 4 6 3 0+ + + =

= + + + 22 1 0

3 2 0 1 1 3 2 0 1 1

3 2 0 3 2 0

 A A

A A A A A A A A A A

A A A A A A

= + + +

= +

() ()

== + =A A A A A A3 0 2 2 3 0()

A1A0

00 01 11 10

A3A2

00 Y0 = 1 Y2 = 1

01 Y4 = 1 Y6 = 1

11 Y13 = 1 Y15 = 1

10 Y8 = 1 Y10 = 1

—
A3

—
A0 A3

—
A2

—
A0 A3 A2 A0

—
A3

—
A0 A3

—
A2

—
A0

Y0 + Y2 + Y4 + Y6 =
—
A3

—
A0 , Y13 + Y15 = A3A2A0, Y8 + Y10 = A3

—
A2

—
A0 , Y13 + Y15 = A3A1A0

522 Computer, Network, Software, and Hardware Engineering with Applications

Solution: Using Table 21 , where the bolded values correspond to Y = 1 outputs,
and the logic simplifi cation provided by the Karnaugh map in Table 22 , write
the Boolean expressions for the combined, simplifi ed outputs, and the indi-
vidual outputs , as a function of the address bits, and produce the decoder
circuit in Figure 10 .

 Similar proofs could be developed for the other values of Y.

Figure 10 A 4 - to - 16 decoder circuit.

A
3

A
2

A
1

A
0

___ ___ ___ ___

0 3 2 1 0Y A A A A=

___ ___ ___

2 3 2 1 0Y A A A A=

___ ___ ___

4 3 2 1 0Y A A A A=

___ ___

6 3 2 1 0Y A A A A=

8 3 2 1 0Y A A A A=

___ ___

10 3 2 1 0Y A A A A=

13 3 2 1 0Y A A A A=

15 3 2 1 0Y A A A A=

___ ___

0 2 4 6 3 0Y Y Y Y A A+ + + =

13 15 3 2 0Y Y A A A+ =

___ ___

8 10 3 2 0Y Y A A A+ =

Practice Problems with Solutions 2 523

Table 23 Quine – McCluskey Method for F A B C A B C A B C A B C B C A A)= + + + = + +(

 Difference of 1 Difference of 1

 Minterm ABC Minterms Minterms Minterms prime implicant

 0 A B C 000
 1 A B C 001 0,1 00 -
 4 A B C 100 4,5 10 - 0,1,4,5 - 0 - B
 5 A B C 101

B C(A A) B C C B+ = + =()

Quine–McCluskey Method

 This method is an alternative to the Karnaugh map for minimizing a Boolean func-
tion. This method is used to represent a difference of 1 between two adjacent min-
terms, such as A B C and A B C, yielding A B- -= 00 . The symbol - is placed where
is a difference in minterm bit values, such as between 00 - and 10 - in Table 23 , yield-
ing - 0 - . This process continues until the four minterms 0, 1, 4, 5and show a difference
of 1 (00 - compared with 10 -), yielding a prime implicant (- 0 -), where a prime impli-
cant results from combining the maximum number of minterms, as in Table 23 .

 Problem 33

 Find the prime implicant for the function F A B C A B C A B C A B C= + + + .

Solution: Table 23 shows the prime implicant solution: B

Synchronous Sequential Networks

 A Synchronous Sequential Network has both fl ip - fl ops and memory.
Reset– Set (RS) Flip - Flop
 The next states, Q(t + 1) and Q t()+1 , are the following:

 Q t S R Q t and Q t S R Q t S R Q t S R Q t() () () () ()(()) ()(())+ = + + = + = = +1 1

 The states S = 1 (set) and R = 1 (reset) are not allowed simultaneously in an RS
fl ip - fl op because this would constitute an indeterminate state. The RS fl ip - fl op is the
building block for all other fl ip - fl ops (JK, D, and T) because these fl ip - fl ops can be
derived from the RS fl ip fl op.

JK Flip -Flop

 The next states, Q (t + 1) and Q t()+1 , are the following:

 Q t J Q t K Q t() () ()+ = +1

Q t J Q t) K Q t J Q t K Q t J Q t K Q t

J

() (() (())(()) (())(())

(

+ = + = = +

=

1

KK Q t KQ t+ +()) ()

524 Computer, Network, Software, and Hardware Engineering with Applications

D Flip -Flop

 In the D fl ip - fl op, Q follows D: Q(t + 1) = D, Q t D()+ =1

 Problem 34

Given: RS fl ip - fl op timing sequence in Figure 11 .

 What is the set (S) sequence in Figure 11 ?

Solution: Based on the next states rules above, and assuming Q(t) = 0, the
sequence S = 101, as shown in Figure 11 , where the set – reset sequence
occurs on the falling edge of the clock pulse.

 Problem 35

 As shown in Figure 12, an RS fl ip - fl op will cycle through set and reset states based
on the next states rules, input values, and the initial values of the fl ip - fl op.

 Develop the expression for the next state Q(t + 1) of the RS fl ip - fl op output.

Solution: The next state Q(t + 1) is shown in Figure 12 .

 Problem 36

 Given the fl ip - fl op circuit in Figure 13 , develop the Boolean expressions for the
inputs S 1 , R 1 , J 2 , R 2 , and D 3 as a function of the present states Q 1 , Q 2 , and Q 3 of

Figure 12 RS fl ip - fl op states.

Q (t) = 0

C

1,0

S

R

1

1

input

Q(t+1)=0

Q (t + 1) = 1

1,0

0, 1

0,1

Q(t)=1

Q (t + 1) = S + R Q(t) = 1 + (1)(0) = 1

Q (t + 1) = S + R Q(t) = (S)(RQ(t)) = (S)(R + Q(t)) = (0)(0 + 1) = 0

___ ___ ___ ___ ___ ______
__________ __________

black: reset

red: set

Figure 11 RS fl ip - fl op sequence.

Clock

C

Set

S

Reset

R

S =1

R = 0

S= 0

R = 1

S = 1

R= 0

Practice Problems with Solutions 2 525

Figure 13 Flip - fl op circuit and state transition diagram.

D
3

Q
3

Q
3

3Q

3Q

J
2

K
2

Q
2

Q
2

2Q

2Q

S
1

R
1

Q
1

1Q

2 3Q Q

2 3Q Q

Q
2

Q
3

___ ___

3 2 3 2 3D Q Q Q Q= +

2 1 3J Q Q= +

Q
1

3Q

Q
3

K
2
=Q

1
+ Q

3

1 2 3S Q Q=

1 2 3R Q Q=

Flip-Flop Circuit

000 010 011

111 100

Q
1
(t) Q

2
(t) Q

3
(t)

present

states

Q
1
(t + 1) Q

2
(t + 1) Q

3
(t + 1) next states

00100

inputs

01101

101 110001

State Transition Diagram

10011
10111 00110

01111

Inputs: S
1
, R

1
, J

2
, K

2
, D

3

00010

00110

526 Computer, Network, Software, and Hardware Engineering with Applications

the fl ip - fl ops. Use these expressions to construct the state transition diagram in
Figure 13 .

Solution: First construct the fl ip - fl op state table in Table 24 , identifying the
fl ip - fl op present state outputs and inputs . Then, using the Boolean expres-
sions previously developed for the RS, JK, and D fl ip - fl ops, identify the next
fl ip - fl op output states . Finally, based on the state transitions (mapping of
Present State of Flip - Flop Outputs to Next State of Flip - Flop Outputs),
bolded in Table 24 , construct the state transition diagram in Figure 13 .

 Problem 37

 Based on the JK fl ip - fl op counter circuit diagram in Figure 14 , develop the state
table, Table 25, and the state transition diagram for the circuit.

Solution: First, using the circuit diagram in Figure 14 , write the Boolean expres-
sions for the fl ip - fl op inputs and the current states of fl ip - fl op outputs; the
fl ip - fl op state table in Table 25 is the result. Next, using the next state expres-
sion for the JK fl ip - fl op, Q t J Q t K Q t() () ()+ = +1 , formulate the next state
values in Table 25 , color coding the corresponding state transitions in Table
 25 and Figure 14 . Last, using the present states of fl ip - fl op inputs and outputs,
create the state transition diagram in Figure 14 .

T Flip -Flop

 The T fl ip - fl op is a single - input version of the JK fl ip - fl op: Q t J Q t K Q t() () ()+ = +1 ,
where T is analogous to J and Tis analogous to K, as demonstrated in the T fl ip - fl op
next state Boolean expression below. This fl ip - fl op is typically used in the design of
binary counters because counter operation requires complementation. The T fl ip - fl op
output toggles with each clock pulse, if T = 1, causing complementation of the input,
as demonstrated in the following:

 Q t T Q t T Q t for T Q t Q t() () (), , () ()+ = + = + =1 1 1

 Problem 38

Given: T - fl ip - fl op timing diagram in Figure 15 .

 Design the circuit to implement the timing diagram sequence.
Solution: Based on the input, T, identify the values of the present states of fl ip -

fl op outputs in Table 26 . Then, using the T fl ip - fl op logic rules, compute the
Boolean expressions for the next state fl ip - fl op outputs in Table 26 . Finally,
apply the next states values to the design of the circuit in Figure 16 , noting
that state changes occur on the rising edge of the T pulse in Figure 15 .

Ripple Counter

 The external clock is only connected to the clock input of the fi rst JK fl ip - fl op in
Figure 17 . Therefore, the fi rst fl ip - fl op changes state at the falling edge of each clock

527

K
Q

t
2

2
(

)
+

Q
t

Q
t

2
3

(
)

(
)

Ta
bl

e
24

 Fl

ip
 - F

lo
p

St
at

e
Ta

bl
e

(B
as

ed
 o

n
Fi

gu
re

 1
3)

 Pr
es

en
t

st
at

e
of

 fl
 ip

 - fl
 o

p
ou

tp
ut

s
 Pr

es
en

t
st

at
e

of
 fl

 ip
 - fl

 o
p

in
pu

ts

 Q
 1 (

t)
Q

t
1
(

)
 Q

 2 (
t)

Q
t

2
(

)
 Q

 3 (
t)

Q
t

3
(

)

S

Q
t

Q
t

1
2

3
=

(
)

(
)

 R

Q
t

Q
t

1
2

3
=

(
)

(
)

 J

Q
t

Q
t

2
1

3
=

(
)

(
)

 K
 2

 =
 Q

 1 (
t)

 +
 Q

 3 (
t)

D
Q

t
Q

t
3

2
3

=
+

(
)

(
)

0

 1
 0

 1

 0

 1
 0

 0
 1

 0
 0

0

 1
 0

 1

 1

 0
 1

 0
 0

 1
 1

0

 1
 1

 0

 0

 1
 0

 1
 1

 0
 1

0

 1
 1

 0

 1

 0
 0

 0
 0

 1
 0

1

 0
 0

 1

 0

 1
 0

 0
 1

 1
 0

1

 0
 0

 1

 1

 0
 1

 0
 1

 1
 1

1

 0
 1

 0

 0

 1
 0

 1
 1

 1
 1

1

 0
 1

 0

 1

 0
 0

 0
 1

 1
 0

 N
ex

t
St

at
e

of
 F

lip
 - F

lo
p

O
ut

pu
ts

 (
B

as
ed

 o
n

Fl
ip

 - fl
 o

p
R

ul
es

 f
or

 N
ex

t
St

at
e)

s
Q

t
Q

t
1

2
3

=
(

)
(

)
R

Q
t

Q
t

Q
t

Q
t

1
1

2
3

(
)

(
)

(
)

(
)

=
Q

t
1

1
(

)
+

=
J

Q
t

Q
t

2
1

3
=

+
(

)
(

)
K

2
Q

1
(t

)

Q
3

(t
)

=
+

Q
t

J
Q

t
2

2
2

1
(

)
(

)
+

=
 Q

 3 (
t

 +
 1)

 =
 D

 3

 0
 0

 0

 1
 1

 1

 0
 1

 0
 1

 0

 0
 0

 1

 0
 0

 0

 1
 1

 1

 1
 0

 0
 0

 0

 0
 0

 0

 0
 1

 1

 1
 0

 1

 0
 1

 1
 1

 1

 0
 1

 1

 0
 0

 0

 1
 0

 0

 1
 0

 1
 1

 1

 0
 0

 0

S
R

Q
t

1
1

1
(

)
+

528 Computer, Network, Software, and Hardware Engineering with Applications

Figure 14 JK fl ip fl op counter diagrams.

J
A

Q
A

K
A

AQ

J
B

K
B

Q
B

BQ

JC

KC

QC

___ ___
___ ___

CQ

BQ Q
C Q

A
Q

B

A B C

Q
A

= A

A B CJ Q Q=

____ ___

AQ A=

Q
B= B

BQ B=

Q
C

= C

CQ C=

AK B=

B AQ K=

J
B
 = Q

C

K
B
 = Q

A

___ ___

C A B A BJ (Q Q) Q Q= + =

K
C
 = Q

B

JK Flip-Flop Counter Circuit

Q
A
Q

B
Q

C

Present States
Q

A
(t + 1)Q

B
(t + 1)Q

C
(t + 1)

Next States

State Transition Diagram

J
A
K

A
J

B
K

B
J

C
K

C

Flip-Flop Inputs

000

001

010010 011010

011

001001

010 110

100001

100101 111

100101

001101

011100

pulse, but the other fl ip - fl ops change only when triggered at the clock input by the
Q t() input from the preceding fl ip - fl op in Figure 17 . Because of the inherent propaga-
tion delay through a fl ip - fl op, the transition of the input clock pulse and the transition
of the Q t() output of each fl ip - fl op cannot occur at exactly the same time. Therefore,
the fl ip - fl ops cannot be triggered simultaneously, thus producing an asynchronous
operation, with the next stage JK fl ip - fl op output generated according to
Q t J Q t K Q t() () ()+ = +1 , where J = 1 and K = 0 in Figure 17 . Thus, Q t Q t() ()+ =1 .

 Problem 39

 Design a ripple counter that will count from 0000 (decimal 0) to 1111 (decimal 15)
and cycle back to 0000.

Solution: Figure 17 shows the logic design and timing sequence. Table 27 tabu-
lates the present and next fl ip - fl op ripple counter states, where the most
signifi cant bit position is Q t Q t33 1() ()+ = and the least signifi cant bit position
is Q t Q t00 1() ()+ = .

Ta
bl

e
25

 JK

 F
lip

 - F
lo

p
St

at
e

Ta
bl

e

 E
xt

er
na

l
in

pu
ts

 Fl

ip
 - fl

 o
p

in
pu

ts

 Pr
es

en
t

st
at

es
 o

f
fl i

p -
 fl o

p
ou

tp
ut

s

 A

 B

 C

J
Q

t
Q

t
A

B
C

=
(

)
(

)

K

B
A

=
 J B

 =
 Q

 C (
t)

 K

 B
 =

 Q
 A (

t)
J

Q
t

Q
t

C
A

B
=

(
)

(
)

 K
 C

 =
 Q

 B (
t)

 Q

 A (
t)

 =
 A

 Q

 B (
t)

 =
 B

 Q

 C (
t)

 =
 C

 0
 0

 0
 0

 1

 0

 0

 1

 0

 0

 0

 0

 0
 0

 1
 0

 1

 1

 0

 1

 0

 0

 0

 1

 0
 1

 0
 1

 0

 0

 0

 0

 1

 0

 1

 0

 0
 1

 1
 0

 0

 1

 0

 0

 1

 0

 1

 1

 1
 0

 0
 0

 1

 0

 1

 0

 0

 1

 0

 0

 1
 0

 1
 0

 1

 1

 1

 0

 0

 1

 0

 1

 1
 1

 0
 1

 0

 0

 1

 0

 1

 1

 1

 0

 1
 1

 1
 0

 0

 1

 1

 0

 1

 1

 1

 1

 N
ex

t
st

at
es

 o
f

fl i
p -

 fl o
p

ou
tp

ut
s

J
Q

(t
)

A
A

K

Q
(t

)
A

A

 Q
 A (

t
 +

 1)

 J
Q

(t
)

B
B

K

Q
(t

)
B

B

 Q
 B (

t
 +

 1)

 J
Q

(t
)

C
C

K

Q
(t

)
C

C

 Q
 C (

t
 +

 1)

 0
 0

 0

 0
 0

 0

 0
 1

 1
 0

 0
 0

 1

 0
 1

 0

 1
 1

 1
 0

 1

 0
 1

 1

 0
 0

 0
 0

 0
 0

 0

 1
 1

 0

 0
 0

 0
 0

 0

 0
 0

 0

 0
 1

 1
 0

 0
 0

 1

 0
 1

 0

 1
 1

 0
 1

 1

 0
 0

 0

 0
 0

 0
 0

 1
 1

 0

 0
 0

 0

 0
 0

529

530 Computer, Network, Software, and Hardware Engineering with Applications

Figure 15 T fl ip - fl op present state changes.

Q
A
(t)

Q
B
(t)

Q
C
(t)

T

Change present state on rising edge of T pulse

 The design uses the next state relationship: Q t J Q t K Q t Q t() () () ()+ = + =1

 Problem 40

Given: Digital circuit in Figure 18 .

 Produce the state transition diagram corresponding to this circuit.
Solution: First, using the Boolean expression for JK, D, and RS fl ip - fl ops,

identify the relationships between Q 3 (t + 1) and JK, between Q 2 (t + 1) and
D, and between Q 1 (t + 1) and RS.

T Q tA()+ T Q tB()+ T Q tC()+

Table 26 T Flip - Flop State Table

 Input
 Present states of
fl ip - fl op outputs Next states of fl ip - fl op outputs

 T Q A (t) Q B (t) Q C (t)
Q t T Q tA A() ()+ =1 Q t T Q tB B() ()+ =1 Q t T Q tC C() ()+ =1

 1 1 0 0 0 1 1
 0 1 0 0 1 0 0
 1 1 1 0 0 0 1
 0 1 1 0 1 1 0
 1 0 1 1 1 0 0
 0 0 1 1 0 1 1
 1 0 0 1 1 1 0
 0 0 0 1 0 0 1
 1 1 0 1 0 1 0
 0 1 0 1 1 0 1
 1 1 1 1 0 0 0
 0 1 1 1 1 1 1
 1 0 0 0 1 1 1
 0 0 0 0 0 0 0

Practice Problems with Solutions 2 531

Figure 16 T fl ip - fl op logic diagram.

AQ (t)

T

BQ (t)

AA AQ (t 1) T T Q (t)Q (t)+ = +

T

BB BQ (t 1) T T Q (t)Q (t)+ = +

BT Q (t)

BTQ (t)

CQ (t)

CTQ (t)

T

CT Q (t)

T

AT Q (t)

ATQ (t)

_______ ___

C C CQ (T 1) TQ (t) T Q (t)+ = +

QA(t)
QB(t)

QC(t)

T

T

Figure 17 Ripple counter design and timing diagram.

J0

K0

Q0 (t)

0Q (t)

J1

K1

Q1(t)

1Q (t)

J2

K2

Q2(t)

2Q (t)

J3

K3

Q3(t)

3Q (t)

1
1 11

1 1 1 1

CLK

0Q (t)

1Q (t)

2Q (t)

3Q (t)

CLK triggers

0Q (t)

0Q (t) triggers

1Q (t)

1Q (t) triggers

2Q (t)

2Q (t) triggers

3Q (t)

____ ___ ____

Q(t 1) J Q(t) K Q(t) Q(t)+ = + =

0 0Q (t 1) Q (t)+ =

1 1Q (t 1) Q (t)+ =

2 2Q (t 1) Q (t)+ =

3 3Q (t 1) Q (t)+ =

0 1 2 3 4 5 6 7 8 9 10 11 1412 13 15 Decimal Count

Ta
bl

e
27

 R

ip
pl

e
C

ou
nt

er
 S

ta
te

 T
ab

le

 Pr
es

en
t

fl i
p -

 fl o
p

st
at

es

 N
ex

t
fl i

p -
 fl o

p
st

at
es

 D
ec

im
al

co

un
t

 Q
 0 (

t)

Q
t

0
(

)
 Q

 1 (
t)

Q

t
1
(

)
 Q

 2 (
t)

Q

t
2
(

)
 Q

 3 (
t)

Q

t
3
(

)

Q
t

Q
t

0
0

1
(

)
(

)
+

=

 Q
t

Q
t

1
1

1
(

)
(

)
+

=

 Q
t

Q
t

2
2

1
(

)
(

)
+

=

 Q
t

Q
t

3
3

1
(

)
(

)
+

=

 0
 1

 0
 1

 0
 1

 0
 1

 0
 0

 0
 0

 0
 1

 0
 1

 1
 0

 1
 0

 1
 0

 1
 0

 0
 0

 2
 1

 0
 0

 1
 1

 0
 1

 0
 0

 1
 0

 0
 3

 0
 1

 0
 1

 1
 0

 1
 0

 1
 1

 0
 0

 4
 1

 0
 1

 0
 0

 1
 1

 0
 0

 0
 1

 0
 5

 0
 1

 1
 0

 0
 1

 1
 0

 1
 0

 1
 0

 6
 1

 0
 0

 1
 0

 1
 1

 0
 0

 1
 1

 0
 7

 0
 1

 0
 1

 0
 1

 1
 0

 1
 1

 1
 0

 8
 1

 0
 1

 0
 1

 0
 0

 1
 0

 0
 0

 1
 9

 0
 1

 1
 0

 1
 0

 0
 1

 1
 0

 0
 1

 10

 1
 0

 0
 1

 1
 0

 0
 1

 0
 1

 0
 1

 11

 0
 1

 0
 1

 1
 0

 0
 1

 1
 1

 0
 1

 12

 1
 0

 1
 0

 0
 1

 0
 1

 0
 0

 1
 1

 13

 0
 1

 1
 0

 0
 1

 0
 1

 1
 0

 1
 1

 14

 1
 0

 0
 1

 0
 1

 0
 1

 0
 1

 1
 1

 15

 0
 1

 0
 1

 0
 1

 0
 1

 1
 1

 1
 1

532

Practice Problems with Solutions 2 533

Figure 18 Digital circuit and state transition diagram.

Q1(t)

Q2(t)
Q3(t)

Q2 (t)

Q2(t)

Q3(t)Q2(t)Q1(t) Q3(t + 1)Q2(t + 1)Q1(t + 1)

Q2(t)

Q2(t)

Q1(t)

Q3(t)
J3

D2

S1

J3 = Q2(t) S1 = Q2(t)K3 = D2 =

R1

K3

Q1(t)Q2(t)

Q1 (t) + Q2(t)

Q1(t)Q2(t)Q3(t) Q1(t) + Q2(t)

Q2(t) + Q3 (t)

Q2(t)

Q2 (t)

Q3 (t)

Q1 (t)

Q1(t)

Q1 (t)Q2 (t)Q3 (t)

Q3(t)

000 001 011 101 111

110
100

010

present state next state

Digital Circuit

State Transition Diagram

R1 = Q2(t) + Q3(t)

 Q t J Q t K Q t Q t Q t Q t Q t Q t Q3 3 3 3 33 2 1 2 3 31() () () () () ((() ()) ())+ = + = + (()t

 Q t Q t Q t (Q t Q t Q t)3 2 3 1 2 31() () () (() ()) ()+ = +
 Q t D Q t Q t2 2 1 21() () ()+ = =
 Q t S R Q t Q t Q t)Q t Q t1 1 1 1 2 11 2 3() () () ((())(())+ = + = +

534 Computer, Network, Software, and Hardware Engineering with Applications

 Document these relationships in the state table, Table 28, and identify the present
state– next state transitions. Then, use the state transitions in Table 28 to design the
state transition diagram in Figure 18 . For example, present state 000 leads to next
state 001 in Table 28 and Figure 18 .

 Problem 41

Given: The circuit diagram of a JK fl ip - fl op counter is shown in Figure 19 . Note
that this circuit does not count sequentially. It could be used, for example,
in elevator control, where the states would represent the sequence of fl oors
traversed by the elevator. Provide the state transition and timing diagrams
corresponding to the circuit design.

Solution: Using the JK fl ip - fl op Boolean expression rules below, solve for the
Boolean expressions of fl ip - fl op inputs, present fl ip - fl op output states, and
next fl ip - fl op output states in Table 29 . Use the results in Table 29 to design
the state transition and timing diagrams in Figure 19 .

 K J Q t1 3 3= ()
 J Q t1 3= ()

 K2 1=
 J2 1=
 K3 1=
 J Q t Q t3 1 2= () ()

 Q t J Q t K Q t Q t Q t J Q t Q t1 1 1 1 1 3 1 3 3 11() () () () () () ()+ = + = +

 Q t J Q t K Q t Q t Q t Q t2 2 2 2 2 2 2 21 1 0() () () () () () () ()+ = + = + =

 Q t J Q t K Q t Q t Q t Q t Q t Q t Q t3 3 3 3 3 1 2 3 3 1 21 0() () () () () () () () () (+ = + = + =)) ()Q t3

(Q t Q t Q t)1 2 3(() ()) ()+ (Q t Q t)(Q (t))2 3 1() ()

Table 28 Flip - Flop State Table

 Present fl ip - fl op
output states Next fl ip - fl op output states

 Q 3 (t) Q 2 (t) Q 1 (t)
Q t Q (t)Q (t)33 21()+ =

Q t Q t Q t2 1 21() () ()+ =
Q t Q t1 21() ()+ = +

 0 0 0 0 0 1
 0 0 1 0 1 1
 0 1 0 1 0 0
 0 1 1 1 0 1
 1 0 0 1 0 1
 1 0 1 1 1 1
 1 1 0 1 0 0
 1 1 1 0 0 0

Practice Problems with Solutions 2 535

Problem 42
 Design a D fl ip - fl op circuit that has the input sequences X shown in Figure 20 , where
the clock pulse CLK triggers each of the inputs X to enter the circuit.

Solution: First, the fl ip - fl op state table, Table 30, is developed, where the D
fl ip - fl op next states follow the X inputs. Second, Karnaugh maps are used in
Tables 31 and 32 in an attempt to simplify the expressions for A 0 and A 1 ,
respectively. It can be seen that no simplifi cation results from employing the
Karnaugh map. A Karnaugh map is not necessary for A 2 because there is

Figure 19 Counter circuit design, state transition diagram, and timing diagram.

J

Q

Q

K

SET

CLR

J

Q

Q

K

SET

CLR

J

Q

Q

K

SET

CLR

J1

K1

Q1(t) Q2(t)
J2

K2

J3

K3

Q3(t)

3(t)Q

1

1 1

1 3 3K J Q (t)=

3(t)Q

J3

J1 = Q3 (t) K2 = 1 J2 = 1 K3 = 1

3 1 2J Q (t)Q (t)=

C

000 011 100 111

101 010 001 110

Q1(t)Q2(t)Q3(t) Present States Q1(t + 1)Q2(t + 2)Q3(t + 3) Next States

Circuit Design

State Transition Diagram

Q1(t + 1)

Q2(t + 1)

Q3(t + 1)

C

Timing Diagram

536

J
Q

t
Q

(t
)

1
3

3
(

)
+

Q
t

Q
t

Q
(t

)
3

1
2

(
)

(
)

Ta
bl

e
29

 C

ou
nt

er
 S

ta
te

 T
ab

le

 Fl
ip

 - fl
 o

p
in

pu
ts

 Fl

ip
 - fl

 o
p

ou
tp

ut
s

pr
es

en
t

st
at

es

 Fl
ip

 - fl
 o

p
ou

tp
ut

s
ne

xt
 s

ta
te

s

K
J

Q
t

1
3

3
=

(
)

 J1
 =

 Q
3(

t)

 K
2

 =
 1

 J2
 =

 1

J
Q

t
Q

t
3

1
2

=
(

)
(

)
 Q

 1 (
t)

 Q

 2 (
t)

 Q

 3 (
t)

Q

t
Q

(t
)Q

t
1

1
3

1
(

)
(

)
+

=
Q

t
Q

(t
)

2
2

1
(

)
+

=
Q

t
3

1
(

)
+

=

 0
 0

 1
 1

 1
 0

 0
 0

 0
 1

 1
 1

 1
 1

 1
 1

 0
 0

 1
 1

 1
 0

 0
 0

 1
 1

 1
 0

 1
 0

 0
 0

 1
 1

 1
 1

 1
 1

 0
 1

 1
 1

 0
 0

 0
 0

 1
 1

 1
 1

 0
 0

 1
 1

 1
 1

 1
 1

 1
 1

 1
 0

 1
 0

 1
 0

 1
 0

 1
 1

 0
 1

 1
 0

 1
 0

 0
 1

 1
 1

 1
 0

 1
 1

 1
 0

 0
 0

Practice Problems with Solutions 2 537

only one cell in Table 30 that has the value “ 1 ” . This is the cell corresponding
to A X X X X2 0 1 2 3= . Figure 20 shows the circuit design and the relevant
Boolean expressions.

 Problem 43

 Design a circuit to control shaft 90 ° rotations, using two inputs, R and C, and clock
pulse. The inputs and clock pulse are applied to D fl ip - fl ops that cause state changes,
each state change representing a 90 ° rotation, as shown in Figure 21 .

Solution: First, depict the shaft rotation positions and corresponding state transi-
tions in Figure 21 . Second, in Table 33 , document the inputs and present
states that cause the next state transitions. Finally, using Table 33 , design the
digital logic circuit in Figure 21 .

Figure 20 Digital fl ip - fl op circuit.

X
0

X
1

X
2

X
3

Q
0
(t + 1)

D
0

D
1

Q
1
(t + 1)

D
2

Q
2
(t + 1)

D
3

Q
3
(t + 1)

CLK

CLK

CLK

CLK

X
0
X

1

2X

3X

___ ___

2 3X X

___ ___

0 0 1 2 3A X X X X= +

A
1
 =

2 0 1 2 3A X X X X=

Inputs

Outputs

Next States

X X+ 2 3

Table 30 Flip - Flop States Table

 Inputs Outputs Flip - fl op next states

 X 0 X 1 X 2 X 3
A X X0 0 1=

 A 1 = X 0 X 1 A X X X X2 0 1 2= 3

 Q 0 (t + 1)
= X 0

 Q 1 (t + 1)
= X 1

 Q 2 (t + 1)
= X 2

 Q 3 (t + 1)
= X 3

 1 0 0 0 1 0 0 1 0 0 0
 1 1 0 0 1 1 0 1 1 0 0
 1 1 1 0 1 1 1 1 1 1 0

538 Computer, Network, Software, and Hardware Engineering with Applications

Table 31 Karnaugh Map for A X X X X0 0 1= +2 3

X0X1 X2X3

00 00 01 11 10

01

11 1 1

10 1

—
X2

—
X3 X0 X1

Table 32 Karnaugh Map for A 1 = X 0 X 1

X0X1 X2X3

00 00 01 11 10

01

11 1 1

10

X0X1

 Problem 44

 Given the fl ow chart in Figure 22 , design the corresponding digital circuit.
Solution: Figure 22 shows the digital circuit design.

CHAPTER 9 (PROGRAMMING LANGUAGES) AND
CHAPTER 10 (OPERATING SYSTEMS)

Programming Languages

Problem 45
Given: J = 15, K = 4, L = 9, and M = 19

Problem: What is the value of logical variable X in (a) and (b) below?

Solution:

(a) X = J. LT .L. OR K.GE. (M – J): (15 < 9) OR 4 ≥ (19 – 15) , X = true
because 4 ≥ (19 – 15)

(b) X = J. GT. L. OR K. LT. (M – J): (15 > 9) OR 4 < (19 – 15), X = true
because 15 > 9

Problem 46
 What is the value of Q in the program below?

Solution: Based on the evaluation of the IF statement, goto line 10: Q = 10

Practice Problems with Solutions 2 539

Figure 21 Shaft rotation diagrams.

00 01
10

11 00

Shaft Rotation Positions

00 01 10 11

States S
0 S

1 S
2 S

3___ ___

R C

RCInputs

R C

RC

State Transitions

D
0

D
1 D

2

R

C

R

C

CLK

___ ___

0S (t) R C=

S0

1 0S (t 1) (RC) S (t)+ =

1S (t) RC=

S
1
(t)

R

C

R
C

2S (t) R C=

R

C

2 1S (t 1) (RC)S (t)+ =

S2(t)

3 2S (t 1) (RC)S (t)+ =

D
3

3
R

C

S
3
(t) = RC

S (t)

S
0
(t +10) = S

3
(t)

Digital Logic Circuit

___ ___

R C

Table 33 Shaft Rotation State Transitions

 Input Shaft rotation Present state Next state

R C = 00 90 ° S (t) R C0 = S t R CS (t)1 0()+ =1
R C = 01 180 ° S (t) R C1 = S t R CS (t)2 1()+ =1
R C 10= 270 ° S (t) R C2 = S 3 (t) = RCS 0 (t)
 RC = 11 360 ° S 3 (t) = RC S t R CS (t)0 3()+ =1

540 Computer, Network, Software, and Hardware Engineering with Applications

Figure 22 Flow chart and digital circuit.

Y A B=

A

B

___ ___

Z A B C=

C

C

A ___

Y A B=

A

B

___ ___

Z A B C=

Start

A True

B True

C True

X = A

Y

N

Y

N

Y

A

End

B

A

1

X = A

B

C

Flow Chart

Digital Circuit

Practice Problems with Solutions 2 541

 R = 18

 S = 6

 T = 2

 Q = R/(S T) – T, Q = (18/(6 2)) – 2 = - 1.5

 IF Q (10, 20, 30) // IF Q < 0, GOTO 10; IF Q = 0, GOTO 20; IF Q > 0, GOTO 30

 // Q < 0, therefore, goto 10

 10 Q = 10 // Q changed from – 1.5 to 10

 Problem 47

 Develop a fl ow chart and write the corresponding program to multiply 10 numbers,
where the product is not to exceed 5.

Solution: The fl ow chart and program are shown in Figure 23 .

Floating-Point Format

 n = (f) * (b) e , where n = non - fl oating - point number, f = fraction, b = base = 2 for
binary computations, and e = exponent.

 Problem 48

 Find the values of f, b, and e corresponding to the number n = 4104.

Solution: First, for ease of number handling, convert to base 16 by successively
dividing by 16 and recording the remainders in reverse order, and then to
base 2 by recording the base 16 numbers in base 2 format, as follows:

Figure 23 Flow chart and program for multiplying numbers.

j = 0

P(j) = N(1) P(j): product, N(1): first number

j =10 end

>

j = j + 1

P(j) = P(j) * N (j)
Multiply numbers

Test for multiplying 10 numbers

P(j)=5

=

= >

j = 0, P(j) = N(j)

While (j=10)
{

j = j + 1

P(j) =P(j) * N(j)

If (P(j)=5
{

else

{

end

}

}

end

}

542 Computer, Network, Software, and Hardware Engineering with Applications

 4104 1008 0001 0000 0000 100010 16 2= =

 Second, fi nd the exponent and fraction that will result in a normalized mantissa (i.e.,
the most signifi cant bit is a one).

 Third, using n = (f) * (b) e , where n = the number 4104 10 , f = normalized man-
tissa, b = base 2, and e = exponent, fi nd f and e that will result in a normalized
mantissa:

f / /e e e e e= = = + = = + =− − −() () ()) () (() () ()4104 2 2 4096 2 8 2 2 2 212 3 12 3 3))()

()()()

2 1

2 513

9

3

+
= −e

 The value of f that satisfi es this relationship is + 0.5010 10 , by trial and error, and the
corresponding value of e is + 13 10 : (2 (3– 13))(513) = 0.0009766 * 513 = 0.5010 10 The
trial - and - error process involves trying values of e that will result in the fi rst value
of (2 (3– e)) that will generate a normalized mantissa when multiplied by 513.

 These values are converted to binary by dividing 0.5010 10 successively by 2 and
recording the remainders.

 Proof of correct conversion: 0.5010 10 * 2 13 = 0.5010 10 * 8192 = 4104.

C++ Programming

Problem 49
 Write a function in C ++ to compute sinθ ω= t

Solution:

 void computesine (double); // function prototype

 main()

 {

 double computesine (double w, double t, double
angle); // function call

 {

 double result, w, t, angle;// function definition

 angle = w * t;// compute angle

 result = sin (pow (angle, .5));// compute sine of
square root of angle

 return result;// return the result to caller

 }// match with function call

 return 0;// return to the operating system

 } // executable code ends here, match with main

Practice Problems with Solutions 2 543

Problem 50

 Write a function in C ++ to convert inches to feet
Solution:

 void convert (double); // function prototype

 main()

 {

 double convert (double inches, double feet); //
function call

 {

 double inches, feet;// function definition

 feet = inches/ 12;// convert inches to feet

 return feet;// return the result to caller

 }// match with function call

 return 0;// return to the operating system

 } // executable code ends here, match with main

Problem 51

 Write a function in C ++ to sum numbers in a list that are greater than or equal
to 10.

Solution: See the fl owchart in Figure 24 and the C ++ code below for implemen-
tation of fl owchart logic.

 void sum (double);// function prototype

 main ()

 {

 double sum (double X (i), double S (i), int n, int
i) //function call, define i th number X (i), number
sum S (i), number of numbers n, number index i

 {

 double result, X (i), S (i); // function definition

 int n, i;

 S (i) = 0;// initialize sum

 While (i < = n)

 {

 cout < < ″ input number = ″ ;// tell user to input i th
number

 cin > > x (i);

544 Computer, Network, Software, and Hardware Engineering with Applications

 if (X (i) ≥ 10)

 {

 result = S (i) + X (i); // sum number, if number ≥ 10

 }// match with ″ if ″

 i = i + 1;

 }/ /match with function call

 return result; // return the result to caller

Figure 24 Sum numbers fl owchart.

start

i = 0

S(i) = 0

input

X(i)

while

i < = n

input

n

< =

stop
>

X(i)

> = 10

S(i) =

S(i) + X(i)

> =

i = i + 1

<

Practice Problems with Solutions 2 545

 return 0;// return to the operating system

 } // executable code ends here, match with main

Problem 52

 Write a C ++ function to fi nd the minimum of three integers A, B, and C.

Solution: The implementation of the logic is the following and Figure 25 shows
the fl owchart of the logic:

 void compare (int);// function prototype

 main ()

Figure 25 Flowchart of minimum of three numbers logic.

Input
Integer A

Input

Integer B

Input
Integer C

A < B

A < C

Result = A

<

<

≥

≥
B < C

Result = B

<

Result = C

≥

546 Computer, Network, Software, and Hardware Engineering with Applications

 {

 int compare (int A, int B, int C) //function call,
define integers A, B, and C

 {

 int result, A, B, C; // function definition

 cout < < ″ input A = ″ ;// tell user to input integer A

 cin > > A;

 cout < < ″ input B = ″ ;// tell user to input integer B

 cin > > B;

 cout < < ″ input C = ″ ;// tell user to input integer C

 cin > > C;

 if ((A < B) & & (A < C)

 {

 result = A;//integer A is smallest

 }

 if ((B < A) & & (B < C)

 {

 result = B;//integer B is smallest

 }

 else

 {

 result = C;//integer B is smallest

 }

 }/ /match with function call

 return result; // return the result to caller

 return 0;// return to the operating system

 } // executable code ends here, match with main

Problem 53

 Write a C ++ function to compute spring force F, given inputs of spring constant K
and distance X,

Solution: The function is the following:

 void springforce (double);// function prototype

 main ()

 {

Practice Problems with Solutions 2 547

 double springforce (double F, double K, double X) //
function call, define Force, F, Spring Constant, K,
and Distance, X

 {

 double F, K, X; // function definition

 cout < < ″ input K = ″ ;// tell user to input Spring
Constant, K,

 cin > > K;

 cout < < ″ input X = ″ ;// tell user to input Distance, X

 cin > > X;

 F = K * X;//compute spring force

 }/ /match with function call

 return F; // return the result to caller

 return 0;// return to the operating system

 } // executable code ends here, match with main

 Problem 54

 If a = 10, what is the value of the C ++ operation ++ a?

Solution: The operator “++” means incrimination. Therefore, ++ 10 = 11.

CHAPTER 4: ANALOG AND DIGITAL COMPUTER
INTERACTIONS

Elements and Integration

 Analog computer elements are shown in Figure 26 .

 Problem 55

 Using the elements in Figure 26 , mechanize the integration of the differential equa-
tions shown below.

Solution: See differential equations implementations in Figure 26 .

Simulation

Time Scaling

 Speed up or slow down a simulation compared with real time. Scale speed up = ht,
slow down = t/h, where t is time and h is scale factor.

 Problem 56

 Using the differential equation below, slow it down.

548 Computer, Network, Software, and Hardware Engineering with Applications

Figure 26 Analog computer elements and integration examples.

K

x Kx

scalar multiplication

_
x

–x

negation

∑
K1

K2

x1

x2

– (K1x1+K2x2)summation

x'

x(0)

K

– (K (x + x (0)))
integration

f(t)input function

operational amplifier

x (0) = 53

step input

K = 1

t

0
∫

∫

 (3t + 5), at t = 4, F = –17F =

integration example

2

2

d y

dx

dy

dx
– x

–0.3

0.64
0.64x

dy

dx
0.16

dy

dx
0.16

summation

integration integration

negation

potentiometer

solution to:

2

2

d y

dx
–

2

2

d y dy
16

dx dx
- = + 0.64x - 0.3

Practice Problems with Solutions 2 549

Solution: See below for how the scale factor slows down the simulation and the
analog computer implementation in Figure 27 .

− = + −

− =

d x

dt

dx

dt
0.3x t(original_equation)

d x

d
t
h

d

2

2

2

2

2

0 8

0 8

. sin

.
xx

d
t
h

x
t

h
equation_with_slow_down_scale_factor_appl+ −0 3. sin (iied

d x

dt

dx

dt
x

t
slow_down_by_factor h

)

(* .) . sin (,− = + −9 3 0 8 0 3
3

2

2
== 3)

Magnitude Scaling

 Because the operational amplifi ers in an analog computer have a limited voltage
range, it may be necessary to use magnitude scaling of differential equations. Let
the expected maximum value of a term in the differential equation be M, and the
desired maximum value, due to the limited voltage range, be N. Then terms are
multiplied by (N/M).

 Problem 57

 Scale the original differential equation below and show the analog computer imple-
mentation in Figure 28 .

Solution: See the magnitude scaling below and the analog computer implemen-
tation in Figure 28 .

Figure 27 Applying slow - down scale factor.

∑

– sin (t / 3)
2

2

d x
9

dt
-

2

2

d x
9

dt

summation

∫
integration

1/3

scale

factor

1/3 ∫

integration

dx
3

dt
-

scale factor = 1/3 produces coefficient

x

0.8

dx
3

dt
dx

(0.8)(3)
dt

0.3

0.3 x

implement:

2

2

d x dx t
9 (3* 0.8) 0.3x sin (slow _ down _ by _ factor, h 3)

dt dt 3
=-+=-

550 Computer, Network, Software, and Hardware Engineering with Applications

− = −

−⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠

−dx

dt
x e original_equation

dx

dt

N

M

t15 40 0 6

1

1

() _.

⎟⎟ = ⎛
⎝⎜

⎞
⎠⎟

− ⎛
⎝⎜

⎞
⎠⎟

−() ()

_

.15 400

0

0 6x
N

M
e

N

M

equation_with_magn

t f

f

iitude_scaling_applied

dx

dt
x−⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ = ⎛

⎝⎜
10

400
15

20

500
() ⎞⎞

⎠⎟ − ⎛
⎝⎜

⎞
⎠⎟

−()

_

.40
30

1000
0 6e

equation_with_numerical_scalin

t

gg-applied_

dx

dt
x e

dx

dt
x et t

=

− = − − = −− −0 025 0 6 1 2 24 480 6 0 6. . . ,. .

Network of Analog Computer Components

 Simultaneous differential equations can be solved using a network of analog com-
puter components.

 Problem 58

 Using an analog computer network, solve the following equations:

− = − −

− = −

dx

dt
x x

dx

dt
x 0.4x

1
1

1
2

2

2
2 1

0 8 0 7 0 3. . .

Solution: The mechanization of the equations in the analog computer network
is shown in Figure 29 .

 Problem 59

 Draw the analog computer circuit for the following equation:

 V V V dt0 1 24= − +∫ ()

Solution: The equation implementation is shown in Figure 30 .

Figure 28 Magnitude scaling.

implement:

∫

∑

dx
24x 48e

dt
-0.6t- = -

dx

dt
- x

-24

–24x

48e-0.6t

Practice Problems with Solutions 2 551

Figure 29 Simultaneous differential equations.

implement:

∑

∑

∫

∫

–x1

-x2

0.8

0.8x1

0.7

–x2

–0.7x2

1
1 2

1

2
2 1

2

dx
0.8x 0.7x 0.3

dt

dx
x 0.4x

dt

- = - -

- = -

1

1

dx

dt

2

2

dx

dt

1

1

dx

dt
-

x1

2

2

dx

dt
-

–0.3

x2

0.4

–0.4x1

Figure 30 Implement V V 4V dt0 1 2= − ∫ +() .

0 1 2V (V 4V)dt=- +∫

∑
V1

4

V2 4V2

∫
-(V1+4V2) –V0 V0

∑ ∫ ∫ ∫

2

2

2

d x

dt
-

2

2

d x

dt

6

3

3

d x

dt

3

3

d x

dt
- dx

dt
- dx

dt

2

2

d x
2

dt

dx
6

dt

–7

- x x

0.286

0.286x

552 Computer, Network, Software, and Hardware Engineering with Applications

Figure 32 Spring mass circuit.

2
1 2 1

12

d x F C dx K
x

dt m m dt m
- =- + +

implement

∑ ∫

2
1

2

d x

dt
- 2

1
2

d x

dt
1dx

dt
-

∫
x1

K1/m

∫C/m

2dx

dt

2C dx

m dt

–F/m

2

C
x

m
–

2

C
x

m

(K1/m) x1

K2 /C

2
2

K
x

m

 Problem 60

 Draw the analog computer circuit for the following standard equation format:

7
d x

dt
14

d x

dt
42

dx

dt
2x 49_original_equation

d x

dt
2

d x

3

3

2

2

3

3

2

+ + + =

+
ddt

6
dx

dt
.286x 7_reduced_equation

d x

dt
2

d x

dt
6

dx

dt

2

3

3

2

2

+ + =

− = + +

0

00.286x 7_standard_equation_format−

Solution: the equation implementation is shown in Figure 31 .

 Problem 61

Given: The mechanical spring system shown in Figure 32 .

Figure 31 Implement − = + + −d x

dt

d x

dt

dx

dt
x

3

3

2

2
2 6 0 286 7. .

3 2

3 2

d x d x dx

dt dt dt
2 6 0.286x - 7- = + +

m

K1

spring

mass

Cdashpot

spring

K2

F K1 m C
K2

mechanical system

simulation diagram

x1

Fforce

x2

distance
a, v

a: acceleration
v: velocity

Practice Problems with Solutions 2 553

 Develop the simulation diagram and, from this diagram, formulate the differ-
ential equations. Last, diagram the analog computer implementation.

Solution: Figure 32 shows the simulation diagram. Then, the differential equa-
tion is developed as follows, using a for acceleration, and noting that dashpot
force is proportional to force F velocity v and spring force is proportional to
the spring coeffi cients K 1 and K 2 .

F ma Cv K x K x basic equation

F m
d x

dt
C

dx

dt
K x K

1 1 2 2

2
1

2

2
1 1

= + + +

= + + +

()

22 2

2
1

2

2 1
1

x _equation_with_derivatives

d x

dt

F

m

C

m

dx

dt

K

m
x

K− = − + + + 22
2

m
x _final_format

Digital - to - Analog Conversion (DAC)
 In a digital - to - analog converter, the bits — from the most signifi cant bit to the

least signifi cant bit — are implemented with digital logic gates. The digital bits are
weighted according to their contribution to the output voltage V out . Depending on
which bits are set to 1 and which are set to 0, the output voltage, V out , will be a
stepped value between 0 V and Vref minus the value of the minimum step volts. For
a digital value VAL of N bits, V out = ((V ref /2 N) * VAL), where for a typical CMOS
logic voltage, V ref = 3.3 V.

 Problem 62

 What is the value of V out for a Minimum VAL output of 1 bit?

Solution:

 V V/ bits * bit Vout = =(.) .3 3 2 1 0 105

Problem 63
 What is the value of V out for a Maximum VAL output of 31 bits?
Solution:

 V V/ bits * bits Vout = =(.) .3 3 2 31 3 25

Problem 64
Problem: The voltage per step of a digital - to - analog converter, with a voltage

range from − 5 to + 5 volts, for a 4 - bit output is:
Solution: (10 V/2 4 steps) = 0.625 V per step

Analog-to-Digital (A/D) Conversion

Sample-and-Hold Circuit

 A sample - and - hold circuit is used to avoid having the input change while analog to
digital conversion is taking place.

554 Computer, Network, Software, and Hardware Engineering with Applications

Conversion Process

 The capacitor C in Figure 33 assists in the conversion of analog input to digital
output by the duration of its charge. This is accomplished by measuring the time it
takes to charge and discharge the capacitor into the resistor R. The larger the value
of C, for a given value of R, the longer it takes to charge and discharge the capacitor,
and, hence, the slower the rise and fall in voltage, respectively. Conversely, the
smaller the value of C, the less time it takes to charge and discharge the capacitor,
and, hence, the faster the rise and fall in voltage, respectively. The product CR is
known as the time constant of a circuit.

 The converter integrates the constant, positive analog input signal V in in Figure
 33 in the fi rst phase, t 1 , t 2 , and integrates the constant, negative reference voltage
Vref in the second phase, t 2 , t 3 . At the end of phase 1, C has been charged by V in to
generate the voltage V across the RC circuit, given by:

 V
CR

V dtin
t

t

= ∫1

1

2

.

 Similarly, at the end of phase 2, C has been discharged by V ref to generate the output
voltage V across the RC circuit, given by:

 V
CR

V dtref
t

t

= ∫1

2

3

.

 The voltage rise in phase 1 is equal to the voltage fall in phase 2. Thus, we obtain
the following:

1 1

1

2

2

3

CR
V dt

CR
V dtin

t

t

ref
t

t

∫ ∫= .

Figure 33 Analog - to - digital converter.

Sample-and-

Cold Circuit

V
in

Binary Counter

count

clock: N pulses

R C

Integrator
V

ref

Comparator

N

Digital Output V

Analog Input

Maximum Count B

t
1

t
2

first phase: charge, second phase: discharge

V

clock: M pulses t
2

t
3

analog

compare analog V charge with

analog V discharge

analog V when count N reached

V
in

V
ref

Practice Problems with Solutions 2 555

 Since V in and V ref are constants, we obtain:

 V
V

CR
t t

V

CR
t tin ref= − = −() ().2 1 3 2

 The time period of charge in phase 1 is determined by the clock in Figure 33 that
produces M pulses with a pulse period = T. Thus, t 2 = MT. Now, if N is the number
of clock pulses in phase 2, t 3 = NT. Therefore, assuming t 1 = 0, the resultant com-
putation is:

V

CR
MT

V

CR
NT MT

V

V

N

M
.in ref in

ref

= − = −⎛
⎝⎜

⎞
⎠⎟(), 1

 The accuracy of conversion in phase 2 = (output voltage V divided by number of
binary bits B produced in the conversion), as governed by the number of clock pulses
N, during the allowable conversion time. Thus, accuracy = V/B. B is chosen to be
the binary number less than N during the allowable conversion time. This value of
B is equal to the maximum binary counter count in Figure 33 .

 Problem 65

Given: In Figure 33 , the clock rate in phase 2 = 1/(t 3 − t 2) = 3 MHz, reference
voltage, V ref = 5 V, and output voltage V = 10 V. The conversion process
must be completed in less than 1 ms.

 What is the value of CR? Is it possible to complete the conversion in less than
1 ms?

Solution:

V V CR t t CR V V t t (5/10)(1/(3*10)) ms

0

ref 3 2 ref 3 2
3= − = − =

=
(/)(), / ()

..166*10 ms 0.166 seconds3− = .

 Yes, it is possible to complete the conversion in less than 1 ms.

 Problem 66

 What is the accuracy of the A/D converter in Figure 33 , with a clock rate of 3 MHz,
if the conversion must be completed in less than 1 ms?

Solution:

 In 1 ms, with a clock rate of 3 MHz, there are N = (3,000,000 pulses per
second * 0.001 seconds = 3,000 pulses). The closest binary count less than 3,000 is
2048 = 2 11 . Thus, an 11 - bit counter would be specifi ed in Figure 33 . Then, the accu-
racy for a 10 V output = 10/2048 = 0.00488 V per count.

Index

1-Bit Adder with Carry-Out 1, 22
1 Bit D/A Is Designed to Reproduce 2

Voltage Levels 3, 10
2-Bit Adder with Carry-In and Carry-Out 1
2 Bit Counter 1, 66
3 Bit Counter 1, 68
3G Wireless Networks Provide Wireless

Access to Global and Metropolitan Area
Data Networks 7, 12

3G Wireless Requirements Specifi ed in
International Mobile
Telecommunications-2000 (IMT-2000) 7,
12

4G Is Designed to Operate at 50–250 mps
7, 13

4G Supports TV Broadcast and
Interoperates with the Wired Internet 7,
13

8 Bit D/A Is Designed to Reproduce 256
Voltage Levels 3, 10

802.11 Wireless LAN Standards with Data
Rates of 11, 55, and 100 Mbps 7, 12

802.15 Bluetooth Standard. Local Area
Network (LAN) Distance Ranges That
Are Within 100 Meters 7, 12

Ability of a Filter to Eliminate Noise 3, 14
Ability to Learn 13, 1
Ability of a Mobile Device to Roam, and

Achieve Connectivity 7, 14

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F.
Schneidewind.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley &
Sons, Inc.

556

Ability of a System to Detect, Locate and
Recover from Errors 12, 13

Ability of Wireless Networks to Operate in
Multiple Environments 7, 14

Absence of Variable Symbols 17, 11
Abstract Analysis Is Illustrated with an

Elevator System 4, 2
Abstract Approach Can Only Be Applied

for Marrying Software and Hardware
Design 4, 2

Acceptable Mission Duration for the
Mobile Device User 16, 16

Acceptable Reliability 12, 19
Acceptable System Reliability 12, 9
Access to the Internet 7, 12
Access Point 15, 12
Access to Different Resources 16,
Accumulated Number of Failures 12, 18
Accumulator 1, 4
Achieving Realism in Testing 4, 22
Achieving Visibility into the Operations of

Processing Elements 4, 22
Absolute Ratio Between the Smallest and

Largest Possible Values of a Signal 3, 11
Abstractions Diffi cult to Grasp 17, 3
Accounting for Probability of Occurrence

of Response Time 4, 21
Accuracy of Conversion from Analog Input

in the A/D Converter to D/A Analog
Output 3, 12

Note: Page numbers in bold refer to chapters; numbers following indicate page numbers
within that chapter.

Index 557

Accuracy of Risk Criteria Computations
11, 9

Achieve an Optimal Tradeoff Between
Quantizing Error and Cost 3, 14

Achieve Specifi ed Reliability 13, 8
Achieving the Desired Mission Duration

16, 16
Achieving High Reliability 12, 1
Achieving Stabilization 15, 5; 16, 1
Activation Function 13, 1
Activities (e.g., User Access to a Web

Server) 17, 3
Activities of Passengers Accessing and

Riding in Elevators 17, 3
Activity and Sequence Diagrams Were the

Most Useful for Designing the Poisson
Failure Model Function in C++ 17, 12

Activity Diagram 17, 2
Activity Diagram Shows Computer

Program Control Flows 17, 2
Activity Diagrams Are One Dimensional

17, 9
Actual Change in Voltage Sensor Output

Voltage 3, 14
Actual Cumulative Failures 13, 3
Actual Failure Values 13, 12
Actual Future Time to Failure 11, 9
Actual Hardware-Software Reliability 12,

15
Actual Number of Hardware Failures 12,

14
Actual Number of Remaining Failures 13,

12
Actual Number of Software Failures 12,

14
Actual Number of System Failures 12, 14
Actual Reliability 12, 16; 13, 7; 14, 8
Actual Remaining Failures 13, 13
Actual Time to Failure 13, 15
Adapt Weights to Changes in the

Surrounding Environment 13, 1
Adaptable Learning Algorithms 13, 3
Adaptive Microsleep (AMS) 15, 12
Adaptive Procedure 13, 2
Additional Debugging of the Faults 14, 10
Address Bus 1, 4
Adjacent Piconets May Interconnect with

Each Other Through Nodes in
Overlapping Regions 7, 13

Adjusts the Input to Achieve the Desired
Output 13, 2

Adverse Atmospheric Conditions 16, 1
Adverse Channel Conditions 15, 3
Aggregate the Component Errors 3,

12
Aggregate the Weighted Failure Counts 13,

3
All Failures Occurring during Emergency

Calls (e.g., 911) Are High Severity 15,
6

Allow the Application to React According
to Context 15, 12

Almost All Requirements Are Implicit 16,
10

Alternate Models 17, 18
Alteration of the Original Shape of the

Analog Signal 3, 11
Amassing Failure Data and Identifying Its

Statistical Distribution 17, 13
Analog Computer Background 3, 1
Analog Computer Display Readout 3, 1
Analog Computer Limitations 3, 5
Analog–Digital Computer Contrast 3, 5
Analog to Digital Converter Circuit 3, 2
Analog to Digital and Digital to Analog

Components 3, 2
Analog Signal 3, 5
Analysis of Asynchronous Sequential

Circuits 1, 51
Analysis of the Design Alternatives 9, 4
Analysis Highlights the Parts of the

Software That Deserve Priority in Testing
16, 12

Analytic Queuing Models and Simulation
Models 6, 1

Analyze the Operational Amplifi er 3, 13
AND 1, 16
Annoying Messages 10, 8
Another Perspective on Probability of

Failure 8, 21
Anti-Malware Software 15, 1
Application Cannot Rely on Remote

Servers 15, 12
Application Logic 4, 2
Application State Change 17, 19
Application-Specifi c Buffering Techniques

15, 14
Applications Can Be Modeled 17, 20

558 Index

Applications Emerge for Mobile Phones
16, 3

Applications Include Phones, Pagers,
Modems, Headsets, Notebook
Computers, Handheld Personal
Computers, and Digital Cameras 7, 13

Applications Running during the Failure
15, 5

Applying Mathematical Modeling 17, 12
Applying Object-Oriented Methods 17, 24
Approximate Remaining Failures by Using

the Known Remaining Failures 13, 12
Architectural Characteristics of a Web

Server 14, 6
Architectural Design 2, 5
Architecture of a Generic Neural Network

13, 2
Architecture Has to Guard Against

Disconnections of Remote Sensors 15,
13

Arithmetic Logic Unit (ALU) 1, 3
Arsenal of Software Reliability Tools 13,

12
Ascertain Whether Connectivity,

Performance, and Availability Can Be
Achieved in a Limited Range
Environment 7, 13

Aspects of Mobile Device Development
That Cannot Be Quantifi ed 16, 10

Assess the Predictive Validity of the Models
12, 11

Assessing Predictive Validity 12, 14
Assessing Reliability Model Predictive

Accuracy 12, 11
Assessments of the Need for Mobile Device

Improvement 15, 1
Assigning a Time Slice 10, 10
Assure Quality for Web Applications 14,

11
Asynchronous Circuits 4, 1
Asynchronous Interrupts 4, 23
Automated Failure Data Logger 15, 5
Automatic Change in Program Flow

Control 17, 17
Automatic Environment 17, 3
Automatically Identify Code That Should

Be Examined 13, 3
Availabilities 8, 4
Availability Analysis 8, 16

Availability Analysis Results 8, 20
Availability Is a Function of Reliability and

Maintainability 7, 8
Availability Is the Proportion of Operational

Time That Maintenance Is Not Being
Performed on a Sequence (i.e., the
Sequence Is Operating Reliably) 7, 8

Availability Prediction 7
Availability of Sequences Represents the

Probability That the Set of Nodes and
Links That Comprise a Sequence Will Be
Available for Operational Use 7, 8

Availability of the Software 12, 14
Available Processor Bandwidth 15, 13
Avoiding, Coping with, and Recovering

from Failures 14, 5

Back Propagation Algorithm 13, 2
Bad Handling by Software of Indexes and

Pointers to Objects 15, 6
Bandwidth 15, 13
Based on the Controller Specifi cations,

Develop Software and Hardware Designs
4, 3

Base Station Contains a Transmitter and
Antenna for Transmitting Mobile Device
Signals 7, 12

Baseline for Judging the Utility of Existing
Standards from the User’s Perspective 7,
1

Battery Life 15, 2
Battery Removal Can Clean Up a

Permanent Corrupted State 15, 5
Battery Removal Is Mainly Performed

When the Phone Freezes 15, 6
Benefi t Cost Considerations 12, 6
Benefi t-Cost Limit 13, 4
Benefi t-Cost Ratio 10, 13
Benefi t-Cost Relationship 12, 1
Best Circuit Performance Values 3, 15
Best Customer Strategy Is to Wait for a

Response 15, 8
Binomial Distribution 12, 4
Biological Neurons 13, 1
Bit Error Rate of the Wireless

Communication 15, 3
Blocking Delay 10, 10
Bluetooth Provides Packet Switching Links

7, 13

Index 559

Bluetooth Provides Rapid Ad Hoc
Connections Without Cable and Without
Line-of-Sight Requirement 7, 13

Bluetooth Wireless Network 7, 13
Boundaries among Applications 12, 12
Buffer Is Part of the Domain Name Server

7, 4
Built-In Resources 16, 4
By-Product of the Directed Graph Is a

Complexity Metric 17, 20

C+ + Program Logic Development Phase
17, 13

Cache Hit Rate 1, 12
Cache Miss Rate 1, 12
Calculate the Desired Output for Any Given

Input 13, 2
Can Object Oriented Methods Be Applied

to Mathematics? 17, 2
Cell Is a Wireless Geographical Area That

Has Access to an Access Point 7, 12
Cell Phone Mobility 15, 14
Cellular Networks and Systems Are Diverse

7, 11
Cellular Networks Have Been Moving from

Voice Networks Toward the INTERNET
PACKET NETWORK 7, 11

Central Server Monitoring of the Health of
the Mobile Device 16, 10

Cellular Systems Are Usually Designed
with Maximum Cell Range Exceeding
10 km 7, 12

Challenge of Power Management 15, 2
Challenge to Reliability 14, 1
Changes in Sensor Input and Output

Voltages 3, 13
Changing Distances and Locations Between

Web Clients and Web Servers 14, 2
Changing the Data Used in the Variables

and Parameters 17, 4
Characteristics 1, 74
Characteristics of Models 14, 5
Characteristics of Real-Time Systems

Impose Specifi c Requirements on the
Test System 4, 23

Characterize the Reliability of Software
Systems 13, 16

Check Denominators for Zero Prior to
Division Operations 17, 17

Chip 1, 5
Choosing Reliability Prediction Models 13,

8
Choosing the Most Appropriate Theories

and Tools for Different Stages of
Development and Different Aspects of
the System 4, 1

Claims Are Not Accompanied by a
Discussion of Disadvantages 17, 4

Clarity of System States 17, 4
Class 12, 13
Class Diagram Shows the Relationships

among Classes, Objects of a Class, and
Methods 17, 11

Class of Probability Distributions 17, 8
Classes 9, 4
Classical Reliability Models 12, 12
Client and Server Are Restricted in

Obtaining Required Communication
Reliability 14, 18

Client Can Move 14, 2
Client Program 14, 2
Client Resolving a Web Server Name to the

Corresponding IP Address 14, 4
Client, Server, and Communication

Component Reliabilities 14, 16
Client-Server Protocols 12, 12
Client Side Problems 14, 16
Collaborative Mobile Device Visualization

15,
Collecting and Analyzing Reliability and

Performance Data 15, 16
Collection of Components Comprising the

Application 12, 13
Combination of Methods Is Required to

Ensure Adequate Coverage 17, 17
Combinational Circuits 1, 22
Combined Hardware-Software Reliability

Analysis 12, 12
Combining Hardware and Software

Reliability 12, 12
Communicate with a Microcomputer 3, 7
Communication 2
Communication Channel Error Rate 14, 17
Communication Channels 14, 22
Communication Interface 16, 4
Communication Links 14, 2
Communication Reliability 16, 2
Communication Reliability Analysis 14, 17

560 Index

Communication Restrictions 15, 12
Communication Systems 16, 4
Communication between User Computers

and Web Servers 6, 2
Communication among Web System

Elements 14, 17
Comparators 1, 28
Compare O-O Approach with Using

Equations and Directed Graph
Representations 17, 2

Compare the Performance and Reliability of
the Present Internet with a Proposed
Internet 16, 1

Compare Reliabilities by Failure Type and
Recovery Action Type 16, 11

Comparison of Sequences 4, 23
Comparing Object-Oriented and

Mathematical Defi nition of Terms 17, 6
Comparing the Prediction Accuracy of

Various Reliability Models 12, 13
Comparison of Present and Future Wired

Internet Performance 6, 56
Compatibility of a Local Network, Wired

and Wireless Systems, with the Internet
7, 14

Complex Functional Requirements 4, 2
Competing Web Client Access to Web

Servers 14, 2
Complex Hardware and Software 12, 16
Complex Instruction Set Computing 1, 5
Complexity Caused by Interrupts 4, 23
Complexity Contributes a Disproportionate

Share of Failures 14, 11
Complexity of Integrated Modeling 12, 12
Complexity of Super Computer Hardware

Confi gurations 14, 6
Complexity of Systems 12, 12
Complexity of the Web Page Increases at an

Exponential Rate 14, 16
Component Failure Data 12, 11
Component Models 14, 1
Component Reliability 12, 4
Component Reliability Analysis 12, 7
Component Reliability Prediction 14, 1
Component-Based Reliability Relationships

12, 8
Components 1, 12
Components Can Execute Sequentially or

Concurrently 12, 2

Components Intensively Interact with Each
Other and with Their Environments 4, 1

Components Reliabilities Can Be Properly
Weighted to Produce Total System
Reliabilities 14, 22

Components and Their Relationships Are
Decided before the System Runs 14, 1

Comprehensive Testing 14, 12
Computation of Weights 13, 4
Computation State 4, 11
Computational and Memory Resources 12,

12
Compute the Failure Rates Required to

Bring Components into Conformance
with Reliability Requirements 14, 23

Compute the Reliability Improvement
Necessary to Achieve the Reliability
Goal 14, 23

Computer Outages in HPC Clusters 14, 5
Computer-Algebra Language Mathematics

17, 3
Computing Actual Model Quantities 17, 5
Computing Cyclomatic Complexity Metrics

from the Directed Graph 17, 3
Computing the MRE 14, 12
Concentration of Mobile Devices 16, 2
Concurrent System 12, 2
Concurrently Running Applications 15, 14
Conditions 9, 12
Conducting Performance Simulations 4, 23
Confi dence in a System Before It Is

Deployed 12, 13
Conformance with the Specifi cation 7, 1
Connect to a Hot Spot 16, 24
Connect to a Mobile Network on Demand

16, 10
Connection Available Bandwidth 15, 13
Connections Excite Neurons 13, 1
Connections to Sensors That Are the Most

Important 15, 13
Connectivity to Access Points, as Identifi ed

by Sending Test Signals 15, 12
Conservative Reliability Predictions 12, 4
Consideration in Real-Time Testing Is

Complexity Caused by Interrupts
Occurring in an Asynchronous Manner
4, 23

Constant, Increasing, and Decreasing
Failure Rate Functions 12, 15

Index 561

Constraints of Presentation 15, 12
Constructing a Web Page by a Web Server

14, 3
Context of the Application Is Highly

Dynamic 15, 17
Context-Architecture 15, 13
Context-Aware Migratory Service 15, 14
Context Aware and Network Aware Mobile

Computing 15, 1
Context-Awareness 15, 1
Context of the Mobile Environment 15, 1
Context-Sharing 15, 13
Continuous Operation Requirement 12, 12
Continuously Changeable Aspects of

Physical Phenomena 3, 1
Continuously Varying Analog Signal 3, 10
Contribution of Non-Functional

Characteristics 14, 1
Control 2, 1; 9, 10
Control Bus 1, 5
Control Commands Are Issued, e.g., by

System Controller to Operations 4, 4
Control Functions 4, 4
Control Hazards 1, 9
Control Logic for Decoding (i.e.,

Identifying) Input Service Requests 4, 16
Control Unit 1, 4
Controls 4, 6
Conversion System Errors 3, 12
Converter Circuit Components 3, 15
Corrected by Servicing the Phone 16, 6
Corrective Action 11, 3; 14, 1
Correctness of Program Execution 17, 13
Correctness Proofs 12, 15
Correctness of the Software Production

Process 16, 1
Cost of Achieving Reliability Is Critical 13,

9
Cost Considerations 12, 5
Cost-Effective Predicted Reliability 11, 9
Cost-Effective Way of Engineering Systems

14, 1
Cost Estimation 13, 1
Cost Is Based on Number of Confi guration

Components 12, 18
Cost per Megabyte 10, 13
Cost and Schedule Overruns 4, 2
Cost of Testing 13, 16
Cost of Testing to Remove Faults 12, 16

Counteract Security Threats 15, 1
Coverage of Each Executable Statement

and the Execution Result 13, 3
CPU and Network Intensive 15, 2
Criterion of One Remaining Failure 11, 8
Critical Aspects of Real-Time System

Operations, such as Elevator Direction of
Travel, May Be Overlooked 4, 1

Critical Faults 2, 7
Critical Performance Factor 15, 15
Crucial Factors Involved in Obtaining

Satisfaction in Using Networks 7, 15
Crucial Properties Being Included in

Network Standards 7, 1
Cumulative Failures 11, 6
Cumulative Failures during Testing 13,

3
Current Edge of the Network Will Often Be

Just One Hop to the Internet 6, 2
Current Mobile Networks Are Unable to

Provide Highly Reliable Service 15, 1
Current (Physical) Position of the Mobile

Device 15, 13
Current Research Focuses on the Present

Internet Confi guration 6, 1
Current Service Can Automatically Migrate

to a Node 16, 24
Cyclic Redundancy Check 2, 8
Cyclomatic Complexity Analysis of Web

System Reliability 14, 2
Cyclomatic Complexity Is a Metric for

Evaluating the Relative Quality of
Software Systems 17, 17

Cyclomatic Complexity Is the Number of
Independent Paths 14, 2

Cyclomatic Complexity Metric: (Number of
Edges – Number of Nodes) + 1 in a
Directed Graph 17, 2

Cyclomatic Complexity of the Poisson
Failure Model 17, 17

D Flip Flop 1, 44
Data: Historical Data 17, 5
Data Base Management System Execution

12, 2
Data Bus 1, 5
Data Can Be Protected by Access Controls

and Encryption 17, 4
Data Hazards 1, 9

562 Index

Data Recorded Against the Hardware and
Software 12, 12

De Morgan’s Theorem 1, 20
Deactivated Sensor Cannot Sense Any

Information about the Context 15, 12
Deadline Requirements 10, 11
Deadlock Analysis and Prevention 10, 15
Debugging of Client Software and

Hardware 14, 17
Decision Analysis State 4, 11
Decision Operations: Control Program Flow

17, 5
Decisions 9, 1
Decoder Logic for Generating Service

Request Interrupts 4, 16
Decoders 1, 31
Decompose the System into Its Component

Parts 14, 22
Decrease in Performance 15, 14
Decrease in Quality of Communication 14,

2
Decrease of Transmission Speed 14, 2
Decreasing Reliability Necessitates

Increasing Test Time 16, 17
Defective Memory 12, 14
Defi ned by the Device Hardware and

Software 15, 13
Defi ning the Model Objects 17, 8
Defi nition Depends on the Context of the

Application 17, 6
Degradation of the Communication Lines

14, 2
Degrade Exponentially with Operating

Time 14, 17
Degree of Interference 7, 13
Delay or Shut Down Would Cause

Deadlines to Be Missed 15, 3
Demonstrate Whether the Proposed Internet

Is Viable 6, 1
Demultiplexers 1, 38
Design of Binary Counters 1, 49
Design of Complex Real-Time Systems Is

Quite Challenging 4, 1
Design Decisions 2, 1
Design Levels 4, 4
Design May Have to Be Heavily and

Hurriedly Modifi ed 4, 2
Design Principles 2,
Design Process Elements 4, 5

Design Provides High Speed, e.g., It Is Well
Suited to Real-Time Applications That
Must Meet Deadlines, but at the Expense
of Relatively Complex Programming 4,
3

Design Representations Starts with Generic
and Application-Specifi c System Level
Functions and Ends With Integrated
Testing and Performance Evaluations 4,
1

Design of Synchronous Sequential Circuits
1, 61

Design Tests of Simulated Performance 4,
19

Designing an Architecture for Mobile
Devices 15, 12

Designing in Higher Quality 16, 16
Desirable Properties of Network

Performance, Reliability, Maintainability,
and Availability 7, 1

Desirable Properties of Network Standards
7, 1

Desirable Properties of a Programming
Language 9, 1

Detailed Analysis of a Programming
Language 9, 9

Detailed Design 2, 12
Detailed Design Example 9, 13
Detect and Record the Occurrences of

Freezes and Reboots 15, 5
Detect the Status of the Phone during a

Failure 15, 5
Detecting Faults 12, 5
Detecting Logical Errors 4, 23
Deteriorate Voice Quality 15, 12
Determination of Failure Occurrence 7, 5
Determine How Long to Test 12, 4
Determine How Well the Run-Time

Program Will Perform 17, 12
Develop an Integrated and Comprehensive

Design Approach with the Objective of
Providing Engineers with a Roadmap for
Improving Real-Time System Design 4,
1

Develop the Real-Time System Generic
Design of a Particular Artifact, such as a
State Diagram 4, 1

Develop the Specifi c Features of the
Application 4, 25

Index 563

Developer Must Test in the Operating
Environment of the Mobile Devices 16,
3

Developers Produce for a Mass Mobile
Device Market 16, 10

Developing and Analyzing Comprehensive
Web System Reliability Models 14, 2

Developing Mathematical Functions 17, 3
Development of Mathematical Software 17,

20
Development of Software for Mobile

Computing Devices 16, 3
Device Behavior Is Highly Interactive 16,

3
Device Failure Affecting the Application

16, 2
Device Going Offl ine 16, 2
Device Identifi cation 15, 13
Device Mobility 15, 3
Device Type 15, 13
Devices Are Highly Resource Constrained

16, 3
Devices Are Increasingly Being Used in

Multimedia Streaming Type Applications
15, 2

Devices Constantly Accept Activations
from Users 16, 3

Devices Less Dependent on Particular
Locations and Resources 15, 3

Devices May Challenge Traditional
Understanding of Network Topology 6, 2

Devices Will Be Able to Connect Directly
into the Internet 6, 1

Devices Would Be Assigned Permanent IP
Addresses 6, 2

Diagrams Portray the Sequence of
Activities in the Code 17, 12

Difference Between Number of Correct
Modules and Number of Failed Modules
16, 8

Difference in Failure Behavior Between
Hardware and Software 12, 13

Different Failure Properties for Web Client,
Web Server, and the Interconnected
Communication Channels 14, 22

Difference That Exists Between Correct
Modules and Failed Modules 16, 9

Differential Equations 3, 2
Differences for Throughput 4, 23

Digital to Analog (D/A) Conversion 3, 9
Digital to Analog Converter 3, 1
Digital Cellular Networks 15, 4
Digital Computer Floating-Point

Calculations 3, 6
Digital Data Is Ready for Transmission on

the Data Lines 3, 7
Digital Logic 1, 74
Digital Signal Comprised of Discrete

Binary 3, 10
Diminishing Returns in Finding and

Correcting Faults 13, 8
Directed Graph Can Be Used to Represent

a Computer Program 17, 1
Directed Graph of the Program Logic 17,

13
Directed Graph Representation of a System

14, 2
Directed Graph Representation of the

Mathematical Model 17, 3
Directed Graph Will Serve as the Vehicle

for Expressing C+ + Program Logic 17,
13

Discontinuity of Network Connections 15,
12

Discover Potential Bottlenecks 15, 15
Disk Systems 12, 6
Dispatcher 10, 6
Displays Need to Be on at All Times 15, 2
Disrupt an Entire Network 15, 2
Disrupting the Wireless Connection 15, 3
Disruption Caused by Software

Incompatibilities 7, 9
Disruption Due to Failure 15, 4
Distance Between Clients and Servers 14, 2
Distortion 3, 11
Distortion Can Be Minimized by Using an

Adequate Number of Bits in the Digital
Representation of the Analog Signal 3,
11

Distortion Is Measured by the Difference
Between the Correct Signal Change in
Adjacent Values and the Actual Change
in Adjacent Values 3, 11

Distributed Operating Systems 10, 19
Distributed Web Services in an Internet

Setting 14, 1
Distribution of Errors Is Usually Non-

Uniform 14, 17

564 Index

Distribution of Failures and Recovery
Actions 15, 6

Distribution of Failures over Time 16, 11
Distribution of Faults in the Hardware and

Software 12, 13
Diversity of Mobile Devices Reduces the

Reusability of Test Cases 16, 3
DNS Look Up Accesses 14, 16
DNS Lookup Failures 14, 16
Domain Controller 14, 4
Domain Name Server (DNS) 6, 2
Domain Name System (DNS): Present

System 6, 30
Dominant Cause of TCP Connection

Failures 14, 16
Dramatic Reduction in System Failure Rate

14, 12
Drastic Reductions in Failure Rate by

Eliminating Software Faults 16, 12
Duty Cycles 8, 4
Dwelling on Speed Is Certainly Not the

Whole Story in Assessing Network
Standards 7, 15

Dynamic Nature of Web Surfi ng 14, 2
Dynamic Part That Can Respond to

Changing Operating Conditions 16, 3
Dynamic Range 3, 5
Dynamic Range, Phase Distortion, and

Signal Representation 3, 12
Dynamically Confi gured Web Services 14,

1

Each Component and the System Satisfy
the Reliability Requirement 14, 22

Each Component Can Be Thoroughly
Tested 14, 1

Each Facet of the Failure Model Is Defi ned
and Analyzed 17, 6

Each Mobile Device Moves in an Arbitrary
Manner 15, 3

Each Statement in a Program Could
Potentially Cause One or More
Exceptions to Be Raised 17, 17

Early Stages of Testing 13, 8
Edges (Transfer Control, Iteration Control,

and Return) 17, 13
Effective Criterion 13, 7
Effects of Additional Faults 12, 13
Effects of Faults 12, 13

Effi ciency Test 7, 2
Effi cient Implementation Is Obtained by the

Objects Failure Count and Failure Time
Feeding the Object Failure Rate 17, 12

Effi cient Resource Allocation in Different
Operational Scenarios Is Required 4, 1

Efforts to Reduce Faults and Subsequent
Failures 12, 16

Electric Grid Network 15, 16
Electric Power Grids 15,
Electric Signal 14, 2
Electric Utility Mobile Device Senses

Power Outage 15, 14
Electric Utility and Customer Mobile

Electric Meter Reading Devices 16, 24
Electrical Equivalent of a Physical System

3, 1
Electromagnetic Interferences (EMI) 15, 3
Electronic Analog Computers 3, 1
Electronic Digital System Uses Two

Voltage Levels to Represent Binary
Numbers 3, 6

Elements of a Requirement 17, 4
Elevator Software Design 5,
Elevator System Is Used as the Design

Example Because It Has Interesting
Properties, such as Interruptible Floor
Traversal Sequences 4, 1

Eliminating the Need for Name to IP
address Translation 6, 2

Emphasis in the Design Process Is on
Hardware Design, but Not Neglecting the
Mapping Between Hardware and
Software Designs 4, 16

Empirical Failure Probability 16, 7
Emulate the Operational Environment 16, 3
Enable Global Roaming 7, 12
Encapsulation Is the Inclusion Within a

Program Object of all the Resources
Needed for the Object to Function 17, 2

Encoders 1, 34
End-to-End Transmission and Processing of

Data in a Network Is Comprised of
Subsets of the Total End-to-End Chain
Called Sequences 7, 5

Engineer Charged With Designing
Networks Should Include Crucial Factors
in the Specifi cations and Establish a Test
System 7, 15

Index 565

Entity’s Normal Behavior 15, 2
Entity’s Observed Behavior Deviates

Signifi cantly from Its Profi le 15, 2
Environmental Conditions 16, 2
Equation: Mathematical Implementation of

a Function 17, 5
Equation as an Object 17, 3
Equations and Directed Graphs Are a

Model for Writing Code 17, 20
Equations Do Just Fine Because They Are

the Models of Mathematics 17, 20
Equations Have Variables and Parameters

That Can Be Made Extensible 17, 4
Equations Provide an Excellent View of Its

Implemented Software 17, 4
Erroneous Bits Received per Bits

Transmitted 14, 17
Error Between the Prediction Models and

the Historical Reliability Data 12, 11
Error Conditions in System and Application

Modules 15, 5
Error of Conversion 3, 6
Error Rate 14, 16
Error in the Software 12, 1
Errors That Could Arise in Each

Component, Whether A/D or D/A 3, 12
Estimate the Feedback Control Signal 16, 8
Estimate Latency during Performance

Testing 16, 3
Estimate the Location of a Mobile Station

15, 12
Estimating Model Parameters 13, 5; 17, 5
Estimating the Number of Failures 7, 6
Estimation of Failure Rate 7, 5
Ethernet, also Known as IEEE 802.3 7, 10
Evaluate Actions to Recover from a Device

Failure 15, 4
Evaluate the Cost of Testing 11, 5
Evaluate More Than One Model 13, 8
Evaluate the Reliability of the Software

Design 17, 20
Evaluate Results in the Context of the

Application 13, 9
Evaluating the Behavior and Performance

of Complex Systems 12, 13
Evaluation of Programming Languages 9,

1
Event-Driven Software Style Has Evolved

Largely to Deal with Complexity 4, 8

Event Order and Time of Occurrence Are
Crucial in Determining System
Performance 4, 15

Event Sequence: Series of State Transitions
4, 6

Example of Comparing Object-Oriented
with Mathematical Approaches 17, 24

Exception Will Cause an Automatic Change
in Control Flow 17, 17

Excessive Activation of Wireless
Communication Links by the User 16, 7

Excessive Cost of Testing 11, 9
Excessive Number of Web Page Operations

Is Bad News for Reliability 14, 17
Exclusive NOR (XNOR) 1, 17
Exclusive OR (XOR) 1, 18
Exclusive Use of Abstract Representations

Is Unwise Because It Is Important to
Consider the Physical Properties of the
Real-World System 4, 1

Execute the Programs on a Computer 17,
19

Executing Test Scenarios 9, 9
Execution Time 4, 3
Existing Standards 7, 1
Expected Fractional Value 7, 6
Expected (Mean) System Response Time 4,

19
Expected Number of Failed Modules of

Failure Type 16, 8
Expected Number of Failed Modules of

Recovery Type 16, 9
Expected Number of Failures 15, 6; 16, 11
Expected Number of Failures and Failure

Rate 16, 11
Expected Number of Failures and Failure

Rate Analysis 16, 11
Expected Number of Failures and Failure

Rates Corresponding to the Recovery
Action Categories 15, 6

Expected Recovery Action Is a Probabilistic
Function of the Failure Types 16, 9

Expected Reliability 11, 10
Expected Value 7, 6
Expected Value of Predicted Time to

Failure 13, 16
Explicit and Implied Requirements 16, 10
Explosion of Internet Connectivity 15, 1
Exponential Decay Error Rate 14, 17

566 Index

Exponential Decrease in Reliability 14, 16
Exponential Distribution 14, 17; 16
Exponentially Decreasing Reliability 14,

16
Exponentially Distributed Failure Times

16, 11
Exponentially Distributed Operating Times

17, 6
Exponentially Distributed Pattern of Failure

Data 14, 7
Exponentially Distributed Time Between

Failures 12, 3
Expose Confi dential Data and Risk Attacks

15, 1
Extensibility 15, 12
Extensive Error Analysis 3, 15

Facets of Conversion Logic 3
Factoring in Probability of State Transitions

14, 9
Fading 15, 3
Failure Count at Test or Operating Time

17, 6
Failure Count Data 17, 10
Failure Count Interval 13, 6
Failure Data 15, 1
Failure Data Identifi cation Phase 17, 15
Failure Data used in Parameter Estimation

13, 4
Failure Is Considered to Be of High

Severity When Recovery Requires the
Assistance of Service Personnel 16, 6

Failure Is Considered to Be of Low
Severity If the Device Operation Can Be
Reestablished by Repeating the Action or
Waiting for a Certain Amount of Time
16, 6

Failure Is Considered to Be of Medium
Severity When the Recovery Requires
Reboot or Battery Removal 16, 6

Failure Is Firmware-Related 15, 4
Failure Occurrences Can Be Associated

with the User Activity at the Time of the
Failure 16, 6

Failure Phenomena of Web Server Systems
14, 11

Failure Rate 11, 3; 12, 1; 15, 3; 17, 6
Failure Rate Decreases After Installation

16, 1

Failure Rate Decreases After Installation,
Eventually Reaching a Steady State 15, 3

Failure Rate and Failure Counts 8, 8
Failure Rate λ Is Computed 17, 12
Failure Rate Must Be Estimated 7, 5
Failure Rate Parameters 13, 4
Failure Rate Required to Achieve Specifi ed

Reliability 12, 16
Failure Rate of a System Grows

Proportional to the Number of Processors
in the System 14, 6

Failure Rate Varies Considerably Across
Servers and Clients 14, 6

Failure Rate of Web Servers 14, 11
Failure Rates 16, 11
Failure and Recovery Action Data 16, 1
Failure Scenarios 11, 10
Failure Severity Code 13, 4
Failure Severity Is Classifi ed According to

the User Perspective 15, 5; 16, 6
Failure Severity Is Refl ected in the Model

According to the Severity Codes 16, 8
Failure of a Single Processor 12, 4
Failure Time 12, 15
Failure Types 15, 4; 16, 54
Failure Type and Recovery Action Type

Results 16, 16
Failure Type Estimation Results 16, 10
Failure Type Testing Takes More Time 16,

17
Failure Types Below the Limit Should Be

Investigated to Identify the Cause of
Excessive Failures 16, 16

Failure in Web Page Processing by the Web
Server 14, 3

Failures 7, 3
Failures and Degradation of the

Communication Links 14, 2
Failures Can Be Traced to Domain Name

Server (DNS) Problems 14, 16
Failures Caused by Noise in the

Communications Network 16, 17
Failures Creating, Sending, and Receiving

Text Messages 15, 6
Failures in the Disk Storage Unit Nodes

14, 4
Failures Due to Environmental Problems

(Power Outage) 14, 5
Failures Due to Operator Error 14, 5

Index 567

Failures Occur According to a Poisson
Distribution 15, 6

Failures Occur during Voice Calls 15, 6
Failures in Storage Systems 14, 5
Failures Using Bluetooth 15, 6
Fairness 10, 6
Fault Detection and Correction 2, 8
Fault and Failure Correction 8, 4
Fault and Failure Correction Analysis

Results 8, 18
Fault Injection 12, 13
Fault Localization 13, 2
Fault Removal 14
Fault Tolerance of Mobile Computing

Systems 15, 5
Fault Tolerant Web Systems 14, 2
Faults 11, 1
Faults Can Be Dependent 12, 4
Faults and Failures Corrected 8, 5
Faults Removed 12, 4
Faults, such as Garbled Data on a Link,

Attributed to a Noisy Communication
Channel, Cause

Features Can Be Disabled 15, 12
Feedback during the Development Stage

12, 13
Feedback Used to Revise Mobile Device

Requirements 16, 8
Feed-Forward Structure 13, 3
Field Failure Data Analysis 15, 5
Figures Do Provide a Base Line for Starting

Development Process 17, 18
Find Other Devices to Execute the Mobile

Programs 15, 14
Firmware Update 15, 5
First Interval of Test Failure Data 13, 5
Fixed Information Perimeter 15, 1
Flexible Failure Function 12, 15
Flip Flops and Latches 1, 40
Focus on Failure Type 16, 7
Focus on Recovery Action Type 16, 8
Form of Design Presentation 9, 2
Formal Methods 12, 13
Formulate Equations from Problem

Specifi cations 17, 2
Formulation of Test Time May Understate

the Time Required to Identify All Mobile
Device Hazards 16, 14

Fraction of Failures 15, 7

Freeze (Lock-Up or a Halting Failure) 15,
4; 16, 5

Freezes Are More Annoying Than Output
Failures 15, 6

Freezes Are Usually Recovered by Pulling
Out the Battery 15, 6; 16, 7

Frequency Response 3, 5
Frequency Spectrum 7, 11
Frequency with Which Errors or Noise Are

Introduced into Communication Channels
14, 17

Function 12, 1
Function Associates a Single Output to

Each Input Element 17, 6
Function Is the Task the Object Must

Achieve 17, 5
Functional Decomposition Method 12, 12
Functional Logic 12, 2
Functional and Non-Functional

Specifi cations 12, 2
Functional Oriented vs. Data Oriented

Design 9, 2
Functionality Information 12, 12
Functions 1, 3; 9, 2
Functions of a Computer System 12, 12
Functions That Are Performed in a System

12, 2
Fundamental Properties as Predictions of

Reliability, Maintainability, and
Availability 7, 1

Gain 3, 5
Gain of the Microcomputer-Controlled

Operational Amplifi er 3, 12
General Packet Radio Service (GPRS) 16,

4
General Registers 1, 4
Generating System Reliabilities 12, 8
Generation of Failures 12, 16
Given the Erratic Channel Conditions,

Reliability Should Be Predicted Under
These Conditions to Have a Useful
Standard 7, 12

Global Positioning System (GPS) 15, 13
Goal Is to Develop Mathematical Software

17, 20
Good Test Strategy Is to Exercise the

Independent Paths in Debugging 17, 17
GPRS Mobile Device 16, 4

568 Index

GPRS Requirements Being Translated to
Software Code Compatible for Operating
with a Communications Carrier 16, 4

Gradient Descent (Ascent) Learning Rule
13, 2

Great Deal of Functionality Squeezed into a
Small Memory Space 16, 3

Great Variation in Both Hardware and
Software Failure Counts 12, 15

Greater the Relative Difference Between
Specifi ed and Predicted Reliabilities the
Greater the Risk 13, 9

Grid Computing 16, 24

Handheld Computing Device with a Short-
Range Radio Link, such as IEEE 802.11b
or Bluetooth 16, 3

Hard Disk Access Rate 1, 12
Hardware Confi gurations Are Very

Complex 14, 11
Hardware Description Language 1, 74
Hardware Failures 14
Hardware Function, Software Function, and

Some Form of Interaction 12, 12
Hardware Functions 4, 11
Hardware Level 4, 5
Hardware-Oriented Design Has to Deal

with More Problems Than Software-
Based Design, Especially the Progression
of Time 4, 16

Hardware Redundancy 12, 12
Hardware Reliability 12, 3
Hardware and Software Failure Rates 12,

15
Hardware and Software Failure

Relationships 12, 13
Hardware-Software Models 12, 12
Hardware-Software Predictive Reliability

12, 15
Hardware and System Reliability 12, 15
Having Power When the Device Is Turned

On 16, 10
Hazard Functions 14, 6
Heavy Traffi c Load in the Local Network

7, 9
Heterogeneous Mobile Devices 16, 24
Hierarchy: Divide System into Modules

That Are Easer to Understand Than the
Complete System 4, 4

High Expectations for the Reliability of the
Software on Mobile Devices 16, 2

High Failure Rate, Unstable Behavior
Failures 15, 9

High Latency Wireless Networks 16, 1
High-Performance Computing (HPC)

Installations 14, 5
High Probability of Short Node and Link

Times and Low Probability of Long
Times 7, 6

High Reliability at Low Risk 13, 9
High Severity Types of Failures 15, 9
High Severity When Recovery Requires the

Assistance of Service Personnel 15, 6
Higher Complexity Software Has Lower

Quality 17, 17
Higher Probability of Small Message Size

14, 17
Higher Quality That Is Required in Voice

and Other Real-Time Applications 7, 11
Higher Speed Can Result in Failures

Occurring at a Higher Rate 7, 6
Highly Compact Functionality Must Be

Refl ected in the Testing Strategy 16, 3
Highly Unlikely That There Would Be

Failure Free Service 15, 7
Historical Computed Reliability 12, 11
Historical Error Rate of n Errors per Web

Page Operation 14, 16
Historical Failure Data 14, 8; 17, 5
How Long a System Can Be Operated at

Specifi ed Values of Reliability 12, 18
How Long to Test 12, 4
How Long to Test Components 12, 4
HTTP Protocol 14

Identifi cation of Coding Details Flow More
Naturally from Mathematical Expressions
17, 13

Identifi cation of System Elements 2, 2
Identifi er 15, 15
Identify the Best Customer Strategy 15, 8
Identify the Key Paths to Test Based on the

Cyclomatic Complexity Metric 17, 13
Identify a Mobile Device Technology with

a Relatively Low Reliability Rating 16,
4

Identify the Number of Failure Counts That
Occur at Test Time 17, 13

Index 569

Identify the Number of Web Page
Operations That Cause Reliability
Degradation 14, 23

Identify Possible Low Sequence Reliability
Values That Would Be Indicative of Low
Values of Node and Link Reliabilities 7,
6

Identify States and State Transition
Probabilities 14, 22

Identify the Services the Objects Are to
Perform 17, 13

Identify the Several Phases and Steps in
Program Implementation 17, 13

Identifying and Defi ning the Performance
and Reliability 6, 1

Identifying Independent Paths and
Evaluating Program Test Coverage 17,
17

Identifying the Initial Search Location 14,
4

Identify Web Page Operations 14, 22
IEEE 802 Family of Standards 7, 11
IEEE 802 Wireless Networks 7, 10, 12
IEEE 802.11 Power Saving Schemes 15,

12
If the Reliability Test Fails, the Failure Is

Reported to the Maintenance Activity 7,
14

Illuminate the Various Perspectives That the
Diagrams Provide 17, 8

Impacting the User Experience 15, 2
Implementation Elements 4, 1; 5
Implementing Cohesion and Coupling 9, 9
Implementing Software, Using the NASA

Space Shuttle Flight Software, as an
Example 17, 13

Importance of Quality of Service 14, 2
Importance of Web Systems in

Contemporary Society 14, 1
Important Characteristic of Mobile Devices

Is That a Given Device May
Communicate with More Than One
Communications Carrier 16, 4

Important Concepts about Devices That
Interconnect with Digital Computers 3,
15

Important to Have a Close Relationship
Between the User System and the System
Control Functions 4, 5

Important Network Requirements 7, 14
Important to See Whether the Computation

Results Appear to Be Reasonable 17, 17
Important That the Test Bed Be Automated

7, 14
Important Variable Types 9, 13
Improve Quality of Service, Reliability, etc.

on the Existing Platform 6, 2
Improve the Signal to Noise Ratio 16, 10
Improved Power Management Is Needed in

Mobile Devices to Increase Their
Utilization 15, 5

Improvement in Reliability 15, 7
Improvements in Both Hardware and

Software Reliability 15, 16
Improvements That Would Make Standards

More Valuable for the User 7, 9
Improving the Design and Implementation

of a System 12, 13
In C+ + , a Function Is a Named,

Independent Section of Code 17, 5
In Failure Type Testing, the Tester Is at the

Mercy of the Operating Environment of
the Mobile Device 16, 17

In Order to Provide Increased Security of
Data, Every User Computer and Mobile
Device Would Have Its Own IP Address
62

In Programming Languages, a Function Is a
Subroutine That Can, If Required, Return
a Single Value to the Caller 17, 5

In Real-Time Programs, the Time of
Occurrence of Events Rather Than the
Order of Events Is Crucial in
Determining the Outcome of a
Computation 4, 15

Inability of Real-Time Software to Meet Its
Primary Nonfunctional Requirements 4,
2

Inability to Transmit Data Between Two
Nodes 7, 3

Inaccurate Assessments of the Conditions
for Safe Missions 11, 9

Incorrect Management of Buffer Sizes 15,
6

Incorrect Use of the Device Resources 15,
6

Increase in System Reliability Necessary to
Achieve the Reliability Goal 14, 18

570 Index

Increasing Functions of Cumulative Failures
and Reliability 13, 12

Increasing the Signal to Noise Ratio Will
Increase the Range of the Wireless
System 7, 13

Increasing User Productivity in Their Use
of Computer Networks 7, 1

Independence of Faults That Cause Failures
12, 4

Independent Path Is One That Cannot Be
Formed by Combining Other Paths in the
Directed Graph 17, 2

Indicates That There Is More Noise Than
Signal and That the Recovery Method Is
Dysfunctional 16, 8

Industry Is Developing a Software Defi ned
Device That Can Be Dynamically
Defi ned in Real-Time 16, 3

Information Hiding: A Software Design
Technique That “Hides” System Details
17, 2

Information Hiding and Modular Design
17, 4

Information about the User’s Environment
15, 12

Ingredients of Other Infrastructures 15, 13
Inheritance: A Property of Object Oriented

Design That Allows an Object to Acquire
the Properties of Its Class 17, 1

Inheritance Makes O-O Systems More
Extensible 17, 4

Inhibit Neuron Output 13, 1
Injection of Faults and Failures Is

Simulated by Randomly Selecting Links
and Nodes to Be Injected 7, 3

Input Connections 13, 1
Input Data 9, 4
Input Data Component Execution 12, 2
Input Driven Software Models 16, 1
Input Failure 15, 4; 16
Input Failure Counts 13, 7
Input Failures Are High Severity 15; 16, 6
Input Processing State 4, 11
Input Request to the Internet, Provides the

Basis for Computing the Performance
and Reliability of the Present and
Proposed Internets 6, 1

Insight into How Real-Time Systems Must
Function 4, 2

Instruction Register 1, 4
Insuffi cient to Limit Verifi cation of the

Correctness of Program Output to the
Identifi cation of Independent Paths and
the Associated Test Strategy 17, 17

Integer Number of Failures Would Occur
over the Nodes and Links 7, 6

Integrate Component Reliabilities into Total
System Reliability Predictions 14, 23

Integrated (the Various Parts Fit Together to
Form a Coherent Whole) 17, 4

Integrated and Comprehensive Design
Approach 4, 25

Integrated Software–Hardware Design 4, 6
Integrated Software–Hardware Design Is

Achieved by Mapping Between Software
and Hardware Designs 4, 16

Integrated Software–Hardware Design
Methodology 4, 8

Integrates the Varying Analog Input Signal
Voltage 3, 1

Integration of Mobile Devices and
Environmental Infrastructures 15, 14

Integrative Analysis to Produce Total
System Reliability Predictions 14, 22

Intelligent Control 13, 1
Intelligent Mobile Meter Readers 16, 24
Interaction Between an A/D Converter and

Microcomputer 3, 7
Interaction Between a User Application and

a Migratory Service Can Continue
Uninterrupted 16, 24

Interaction of People with Computerized
17, 19

Interaction of Software and Hardware
during Program Execution 4, 1

Interactions among Components 12, 15; 14,
1

Interchange of Commands Between
Converter and Microcomputer 3, 7

Interface Between a Mobile Device and a
Mobile Network 16, 4

Interface Between Modules Rather Than in
Modules 17, 2

Interfaces Have Been a Major Source of
Failures in Computer Systems 16, 4

Interfaces May Not Easily Interconnect
Because Inputs May Arrive at
Unpredictable Times 4, 4

Index 571

Interfaces Represent the Major Software
Modules to Be Developed by the Mobile
Device Process 16, 4

Interfaces with Objects and between
Objects 17, 11

International Mobile Telecommunication
2000 (IMT-2000) Standard 7, 11

Internet Data Traffi c 6, 70
Internet Protocol (IP) 6, 2
Internet Reliability Analysis 6, 59
Internet Router 6, 2
Internet Router: Present Wired System 6,

30
Internet Web Sites 15, 15
Internet’s Ability to Adapt to Improved

Performance and Reliability
Requirements 6, 2

Internet will Connect Vast Numbers of Tiny
Devices Integrated into Cell Phones and
Other Mobile Devices 6, 3

Interoperability of Mobile Devices with
Other Computing Infrastructures 15,
13

Interoperability with Other Mobile Devices
and Electric Grid Infrastructure Will Be
Improved 16, 24

Interprocess Communication 12, 12
Interrupt Handling 1, 15
Interrupt Processing 3, 7
Interrupt Signal Generated by Hardware

Triggers Software Interrupt Processing
Routines 4, 6

Interrupted by a Request 4, 23
Interruptible Event Sequence Causing State

Transition 4, 6
Interruptible Sequence of Operations

Causing Interrupts to Be Processed Out
of Sequence 4, 4

Interrupts 4, 6
Intrusion Detection 15, 1
Inverse of the Signal to Noise Ratio 16,

8
Invest in Higher Reliability Communication

Facilities 14, 18
Invocations of Web Service Operations Are

Independent 14, 3
Invokes Backup Power Supply 15, 14
I/O Channels Must Have Suffi cient Transfer

Rate 4, 5

I/O Channels Must Have Suffi cient Transfer
Rate to Satisfy Elevator System
Response Time Requirements 4, 6

I/O Channels with Suffi cient Transfer Rate
to Keep Up with Real-Time Transaction
Input Rate 4, 11

IPv6 Does Not Provide Any Better (Or
Worse) Support for Quality of Service
Than IPv4 6, 2

Iteration: Repetition of an Operation 17, 5
Iteration in O-O Defi ned as: An Operation

That Permits All Parts of an Object to Be
Accessed in a Well-Defi ned Order 17, 3

JK Flip Flop 1, 47
Joining of Disparate Components of a

System Is a Complex Process 16, 4

Karnaugh Maps 1, 20
Key Indicator of Acceptable Performance Is

That Response Time Is Satisfi ed 4, 23
Key Issue in Providing Multimedia Services

over a Wireless Network Is the
Quality-Of-Service

(QoS) Support in the Presence of Changing
Network Connectivity 7, 12

Key to Maintaining Wireless
Communication 15, 3

Large Gains in Noise Reduction Would Be
Achieved Through Testing If the Number
of Correct Modules, Due to Eliminating
Failures, Is Already Small 16, 13

Large Gains in Noise Reduction Would Be
Achieved Through Testing If the Number
of Correct Modules, Due to Recovery
Action, Is Already Small 16, 13

Large Obstructions 15, 3
Large Scale Signal Path Loss 15, 3
Larger the Failure Rate, the Shorter the

Mission Duration 16, 12
Latency Is Defi ned as the Time Required

for the Data Signal to Be Transmitted
Through the Communications Medium
16, 3

Latency Is the Reciprocal of Data Rate 16,
3

Later Stages of Testing 13, 8
Learn Rules 13, 1

572 Index

Learn the Input-Output Relationship 13, 3
Learning Algorithm 13, 1
Left Shift Register 3, 1
Length of Time Slice for Switch Action 10,

9
Level of Detail That Is Compatible with the

Phase and View 17, 18
Lightweight Encryption 15, 1
Lightweightness 15
Likelihood of the Abort of a Connection

15, 13
Likelihood of Processor Failure 12, 4
Likelihood of Statement Bugs 13, 3
Limit: Constraint Imposed on a Function

17, 5
Limit Value 13, 3
Limited Computational Resources of These

Devices 16, 3
Limited Range Wireless Network 7, 13
Linear Text Format 14, 3
Link Delay Times 6
Links Between Distributed Databases 12,

13
List of Running Applications 15, 5
Little Understanding of How and Why

Mobile Phones Fail 15, 5
Local Area Network 12, 15
Local Network 6, 2
Local Network: Present Wired System 6,

30
Local Network Components Have Smaller

Sizes That Are the Primary Driver of
Maintenance Actions 7, 9

Local Network Components Operate Faster
Than Internet Components 7, 6

Local Network Processing Times 6, 44
Local Network Router 6, 3
Local Network Router: Present Wired

System 6, 42
Local Network Router Server Queue 7, 9
Local Network Sequences Would Be

Subject to Further Testing to Discover
and Remove Additional Faults 7, 9

Local Network Server Queue 7, 8
Local Network Wait Time in System 6, 44
Localizing Faults 13, 2
Locate the IP Phone 15, 15
Location Awareness 15, 12
Logic of Time Slicing 10, 11

Logical Operators 9, 13
Longest Stabilization Time of the Various

Recovery Actions 15, 9
Long-Running Application 12, 4
Long-Term Scheduler 10, 6
Loss of Data in Mobile Device Memory

16, 6
Loss or Degradation of Wireless

Connections 16, 1
Loss of Memory Data 15, 6
Low Failure Rate, Input Failures 15, 9
Low Operating Times 16, 12
Low Pass Filter 3, 4
Low Pass Filter Subject to Error 3, 14
Low Power Sleep State 15, 12
Low Quality Connections 16, 1
Low Severity 15
Low Value of Probability of Detection 12,

11
Lower Probability of Large Message Size

14, 17
Lower S/N Means Higher Noise 16, 16

Main Memory Hit Rate 1, 12
Main Memory Miss Rate 1, 12
Main Power Consuming Components 15, 2
Main Processing Task 3, 7
Maintainability 7, 1
Maintainability Prediction 7, 8
Maintainability Will Be Formulated as a

Ratio of the Quantity of Data Processed
by a Given Sequence of Nodes and
Associated Links 7, 8

Maintainability Will also Be Predicted
Using Sequences 7, 8

Major Issue in Software Reliability
Assessment 13, 9

Major Limitation of Portable Devices 15, 2
Major Noise Contributors: Unstable

Behavior and Self-Shutdown 16, 10
Major Risks Posed by Mobile Devices 15,

1
Majority of OS Kernel Failures Are Due to

Memory Access Violation Errors 15, 4
Making a Requirement Understandable 17,

5
Manipulating Clock Rate to Achieve

Required Response Time 4, 16
Manipulating Images 15, 6

Index 573

Many Values of Reliability in a Sequence—
One for Each Node or Link 7, 6

Mapping Failures to Their Causes 11, 9
Mapping Real World Objects to the O-O

Model 17, 5
Marginal Benefi t Equals Marginal Cost 13,

4
Marginal Increase in Test Time 13, 3
Marginal Reduction in Failures and Faults

13, 3
Masked Fault 12, 4
Master Reset 15, 5
Mathematical Concept of a Function

Expresses Dependence Between Two or
More Quantities 17, 8

Mathematical Modeling Approach:
Equations Suggest the Steps to
Implement the Program 17, 12

Mathematical Modeling Approach Has an
Advantage 17, 12

Mathematical Modeling Design Approach
Example 17, 13

Mathematical Modeling of Physical Objects
17, 3

Mathematical Software Reliability 17, 3
Mathematical Symbols for the Poisson

Distribution 17, 11
Mathematical Terms Could Be Cast in the

Context of Developing a Failure Model
17, 6

Mathematics for Software Reliability
Models 17, 2

Maximum Actual Reliability 13, 7
Maximum Bandwidth 14, 17
Maximum Likelihood Estimation (MLE)

Method of Parameter Estimation 13, 6
Maximum Operating Times That Can

Achieved at Specifi ed Values of
Reliability 12, 17

Maximum Permissible Response Time 4, 2
Maximum Response Time Service Request

4, 19
Maximum Response Time That Occurs Due

to Resource Limitation 4, 23
Maximum Sampling Frequency 3, 11
Maximum Speed at Which the D/A (or

A/D) Circuitry Must Operate to
Reproduce the Correct Output 3, 11

Maximum Value of the Severity Code 13, 4

McCabe Test Strategy Does Not Provide
Complete Coverage of All Code 17, 17

Mealy and Moore Machines 1, 57
Mean Access Point Processing Time in the

Download Direction 6, 24
Mean Access Point Processing Time in the

Upload Direction 6, 24
Mean Access Point Queue Wait Time in the

Download Direction 6, 25
Mean Access Point Queue Wait Time in the

Upload Direction 6, 24
Mean Difference Between Required and

Achieved Response Times 4, 23
Mean Download Processing Time 6, 9
Mean Download Service Time 6, 66
Mean Download Web Page Processing

Time 6, 6
Mean Error Rate 14, 17
Mean Number of Bits Being Processed in

the Download Direction 6, 67
Mean Number of Bits Being Processed in

the Upload Direction 6, 66
Mean Number of Bits Waiting for

Processing in the Download Direction 6,
67

Mean Number of Bits Waiting for
Processing in the Upload Direction 6, 66

Mean Number of Packet Bits Being
Processed for Name Translation 6, 17

Mean Number of Packet Bits Being
Processed for Upload Routing 6, 15

Mean Number of Packet Bits Being
Processed in the Upload Direction 6, 10

Mean Number of Packet Bits Being
Processed in the Upload Direction for
Routing 6, 13

Mean Number of Packet Bits Waiting for
Name Translation 6, 17

Mean Number of Packet Bits Waiting to Be
Processed for Routing in the Upload
Direction 6, 13

Mean Number of Packet Bits Waiting to Be
Processed in the Upload Direction 6, 10

Mean Number of Packet Bits Waiting to Be
Processed in the Upload Direction for
Routing 6, 12

Mean Number of Web Page Bits Being
Processed in the Download Direction 6,
11

574 Index

Mean Number of Web Page Bits Being
Processed in the Download Direction by
the Access Point 6, 25

Mean Number of Web Page Bits Being
Processed in the Download Direction by
the Internet Router 6, 28

Mean Number of Web Page Bits Being
Processed for Download Routing 6, 15

Mean Number of Web Page Bits Being
Processed in the Upload Direction 6,
36

Mean Number of Web Page Bits Waiting to
Be Processed in the Download Direction
6, 11, 69

Mean Number of Web Page Bits Waiting to
Be Processed in the Download Direction
by the Access Point 6, 26

Mean Number of Web Page Bits Waiting to
Be Processed for Routing in the
Download Direction 6, 13

Mean Number of Web Page Bits Waiting to
Be Processed in the Upload Direction 6,
68

Mean Number of Web Page Bits Waiting
for Routing in the Download Direction
by the Internet Router 6, 28

Mean Number of Wireless Packet Bits
Being Processed in the Upload Direction
by the Access Point 6, 25

Mean Number of Wireless Packet Bits
Being Routed in the Upload Direction 6,
28

Mean Number of Wireless Packet Bits
Processed for Translation by the DNS 6,
30

Mean Number of Wireless Packet Bits
Waiting for Routing in the Upload
Direction by the Internet Router 6, 28

Mean Number of Wireless Packet Bits
Waiting to Be Processed in the Upload
Direction by the Access Point 6, 25

Mean Number of Wireless Packet Bits
Waiting for Translation by the DNS 6,
30

Mean Packet Upload Time 6, 8
Mean Processing Time 6, 16
Mean Processing Time for the DNS to

Translate a Wireless Packet Name to an
IP Address 6, 29

Mean Relative Error (MRE) 11, 9; 14, 89
Mean Response Time Difference 4, 19
Mean Sequence Reliability Values 7, 6
Mean Square Error Between the Actual and

Predicted Cumulative Failures 13, 6
Mean Squared Error (MSE) Between Actual

(Historical) and Predicted Reliability 12,
13

Mean Time a Web Page Requested by a
Wireless Packet Spends Being Processed
for Routing by the Internet Router in the
Download Direction 6, 27

Mean Time a Wireless Packet Must Wait in
the DNS Queue Prior to Name to IP
Address Translation 6, 29

Mean Time a Wireless Packet Spends Being
Processed for Routing by the Internet
Router in the Upload Direction 6, 26

Mean Time a Wireless Packet Spends
Waiting to Be Processed for Routing by
the Internet Router in the Download
Direction 6, 27

Mean Time a Wireless Packet Spends
Waiting to Be Processed for Routing by
the Internet Router in the Upload
Direction 6, 27

Mean Time to Failure (MTTF) 13, 16
Mean Upload Packet Processing Time 6,

67
Mean Upload Packet Time 6, 65
Mean Upload Processing Time 6, 9
Mean Upload Service Time 6, 66
Mean Upload Time from Buffer of Wireless

Packet to DNS 6, 29
Mean Upload Wait Time 6, 9
Mean Value of Failure Rates 12, 16
Mean Value of Parameter 12, 17
Mean Wait Time 6, 16
Mean Web Page Download Time 6, 8
Mean Web Page Upload Wait Time 6, 68
Mean Wireless Packet Upload Time 6, 23
Measurable Increase in Reliability 14, 1
Measured by the Difference Between the

Correct Value and the Value Realized by
D/A Conversion 3, 11

Measures for Predicting Reliability 14, 3
Measuring Current Risk 11, 9
Measuring Prediction Accuracy 8, 22
Mechanical Analog Computers 3, 1

Index 575

Mechanism for Sharing Context
Information 15, 13

Medium Severity When the Recovery
Requires Reboot or Battery Removal 15,
6

Memory 1, 3
Memory Capacity 16, 3
Memory Enable Control Line 1, 11
Memory Failure 12, 14
Memory Management 10, 1
Memory Management Problems 15, 4
Memory-Mapping the RAM 1, 14
Memory System Performance 1, 12
Memory Violations Are the Cause of the

Majority of Failures 15, 7
Message Logging Algorithms 15, 5
Message Processing Design 1, 64
Message Transmission Rate as Queue

Arrival Rate 16, 3
Method: Operation on an Object That Is

Part of the Declaration of a Class 17, 11
Method for Analyzing Computer Program

Reliability 9, 5
Method of I/O Communication 3, 7
Methods for Improving Reliability 8, 23
Metropolitan Area Network (MAN)

Distance Ranges Are 3–8 km 7, 12
Microcomputer Clock Rate 10, 9
Microcomputer Input-Output (I/O)

Applications 3, 7
Microprocessor Design 1, 3
Microprocessor with Suffi cient Speed

(Clock Rate) to Satisfy Response Time
Requirement 4, 11

Mid-Term Scheduler 10, 7
Migratory Service Incorporates All the State

Information 16, 24
Minimization of States 1, 57
Minimum Acceptable Level of Coverage

17, 17
Minimum Link Capacity 15, 14
Minimum Data Rates of: 144 kbps in

Vehicular Environment, 384 kbps in
Pedestrian Environment, and 2 Mbps in
Indoor Offi ce Environment 7, 13

Minimum Rate of Change over Successive
Test Intervals 13, 4

Minimum Response Time Service Request
4, 19

Minimum Test Time 11, 8
Mission Critical Application 12, 6
Mission Critical Application Where The

Reliability Must Be High 13, 9
Mission Duration 11, 2; 16, 11
Mission Duration Where Predicted

Reliability No Longer Achieves Specifi ed
Reliability 13, 8

Mission Reliability Requirement 12, 16
Mission Success 11, 10
Mission Threatening Failures 11, 10
Mitigate the Risk of Software Failure 12,

12
Mix of Abstraction and Operational Detail

Views 4, 2
Mobile Ad Hoc Networks 15, 1
Mobile Device 6, 2
Mobile Device Context Awareness 15, 12
Mobile Device Empirical Probabilities of

Failure and Recovery 16, 7
Mobile Device Failure 15, 5
Mobile Device Failure Characteristics 16, 6
Mobile Device Is Subject to an Input

Failure 16, 16
Mobile Device Manufacturers Should

Improve the Quality of Their Recovery
Action Software 16, 16

Mobile Device Model Must Account for
Context and Migration 16, 24

Mobile Device Operating Time 16, 11
Mobile Device Performance 15, 1
Mobile Device Reliability 15, 3; 16, 1
Mobile Device Reliability Is Only

Satisfactory for the First Few Months of
Operation 15, 16

Mobile Device Reliability Model 16, 7
Mobile Device Scenario 15, 12
Mobile Device Software Development

Process 16, 16
Mobile Device Software Reliability 15, 1
Mobile Device Software Reliability and

Testing 16, 1
Mobile Device Tasks Are Susceptible to

Errors 16, 3
Mobile Device Testing Effectiveness 16, 12
Mobile Devices Are Multimedia-Enabled

15, 14
Mobile Devices Did Not, in General, Meet

Requirements 16, 17

576 Index

Mobile Devices Have Unique
Characteristics 16, 3

Mobile Devices Need Improved Reliability
Even After Responding to a Failure 16,
16

Mobile Devices Operate in a Hostile
Communications Environment 16, 1

Mobile Devices Should Be Improved so
That They Are Really Usable by
Customers 16, 17

Mobile Environment Involves Many
Software and Hardware Components and
Technologies 15, 1

Mobile Memory Cache 15, 18
Mobile Meter Reader Can Be Automatically

Connected to an Operational Sub Station
16, 24

Mobile Network Data 15, 15
Mobile Network Reliability, Performance,

and Context and Network Awareness 15,
1

Mobile Network Stability 15, 1
Mobile Networks Can Adapt to Changing

Conditions 15, 16
Mobile Networks Could Respond to

Changes in Both Context and Network
Awareness 15, 1

Mobile Phone Failure Data 15, 1
Mobile Phone Failure Data Reported 16, 1
Mobile Phone Performance Assessment 15,

15
Mobile Phone Software 15, 15
Mobile Process Can Involve Context Aware

Migratory Tasks 16, 12
Mobile Scenarios 15, 12
Mobile vs. Non-Mobile Applications 15, 12
Mobility-Related Reliability 16, 1
Model (e.g., Poisson Failure Model) 17, 12
Model: Representation of Objects,

Functions, Limits, Parameters, Variables,
and Equations 17, 5

Model-Based Software Development Has
Been Shown to Be a Promising Approach
to Real-Time Design Problems 4, 2

Model Capable of Representing Both
Sequential and Concurrent Interactions
Between Objects 17, 3

Model Combines Hardware, Software, and
Their Interactions 12, 13

Model Development 8, 6
Model Is Provided for Developing Test

Strategies 17, 20
Model Limitations 16, 10
Model the Problem Being Solved 3, 1
Model of Reliability Based on the Signal to

Noise Ratio 16, 7
Model the Reliability of Web Systems 14,

1
Model States, Events, Actions, and State

Transitions 17, 10
Model Tasks 8, 2
Model Uses Multiple Executing Servers,

Each Processing User Requests
Concurrently 6, 2

Modeled Using Equations 3, 1
Modeling Method Has Two Major

Components 17, 12
Modeling Path Maintainability and

Availability 9, 8
Modeling Reliability and Testing 16, 3
Modeling Various Failure Rate Patterns

12
Models Are Built to Seek an Understanding

of the Requirements or to Specify the
Systems to Be Built 17, 4

Models Are Evolved by Learning 13, 1
Models of Interconnection Structure 13, 1
Models of Neurons 13, 1
Modularity: Produce Modules That Have

Well-Defi ned Functions and Interfaces
That Can Easily Interconnect 4, 4

Modularize Complex Programs and Make
the Maintenance and Understanding of
such Programs Easier 17, 5

Module Device Failure Data Generated
from Test Results 16, 12

Module Failed 15, 5
Modules with Failure Types Associated

with Negative Feedback Should Receive
Priority Attention 16, 10

Monitor the Environment 15, 12
Monitoring Risk Status 11, 9
Monotonicity 3, 11
More Active Users lead to Fewer Available

Communication Timeslots 16, 4
Most Important Factor Is the Quality of the

Personnel Developing the Software 17,
19

Index 577

Movement Away from the Servers
Currently in Use, and Toward New Ones
16, 3

MTTF Is Well Understood in the Software
Industry 13, 16

Multimedia Services 7, 12
Multiple Access Contention 15, 3
Multiple Applications Are Concurrently

Executed 15, 14
Multiple Cell Phone Users at Various

Locations 15, 6
Multiple Output Combinational Circuits 1,

24
Multiple Processors 12, 4
Multiple Threads of Control Caused by

Concurrent Inputs 4, 4
Multiplexers 1, 36; 3, 1
Multiplexing Data and Address Signals 1,

13
Multiplying Component Reliabilities 12, 4
Multi-Processor Technology 12, 7
Myriad of Failures 14, 3

N Number of Operations on the Web Page
14, 16

NAND 1, 15
NASA Space Shuttle Flight Software OI6

Failure Data 17, 13
NASA Space Shuttle Operational Increment

11, 3
NASA Space Shuttle Software System 13,

5
Nature of Web Service Client 14, 3
Negative Feedback Is Needed to Correct

Modules 16, 10
Negative Reliability 16, 10
Network Application 5, 4
Network Architecture 5, 1
Network-Aware Applications 15, 14
Network Awareness Approach 15, 16
Network Connections 15, 12
Network Connection Types of the Device

15, 13
Network Connectivity and Locations 16, 3
Network Effi ciency 7, 1
Network Failures 14, 5
Network Firewall 15, 1
Network Is Trained 13, 3
Network Metrics 8, 1

Network Performance Evaluation Model 7,
2

Network Performance Parameters Data 5,
13

Network Performance Variations 15, 14
Network Standards Do Not Address the

Software Compatibility Issue 7, 9
Network Standards Should Focus on Local

Networks 7, 6
Network Times 8, 3
Network Usage Data 6, 3
Network Users Must Insist on Receiving

Compatibility Information 7, 9
Networked Data Storage Facilities 15, 15
Networking Interfaces 15, 15
Networks Learning from a Teacher 13, 18
Neural Network and Parameter Evaluation

Methods 13, 9
Neural Network Criterion 13, 11
Neural Network Criterion Limit 13, 5
Neural Network Criterion Method Involves

Lower Reliability Risk at Higher Values
of Reliability 13, 9

Neural Network Learning 13, 2
Neural Network Prediction Criterion 13, 18
Neural Networks 13, 1
Neural Networks Applied to Fault

Localization 13, 3
Neural Networks Applied to Software

Reliability Assessment 13, 3
New Critical Applications Emerge for

Mobile Phones 15, 3
New Requirements Could Introduce

Performance Problems 15, 15
New Security Threats 15, 1
New Specifi cations to Provide More

Bandwidth or QoS-Related Parameters
and Interfaces 7, 12

No Comparable Features of the O-O
Approach 17, 3

No One Size Fits All Solution to the
Problem of Selecting the Appropriate
Software Development Paradigm 17, 18

No Test Strategy Is Perfect, Including
McCabe’s 17, 17

Node and Link Operating Times 8, 7
Node and Link Sequences Consistency 7, 9
Node and Link System Reliability 14, 9
Node Probability of Being Busy 5, 10

578 Index

Nodes (Program Functions While, If, Else,
Set, Read, Write, Store, and Compute)
17, 13

Nodes and Links 8, 2
Nodes and Their Associated Links Process

the Same Quantity of Data 7, 8
Noise 3, 5
Noise (# of Failed Modules) 16, 7
Noise Could Be Represented by Number of

Unsuccessful Web Search Results 16, 10
Noise Suppression Process 16, 10
Non-Compatibility Result Is Recorded If

the Signal Is Not Received 7, 14
Non-Functional Properties 14, 2
Nonlinearity Distortion 3, 12
NOR 1, 17
NOT 1, 15
Not Capable of Properly Representing

Concurrent Interactions 17, 3
Novel Signal to Noise Ratio 15, 1
Number of Components in a System 12, 4
Number of Components That Do Not Fail

12, 8
Number of Correct Modules (Signal) 16, 8
Number of Correct Modules Based on

Recovery Action 16, 9
Number of Correct Software Modules 16,

1
Number of Days Since the Software Was

Released by the Contractor to NASA 17,
13

Number of Edges (Branches) and Number
Of Nodes (Statements) in the Directed
Graph Representation of a Program 17,
17

Number of Encoding Bits 3, 6
Number of Errors on a Web Page 14, 16
Number of Failed Components 12, 9
Number of Failed Modules (Noise) 16, 1
Number of Failed Software Modules 16, 8
Number of Failure Counts 12, 15
Number of Failures 11, 6; 12, 11
Number of Failures Expected in Node or

Link 7, 5
Number of Failures in Test Interval 13, 12
Number of Failures Remaining 11, 8
Number of Hard Disk Accesses 1, 12
Number of Independent Paths in a

Computer Program 17, 2

Number of Independent Paths
Interconnecting Web Clients with Web
Servers 14, 2

Number of Instructions Executed 10, 9
Number of Page Transfers from Secondary

Storage 10, 13
Number of Possible Output Levels the D/A

Is Designed to Reproduce 3, 10
Number of Processors 12, 4
Number of Processors That Do Not Fail

12, 5
Number of Programs Allocated Time Slices

10, 4
Number of Responses to Service Requests

Required in Operational Time 4, 19
Number of Sessions 14, 11
Number of User Web Sessions 14, 11
Number of Ways Web Clients and Servers

Could Fail 14, 22
N-Version Redundancy Model for Web

Services 14, 2
Nyquist–Shannon Sampling Theorem 3,

11

Object 12, 13
Object: In a Computer Program, Any Entity

That Can Execute in a Computer 17, 1
Object: The Focus of Attention 17, 5
Object-Based Design Is Suitable for

Distributed, Parallel, or Sequential
Implementation 17, 4

Object Interrupt Processing Would Include
Instructions for Processing an Interrupt
17, 2

Object-Math, Which Is a High-Level
Programming Environment with a
Modeling Language 17, 3

Object Math Focuses on Mathematical
Modeling Rather Than Object-Oriented
Programming 17, 3

Object Math Language Augments
Mathematica with Classes and Other
Object-Oriented Language Constructs
17, 3

Object-Oriented Analysis and Design Is
Quite Appropriate 17, 19

Object-Oriented Approach vs. Mathematics
17, 3

Object-Oriented Design 9, 4

Index 579

Object-Oriented Diagrams Are Useful for
Providing High-Level Visibility of
Computer Program Structure 17, 1

Objects 9, 4
Objects Correspond More Closely to the

Products and Processes in the Conceptual
Worlds of the Designer and User 17, 4

Objects Failure Count, Failure Time, and
Failure Rate 17, 12

Objects Have Two Characteristics: State
and Behavior 17, 8

Objects in the Elevator System Are User,
System Controller, System Storage,
Operations, and Error Control 4, 3

Objects also Possess Attributes 17, 8
Observed Failure Count 13, 15
Observed Failure Data 13, 4
Observing How an Elevator Operates (e.g.,

Processing Service Requests) 4, 2
On-Demand Movie Streaming and Video

Conferencing 15, 2
Only One Failure Type – Input – Has

Acceptable Reliability 16, 12
O-O Approach: Sequence Diagram Can Be

Used to Identify Program Steps 17, 12
O-O Approach Is Compatible with

Developing an Elevator System or Web
Site 17, 3

O-O Approach Will Be Used to Model
Facets of Software Reliability Models
17, 3

O-O Can Be Effective for Reengineering
17, 4

O-O Can Be Used for Transforming the
States of Legacy Software to O-O
Software 17, 4

O-O Concepts Applied to Poisson Failure
Model 17, 8

O-O Is Highly Abstract 17, 3
O-O Paradigm: Data Is Sometimes

Relegated to an Obscure Role That Has
Nothing to Do with the Collection and
Processing of Raw Data 17, 13

O-O Provides Various Views of a Software
System That Are Useful for
Understanding and Maintaining Code 17,
4

O-O Representation of the Poisson Failure
Model 17, 8

Open Standards Are More Popular Than
Proprietary Ones 7, 10

Open Standards Are Useful for Helping to
Mitigate the Problem of Software
Compatibility 7, 10

Operate Faster, More Reliably, and with
Improved Security 6, 1

Operate in Multiple Environments 7, 13
Operating Characteristics of a Component

12, 2
Operating Context (OC) 15, 13
Operating Environmental Conditions 13,

1
Operating and Security System Property

17, 4
Operating System 1, 10
Operating System Architecture 10, 1
Operating System Characteristics 10, 6
Operating System Issues 10, 1
Operating System Performance Evaluation

10, 4
Operating System Reliability Evaluation

10, 5
Operating Time 12, 3; 14, 11
Operating Time during Which a Specifi ed

Reliability Requirement Is Achieved 15,
3

Operating Time during Which a Specifi ed
Reliability Requirement Is to Be
Achieved 16, 11

Operating Times 12, 9
Operational Amplifi er 3, 3
Operational Amplifi er Amplifi cation

Capability 3, 5
Operational Amplifi er May Fail to Produce

a Correct Amplifi cation of the Signal
Produced by the Sensor Output 3, 13

Operational Mode 12, 2
Operational Phase 12, 3
Operational Requirement 12, 4
Operational Time 4, 19; 15, 1
Operational Usage 11, 2
Operations in the Real World Network 7,

6
Operations Schedule 4, 3
Operations That Must Meet Deadlines 4,

1
Opportunities to Improve Personalized

Applications 15, 12

580 Index

Optimal Amount of Test Time 13, 7
Optimal Combination of Methods 17, 19
Optimal for Terminating Testing and

Releasing the Software System 13, 5
Optimal Web Service 14, 1
Optimistic Message Logging Has a Lower

Failure-Free Operation Cost 15, 5
Optimize the Performance and Cost

According to Different Requirements 7,
11

OR 1, 16
Output Data 9, 4
Output Failure 15, 4; 16, 6
Output Failures Are Low Severity 15, 6;

16, 6
Output Failures Are Often Due to a

Temporary Software Corrupted State 15,
6; 16, 7

Output Processing State 4, 11
Outputs 13, 1
Outputs That Result from Each Step 17, 19
Overall Failure Rate 14, 16
Overall Sequence Reliability Metric 7, 1
Overhead of Algorithms 12, 13
Overhead Induced by a Multiplicity of

Protocols, Intermediate Networks, and
Interfaces 6, 1

Packet Bits Translated from Name to IP
Address by the DNS and Waiting for
Translation 6, 49

Packet Length Bits Being Routed and
Waiting for Routing by Local Network
Router 6, 45

Packet Lengths Being Processed and
Waiting for Processing by Local Network
6, 44

Page Cost 10, 13
Page Transfer Time 10, 13
Paging Rate 10, 13
Paradigm Transforms the Internet 14, 1
Paradigm of Web Services 14, 1
Parallel and Combined Series-Parallel

Reliability Models 12, 15
Parallel Component 12, 1
Parallel Hardware Redundancy 12, 12
Parallel Multi-Processor-Memory Systems

12, 7
Parallel Redundancy 12, 5

Parameter: A Model Numerical Factor
Estimated from Data 17, 5

Parameter Can Be Tuned 15, 15
Parameter Estimation Methods 13, 4
Parameters 12, 15
Parameters of Network Quality 15, 14
Parameters of the Prediction Model 13,

4
Parameters of the Weibull Distribution 14,

7
Parity Error Detection 2, 8
Path 8, 2
Pattern Recognition 13, 1
Patterns of Failure Data 14, 6
Patterns of Probability of Failure Across

Systems 14, 6
Peak Data Rates May Only Be Realized in

Favorable Channel Conditions 7, 12
Perfect Mathematical Programming

Environment Would Automatically
Transform Systems of Equations into
Effi cient Symbolic and Numerical
Programs 17, 2

Perform Tests Designed to Ensure the
Networks Adhere to Proposed and
Existing Standards 7, 14

Performance 1, 6; 15, 1
Performance Analysis of Proposed Future

Wired Internet 6, 65
Performance Assessment 15, 15
Performance Attribute of a Mobile Network

15, 15
Performance Evaluation 14, 1
Performance Is an Important Quality

Attribute of a Software System 15, 15
Performance Methodology 7, 13
Performance Metrics 4, 23
Performance and Reliability of Present and

Proposed Internets 6, 1
Performance of Web Browsing 14, 4
Performs Ancillary Services on Behalf of

the Web Server 14, 4
Period Is the Duration of One Cycle in a

Repeating Event 3, 11
Period Is the Reciprocal of the Frequency

3, 11
Periodic Real-Time Independent Tasks with

Known Periods and Worst Case
Execution Times 4, 3

Index 581

Periods of Operation and Execution Times
That Are Driven Asynchronously by
Inputs That Occur at Unpredictable
Times 4, 3

Permanent Connections Are Not Guaranteed
15, 12

Permanent Hardware Failure 12, 14
Personal Area Network (PAN) Distance

Ranges Are 10 Meters 7, 12
Personal Mobile Devices Will Become

Ingredients of Other Infrastructures, such
as the Electric Grid 16, 24

Personnel Management Risks 11, 2
Phase of Development 17, 18
Phase Distortion 3, 11
Phase Distortion Is Measured by the

Difference Between the Correct Phase
and the Phase That Is Reproduced at the
Output of the D/A Converter 3, 11

Phase of the Voltage Sine Wave Sensed in
the A/D Converter May Not Be
Faithfully Reproduced at the Output of
the D/A Converter 3, 11

Phone Failure Affecting the Application 15,
3

Phone Freezes Are Medium Severity 15, 6
Phone Freezes Are Medium Severity 16,

6
Phone Often Does Not Respond to the

Power On/Off Button 15, 5
Phone’s Activity 15, 5
Phones Are Discarded Every 18 Months

15, 7
Physical Mobile Device System 16, 1
Piconet Consists of One Master Node and

up to 7 Slave Nodes 7, 13
Pipeline Effi ciency 1, 9
Pipeline System Delay 1, 9
Pipelined Systems 1, 8
Planned Mission Duration 11, 4
Planned Risk 11, 9
Platform-Independent Design 4, 2
Plot of the Output Signal vs. the Input

Signal Is Not a Straight Line 3, 11
Pointer to the First Interrupt Processing

Instruction in Memory 17, 2
Poisson Failure Count Model 12, 4
Poisson Failure Model Class Diagram 17,

11

Poisson Failure Model Object Is Executed
(State) 17, 8

Poisson Failure Model Process Activity
Diagram 17, 19

Poisson Failure Occurrence Model and Its
Associated Function, Reliability 17, 6

Poisson Probability of Failure 12, 9
Poor Reliability and Performance 15, 3
Position of Clients and Servers 14, 2
Possibilities for Saving Power 15, 2
Power Loss 15, 2
Power Monitoring 15, 2
Power Disruptions 3, 9
Power Saving on Mobile VOIP Devices 15,

12
Power Requirements, Distance Ranges, Data

Rates, and Carrier Frequencies 7, 11
Power Usage Reported at the Failed Sub

Station Before It Failed 16, 24
Practical Methods for Designing and

Evaluating Network Standards 7, 1
Practice of Postponing All Consideration of

So-Called “Platform Issues” Until the
Application Logic of the Software Has
Been Satisfactorily Designed 4, 2

Precise Description and Common
Understanding of the Semantics, as well
as the Relations Between the Various
UML Diagrams for the Description of
Software Systems, Is Missing 17, 4

Precision of a Digital Computer 3, 6
Precision of the Readout Equipment 3, 6
Predict Component Reliabilities 14, 22
Predict the Operating Time-Oriented

Reliability of Software, Hardware, and
System 14, 12

Predict Reliability at the End of the Mission
Duration 13, 8

Predict Reliability over a Specifi ed
Operating Time of the Mobile Device
16, 11

Predict Reliability Risk 13, 13
Predict the Required Failure Rate That Is

Necessary to Achieve Required
Reliability 14, 11

Predict Software Reliability 17, 1
Predict the Test Time Required to Achieve

Specifi ed Reliability 13, 10
Predict Total Web System Reliability 14, 4

582 Index

Predicted Cumulative Failures 13, 3
Predicted Quantity 13, 12
Predicted Reliabilities into Conformance

with Required Reliability 14, 12
Predicted Reliability 11, 1
Predicted System Reliability 12, 15
Predicted Time to Failure 11, 2
Predicted Value Is Less Than the Mission

Duration 13, 15
Predicting Client Side Probability of Failure

14, 3
Predicting Cumulative Failures 13, 5
Predicting the Duration of Operating Time

12, 4
Predicting Sequence Storage Capacity

Requirements 7, 9
Predicting Total Web System Reliability

14, 4
Prediction Accuracy 13, 6
Prediction Accuracy of Software, Hardware,

and System 14, 10
Prediction Error 12, 16; 13, 13
Prediction Less Than the Mission Duration

Poses a Risk 13, 15
Prediction Lower Error 13, 8
Prediction Results 11, 8
Predictions as a Function of Web Server

Operating Time 14, 11
Predictive Validity 12, 11
Principles of Real-Time System Design 4,

25
Present Internet Wired Logic Sequences for

Upload and Download 6, 8
Present Internet Wireless Backbone 6, 23
Present Wired Internet System 6, 62
Present Wireless Internet System 6, 63
Prime Implicant 1, 21
Prioritize the Components for Reliability

Improvement 14, 18
Probabilities 8, 4
Probabilities of Failure 8, 8
Probabilities of a Recovery Action, Given a

Failure Type, Are Independent 16, 7
Probabilities of State Transitions 14, 9
Probability of Access Point Being Busy 6,

24
Probability of Additional Failures 12, 19
Probability of Being Busy 6, 66
Probability of Completing Service Request

4

Probability Density Function 17, 5
Probability of Domain Name System Being

Busy 6, 16
Probability of Failure 12, 4; 15, 6
Probability of Failure Across the Failure

Types 16, 8
Probability of Failure Analysis Results 8,

18
Probability of Failure Has Stabilized 14,

11
Probability of Failure Metric 12, 18
Probability of Failure Model 14, 16
Probability of Failure of Web Server

Systems 14, 11
Probability of Failures Occurring 12, 4
Probability of Internet Router Being Busy

6, 13
Probability of Internet Router Being Busy

Processing Wireless Packet 6, 26
Probability of Local Network Router Being

Busy 6, 11
Probability of Multiple Component Failures

12, 9
Probability of Multiple Failed Components

12, 9
Probability of the Next State in a Process Is

Only Dependent on the Present State 15,
6

Probability of One or More Failures 15, 7
Probability of Queue Being Busy 6, 8
Probability of Recovery Action 16, 7
Probability of a Specifi ed Number of

Failures Occurring 12, 11
Probability Was the Ratio of the Quantity of

Data Processed by a Given Link or Node
to the Total Quantity of Data Processed
at All Links and Nodes in the Network
7, 8

Probability of Web Server Being Busy 6,
30

Problem of Maintaining Adequate Power in
a Mobile Network 15, 1

Problem Occurs When, e.g., a 1 Volt
Difference in the A/D Converter Does
Not Result in a 1 Bit Problem Occurs
When the Original Phase of a Signal in
the Input of The A/D Converter Is Not
Faithfully Reproduced in the Output of
the D/A Converter 3, 11

Difference in the Digital Encoding 3, 11

Index 583

Problem Representativeness in
Programming Languages 9, 5

Problem in System Design Is the
Appropriate Allocation of Functions
Between Software and Hardware Design
4, 6

Problem Was Transient 15, 5
Problems with Current Generation Wireless

Technologies 16, 2
Procedure (e.g., the Steps in Implementing

the Poisson Failure Model) 17, 12
Procedure: Portion of Software Code within

a Software Program 17, 2
Procedure Calls 12, 13
Procedure Consists of a Number of Steps

Required to Construct the Model 17, 12
Process-Based Web Server Architecture 6,

2
Process Focuses on the Most Likely

Communication Paths 14, 2
Process Starts by Defi ning the Network

Topology for Present and Future Internet
Confi gurations 6, 1

Process That Is Used to Support Web
Server Operations 14, 6

Processing and Communication Ability 16,
3

Processing Method 14, 6
Processing Performance in Internet Routers

14, 2
Processing Power 13, 3
Processor Scheduling Policies 12, 12
Product Parameters 15, 3
Productivity-Enhancing Tools 15, 1
Profi le Criterions 11, 3
Program Counter 1, 4
Program Debugging 13, 3
Program Execution 13, 3
Program Execution Results 17, 13
Program Failure 13, 3
Program Language Characteristics 9, 12
Program Objective 9, 10
Program Statement Coverage of a Test Case

13, 3
Programmable Web Application 14, 1
Programming Language Statements:

Statements That Implement a Model on a
Computer 17, 5

Programming Language That Supports
Exceptions 17, 17

Propagation of Error 13, 2
Properties Are Expressed Sans User

Perspective 7, 1
Properties of the Proposed Future Internet

6, 2
Properties of an XHTML Web Page 14, 3
Proposed Fundamental Changes in the

Internet Confi guration 6, 1
Proposed Wired Internet System 6, 64
Proposed Wireless Internet System 6, 64
Prospective Development Personnel Design

and Program Small, Representative
Samples of the Real System 17, 19

Provide Better Code Visibility 17, 4
Provide Frequently Used Operations That

Can Be Accessed by Many Programs or
from Many Points within a Single
Program 17, 5

Providing Real-Time System Design
Abstractions 4, 25

Providing Suffi cient Specifi city for
Designing Application-Specifi c Systems
4, 25

Proxy Is a Computer 14, 4
Proxy Is Very Effective in Reducing

Response Time 14, 4
Public Land Mobile Networks 7, 12
Publicly Available Performance and

Reliability Data Posted on the Internet 6,
1

Pure Parallel Confi guration 12, 6
Pure Series 12, 5
Purpose Activity Diagram Is to Used to

Model the Procedural Flow of Actions in
a System 17, 9

Putting Software and Hardware Design in
Separate Bins Is a Big Mistake Because
the Operations of Software And
Hardware Are Intimately Related 4, 6

Qualitative Assessment 12, 11
Quality of Communication 15, 3
Quality of Communication Between Mobile

Devices and Between Mobile Devices
and Mobile Network 16, 1

Quality of Communication Lines 14, 2
Quantitative Approach 15
Quantitative Assessment of Risk 11, 4
Quantitative Assessments of Mobile

Network Reliability 15, 1

584 Index

Quantizing Analog Signal 3, 5
Quantizing Error Is the Inverse of the A/D

Quantizing Error 3, 11
Quantizing Errors 3, 5
Quantizing Step Size for Analog to Digital

Conversion 3, 6
Question the Utility of Existing Standards

7, 1
Queue Effi ciency 6, 49
Queuing Model (Present Internet System)

6, 6
Quickly Develop and Deploy Web

Applications 14, 1
Quine McCluskey Method 1, 21

Radio Frequency (RF) Interference 15, 3
Random Access Memory 1, 10
Random Hardware and Software Failures

12, 1
Random Number Generator 14, 9
Range 7, 1
Range of Access Points 15, 12
Range Limitations 3, 5
Range Required by Mobile Device in

Wireless Network 7, 14
Range Where the Converted Voltage Is

Either Too High or Too Low 3, 12
Rank Quality for the Purpose Prioritizing

the Test Effort 17, 17
Rapid Development 17, 4
Rate of Change of Actual Cumulative

Failures Is Minimum 13, 5
Rate of Change Between Reliability and

Test Time 13, 2
Rate of Change of a Function 13, 2
Rate of Change Is Minimum 13, 2
Rate of Change of Reliability 14, 16
Rate of Change of Web Client and Server

Predicted Reliability 14, 25
Rate of Data Transfer 15, 14
Ratio of the Change in Noise (Number of

Corrected Failed Modules) to the Total
Number of Modules 16, 12

Ratio of Reliability (Signal) to Unreliability
(Noise) 15, 15

RC Circuit 3, 4
Read Failure Count 17, 11
Read Only Memory 1, 10
Read/Write Control Line 1, 11

Real-Time Control Hardware and Software
Has Been Applied to a Wide Variety of
Real-World Systems 4, 1

Real-Time Module Topology Is Essentially
Flat 4, 4

Real-Time Operational Mode 12, 13
Real-Time Scheduler Scheduling Effi ciency

10, 10
Real-Time Software Has to Satisfy a Set of

Stringent Nonfunctional Requirements 4,
2

Real-Time Software Is Particularly Diffi cult
to Design 4, 2

Real-Time System 12, 12
Real-Time System Hierarchies Are Rare Or

Non-Existent 4, 4
Real-Time System Properties 4, 1; 5
Real-Time System Requirements 4, 5
Real-Time System Scheduling 10, 10
Real-Time Systems Are Comprised of

Heterogeneous Components Including
Sensors, Microprocessors, and Actuators
4, 1

Real-Time Systems Are One-of-a-Kind;
They Are Not Mass Produced 4, 4

Real-Time Systems Do Not Have the
Luxury of Inputting Data When
Convenient for the Microprocessor 4, 12

Real-World Failure Data 14, 1
Reboot 15, 5; 16, 5
Rebooting Occurs Only in 2.36% of the

Freeze Failures 16, 6
Reboots Are an Effective Way to Recover

from Output Failures 15, 6; 16, 7
Received Signal Strength (RSS) 15, 12; 16,

1
Receiver Sensitivity in the Phone 15, 15
Recover from Faults 12, 5
Recover the Message from the Centralized

Mobile Station 15, 5
Recovered by Simply Waiting for the Phone

to Respond 15, 6
Recovering from Faults 12, 5
Recovery Action 15, 1
Recovery Action Characteristics 16, 5
Recovery Action Reliability Lags the Input

Failure Reliability 16, 16
Recovery Action Testing Takes Less Time

Than Failure Type Testing 16, 17

Index 585

Recovery Action Types Below The Limit
Need Attention to Identify Why the
Recovery Software Is Not Able to
Provide Effective Recovery 16, 8

Recovery Actions Are Defi cient 16, 16
Recovery Actions Produce the Highest

Reliability 16, 9
Recovery Type Testing Is Based on Test

Cases Under the Control of the Tester
16, 17

Reduce the Failure Rate to a Value That
Will Achieve the Required Reliability
14, 11

Reduced Failure Rates 14, 12
Reduced Instruction Set Computing 1, 6
Reduced Instruction Set Computing (RISC)

Architecture Requires Several Operations
to Execute a Single Instruction 4, 1

Reduced Noise Accomplished Through
Testing of Failure Type 16, 12

Reduced Number of Failed Modules 16, 12
Reducing the S/N of the Wireless

Communications 15, 3
Reduction in Number of Failed Modules

16, 14
Reduction in Web Server Faults 14, 12
Redundancy 12, 1
Refi ning Predictions 11, 9
Register 1, 1
Regularity: Find Modules with Common

Functions (i.e., Interchangeable Parts) 4,
4

Relationship Between Failures, Recovery
Actions, and Reliability 16, 7

Relationship among Inputs, Flip-Flops, and
Output States 1, 54

Relationship Between Inputs and Outputs
13, 2

Relationship Between Objects Must Be
Designed with Great Care 17, 12

Relationship Between O-O Attributes and
the Modeling of Physical Systems 17, 1

Relationship Is Not Obvious for Modeling
Mathematical Software 17, 1

Relevance of Search Results 14, 20
Reliabilities 8, 4
Reliability 2, 4; 6, 1; 7, 1; 11, 1; 13, 1; 14,

1; 15, 1
Reliability Activation Function 13, 7

Reliability Analysis Based on Web Systems
14, 10

Reliability Analysis of GPRS Has General
Applicability 16, 4

Reliability Analysis Results 8, 20; 12, 1
Reliability Based on Recovery Action Type

16, 9
Reliability Benefi t-Cost Ratio 12, 1
Reliability Calculations 15, 6
Reliability of the Connection and the

Performance of the Device 16, 3
Reliability Criterion Limit 13, 7
Reliability Decreasing with Operating Time

16, 11
Reliability, Derived from the Poisson

Failure Model, Is Reasonable Based on
the Software That the Model Represents
17, 17

Reliability Estimation 13, 1
Reliability Evaluation 12, 9; 13, 7
Reliability as a Function of Module Count

16, 11
Reliability as a Function of Recovery

Action Type 16, 9
Reliability Goal 11, 1; 12, 16; 11, 1; 14, 1
Reliability Growth 16, 11
Reliability Has Been Predicted Using

Network Entities Called Sequences 7, 8
Reliability of Individual Components 12, 5;

14, 18
Reliability Is Assessed Following a

Successful Time Test by Using Test
Software That Computes the Required
Reliability 7, 13

Reliability Is Based on the Sequence
Failure Rate and the Node or Link Times
7, 6

Reliability Is Not an Additive Function 13,
7

Reliability Is the Primary Metric 14, 11
Reliability Limit Criterion 13, 7
Reliability Logic 12, 2
Reliability, Maintainability, and Availability

That Are Not Quantifi ed in Existing
Standards 7, 15

Reliability of a Mobile Device 16, 7
Reliability of a Mobile Device Will

Decrease Nonlinearly with the Amount of
Interactive Processing 16, 10

586 Index

Reliability Model Based on the Signal to
Noise Ratio 16, 8

Reliability Model Parameter Estimation
Method 13, 18

Reliability Model for Worst Case Analysis
16, 4

Reliability Modeling 12, 12
Reliability Models for Assessing Mobile

Network Reliability 15, 1
Reliability Models Can Be Refi ned 12, 13
Reliability Objective 13, 4
Reliability of a Parallel Confi guration 12,

12
Reliability Parameter 13, 7
Reliability Performance 14, 18
Reliability Prediction 7; 13, 3
Reliability Prediction Models for Assessing

the Software, Hardware, and System
Quality of a Web System 14, 2

Reliability Prediction Process 7, 3
Reliability Predictions Infl uence the

Selection of Test Cases 16, 12
Reliability Required to Achieve the Mission

Duration 13, 9
Reliability Requirement 11, 4
Reliability Risk 13, 9
Reliability Risk Criteria 11, 4
Reliability of a Series Confi guration 12, 3
Reliability of Web Services 14, 1
Reliability of Web System Communication

and the Interconnected Components 14,
2

Reliability When n Out of N Components
Fail 12, 4

Reliable Application Software 16, 3
Reliable Messaging Technology of Web

Services 14, 2
Remaining Failures 11, 1; 13, 12
Remaining Failures Analysis Results 8, 20
Remaining Failures Criterion 11, 8
Remaining Failures Is a Decreasing

Function 13, 12
Remaining Failures Requirement 11, 9
Remaining Failures Risk 11, 8
Remaining Faults and Failures 8, 5
Remove Battery 15, 5; 16, 6
Remove Faults 14, 11
Repeat the Action 15, 5; 16, 6
Repeat the Execution of an Equation 17, 3

Repeating the Action Is Often Suffi cient to
Restore a Correct Device Operation 15,
6; 16, 6

Reported Failure Data 15, 3
Repository of Data 14, 1
Repository of Services 14, 1
Represent Failure Severity in the

Computation of Expected Number of
Failed Modules 16, 9

Represent the Generic View of the
Application Design 4, 25

Representative Failure Data 14, 5
Representative of the Web Environment 14,

5
Requests for Web Pages 7, 9
Required Changes Are Localized 17, 4
Required Failure Rate Reduction 12, 16
Required Reliability 11, 2; 14, 11
Required Reliability at a Reasonable Cost

12, 16
Required Reliability Is Satisfi ed for Only a

Limited Range of Operating Time 14,
18

Required Response Time 4, 19
Required Sampling Frequency Is the

Desired Signal Frequency Emanating
from the Input Analog Voltage 3, 14

Requirement Implementation 17, 5
Requirement Management Risks 11, 2
Requirements 11, 4
Requirements for an Architecture to

Support Context-Awareness 15, 12
Requirements such as Reliability

Specifi cations and the Means for Testing
Reliability, Are Largely Absent from
Current Standards 4, 1

Residual Failures 11, 3
Residual Faults 11, 2
Residual Problems 13, 12
Resolution 3, 10
Resolution Error Is Determined by the

Smallest Change That Can Be Detected
at the Sensor Output 3, 13

Resource Usage and Performance Risks 11,
2

Resource Utilization Is Increased 15, 14
Resources Needed for the Object to

Function 17, 2
Response Time 10, 6

Index 587

Response Time: Difference in Time
Between Completion of Request and
Initiation of Request 4, 3

Response Time Computation and Display
4, 16

Response Time Error Control Function 4,
16

Response Time Difference 4, 19
Response Time of Service Request 4, 19
Restrictions on Limited Processing Power

15, 12
Result Is Stored (Behavior) 17, 8
Results Based on Failure Rate Analysis 16,

12
Results of Digital Computation (Analog to

Digital Voltage Conversion) 3, 10
Results That the Equations Must Achieve

17, 20
Resume the Interaction with the User When

the Migration to a Different Node Has
Completed 16, 24

Retrained to Deal with Minor Change 13,
1

Return Address of the Instruction 17, 2
Reusability Characterization 13
Revising Probabilities of Remaining

Failures Based on Fault And Failure
Correction 8, 15

Revising Reliabilities Based on Fault And
Failure Correction 8, 18

Rigorous Reliability Testing 14, 1
Risk Analysis 13, 1
Risk-Based Reliability Prediction 11, 4
Risk of Carrying Viruses and Other

Malware 15, 1
Risk Control 11, 9
Risk Control and Mitigation 11, 9
Risk Criterion Metric 13, 15
Risk Evaluation 11, 1
Risk Function 13, 15
Risk Goal 11, 5
Risk of Mission Failure 11, 3
Risk of Power Loss 15, 2
Risk Trends Positive 13, 13
Risks of Operating Mobile Devices 15, 1
Risky Requirements 11, 4
Roadmap for Improving Real-Time System

Design 4, 25
Robotic Web Services 14, 2

Robustness 15, 13
Routes Are Subject to Frequent Breakage

15, 3
Rule of Considering Real-World

Operational Details during Abstract
Design 4, 3

R-S Flip Flop 1, 42
Run Realistic Tests That Stress the

Hardware and Software to Fail 16, 14

S/N Can Be Used to Rank the Reliability of
Mobile Device Software 16, 10

S/N Can Be Used to Prioritize Software
Modules for Testing 16, 13

S/N Infl uences Test Effectiveness 16, 1
S/N Limit 16, 16
S/N Ratio Is Computed and Test Software

is Used to Compare the Required Ratio
with the Ratio Actually Generated in the
Network 7, 14

Safe Mission 11, 3
Safer, Lower Risk Alternative 13, 15
Safety Against Cost 11, 5
Safety of the Mission 11, 2
Sample Data 13, 1
Sample and Hold Circuit 3, 4
Sample and Hold Circuit Must Sample

Input at a Rate at Least Twice the
Frequency of the Input in Order to
Produce the Desired Output 3, 14

Satisfy All the Functional Requirements and
Timeliness Demands 4, 1

Satisfy Response Time Requirements 4,
25

Save Energy 15, 12
Schedule Test Time 13, 4
Scheduled Operating Times 12, 2
Scheduling Algorithms 10, 6
Scheduling Effi ciency 10, 7
Scheduling Policy 10, 11
Scheduling and Timing Risks 11, 2
Schneidewind Software Reliability Model

11, 3; 13, 4
Secondary Storage Component 15, 15
Security 15, 1
Security Breach on the Device 15, 1
Select Personnel by Evaluating the Results

for Accuracy, Reliability, and Quality of
Design Documentation 17, 19

588 Index

Select Solution Routines That Have Good
Convergence Properties for the Given
Problem 17, 2

Self-Shutdown 16, 5
Self-Shutdown (Silent Failure) 15, 4
Self-Shutdown and Unstable Behavior Are

Considered to Be High-Severity Failures
16, 6

Self-Shutdown and Unstable Behavior Are
High-Severity Failures 15, 6

Send Responses Back for the User 16, 3
Sense All Context Information 15, 13
Sensitivity Can Be Interpreted as Sensor

Error 3, 12
Sensor Attached to Access Point Records

the Range Between the Mobile Device
and the Access Point 7, 14

Sensor Error Occurs When the Input Range
Exceeds the Output Range 3, 13

Sensor Is a Device That Receives and
Responds to a Signal 3, 12

Sensor’s Sensitivity Indicates How Much
the Sensor’s Output Changes When the
Measured Quantity Changes 3, 12

Separation of Application Concerns and
Implementation 4, 2

Sequence Analysis 2, 10
Sequence Diagram Is an Interaction

Diagram That Shows How Software
Processes Operate with One Another and
in What Order 17, 2

Sequence Diagrams Are Capable of
Representing Sequential Interactions
(e.g., Only a Single Elevator Floor
Request at a Time) 17, 3

Sequence Diagrams Provide Both the
Sequence of Model Operations on Data
and the Sequence of Steps That
Implement the Model Operations 17, 9

Sequence Diagrams Show the Sequence of
Operations Between Objects and the
Sequence of Program Steps That Are
Required to Implement a Model 17, 9

Sequence Failure Rate 2, 11; 7, 5
Sequence of Fault and Failure Injection 7,

5
Sequence Input Rate 7, 9
Sequence of Interactions 14, 4
Sequence of Operations 12, 13

Sequence of Operations on the Network 6,
1

Sequence Probability 2, 10
Sequence Probability and Sequence

Response Time Predictions and Analysis
2, 10

Sequence of the Reliability Simulation 7, 5
Sequence Relationships 2, 10
Sequence Response Time 2, 10
Sequences Associated with Local Network

Components 7, 6
Sequential Circuits 1, 39
Sequential System 12, 2
Series Component 12, 2
Series Confi guration 12, 3
Series-Parallel Confi guration 12, 5
Series System Reliability 12, 3
Server Component Is the First in Line for

Reliability Improvement 14, 18
Server Consists of Multiple Single-

Threaded Processes, Each of Which
Handles One Request at a Time 6, 2

Server-Side Problems 14, 16
Server Uses the Error Control Function to

Increase the Clock Rate 4, 17
Service Performance 14
Service the Phone 15, 5; 16, 5
Service Requirements Impose Ordering on

the Invocation of Operations 14, 3
Session and Presentation Layer Services 5,

7
Several Metrics of Real-Time System

Performance Are Modeled and Evaluated
4, 1

Severe Reliability Problem Will Prevail
Short of 18 Months 16, 17

Severity Levels Corresponding to the
Diffi culty of the Recovery Action(s) 15,
6; 16, 4

Severity Refl ects Both Failure Type and
Recovery Type 16, 9

Shape Parameter 12, 15
Shape of the Reliability Function 12, 15
Shared Data Areas Are Protected, Reducing

the Possibility of Unexpected
Modifi cations 17, 4

Shared, Noisy, Highly Variable, and
Limited Wireless Communication Links
7, 12

Index 589

Shift Register Design 1, 71
Short-Term Scheduler 10, 7
Shuttle Continuous Software Testing

Regimen 11, 4
Shuttle Flight Software 13, 9
Shuttle Flight Software Exhibits Reliability

Growth (i.e., Increases with Operating
Time) 17, 17

Signal (# of Correct Modules) 16
Signal Conversion Circuits as a Single

Integrated System 3, 15
Signal Could Be Represented by Number of

Successful Web Search Results 16, 10
Signal Dead Zones 16, 2
Signal Distortion 3, 11
Signal Driven Software Model 16, 1
Signal Fading 15, 3
Signal Interference in the Available

Spectrum, Particularly in Wireless
Systems Is a Network Standards Issue 7,
13

Signal an Intrusion When There Is a Match
15, 3

Signal Must Be Sampled at Least Twice Its
Frequency 3, 11

Signal and Noise Are Measured 7, 14
Signal to Noise Ratio 7, 1; 15, 1
Signal to Noise Ratio Indexes Reliability

16, 1
Signal to Noise Ratio Is Tested by

Propagating the Signal and Noise to an
Oscilloscope Where

Signal to Noise Ratio (S/N) Representation
of Reliability 16, 1

Signal to Noise Ratio (S/N) Stability (i.e.,
S/N >> 1) 15, 3

Signal and Noise Relationships Can Be
Used to Quantify Test Effectiveness 16,
17

Signal Representation Distortion 3, 11
Signal Strength Is Critical 16, 1
Signal That Network Quality Should Be

Improved 7, 9
Signature Recognition and Anomaly

Detection 15, 2
Signature Recognition Techniques Establish

a Profi le 15, 2
Signature Recognition Techniques Match

Entities 15, 2

Signatures of Known Entity Intrusions 15,
2

Signifi cant Contributors to Unreliability 14,
10

Signifi cant Loss or Hazard 15, 3; 16, 3
Signifi cant Number of Failures 14, 4
Signifi cant Probability of Multiple Failed

Components 12, 9
Simple Client-Server Requests for Web

Pages 14, 2
Simple Semantic Foundation (e.g.,

Mathematical Equations That
Communicate the Meaning of the
Application) 17, 5

Simulate the Injection of Faults and
Failures into a Replica of a Computer
Network 7, 1

Simulating Network Reliability 7, 4
Simulation Can Be Used to Generate

Random Changes in Voltage 3, 13
Simulation Error Analysis 3, 13
Simulation Queuing Models 6, 42
Single Cells Capable of Crude Computation

13, 1
Single Communication Functions 14, 18
Single Component Failure 12, 19
Single Partition 12, 12
Size of Main Memory 10, 13
Small Gains in Noise Reduction Would Be

Achieved Through Testing If the Number
of Correct Modules Is Already Large 16,
13

Smallest Sub-Functions 12, 12
Smallest Web Page Request Packet 7,

2
Smart Electric Meter System 3, 15
Smart Meter Microcomputer 3, 5
Smart Meters in Smart Electric Grid

Systems 3, 9
Smart Phones Do Not Have a Means to

Detect and Collect Failures 15, 5
Smart Phones Have More Complex

Architecture Than Voice Centric Mobile
Phones 15, 4

Software Compatibility 7, 9
Software Compatibility Standards Issue

7
Software Components in Series 12, 12
Software Confi guration 11, 3

590 Index

Software Defi ned Device Provides Needed
Functionality (e.g., Short Range to Long
Range Communication) 16, 4

Software Demonstrating the Lowest
Probability of Failure 14, 11

Software Developers Can Incorporate
Compatibility into Standards 7, 10

Software Development Cycle 11, 4
Software Development Models for Mobile

Devices to Communicate with the
Electric Grid in a Collaborative
Processing Mode 16, 24

Software Development Process 17, 19
Software Dimension 8, 2
Software, Due to Its Complexity, Has

Caused More Problems Than Hardware
7, 9

Software Evolves and These Changes Can
Negatively Affect Performance 15, 15

Software Failures 14, 5
Software Compatibility Standards Issue 7,

9
Software for Controlling a Nuclear Reactor

17, 1
Software Functions 4, 11
Software Has the Best Prediction Accuracy

14, 10
Software Inoperable 12
Software Is First Modeled Abstractly

without Considering Its Execution
Platform 4, 2

Software Is in Need of Signifi cant Software
Development Process Improvement to
Reduce Failures 16, 8

Software Is Released 13, 4
Software Level 4, 5
Software Management Requiring

Traceability among Software Products
and the Process Steps That Produce
Them 17, 4

Software Mobile Network Products 15, 3
Software Models That Deal with Mobile

Devices 16, 1
Software Portability 15, 14
Software Product Logic 17, 19
Software Redundancy 12, 18
Software Reliability (Object) Must Achieve

Its Specifi cation (Task) during Test and
Operating Time) 17, 5

Software Reliability Assessment Problem
13, 18

Software Reliability Improvement 13, 3
Software Reliability Prediction Metrics 13,

18
Software Reliability Profi le Implementation

11, 3
Software Reliability Results 13, 11
Software Reliability Results Cannot Be

Considered Representative 16, 10
Software Reuse and Support of Various

Tools 17, 3
Software System Could Be Operated Safely

13, 15
Software System Designed with Procedures

to an O-O Perspective 17, 4
Software Written in Event-Driven Style

Typically Waits for an Event to Occur 4,
6

Software Would Never Be Able to Achieve
a Specifi ed Reliability 17, 18

Source of Failure Data 11, 3
Specifi ed Critical Value 11
Specifi ed Network Hardware and Software

7, 13
Specifi ed Number of Failures 13, 15
Specifi ed Number of Remaining Failures

13, 13
Specifi ed Reliability 11, 1; 12, 4; 15, 1
Specifi ed Reliability Requirement 16, 11
Specifi ed Reliability Values 15, 1
Specifying a Requirement, While

Neglecting to Provide a Rationale 7, 13
Spectrum Considerations 7, 13
SR Latch 1, 40
Stabilization Time 15, 3; 16, 1
Stabilization Time Is the Operating Time

during Which Specifi ed Reliability Is
Achieved 15, 3

Stack 1, 4
Standard Communication Protocols 14, 2
Standard for Hardwired Networks 7, 10
Standard for the Recovery of Failed Web

Services 14, 2
Standard Internet Protocols 14, 1
Standardization Simplifi es Interoperability

14, 2
State Diagram: Diagram That Shows States

and Transitions Between States 17, 2

Index 591

State Diagrams Are Effective for
Representing This Environment 4, 8

State Machines to Model the Order of Web
Service Operations 14, 3

State of an Object Represents the Results of
Its Behavior 17, 10

State Transition Connects Two States 17,
10

State Transition Probabilities 14, 4
State Transition That Causes a Web Server

to become Active 14, 9
State Transitions 14, 9
State Transitions That Must Be Tested 4, 22
Statement Execution Result 13, 3
States and State Transitions 4, 6
States and State Transitions Form the Core

Processes 4, 8
Static Part of the Mobile Device Is Its

Hardware 16, 3
Stationary Service Always Executes on the

Same Node 16, 24
Statistical Metrics to Compute and Predict

Reliability for Illustrative Web Servers
14, 6

Statistical Modeling Theory for the
Evaluation of Web-Based System
Reliability 14, 6

Statistical Routine 7, 2
Statistical Testing and Reliability Analysis

14, 11
Steady State Reliability 16, 1
Steps Necessary to Defi ne the Components

of the Model 17, 19
Steps in Real-Time System Design 4, 2
Storage 2, 1
Storage (Digital Data Stored in Database)

3, 10
Storage Architecture 15, 15
Storage Capabilities 15, 15
Storage Capacity Prediction 7, 9
Storage Requirement Test Is Conducted

with Test Software by Comparing the
Database Capacity with the Web Page
Storage Requirement 7, 14

Storage Requirements Must Be Predicted
7, 9

Storage System with Suffi cient Capacity to
Support the Input, Storage, and Output of
Real-Time Transactions 4, 12

Strategy Does a Good Job of Exercising
Many, but Not All, of the Paths 17, 17

Strength of Functions Lies in the Fact That
They Are Programs within a Program
17, 5

Stress to Identify Both Hardware and
Software Failures 16, 14

Strong Partitioning 12, 12
Strong Partitioning of Applications 12, 12
Structural Hazards 1, 9
Structure 9, 5
Structure of Reliability Equations 12, 4
Structure of a Software Application 12, 13
Structured Analysis and Design 17, 1
Study the Effects of Increasing Bandwidth

and Operating Time on Communication
Channel Reliability 14, 22

Subcontracting Risks 11, 2
Subject the System to Increasing Values of

Mission Duration 13, 8
Success of HPC Computing Will Depend

on the Ability to Provide High Reliability
14, 5

Success of the Input Received Function 12,
2

Successful Execution 13, 3
Successful Intrusion Increases the Noise in

a Mobile Network 15, 2
Successful Operation Between a Pair of

Nodes 8, 3
Sudden Jumps in Hazard Function 14, 10
Sudden Need for the Mobile Device to

Move with the user (Context Aware) 16,
24

Sum Failure Count State 17, 10
Sum of Correct Modules and Failed

Modules 16, 9
Summary of Queuing Model Computations

for Present and Proposed Internets 6, 30
Summary of Simulation Model

Computations 6, 55
Summary of Software Development

Approaches 17, 18
Summation of Link Delay, Processing

Time, and Wait Time 5, 12
Summing the Node and Link Times 7, 5
Super Computer 12, 16
Superiority of Neural Network Criterion

13, 13

592 Index

Superiority of Neural Network Reliability
Criterion Limit 13, 8

Support Multimedia Services 7, 13
Support Requirements 9, 11
Synchronized Program Development

Activities 17, 13
Synchronous and Asynchronous

Communication among Components 12,
13

Syntax Oriented (e.g., Emphasis on UML
Diagramming Techniques) 17, 3

System Bus with Suffi cient Bandwidth to
Accommodate Expected Data Transfer
Requirements 4, 14

System Changes Will Only Affect the
Interface 17, 2

System Clock of the Mobile Device 15, 13
System Confi guration Descriptions 14, 3
System Decomposition Into Components 9,

2
System Error 4, 19
System Error Feedback Correction 4, 19
System Failures Include User and Computer

Operator Errors 14, 10
System Functionality Risks 11, 2
System Identifi cation 13, 1
System Level 4, 5
System Must Be Capable of Detecting

Logical as Well as Timing Errors in the
Design 4, 23

System Must Respond to Asynchronous
Events 4, 8

System Queues Are Used to Store Backlog
of User Requests 4, 4

System Reliability 12, 2
System Reliability Model 12, 1
System Resources, such as Microprocessor

Cycles, Communication Bandwidth, and
Storage Memory Are Restricted 4, 1

System, Software, and Hardware Failure
Rates 14, 11

System Storage 4, 6
System Validation 12, 13
System View That Is Desired 17
System Workload Is Taken into Account

16, 10

T Flip Flop 1, 49
Target User 15, 13

TCP Connection to the Web Server 14, 4
TCP/IP Is a Protocol That Interfaces with

Local Network Protocols such as
Ethernet 7, 10

TCP/IP Is a Protocol That Operates at the
Transport Layer of the Seven Layer
Network 7, 10

Teaching Neural Networks 13, 2
Telecom Service Providers 7, 12
Template for Using Various Objects

(Probability Functions) and Their
Attributes (Variables and Parameters) in
the Same Probability Distribution Class
17, 11

Test Bed for Testing Networks 7, 14
Test Case Selection Is Designed to Provide

Adequate Coverage of System
Components by Deriving Test Cases from
Software Designs 4, 22

Test Cases Are Based on Recovery Action
(e.g., Remove Battery) 16, 17

Test Cases Are Based on Type of Failure
(e.g., Freeze) 16, 17

Test Data Design 2, 8
Test Duration Serves as a Test Stopping

Rule 16, 14
Test Effectiveness Can Be Used to

Prioritize Modules for Testing 16, 13
Test Effectiveness of Failure Type 16, 17
Test Effectiveness Increases with Lower

Signal to Noise Ratio 16, 16
Test Effectiveness Is the Duration of Test

Necessary to Achieve That Effectiveness
16, 14

Test the Interaction in Terms of
Performance Results 4, 22

Test Interval 13, 4
Test Measurements Are Instrumented 7,

14
Test Paths Associated with the Program

Input Variables 17, 17
Test Paths Used to Debug the C+ +

Program 17, 13
Test Plan 2, 7
Test Plan Support Functions 2, 7
Test Plans Must Recognize Constraints 16,

3
Test Results Refl ect Realistic Operating

Conditions 16, 3

Index 593

Test Software Compares the Actual Range
with the Received Range 7, 14

Test Software Computes Required Time and
Compares It with Clock Time 7, 14

Test Software Records a Compatibility
Result If the Signal Is Received 7, 14

Test Strategies 2, 6
Test Time 11, 2; 13, 2; 16, 14
Test Time Increases with Decreasing Signal

to Noise Ratio (i.e., Many Failed
Modules Compared with the Number of
Correct Modules) 16, 17

Test Time Is Equal to Number of Failed
Modules That Are Corrected Divided by
the Failure Rate 16, 14

Test Time Is Modeled as a Two Phase
Sequence 16, 17

Testing 12, 1; 14, 1
Testing for All Possible Exceptions in all

Possible Places Where an Exception
Could Be Raised Is Impractical 17, 17

Testing Approach Must Be Highly Non-
Intrusive 16, 3

Testing Challenge Is to Include the Number
of Active Users Connected to Mobile
Networks 16, 3

Testing Challenges 16, 2
Testing of Mobile Devices Is Diffi cult

Because the Environment Is Complex
16, 2

Testing Must Be Performed in the
Constrained Memory of the Mobile
Device 16, 3

Testing Problems 16, 1
Testing and Reliability Have a Synergistic

Relationship 16, 12
Testing under Simulated Operational

Conditions 11, 4
Testing for a Time to Assure High

Reliability 12, 12
Tests Should Interact with End Users,

Wireless Signals, and the Wireless
Network 16, 3

Text Message Was Being Received 15, 5
Text Messaging 15, 15
Thorough Testing of Real-Time Systems 4,

22
Thread-Based Architecture 6, 2
Throughput 4, 21; 10, 6; 15, 14

Throughput per User 16, 3
Time 7, 1; 15, 1
Time-Based Reliability Model 16
Time of Completion of Service Request 4,

19
Time-Driven Software Design Style

Corresponds to Using Cyclic Activities,
Triggered by Time 4, 7

Time to Failure 11, 2
Time to Failure Risk 11, 6
Time to Failure across Various Time

Intervals 13, 15
Time of Failure Occurrence 17, 6
Time to Let the Device Deliver the

Expected Service 15, 5
Time to Next Failure 11, 6; 13, 15
Time Required to Request a Web page from

Web Server 7, 14
Time of Service Request 4, 6, 19
Time Slice Length Strategy 10, 8
Time of Switch Action 10, 13
Time in System 6, 45
Time of Testing Software 13, 2
Times When the Failures Occurred 17, 12
Timing Constraints Are Addressed in

Analyzing Real-Time System
Performance 4, 2

Today, Many Computer Systems Are Being
Used to Measure and Control Real-World
Processes 4, 2

To Minimize Low Pass Filter Error,
Maximize the Signal to Noise Ratio S/N
3, 14

To Minimize Operational Amplifi er Error,
Ensure That the Output/Input Ratio =
Amplifi cation Factor 3, 14

To Minimize Voltage Sensor Error, the
Sensor Should Produce an Output
Change to Input Change Ratio = 1 3, 14

To Prevent Sample and Hold Circuit Error,
Ensure That the Circuit Can Sample at a
Frequency fsh > Desired Frequency fi 3,
14

Too Little Memory Space Allocated to
Buffers, Resulting in Buffer Overfl ow
16, 7

Topology 2, 2
Total Expected Operational Time 4, 21
Total Number of Failures 16, 7

594 Index

Total Number of Failures Reported at the
Scheduled Test Time Interval 13, 12

Total Number of Mobile Device Modules
16, 9

Total Number of Modules in a Mobile
Device 16, 6

Total Paging Time 10, 13
Total Quantity of Data Processed at all

Nodes and Associated Links in a
Network 7, 8

Total Scheduled Test Time 13, 7
Total System Reliability Analysis 14, 1
Total System Reliability Models 14, 18
Traceability of Product and Process 17, 4
Track the Hazard Function Produced by

Web Servers 14, 10
Tracked by Using User and Computer

Operator Logs 14, 10
Traditional System 14, 1
Traditional Testing Methods 4, 21
Trained to Operate in a Specifi c

Environment 13, 1
Transfer the Process to this Device 16, 24
Transfer Program Control 15
Transformed to a Software Design Model

on the Target Platform 4, 2
Transition Information 14, 3
Transmission Control Protocol (TCP)

Connection to the Remote Web Server
14, 10

Traverse All Links and Nodes to the Web
SERVER 7, 9

Tree Structure 14, 3
Trend to Connect More Devices Will also

Accelerate, Facilitated by the Increasing
Installation of Internet Protocol version 6
(IPv6) 6, 2

Trigger (Event) for the Poisson Failure
Model (Object) to Store the Failure
Count (Action) 17, 10

Triggered by Sensing an Intrusion 15, 14
Triggering of Flip-fl ops 1, 3
Turnaround 10, 6
Type of Failure and Category of Failure

Recovery Action 15, 1
Type of Failure Recovery Action 16, 1
Types of Failures 14, 3; 16
Types of Failures and Responses to the

Failures 15, 1

Types of Synchronous Sequential Circuits
1, 57

Unacceptable Mission Duration at the
Specifi ed Reliability 16, 16

Unambiguous (Meaning Is Clearly
Expressed) 17, 4

Ultimately, the Particular Characteristics of
the Application Must Be Considered 4,
25

Unexpected Interactions with other Program
Modules Are Unlikely 17, 4

Unifi ed Hardware-Software Reliability
Model 12, 13

Unifi ed Modeling Language: Standardized
Notation and Set of Diagrams 17, 2

Unifi ed Modeling Language (UML)
Diagrams Can Be Used to Model the
Elements 17, 8

Unifi ed System That Includes A/ D
Conversion 3, 9

Units 9, 11
Unreliability 15, 7
Unreliable and Unmaintainable Code 4,

2
Unstable Behavior (Erratic Failure) 15, 4;

16, 6
Unweighted Probability 14, 9
Upload Direction (i.e., Request for Web

page) and Download Direction (i.e.,
Delivery of Web Page) 6, 1

Upon Failure Detection, the Logger Gathers
Useful Information 15, 5

Usage Scenarios Are Diffi cult to Automate
16, 3

Use of Compatible Interfaces 7, 14
Use the Generic Design to Guide the

Development of the Application-Specifi c
Design 4, 1

Use of Low Power Enables Longer Battery
Life Applications such as a Personal Data
Assistant 7, 13

Use Standardized Interfaces 7, 12
Useful for Debugging 17, 4
User Computers and Mobile Devices Would

Access a Web Server by Providing a
Universal Resource Locator (URL) (Web
Site Address) to the Internet Service
Provider 6, 2

Index 595

User-Defi ned Functions Are Functions That
Programmers Create for Specialized
Tasks 17, 5

User of the Device 15, 13
User Having to Restart the Application 15,

4
User-Initiated Actions to Recover from a

Device Failure 16, 5
User-Injected Errors 15, 12
User Interface 16, 4
User Is Switched to Other Access Points

15, 12
User of a Mobile Device Seldom Changes

15, 12
User Mobility 7, 12
User Perceived Application Response Times

Are Often Poor 15, 14
User-Perceived Reliability and Availability

Data 12, 13
User Perceived Response Time 15, 14
User System Requests Must Be Queued

Because the System Controller Is Unable
to Respond to All Requests Immediately
44

User Turns Off the Device and Then Turns
It On to Restore the Correct Operation
15, 5

User Will Interact with the System,
Supplying Information to Help It Choose
the Right Algorithms and
Transformations 17, 3

Users Experience a Failure (Freeze or Self
Shutdown) 15,4

Users’ Requests Can Be Supported by a
Proxy 14, 5

Users Should Not Have to Wait for a
Response in Order to Recover from a
Failure 16, 16

Using the Successful Time Obtained from
the Previous Test, and Compares It with
the Specifi ed Reliability 7, 14

Utility of the Prediction Is to Delineate The
Maximum Storage Requirement 7, 9

Utilization of Resources 15, 14

Validating Real-Time Systems 12, 13
Validation of Computer System Reliability

12, 13
Validity Checks on Memory Access 15, 7

Validity of Equation 13, 4
Validity of the Neural Network Criterion

Limit 13, 5
Validity of Reliability Predictions 14, 8
Valuable for Portraying the Process That

Develops the Product 17, 19
Value of Total Web Services 14, 18
Value-Added Total Web Services 14, 18
Variable: A Model Predictor Specifi ed in a

Function (e.g., Predictor of Software
Reliability) 17, 5

Variable Assumes Values Based on a
Function 17, 6

Variable Number of Active Users 16, 3
Variance Between Actual and Predicted

Values 12, 13
Vendors Should Provide Better Protection

Against Memory Violations 15, 7
Verifi cation Error Can Be Minimized 4, 22
Verifi cation Step 17, 17
Verifying That the Specifi cations Can Be

Achieved 7, 15
Very High Reliability Software And

Hardware Components 12, 19
Virtual Operating Systems 10, 18
Visual Language Alternative 9, 19
Voice and Data in Wired Networks

Increasingly Converge to Use the Internet
7, 11

Voice over Internet Protocol (VoIP) 15, 12
Voltage Regulation 3, 10
Voltage Regulator of the Electric

Distribution System 3, 9
Voltage Sensor 3, 12
Voting Mechanism 14, 2

Wait an Amount of Time 15, 5
Wait for a Response 16, 6
Wait Time 6, 9
Waiting for the Phone to Respond 16, 7
Weak Spots in Component and System

Reliability 14, 1
Web Client 14, 2
Web Client and Server Interactions 14, 9
Web Client Directly Accessing the Web

Server to Obtain a Page 14, 4
Web Client Meets the Reliability

Requirement 14, 17
Web Client Reliability Analysis 14, 16

596 Index

Web Client to Web Server Access Time 14,
1

Web Database 14, 4
Web Page Design 14, 3
Web Page Lengths Being Processed and

Waiting for Processing by the Web
Servers 6, 55

Web Page Syntax 14, 3
Web Server 6, 2; 14, 1
Web Server Consists of a Single Multi-

Threaded Process; Each Thread Handles
One Request at a Time 6, 2

Web Server Failure Data 14, 5
Web Server Interactions 14, 3
Web Server Processing 6, 17
Web Server Processing: Wired and Wireless

6, 53
Web Server Proxy 14, 4
Web Server Reliability Analysis 14, 6
Web Server Reliability Analysis Based on

Operating Time 14, 11
Web Server Reliability Requirement 14, 6
Web Service-Fault Tolerance Mechanism

14, 2
Web Services Are Implemented in Different

Redundant Versions 14, 2
Web Services Providers 14, 1
Web Services State Transitions 14, 3
Web System Communication 14, 2
Web System Error Rate 14,17
Web System Functions 14, 18
Web System Path Data 14, 2
Web System Reliability Approach 14, 1
Web System Reliability Predictions 14,

23
Web System Service and Reliability 14, 5
Web System State Transition Diagram 14,

3
Web Transaction 14, 4
Weibull Distribution Proved Appropriate for

Predicting System, Software, and
Hardware Reliability 14, 6

Weibull Failure Distribution 12, 15
Weibull Model Results 12, 15
Weibull Reliability Model 12, 20
Weigh Remaining Failures 13, 17
Weighed by the Failure Severity Code 16,

9

Weighted Connections Following a
Specifi ed Structure 13, 1

Weighted Probability of State Transition
14, 9

Weighted Sum of the Probabilities 16, 9
What Is Design? 9, 1
When a Class Is Declared, It Is Identifi ed

by Name, Attributes, and Methods 17, 11
When Failures Occur, the Mobile Network

Has to Try to Find Another Mobile
Device 16, 24

When Testing and Performance Evaluation
Are Performed, the Particular
Characteristics of the Application Must
Be Considered 4, 2

Wired LANs 15, 3
Wired and Wireless Internets Are Included

in the Analysis 6, 1
Wireless Channel Conditions Are Inherently

More Vulnerable 15, 3
Wireless Communication 15, 3
Wireless LANS Do Not Have the Luxury of

Delay or Shut Down 15, 3
Wireless LANS Require Much Higher

Reliability 15, 3
Wireless Link Is Much Less Reliable Than

Wired Connections 15, 4
Wireless Local Area and Home Networks

7, 10
Wireless Local Area Networks (WLAN)

Positioning Systems 15, 12
Wireless Media Have Limited and Variable

Ranges 15,3
Wireless Networks IEEE802 Family of

Standards 7, 12
Wireless Standards 7, 10
Wireless Standard Organizations Are

Revising Existing Standards 7, 12
Wireless to Access Internet Resources 14, 2
Wireless Video Phone and Multimedia

Message Systems 7, 12
Workarounds 11, 10
Workload Characteristics 14, 11
Writing Computer Code: Iteration Control,

Variable Types, Array Bounds, and
Sequence of Computer Code Fragments
17, 13

Wrong Branch 12, 14

