
Computer, Network, 
Software, and Hardware
Engineering with 
Applications



  IEEE Press 
 445 Hoes Lane 

 Piscataway, NJ 08854 

IEEE Press Editorial Board
 Lajos Hanzo,  Editor in Chief

  R. Abhari    M. El - Hawary    O. P. Malik  
  J. Anderson    B - M. Haemmerli    S. Nahavandi  
  G. W. Arnold    M. Lanzerotti    T. Samad  
  F. Canavero    D. Jacobson    G. Zobrist  

 Kenneth Moore,  Director of IEEE Book and Information Services (BIS)

Technical Reviewers

 Michael R. Lyu 
 The Chinese University of Hong Kong 

 Daniel Zulaica 
 Naval Postgraduate School      



Computer, Network, 
Software, and Hardware
Engineering with 
Applications
Norman F. Schneidewind

A John Wiley & Sons, Inc., Publication

IEEE PRESS



Copyright © 2012 by the Institute of Electrical and Electronics Engineers, Inc.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. All rights reserved.
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form 
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as 
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior 
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee 
to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, 
fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission 
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, 
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/
permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts 
in preparing this book, they make no representations or warranties with respect to the accuracy or 
completeness of the contents of this book and specifi cally disclaim any implied warranties of 
merchantability or fi tness for a particular purpose. No warranty may be created or extended by sales 
representatives or written sales materials. The advice and strategies contained herein may not be 
suitable for your situation. You should consult with a professional where appropriate. Neither the 
publisher nor author shall be liable for any loss of profi t or any other commercial damages, including 
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our 
Customer Care Department within the United States at (800) 762-2974, outside the United States at 
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print 
may not be available in electronic formats. For more information about Wiley products, visit our web 
site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Schneidewind, Norman.
 Computer, network, software, and hardware engineering with applications /
Norman Schneidewind.
   p. cm.
 Includes index.
 ISBN 978-1-118-03745-4 (cloth)
 1. Computer engineering. 2. Computer networks. 3. Software engineering.
I. Title.
 TK7885.S2564 2012
 005.1–dc23
 2011033591

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1



v

Preface vii

About the Author ix

Part One Computer Engineering

1. Digital Logic and Microprocessor Design 3

2. Case Study in Computer Design 63

3. Analog and Digital Computer Interactions 83

Part Two Network Engineering

4. Integrated Software and Real-Time System Design 
with Applications 99

5. Network Systems 125

6. Future Internet Performance Models 143

7. Network Standards 211

8. Network Reliability and Availability Metrics 228

Part Three Software Engineering

9. Programming Languages 263

10. Operating Systems 286

11. Software Reliability and Safety 303

Contents



vi Contents

Part Four Integration of Disciplines

12. Integration of Hardware and Software Reliability 315

Part Five Applications

13. Applying Neural Networks to Software Reliability Assessment 337

14. Web Site Design 354

15. Mobile Device Engineering 377

16. Signal-Driven Software Model for Mobile Devices 396

17. Object-Oriented Analysis and Design Applied to 
Mathematical Software 420

18. Tutorial on Hardware and Software Reliability, Maintainability, 
and Availability 443

Practice Problems with Solutions 1 466

Practice Problems with Solutions 2 504

Index 556



 Preface     

There are many books on computers, networks, and software engineering but none 
that integrate the three with applications . Integration is important because, increas-
ingly, software dominates the performance, reliability, maintainability, and avail-
ability of complex computer and systems. Books on software engineering typically 
portray software as if it exists in a vacuum with no relationship to the wider system. 
This is wrong because a system is more than software. It is comprised of people, 
organizations, processes, hardware, and software. All of these components must be 
considered in an integrative fashion when designing systems. On the other hand, 
books on computers and networks do not demonstrate a deep understanding of the 
intricacies of developing software. In this book you will learn, for example, how to 
quantitatively  analyze the performance, reliability, maintainability, and availability 
of computers, networks, and software in relation to the total system . Furthermore, 
you will learn how to evaluate and mitigate the risk of deploying integrated systems. 
You will learn how to apply many models dealing with the optimization of systems. 
Numerous quantitative examples are provided to help you understand and interpret 
model results. 

 The following topics are covered:

    •      application of quantitative models to solving computer, network, and software 
engineering problems  

   •      mathematical and statistical models of reliability, maintainability, and 
availability

   •      statistical process and product control  

   •      fault tree analysis  

   •      risk management  

   •      software metrics  

   •      resource allocation and assignment  

   •      software reliability models and tools  

   •      computer security  

   •      optimal network routing    

 Solutions to problems that consider only a single facet of a problem are doomed to 
be suboptimal. Because of its breadth, this book provides a new perspective for 
computer, network, and software engineers to consider the big picture in order to 
develop optimal solutions. 
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 This book can be used as a text, handbook, and reference by advanced under-
graduates and fi rst - year graduate students in academia as well as by computer, 
network, and software engineer practitioners in the worldwide industry. 

   N orman  F. S chneidewind
Professor Emeritus of Information Sciences
Department of Information Sciences 
and the Software Engineering Group
Naval Postgraduate School



 About the Author     

Dr. Norman F. Schneidewind is Professor Emeritus of Information Sciences in the 
Department of Information Sciences and the Software Engineering Group at the 
Naval Postgraduate School. He is now doing research and publishing articles and 
books in software reliability engineering with his consulting company Computer 
Research. Dr. Schneidewind is a Fellow of the Institute of Electrical and Electronics 
Engineers (IEEE), elected in 1992 for  “ contributions to software measurement 
models in reliability and metrics, and for leadership in advancing the fi eld of soft-
ware maintenance. ”  In 2001, he received the IEEE  “ Reliability Engineer of the Year ”  
award from the IEEE Reliability Society. In 2011, he received the  “ Outstanding 
Engineer ”  award from the IEEE Santa Clara Valley Section. In 1993 and 1999, he 
received awards for Outstanding Research Achievement by the Naval Postgraduate 
School. Dr. Schneidewind was selected for an IEEE - USA Congressional Fellowship 
in 2005 and worked with the Committee on Homeland Security and Government 
Affairs, United States Senate, focusing on homeland security and cyber security (see 
photo below). 

 In July 2011, Dr. Schneidewind was named the Outstanding Engineer of Santa 
Clara Valley by the IEEE Chapter of Santa Clara Valley. In addition, he has been 
named Outstanding Engineer of the San Francisco Bay Area. Furthermore, he has 
been named Outstanding Engineer of Region 6 of the IEEE. 

 IEEE - USA ’ s four Government Fellows began their Fellowships in January 
2005: Randall Brouwer (with Rep. Dana Rohrabacher); Gordon Day (with Sen. Jay 
Rockefeller); Norman Schneidewind (on the Senate Homeland Security Committee); 
and Nick Zayed (with the State Department Offi ce of Science and Technology 
Cooperation).

       Shown at the Jefferson Memorial in Washington, D.C., are, from left to right, 
IEEE - USA Government Fellows Norman Schneidewind, Nick Zayed, Randall 
Brouwer, and Gordon Day.    

ix



x About the Author

 In March 2006, he received the IEEE Computer Society Outstanding Contribu-
tion Award  “ for outstanding technical and leadership contributions as the Chair of 
the Working Group revising IEEE Standard 982.1, ”  signed by Debra Cooper, Presi-
dent of the IEEE. 

 He is the developer of the Schneidewind software reliability model that is used 
by the National Aeronautics and Space Administration (NASA) to assist in the pre-
diction of software reliability of the Space Shuttle by the Naval Surface Warfare 
Center for Tomahawk cruise missile launch and Trident software reliability predic-
tion, and by the Marine Corps Tactical Systems Support Activity for distributed 
system software reliability assessment and prediction. This model is one of the 
models recommended by the IEEE/AIAA Recommended Practice for Software 
Reliability. In addition, the model is implemented in the Statistical Modeling and 
Estimation of Reliability Functions for Software (SMERFS) software reliability 
modeling tool. 

 Dr. Schneidewind has been interviewed by several organizations regarding his 
work in software reliability, including the following: a  New York Times  article, which 
was published on February 7, 2003, about the Space Shuttle software development 
process in conjunction with the Columbia tragedy and by the Associated Press about 
the same subject; National Public Radio, Montgomery, Alabama on April 1, 2002; 
and by The Bent , Tau Beta Pi ’ s (all engineering society) magazine, about his profes-
sional accomplishments on November 4. 2002. This article was part of a series about 
prominent Tau Beta Pi members. 

 He is a member of the IEEE - USA Committee on Communications and Informa-
tion Technology Policy (CCIP). The objective of the CCIP is to infl uence the com-
munication and information technology policies of the executive and legislative 
branches of federal and state governments. His primary contribution is developing 
policies and models to defeat cyber security attacks. He has also contributed to 
IEEE - USA Committee on Communications Policy in the area of personal identifi ca-
tion privacy and security.     



  Part One 

Computer
Engineering



Chapter 1

Digital Logic and 
Microprocessor Design 

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F. 
Schneidewind.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley & 
Sons, Inc.

T his chapter focuses on the fundamentals of digital logic and design, with numerous 
examples from both computer hardware design and  “ everyday life ”  events to demonstrate 
that digital logic is not confi ned to designing computers. My objective is to equip the engineer 
or student with suffi cient knowledge of design principles to be able to design a digital com-
puter. In addition, I integrate the important role that software plays in modern computer 
systems with the hardware design principles. Numerous design examples and solved problems 
are provided to support learning objectives.    

MICROPROCESSOR DESIGN 

Functions

 Using its  arithmetic logic unit ( ALU ), a microprocessor can perform mathematical 
and logic operations like addition, subtraction, multiplication, division, and com-
parison. Modern microprocessors contain complete fl oating - point processors that 
can perform extremely sophisticated operations on large variable - length numbers. 
In addition, a microprocessor can perform the following functions:

   Move data from one memory location to another.  

  Make decisions and jump to a new set of computer program instructions based 
on those decisions.  

  Use an  RD  ( read ) and  WR  ( write ) line to tell the memory whether it wants to 
read from or write to the addressed location.  

  Use a clock line to transmit clock pulses (CPs) to sequence the microprocessor. 
For example, when numbers are added by the microprocessor, which you 
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4 Computer, Network, Software, and Hardware Engineering with Applications

will see later, addition takes place bit by bit, and the clock triggers each 
binary bit addition to ultimately form a decimal result.  

  Uses a reset line to reset the program counter to zero and restart execution.     

Components

 Microprocessor components are the building blocks of modern computers. These 
components are the following:

•       ALU.  Consists of accumulators, registers, and control unit. 

•      The ALU executes instructions and manipulates data.  

•      An 8 - bit ALU can add, subtract, multiply, and divide two 8 - bit numbers, 
while a 32 - bit ALU can manipulate 8 - bit, 16 - bit, and 32 - bit numbers.  

•      An 8 - bit ALU would have to execute four instructions to add two 32 - bit 
numbers (four add instructions, each of which adds 8 - bit numbers), whereas 
a 32 - bit ALU can do it in one instruction.    

•       Accumulator.  Holds data and instructions for processing by the ALU.  

•       Register.  Temporary storage of instructions and data. 

•        Program Counter    (PC).  Contains the address of next instruction to be 
executed

•        Instruction Register    (IR).  Holds address of current instruction being 
executed

•       General Registers.  Holds operator (e.g., code for add instruction), operands 
(e.g., numbers to be added), and data while an instruction is executed    

•       Stack.  Temporary storage of instructions and data, usually on a last in, fi rst 
out (LIFO) basis. Also called push - down stack.  

•       Control Unit.  Fetches and decodes instructions, generates signals for the ALU 
to execute instructions  

•       Busses

•       Address Bus.  Path over which addresses fl ow for directing memory and 
 input/output  ( I/O ) data transfers. An address bus may be 8, 16, or 32   bits 
wide that sends an address to memory or I/O for accessing memory or I/O.  

•       Data Bus.  Transfers data. A data bus may be 8, 16, or 32   bits wide that can 
send data to memory or I/O and receive data from memory or I/O. The 
number of address bus lines determine the amount of addressable memory 
(n lines    =    2 n  addressable words).  

•       Control Bus.  Communicates control and status information.    

•       Chip.  A chip is also called an integrated circuit. Generally it is a small, thin 
piece of silicon onto which the transistors making up the microprocessor have 
been etched. A chip might be as large as an inch on a side and can contain 
tens of millions of transistors. Simpler processors might consist of a few 
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thousand transistors etched onto a chip just a few millimeters square. Microns 
are the width of the smallest wire on the chip. For comparison, a human hair 
is 100    μ m thick. As the feature size on the chip goes down, the number of 
transistors rises.     

Characteristics

 Microprocessor characteristics govern the speed and functionality of computer oper-
ations. Important characteristics include the following presented in the succeeding 
paragraphs.

 Smaller microprocessors can be combined into a larger one (four 4 - bit micro-
processors combined into one 16 - bit microprocessor). 

 A crystal - controlled clock sequences the operations of a microprocessor (e.g., 
the sequence of computer program instruction execution) by generating CPs. Clock 
speed is specifi ed in cycles per second, where 1   MHz is equal to 1 million cycles 
per second. Clock speed is the maximum speed of the chip. 

 Instructions require one or more clock cycles to execute the following, depend-
ing on its complexity: fetch instruction from memory, decode the operation code, 
fetch operands from memory, execute the instruction, and store the result in memory. 
In addition to clock speed, an important performance metric is the number of 
fl oating - point operations per second or fl ops.

Complex instruction set computing    (CISC).  A single instruction can perform 
several operations. This design simplifi es programming because, for example, 
a single instruction can fetch instruction from memory, decode the operation 
code, fetch operands from memory, execute the instruction, and store the 
result in memory. However, the downside is the relatively slow speed of the 
computer  [RAF05] .  

Reduced instruction set computing    (RISC).  Several operations are required to 
execute a single instruction. This design provides high speed, for example, 
well suited to real - time applications that must meet deadlines, but at the 
expense of relatively complex programming.     

Performance

 One measure of the computing power of a microprocessor is its clock speed, mea-
sured in millions of cycles per second (MHz). It usually takes from one to seven 
cycles of a microprocessor ’ s internal clock to fully process an instruction. The faster 
the internal clock, the more instructions can be processed per unit of time. For the 
microprocessors in laptop and desktop computers, clock speeds are usually greater 
than 100   MHz. The fastest microprocessors can run at a speed of 2   GHz. From a 
user standpoint, the most important performance metric is program execution time, 
defi ned as  [HAR07] :
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Program execution time Number of instructions in program= ( )

∗∗ ∗( ) ( ).Clock cycles per instruction Time per clock cycle

 Another measure of performance is the number of instructions that can be processed 
per second, referred to as MIPS, for million instructions per second. The MIPS rating 
of a microprocessor depends on both the clock speed and the number of instructions 
that can be executed per clock cycle. Simple microprocessors can execute a maximum 
of one instruction per clock cycle. Advanced microprocessors can execute up to six 
or eight instructions per clock cycle. The relationship between clock speed and MIPS 
is not straightforward, however, because some instructions may take more than one 
clock cycle to execute, depending on the program. The product of clock speed and 
the number of instructions that can be executed per cycle may be greater than MIPS. 
The maximum clock speed is a function of the manufacturing process and delays 
within the chip. MIPS is proportional to the clock speed and inversely proportional 
to the number of clock cycles per instruction. 

 Another indication of microprocessor speed is the word length, as measured by 
the number of bits of information that can be transferred simultaneously. Long words 
allow the microprocessor to handle data and perform complex tasks more effi ciently. 
The number of bits per word has been steadily increasing with the growth of circuit 
technology. Thus 4 - , 8 - , 16 - , 32 - , and 64 - bit microprocessors are now common. 
Some personal computers use 32 - bit microprocessors. More powerful computers use 
64 - bit microprocessors. The 4 - , 8 - , or 16 - bit devices are usually employed in simple 
embedded applications, such as microwave ovens, electric shavers, and televisions. 
Figure  1.1  shows the microprocessor architecture.   

Pipeline Systems 

 An important aid to performance is the pipeline system. The purpose of a pipeline 
system is to reduce delay caused by the computer processor having to wait for 
instructions to complete. With a pipeline design, the processor begins the execution 
of the next instruction while the current instruction is executing. Thus, various 
phases of instruction execution are overlapped. The concept is to keep the pipeline 
full, with as many execution sequences as possible. For example, due to overlapped 
instruction execution, each instruction overlaps during (n    −    1) clock cycles, and each 
of m    =    4 instructions requires one clock cycle, yielding (n    −    1)    +    m    =    7 clock 
cycles, total, as shown in Figure  1.2 .

Problem:  How is the  increase in speed , obtained by a pipelined system over a 
conventional system, computed?    

Answer:  Using Figure  1.2  as an example, the increase is computed as follows:    

 The number of clock cycles required in conventional system is mn    =    4    *    4    =    16 in 
the example of Figure  1.2 . Thus, the decrease in number of clock cycles for a pipe-
lined system is:

    mn n m− − + = − =(( ) ) ,1 16 7 9



Digital Logic and Microprocessor Design 7

Figure 1.1     Microprocessor architecture.  
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  and the  increase in speed  (number of clock cycles required in conventional system/
number of clock cycles required in a pipelined system) is:

    ( ) / (( ) ) / ((( ) / ) ) / . .mn n m n n m− + = − + = =1 1 1 16 7 2 286

 If m is large, the increase in speed approaches n clock cycles per instruction —
 maximum speed increase. 

 The pipeline  throughput  is defi ned as the  number of instructions , m, per  total
clock cycle time  required to process m instructions:
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m instructions

Number of clock cycles per instruction Time ∗ pper clock cycle

m

m n 1 T
=

+ −( )
,

  where T is clock cycle time per instruction.

Problem:  Compute the throughput of the pipeline microprocessor in Figure  1.2 .  

Answer:  For a clock speed of 10   Mhz (10 7  clock cycles per second), T    =    1/10 7

seconds, the throughput is: 

     m m n T MIPS/ (( ) ) / (( )( / )) ( )( ) / . .+ − = = =1 4 7 1 107 4 107 7 5 71

Pipeline effi ciency  is computed as: speed increase/maximum speed increase (n    =    4 
clock cycles per instruction)    =    2.286/4    =    0.5715.  

Pipeline System Delay 

 When a pipeline instruction is unable to complete on the scheduled clock cycle, then 

•      Finish the earlier instructions on schedule and  

•      Delay the later instructions  

•      This is called stalling the pipeline    

Structural hazard s are pipeline hardware delays.

Example:  Memory does not respond to a request as fast as it is expected.    

Data hazards  arise when data are not ready in a pipeline at the time they are needed.

Figure 1.2     Pipelined system. n, clock cycle per instruction; m, instructions, each requiring one 
clock cycle; (n    −    1)    +    m    =    7 clock cycles (each instruction overlaps for [n    −    1] clock cycles).  
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Example:  An instruction needs data in a register that a previous instruction is 
still modifying.    

Control hazards  arise when the central processing unit (CPU) needs to manage a 
pipeline but instead must increment the program counter.

Example:  Nonpipelined conditional branch instruction jumps to a pipelined 
instruction.

Problem:  Delay in a pipelined operation is illustrated in this problem that 
compares the clock cycle delay for nonjump instructions with that of jump 
instructions.    

 If a jump instruction is executed in the pipelined CPU in Figure  1.2 , what is the 
clock cycle delay?

Answer:  Since the target of the jump instruction (another instruction) cannot 
be decoded (i.e., program counter updated) until the jump instruction is 
executed, there is a delay of three clock cycles.  

Problem:  What cam be done in a pipeline system to maintain performance 
when a structural hazard  occurs?  

Answer:  More resources can be employed, if available, or the pipeline can be 
stalled (i.e., no instructions executed until needed hardware is available).  

Problem:  Is the microprocessor architecture in Figure  1.1  a pipeline computer?  

Answer:  No, it is not because only one instruction can be executed at a time.  

Problem:  What determines the clock cycle frequency of a pipeline system?  

Answer:  The clock cycle frequency of a  pipeline system  is governed by the 
pipeline  with the slowest processing time. For example, whichever pipeline 
queue in Figure  1.2  experiences the slowest processing determines clock 
cycle frequency.      

Operating System 

 The operating system contains the software necessary to manage the resources of a 
computer system. An example is a signal called an interrupt that is used to indicate 
to the microprocessor that an I/O device needs attention (i.e., data input or data 
output) or that there is an error condition (e.g., attempted divide by zero). The inter-
rupt service routine is shown in Figure  1.1 . In addition to managing resources, the 
operating system is responsible for allocating resources, for example, allocating 
memory to the application program, as depicted in Figure  1.1 .  

Memory

 Because computer performance depends on the characteristics of memory systems 
in addition to the microprocessor architecture, it is important to consider the former 
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 [HAR07] . Two important types of memory systems are main memory (random 
access memory, RAM) and secondary memory (hard disk, USB fl ash). Main memory 
can be divided between a relatively slow RAM for program and data access and a 
fast cache memory for accessing recently used instructions and data. In addition, 
secondary memory can be classifi ed as virtual, meaning that pages on a hard disk 
can be mapped to main memory locations under the control of a memory manage-
ment unit. A microprocessor may be equipped with special hardware, called  direct 
memory access  ( DMA ), which allows I/O devices to communicate directly with 
memory rather than using intermediate devices (such as data buffers in Fig.  1.1 ). 

RAM

 RAM contains bytes of information that the microprocessor can read or write, 
depending on whether the RD or WR line is activated. One problem with RAM 
chips is that they are volatile; the RAM contents are lost once the power goes off. 
That is why the microprocessor needs read - only memory (ROM).  

ROM

 All microprocessors contain ROM. A ROM chip is programmed with a permanent 
collection of preset bytes. The address bus tells the ROM chip which byte to read and 
place on the data bus. The RD line signal causes the ROM chip to transfer the selected 
byte to the data bus. On a personal computer, the program in the ROM is called the 
 BIOS  ( basic input/output system ). When the microprocessor starts, it begins execut-
ing instructions it fi nds in the BIOS. The BIOS instructions test the hardware, and 
then control is transferred to the hard disk to fetch the boot sector. The boot sector is 
another small program that the BIOS stores in RAM after reading it from the disk. 
The microprocessor then begins executing the boot sector ’ s instructions from RAM. 
The boot sector program will tell the microprocessor to fetch more instructions from 
the hard disk into RAM, which the microprocessor then executes, and so on. This is 
how the microprocessor loads and executes the entire operating system.  

Read/Write ( R/W) Control Line 

 This single wire is driven by the microprocessor to control memory functions. If the 
R/W control line is asserted as a logical 1 (i.e., true), then the microprocessor per-
forms a read operation. If it is asserted as a logic 0 (i.e., false), then the microprocessor 
performs a write operation. The relationship between logic level and voltage level 
can vary, depending on the implementation. For example, a logical 0 corresponds to 
a voltage of 0   V, and a logical 1 corresponds to a voltage of 5   V. Figure  1.3  is a block 
diagram of the microprocessor and memory, showing the R/W control line.    

Address Bus 

 These wires are controlled by the microprocessor to select a particular location in 
memory for reading or writing. The microprocessor in Figure  1.3  uses a memory 
chip that has 15 address wires.
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Problem:  How many locations can be addressed in Figure  1.3 ?  

Answer:  Since each wire has two states (it can be a digital 1 or a 0), 2 15     =    32,768 
locations are possible. Thus, the system is said to have 32K of memory 
(1K    =    1024   bytes).     

Data Bus 

 These wires are used to pass data between the microprocessor and the memory. 
When data are written to the memory, the microprocessor drives the data bus; when 
data are read from the memory, memory drives the bus. In the example, in Figure 
 1.3 , there are eight data wires (or bits). These wires can transfer one of 2 8  or 256 
different binary values per transfer. The data size of 8   bits is commonly referred to 
as a byte. A data size of 4   bits is frequently referred to as a nibble.  

Memory Enable Control Line 

 This wire, called the Enable line, connects to the enable circuitry of the memory in 
Figure  1.3 . When the memory is enabled, it performs either a read or write operation 
as determined by the status of the R/W line.  

Memory System Performance 

 Memory system performance is computed by considering hit and miss rates and the 
order of accessing memory components: cache memory, main memory, and hard 
disk. These rates are related to whether the instructions or data that are required by 
a program are available, fi rst, in the cache memory, or second, in the main memory. 
If the instructions or data are in the cache, the access is scored as a cache hit; 
otherwise, the access is scored as a cache miss. Similarly, if the instructions or data 

Figure 1.3     Diagram of microprocessor and memory.  
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are not in the cache but are in main memory, the access is scored as a main memory 
hit; otherwise, the access is scored as a main memory miss because the instructions 
or data are only available on the hard disk  [HAR07] . Thus, hit and miss rates are 
computed as follows:

    Cache hit rate (CHR)
Number of cache hits

Total number of m
=

eemory accesses
,

    Cache miss rate (CMR)
Number of cache misses

Total number o
=

ff memory accesses
,

    Main memory hit rate (MMHR)
Number of main memory hits

Tota
=

ll number of memory accesses
,

    Main memory miss rate (MMMR)
Number of main memory misses

T
=

ootal number of memory accesses
,

    

Number of hard disk accesses (HAD) Total number of memory = aaccesses

Number of cache memory hits Number of main memo− +( rry hits

Number of main memory misses).+
   

 Note that when there is a cache memory miss, the main memory access is attem-
pted. Thus, it is not necessary to count cache memory misses in the foregoing 
computation:

    Hard disk access rate HDAR HAD Total number of memory ac( ) /= ccesses.

Problem:  For example, consider the following case: 

   4000 total number of memory accesses  

  1200 cache accesses are hits and 800 are misses  

  Of the 800 cache misses that require access to the main memory, 200 are hits 
and 600 are misses  

  Compute CHR, CMR, MMHR, MMMR, HAD, and HDAR.    

Answer:  CHR    =    1200/4000    =    30% 

   CMR    =    800/4000    =    20%  

  MMHR    =    200/4000    =    5%  

  MMMR    =    600/4000    =    1%  

  HAD    =    4000    −    (1200    +    200    +    600)    =    2000  

  HDAR    =    1200/4000    =    50%      

 Another memory performance metric is  average access time  ( AAT ), which is com-
puted as follows:

    
AAT CHR cache access time

MMHR main memory access time

= ∗
+ ∗

( )

( ) ++ ∗HDAR hard disk access time( ).
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Problem:    For the following typical access times: cache    =    2   ns, main memory    =    
60   ns, and hard disk    =    35   ms, and using the above hit and miss access rates, 
compute the AAT.  

Answer:  AAT    =    (0.30)(2)    +    (0.04)(60)    +    (0.50)(35    *    10 6 ) ns    =    20.50    *    10 6    ns 
(of course, hard disk access time dominates).      

Multiplexing Data and Address Signals 

 On the Motorola 68HC11 microprocessor, in Figure  1.4 , the 8 - bit address/data bus 
takes turns acting as an address bus and a data bus. When a memory location is 
accessed (for reading or writing), the bus fi rst acts as an address bus, transmitting 
the 8 lower - order bits of the address. Then the bus functions as a data bus, either 
transmitting a data byte (for a write cycle) or receiving a data byte (for a read cycle).
This kind of split - personality bus is referred to as a multiplexed address and data 
bus. The support needed by the memory is provided by an 8 - bit latch (a device that 
can store an address), using a multiplexed address/data bus. This chip (HC373) 
performs the function of latching the lower 8 address bits, when combined with the 
upper 7 address bits from the microprocessor, will provide the full 15 - bit address 
for reading or writing data.   

 Figure  1.4  shows how the latch is wired. The upper 7 address bits run directly 
from the microprocessor to the memory. The lower 8  address bits  are multiplexed 
with 8 data bits . When an  address  appears on the wires AD: 07, the latch connects 
the address bits of the microprocessor to the memory. On the other hand, when 
data  appears on the wires AD0:7, the latch connects the data bits of the micropro-
cessor to the memory. An additional signal, the address strobe (AS) output of the 

Figure 1.4     Block diagram of microprocessor and memory with latch.  
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microprocessor, tells the latch when to obtain the address bits from the address/data 
bus. When the full 15 - bit address is available to the memory (upper 7   bits direct 
from the microprocessor (wires A8: 14) and lower 8   bits from the latch (wires AD: 
07), the read or write access can occur. Because the address/data bus is also wired 
directly to the memory, data can fl ow in either direction between the memory and 
the microprocessor. The entire process is managed by the microprocessor. The 
Enable (E) clock, the R/W line, and the AS line perform in tight synchronization to 
make sure these operations happen in the correct sequence and within the timing 
capacities of the microprocessor hardware.  

Memory Mapping the RAM

 Memory mapping refers to allocating blocks of memory to different functions, such 
as the operating system and the application program. If a microprocessor has 15 
address bits, it has 32,728 (32K bytes) of addressable locations that can be mapped. 
This address space would be used by the 32K memory chip in Figure  1.5 . The 
technique used to map the memory is fairly simple. Whenever the microprocessor ’ s 
A15 (the highest order address bit) is logic 1, the high - order address bit is selected. 
The other 15 address bits (A0 through A14) determine the address within that 32K 
block. If A15 is logic 0, the 32K block is not selected.   

 A NAND gate (actually a portion of a programmable logic device called a PAL) 
is used to enable the memory when A15 and the E Clock equal 1 in Figure  1.5 . (See 
the “ Digital Logic ”  section below for the explanation of NAND and other gates). 

 The E Clock controls the timing of the chip enable line. Some memory chips 
use an active low (sometimes called “ active false ” ) signal to enable inputs, meaning 
that they are enabled when the enable input is 0. The method for denoting an input 
that is active low (i.e., 0) is shown in Figure  1.5 , where the chip enable input con-
nects to a circle; this circle indicates an active low input. Also, the name for the 
signal, CE, is prefi xed with a  ∼  symbol.  

Interrupt Handling 

 The microprocessor has a bank of interrupt vectors, as shown in Figure  1.5 , which 
are hardware - defi ned locations in the memory address space where the microproces-

Figure 1.5     Enabling the memory.  
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sor expects to fi nd pointers to interrupt handling routines, for processing input and 
output data, arithmetic overfl ow, and so on. Also, when the microprocessor is reset, 
it fi nds the reset vector to determine where it should begin running a program. These 
vectors are located in the address space of the memory.   

DIGITAL LOGIC 

 The fundamental logic operations of a microprocessor are performed by the follow-
ing circuits. The results of those operations are represented in truth tables, where 
the binary value 0 is considered “ low ”  (e.g., low voltage) and the binary value 1 is 
considered “ high ”  (e.g., high voltage). While digital logic is used in the design of 
microprocessors, “ everyday ”  examples are provided to show that the logic opera-
tions are not restricted to microprocessors. 

NOT : represented in Table  1.1  and implemented with an inverter in Figure  1.6 .

Application:  The application is to complement the input A, producing the 
output   A.      

Microprocessor example:  the binary bit input was caused by an arithmetic 
overfl ow condition, so it is ignored and  not  used in the computation.  

Everyday example:  if we are to leave on an automobile trip, where A    =    1 
represents leaving at 1000,   A = 0 represents all times  not  equal to 1000.    

OR : represented in Table  1.2  and implemented with OR gate in Figure  1.6 .

Application:  The application is to produce a 1 output if  any  or  both  of the inputs 
are 1.    

Microprocessor example:  the inputs are binary bits from memory stick or hard 
disk, so the microprocessor can accept either  or  both  to perform a computa-
tion, depending on the current computer program instruction.  

Everyday example:  if A    =    1 represents the decision to purchase a house and 
B    =    1 represents the decision to purchase an automobile, Z    =    1 represents 
the decision to purchase a house or  an automobile  or  both.    

AND : represented n Table  1.3  and implemented with an AND gate in Figure  1.6 .

Application:  The application is to produce a 1 output if  all  inputs are 1.    

Table 1.1    NOT Truth Table 

   Input     Output  

  A  A
  0    1  
  1    0  
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Table 1.2    OR Truth Table 

   Input     Input     Output  

  A    B    Z    =    A    +    B  
  0    0    0  
  0    1    1  
  1    0    1  
  1    1    1  

Figure 1.6     Logic operations.  
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Table 1.3    AND Truth Table 

   Input     Input     Output  

  A    B    Z    =    AB  
  0    0    0  
  0    1    0  
  1    0    0  
  1    1    1  

Table 1.4    NOR Truth Table 

   Input     Input     Output  

  A    B  Z A B= +
  0    0    1  
  0    1    0  
  1    0    0  
  1    1    0  

Microprocessor example:  the microprocessor uses a signal Z    =    1 to tell it that 
an interrupt has occurred on input line A  and  signifying that data input occurs 
on B, which the microprocessor will transfer to its memory.  

Everyday example:  if A    =    1 represents a gas station and B    =    1 represents a 
restaurant, we would stop our automobile at location Z, if Z has both  a gas 
station and  a restaurant.    

NOR : represented in Table  1.4  and implemented with NOR gate in Figure  1.6 .

Application:  The application is to produce a 1 output if all inputs are 0.    

Microprocessor example:  the microprocessor Z    =    1 output is recognized as 
interrupt code AB    =    00.  

Everyday example:  if A    =    0 represents the decision to  not  purchase a home 
and B    =    0 represents the decision  not  to purchase an automobile, then Z    =    1 
represents the decision to neither  purchase a home  nor  purchase an 
automobile.    

NAND : represented in Table  1.5  and implemented with NAND gate in Figure  1.6 .

Table 1.5    NAND Truth Table 

   Input     Input     Output  

  A    B  Z AB=
  0    0    1  
  0    1    1  
  1    0    1  
  1    1    0  
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Application:  The application is to produce a 1 output if all inputs are  not  1.    

Microprocessor example:  the microprocessor program produces the comple-
ment of the product of binary bits. This would be the case, for example, when 
Z    =    1 signals that 0s occur on  either or both  of two input channels.  

Everyday example:  if A    =    1 represents a gas station and B    =    1 represents a 
restaurant, we would stop our automobile at location Z, if Z has only a gas 
station, or has only a restaurant, or has neither (i.e., rest stop).    

Exclusive OR (XOR) : represented in Table  1.6  and implemented with EXCLUSIVE 
OR gate in Figure  1.6 . The fi gure also shows how the gate can be implemented, 
using AND and OR gates.

Application:  The application is to produce a 1 output if  any  of the inputs is 1, 
but not all  inputs are 1, and  not all  inputs are 0.    

Microprocessor example:  the main microprocessor receives a signal Z    =    1 
from the output of the I/O microprocessor that a binary bit A    =    1 from a 
memory stick or  B    =    1 from a hard disk, and is ready for input, but these 
inputs are not concurrent .  

Everyday example:  if A    =    1 represents the decision to purchase a house and 
B    =    1 represents the decision to purchase an automobile, Z    =    1 represents 
the decision to purchase a house or  an automobile, but  not both at the same 
time .    

Exclusive NOR (XNOR) : represented in Table  1.7  and implemented with XNOR gate 
in Figure  1.6 . The  NOR  gate is the negation of the  XOR  gate from Table  1.6 , as 
indicated in Table  1.7 .

Table 1.6    EXCLUSIVE OR Truth Table 

   Input     Input     Output  

  A    B  Z AB AB= +
  0    0    0  
  0    1    1  
  1    0    1  
  1    1    0  

Table 1.7    EXCLUSIVE NOR (XNOR) Truth Table 

   Input     Input     Output  

  A    B  Z AB AB AB AB A B A B AA AB AB BB AB AB= + = = + + = + + + = +( )( ) ( )( )
  0    0    1  
  0    1    0  
  1    0    0  
  1    1    1  
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Application:  The application is to produce a 1 output if all inputs are 0  or  all 
inputs are 1.    

Microprocessor example:  Two hard drives are identifi ed as A    =    0 and A    =    1; 
two fl ash memories are identifi ed as B    =    0, and B    =    1. The microprocessor 
is programmed to input data from a hard drive and a fl ash memory  concur-
rently . Therefore, it reads A    =    0  and  B    =    0  or  A    =    1  and  B    =    1.  

Everyday example:  if A    =    1 represents a gas station and B    =    1 represents a 
restaurant, we would stop our automobile at location Z, if Z has neither  a 
gas station nor  a restaurant (i.e., rest stop)  or  has  both  a gas station and 
restaurant (i.e., get gas and eat).    

De Morgan ’ s theorem   [GRE80]  is used to simplify complex logic equations and the 
resultant digital logic. The theorem is used to simplify relatively simple expressions, 
as contrasted with Karnaugh maps (K - maps), described in the next section. The 
application of this theorem is shown in the following example:

    Theorem: A B AB and AB A B.+ = = +    

 Suppose it is required to simplify   F AB AB= (( )( )).
 Applying the theorem:

    

AB A B AB AB A B A B

A A A B A B B B A A B B A A

= + = + +

= + + + = + + = + +

,( )( ) ( )( )

( )1 BB A B

F A B A B A B A B AB AB B.

= +

= + + = + + + = + =( )( ( ) ( )

   

 Then, use Table  1.8  to demonstrate the equivalence between   (( )( ))AB AB  and AB.    

  K -MAPS

 A K - map in Table  1.9  is used to minimize a complex Boolean expression  [RAF05] . 
Each square of a K - map represents a minterm (i.e., product terms). The process 
proceeds by listing the binary equivalents of the terms A and BC on the axes of 
Table  1.9 , ordering them so that there is only a 1 - bit difference between adjacent 
cells. Then, the minimum number of cells is enclosed. Next, minterms are identifi ed 

Table 1.8    Truth Table to Demonstrate Equivalence between F and AB 

   A     B  AB ABAB        F AB AB= (( )( ))    AB

  0    0    1    1    0    0  
  0    1    1    1    0    0  
  1    0    1    1    0    0  
  1    1    0    0    1    1  



20 Computer, Network, Software, and Hardware Engineering with Applications

 In the K - map,   B is common to the enclosed minterms. Therefore,   F B= . Table  1.10  
demonstrates this result. The considerable reduction from the original function 
would result in signifi cant savings in circuitry to implement the function.   

Prime Implicant 

 A prime implicant is the  product term  obtained by enclosing the  maximum  number 
of adjacent cells in a K - map. For example, in the K - map of Table  1.9 ,   F B=  is a 
prime implicant. The prime implicant is only useful for providing a name for the 
maximum enclosure in a K - map.  

Quine–McCluskey Method 

 This method is an alternative to the K - map for minimizing a Boolean func-
tion. The method is illustrated in Table  1.11  by minimizing the function 
F A B C A B C A B C A B C= + + + , where these minterms are placed in Table 

Table 1.10    F Function Truth Table 

   A     B     C       F A B C A B C A B C A B C= + + +        F B=

  0    0    0    1    1  
  0    0    1    1    1  
  0    1    0    0    0  
  0    1    1    0    0  
  1    0    0    1    1  
  1    0    1    1    1  
  1    1    0    0    0  
  1    1    1    0    0  

Table 1.9    K - Map for   F ABC ABC ABC ABC= + + +

B— C— B—C BC BC—

00 01 11 10

A— 0 1 1

A 1 1 1

In minterm form, F = A— B— C— + A B— C— + A— B— C + A B— C = B—

according to terms that are common to all cells in the enclosure. Last, the product 
terms are summed. Notice what a clever method this is. Minimization is achieved 
by noting the combination of terms that yields the minimum difference! 

Example:  Simplify   F A B C A B C A B C+A B C= + + .      
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 1.11 . This method is used to represent a difference of 1 between two adjacent minterms,
such as   A B C and   A B C, yielding   A B- -= 00 . The symbol  -  is placed where there 
is a difference in minterm bit values, such as between 00 -  and 10 -  in Table  1.11 , 
yielding  - 0 - . This process continues until the four minterms 0, 1, 4, and 5 show a 
difference of 1 (00 -  compared with 10 - ), yielding prime implicant   B - -( )0 . The same 
result is obtained as was the case using the K - map in Table  1.9 . Of the two methods, 
the K - map is easier to apply.     

COMBINATIONAL CIRCUITS 

 These are circuits that use logic gates to produce outputs at any time that are only 
dependent on the current  values of the inputs, meaning that it is not necessary to 
use a CP to trigger outputs  [HAR07] . A typical combinational circuit is the adder. 

One-Bit Adder with Carry Out 

 A and B are added, producing Q output and CO (carry out). Q and CO are imple-
mented according to the truth table shown in Table  1.12 .    

Two-bit Adder with Carry In and CO

 What if you want to add two 8 - bit bytes? This becomes slightly harder. In this case, 
you need to create a full binary adder. The difference between a full adder and the 

Table 1.11    Quine – McCluskey Method for   F A B C A B C A B C A B C B= + + + =

   Minterm     ABC  

   Difference of 1     Difference of 1  
   Prime 

implicant    Minterms     Minterms     Minterms  

  0  A B C   000    0,1    00 -     0,1,4,5     - 0 -   B
  1  A B C   001  
  4  A B C   100    4,5    10 -   
  5  A B C   101  

Table 1.12    One - Bit Adder Truth Table 

   A     B     Q     CO  

  0    0    0    0  
  0    1    1    0  
  1    0    1    0  
  1    1    0    1  
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1 - bit adder is that a full adder accepts A and B inputs plus a  carry - in  ( CI ) input. 
Once you have a full adder, you can string eight of them together to create a byte -
 wide adder and cascade the carry bit from one adder to the next. The truth table for 
a full adder is slightly more complicated than the previous truth table because now 
there are 3 input bits. 

 A combinational circuit minterm is represented by a product in a row of the 
truth table as shown in Table  1.13 , corresponding to a 1 in the Q or CO output 
columns; for example, the fourth row for CO and the second row for Q in Table 
 1.13   [GIB80] . The values of Q and CO product terms are obtained by ORing the 
products in each row of Table  1.13  where Q    =    1 or CO    =    1, and then summing these 
terms, followed by simplifying the expressions, as demonstrated in Table  1.13 . 
Further simplifi cation  may  be possible by using a K - map.   

 As can be seen in Table  1.14 , the adder output Q cannot be simplifi ed by using 
a K - map because there are no adjacent cells. However, simplifi cation is achieved 

Table 1.13    Two - Bit Adder Truth Table 

       Q    =    1    CO    =    1  

   CI     A     B     Q     CO     Minterms     Minterms  

  0    0    0    0    0          
  0    0    1    1    0  CI A B
  0    1    0    1    0  CI A B
  0    1    1    0    1      CI A B
  1    0    0    1    0  CI A B
  1    0    1    0    1      CI A B
  1    1    0    0    1      CI A B
  1    1    1    1    1    CI A B    CI A B  

 Q Product Terms:   CI A B CI A B CI A B CIAB+ + +
Q CI A B  A B CI (A B AB)= + + +( )

  CO Product Terms:   CIA B CI A B  CI A B CI A B AB (CI CI) CI(A B A B)+ + + = + + +
CO AB CI A B  A B= + +( )

Table 1.14    K - Map for   Q CI A B CI A B CI A B= + + +

AB

CI 00 01 11 10

0 1 1

0 1 1

CIA— B— C—IA— B CIAB C—IAA B—

CIAB CI A B A B CI A B AB= + + +( ) ( )
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for CO, as shown in Table  1.15 , producing   CO AB CI AB AB= + +( ) . The relevant 
minterm cells in Table  1.15  that comprise the minimized function are outlined in 
red. Minterm logic is called sum of products . The full adder logic that corresponds 
to the minterms in Table  1.13  is shown in Figure  1.7 , showing the adder output Q 
and the CO.       

MULTIPLE OUTPUT COMBINATIONAL CIRCUITS 

 Combinational circuits can have multiple outputs  [RAF05] . Each output is expressed 
as a function of the inputs, as shown in Table  1.16 , where the inputs are  binary - coded 
decimal  ( BCD ) bits W, X, Y, and Z, corresponding to the decimal digits 0, … , 9. A 

Figure 1.7     Adder circuit.  
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binary coded decimal converter is an example shown in Figure  1.8 , showing how 
the number 9 can be displayed. The outputs are computer display segment bits a, … , 
g that represent the 1s necessary to generate the display decimal numbers. The code 
converter transforms the BCD numbers 0000, … , 1001 to display segments. The 
converter does not represent decimal numbers greater than 9. The K - maps use  “ don ’ t 
cares”     =    Xs in order to simplify the logic; the  “ don ’ t cares ”  should not be confused 
with the BCD bit    =    X in Table  1.16 . The  “ don ’ t cares ”  are used to advantage in 
forming minterms, as, for example, in Tables  1.17 – 1.23 .     

 In order to generate the K - maps, place a 1 in the K - map cells corresponding to 
the 1s that appear in Table  1.16 . For example, for  segment a  in Table  1.17 , a 1 is 
recorded in the cell WXYZ    =    0000, corresponding to the  1  (bolded) in the  segment
a  column in Table  1.16 . 

 The K - maps will lead to simplifying the equations for the seven - segment com-
puter display (Fig.  1.8 ). The equations will then be used to design the digital logic 
circuit in Figures  1.9  and  1.10 .   

Figure 1.8     BCD to seven - segment code converter.  
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Table 1.16    Truth Table for Binary - Coded Decimal (BCD) Converter 

   Decimal 
digit

   BCD input bits     Computer display segment output bits  

   W     X     Y     Z     a     b     c     d     e     f     g  

  0    0    0    0    0    1    1    1    1    1    1    0  
  1    0    0    0    1  0    1    1    0    0    0    0  
  2    0    0    1    0    1    1    0   1    1    0    1  
  3    0    0    1    1    1    1    1    1    0    0    1  
  4    0    1    0    0  0    1    1    0    0    1    1  
  5    0    1    0    1    1    0    1    1    0    1    1  
  6    0    1    1    0  0    0    1    1    1    1    1  
  7    0    1    1    1    1    1    0   1    0    0    0  
  8    1    0    0    0    1    1    1    1    1    1    1  
  9    1    0    0    1    1    1    1    0    0    1    1  
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Table 1.17    K - Map for Segment a 

YZ

WX 00 01 11 10

00 1 1 1

01 1 1

11 X X X X

10 1 1 X X

W W
—

X
—

Z
—

XZ YZ

a W W X Z Z X Y= + + +( ).

Table 1.18    K - Map for Segment b 

YZ

WX 00 01 11 10

00 1 1 1 1

01 1 1

11 X X X X

10 1 1 X X

Y
�

Z
�

W W
�

X
�

YZ

b W W X YZ Y Z= + + + .

Table 1.19    K - Map for Segment c 

YZ

WX 00 01 11 10

00 1 1 1

01 1 1 1

11 X X X X

10 1 1 X X

W Y
�

X
�

YZ XY Z
�

c W Y X YZ XY Z W Y Y XZ XZ= + + + = + + +( ).
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Table 1.20    K - Map for Segment d 

YZ

WX 00 01 11 10

00 1 1 1

01 1 1 1

11 X X X X

10 1 X X

X
—

Y
—

Z
—

X Y
—

Z Y

d XYZ XYZ Y Y XZ XZ Y= + + = + +( ) .

Table 1.21    K - Map for Segment e 

YZ

WX 00 01 11 10

00 1 1

01 1

11 X X X X

10 1 X X

X
—

Y
—

Z
—

YZ
—

e Z XY Y= +( ).

Table 1.22    K - Map for Segment f 

f Z Y XY W XY= + + +( ) .

YZ

WX 00 01 11 10

00 1

01 1 1 1

11 X X X X

10 1 1 X X

Y
�

Z
�

XY
�

XY Z
�

W
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Figure 1.9     Two - bit comparator block diagram.  
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Table 1.23    K - Map for Segment g 

YZ

WX 00 01 11 10

00 1 1

01 1 1 1

11 X X X X

10 1 1 X X

W W
�

X Y
�

W
�

X
�

Y YZ
�

g W XY XY W YZ= + + +( ) .

Comparators

 A comparator is another type of combinational circuit. Its block diagram is shown 
in Figure  1.9  and the corresponding logic diagram is shown in Figure  1.10 . For 
example, as Figure  1.10  shows, a comparator can be designed to compare two 2 - bit 
quantities for greater - than (G), equal - to (E), and less - than (L) conditions. By mini-
mizing the logic in Table  1.24 , as accomplished by the K - maps in Tables  1.25 – 1.27 , 
the logic circuit is designed in Figure  1.9 . The K - maps are generated by recording 
a 1 in cells corresponding to 1s in Table  1.24 ; for example, placing a 1 in the cells 
a1 , a 0 , b 1 , and b 0     =    0100 for G in Table  1.24 . Notice, as opposed to previous exam-
ples, there are no “ don ’ t care ”  conditions because all four comparator bits are 
relevant.    

Decoders

 A decoder is a combinational circuit that, when enabled, selects one of 2 n  inputs and 
produces a 1 output, where n is the number of input bits, as shown in Figure  1.11 . 
After this block diagram is displayed, the truth table (Table  1.28 ), is formulated, 
showing the relationship between inputs and outputs, where an output term 1 is 
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Figure 1.10     Two - bit comparator logic diagram.  
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generated according to the appearance of 0s and 1s in the inputs columns; for 
example,   d E x  x  for E x  x3 1 0 1 0= = =1 100.     

 Finally, Table  1.28  is used to design the logic diagram in Figure  1.11 . Applying 
K - maps to minimize the logic of the truth table is not necessary because there is 
only a single 1 output for each combination of inputs in Table  1.28 . However, the 
truth table is used to generate the output equations, which will lead to the design of 
the logic diagram in Figure  1.11 . An application of the decoder is to select an operand 
(i.e., 4 - bit output d 0 d 1 d 2 d 3 ) in a computer instruction, based on the operation code 
(i.e., 2 - bit input x 1 x 0 ) in the instruction, when the instruction execution enable is 
high (E    =    1).  

Encoders

 Encoders produce n output bits in accordance with the value of 2 n  input bits, as 
shown in the block diagram of Figure  1.12 . Like the decoder, it is not necessary to 
develop K - maps of the outputs as a function of the inputs because of the inherent 
simplicity of the circuit logic in Figure  1.12 . Equations that emerge from the 



Table 1.24    Truth Table for Two - Bit Comparator 

   Inputs     Outputs  

   a 1      a 0      b 1      b 0      G: a 1 a 0     >    b 1 b 0      E: a 1 a 0     =    b 1 b 0      L: a 1 a 0     <    b 1 b 0

  0    0    0    0    0    1    0  
  0    0    0    1    0    0    1  
  0    0    1    0    0    0    1  
  0    0    1    1    0    0    1  
  0    1    0    0    1    0    0  
  0    1    0    1    0    1    0  
  0    1    1    0    0    0    1  
  0    1    1    1    0    0    1  
  1    0    0    0    1    0    0  
  1    0    0    1    1    0    0  
  1    0    1    0    0    1    0  
  1    0    1    1    0    0    1  
  1    1    0    0    1    0    0  
  1    1    0    1    1    0    0  
  1    1    1    0    1    0    0  
  1    1    1    1    0    1    0  

Table 1.25    K - Map for Output G:a 1 a 0     >    b 1 b 0

G a b b a b a a b0 1 0 1 1 1 0 0= + + .

Inputs Inputs b1b0

00 01 11 10

a1a0 00

01 1

11 1 1 1

10 1 1

a0
—
b1

—
b0 a1

—
b1 a1 a0

—
b0

Table 1.26    K - Map for Output E:a 1 a 0     =    b 1 b 0

E a a b b a a b b a a b b a a b b

a b a b a b a b

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 1 0 0 0 0 1 1

= + + +

= + +( ) (( ) ( )( )a b a b a b a b a b a b0 0 0 0 1 1 1 1 0 0 0 0+ = + + .

Inputs Inputs b1b0

00 01 11 10

a1a0 00 1

01 1

11 1

10 1

�
a1

�
a0

�
b1

�
b0

�
a1 a0

�
b1 b0 a1a0b1b0 a1

�
a0 b1

�
b0
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Figure 1.11     Two inputs and four outputs decoder block and logic diagrams.  
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Table 1.27    K - Map for Output L:a 1 a 0     <    b 1 b 0

L a a b a b b a b1 0 0 0 1 0 1 1= + + .   

Inputs Inputs b1b0

00 01 11 10

a1a0 00 1 1 1

01 1 1

11

10 1

—
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—
a0 b0

—
a0 b1 b0

—
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Table 1.28    Truth Table for Two Inputs and Four Outputs Decoder 

   Inputs     Outputs  

   E (Enable)     x 1      x 0      d 3      d 2      d 1      d 0

  1    0    0     1     0    0    0  
  1    0    1    0     1     0    0  
  1    1    0    0    0     1     0  
  1    1    1    0    0    0     1

d Ex x ; d Ex x ; d Ex x ;d Ex x1 0 2 1 0 1 1 0 0 1 03 = = = = .

Figure 1.12     The 4 - bit to 2 - bit encoder block and logic diagrams.  
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relationships in the truth table (Table  1.29 ) are used to design the logic circuit in 
Figure  1.12 . The outputs x 1  and x 0  are generated as the sum of the products of inputs 
where there are 1 s in the x 1  and x 0  columns as signifi ed by the bolded quantities.     

 An application of the encoder is data compression in which we could shrink 
4   bits of input to 2   bits of output in a database application that deals with large 
quantities of data. For example, representing d 0 d 1 d 2 d 3     =    0100 as x 1 x 0     =    01.  
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Figure 1.13     The 4 - to - 1 multiplexer block and logic diagrams.  
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Table 1.29    Truth Table for 4 - Bit to 2 - Bit Decoder 

    Inputs      Outputs  

  d 0     d 1     d 2     d 3     x 1     x 0
  1    0    0    0    0    0  
  0    1    0    0    0     1
  0    0    1    0     1     0  
  0    0    0    1     1     1

x d d d d d d d d , x =d d d d d d d d1 0 1 2 3 0 1 2 3 0 0 1 2 3 0 1 2 3= + + .   

Multiplexers

 A multiplexer acts as a data selector, meaning that if the multiplexer has n select 
lines, one of 2 n  inputs can be selected as the output. For example, in Figure  1.13 , 
using selector lines S 0  and S 1 , one of four inputs, d 0 , d 1 , d 2 , d 3 , can be selected at the 
output Z. The output equation for Z is derived from Table  1.30 , noting that a given 
output is produced for given values of the selectors, for example, Z    =    d 0  when 
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Table 1.30    Truth Table for 4 - to - 1 Multiplexer 

    Selector     Output  

  S0    S1    Z  
  0    0    d 0
  0    1    d 1
  1    0    d 2
  1    1    d 3

Z S S d S S d S S d S S d0 1 0 0 1 1 0 1 2 0 1 3= + + + .   

S S0 1 11= . Multiplexers differ from decoders and encoders by virtue of select lines 
that cause inputs to be produced at the output. An application is to combine data 
received from the Internet on input lines d 0 , d 1 , d 2 , and d 3  onto a single microproces-
sor memory line Z, if an Internet interrupt has occurred, that has a code represented 
by selector lines S 0 S 1 .      

Demultiplexers

 A demultiplexer causes an input x to be transferred to one of 2 n  output lines, where 
n is the number of select inputs in Figure  1.14 . Output equations for a demultiplexer 
with two select inputs and four outputs are shown in the truth table, Table  1.31 . The 
demultiplexer does the reverse of the multiplexer; for example, it distributes Internet 
data, which have been multiplexed on input line x, to each of four microprocessor 
output ports d 0 , d 1 , d 3 , and d 4 .For example, Internet data will be distributed to output 

port d 0  when   S  S0 1 = 11 in Table  1.31 .       

SEQUENTIAL CIRCUITS 

 A  clocked synchronous sequential circuit  uses fl ip - fl ops to store data, and its outputs 
depend on both the previous  and  current  values of inputs  [HAR07] . These circuits 
are called state machines, wherein states are stored in fl ip - fl ops, and state changes 
are triggered by CPs. In an asynchronous sequential circuit , the completion of an 
operation starts the next operation (i.e., a clock is not needed). 

Flip-Flops and Latches 

 A fl ip - fl op is a  clocked synchronous sequential circuit  with a 1 - bit memory. The 
output of the fl ip - fl op can be changed by the rising or falling edge of a CP. A clock 
prevents the fl ip - fl op from changing state when spurious inputs occur. Instability can 
arise if inputs change during the CP. This problem is avoided by holding data stable 
for specifi ed periods of time before and after the CP. The former period is called 
setup time  and the latter is called  hold time . 
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Table 1.31    Truth Table for 1 - to - 4 Demultiplexer 

    Select 
inputs

   Data 
input      Data output  

  S 0     S 1         d 0     d 1     d 2     d 3
  0    0    x  S S x0 1   0    0    0  
  0    1    x    0  S S x0 1   0    0  
  1    0    x    0    0  S S x0 1   0
  1    1    x    0    0    0    S 0 S 1 x

d S S x; d S S x; d S S x; d S S x1 2 0 3 0 10 0 1 0 1 1= = = = .

Figure 1.14     The 1 - to - 4 demultiplexer block and logic diagrams.  
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 Flip - fl ops use storage circuits called latches. The term  “ latch ”  refers to the 
ability to receive and hold data (set) until the latch is reset. The most common latch 
is the  SR  ( set – reset ). An application of a latch is to set and hold an interrupt fl ag 
when an input device needs attention by the microprocessor. A fl ip - fl op is a latch 
with clock input (CLK). Flip - fl ops implement changes in circuit states that are trig-
gered by a CP. For example, when the CP and the input line cause the fl ip - fl op to 
assume the set state, a computer program would execute a branch operation; when 
the CP and the input line cause the fl ip - fl op to assume the reset state, a computer 
program would return to the main line of the program. An interesting question is 
how a latch or fl ip - fl op manages to be in the initial state. The answer is that the latch 
or fl ip - fl op will be in the initial state determined by the initial state settings wired 
into the fl ip - fl op. 

SR Latch 

 The logic rules of the SR latch are the following: 
 NOR Gate output    =    1, if  all  inputs    =    0; output    =    0, if  any  input    =    1. 
 These rules are applied in the truth table shown in Table  1.32  and the logic 

diagram in Figure  1.15 . Notice in Table  1.32  and Figure  1.15  that there are illegal 
next states in the case of S    =    1 and R    =    1 because it is not possible to simultaneously 
set and reset the latch.      

Reset–Set ( RS) Flip -Flop

 The RS fl ip - fl op is a clocked SR latch. This fl ip - fl op is important because all other 
fl ip - fl ops are derived from it. Figure  1.16  shows the implementation of this fl ip - fl op 
using NAND gates and the truth table, Table  1.33 , shows the gate relationships for 
present state at time t and next state at time (t    +    1), including simultaneous set and 
reset that should be avoided. In Figure  1.16 , notice that there is feedback from Gate 
3 to Gate 4 of Q(t    +    1) and from Gate 4 to Gate 3 of   Q t 1( )+ .     

 The design in Figure  1.16  is obtained by employing the equations below, which 
in turn are obtained from Table  1.33  and the K - map in Table  1.34 . The components 
of the equations are annotated on Figure  1.16 . The K - map is constructed by noting 
whether the next state output Q(t    +    1) is a 1. If it is, the corresponding present state 

Table 1.32    SR Latch Truth Table Using NOR Gates 

   S  
   Q(t) (present 

state)     R  
Q t( )

(present state)  
   Q(t    +    1) (Gate #1) 

(next state)  
Q t( )+ 1  (next 

state)

  0    0    0    1    0 (no change)    1(no change)  
  1    0    1    1    0 (illegal)    0 (illegal)  
  0    1    1 (reset)    0    0 (change state)    1(change state)  
  1 (set)    0    0    1    1(change state)    0(change state)  
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output Q(t) is inserted into the K - map. The corresponding next state and present 
state outputs are bolded in Table  1.33 . You can see that Table  1.33  contains eight 
entries, corresponding to whether the Present State Q(t) (Gate #3) is 0  or  1 ; however, 
Figure  1.16  shows fi ve cases, suffi cient to demonstrate the logic of the RS 
fl ip - fl op.   

 Based on Table  1.33 , the K - map is constructed in Table  1.34 . Then the K - map 
is used to formulate the equations for the fl ip - fl op: 

Figure 1.15     SR latch logic diagram.  

R = 0

Q(t) = 0

___
Q(t) = 1

___
Q(t) = 1

___
Q(t) = 0

Q(t) = 0

S = 0
______
Q(t + 1) = 1

No Change in Output

R = 1

Q(t) = 1

Q(t) = 0

S = 0

Q(t + 1) = 0

Reset: Change Output

R = 0

S = 1

Q(t) = 0

Set: Change Output

R = 1

S = 1

Q(t) = 0

___
Q(t) = 1

___
Q(t) = 0

___
Q(t) = 1

___
Q(t) = 1

Q(t) = 0

Q(t + 1) = 0

Q(t + 1) = 0

Q(t + 1) = 0

Q(t + 1) = 1

______
Q(t + 1) = 0

______
Q(t + 1) = 1

______
Q(t + 1) = 0

______
Q(t + 1) = 0

Illegal States



Digital Logic and Microprocessor Design 37

Figure 1.16     RS fl ip - fl op.  
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Table 1.33    RS Flip - Flop Truth Table 

   S (Gate #1)     R (Gate #2)  
   Present state 

Q(t) (Gate #3)  

   Next state 
Q(t   +    1) 

(Gate #3)  

   Present 
state   Q t( )
(Gate #4)  

   Next state 
Q t( )+ 1

(Gate #4)  

  0    0    0    0 (hold)     1      1
  0    0     1      1  (hold)    0    0  
  0    1 (reset)    0    0     1      1
  0    1 (reset)    1    0     0      1
  1 (set)    0     0      1     1    0  
  1 (set)    0     1      1     0    0  
  1(illegal)    1(illegal)     0      1     1    0  
  1(illegal)    1(illegal)     1      1     0    0  
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 Table  1.34a : (Gate #3):   Q t 1 S R Q t( ) ( )+ = +

 Table  1.34b : (Gate #4):   Q t 1 S R Q t( ) ( ( ))+ = +
Problem:  What are the illegal states of the RS fl ip - fl op?  

Answer:  The states S    =    1 (set) and R    =    1 (reset) are not allowed in an RS fl ip -
fl op because set and reset cannot exist simultaneously (indeterminate state).     

Delay ( D) Flip -Flop

 The D or delay fl ip - fl op, shown in Figure  1.17 , uses NAND gates. It is widely used 
in computers for transferring data. Several of these fl ip - fl ops can be used to design 
a CPU register, where each fl ip - fl op is used to store 1   bit  [RAF05] . This fl ip - fl op 
delays the input appearing at the output by one CP. The D input goes directly into 
the S input and the complement of the D input goes to the R input. The D input is 
sampled during the occurrence of the CP. If D is 1, the fl ip - fl op is switched to the 
set state (unless it was already set). If D is 0, the fl ip - fl op switches to the clear state. 
If CP    =    1, the output Q(t    +    1) of the upper fl ip - fl op is fed to the input of the lower 
fl ip - fl op in Figure  1.17 . On the other hand, if CP    =    0, Q(t) of the upper fl ip - fl op is 
fed to the input of the lower fl ip - fl op.

Table 1.34a    K - Map 

S R Present State Q(t)
(Gate #3)

0 1

0 0 1

0 1

1 1 1 1

1 0 1 1

S R�Q(t)

Table 1.34b    K - Map 

S R Present State Q
�

(t)
(Gate #4)

0 1

0 0 1

0 1 1 1

1 1

1 0

S
�

R S
�

Q
�

(t)
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Problem:  Given the above rules for the behavior of the D fl ip - fl op, develop its 
truth table.    

Solution:  These relationships are embodied in Table  1.35 .      

 A D fl ip - fl op circuit can also be triggered by the negative - going edge of the CP, as 
opposed to being activated by pulse duration. The timing diagram for such a circuit 

Figure 1.17     D fl ip - fl op.  
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is shown in Figure  1.17 . As the timing diagram shows, the D input is refl ected in 
the Q(t    +    1) (next state) output on the negative edge of the CP. Q(t    +    1) follows the 
D input regardless of the present state Q(t), if CP     =     1 . If CP    =    0, there is no change 
in the output. This property can be applied, for example, to transferring data from 
an input device (D) to microprocessor memory port Q(t    +    1), according to the data 
transfer rules of Figure  1.17 .  

JK Flip -fl op 

 A JK fl ip - fl op is a refi nement of the RS fl ip - fl op by defi ning and allowing the illegal 
state of the RS fl ip - fl op. In Figure  1.16 , inputs J and K behave like inputs S and R 
to set and clear the fl ip - fl op (note that in a JK fl ip - fl op, the letter J is for set and the 
letter K is for clear). When logic 1 inputs are applied to both J and K simultaneously, 
the fl ip - fl op switches to its complement state (e.g., if Q    =    0, it switches to Q    =    1 in 
Figure  1.18 ).   

 Note that because of the feedback connection in the JK fl ip - fl op, a CP signal 
that remains a 1 (while J    =    K    =    1) after the outputs have been complemented once 
will cause repeated and continuous transitions of the outputs. To avoid this, the CPs 
must have a time duration less than the propagation delay through the fl ip - fl op. 

 Table  1.36  shows how the state of output Q at t    +    1 changes as a function of 
the original state of Q(t) and the set input J and the clear input K. The K - map for 

Table 1.35    D Flip - Flop Truth Table 

   D     CP  
   Present 

state Q(t)  
   Next state Q(t    +    1)    =    D 

when CP    =    1  
   Present 

state   Q t( )
   Next state   Q t D( )+ =1

when CP    =    1  

  0    0    0    0 (no change)    1    1 (no change)  
  0    1    1    0 (clear)    0    1  
  1    0    1    1 (no change)    0    0 (no change)  
  1    1    0    1 (set)    1    0  

Figure 1.18     JK fl ip - fl op circuit.  
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JK fl ip - fl op in Table  1.37  is derived from the truth table in Table  1.36  by plugging 
1 s in the map wherever there is a Q(t    +    1)    =    1 in the Table  1.36  (bolded). For 
example, when J    =    0, K    =    0, Q(t)    =    1, and Q t    +    1)    =    1 in Table  1.36 , a 1 is placed 
in the Q(t)    =    1 column in Table  1.37 .

Problem:  Based on the K - map, what are the next state equations for Q(t    +    1) 
and   Q t 1( )+ ?    

Answer:  Referring to Table  1.37 , the next state Q(t    +    1) is governed by the 
following equation: 

     Q t 1 J Q t K Q t .( ) ( ) ( )+ = +       

 Using this equation for Q(t    +    1), the equation for   Q t 1( )+  can be computed as 
follows:

    Q t J Q t K Q t J Q t K Q t J(K Q t K Q t .( ) ( ) ( ) ( ( ))( ( )) ( ( )) ( )+ = + = + + = + +1

 These equations are annotated on Figure  1.18 .  

Table 1.36    JK Flip - Flop Truth Table 

   J     K     CP  
   Q(t) present 

state
   Q(t    +    1) 

next state  
Q t( )

present state  
Q t 1( )+

next state  

  0    0    1    0    0    1    1  
  0    1 (clear)    1    0    0    1    1  
  1(set)    0    1    0     1     1    0  
  1    1    1    0     1     1    0  
  0    0    1    1     1    0    0  
  0    1(clear)    1    1    0    0    1  
  1(set)    0    1    1     1     0    0  
  1    1    1    1    0    0    1  

Table 1.37    K - Map for JK Flip - Flop 

J K Q(t) Present 
State

Q(t) Present 
State

0 1

0 0 1

0 1

1 1 1

1 0 1 1

J Q
—

(t) K
—

Q(t)
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T Flip -Flop

 The T fl ip - fl op is a single input version of the JK fl ip - fl op  [RAF05] . It is typically 
used in the design of binary counters (covered later in the section “ Design of Binary 
Counters,”  where complementation of the output is required. For example, in Table 
 1.38  when T    =    1, the input Q(t) is toggled, producing its complement in output 
Q(t    +    1). By examining the gate operations in Figure  1.19 , at the Q output, we see that:

Q t TQ t T Q t TQ t T Q t T Q t T Q t T Q t( ) ( ) ( ) ( ( ))( ( )) ( ( ))( ( )) (+ = + = = + + =1 )) ( ).+ T Q t

 Furthermore, the equation for   Q t( )+1  is derived as follows:

    
Q t T Q t T Q t T Q t T Q t

T Q t T Q t T Q

( ) ( ) ( ) ( ( ))( ( ))

( ( ))( ( ))

+ = + =

= + + =

1

(( ) ( ).t T Q t+
   

 Note that in Figure  1.19  feedback from the fl ip - fl op outputs to the inputs is used to 
obtain the desired outputs at time t    +    1. 

Problem:  Based on the above equations, develop the T fl ip - fl op truth table.  

Solution:  The truth table is shown in Table  1.38 .     

Triggering of Flip -Flops

 There are situations where it is useful to have the output change only at the rising 
or falling edge of the CP, rather than  during  the CP. This stabilizes the circuit because 

Figure 1.19     T fl ip - fl op circuit diagram.  

T

CP

CP

Q(t)
Q(t) TQ(t)

_
T

___
Q(t)

___
Q(t)

____
TQ(t)

Q(t)

________ ________ ___  ____
________

______ ___ ______ ____ __

TQ(t) + TQ(t) = (TQ(t))(TQ(t)) = (T + Q(t))(T + Q(t)) = TQ(t) + TQ(t)

__________ _____
_______ _______ _______

__ _________ ___ ___ ____ __  ____

Q(t + 1) = TQ(t) + TQ(t) = (TQ(t)) (TQ(t) = (T + Q (t)) (T + Q(t)) = TQ(t) + TQ(t)

Table 1.38    T Flip - Flop Truth Table 

   T     CP     Q(t)       Q t 1 T Q(t) T Q(t)( )+ = +        Q t( )        Q t T Q t T Q t( ) ( ) ( )+ = +1

  0    1    0    0 (no change)    1    1 (no change)  
  1    1    0    1 (toggle)    1    0 (toggle)  
  0    1    1    1 (no change)    0    0 (no change)  
  1    1    1    0 (toggle)    0    1(toggle)  
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all changes are synchronized to the rising or falling edge of the CP. For example, 
when an input interrupt occurs, it should be held by the microprocessor until it can 
be serviced during  the CP and only released on the  falling edge  of the CP. An edge -
 triggered fl ip - fl op achieves this by combining a pair of latches in series. Figure  1.20  
shows an edge - triggered D fl ip - fl op where two D latches are connected in series, 
one directly, and one through an inverter. The fi rst latch is called the master latch. 
When CLK is a 1 at Step 1, with a positive edge trigger, the master latch is enabled 
but the second latch, called the slave latch, is disabled with a negative edge trigger, 
so that a 1 is produced at the Q output of the master latch and a 0 is produced at the 
output of the slave latch. A 1 is produced at the master latch output because when 
CLK    =    1, the Q output follows the D input. Contrariwise, when CLK is a 0 at Step 
2, with a negative edge trigger, the master latch is disabled but the slave latch is 
enabled with a positive edge trigger (a negative edge is made positive with an 
inverter) so that a 1 is produced at the Q output of the slave latch by the Q output 
at the slave latch following the D input. In Step 2 it is assumed that Q still equals 
1 in the master latch from Step 1. The Q output of the master latch does not change 
when CLK    =    0, so that a 1 is transferred from the master latch to the slave latch.     

Analysis of Asynchronous Sequential Circuits 

 As you have seen, edge - triggered fl ip - fl ops change state at the edge of a synchro-
nizing CP. Many circuits require the initialization of fl ip - fl ops to a known state 

Figure 1.20     Edge - triggered fl ip - fl op.  
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Figure 1.21     Analysis of asynchronous sequential circuit.  
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independent of the clock signal. Sequential circuits that change states whenever a 
change in input values occurs, independent of the clock, are referred to as asynchro-
nous sequential circuits . Synchronous sequential circuits, latches, and fl ip - fl ops, on 
the other hand, change state only at the edge of the CP. For asynchronous sequential 
circuits, inputs are used to either set or clear the circuit without  using the clock. 
Figure  1.21  is an example of an asynchronous sequential circuit. The next state 
equations for Z 1  and Z 2— as a function of present states a, z 1 , and z 2— provide the 
logic for the outputs of the circuit in Figure  1.21 . Feedback from outputs to inputs 
in Figure  1.21  produces the desired next states. The output equation

    Z a z a z ) a a a z a z z  z a z a z z  z1 1 2 1 2 1 2 1 2= + + = + + + = + +( )( 1 2

  can be reduced because the term   a a = 0, and the last term   z  z1 2  does not change the 
value of the equation, as demonstrated by the K - map in Table  1.40  that is used to 
minimize this equation, producing   Z a z a z1 1 2= + . Thus, the resultant terms   a z1

and   a z2  are identifi ed in the K - map. The validity of this transformation is shown 
in the truth table for Z 1 , Table  1.39 . The K - map in Table  1.40  is produced by record-
ing 1s in the map corresponding to 1 s (bolded) that appear for Z 1  in the truth table. 
This example demonstrates the fact that K - maps can accomplish Boolean expression 
reduction that is not possible with algebraic manipulation.

Problem:  Reduce output equation   Z2 by developing the truth table and corre-
sponding K - map.    

Solution:  The output equation   Z a z a z ) a a a z a z z  z2 1 2 1 2= + + = + + + =( )( 1 2

can be reduced, as shown above, because the fi rst term   a a = 0
and the last term does not change the value of the equation, as demonstrated 
by the K - map in Table  1.41  that is used to minimize this equation, producing 
Z a z a z2 1 2= + ,where it is shown that the term z 1 z 2  is redundant. Thus, the 
resultant terms   a z1 and a z 2  are identifi ed in the K - map. The validity of this 

a z a z1 + 2
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Table 1.39    Truth Table for   Z a z a z a z a z1 1 2 1 2= + + +( )( )

   a     z 1      z 2
   Decimal 

code    =    az 1 z 2      (a    +    z 1 )       ( )a z2+        Z a z a z1 1 2= + +( )( )        a z1        a z2        Z a z a z1 1 2= +

  0    0    0    0    0    1    0    0    0    0  
  0    0    1    1    0    1    0    0    0    0  
  0    1    0     2     1    1     1     1    0     1
  0    1    1     3     1    1     1     1    0     1
  1    0    0     4     1    1     1     0    1     1
  1    0    1    5    1    0    0    0    0    0  
  1    1    0     6     1    1     1     0    1     1
  1    1    1    7    1    0    0    0    0    0  

Table 1.40    K - Map for   Z a z a z a z +a z1 1 2 1 2= + + =( )( )

z1 z2 a

0 1

0 0 0 1

0 1 0 0

1 1 1 0

1 0 1 1

a� z1 z1
�z2 a�z2

redundant

Table 1.41    K - Map for   Z a z a z a z +a z2 1 2 1 2= + + =( )( )

z1 z2 a

0 1

0 0 0 0

0 1 0 1

1 1 1 1

1 0 1 1

a� z1 z1z2 az2

redundant

transformation is shown in the truth table for Z 2  (Table  1.42 ). The K - map is 
produced by recording 1s in the map corresponding to 1 s (bolded) that appear 
for Z 2  in the truth table.      

 The state transition table, depicting the state changes in transitioning from input 
variables a, z 1 , and z 2  to output variables Z 1  and Z 2 , is shown in Table  1.43 . This 
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table is constructed by noting the values of Z 1  corresponding to a    =    0 and a    =    1 and 
values of Z 2  corresponding to a    =    0 and a    =    1 in Tables  1.39  and  1.42 , respectively, 
and recording the relationships in Table  1.43 . Table  1.43  is used to indicate transi-
tions from microprocessor state Z 1     =    1 to state Z 2     =    1 and vice versa. Consider the 
following application: when a    =    1, z 1     =    0, and z 2     =    0 (decimal code 4), Z 1  is in the 
next state    =    1 processing transactions. However, when a    =    1, z 1     =    0, and z 2     =    1 
(decimal code 5), the microprocessor transitions to the next state Z 2     =    1 to receive 
additional transaction input.   

 Another application of the asynchronous sequential circuit is the occurrence of 
asynchronous inputs to a microprocessor that arrive from the Internet, not on sched-
ule (not governed by CP), but unscheduled (i.e., asynchronously). For example, let 
a, z 1 , and z 2  be the binary bits of a decimal transaction code, arriving from the 
Internet, in a database application, where one type of transaction is processed by a 
microprocessor at its input Z 1  and the second type at its input Z 2 . Suppose the allow-
able decimal codes at Z 1  are  2 ,  3 ,  4 , and  6  in Table  1.39  (bolded), and the allowable 
codes at Z 2  are  2 ,  3 ,  5 , and  7  in Table  1.42  (bolded). Then, Tables  1.39  and  1.42  
provide the required transaction processing logic for Z 1  and Z 2 , respectively.  

Table 1.42    Truth Table for   Z a z a z )2 1 2= + +( )(

   a     z 1      z 2
   Decimal 

code    =    az 1 z 2      (a    +    z 1 )       (a z )2+        Z Z a z a z2 2 1 2= = + +( )( )        a z1      az 2        Z a z a z1 22 = +

  0    0    0    0    0    1    0    0    0    0  
  0    0    1    1    0    1    0    0    0    0  
  0    1    0     2     1    1     1     1    0     1
  0    1    1     3     1    1     1     1    0     1
  1    0    0    4    1    0    0    0    0    0  
  1    0    1     5     1    1     1     0    1     1
  1    1    0    6    1    0    0    0    0    0  
  1    1    1    7    1    1     1     0    1     1

Table 1.43    State Transition Table for Asynchronous Sequential Circuit 

   Present 
state

   Next state  

   a    =    0     a    =    1  

   z 1      z 2        Z a z a z1 21 = +        Z a z a z1 22 = +        Z a z a z1 21 = +        Z a z a z1 22 = +

  0    0    0    0    1    0  
  0    1    0    0    0    1  
  1    0    1    1    1    0  
  1    1    1    1    0    1  
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Relationship among Inputs, Flip -Flops,
and Output States 

 Figure  1.22  shows an example of analyzing the inputs, D fl ip - fl ops, and output states 
of an asynchronous sequential circuit. The diagram shows the equations for the next 
states Q x  and Q y , as a function of the present states D x  and D y , recalling that for D 
fl ip - fl ops, output Q follows input D.   

 The equations below produce the values shown in the state transition table, 
Table  1.44 , which shows the relationships among components.

    Q X Y A D ,x x= + =( )

    Q X Y A,x = +( )

    Q A X D ,y y= + =

    Q A X AX,y = + =

    B AY AY.= +
 An application is the processing of transaction code bits occurring at microprocessor 
input ports X, Y, and A. An output B    =    1 is produced by setting a fl ag B in a micro-
processor register when correct transaction codes are received. For example, if 
decimal interrupt code 1, 3, 4, 6, or 7, corresponding to X, Y, A    =    001, 011, 100, 

Figure 1.22     D fl ip - fl ops in asynchronous sequential circuit.  
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110, or 111 in Table  1.44 , respectively, is received, the fl ag would be set. The micro-
processor queries this fl ag to determine when to process transactions. The bolded 
terms in Table  1.44  indicate when the fl ag B is set.   

TYPES OF SYNCHRONOUS SEQUENTIAL CIRCUITS 

Mealy and Moore Machines 

 In the Mealy machine, the output states depend on the inputs and the present states 
of the fl ip - fl ops  [RAF05] . In the Moore machine, output states depend only on the 
present states of the fl ip - fl ops. For example, a Mealy machine would be used to 
control the execution sequence of a microprocessor that uses both  data inputs and 
the current state of the program (i.e., program address) to decide which instruction 
to execute next (e.g., doing database management using input data from the Internet). 
On the other hand, the Moore machine would be used to control microprocessor 
program execution when only  the current state of the program is relevant (e.g., doing 
a matrix multiplication on data stored in memory). Thus, the Mealy machine is the 
more versatile of the two.  

Minimization of States 

 Figure  1.23  shows a state diagram for a synchronous sequential circuit, which is 
classifi ed as a Mealy machine because outputs depend on  both  present states and 
inputs, where two of the paths are highlighted in red and green. It may be possible 
to minimize the number of states in these circuits by developing the state sequence 
diagram, based on Figure  1.23 , to see whether there are any redundant states. If there 
are, the reduction in states is refl ected in the revised state sequence table. Using 
Figure  1.23  and the original state sequence table, Table  1.45 , state Z is identifi ed as 
being redundant because the next state for both states V and Z is W, and the state 
changes have the same inputs and outputs (1, 1). Therefore, state Z is noted as 

X Y A+( ) A X= +

Table 1.44    State Transition Table for the Analysis of Asynchronous Sequential Circuit 

   Inputs     Next state     Flip - fl op inputs    Output  

   X       X      Y       Y      A       A
   Qx    =
 Dx       Qx      Qy    =    Dy       Qy

D Qx x= = D Qy y=
B AY AY= +

  0    1    0    1    0    1    1    0    1    0    1    1    0  
0     1     0     1     1     0    1    0    1    0    1    1     1
  0    1    1    0    0    1    1    0    1    0    1    1    0  
0     1     1     0     1     0    0    1    1    0    0    1     1
1     0    0    1     0     1    1    0    0    1    1    0     1
  1    0    0    1    1    0    0    1    1    0    0    1    0  
1     0     1     0     0     1    1    0    0    1    1    0     1
1     0     1     0     1     0    0    1    1    0    0    1     1
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redundant in Figure  1.23  and Table  1.45 . Another state indicated as redundant in 
Figure  1.23  and Table  1.45  is Y because both Y and W have the next state V, with 
same state change inputs and outputs (1, 0). State Y is also noted as redundant in 
Figure  1.23  and Table  1.45 . Therefore, states Z and Y do not appear in the revised 
state sequence table, Table  1.46 .     

 Figure  1.24  shows the result of eliminating redundant states in the state diagram. 
It is important to note that it may not be possible to eliminate “ redundant states ”

Figure 1.23     State diagram for minimization of states.  
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Table 1.45    Original State Sequence Table 

  Originating state    V    V    W    X     Y     W    V    W  Z
   States Y and Z 
are redundant     Branch     1     2     3     4      6      12     10     5  12

  Input    0    1    0    1     1     1    1    0     0       

  Next state    V    W    X    V     V     V    W    Y     V       

  Output    0    1    1    0     0     0    1    0     0       

Table 1.46    Revised State Sequence Table (Eliminating Redundant States) 

   Next state     Output  

   Present state     Input    =    0     Input    =    1     Input    =    0     Input    =    1  

  V    V    W    0    1  
  W    X    V    1    0  
  X        V        0  
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because these states could be associated with important functions. For example, 
redundant states could be associated with two microprocessors — one the primary, 
currently executing, and the other, a backup, redundant microprocessor, designed to 
take over if the primary fails. However, in general, digital circuitry can be simplifi ed 
by eliminating redundant states.    

Design of Synchronous Sequential Circuits 

 To design synchronous sequential circuits, or any circuit for that matter, start with 
your objective. For example, suppose you want a microprocessor to produce an 
output Z dependent on input A (e.g., input data A has arrived from the Internet, and 
the microprocessor produces output Z); the present state of your computer program 
is represented by X (e.g., ready to read input data A) and the present state of the 
input buffer A is represented by Y (e.g., input buffer A empty). You need to identify 
the transition to the next computer program state, X + , (e.g., fi ll buffer with input A 
data) and Y +  (e.g., input A buffer full). Thus, referring to the state diagram in Figure 
 1.25 , if an input occurs on microprocessor line A    =    1, and the present program state 
are X    =    1, Y    =    1, representing instruction ready to execute and input buffer A empty, 
respectively, output is produced on microprocessor line Z    =    1, and the program 
transitions to next state X +     =    0 (fi ll buffer) and Y +     =    0, (input buffer A full). The 
state diagram in Figure  1.25  is an example of a Mealy machine circuit specifi cation 
because outputs depend on both inputs and states of the circuit.   

 To design your circuit, identify the states, inputs that cause state transitions, and 
outputs produced by inputs and state transitions, as in the above example. Then, note 

Figure 1.24     Reduced state diagram.  
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in Figure  1.25  and in Table  1.47  the present states X and Y and input A that generate 
next state output X +     =    1. For example X    =    0, Y    =    1, and A    =    1 (or   XYA) produce 
X+     =    1. Next, for example, use the D fl ip - fl op, noting that the output corresponding 
to next state X +  is designated as D x  and its formulation is the following:

    D XYA XYA XYA XY A A XY XYA.x = + + = + = +( )      

 Similarly, produce the next state Y +  formulation in terms of a D fl ip - fl op output, as 
follows:

Figure 1.25     State diagram for design of sequential circuit.  
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Table 1.47    State Table for Sequential Circuit 

   Present 
states   Input  

   Next 
states    Flip - fl op inputs    Output  

   X     Y     A     X  +       Y  +         D X XY XYAx = = ++        D Y YA YAy = = ++        Z YA X= +

  0    0    0    0    0    0    0     1
  0    0    1    0    1    0     1     0  
  0    1    0    1    1     1      1     0  
  0    1    1    1    0     1    0    0  
  1    0    0    0    0    0    0     1
  1    0    1    1    1     1      1      1
  1    1    0    0    1    0     1      1
  1    1    1    0    0    0    0     1
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    D XYA XYA XYA XYA YA X X YA X X YA YA .y = + + + = + + + = +( ) ( ) ( )

 Also, develop the equation for output Z by noting in Figure  1.25  the present states 
X and Y and input A that generate Z    =    1 output, producing the following equation:

    Z XYA XYA XYA XYA YA X X XY A A YA XY .= + + + = + + + = +( ) ( ) ( )

 Then, using these equations, develop the state table in Table  1.47 . Next, formulate 
the K - maps in Tables  1.48 – 1.50 . Note that to construct the K - maps, 1s are placed 
in the cells of the maps wherever 1s appear for D x , D y , and Z in the state table. Recall 
that for D fl ip - fl ops, inputs are equal to the next states of the circuit. Last, based on 
the fl ip - fl op and output equations, design the circuit in Figure  1.26 .      

Message Processing Design 

 Synchronous sequential circuits are highly adaptable to message processing systems, 
as shown in Figure  1.27 . As shown in the fi gure, a message processing system 

Table 1.48    K - Map for   D XYA XYA XYA XY A A XY XYAx = + + = + = +( )

YA

X 00 01 11 10

0 1 1

1 1

X Y
—

A X
—

Y

Table 1.49    K - Map for Dy = X
—

Y
—

A + XY
—

A + X
—

Y A— + XY A— = 
Y
—

A(X
—

 + X) + Y A—(X
—

 + X) = (Y
—

A + Y A—)   

YA

X 00 01 11 10

0 1 1

1 1 1

Y
—

A Y A—

Table 1.50    K - Map for   Z XYA XYA XYA XYA= + + +

YA

X 00 01 11 10

0 1

1 1 1 1

Y
�

A
�

XY

YA X X XY A A YA XY= + + + = +( ) ( ) ( )
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Figure 1.26     Logic diagram for synchronous digital circuit.  
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involves a sequence of inputs X with the objective of the circuit detecting a bit 
pattern, such as 101. The circuit accomplishes this objective by changing state 
according to the bit pattern received. When the desired bit pattern is recognized, the 
sequence 101 is generated at the output. An application is the detection of computer 
program operation codes by a microprocessor. For example, if the operation code 
for the add instruction is the decimal 5 (binary 101), the output 101 would be gener-
ated in Figure  1.27  designating that the add instruction should be executed.   

Figure 1.27     Message processing state diagram.  
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Figure 1.28     Message processing circuit.  
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Table 1.51    State Transition Table 

   Present 
state

   Present T fl ip - fl op 
binary state Q  

  Input X    =    1    Input X    =    1    Input X    =    1  

   Next T fl ip - fl op 
state Q  

   Next T fl ip - fl op 
binary state Q     Output Z  

  A    0    B    1    1  
  B    0    C    1    0  
  C    0    A    1    1  

 The fi rst step in the design process is to specify the state transitions, as shown 
in Figure  1.27 , where the desired detected bit pattern is shown. State transitions are 
identifi ed that will serial process the incoming bit stream, looking for the desired 
pattern in Figure  1.27 . Additional steps involve designing the state transition table 
in Table  1.51  to represent the logic of Figure  1.27  in a tabular form and selecting a 
fl ip - fl op type to implement state transitions. In this case, the T fl ip - fl op is selected 
because its output toggles with each CP. If T    =    1, the fl ip - fl op causes complementa-
tion of the present state. This is the logic required to detect the input sequence 101 
in Figure  1.28 .      
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Figure 1.29     Binary counter state transition diagram and circuit.  
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Design of Binary Counters 

Two-Bit Counter 

 The binary counter is an example of a synchronous sequential circuit designed to 
count a sequence of binary digits. For example, if the counter can count two binary 
digits at a time, it would be able to process the following sequence of digits: 00, 01, 
10, and 11. Thus, the counter can count 2 n  binary numbers, using fl ip - fl ops (e.g., T 
fl ip - fl ops), where n is the number of binary bits in the count. Figure  1.29  shows the 
state transition diagram for a 2 - bit binary counter that implements the binary 
sequence count rules (e.g., if the sequence is 00, it is recognized by the next state 
01). After Figure  1.29  has been constructed, the state table (Table  1.52 ) for fl ip - 
fl ops 1 and 2 is developed followed by the state table (Table  1.53 ) for fl ip - fl ops 3 
and 4. The outputs b 0  and b 1  follow the logic rule:   TQ(t) TQ(t)+  in Figure  1.29 . Note 
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that an inverter is inserted between the fl ip - fl ops in Figure  1.29  in order to achieve 
the correct state transitions.      

Three-Bit Counter 

 A 3 - bit counter design proceeds by fi rst constructing the state diagram in Figure 
 1.30 , with present and next states annotated. Next, using JK fl ip - fl ops, show the 3 - bit 
counter excitation table (Table  1.54 ), noting fl ip - fl op states and fl ip - fl op inputs. The 
salient state conditions can be summarized as follows: when Q    =    0 and J    =    0, no 
change in state; when J    =    1, set the fl ip - fl op; when K    =    1, clear the fl ip - fl op; and 
when Q    =    1 and K    =    0, no state change. The reader may wonder how the present 
states are obtained in Figure  1.30 . The answer is that present states correspond to 
the present states of the fl ip - fl ops that, in turn, correspond to the condition where 
there is no CP (e.g., a 2 a 1 a 0     =    000).     

 To demonstrate the validity of the JK fl ip - fl op transformations in Figure  1.30 , 

recall the fundamental property of the JK fl ip - fl op:   Q next state) J Q(t) K Q(t)+ = +( .
For example, in the state transition   a a a a a a2 1 0 2 1 0000 001= =+ + + , applying Q + (next 
state) yields:

    a J Q t K Q t a a a a a a .2
+

2 2 1 0 2= + = +( ) ( )2 2 1 0 2

 Thus,

    a a a a a a a 001 000 0,2
+

1 0 2 1 0 2= + = + =
    a J Q (t) K Q (t) a a a a .1

+
1 1 1 1 0 1 0 1= + = +

Table 1.52    Binary Sequence Counter State Table 

   Present state    Next state fl ip - fl op 1    Next state fl ip - fl op 2    Output  

   a 1        a1
+        Q T Q 1 a1 1

+ = = ( )( )        Q T Q a+ += =2 1 1( )( )        b a1 1= +

  0    0    0    1    1  
  0    1    0    0    0  
  1    1    1    0    0  
  1    0    1    1    1  

Table 1.53    Binary Sequence Counter State Table 

   Present state    Next state fl ip - fl op 3    Next state fl ip - fl op 4    Output  

   a 0        a0
+        Q T Q 1 a3 0

+ = = ( )( )        Q T Q a+ += =4 0 1( )( )        b a0 0= +

  0    0    0    0    0  
  0    1    0    1    1  
  1    1    1    0    0  
  1    0    1    1    1  
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Figure 1.30     Three - bit counter state diagram and logic diagram.  
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 Thus,

    a a a a a ,1
+

0 1 0 1= + = + =01 10 0

    a J Q (t) K Q (t) a a .0
+

0 0 0 0 0 0= + = + = + =1 0 11 00 1

 Thus, the state transition   a a a a a a2 1 0 2 1 0000 001= =+ + +  is demonstrated. 
 Next, using Figure  1.30 , formulate the truth table (Table  1.54 ), incorporating 

the state transitions from Figure  1.30  and the fl ip - fl op inputs that generate these 
transitions. Next, the K - maps in Tables  1.55 – 1.60 , by noting the fl ip - fl op inputs that 
are bolded in Table  1.54 , and resultant equations, are developed for the fl ip - fl op 
inputs.     

Table 1.54    Three - Bit Counter Truth Table 

   Present 
State    Next state     Flip - fl op inputs  

   a 2      a 1      a 0        a2
+        a1

+        a0
+      J 2     =    a 1 a 0      K 2     =    a1 1 a 0      J 1     =    a 0      K 1     =    a 0      J 0     =    1     K 0     =    1  

  0    0    0    0    0    1    0    0    0    0    1    1  
  0    0    1    0    1    0    0    0    1    1    1    1  
  0    1    0    0    1    1    0    0    0    0    1    1  
  0    1    1    1    0    0    1 1   1    1    1    1  
  1    0    0    1    0    1    0    0    0    0    1    1  
  1    0    1    1    1    0    0    0    1    1    1    1  
  1    1    0    1    1    1    0    0    0    0    1    1  
  1    1    1    0    0    0    1     1     1    1    1    1  

Table 1.55    K - Map for J 2

a1a0

00 01 11 10

a2 0 1

1 1

J2 = a1a0

Table 1.56    K - Map for K 2

a1a0

00 01 11 10

a2 0 1

1 1

K2 = a1a0
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Table 1.57    K - Map for J 1

a1a0

00 01 11 10

a2 0 1 1

1 1 1

J1 = a0

Table 1.58    K - Map for K 1

a1a0

00 01 11 10

a2 0 X 1 1

1 X 1 1

K1 = a0

Table 1.59    K - Map for J 0

a1a0

00 01 11 10

a2 0 1 1 1 1

1 1 1 1 1

J0 = 1

Table 1.60    K - Map for K 0

a1a0

00 01 11 10

a2 0 1 1 1 1

1 1 1 1 1

K0 = 1

Shift Register Design 

 The design process starts by documenting the elements of the basic building block 
of the shift register — called the basic cell in Figure  1.31  — comprised of the multi-
plexer and the D fl ip - fl op. The D fl ip - fl op is used because the fl ip - fl op Q output 
follows the multiplexer basic cell D input, thus enabling the shift operation. The 
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Figure 1.31     Basic cell and logic design of shift register.  
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basic cell is replicated in the shift register logic design, also shown in Figure  1.31 . 
The shift register operates in Figure  1.31  by shifting the least signifi cant bit, x 0 , for 
a left shift, one fl ip - fl op output to the left on each CP. For a right shift, the most 
signifi cant bit, x 3 , is shifted one fl ip - fl op output to the right on each CP. These shifts 
are referred to as “ end around ”  because for a right shift, the least signifi cant bit, 
represented by Q 3  in Table  1.61 , is shifted to the most signifi cant bit position. More-
over, in a left shift, the most signifi cant bit, represented by Q 0  in Table  1.61 , is shifted 
to the least signifi cant bit position. The type of shift is based on the values of the 
operation selectors in Table  1.61 .       

RAM DESIGN 

 There are two types of RAM: static and dynamic. Static RAM stores data in fl ip -
fl ops. Dynamic RAM stores data in capacitors. Because capacitors gradually lose 
their charge, dynamic RAM must be refreshed periodically. A RAM circuit is shown 
in Figure  1.32  where 1   bit, 0 or 1, can either be read or written depending on whether 
a read or write operation is selected and whether a 1 or 0 appears at the input.    
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Figure 1.32     Random access memory (RAM) circuit.  
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Table 1.61    Truth Table for Shift Register 

Operation
selectors

Clock Clear 
input CLR

Operation Input Output

s0 s1

0 0 1 Clear Q0 Q1 Q2 Q3 0000

0 1 0 No 
operation

Q0 Q1 Q2 Q3 Q0 Q1 Q2 Q3

1 0 0 Shift 
right “end
around”

Q0 Q1 Q2 Q3 Q3 Q0 Q1 Q2

1 1 0 Shift left 
“end
around”

Q0 Q1 Q2 Q3 Q1 Q2 Q3 Q0

input CLK

HARDWARE DESCRIPTION LANGUAGE ( HDL)

 Given the complexity of some digital circuits, implementing them can be error 
prone. Therefore, as a design aid, aimed to increase design productivity and reduce 
errors, HDLs have been developed. In electronics, an HDL is any language from a 
class of computer languages for formal description of electronic circuits, and more 
specifi cally, digital logic. It can describe the circuit ’ s operation, its design and orga-
nization, and tests to verify its operation by means of simulation. 

 Using the proper subset of virtually any HDL, a software program called a 
synthesizer can infer hardware logic operations from the language statements and 
produce equivalent hardware functions to implement the specifi ed logic. Synthesiz-
ers use clock edges as the way to time a circuit. 
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 HDLs are text - based expressions of the logical and timing characteristics of 
electronic systems. Like concurrent programming languages, HDL syntax and 
semantics includes notations for expressing concurrency. Languages whose only 
purpose is to express circuit connectivity between blocks are classifi ed as computer -
 aided design languages. 

 The  automated  steps in using an HDL are the following:

   Develop the logic diagram, using truth tables.  

  Generate the logic equations corresponding to the truth table relationships.  

  Minimize the logic equations, if necessary, using K - maps.  

  Use the simulator component of the HDL to verify the correct operation of the 
circuit logic, in particular, test timing constraints.    

 More details on HDL can be found in Salcic and Smailagic  [SAL08] .  

SUMMARY

 This chapter has provided the reader with numerous microprocessor design fundamentals and 
practical examples that lay the groundwork for the practicing engineer or student to design a 
complete microprocessor. In addition to elucidating principles, the chapter explained why 
circuits operate the way they do. Furthermore, there was a focus on design process to provide 
the reader with a road map to successful design. Last, many examples of digital logic were 
drawn from everyday experience to show the reader that the application of digital logic is not 
limited to designing microprocessors.  
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T he objective of this chapter is to provide the reader with a case study illustrating design 
principles, design decisions, and the analysis of performance and reliability that are products 
of the design process, using the computer - based design of an elevator system as an example. 
This chapter builds upon the fundamentals of Chapter  1 : Digital Logic and Microprocessor 
Design.    

DESIGN PRINCIPLES 

 According to Harris and Harris  [HAR07] , the following design principles should be 
used to develop an effective design:

Simplicity favors regularity , meaning that functions exhibiting regularity should 
be implemented in simple hardware designs, as opposed to complex software 
designs that would be the choice for functions exhibiting nonregularity. For 
example, elevator push button controls would be implemented in hardware, 
whereas the algorithm for determining direction of travel would be imple-
mented in software.  

Make the common case fast , meaning that frequently executed functions should 
be implemented in a design that provides for fast execution. For example, 
the elevator door open and close function could be implemented in a fast 
microprocessor.  

Smaller is faster , meaning that small components, such as cache memory, are 
smaller and faster than large and slow main memory. Thus, for example, the 
data about frequently requested fl oors in an elevator system (e.g., lobby fl oor) 
would be stored in the cache, as opposed to basement fl oor data that would 
be stored in main memory.     

63
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DESIGN DECISIONS 

 There are a number of decisions that must be made as part of the design process 
that we explain as follows:

Control .      If the elements (see Table  2.1 ) of a system can operate independently, 
such as a Web system implemented on the Internet, control should be dis-
tributed. On the other hand, if there must be surveillance of the elements in 
order to coordinate operations, such as users generating fl oor requests in an 
elevator system, control should be centralized.    

Storage .      For systems with large storage demands and modest data access time 
specifi cations, such as a database management system, secondary storage is 
a requirement. However, for embedded systems in which the data volume 
generated is small but access time must be short to meet user demands, fast 
cache memory is the primary storage requirement. An example is an elevator 
system that must store simultaneous user fl oor requests and have quick access 
to those requests in a cache memory.  

Communication .      The major contenders for the system communication vehicle 
are the bus and point - to - point connectivity. This is a very interesting design 
decision because it is not obvious that one alternative would be better than 
the other for a given application. The point - to - point alternative provides 
dedicated communication but becomes unwieldy if applied to many compo-
nents because the hardware connectivity becomes complex and costly. 
However, if high speed communication is essential, point - to - point commu-
nication would be used because competing for bus  bandwidth would be 
infeasible for meeting high speed communication requirements, such as 
among the elevator system devices shown in Figure  2.1 . Bus communication 
is attractive for applications that have modest speed requirements, but where 
there is a multiplicity of devices that must communicate frequently, such as 
an Ethernet local network.    

Topology .      Communication and topology are intimately related because com-
munication paths are the elements of a topology. For example, in point - to -
 point connectivity, nodes (e.g., components) are directly connected by links 
(e.g., communication cables), whereas in a bus system, all nodes are con-
nected to a single link. In addition, topology is related to component and 
device count, which, in turn, are related to system hardware cost. Thus, by 
defi ning topology, designers can estimate hardware cost.     

IDENTIFICATION OF SYSTEM ELEMENTS 

 Using an elevator example, Tables  2.1  and  2.2  provide a manifest of the linkage of 
elements to the computer design process, where elements are the objects comprising 
a system. That is, the attributes of the elements are characterized in order to visualize 
how elements are related. These attributes will be used in various facets of the design 
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Figure 2.1     Elevator system architecture. N i , request fl oor location; N c , current fl oor location; N d , 
destination fl oor location; T j : sequence j response time; P j , probability of sequence j; t oc , door open/
close time; t f , single fl oor traversal time.  
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process. Some of the elements, such as fl oor request i , represent actions in an eleva-
tor system, while others, such as probability of traversing sequence j , are metrics 
for evaluating elevator system performance; therefore, these elements have no 
“ source ”  nor  “ destination. ”  Element transfer rates are measured by fl oor travel dis-
tances relative to the time of travel:
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Table 2.2    Transfer Rates (Floors per Second) 

   Element     Sequence  
   5 seconds fl oor 
traversal time  

   1 second fl oor 
traversal time  

  Sequence j    1    0.3845    1.8490  
  Sequence j    2    2.2082    10.2118  
  Sequence j    3    0.5054    2.4605  
  Sequence j    4    1.0765    5.1246  
  Floor request i N i     1    0.8175    3.9309  
  Floor request i N i     2    0.8166    3.9265  
  Floor request i N i     3    0.8900    4.2796  
  Floor request i N i     4    0.7054    3.3920  
  Current fl oor location N c     1    0.7906    3.8013  
  Current fl oor location N c     2    0.8025    3.8586  
  Current fl oor location N c     3    0.7468    3.5911  
  Current fl oor location N c     4    0.7455    3.5844  
  Destination fl oor N d     1    0.8331    4.0060  
  Destination fl oor N d     2    0.7705    3.7051  
  Destination fl oor N d     3    0.8017    3.8550  
  Destination fl oor N d     4    0.7955    3.8252  

   Sequence j travel distance:

    
n

T i

,
i

i

n

j

i

n
=

=

∑

∑
1

1

( )

  where n i  is travel distance for fl oor request i; Tj(i) is the response time for 
sequence j and fl oor request i; and n is the number of fl oor requests.    

  Request fl oor travel distance N i :

    

N (j n)

T (i)

,
i

i 1

n

j

i 1

n

,
=

=

∑

∑

  where N i (j, n) is the request fl oor location i for sequence j and the number of 
fl oor requests n.  
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  Current fl oor travel distance N c :

    

N (j n)

T (i)

,
c

i 1

n

j

i 1

n

,
=

=

∑

∑
  where N c ( j, n) is the current fl oor location for sequence j and number of fl oor 

requests n.  

  Destination fl oor travel distance N d :

    

N j n

T i

,
d

i 1

n

j

i 1

n

( , )

( )

=

=

∑

∑
  where N d (   j, n) is the destination fl oor location for sequence j and the number 

of fl oor requests n.    

 Transfer rates are computed using the above expressions and recorded in Table  2.2 . 
Table  2.2  shows that, in general, sequence j transfer rates are higher for the shorter 
fl oor traversal time alternative (1 second). This result is expected because more 
fl oors are traversed during shorter response times. This result can be used to advan-
tage by anticipating prior  to system implementation the transfer rates produced by 
performance alternatives.  

ARCHITECTURAL DESIGN 

 Computer architecture involves the organization and functions of various elements 
into a unifi ed system. Architectural design involves conceptualizing the subsystems 
of a system in terms of components, units, functions, elements, and connections. 
Table  2.3  documents the architectural relationships for the elevator example, where 
elements from Table  2.1  and Figure  2.1  are related to the architecture. An important 
architectural feature includes test points in Table  2.3  and Figure  2.1  for testing and 
evaluating the reliability of the system.    

TEST STRATEGIES 

 An excellent test strategy is to view testing as a means of fault prevention 
 [SIG90] , meaning that if we identify a system ’ s vulnerabilities before committing 
to programming and detailed hardware design, we can avoid these weak spots when 
actually committing to code and hardware implementation. For example, in an eleva-
tor system, the sequences of fl oor traversals are critical in realizing a reliable opera-
tion. Thus, a key strategy of fault prevention is to focus on critical sequences 
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 [GAN08] , emphasizing stress testing (e.g., simulating multiple concurrent user fl oor 
requests).

 The test specifi cation should contain the functions to be tested, types of faults 
expected, input data, expected outputs, pass/fail criteria, test environment, and test 
schedule  [SIG90] . The types of faults expected is critical and warrants elaboration 
 [SIG90] . One type of fault is classifi ed as functional; it pertains to faults arising 
from errors in designing and implementing functions, such as programming an 
elevator to go down when it is supposed to go up. To avoid or correct this problem, 
functional testing is designed to simulate critical functions and to compare the test 
result with the expected result. If the two are unequal, the relevant documentation 
is analyzed to identify the source of the error. For example, if a test result shows an 
elevator going down when it is supposed to up, the fl oor traversal sequencing algo-
rithm would be investigated. 

 System faults can arise due to components not being properly interfaced, such 
as a system bus not having the bandwidth required to accommodate the myriad of 
devices connected to it. Another type of system fault is failing to specify the correct 
capacity of components, such as a cache size that is too small for storing fl oor tra-
versal information in Figure  2.1 . A key process fault is generated by incorrect pro-
cessing of sequences, for example, sequence j directing the elevator to go down, 
when it is supposed to go up, in Figure  2.1 . Data faults are created by incorrect 
specifi cation of value, limit, or format. For example, the user fl oor request data in 
Table  2.1  is specifi ed as three binary - coded decimal (BCD) integer digits in a 100 -
fl oor elevator system. If only two BCD digits fl oating - point digits were specifi ed, 
there would be a limit error (only 99 fl oors could be accommodated) and a format 
error (fl oating - point representation). Values would also be incorrect if the sensor 
control in Figure  2.1  reads request fl oor 5 instead of the correct fl oor 10. 

Test Plan 

 Now, we illustrate test planning by developing a sequence - oriented test plan for an 
elevator system that includes the analysis of critical faults and test plan support 
functions.

Critical Faults 

 One type of critical fault occurs when boundary values are not processed correctly 
 [SIG90] . For example, this fault occurs when elevator fl oor location processing 
results in fl oor location exceeding 100 in a 100 - fl oor elevator system, or the location 
is computed to be less than one. This problem can be mitigated by providing test 
points at data entry locations in Figure  2.1  and checking for boundary value errors. 

 Another type of critical fault can occur at the interface of two elements  [SIG90] . 
This type of fault occurs, for example, when two elements must match with respect 
to transmitted data type. Using the interface between the fl oor location sensor and 
the cache memory in Figure  2.1  as an example, the data type must be 3 BCD integer, 
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which was originally specifi ed in Table  2.1 . This problem is controlled by using 
integration testing to ensure that every interface behaves properly.  

Test Plan Support Functions 

 In order to conduct tests in the absence of certain elements, drivers that substitute 
for missing calling  elements are used. In addition, stubs that substitute for missing 
called  elements are used. This would be the case, for example, in testing Sequence 
1 in Figure  2.1 , when the request fl oor location (N i ) element is to be tested, but both 
the current fl oor location (N c ) and destination fl oor location (N d ) elements have not 
been implemented. In this situation a driver would substitute for N c  (calling element) 
and a stub would substitute for N d  (called element). 

 Integration testing involves testing the hardware and software for each sequence 
on an incremental basis, using the test points in Figure  2.1 . For example, once the 
testing of the fl oor location sensor is completed, it is incorporated into the elevator 
system and the cache memory is the next element tested. This process continues 
until all elements have been tested. If any hardware or software changes are made 
along the way,  regression testing  is invoked to retest all elements that had been tested 
up to the point of the changes  [SIG90] . 

 Environmental testing, which can be equated to system testing and acceptance 
testing, is designed to test and evaluate a system in its operational environment. 
However, during system development, it may not be possible to test some systems 
in their actual  operational environment. Obviously, it would not be feasible to test 
elevators in various buildings where they will be installed because these environ-
ments would be unknown during development. Instead, the elevator system manu-
facturer uses a test bed to create environmental conditions as close to the ultimate 
environment as possible for testing the physical  system. However, prior to this phase, 
the operation of elements and their sequences is simulated, which will be described 
in a later section. Environmental testing includes not only testing of functions, but 
performance testing as well. For example, the elevator system in Figure  2.1  would 
be tested for the correct ordering of sequences and, in addition, tested for the correct 
computation of sequence response times.  

Test Data Design 

 The design of test data is as important as developing test plans because these plans 
would be worthless if the test data do not support the plan. In addition to inputting 
the correct fl oor location data (3 BCD integer) in Figure  2.1 ,  incorrect  data (e.g., 2 
BCD fl oating point) should be inputted to test the system response. Systems should 
be equipped with an exception handler, as shown in Figure  2.1 , to be activated when 
errors occur, such as incorrect data type. This is an excellent example of coordinating 
test data design with test plans: erroneous test data are incorporated in the test plan 
to test the system response — recover from the error and rollback to the last correct 
operation, or halt the operation if it is impossible to recover from the error. Table 
 2.1  is an excellent source for designing test data, because for each element, the 
purpose, source, format, storage requirement, and computation are documented. This 
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information can be correlated with the architectural perspective in Figure  2.1  (e.g., 
location of test points) to develop integrated test plans and data.    

FAULT DETECTION AND CORRECTION 

 In the design process, it is important to plan for both fault detection and correction. 
Some methods, like simple parity detection, can only detect. Other methods, such 
as the cyclic redundancy check (CRC), include suffi cient information to allow both 
detection and correction. 

Parity Error Detection 

 If the number of one bits, including the parity bit  P  bit, is an even number, an even 
parity error signal is generated; otherwise, if the number of one bits, including the 
parity bit, is an odd number, an odd parity error signal is generated. 

 For example, if it is desired to use even parity error detection in a digital circuit, 
which of the data below would generate an even  parity error signal? The solution is 
shown below.

P

  0010 odd parity  

  0100 odd parity  

0101  even parity (solution)  

  0111 odd parity     

CRC

 Data can be represented by a polynomial M(x): x n     +    x n– 1     +    x n− 2     +     . . .     +    x 0 , x    =    2 and 
the exponents correspond to bit positions: 0 for position 0, 1 for position 1, and so 
on. The degree of the polynomial is n that is equal to the highest bit position. For 
example, if we consider fl oor 50 in the elevator system, the polynomial representa-
tion of M(x)    =    x 5     +    x 4     +    x 1     =    32    +    16    +    2    =    50 10     =    110010 2 , and the degree n    =    5. 

 Continuing the example, the sender and receiver must agree on a generator 
polynomial G(x) of degree k    ≤    n in advance of transmission. Both the high and low 
bits of G(x) must be 1. M(x) must be longer than G(x). In addition, k zeros are 
appended to M(x), yielding the augmented message T(x)    =    M(x) x k . 

 The details of the example follow:

    M x x x x( ) .= + +5 4 1

 Use G(x)    =    x    +    1    =    3 10     =    11 2 , because M(x) can be divided by G(x) (i.e., the degree 
of G(x)    =    1    ≤    degree of M(x)    =    5). 

 Degree k    =    degree 1; therefore, append one zero to M(x), yielding

    T x M x x x x xk( ) ( ) .= = + + = =6 5 2
2 101100100 100
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 Divide T(x) by G(x), using modulo 2 division, and record remainder R(x) using 
modulo 2 division:

    

)11 1100100

11

0000100

11

100001

R x 01

.

( ) =

 Now, append the remainder R(x)    =    01 to the original message M(x), using modulo 
2 addition, and transmit  M(x)R(x)    =    11001001 2     =    201 10  (check: 201 10  is divisible by 
3 with 0 remainder). 

 At the receiver, divide (M(x)R(x)) by G(x) and check for zero remainder. If this is 
the case, there is no error in transmission; otherwise, there is one error, so retransmit:

     

)11 1100100
11

0000100
11

11
11

0

100001

 (no error)

.

SEQUENCE ANALYSIS 

Sequence Relationships 

 We perform sequence analysis to provide a structure for predicting reliability, avail-
ability, and performance. Figure  2.1  shows the architecture for processing the data 
that are used for constructing the sequences. In addition, the fi gure shows the details 
of the sequences. These details are used for predicting reliability, availability, and 
performance. This is accomplished by fi rst, identifying the relationships among the 
request fl oor location, N i , the current fl oor location, N c , and the destination fl oor 
location, N d . Using these relationships, fl oor travel is identifi ed in order to predict 
the probability of the elevator system invoking sequence j. Once the probabilities 
are predicted, the response time for each sequence is predicted for each of the fl oor 
traversal times. Since the fl oor locations are unknown prior to implementing the 
system, uniformly distributed random numbers, multiplied by 100, are used to gener-
ate fl oor locations for a 100 - fl oor system. In order to achieve statistical validity, 100 
tests are simulated for each of the four sequences that are shown in Figure  2.1 . Then, 
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the fl oor constraints (e.g., (N c     ≥    N i , N d     ≥    N i ) for Sequence 1), which are documented 
in Figure  2.1 , are used to identify the combinations of fl oor locations that are valid 
for a given sequence. These valid combinations are used to generate fl oor travel 
distances for each sequence. Next, the sequence probabilities are computed as a 
function of fl oor travel distances as shown in Figure  2.1 . 

 In addition to the sequence analysis of Figure  2.1 , the logic of the elevator opera-
tions are shown in Figure  2.2  to allow us to visualize how the elevator system exe-
cutes the logic steps to control to transport passengers from fl oor to fl oor. This 
diagram would be the basis for the software design of the fl oor traversal algorithm.     

SEQUENCE PROBABILITY AND SEQUENCE 
RESPONSE TIME PREDICTIONS AND ANALYSIS 

Sequence Probability 

Sequence 1

 (1) Elevator goes  down  from current fl oor N c  to request fl oor N i , then (2) goes 
up  from request fl oor N i  to destination fl oor N d  (N c     ≥    N i , N d     ≥    N i ):

    P N N N N N Nj d i c i d i= − − + −( ) / (( ) ( )).

Figure 2.2     Elevator logic diagram. N i,  request fl oor; N d , destination fl oor; d(i), user - entered 
destination fl oor; N t , top fl oor.  
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Sequence 2

 (1) Elevator goes  up  from current fl oor N c  to request fl oor N i , then (2) goes  up
from request fl oor N i  to destination fl oor N d  (N i     ≥    N c , N d     ≥    N i ):

    P N N N N N Nj d i i c d i= − − + −( ) / (( ) ( )).

Sequence 3

 (1) Elevator goes  up  from current fl oor N c  to request fl oor N i , then (2) goes 
down  from request fl oor N i  to destination fl oor N d  (N i     ≥    N c , N c     ≥    N d ):

    P N N N N N Nj i d i c c d= − − + −( ) / (( ) ( )).

Sequence 4

 (1) Elevator goes  down  from current fl oor N c  to request fl oor N i , then (2) goes 
down  from request fl oor N i  to destination fl oor N d  (N c     ≥    N i , N i     ≥    N d ):

    P N N N N N Nj i d c i i d= − − + −( ) / (( ) ( )).

Sequence Response Time 

 Response time predictions are based on the above predictions of sequence probabil-
ity, which correspond to the sequences depicted in Figure  2.1 .Response time is 
predicted for each sequence j and fl oor traversal time, t f , using the following 
equations:

Sequence 1

    T t N N N N P tj f d i c i j oc= ∗ − + − ∗ +( (( ) ( ))) .

Sequence 2

    T t N N N N P tj f i c d i j oc= ∗ − + − ∗ +( (( ) ( ))) .

Sequence 3

    T t N N N N P tj f i c c d j oc= ∗ − + − ∗ +(( ) ( )) .

Sequence 4

    T t N N N N P tj f c i i d j oc= ∗ − + − ∗ +(( ) ( )) .

 The purpose of the predictions is twofold: (1) to assess in advance of implementation 
which performance alternative  would satisfy the performance requirement and (2) 
to identify the sequence(s)  that would satisfy the performance requirement. This 
objective is accomplished by simulated testing. Figures  2.3  and  2.4  address this 
purpose. Figure  2.3  pertains to the 5 - second fl oor alternative and shows that none 
of the sequences satisfy the performance requirement over the complete range of 
tests. Figure  2.4  is a little more encouraging, showing that Sequence 2 satisfi es the 
requirement. Unfortunately, since it is infeasible to provide an elevator system with 
a fl oor traversal time of less than 1 second, the performance in actual operation is 
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Figure 2.3     Elevator system: sequence response time T j  versus number of tests n for 5 seconds fl oor 
traversal time. Series 1: Sequence 1: mean    =    200.77 seconds, total    =    6223.87. Series 2: Sequence 2: 
mean    =    95.53 seconds, total    =    1083.85. Series 3: Sequence 3: mean    =    295.97 seconds, total    =    4735.48. 
Series 4: Sequence 4: mean    =    158.80 seconds, total    =    2223.17. Series 5: required response time.  
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Figure 2.4     Elevator system: sequence j response time T j  versus number of tests n for 1 second fl oor 
traversal time. Series 1: Sequence 1: mean    =    41.75 seconds, total    =    129.37 seconds. Series 2: Sequence 
2: mean    =    21.31 seconds, total    =    234.37 seconds. Series 3: Sequence 3: mean    =    60.79 seconds, 
total    =    972.70 seconds. Series 4: Sequence 4: mean    =    33.36 seconds, total    =    467.03 seconds. Series 5: 
required response time.  
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likely to be undesirable for some of the fl oor requests. However, this performance 
may be acceptable because the majority of all sequence response times in Figure  2.4  
satisfi es the requirement over all of the tests.     

SEQUENCE FAILURE RATE 

 In order to predict sequence reliability, it is necessary to estimate sequence j failure 
rate λj , a parameter that is used in the prediction of sequence j reliability. This 
parameter is estimated using the number of failures, n f , that is specifi ed to occur 
during n tests of sequence j, and sequence j response time, T j . In addition, we pos-
tulate that the expected  number of failures in sequence j is proportional to sequence 
j fl oor traversal distance for test i, n i , with respect to total fl oor traversal distance 
for sequence j, based on the premise that the larger the fl oor traversal distance, the 
higher the probability of failure. Putting these factors together, we arrive at the 
following:

    λ j f
i

i

i

n j

i=1

n

n
n

n

(T ) .=

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⎛

⎝
⎜

⎞

⎠
⎟

=
∑

∑
1

/

 A key determinate of sequence failure rate is whether there are failures in delivering 
information from source to destination  [YOU09] , such as user fl oor request to sensor 
control in Figure  2.2 . This factor is captured in the above failure rate prediction by 
the specifi ed number of failures n f .  

RELIABILITY

 In developing real - time reliability predictions, it is important that the predictions 
refl ect  operational reliability   [SUN05] . That is, reliability must be cast in the context 
of operational conditions, such as differences in fl oor traversal times in the elevator 
system. Otherwise, the predictions will not represent user requirements. We adhere 
to this principle by using sequence response time, which represents operational 
conditions, in the formulation of reliability. 

 The unreliability of sequence j, UR j , is predicted by using the probability of 
sequence j, P j , sequence failure rate  λj , and sequence j response time, T j , assuming 
exponentially distributed response time. The distinction between normal and complex 
operations is important in characterizing reliability  [PET06] . This is why we assume 
exponentially distributed response time, which is based on the premise that reli-
ability degrades fast with increasingly complex operations, as represented by increas-
ing fl oor traversal time and resultant increasing response time:

    UR ej jP .j jT= − −( )( )1 λ
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 Then, sequence j reliability R j  can be predicted as follows:

    R ej j1 P jTj= − − −
(( )( )).1

λ

 Because numerous predictions of reliability are made due to the fact that sequences 
are simulated n  times during tests, it is appropriate to predict the mean value, as 
follows:

    
MR

R

n
.j

j

j

n

= =
∑

1

 Figures  2.5  and  2.6  address the reliability issue, predicting sequence j reliability as 
a function of a number of tests. Figure  2.5  shows that for a number of specifi ed 
failures    =    1 and fl oor traversal time    =    5 seconds, all sequences satisfy the reliability 
requirement. In addition, Figure  2.6  indicates that for a number of specifi ed fail-
ures    =    5 and fl oor traversal time    =    1 second, all of the sequences satisfy the reli-
ability requirement. Although the reliability requirement is satisfi ed in both Figures 
 2.5  and  2.6 , if a high reliability system is desired, operating in a dense failure envi-
ronment, signifi cant testing would be required to bring the system into conformance 
with the reliability requirement.    

Figure 2.5     Elevator system: reliability of sequence j R j  versus number of tests n for sequence j 
number of failures    =    1 and fl oor travel time    =    5 seconds. Series 1: Sequence 1, mean    =    0.9993. Series 
3: Sequence 2, mean    =    0.9984. Series 5: Sequence 3, mean    =    0.9986. Series 7: Sequence 4, 
mean    =    0.9981. Series 9: required reliability.  

0.9880

0.9900

0.9920

0.9940

0.9960

0.9980

1.0000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

n

R
j

Series 1

Series 3

Series 5

Series 7

Series 9

All sequences satisfy requirement



Figure 2.6     Elevator system: reliability of sequence j R j  versus number of tests n for sequence j 
number of failures    =    5 and fl oor traversal time    =    1 second. Series 1: Sequence 1, mean    =    0.9964. 
Series 2: Sequence 2, mean    =    0.9921. Series 3: Sequence 3, mean    =    0.9933. Series 4: Sequence 4, 
mean    =    0.9908. Series 5: required reliability.  

0.9880

0.9900

0.9920

0.9940

0.9960

0.9980

1.0000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

n

R
j

Series 1

Series 2

Series 3

Series 4

Series 5

All of the sequences satisfy the requirement

Figure 2.7     Elevator comparator circuit. N i , request fl oor location; N d , destination fl oor location; i, 
fl oor counter; N t , top fl oor; d(i), user - entered destination fl oor.  
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DETAILED DESIGN 

 Next, the detailed design process is illustrated by implementing the logic processes 
from Figure  2.2 , as shown in Figure  2.7 , where the detailed logic steps relate the 
fl oor request variable N i  and the fl oor counter parameter i. This is accomplished by 
using shift register logic on these two quantities, as shown in Figure  2.8 , in order to 
store and align all 7 bits of the quantities so that they can be compared for equality 
and inequality, as governed by the relationships in Figure  2.2 .    

SUMMARY

 A road map has been presented for guiding the engineer in making correct analyses and deci-
sions in developing computer - based systems. An elevator system was used to illustrate the 
myriad of factors that must be considered in bringing a concept of a system to fruition as an 
integrated hardware – software system.  

Figure 2.8     Elevator detailed logic diagram. i, fl oor counter; N i , request fl oor bit number; D, 
fl ip - fl op input; Q, fl ip - fl op output; CLK, clock input.  
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Chapter 3

Analog and Digital Computer 
Interactions

W hile digital computers dominate today ’ s computer marketplace, digital computers have 
important interactions with analog devices; for example, a smart meter installed in a smart 
electric grid requires interactions between an analog voltage sensor, an analog - to - digital 
converter, a digital - to - analog converter, and a digital computer for computing power usage. 
A communication system is also required for distributing power usage data to the customer ’ s 
premises and to the electric utility offi ce. This chapter will provide the reader with the back-
ground in interfacing analog devices with digital computers that is necessary for designing 
and evaluating such systems.    

INTRODUCTION

Analog Computer Background 

 An analog computer is a form of computer that uses the continuously changeable 
aspects of physical phenomena such as electrical, mechanical, or hydraulic quantities 
to model the problem being solved. In contrast, digital computers represent varying 
quantities incrementally as their numerical values change. Mechanical analog com-
puters were very important in gunfi re control in World War II and the Korean War; 
they were made in signifi cant numbers. In particular, development of transistors 
made electronic analog computers practical, and before digital computers had devel-
oped suffi ciently, they were commonly used in science and industry. In particular, 
perhaps the best known example of an analog computer is the slide rule. 

 The similarity between linear mechanical components, such as springs and 
dashpots (viscous fl uid dampers), and electrical components, such as capacitors, 
inductors, and resistors, is striking in terms of mathematics. They can be modeled 
using equations that are of essentially the same form. However, the difference 
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between these systems is what makes analog computing useful. If one considers a 
simple mass – spring system, constructing the physical system would require making 
or modifying the springs and masses. This would be followed by attaching them to 
each other and to an appropriate anchor, collecting test equipment with the appropri-
ate input range, and fi nally, taking measurements. In more complicated cases, such 
as suspensions for racing cars, experimental construction, modifi cation, and testing 
is not so simple or inexpensive. 

 The electrical equivalent of a physical system can be constructed with a few 
operational amplifi ers and some components, such as resistors and capacitors; 
all electrical measurements can be made with an oscilloscope. In the circuit, the 
simulated stiffness of the spring, for example, can be changed by adjusting a poten-
tiometer. The electrical system is an analogy to the physical system, hence the name, 
but it is less expensive to construct, generally safer, and typically much easier to 
modify. 

 An electric circuit can typically operate at higher frequencies than the physical 
system being simulated. This allows the simulation to run faster than real time 
(which could, in some instances, be hours, weeks, or longer). These electric circuits 
can perform a wide variety of simulations. For example, voltage can simulate water 
pressure and electric current can simulate rate of fl ow. Analog computers are espe-
cially well suited to representing situations described by differential equations.  

Analog-to-Digital and Digital -to-Analog Components 

Sensor

 A voltage sensor reads voltage at the input of an analog - to - digital (A/D) converter 
circuit, as shown in Figure  3.1 , and the output of a digital - to - analog (D/A) converter 
in Figure  3.6 . Note that Figures  3.1  and  3.6  depict a smart electric meter system 
with the sensor reading the input voltage or output voltage, respectively; other 
signals, such as current, could be sensed in other applications.    

Operational Amplifi er 

 An operational amplifi er produces an output voltage that is larger than its input. For 
example, in Figures  3.1  and  3.6 , the voltage sensor does not have the capability to 
read a full - scale voltage signal; its range is only 10   V. Therefore, an operational 
amplifi er is used to boost the signal to the required level for conversion. Operational 
amplifi ers are important building blocks for a wide range of electronic circuits.  

Low-Pass Filter 

 A low - pass fi lter is needed to reduce high frequency signal noise by only passing 
signals to the multiplexer in Figure  3.1  and to the customer premise and public 
electric utility in Figure  3.6  that have had the high frequency noise components 
eliminated  [GAN08] .  
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Multiplexer

 Because both A/D converters and D/A converters are expensive, a multiplexer is 
used in Figure  3.1  to allow several analog signals to be processed for conversion by 
a single A/D converter, and a multiplexer is used in Figure  3.6  to provide several 
channels to be fed to the D/A converter  [GAN08] . In the Figure  3.1  example, the 
several analog inputs could be voltage signals from several customers in the neigh-
borhood. In the Figure  3.6  example, the several digital outputs from the microcom-
puter could be destined for conversion to analog voltages for a voltage regulation 
application in the customer premise and public electric utility.  

Sample-and-Hold Circuit 

 A sample - and - hold circuit is used to avoid having the input change while A/D con-
version is taking place in Figure  3.1  and having the digital output change while D/A 
conversion is taking place in Figure  3.6   [GAN08] .  

A/D Converter 

 The details of the A/D converter and the conversion process are shown in Figure 
 3.2 .The capacitor C in Figure  3.2  assists in the conversion of analog input to digital 

Figure 3.1     A/D conversion system.  
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output by the duration of its charge. This is accomplished by measuring the time it 
takes to charge and discharge the capacitor into the resistor R. The larger the value 
of C, for a given value of R, the longer it takes to charge and discharge the capacitor, 
and, hence, the slower the rise and fall in voltage, respectively. Conversely, the 
smaller the value of C, the less time it takes to charge and discharge the capacitor, 
and, hence, the faster the rise and fall in voltage, respectively. The converter inte-
grates the varying analog input signal voltage V in  in Figure  3.2  during the time period 
t1 , t 2 . At the end of this process, C has been charged by V in  to generate the voltage 
V across the resistance – capacitance (RC) circuit, given by:

    V
CR

V dt.in
t

t

= ∫1

1

2

     

 Finally, the voltage V is converted to the digital output. 
 Figure  3.1  shows an example of the results of the conversion process called 

“ quantizing analog signal ”— a process that converts an analog signal to a digital 
binary code. For example, 110   V is transformed into 1101110. This process is not 
perfect. There are errors that result because it is impossible for a conversion system 
to perfectly represent the input. These errors are called  “ quantizing errors, ”  which 
will be addressed in a later section.  

Smart Meter Microcomputer 

 This computer contains a left shift register that formats the bit - by - bit A/D conversion 
so that the complete digital signal (e.g., 1101110    =    110   V) is ready for distribution 
to customer premise and public electric utility in Figure  3.1 . In Figure  3.2 , the 
microcomputer is assigned to provide its stored digital signal to the input of the D/A 
converter.   

Figure 3.2     A/D converter.  
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Analog Computer Limitations 

 Analog computers have limitations. An analog signal is comprised of three characte-
ristics: alternating current (AC) voltage and current magnitudes, frequency, and phase. 
The range limitations of these characteristics limit analog computers. These limits 
include operational amplifi er amplifi cation capability, gain, frequency response, 
noise, and nonlinearities in A/D conversions. 

Analog–Digital Computer Contrast 

 The drawback of analog computers in imitating physical systems is that analog 
electronics are limited by the range over which the variables may vary. This is called 
dynamic range . They are also limited by noise levels. In contrast, digital computer 
fl oating - point calculations have a comparatively huge dynamic range (good modern 
handheld scientifi c/engineering calculators have exponents of 500). 

 An electronic digital system uses two voltage levels to represent binary numbers. 
In many cases, the binary numbers are simply codes that correspond, for instance, 
to brightness of primary colors, or letters of the alphabet. In contrast, the electronic 
analog computer manipulates electrical voltages that are proportional to the magni-
tudes of quantities in the problem being solved. 

 The accuracy of an analog computer is limited by its computing elements as 
well as quality of the internal power and electrical interconnections. The precision 
of the analog computer display readout is limited chiefl y by the precision of the 
readout equipment, generally three or four signifi cant fi gures. The precision of a 
digital computer is limited by its word size and degree of precision arithmetic. While 
the process is relatively slow, any practical degree of precision can be provided that 
might be needed.   

Quantizing Step Size and Error 

 The quantizing step size for A/D conversion is defi ned by Q:

    Q R 2n= / ,

  where R is the range (110   V in Figure  3.1 ) and n is the number of bits used to code 
the digital output  [GAN08] . Thus, for the smart meter example in Figure  3.1 , where 
n    =    7 bits,

    Q V per bit= =110 128 0 8594/ . .

 Since Q is the smallest value recognizable by the A/D converter, it represents the 
error of conversion. In order to evaluate the rate of error occurrence with respect to 
the number of encoding bits n, the following derivative is produced:
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Figure 3.3     Quantizing error Q versus number of digital code bits n.  
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Figure 3.4     Rate of change of A/D conversion error, d(Q)/d(n) versus number of digital code bits n.  
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 Figures  3.3  and  3.4  show that to encode 110   V in the smart meter application, 7 bits 
are required. However, by using more than the minimum, say 12 bits, the quantizing 
error can be signifi cantly reduced, but more than 12 bits would not be cost - effective 
because at this point diminishing returns sets in.    
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Microcomputer Input/Output ( I/O) Applications 

 An A/D converter is very useful for demonstrating the various methods that an I/O 
device (e.g., A/D converter) can use to communicate with a microcomputer  [RAF05] . 
For example, Figure  3.5  shows the interaction between an A/D converter and micro-
computer, using interrupt processing. This method of I/O communication is very 
effi cient because the microcomputer only has to be diverted from its main processing 
task when there are data from an I/O device to be processed. In Figure  3.5 , this is 
accomplished by the interchange of commands between the converter and the micro-
computer: the microcomputer commands the converter to start converting, the 
microcomputer signals to the converter that transfer of digital data from converter 
has been enabled, and the converter signals the microcomputer, via an interrupt, that 
digital data are ready for transmission on the data lines.      

D/A CONVERSION 

 In addition to A/D conversion, it is important to understand how the reverse process 
works— D/A conversion. For example, you have seen that A/D conversion is an 
important component of smart meters in smart electric grid systems. But this is not 
the end of the story because D/A conversion is needed in these systems to take the 
digital voltage data as input to the D/A converter and use the resultant analog voltage 
output to act as a voltage regulator of the electric distribution system in Figure  3.6 . 
This function is required because power disruptions could cause the voltage deliv-
ered to customer premises to be of the wrong magnitude. D/A conversion will not 

Figure 3.5     Interrupt processing with A/D converter. Start, microcomputer commands converted to 
start A/D conversion; output enable, enables digital output from converter to microcomputer; interrupt, 
converter signals microcomputer that it has digital data to transmit.  
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be addressed as an isolated subject. Rather, it will be treated as part of a unifi ed 
system that includes A/D conversion.   

D/A Description 

 A D/A converter is a device for converting information that is in the form of a digital 
signal comprised of discrete binary bits (e.g., binary coded voltage) to a continuously 
varying analog signal (e.g., voltage sine wave) in Figure  3.6 . D/A converters are 
used to present the results of digital computation (A/D voltage conversion in Figure 
 3.1 ) and storage (digital data stored in database in Figure  3.2 ) as input to the D/A 
converter in Figure  3.6  for eventual application in voltage regulation.  

D/A Performance 

Resolution

 This is the number of possible output levels the D/A is designed to reproduce. This 
is stated as the number of bits it uses. For example, a 1 - bit D/A is designed to 
reproduce two voltage levels while an 8 - bit D/A is designed to reproduce 256 voltage 
levels. Thus the quantizing error Q is given by the following:

Figure 3.6     D/A conversion system.  
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    Q 2 Rn= / ,

  where n is the number of binary bits produced by the digital signal in Figure  3.6  
and R is the voltage range of the D/A output. Thus, the D/A quantizing error is the 
inverse of the A/D quantizing error.  

Maximum Sampling Frequency 

 This is a measurement of the maximum speed at which the D/A (or A/D) circuitry 
must operate to reproduce the correct output. As stated in the Nyquist – Shannon 
sampling theorem, a signal must be sampled at least twice its frequency in order to 
produce the desired output signal. The period is the duration of one cycle in a repeat-
ing event, so the period is the reciprocal of the frequency. For example, the 60 - cycle 
input voltage in the A/D converter of Figure  3.1  must be sampled at least 120 cycles 
per second. Correspondingly, in the D/A converter of Figure  3.6 , the digital repre-
sentation of the original 60 - cycle voltage from A/D conversion must be sampled at 
least 120 cycles per second to reproduce a 60 - cycle signal at the output of the D/A 
converter.  

Monotonicity

 This refers to the ability of a D/A converter ’ s analog output to move only in the 
direction that the digital input moves (i.e., if the input increases, the output increases) 
This characteristic is very important when a D/A converter is used for low frequency 
signals, such as 60 - cycle voltage, as shown in Figure  3.6 .  

Distortion

 Distortion is the alteration of the original shape of the analog signal, such as a voltage 
signal. Distortion can be minimized by using an adequate number of bits in the 
digital representation of the analog signal, such as 7 bits, and a sampling rate of the 
digital signal for D/A conversion of at least twice its original frequency (at least 120 
cycles per second) in Figure  3.6 .  

Dynamic Range 

 This is the absolute ratio between the smallest and largest possible values of a signal -
 changeable quantity, such as between the smallest and largest values of an analog 
voltage sine wave. In this example, if there is a perfect dynamic range, the 
ratio    =    | + 110   V/ − 110   V|    =    1. Deviations from the perfect ratio, either greater or 
smaller, are indicative of signal distortion.  

Phase Distortion 

 This problem occurs when the original phase of a signal in the input of the A/D 
converter is not faithfully reproduced in the output of the D/A converter. For example, 



92 Computer, Network, Software, and Hardware Engineering with Applications

the phase of the voltage sine wave sensed in the A/D converter of Figure  3.1  may 
not be faithfully reproduced at the output of the D/A converter in Figure  3.6 . Phase 
distortion is measured by the difference between the correct phase and the phase 
that is reproduced at the output of the D/A converter.  

Signal Representation Distortion 

 This problem occurs when, for example, a 1 - V difference in the A/D converter in 
Figure  3.1  does not result in a 1 - bit difference in the digital encoding. The problem 
would also occur when a 1 - bit difference in the input of the D/A converter in Figure 
 3.6  does not result in a 1 - V change in the output in Figure  3.6 . Thus, this distortion 
is measured by the difference between the correct signal change in  adjacent  values 
and the actual change in adjacent  values. 

 Dynamic range, phase distortion, and signal representation distortion are con-
trolled by the voltage regulation function shown in Figure  3.6 .  

Nonlinearity Distortion 

 This occurs when the plot of the output signal versus the input signal is not a straight 
line, which is measured by the difference between the correct value and the value 
realized by D/A conversion  [GAN08] . For example, in Figure  3.7 , using assumed 
error values, the difference between actual and realized voltages values is plotted. 
This type of plot is extremely useful because it indicates the range where the con-
verted voltage is either too high or too low. After these initial measurements 
have been made, the gain of the microcomputer - controlled operational amplifi er in 

Figure 3.7     Difference between correct voltage and actual voltage,  Δ V, versus correct voltage V.  
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Figure  3.6  would be adjusted to bring the converted voltage in line with the desired 
values.      

CONVERSION SYSTEM ERRORS 

 At this point in the development of A/D and D/A conversion, it is time to focus 
on the errors that could arise in each component, whether A/D or D/A, and aggregate 
the component errors to produce an overall system error that can be used to judge 
the accuracy of conversion from analog input in the A/D converter in Figure  3.1  to 
D/A analog output in Figure  3.6 . 

A/D and  D/A Converter 

 The error attributed to this device was previously described as a  “ quantizing error ”
in an earlier section and portrayed in Figures  3.3  and  3.4 .  

Voltage Sensor 

 A sensor is a device that receives and responds to a signal. A sensor ’ s sensitivity 
indicates how much the sensor ’ s output changes when the measured quantity 
changes. This sensitivity can be interpreted as sensor error. The sensor error, E s , is 
computed by the following ratio:

    E
V

V
s

out

in

= Δ
Δ

,

  where  Δ V out  is the change in sensor output voltage in Figures  3.1  and  3.6  and  Δ V in
is the change in sensor input voltage in Figures  3.1  and  3.6 . Ideally, this ratio should 
equal one. Deviations from the ideal measure indicate sensor error. Additionally, the 
resolution error is determined by the smallest change in Δ V in  that can be detected at 
the sensor output. For example, in Figures  3.1  and  3.6 , if the smallest change in 
Vin     =    0.1   V, can this change be detected in V out ? 

 Another type of sensor error occurs when the input range exceeds the output 
range. For example, in Figures  3.1  and  3.6 , while the input range of V in  is 0 – 10   V, 
the output range of V out  is 0.1 – 9.9   V. Thus, V in     =    0 and 10   V cannot be represented 
by V out . 

 Since the changes in sensor input and output voltages could be any values, 
simulation can be used to generate random changes in voltage, say 100 times, and 
compute the resultant values of E s . One example is shown in Figure  3.8 , where the 
Excel random number generator RAND was used to generate random changes in 
Vin  and V out , and then E s  was computed and plotted against the correct A/D voltage. 
Because RAND generates uniformly distributed numbers between 0 and 1, these 
numbers were multiplied by 10 — the maximum V in  voltage — in order to compute 
values of Δ V in  and  Δ V out .    
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Operational Amplifi er 

 The operational amplifi er in Figures  3.1  and  3.6  may fail to produce a correct ampli-
fi cation of the signal produced by the sensor output, V out . This error is computed by 
the expression E oa . A similar simulation error analysis can be performed to analyze 
the operational amplifi er, as was the case for the voltage sensor:

    E A
V

V
oa

oa

out

= − Δ
Δ

,

  where A is the required amplifi cation factor,  Δ V oa  is the actual change in operational 
amplifi er voltage, and  Δ V out  is the actual change in voltage sensor output voltage 
that is delivered to the input of the operational amplifi er. Given the voltage sensor 
output range and operational amplifi er output range in Figures  3.1  and  3.6 , 
A    =    (110 − 0)/(9.9 − 0.1)    =    11.22.  

Low-Pass Filter 

 The low - pass fi lter in Figures  3.1  and  3.2  is also subject to error because it may not 
faithfully eliminate high frequency noise generated by the operational amplifi er in 
Figure  3.1 . The ability of the fi lter to eliminate this noise is measured by the signal -
 to - noise ratio, S/N. For the low - pass fi lter, S/N is computed by the following:

Figure 3.8     Sensor output voltage change/sensor input voltage change, E s , versus correct A/D input 
voltage, V. Series 1: Actual E s . Series 2: Required E s .  
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    S N V Nip lp/ / ,=

  where V ip  is the voltage signal and N lp  is the high frequency noise signal produced 
by the low - pass fi lter in Figures  3.1  and  3.6 . Thus, if V ip     =    100   V and N lp     =    0.1   V, 
S/N    =    1000.  

Sample-and-Hold Circuit 

 Since it was stated previously that the sample - and - hold circuit must sample input at 
a rate at least twice the frequency of the input in order to produce the desired output, 
the error, E sh , in the sample - and - hold circuit of Figures  3.1  and  3.6  can be formulated 
as follows:

    E f fsh sh i= / ,2

  where f sh  is the required sampling frequency and f i  is the desired signal frequency 
emanating from the input analog voltage in Figure  3.1 . An error arises if E sh     <    0.5 
(i.e., f sh     <    f i ).  

Summary of Conversion Errors 

 Since there are a variety of errors associated with A/D and D/A conversions, these 
errors are summarized in Table  3.1  in order to identify the key relationships that lead 
to error occurrence. Now, examining Table  3.1 , the key fi ndings concerning error 
analysis are the following:

   To achieve an optimal trade - off between quantizing error and cost, use 12 binary 
encoding bits even though only 7 bits are required.    

  To minimize voltage sensor error, the sensor should produce an output change -
 to - input change ratio    =    1.  

  To minimize operational amplifi er error, ensure that the output - to - input ratio, 
Δ V oa / Δ V out , is equal to the amplifi cation factor A.  

  To minimize low - pass fi lter error, maximize the S/N for given values of analog 
signal voltage (i.e., minimize noise signal).  

  To prevent sample - and - hold circuit error, ensure that the circuit can sample at 
a frequency f sh     >    desired frequency f i .      

CHAPTER SUMMARY 

 The reader has been introduced to important concepts about devices that interconnect with 
digital computers — the A/D converter and the D/A converter. This objective has been achieved 
by considering these signal conversion circuits as a single integrated system, using a smart 
electric meter system as an example. Circuit diagrams were developed illustrating various 
facets of conversion logic. Extensive error analysis was performed on all converter circuit 
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components in order to identify the best circuit performance values consistent with achieving 
cost - effective systems.

Reader Problem:  You have learned that the number of bits n required to digitally encode 
an analog signal with a range R is related by the equation R    =    2 n . Suppose the range 
is to be R    =    120   V, what is the minimum number of bits required to encode this 
signal?

Solution:  log 10 R    =    nlog 10 2, n    =    log 10 R/log 10 2    =    log 10 120/log 10 2    =    2.079/0.301    =    6.91 (7 bits 
rounded up).     
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Chapter 4

Integrated Software and 
Real - Time System Design 
with Applications 

A pproaches for designing real - time software and hardware on an integrated basis are pre-
sented. By  “ integrated ”  it is meant that the interaction of software and hardware  during
program execution is addressed in the system design. For example, software outputs of the 
executable system that are fed to the hardware subsystem are represented in the software and 
hardware designs. Another aspect of this design approach is, fi rst, to develop the real - time 
system generic design of a particular artifact, such as a state diagram, and then to use the 
generic design to guide the development of the application - specifi c design. An elevator system 
is used as the design example because it has interesting properties such as interruptible fl oor 
traversal sequences. The series of design representations starts with generic and application -
 specifi c system - level functions and ends with integrated testing and performance evaluations. 
An important aspect of the integrated design approach is that exclusive use of abstract rep-
resentations is unwise because it is important to consider the physical properties of the real -
 world system, such as elevator fl oor travel sequences. Without this perspective, critical aspects 
of real - time system operations such as elevator direction of travel may be overlooked. Several 
metrics of real - time system performance are modeled and evaluated.    

INTRODUCTION

 Having learned the fundamentals of computer design, both digital and analog, in 
previous chapters, you are prepared to learn a very important application area: real -
 time systems. Real - time control hardware and software has been applied to a wide 
variety of real - world systems for diverse military, aerospace, industrial, medical, 
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and civil applications. Most real - time systems are comprised of heterogeneous com-
ponents including sensors, microprocessors, and actuators. These components inten-
sively interact with each other and with their environments. Thus, there are many 
dynamic and uncertain factors in these systems. Such a system needs to satisfy all 
the functional requirements and timeliness demands. In real - time systems, system 
resources such as microprocessor cycles, communication bandwidth, and storage 
memory are restricted, and thus effi cient resource allocation in different operational 
scenarios is required. As a result, the design of complex real - time systems is quite 
challenging and is distinct from the conventional non - real - time design  [WAN08] . 
As real - time computer systems become larger and more complex, so their analysis 
becomes increasingly diffi cult. Much of the skill in developing these systems lies 
in choosing the most appropriate theories and tools for different stages of develop-
ment and different aspects of the system  [CAD98] . The approach in this chapter 
is to use models, such as state diagrams, simulated testing, and event sequencing 
(e.g., elevator fl oor traversal sequences) that are appropriate for real - time system 
analysis.

Objectives

 While there are many worthy papers addressed to single aspects of real - time design, 
such as scheduling  [GUP10] , there is an absence of an integrated approach. Thus, 
the aim of this chapter is to develop an integrated and comprehensive design 
approach with the objective of providing engineers with a road map for improving 
real - time system design. According to Wang et al.  [WAN04] , model - based software 
development has been shown to be a promising approach to real - time design prob-
lems. In this approach, the software is fi rst modeled abstractly without considering 
its execution platform, and then transformed to a software design model on the target 
platform. However, as mentioned in the abstract, this approach should not be carried 
too far because if the abstract model is divorced from reality, it will do a poor job 
of representing the real - world system.  

Design Challenges 

 Today, many computer systems are being used to measure and control real - world 
processes. The execution of these systems and their control programs is therefore 
bound to timing constraints imposed by the real - world process [ PLA84 ;  SID06 ]. 
Thus, timing constraints are addressed in analyzing real - time system performance. 

 Unfortunately, real - time software is particularly diffi cult to design. In addition 
to ever more complex functional requirements, real - time software has to satisfy a 
set of stringent nonfunctional requirements, such as maximum permissible response 
time (e.g., maximum elevator system response time) and throughput (e.g., elevator 
system passenger throughput). Often, the inability of real - time software to meet its 
primary nonfunctional requirements becomes apparent only in the later stages of 
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development. When this happens, the design may have to be heavily and hurriedly 
modifi ed, even if all the functional requirements are satisfi ed, resulting in cost and 
schedule overruns as well as unreliable and unmaintainable code. This unhappy situ-
ation is primarily due to the common practice of postponing all consideration of 
so - called platform issues until the application logic of the software has been satis-
factorily designed. Although  “ platform - independent design ”  is a good idea in prin-
ciple, because it allows separation of application concerns and implementation, it is 
often carried to extremes. In particular, it is dangerous in situations where the physi-
cal characteristics of the platform (e.g., elevator system fl oor traversal control) can 
have a fundamental impact on the application logic (e.g., elevator system fl oor tra-
versal control software design)  [SEL03] .Therefore, because an abstract representa-
tion of our design would be of limited value, the abstract analysis is illustrated with 
an elevator system. I chose the elevator example because it presents many design 
challenges and everyone can relate to this system. Recognize that an abstract 
approach can only be applied for marrying software and hardware design. When 
testing and performance evaluation are performed, the particular characteristics of 
the application must be considered. For example, the response time to elevator fl oor 
requests must be evaluated through simulated performance testing.  

Steps in Real -Time System Design 

 Real - time system design can be accomplished by the following steps [ KOY90 ; 
 OST98 ]:

   Elicit and document the service requirements in terms of the environment (e.g., 
elevator response time requirement geared to the number of user fl oor 
requests during a specifi ed time).  

  Using the environment - based service requirements, specify the system control-
ler characteristics (e.g., specify elevator controller properties for managing 
effi cient fl oor traversal scenarios).  

  Based on the controller specifi cations, develop software and hardware designs 
that achieve system requirements and correct interaction among system com-
ponents (e.g., develop elevator system integrated  software and hardware 
designs that achieve response time requirements and correct interplay 
between elevator system fl oor request control and motion control).  

  Apply the rule of considering real - world operational details during abstract 
design by using a mix of abstraction and operational detail views. For 
example, observing how an elevator operates (e.g., processing service 
requests) provides insight into how real - time systems must function in 
general. That is, if you observe how an elevator control organizes operations 
in order to service as many fl oors as possible in minimum time, in a given 
traversal (i.e., using interrupts to develop an optimal schedule), you can apply 
this observation to designing schedules for real - time systems.      
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REAL-TIME SYSTEM PROPERTIES 

Execution Time 

 Some researchers consider periodic real - time independent tasks with known periods 
and worst - case execution times in their design approach  [GUP10] . This view is quite 
restrictive because it would be unusual for a real - time system to have  “ known 
periods and worst - case execution times. ”  The more representative situation is periods 
of operation and execution times that are driven asynchronously by inputs that occur 
at unpredictable times, and, hence, produce unknown execution times (e.g., elevator 
system).

Implementation Elements 

 The  reduced instruction set computing  ( RISC ) architecture requires several opera-
tions to execute a single instruction. However, this design provides high speed; for 
example, it is well suited to real - time applications that must meet deadlines, but at 
the expense of relatively complex programming.

Objects .      The objects in the elevator system are user, system controller, system 
storage, operations, and error control, as shown in Figure  4.1 .    

Asynchronous Circuits .      Due to the unpredictable nature of inputs and opera-
tions in real - time systems, hardware design is accomplished with asynchro-
nous circuits     

Performance

    The response time is the difference in time between completion of request and 
initiation of request (e.g., difference in time between elevator reaching des-
ignated fl oor and user pushing the Up or Down button).  

  Operations that must meet deadlines (e.g., elevator travel satisfi es response time 
requirement).

  Operations schedule (e.g., elevator schedule maximizes number of fl oors tra-
versed in traveling from current fl oor to most distant fl oor).     

Control Functions 

 The following control functions are shown in Figure  4.1 :

   Interruptible sequence of operations causing interrupts to be processed out of 
sequence (e.g., changing directions of elevator fl oor travel sequences).  

  Multiple threads of control caused by concurrent inputs (e.g., multiple  concur-
rent  elevator fl oor requests)  [MOO02] .  
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  Control commands are issued, for example, by System Controller to 
Operations.

  Feedback control is the response time error is fed back from the Error Control 
to Controller.  

  System queues are used to store backlog of user requests (e.g., queues of eleva-
tor fl oor requests)  [MOO02] .     

Design Levels 

 In Harris and Harris  [HAR07] , advice is offered regarding using design levels to 
accomplish system design as follows:

Hierarchy .      Divide system into modules that are easer to understand than the 
complete system.  

Modularity .      Produce modules that have well - defi ned functions and interfaces 
that can easily interconnect.  

Regularity .      Find modules with common functions (i.e., interchangeable parts).    

Figure 4.1     Generic real - time system design. TS i , time of service request i; RT, required response 
time; TR i     =    TS i     –    TC i , response time of service request i; TC i , time of completion of service request i; 
Pi , probability of completing service request i in required response time; n, number of services request 
in operational time T; FC    =    TR i     –    RT, feedback correction; T, duration of service operations.  
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 This approach may be satisfactory for a general approach to design but does not 
completely satisfy real - time requirements. Instead, it is suggested that real - time 
system hierarchies are rare or nonexistent. Real - time module topology is essentially 
fl at. For example, the user system and system controller in Figure  4.1  interact on 
the same level. Real - time systems can have well - defi ned functions but interfaces 
may not easily interconnect because inputs may arrive at unpredictable times, making 
it diffi cult for the system controller to respond in a timely manner. For example, in 
Figure  4.1 , user system requests must be queued because the system controller is 
unable to respond to all requests immediately. Lastly, real - time systems are one - of -
 a - kind; they are not mass produced. Therefore, common functions with interchange-
able parts do not hold. These peculiarities of real - time systems will be recognized 
when developing the design approach. The synopsis of requirements postulated at 
three levels is listed below for both generic and application - specifi c cases.  

Real-Time System Requirements 

System Level 

Generic

  Response time: variable response time, mean response time, maximum 
response time, minimum response time, throughput   

Application Specifi c 

  Response time: time between elevator fl oor request and arrival at destina-
tion fl oor and mean value of these times  

  Throughput: number of fl oor requests processed per elevator operational time     

Software Level 

Generic

  Map between system level requirements and software routines (see Fig.  4.8 )   

Application Specifi c

  For example, routines for optimally sequencing elevator fl oor requests.     

Hardware Level 

Generic

  Map between system - level requirements and hardware components and 
between hardware components and software routines (see Fig.  4.4 )   

Application Specifi c

  For example, input/output (I/O) channels must have a suffi cient transfer 
rate to satisfy elevator system response time requirements       
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DESIGN PROCESS ELEMENTS 

 It is important to have a close relationship between the user system and the system 
control functions  [BOA77] , as demonstrated by the generic design process in Figure 
 4.1 . To implement this approach, apply the following elements of the design process 
that are listed below for both generic and application - specifi c (elevator) cases.

   Event sequence: series of state transitions 

   Elevator responds to sequence of fl oor push - button events    

  Interruptible event sequence causing state transition 

   Sequence of elevator fl oor traversals is modifi ed to service as many requests 
possible in a given fl oor traversal    

  Time of service request 

   Time when the following occur: user pushes Up button, user pushes Down 
button 

  States and state transitions 

   User pushes Up fl oor button at request fl oor    →    elevator goes up or down 
or is at request fl oor    →    door opens    →    door closes    →    elevator goes up to 
destination fl oor  

  User pushes Down fl oor button at request fl oor    →    elevator goes up or down 
or is at request fl oor    →    elevator stops    →  door opens    →    door closes    →
elevator goes down to destination fl oor    

  Controls 

   Down travel control, up travel control, start control, stop control, door open 
control, door close control    

  System storage 

   Elevator event sequence storage requirements: present event, next event, 
present state, next state, next state transition, and storage capacity neces-
sary for effective communication among software and hardware compo-
nents  [BAG97] .    

  Interrupts 

   User fl oor request while the elevator is in motion       

INTEGRATED SOFTWARE –HARDWARE DESIGN 

 Putting software and hardware design in separate bins is a big mistake because the 
operations of software and hardware are intimately related. For example, in interrupt 
processing, an interrupt signal generated by hardware triggers software interrupt 
processing routines. Thus, when designing systems, processing a requirement should 
be considered as a resource allocation problem. For example, in an elevator system, 
the signals generated by pushing buttons for fl oor requests are allocated to electronic 
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circuitry. These signals are fed to software routines for determining the direction 
and distance the elevator must travel to service requests. 

 A problem in system design is the appropriate allocation of functions between 
software and hardware design  [AYA02] . Resolve this problem by allocating logic 
functions, such as identifying the elevator fl oor travel sequences in the architectural 
design of Figure  4.4  and allocating the resulting control functions of elevator control 
(Up, Down, and Open and Close doors) to the hardware design in Figure  4.5 . 

Time-Driven versus Event -Driven
Software Design Styles 

 Time - driven software design style corresponds to using cyclic activities triggered 
by time. This software style is naturally suited for the implementation of periodic 
activities, such as software implementation of control loop behavior in embedded 
control systems. In contrast, software written in the event - driven style typically waits 
for an event to occur, and then reacts to it by making an appropriate decision or 
computation, and then enters a dormant state waiting for the next event  [SEL96] . 
Elevator systems are event - driven (i.e., elevator controller responds to fl oor request 
event). Therefore, elevator controller software must be designed to develop a fl oor 
traversal schedule when requests arrive. However, in doing so, elevator controller 
software must be designed to achieve fl oor request response time requirements. 

 In contrast to time - driven software style, the event - driven software style has 
evolved largely to deal with the complexity arising from asynchrony, concurrency, 
and the inherent nondeterminism due to the two. The system must respond to asyn-
chronous events in the external world, and the reaction must depend on the system 
state  [SAK98] . Thus, elevator controller software must be responsive to user service 
requests that will occur asynchronously  (fl oor push - button operations) and may occur 
concurrently  (push - button operations occurring on different fl oors at the same time). 

 In the following integrated software – hardware design methodology, states and 
state transitions form the core processes, because the real - time environment is one 
of rapidly changing conditions, and state diagrams are effective for representing this 
environment. In addition, when the detailed software logic is developed for the 
elevator application, fl owcharts are used because they are useful for portraying deci-
sion logic, which is endemic to this application. The fl owchart is driven by the state 
diagram transitions. Both the generic and application - specifi c software state dia-
grams are shown in Figure  4.3 . The generic software design is shown in Figure  4.8 .   

SOFTWARE FUNCTIONS 

Input Processing State 

Generic System 

 Input request i and service request time TS i  in Figure  4.8 .  
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Elevator System 

 Elevator fl oor sequencing controller identifi es and processes fl oor requests in Figure  4.2 .     

Decision Analysis State 

Generic System 

 Identify sequence of service requests i and i    +    1 based on its priority PR i  and priority 
PRi+ 1 , respectively, and process them in this order in Figure  4.8 .  

Elevator System 

 Sequences elevator travel so that throughput is maximized and response time T i  is 
minimized, as shown in Figure  4.2 . In contrast to the generic system, there is no 
priority in the elevator system; all fl oor requests are treated equally.   

Computation State 

Generic System 

 Compute response time TR i  for service request i, mean response time TR, and 
throughput for all service requests TP in Figure  4.8 .  

Figure 4.2     Elevator system. N i , request fl oor; N d , destination fl oor; N c , current fl oor; TR i , response 
time of request i.  
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Elevator System 

 Computations of response time metrics as the result of state transitions are based on 
comparison of fl oor locations in Figure  4.3 .     

Output Processing State 

Generic System 

 Transfer results of decision analysis and computations to output devices in Figure  4.3 .  

Elevator System 

 Transfer results of computing performance metrics to output devices in Figure  4.3 .    

Figure 4.3     State diagrams. N i , nearest request fl oor; N c , current fl oor; N d , destination fl oor 
associated with N i ; T i : response time of request i; RD, response time difference with respect to 
required RT; TP, throughput.  
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Figure 4.4     Elevator system architecture. N i , request fl oor location; T j , sequence j response time; T f , 
single fl oor traversal time; N c , current fl oor location; P j , probability of sequence j; N d , destination fl oor 
location; t oc : door open/close time; BCD, binary - coded decimal.  

Floor request

Cache 
memory

User

Push buttons
sensor

control

Elevator controller

(microprocessor)

Ni, Nd

Ni, Nd

Ni, Nd

Floor location
sensor

Nc

Sequence j

Elevator

UP, DOWN

Probability of sequence j: pj

Long-term 
storage

Nc

Nd

Elevator Architecture

Nc

Ni

Nd

Ni

Nc

Sequence 1

Nc–N i

Nd–N i

((Nd –Ni) + (Nc–Ni)))  

Floor Travel

Response time: t j

Floor traversal time: tf

Door open close time: t oc

Sequence 1: Tj = (tf*((Nd –Ni) + (Nc–Ni)))*Pj + toc

Recover
and

rollback

Halt
operation

Nc

Test
point

Test point

Elevator Sequences

Test
point

Interface test:
(3 BCD integer)

Test point

Error

signal

Exception handler

(Microprocessor)

Sequence 2

((Ni–Nc) + (Nd – Ni))  

Sequence 2: Tj = (tf*((Ni–N c) + (Nd –N i))*Pj + toc

Ni–Nc

Nd –Ni

Nd

Ni

Ni

Sequence 3: Tj = tf*((Ni –Nc) + (Ni–Nd))*Pj + toc

Nc

Nd

Ni–Nc Ni –Nd

Sequence 4: Tj = tf*((Nc–N i) + (Ni–Nd))*Pj + toc

((Nc–Ni) + (Ni–Nd))((Ni – Nc) + (Ni –Nd)) 

Sequence 3

Ni –Nc

Ni –Nd

Pj = (Nd –N i)/((Nc–Ni) + (Nd –Ni))

Pj = (Nd –Ni)/((Ni–Nc) + (Nd –Ni)) 

Pj = (Ni –Nd)/((Ni –Nc) + (Ni–Nd))

Pj = (Ni–Nd)/((Nc –Ni) + (Ni–Nd))

(Nc ≥ Ni, Nd ≥ Ni)  (Ni ≥ Nc, Nd ≥ Ni) (Ni ≥ Nc, Nc ≥ Nd) (Nc ≥ Ni, Ni ≥ Nd)

1
2

5

1
2

5

HARDWARE FUNCTIONS 

     Generic System 

 Microprocessor with suffi cient speed (clock rate) to satisfy the response time require-
ment. If this requirement is not satisfi ed, increase the microprocessor speed in 
Figure  4.4 .    
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Elevator System 

 Elevator fl oor sequencing controller with suffi cient speed to satisfy fl oor request 
response time requirement. If this requirement is not satisfi ed, increase controller 
speed in Figure  4.4 .  

Generic System 

 I/O channels with suffi cient transfer rate to keep up with real - time transaction input rate.  

Elevator System 

 Elevator I/O channels with suffi cient transfer rate to satisfy fl oor request response 
time and mean value and throughput requirements.  

Generic System 

 Storage system with suffi cient capacity to support the input, storage, and output of 
real - time transactions. Real - time systems do not have the luxury of inputting data 
when convenient for the microprocessor. These systems must input data as it arrives, 
with no loss of input, in Figure  4.4 .  

Elevator System 

 Many real - time designs impose hard real - time constraints on tasks. Thus, computing 
an upper bound of execution time of the software (e.g., maximum fl oor traversal 
time) is a critically important but diffi cult task. The diffi culty arises particularly 
when the code is executed on processors with cache - based memory systems, which 
may be limited in capacity  [UM03] . Therefore, the elevator cache must have suffi -
cient capacity and speed to input and store fl oor requests, with no loss of fl oor 
requests, as shown in Figure  4.4 .  

Generic System 

 System bus with suffi cient bandwidth to accommodate expected data transfer 
requirements, as shown in Figure  4.5 .    

Elevator System 

 Elevator system bus with suffi cient bandwidth to achieve fl oor request response 
time, mean response time, and throughput requirements, as shown in Figure  4.6 .      

ELEVATOR SOFTWARE DESIGN 

 The purpose of the elevator - specifi c software design is to identify the fl oor travel 
sequences by comparing the values of the present fl oor location (N c ), request fl oor 
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Figure 4.5     Generic hardware design and display. TS i , time of service request i; TC i , service request 
i completion time; TR i , service request i response time; RT, required response time; FC, error control 
(used if TR i     >    RT).  
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location (N i ), and the destination fl oor location (N d ), which are inputted by the eleva-
tor fl oor push buttons in Figure  4.6 . In addition, the software design formulates the 
performance equations that are transferred to the hardware design in Figure  4.7  for 
implementation. According to Mok  [MOK90] , in real - time programs, the time of 
occurrence of events rather than the order of events is crucial in determining the 
outcome of a computation. However, both event order and time of occurrence are 
crucial in determining system performance . For example, the order of elevator fl oor 
traversals and  their traversal times are important determinants of elevator system 
performance and must be included in the software design, as shown in Figure  4.6 .   

Selected Hardware Designs 

 Critical design functions are developed for both the generic and elevator systems. 
The purpose is to demonstrate how an integrated software – hardware design is 
achieved by mapping between software and hardware designs. Hardware - oriented 
design has to deal with more problems than software - based design, especially the 
progression of time  [LU03] , such as manipulating the clock rate to achieve the 
required response time in an elevator system, as shown in Figure  4.7 . Therefore, 

Figure 4.7     Elevator system hardware design. N c , current fl oor; N i , request fl oor; N d , destination 
fl oor.  
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the emphasis in the design process is on hardware design, but not neglecting the 
mapping between hardware and software designs. 

Generic System 

 Develop control logic for decoding (i.e., identifying) input service requests in Figure 
 4.9  in order to demonstrate the mapping between generic software and hardware 
designs in Figures  4.8  and  4.5 , respectively, where Figure  4.9  provides the decoder 
logic for generating service request interrupts. Table  4.1  shows the truth table cor-
responding to the design logic in Figure  4.9 , where the bolded  1 s in the table cor-
respond to the decoder outputs. Then, a second critical hardware function is 
designed— response time computation and display — if the response time require-
ment is not satisfi ed in Figure  4.7 .      

Elevator-Specifi c System 

 The elevator controller in the hardware design (Fig.  4.7 ) accepts the elevator fl oor 
sequences from the software design (Fig.  4.6 ) and uses digital logic to translate the 

Figure 4.8     Generic software design. TS i , time of service request i; TC i , service request i completion 
time; TR i , service request i response time; P i , probability of service request i; RT, required response 
time; FC, error control; T, duration of service operations; n, number of responses required in operation 
time T; TP, throughput; PR i , priority of request i.  
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Figure 4.9     Input request decoder design.  
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Table 4.1    Decoder Truth Table for Two Inputs (Request i and Request i    +    1) and Four 
Outputs (Request Interrupt Signals) 

   Inputs     Outputs  

   E (Enable)     x 1  request (i    +    1)     x 0  (request i)     d 3      d 2      d 1      d 0

  1    0    0     1     0    0    0  
  1    0    1    0     1     0    0  
  1    1    0    0    0     1     0  
  1    1    1    0    0    0     1
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sequences into elevator control commands: Up, Down, and Open and Close Doors. 
In addition, the elevator system is equipped with a server that implements the per-
formance equations delivered by the software design. One of these equations is the 
response time error control function. In the event that a response time defi ciency 
exists, the server uses the error control function to increase the clock rate. The 
increased clock rate, in turn, allows the fl oor travel time to be reduced to satisfy the 
response time requirement.    

PERFORMANCE EQUATIONS DEVELOPMENT 

 Now defi ne the variables, parameters, event sequences, and performance equations 
that are used in evaluating the performance of both generic and application - specifi c 
systems.

Defi nitions 

Generic System 

    Time of service request i: TS i
  Time of completion of service request i: TC i
  Required response time: RT  

  Operational time: T  

  Response time of service request i, TR i     =    TS i     −    TC i
  Maximum response time service request i: TR i  (max)  

  Minimum response time service request i: TR i  (min)  

  Probability of completing service request i in required response time: P i
  System error if TR i     >    RT  

  System error feedback correction: FC    =    TR i     −    RT  

  Number of responses to service requests required in operational time T: n     

Elevator-Specifi c System 

 The sequence of elevator system operations is complex with respect to the number 
and type of fl oor requests and the number of stops — with door openings and 
closings— over a given operational time. Therefore, this complexity is decomposed 
so that request fl oor N i  is considered to be the nearest request fl oor to the current 
elevator fl oor N c , and destination fl oor N d  is considered to be the destination fl oor 
corresponding to N i  in a given elevator traversal. This formulation is refl ected in the 
list below. By considering the traversals in Figure  4.2 , the decomposition covers the 
possible fl oor traversal sequences.  
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Estimated by Uniformly Distributed Random 

Variable (Using Excel RAND Function) 

    Probability of fl oor request i: P i
  Request i fl oor (fl oor that is nearest to current location N c  of elevator): N i
  Current fl oor (current location of elevator): N c
  Destination fl oor associated with request i fl oor: N d

Specifi ed 

    Time of traversing one fl oor: t f
  Time of opening and closing doors: t oc  (these times are used at request fl oor N i

and again at destination fl oor N d )  

  Number of fl oor requests processed in time T: n     

Computed

    Expected time of traversing all fl oors to respond to a request i: T fi
  Elevator response time    =    expected time of traversing all fl oors to respond to 

request i plus time of opening and closing doors: T i
  Maximum response time for service request i: T i  (max)  

  Minimum response time for service request i: T i  (min)     

Required

    Elevator response time: RT  

  Response time difference: RD    =    RT    −    T i
  Mean response time difference (MRD), computed over n fl oor requests  

  System error if T i     >    RT  

  System error feedback correction: FC    =    T i     −    RT  

  Elevator operational time: T      

Event Sequences 

 Event sequences are generated in Figure  4.2  based on the number of distinct com-
binations of fl oor locations (N i , N c , N d ) and their travel directions. Note in the event 
sequences that if the elevator is already at the request fl oor (N c     =    N i ), there is zero 
travel time from N c  to N i . Also note, in Figure  4.2 , that the relative locations of the 
elevator, the request fl oor, and the destination fl oor, are important in computing the 
elevator travel distances in the event sequences. 



Integrated Software and Real-Time System Design with Applications 117

Sequence 1
 (1) Elevator goes  down  from current fl oor N c  to request fl oor N i , then (2) goes 

up  from request fl oor N i  to destination fl oor N d  (N c     ≥    N i , N d     ≥    N i ):

    P N N N N N Ni d i c i d i= − − + −( ) / (( ) ( )),

    T t N N N N )) Pfi f d i c i i= ∗ − + − ∗(( ) ( ,

    T t N N N N P ti f d i c i i oc= ∗ − + − ∗ +(( ) ( )) .

Sequence 2
 (1) Elevator goes  up  from current fl oor N c  to request fl oor N i , then (2) goes  up

from request fl oor N i  to destination fl oor N d  (N i     ≥    N c , N d     ≥    N i ): 

    P N N N N N Ni d i i c d i= − − + −( ) / (( ) ( )),

    T t N N N N )) Pfi f i c d i i= ∗ − + − ∗(( ) ( ,

    T t N N N N P ti f i c d i i oc= ∗ − + − ∗ +(( ) ( )) .

Sequence 3
 (1) Elevator goes  up  from current fl oor N c  to request fl oor N i , then (2) goes 

down  from request N i  to destination fl oor N d  (N i     ≥    N c , N c     ≥    N d ):

    P N N N N N Ni i d i c c d= − − + −( ) / (( ) ( )),

    T t N N N N )) Pfi f i c c d i= ∗ − + − ∗(( ) ( ,

    T t N N N N P ti f i c c d i oc= ∗ − + − ∗ +(( ) ( )) .

Sequence 4
 (1) Elevator goes  down  from current fl oor N c  to request fl oor N i , then (2) goes 

down  from request fl oor N i  to destination fl oor N d  (N c     ≥    N i , N i     ≥    N d ):

    P N N N N N Ni i d c i i d= − − + −( ) / (( ) ( )),

    T t N N N N )) Pfi f c i i d i= ∗ − + − ∗(( ) ( ,

    T t N N N N P ti f c i i d i oc= ∗ − + − ∗ +(( ) ( )) .

Sequence 5
 (1) Elevator goes  up  from current fl oor N c  to request fl oor N i , then (2) goes 

down  from request fl oor N i  to destination fl oor N d  (N i     ≥    N c , N i     ≥    N d ):

    P N N N N N Ni i d i c i d= − − + −( ) / (( ) ( )),

    T t N N N N )) Pfi f i c i d i= ∗ − + − ∗(( ) ( ,

    T t N N N N P ti f i c i d i oc= ∗ − + − ∗ +(( ) ( )) .     

System Performance Equations 

 Both generic and elevator - specifi c performance equations are shown below. Later, 
these equations will be used to evaluate elevator system performance and to design 
tests of simulated performance. 
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  Generic 

 Expected (mean) system response time, computed over n responses to service 
requests, accounting for probability of occurrence of response time:

    
TR

P TR

n

i i

i

n

= =
∑( )( )

.1

  Elevator Specifi c 

 Mean time for elevator controller to service fl oor requests, accounting for probability 
of occurrence of response time:

    
TR

P T

n
.

i i

i

n

= =
∑( )( )

1

  Generic 

 Total expected operational time, accounting for the probability of occurrence of 
response time:

    T P TRi i

i

n

=
=

∑( )( ).
1

  Elevator Specifi c 

 Total expected elevator operational time over n operations, accounting for the prob-
ability of occurrence of response time:

    T P Ti i

i

n

=
=

∑ ( )( ).
1

Generic

 Throughput (TP)    =    number of operations/operational time    =    n/T.  

  Elevator Specifi c 

 Number of service fl oor requests n processed by elevator controller during opera-
tional time T:

    TP n T= / .
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Generic

 MRD for request i:

    
MRD

RD

n

i

i

n

= =
∑

1 .

  Elevator Specifi c 

 Mean elevator response time difference for fl oor request i:

    
MRD

RD

n

i

i

n

= =
∑

1 .
      

REAL-TIME SYSTEM SIMULATED TESTING 

 This section is comprised of observations by other researchers of problems in real -
 time system testing and our responses to these problems. 

Achieving Visibility of Operations 

 As complex devices such as elevator controllers are inserted into real - time systems, 
traditional testing methods may be inadequate. A diffi cult obstacle to thorough 
testing of real - time systems is achieving visibility into the operations of processing 
elements, such as the elevator server of the hardware design in Figure  4.7 , while 
application software is executing, such as fl oor sequencing control, in the software 
design of Figure  4.6   [KIN98] . Resolve this problem by explicitly mapping Figure 
 4.6  computations into computation execution in Figure  4.7 , and test the interaction 
in terms of performance results, as discussed in the next section.  

Test Case Selection 

 Test case selection is designed to provide adequate coverage of system components 
by deriving test cases from software designs  [EN08] ; for example, the elevator 
software design in Figure  4.6 . Test case selection is effective when software func-
tions are mapped to test cases, such as fl oor sequence traversal sequences mapped 
to tests of sequence correctness. Test case selection can also be enhanced by using 
state diagrams to identify state transitions that must be tested  [SHU04] , such as the 
elevator travel state changes in Figure  4.3 .  

Verifying a Design 

 It has been noted that the application of simulation to verifying a design does not 
provide  “ total confi dence ”  that the design is correct  [UMR83] . Actually, no verifi cation 
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method can provide “ total confi dence, ”  but by replicating simulation tests a suffi -
ciently large number of times, say 100 elevator fl oor traversals, verifi cation error 
can be minimized.  

Achieving Realism in Testing 

 The testing regimen approximates realism by mimicking the way the actual elevator 
system would perform with respect to fl oor traversal scenarios  [ZHE04] . The testing 
of the elevator system is geared to the performance simulation results to be presented 
in the next section. The objective is to ascertain whether performance objectives 
such as required response time can be met. This is accomplished by simulating a 
specifi ed number of fl oor requests that generate a series of elevator travel sequences. 
Based on these sequences, performance metrics are computed and compared with a 
specifi ed performance. If there is a performance error, the test is repeated using a 
reduced fl oor traversal time, consistent with achievable performance of extant eleva-
tor systems. A key indicator of acceptable performance is that response time is satis-
fi ed for all fl oor requests.  

Detecting Logical Errors 

 The characteristics of real - time systems impose specifi c requirements on the test 
system. The system must be capable of detecting logical as well as timing errors in 
the design  [TIM93] , for example the ability to detect incorrect elevator fl oor 
sequences (e.g., elevator goes up to the highest destination fl oor and attempts to go 
higher) and the ability to detect incorrect elevator timing computations (e.g., response 
time is computed to be negative).  

Maximum Response Time Criterion 

 Maximum response time that occurs due to resource limitation  [WED91] , such as 
maximum elevator response time caused by the elevator not being available in a 
timely manner, is another important test criterion. An example of the test of this 
variable is shown in Figure  4.10  for elevator travel Sequence 1. Based on the test 
results, fl oor travel time would be reduced to 3 seconds in Figure  4.10  to obtain the 
required maximum response time of 60 seconds.    

Complexity Caused by Interrupts 

 Another consideration in real - time testing is complexity caused by interrupts occur-
ring in an asynchronous manner  [PET07] , such as elevator travel in the down direc-
tion being interrupted by a request to go in the up direction. Handle this situation 
by incorporating asynchronous interrupts into both the elevator software and hard-
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ware designs in Figures  4.6  and  4.7 , respectively, and conducting performance simu-
lations in this environment.   

ELEVATOR SYSTEM PERFORMANCE RESULTS 

 Elevator system performance results are computed using performance metrics. These 
metrics are functions of elevator travel sequences and the comparison of sequences. 
As Figure  4.9  shows, performance improves with decreasing travel time for one 
fl oor. These results were generated by simulating testing of travel sequences 100 
times. For each sequence, current fl oor, request fl oor, and destination fl oor locations 
were produced from uniformly generated random numbers, assuming there are 20 
fl oors in the elevator system. Then, the fl oor location values were compared to 
produce the travel sequences. Next, using the sequences, various metrics were com-
puted. Then, two sequences (1 and 4) were compared (see Fig.  4.2 ) to investigate 
whether there is a difference due to direction of elevator travel, for the same values 
of travel time for one fl oor. Indeed, as Figure  4.11  demonstrates, there are notable 
differences for throughput and mean difference between required and achieved 
response times. The lesson learned is that travel direction and distance is important 
in assessing performance.    

Figure 4.10     Elevator Sequence 1: Mean response time (TR), throughput (TP), MRD, maximum 
response time T i  (max), and minimum response time T i  (min) versus one elevator fl oor traversal time 
(tf ). Series 1: TR (seconds). Series 2: TP (requests per minute). Series 3: MRD, mean difference 
between required and achieved response time (seconds). Series 4: T i  (max) (seconds). Series 5: T i
(min) (seconds).  
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SUMMARY AND CONCLUSION 

 My aim was to develop an integrated and comprehensive design approach with the 
objective of providing engineers with a road map for improving real - time system 
design. My approach to real - time system design was to use models (e.g., elevator 
fl oor traversal sequences) that are appropriate for real - time system analysis, such as 
state diagrams, simulated testing, and event sequencing. Timing and schedule con-
straints were considered in order to analyze real - time system performance. I chose 
the elevator example because it presents many design challenges and everyone can 
relate to this system. I recognize that an abstract approach can only go so far in 
developing real - time hardware and software designs, and in testing these designs. 
Ultimately, the particular characteristics of the application must be considered. 

 By applying the above principles of real - time system design, an application -
 specifi c system such as an elevator system can be developed to satisfy response time 
requirements. The most important step in the development process is fi rst, to repre-
sent the generic view of the application design. Then, using the generic design as a 
guide, develop the specifi c features of the application. This approach has the advan-
tages of providing real - time system design abstractions that can be used for design-
ing any  real - time system, and at the same time providing suffi cient specifi city for 
designing application - specifi c systems.

Question for the Reader:  In the elevator system design, why not model the 
complete, continuous scenario of elevator operations rather than dividing the 
operations into discrete sequences, such as those shown in Figure  4.2 ?  

Figure 4.11     Elevator: Mean response time (TR),  throughput  ( TP ), and MRD versus one fl oor travel 
time t f . Series 1: TR, Sequence 1. Series 2: TP, Sequence 1. Series 3: MRD, Sequence 1. Series 4: TR, 
Sequence 4. Series 5: TP, Sequence 4. Series 6: MRD, Sequence 4.  
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Answer:  While at fi rst glance this may be a reasonable thing to do in order to 
introduce more realism into the model, this approach would be counterpro-
ductive because excessive complexity induced by considering too large a 
chunk of a system at one time leads to errors in design and, consequently, to 
errors in the implemented system. The  “ divide - and - conquer ”  approach is a 
superior design paradigm.     
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Chapter 5

Network Systems 

T his chapter is dedicated to describing and analyzing the performance, reliability, maintaina-
bility, and availability of networks. With respect to the part of networks called the Internet, the 
chapter builds upon Chapter  6 : Future Internet Performance Models. A smart grid application is 
used to illustrate network functional and performance requirements. The chapter covers the various 
types of networks, communication protocols, network services, and network architecture.    

OVERVIEW

 First, an overview of different types of networks is provided in order to give the 
reader a perspective on networks that will serve as a foundation for learning network 
details. In addition, because contemporary texts do not always explain the  “ why ”  of 
networks as opposed to the  “ how, ”  this chapter will explain the rationale of each 
network concept. 

Local Area Network 

 A local network provides processing and communication services to a community 
of users in a local area, typically within a corporate or residential geographical 
domain. Why not have these users communicate directly to the Internet? The reason 
is that some applications do not require access to the Internet. For example, users 
may need access to servers that are part of a corporate local area network. In addi-
tion, even if access to the Internet is ultimately required in the application, prelimi-
nary communication and processing may be necessary in the local area network prior 
to Internet access. For example, an electric utility may need to access smart meter 
readings in a local area network prior to communicating them over the Internet to 
various substations. Also, note that when possible, there is a performance advantage 
in communicating in a local area network as opposed to using the Internet because 
local networks employ higher speed communication lines and do not have to contend 
with the traffi c congestion that is present on the Internet.  
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Wide Area Network 

 The most prominent of this type of network is the Internet. However, there are many 
private wide area networks that are part of corporate computer communication 
systems. Due to the geographic extent of these networks, communication services 
provided by communication carriers are necessary. This is not the case in local 
networks because the communication distances are suffi ciently short that private 
communication channels (e.g., Ethernet) suffi ce. The performance of wide area 
networks is comparable to that of the Internet. Then, why not use the Internet 
directly? The reason, again, is a question of congestion, since the congestion on a 
private wide area network is much less than that on the public Internet.  

Network Architecture 

 This aspect of networks is addressed at this point because many texts and articles 
use this model to explain network operations. It seems that the model is overused 
because it can appear to readers to be the network  rather than a representation of 
network operations. The essence of the layered model is that corresponding layers 
between two computers in a network communicate, for example, between applica-
tion layers. In actuality, the layers do not communicate. This is a software conception 
of how the major parts of a network interoperate. Actual communication is accom-
plished by a combination of hardware and software, as shown in Figure  5.1 . This 
fi gure shows the function of each layer using the smart meter application as an 
example. The only  actual  communication that takes place in Figure  5.1  in the layered 
architecture is in the physical layer. In contrast to layered, virtual communication, 
the fi gure also shows the real communication between network computers.     

NETWORK APPLICATION 

 To provide context for the various facets of network analysis that are presented in this 
chapter, a smart grid application is discussed. The smart grid is a network of comput-
ers and power devices that monitor and manage energy usage. Each energy producer —
 for example, a regional electrical company — maintains operational centers that 
receive usage information from collector devices placed throughout the served area 
(see the smart meter in Fig.  5.1 ). In a typical confi guration, a neighborhood contains 
a single collector device that will receive periodic updates from each customer in the 
neighborhood via the Internet. The collector device reports usage readings to the 
operational centers using communication media such as the Internet. 

Usage Reporting 

 The electric utilities manage transmission and perform billing based on smart meter 
readings and send this information to the database in Figure  5.1 . The usage - reporting 
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device at each customer site is called a smart meter. It is a computerized replacement 
of the electrical meter attached to the exterior of many of our homes today. Each 
smart meter contains a processor, nonvolatile storage, and communication facilities. 
Although in many respects the smart meter ’ s look and function is the same as its 
unsophisticated predecessor, its additional features make it more useful. Smart 
meters can track usage as a function of time of day, disconnect a customer via soft-
ware, or send out alarms in case of problems. The smart meter can also interface 
directly with “ smart ”  appliances to control them, for example, turn down the air 
conditioner during peak periods  [MCD09] . Smart meters can collect a unique meter 
identifi er, timestamp, usage data, and time synchronization every 15 – 60 minutes.  

Data Requirements 

 In the United States, there are 338 million meters in operation. To bring the electric-
ity grid into the digital era, every meter, and the millions of devices that connect to 
them, must be smart. Devices need to measure and transmit data, act on incoming 

Figure 5.1     Network architecture.  
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information, and handle innovative applications. This will require a network that can 
accommodate the sum of information that will be generated by the smart grid. For 
example, if the 338 million meters already deployed in the United States digitally 
reported the most basic electricity use information every 15 minutes, they would 
generate anywhere from 274 to 548   GiB of information every day ( http://
www.smartsynch.com/smartsynch_infrastructure.htm ). Components such as those 
shown in Figure  5.2  would require this capacity.     

NETWORK PROTOCOLS 

 Network protocols are rules of communication that govern how data are communi-
cated in a network. Most of the protocols are used in the Internet due to the com-
plexity of that network relative to local area networks. These protocols and ancillary 
items that are related to protocols will now be described. 

Transmission Control Protocol ( TCP)
and Virtual versus Real Communication 

 This protocol operates in the Transport Layer in Figure  5.1  and is responsible for 
ensuring reliable end - to - end communication in the Internet. By  “ end - to - end, ”  it is 
meant from network computer to network computer in Figure  5.1 . While this objec-
tive sounds good, realistically, it cannot be achieved; no system can be failure free. 
An attempt is made at reliable communication by using acknowledgements. The 
receiver acknowledges to the sender that a “ correct ”  message was received. The 

Figure 5.2     Network performance model. T i , node i processing time;  ρ i, probability of node i being 
busy; λuc , user computer input rate; W i : node i wait time; p, Web page packet request size or Web page 
size; T p , packet input time; T ij , link ij processing time; S ij , link ij speed.  
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message is assumed to be incorrect  if an acknowledgement is not received within a 
specifi ed time called the  “ time - out period. ”  Since, as stated, no system is failure 
free, correct messages cannot be guaranteed. Rather, an attempt is made at correct-
ness by appending error check data — which is computed over the message — to the 
message and transmitting this package to the receiver. The receiver, in turn, com-
putes error check data over the received message, using the same algorithm that was 
used at the sender. The reliability of this process will be addressed in a later section. 
An interesting facet of TCP reliability is that a great deal of overhead is generated 
when the odds are that a high percentage of messages will be transmitted without 
error. This overhead injects additional congestion into the Internet, lowering the 
performance of the entire Internet. It seems that reliability – performance trade - offs 
were not considered in designing TCP. Also to be noted is that the Application Layer 
provides TCP with the Smart Meter Reading in Figure  5.1 . Thus, in addition to the 
“ horizontal ”  virtual communication, there is  “ vertical ”  virtual communication 
between layers. Of course, both “ horizontal ”  and  “ vertical ”  virtual communications 
are fi ctitious; these are modeling artifacts. The only true communication is the  “ real 
communication”  in Figure  5.1 . 

 Also note in Figure  5.1  that the concept of vertical virtual communication occurs 
at both the source and destination. In the former, the Smart Meter Reading applica-
tion data is sent from the Application Layer to TCP, where the data become a TCP 
message that is fortifi ed with acknowledgement, error checking, and sequencing 
information. The last item is required because messages are actually comprised of 
smaller segments for effi ciency in communication and processing (e.g., reduced 
buffer space at both source and destination). Each segment is assigned a sequence 
number because segments can get out of order when they are routed through the 
Internet due to different delay times experienced by the segments. Then, the seg-
ments are sent to the Network Layer where they are transformed into a series of 
packets in Figure  5.1 , where the packets contain source and destination Internet 
Protocol (IP) addresses and routing information (e.g., IP address of next router). 
Local networks such as Ethernet — usually owned by user communities — are required 
at the source and destination in order to process and communicate data within the 
user communities, and to interact with the Internet. Therefore, Network Layer 
packets are “ virtually transmitted ”  to the Data Link Layer. This layer ’ s protocol 
provides error checking between source and destination local networks. Note that 
up to this point in the discussion of the layering approach the functionality in Figure 
 5.1  is implemented primarily in software. Now, at the Physical Layer, hardware is 
used to transmit binary bits from source to destination. No error checking is neces-
sary in this layer because this function is performed in the Data Link Layer. 

 At the destination, the raw bits in the Physical Layer are checked for correctness 
by the Data Link Layer. Next, the packets that have been buried in the binary bits 
of the Physical Layer and the data of the Data Link Layer are recovered. The 
Network Layer also checks segment sequence, reassembling segments in the correct 
order, and thus recovering the TCP message. This is not the end of the story because 
the messages require error checking by the Transport.  
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User Datagram Protocol ( UDP)

 In contrast to TCP, the UDP does not attempt to ensure reliable communication. 
Operating in the Network Layer of Figure  5.1 , it transmits data with no acknowl-
edgements, thus providing higher performance compared with TCP. The term  “ data-
gram”  could be confusing to the reader;  “ message ”  would suffi ce. To add to the 
confusion, “ message ”  is used in TCP, wherein, in reality, both TCP and UDP transmit 
messages. However, Internet working groups designate this terminology because 
UDP transmits short messages, called datagrams, whereas TCP transmits messages 
comprised of several packets, where a packet is defi ned as data that have a header 
for an address and routing information, a body for the actual data, and a trailer for 
error check information.  

Internet Protocol ( IP)

 This rule of communication is used in all Internet data transfers and is associated 
with the Network Layer in Figure  5.1 . Interestingly, the TCP message is appended 
to the IP packet, where a packet is simply a set of binary bits that is transmitted in 
the Internet. Thus, in the literal sense, a TCP message is not transmitted in the 
Internet. Rather, it is the IP packet that is transmitted.   

NETWORK SERVICES 

 Network services are network functions that provide services to users. In addition 
to their functions, services are distinguished from protocols by virtue of being 
affi xed, by servers, to one or more points in local networks, as opposed to protocols 
that operate over communication channels between points in a network. 

Domain Name Service ( DNS)

 The DNS can be mystifying to readers because the natural question arises: why can ’ t 
my data be communicated in the Internet by using the name of my computer and 
the name of the resource I wish to access? The reason this is not feasible is that to 
access a resource in the Internet, an IP address is required. The reason for this 
requirement is that IP addresses provide generality in the Internet. That is, with each 
resource in the Internet having an IP address, which may be assigned permanently 
(e.g., Web server) or temporarily (e.g., duration of a network computer transaction), 
any resource can be accessed. While it could be possible to maintain tables of 
network computer names in order to access these resources, it would be ineffi cient 
because the names would vary in length and not all network computers would remain 
connected to the Internet over time. Thus, temporary assignment of an IP address 
for the duration of a transaction has proven effective. However, users do not want 
to remember IP addresses. It is more natural for them to deal with computer names. 
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Besides, as mentioned, IP addresses are only assigned temporarily. Therefore, DNS 
converts from a network computer name to an IP address when the computer 
accesses a resource (e.g., Web server) and performs the reverse conversion — from 
IP address to  Uniform Resource Locator  ( URL ) — when the Web server is accessed. 
The URL, a bureaucratic name if there ever was one, is the name of a Web server 
that is used by the network computer for accessing the Web server. Once the DNS 
converts network computer name to an IP address, the Web server uses it to respond 
to the Network Computer ’ s request.  

Web Site Services 

 These services go into action when users request Web pages on the Internet. Users 
are unaware of the many messages that transpire in the Internet when they access a 
Web page. In addition to the user ’ s request, messages are required to perform DNS 
name - to - IP address translation and to establish a session between user and Web site. 
Thus, in assessing the user ’ s performance experience on the Internet, many support-
ing “ hidden messages ”  must be accounted for in addition to application message.  

Session and Presentation Layer Services 

 Actually, these are nonservices because they are not needed by these layers! Then, 
why are they present in the architecture? The answer is that the international stan-
dards group included them because they believed these functions would be per-
formed by distinct layers in the architecture. However, Internet architects assigned 
TCPs to session establishment by virtue of acknowledgements and they designated 
applications to format source data (e.g., user formatting of Web page requests) and 
services to format response data at the destination (e.g., Web site formatting of 
requested Web page). However, since the seven - layer architecture is the holy grail 
of networks, it is incumbent for book authors to include it.   

NETWORK PERFORMANCE 

 In this section, network performance equations will be developed for each component 
shown in Figure  5.2 . Later, relevant network performance data from Chapter  6  will 
be used in the equations to estimate the performance of extant computer networks. 

Link Delay Times 

 These are the times required to transmit data on a link from the source point to the 
end point; for example, the delay time from the user computer to the local network 
queue in Figure  5.2 . Thus, T ij  is link time, as computed below:

    T p Sij ij= / ,
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  where p is the Web page request packet and Web page size and S ij  is speed of link 
ij. p is assumed to be exponentially distributed, with mean    =    1000 bits for Web page 
request packet and mean    =    96,928 bits for Web page size (see Table  5.1  for this 
information). The exponential distribution is justifi ed on the basis of higher probabil-
ity of small values of p and lower probability of large values. Values of p are gener-
ated by using the mean values in an exponential distribution, using a statistics 
program (e.g., Minitab).   

Question for Reader:  Why not use the mean values of Web page request packet 
and Web page size, rather than assume an exponential distribution and gener-
ate various values? 

Answer:  Single or mean values of p do not exist in real networks. Rather, in 
real networks, there exists a distribution of sizes, where the exponential is 
the most rationale distribution to use. 

 In addition to individual link delay times, it is also important to compute the mean 
of link delay, MT L , and time over all links, N L , to obtain a metric of  network  com-

Table 5.1    Network Performance Parameters 

   Data item     Source     Value  

   Asymmetric digital subscriber 
line  ( ADSL ) Internet 
communication channel 
speed

   www.webopedia.com/      λuc     =    640,000 bits per 
second

  Local network (Ethernet) link 
speed

   [HAM02]     S ij     =    100,000,000 bits 
per second  

  Local network router 
processing speed  

   http://arstechnica.com/
hardware   

  S i     =    54,000,000 bits per 
second

  Internet router link speed     www.highspeedrouter.com/     S ij     =    6,250,000 bits per 
second

  Domain name server (DNS) 
processing speed  

   www.labnol.org/     S i     =    143,000 bits per 
second

  DNS processing time    / www.labnol.org/     T i     =    0.007   seconds  
  Web server link speed     www.google.com     S ij     =    2,418,500 bits per 

second
  Web page size     www.google.com     p    =    96, 928 bits  
  User computer processing 

speed
   [HAR07]     S i     =    2,000,000,000 bits 

per second  
  Local network server 

processing speed  
  Assume same speed as user 

computer
  S i     =    2,000,000,000 bits 

per second  
  Internet router server 

processing speed  
  Cisco    S i     =    100,000,000,000 

bits per second  
  Web server processing speed     http://www.info - techs.com/

speedtest50.html   
  S i     =    12,439,000 bits per 

second
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munication performance that can be compared with individual link delay times to 
see which link delay times are excessive and in need of performance improvement 
by increasing link speed S ij . This metric is computed as follows:

    MT T N .L ij L

ij

NL

= ∑ /

 Figure  5.3  puts the metric MT L  into action by identifying the Web server of exhibit-
ing anomalous behavior: excessive link delay time attributed to the Web server, 
calling for an increase in its link speed. However, note that another contributor to 
excessive link delay is the large Web page. Unfortunately, it may be infeasible to 
reduce the size of the Web page. Therefore, the feasible option is to obtain a Web 
service that can provide the desired speed, where this speed is computed as follows, 
using the unchanged Web page size and the mean line delay:

    S p MTij L= / .

 Figure  5.3  shows the increased Web service link speed designed to correct the per-
formance defi ciency.  

Node Processing Times 

 Nodes in Figure  5.2  are any objects that are not a link (e.g., user computer). Thus, 
Ti  is the processing time of node i, as computed below:

Figure 5.3     Link delay time T ij  versus link ij. Series 1: T ij . Series2: Mean of T ij .  
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    T p Si i= / ,

  where S i  is the processing speed of node i. 
 In addition to individual node processing times, it is also important to compute 

the mean processing time, MT N , and time over all nodes, N N , to obtain a metric of 
network  processing performance, computed as follows:

    MT T N .i i N

i

NN

= ∑ /

 Then, individual node processing times can be compared with the mean to identify 
nodes that may be causing excessive processing time and, thus, are in need of pro-
cessing speed increase. 

 Again, as was the case with link delay, Figure  5.4  demonstrates that the Web 
server is a bottleneck.   

 The remedies are to either increase the Web server processing speed or to 
decrease the Web page size. Therefore, again the performance problem can be solved 
by increasing the Web server processing speed, using the unchanged Web page size 
and the mean node processing time as follows:

    S p MT .i i= /

 Figure  5.4  shows the increased Web service processing speed designed to correct 
the performance defi ciency. Note, however, that since both the increased Web service 

Figure 5.4     Node processing time T i  versus server node i. Series 1: T i . Series 2: Mean of T i .  
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link speed and node processing speed are signifi cantly greater than the original 
values, it may not be practical to achieve these rates. Thus, it may be necessary to 
settle for improved Web server service but not to the extent suggested by Figures 
 5.3  and  5.4 .  

Node Probability of Being Busy 

 Note in Figure  5.2  that nodes such as local network server may or may not be busy. 
Being busy means that there are one or more items in a queue waiting to be pro-
cessed. Thus, the probability of node i being busy,  ρi , is related to the data input 
speed to node i, on link ij, S ij , and to the processing speed of node i, S i , as follows:

    ρi ij iS S= / .

 There is one exception to the application of this equation and that is the determina-
tion of ρi  for the  Domain Name Server  ( DNS ). For the DNS, the Internet Router 
link speed, in Figure  5.2 , which is the DNS link speed, is so much greater than the 
DNS processing speed (see Table  5.1 ) that it would be necessary to provide at buffer 
at the input of the DNS in Figure  5.2 . This is done to prevent the DNS from being 
overrun by Internet traffi c.  ρi     =    S ij /S i  cannot be used because it would yield a value 
much larger than 1.0, which would indicate queue instability. However, this is not 
the case when the buffer is employed. To make the DNS operate in a stable manner 
ρi     =    0.8 is assigned as the DNS busy metric.  

Packet Input Time 

 Packet input time, T p , is a driver of network operations that is needed to estimate 
its infl uence on wait time in a queue. Its infl uence is exerted because the rate of data 
input generated by the user computer,  λuc , may cause the links and nodes down the 
line to be overwhelmed with data and, hence, increasing wait time. T p  is computed 
as follows:

    T pp uc= / ,λ

  where p is the packet size. 
 Figure  5.5  demonstrates the infl uence packet input time on wait time, in that 

wait time follows the pattern set by packet input time as a function of the node where 
the wait time occurs. The utility of this plot is to identify the node associated with 
anomalous high values, which in this case is the Domain Name Server (DNS), and 
to correct this defi ciency by obtaining the services of a DNS provider that has a 
DNS with the requisite speed.    

Node Wait Time 

 Node i wait time, W i , can be estimated by considering that if node i probability of 
being busy,  ρi . is 0, there are no items waiting for processing at node i. On the other 
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hand, if ρi  is 1, the indication is that node i is in its maximum busy state and an item 
would have to wait to be processed. If the probability of node i being busy is 
0    <     ρi     <    1, it indicates the degree of busyness. Thus, on an  expected value  basis, 
node i wait time, W i , is estimated as follows:

    W Ti i i= ρ .

 For example, if  ρi     =    0, then W i     =    0; if  ρi     =    1, then W i     =    1. That is, with  ρi     =    0, of 
course there is no waiting and W i     =    0. However, with  ρi     =    1, an item would have to 
wait for the previous item to be processed for a time T i .  

Node Processing Time plus Node Wait Time 

 Processing time alone does not tell the entire story of node performance. What is 
needed is to account for wait time, which could be signifi cant. Therefore, the sum 
of these times, TW i , is computed as follows: 

    TW T W p S Ti i i i i i= + = +/ .ρ

 In addition, to provide a standard for evaluating the performance of individual nodes, 
the mean of TW i  is computed over N n  nodes as follows:

    
MTW

TW

N
.i

i

i=1

N

n

n

=
∑

Figure 5.5     Packet input time T p  and node wait time W i  versus node i. Series 1: W i . Series 2: T p .  
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 The value of TW i  is compared with MTW i  to identify node processing times that 
may be excessive. This comparison is demonstrated in Figure  5.6 , where the Web 
server is identifi ed as failing to meet the mean value test. In these cases, there would 
be a need for node processing speed S i  to be increased.    

Summation of Link Delay, Processing Time, 
and Wait Time 

 To obtain a comprehensive performance metric of an entire network, T t , link delay, 
node processing time, and wait time are summed over number of links, N L , and N n , 
number of nodes in a network, as follows:

    T T T Wt ij

ij

N

i

i

N

i

i

NL n n

= + +∑ ∑ ∑ .

 In addition, the mean MT i  of T i  is computed over all N N  nodes and N L  links as follows:

    MT T .i t

i,ij

N NN L

= ∑
 It is appropriate to compare total network time T t  with the user expectation T e  to see 
whether the performance is meeting expectation. Furthermore, the relative error RE 
between expected and realized times is computed as follows:

Figure 5.6     Node processing time plus wait time TW i  versus node i. Series 1: TW i . Series 2: Mean 
of MTW i .  
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    RE T T Te t e= −( ) / ,

  where positive or zero values indicate that the user expectation of T t     ≤    T e  is satisfi ed 
and negative values indicate that the user expectation is not satisfi ed. By examining 
individual link delay, node processing time, and node wait time, the source of per-
formance problems can be identifi ed that could be excessive link delay or node 
processing time, or both. This comparison is performed in Figure  5.7 , where it is 
shown that high RE is associated with the Web server failing to meet the total node 
processing, wait, and link delay time expectation.    

Network Performance Parameters Data 

 The network performance parameter data that will be used in the network perfor-
mance equations is documented in Table  5.1 .   

NETWORK RELIABILITY, MAINTAINABILITY, 
AND AVAILABILITY PREDICTION 

 In addition to performance, it is important to predict the reliability, maintainability, 
and availability that can be achieved in a network. 

Figure 5.7     Node processing time plus wait time plus link delay T t  versus server node i. Series 1: 
Tt . Series 2: Mean of T t .  
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Reliability

 The factors that govern reliability in a network are the following:  

  Both links and nodes must be used in prediction equations.  

  Because reliability is higher for small values of link delay and node processing 
time than for large values, the appropriate reliability function is the 
exponential.

  The probability of a node being busy must be included in reliability prediction 
equations because when nodes are busy, not only are nodes busy but the 
connecting links are also busy because the data on the links must be delayed 
for processing until the nodes are no longer busy, thus exposing links to 
increased possibility of failure.  

  The failure rate  λ  is a random variable that is generated by using the Excel 
RAND function.    

 Thus, proceeding to use these factors in developing reliability prediction equations, 
the link failure rate, λij , is computed as follows, applying the probability of node i 
being busy:

    λ ρ λij i= .

 The exponential distribution is put to work to predict link reliability, R ij , where Tij 
is link delay:

    R eij
Tij ij= −( ).λ

 Now node reliability is formulated in a manner similar to links. First, failure rate: 
as in the case of links, failure rate is the product of probability of node busy and the 
Excel RAND function, λ , generating difference values for this computation:

    λ ρ λi i= .

 Then, the exponential distribution is called on to predict node reliability, R i , applying 
node processing time T i :

    R ei
Ti j= −( ).λ

Maintainability

 Maintainability is formulated by considering how the probability of maintenance 
actions can be estimated. The concept is that maintainability is a probability, and 
this probability is the ratio of the quantity of data processed by a given link or node 
to the total quantity of data processed at all links and nodes in the network. The 
quantity of data that is processed by each link and node is pij,i , the Web page request 
size for all links and nodes, except for the Web server and its associated link, where 
pij,i  is the Web page size. Thus, maintainability is predicted as follows, where N L  is 
the number of links and N N  is the number of nodes in the network:
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M

p

p

.ij,i
ij,i

ij,i

ij,i

N NL N
=

∑
 The primary purpose of Table  5.2  is to account for the links and nodes in the main-
tainability predictions. See Figure  5.2  as an aid in making this accounting. The Web 
page request packet and Web page sizes in Table  5.2  were generated from the afore-
mentioned exponential distribution process.    

Availability

 Availability is important in all systems, including networks. It represents the fraction 
of time that a network is operational for useful work. The fraction of time that the 
network is not  available is the time consumed in maintaining the system, and the 
fraction of time the network is not being maintained  and doing useful work is when 
it is operating reliably. These fractions of times can be translated into corresponding 
probabilities in order to produce a general availability expression as follows:

Maintainability .      The probability that the network  is not  available.  

Reliability .      The probability that the network  is  available.    

 Thus, link availability, A ij , is predicted as follows:

    A R R Mij ij ij ij i= +/ ( ),,

  and node availability, A i , is predicted as follows:

    A R R Mi i i ij i= +/ ( ).,

 The results of combining reliability and maintainability into availability predictions 
are shown in Figure  5.8 , where the link and node availabilities are almost identical 
so that only one availability plot is shown along with the required availability of 
0.9800. This requirement means that the user expectation is that the network will be 
unavailable for not more than 2% of the scheduled operating time. The fi gure delin-
eates the nodes and connecting links that satisfy the requirement and those that do 
not. The problem in the latter case is excessive maintainability. Since both link and 
node reliabilities are high, the remedy would be improved maintenance practices, 
such as preventive maintenance.     

SUMMARY

 This chapter has shown how to analyze and predict network performance, reliability, 
maintainability, and availability. In addition, using the foregoing tools, the reader 
learned how to identify anomalous performance and availability behavior, such as 
that exhibited by the Domain Name Server and Web server. Thus, the reader is then 
fortifi ed with tools for correcting these defi ciencies.  
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Table 5.2    Maintainability Data 

   Link     Node  
   p (Web page request or 
Web page size in bits)  

  User computer to local 
network server queue  

      467.29  

      Local network server queue    467.29  
  Local network server queue to 

local network server  
      656.28  

      Local network server    656.28  
  Local network server to local 

network router server queue  
      491.06  

      Local network router server 
queue

  491.06  

  Local network router server 
queue to local network 
router server  

      938.72  

      Local network router server    938.72  
  Local network router server to 

internet router server queue  
      1,069.94  

      Internet router server queue    1,069.94  
  Internet router server queue to 

internet router server  
      1,115.03  

      Internet router server    1,115.03  
  Internet router server to 

domain name server queue  
      1,399.53  

      Domain name server queue    1,399.53  
  Domain name server queue to 

domain name server  
      943.51  

      Domain name server    943.51  
  Domain name server to 

internet router server queue  
      1,774.3  

      Internet router server queue    1,774.3  
  Internet router server queue to 

internet router server  
      887.43  

      Internet router server    887.43  
  Internet router server to Web 

server queue  
      1,231.98  

      Web server queue    1,231.98  
  Web server queue to Web 

server
      385.84  

      Web server    385.84  
  Web page to Web server        33,181.3  
      Web server    33,181.3  
      Total    44,542.21  
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Chapter 6

Future Internet Performance 
Models

H aving learned the fundamentals of computer design in Chapters  1  and  2 , which apply to 
computers such as personal computers, you are ready to study a topic that is pervasive in the 
world of information technology — the Internet. Since there are few computer applications 
that do not use the Internet, I provide the reader with a perspective of the evolving Internet, 
using the present Internet as a baseline. The performance and reliability of a proposed future 
Internet — wired and wireless — is compared with the present Internet. Models of data transfer 
and queuing dynamics are used to make the performance comparison. These models consist 
of logic diagrams that express the sequence of data transfers in the Internet (e.g., local network 
to local network router) and queuing logic diagrams, supported by queuing equations (e.g., 
probability of local network queue busy). These models represent the steady - state behavior 
of the present and proposed future Internets. Computer programs are used to simulate the 
variability in queue behavior. The results are used to identify the major variables in Internet 
performance (e.g., Internet routing time as a major performance variable). Furthermore, the 
results are used to compare present Internet and proposed future Internet performance. Reli-
ability analysis is performed by predicting cumulative Internet faults and failures and by 
analyzing the complexity of present and proposed Internet confi gurations as an indicator of 
reliability (i.e., number of points of failure in a confi guration). Model results demonstrate 
signifi cant increases in performance and reliability for the proposed Internet, attributed to the 
elimination of data transfer overhead (e.g., elimination of Domain Name Service) and simpli-
fi ed network confi gurations.    

CHAPTER OBJECTIVES 

 One objective is to compare the performance and reliability of the present Internet 
with a proposed Internet of the future that could operate faster, more reliably, and 
with improved security, by eliminating the overhead induced by a multiplicity of 
protocols, intermediate networks, and interfaces that comprise the current Internet. 

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F. 
Schneidewind.
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In order to illustrate the proposal, I developed analytic queuing models and simula-
tion models for comparing the performance and reliability of the current versus the 
proposed Internet. The process starts by defi ning the network topology for present 
and future Internet confi gurations. This leads to identifying and defi ning the perfor-
mance and reliability and variables of the model. In developing the prediction equa-
tions, the sequence of operations on the network — for example, an input request to 
the Internet — provides the basis for computing the performance and reliability of 
the present and proposed Internets. 

 To add realism to the models, I use publicly available performance and reli-
ability data posted on the Internet. While the performance and reliability of present 
and proposed Internets are of interest, it is the comparison  of the two that is my core 
objective that would demonstrate whether the proposed Internet is viable. Both wired 
and wireless Internets are included in the analysis, in both upload direction (i.e., 
request for Web page) and download direction (i.e., delivery of Web page). Based 
on extensive literature search, no one has proposed fundamental changes in the 
Internet confi guration, as I propose. Rather, current research focuses on the present 
Internet confi guration as a given, with proposals to improve quality of service, reli-
ability, and so on, on the existing platform.  

PROPERTIES OF THE PROPOSED FUTURE INTERNET 

 In today ’ s Internet architecture, the  Internet Protocol  ( IP ), Internet addresses, and 
the  Domain Name Service  ( DNS ) implement core architectural principles that 
restrict the Internet ’ s ability to adapt to improved performance and reliability require-
ments  [GOE07] . In the future Internet, the current edge of the network (e.g., user 
computers and mobile devices) will often be just one hop to the Internet  [FAI08] . 
That is, devices will be able to connect directly into the Internet, eliminating barriers 
such as local networks, local network routers, and domain name servers. The trend 
to connect more devices will also accelerate, facilitated by the increasing installation 
of  Internet Protocol version 6  ( IPv6 ). In the future, the Internet will connect vast 
numbers of tiny devices integrated into cell phones and other mobile devices  [FAI08] . 
These devices may challenge the traditional understanding of network topology as 
a collection of networks and, instead, view the future Internet as a single unifi ed 
network.

 According to Gokhale et al.  [SWA06] , in a process - based Web server architec-
ture, the server consists of multiple single - threaded processes, each of which handles 
one request at a time. In a thread - based architecture, the Web server consists of a 
single multithreaded process; each thread handles one request at a time. However, 
there is another Web server model — the one I use. This model uses multiple execut-
ing servers, each processing user requests concurrently. 

 The proposed future Internet is comprised of the following capabilities:

•      Rather than using local networks, such as Ethernet, communication between 
user computers and Web servers and between mobile devices and Web servers 
would be direct, via Internet routers.  
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•      Devices would be assigned permanent IP addresses, issued by the Internet 
authority, thus eliminating the need for name - to - IP address translation, thereby 
eliminating the need for Domain Name Systems. User computers and mobile 
devices would access a Web server by providing a  Universal Resource Locator  
( URL ) (Web site address) to the  Internet service provider  ( Isp ). The Isp, in 
turn, would look up the Web server IP address in its directory and append it 
to the IP packet. In case the IP address has not been recorded in the Isp direc-
tory, the Isp would broadcast a request to obtain the IP address.  

•      In order to provide increased security of data, every user computer and mobile 
device would have its own IP address, requiring the replacement of Internet 
Protocol version 4 (IPv4) with IPv6, in order to provide for a large address 
space. IPv6 does not provide any better (or worse) support for quality of 
service than IPv4, but it does have several important features that would 
enhance the performance and security of the future Internet, including larger 
address space, integrated security capabilities, easier confi guration, and a 
simplifi ed packet header format  [MET03] .  

•      Reliability would be increased because there would be fewer components that 
could fail and fewer single points of failure (e.g., elimination of local networks 
and Domain Name Systems). This is important because the Domain Name 
System is reputedly one of the main causes of failure in the Internet  [PAR] .  

•      Cyber security would be increased because there would be fewer components 
that could be attacked and if attacks do occur, resolution would be simplifi ed 
by pinpointing the location of an attack by virtue of using a much simpler 
Internet confi guration than is presently the case.     

NETWORK USAGE DATA 

 In developing the Internet evaluation models, using queuing models, it is important 
to use real - world data, as advertised on the Internet and documented in Table  6.1 . 
Some items in the table are descriptive to indicate the magnitude of wired and wire-
less Internet traffi c and storage requirements. Other items are used to compute 
quantities that are used in queuing and simulation analyses.    

QUEUING MODEL (PRESENT INTERNET SYSTEM) 

 In this section the various queuing model equations, computations, and plots  [HIL01] , 
using data from Table  6.1 , are presented, encompassing upload of Web page requests 
and download of Web pages, for both wired and wireless technologies, for the 
present Internet system. The queuing models are based on a continuous timescale 
of user computer and mobile device Web page requests and corresponding Web 
server Web page deliveries in order to provide realistic portrayals of Internet per-
formance and reliability that would not be feasible with a discrete, time - sampled 
approach ( [JIN08] ,  [TAK93] ). 
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 Figure  6.1  shows the wired logic for upload of a packet that is requesting a 
Web page. It is assumed that Web pages are downloaded from a Web server to the 
user computer. Figure  6.1  also shows the wired logic of Web pages downloaded to 
the user computer. Note that in the case of Internet routers, Domain Name Systems, 
and Web servers, multiple servers are required in order for the probability of queue 

Figure 6.1     Present wired Internet queuing model.  
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busy < 1 (i.e., server utilization  < 1). Otherwise, the queue systems would become 
unstable (i.e., the servers would become overwhelmed with traffi c).   

 See the sections entitled  “ Present Internet Wired Logic Sequences for Upload 
and Download ”  and  “ Present Internet Wireless Backbone ”  for the explanations of 
the notations and quantities that appear on the queuing model fi gures. 

 The queuing models provide a  mean value analysis  of the wired and wireless 
performance. While important, mean values are not the whole story of Internet 
system performance. Since performance will vary considerably from the means, as 
a function of operating conditions in the Internet, this variation in Internet perfor-
mance is estimated using simulation queuing models. These estimates are computed 
in a later section. 

Present Internet Wired Logic Sequences 
for Upload and Download 

 This subsection contains the mean value equations and computations for the sequence 
of data transfer and processing operations that are required to upload a request for a Web 
page, as depicted in Figure  6.1 , and to deliver a Web page to the user computer (down-
load), as shown in Figure  6.1 , for the  present  Internet wired system, organized by the 
components that comprise the system. The computations use the data in Table  6.1 . 

User Computer 

Mean Packet Upload Time tuc

     t
d

uc
uc

=
λ

,     (6.1)  

  where d is the packet size and  λuc  is the packet upload rate in Figure  6.1 :

    t
bits

Mbit/s
secondsuc = =

1000

0 328
0 003049

.
. .      

Web Server 

Mean Web Page Download Time tucd

     t
p

ucd
ws

=
λ

,     (6.2)  

  where p is the Web page size and  λws  is the Web page download rate in Figure  6.1 :

    t
bits

Mbit/s
secondsucd = =

96 928

5 250
0 018462

,

.
. .
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Local Network 

 Single - server equations apply for the local network, shown in Figure  6.1 , because 
only one server is required for the probability of queue being busy < 1. 

Probability of Queue Being Busy ρLn

 This probability is the ratio of the sum of the  packet arrival rate   λuc  (upload) and 
the Web page delivery rate   λws  (download) to the local network  packet service rate , 
μLn , shown in Equation  6.3 . The result of this computation is shown in Figure  6.1 :

    

ρ
λ λ

μ

ρ

Ln
uc ws

Ln

Ln
Mbit/s

Mbit/s

=
+

=
+

=

,

. .
. .

0 328 5 25

100
0 055780

    (6.3)    

Mean Upload Processing Time tsLn

 This is the mean time required for the local network in Figure  6.1  to process a packet 
of size d, using the local network processing rate μLn , when the user computer 
requests a Web page to be uploaded, as given in Equation  6.4 :

    

ts
d

ts
bits

Mbit/s
seconds

Ln
Ln

Ln

=

= =

μ
,

. .
1000

100
0 000010

    (6.4)    

Mean Upload Wait Time twLn

 This is the mean time a packet has to wait to be processed in the local network queue 
in Figure  6.1  when the user computer request for a Web page is uploaded, as given 
by the packet upload time , from Equation  6.1 , and the local network  upload process-
ing time , computed in Equation  6.4 :

    
tw t ts

tw seconds second
Ln uc Ln

Ln

= −
= − =

,

. . .0 003049 0 000010 0 003039 ss.
    (6.5)    

Mean Download Processing Time tsLnd

 This is the mean time, computed in Equation  6.6 , required to process a Web page, 
of size p, processed at the local network processing rate μLn , in the local network, 
when a Web page is downloaded in Figure  6.1 :

    

ts
p

ts
bits

Mbit/s
seconds

Lnd
Ln

Lnd

=

= =

μ
,

,
. .

96 928

100
0 00096928

    (6.6)    
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Mean Download Wait Time twLnd

 This is the mean time, computed in Equation  6.7 , a Web page has to wait to be 
processed in the local network queue in Figure  6.1 , when a Web page is downloaded, 
as given by the Web page download time, from Equation  6.2 , and the local network 
processing time, computed in Equation  6.6 :

    
tw t ts

tw seconds
Lnd ucd Lnd

Lnd

= −
= − =

,

. . .0 018461 0 00096928 0 001749 sseconds.
    (6.7)    

Mean Number of Packet Bits Being 

Processed in the Upload Direction nsLn

 Equation  6.8  is the  probability of the local network being busy  from Equation  6.3  
times the packet of length d, as shown in Figure  6.1 :

    

ns d

ns
Mbit/s

Mbit/s

Ln
uc ws

Ln

Ln

=
+⎛

⎝⎜
⎞
⎠⎟

=
+⎛

⎝⎜
⎞
⎠

λ λ
μ

,

. .0 328 5 25

100 ⎟⎟ =( ) . .1000 55 8bits bits

    (6.8)    

Mean Number of Packet Bits Waiting to be 

Processed in the Upload Direction nwLn

 If the result computed in Equation  6.8  is subtracted from the packet length, the 
number of packet bits waiting to be processed  can be computed in Equation  6.9 , as 
shown in Figure  6.1 :

    
nw d ns

nw bits bits
Ln Ln

Ln

= −
= − =

,

. . .1000 55 8 944 20
    (6.9)    

Mean Number of Web Page Bits Being Processed 

in the Download Direction nsLnd

 In Equation  6.10 , we multiply the Web page size p by the probability of the local 
network server being busy from Equation  6.3 , as shown in Figure  6.1 :

    

ns p

ns
Mbit/s

Mbit/s

Lnd
uc ws

Ln

Lnd

=
+⎛

⎝⎜
⎞
⎠⎟

=
+⎛

λ λ
μ

( ),

. .0 328 5 25

100⎝⎝⎜
⎞
⎠⎟

=( , ) .96 928 5407bits bits

    (6.10)    

Mean Number of Web Page Bits Having to Wait 

to Be Processed in the Download Direction nwLnd

 Equation  6.11  computes the number of Web page bits that are held up in the local 
network queue waiting to be processed for download that is equal to Web page size 
p minus the result from Equation  6.10 , as shown in Figure  6.1 :
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nw p ns

nw bits bits
Lnd Lnd

Lnd

= −
= − =

,

, , .96 928 5407 91 521
    (6.11)     

Local Network Router 

 Single - server equations apply for the local network router, shown in Figure  6.1 , 
because only one local network router server is required in order for the probability 
of queue being busy < 1. Also, note that the local router equations are applied twice —
 once for routing the Web page request in Figure  6.1  and again for routing the down-
loaded Web page in Figure  6.1 . 

Probability of Local Network Router Being Busy ρLr

 This probability is the ratio of the sum of the  packet upload rate   λuc  and the  Web 
server download rate   λws  to the local network router  packet routing rate ,  μLr , com-
puted in Equation  6.12 , as shown in Figure  6.1 :

    

ρ
λ λ

μ

ρ

Lr
uc ws

Lr

Lr
Mbit/s

Mbit/s

=
+

=
+

=

,

. .
. .

0 328 5 25

54
0 1033

    (6.12)    

Mean Upload Processing Time tsLr

 This is the mean time required for the local network to process a packet, of size d, 
for routing in Figure  6.1 , as given in Equation  6.13 :

    

ts
d

ts
bits

Mbit/s
s

Lr
Lr

Lr

=

= =

μ

μ

,

. .
1000

54
18 52

    (6.13)    

Mean Upload Wait Time twLr

 This is the  mean time a packet has to wait to be routed  in the local network router queue 
in Figure  6.1 , computed in Equation  6.14 , as given by the  packet upload time , from 
Equation  6.1 , and the local network router  routing time , computed in Equation  6.13 :

    
tw t ts

tw s s
Lr uc Lr

Lr

= −
= − =

,

. . .3049 18 52 3030 48μ μ
    (6.14)    

Mean Download Processing Time tsLrd

 This is the mean time required to route a Web page of size p from a Web server to 
the user computer, as given in Equation  6.15  and shown in Figure  6.1 :
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ts
p

ts
bits

Mbit/s
seconds

Lrd
Lr

Lrd

=

= =

μ
,

,
. .

96 928

54
0 001750

    (6.15)    

Mean Download Wait Time twLrd

 This is the mean time, computed in Equation  6.16 , a Web page has to wait before 
it can be routed in the download direction to the user computer, as shown in Figure 
 6.1 . Equation  6.16  uses the Web page download time, t ucd , computed in Equation  6.2  
and the download processing time computed in Equation  6.15 :
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Mean Number of Packet Bits Being Processed 

in the Upload Direction for Routing nsLr

 Equation  6.17  is equivalent to the product of the  probability of the local net-
work router being busy , from Equation  6.12 , and the  packet size  d, as shown in 
Figure  6.1 :
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Mean Number of Packet Bits Waiting to be Processed 

in the Upload Direction for Routing nwLr

 If the result computed in Equation  6.17  is subtracted from the packet length, the 
number of packet bits waiting to be processed for routing  can be computed in Equa-
tion  6.18 , as shown in Figure  6.1 :
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Mean Number of Web Page Bits Being Processed for Routing 

in the Download Direction nsLrd

 In Equation  6.19 , compute the number of Web page bits being processed in the 
download direction by utilizing the Web page download rate  λws , Web page size p, 
and local network router processing rate μ1r , as shown in Figure  6.1 :
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Mean Number of Web Page Bits Waiting to Processed for Routing 

in the Download Direction nwLrd

 This computation is made by subtracting Equation  6.19  from the Web page size p, 
producing Equation  6.20 , as shown in Figure  6.1 :
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Internet Router 

Probability of Internet Router Being Busy ρir

 This probability is the ratio of the sum of the  packet upload rate   λuc  and the  Web 
page download rate   λws  to the Internet router  packet routing rate , s μlr , as shown in 
Equation  6.21 , where s    =    2 is the number of Internet router servers. Whenever there 
are multiple servers involved, this fact must be refl ected in the total service rate. The 
Internet routers are shown in Figures  6.1 – 6.3 .
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Mean Upload Processing Time tsir

 This is the mean time required for the Internet router to route a packet in the upload 
direction, as given in Equation  6.22 , where again, the computation must account for 
s    =    2 servers, as shown in Figure  6.1 :
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Mean Upload Wait Time twir

 This is the  mean time a packet has to wait to be routed  in the Internet router queue 
in the upload direction, as given by the packet upload time , from Equation  6.1 , and 
the Internet router  processing time , computed in Equation  6.23 , as shown in Figure  6.1 :
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Figure 6.2     Present wireless queuing model (upload).  
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Figure 6.3     Present wireless queuing model (download).  
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Mean Download Processing Time tsird

 This is the mean time required for the Internet router to process a Web page for 
routing, using the Web page size p and the processing rate of s    =    2 servers s μir  given 
in Equation  6.24 , as shown in Figure  6.1 :
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Mean Download Wait Time twird

 Equation  6.25  computes the mean time a Web page, downloaded in a time t ucd . must 
wait for routing, using the processing time ts ird , computed in Equation  6.24 , as shown 
in Figure  6.1 :
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Mean Number of Packet Bits Being Processed for Upload Routing nsir

 Equation  6.26  is equivalent to the product of the  probability of the Internet router 
being busy , from Equation  6.21 , and the  packet size  d, as shown in Figure  6.1 :
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Mean Number of Packet Bits Waiting to be Processed for Routing 

in the Upload Direction nwir

 If the result computed in Equation  6.26  is subtracted from the packet length d, the 
number of packet bits waiting to be processed for routing in the upload direction
can be computed in Equation  6.27 , as shown in Figure  6.1 :
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Mean Number of Web Page Bits Being Processed for Download 

Routing nsird

 Equation  6.28  is equivalent to the product of the  probability of the Internet router 
being busy , from Equation  6.21 , and the Web page size p, for s    =    2 servers as shown 
in Figure  6.1 :
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Mean Number of Web Page Bits Waiting for Download Routing nwird

 Equation  6.29  is computed by subtracting the result in Equation  6.28  from the Web 
page size p, as shown in Figure  6.1 :
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Domain Name System ( DNS)

 Only the upload equations are computed because once the user computer has 
obtained an IP address from the DNS, it can be used for downloading a Web page. 
Note that because the DNS computations are mean values, a fraction of a packet 
(i.e., number of bits) would be computed for name - to - IP address translation, as 
opposed to an entire packet, which is the case in actual translations. 

Probability of Domain Name System Being Busy ρns

 This probability is the ratio of  packet arrival rate   λuc  to the DNS  user computer 
name to IP address translation rate , s μns , shown in Equation  6.30 , where s    =    3 is 
the required number of DNS servers. This probability and the DNS servers are 
shown in Figure  6.1 :
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Mean Processing Time tsns

 This is the mean time required for a DNS in Figure  6.1  to do an address translation 
for a packet of size d, as given in Equation  6.31 , where again, the computation must 
account for multiple servers:
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Mean Wait Time twns

 This is the  mean time a user computer Web page request packet  must wait in the 
DNS queue prior to name - to - IP address translation in Figure  6.1 , computed in Equa-
tion  6.32 , as given by the  packet upload time  from Equation  6.1 , and the DNS 
processing time , as computed in Equation  6.31 :
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Mean Number of Packet Bits Being Processed for Name 

Translation nsns

 Equation  6.33  is equivalent to the product of the  probability of the DNS being busy , 
from Equation  6.30 , and the  packet size  d, as shown in Figure  6.1 :
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Mean Number of Packet Bits Having to Wait for Name 

Translation nwns

 This quantity, computed in Equation  6.34 , is the difference between packet size d 
and the number of bits being processed by the DNS from Equation  6.33 , as shown 
in Figure  6.1 :
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Web Server Processing 

 Some quantities involving Web pages were previously computed. This section pro-
vides computations for Web server processing  (e.g., probability of server busy) for 
both the wired system (Fig.  6.1 ) and the wireless system upload Web page request 
(Fig.  6.2 ), and the wireless download Web page response (Fig.  6.3 ). 

Probability of Web Server Being Busy ρws

 For wired systems, this probability is the ratio of the sum of the  Web page wired 
system request packet upload rate ,  λuc , and the  Web page download rate ,  λws , to the 
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Web page processing rate , s μws , as shown in Figure  6.1 . For wireless systems, this 
probability is the sum of the Web page wireless system request rate ,  λwb , and the 
Web page download rate ,  λws , to the  Web page processing rate , s μws , shown in Equa-
tion  6.35 , where s is the number of Web servers. Note that in the case of the wireless 
system, twice as many servers (six) are required to maintain queue stability (i.e., 
ρws     <    1.0) than in the case of the wired system (three), due to the high  Web page 
wireless system request rate ,  λwb , as shown in Figures  6.2  and  6.3 :
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Wired and Wireless Systems Mean Upload Processing Time tsws

 This is the mean time required for the Web servers to process requests for Web pages 
received from the user computers, as computed in Equation  6.36 , for wired system 
packet size d and number of servers s    =    3 (Fig.  6.1 ) and wireless system packet size 
wb and number of servers s    =    6 (Fig.  6.2 ):
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Wired and Wireless Systems Mean Download Processing Time tswsd

 This is the mean time required by the Web servers to provide the Web pages 
requested by wired user computers (Fig.  6.1 ) and wireless mobile devices (Fig.  6.3 ), 
as computed in Equations  6.37  and  6.38 , respectively, for Web pages of size p, again 
accounting for multiple servers:
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Wired and Wireless Systems Mean Upload Wait Time twws

 This is the mean time a wired system user computer request for a Web page, and a 
wireless system mobile device request for a Web page, must wait in a Web server 
queue to be processed in Figures  6.1  and  6.2 , respectively, as computed by Equation 
 6.39 , using the Web page upload time from Equation  6.1  and the wired and wireless 
processing times from Equation  6.36 :
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Wired and Wireless Systems Mean Download Wait Time twwsd

 This is the mean time Web pages must wait in the Web server queue prior to being 
downloaded to user computers (Fig.  6.1 ) and mobile devices (Fig.  6.3 ), using the 
Web page download time from Equation  6.2  and the mean download processing 
times from Equations  6.37  and  6.38 :
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Wired System Mean Number of Web Page Request Bits Being 

Processed for Upload nsws

 Equation  6.41  is equivalent to the product of the  probability of a Web server being 
busy  (Eq.  6.35 ), Web page packet request size d, and s    =    3 servers, in the wired 
system in Figure  6.1 :
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Wireless System Mean Number of Web Page Request Bits Being 

Processed for Upload nswsb

 Equation  6.42  is equivalent to the product of the  probability of a Web server being 
busy  (Eq.  6.35 ), and the wireless  Web page packet request size  wb, using s    =    6 
servers, in Figure  6.2 :
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Wired and Wireless System Mean Number 

of Web Page Bits Being Processed for Download nswsd

 Equation  6.43  is equivalent to the product of the  probability of a Web server being 
busy  (Eq.  6.35 ) and the Web page size p. This equation applies to both the wired 
and wireless systems in Figures  6.1  and  6.2 , respectively, noting the different number 
of servers used in the wired and wireless systems:
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Wired System Mean Number of Web Page Bits Having to Wait for 

Upload Processing by a Web Server nwws

 This quantity is the difference between Web page packet request size d and the 
number of bits being processed by a Web server in the upload direction, which is 
computed in Equation  6.44 . This equation applies to the wired system (Fig.  6.1 ):

    
nw d ns

nw bits bits
ws ws

ws

= −
= − =

,

. . .1000 723 59 276 41
    (6.44)    

Wireless System Mean Number of Web Page Bits Having to Wait for 

Upload Processing by a Web Server nwwbd

 Equation  6.45  is the difference between wireless Web page packet request size wb and 
the number of bits being processed by a Web server in the upload direction, which is 
computed in Equation  6.41 . This equation applies to the wireless system (Fig.  6.2 ):
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Wired and Wireless System Mean Number of Web Page Bits Having 

to Wait for Download Processing by a Web Server nwwsd

 This quantity is the difference between Web page size p and the number of bits being 
processed by a Web server, which is computed in Equation  6.46 . This equation 
applies to both the wired (Fig.  6.1 ) and wireless systems (Fig.  6.3 ), but note the 
different results due to the difference in processing time caused by difference in 
number of servers:
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Present Internet Wireless Backbone 

 In this section, the important contribution of data traffi c generated by handheld 
devices, communicating via the wireless backbone with the Internet, is assessed. 
The importance of this data traffi c, and its attendant storage requirement, can be 
seen by examining the high traffi c rates documented in Table  6.1 . See Figure  6.2  
(upload) and Figure  6.3  (download) for the logic sequences.   

Mobile Device 

Mean Wireless Packet Upload Time twb

 This is the mean time required to upload a wireless backbone packet of size wb at 
an upload rate of λwb  in Figure  6.2 :
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Access Point 

Probability of Access Point Being Busy ρap

 This probability is the ratio of the  sum of wireless packet upload rate   λwb  and  Web 
page download rate   λws  to the  access point processing rate   μap  in Figures  6.2  and  6.3 :
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    (6.48)    

Mean Access Point Processing Time in the Upload Direction tsap

 This is the mean time required for the access point to process a wireless backbone 
packet of size wb at a processing rate of μap  in the upload direction in Figure  6.2 :
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Mean Access Point Queue Wait Time in the Upload Direction twap

 This is the mean time a wireless backbone packet — transmitted in the upload 
direction— must wait to be processed by the access point in Figure  6.2 . Equation 
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 6.50  uses the wireless packet upload time from Equation  6.47  and the access point 
processing time from Equation  6.49 :
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Mean Access Point Processing Time in the Download 

Direction tsapd

 This is the mean time required for the access point to process the Web page in the 
download direction, using the Web page of size p and the access point processing 
rate μap  in Equation  6.51 , as shown in Figure  6.3 :
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Mean Access Point Queue Wait Time in the Download Direction twapd

 This mean time, computed in Equation  6.52 , using Web page download time t ucd  and 
the processing time computed in Equation  6.51 , is the time the Web page must wait 
in the access point queue prior to being processed, as shown in Figure  6.3 :
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Mean Number of Wireless Packet Bits Being Processed in 

the Upload Direction by the Access Point nsap

 This computation is made in Equation  6.53  by computing the probability of the 
access point being busy ( λwb     +     λws )/ μap , from Equation  6.48 , and multiplying it by 
the size of the wireless packet size wb, as shown in Figure  6.2 :
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Mean Number of Wireless Packet Bits Waiting to be Processed 

in the Upload Direction by the Access Point nwap

 Equation  6.54  is computed by subtracting the number of wireless packet bits being 
processed in the upload direction, computed in Equation  6.53 , from the wireless 
packet size wb, as shown in Figure  6.2 :

    
nw wb ns

nw bits bits

ap ap

ap

= −
= − =

,

. . .100 70 14 29 86
    (6.54)    



Future Internet Performance Models 165

Mean Number of Web Page Bits Being Processed in the Download 

Direction by the Access Point nsapd

 This computation is made by computing the probability of the access point being 
busy ( λwb     +     λws )/ μap , derived from Equation  6.48 , and multiplying it by the size of 
the Web page size p, as shown in Figure  6.3 :

    

ns
p

ns
Mbit/s bits

apd
wb ws

ap

apd

=
+( )

=
+( )

λ λ
μ

( )
,

. . ( , )7 2 0 328 96 928

177 75
41 108

.
, .

Mbit/s
bits=

    (6.55)    

Mean Number of Web Page Bits Having to Wait for Processing in the 

Download Direction by the Access Point nwapd

 Equation  6.56  computes the number of Web page bits having to wait to be processed 
by the access point by subtracting the Web page bits being processed in Equation 
 6.55  from the Web page size p, as shown in Figure  6.3 :

    
nw p ns

nw bits bits

apd apd

apd

= −
= − =

,

, , , .96 928 41 108 55 820
    (6.56)     

Internet Router 

 The Internet router computations in the succeeding sections are shown in Figure  6.2  
(upload) and Figure  6.3  (download). 

Probability of Internet Router Being Busy Processing 

Wireless Packet ρir

 Equation  6.57  expresses the probability that the Internet router will be occupied 
processing the wireless Web page request packet, transmitted at a rate  λwb  in the 
upload direction, plus being busy when the Web page is downloaded at a rate  λws , 
and the router processes at a rate μir , and the number of routers s    =    2, as shown in 
Figures  6.2  and  6.3 :
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    (6.57)    

Mean Time a Wireless Packet Spends Being Processed for 

Routing by the Internet Router in the Upload Direction tsir

 Equation  6.58  computes this mean time by dividing the wireless packet of size wb 
by the Internet router processing rate (s)( μir ) as shown in Figure  6.2 :
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Mean Time a Wireless Packet Spends Waiting to be Processed for 

Routing by the Internet Router in the Upload Direction twir

 Equation  6.59  is computed by subtracting the processing time computed in Equation 
 6.58  from the wireless packet upload time t wb , as shown in Figure  6.2 :

    
tw t ts

tw t ts s s
ir wb ir

ir wb ir

= −
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,
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    (6.59)    

Mean Time a Web Page Requested by a Wireless Packet Spends 

Being Processed for Routing by the Internet Router in the Download 

Direction tsird

 Equation  6.60  computes the mean processing time by dividing the Web page of size 
p by the Internet router processing rate (s)( μir ),as shown in Figure  6.3 :
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    (6.60)    

Mean Time a Wireless Packet Spends Waiting to be Processed for 

Routing by the Internet Router in the Download Direction twird

 This mean time is computed by subtracting the processing time, computed in Equa-
tion  6.60 , from the Web page download time t ucd , as shown in Figure  6.3 :
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    (6.61)    

Mean Number of Wireless Packet Bits Being Routed in the Upload 

Direction nsir

 This quantity is computed in Equation  6.62  by multiplying the probability of the 
Internet router being busy, from Equation  6.57 , by the wireless packet size wb, as 
shown in Figure  6.2 :
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Mean Number of Wireless Packet Bits Having to Wait for Routing in 

the Upload Direction by the Internet Router nwir

 This quantity is computed in Equation  6.63  by subtracting the number of bits being 
processed, computed in Equation  6.62 , from the wireless packet size wb, as shown 
in Figure  6.2 :

    nw wb ns bits bitsir ir= − = − =100 99 6 0 4. .     (6.63)    

Mean Number of Web Page Bits Being Processed in the Download 

Direction by the Internet Router nsird

 Equation  6.64  is computed by multiplying the probability of the Internet router being 
busy, derived from Equation  6.57 , by the Web page size p, as shown in Figure  6.3 :
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    (6.64)    

Mean Number of Web Page Bits Having to Wait for Routing in the 

Download Direction by the Internet Router nwird

 This quantity is computed in Equation  6.65  by subtracting the number of Web page 
bits being processed for routing, computed in Equation  6.66 , from the Web page 
size p, as shown in Figure  6.3 :

    
nw p ns

nw bits bits
ird ird

ird

= −
= − =

,

, , .96 928 96 540 388
    (6.65)     

Domain Name System ( DNS)

 Only upload equations are computed because once the mobile device in Figure  6.2  
has obtained an IP address from the DNS, it can be used for downloading a Web 
page. Because the wireless upload rate of the mobile device in Figure  6.3 , 
λwb     =    7.2   Mbit/s, is so much faster than the DNS processing rate,  μns     =    0.143   Mbit/s, 
a buffer is used at the access point to slow the mobile device rate to a value that the 
DNS can handle. This value,  λns , called the DNS input rate, is computed in Equation 
 6.66  by assuming that the probability of the DNS server busy  ρns     =    0.8 (i.e., as long 
as a queue has ρ     ≤    0.8, the queue is considered stable), and using the DNS process-
ing rate μns . Note that because the DNS computations are mean values, a fraction of 
a packet or Web page (i.e., number of bits) would be computed for translation:
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    (6.66)   
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Mean Upload Time from Buffer of Wireless Packet to DNS tsns

 Since the DNS input rate has been computed in Equation  6.66 , now compute 
the wireless packet upload time, ts ns , in Equation  6.67 , using the wireless packet 
size wb. This is the upload time that results from using the DNS buffer in 
Figure  6.2 :
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    (6.67)    

Mean Processing Time for the DNS to Translate a Wireless Packet 

Name to an IP Address tsns

 Equation  6.68  computes the name - to - IP address translation mean time for a wireless 
packet, using the wireless packet size, wb, number of DNS servers, s, and DNS 
processing rate, μns :
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    (6.68)    

Mean Time That a Wireless Packet Must Wait in the DNS Queue 

Prior to Name -to-IP Address Translation twns

 This mean time is computed in Equation  6.69  by subtracting the processing time, 
computed in Equation  6.68 , from the upload time, computed in Equation  6.67 , as 
shown in Figure  6.2 .

    
tw tu ts

tw s s
ns ns ns

ns

= −
= − =

,

. . . .291 38 233 10 58 28μ μ
    (6.69)    

Mean Number of Wireless Packet Bits That Are Processed for 

Translation by the DNS nsns

 The number of wireless packet bits that are processed for translation is computed in 
Equation  6.70  by multiplying the previously assumed  probability of the DNS being 
busy ,  ρns , by the wireless packet size wb. The result is shown in Figure  6.2 :
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Mean Number of Wireless Packet Bits That Are 

Waiting for Translation by the DNS nwns

 The number of wireless bits waiting for translation is computed in Equation  6.71  by 
subtracting the number of bits being processed, computed in Equation  6.70 , from 
the wireless packet size wb. The result is shown in Figure  6.2 :

    
nw wb ns

nw bits bits
ns ns

ns

= −
= − =

,

.100 80 20
    (6.71)      

SUMMARY OF QUEUING MODEL COMPUTATIONS 
FOR PRESENT AND PROPOSED INTERNETS 

 Now that the queuing model computations have been made for the present wired 
and wireless Internets, it is time to summarize them in Table  6.2  (wired system) and 
in Table  6.1  (wireless system) in order to identify the critical performance variables. 
Also, the proposed wired and wireless Internet computations are shown in Tables 
 6.4  and  6.5 , respectively. These computations are made in a later section entitled 
“ Performance Analysis of Proposed Future Wired Internet, ”  and are presented to 
contrast with the present systems mean value performance results.   

 Important results are shown at the bottom of each table: effective upload and 
download processing rates. The effective rate includes all the delays encountered in 
the various queues in the process of obtaining a Web page for the user computer or 
mobile device. These results are the following:

   Table  6.2 : Effective processing rate for present wired Internet: 1.7936   Mbit/s.  

  Table  6.3 : Effective processing rate for present wireless Internet: 2.0697   Mbit/s.    

  Table  6.4 : Effective processing rate for proposed wired Internet: 113.35   Mbit/s.    

  Table  6.5 : Effective processing rate for proposed wireless Internet: 2.0853   Mbit/s.      

 Note that the effective rate of the proposed wired system is much greater than the 
effective rate of the present wired system because the former is not subject to local 
network, local router, and DNS delays. Also note that the effective rate of the pro-
posed wireless system is marginally greater than the effective rate of the present 
wireless system because the former is not subject to the overhead introduced by the 
DNS. This reduction in overhead is not nearly as signifi cant as the time saved by 
eliminating several components in the case of the proposed wired system.  

SIMULATION QUEUING MODELS 

Local Network: Present Wired System 

 In order to evaluate Internet performance, taking into account the variance in per-
formance variables, such as the variability in upload and download times, a series 
of models is developed and designed to achieve this objective. The models include 
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Table 6.3    Summary of Queuing Computations for the Present Wireless Internet System 
(Mean Values) 

   Variable     Component     Computation     Figure(s)  

  Wireless packet upload 
time t wb

  Mobile device    13.889    μ s (0.000013889 
seconds)

  Figures  6.2  
and  6.3   

  Probability of access 
point being busy ρap

  Access point    0.7014    Figure  6.3   

  Access point processing 
time in the upload 
direction ts ap

  Access point    5.6338    μ s (0.0000056338 
seconds)

  Figure  6.4   

  Access point queue wait 
time in the upload 
direction tw ap

  Access point    8.2552    μ s (0.0000082552 
seconds)

  Figure  6.4   

  Access point processing 
time in the download 
direction ts apd

  Access point    0.0055 seconds    Figures  6.2  
and  6.3   

  Access point queue wait 
time in the download 
direction tw apd

  Access point    0.0130 seconds    Figures  6.2  
and  6.3   

  Number of wireless 
packet bits being 
processed in the 
upload direction ns ap

  Access point    70.14   bits    Figure  6.4   

  Number of wireless 
packet bits having to 
wait to be processed in 
the upload direction 
nwap

  Access point    29.86   bits    Figure  6.4   

  Number of web page bits 
being processed in the 
download direction 
nsapd

  Access point    41,108   bits    Figures  6.2  
and  6.3   

  Number of web page bits 
having to wait for 
processing in the 
download direction 
nwapd

  Access point    55,820   bits    Figures  6.2  
and  6.3   

  Time to translate 
wireless packet name 
to IP address tu ns

  Domain Name 
System

  291.38    μ s (0.00029138 
seconds)

  Figure  6.4   

  Time wireless packet 
waits for name - to - IP 
address translation tw ns

  Domain Name 
System

  58.28    μ s (0.00005828 
seconds)

  Figure  6.4   

(Continued)
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   Variable     Component     Computation     Figure(s)  

  Number of wireless 
packet bits that are 
processed for 
translation ns ns

  Domain Name 
System

  80   bits    Figure  6.4   

  Number of wireless 
packet bits that are 
waiting for translation 
nwns

  Domain Name 
System

20     bits   Figure  6.4   

  Probability of being busy 
processing wireless 
packet ρir

  Internet router    0.996    Figures  6.2  
and  6.3   

  Time a wireless packet 
spends in being 
processed for routing 
router in the upload 
direction ts ir

  Internet router    8    μ s (0.000008 seconds)    Figure  6.1   

  Time a wireless packet 
spends waiting to be 
processed for routing 
in the upload direction 
twir

  Internet Router    5.889    μ s (0.000005889 
seconds)

  Figure  6.4   

  Time a wireless packet 
spends being 
processed for routing 
in the download 
direction ts ird

  Internet router    0.0078 seconds    Figures  6.2  
and  6.3   

  Time a wireless packet 
spends waiting to be 
processed for routing 
the download direction 
twird

  Internet router    0.0107 seconds    Figures  6.2  
and  6.3   

  Number of wireless 
packet bits being 
processed in the 
upload direction ns ir

  Internet router    99.6   bits    Figure  6.4   

  Number of wireless 
packet bits having to 
wait for routing in the 
upload direction nw ir

  Internet router  0.4     bits   Figure  6.4   

  Number of web page bits 
being processed in the 
download direction 
nsird

  Internet router    96, 540   bits    Figure  6.2   

Table 6.3 (Continued)
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Table 6.3 (Continued)

   Variable     Component     Computation     Figure(s)  

  Number of web page bits 
having to wait for 
routing in the 
download direction 
nwird

  Internet router    388   bits    Figures  6.2  
and  6.3   

  Probability of being busy 
ρws

  Web server    0.8580    Figures  6.2  
and  6.3   

  Upload processing time 
tsws

  Web server    0.00006891 seconds    Figure  6.4   

  Upload wait time tw ws     Web server    0.002980 seconds    Figure  6.4   
  Download processing 

time ts wsd

  Web server    0.0013359 seconds    Figure  6.1   

  Download wait time 
twwsd

  Web server    0.005103 seconds    Figure  6.5   

  Number of web request 
packet bits being 
processed in the 
upload direction ns ws

  Web server    723.59    Figure  6.1   

  Number of web request 
packet bits waiting to 
be processed in the 
upload direction nw ws

  Web server    276.41    Figure  6.1   

  Number of web request 
packet bits being 
processed in the 
download direction 
nswsd

  Web server    35,068   bits    Figure  6.3   

  Number of web request 
packet bits waiting to 
be processed in the 
download direction 
nwwsd

  Web server    61,860    Figures  6.2  
and  6.3   

  Total delay time    0.046879137 seconds  
  Web request 

packet    +    web 
page

  100    +    96,928   bits    =    
97,028   bits  

  Effective 
wireless upload/
download
processing rate  

  97,028   bits/
0.046879137 seconds    =    
2.0697   Mbit/s  
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Table 6.4    Summary of Queuing Computations for the Future Wired Internet System (Mean 
Values) 

   Variable     Component     Computation     Figure  

  Packet upload time t uc     User computer    0.000050 seconds    Figure  6.15   
  Web page download time t ucd     Web server    605.8    μ s 

(0.000006058
seconds)

  Figure  6.15   

  Probability of being busy  ρir     Internet router    0.0900    Figure  6.15   
  Upload processing time ts ir     Internet router    0.5    μ s (0.0000005 

seconds)
  Figure  6.15   

  Upload wait time tw ir     Internet router    49.5    μ s (0.0000495 
seconds)

  Figure  6.15   

  Download processing time ts ird     Internet router    46.464    μ s 
(0.000046464
seconds)

  Download wait time tw ird     Internet router    557.336    μ s 
(0.0000557336
seconds)

  Figure  6.15   

  Number of packet bits being 
processed for upload routing 
nsir

  Internet router    640   bits    Figure  6.17   

  Number of packet bits waiting 
to be processed for routing 
in the upload direction nw ir

  Internet router    360   bits    Figure  6.17   

  Number of web page bits being 
processed for download 
routing ns ird

  Internet router    2055   bits      

  Number of web page bits 
waiting for download 
routing nw ird

  Internet router    94,873   bits    Figure  6.15   

  Probability of being busy  ρws     Web server    0.02120    Figure  6.17   
  Upload processing time ts ws     Web server    0.11779    μ s ( ≈ 0 

seconds)
  Figure  6.15   

  Upload wait time tw ws     Web server    49.88    μ s 
(0.00004988
seconds)

  Figure  6.15   

  Download processing time ts wsd     Web server    11.417    μ s 
(0.000011417 
seconds)

  Figure  6.15   

  Download wait time tw wsd     Web server    594.383    μ s 
(0.000594383
seconds)

  Figure  6.15   

  Number of web request packet 
bits being processed in the 
upload direction ns ws

  Web server    20.21   bits    Figure  6.17   
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   Variable     Component     Computation     Figure  

  Number of web request packet 
bits waiting to be processed 
in the upload direction nw ws

  Web server    978.80   bits    Figure  6.15   

  Number of web page bits being 
processed in the download 
direction ns wsd

  Web server    2055   bits      

  Number of web page bits 
waiting to be processed in 
the download direction nw wsd

  Web server    94,873   bits    Figure  6.15   

  Total delay time    0.0008639356 
seconds

  Web request packet 
length    +    Web 
page length  

  1000    +    96,928   bits    
=    97,928   bits  

  Effective wired 
upload/download
processing rate  

  97,928   bits/
0.0008639356
seconds    =    
113.35   Mbit/s  

Table 6.4 (Continued)

each component of the Internet, where Figure  6.4  — the local network and router 
present system simulation model — is the fi rst of these. Now, develop the equations 
that will be implemented in computer programs (C ++ ) for each of the performance 
variables, using the mean values previously computed. The mean values and associ-
ated probabilities are used to simulate the exponential distribution of the various 
Internet prediction equations shown below. As opposed to mean values, the predic-
tion equations permit the variation in queuing model variables to be evaluated. The 
local network and router simulation equations are shown in Figure  6.4 .   

 The probabilities referred to below are generated by using the Excel random 
number function RAND. The simulation program checks for the possibility of queue 
being busy. If it is  not  busy, zero time is assigned for the wait time, rather than using 
the wait time equations below. We can use the simulation program to monitor queue 
status for the steady - state condition (i.e., wait time does not become excessive). If 
steady state is not reached, as the load increases, it would be indicative of a poorly 
performing Internet (e.g., ineffi cient routing). 

Local Network Processing Times 

 Starting with the packet upload processing time (Ts Ln ) that we assume is exponen-
tially distributed, with probability P(Ts Ln ) and mean processing rate  μLn , Equation 
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Table 6.5    Summary of Queuing Computations for the Future Wireless Internet System 
(Mean Values) 

   Variable     Component     Computation  

  Wireless packet upload time t wb     Mobile device    13.889    μ s (0.000013889 
seconds)

  Probability of access point being 
busy ρap

  Access point    0.7014  

  Access point processing time in 
the upload direction ts ap

  Access point    5.6338    μ s (0.0000056338 
seconds)

  Access point queue wait time in 
the upload direction tw ap

  Access point    8.2552    μ s (0.0000082552 
seconds)

  Access point processing time in 
the download direction ts apd

  Access point    0.0055 seconds  

  Access point queue wait time in 
the download direction tw apd

  Access point    0.0130 seconds  

  Number of wireless packet bits 
being processed in the upload 
direction ns ap

  Access point    70.14   bits  

  Number of wireless packet bits 
having to wait to be processed 
in the upload direction nw ap

  Access point    29.86   bits  

  Number of web page bits being 
processed in the download 
direction ns apd

  Access point    41,108   bits  

  Number of web page bits having 
to wait for processing in the 
download direction nw apd

  Access point    55,820   bits  

  Probability being busy 
processing wireless packet ρir

  Internet router    0.9960  

  Time a wireless packet spends 
in being processed for routing 
in the upload direction ts ir

  Internet router    8    μ s (0.000008 seconds)  

  Time a wireless packet spends 
waiting to be processed for 
routing in the upload direction 
twir

  Internet router    5.889    μ s (0.000005889 
seconds)

  Time a wireless packet spends 
being processed for routing in 
the download direction ts ird

  Internet router    0.0078 seconds  

  Time a wireless packet spends 
waiting to be processed for 
routing in the download 
direction tw ird

  Internet router    0.0107 seconds  

  Number of wireless packet bits 
being processed in the upload 
direction ns ir

  Internet router    99.6   bits  
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   Variable     Component     Computation  

  Number of wireless packet bits 
having to wait for routing in 
the upload direction nw ir

  Internet router  0.4     bits

  Number of web page bits being 
processed in the download 
direction ns ird

  Internet router    96,540   bits  

  Number of web page bits having 
to wait for routing in the 
download direction nw ird

  Internet router    388   bits  

  Probability being busy 
processing wireless packet ρws

  Web server    0.8580  

  Time a wireless packet spends 
in being processed in the 
upload direction ts wsb

  Web server    0.000006891 seconds  

  Time a wireless packet spends 
waiting to be processed in the 
upload direction tw wsb

  Web server    0.003042 seconds  

  Time a wireless packet spends 
being processed in the 
download direction ts wsd

  Web server    0.0013359 seconds  

  Time a wireless packet spends 
waiting to be processed in the 
download direction tw wsbd

  Web server    0.005103 seconds  

  Number of wireless packet bits 
being processed in the upload 
direction ns wsb

  Web server    72.359   bits  

  Number of wireless packet bits 
having to wait for processing 
in the upload direction nw ws

  Web server    27.641   bits  

  Number of web page bits being 
processed in the download 
direction ns wsd

  Web server    701   bits  

  Number of web page bits having 
to wait for processing in the 
download direction nw wsd

  Web server    96,227   bits  

  Total delay time    0.0465294580 seconds  
  Web request 

packet    +    Web 
page

  100    +    96,928   bits    =    97,028   bits  

  Effective wireless 
upload/download
processing rate 

  97,028   bits/0.0465294580 
seconds    =    2.0853   Mbit/s  

Table 6.5 (Continued)
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Figure 6.4     Local network and router present wired system simulation model.  
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 6.72  is formulated. Then, solve for Ts Ln  in Equation  6.73 , which is the upload time 
per packet, by including the packet size d in the formulation. The assumption of 
exponential distribution is based on the likelihood that there will be signifi cantly 
more short times than long times.

    P Ts eLn Ln
TsLn Ln( ) ( ) ,( )= −μ μ     (6.72)  

    Ts P Ts dLn
Ln

Ln Ln= −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

1

μ
μ(log[ ( ) / ]) * .     (6.73)   

 In a similar vein, develop Equation  6.74  for the Web page download processing time 
Ts Lnd , with probability P(Ts Lnd ), mean processing rate  μws , and Web page size p:

    Ts P Ts pLnd
ws

Lnd ws= −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

1

μ
μ(log[ ( ) / ]) * .     (6.74)    

Local Network Wait Times 

 Since wait times should follow the pattern of processing times, again assume the 
exponential distribution for wait times. Thus, Equation  6.75  is produced for the 
upload wait time, using the probability P(Tw Ln ):

    Tw
1

P Tw dLn
Ln

Ln Ln= −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟μ

μ(log[ ( ) / ]) * .     (6.75)   

 Lastly, in a similar fashion, the download wait time Tw Lnd  is developed in Equa-
tion  6.76 :

    Tw
1

P Tw pLnd
ws

Lnd ws= −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟μ

μ(log[ ( ) / ]) * .     (6.76)    

Local Network Wait Times Time in System 

 Finally the time packets and Web pages in the system, waiting and being processed, 
is computed in Equation  6.77  by adding Equations  6.73 – 6.76 .

    T Ts Ts Tw TwLn Lnd Ln Lnd= + + + .     (6.77)     

Packet Lengths Being Processed and Waiting for 
Processing by Local Network 

 Similar to the situation for service and wait times, the distribution of packet bits 
being processed in the upload direction can be estimated by assuming an exponential 
distribution (i.e., high probability of small packet lengths and low probability of 
large packet lengths). The distribution of packet length bits is generated by statistical 
software, such as Minitab, using the mean ns Ln , computed in Equation  6.8 . 
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 In an analogous fashion the distribution of packet length bits having to wait to 
be processed in the upload direction is generated by statistical software, using the 
mean nw Ln , computed in Equation  6.9 . 

 Also account for the distribution of Web page length bits that are processed in 
the download direction generated by statistical software, using the mean ns Lnd , com-
puted in Equation  6.10 . Correspondingly, generate the distribution of Web page 
length bits that must wait to be processed in the download direction, using a mean 
of nw Lnd , computed in Equation  6.11 .  

Local Network Router: Present Wired System 

 Similar to the approach used for the local network, equations for processing time, 
wait time, and time in the system are developed for the local network router, using 
different service and wait time probabilities, mean local network router processing 
rate μLr , and mean Web page download processing rate  μws . These equations are 
shown in Figure  6.1 . 

Processing Times 

 Upload processing time, using packet size d:

    Ts
1

P Ts dLr
Lr

Lr Lr= −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟μ

μ(log[ ( ) / ]) * .     (6.78)   

 Download processing time, using Web page size p:

    Ts
1

P Ts pLrd
ws

Lrd ws= −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟μ

μ(log[ ( ) / ]) * .     (6.79)    

Wait Times 

 Upload wait time, using packet size d:

    Tw
1

P Tw dLr
Lr

Lr Lr= −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟μ

μ(log[ ( ) / ]) * .     (6.80)   

 Download wait time, using Web page size p:

    Tw
1

P Ts pLrd
ws

Lrd ws= −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟μ

μ(log[ ( ) / ]) * .     (6.81)    

Time in System 

 Add Equations  6.78 – 6.81  to obtain time spent in local network router:

    T Ts Ts Tw TwLr Lrd Lr Lrd= + + + .     (6.82)    
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Packet Length Bits Being Routed and Waiting 

for Routing by Local Network Router 

 Once again, the distribution of packet length bits is generated using statistical 
software— this time for the local network router, assuming an exponential distribu-
tion. To generate the upload packet length bits being routed, use the mean ns Lr  from 
Equation  6.17 . Correspondingly, generate the distribution of the packet length bits 
that must wait to be routed in the upload direction by using the mean nw Lr  from 
Equation  6.18 . 

 Also account for the distribution Web page bits that are routed in the download 
direction generated by statistical software, using the mean ns Lrd  computed in 
Equation  6.19 . Correspondingly, generate the distribution of Web page bits that must 
wait to be routed in the download direction, using the mean nw Lrd  computed in 
Equation  6.20 .   

Internet Router: Present Wired System 

 As before, processing time, wait time, and time in system are computed using the 
simulation program and the Internet router upload processing rate μir  and the Web 
page download processing rate μws . The processing logic is shown in Figure  6.5 .   

Processing Times 

 Upload processing time, using packet size d:

    Ts
1

P Ts dir
ir

ir ir= −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟μ

μ(log[ ( ) / ]) * .     (6.83)   

 Download processing time, using Web page size p:

    Ts
1

P Ts pird
ws

ird ws= −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟μ

μ(log[ ( ) / ]) * .     (6.84)    

Wait Times 

 Upload wait time using packet size d:

    Tw
1

P Tw *dir
ir

ir Lr= −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟μ

μ(log[ ( ) / ]) .     (6.85)   

 Download wait time, using Web page size p:

    Tw
1

P Tw pird
ws

ird ws= −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟μ

μ(log[ ( ) / ]) * .     (6.86)    
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Figure 6.5     Internet router present wired system queuing model.  
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 Add Equations  6.83 – 6.86  to obtain time spent in Internet router:

    T Ts Ts Tw Twir ird ir ird= + + + .     (6.87)    

Packet Lengths Being Routed and Waiting for Routing by 

the Internet Router 

 Using the mean ns ir  of the number of packet bits being processed for routing in the 
upload direction from Equation  6.26 , statistical software is again called upon to 
generate an exponential distribution of these data. Similarly, generate the distribution 
of number of packet bits waiting for routing in the upload direction using the mean 
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nwir  from Equation  6.27 . Continuing in this vein, the corresponding download dis-
tributions are generated using the mean values ns ird , from Equation  6.28 , and nw ird , 
from Equation  6.29 .   

Queue Effi ciency 

 Because it is germane to simulation model analysis, we introduce the concept of 
queue effi ciency. In addition to the various time, packet length, and Web page size 
variables, queue effi ciency should be assessed for each Internet component (e.g., 
wired Internet router). Do this by computing an effi ciency metric, recognizing that 
the queue count generated in the simulation models accounts for both upload and 
download traffi c, where n is the number of Web page requests, nq is the queue count 
(count of requests being processed plus requests waiting to be processed) for both 
upload and download directions, and nd is the number of upload and download data 
transfers in a sequence of Web page requests by an Internet component (e.g., Internet 
router). For example, nd    =    2 for an Internet router because it is involved in both 
upload and download data transfers, whereas nd    =    1 for a DNS because it is only 
involved in upload data transfer. Then, queue effi ciency qe can be computed in 
Equation  6.88 :

qe
Total number of upload and download Web data transfers

=
( )) ( )− Queue count

Total number of upload and download Web datta transfers

qe
nd*n nq

nd*n

nq

nd*n

,

( )
.=

−
= −1

 (6.88)   

 This metric can be used to pinpoint strengths and weaknesses in the ability of Inter-
net systems to process queue traffi c.  

Domain Name System ( DNS): Present System 

 Consistent with the foregoing approaches, processing time, wait time, and time in 
the system are developed for the DNS, using the appropriate processing and wait 
time probabilities and the mean DNS processing rate μdn . The processing logic is 
shown in Figure  6.6 .   

Processing Time 

     Ts
1

P Ts d using packet sins
dn

dn dn= −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟μ

μ(log[ ( ) / ]) * , zze d.     (6.89)    

Wait Time 

     Tw
1

P Tw d using packet sins
dn

dn dn= −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟μ

μ(log[ ( ) / ]) * , zze d.     (6.90)    
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Figure 6.6     DNS and access point present system simulation queuing model.  
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Time in System 

 Add Equations  6.89  and  6.90  to obtain time spent in the DNS:

    T Ts Twns ns= + .     (6.91)    

Packet Bits Translated from Name -to-IP Address by the  DNS and 

Waiting for Translation 

 Using the mean ns ns , from Equation  6.33 , of the number of packet bits being trans-
lated, statistical software is again called upon to generate an exponential distribution 
of these data. Similarly, we generate the distribution of number of packet bits waiting 
for translation, using the mean nw ns  from Equation  6.34 .   

Access Point: Present Wireless System 

 For the wireless system, access point processing and wait times are computed using 
the logic in Figure  6.6 , using the access point processing rate  μap . 

Processing Times 

 This upload time accounts for the processing required to process Web packet size 
wb, using the processing rate μap  in Equation  6.92 :

    Tsap
1

P Ts wb
ap

ap ap= −
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟μ

μ(log[ ( ) / ]) * .     (6.92)   

 Similarly, Equation  6.93  accounts for the time required in the download direction 
to process Web page size p:

    Tsapd
1

P Ts p
ap

apd ap= −
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟μ

μ(log[ ( ) / ]) * .     (6.93)    

Wait Tines 

 Correspondingly, Equation  6.94  computes the wait time in the upload direction and 
Equation  6.95  computes the wait time in the download direction:
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Time in System 

 Equation  6.96  computes the time in the system, accounting for both upload and 
download processing and wait times:

    T Tsap Tsapd Twap Twapd= + + + .     (6.96)    

Wireless Packet Bits Processed by Access Point and Waiting for 

Processing

 Using the mean ns ap , from Equation  6.53 , of the number of packet bits being pro-
cessed, statistical software is once again called upon to generate an exponential 
distribution of these data. Similarly, generate the distribution of number of packet 
bits waiting for processing, using the mean nw ap  from Equation  6.54 .   

Web Server Processing: Wired and Wireless 

 Continuing the generation of processing time, wait time, and time in system, equa-
tions are developed for the Web servers, using the appropriate processing and wait 
time probabilities, the mean Web server processing rate  μws , the wired Web page 
request packet size d, the Web page size p, and the wireless Web request packet size 
wb. The processing logic is shown in Figure  6.7 .   

Processing Times 

 Wired upload, using wired packet size d:

    Ts P Ts dws
ws

ws ws= −⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

1

μ
μ(log[ ( ) / ]) * .     (6.97)   

 Wired and wireless download, using web page size p:
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 Wireless upload, using wireless packet length wb:
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⎞
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⎛
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⎞
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Wait Times 

 The corresponding wait times are developed as follows:

    Tw
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P Tw d wired uploadws
ws
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⎞
⎠⎟

⎛
⎝⎜

⎞
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Figure 6.7     Web server simulation queuing model (wired and wireless).  
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Time in System 

 Time in the system for all three cases is computed by adding Equations  6.97  – 102:

    T Ts Ts Ts Tw Tw Twws wsd wsb ws wsd wsb= + + + + + .     (6.103)    

Web Page Lengths Being Processed and 

Waiting for Processing by the Web Servers 

 Using the mean ns ws , from Equation  6.41 , of the number of Web page bits being 
processed in the download direction, the statistical software is again called upon to 
generate an exponential distribution of these data. Similarly, we generate the distri-
bution of number of Web page bits waiting for processing in the download direction, 
using the mean nw ws , from Equation  6.44 .   

Summary of Simulation Model Computations 

 The main benefi t of the C ++  simulation model results is to provide a comparison of 
the performance and reliability of the present Internet with the proposed future 
Internet. Thus, the following fi gures contrast the present with future Internet perfor-
mance; the latter is based on equations, queuing model diagrams, and simulation 
logic diagrams that have been developed. In addition, we present additional results 
that illustrate key performance characteristics of the present Internet. For example, 
it is of interest to identify when the various Internet components achieve stability 
as a function of number of uploads and downloads. This is illustrated in Figure  6.8 , 
where time in the present Internet system stabilizes (i.e., reaches steady state) after 
n    =    26 uploads and downloads. Thus, in this example, we would not be confi dent 
of dependable performance until n    >    26. Now, the shape of the plots is determined 
by the assumption of exponentially distributed queue processing and wait times. 
Other distributions could be assumed, which could result in different patterns, but 
the important point is the effi cacy of the modeling methodology.   

 Another interesting comparison is between the wired and wired present Internet 
systems, again using time in the system as the basis of comparison. Figure  6.9  shows 
an example in which the wireless has better performance (i.e., shorter time in the 
system) because it is not encumbered by the overhead induced by the local network 
and router required in the wired system (i.e., the wireless system access point is 
much faster).   

 Queue effi ciency computations identify the Internet components that are effi -
cient with respect to processing Internet traffi c — both upload and download — and 
those that are ineffi cient, thus highlighting smooth traffi c fl ows and bottlenecks, 
respectively. For example, Figure  6.10  shows that the proposed future wired Internet 
is more effi cient than the present wired Internet. The reason for this, as shown in 
Figure  6.10 , is the fact that queue count dominates the computation of queue effi -
ciency in Equation  6.87 , thus resulting in lower queue count and higher queue 
effi ciency for the proposed future Internet components. By examining Figures  6.10  
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Figure 6.8     Time in present wired Internet system T versus number uploads and downloads n. 
Series 1: Local network. Series 2: Local network    +    local network router. Series 3: Local 
network    +    local network router    +    Internet router. Series 4: Local network    +    local network 
router    +    Internet router    +    DNS. Series 5: Local network    +    local network router    +    Internet 
router    +    DNS    +    web server.  
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Figure 6.9     Time in present Internet system T versus number of uploads and downloads n. Series 1: 
Wired system. Series 2: Wireless system.  
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and  6.11 , you can see that there is an inverse association between queue effi ciency 
and queue count (i.e., small queue count leads to large queue effi ciency).   

 Finally, we look at the patterns of data that wait to be processed by Internet 
components. The rationale for this assessment is queue processing effi ciency from 
the perspective of quantity of data waiting to be processed (i.e., stability) in Figure 
 6.12 . This fi gure tells us that download processing of Web pages will eventually 
deteriorate, and become unstable, as queue count increases. Figure  6.12  provides 
another perspective: aided by the standard deviation that has been computed for each 
component, we see that the wireless Web server has the highest standard deviation, 
meaning that its distribution of queuing data has the most variability. This is due to 
the great variety of mobile devices that connect to the Internet, resulting in the Web 
server being less able to process data effi ciently than when responding to wired 
system requests.     

INTERNET RELIABILITY ANALYSIS 

 Reliability is the probability of fault - free operation of an Internet component for a 
specifi ed time in a specifi ed environment. A fault is an instance of any unanticipated 
Internet component output (e.g., incorrect routing of a Web page request) caused by 
errors in the component. Faults are the results of errors, which are design or coding 
fl aws created inadvertently by hardware designers and programmers  [NEU93] . 

Figure 6.10     Queue effi ciency qe versus number of uploads and downloads. Series 1: Present wired 
DNS. Series 2: Present wired local network router. Series 3: Present wired Internet router. Series 4: 
Present Web server. Series 5: Present wireless access point. Series 6: Future wired Internet router. 
Series 7: Future wired Web server.  
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Figure 6.11     Queue count nq versus number of uploads and downloads n. Series 1: Present wired 
local network router. Series 2: Present wired Internet router. Series 3: Present wired Web server. Series 
4: Present wired DNS. Series 5: Present wireless access point. Series 6: Future wired Internet router. 
Series 7: Future wired Web server.  
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Figure 6.12     Number of download bits waiting for processing and being processed Nwd    +    Nsd 
versus queue count nq. Series 1: Present wired local network; standard deviation    =    102301. Series 2: 
Present wired local network router; standard deviation    =    64914. Series 3: Present wired internet router; 
standard deviation    =    76006. Series 4: Present wireless web server; standard deviation    =    108851.  
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 Reliability modeling involves using fault data (e.g., records of faults occurring 
per testing time of an Internet component) to fi t some parameters of a prediction 
model, and then using this model to predict reliability of Internet components at a 
future time. We can then determine when components will be ready for release to the 
Internet, based on predicting when the number of faults and failures will drop below 
a specifi ed threshold  [FOO95] . Predicting the reliability of components means we can 
estimate how many faults the Internet user is likely to encounter per unit time. 

 Because Internet fault and failure data do not correspond to a theoretical distri-
bution (we made a test of the Poisson distribution of failures that failed), we fi t a 
regression curve against the cumulative empirical data  [FINK98]  in Figure  6.13  that 
yields a reasonable fi t of the upper bound by virtue of R 2     =    0.9447 and  mean relative 
error  ( MRE )    =    0.1920. This source of fault and failure data  [FINK98]  does not break 
the data down by component. Thus, Figure  6.13  represents the  total  present Internet 
reliability in terms of cumulative faults and failures.   

 When assessing Internet reliability — both present and proposed systems — it is 
important to note the number of servers comprising a component in each part of the 
Internet (e.g., number of Web servers comprising a Web site) because with multiple 
servers, a degree of redundancy is provided, such that if one server fails, another can 
be used. This fact is used in the reliability prediction equation to be developed. 

Local Network and Router 

 Local network failure data were obtained from Kalyanakrishnam et al.  [KAL99] , 
involving Windows NT Local Area Network (LAN) systems. For a sample size of 

Figure 6.13     Cumulative number of Internet faults and failures, F, versus time t. Series 1: 
Empirical. Series 2: Predicted. MRE    =    01920; R 2     =    0.9447.  
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1298, mean uptime    =    354.6 hours and mean downtime    =    1.97 hours, yielding a reli-
ability    =    0.9945 (354.6/(354.6    +    1.97)). Local network router failure data were 
obtained from reports about Cisco routers. For the Cisco 6500 router, 23 of the 805 
routers failed, for a reliability 1    –    (23/805)    =    0.9714  [PAG] . The local network and 
router comprise a single network because there is only a single router server, as 
shown in Figure  6.1 . Thus, this network, lacking redundancy, has no backup capabil-
ity if a failure occurs.  

Internet Router 

 An Internet router reliability estimate based on 104 router outages out of a total of 
1616 outages yields reliability    =    1    –    (104/1616)    =    0.9356, as reported in the Inter-
domain Border Gateway Protocol data collection (01/98 ∼ 11/98)  [LAB98] . The Inter-
net router uses two servers, thus providing a degree of redundancy against failures, 
as shown in Figure  6.1 .  

Domain Name System ( DNS)

 The Domain Name System (DNS) is a ubiquitous part of everyday computing, 
translating human - friendly machine names to numeric IP addresses. Most DNS 
research has focused on server - side infrastructure, with the assumption that the 
aggressive caching and redundancy on the client side are suffi cient. However, 
through systematic monitoring, the authors found that client - side DNS failures are 
widespread and frequent, degrading DNS performance and reliability  [PAR] . In 
support of this fi nding, we collected the following failure data: 

 Number of successful DNS accesses: 5268. Number of failed DNS accesses: 153 
(Cricket Liu ’ s Advisor,  http://www.infoblox.com/services/cl_cookbook_5.14.cfm ). 
Reliability    =    5268/(5268    +    153)    =    0.9718. 

 Successfully answered queries: 37,973. Failure responses: 348 ( http://
www.daemon.be/maarten/dns.html ). Reliability    =    37,973/(37,973    +    348)    =    0.9909. 

 Total queries: 4,547,577. Total replies: 3,893,205.  [PAP] . Reliability    =    3,893,205/
4,547,577    =    0.8561.  

Web Server 

 The reliability for Web applications can be defi ned as the probability of failure - free 
Web operation completions (i.e., successful completion of upload Web request and 
download Web page delivery). We defi ne Web failures as the inability to correctly 
obtain or deliver information, such as documents or computational results, requested 
by Web users. This defi nition conforms to the standard defi nition of failures being 
the behavioral deviations from user expectations  [IEE90] . Based on this defi nition, 
we can consider the following failure sources:

   Web server failures that prevent the delivery of requested information to Web 
users.
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  Web site content failures that prevent the acquisition of the requested 
information by Web users because of problems such as missing or inacces-
sible fi les.    

 Applying these defi nitions, we obtained failure data in terms of failures per hit, 
where a hit is a successful access of Web server, from the School of Engineering, 
Southern Methodist University, Dallas, Texas, USA (errors per hit    =    0.09091) and 
Unix desktop computers accessing Web servers (errors per hit    =    0.0466). These data 
yield reliability    =    (1    –    0.09091)    =    0.90909 and (1    –    0.0466)    =    0.9534, respectively 
 [TIA04] . 

 In our models, the number of Web servers varies depending on whether they 
are used in a wired system (three servers) in Figure  6.1  or wireless system (six 
servers) in Figure  6.3 . In both cases, reliability would be signifi cantly improved over 
a single server system.  

Access Point 

 Given their convenience of user mobility, wireless networks are increasingly being 
considered as the platform of choice for various applications. Critical applications, 
such as health monitoring systems and so on, require the network to continue to 
function even in the presence of faults. Unfortunately, current wireless networks are 
notoriously prone to a number of problems, such as the loss of connectivity due to 
user mobility combined with network failures, which makes it diffi cult to guarantee 
their reliability. Today ’ s users are mostly content with their ability to access wired 
networks conveniently from mobile devices, even if the access is unreliable. 
However, as wireless networks become ubiquitous and start to support more critical 
applications, users will expect wireless networks to provide the same guarantees of 
reliability as their wired counterparts. Furthermore, providing wireless networks 
with a certain degree of reliability will lead to more opportunities for wireless car-
riers to provide applications that can be run satisfactorily on mobile devices. Some 
authors  [GAN03]  propose the signal - to - noise ratio as the metric to identify access 
point failures. Unfortunately, they do not provide actual failure data that can be used 
in our study. 

 In a study of digital cellular systems  [TIP02] , call blocking probability (i.e., the 
chance that due to heavy wireless traffi c, calls will be blocked) was estimated. The 
blocking probabilities range from a minimum of 0.0385 to a maximum of 0.226, 
yielding from reliability    =    (1    –    0.0385)    =    0.9615 to reliability    =    (1    –    0.226    =    0.774), 
respectively. 

 In our model, only a single access point is used because only a single mobile 
device accesses the wired network, via the access point, as shown in Figure  6.3 . Of 
course, in the real Internet, there are many mobile devices and access points that 
would impose additional load on the Internet. However, our goal is not to model the 
total Internet, which would be infeasible. Rather, our objective is  compar e the 
present Internet with the proposed Internet. In each case, our access point confi gura-
tion is the same.  
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Present Wired Internet System 

 Now use the above reliabilities to predict both the  present  and  proposed  Internet 
component reliability R c  in Equation  6.104   [SHO83] , where R is the reported server 
reliability (e.g., 0.9945 for local network), 1    –    R is the server unreliability, and n is 
the number of servers for a given component. Then, to obtain the Internet system 
reliability R s  in Equation  6.105 , the component reliabilities are multiplied, refl ecting 
the fact that Internet components operate in series. To apply R c  to the entire Internet 
would be incorrect because each component comprises a separate confi guration of 
servers, where the components operate in series. Thus, R c  is applied to each com-
ponent, and then R s  is applied to the entire Internet. 

 These equations take into account the use of multiple servers for some Internet 
components in our model.

    R Rc
n= − −1 1( ) ,     (6.104)  

    R Rs c

i

N

=
=

∏
1

.     (6.105)   

 We proceed by fi rst listing the server reliabilities, which were described above, for 
the wired system and the number of servers that a given component uses, where for 
components that have multiple reported server reliabilities, only the minimum and 
maximum values are used in order to provide a range of Internet reliability 
predictions:
Local network : 0.9945, n    =    1 server:

    R Rc = = 0 9945. .

Local network router : 0.9714, n    =    1 server:

    R Rc = = 0 9714. .

Domain Name Server (DNS) : 0.8561, 0.9718, 0.9909, n    =    3 servers:

    R minimumc = − − =1 1 0 8561 0 997023( . ) . ( ),

    R maximumc = − − =1 1 0 9909 0 999993( . ) . ( ).

Internet router : 0.9356, n    =    2 servers:

    Rc = − − =1 1 0 9356 2 0 99585( . ) . .

Web server : 0.9091, 0.9534, n    =    3 servers:

    R minimumc = − − =1 1 0 9091 3 0 99925( . ) . ( ),

    R maximumc = − − =1 1 0 9534 3 0 99990( . ) . ( ).
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 Then, applying equation R s  to the components in series:

    R minimums = =0 9945 0 9714 0 99702 0 99585 0 99925 0 95846. * . * . * . * . . ( ),

    R maximums = =0 9945 0 9714 0 99999 0 99585 0 99990 0 96194. * . * . * . * . . ( ).

 Thus, the reliability of the present wired system is predicted to be between 0.95846 
and 0.96194 .  

Present Wireless Internet System 

 To obtain the reliability estimates for the wireless system, we need only to factor in 
the access point reliability estimates (0.774, 0.9615) to the results for R s  computed 
above, as follows:

    R minimums = =0 95846 0 774 0 74184. * . . ( ),

    R maximums = =0 96194 0 9615 0 92491. * . . ( ).

 Thus, present wireless system reliability is predicted to range between 0.74184 and 
0.92491. These results, combined with the total Internet cumulative faults and fail-
ures in Figure  6.13 , provide a comprehensive picture of present Internet reliability. 
Figure  6.13  has the desirable feature of predicting an upper bound on total Internet 
cumulative faults and failures. Thus, we are assured that it is highly unlikely that 
reliability will be any worse than the upper bound. The overall picture that emerges 
suggests that considerable improvement in reliability is needed, particularly with 
regard to the wireless system.  

Proposed Wired Internet System 

 The equations for R c  and R s  are now applied to the proposed wired Internet system. 
Recall that the proposed wired system does not include local network, local network 
router, and DNS. Therefore, the following component reliabilities are used: 
Internet router : 0.9356, n    =    2 servers:

    Rc = − − =1 1 0 9356 2 0 99585( . ) . .

Web server : 0.9091, 0.9534, n    =    3 servers:

    Rc = − − =1 1 0 9091 3 0 99925( . ) . ,

    Rc = − − =1 1 0 9534 3 0 99990( . ) . ,

    Rs minimum= =0 99585 0 99925 0 99510. * . . ( ),

    Rs maximum= =0 99585 0 99990 0 99575. * . . ( ).

 Note the improvements over the present wired Internet system: 0.95846    →    0.99510 
(3.83% increase, minimum) and 0.96194    →    0.99575 (3.51% increase, maximum) 
(Figure  6.14 ).    
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Proposed Wireless Internet System 

 The equations for R c  and R s  are now applied to the proposed wireless Internet system. 
Again, recall that the proposed wireless system does not include local network, local 
network router, and DNS. However. It does require an access point. Therefore, the 
following component reliabilities are used: 
Access Point : 0.774, 0.9615, n    =    1 server:

    R Rc = = 0 774 0 9615. , . .

Internet router : 0.0.9356, n    =    2 servers:

    Rc = − − =1 1 0 9356 2 0 99585( . ) . .

Web server : 0.9091, 0.9534, n    =    6 servers:

    R minimumc = − − =1 1 0 9091 6 0 99999( . ) . ( ),

    R maximumc = − − =1 1 0 9534 6 0 99999( . ) . ( ),

    Rs minimum= =0 774 0 99585 0 99925 0 77021. * . * . . ( ),

    Rs maximum= =0 9615 0 99585 0 99990 0 95714. * . * . . ( ).

 Thus, the reliability of the proposed wireless Internet system is predicted to be 
between 0.77021 and 0.95714. However, note the improvements over the present 

Figure 6.14     Time in system T versus number of uploads and downloads n. Series 1: Present 
Internet wired system. Series 2: Proposed Internet wired system.  
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wireless Internet system: 0.74184    →    0.77021 (3.82 % increase, minimum) and 
0.92491    →    0.95714 (3.48 % increase, maximum). Thus, the relative reliability 
improvements are approximately the same for the wired and wireless systems, with 
the former yielding the greater absolute improvement.   

PERFORMANCE ANALYSIS OF PROPOSED FUTURE 
WIRED INTERNET 

 As has been demonstrated, the proposed Internet would achieve improved perfor-
mance and reliability because its confi guration would have fewer components, thus 
reducing performance overhead, single points of failure, and number of components 
that could fail. The confi guration would be comprised of only a user computer, 
Internet routers, and Web servers for wired systems. No DNS would be required 
because each user computer and mobile device would be supplied with a permanent 
IP address, using IPv6. For wireless systems, the access point is still necessary to 
provide for mobile device access to the Internet. 

 In order to provide a realistic model of the proposed future Internet, projected 
future Internet speeds of Web page request packet upload rate  λuc     =    20   Mbit/s and 
Web page download rate  λws     =    160   Mbit/s were obtained from the following source: 
 http://www.livescience.com/technology /070522_cable_modem.html . 

 Also, I found that the future Internet routing speed is projected as  μir     =    1000   Mbit/s 
 [BAN] . These data are used to produce revised computations, using the equations 
below. 

 In addition, it is appropriate to use different probabilities of processing and 
wait times than were used for the present Internet because these probabilities change 
with changing operating conditions. The proposed future wired Internet system 
queuing model, using the following performance computations, is shown in 
Figure  6.15 .   

User Computer 

Mean Upload Packet Time tuc

 This mean time is computed in Equation  6.106  by dividing the Web page request 
packet of size d by the packet upload rate λuc :

    t d/ bits/ Mbit/s suc uc= = =λ μ1000 20 50 .     (6.106)    

Mean Web Page Download Time tucd

 This mean time is computed in Equation  6.107  by dividing the Web page size p by 
the packet upload rate λuc :

    t p/ bits/ Mbit/s sucd ws= = =λ μ96 928 160 605 8, . .     (6.107)     
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Figure 6.15     Future wired Internet system queuing model.  
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Probability of Being Busy ρir

 This probability is computed in Equation  6.108  by dividing the  sum of packet upload 
rate   λuc  and  Web page download rate   λws  by the Internet router processing rate  μir , 
accounting for the number of servers s:

    ρ
λ λ

μir
uc ws

irs

Mbit/s

Mbit/s
=

+( ) =
+( ) =

( )( ) ( )( )
.

20 160

2 1000
0 0900..     (6.108)    
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Mean Upload Service Time tsir

 This mean time is computed in Equation  6.109  by dividing the Web page request packet 
length d by the Internet router processing rate μir , accounting for number of servers s:

    t
d

s

bits

Mbit/s
ssir

ir

= = =
( )( ) ( )( )

. .
μ

μ
1000

2 1000
0 5     (6.109)    

Mean Upload Wait Time twir

 This mean time is computed in Equation  6.110  by subtracting the upload service 
time computed in Equation  6.109  from the packet upload time t uc :

    tw t ts s sir uc ir= − = − =50 0 5 49 5. .μ μ     (6.110)    

Mean Download Service Time tsird

 This mean time is computed in Equation  6.111  by dividing the Web page length p 
by the Internet router processing rate μir , accounting for number of servers s:

    ts
p

s

bits

Mbit/s
sird

ir

= = =
( )( )

,

( )( )
. .

μ
μ

96 928

2 1000
48 464     (6.111)    

Mean Download Wait Time twird

 This mean time is computed in Equation  6.112  by subtracting the download service 
time computed in Equation  6.111  from the Web page download time t ucd , computed 
in Equation  6.107 :

    tw t ts s sird ucd ird= − = − =605 8 48 464 557 336. . . .μ μ     (6.112)    

Mean Number of Bits Being Processed in the Upload Direction nsir

 This quantity is computed in Equation  6.113  by multiplying the probability of Inter-
net router queue being busy, computed in Equation  6.108 , by the Web page request 
packet size d:

    ns
d

s

Mbit/s bits

Mbit
ir

uc ws

ir

=
+( ) =

+( )λ λ
μ

( ) ( )

( )(

20 160 1000

2 1000 //s
bits

)
.= 90     (6.113)    

Mean Number of Bits Waiting for Processing in 

the Upload Direction nwir

 This quantity is computed in Equation  6.114  by subtracting the number of bits being 
processed in the upload direction, computed in Equation  6.115  from the Web page 
request packet size d:

    nw d ns bits bitsir ir= − = − =1000 90 910 .     (6.114)    
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Mean Number of Bits Being Processed in 

the Download Direction nsird

 This quantity is computed in Equation  6.115  by multiplying the probability of Inter-
net router queue busy, computed in Equation  6.108 , by the Web page size p:

    ns
p

s

Mbit/s bits

M
ird

uc ws

ir

=
+( ) =

+( )λ λ
μ

( ) ( , )

( )(

20 160 96 928

2 1000 bbit/s
bits

)
.= 8724

 (6.115)    

Mean Number of Bits Waiting For Processing in the Download 

Direction nwird

 This quantity is computed in Equation  6.116  by subtracting the number of bits being 
processed in the download direction, computed in Equation  6.115  from the Web page 
size p:

    nw p ns bits bitsird ird= − = − =96 928 8724 88 204, , .     (6.116)   

 The statistical program is used to generate the distribution of wired system Internet 
router number of bits being processed and waiting for processing, using the above 
mean values.   

Wired System Web Server Processing 

 The probability of queue busy, using the IBM System x3250 M2 4194 Web server 
processing rate μws     =    2830   Mbit/s, is computed in Equation  6.117 :

    ρ
λ λ

μws
uc ws

wss

Mbit/s

Mbit/s
=

+( ) =
+( ) =

20 160

3 2830
0 02120

( )( )
. .     (6.117)   

Mean Upload Packet Processing Time tsws

 This mean time is computed in Equation  6.118  by dividing the Web page request 
packet size, d, by the processing rate, accounting for number of servers, s:

    ts
d

s

bits

Mbit/s
sws

ws

= = =
μ

μ
1000

3 2830
0 11779

( )( )
. .     (6.118)    

Mean Download Web Page Processing Time tswd

 This mean time is computed in Equation  6.119  by dividing the Web page size, p, by 
the processing rate, again accounting for number of servers, s:

    ts
p

s

bits

Mbit/s
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= = =
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μ
96 928
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11 417

,

( )( )
. .     (6.119)    
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Mean Web Page Download Time tucd

 This is the mean time required to download a Web page of size, p, using the Web 
page download rate, λws , in Equation  6.120 :

    ts
p

s

bits

Mbit/s
swd

ws

= = =
μ

μ
96 928

3 2830
11 417

,

( )( )
. .     (6.120)    

Mean Web Page Upload Wait Time twws

 This mean time is computed in Equation  6.121  by subtracting the upload processing 
time computed in Equation  6.119  from the Web page request packet upload time, t uc :

    tw t ts s sws uc ws= − = − =50 0 11779 49 88. . .μ μ     (6.121)    

Mean Web Page Download Wait Time twwsd

 Using Equation  6.122 , compute the mean Web page download wait time by subtract-
ing the download processing time computed in Equation  6.119  from the Web page 
download time computed in Equation  6.120 :

    tw t ts s swsd ucd wsd= − = − =605 8 11 417 594 383. . . .μ μ     (6.122)    

Mean Number of Web Page Bits Being Processed in 

the Upload Direction nsws

 This quantity is computed in Equation  6.123  by multiplying the probability of Web server 
queue busy, computed in Equation  6.117  by the Web page request packet size d:

    ns
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Mean Number of Web Page Bits Being Processed in the Download 

Direction nswsd

 This quantity is computed in Equation  6.124  by multiplying the probability of Web 
server queue busy, computed in Equation  6.117  by the Web page size p:

    ns
p

s

Mbit/s bits

M
wsd

uc ws
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20 160 96 928

3 2830 bbit/s
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)
.= 2055     (6.124)    

Mean Number of Web Page Bits Waiting for Processing in the Upload 

Direction nwws

 This quantity is computed in Equation  6.125  by subtracting the number of bits being 
processed in the upload direction ns ws , computed in Equation  6.124 , from the Web 
page request packet size d:

    nw d ns bits bitsws ws= − = − =1000 21 20 978 80. . .     (6.125)    
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Mean Number of Web Page Bits Waiting for Processing in the 

Download Direction nwwsd

 This quantity is computed in Equation  6.126  by subtracting the number of bits being 
processed in the download direction ns wsd , computed in Equation  6.125  from the 
Web page size p:

    nw p ns bits bitswsd wsd= − = − =96 928 2055 94 873, , .     (6.126)   

 Again, statistical software is called upon to generate the distribution of wired system 
Web server bits being processed and waiting to be processed, using the above mean 
values.    

COMPARISON OF PRESENT AND FUTURE WIRED 
INTERNET PERFORMANCE 

Time in System 

 As can be seen by comparing the present wired Internet time in system with the 
proposed wired Internet time in system in Table  6.6 , the latter ’ s performance is 
dramatically better than the former. Table  6.6  contains the means and standard devia-
tions of the performance times of the two systems. The signifi cant performance 
advantage of the proposed Internet system, which is not burdened with local router 
and DNS overhead, is readily apparent, since both the means and standard deviations 
are lower. In addition, because the DNS in the present Internet only has to deal with 
upload traffi c, its time in system is the lowest.    

Table 6.6    Performance Comparison of Present and Proposed Future Wired Internets 

   Performance metric  

   Present Internet     Proposed future Internet  

   Mean 
(seconds)

   Standard 
deviation
(seconds)

   Mean 
(seconds)

   Standard 
deviation
(seconds)

  Wired local network 
time in system  

  0.655720    0.140187    Does not apply    Does not apply  

  DNS time in system    0.178284    0.007516    Does not apply    Does not apply  
  Wired Internet router 

time in system  
  1.194493    0.224831    0.258607    0.029701  

  Wired Internet Web 
server time in 
system

  0.797331    0.283792    0.000814    0.000115  

  Total time in wired 
system

  3.522262    0.584658    0.259421    0.029705  
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Internet Data Traffi c 

 In addition to the time in system performance metric, it is important to include a 
metric that measures the variation in data fl ow. This metric is the coeffi cient of 
variation (standard deviation/mean) of the sum of bits being processed and bits 
waiting to be processed for each component in Table  6.7 . This metric is computed 
because there is a great deal of variation in data fl ows, thus it is appropriate to nor-
malize the standard deviation by the mean in order to obtain a representative picture 
of variation across the components. We see that the proposed wired network has 
consistently higher variation. This result is attributed to the fact that the proposed 
wired system has much higher Web request packet upload and Web page download 
rates, thus generating greater variation in data fl ows. The implication of this result 
is that higher data transfer rates achieved in the proposed wired system comes at a 
cost— lower stability of data traffi c in the Internet.     

COMPARISON OF PRESENT AND FUTURE WIRELESS 
INTERNET PERFORMANCE 

 As a reader exercise, for the proposed wireless Internet system, develop the equa-
tions for the mean values and performance prediction equations similar to what was 
done for the proposed Internet wired system. In addition, produce a future wireless 
Internet system simulation queuing model similar to Figure  6.15 . Use the mean 
values contained in Table  6.8 . In order to compare the present with the proposed 
wireless system, document the logic of the proposed wireless system, for both the 
upload and download directions. Notice that in contrasting the present wireless 
systems in Figure  6.2  (upload) and Figure  6.3  (download) with your proposed 
system, the difference is that the latter does not require the services of the DNS. 
In addition, all the mean value equations and the equations for the distribution of 

Table 6.7    Packet and Web Page Length Summary (Processed and Waiting to Be Processed) 

   Component  
   Present wired Internet 

(coeffi cient of variation)  
   Proposed future wired Internet 

(coeffi cient of variation)  

  Local network (upload)    0.9180    Does not apply  
  Local network (download)    0.8985    Does not apply  
  Local network router (upload)    0.9399    Does not apply  
  Local network router 

(download)
  0.7516    Does not apply  

  DNS (upload)    0.9822    Does not apply  
  Internet router (upload)    0.7903    0.9510  
  Internet router (download)    0.6940    0.9059  
  Web server (upload)    0.7774    0.9623  
  Web server (download)    0.7382    0.8047  
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processing and wait times remain the same, although the results of the distribution 
value equations will change based on different sets of probabilities of those 
distributions.   

 By eliminating the DNS from the present wireless simulation queuing model in 
the upload direction in Figure  6.2 , you can produce the future wireless simulation 
queuing model. The components that would be included in the simulation queuing 
model are: access point, Internet router, and Web server, both upload and download. 
As in the case of the present wireless  system, depicted in Figures  6.2  and  6.3 , twice 
as many Web servers are required to maintain queue stability, compared with the 
present and proposed wired  systems. 

 Eliminating the burden of DNS overhead on the proposed wireless system 
improves total system performance, as shown in Figure  6.16 . However, not all 
advantages would necessarily accrue to the proposed wireless Web server because 
it could suffer from a higher queue load, which could be caused by a higher probabil-
ity of queue being busy, compared with the present Web server. This result is dem-
onstrated in Figure  6.17 , where even the present wired system is superior to the 
proposed wireless system with respect to queue effi ciency. As has been suggested, 
the result is caused by a higher queue load in the wireless system, which in turn is 
the result of high Internet activity generated by wireless devices.   

Time in System 

 As was the case for the wired systems, we see in Table  6.8  that the proposed future 
wireless Internet has superior performance with respect to the time metrics, again 
as the result of not having to contend with the local network, local network router, 
and DNS overhead.  

Table 6.8    Performance Comparison of Present and Proposed Future Wireless Internets 

   Performance metric  

   Present Internet     Proposed future Internet  

   Mean 
(seconds)

   Standard 
deviation
(seconds)

   Mean 
(seconds)

   Standard 
deviation
(seconds)

  Wireless access point 
time in system  

  0.165121    0.044345    Does not apply    Does not apply  

  Wireless DNS    0.178284    0.007516    Does not apply    Does not apply  
  Wireless Internet router 

time in system  
  1.194089    0.225939    0.516090    0.032931  

  Wireless Internet Web 
server time in 
system

  0.790009    0.281181    1.157510    0.233608  

  Total time in wireless 
system

  2.151653    0.406204    1.852345    0.257725  
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Figure 6.16     Time in system T versus number of uploads and downloads n. Series 1: Total present 
wireless system. Series 2: Total future wireless system.  
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Figure 6.17     Queue effi ciency qe versus queue count nq. Series 1: Present Internet wired Web 
server; probability of queue busy    =    0.7688. Series 2: Future Internet wireless Web server; probability 
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Internet Data Traffi c 

 Again, as in the case of comparing present and proposed future  wired  systems, the 
Web page length variations of the present and proposed  wireless  system are com-
pared in Table  6.9 , where we see the advantage of the future Internet, again as the 
result of not being burdened by the variation in local network, local network router, 
and DNS data traffi c.     

SUMMARY

 By eliminating the local network and its supporting router, and eliminating DNS name - to - IP 
address translation by virtue of providing every user computer and mobile device with its 
own IP address, both wired and wireless performance are predicted to be improved, as mea-
sured by time in the system. It is also useful to model data fl ows in the present and proposed 
Internets to gauge the relative variation in traffi c across components. This process spotlights 
excessive component variation, for example, the present wireless Internet router in the upload 
mode in Table  6.9  that is reduced in the future Internet. It is recognized that major organiza-
tional changes (e.g., elimination of domain name administration) and technical changes (e.g., 
elimination of local networks and routers) are required in order to realize this vision of the 
future Internet. However, if the Internet were being built from scratch, it should closely 
resemble this proposal. 

 A performance metric that was not covered is the delay time among communicating 
devices. This is particularly the case for wireless devices, where both human - made and nature -
 made interference can have a signifi cant effect on Internet performance  [XYL99] . This factor 
should be included in enhanced future Internet proposals.  
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Chapter 7

Network Standards 

T he primary objective of this chapter is to provide evidence of the fact that while there is 
a myriad of network standards, they are lacking in some fundamental properties as predictions 
of reliability, maintainability, and availability. For without these crucial properties being 
included in network standards, you would question the utility of existing standards. Existing 
standards do a reasonable job of specifying speed, range, signal properties, wireless device 
mobility, and compatibility requirements. However, to a large extent these properties are 
expressed sans user perspective. By user perspective I mean, for example, if a standard speci-
fi es a signal - to - noise ratio in the abstract, what does this mean in concrete terms for the user? 
Will the user be able to access a Web server, via the Internet, when desired, and reliably 
retrieve a Web page from the server within, say 5 seconds? Given the abstract nature of 
standards, my goal is to equip the reader with practical methods for designing and evaluating 
network standards with the goal of increasing user productivity in their use of computer 
networks.    

DESIRABLE PROPERTIES OF NETWORK STANDARDS 

 First, the properties that are desirable in a network standard will be discussed and, 
second, a comparison will be made between desired properties and existing standard 
properties. Third, improvements designed to bring existing standards into confor-
mance with desired properties will be identifi ed. The reader may be surprised to 
learn that common requirements such as reliability specifi cations and the means for 
testing reliability are largely absent from current standards. Building on the founda-
tion of network principles learned in Chapter  5 , desirable properties of network 
performance, reliability, maintainability, and availability will be specifi ed along with 
test procedures to ensure compliance with the specifi cations. These specifi cations 
will be formulated and used as a baseline for judging the utility of existing standards 
from the user ’ s perspective . 

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F. 
Schneidewind.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley & 
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Network Effi ciency 

 The fi rst desirable property to be addressed is network effi ciency, defi ned as: 
(total time a packet spends in a network to achieve the user ’ s goal)/(packet 
input time). 

 From Chapter  5 , you learned that the numerator, T t , is obtained as the summation 
of link delay, T ij , node processing time, T i , and wait time, W i , summed over number of 
links, N L , and nodes, N n , in a network. The numerator is   T T T W,t ij

N
ij i

N
i i

N
i

L n n= ∑ + ∑ + ∑
and the denominator is T p     =    p/ λuc , where p is the Web page request packet size and  λuc

is the user computer packet input rate. Thus, effi ciency E, which we desire to be as 
high as feasible, is defi ned as follows:

    E T T W pij

ij

N

i

i

N

i

i

N

uc

L n n

= + +
⎛

⎝
⎜

⎞

⎠
⎟∑ ∑ ∑ ( ) / .λ

 Thus, you can see that what was initially formulated as  time effi ciency  has become 
data effi ciency  because the above ratio is the quantity of data transmitted in a 
network to achieve the user ’ s goal to the quantity of data inputted by the user; in 
other words, the number of bits outputted per input bit. The network performance 
evaluation model for making the effi ciency test is shown in Figure  7.1 . Figure  7.2  
shows that only the Web Server Queue node is in conformance with the specifi cation 
by virtue of having the smallest Web page request packet size, p, compared with the 
other nodes. Recall from Chapter  5  that p is generated by an exponential statistical 
routine. When this routine was applied in Chapter  5 , it generated a small value of p 

Figure 7.1     Network performance evaluation model.  λuc , user computer input rate; p, Web page 
packet request size; T ij , link ij processing time; W i , node i wait time; T p , packet input time; T i , node i 
processing time; pw, Web page size. Effi ciency    =    Output/Input    =    T t /T p .  
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Figure 7.2     Network effi ciency E versus node i. Series 1: E. Series 2: Specifi ed E.  
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Packet input rate = 640,000 bits per second

Packet input rate must be increased to bring other nodes into conformance with specification

for the Web server queue (see Table  5.2 , Chapter  5 ). This means that the result in 
Figure  7.2  is only one instance of computing effi ciency. To obtain a more representa-
tive result you would repeat the process of generating p and computing values of E, 
say 100 times, and compute the mean value of E. Also, it is important to note, in 
Figure  7.2 , that the packet input rate  λuc  must be increased to bring the other nodes 
into conformance with the specifi cation.

Problem:  What is the equation required to ensure that all nodes and associated 
links will satisfy the effi ciency specifi cation?    

Solution:  Solve the effi ciency equation for  λuc , the user computer input rate 
from Figure  7.1 , as shown below, for  all  of the nodes and associated links, 
setting E to your desired value, and use the values of p from Table  5.2  in 
Chapter  5  for  each computation  of  λuc . Use the  maximum  value of  λuc  as your 
solution. Show a plot of λuc  versus node identifi cation i:

    λuc ij

ij

N

i

i

N

i

i

N

E p T T W
L n n

( ) = ( ) + +∑ ∑ ∑* / .

 Using an E    =    10.0, the largest value of  λuc     =    950,118,764   bits per second. The 
required plot is shown in Figure  7.3 . The  maximum  value of  λuc  corresponds to the 
User Computer and Local Network Server Queue nodes and the link between them 
(see node and link identifi cations in Fig.  7.4 ).        
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Figure 7.4     Reliability simulation process diagram.  
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RELIABILITY PREDICTION PROCESS 

 The reason reliability prediction is important is that national and international regula-
tions may require that reliability specifi cations be achieved in network systems 
 [MAR10] . The approach to reliability prediction is to simulate the injection of faults 
and failures into a replica of a computer network. Faults such as garbled data on a 
link, attributed to a noisy communication channel, cause failures such as the inability 
to transmit data between two nodes. Injection of faults and failures is simulated by 
randomly selecting links and nodes to be injected. This is accomplished by using 
the Excel RAND function (uniformly distributed random numbers between 0 and 
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1) to generate random numbers that will identify where injection is to take place. 
Specifi cally, since there is a total of 25 nodes and links, counting queues, in Figure 
 7.1 , RAND is multiplied by 25 and then rounded to obtain the identifi cation of 
injection location. Injection locations are identifi ed in Figure  7.4 , which will be used 
for simulating network reliability. Note that the Internet icon in Figure  7.1 , which 
is included for clarity of presentation, is not shown in Figure  7.4  because Internet 
nodes and links are obviously components of the Internet; to show the Internet icon 
would involve double counting of nodes and links. In addition, the buffer in Figure 
 7.1 , which is included for clarity of presentation, is not carried over into Figure  7.4  
because the buffer is part of the Domain Name Server, which, again, would result 
in double counting. 

 Table  7.1  is provided to document the results of the node and link identifi cation 
process, where, for example, the link Internet Router Server Queue    →    Internet 
Router Server is identifi ed as number 12. Therefore, this link receives a fault and 
failure injection in Figure  7.4 .   

Estimation of Failure Rate 

 Continuing the process of reliability prediction, failure rate must be estimated. This 
will be an interesting exercise in failure rate estimation because the failure rate will 
be estimated for each sequence of the reliability simulation. The rationale for 
sequences is that end - to - end transmission and processing of data in a network is 
comprised of subsets of the total end - to - end chain called sequences. One of the 
principles of computer engineering is to reduce the complexity of analysis by decom-
posing a system into its component parts. If this is not done, the complexity of large 
systems overwhelms the engineer, leading to errors in analysis. To illustrate the 
sequence prediction process, the fi rst  estimate pertains to the  last  fault and failure 
of the fi rst  sequence injected at point 12 in Figure  7.4 ; the  second  estimate pertains 
to the last  fault and failure of the  second  sequence injected at point 17, and so on. 
Duplicate sequences that may be generated by the random designation of injection 
points are not repeated because this would bias the results in favor of repeated 
sequences.

 The failure rate  λ  pertaining to each simulation test of a  sequence  of fault and 
failure injection is estimated by summing the node and link times T i  over the N 
nodes and links, from node 1 to the last node or link of the sequence, N, where there 
has been an injection, and dividing it into the number of failures occurring over the 
sequence. For example, for injection at point 12 in Figure  7.4 , T i  and n i  are summed 
from 1 to N    =    12, where n i  is the number of failures  expected  in node or link i. The 
sequence failure rate equation follows:

    λ = =

=

∑

∑

n

T

i

i 1

N

i

i 1

N .
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 The determination of failure occurrence is performed by again employing the RAND 
function for estimating the number of failures, n i , at each node and link, using a 
uniformly distributed number between 0 and 1. Of course, it is recognized that in 
the real world the number of failures must be an integer value. However, as stated, 
ni  is an  expected  value, justifi ed by the fact that over a  large  number of operations 
in the real - world network, an integer number of failures would occur over the nodes 
and links. If the mean of these integer values were computed, the result would be 
the expected  fractional value.  

Reliability Prediction 

 Reliability is based on the  sequence  failure rate estimated above and the node or 
link times, Ti, from node 1 to the node or link where the last fault and failure injec-
tion occurs in a sequence  at N. Thus, for each simulation test, there will be predic-
tions from 1 to N. Again, the exponential distribution is used because there is a high 
probability of short node and link times and low probability of long times. Then, 
the sequence i reliability, R i , is formulated as follows:

    R ei
( Ti= −λ ).

 Since there will be many values of reliability in a sequence — one for each node or 
link— the mean value is computed in order to generate an overall sequence reliability 
metric. The mean values are tabulated in Table  7.1 . This table will be used to identify 
possible low sequence reliability values that would be indicative of low values of 
node and link reliabilities. 

 Analysis of Table  7.1  reveals that since all of the mean sequence reliability 
values are very high, the prediction is that there should be no problem with reliability 
per se in actual operation. However, note that some of the failure rates are relatively 
high (bolded). In particular, this is the case for sequences associated with local 
network components. A possible reason for this is that local network components 
operate faster than Internet components. The higher speed can result in failures 
occurring at a higher rate. Thus, you can see that Table  7.1  is valuable in pinpointing 
reliability weak spots in a network. Notice that Table  7.1  results are consistent with 
the results in Figure  7.2 , where only the Web Server satisfi es the effi ciency require-
ment. That is, both network performance — as measured by effi ciency — and reli-
ability are better at the service end of a network than at the input request end, 
suggesting that network standards should focus on local networks.  

Maintainability Prediction 

 Recalling from Chapter  5  that maintainability was formulated as a probability, and 
this probability was the ratio of the quantity of data processed by a given link or 
node to the total quantity of data processed at all links and nodes in the network. 
Now, since reliability has been predicted using network entities called sequences, 
maintainability will also be predicted using sequences in order that availability, 
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which is a function of reliability and maintainability, will have consistent inputs for 
its prediction in a later section. Thus, maintainability will be formulated as a ratio 
of the quantity of data processed by a given sequence  of nodes and associated links 
(e.g., Local Network Server Queue and the link between it and the User Computer) 
to the total quantity of data processed at all nodes and associated links in a network. 
Note that nodes and their associated links process the same quantity of data. There-
fore, the maintainability of sequence i, M i , is predicted as follows, where p i  is the 
quantity of data transmitted or processed in a node and the associated link, N i  is the 
number of nodes and associated links in sequence i, and N is the total number of 
nodes and associated links in a network:

    M
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i

i

i 1

N

i

i 1

N

i

= =

=

∑

∑
.

Availability Prediction 

 Similar to the formulation of availability in Chapter  5 , the availability of sequences 
represents the probability that the set of nodes and links that comprise a sequence 
will be available for operational use when needed. Equivalently, availability is the 
proportion of operational time that maintenance is not  being performed on a sequence 
(i.e., the sequence is operating reliably). Thus, availability, A i , of a sequence is 
predicted as follows:

    A R / R Mi i i i= +( ).

 Figure  7.5  shows the results of applying the availability prediction equation, results 
that are opposite to those obtained for failure rate in Table  7.1  that showed local 
network sequences with relatively high failure rates, whereas Figure  7.5  shows that 
local network sequences are the only ones that satisfy the availability requirement. 
What accounts for the discrepancy? Checking Table  5.2  of Chapter  5 , which records 
Web page request and Web page size, we see that local network components have 
smaller sizes that are the primary driver of maintenance actions. The lesson to be 
learned from this exercise is that multiple dimensions of network quality must 
be evaluated. If any one is defi cient, it is a signal that network quality should be 
improved. In this case, local network sequences would be subject to further testing 
to discover and remove additional faults.    

Storage Capacity Prediction 

 Due to the fact that there is a great deal of data transmitted and processed in a 
network, storage requirements must be predicted. Since other metrics, such as avail-
ability, have been predicted on the basis of node and link sequences, consistency 
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Figure 7.5     Sequence i availability A i  versus sequence i. Series 1: A i . Series 2: Required A i . Only 
local network nodes and links satisfy requirement.  
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requires that storage requirements predictions use the same approach. Thus, storage 
capacity is predicted by noting that data is injected into the network (i.e., sequences) 
in Figure  7.1  at a rate determined by the User Computer input rate,  λuc . This sequence 
input rate multiplied by the sequence operational time,   ∑ =i

N
iT1 , generates the pre-

dicted sequence i storage capacity, S i , and computed over the N nodes and links of 
the sequence, as follows:

    S Ti uc i
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 Figure  7.6  shows the results of predicting sequence storage capacity requirements, 
where the utility of the prediction is to delineate the maximum storage requirement, 
which in this case occurs in the Local Network Router Server Queue. This result is 
due to the relatively heavy traffi c load in the local network. As a minimum, the Local 
Network Router Server Queue should be designed to accommodate this much data 
(in this case, about 12,000   bits).    

Software Compatibility Standards Issue 

 An issue of great concern in network standards is whether various software systems 
that are required in a network are compatible, meaning that, for example, user 
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requests for Web pages in Figure  7.1  can traverse all links and nodes to the Web 
Server and return without disruption caused by software incompatibilities. Specifi -
cally, this refers to compatibility among the user operating system, Web browser, 
Ethernet local network protocol, router software — both local network and Internet —
 Internet Protocol (IP), Domain Name Server software, Web Server, database man-
agement system, and network security software. My motivation for including this 
issue is to identify for the reader improvements that would make standards more 
valuable for the user . There is no standards issue more important from the  user
standpoint  than software compatibility because: (1) historically, software, due to its 
complexity, has caused more problems than hardware and (2) unfortunately, network 
standards do not address the software compatibility issue. This means that network 
users must insist on receiving compatibility information when considering purchase 
of network software from vendors.   

EXISTING STANDARDS 

 At this point, existing standards will be reviewed to see to what extent, if any, these 
standards address performance, reliability, maintainability, availability, and software 
compatibility. 

 There are a lot of different network standards that the majority of computers 
use. There are standards for both physical hardware and for signaling. For example, 
IEEE 802.11g is a wireless networking standard. It includes specifi cations for the 
type of radio that is used, how strong the signal can be amplifi ed, a standard set of 
encryption schemes, and so on. 

Figure 7.6     Sequence storage capacity S i  versus sequence i.  
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 Another standard is Ethernet, also known as IEEE 802.3. This is a standard for 
hardwired networks. It defi nes what types of wiring can be used, transmission power 
requirements, connector styles, and so on. 

 There are also protocols. As you learned in Chapter  5 , Transmission Control 
Protocol (TCP)/IP is a protocol that operates at the transport layer of the seven - layer 
network. Note that TCP/IP is a protocol that interfaces with local network protocols 
such as Ethernet. 

 Today, virtually all networking standards are  “ open ”  standards, administered by 
a standards organization or industry group. Open standards are more popular than 
proprietary ones in the computer industry, and this is particularly the case for net-
working. In fact, the few technologies that have no accepted open standard have 
been losing ground to those with open standards, particularly in the areas of wireless 
local area and home networks ( http://uk.answers.yahoo.com/question/index?qid = 20
091014025636AAOqcDy ). 

 Open standards are useful for helping to mitigate the problem of software com-
patibility because with open standards, software developers can incorporate compat-
ibility into standards. However, there is no assurance that individual developers will 
address all compatibility issues.  

WIRELESS STANDARDS 

 As voice and data in wired networks increasingly converge to use the Internet, 
similar convergence is happening with wireless access networks  [CHA07] . Many 
different wireless network standards have been developed or are under development 
for  metropolitan area network s ( MAN s),  local area network s ( LAN s), and  personal 
area network s ( PAN s). 

 The wireless access networks are diverse but the major standards may be clas-
sifi ed as belonging to either a group of public land mobile networks (PLMNs) owned 
by cellular phone operators or to another group of wireless networks under the IEEE 
802 family of standards. The frequency spectrum used by these wireless systems 
includes both unlicensed and licensed bands. The cellular networks and systems are 
diverse, and efforts to standardize them include the 3G Wireless in the International 
Mobile Telecommunication 2000 (IMT - 2000) standard. 

 While the cellular networks have been moving from voice networks toward the 
Internet packet network, the family of IEEE 802 wireless networks is attempting to 
achieve the higher quality that is required in voice and other real - time applications. 
Different wireless network systems have good technological reasons to exist. There 
are different power requirements, distance ranges, data rates, and carrier frequencies. 
Different systems are therefore needed to optimize the performance and cost accord-
ing to different requirements. Note that there is no mention of reliability and other 
important metrics in this list! 

 The most widely implemented wireless network standards fall into two major 
groups. One group of wireless networks is the PLMN family of cellular networks. 
Another group of wireless networks are the IEEE802 family of standards. 
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PLMNs

 The major wireless systems under the PLMN family are primarily operated by the 
cellular telecom service providers. Cellular systems are usually designed with 
maximum cell range exceeding 10   km, where a cell is a wireless geographical area 
that has access to an access point, which has, in turn, access to the Internet. However, 
the peak data rates may only be realized in favorable channel conditions, such as in 
those areas close to the base station, where a base station contains a transmitter and 
antenna for transmitting mobile device signals. Note that given the erratic channel 
conditions, reliability should be predicted under these conditions to have a useful 
standard.

Multimedia Services 

 One key issue in providing multimedia services over a wireless network is the 
 quality - of - service  ( QoS ) support in the presence of changing network connectivity. 
The concern here is user mobility and shared, noisy, highly variable, and limited 
wireless communication links. Most wireless standard organizations are revising 
existing standards or making new specifi cations to provide more bandwidth or QoS -
 related parameters and interfaces to meet requirements from highly demanded mul-
timedia applications, such as wireless video phone and multimedia message systems 
 [GAN04] .   

IEEE802 WIRELESS NETWORKS 

 An important group of wireless networks is the IEEE802 family of standards. PAN 
distance ranges are 10   m, for example the 802.15 Bluetooth standard. LAN distance 
ranges that are within 100   m are the 802.11 Wireless LAN standards with data rates 
of 11, 55, and 100   Mbit/s. MAN distance ranges are 3 – 8   km. While range is an 
important network standard attribute, it is meaningless if not accompanied by speci-
fying the reliability that would be achieved at these ranges! 

 The 3G Wireless networks, which provide wireless access to global and metro-
politan area data networks, are standardized according to the 3G Wireless require-
ments specifi ed in IMT - 2000. The IMT - 2000 3G Wireless goals are summarized 
below  [CHA07] . The purpose of describing this standard is to indicate what is cur-
rently feasible in this class of important wireless networks and what needs to be 
improved by more mature standards.

1.     Enable global roaming .      Allow a mobile device to be used anywhere in the 
world, without changing network cards. A noble objective, but currently 
infeasible because of differing wireless technologies in different parts of the 
world. This is a generalization of the software compatibility problem.  

2.     Use Standardized Interfaces .      Use the same interface between mobile 
devices and applications across mobile device developers.  
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3.     Support Multimedia Services .      This requirement has evolved into a very 
mature set of services, given the extensive use of, for example, cameras, 
social networking, and Web site access via mobile devices.  

4.     Have Minimum Data Rates .      A minimum of 144   kbps in a vehicular envi-
ronment, 384   kbps in a pedestrian environment, and 2   Mbit/s in an indoor 
offi ce environment; these specifi cations are not particularly useful because 
they are arbitrary with no justifi cation provided. The performance methodol-
ogy presented in this chapter should be used to quantitatively  estimate these 
requirements. This example illustrates the defi ciency in some network stan-
dards: specifying a requirement, while neglecting to provide a rationale.  

5.     Operate in Multiple Environments .      Indoor, outdoor, vehicular, and satel-
lite; this specifi cation should be tested by subjecting the wireless system to 
operate in these environments and noting whether there is equal performance 
and availability across the environments.    

 A more advanced wireless network is 4G, which is designed to operate at 50 –
 250   MBit/s. Among other capabilities, 4G supports TV broadcast and interoperates 
with the wired Internet. 

Limited Range Wireless Network 

 It is instructive to consider a limited range wireless network because the network 
standard is decidedly different from its long - range cousin due to a different market 
objective. The example is the Bluetooth wireless network. 

 The Bluetooth network has no network infrastructure other than the nodes (i.e., 
mobile device)  [CHA07] . A Bluetooth network, called a piconet, consists of one 
master node and up to seven slave nodes within the radio frequency range of about 
10   m. Adjacent piconets may interconnect with each other through nodes in overlap-
ping regions of the separate piconets to form a larger network. Bluetooth provides 
packet switching links. The total data rate is in the1   Mbit/s range. 

 Bluetooth provides rapid ad hoc connections without cable and without line - of -
 sight requirement. It uses small form factor, low power, and low cost devices. The 
use of low power enables longer battery life applications such as a  personal data 
assistant  ( PDA ). Applications include phones, pagers, modems, headsets, notebook 
computers, handheld personal computers, and digital cameras. 

 The salient issue in standardizing a network such as Bluetooth is to test it in the 
environment described above to ascertain whether connectivity, performance, and 
availability can be achieved in a limited range environment.  

Spectrum Considerations 

 Signal interference in the available spectrum, particularly in wireless systems, is a 
network standards issue. The degree of interference that is tolerable in various geo-
graphical areas, using specifi ed network hardware and software, should be specifi ed 
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by signal - to - noise (S/N) ratio. Increasing the S/N ratio will increase the range of the 
wireless system.   

TEST BED FOR TESTING NETWORKS 

 Having discussed a number of network - recommended performance and availability 
metrics and having reviewed existing network standards, it is now appropriate to 
show the reader how a test bed could be deployed to perform tests designed to ensure 
the networks adhere to proposed and existing standards. It is important that the test 
bed be automated  [HOD99] , as portrayed in Figure  7.7 , where the test measurements 
are instrumented.   

 First, the important network requirements that would be subject to testing are 
listed. These are shown in the network test bed in Figure  7.7 .

Compatibility  of a local network, wired and wireless systems, with the Internet. 
Test software records a compatibility result if the signal is received. An 
incompatible result is recorded if the signal is not received.  

Figure 7.7     Network test bed. T i     =    p/ λ , required time; R r , required range; S/N r , required signal/
noise; C, storage capacity;   R ei

( Ti= −λ ), required reliability; R s , specifi ed stability; S/N, actual signal/
noise; S r , storage requirement.  
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Time  required to request a Web page from Web server. Test software computes 
required time and compares it with clock time.  

Range  required by mobile device in wireless network. A sensor attached to 
access point records the range between the mobile device and the access 
point. Test software compares the actual range with the received range.  

Reliability  is assessed following a successful time test by using test software 
that computes the required reliability, using the successful time obtained 
from the previous test, and compares it with the specifi ed reliability. If the 
reliability test fails, the failure is reported to the maintenance activity 
 [BAL89] , as shown in Figure  7.7 .  

S/N ratio  is tested by propagating the signal and noise to an oscilloscope where 
signal and noise are measured. The S/N ratio is computed and test software 
is used to compare the required ratio with the ratio actual generated in the 
network.

  The  storage requirement  test is conducted with test software by comparing the 
database capacity with the Web page storage requirement.    

 The standards tests in Figure  7.7  are the major ones that can be quantifi ed. Addi-
tional, important tests, such as the ability of a mobile device to roam and achieve 
connectivity, the use of compatible interfaces, and the ability of wireless networks 
to operate in multiple environments could also be tested in the test bed.  

SUMMARY

 The main point I wish to leave with the reader is that there are many more crucial factors 
involved in obtaining satisfaction in using networks than those factors contained in extant 
network standards. From the review of existing network standards, you can see that dwelling 
on speed, for example, is certainly not the whole story in assessing network standards. From 
the user ’ s perspective, equally, if perhaps more, important are factors such as reliability, 
maintainability, and availability that are not  quantifi ed  in existing standards reports  [LEE06] . 
In addition, while standards developers may assume that the products to which their standards 
apply are reliable  [SIE00] , there is no guarantee of reliability without the type of testing shown 
in Figure  7.7 . Therefore, it is important for the user acquiring networks to ascertain whether 
the network vendor has specifi ed these crucial factors. Furthermore, the engineer charged with 
designing networks should include these crucial factors in the specifi cations and establish a 
test system, such as the one described in this chapter, for verifying that the specifi cations can 
be achieved.  
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Chapter 8

Network Reliability and 
Availability Metrics 

H aving been introduced to the basics of reliability and availability in Chapters  5  and  7 , it 
is time to turn to developing a detailed, quantitative modeling methodology for predicting 
these variables in order to provide the reader with the tools that are needed to support complex 
network development. 

 Today, standalone computer applications are rare. Almost all applications involve a 
network — the Internet in particular. Models are important for analyzing the reliability and 
availability of networks. Therefore, in this chapter, you will learn how a model is developed 
for predicting the probability of failure, reliability, and availability in a network comprised 
of nodes, links, and subnetworks. This chapter provides a foundation for Chapter  15 :  “ Mobile 
Device Engineering. ”  In addition to developing the quantitative models, a template, or road 
map, is provided for modeling network reliability and availability. The process starts by defi n-
ing the network topology and subnetwork confi gurations. This leads to identifying and defi n-
ing the parameters and variables of the model. In developing the prediction equations, you 
defi ne the sequence of operations on the network — for example, an input request to the 
Internet — that provides the basis for computing the reliability and availability of nodes, links, 
subnetworks, and network. Predicted failure and fault correction times are used to predict 
revised probability of failure, reliability, and availability that result from the correction 
process. These results are used to compute changes in these metrics that occur due to failure 
and fault correction. In addition, you examine the possibility of employing alternate network 
communication and processing paths to increase reliability and assess whether the increase 
in reliability is warranted by the increase in cost. With respect to model validity, you will fi nd 
that reliability predictions for the network yield very low error values with respect to the 
actual network reliability (i.e., reliability computed from actual failure data).    
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INTRODUCTION

Network Metrics 

 Dependability of a system is the ability to deliver services that can be trusted. 
Dependability can be divided into three properties: availability, reliability, and main-
tainability. It is expected that a dependable system will be operational when needed 
(availability), that the system will keep operating correctly while being used (reli-
ability), and that the correction of failure and faults will leave the network in a stable 
state (maintainability). This chapter covers reliability, availability, and maintain-
ability by developing prediction equations for these metrics for network nodes, links, 
and subnetworks. 

 There are various perspectives on network reliability, all of which are useful. The 
perspective that is relevant depends on the characteristic to be emphasized, as follows, 
where reliability is defi ned by various researchers and comments are made concerning 
the relevance of the defi nitions to this chapter ’ s perspective on reliability:

•      Reliability is the ability of the network to provide communication in the event 
of a failure of a component in the network, such as a node or link, and it 
depends on the reliability of both hardware and software. Historically, failures 
were primarily due to hardware malfunctions. In current networks, many 
failures are due to fi ber cable cuts, software faults, and malicious attacks 
 [MED00] . Such failures can drop a signifi cant number of existing connec-
tions. Thus the network should have the ability, with low delay, to detect and 
correct failures and the faults that cause the failures. The model in this chapter 
predicts the time required to correct failures and faults.  

•      Reliability is the maintenance of connectivity between nodes via their inter-
connected links, as shown in Figure  8.1 . In this model, connectivity refers to 
the availability of a path from a source node to a destination node, for 
example, between nodes a and c, via link a, c, in Figure  8.1   [MEN] .    

•      Reliability in interconnected networks is defi ned as survivability. That is, the 
network will not crash in the face of abnormal events. Reliability analysis 
depends on probability models of the failure rate, operating time duration, 
and severity of faults in hardware and software  [NIC04] . In this chapter ’ s 
model, reliability is cast in terms of probability of failure and associated reli-
ability of the nodes and links in a subnetwork.  

•      Reliability is the probability of no permanent critical system failures during 
operating time t  [ATH05] . Operating time is a key parameter in this chapter ’ s 
model.     

Software Dimension 

 It is claimed by some researchers that network hardware reliability is a mature fi eld, 
and that there has not been an equal maturation of network software reliability 
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 [BEN07] , despite the wealth of software reliability models and measurements 
 [MUS04] . They claim that network software reliability quantifi cation remains an 
open issue for a number of reasons. These include: confusion as to what to measure, 
when to measure it, and how to measure it. However, network users are not interested 
in software versus hardware reliability. They are just interested in enjoying reliable 
networks! Therefore, this chapter does not distinguish between hardware and soft-
ware reliability in its model. Instead, this model uses failure rate and derivative 
metrics that include both hardware and software failures.  

Model Tasks 

 The tasks that are required to develop this model were inspired by Chirivella et al. 
 [CHI01] , and are comprised of the following:

1.      Defi ne the network topology in Figure  8.1 .  

2.      Defi ne the subnetworks in Figures  8.2 – 8.4 .    

Figure 8.1     Network topology. dc k , duty cycle of primary node; dc i , duty cycle of nonprimary node; 
dcij , duty cycle of link.  
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Figure 8.2     Subnetwork 1. dc k , duty cycle of primary node; dc i , duty cycle of nonprimary node; dc ij , 
duty cycle of link.  
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Figure 8.3     Subnetwork 2. dc k , duty cycle of primary node; dc i , duty cycle of nonprimary node; dc ij , 
duty cycle of link.  
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3.      Defi ne network components, parameters, and variables, as follows: 

Node and Link

Successful Operation of a Node .      The node must be able to communicate 
with all nodes over the links to which it is connected  [SHO02] . This 
defi nition is adopted by predicting the reliability and availability of the 
subnetworks in which a given node, and its connected links, must 
communicate.

Path .      The sequence of nodes and links in a subnetwork representing trans-
action paths to and from the Internet (e.g., user ’ s request for an Internet 
Web page, issued in a local network, and response provided by the Web 
site).

Successful Operation between a Pair of Nodes .      One or more paths are 
operating correctly between the nodes  [SHO02] . In this chapter ’ s model, 

Figure 8.4     Subnetwork 3. dc k , duty cycle of primary node; dc i , duty cycle of nonprimary node; dc ij , 
duty cycle of link.  
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it is not any  path that is relevant but the  specifi c  path necessary to imple-
ment a network transaction. 

 Many terms are defi ned in the following sections. The reader need 
not focus on the defi nitions at this time. The terms are placed in here so 
that when studying the equations that use the terms, you will have one 
place to refer to the defi nitions, if necessary.  

  k: primary node: node that governs the operation of the network (e.g., 
desktop PC)  

  i: nonprimary node (e.g., cable modem)    

Failure Rate and Failure Counts

Failure .      One or more nodes cannot communicate with each other, either 
because there are no physical links between them, or because the Inter-
net router in Figure  8.1  cannot select a route to reach the destination 
node  [CHI01] . In addition, there can be failures internal to nodes, such 
as an operating system failure in a desktop computer.  

  f(t): network failure rate  

  F(t k ): failure count at primary node k  

  F(t i ): failure count at nonprimary node i  

  F(t ij ): failure count on link i, j  

  F(t s ): failure count on subnetwork  

  F(t n ): failure count on network  

  x: expected number of failures to occur in time t  

  M(f(t)): mean network failure rate  

  M(t k ): mean failure count at primary node k  

  M(t i ): mean failure count at nonprimary node i  

  M(t ij ): mean failure count on link i, j  

  MR(t k ): revised mean failure count at primary node k based on failure 
correction

  MR(t i ): revised mean failure count at nonprimary node i based on failure 
correction

  MR(t ij ): revised mean failure count on link i, j based on failure 
correction    

Network Times

   t: network operating time  

  t k : primary node k operating time  

  t i : nonprimary node i operating time  

  t ij : operating time of link i, j  

  t s : subnetwork operating time  
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  tc k : mean fault and failure correction time of primary node k  

  tc i : mean fault and failure correction time of nonprimary node i  

  tc ij : mean fault and failure correction time of link i, j    

Duty Cycles

   dc k : duty cycle of node k    =    fraction of time t that node k is operational  

  dc i : duty cycle of node i    =    fraction of available time t that node i is 
operational 

  dc ij : duty cycle of link i, j    =    fraction of available time t that link i, j is 
operational    

Probabilities

   P(F(t k )): probability of failure at primary node k  

  P(F(t i )): probability of failure at nonprimary node i  

  P(F(t ij )): probability of failure on link i, j  

  P(F(t s )): probability of failure on subnetwork  

  P(F(t n )): probability of failure on network  

  PR(F(t k )): revised probability of failure at primary node k based on failure 
correction

  PR(F(t i )): revised probability of failure at nonprimary node i based on 
failure correction  

  PR(F(t ij )): revised probability of failure on link i, j based on failure 
correction

  PR(F(t s )): revised probability of failure on subnetwork based on failure 
correction

  PR(F(t n )): revised probability of failure on network based on failure 
correction    

Reliabilities

   R(t k ) : reliability of primary node k  

  R(t i ): reliability of nonprimary node i  

  R(t ij ): reliability of link i, j  

  R(t s ): reliability of subnetwork  

  R(t n ): reliability of network  

  RR(t k ) : revised reliability of primary node k based on failure correction  

  RR(t i ): revised reliability of nonprimary node i based on failure correction  

  RR(t ij ): revised reliability of link i, j based on failure correction  

  RR(t s ): revised reliability of subnetwork based on failure correction  

  RR(t n ): revised reliability of network based on failure correction    
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Availabilities

   A(t k ): availability of primary node k  

  A(t i ): availability of nonprimary node i  

  A(t ij ): availability of link i, j  

  A(t s ): availability of subnetwork  

  A(t n ): availability of network  

  RA(t k ): revised availability of primary node k based on failure correction  

  RA(t i ): revised availability of nonprimary node i based on failure correction 

  RA(t ij ): revised availability of link i, j based on failure correction  

  RA(t s ): revised availability of subnetwork based on failure correction  

  RA(t n ): revised availability of network based on failure correction    

Faults and Failures Corrected

   N(t k ): number of faults and failures corrected in primary node k  

  N(t i ): number of faults and failures corrected in nonprimary node i  

  N(t ij ): number of faults and failures corrected in link i, j    

Remaining Faults and Failures

   r(t k ): number of faults and failures remaining in primary node after correc-
tion process  

  r(t i ): number of faults and failures remaining in nonprimary node after cor-
rection process  

  r(t ij ): number of faults and failures remaining in link node after correction 
process

  r(t s ): number of faults and failures remaining in subnetwork after correction 
process

  r(t n ): number of faults and failures remaining in network after correction 
process

  p: priority of failure and fault correction      

4.      Select metrics that quantify the reliability and availability characteristic 
that you want to study: Use probability of failure and actual and predicted 
reliability and availability.  

5.      Compute probability of failure for nodes, links, subnetworks, and 
network.

6.      Use probability of failure to prioritize the order in which failure and faults 
are corrected on subnetworks.  

7.      Predict reliability and availability for subnetworks and network.  

8.      Predict failure and fault correction times for nodes and links.  
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9.      Use correction times to predict remaining failures for subnetworks and 
network.

10.      Use remaining failures to revise predictions of reliability and availability 
for subnetworks and network.  

11.      Determine whether the revised predictions satisfy the reliability and avail-
ability specifi cations.  

12.      If the specifi cations are not satisfi ed, additional testing is required to correct 
more failures and faults.  

13.      Determine whether the use of alternate network paths would increase reli-
ability and availability to the extent that the cost of additional paths would 
be justifi ed.      

MODEL DEVELOPMENT 

 Table  8.1  shows how the duty cycle assignments for the example network topology 
shown in Figure  8.1  are obtained, starting with the primary nodes a, d, and e that 
are the drivers for nonprimary node and link duty cycle assignments. The data are 
illustrative only. For example, link a, c is assumed to be active one - third of the time 
that node a is active. Different data would apply to other topologies and applications. 
If you have data from an existing system, use it! Otherwise, you must make assump-
tions. You could vary the assumptions to see how sensitive network solutions are to 
the assumptions.   

 Actually, there is only one physical connection between pairs of nodes in Figure 
 8.1 , but I show two links to account for the two - way fl ow of data. You can assume 
that the data fl ows between pairs of nodes are equal because the link speeds are 
equal in the two directions. Thus, the duty cycles for these links are equal. Figures 
 8.2 – 8.4  show subnetworks 1, 2, and 3, respectively, confi gured from Figure  8.1 . It 
is these subnetworks that provide the platforms for the models to be described and 
analyzed.

Node and Link Operating Times 

 Operating time provides an accurate measure of fault discovery, is easy to measure, 
and refl ects the time during which faults are discovered  [DIS01] . Since operating 
times will be needed in the computation of failure rates in the next section, they are 
computed here for the primary nodes, nonprimary nodes, and links in Equations 
 8.1  – 8.3, respectively, where the duty cycles in Table  8.1  are multiplied by the 
network  operating time:

    t t*dck k= ,     (8.1)  

    t t*dci i= ,     (8.2)  

    t t*dcij ij= .     (8.3)    
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Failure Rates and Failure Counts 

 Using software and hardware failure data from the  Computer Emergency Response 
Team  ( CERT ) Web site  [MOO01] , based on a prominent router vendor ’ s experience, 
the failure rate function in Equation  8.4  was fi tted with these data, using network 
operating time t. Then, using Equations  8.1  – 8.3, the failure counts at primary 
nodes k, nonprimary nodes i, and links i, j, are computed in Equations  8.5  – 8.7, 
respectively:

    f t e t( ) . ,= 0 0868 35     (8.4)  

    F t f t *tk k( ) ( ) ,=     (8.5)  

    F t f t *ti i( ) ( ) ,=     (8.6)  

    F t f t *tij ij( ) ( ) .=     (8.7)    

Probabilities of Failure 

 One of the measures of reliability is the probability of incurring failures at nodes 
and on links and subnetworks. We assume that the probability of failure is governed 
by the Poisson distribution. This assumption is justifi ed because although there is a 
reason for failures, from the user ’ s perspective, failures appear to occur at random 
(i.e., Poisson distribution  [MUS87] ). 

 First, the mean number of failures must be estimated for primary node, nonpri-
mary node, and link, in Equations  8.8  – 8.10, respectively. Then, using these equa-
tions, the probabilities of failure at the primary node, nonprimary node, and link, 
are computed in Equations  8.11  – 8.13, respectively, where x    =    f(t) * t is the expected 
number of failures, based on the failure rate from Equation 8.4:

    M t
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( )

,= ∑     (8.8)  

  where n k  is the number of failure counts recorded for primary node
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,= ∑     (8.9)   

 where n i  is the number of failure counts recorded for nonprimary node
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 where n ij  is the number of failure counts recorded for link
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    (8.13)    

Reliabilities

 You can use the Weibull distribution to model reliability because it has the fl exibility 
of representing decreasing, constant, or increasing reliability over operating time, 
governed by the values of parameter α   [LLO62] . You estimate the value  α  based on 
minimizing the mean relative error (MRE) between predicted and actual reliabilities. 
Error computations will be described later. 

 Reliabilities are the  “ bottom line ”  of quality in that they predict the probability 
that a node, link, subnetwork, or network will survive for a time greater than operat-
ing time t. The computation of the primary node, nonprimary node, and link reli-
abilities using Weibull distribution reliabilities  [LLO62]  are shown in Equations 
 8.14  – 8.16, respectively:

    R t ek
f t tk( ) ,( ( ) )= − α

    (8.14)  

    R t ei
f t ti( ) ,( ( ) )= − α

    (8.15)  

    R t eij
f t tij( ) .

( ( ) )= − α
    (8.16)   

 Now using these reliabilities, compute the subnetwork reliability in Equation  8.17 , 
based on a series confi guration (nodes and links are connected in series in the sub-
networks). These subnetworks are shown in Figures  8.2 – 8.4 , where only the nodes 
and links that are relevant to the operation of the primary node are shown (i.e., the 
primary node a is not directly  concerned with the recovery database node g in Fig. 
 8.1 ). Then, the network reliability is predicted in Equation  8.18 , again using a series 
confi guration:

    R t R t R t R ts k i ij

k i ij

( ) ( ( ))( ( ))( ( )),
, ,

= ∏     (8.17)  

    R t R tn s

s

( ) ( ).∏     (8.18)   

 In Figure  8.2 , the subnetwork reliability is equal to the reliability of the path (a, c, 
b, f) in the upload direction, and the reverse path (f, b, c, a) in the download direc-
tion. Since these path reliabilities are equal, reliabilities are only computed for the 
upload direction — input request transaction to the Internet, refl ecting the typical 
scenario of request to an Internet Web server.  

Fault and Failure Correction 

 In formulating the fault and failure correction process, we assume the following: (1) 
one - to - one relationship between faults and failures and (2) the times required to 
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correct faults and failures are exponentially distributed (i.e., high probability of small 
correction times and low probability of large correction times). While it is true that 
a fault could spawn multiple failures, this is the minority case. These correction 
times are computed in Equations  8.19  – 8.23, for primary node, nonprimary node, 
link, subnetwork, and network, respectively, by using the mean number of failures 
divided by the mean failure rate M(f(t)): 

 Based on assumption (1), the correction rate equals the failure rate f(t) from 
Equation  8.4 . Using assumption (2), the correction time probabilities in Equations 
 8.24  – 8.28 are based on the exponential distribution for primary node, nonprimary 
node, link, subnetwork, and network, respectively, where tc k , tc i , tc ij , tc s , and tc n  are 
the corresponding mean correction times:

    tc M t /M f tk k= ( ) ( ( )),     (8.19)  

    tc M t /M f ti i= ( ) ( ( )),     (8.20)  

    tc M t /M f tij ij= ( ) ( ( )),     (8.21)  

    tc M t /M f ts s= ( ) ( ( )),     (8.22)  

    tc M t /M f tn n= ( ) ( ( )),     (8.23)  

    p t f t ek
f t tck( ) ( ) ,( ( )* )= −     (8.24)  

    p t f t ei
f t tci( ) ( ) ,( ( )* )= −     (8.25)  

    p t f t eij
f t tcij( ) ( ) ,( ( )* )= −     (8.26)  

    p t f t es
f t tcs( ) ( ) ,( ( )* )= −     (8.27)  

    p t f t en
f t tcn( ) ( ) .( ( )* )= −     (8.28)   

 Once the correction time probabilities have been obtained, the next step is to 
compute the expected number of faults and failures that can be corrected. These 
quantities are computed by using correction time probabilities and the corresponding 
failure counts, for primary node, nonprimary node, link, subnetwork, and network, 
in Equations  8.29  – 8.33, respectively:

    N t p t *F tk k k( ) ( ) ( ),=     (8.29)  

    N t p t *F ti i i( ) ( ) ( ),=     (8.30)  

    N t p t *F tij ij ij( ) ( ) ( ),=     (8.31)  

    N t p t *F ts s s( ) ( ) ( ),=     (8.32)  

    N t p t *F tn n n( ) ( ) ( ).=     (8.33)   

 Now that the number of faults and failures that can be corrected has been estimated, 
the remaining number of faults and failures are computed for primary node, nonpri-
mary node, and link in Equations  8.34  – 8.36, respectively. Now, not all faults and 
failures are of equal priority for correction. An example of a serious one is a com-
munication failure on links that connect the primary node to the Internet. An example 
of a nonserious failure is a transient failure, such as a fi le that does not initially show 
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on the desktop screen of the primary node but does appear after a refresh. The 
computation of the priority code is based on the relative  value of the mean number 
of failures in the subnetworks. The priority code, pc, is applied to the nodes and 
links that comprise a subnetwork, as shown in Equations  8.34  – 8.36, to account for 
the relative  priority of correcting remaining faults and failures. 

 The subnetwork remaining failures in Equation  8.37  is computed by summing 
remaining failures over primary nodes, nonprimary nodes, and links. Then, the 
network remaining failures in Equation  8.38  is computed by summing the remaining 
failures over subnetworks:

    r t F t N t *pck k k( ) ( ( ) ( )) ,= −     (8.34)  

    r t F t N t *pci i i( ) ( ( ) ( )) ,= −     (8.35)  

    r t F t N t *pcij ij ij( ) ( ( ) ( )) ,= −     (8.36)  

    r t r t r t r ts k i ij

k i ij

( ) ( ( )) ( ( )) ( ( )),
, ,

= + +∑     (8.37)  

    r t r tn s

n

( ) ( ).= ∑     (8.38)    

Revising Probabilities of Remaining Failures Based 
on Fault and Failure Correction 

 Once the remaining failures have been estimated, the revised probability of remain-
ing failures for the primary node, nonprimary node, link, subnetwork, and network 
can be predicted by fi rst computing the mean remaining failures in Equations 
 8.39  – 8.43 and substituting these values in Equations  8.44  – 8.48, respectively, and 
using x as the expected number of failures in the Poisson distribution of remaining 
failures:
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Revising Reliabilities Based on 
Fault and Failure Correction 

 Since the failure count has been reduced by the correction process, it is necessary 
to revise the reliabilities of the primary nodes, nonprimary nodes, and links, using 
the remaining failures failure rates, rf(t k ), rf(t i ), and rf (t ij ), and Weibull distribution, 
as shown in Equations  8.49  – 8.51, respectively:

    RR t ek
rf t tk k( ) ,( ( )= − α

    (8.49)  

  where primary node failure rate rf(t k )    =    r k (t) / t k  (remaining primary node failures/
primary node operating time);

    RR t ei
rf t ti i( ) ,( ( )= − α

    (8.50)  

  where nonprimary node failure rate rf(t i )    =    r i (t) / t i  (remaining nonprimary node 
failures/nonprimary node operating time); and

    RR t eij
rf t tij ij( ) ,

( ( )= − α
    (8.51)  

  where link failure rate rf(t ij )    =    r ij (t) / t ij  (remaining link failures/link operating time). 
 Next, the revised subnetwork reliability can be predicted in Equation  8.52  as 

follows, using Equations  8.49  – 8.51 and a series confi guration:

    RR t RR t RR t RR ts k i ij

k i ij

( ) ( ( ))( ( ))( ( )).
, ,

= ∏     (8.52)   

 Then, by using Equation  8.52  and a series confi guration, the revised network reli-
ability is predicted in Equation 8.53:

    RR t RR tn s

s

( ) ( ).= ∏     (8.53)    
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Availability Analysis 

 To predict availability of a new system, probabilistic models need to be formulated 
 [MIL98] , and you need to account for the downtime attributed to fault detection, 
isolation, and correction  [EIS] . However, while these approaches are valid, it is 
easier to defi ne availability as the expected fraction of time that a system is function-
ing acceptably  [MUS04] , or alternatively, as the fraction of time that the network 
delivers proper service (i.e., it is not  engaged in correcting faults) during its operat-
ing time  [ATH05] . 

 In this chapter ’ s network model, t k /M(t k ) is the mean time to failure for primary 
nodes, computed from the operating time, t k , and the mean number of failures, M(t k ), 
and tc k  is the mean fault correction time. Thus, using these quantities, the availability 
of the primary node is computed in Equation  8.54 . Similarly, the availability of the 
nonprimary nodes and the links are computed in Equations  8.55  and  8.56 , respec-
tively. Next, the subnetwork availabilities are computed in Equation  8.57  as the 
product of primary node, nonprimary node, and link availabilities, using a series 
confi guration. Finally, the network availability is computed in Equation  8.58  as the 
product of the subnetwork availabilities. 

 You must also account for revised availabilities, once faults and failures have 
been corrected, by using the mean remaining failure counts. This is accomplished 
for the primary node, nonprimary node, link, subnetwork, and network in Equations 
 8.59  – 8.63, respectively, using the means of remaining failures (MR) that result from 
fault correction actions:
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( ) ( ).= ∏     (8.63)     

PROBABILITY OF FAILURE ANALYSIS RESULTS 

 Typically, systems are unstable as they boot up when many processes and applica-
tions are invoked concurrently; later, the systems stabilize, hence the reason for the 
decreasing probability of failure over operating time in Figures 8. 5  and  8.6 . Figure 
 8.5  shows the ranking of probability of failure for the subnetworks, using the mean 
failure count. The value of this fi gure is that it identifi es the order in which failure 
and fault correction should take place for the subnetwork, according to the priority 
code.    

 Figure  8.6  shows that the revised probability of failure for the network does not 
become favorable (i.e., crosses the original probability of failure curve) until operat-
ing time t    >    17. The implication is that the network must be operated for a consider-
able time before the effect of failure and fault correction occurs. This concept is 
reinforced in Figure  8.7 , where the changes in probability of failure between original 
and revised are plotted for the subnetworks and network. Again, there is considerable 
delay before the changes occur in the favorable direction.     

FAULT AND FAILURE CORRECTION 
ANALYSIS RESULTS 

 This analysis is directed toward answering the question: Are there correction time 
anomalies among the nodes and links such that a priority ranking for fault and failure 
correction should be established? In looking at Figure  8.8 , the answer is  “ yes ”
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Figure 8.5     Original subnetwork probability of failure P(F(t)) versus operating time t. Series 1: 
subnetwork 1, mean failure count    =    0.2953. Series 2: subnetwork 2, mean failure count    =    0.2149. 
Series 3: subnetwork 3, mean failure count    =    0.3018.  
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Figure 8.6     Original probability of failure P(F(t)) and revised probability of failure PR(r(t)) versus 
operating time t. Series 1: P(F(t)): network. Series 2: PR(rt)): network.  
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Figure 8.8     Subnetwork failure and fault correction time tc versus node and link identifi er i. Series 
1: subnetwork 1: i    =    1: node a; i    =    2: link ac; i    =    3: node c; i    =    4: link cb; i    =    5: node b; i    =    6: link bf, 
node f. Series 2: subnetwork 2: i    =    1: node d; i    =    2: link dc; i    =    3: node c; i    =    4: link cb; i    =    5: node b; 
i    =    6: link bf, node f. Series 3: subnetwork 3: i    =    1: node e; i    =    2: link ec; i    =    3: node c; i    =    4: link cb; 
i    =    5: node b; i    =    6: link bf, node f.  
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direction for t    >    15. Series 3: subnetwork 3: change in favorable direction for t    >    16. Series 4: 
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Figure 8.9     Remaining failures r (t) versus operating time t. Series 1: Subnetwork 1. Series 2: 
Subnetwork 2. Series 3: subnetwork 3. Series 4: Network. 
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The greatest effect of failure and fault correction is for subnetwork 2

because there is considerable variation in the correction times for the primary node 
(i    =    1) and nonprimary node (i    =    2), and connecting link (i    =    3), whereas the cor-
rection time stabilizes for the remainder of the subnetworks. The reason for the 
anomalies is that the software that is used in the home, such as desktop and laptop 
computers, is usually more diffi cult to debug than, for example, a cable modem, 
wherein a reset will usually clear the failure.     

REMAINING FAILURES ANALYSIS RESULTS 

 An important metric for judging the reliability of a network system is predicted 
remaining failures. After all, predicted remaining failures of subnetworks and 
network represent residual problems that signal the need for further failure and fault 
correction. Figure  8.9  shows the relative effectiveness of the correction effort. The 
process has been most effective for subnetwork 2 and less effective for subnetworks 
1 and 3, and the network.    

RELIABILITY ANALYSIS RESULTS 

 After remaining failures have been predicted and plotted in Figure  8.9 , as the result 
of failure and fault correction, reliability predictions, before and after failure and 
fault correction, can be analyzed in Figures  8.10  and  8.11 , respectively, to identify 



Figure 8.11     Revised actual reliability ARR(t) and predicted reliability RR(t) versus operating time t. 
Series 1: ARR(t). Series 2: RR(t), subnetwork 1, satisfi es specifi cation for all t. Series 3: RR(t), 
subnetwork 2, satisfi es specifi cation for all t. Series 4: RR(t), subnetwork 3, fails specifi cation for t    >    17. 
Series 5: specifi ed reliability    =    0.9000. Series 6: network, MSE    =     – 0.0030, fails specifi cation for t    >    17.  
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Figure 8.10     Original actual reliability AR(t) and predicted reliability R(t) versus operating time t. 
Series 1: AR(t). Series 2: R(t), subnetwork 1, fails specifi cation for t    >    17. Series 3: R(t), subnetwork 
2, fails specifi cation for t    >    17. Series 4: R(t), subnetwork 3, fails specifi cation for t    >    17. Series 5: 
Specifi ed reliability    =    0.9000. Series 6: R(t), network, mean squared error (MSE)    =    0.0140, fails 
specifi cation for t    >    16.  

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

t (hours)

A
R

T
(t

),
 R

(t
)

Series 1

Series 2

Series 3

Series 4

Series 5

Series 6

248



Network Reliability and Availability Metrics 249

improvements in reliability for the subnetworks. Comparing the fi gures, you can see 
that improvements in reliability occur for subnetworks 1 and 2, no improvement for 
subnetwork 3, and minor improvement in the network, as the result of failure and 
fault correction. Thus, the correction process has proved partially benefi cial. Sub-
network 3 must be subjected to further fault correction. Also note that the predictions 
for the network yield very low MREs with respect to the actual network reliability. 
The value of Figures  8.10  and  8.11  is that network administrators can determine 
whether failure and fault correction efforts are likely to succeed.    

AVAILABILITY ANALYSIS RESULTS 

 Figure  8.12  demonstrates that none of the subnetworks and the network satisfi es the 
availability requirement. Therefore, action would be taken to correct failures and 
faults and then revise the availability predictions. The predictions are revised in 
Figure  8.13 , where it is demonstrated that the failure and fault correction process 
has been very effective because now all subnetworks and the network satisfy the 
availability requirement.    

Figure 8.12     Original availability A(t) versus operating time t. Series 1: Subnetwork 2: fails 
requirement for t    >    6. Series 2: Subnetwork 3: fails requirement for t    >    5. Series 3: Network: fails 
requirement for t    >    2. Series 4: Subnetwork 1: fails requirement for t    >    5. Series 5: Specifi ed 
availability    =    0.9100.  
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Figure 8.13     Revised availability RA (t) versus operating time t. Series 1: Subnetwork 1. Series 2: 
Subnetwork 2. Series 3: Subnetwork 3. Series 4: Network. 
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ANOTHER PERSPECTIVE ON 
PROBABILITY OF FAILURE 

 In this section a simplistic equation is developed for the probability of failures in a 
subnetwork or network, using a binomial distribution that is a function of x, a speci-
fi ed number of nodes and links that could fail in a subnetwork or network. In Equa-
tion  8.64 , the constant probability of a node or link failing is p    =    1/n, where n is the 
number of nodes and links in a subnetwork or network. This formulation assumes 
that nodes and links fail independently and that the probability of failure p is con-
stant. Thus, the probability of x failures, P(x), is expressed in Equation 8.68:

    P x
n

n x
p px n x( )

!

( )!
( )(( ) ).=

−
− −1     (8.64)   

 While, admittedly, this is a crude formulation, it is useful for obtaining a rough 
cut of the reliability of a subnetwork or network when individual node and link 
failure data are not available. Even absent these data, Equation  8.64  provides the 
likelihood that x number of nodes and links is likely fail, and the values of x where 
P(x) will be a maximum. For example, the results in Figure  8.14  show that as the 
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nodes and links are aggregated into subnetworks, and subnetworks are aggregated 
into the network, the maximum probability of failure always occurs at one and two 
failures. Thus, network users would only have to prepare for a small number of 
failures.

Problem for Reader:  Why are the probabilities of failure in Figures  8.6  and 
 8.14  so signifi cantly different?    

Answer:  Notice that in Figure  8.6 , for the Poisson distribution, the probability 
of failure is a function of operating time while in Figure  8.14 , for the binomial 
distribution, the probability of failure is a function of number of failures —
 specifi ed number of link and node failures. In the case of Figure  8.6 , the 
probability of failure is large because the network is exposed to long operating 
times— up to 20 hours. Furthermore, the probability of failure is also driven 
by the failure rate postulated in Equation  8.4 , whose source is an Internet 
router company that reported a variety of network hardware and software 
failures. During this prolonged exposure, there are opportunities for faults to 
wreck havoc on the system. Contrast this situation with Figure  8.14 , where 
the probability of failure is much smaller because the probability pertains to 
a link or node failing — an occurrence rare compared to  any  type of failure in 
Figure  8.6 . 

Figure 8.14     Probability of x failures, P(x), versus x. Series 1: Subnetwork 1. Series 2: Subnetworks 
1 and 2. Series 3: Subnetworks 1, 2, and 3. Series 4: Network.  
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MEASURING PREDICTION ACCURACY 

 Of course, it is important to measure the accuracy of predictions so that you can see 
whether the models are validated. A frequently used measure is the  relative error  
( RE ) of reliability predictions and the MRE  [FEN97] . To illustrate the process, fi rst 
estimate the actual reliability, AR(t), for a subnetwork, in Equation  8.65 , by summing 
the original  failure counts F(t) over the number of nodes and links in the network, 
N, in the numerator, and then summing these counts over the number of operating 
time periods, n, in the denominator. Then compute the RE in Equation  8.66 , using 
the original  predicted reliabilities R(t) and actual reliabilities AR(t). Next, compute 
the MRE of the RE. It is also important to assess prediction accuracy after failure 
and fault correction, using remaining failures r(t) in Equation  8.67 , as the actual 
remaining failure count, and then compute the revised  RE RRE(t) in Equation  8.68 , 
using the revised  reliability predictions RR(t). Finally, compute the MRE of the 
revised RE:

    AR t

F t

F t

i

N

i

N

i

n( )

( )

( )

,= − =

==

∑

∑∑
1 1
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    (8.65)  

    RE t AR t R t /AR t( ) ( ( ) ( )) ( ),= −     (8.66)  
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    (8.67)  

    RRE t ARR t RR t /ARR t( ) ( ( ) ( )) ( ).= −     (8.68)    

METHODS FOR IMPROVING RELIABILITY 

 The network should preserve connectivity in the presence of failures (i.e., fault toler-
ance in router subnetworks)  [MEN] . One way to implement fault tolerance is to 
provide redundant units that can replace failed units. This approach can extend the 
mean lifetime of fault - free operation  [KAI95] . Rather than switch in a fault - free unit, 
a network can achieve equivalent fault tolerance by providing alternate paths for 
data in the event of a router or link failure. This approach quickly plays to the 
strength of routers: detecting network failures and routing data round them. Data are 
routed between any two subnetworks on the lowest cost or shortest time - path basis. 
Redirectors exist for different network protocols: sending, receiving, and processing 
routing updates. Redirectors calculate a forwarding table from the available routing 
information, including destination subnetwork interface on which data are bound for 
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the destination subnetwork. During normal router operation, the forwarding table 
indicates only the best path to a destination subnetwork. When a link or router fails, 
routers exchange routing information to learn alternate paths. The period of time for 
the routers to detect the link failure and discover new routes to all available subnet-
works is referred to as convergence time. Generally, convergence occurs within 1 
minute  [HEW93] . An example of this principal is shown in Figure  8.2 , for subnet-
work 1, where alternate paths would be provided by the Internet service provider 
between the cable modem and Internet router. 

 When an alternate path is provided on the link b, f in Figure  8.2 , assuming equal 
reliabilities on the single and alternate paths, the alternate path original  link reli-
ability APR(t ij ) is the parallel reliability shown in Equation  8.69 , where R(t ij ) is the 
original  single - path reliability  [LYU96] . Thus, use Equation  8.69  to see whether 
signifi cant improvement in reliability is obtained for subnetwork 1 by using an 
alternate path. Then, the subnetwork  original  reliability, comprised of the reliability 
on link b, f, from Equation  8.69 , and the reliabilities of the primary (R(t k )) and 
nonprimary (R(t i )) nodes, are computed in Equation 8.70:

    APR t R t R tij ij ij( ) ( ) ( ) ,= −2 2     (8.69)  

    APR t APR t R t R ts ij k i

ij k i

( ) ( ( ))( ( ))( ( )).
, ,

= ∏     (8.70)   

 In addition to the original reliabilities in Equations  8.69  and  8.70 , the  revised  reliabili-
ties resulting from failure and fault correction are computed in Equations  8.71  and 
 8.72  for the alternate path provided by link b, f and the subnetwork, respectively.

    APRR t RR t RR tij ij ij( ) ( ) ( ) ,= −2 2     (8.71)  

    APR t APRR t RR t RR ts ij k i

ij k i

( ) ( ( ))( ( ))( ( )).
, ,

= ∏     (8.72)   

 The fi rst test of reliability improvement is shown in Figure  8.15  where, for  subnet-
work 1 , the revised alternate path and single path subnetwork reliabilities satisfy the 
requirement for all values of operating time. The second test is shown in Figure 
 8.16 , where original and revised alternate path  link  and single - path  link  reliabilities 
satisfy the reliability specifi cation for all values of operating time, with the alternate 
path confi gurations providing the higher reliability. The expense incurred by using 
an alternate path would be justifi ed for a mission - critical application but, perhaps, 
not for a commercial application.   

 Network reliability can also be improved by dividing the network into subsets 
that have high interaction and connectivity within  a subnetwork. Subnetworks are 
then interconnected, thus providing isolation of network domains that are likely to 
experience high failure rates due to high interaction. This concept is shown in 
Figures  8.2 – 8.4  for subnetworks 1, 2, and 3, respectively, where the subnetworks 
have been created from the total network in Figure  8.1 . 



Figure 8.16      Alternate path link reliability  ( APLR ) and  single path link reliability  ( SPLR ) versus 
operating time t. Series 1: Original APLR, specifi cation satisfi ed for all values of t. Series 2: Original 
SPLR, specifi cation satisfi ed for all values of t. Series 3: Revised APLR, specifi cation satisfi ed for all 
values of t. Series 4: Revised SPLR, specifi cation satisfi ed for all values of t. Series 5: Reliability 
requirement    =    0.9000.  
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Figure 8.15      Alternate path subnetwork 1 reliability  ( APSR ) and  single path subnetwork reliability  
 SPSR  versus operating time t. Series 1: Original APSR, fails specifi cation for t    >    17. Series 2: Original 
SPSR, fails specifi cation for t    >    17. Series 3: Revised APSR, satisfi es specifi cation for all values of t. 
Series 4: Revised SPSR, satisfi es specifi cation for all values of t. Series 5: Specifi ed 
reliability    =    0.9000.  
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 Another method for improving reliability is to store recovery data in a database. 
For example, when a problem is detected in a network, a recovery action is executed 
by the wireless router in Figure  8.1  that is associated with the malfunctioning com-
ponent to guide the recovery procedure. A database in Figure  8.1  stores network 
state data (e.g., node and node communication history) that is used to recover lost 
data after a crash. Changes in the network are broadcast to dependent components 
through the database ’ s publish mechanism in order to initiate recovery. When a 
failure is detected, the defect is repaired, and the system continues running with 
minimum disturbance to other processes  [HER07] .  

SUMMARY OF RESULTS 

 A large number of metrics, analyses of metric results, and explanatory plots have 
been used in modeling network reliability and availability. Therefore, it is necessary 
to summarize the highlights in Tables  8.2  and  8.3  for the subnetworks and network, 
respectively. The most important part of the tables is the action taken in response to 
the metric results. The actions indicate what users can do to improve the reliability 
and availability of their networks.    

SUMMARY

 Based on the network confi guration diagrams, mathematical formulations and corresponding 
plots, and analysis results summaries, a practical template has been demonstrated for model-
ing and analyzing the reliability and availability of networks — nodes, links, and subnetworks. 
The specifi c numerical results that were obtained were for illustrative purposes. However, the 
template, or road map, could be used for different network topologies, parameters (i.e. duty 
cycle), and variables (i.e., failure rate).  
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Chapter 9

Programming Languages 

T his chapter is designed to provide the reader with valuable information, analyses, and 
evaluations of programming languages. This is a vital topic because, after all, all the computer 
hardware and system design tools in the world will not produce an implement application 
without programming languages to support the implementation of software! An outstanding 
feature of this chapter are the models for estimating the reliability, maintainability, and avail-
ability of computer programs. This feature does not exist in other texts. In addition, the reader 
is led through various methodologies for designing programs, supported by graphical presen-
tations that render the methodologies understandable.    

INTRODUCTION

 Programming languages are programmers ’  most basic tools. With appropriate pro-
gramming languages one can drastically reduce the cost of building new applications 
as well as maintaining existing ones. There have been many advances in program-
ming languages technology. The main driving force was and will be to better express 
programmers ’  ideas. Therefore, research in programming languages is an endless 
activity and the core of computer science. New language features, new programming 
paradigms, and better compile - time and run - time mechanisms can be foreseen in the 
future  [COM09] . This chapter will discuss programming language issues and show 
the reader how languages can be evaluated and improved.  

DESIRABLE PROPERTIES OF 
A PROGRAMMING LANGUAGE 

 A convenient way to think about desirable properties in a programming language is 
to think about how the brain solves a problem. First, there should be a minimum of 
syntax that has little relevance for how humans solve problems. The reason for this 

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F. 
Schneidewind.
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criterion is that such excess baggage is a distraction to problem solving. The C ++
language will be used as the principle language for illustrating characteristics that 
are benefi cial for problem solving and those characteristics that are detrimental to 
this cause. I will couple the application of C ++  to solving a problem in searching a 
Web site for desired information with the principles of the design process. 

What is Design? 

 Let us consider the question: what is design? Design is the process of making deci-
sions about an abstract representation of a system. The word  “ abstract ”  is used 
because at this stage the system does not exist. It is a concept in the brain that is 
later translated to a more concrete representation, such as a drawing, model, or 
mathematical equation. Design involves making trade - offs among various design 
alternatives  [REI99] . For example, one alternative for searching a Web site is to 
serially— in a brute - force fashion — search for the desired content. A second alterna-
tive is to use pointers that have been organized to map to various subject matters. 
Yet a third alternative is to combine the second alternative with organizing the 
subject matter in chronological sequence, on the presumption that the user is inter-
ested in seeing the latest content fi rst. Note that C ++  is irrelevant to the evaluation 
of these design  alternatives! This is an important point that you should be aware of: 
too many books confuse design issues with programming language characteristics. 
The correct process is to fi rst select the most appropriate design, independent of 
programming languages. Then choose a programming language whose characteris-
tics are most representative of the selected design. Another design principle accord-
ing to some authors is avoiding details in the initial design process  [REI99] . While 
it is true that it is unwise to become mired in details at an early stage in design, thus 
losing sight of the big picture, it is equally detrimental to the design process if 
important details are considered too late in the process. For example, if the desir-
ability of presenting Web content in chronological order were put off until the design 
is almost complete, it would be very diffi cult to include this important feature when 
the design is almost complete.  

System Decomposition into Components 

 A very worthwhile design principle is to decompose a system into its constituent 
components  [REI99] . Doing so allows the designer to not become overwhelmed by 
the complexity of the system, thus leading to errors in design. For example, the Web 
search problem would be decomposed into search request interpretation ,  search 
mechanization in the Web database , and  Web page pointer management . Along with 
decomposition, an important issue is the number of components and their hierarchy 
 [REI99] . Again, using the Web search example, three components and a hierarchy 
according to the above sequence, seem appropriate.  
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Form of Design Presentation 

 Another consideration is the form in which the design should be presented  [REI99] . 
This is particularly the case with respect to the purchaser and user of the system. 
The purchaser of a Web system server may be primarily interested in cost and search 
time, while the user would want to know the details of formatting a request and 
browser specifi cations, and so on.  

Functional-Oriented versus Data -Oriented Design 

 There are two major design approaches: functional oriented and data oriented 
 [REI99] . The emphasis in the former is the functions that must be executed to solve 
a problem; in the latter, the focus is on the data that must be processed to obtain a 
solution. For example, in the Web search application, functional - oriented design 
would involve identifying search request interpretation ,  search mechanization in the 
Web database , and  Web page pointer management  as procedures that must be exe-
cuted to locate the user ’ s desired Web page. In contrast, in the data - oriented design 
approach, the search request data, the data in the Web database, and the data related 
to pointers would be the focus of Web search processing. It is important to note that 
each approach would arrive at the same result, but with different performances, 
depending on the relative performance of computing (procedure - oriented) and com-
munication (data - oriented) resources at the Web site. These design alternatives are 
shown in Figure  9.1 .    

Object-Oriented Design 

 Another design methodology, one touted by its advocates of solving the entire 
world’ s problems, is object - oriented design. This approach is based on the premise 
that systems are comprised of entities called objects that possess state, data that 
identify the object, and can perform actions, accompanied by state transitions. An 
example of a state is a Web server that is in the state of searching for a Web page. 
An example of identifying data is the manufacturer of the Web server. An example 
of an object action is a Web server object performing the action of delivering a Web 
page to the requester when the server is in the state of having located the desired 
page, as shown in Figure  9.1 . 

 In this design methodology, objects are members of classes. Classes are entities 
that are the parents of objects. Classes have the same data attributes as classes and 
perform the same actions, but at a higher level. For example, a generic  Web server 
could be a class, and specifi c  Web servers manufactured by companies A, B, and C 
would be object members of the class.  
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Figure 9.1     Design alternatives.  
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Analysis of the Design Alternatives 

 It is tempting to examine Figure  9.1  and think that one alternative is superior to the 
others, when in fact each can be used to advantage in a coordinated design approach. 
The functional approach aids the engineer and programmer in identifying calling 
sequences that can be used in C ++ , for example. That is, the functions identify 
the second - level program functions (search mechanization and pointer mana-
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gement) that will be called by the top - level program function (search request 
interpretation).

 Then, examining the data - oriented approach, this supports our use of data 
resources in implementing the design in C ++ . Code will be needed for implementing 
data fl ow between components in Figure  9.1 . Note that the functional -  and data -
 oriented approaches are complementary because data fl ow must be mechanized in 
order to accomplish the functional requirements. An important advantage of the data 
fl ow approach, compared with the other two methods, is that inputs and outputs are 
specifi ed  [REI99] . This is crucial because computer programs involve more than 
computation: they require input data to perform computations and the computation 
must produce output data. 

 Taking the analysis to the object - oriented level, this approach identifi es state 
transitions. State transitions are an important way for organizing a computer program. 
For example, the Web server can be programmed to sequence through the state 
transitions in Figure  9.1 . Additionally, because our computer program may have to 
handle multiple Web servers, the relationship between classes and objects is helpful 
because the computer code that implements the Web server generic class can be 
reused by multiple Web server objects by only changing the object name. Reusing 
software is important because the effort and time of program development are 
reduced and programming errors are reduced! 

 All design methods should provide for placeholders in order to implement inter-
faces between subsystems of a system, for example, between user Web request 
subsystem and local network subsystem [REI99] . This is a common technique in 
computer programming for reserving space in a program for code that will be deter-
mined at a future time. An example in C ++  is to name an interface function, but leave 
the details for a future time when interface requirements have been determined.  

Problem Representativeness 
in Programming Languages 

 One of the most intriguing aspects of this process is the fact that information is lost 
in transitioning from brain thought to a model of the system. For example, if it is 
desired to add two quantities, this operation is easily understood in our brain. For 
example, we “ know ”  that the quantities are integer. We also know the length and 
precision of the quantities. Unfortunately, C ++  and other languages do not know any 
of this to begin with and must be told every bit of minutia! Aggravating this problem 
is the fact that each compiler has its own syntax rules that do not always follow the 
C++  standard.   

A METHOD FOR ANALYZING COMPUTER 
PROGRAM RELIABILITY 

 The reliability of a computer program is tremendously important but unfortunately 
is often overlooked in programming textbooks. In this chapter you will be introduced 
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to analyzing reliability as a function of the structure and complexity of the computer 
code. A program such as the Web server application can be conceptualized as a 
directed graph of logic in Figure  9.2 , whose structure and complexity can be ana-
lyzed, leading to the estimation of program reliability. Interestingly, the directed 
graph of program logic does not correspond to any of the design methodologies 
already discussed despite the fact that a primary aspect of most problems is decision 

Figure 9.2     Program - directed graphs. R i , path i reliability; M i , path i maintainability; A i , path i 
availability; p i , path i probability.  
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making. None of the three design approaches already discussed represent the deci-
sions made in a computer program. In contrast, the directed graph does an excellent 
job in this regard because decisions, represented by nodes in a graph, are concerned 
with the probability of deciding which logic paths to execute in a computer program, 
where a path represents a sequence of instructions (edges in a graph) to be executed 
to achieve a requirement (e.g., transmit a Web page request to a Web server). Once 
a decision is made, the execution of the selected path may encounter one or more 
faults, leading to one or more failures. Failure occurrence, in turn, provides the data 
for estimating reliability. Note that this design approach, like the data - oriented 
method, specifi es input data (input to the fi rst node on a path) and output data (output 
from the last node on a path).   

 Path probabilities and, hence, selected paths are dependent on input data. For 
the purpose of path probability assessment, input data is characterized by the prob-
ability of selecting path i, p i , based on the frequency, f i , of input type i:

    
p

f

f
i

i

i

i

n=

=
∑

1

,

 where n is the number of input types in the program. 
 For a  new  program, although the number of input data types n is known, the 

frequency of the types f i  is unknown; this factor would become known only after 
the program has been executed for a considerable period of time, but to estimate 
reliability, it is required that p i  be computed  now . Therefore, f i  is generated from 
random numbers using our old friend Excel RAND function. 

 As stated earlier, paths are comprised of sequences of instructions. For programs 
that we write, we can estimate the number of instructions required. However, these 
days, the majority of software is that provided by software vendors where we have 
no idea of the sizes. Therefore, we can resort to using the total estimated number of 
instructions over all programs, N. How do we know the value of N? We do not know 
its value, but this need not concern us because whatever value we choose will lead 
us to the estimation of relative  values of path reliability. Our interest is in estimating 
path reliability on a relative basis so that maintenance actions and, hence, availability 
can be estimated accordingly. 

 The estimated  expected  number of instructions executed on path i, N i , is esti-
mated as follows, where N is specifi ed as 1000:

    N p Ni i= ∗ .

 Once the number of instructions on a path has been estimated, the number of instruc-
tions that are expected to fail, N f , is estimated as follows:

    N N r /Nf i i= ∗( ) ( ),
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 where r i  is the estimated failure rate of path i, for N number of instructions, using 
the RAND random number generator. However, what is needed is the failure rate 
per instruction, r i /N. 

 Then, using the above formulations, path i unreliability, UR i , is estimated as the 
ratio of the number of failed instructions, Nf, on a path to the total number of failed 
instructions over all paths in the program:

    
UR

N

N
i

f

f

i

n=

=
∑

1

.

 Then the R i , reliability of path i, is estimated as follows:

    R URi i= −1 .

 The resultant unreliabilities and reliabilities are annotated on the directed graph of 
path logic in Figure  9.2 . As you can see in this  particular  example that depends 
upon the roll of the dice in random number generation, the path reliabilities are low, 
suggesting that major maintenance actions would be required on a relative  basis. 
The term relative  is used because, as mentioned earlier, it is the  relative  reliability 
that is signifi cant for signaling the for - maintenance action, once the software is 
implemented.

MODELING PATH MAINTAINABILITY 
AND AVAILABILITY 

 It is reasonable to suggest that path maintainability is proportional to path unreli-
ability on the basis that the greater the unreliability, the greater the need for main-
tenance action. Also, we can see that the frequency of maintenance actions, m i , is 
an additional determinate of the probability of maintenance action (i.e., maintain-
ability of path i, M i ). Thus, combining these two factors, we have:

    M m Uri i i= ∗ .

 Now, how is m i  determined? Well, for one thing, it should have the same ordering 
as unreliabilities. For example, the highest value of m i  should be associated with the 
highest value of UR i  because, naturally, the higher the unreliability, the greater the 
need for maintenance. Second, we do not know in advance of software implementa-
tion the frequency of maintenance activity. Therefore, m i  will be estimated by gen-
erating uniformly distributed random numbers between 0 and 1 and associate them 
with unreliability on an ordered basis. The resultant values of M i  are annotated on 
Figure  9.2  to provide visibility of the probable need for maintenance, by path, on a 
relative basis. 
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 Now that both reliability and maintainability have been estimated for each path, 
availability, A i , of path i is estimated as follows:

    A R / R Mi i i i= +( ),

 which expresses the fraction of software execution time during which there is a 
reliable operation. Availability results, by path, are keyed to paths in Figure  9.2 . 

 Because the Web Processing function is the focus of our analysis, the details of 
its path are shown in Figure  9.2 , whereas the other functions do not have expanded 
paths.

 Another view of the results is provided by Figure  9.3 , where you can see that 
availability mirrors reliability because availability refl ects good operational time, 
which is the time when the software operates reliably. In contrast, availability has 
an inverse relationship with maintainability because the operational time lost to the 
maintenance activity is a loss of the availability of the software. Furthermore, Figure 
 9.3  is useful because it identifi es the most reliable and least reliable paths. This 
information can be used to prioritize testing, allocating the greatest effort to the least 
reliable paths.    

EXECUTING TEST SCENARIOS 

 It is necessary to test paths and combinations of paths that are called scenarios 
 [REI99] . Scenarios represent sequences of path executions, where the scenario input 
has been defi ned, the corresponding computation specifi ed, and the resulting output 
defi ned. Thus, scenarios are the mechanism for validating a computer program (i.e., 
demonstrating that a program does what it is supposed to do  [BAG97] ).  

Figure 9.3     Path i reliability R i  (Series 1) maintainability M i  (Series 2), and availability A i  (Series 3) 
versus path i.  
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IMPLEMENTING COHESION AND COUPLING 

 Cohesion means that, for example, paths should contain only the code that is relevant 
to the path (e.g., Web searching should not contain word processing code). Coupling 
refers to the maximization of the independence of paths. That is, there should be 
only the minimum amount of interaction among paths. Following this principle 
reduces faults and failures when software is updated in the future. Of course some 
interaction is necessary; for example, when a document being created with a word 
processor requires data from a Web site. However, if access to the Web site were to 
be implemented by code in the document, as opposed to using a browser, problems 
would arise in maintaining the document if the Internet location of the Web site 
should change.  

DETAILED ANALYSIS OF A PROGRAMMING 
LANGUAGE

 It is diffi cult for the practitioner to know what design approach and programming 
language is best for his or her application because there are many advocates for a 
particular approach and language to the exclusion of other alternatives. The software 
fi eld is plagued by faddism, where design models are proclaimed to be the only way 
to implement software, only to be discarded when the next fad arrives! What is 
needed is a balanced approach because there are properties of various design alterna-
tives that can be combined to support the software implementation of a given 
problem. Therefore, this section is dedicated to providing the reader with a practical 
road map for developing software solutions. I begin by describing the entities that 
should comprise a design with the rationale given for each entity. 

Program Objective 

 This is the most important part of the design approach  [PRA02] : a clear and succinct 
statement of the program ’ s requirement; for example, to retrieve publications of 
“ Schneidewind software reliability model ”  in 5 seconds.  

Objects

 This entity is the basis of a design because all problems involve objects, whether it 
is a human user, database, mathematical equation, Web server, Web page, and so on.  

Classes

 A class is a set of objects, such as all Web servers. Some authors advocate making 
class the focus of design  [REI99] . This seems strange because it is objects that are 
the active entities in a problem; classes, as the name implies, are classifi cations of 
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objects. Thus, I assign a class to the role of classifying objects. This is useful because 
the same Web searching code can be used, for example, for a variety of Web servers, 
by classifying each specifi c Web server object as a member of the generic Web server 
class.

Functions

 Functions, for example mathematical functions, do not receive the attention they 
merit in contemporary programming language texts  [PRA02] . In these books, func-
tions are described as C and C ++  functions, the modules of these languages.  

Decisions

 Decisions are the meat of many problems, for example determining whether a Web 
searching algorithm has found the requested information. Again, decisions are given 
the short shrift in many texts. Decisions can be represented by a directed graph or 
by an old - fashioned fl ow chart, heaven forbid!  

Input Data 

 Objects and functions cannot operate in a vacuum. Input data, such as the user ’ s 
specifi cation of the desired information required from a Web site, must be specifi ed 
to the search algorithm. The origin of input data is specifi ed.  

Output Data 

 Output data refers to the data that the output units in a computer system will provide. 
The destination of output data is specifi ed.  

Control

 Program control is necessary because certain operations, such as iteration, must be 
terminated, for example, the termination of Web searching when the desired Web 
page has been found in Figure  9.4 .    

Units

 These are physical computer system entities, such as a graphics display device. 
Generally, units are only specifi ed in special - purpose computing, such as in space 
applications, where specifi c hardware is assigned to processing specifi c software. In 
general computer processing, such as Web searching, unit specifi cations are not 
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Figure 9.4     Reliability simulation process diagram.  
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necessary because the user is only concerned with results, not the particular hardware 
that produces the results.  

Support Requirements 

 In addition to these specifi cations, it is important to keep in mind the need to main-
tain the software in the future based on errors that occur and on the need for enhance-
ments that users require  [PRA02] . Incidentally, the cost of software maintenance is 
the largest of all software costs, including the cost of development. 

 Now, the above entities of software design will be illustrated by producing Table 
 9.1 , which will document each entity for the Web searching problem, and Figure 
 9.4 , which shows the logic for Web searching. An important additional factor, which 
contributes to high quality software, is the need to produce good documentation. 
Document the software for other people to read, who may not be as familiar with 
the details as you are! Poor or nonexistent documentation has been the bane of the 
software fi eld. Do not contribute to this chaos!     

PROGRAM LANGUAGE CHARACTERISTICS 

Structure

 This section is dedicated to describing program language structure, using C ++  as 
the example. My purpose is to not only describe, but, in addition, evaluate the effi -
cacy of the structures so that you can apply the structures with minimum diffi culty. 
First, what is meant by program structure? Structure is required to control the 
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program statements to execute and the order of executing them  [HAN97] . These 
structures are sequential, selection, and repetition, using iteration control. Sequential 
structures are sequences of statements that do not involve decision making. The 
best example is a sequence of arithmetic statements programmed to solve an equa-
tion. Selection involves designing statements to make decisions, such as the decision 
by the user in Figure  9.4  concerning whether the desired information has been 
obtained from the Web site. Decisions are typically implemented with the  if  state-
ment. Repetition, controlled by iteration, is implemented with the while  statement 
in Figure  9.4 .  

Conditions

 Conditions refer to the outcome of comparing quantities. The meaning of the condi-
tion operators, geared to Figure  9.4 , is defi ned in Table  9.2 .    

Logical Operators 

 There are some conditions that cannot be handled by the operators in Table  9.2 . 
These are the Boolean operators and ( &  & ) ,  or (||) , and  not(!) . Using Figure  9.4  as 
an example, suppose the user desires information by subject S and  that the date D 
of the information be greater than d. Then the condition can be written as follows; 
statements must end in a semicolon and “ // ”  indicates a comment: 

 S  &  &  (d    >    D)    =     true ; // if S and (d    >    D) are true, the result is true    =    1, if the 
result is not true, it is false    =    0, so that the result can be checked by comparing with 
constants 1 and 0. 

 As another example, suppose the subject is still S  and  either (date d1    =    D1)  or
(date d2    =    D2) is required. Then, these conditions are written as:  

 (S  &  &  ((date d1    =    D1) || (d2    =    D2)))    =     true ; // notice the liberal use of paren-
theses that renders the code readable. 

 As the third example, suppose subject S is still desired but the date d    =    D is to 
be excluded  in the search: 

 (S  &  &  (d !    =    D))    =    true // ! =  signifi es  not equal .  

Table 9.2    Defi nition of Conditions 

   Operator     Meaning     Figure 9.4 example  

=     Equal    Search information correct  
  ! =     Not equal    Search information correct  not  correct  
<     Less than    Web page  not  found  
>     Greater than    Web page  not  found  
<=     Less than or equal to    Web page found  
>=     Greater than or equal to    Web page found  
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Important Variable Types 

 There are various types of variables that can be used in programming languages. 
Among these are types bool  (i.e., Boolean),  integer , and  double  (i.e., fl oating point). 
The variable type bool  is used to keep track of events in a program ’ s execution 
 [HAN97] . For example, in Figure  9.4 , suppose there is a variable of type  bool  called 
search information correct . Then, when the  if  statement is executed,  search informa-
tion correct     =     true , if the correct information found, and  search information 
correct     =     false , if the correct information  not  found. Variable types  integer  and 
double  are used in arithmetic operations to signify operands that have no fractional 
part and operands that do have a fractional part respectively.  

Detailed Design Example 

 Now, in Figure  9.5 , a detailed software design is implemented for the Web search 
problem in Figure  9.4 . This exercise will illustrate some very interesting design 
aspects that are not covered well in programming texts. One aspect is that for a 
design to be meaningful, it must not be limited to abstractions, such as classes! 
Instead, for a design to be understood, there must be a combination of physical enti-
ties and program abstractions. For example, in Figure  9.5  the designer should not 
limit the design to proclaiming an input specifi cation. Instead, it is critical to identify 
the input device: keyboard, hard disk fi le, memory stick, and so on. The reason is 
that C ++  and other languages are very fi nicky about such details because there are 
different types of commands pertinent to different devices. Thus, where decisions 
about physical components must be made, I ask questions in Figure  9.5  to stimulate 
decision making. Note that I do not pose questions concerning Internet resources, 
such as the brands of Internet browser, Web server, and search engine because these 
components are outside the scope of this particular  C ++  program. The browser and 
search engine are human user choices and the search engine vendor specifi es the 
server(s) to use on a particular search. Also, notice the need for  “ housekeeping ”
declarations in Figure  9.5 , such as specifying the search request type, where  “ type ”
refers to format, not the type of request. Additional C ++  syntax is shown in Figure 
 9.5  in connection with the  if  statement. If the condition is false (e.g., the search has 
been unsuccessful), the program branch executed is called else .   

 Rather than attempt to write one program to cover all the logic in Figure  9.5 , 
experience has shown that when the programmer includes too much logic in a single 
program, the programmer is overwhelmed by complexity and programming errors 
grow exponentially. Therefore, the total logic should be divided into digestible 
pieces  [HON96] . Thus, three C ++  programs: #1 for user specifi cation of Web search 
requirement, #2 for user analysis of Web search results, and #3 for Web server search 
process are shown below. A major purpose of this presentation is to show the reader 
that there is a great deal of housekeeping that must accompany the meat of a 
program, if the program is to compile (translate from C ++  statements to machine 
language that can be executed on a computer). It is imperative to understand that 
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Figure 9.5     Web search detailed design.  
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both the logic of the program and the housekeeping directives must be correct for 
the program to work. This characteristic of software development is one of the 
reasons that software is so costly and error prone. 

 Note that by convention, the fi rst index value for an array or matrix is equal to 
zero, hence the initialization of the matrix pointers in the following programs to 
zero. Also note that matrix sizes must be assumed. This means that if a search 
exhausts a matrix without fi nding the desired item, an error must be signaled. In 
addition, Figure  9.5  shows that for both the user and Web site, a database is used 
for search request and search content, respectively. The computer codes for these 
functions are not included in the following programs because this processing would 
be handled by separate software in database management systems. In addition, the 
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code for the interaction between Internet browser and Web server for specifying 
user - specifi ed subject code, as shown in Figure  9.5 , is included in the programs. 

  Program #1  

 // program specifying Web search request (good idea 
to state purpose of program in first comment) 

 # include  < iostream >  // specify input output library 

 # include  < math.h >  // specify math library 

 using namespace std; // allows C +  +  to allocated 
computer space for names 

 using std::cout; // specify standard screen output 

 using std::cin; // specify keyboard input 

 main() // beginning of main code, this is required in 
every program 

 { // opening bracket is needed at start of code 

 const char *  format_string; // pointer to type char 
for processing alphanumeric data 

 int i, j, imax // declare matrix A pointers and 
maximum pointer value as type integer 

 char A [20] [20] [20]; // declare matrix A as three 
columns and 20 rows and type char that contains 
subject, subject code, and date 

 char subject; // declare search request subject 

 char code; declare located subject code storage 
area 

 char date; declare storage area for search request 
content date 

 i, j, k  =  0 // initialize matrix pointers 

 imax  =  19; // initialize maximum value of matrix A i 
pointer 

 cout  <  <  endl; // start screen output on a new line 

 cout  <  <   “ search request subject  =  ” ; // tell user to 
input search request subject from keyboard to screen, 
the  =  sign means that input is expected after it 

 cin  >  >  subject ; // request subject inputted 

 cout  <  <   “ input required date of search results ” ; // 
input required date of search results from keyboard 
to screen 

 cin  >  >  date; // required date of search results 
inputted 
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 while (subject ! =  A [i]) // while subject request not 
found, continue with search 

  {  

 if (subject  =  A [i]) // test for finding request 
subject 

 { 

 code  =  A [j]; // if request subject found, store 
located subject code for use by user computer 

 date  =  A [k]; // store specified date of search 
results for use by Web server 

 else 

 { 

 if ( i    <     =  imax) // test for subject pointer being 
less than or equal to maximum value 

 { 

 i  =  i  +  1; // if subject pointer has not reached 
maximum value, increment all matrix pointers 

 j  =  j  +  1; 

 k  =  k  +  1; 

 } 

 else 

 cout  <  <   “ error: subject not found ” ; // tell user that 
request subject not found 

 } 

 return 0; // return to the operating system 

 } // executable code ends here 

  Program #2  

 // program for analyzing Web search results 
(good idea to state purpose of program in first 
comment) 

 # include  < iostream >  // specify input output library 

 # include  < math.h >  // specify math library 

 using namespace std; // allows C +  +  to allocated 
computer space for names 

 using std::cout; // specify standard screen output 

 main() // beginning of main code, this is required in 
every program 

 { // opening bracket is needed at start of code 
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 FILE  * fp;//pointer to type FILE, C +  +  requires 
pointers to files that are read or written, files 
usually stored on hard disk or stick memory, fp 
points to the file command in the next statement  

 fp  =  fopen ( “ c:/search results.txt ” ,  “ w ” ); // file 
for writing search results data output in text 
format, the location is given for this file to be 
written, signified by  “ w ”  

 const char *  format_string; // pointer to type char 

 char date; // declare date of search results in 
alphanumeric format 

 char requireddate; // declare required date of search 
results in alphanumeric format 

 if (date    >     =  requireddate) 

 { 

 fprintf (fp,  “ %s%\n ” ,  “ search results date ” , (char) 
20); // write quoted text in c:/search results.txt 
disk file,  “ s ”  specifies writing  quoted  text, 20 
characters long,  “ \n ”  specifies line feed for next 
line to be written  

 fprintf (fp,  “ %c%\n ” , date, (char) 8); // date of 
search result written in c:/search results.txt disk 
file,  “ c ”  means date is in alphanumeric format, 8 
characters long,  “ \n ”  specifies line feed for next 
line to be written  

 fprintf (fp,  “ %s%\n ” ,  “ search results content ” , 
(char) 20); // write quoted text in c:/search 
results.txt disk file,  “ s ”  specifies writing  quoted  
text, 20 characters long,  “ \n ”  specifies line feed 
for next line to be written 

 fprintf (fp,  “ %c%\n ” , date, (char) 1000); // search 
results content written in file c:/search results.txt 
disk file,  “ c ”  means content is in alphanumeric 
format, 1000 characters long,  “ \n ”  specifies line 
feed for next line to be written 

 } 

 else 

 { 

 cout  <  <   “ search results date incorrect ” ; // tell user 
that search results date incorrect 

 } 

 return 0; // return to the operating system 

 } // executable code ends here 
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  Program #3  

 // program for searching Web database (good idea to 
state purpose of program in first comment) 

 # include  < iostream >  // specify input output library 

 # include  < math.h >  // specify math library 

 using namespace std; // allows C +  +  to allocated 
computer space for names 

 main() // beginning of main code, this is required in 
every program 

 { // opening bracket is needed at start of code 

 const char *  format_string; // pointer to type char 
for processing alphanumeric data 

 int i, j, imax // declare matrix B pointers and 
maximum value of subject code pointer as type 
integer 

 char B [20] [20]; // declare matrix B as two columns 
and 20 rows and type char 

 char subject; // declare search request subject code 
that was inputted by Web browser 

 char content; declare located content storage area 

 i, j  =  0 // initialize matrix pointers 

 imax  =  999; // initialize maximum value of matrix B i 
pointer  

 while 

 {(subject !  =  B [i]) // continue search while subject 
code not found 

 if (B [i]  =  subject) // test for finding subject code 

 { 

 content  =  B [j] ; // if subject code found, store 
content in Web server 

 } 

 else 

 { 

 if ( i    <     =  imax) // test for subject code pointer 
being less than or equal to maximum value 

 {i  =  i  +  1; // increment matrix B pointers, if 
subject code not found 

 j  =  j  +  1; 

 } 
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 else 

 { 

 cout  <  <   “ error: subject code not found ” ; // tell Web 
server that request subject not found  

 } 

 return 0; // return to the operating system 

 } // executable code ends here    

EVALUATION OF PROGRAMMING LANGUAGES 

 Factors to consider when evaluating a programming language are compile time, 
execution time, understandability of error messages, and availability and quality of 
help information. Some versions of C ++ , for example, produce unintelligible error 
message and their help information is minimal. These are important considerations 
that signifi cantly affect your productivity. To avoid these pitfalls, download free 
copies of programming systems and test them against the above criteria for the same 
program. Then avoid using systems that produce more noise than signal! 

 One researcher investigated program length, programming effort, runtime effi -
ciency, memory consumption, and reliability  [PRE00] . However, the validity of the 
analysis was compromised by using several programmers in the tests, rather than 
one, thus introducing programmer skill variability into the mix. Nevertheless, there 
are some valuable aspects of this experiment that you should note. One is program-
ming effort: is the effort you expend in understanding and using the language rea-
sonable? Another good point is reliability: does the program produce the correct, 
predetermined result. Of course. You must be careful that a perceived incorrect result 
is not due to your programming errors! The other factors — program length, runtime 
effi ciency, and memory consumption — are of little consequence, given the speed 
and memory capacity of contemporary microcomputers. It is surprising that the 
author did not evaluate compile time, execution time, understandability of error 
messages, and availability and quality of help information. 

Visual Language Alternative 

 There have been numerous studies that have looked at the learning styles of engi-
neering students. These learning style preferences are consistent across populations. 
What these studies have found is that engineering students tend to be more visual 
in their learning styles. However, since most programming languages taught in 
introductory courses are text based, a disconnect occurs between what is being taught 
and how these students prefer to learn  [BUC09] . 

 Because many text - based languages use syntax that incorporates many English 
terms, students often resort to using the models they have developed for the natural 
language use of these terms. However, this poses a signifi cant problem for some 
terms because the model for how the word is used in natural language differs from 
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how it is used in a programming language. For example, in natural language, the 
term “ while ”  has a slightly different meaning than it does in programming usage. 
In natural language, “ while ”  implies that as soon as the condition is no longer satis-
fi ed, the activity will cease. In a programming language, the conditional statement 
associated with the “ while ”  is only checked once during an iteration. This can cause 
students problems if they believe that as soon as the condition is met, the loop will 
exit  [BUC09] . 

 A promising avenue for the reader to explore to address these issues is the use 
of graphical programming languages. Graphical programming languages allow the 
user to create programs by connecting together graphical icons representing different 
functions, similar to fl owcharts. Using these languages should help students learn 
better from visual presentations  [BUC09] . For, example, graphical programming 
languages such as Simulink and Hypersignal, and others, have been coming into use 
recently for rapid prototyping of digital signal processing algorithms. Using such 
languages amounts to dragging functional blocks from libraries and connecting them 
to form a block diagram, which is also a program  [AMI00] .

Question for the Reader:  Based on what you have learned about programming 
language characteristics, what characteristic do you think is the most 
important?

Answer:  If a programming language is not  representative  of the problem to be 
solved, programs that are produced using this language could be loaded with 
bugs! For example, a program for doing numerical computation should have 
a library of mathematical software (e.g., sine function) that the programmer 
could invoke rather than having to program these functions, thus saving a 
signifi cant amount of time and avoiding programming errors.      

SUMMARY

 The reader has been exposed to many aspects of evaluating programming languages that are 
not covered in contemporary texts. Among these aspects are lack of coherent compiler and 
execution error messages and help aids. Techniques have been presented for testing a set of 
programming languages against a specifi ed program in order to identify the language that is 
best for the user. Armed with these tools, the reader will be able to combine previously learned 
computer hardware design skills and knowledge with programming languages to develop 
computer - based systems.  
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Chapter 10

Operating Systems 

T he aim of this chapter is to expose the reader to important facets of operating system (OS) 
analysis and design that are missing from contemporary texts. Among these are quantitative 
analyses of reliability, performance attributes such as memory management effi ciency, opti-
mization of time - slice allocation to processes, and deadlock detection and prevention. To 
lay the foundation for these analyses, OS issues and OS architecture are discussed so that the 
reader will understand why there is a focus on certain facets of OS behavior, such as 
the difference in computing environments between general - purpose and real - time systems. 
The dramatically different OS performance differences between these environments are 
highlighted.    

OPERATING SYSTEM ISSUES 

 Operating systems (OSs) have become increasingly complex and thus very expen-
sive and time consuming to develop, maintain, and debug. Two diffi culties are 
inherent in maintaining any large complex system: a large investment is required to 
add new features rapidly enough to meet time - to - market requirements and another 
is the effort required to preserve compatibility with prior versions. Continuing to 
patch existing OSs in ad hoc ways to accommodate tomorrow ’ s needs (e.g., high 
reliability) is not cost - effective. Interactions within the OS and between the OS and 
application programs are very complex  [HAM95] . 

 The challenge to OSs designers is to deliver to applications the performance 
available now only from dedicated hardware, combined with the ease of sharing 
resources and data among multiple applications  [AND92] . This issue is fascinating 
because the original objective of OSs was to effi ciently manage multiple applications 
in a complex computing environment. Unfortunately, OSs have grown to the extent 
that their excess baggage can slow application execution to a crawl! 

 The importance of OSs has motivated the development of this chapter, which 
is designed to provide the reader with methodologies for analyzing and estimating 
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the performance and reliability of these systems, with the goal of mitigating the 
problems described above.  

OS ARCHITECTURE 

 OS architecture is comprised of processes (i.e., a process is a program in execution), 
interprocess communication (e.g., instruction and data communication on a bus), 
virtual memory (a fancy name for disk drive memory as opposed to random access 
memory [RAM] devices), hierarchical fi le system, and access control to system 
resources  [REI04] . Three approaches have evolved for organizing structure and are 
shown in Figure  10.1 . The monolithic architecture considers the OS as being com-
prised of modules wherein any module can call another module. The modules are 
controlled by the supervisor so that they can have access to the hardware. All module 
calls must be made under supervisor control. This organization is obviously complex 
and leads to high overhead. In response to this problem the microkernel architecture 
was developed  [REI04] . This architecture simplifi es OS functions by centralizing 
functions in the microkernel. This strategy reduces the complexity of OS design 
because the numerous interactions that must transpire in the monolithic case can be 
centralized in the microkernel in the microkernel case. A similar situation happens 
in the client – server architecture, wherein simplicity is achieved by using a bus for 
communication among system resources. However, as will be shown in the reli-
ability section. There is a price to pay for reducing architectural complexity because 
reducing interactions among resources can lead to dependence on a single resource 
(e.g., microkernel) for managing controlling OS actions. This dependency can lead 
to reduced reliability.    

OS PERFORMANCE EVALUATION 

 An OS performance attribute is its ability to switch among various programs while 
also allocating resources to these programs. This switching function is executed by 
the supervisor and microkernel in Figure  10.1 , which switch among OS modules, 
application programs, and computer hardware as the need for these resources arises 
during system operation. Switching speed and time are important performance 
metrics. Switching speed can be computed in two ways: one, by switch operation i, 
Si , using the number of programs switched on switch operation i, n i ; and the second, 
computed over the number of programs n. In both cases, since we do not know a 
priori the probability of making a switch i, the probability, p i , must be included in 
the equations. Thus, switching speed, S, and time for switching to program i, T i , can 
be estimated by considering the number of programs, n, that must be switched for 
a given user ’ s operation, as follows: 

    S p n /Tii i i= ( ) ,

    S p n T ni i i

i

n

=
=

∑(( ) / ) / .
1
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Figure 10.1     Operating system (OS) architectures.  
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 Since n i  and T i  are not known in advance of using an OS, their values must be simu-
lated by using the Excel RAND function (uniformly distributed random numbers 
between 0 and 1) for n    =    100 switch operations in order to achieve computational 
validity. After executing the RAND function, both n i  and S i  are multiplied by 10 in 
order to produce practical values. Since the relative values of S i  will not be affected 
by the choice of multiplication factor, readers are free to choose whatever value is 
practical in their application. 

 Furthermore, since S is the mean of S i , the standard error of the mean   S ni  can 
be computed, which when combined with the mean   S S ni± ∗( )3 /  provides confi -
dence intervals for S i . If any values of S i  fall outside the mean plus or minus three 
S ni , it is indicative of switching spends that are unlikely to be achieved. Thus, the 
user can predict in advance of OS usage the bounds on this performance metric. 
Figure  10.2  shows how the bounds on switching speed can be analyzed.    

OS RELIABILITY EVALUATION 

 Another important OS metric that we can relate to switching actions is reliability. 
Again, prior to using an OS to manage our computer operations, it is possible to 
estimate reliability by randomly injecting faults into the switching operation. Thus, 
the reliability, R i , of switch operation i, is estimated by noting that the  expected
number of faults that occur on switch operation i is the product of the probability 

Figure 10.2     Switch operation i speed S i  versus switch operation i. Series 1: S i . Series 2: Mean 
Si     +    3 * (standard error of mean)    =    1.63. Series 3: Mean S i     –    3 * (standard error of mean)    =    0.48.  
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of the switch operation, p i , and the number of faults f i . Then, this term is related to 
the total number of expected  faults over n switching operations to produce the unreli-
ability of switch operation i. Finally, unreliability is subtracted from 1 to produce 
reliability. As in the case of performance, confi dence intervals can be developed for 
reliability so that the likely achievable range of reliability can be estimated:

    
R 1

p f

p f
i

i i

i i

i 1

n= −

=
∑

.

 Figure  10.3  shows the probable range of switching reliability that is likely to be 
achieved in practice. In addition to the foregoing quantitative reliability assessment, 
it is important to evaluate reliability on a quantitative basis, based on the competing 
architectures shown in Figure  10.1 . Although the monolithic architecture is consid-
ered ineffi cient  [REI04] , it can continue operation with reduced capability because 
communication between surviving OS modules and application programs can con-
tinue in the face of one or more failed OS modules. In contrast, the microkernel 
architecture, while compact and effi cient, is highly dependent on its namesake for 
reliable communication because all traffi c fl ow must be managed by the microkernel. 
A similar situation occurs with the client – server architecture because all communica-
tion must take place on the bus. Thus, the lesson to be learned is that the relationship 

Figure 10.3     Switch operation i reliability R i  versus switch operation i. Series 1: R i . Series 2: Mean 
Ri     +    3 * (standard error of mean)    =    0.9922. Series 3: Mean R i     –    3 * (standard error of mean)    =    0.9876.  
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between architectural effi ciency and reliability is a subtle one. That is, effi cient 
architectures can be relatively unreliable!    

OS CHARACTERISTICS 

 There are a number of characteristics of an OS that determine its ability to effectively 
manage system resources. The fi rst is the scheduling algorithm. Scheduling refers 
to the way processes are assigned to run on the available central processing units 
(CPUs), since there are typically many more processes running than there are avail-
able CPUs. This assignment is carried out by software known as a scheduler and 
dispatcher. 

 The scheduler is concerned mainly with:

Throughput .      The number of processes that complete their execution per time 
unit.

Turnaround .      The total time between submission of a process and its 
completion.

Response Time .      The amount of time it takes from when a request was submit-
ted until the fi rst response is produced.  

Fairness .      Equal CPU time to each process (or more generally appropriate times 
according to each process ’  priority).    

 In practice, these goals often confl ict (e.g., throughput vs. latency), thus a scheduler 
will implement a suitable compromise. 

 In real - time environments, such as mobile devices for automatic control in 
industry (e.g., robotics), the scheduler must also ensure that processes can meet 
deadlines; this is crucial for keeping the system stable. 

Long-Term Scheduler 

 The long - term scheduler decides which jobs or processes are to be admitted to the 
ready queue; that is, when an attempt is made to execute a program, its admission 
to the set of currently executing processes is either authorized or delayed. Thus, this 
scheduler dictates what processes are to run on a system, and the degree of concur-
rency to be supported at any one time (i.e., number of processes are to be executed 
concurrently), and how the split between input/output (I/O) - intensive and CPU -
 intensive processes is to be handled. This is used to make sure that real - time pro-
cesses get enough CPU time to fi nish their tasks  [STA04] .  

Mid-Term Scheduler 

 The mid - term scheduler temporarily removes processes from the main memory and 
places them on the secondary memory (such as a disk drive), or vice versa. This is 
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commonly referred to as “ swapping out ”  or  “ swapping in, ”  respectively. The mid -
 term scheduler may decide to swap out a process which has not been active for some 
time, or a process which has a low priority, or a process which is taking up a large 
amount of memory, in order to free up main memory for other processes, swapping 
the process back in later when more memory is available  [STA04] .  

Short-Term Scheduler 

 The short - term scheduler decides which of the ready, in - memory processes are to 
be executed next (allocated a CPU) following a clock interrupt, an I/O interrupt, or 
OS call. Thus, the short - term scheduler makes scheduling decisions more frequently 
than the long - term or mid - term schedulers. A scheduling decision will be made when 
there is completion of an event, signaled by an interrupt, or periodically. This sched-
uler can be preemptive, implying that it is capable of forcibly removing processes 
from a CPU when it decides to allocate that CPU to another, higher priority process, 
or nonpreemptive, in which case the scheduler is unable to “ force ”  processes off the 
CPU  [STA04] .  

Dispatcher

 Another component involved in scheduling function is the dispatcher. The dispatcher 
is the module that gives control to the process selected by the short - term scheduler. 
This function involves the following:

   Switching among processes  

  Jumping to the proper location in a program to start its execution  

  The dispatcher should be as fast as possible, since it is invoked during every 
process switch     

Scheduling Effi ciency 

 Scheduling effi ciency is an important OS performance metric. It is formulated by 
considering that the number of programs that have been queued, waiting for service, 
as the result of switch operation i, nq i , related to the number of programs that have 
been scheduled as a result of switch operation i, n i , measures scheduling effi ciency, 
Es , because programs waiting in a queue decrease the scheduling rate. Thus, E s  is 
computed as follows:

    E nq /ns i i= .

 Then, the number of programs queued, waiting for service, is equal to the program 
input speed to the queue, S i , as a result of switch operation i, times the switch opera-
tion i wait time, tw i :

    nq S twi i i= ∗ .
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 To compute tw i , note that the probability,  ρi , of a queue being busy, as the result of 
switch operation i, is defi ned as:

    ρi i itw /T= ,

 where T i  is the switch operation i time. This equation refl ects the fact that the 
higher the lower the wait time for a given switch time, the lower the wait time. 

 Now, combining the foregoing equations, the number of programs in the queue 
generated by switch operation i is the following:

    nq S Ti i i i= ∗ ∗ρ .

 Last, scheduling effi ciency, E s , is computed by using the last equation as follows:

    E S Ti /nis i i= ∗ ∗( ) .ρ

 Note that the probability of the queue being busy is unknown when the OS is 
designed. Therefore, this parameter must be estimated using the Excel RAND 
function.

 By computing effi ciency over 100 programs and then computing its mean, the 
value 0.2635 or 26.35% is produced. The utility of this analysis is that scheduling 
effi ciency can be estimated during design, in advance of implementation, and 
increased if warranted by the estimated value. In this example, an increase is needed, 
which would be accomplished by increasing the switching speed, S i .  

Annoying Messages 

 An important distraction to user computing productivity is the plethora of annoying 
messages concerning, for example, never - ending notifi cation of security settings and 
offers to update software, which various vendors seem compelled to present to the 
user whether the user is interested or not. In some cases, the messages can be turned 
off. In other cases, it is very diffi cult or impossible to turn them off. The problem 
is that rather than the default mode being “ no messages, ”  the default mode is 
“ maximum messages ” ! Thus, it is important for the prospective customers of OS 
and application software to give the system a trial run before purchasing.   

SCHEDULING ALGORITHMS 

 OS scheduling algorithms can be classifi ed into two major categories related to 
the computing environment. One pertains to personal computer processing where 
program execution is triggered by user actions, typically with a mouse or Internet 
browser. In this case, there is really no need for a scheduler because program invoca-
tion is preordained by user actions. The more interesting and challenging case is the 
service computing environment: Web servers, fi le servers, e - mail processing, and so 
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on. In this environment, program invocation should be triggered by interrupts. The 
reason is that in order to not waste time, the OS should only service a program when 
the program needs servicing (e.g., a Web server receives a search request). However, 
before rushing to conclude that an interrupt - driven scheduler is suffi cient to achieve 
effi cient use of resources, consider the possibility that once a program gains control 
of the microcomputer, it may execute for a long time, thus preventing other programs 
from executing for a prolonged period of time. Then, how can this problem be 
resolved? A solution is to allocate a time slice to a program once it has signaled the 
need for service via an interrupt. The time slice is the amount of execution time 
allocated to a program. In a generalized computing environment, such as Web 
searching, all users have equal priority; thus, each program is allocated the same 
fi xed time slice. 

 Contrariwise, in a real - time environment wherein deadlines must be met, the 
order and size of time slices is the order of deadlines. That is, the program with the 
fi rst deadline receives the next time slice whose length is equal to the difference 
between the deadline time and the current time (times are determined by the micro-
computer clock). In both cases, the scheduler performs interrupt - driven  [WAN06]  
time - slice  allocation , and switching logic  controls  the execution of programs, as 
shown in Figure  10.5 . While this strategy may result in some programs not meeting 
their deadlines because a given program has control of the microcomputer until it 
meets its deadline, it is a sound strategy because at least there is assurance that the 
given program will meet its deadline. 

 Next, the generalized computer environment scheduling process will be formu-
lated, using the following defi nitions and equations:

   TS i : length of time slice for switch action i  

  NI i : number of instructions executed during time TSi 

 Since in a generalized computing environment this quantity is unknown a 
priori, it is estimated by using random number generation multiplied by 
a practical factor, say 10,000.  

  n i : number of programs allocated time slices as a result of switch operation i  

  CR: microcomputer clock rate (1/CR    =    time of clock pulse) 

 It is assumed that one instruction is executed per clock pulse. 

 Typical values of CR are 2 and 4   GHz, yielding (1/CR)    =    0.5 and 0.25   ns, 
respectively.    

 Using the above defi nitions, the length of the time slice is formulated as follows:

    TS /CR NI /ni i i= ∗(( ) ) .1

 Figure  10.4  shows the result of the time - slice analysis wherein two factors drive the 
length to decreasing quantities: one is that, of course, as the number of programs 
that must be serviced increase, the length of the slice, necessarily, decreases. The 
second factor, the microprocessor speed (clock rate), may not be so obvious. With 
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a higher speed, less time is required per instruction. Therefore, the time slice 
decreases.   

 Since for real - time systems the time - slice length strategy is highly dependent 
on deadlines that evolve with unpredictable events in real - time that cannot be pre-
dicted at OS design time, the next deadline, TD i , associated with switch action i, is 
estimated by considering it to be randomly distributed, using the RAND function 
and a multiplication factor of 10 to make the estimates realistic. Time slice TS i  is 
estimated by the difference between the next deadline and the previous deadline, 
TDi– 1 , associated with switch action i    –    1, as follows:

    TS TD TDi i i 1= − − .

 Since, as stated, assigning a time slice to one program may cause other programs to 
miss their deadlines, it is necessary to estimate this blocking delay, TB i : the differ-
ence between the deadline associated with switch action i    +    1 and the deadline 
associated with switch action i, as follows:

    TB TD TDi i i= −+1 .

 A measure of real - time scheduler scheduling effi ciency, RT i , is the fraction of time 
between deadline i    +    1 and deadline i    –    1 that is consumed by blocking time, com-
puted as follows: 

    RT TD TD TD TDi i i i i= − −+ + −( ) /( ).1 1 1

Figure 10.4     Time - slice length of switch action i, TS i , versus number of programs switch action i, 
ni . Series 1: Microcomputer speed    =    2   GHz. Series 2: Microcomputer Speed    =    4   GHz.  

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10

ni

T
S

i (
n

a
n

o
s
e
c
o

n
d

s
)

Series 1

Series 2

Length of time slice must decrease with increasing number of programs to service

and with increasing microcomputer speed 



296 Computer, Network, Software, and Hardware Engineering with Applications

 To obtain an overall estimate of the scheduler effi ciency and blocking delay over n 
switching actions, the means of TS i , TB i , and RT i  are computed. These values are: 
0.0993, 0.1003, and 0.5057 seconds, respectively. The result suggests that with more 
time spent in being blocked, over 50%, as opposed to productive computing (time 
slice), the scheduler effi ciency should be improved. An appropriate solution would 
be a very fast microcomputer. While signifi cant blocking may still occur, the time 
lost to blocking would be signifi cantly reduced. Thus, in advance of scheduler 
implementation, it is possible to estimate the penalty incurred by using a scheduling 
policy that assigns time slices equal to the deadline requirements. 

 The logic of time slicing in generalized computing is developed in Figure  10.5  
along with the real - time system scheduling.   

 PD i

Figure 10.5     Time - slice process. TS i , length of time slice for switch action i; n i , number of 
programs allocated time slices as a result of switch operation i; NI i , number of instructions executed 
during time TS i ; CR, microcomputer clock rate.  
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MEMORY MANAGEMENT 

 If all the memory requirements of all the programs that an OS must manage could 
fi t into the main memory, there would be no need for memory management. However, 
as the size of programs continues to grow due to increasing user requirements, 
memory requirements expand exponentially. Thus, memory management has become 
a major component of contemporary OSs. This section contains an important quan-
titative treatment of memory management that is missing from the mostly qualitative 
coverage of OS texts. Consider the following defi nitions of memory management, 
as related to switching actions, which trigger  memory accesses:

   M: size of main memory (e.g., RAM) that is required by programs  

  P: fi xed page size used in memory accesses triggered by switch operations, 
where a page is a subset of M, designed to allow only the instructions and 
data that are required for a given program ’ s memory requirement to be a 
resident in M. This concept permits multiple processes, each of which has 
memory requirements, to be active at the same time. Note that the use of 
fi xed size pages does not utilize memory as effi ciently as variable size pages 
(i.e., wasted space when a page does not fi t in M). However, because variable 
size pages are diffi cult to implement, OS designers opt for fi xed size pages.  

  N: number of page transfers from secondary storage to M required by a pro-
gram’ s operations, triggered by switch action i:

    N M/P= .

  PT: total paging time generated by n switching actions (n programs): 

    PT T N T M Pi

i

n

i

i

n

= =
= =

∑ ∑
1 1

( )( / ),

  where T i  is the time of switch action i (i.e., page transfer) and PT i     =    (T i )(M/P) 
is the page transfer time per single program (i.e., switch action i).  

  PR: paging rate PR    =    1/PT  

  C: page cost C    =    P * c, where c is the cost per megabyte    

 Now, our objective is to achieve a relatively high benefi t – cost ratio, BC, consistent 
with minimizing the page transfer time per single program. Doing this provides a 
reasonable balance between BC and performance:

    BC PR/ P c= ∗( ).

 Figures  10.6  and  10.7  show how this balance is achieved, wherein Figure  10.6  docu-
ments the minimum single program page transfer time and corresponding page size. 
Then this information is used in Figure  10.7  to identify the  “ reasonable balance ”
BC. Last, Figure  10.8  provides the reader with a pictorial view of the mechanics of 
memory management.    
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Figure 10.7     Paging benefi t – cost ratio BC versus page size P.  
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Figure 10.6     Page transfer time for single program (switch action) PT i  versus page size P.  
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DEADLOCK ANALYSIS AND PREVENTION 

 A deadlock is a situation in which two computer programs sharing the same resource 
are preventing each other from accessing the resource, resulting in both programs 
ceasing to function. 

 The earliest computer OSs ran only one program at a time. All of the resources 
of the system were available to this one program. Later, OSs ran multiple programs 
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Figure 10.8     Paging operation.  
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at once, interleaving them. Programs were required to specify in advance what 
resources they needed so that they could avoid confl icts with other programs running 
at the same time. Eventually some OSs offered dynamic allocation of resources. 
Programs could request further allocations of resources after they had begun running. 
This led to the problem of the deadlock. Here is the simplest example:

  Program 1 requests resource A and receives it.  

  Program 2 requests resource B and receives it.  

  Program 1 requests resource B and is queued up, pending the release of B.  

  Program 2 requests resource A and is queued up, pending the release of A.    

 Now, neither program can proceed until the other program releases a resource. The 
OS cannot know what action to take. At this point, the only alternative is to abort 
(stop) one of the programs. Learning to deal with deadlocks has had a major impact 
on the development of OSs. A solution to the deadlock problem is to allocate all the 
resources the program needs to complete its processing  [REI04] . While this solution 
may prevent other programs from executing for a prolonged period of time, it does 
have the advantages of being relatively simple to implement, thus avoiding program 
failures, and of guaranteeing that at least one program will run to completion. Pre-
venting deadlock is diffi cult if the OS allows for programs to execute concurrently. 
Note that this does not mean simultaneous execution; rather, it refers to two or more 
programs executing during a period of time allocated by the scheduler. 
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 It is possible to estimate the probability, PD i , of deadlock in a concurrent com-
puting environment, when switch action i triggers execution of program i. The fi rst 
factor that governs this probability is the probability of N i , the number of computer 
resources (e.g., main memory) that are concurrently invoked by switch action i, 
related to the total number of resources, N. Thus, this probability is Ni/N. 

 The second factor that must be considered is the probability of n i  programs 
being invoked concurrently by switch action i, related to the total number of pro-
grams, n, invoked over all switch actions. Thus, this probability is:

    

n

n

i

i

i

n

=
∑

1

.

 The third and last factor is the number of complete computer systems (i.e., processor, 
memory, and all peripheral devices), N s . The probability of deadlock is inversely 
proportional to N s  because the greater the number of computer systems, the lower 
the resource confl icts that cause deadlocks. Putting these factors together, the prob-
ability of deadlock is estimated as follows:

    PD N N
n

n

Ni i
i

i

i

n s= ( ) ⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
∑

/ * / .

1

 As we would expect, Figure  10.9  shows that the probability of deadlock increases 
with the number of concurrent programs and decreases with the number of available 
computer systems. Thus, this type of estimate is useful for planning resource utili-
zation to avoid deadlocks: moderate concurrency coupled with the availability of 
several computer systems.    

DISTRIBUTED OSS

 The development of distributed OSs was partly motivated by a desire to escape from 
the limitations of centralized OSs, which has the disadvantage of centralizing 
resource allocation management, such as memory management, with attendant 
failure vulnerability (i.e., single point of failure) and lowered performance (i.e., 
slowdown caused by all programs competing for the attention of an OS function, 
for example, a scheduler). Hence, the distributed OS was developed, which distrib-
utes the processing load across processing elements  [THU79] . These processing 
elements have their own interconnected memory and I/O units, thus achieving 
modularity of design  [THU79] . The performance penalty for achieving greater 
autonomy of resource management is the time delay incurred when elements com-
municate via messages. Also, distributed systems virtually eliminate deadlocks by 
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virtue of using several autonomous computing elements, each equipped with all the 
resources needed to execute several program concurrently.  

VIRTUAL OSS

 Virtualization enables installation and running of multiple virtual machines on the 
same computer system. The OS that communicates directly with the hardware is 
known as the host OS, whereas virtual OSs have all the features of a real OS, but 
they run on virtual machines inside the host OS. A virtual machine is separated from 
the host computer hardware and it runs in emulation mode (i.e., software emulates 
hardware operations). The performance of a virtual OS running on the same com-
puter system as the host OS depends on the performance of the host OS  [MAR10] . 
The benefi t of virtual OSs is the isolation that they provide from faults occurring in 
other virtual OSs and in the host OS. Thus, a high degree of reliability can be 
achieved. With virtual OSs based on time - slice allocation, during which time a given 
virtual OS has exclusive use of hardware resources, performance improvements ca 
also be achieved.  

SUMMARY

 The reader has been shown that it is important to estimate OS performance and reliability in 
advance of acquiring these systems by simulating the operating conditions under which an 

Figure 10.9     Probability of deadlock by switch action i, PD i , versus number of concurrent programs 
executing by switch action i, n i . Series 1: number of computer systems    =    1. Series 2: number of 
computer systems    =    2. Series 3: number of computer systems    =    3.  
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OS would function. While the actual performance and reliability may differ from the esti-
mates, nevertheless, statistical confi dence intervals can bound the estimates such that devia-
tions in operation from the estimates are very unlikely. Thus, the engineer who designs 
systems, of which the OS is a part, can anticipate OS performance and reliability in advance 
of committing time, effort, and funds to system implementation.

Question for the Reader:  What OS characteristics would be appropriate for a 
computer system that is to control space fl ights?  

Answer:  It should have the characteristics of a real - time OS, meaning that it is 
imperative to meet deadlines (e.g., meeting launch schedule) by allocating 
time slices to programs in accordance with the logic shown in Figure  10.5 .     
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Chapter 11 

Software Reliability 
and Safety 

H aving laid a foundation of reliability principles in Chapter  8 , the reader is now prepared 
to study important applications of reliability, such as the risk to system safety of unreliability. 
Thus, the objective of this chapter is to develop and illustrate a software reliability risk profi le 
that supports system safety. Understand that there is more to safety than reliability. However, 
it is clear that achieving reliability goals will support safety. The problem to be addressed is 
the development and analysis of a profi le of software reliability risk metrics designed to 
measure the risk of software not  meeting requirements with respect to reliability, time to 
failure, and remaining failures. If these goals are not achieved, catastrophic failures could 
occur that would jeopardize the mission. This problem is important because while there are 
many papers and texts about various reliability prediction models, there is inadequate attention 
to evaluating and responding to the risk to the mission of predictions that fail to achieve reli-
ability goals.    

RISK EVALUATION 

 During project development, risk is any threat to the development and delivery of 
a reliable product. The primary goal of software developers is the production of 
reliable systems that meet the needs of the user. To meet the goal of reliable software, 
developers focus on particular risks, including reliability risks  [GOT01] . Risk evalu-
ation is performed because the operation of software may not go according to plan. 
Risk evaluation is essential for spacecraft software. Spacecraft software is particu-
larly critical, because its failure can directly jeopardize the mission (e.g., software ’ s 
role in Ariane V ’ s demise  [ARI96] , and as the most probable cause of loss of the 
Mars Polar Lander  [JPL00] ). Thus, it is important to develop metrics that can quan-
tify risk and to consider the consequences of software operations that deviate from 
plans  [CHI96] . 
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 First, I defi ne risk as used in the analysis: Software risk is a measure of the 
probability that faults and failures will occur in the development of software  [CHI94] . 
Thus, you can see that risk is related to reliability. Since testing is a key element of 
project development, the objective is to minimize the probability of reliability risk 
by testing the software to the extent that the predicted reliability exceeds the reli-
ability goal during operation. 

 Then, I posit questions from the user ’ s perspective related to concerns about 
risk.

 What are the questions users might ask about the risk of using their software? 
Here are some of the major concerns:

   Will the software satisfy my reliability goals?  

  Will the software operate without failure during my planned mission?  

  Will there be residual faults and failures after testing that would jeopardize the 
mission?

  The risk evaluation process focuses on these concerns.    

 To provide for the evaluation of risk, each of the risk metrics must have a goal. 
These goals are the following:

Reliability .      Predicted reliability must exceed  specifi ed reliability  for the planned 
duration of the mission.  

Time to Failure .      Predicted time to failure must exceed the planned  duration  of 
the mission.  

Remaining Failures .      Predicted remaining failures must be  less  than a specifi ed 
number of failures.    

 In addition, the  test time  when remaining failures have been reduced to an acceptable 
value is identifi ed. 

 The consequences of not achieving these goals are the following: required reli-
ability is not attained during a mission; the software fails during a mission because 
the time to failure is too short; and residual faults in the software lead to failures 
during a mission. 

 In addition to specifying the goals, the degree of risk computed by the risk 
metrics is quantifi ed. In order to quantify risk, reliability prediction equations are 
developed. These equations and the corresponding risk metrics use National Aero-
nautics and Space Administration (NASA) Space Shuttle fl ight software failure data, 
related to orbital trajectory calculations. Because the Shuttle is a safety critical 
system, using failure data from this system is appropriate for illustrating modeling 
for achieving high reliability goals. A number of plots are made showing how, for 
example, risk varies with test time. If the plots indicate that the degree of risk would 
endanger the safety of the mission, corrective action is taken, for example, predict 
the amount of test time that would be required to reduce risk and achieve reliability 
goals.
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OBJECTIVE

 My objective is to develop and illustrate a software reliability risk profi le that sup-
ports reducing uncertainty in achieving user reliability goals  [GUP08] . The motiva-
tion is to address this aspect of risk that needs more attention. To illustrate, consider 
the following list of risks as presented in a research paper  [ROP00] :  

  scheduling and timing risks,  

  system functionality risks,  

  subcontracting risks,  

  requirement management risks,  

  resource usage and performance risks, and  

  personnel management risks.    

 I wonder what happened to reliability risk! Therefore, I am motivated to develop 
the following reliability risk criteria:

Criterion 1 .      The reliability R(t s ) predicted to be achieved for test time t s  must 
exceed the specifi ed reliability R. The concept is that we must have confi -
dence that the software satisfi es reliability goals before it is released for 
operational usage. The specifi ed reliability is made an increasing function of 
test time based on the premise that the reliability goal should increase as 
more faults are corrected with increased test time. 

 The risk of Criterion 1 is measured by:

    Risk R R t /R R t /Rs s1 1= − = −( ( )) ( ( ) ).

 If R(t s )    <    R, the risk is positive and undesirable; otherwise, it is zero or 
negative and favorable.  

Criterion 2 .      The predicted time to failure T must exceed mission duration t m . 
The concept is that we want to be assured that that the mission can be com-
pleted with no failures. 

 The risk of Criterion 2 is measured by:

    Risk t T /t T/tm m m2 1= − = −( ) ( ).

 If T    <    t m , the risk is positive and undesirable; otherwise, it is zero or 
negative and favorable.  

Criterion 3 .      The failures predicted to remain after the software is tested for a 
time t s , r(t s ), must  not  exceed r c , where r c  is a specifi ed critical value. It is 
also important that no residual failures remain when the software is released 
for operational usage. 

 The risk of Criterion 3 is measured by:

    Risk r r t /r r t /rc s c s c3 1= − = −( ( )) ( ( ) ).
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 If r(t s )    >    r c , the risk is negative and undesirable; otherwise, it is zero or posi-
tive and desirable.     

SOFTWARE RELIABILITY PROFILE IMPLEMENTATION 

 Now, each of the profi le criterions will be implemented, using the NASA Space 
Shuttle Operational Increment OI8 (software release) as the source of failure data. 
These data are shown in Table  11.1 . In order to implement the profi le, the prediction 
equations of the  Schneidewind software reliability model  ( SSRM )  [SCH97, IEE08]  
will be used. Other extant models  [LYU96]  could also be used.   

Criterion 1 (Reliability Risk) 

 Equation  11.1  is used to implement Criterion 1, where  α ,  β , and s are parameters 
related to failure rate, estimated from the data in the Table  11.1 . The long test times 
are due to the fact that the software for a given release (e.g., OI8A) is included in 
subsequent releases and undergoes additional testing in the combined software con-
fi guration. The procedure is to predict reliability R(t s ) as a function of test time t s
and compare it with specifi ed reliability, R, in order to predict Risk 1. If Risk 
1    =    1    –    (R(t s )/R is positive, the prediction is less than the required reliability, and 
there is a risk of mission failure; otherwise, Risk 1 predicts a safe mission. In addi-
tion, note that predicted reliability increases with increasing test time in accordance 
with the concept that additional testing will remove additional faults.

    R t es

e ets s ts s

( ) ,
[ ]( ) ( )

=
− −⎡

⎣⎢
⎤
⎦⎥

− − + − − +α
β

β β1 2
    (11.1)  

Table 11.1    NASA Space Shuttle OI8A Failure Data 

   Test time (days)     Number of failures     Cumulative failures  

  56    1    1  
  104    1    2  
  119    1    3  
  402    1    4  
  412    1    5  
  3077    1    6  
  4896    1    7  

  Model parameters  
  Alpha    Beta    Xs – 1  
  0.8747    0.0650    0  
  Initial failure rate    Rate of change of failure rate    Number of failures in range 

1, s – 1  
  s    =    2    Starting time for parameter estimation  
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  where  α ,  β , and s are failure rate parameters estimated from the Shuttle failure data 
in Table  11.1 . 

 The reason for the low failure count is that the Shuttle software is highly 
reliable.

 It is important to assess risk related to requirements early in the software devel-
opment cycle so that corrective action can be taken before reliability problems are 
frozen in the software  [APP05] . In addition, testing should be conducted as soon as 
possible to provide a quantitative  assessment of risk suffi ciently early to take cor-
rective action, such as looking for potential software errors that could be generated 
by risky requirements. Risk - based reliability prediction is accomplished by specify-
ing reliability R as a function of mission duration t m , based on the premise that higher 
values of specifi ed reliability should correspond to higher values of planned mission 
duration. Then, the software is tested to see how well predicted reliability matches 
the specifi ed values, as shown in Figure  11.1 .   

 Just predicting reliability does not tell the whole story about Criterion 1. We are 
also interested in how much test time is likely to be required to achieve the reliability 
goal. Thus, Equation  11.2  is produced by substituting R for R(t s ) in Equation  11.1  
and solving for t s . Equation  11.2  is used to predict the test time t s  required to achieve 
the reliability requirement R, using the Shuttle continuous software testing regimen 
in the Shuttle simulators and in fl ight, as shown in Figure  11.2 . In addition, in order 
to ensure a safe mission, it is required that testing continue for a time t s     >    t m . That 
is, testing under simulated operational conditions should continue for a duration 
longer than the planned mission duration:

Figure 11.1     NASA Space Shuttle (OI8A) (SSRM): predicted reliability R(t s ) and specifi ed 
reliability R versus test time t s . Series 1: R(t s ). Series 2: Reliability risk. Series 3: R.  
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 The fi rst step in the procedure for evaluating reliability risk is to plot Equation  11.1  
as a function of test time and the specifi ed reliability R in accordance with Risk 1. 
The purpose is to see whether the reliability objective has been achieved. As can be 
seen in Figure  11.1 , it is achieved once there has been suffi cient testing at 104 days 
when faults have been removed to the extent that the reliability goal can be achieved. 
Once this has occurred, missions can be launched for durations t m     <    t s     =    104 days. 

 The second step is to see how fast risk can be decreased by achieving higher 
reliability by increasing test time. Figure  11.1  attests to the strategy of achieving the 
reliability risk goal by increasing test time. 

 The third step is evaluate the cost of testing, using test time as the surrogate for 
cost, to identify the value of achieved reliability where the cost becomes prohibitive. 
We see in Figure  11.2  that R    >    0.9800 would result in exorbitant cost of testing (i.e., 
relatively large test times). Thus R    =    0.9800, requiring t s     =    58 days of test time, is 
a reasonable objective that balances safety against cost.  

Criterion 2 (Time to Failure Risk) 

 To address the risk posed by this criterion, predict the time to next failure as a 
function of given number of cumulative failures  F(T), and relate it to Risk 2: 

Figure 11.2     NASA space shuttle (OI8A): SSRM: predicted time required to achieve specifi ed 
reliability R, t s  versus R.  
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RT    =    (t m     –    (T)/t m     =    1    –    (T)/t m ) to see which mission durations constitute the highest 
risk. To do this, the time to next failure(s) is needed in Equation  11.3   [SCH97] :
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  where F is the given number of  cumulative failures  and X s– 1  is the number of failures 
in the range 1, s – 1. Figure  11.3  demonstrates that all mission durations are safe to 
fl y because in all cases, T    >    t m , where the range of t m     =    1, 13 days.  

Criterion 3 (Remaining Failures Risk) 

 This criterion uses Equation  11.4   [SCH97]  to predict the number of failures remain-
ing, r(t s ), after the software has been tested for a time t s . This prediction provides an 
assessment of residual faults in the software as a function of test time, leading to 
the identifi cation of test time required to predict the risk associated with the remain-
ing failures criterion. This time is predicted as 41 days in Figure  11.4  for a criterion 
of one remaining failure. That is, a minimum test time of 41 days is required to 
ensure that the remaining failures criterion is satisfi ed:

    r t t ss s( ) exp .= − − −( )( )( )[ ]α
β

β 1     (11.4)  

Figure 11.3     NASA space shuttle (OI8A) predicted time to failure, T, and time to failure risk, RT, 
versus number of failures F. Series 1: T. Series 2: RT. Series 3: Mission duration: t m  (days).  
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Question for Reader:  Why is the remaining failures criterion zero remaining 
failures rather than one?    

Answer:  As can be seen in Figure  11.4 , predicted remaining failures decreases 
asymptotically with increasing test time. Thus, it would require an infi nite 
amount of test time to achieve zero remaining failures. In addition, from a 
practical standpoint, no software of any consequence is error free. If it 
appears error free because no errors have been experienced, either the 
program has not been executed long enough or the code where the errors are 
hiding has not been executed! Thus, a criterion of  “ one ”  is a practical goal.     

Summary of Prediction Results 

 The purpose of Table  11.2  is to assemble the prediction results corresponding to the 
risk criteria in one place so that the summary results can be identifi ed. Based on the 
results, the following are the key fi ndings:  

Figure 11.4     SSRM: predicted remaining failures r(t s ) versus test time t s .  
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Table 11.2    Summary of Risk Prediction Results 

   Risk criterion     Figure     Result  

  Reliability    Figure 11.1    R(t s )    >    R    =    0.9797 at t s     =    104 days  
  Reliability    Figure 11.2    Cost of testing high for t s     >    58 days and R    >    0.9800  
  Time to failure    Figure 11.3    T    >    t m  for all values of t m
  Remaining failures    Figure 11.4    Safe region: t s     >    41 days for r c     =    1  

   t s , test time; R(t s ), predicted reliability; R, specifi ed reliability; T, predicted time to failure; t m , mission 
duration; r c , remaining failures criterion.   
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  Reliability requirement is achieved at R    =    0.9797 at t s     =    104 days.    

Cost - effective  predicted reliability is approximately 0.9800.  

  Test software for a minimum of 41 days to achieve the remaining failures 
requirement.

  Test for a maximum of 58 days to avoid excessive cost of testing.  

  All planned mission durations are safe.    

 In summary, one must test for 104 days to achieve the reliability objective, even 
though it is not cost - effective. This decision gives a higher priority to safety than 
to cost.  

Risk Control 

 It is insuffi cient to predict risk. In addition, risk control and mitigation is necessary 
for developing and implementing risk resolution plans (i.e., action to take if risk 
goal not achieved), monitoring risk status (measuring current risk and comparing it 
with planned risk), and correcting deviations from the plan  [KHA09 , RUZ03] . For 
example, there could be errors in predicting reliability, time to failure, and remaining 
failures, resulting in inaccurate assessments of the conditions for safe missions. 
Monitoring risk involves recording the actual future time to failure  during test and 
operation and comparing with predicted values. Then the  mean relative error  ( MRE ) 
is computed. For example, an MRE in excess of ± 20% could be considered justifi ca-
tion for discarding the current model and evaluating others  [LYU96] . Risk mitigation 
can be implemented by refi ning predictions to improve their accuracy by using 
additional failure data generated from future tests and operations, designed to 
improve the accuracy of risk criteria computations. 

 Another consideration in risk control is mapping failures to their causes  [FEA04] . 
To illustrate, the failures recorded for the NASA Space Shuttle software release 
OI8A in Table  11.1  spans the range of category 1, mission - threatening failures, to 
category 3, minor failures; workarounds are available for the latter. Thus, in the 
examples, since reliability predictions are based on these data, the predictions are 
representative  of  typical  failure scenarios (e.g.,  time to failure  predictions can 
produce a mix of category 1 – 3  time to failure  predictions).   

CONCLUSIONS

 It is benefi cial for risk analysis to focus on reliability because, after all, if expected 
reliability cannot be achieved, the software would be useless no matter what other 
qualities it may possess. Mission success can be measured by predicting the extent 
to which predicted reliability exceeds specifi ed reliability. Other reliability - related 
metrics are time to failure  and  remaining failures . We would have confi dence in the 
safety of the mission if predicted time to failure  exceeds  planned mission duration
and predicted remaining failures  are less than a  specifi ed critical value.
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Chapter 12

Integration of Hardware and 
Software Reliability 

T he objective of this chapter is to integrate hardware and software into a unifi ed reliability 
model by using several reliability models in order to identify an appropriate integrated model, 
supported by failure data from several real - world projects. Several system confi gurations are 
evaluated, including series, parallel, and series – parallel. The Weibull distribution, because of 
its ability to model various failure rate patterns, is useful for identifying the reliability proper-
ties of each of the confi gurations. A reliability benefi t – cost ratio, with cost based on the 
number of series and parallel components, is useful for evaluating model predictions. As a 
by - product of the modeling process, several reliability relationships are revealed that might 
be intuitively obvious, but are dramatized by quantitative analysis. For example, increasing 
the degree of hardware parallelism will not produce the desired reliability if hardware and 
software failure rates are excessive. In this situation, the only recourse to achieving acceptable 
reliability is testing to correct faults. In addition, in a component - based system, component 
failure rates must be extremely low in order to prevent the failure of even a single component 
that could bring the system down. This chapter uses several reliability principles covered in 
Chapter  8 . The reader may want to refer to Chapter  8  because topics such as series and parallel 
reliability confi gurations and Poisson and Weibull distributions are used in this chapter.    

INTRODUCTION

Objectives

 The primary objective is to show the reader how to integrate hardware and software 
reliability into a single system reliability model. The reason for this is typically, 
hardware and software are treated as disparate entities in reliability analysis, when 
in fact they are intimately related. For example, an error in software causes a divide 
overfl ow, leading to a hardware divide overfl ow interrupt, which, in the user ’ s view, 

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F. 
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is a system failure. A second objective is to evaluate various software – hardware 
confi gurations such as series, series – parallel, and pure parallel in relation to cost, so 
that the reader can see which confi guration produces the most favorable reliability 
benefi t – cost (BC) relationship. Third, the analysis is supported with failure data from 
real - world projects in order to see how these data affect efforts to achieve high 
system reliability by using redundancy, for example. 

 A factor in achieving high reliability is that the quality of a product design is 
dependent on the quality of the process in which it is inserted. Changes in process 
evolve and this evolution should be taken into account when designing a product 
for high reliability  [BON98] . For example, achievable product reliability is a func-
tion of software testing methodologies (e.g., testing by software function versus 
testing by program path). While this is true, process is beyond the scope of this 
chapter because there is no information available on the relationship between product 
and process quality.  

Defi nitions 

 As an aid in understanding the development of reliability models, the following 
terms are defi ned:

Series Component  (x i ).      Part of a series, or series – parallel, confi gured computer 
system (see Fig.  12.1 ), hardware or software  [MUS87] .    

Parallel Component  (x j )  .      Part of a parallel, or series – parallel, confi gured com-
puter system (see Fig.  12.1 ), hardware or software  [MUS87] .  

  Operational Mode.      The operating characteristics of a component  [MUS87] . 

 Operational modes can have different requirements and reliabilities  [MUS87] . 

 Requirements include both functional (e.g., performance) and nonfunctional 
(e.g., reliability) specifi cations  [MUS87] .  

Figure 12.1     Series – parallel reliability.  
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  Concurrent System.      Comprised of components that execute during the same 
scheduled operational time, but not simultaneously (e.g., computer and appli-
cations software)  [MUS87] .  

  Sequential System.      Comprised of components that execute at different sched-
uled operational times (e.g., input data component execution followed by 
database management system execution)  [MUS87] .     

Functional Logic 

 Reliability is related to the functions that are performed in a system. For example, 
if the output S in Figure  12.1  of a series – parallel hardware and software system is 
“ 1, ”  it means that the input has been received and that system reliability of this event 
is R S . The success of the input received function in Figure  12.1  of a series – parallel 
hardware and software system is given in Equation  12.1 :

    S x x x x x xj p i s= + + + +( )( ^ ^ ^ ^ ),1 1… … … …     (12.1)  

  where x j  and x i     =    0 or 1.   

RELIABILITY LOGIC 

 Reliability logic refers to the ways in which reliability is computed for confi gurations 
of series, parallel, and series – parallel hardware and software components. This 
entails considering the way components are connected, as in Figure  12.1 , which 
provides the logic for the number of terms and the operators (OR, AND) in the reli-
ability equations. In addition, the reliability models for individual components (e.g., 
exponential, Weibull) are integrated with the connection logic. 

Series–Parallel Confi guration 

 In viewing the following reliability equations, refer to Figure  12.1  for a pictorial 
view of a series – parallel confi guration, where components can execute sequentially 
(inputs followed by interrupt and clock transition) or concurrently (interrupt and 
clock transition during scheduled operating time). 

 The reliability of a series confi guration with s components, each with reliability 
Ri , is computed in Equation  12.2 :

    R Rs i

i

s

=
=

∏
1

.     (12.2)   

 The reliability of a parallel confi guration with p components, each with reliability 
Rj , is computed in Equation  12.3 . The rationale of this equation is that parallel con-
fi guration reliability is equal to 1 minus the parallel confi guration  unreliability :
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 Then using Equations  12.2  and  12.3 , and assuming  series system  reliability R S , it is 
computed in Equation  12.4 :

    R R R R RS s p i

i

s

j

j

p

= =
⎛
⎝⎜

⎞
⎠⎟

− −
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

= =
∏ ∏

1 1

1 1( ) .     (12.4)   

 Assuming series system reliability provides a conservative, or worst - case, computa-
tion, with the assurance that the system reliability will be no worse than predicted 
by Equation  12.4 . 

 When the failure rate  λ  is constant mean value (i.e., exponentially distributed 
time t between failures), the reliabilities in Equations  12.2 – 12.4  are computed based 
on the exponential distribution in Equation  12.5 :

    R t e( t( ) .)= −λ     (12.5)   

 In hardware reliability, Equation  12.5  is used during the operational phase (neither 
burn - in nor wear out phases) when operating time is available  [MIC05] . This cor-
responds to the Poisson failure count model in Equation  12.6  that is used when you 
want to predict the probability of x failures occurring, with a failure rate λ , for an 
operating time t. If you set x    =    0 in Equation  12.6 , you arrive at Equation  12.5 :
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    (12.6)   

 Equation  12.6  can also be used for evaluating the effect of failure rate of various 
components on probability of failure and to identify the number of failures x when 
the probability of failure becomes negligible. The latter analysis can be used to 
advantage in determining how long to test components (i.e., terminate testing when 
x failures have occurred and their faults removed).

Question for Reader:  Can you think of an assumption that governs the struc-
ture of reliability Equations  12.2 – 12.4 ?  

Answer:  There is the assumption of independence of faults that cause failures, 
thus allowing component reliabilities to be multiplied. However, this may 
not be the cases because faults can be dependent. For example, one fault 
can mask another. The masked fault cannot be detected until the masking 
fault is removed  [LYU96] . In such cases, the faults and failures and resul-
tant component reliabilities are not independent. However, by multiplying 
component reliabilities, the salvation from this problem is that the assum-
ption of independence leads to lower, and, hence, conservative reliability 
predictions.     
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Reliability When n Out of N Components Fail 

 In the preceding discussion of reliability, notice that component reliability is not 
taken into account — computations of reliability are at the system level. If N, the 
number of components in a system, is available, you can use Equation  12.7  — the 
binomial distribution — to predict the system reliability R S , based on n of the N 
components operating without  failure, each with a reliability R. The component 
reliabilities, in turn, can be formulated on an exponentially distributed operating time 
basis by using Equation  12.8 :

    R
N

n N n
S =

−
⎛
⎝⎜

⎞
⎠⎟ ( ) −( )−!

!( )!
( ) ,( )R Rn N n1     (12.7)  

    where R e t= −( ).λ     (12.8)   

 To predict the operating time t corresponding to specifi ed reliability R and mean 
failure rate λ , use Equation  12.9 , which is obtained by solving Equation  12.8  for t. 
This equation is useful for predicting the duration of operating time that is feasible 
for an application with a specifi ed reliability. If the time does not satisfy the opera-
tional requirement, it means that the specifi ed reliability would have to be reduced 
to meet the requirement: 

    t R /= −( log ) .λ     (12.9)   

 The likelihood of processor failure during a long - running application that uses mul-
tiple processors increases with the number of processors, and the failure of a single 
processor can crash the entire system. Detecting faults and recovering from faults 
is thus a major concern in using these systems  [CAR95] . On the one hand, based 
on the reliability of individual components, R    =    e (–λ t) , reliability will decrease for a 
long - running application. On the other hand, if each processor (component) runs the 
same application, system reliability R S  in Equation  12.7  will increase as the number 
of processors, n, that do not  fail increases. The net effect on system reliability 
depends on values of failure rate, λ , operating time, t, and n.  

Cost Considerations 

 You should not evaluate the reliability of various computer confi gurations ignoring 
cost. For example, in confi gurations that involve parallel redundancy in order to 
increase reliability, there would be additional cost incurred compared with a series 
confi guration. The penalty for using parallelism to achieve reliability improvement 
is the additional processors that are required. For a serial – parallel confi guration 
comprised of one processor to communicate with s serial components (e.g., input –
 output, memory) and p processors to communicate with p parallel components, the 
total number of processors is c    =    p    +    1. Since the cost of processors would be equal 
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Table 12.1    Disk Failure Rates (The Computer Failure Data Repository [ CFDR ], Carnegie 
Mellon University) 

               Failures per day per disk  

  Type of cluster  
  From 
day    To day    Days    Failures  

  Number 
of disks  

  Failure 
rate

                  T     f     d      λ

  High performance    37,104    38,838    1734    1263    3406    0.000214  
  High performance    37,987    38,899    912    14    520    0.000030  
  Internet server    38,000    38,031    31    465    26734    0.000561  
  Internet server    38,231    38,808    577    667    39039    0.000030  
  Internet server    38,353    38,687    334    346    3734    0.000277  

for a given confi guration, the cost is proportional to c, so that the benefi t of increased 
system reliability R S  can be related to the cost c by the BC in Equation  12.10 :

    BC R /c R / pS S= = +( ).1     (12.10)   

 If the confi guration is pure series, p    =    0 and c    =    1; if it is pure parallel, c    =    p    =    N, 
number of components. A cautionary note is that since c    =    1 for the series confi gura-
tion, BC    =    R S  would look very favorable. However, the system reliability R S  must 
also satisfy the specifi ed reliability requirement R. That is, R S     ≥    R. Thus, fi rst, the 
reliability requirement must be satisfi ed. Then, BC can be computed.   

RELIABILITY ANALYSIS RESULTS 

Series–Parallel Confi gurations 

 The disk failure rates used in the analysis of series – parallel confi gurations are shown 
in Table  12.1 .   

 Figure  12.2  shows that only the pure parallel confi guration satisfi es the reli-
ability requirement. While the reliability of the series confi guration is poor, it does 
provide the worst case, so that you can be assured that reliability would be no worse 
than this case. Finally, you can see that the series – parallel confi guration does not 
provide a signifi cant advantage over the series confi guration.     

BC Considerations 

 Now, when the BC relationship is applied in Figure  12.3 , the superiority of the 
series confi guration for all values of operating time is evident. However, for a 
mission - critical application, operating for prolonged periods, and cost is a minor 
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Figure 12.2     Disk reliability R(t) versus operating time t. Series 1: 5 disks connected in series, 1 
processor required. Series 2: 2 disks connected in series, 3 disks connected in parallel, 4 processors 
required. Series 3: 5 disks connected in parallel, 5 processors required. Series 4: required 
reliability    =    0.9500 (only parallel confi guration satisfi es reliability requirement).  
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Figure 12.4     Disk probability of failure P(x, t) versus number of failures x. Series 1: failure 
rate    =    0.370816 failures per day. Series 2: failure rate    =    0.004271 failures per day.  
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consideration (e.g., nuclear power plant control), you would select the parallel 
confi guration.     

Probability of Failure 

 It is important to study the effects of failure rate and number of failures on probabil-
ity of failure. In addition, since testing can be expensive, you want guidance for 
determining how long to test. Both of these issues are illustrated in Figure  12.4 , 
where you can see that failure rate dramatically affects probability of failure, and at 
x    =    6 failures detected, you could stop testing.   

 Figure  12.5  uses Equation  12.9  to estimate the operating time t that can be 
achieved for specifi ed values of reliability R(t) for fi ve disk systems with different 
failure rates. You can see that t decreases with increasing R(t) and failure rate. This 
type  of fi gure could be employed to estimate the operating time that could be 
achieved for any  hardware or software component whose reliability is described by 
the exponential function.    

Component Reliability Analysis 

 Advances in multiprocessor technology have made possible the design of highly 
fl exible parallel multiprocessor memory systems, such as the Los Alamos National 
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Figure 12.5     Disk operating time t versus required reliability R(t). Series 1: failure rate    =    
0.378016 failures per day. Series 2: failure rate    =    0.013462 failures per day. Series 3: failure 
rate    =    0.005798 failures per day. Series 4: failure rate    =    0.004271 failures per day. Series 5: failure 
rate    =    0.018532 failures per day.  
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Table 12.2    Component Failure Data (Los Alamos National Laboratory ’ s  ASC  Q 
Supercomputer)

   Component 
type failure 
rate

   Memory 
failures
per hour  

   Cache 
failures
per hour  

   Parity 
failures
per hour  

   CPU 
failures
per hour  

   Hardware 
failures
per hour  

   Total failures 
per hour  

λ     0.0047    0.0061    0.0065    0.0075    0.0096    0.0127  
  Number of 
components

  N    22                  

  Operating time    t    1.00 hour              
  Operating time    t    3.50 hours              
  Operating time    t    4.50 hours              

Laboratory computer documented in Table  12.2 . High reliability is required for these 
systems because a small degradation in a component (processor or memory) can be 
catastrophic by signifi cantly lowering the overall system reliability. High reliability 
of these systems has been commonly achieved by utilizing redundancy  [CHO02] . 
Therefore, the component - based reliability relationships are investigated, including 
redundancy that applies when individual component reliabilities are predicted 
and the results put into a larger framework of generating system reliabilities. This 
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analysis is informative because you can study the effects on system reliability of 
failure rate, component reliability, operating time, and number of components that 
do not  fail. The data that were used to support this analysis are shown in Table  12.2 . 
As can be seen in Figure  12.6 , when very few components fail (i.e., n is large) and 
operating time is low, these are conditions for producing acceptable system reli-
ability (i.e., approximately 0.9000).     

 Another perspective on component reliability evaluation can be obtained by 
using the Poisson probability of failure that was introduced in Equation  12.6 , but 
this time rather than number of failures, the focus is on number of failed components 
n in Equation  12.11 :

    P n t
t e

n

n t

( , )
!

.
( )

= ( ) −λ λ
    (12.11)   

 The purpose of this examination is to determine whether there is a signifi cant prob-
ability of multiple failed components. Using the same components, failure rates, and 
operating times that were explored in Figure  12.6 , you can produce Figure  12.7 , 
revealing that for both memory and central processing unit (CPU) components, the 
probability of multiple failed components is negligible. Therefore, the prospects are 
good of achieving high reliability in this multiple component system.     

Figure 12.6     System reliability R S  versus number of components that do not fail n. Series 1: R S , 
memory failures, failure rate    =    0.0047 failures per hour, operating time t    =    1 hour, component 
reliability    =    0.9953. Series 2: R S , memory failures, failure rate    =    0.0047 failures per hour, operating 
time t    =    4.5 hours, component reliability    =    0.9790. Series 3: R S , CPU failures, failure rate    =    0.0075 
failures per hour, operating time t    =    1 hour, component reliability    =    0.9925. Series 4: R S , CPU failures, 
failure rate    =    0.0075 failures per hour, operating time t    =    4.5 hours, component reliability    =    0.9668.  
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Figure 12.7     Probability of components failing at time t, P (n, t) versus n. Series 1: P(n, t): memory 
failures, failure rate    =    0.0047 failures per hour, t    =    1 hour. Series 2: P(n, t): memory failures, failure 
rate    =    0.0047 failures per hour, t    =    4.5 hours. Series 3: P(n, t): CPU failures, failure rate    =    0.0075 
failures per hour, t    =    1 hour. Series 4: P(n, t): CPU failures, failure rate    =    0.0075 failures per hour, 
t    =    4.5 hours.  
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Assessing Reliability Model Predictive Accuracy 

 If you possessed historical  computed  reliability data for the systems tabulated in 
Tables  12.1  and  12.2 , you could compute the error between the prediction models 
and the historical reliability data in order to assess the predictive validity of the 
models. Lacking this information, you can make a qualitative assessment as follows: 
If redundancy is used to improve hardware reliability, then a model with parallelism 
is most appropriate. If the major concern is to predict worst - case reliability, the series 
model should be used. If component failure data are available, the n out of N model 
is the most appropriate. Complementing these models is the Poisson probability of 
failure model that provides an additional quality perspective by predicting the prob-
ability of a specifi ed number of failures occurring. This information can be used to 
determine how long to test (i.e., stop testing when a number of failures have been 
detected corresponding to a low value of probability of detection).   

COMBINED HARDWARE –SOFTWARE
RELIABILITY ANALYSIS 

 One approach to reduce the complexity of systems and, hence, render them suitable 
for reliability modeling is decomposition. To deal with the complexity of integrated 
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modeling, the functions of a computer system are successively divided by a func-
tional decomposition method. The decomposition of a function into subfunctions 
stops when the smallest subfunctions cannot be divided further or dividing the sub-
functions further will be of no interest. When the smallest subfunction is achieved, 
the next step is to represent the implementation of the function in terms of the hard-
ware function, software function, and some form of interaction  [PUR99] . Unfortu-
nately, this is usually diffi cult to do because the functionality information to support 
decomposition is not available. 

 The classical reliability models that considered only hardware are no longer rel-
evant. Software, its operations, and resultant failures, are at least as important as 
hardware failures. Interestingly, the author  [PUR99]  uses user - perceived reliability 
and availability data rather than data recorded against the hardware and software. This 
is a useful practice because who else is better to judge whether a system is up or down 
than the user  [WOO95] ? While you might like to use this concept, user - perceived 
reliability and availability data are generally not available for most projects. 

 Another approach is to provide strong partitioning of applications, which means 
that the boundaries among applications are well defi ned and protected so that opera-
tions of an application will neither be disrupted nor corrupted by erroneous behavior 
of another application  [RUS99] . Each application is allocated to a single partition, 
providing computational and memory resources and the means to access devices 
 [ISL06] . Strong partitioning improves the reliability of individual applications and 
the system as a whole. 

Combining Hardware and Software Reliability 

 In the case of a system with a real - time operational mode, such as the Los Alamos 
CRAY - 1 computer, performance is affected by such factors as interprocess com-
munication, sequence of operations, and processor scheduling policies. On the other 
hand, the reliability of the system is affected by random hardware and software 
failures. In the event of the failure of some components, a real - time system must 
still continue to function, and a subset of its time - critical tasks must meet the dead-
line  [LSL92] . To respond to the continuous operation requirement, one of the 
hardware– software models that will be explored provides parallel hardware redun-
dancy combined with software components in series. Note that software redundancy 
is infeasible because the same fault will reside in all copies of the software, but you 
can mitigate the risk of software failure by testing for a time to assure high reliability. 
To aid this investigation, use the example hardware and software failure data from 
the CRAY - 1 computer in Table  12.3 . These data will be used in the Weibull reliability 
model in a later section.    

System Validation 

 Validation of computer system reliability during the development of the system is 
an important activity. The validation process provides: (1) a measure of the ability 
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Table 12.3    Hardware – Software Failure Data (Los Alamos National Laboratory) 

  CRAY - 1 
reporting
period

  Total 
failures

  Hardware 
failures

  Fraction 
software
failures

  Software 
failures

  Hardware 
failure rate  

  Software 
failure rate  

   t     f     h    =    f    –    (s    *    fs)     fs     s    =    f    *    fs      λ       λ

  1    40    13.88    0.6529    26.12    0.69    1.31  
  2    38    37.51    0.0128    0.49    1.88    0.02  
  3    29    19.66    0.3219    9.34    0.98    0.47  
  4    23    19.47    0.1534    3.53    0.97    0.18  
  5    19    5.60    0.7055    13.40    0.28    0.67  
  6    15    7.90    0.4733    7.10    0.40    0.35  
  7    17    5.89    0.6533    11.11    0.29    0.56  
  8    19    10.42    0.4516    8.58    0.52    0.43  
  9    24    18.67    0.2219    5.33    0.93    0.27  

  10    25    3.80    0.8479    21.20    0.19    1.06  
  11    31    19.90    0.3581    11.10    0.99    0.56  
  12    35    24.80    0.2914    10.20    1.24    0.51  
  13    33    31.15    0.0561    1.85    1.56    0.09  
  14    34    23.62    0.3052    10.38    1.18    0.52  
  15    35    27.22    0.2224    7.78    1.36    0.39  
  16    33    22.14    0.3290    10.86    1.11    0.54  
  17    24    1.20    0.9500    22.80    0.06    1.14  
  18    28    23.07    0.1761    4.93    1.15    0.25  
  19    27    4.56    0.8313    22.44    0.23    1.12  
  20    28    1.48    0.9471    26.52    0.07    1.33  
  21    31    11.89    0.6163    19.11    0.59    0.96  
  Totals    588    333.85        254.15          

   20 days in reporting period.   

of a system to detect, locate, and recover from errors; (2) confi dence in a system 
before it is deployed; and (3) feedback during the development stage for improving 
the design and implementation of a system. Fault injection has been recognized as 
one of the best approaches for evaluating the behavior and performance of complex 
systems. There are several advantages in adopting the fault injection approach for 
evaluating these systems. These advantages include: (1) the effects of faults can be 
determined when executing programs; (2) the overhead of algorithms that are used 
to recover from faults can be evaluated; (3) the effects of  additional  faults occurring 
during the recovery process can be studied; and (4) reliability models can be refi ned 
by utilizing data, such as the distribution of faults in the hardware and software 
 [KNA95] . These methods are powerful, but in order to use them, you need access 
to software code that would allow you to do fault injection. 
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 In real - time systems, hardware and software interact to accomplish a specifi c 
task. The presence of both hardware and software causes diffi culties in validating 
real - time systems. A common obstacle is the lack of formal methods (e.g., correct-
ness proofs) that can be used to validate both hardware and software  [HSI99] . 
However, a method that you can apply to both hardware and software is  predictive 
validity  (e.g.,  mean squared error  [ MSE ] between actual [historical] and predicted 
reliability  [LYU96] ). MSE has the advantageous property that it effectively measures 
the variance between actual and predicted values and is useful for comparing the 
prediction accuracy of various reliability models.  

Structure of a Software Application 

 The structure of a software application may be defi ned as a collection of components 
comprising the application and the interactions among the components. A component 
could be a single function, a class, an object, or a collection of these. The interac-
tions among the components may be procedure calls, client – server protocols, links 
between distributed databases, or synchronous and asynchronous communication 
among components  [GOK05] . These software components are integrated with hard-
ware components to form a unifi ed suite of components that can be subjected to 
reliability evaluation. 

 Reliability evaluation is useful and important in designing computer systems, 
while at the same time it is also diffi cult. The diffi culty becomes signifi cant when 
the model combines hardware, software, and their interactions, due to the difference 
in failure behavior between hardware and software  [PUR99] . Despite this diffi culty, 
the analysis now shifts to investigate one of the major objectives: the possibility of 
developing a unifi ed hardware – software reliability model (i.e., a system reliability 
model not limited to hardware or  software).  

Hardware and Software Failure Relationships 

 You can consider hardware and software failure relationships to be based on the 
following reasoning: It is extremely unlikely that hardware and software failures 
would occur simultaneously. If they did, it would be a coincidence rather than cause 
and effect. For example, an error in the software that causes the program to take a 
wrong branch, would not, in itself, result in a hardware failure. Another example is 
when there is a memory failure and, subsequently, the software  “ fails ”  in attempting 
to access the defective memory. But the failure should be charged to the hardware 
and not to the software. Now, it is possible for a permanent hardware failure to 
render the software inoperable  [KAN96] , but this is not the fault of the software. 
The failure should be charged against the hardware. The consequence is that the 
availability  of the software would be decreased.  
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Assessing Predictive Validity 

 In order to assess predictive validity of hardware, software, and system reliability 
predictions, the corresponding actual (i.e., historical) reliability computations are 
required in Equations  12.12 – 12.14 , respectively, over the scheduled operating time 
T. Once these values have been computed, mean relative error, with respect to the 
corresponding predictions, can be computed:

    
R

h

h
ah

t

t

t

T= −

=
∑

1

1

,
    (12.12),  

  where h t  is the actual number of hardware failures;

    
R

s

s
as

t

t

t

T= −

=
∑

1

1

,
    (12.13),  

  where s t  is the actual number of software failures;
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  where f t  is the actual number of system failures.  

Weibull Reliability Model 

 Due to the great variation in both hardware and software failure counts in Table 
 12.3 , a fl exible failure function is needed to represent these phenomena. One of the 
most widely used distributions for reliability is the Weibull failure distribution 
 [SHO83] . It has the fl exibility of allowing for constant, increasing, and decreasing 
failure rate functions. Thus, given the variability in hardware and software failure 
rates in Table  12.3 , it is a good candidate for predicting the reliability of the CRAY - 1 
computer. The reliability R(t) at operating time t is given in Equation  12.15 , where 
λ  is the failure rate and  α  is the shape parameter (i.e., the parameter that governs 
the shape of the reliability function)  [LLO62] :

    R t e t( ) .( )= − λ α     (12.15)   

 The parameters of the Weibull distribution are estimated according to Lloyd and 
Lipow  [LLO62]  in Equations  12.16  and  12.17 , where n is the number of failure 
counts:
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 However, trying to solve Equations  12.16  and  12.17  is not practical because in order 
to solve for λ  in Equation  12.16 ,  α  is required, but to solve for  α  in Equation  12.17 , 
λ  is required. A practical approach is to use the reliability function, Equation  12.15 , 
to solve for α , given values of  λ  and R(t), for a specifi ed value of t. Now, solving 
Equation  12.15  for  α  results in Equation  12.18 :

    α
λ
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log( ( ))
.

R t
    (12.18)   

 However, notice the constraint on the maximum value of R(t) that can be achieved 
to avoid trying to take the log of a negative quantity: R(t)    <    e –λ  because log R(t)    =     λ . 
Therefore, set the limit on R(t) according to R(t)    <    e –λ  and substitute this value in 
Equation  12.18  and solve for  α . Since the hardware and software failure rates  λ  and 
failure time t (reporting period) are given in Table  12.3 , you have all the information 
needed to estimate the parameter α .  

Weibull Model Results 

 If Equation  12.15  does not yield adequate hardware – software predictive reliability, 
compared with actual hardware – software reliability, parallel and combined series –
 parallel reliability models can be brought into play to provide hardware redundancy, 
thereby increasing both hardware and system reliability. Figure  12.7  shows these 
concepts, where predicted system reliability is considerably below actual system 
reliability and there is a large MSE difference between the two reliabilities. Using 
fi ve hardware components in parallel, with software in series, while signifi cantly 
reducing the prediction error, does not result in predicted system reliability approxi-
mating actual reliability. Therefore, in order to raise reliabilities to desirable levels, 
hardware, software, and system failure rates must be reduced. This issue will be 
addressed in the next section. 

 Solving Equation  12.15  for failure rate  λ (t), for values of operating time t and 
mean value of parameter α , allows you to estimate the failure rate required to achieve 
specifi ed reliability R(t) in Equation  12.19 . This estimate is made for hardware, 
software, and system reliability:

    λ α( ) ( log( ( )) ( ).t R t / t= −     (12.19)   
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 Applying Equation  12.19 , the mean value of failure rates for CRAY - 1 hardware, 
software, and system required to achieve the specifi ed reliability values are tabulated 
in Table  12.4 . Surprisingly, there is negligible difference in failure rates among 
hardware, software, and system, but signifi cant reductions when compared with the 
failure rates where no reliability requirement is specifi ed. The reason for this is that 
when there is a reliability goal, efforts to reduce faults and subsequent failures are 
focused, such as testing to bring reliability into conformance with the specifi cation. 
Whether an organization would opt to achieve these reliability levels would depend 
on the mission reliability requirement and the cost of testing to remove faults to the 
extent that required failure rate reduction would be achieved. The lack of distinction 
between hardware and software failure rates may be explained by the fact that being 
a super computer, the CRAY - 1 possesses both complex hardware and software, 
contributing approximately equally to the generation of failures.   

 It is also important to estimate the operating time t that could be achieved for 
a specifi ed reliability R(t) and mean value of parameter  α  in the Weibull model, by 
solving Equation  12.15  for t. The result is Equation  12.20 :
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 Figure  12.8  shows the results of applying Equation  12.20  to the CRAY - 1 computer 
data, where you can identify the maximum operating times that can achieved at 
specifi ed values of reliability. The utility of this fi gure is that it shows the predicted 
spread, and maximums of operating times, that could be achieved for a computer 
and its applications.      

SUMMARY AND CONCLUSIONS 

 Using data from several real - world projects, evaluations were conducted with several 
hardware, software, and system reliability models. The major result is that if the 
project failure data are signifi cant, no amount of parallelism will salvage a reliability 
disaster. Faults must be removed and failure rates reduced for the systems to come 
into conformance with reliability specifi cations. 

Table 12.4     CRAY  - 1 Failure Rates 

   Required reliability  

   Mean failures per day  

   Hardware     Software     System  

  No requirement    0.794874    0.605126    1.400000  
  0.8000 – 0.9900    0.107179    0.106992    0.107185  
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Figure 12.8     CRAY - 1 reliability R(t) versus operating time t, using Weibull distribution for 
predictions. Series 1: Actual system reliability. Series 2: Predicted hardware – software system 
reliability, no parallel hardware components, MSE    =    0.4952. Series 3: Predicted hardware – software 
system reliability, fi ve parallel hardware components, MSE    =    0.0146.  
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 Although not a result, it was noted that only hardware is subject to parallel - based 
reliability improvement because using software redundancy is no help because the 
same faults will be repeated in multiple copies of the software. 

 It was found that the reliability BC, where cost is based on number of confi gura-
tion components, is a good tool for deciding on a series – parallel confi guration that 
provides both required reliability at a reasonable cost. This metric can be related to 
operating time so that it is possible to see when one confi guration (e.g., pure parallel) 
becomes superior to another (e.g., series). 

 The probability of failure metric is useful because it allows you to identify the 
accumulated number of failures where the probability of additional failures becomes 
negligible and testing can be terminated. 

 An important consideration of the user community is how long a system can be 
operated at specifi ed values of reliability. Using various values of reliability, cor-
responding failure rates, and solving the reliability equation for operating time, the 
community can predict the operating times that could be achieved. When both hard-
ware and software failure data are available, this prediction identifi es the maximum 
operating time and corresponding reliability that can be achieved by hardware, 
software, and system. 

 It was seen that when component failure data are available so that system reli-
ability can be predicted as a function of number of components and their failure 
rates, no components can be allowed to fail in order to achieve acceptable reliability. 
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Even a single component failure would put the system down. The solution to this 
problem is to use very high reliability software and hardware components, combined 
with hardware redundancy, in the system design. As the analysis showed, this 
problem is mitigated by the fact that the probability of multiple component failures 
at the same operating time is negligible. 

 In accordance with the major objective of integrating hardware and software 
into a system model, the Weibull distribution was chosen for this purpose because 
it has the fl exibility of modeling various failure rate patterns. While the Weibull 
distribution is useful for showing how parallelism can improve system reliability, 
it did not match actual reliability  very well; other models may provide better 
accuracy.  
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Chapter 13

Applying Neural Networks 
to Software Reliability 
Assessment

W hile you have studied many reliability concepts — both software and hardware — in Chap-
ters  8 ,  11 , and  12 , this material was based on traditional models. In this chapter, new models 
are studied based on concepts from the fi eld of neural networks that are used to assess the 
reliability of software, employing cumulative failures, reliability, remaining failures, and time 
to failure metrics. In addition, the risk of not achieving reliability, remaining failures, and 
time to failure goals are assessed. The purpose of the assessment is to compare a criterion, 
derived from a neural network model, for estimating the parameters of software reliability 
metrics, with the method of maximum likelihood estimation. The neural network method 
proved superior for all the reliability metrics that were assessed by virtue of yielding 
lower prediction error and risk. Considerable adaptation of the neural network model was 
necessary to be meaningful for the software reliability assessment application — only inputs, 
functions, neurons, weights, activation units, and outputs were required to characterize this 
application.    

INTRODUCTION

 Neural networks have attracted a great deal of attention from researchers because 
they have many advantages over other models. For example, they have the ability 
to learn. Given sample data, a neural network can learn rules from these sample data 
with or without a teacher. They have the capability to adapt weights to changes in 
the surrounding environment. That is, a neural network trained to operate in a spe-
cifi c environment can be retrained to deal with minor change in the operating envi-
ronmental conditions  [WON08] . 
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 Neural networks have been successfully applied to many fi elds, such as pattern 
recognition  [FUK98] , system identifi cation  [CHU90] , and intelligent control 
 [NAR92] . Software engineering areas including risk analysis  [NEU02] , cost estima-
tion  [TAD05] , reliability estimation  [KAR96] , and reusability characterization 
 [BOB93] . However, they have not been applied as extensively to help programmers 
fi nd bugs  [WON07, WON08] . Since neural networks operate on the principle of 
learning, no model is specifi ed a priori  [KAR96] , meaning the models are evolved 
by learning. 

 Neural networks are comprised of the following components  [KAR96] :

•      Models of Neurons .      Characteristics of the processing units used in neural 
networks

•      Models of Interconnection Structure .      Topology of the network and strength 
of interconnections that encode network knowledge  

•      Learning Algorithm .      Steps involved in computing or assigning neural con-
nection weights in the network    

 Biological neurons are single cells capable of crude computation. Neurons are 
stimulated by one or more inputs and generate outputs that are sent to other neurons. 
Outputs are dependent on the strength of inputs and the nature of input connections. 
Some connections excite neurons and increase output; others inhibit neuron output 
 [MAS93] . Neurons are connected together with weighted connections following a 
specifi ed structure. Each neuron has an activation function that describes the rela-
tionship between its input and output  [WON08] . Neural network learning is nor-
mally accomplished through an adaptive procedure, known as a learning algorithm 
 [WON08] . The architecture of a generic neural network is shown in Figure  13.1 .   

Figure 13.1     Generic neural network.  
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Back Propagation Algorithm 

  Back propagation  ( BP ), or propagation of error, is a common method of teaching 
neural networks how to perform a given task. It is similar to feedback in a control 
system that adjusts the input to achieve the desired output. The algorithm can cal-
culate the desired output for any given input. An important application of BP in 
neural networks is fault localization s [LEE99, WAS93] . It is a learning method, and 
is an implementation of the gradient descent (ascent) learning rule. Gradient descent 
(ascent) refers to computing the rate of change of a function to fi nd where the rate 
of change is minimum. For example, fi nding the time of testing software where the 
rate of change between reliability and test time is a minimum, thereby achieving a 
balance between improving reliability, by localizing faults, and the cost of testing. 
Once this rule is learned for one software system, it can be applied to subsequent 
software systems.   

NEURAL NETWORKS APPLIED 
TO FAULT LOCALIZATION 

 Fault localization is the most expensive activity in program debugging. Traditional 
ad hoc methods can be time consuming and ineffective because they rely on pro-
grammers’  intuitive guesswork, which may be neither accurate nor reliable. A better 
solution is to utilize a systematic and statistically well - defi ned method to automati-
cally identify code that should be examined for possible fault locations. A statistical 
method can be used to identify the coverage of each executable statement and the 
execution result (success or failure) for each test case. A record is constructed for 
each executable statement and a statistic is computed to determine the likelihood of 
the corresponding statement containing bugs. Statements with a higher likelihood 
of bugs are more likely to contain bugs and should be examined before those with 
a lower likelihood  [WON07] . 

 A typical neural network has a feed - forward structure that can be trained to learn 
the input – output relationship from a set of data. For example, the input is the 
program statement coverage of a test case and the output is the corresponding state-
ment execution result (success or failure). After the network is trained, a test case 
with only one statement covered is used as an input to compute the likelihood of 
the corresponding statement containing bugs. The larger the output, the greater the 
likelihood of statement bugs. Statements are then ranked in descending order based 
on their likelihood of containing bugs. Programmers examine these statements from 
the top of the rank, one by one, until the fi rst statement containing the bugs is 
identifi ed. 

 In fault localization, the output of a given input can be defi ned as a binary value 
of 0 or 1, where 1 represents a program failure on this input and 0 represents a suc-
cessful execution. With this defi nition, the output of each input is known because 
you know exactly whether the corresponding program execution fails or succeeds. 
Moreover, two similar inputs can produce different outputs because the program 
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execution may fail on one input but succeed on another input. Thus, learning algo-
rithms that cannot adapt to the environment are inappropriate for fault localization. 
Therefore, neural networks using adaptable  learning algorithms are better candidates 
for solving the fault localization problem.  

NEURAL NETWORKS APPLIED TO SOFTWARE 
RELIABILITY ASSESSMENT 

 Another approach to software reliability improvement, in addition to fault localiza-
tion, is to adapt neural network concepts to reliability prediction. The idea is to use 
gradient descent or ascent, depending on the nature of the activation function in 
Figure  13.2  (i.e., relationship between inputs and outputs). In effect, the network is 
trained to use the gradient method to identify the test time when the marginal reduc-
tion in failures and faults (benefi t) is just balanced by the marginal increase in test 
time (cost).   

Cumulative Failures 

 Software reliability, as measured by cumulative failures during testing, is illustrated 
in Figure  13.2 . The idea is to embody the neuron with the processing power to 
aggregate the weighted failure counts x i  in the test time intervals i, such that the 

Figure 13.2     Neural network process function. x i , number of failures in interval i; w ij , severity of 
failures in interval i for software system j; F l , cumulative failures limit; F ij , cumulative failures 
Activation Function for test interval i and software system j; i s , scheduled test time; i l , test time at F l .  
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actual cumulative failures for a software system j, F ij , is compared with the limit 
value, F l , where the limit value is equal to the slope of the curve in Figure  13.2  at 
test time i l . If F ij     ≤    F l , the software is released because at this test time i, marginal 
benefi t equals marginal cost; otherwise, it is subjected to further testing. Equation 
 13.1  shows the computation of cumulative failures and Equation  13.2  shows the 
computation of weights, using the failure severity code:

    F w x ,ij ij i

i

i

=
=

∑
1

    (13.1)  

    w
s

s
,ij

ij

m

= −1     (13.2)   

 where s ij  is the severity code of x i  for software system j and s m  is the maximum value 
of the severity code (minimum severity). The limit F l  is computed in Equation  13.3 , 
where the limit is the minimum rate of change over successive test intervals i. The 
value of i corresponding to F l  is the amount of test time required to achieve the 
reliability objective. If this value of i, i l , is less than or equal to the schedule test 
time i s , release the software system; otherwise, continue testing. Note that in order 
for this policy to make sense, the faults causing the failures that have been detected 
must be corrected:

    F F F .l i j j ij= −+min[ ],     (13.3)   

 In order to test the validity of Equation  13.3  as a criterion of a benefi t – cost limit for 
cumulative failures, the equation for predicted  cumulative failures is needed in order 
to see whether F l  is capable of identifying the amount of test time that should be 
used to accurately estimate the parameters of the prediction model. The predicted 
cumulative failures will be compared with the actual cumulative failures (unweighted) 
in Figure  13.3 . The prediction equation from the  Schneidewind software reliability 
model  ( SSRM )  [SCH97]  for test interval i is shown in Equation  13.4 :

    F i e X ,i s
s( ) ( / ) ( )= −⎡⎣ ⎤⎦+− − +
−α β β1 1

1     (13.4)    

where α  and  β  are failure rate parameters, s governs how much failure data are used 
in parameter estimation, and X s– 1  is the observed failure data in the range (s – 1), i. 

 Figure  13.3  shows how the neural network criterion limit of Figure  13.2  and 
Equation  13.3  can be applied to identify the test interval i that is optimal for termi-
nating testing and releasing the software system. This is the test interval when the 
rate of change of actual cumulative failures is minimum. In other words, this is the 
point in test time when diminishing returns in fi nding and correcting faults has been 
reached. The results of an experiment to test the validity of the neural network cri-
terion limit are shown in Figure  13.4 . The experiment was conducted by predicting 
cumulative failures for a National Aeronautics and Space Administration (NASA) 
Space Shuttle software system j    =    OI6, using SSRM. This model has a parameter s 
that identifi es the fi rst interval of test failure data that is used in estimating model 
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Figure 13.4     NASA Space Shuttle OI6: cumulative failure F(i) versus test interval i. Series 1: 
Actual F(i). Series 2: Predicted F(i), using neural network criterion for s    =    12, MSE    =    16.6306. Series 
3: Predicted F(i), using parameter evaluation method for s    =    2, MSE    =    74.1375. s, fi rst test interval of 
failure data used in predicted F(i) parameter estimation.  
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Figure 13.3     NASA space shuttle OI6: actual cumulative failures F ij  and criterion limit (F l     ×    5) 
versus test interval i. Series 1: F ij . Series 2: F l .  
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parameters. Two criteria were used in selecting s: one is based on the neural network 
criterion limit identifi ed in Figure  13.3  as i    =    77 that corresponds to s    =    13 (the 13th 
failure count interval); the second is based on the  maximum likelihood estimation  
( MLE ) method of parameter estimation  [SCH07]  that yielded s    =    2. The mean 
squared error between the actual and predicted cumulative failures was computed 
for the two methods. As Figure  13.4  demonstrates, the neural network criterion limit 
provides much better prediction accuracy.    

Reliability

 A second validity test was conducted by experimenting with the reliability activation 
function in test interval i, R i  (i.e., R i  output produced when input failure counts x i
occur). Unlike the case of cumulative failures, using weights does not apply because 
reliability is not an additive function. Start by computing the actual reliability and 
its reliability limit criterion, R l , in Equations  13.5  and  13.6 , respectively:

    R
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    (13.5)  

    R R R R .l i i i= −+min[( ) / ]1     (13.6)   

 As in the case of cumulative failures, the equation for predicted reliability is needed 
in order to compare it with actual reliability from Equation  13.5 , and to ascertain 
whether Equation  13.6  provides an effective criterion for identifying the optimal 
amount of test time. Predicted reliability, as obtained from SSRM, is shown in Equa-
tion  13.7 , where the parameters have been defi ned previously. 

 In Figure  13.5  you see that the reliability criterion limit R l  from Equation  13.6  
is associated with the maximum actual reliability R i  at a test time i l  equal to the total 
scheduled test time i s . This test time corresponds to the reliability parameter s    =    13 
that will be used in subsequent reliability evaluations.   

 The superiority of the neural network reliability criterion limit in the early stages 
of testing is demonstrated in Figure  13.6 , where this method produces a prediction 
lower error, with respect to actual reliability, than in the case of the parameter evalu-
ation method. However, the latter method does have an advantage in yielding higher 
reliability in the later stages of testing. Thus, in choosing reliability prediction 
models, it would be prudent to evaluate more than one model because a given model 
may not be superior for all test times.   

 Another important formulation of reliability is shown in Equation  13.8 , where 
the concept is to predict reliability at the end of the mission duration, t m . This is 
done by predicting reliability for the test time i plus the mission duration (i    +    t m ), 
assuming the system becomes operational immediately after the completion of test 
time i. The concept is to subject the system to increasing values of mission duration 
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Figure 13.6     NASA space shuttle OI6: reliability R(i) versus test time i. Series 1: Actual R(i). 
Series 2: Predicted R(i), using neural network criterion for s    =    13, MSE    =    0.0414. Series 3: Predicted 
R(i), using parameter evaluation method for s    =    2, MSE    =    0.0626. s, fi rst test interval of failure data 
used in predicted R(i) parameter estimation. 
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in order to identify the maximum mission duration (i.e., mission duration where 
predicted reliability no longer achieves specifi ed reliability):

    R i e ,
e ei s i s

( )
( ) ( )
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⎡
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⎤
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− − + − − +α
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Reliability Risk 

 Risk is a major issue in software reliability assessment because there is a probability 
(i.e., risk) that the predicted reliability of a software system, as given by Equation 
 13.8 , will not achieve specifi ed reliability, R, at the end of the mission. Thus, reli-
ability risk, RR, is computed in Equation  13.9 : 

    RR R R i t R R i t Rm m= − + = − +( ( )) / ( ( )) / ,1     (13.9)  

  where R is specifi ed reliability. The greater the relative difference between specifi ed 
and predicted reliabilities in Equation  13.9 , the greater the risk. The best result is 
when RR goes negative (i.e., predicted reliability    >    specifi ed reliability). Figure  13.7  
demonstrates that the neural network criterion method involves lower reliability risk 

Figure 13.7     NASA space shuttle OI6: reliability risk RR versus specifi ed reliability R. Series1: 
RR, using neural network criterion for s    =    13. Series 2: RR, using parameter evaluation method for 
s    =    2. s, fi rst test interval of failure data used in RR parameter estimation.  

–0.1000

0.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

0.8800 0.9000 0.9200 0.9400 0.9600 0.9800 1.0000

R

R
R

Series 1

Series 2

Lower risk for higher specified reliability 



346 Computer, Network, Software, and Hardware Engineering with Applications

Figure 13.8     NASA space shuttle OI6: reliability required to achieve mission duration R(i    +    t m ) 
versus test time i. Series 1: R(i    +    t m ), using neural network criterion for s    =    13. Series 2: R(i    +    t m ), 
using parameter evaluation method for s    =    2. s, fi rst test interval of failure data used in predicted 
R(i    +    t m ) parameter estimation.  
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at higher values of reliability. This is important in a mission - critical application, such 
as the Shuttle fl ight software, which requires high reliability at low risk. 

 It is also important to compare the neural network and parameter evaluation 
methods with respect to the reliability required to achieve the mission duration. 
Figure  13.8  provides an interesting contrast between the methods because although 
the required reliability produced by the parameter evaluation method is less, for the 
given mission duration, this would not be desirable for a mission - critical application 
where the reliability must be high. Thus, it is important to evaluate such results 
in the context of the application: for a commercial application, where the cost of 
achieving reliability is critical, the parameter evaluation method would be the choice, 
but not in a mission - critical application.   

 It is also of interest to predict the test time i R  required to achieve specifi ed reli-
ability R. This quantity is predicted in Equation  13.10  by solving Equation  13.7  for 
i, where R(i) becomes the specifi ed reliability R:

    i R sR = −( ) −( ) − −( )( )[ ][ ] + −( )1 1 1/ log / log / exp .β β α β β     (13.10)   

 Figure  13.9  vividly shows that the neural network criterion is superior because its 
use requires signifi cantly less test time to achieve specifi ed reliability. Thus, on 
balance, considering the software reliability results shown in Figures  13.5 – 13.9 , the 
neural network criterion is the better choice, particularly for the mission - critical 
application that has been evaluated.    
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Remaining Failures 

 Another important reliability metric is remaining failures. The reason for the impor-
tance of this metric is that remaining failures represent residual problems buried in 
the software code that could emerge when least expected — during operation. Thus, 
it behooves us to include this metric in our arsenal of software reliability tools. Note 
that remaining failures, expressed in Equation  13.11  (SSRM), is a predicted quantity 
because you have no way of knowing the actual  number of remaining failures. But 
this begs the question of how to evaluate the neural network and parameter estima-
tion methods that were employed previously by comparing the method prediction 
errors, using actual failure values. The solution is to approximate remaining failures 
by using the known  remaining failures, as shown in Equation  13.12 , where X s  is the 
total number of failures reported at the scheduled test time interval i s  and x i  is the 
number of failures in test interval i. Since these are failure counts, it is appropriate 
to weigh remaining failures in Equation  13.12 :

    r i i s ,( ) exp= − − −( )( )( )[ ]α
β

β 1     (13.11)  
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Figure 13.9     NASA space shuttle OI6: test time required to achieve specifi ed reliability i R  versus 
specifi ed reliability R. Series 1: i R , using neural network criterion for s    =    13. Series 2: i R , using 
parameter evaluation method for s    =    2. s, fi rst test interval of failure data used in i R  parameter 
estimation.
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Figure 13.10     NASA space shuttle OI6: remaining failures r(i) versus test time i. Series 1: actual 
r(i). Series 2: predicted r(i), using neural network criterion for s    =    8, MSE    =    1.1423. Series 3: 
predicted r(i), using parameter evaluation method for s    =    2, MSE    =    4.4606.  
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 Then the neural network criterion r l  can be computed by the usual process, with the 
proviso that since remaining failures is a decreasing function, as opposed to the 
increasing functions of cumulative failures and reliability, Equation  13.13  has been 
formulated appropriately:

    r r r r .l i j i j i j= − + +min[( ) / ], , ,1 1     (13.13)   

 In addition, as in the case of reliability, predict the reliability risk using Equation 
 13.14  (SSRM):

    rr i r i r ,c( ) ( ( ) / )= −1     (13.14)  

  where r c  is a specifi ed number of remaining failures. Values of r(i)    <    r c  will render 
rr(i) positive, and, hence, yield decreasing risk. 

 Figure  13.10  again demonstrates the superiority of the neural network criterion 
for parameter evaluation by producing a signifi cantly lower prediction error with 
respect to the actual remaining failures. More evidence of this result is afforded by 
Figure  13.11  that shows, for a specifi ed remaining failures r c     =    1, that the risk is 
lower (i.e., more positive) for the neural network criterion. Furthermore, by using 
this criterion, the risk trends positive much earlier in test time.    
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Time to Next Failure 

Time to next failure  is also an important software reliability metric because if the 
predicted value is less than the mission duration, it could be disastrous for the 
mission. Therefore, preceding as before, fi rst fi nd the neural network criterion t l  by 
using the actual time to failure, t i , as illustrated in Equation  13.15 . The prediction 
metric is shown in Equation  13.16 , using SSRM as the source:

    t t t t ,l i i i= − +min[( ) / ]1     (13.15)  

    T(i)
F X

i s for F X
s i

s i=
− +( )

⎡

⎣
⎢

⎤

⎦
⎥ − − + > +log

( ) /
( ) ( ),

,
,

α
α β β

α β1     (13.16)   

 where F is the specifi ed number of failures (usually one) to use in predictions and 
Xs,i  is the observed failure count in the range s, i, and i is the failure count interval 
when the prediction is made. 

 As in the case of remaining failures, there is a risk associated with the time to 
failure metric because, as mentioned earlier, a prediction less than the mission dura-
tion poses a risk. This relationship is expressed in Equation  13.17 , where T(i)    <    t m
represents risk in the risk criterion metric RCM T(i). When T(i)    ≥    t m , the risk func-
tion in Equation  13.17  is negative (i.e., favorable):

Figure 13.11     NASA space shuttle OI6: remaining failures risk rr(i), for r c     =    1, versus test time i. 
Series 1: rr(i), using neural network criterion for s    =    8. Series 2: rr(i), using parameter evaluation 
method for s    =    2.  
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 Figure  13.12  shows that the safer (i.e., lower risk) alternative is the one produced 
by the neural network criterion: the RCM is more negative and this metric goes 
positive at a longer time. The implication is that the software system could be oper-
ated safely for a longer time, using the neural network criterion.    

Mean Time to Failure 

 The  mean time to failure  ( MTTF ) is the  expected  value of  predicted time to failure
and is valuable for characterizing time to failure  across various time intervals i. It 
can be conveniently predicted in Equation  13.18  by using the interval i, and then 
calling upon the predicted cumulative failures  F(i) from Equation  13.4 : 

    MTTF i F i= / ( ).     (13.18)   

 Further evidence of the superiority of neural network criterion is provided by Figure 
 13.13 , wherein MTTF is higher for this method. The importance of this result is that 
MTTF is well understood in the software industry and is typically used to character-
ize the reliability of software systems  [MUS87] .

Figure 13.12     Predicted time to failure T(i),  risk criterion metric   RCM  T(i), and mission duration t m
versus time i. Series 1: T(i), using neural network criterion for s    =    8. Series 2: RCM T(i), using neural 
network criterion for s    =    8. Series 3: t m . Series 4: T(i), using parameter evaluation method for s    =    2. 
Series 5: RCM T(i), using parameter evaluation method for s    =    2.  
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Problem for Solution by Reader:  Using Equations  13.11  and  13.14  for pre-
dicted remaining failures and remaining failures risk, respectively, compute 
the risk for specifi ed remaining failures r c     =    2. Then plot the following four 
risk curves, with respect to test time i, which has been used on previous plots, 
on one fi gure:    

   risk for r c     =    1, using neural network criterion with  α     =    1.0895 and  β     =    0.1250  

  risk for r c     =    1, using parameter evaluation method with  α     =    1.5953 and 
β     =    0.0650  

  risk for r c     =    2, using neural network criterion with  α     =    1.0895 and  β     =    0.1250  

  risk for r c     =    2, using parameter evaluation method with  α     =    1.5953 and 
β     =    0.0650   

 Interpret the results: compare the four curves and indicate which factors lead 
to the greatest risk.  

Solution:  Figure  13.14  shows the solution with the greatest risk factors indi-
cated. The neural network criterion leads to the lowest risk because the risk 
function is more positive, and becomes more positive sooner, than using the 
parameter evaluation criterion.        

Figure 13.13     NASA space shuttle OI6: Predicted mean time to failure MTTF versus time i. Series 
1: MTTF, using neural network criterion for s    =    8. Series 2: MTTF, using parameter evaluation method 
for s    =    2.  
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SUMMARY

 The basic concepts of neural networks, as exhibited in Figures  13.1  and  13.2 , proved helpful 
in formulating the software reliability assessment problem. However, some properties of 
neural networks, such as networks learning from a teacher and others  [MAS93] , proved to 
be obscure and of little practical value for the reliability problem that was analyzed. On the 
positive side, a surprising and enlightening result is that for all software reliability prediction 
metrics, the neural network prediction criterion was superior to the traditional reliability 
model parameter estimation method.  
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Chapter 14

Web Site Design 

G iven the importance of Web systems in contemporary society, it behooves us to contribute 
to improving their reliability. This chapter is just such a contribution. Much valuable research 
on Web systems focuses on performance evaluation, failing to recognize that, in addition, 
reliability should be considered. For example, if Web client - to - Web server access time is short, 
while the system is up, the performance loses meaning if there is considerable downtime. You 
can model the reliability of Web systems from the bottom up by developing component reli-
ability prediction equations for Web server, Web client, and the communication channels that 
interconnect them. Then, the component models are integrated to produce total system reli-
ability models. Support your modeling efforts with real - world failure data. The prediction 
equations identify weak spots in component and system reliability that assist organizations in 
identifying corrective actions, such as fault removal, in order to achieve reliability goals.    

INTRODUCTION

Background

 The paradigm of Web services has been gathering signifi cant momentum in both 
academia and industry in recent years. This paradigm transforms the Internet from 
a repository of data into a repository of services. Simply put, a Web service is a 
programmable Web application that is universally accessible through standard Inter-
net protocols  [FER03] . Web services opens a new cost - effective way of engineering 
systems to quickly develop and deploy Web applications by dynamically integrating 
other independently published Web services  [HOL02] . However, it is not clear that 
this new model of Web services provides any measurable increase in reliability 
 [PAR90] . Thus, this is a motivation for this chapter to show the reader how the reli-
ability of Web services could be improved. 

 The essential feature of  dynamically  confi gured Web services poses new chal-
lenges for Web system reliability. In a traditional system, all of its components and 
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their relationships are decided before the system runs. Therefore, each component 
can be thoroughly tested, and the interactions among the components can be fully 
examined, before the system starts to execute. Web services dynamically locate and 
assemble distributed Web services in an Internet setting. More precisely, when a 
system requires a Web service component, the system will search Web services 
providers to choose the optimal Web service that fulfi lls the requirements  [GOL04] . 
The challenge to reliability of this approach is that these components may not have 
been subjected to rigorous reliability testing.  

Web System Reliability Approach 

 While there is much coverage of the performance characteristics of Web systems, 
there has not been equal attention to the contribution of nonfunctional characteris-
tics such as reliability that plays an important role in the selection of Web services 
by users  [ZO07] . My objective is to improve nonfunctional properties, such as reli-
ability, by developing and analyzing comprehensive Web system reliability models. 
To set the stage for Web system reliability models development, some characteris-
tics of Web systems that infl uence the design of Web - based models are described 
below.  

Fault-Tolerant Web Systems 

 The Web Service – Fault - Tolerance Mechanism is an implementation of the classic 
N - version redundancy model for Web services that can easily be applied to systems 
with minimal change. The Web services are implemented in different redundant 
versions. The voting mechanism, which decides whether a component has failed, 
and, thus, requires replacement, is conducted in the client program (i.e., user) 
 [CHA07] . The problem with this is that while it will work for hardware, it will not 
work for software because a fault in one version will be a fault in another version!  

Web System Communication 

 In Web services, standard communication protocols and simple client – server requests 
for Web pages are needed to facilitate service performance because standardization 
simplifi es interoperability  [CHA08] . It is necessary to ensure the reliability of Web 
system communication and the interconnected components. Indeed, the use of net-
works, such as wireless to access Internet resources such as Web servers, causes 
failures and degradation of the communication links between Web clients and Web 
servers. In the Internet, problems such as the decrease of transmission speed due to 
competing Web client access to Web servers, the decrease in processing performance 
in Internet routers, and the degradation of the communication lines may occur. Also, 
a decrease in quality of communication may be caused by changing distances and 
locations between Web clients and Web servers  [NAR05] .  
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Robotic Web Services 

 Because Web services, implemented in robots, are moving, the distance between 
clients and servers is likely to vary, and the position of clients and servers relative 
to the signal will also change. This may affect the quality of communication lines. 
If a client notices that the electric signal worsens, the client can move to fi nd a place 
where the electric signal can be received better. The solution is to achieve reliable 
messaging technology of Web services, combined with a standard for the recovery 
of failed Web services  [NAR05] .  

Cyclomatic Complexity Analysis of Web System 
Reliability

 The authors exploit the idea of cyclomatic complexity to cover the number of inde-
pendent paths interconnecting Web clients with Web servers, where cyclomatic 
complexity is the number of independent paths (i.e., no additional paths can be 
created from existing paths) in a directed graph representation of a system. Thus, 
this process focuses on the most likely communication paths, and still maintains the 
dynamic nature of Web surfi ng (i.e., communication paths can change rapidly) 
 [WAN03] . This approach is very good, but Web system path data are needed to 
support its implementation. These data may not be available. 

 Therefore, based on the above Web system characteristics, you can develop 
reliability prediction models for assessing the software, hardware, and system quality 
of a Web system. In performing this assessment, be cognizant of the importance of 
quality of service  [LAK05] . Quality of service is dependent on the nature of Web 
service client, communication links, and Web server interactions. In order to under-
stand the myriad of failures that can occur in a Web system, for example, on the 
client side, it is instructive to consider the properties of an XHTML Web page and 
its associated tree structure. This is advantageous because you can obtain a sense of 
the types of failures that could occur in constructing a Web page by a Web server. 
A partial XHTML tree structure is shown in Figure  14.1   [MAC09] . This diagram 
provides a visual perspective of Web page syntax, which is not always easy to 
understand in a linear text  format. Note that errors in Web page design, in any path, 
could lead to failure in Web page processing by the Web server.    

Web Services State Transitions 

 In composing Web services, the usual assumption is that invocations of Web service 
operations are independent (i.e., the invocation of a given Web service does not 
depend on the invocation of another Web service). This assumption, however, does 
not hold in practice because the service requirements impose ordering on the invoca-
tion of operations. Therefore, the use of state machines to model the order of Web 
service operations is appropriate  [HWA07] . In the spirit of this advice, you can use 
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the Web System State Transition Diagram in Figure  14.2 , and the supporting transi-
tion information in Table  14.1 .     

 Measures for predicting reliability are calculated with the aid of system confi gu-
ration descriptions, as shown in Figure  14.2   [ALA02] . As shown in Figure  14.2 , 
system confi guration descriptions denote the sequence of interactions. In order to 
obtain the state transition probabilities that will be needed later in predicting total 
Web system reliability, Table  14.1  presents the state transitions involved when a Web 
client interacts with a Web server, as portrayed in Figure  14.2 . The state transition 
probabilities shown in this fi gure are developed in Table  14.3  in a later section. In 
developing Figure  14.2 , note that a Web transaction consists of a client resolving a 
Web server name to the corresponding Internet Protocol (IP) address — browser 
accessing the Domain Controller in Figure  14.2  — establishing a Transmission 
Control Protocol (TCP) connection to the Web server, and downloading the object 
of interest, using Hypertext Transfer Protocol (HTTP)  [PAD05] . In addition to fail-
ures due to interactions between client and server, failures in the disk storage unit 
nodes, such as Web servers, account for a signifi cant number of failures  [SCH071] .  

Web Server Proxy 

 Web server proxy is a well - developed scheme for improving the performance of Web 
browsing. Users ’  requests can be supported by a proxy, instead of the processing 

Figure 14.1     XHTML tree structure.  
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Table 14.1    Web State Transitions 

   Current state     Next state     Transition trigger  

  Web Client doing local 
computing s 1

  Web client uses browser s 2     Web client needs Web 
Page

  Web Client uses browser s 2     Browser identifi es URL of 
desired Web Page s 3

  Browser locates URL 
name in Internet list  

  Browser identifi es URL of 
desired Web Page s 3

  Browser looks up IP 
address of domain s 4

  Browser accesses Domain 
Controller

  Browser obtains IP address 
of domain s 4

  Browser sends IP address 
to Web Server s 5

  Automatic state change in 
browser

  Browser sends IP address 
to Web Server s 5

  Web server looks for Web 
page in XHTML Web 
Service s 6

  Web Server receives 
request from Web 
Client

  Web Server looks for Web 
Page in XHTML Web 
Service s 6

  Web Server retrieves Web 
Page s 7

  Web server fi nds Web 
Page on XHTML Web 
Service

  Web Server retrieves Web 
Page s 7

  Web Server sends Web 
page to Web Client s 8

  Web Server has found 
requested Web Page  

Figure 14.2     Web system state transition diagram. URL, Uniform Resource Locator; p s , probability 
of state transition    =    probability of next state s.  
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being performed by a Web server. In this instance, a proxy is a computer that per-
forms ancillary services on behalf of the Web server. These services are, for example, 
identifying the initial search location in the Web database and formatting output for 
the user. Performance studies show that a proxy is very effective in reducing the 
response time of Web accesses  [SHE04] . While this is true, the models in this chapter 
are based on the Web client directly accessing the Web server to obtain a page. Also, 
Web system service and reliability could be improved by transitioning to another 
Web site or page in the event of failure of a given Web site  [DHA08] .  

Web Server Failure Data 

 Web server failure data cannot be found in abundance, which is an understatement! 
Vendors are not anxious to reveal their reliability problems. Therefore, we have to 
settle for failure data from computers that could  function as Web servers, such as 
the data described below. Actually, the particular data that are used are not important 
as long as they are representative of the Web environment. What is important are 
the characteristics of models that predict Web service reliability. The available data 
are used for explanatory purposes; any representative data could be used. 

 One of the hardest problems in future  high - performance computing  ( HPC ) 
installations, such as Web servers, will be avoiding, coping with, and recovering 
from failures. HPC requires the simultaneous use and control of hundreds of thou-
sands or even millions of processing, storage, and networking elements. With this 
large number of elements involved, element failure will be frequent, making it 
increasingly diffi cult for applications to make progress. The success of HPC comput-
ing will depend on the ability to provide high reliability, supported by representative 
failure data. The available data sets cover computer outages in HPC clusters, as well 
as failures in storage systems  [SCH07] . 

 The data obtained were collected during 1995 – 2005 at  Los Alamos National 
Laboratory  ( LANL ) and covers 22 high - performance computing systems, including 
a total of 4750 computing systems and 24,101 processors at two sites. The data 
contain an entry for any failure that occurred during the 9 - year time period. The 
data cover all aspects of system failures: software failures, hardware failures, fail-
ures due to operator error, network failures, and failures due to environmental 
problems (e.g., power outages). Hardware is the single largest component, with 50% 
of all failures assigned to this category. Software is the second largest contributor, 
with 20% of all failures at both sites attributed to software. Failure rate varies 
widely across systems, from 10 failures per year per system to 1180 failures per 
year per system. Note that a failure rate of 1180 failures per year per system means 
that a Web server application will fail and require recovery action more than three 
times per day, thus causing considerable disruption for Web clients. One might 
wonder what causes the large differences in failure rates across the different systems. 
The main reason for these differences is that the systems vary widely in size. Thus, 
the failure rate of a system grows proportional to the number of processors in the 
system (i.e., size)  [SCH07] .   
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WEB SERVER RELIABILITY ANALYSIS 

 The architecture of a Web Server has a profound impact on its performance and 
reliability. One of the architectural characteristics of a Web server is its processing 
method, which describes the type of process that is used to support Web Server 
operations  [GOK06] . While this is true, unfortunately, the available Web Server 
failure data do not include information on processing architecture. 

 As the authors attest  [NIC05] , it is common to use statistical modeling theory 
for the evaluation of Web - based system reliability. Keying on this idea, let us use 
various statistical metrics to compute and predict reliability for illustrative Web 
Servers, using the system, software, and hardware failure data shown in Table  14.2 . 
Note that the numbers of software (20%) and hardware (50%) failures do not 
add to the number of system failures. The reason for this is that there are other 
types of failures that are not identifi ed in the Los Alamos failure data. In addition, 
it is unusual to have a higher percentage of software failures compared with hard-
ware failures. The apparent reason is the complexity of supercomputer hardware 
confi gurations.   

 The probability distribution of choice is the Weibull, as elaborated and justifi ed 
in the next section. Recall that you were introduced to this reliability distribution in 
Chapter  12 . Based on the patterns of failure data tabulated in Table  14.2 , the Weibull 
distribution proved appropriate for predicting system, software, and hardware 
reliability. 

Weibull Failure Distribution 

 One of the most widely used distributions for predicting reliability is the Weibull 
failure distribution  [LYU96] . It has the fl exibility of allowing for constant, increas-
ing, and decreasing hazard functions (i.e., instantaneous failure rate), as demon-
strated by the hazard function in Equation  14.1   [LLO62] :

    Hazard function: h i i ,( ) ( )( )= −αλ α 1     (14.1)  

  where  α  is a shape parameter, i is the system identifi cation in Table  14.2 , and  λ  is 
a scale parameter. 

 The parameter  λ  can also be considered to be the failure rate. 
 Equation  14.2  represents the probability p(i) of system i failing. This equation 

is fl exible because it can portray various patterns of probability of failure across 
systems, depending on the values of α  and  λ   [LLO62] :

    p i i e .i( ) ( )= − −αλ α λ α1     (14.2)   

 For the exponentially distributed pattern of failure data in Table  14.2 , the Weibull 
reliability in Equation  14.3  is advantageous to use  [LLO62] :

    R i e .i( ) ( )= − λ α     (14.3)   
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 The parameters of the Weibull distribution are estimated according to reference 
[LL062] in Equations  14.4  and  14.5 , where n is the number of systems:
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=
∑

n

i

,

j

j

n

1

    (14.4)  
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log log
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    (14.5)   

 However, trying to solve Equations  14.4  and  14.5  is not practical because in order 
to solve for λ  in Equation  14.4 ,  α  is required, but to solve for  α  in Equation  14.5 , 
λ  is required. A practical approach is to use the reliability function, Equation  14.3  
to solve for α , given values of  λ  and R for a specifi ed value of i. 

 Now, solving Equation  14.3  for  α  results in Equation  14.6 :

    α λ=

−⎡
⎣⎢

⎤
⎦⎥

log
log( ( ))

log( )
.

R i

i
    (14.6)   

 However, notice the constraint on the maximum value of R(i) that can be achieved 
to avoid trying to take the log of a negative quantity: R(i)    <    e –λ  because log R(t)    =     λ . 
Therefore, set the limit on R(i) according to R(i)    <    e –λ , and substitute this value in 
Equation  14.6  and solve for  α . 

 In order to examine the validity of reliability predictions using Equation  14.3 , 
the actual reliability R a (i), based on historical failure data, is computed in Equation 
 14.7 , where f s (i) is the number of software failures for system i, computed over n 
systems:
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f i
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1

    (14.7)   

 The error between the predicted and actual reliabilities is computed using the mean 
relative error that is computed as: mean * ((actual    –    predicted)/actual)  [FEN97] .  

Factoring in Probability of State Transitions 

 Now, although the reliability analysis that was presented is appropriate, it is only 
relevant when, according to Table  14.1 , there is a state transition that causes a given 
node (e.g., Web Server) in the Web system in Figure  14.2  to become active (e.g., 
Web server looks for Web page). Therefore, to predict  total  Web system reliability, 
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each node and link system reliability  (systems of Table  14.2 ) must be multiplied by 
the weighted  probability of state transition w(i) p s (i), where p s (i) is the unweighted 
probability and w(i) are weights that sum to one. Then, the values of w(i) p s (i) R(i) 
are summed to predict total system reliability R s . The result is Equation  14.8 :

    R w i  p i  R i .s s

i

n

=
=

∑ ( ) ( ) ( )
1

    (14.8)   

 A random number generator was coded in C ++  to produce random numbers from 
which probabilities of state transitions were derived. These probabilities and weights 
are shown in Table  14.3 . Note that these probabilities are for the purpose of  illustrat-
ing  the computation of Web system reliability. Other probabilities could be used in 
other situations.   

 Using the logic of Figure  14.2  — Web System State Transition Diagram — and 
the state transition information in Table  14.3 , the Web Client and Server Interac-
tions is constructed in Figure  14.3 . With the probabilities of state transitions 
appended, this fi gure will be used to predict total Web system reliability, as given 
by Equation  14.8 .    

Table 14.3    Web State Transition Probabilities 

   Current state     Next state  

   Transition 
probability    =    Probability 

of next state  

  Web Client doing local 
computing s 1

  Web Client uses browser s 2     p 2  (1)    =    0.034483  
  w (2)    =    0.008333  

  Web Client uses browser s 2     Browser identifi es URL of 
desired Web Page s 3

  p 3  (1)    =    0.172414  
  w (3)    =    0.041667  

  Browser identifi es URL of 
desired Web Page s 3

  Browser looks up IP 
address of domain s 4

  p 4  (2, 3, 4)    =    0.862069  
  w (4)    =    0.208333  

  Browser obtains IP address 
of domain s 4

  Browser sends IP address 
to Web Server s 5

  p 5  (4)    =    1.000000  
  w (5)    =    0.241667  

  Browser sends IP address to 
Web Server s 5

  Web Server looks for Web 
Page in XHTML Web 
Service s 6

  p 6  (6, 7)    =    0.586207  
  w (6)    =    0.141667  

  Web Server looks for Web 
Page in XHTML Web 
Service s 6

  Web Server retrieves Web 
Page s 7

  p 7  (7, 8)    =    0.724138  
  w (7)    =    0.175000  

  Web Server retrieves Web 
Page s 7

  Web Server sends Web 
Page to Web Client s 8

  p 8  (6, 5, 2)    =    0.310345  
  w (8)    =    0.075000  

  Web Server sends Web 
Page to Web Client s 8

  Web Client doing local 
computing s 1

  p 1  (1)    =    0.448276  
  w (1)    =    0.108333  
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Figure 14.3     Web client and Web server interactions. i, node or link identifi cation.  
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Reliability Analysis Based on Web Systems 

 The purpose of Figure  14.4  is to identify which Web systems are able to satisfy the 
Web Server reliability requirement at the software, hardware, and system levels, and 
to compute the prediction accuracy of software, hardware, and system with respect 
to actual reliability. We see that only systems 1 and 2 satisfy the requirement and 
that software has the best prediction accuracy as judged by the mean relative error 
(MRE). This means that additional debugging of the faults in the system and hard-
ware is necessary, recognizing that system failures include user and computer opera-
tor errors. Traditionally, user and operator errors have not been analyzed because 
the information may not be available. Since these errors could be signifi cant con-
tributors to unreliability, they should be tracked by using user and computer operator 
logs. Note that these systems are the ones from the LANL, where the failure data 
are documented in Table  14.2 , and the Web Server system is depicted in Figure  14.2 .   

 It is also important to track the hazard function (i.e., instantaneous failure rate) 
produced by Web servers in Figure  14.5  to determine whether there is any anomalous 
behavior (i.e., sudden jumps in hazard function) that would jeopardize reliability. 
As Figure  14.5  shows, indeed, there are cases of hardware and system showing 
sudden jumps in hazard function, thus reinforcing the fi nding from Figure  14.4  that 
hardware and system are candidates for additional fault removal.   

 Another reliability metric of interest is the probability of failure of Web server 
systems shown in Figure  14.6 , with software demonstrating the lowest probability, 
once the probability of failure reaches steady state. Recall that the reliability plots 
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Figure 14.4     Web server reliability R(i) versus system identifi cation i. Series 1: Actual reliability. 
Series 2: Predicted software reliability, MRE    =    0.0849. Series 3: Predicted hardware reliability, 
MRE    =    0.2225. Series 4: Predicted system reliability, MRE    =    0.3608. Series 5: Required 
reliability    =    0.9500.  
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Figure 14.5     Web server hazard function h(i) versus system identifi cation i. Series 1: Software. 
Series 2: Hardware. Series 3: System. 
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in Figure  14.4  showed that only systems 2 and 3 satisfi ed the reliability requirement, 
but according to Figure  14.6 , it might be better to select system 9 as the Web Server 
because at this point, the probability of failure has stabilized. This would be a false 
choice because reliability is the primary metric; other metrics are of secondary 
importance. Since the probabilities of failure are relatively small for systems 2 and 
3 in Figure  14.6 , these systems would remain our choice for Web server.   

 When predicted reliabilities do not satisfy the required reliability, as is the case 
in Figure  14.4 , we can solve Equation  14.3  for  λ  to predict the required failure rate 
λ  that is necessary to achieve required reliability R(i). The result is Equation  14.9 . 
Statistical testing and reliability analysis can be used effectively to assure quality 
for Web applications  [KAL01] . Therefore, Equation  14.9  helps us determine how 
much testing must be conducted to remove faults in order to reduce the failure rate 
λ  to a value that will achieve the required reliability, R(i):

    λ α= − log ( )R i

i
.     (14.9)    

Web Server Reliability Analysis 
Based on Operating Time 

 Up to this point we have used LANL data and made reliability predictions across 
these systems. Now, we focus on using data and making predictions as a function 
of Web server  operating time . Failure phenomena of Web server systems depends 

Figure 14.6     Probability of Web server failure p(i) versus system identifi cation i. Series 1: Software. 
Series 2: Hardware. Series 3: System. 
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on their workload characteristics. As a result, the number of user Web sessions 
strongly affects the failure rate of Web servers  [FUJ09] . While this is true,  operating
time  is a better metric of workload than number of sessions because it represents the 
continued , not periodic, use of Web facilities. Therefore, to start the analysis, Table 
 14.4  is presented showing the  operating time - oriented  data for system, software, and 
hardware failure rates, where 20% of the failures are contributed by software and 
50% by hardware. Typically, software accounts for a larger proportion of failures 
than hardware. However, in the case of Los Alamos supercomputers, the hardware 
confi gurations are very complex. This complexity contributes a disproportionate 
share of failures.   

 Note that in using  operating time , all equations that have been developed 
remain the same except that operating time  variable t is substituted for system iden-
tifi cation i. 

 Next, predict the  operating time - oriented  reliability of software, hardware, and 
system and compare these predictions to the actual reliability by computing the 
MRE, similar to our previous analysis of the system - oriented reliabilities. Figure 
 14.7  shows that none of the reliability metrics — software, hardware, system —
 achieve the required reliability. This means that, again, we must call upon Equation 
 14.9  to fi nd the reduced failure rates that would allow the required reliability to be 
achieved. Figure  14.8  shows the dramatic reduction in  system  failure rate required 
to bring predicted reliabilities into conformance with required reliability. The impli-
cation of this result is that a massive reduction in Web server faults must occur 
through comprehensive testing.     

WEB CLIENT RELIABILITY ANALYSIS 

 The logic for developing the client - side Web probability of failure model is to con-
sider that, with a historical error rate of n errors per Web page operation, N number 
of operations on the Web page, and an assumed exponential decrease in reliability, 
as n and N increase, Equation  14.10  is produced refl ecting the logic of n Web page 
errors occurring over N Web page operations. Admittedly, there are no data to prove 
the behavior of Equation  14.10 . However, it seems reasonable that, as n and N 
increase, the complexity of the Web page increases at an exponential rate, refl ected 
in an exponentially decreasing reliability R c (n, N). 

 The overall failure rate for a given server or a given client can be noticeable. 
Failure rates in excess of 2% are not uncommon. The failure rate varies considerably 
across servers and clients. About 30% of the failures can be traced to  Domain Name 
Server  ( DNS ) problems, and most of the rest are due to the inability of the client to 
establish a TCP connection to the remote Web server. (Note that the DNS lookup 
accesses are included in Fig.  14.2 .) Client - side problems account for the overwhelm-
ing majority of DNS lookup failures, whereas server - side problems are the dominant 
cause of TCP connection failures  [PAD05] . Therefore, in predicting client - side  prob-
ability of failure , based on the above failure history, assume various values of n — as 
much as 2% in Figure  14.9  — to see how sensitive the result is to the size of n, for given 
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Figure 14.8     Web server system failure rate  λ  versus operating time t. Series 1: failure rate for 
predicted reliability. Series 2: failure rate required to achieve required reliability    =    0.9500.  
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Figure 14.7     Web server reliability R(t) versus operation time t. Series 1: Actual reliability. Series 
2: Predicted software reliability, MRE    =    0.0895. Series 3: Predicted hardware reliability, 
MRE    =    0.2332. Series 4: Predicted system reliability, MRE    =    0.3744. Series 5: Specifi ed 
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Figure 14.9     Web client reliability R c (n) versus Web page error rate n. Series 1: N    =    100. Series 2: 
N    =    200. Series 3: N    =    300. Series 4: N    =    400. Series 5: Required reliability    =    0.9500. N, number of 
Web page operations.  
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values of N. It is also of interest to see how reliability changes as a function of n as 
reliability is increased by reducing the number of errors on a Web page. Therefore, the 
rate of change of reliability with respect to n is predicted in Equation  14.11 :

    R n N e ,c
Nn( , ) ( )= −     (14.10)  

    
dR n N

d n
NR n N .c

c
( , )

( )
( , )= −     (14.11)     

 Calling on Equation  14.10  in Figure  14.9 , we are able to determine whether the Web 
client meets the reliability requirement for various values of number of errors n and 
number of operations N. As can be seen, this is not the case. Therefore, considerable 
debugging of client software and hardware is necessary to achieve the required reli-
ability. In order to determine the error rate n that would be required to achieve the 
required reliability for a given value of N, manipulate Equation  14.10  to produce 
Equation  14.12 :

    n
R n N

N
.c= −

log ( , )
    (14.12)   

 It is evident in Figure  14.10  that an excessive number of Web page operations 
is bad news for reliability because the rate of change of reliability increases in the 
negative direction as the number of Web operations increases.    
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Figure 14.10     Web client rate of change of reliability dR c (n, N)/d(n) versus error rate n. Series 1: 
N    =    100. Series 2: N    =    200. Series 3: N    =    300. Series 4: N    =    400. N, number of Web page operations.  
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COMMUNICATION RELIABILITY ANALYSIS 

 The last element in the Web system model to be subjected to reliability analysis is 
the communication among Web system elements in Figure  14.2 . The Web system 
error rate is defi ned as the frequency with which errors or noise are introduced into 
communication channels. Error rate may be measured in terms of erroneous bits 
received per bits transmitted B. The distribution of errors is usually nonuniform, 
with a higher probability of small message size B and a lower probability of large 
message size. Thus, use the exponential distribution to represent the error rate in 
Equation  14.13 , where λ is the communication channel error rate in megabits per 
second (Mbit/s), b m  is the mean error rate, and B M  is the maximum bandwidth in 
megabits per second assumed available to the Web system. Given the exponential 
decay in error rate in Equation  14.13 , the reliability, R cc (t), of the communication 
channel in Equation  14.14  is expected to degrade exponentially with operating 
time t:

    λ
−⎛

⎝⎜
⎞
⎠⎟( )b e ,m

B

BM     (14.13)  

    R t e .cc
t( ) ( )−λ     (14.14)   

 As Figures  14.11  and  14.12  attest, client and server are restricted in obtaining 
required communication reliability to a bandwidth of 30   Mbit/s (Fig.  14.11 ) and an 
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Figure 14.11     Web communication channel reliability R cc (t) versus bandwidth B. Series 1: 
Communication channel reliability. Series 2: Required reliability    =    0.9500.  
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Figure 14.12     Web communication channel reliability R cc (t) versus operating time t. Series 1: 
Predicted reliability. Series 2: Required reliability    =    0.9500.  
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operating time of 3 seconds (Fig.  14.12 ). If higher reliability is required, Web 
system providers and users would have to invest in higher reliability communication 
facilities. While reliability performance is obviously not outstanding, the situation 
is not quite so dire because operating time refers to the time required to complete 
single communication functions, not all the Web system functions illustrated in 
Figure  14.2 .    

TOTAL SYSTEM RELIABILITY ANALYSIS 

 Individual Web components can be used to form value - added total Web services. 
The value of total Web services is directly infl uenced by the reliability of individual 
components  [YAN06] . Following this dictum, invoke the total system reliability 
Equation  14.8  to predict total Web system reliability in Figure  14.13 . We see that 
required reliability is satisfi ed for only a limited range of operating time. Further-
more, by including client, server, and communication component reliabilities in 
Figure  14.13 , we are able to prioritize the components for reliability improvement, 
yielding the result that the server component is the fi rst in line for reliability improve-
ment. In addition, Figure  14.13  provides us with the increase in system reliability 
necessary to achieve the reliability goal for each value of operating time.

Question for Reader:  Based on what you have learned in this chapter, what 
process could you use to choose among existing Web services in terms of 
performance and reliability?    

Figure 14.13     Total Web system reliability R s  versus operating time t. Series 1: System. Series 2: 
Client. Series 3: Server. Series 4: Communication channel. Series 5: Required reliability    =    0.9500. 
Series 6: Required system reliability improvement.  
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Answer:  Probably the most important performance factor that was not covered 
in the chapter is the relevance of search results to the user ’ s information 
needs. It was not covered because search relevance cannot be generalized. 
It is highly personable and only has meaning for the Web client. Thus, you 
could evaluate the relevance, coupled with response time, for various searches 
important to you, over various Web services, and compare the results.    

 With respect to reliability, you could repeatedly access a group of Web systems in 
rapid succession for the same search request, over an observed operating time, and 
record any failures to provide search results. If failure counts are obtained, the data 
would be used in the system actual  reliability, Equation  14.7 , to compute the reli-
ability of each Web system. The result would be one basis for choosing a Web 
system.

SUMMARY AND CONCLUSIONS 

 In order to obtain a comprehensive and valid assessment of Web system reliability 
and related metrics it is necessary to decompose the system into its component parts, 
predict component reliabilities, and then do an integrative analysis to produce total 
system reliability predictions. The reason for this is that there are different failure 
properties for Web client, Web server, and the interconnected communication chan-
nels. This process includes the following steps:

1.     Identify Web page operations so that the number of ways Web clients and 
servers could fail can be ascertained.  

2.     Identify states and state transition probabilities so that components reliabili-
ties can be properly weighted to produce total system reliabilities.  

3.     Determine whether each component and the system satisfy the reliability 
requirement.

4.     When reliability requirements are not achieved, compute the failure rates 
required to bring components into conformance with reliability 
requirements.

5.     Use rate of change of Web client and server - predicted reliability, with 
respect to error rate, to identify the number of Web page operations that 
cause reliability degradation.  

6.     Study the effects of increasing bandwidth and operating time on communi-
cation channel reliability.  

7.     Integrate component reliabilities into total system reliability predictions and 
compute the reliability improvement necessary to achieve the reliability 
goal.    

 The above process not only yields important Web system reliability predictions, but, 
in addition, allows the researcher and practitioner to understand how all the pieces 
of the reliability picture fi t together, thus supporting reliability analyses.  
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Chapter 15

Mobile Device Engineering 

I ssues in mobile network reliability, performance, and context and network awareness are 
examined. Based on mobile phone failure data reported in the literature, reliability models 
for assessing mobile network reliability are explored from two perspectives: by type of failure 
and by category of failure recovery action. This chapter builds on the foundation provided in 
the Chapter  8 . Furthermore, the operational time corresponding to specifi ed reliability values 
are predicted. Based on these calculations, you could conclude that current mobile networks 
are unable to provide highly reliable service for more than a few months of operation. In 
addition, a novel signal - to - noise ratio is developed and computed, and applied to assessing 
mobile network stability. Where data were not available, such as in issues involving context 
(i.e., environment in which mobile device is operational, such as a wireless hot spot) and 
network awareness (i.e., mobile device having the intelligence to recognize its operational 
environment), I have indicated with diagrams how mobile networks could respond to changes 
in both context and network awareness.    

INTRODUCTION

 The chapter ’ s objective is to discuss a number of issues in mobile computing, such 
as risks of operating mobile devices, the problem of maintaining adequate power in 
a mobile network, mobile device software reliability, context - aware and network -
 aware mobile computing, and mobile device performance. Because the mobile 
environment involves many software and hardware components and technologies, 
it is important to address many relevant issues. Thus, for each of these issues, where 
appropriate, a quantitative approach is used for making assessments of the need for 
mobile device improvement. Reliability is an example of where the quantitative 
approach is applied, which uses failure data reported in the literature to develop 
several quantitative assessments of mobile network reliability, based on types of 
failures and responses to the failures. In other cases, such as context - aware mobile 
computing, where there is no quantitative data relating reliability and performance 
to the context of the mobile environment, a qualitative analysis is provided. 
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Major Risks Posed By Mobile Devices 

Security

 While mobile devices are productivity - enhancing tools, they bring new security 
threats to the enterprise. A security breach on the device can be expensive to the 
user organization. The increasing numbers of mobile users and the explosion of 
Internet connectivity have demolished the concept of a “fi xed ”  information perim-
eter for organizations. A company network protected only by a central fi rewall is no 
longer adequate. Users frequently travel outside the perimeter, where they can 
expose confi dential data and risk attacks. Mobile devices are at risk of carrying 
viruses and other malware. These information corruptions may be released into the 
network  [TRE] . In order to counteract security threats, a network fi rewall, light-
weight encryption, intrusion detection, and antimalware software should be 
employed, as shown in Figure  15.1 .    

Intrusion Detection 

 Of particular concern in the protection of mobile networks is intrusion detection 
because if intrusion is successful, it could disrupt an entire network. Intrusion detec-
tion techniques sense intrusions while they are acting on an information system. 
Existing intrusion detection techniques fall into two major categories: signature 
recognition and anomaly detection  [DEL04, ESA98] . Signature recognition tech-
niques match entities in an information system with signatures of known entity 

Figure 15.1     Mobile device connectivity for security and performance.  
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intrusions and signal an intrusion when there is a match. For example, consider the 
entities: user, fi le, program, host, network, and so on. Signature recognition tech-
niques establish a profi le of the entity ’ s normal behavior, for example, the fi les a 
user is authorized to access. Then, anomaly detection compares the observed behav-
ior of the entity with the profi le, and signals intrusions when the entity ’ s observed 
behavior deviates signifi cantly from its profi le, for example, when the user is access-
ing unauthorized fi les  [YE02] . A successful intrusion increases the noise in a mobile 
network and, thus, lowers the signal - to - noise ratio (S/N).  

Power Loss 

 Another important risk of operating mobile devices is the challenge of power man-
agement and potential loss of power. These devices are increasingly being used in 
multimedia streaming - type applications, common examples being on - demand movie 
streaming and video conferencing. In spite of technological advances, battery life 
still remains a major limitation of portable devices. The main power consuming 
components of a mobile device are: central processing unit (CPU), display, and 
network interface. Running multimedia applications further aggravates the situation, 
because these programs are both CPU and network intensive. However, while the 
CPU and network may benefi t from managing the power budget (see Fig.  15.1 ), 
displays need to be on at all times and thus limits the possibilities for saving power 
without severely impacting the user experience  [COR06] . The risk of power loss 
can be mitigated by the use of power monitoring, as shown in Figure  15.1 .    

MOBILE DEVICE RELIABILITY 

Software Mobile Network Products 

 In mobile ad hoc networks, wireless media have limited and variable ranges, as 
distinguished from wired media. Each mobile device moves in an arbitrary manner 
and routes are subject to frequent breakage  [QIN03] . In software mobile network 
products, often the failure rate decreases after installation, eventually reaching a 
steady state. The time it takes for a product to reach its specifi ed reliability depends 
on different product parameters. Stabilization time is the operating time during 
which specifi ed reliability is achieved  [SAU06] . In mobile devices, achieving sta-
bilization is a function of parameters, such as quality of communication between 
mobile devices and between mobile devices and mobile network, as represented by 
S/N stability (i.e., S/N    >>    1), in Figure  15.1 . 

 Radio frequency (RF) interference, large - scale path loss, and fading cause 
adverse channel conditions by reducing the S/N of the wireless communications. 
When the S/N is lower than a certain threshold, the bit error rate of the wireless 
communication rises over the acceptable limit, thus disrupting the wireless connec-
tion. Therefore, the key to maintaining wireless communication under adverse 
channel conditions is to provide as high an S/N as possible  [WAN07] . Furthermore, 
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this important parameter can be related to reliability, as will be shown later. Reli-
ability becomes even more important as new critical applications emerge for mobile 
phones (e.g., robot control, traffi c control, and telemedicine). In such scenarios, a 
phone failure affecting the application could result in a signifi cant loss or hazard 
(e.g., a robot performing uncontrolled actions)  [CIN07] . Thus, device mobility, 
designed to make devices less dependent on particular locations and resources, is 
essential, as illustrated in Figure  15.1 .  

Wireless Communication 

 Wireless communication must be maintained under adverse channel conditions. 
Wireless channel conditions are inherently more vulnerable than those of wireline 
communications due to the existence of problems such as multiple access conten-
tion, RF interference, large - scale signal path loss, and signal fading. Industrial 
environments make these problems worse due to large obstructions and possible 
 electromagnetic interferences  ( EMI ). An example is the EMI from electric welding 
or an electric motor that can last for hours or even days. Wireless local area net-
works (WLANs) require much higher reliability than wired local area networks 
(LANs) for offi ce or home use. Most offi ce or home wired LANS allow a few 
seconds or even minutes of adverse channel conditions. They just need to back off 
or shut down until the channel condition recovers and then retransmit. However, 
WLANs do not have the luxury of delay or shut down. Delay or shut down would 
cause deadlines to be missed, which result in poor reliability and performance 
 [WAN07] .  

Reported Failure Data 

 In this section, failure data reported in the literature are analyzed. Failure data were 
obtained from the analysis of failure reports posted between January 2003 and March 
2006. There were a total of 533 reports. Phone models from many major vendors 
are represented: Motorola, Nokia, Samsung, Sony Ericsson, LG, Kyocera, Audio-
vox, HP, Blackberry, Handspring, and Danger  [CIN07] . Twenty - two point three 
percent (22.3%) of failure reports are from smartphones, although smartphones 
represented only 6.3% of the market share in 2005. This is attributed to the fact that 
smartphones: (1) have more complex architecture than voice - centric mobile phones 
and (2) are open for users to download and install third - party applications or develop 
their own applications, which results in high failure rates. 

 Data for this study were obtained from publicly available Web forums, where 
users post information on their experiences in using handheld devices. Symbian 
 operating system  ( OS ) - based smartphone failure data were collected from 25 phones 
(in Italy and the United States) over a period of 14 months  [CIN07] . Key fi ndings 
indicate that: (1) the majority of OS kernel failures are due to memory access viola-
tion errors (56%) and memory management problems (18%) and (2) users experi-
ence a failure (freeze or self - shutdown) every 11 days, on average  [CIN07] .  
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Failure Types 

 The following failure types are the way vendors classify failures  [CIN07] :

•      Freeze (Lock - Up or a Halting Failure) .      The device ’ s output becomes con-
stant, and the device does not respond to the user ’ s input.  

•      Input Failure .      User inputs have no effect on device behavior (e.g., device 
keys do not work).  

•      Output Failure .      The device, in response to an input sequence, delivers an 
output sequence that deviates from the expected one. Examples include inac-
curacy in battery charge indicator, ring or music volume different from the 
confi gured one, and event reminders going off at wrong times.  

•      Self - Shutdown (Silent Failure) .      The device shuts down itself, and no service 
is delivered to the user.  

•      Unstable Behavior (Erratic Failure) .      The device exhibits erratic behavior 
without any input from the user, (e.g., backlight fl ashing and device self -
 activation of applications).     

Recovery Actions 

 A disruption due to the failure of one of the participating (e.g., mobile device) or 
intermediary (e.g., cellular network) systems typically results in the user having to 
restart the application, often at signifi cant expense to both the user and to the service 
provider For mobile users accessing digital cellular networks, such disruptions occur 
frequently, as the wireless link is much less reliable than wired connections  [VAN03] . 
Therefore, it is important to discuss and evaluate actions to recover from a device 
failure. Recovery actions are classifi ed as follows  [CIN07] :

•      Service the Phone .      The user has to bring the phone to a service center for 
assistance. Often, when the failure is fi rmware related (computer program-
ming instructions that are stored in a read - only memory unit rather than being 
implemented through software), the recovery consists of either a master reset 
(all the settings are reset to the factory settings and the user ’ s content is 
removed from the memory) or a fi rmware update (i.e., uploading a new 
version of the fi rmware).  

•      Reboot .      The user turns off the device and then turns it on to restore the correct 
operation (a temporary corrupted state is cleaned up by the reboot).  

•      Remove Battery .      Battery removal is mainly performed when the phone 
freezes. In this case, the phone often does not respond to the power on/off 
button. Battery removal can clean up a permanent corrupted state; however, 
this is a crude way to invoke power management. Improved power manage-
ment is needed in mobile devices to increase their utilization  [YUK03] .  
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•      Wait an Amount of Time .      Often it is suffi cient to wait for a certain amount 
of time to let the device deliver the expected service.  

•      Repeat the Action .      Repeating the action is sometimes suffi cient to get the 
phone working properly (i.e., the problem was transient).  

•      Optimistic Message Logging .      In optimistic message logging, the task of 
logging mobile device messages is assigned to a centralized mobile station, 
so that in the event of a mobile device failure, the device may be able to 
recover the message from the centralized mobile station. A number of message -
 logging algorithms have been proposed to support fault tolerance of mobile 
computing systems. However, little attention has been paid to the optimistic 
message logging scheme. Optimistic message logging has a lower failure - free 
operation cost compared to other logging schemes  [PAR02] .  

•      Automated Failure Data Logger .      There is still little understanding of how 
and why mobile phones fail or of the methods and techniques needed to 
gain such understanding. A well - established methodology to evaluate the 
reliability of operational systems and to identify its bottlenecks is fi eld 
failure data analysis . However, today ’ s smartphones do not have a means to 
detect and collect failures. A solution is the automated failure data logger. 
Upon failure detection, the logger gathers useful information, such as the 
phone’ s activity, the list of running applications, and error conditions 
in system and application modules. The technique has been implemented 
in Symbian OS smartphones. The main objective of the logger is to detect 
and record the occurrences of freezes and reboots. It is important to detect 
the status of the phone during a failure. For example, assume that a phone 
freezes when a text message is received. It is important to answer questions 
such as: (1) do we know that a text message was being received? (2) do we 
know whether some module failed? and (3) are we aware of other applica-
tions running during the failure that may have contributed to the freeze)? 
 [WAN07]      

Failure Severity 

 Failure severity is classifi ed according to the user perspective and defi nes severity 
levels corresponding to the diffi culty of the recovery action(s)  [CIN07] :

•      High .      A failure is considered to be high severity when recovery requires the 
assistance of service personnel.  

•      Medium .      A failure is considered to be of medium severity when the recovery 
requires reboot or battery removal.  

•      Low .      A failure is considered to be of low severity if the device operation can 
be reestablished by repeating the action or waiting for a certain amount of 
time.    

 All failures occurring during emergency calls (e.g., 911) are high severity. 
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 Table  15.1  shows the distribution of failures and recovery actions. Despite their 
high occurrence, output failures are low severity, since repeating the action is often 
suffi cient to restore the device to the correct operation. On the other hand, self -
 shutdown and unstable behavior are high - severity failures because they must be 
corrected by servicing the phone or removing the battery. Phone freezes are medium 
severity, since rebooting only occurs in 2.36% of the total number of failures. While 
input failures are high severity because device keys do not work, their frequency of 
occurrence is low.   

 From the recovery action perspective, it should be noted that reboots are an 
effective way to recover from output failures (8.80% of the total number of failures). 
This indicates that output failures are often due to a temporary software corrupted 
state, which is cleaned up by the reboot. This is also confi rmed by the fact that 
repeating the action is often suffi cient to restore a correct device operation. Freezes 
are usually recovered by pulling out the battery (9.01%), even if a signifi cant number 
of them (4.29%) are recovered by simply waiting for the phone to respond. This 
may indicate that a certain fraction of battery removals and reboots in response to 
freezes is due to impatient users. In general, this leads to the conclusion that freezes 
are more annoying than output failures. 

 Additionally, failure occurrences can be associated with the user activity at the 
time of the failure (not shown in Table  15.1 ). In particular, 13% of failures occur 
during voice calls, 5.4% while creating, sending, and receiving text messages, 3.6% 
while using Bluetooth, and 2.4% when manipulating images. Finally, several reports 
provide insight into the failure causes. There are indications of loss of memory data, 
incorrect use of the device resources, bad handling by software of indexes and point-
ers to objects, and incorrect management of buffer sizes. 

Table 15.1    Failure Frequency and Recovery Action Distribution: Fraction of Total Number of 
Failures

   Failure type     Severity  
   Service 
phone

   Recovery Action  

   Unreported     Totals     Reboot  
   Remove 
battery

   Wait for 
response

   Repeat 
operation

  Freeze    Medium    0.0365    0.0236    0.0901    0.0429    0    0.0601    0.2532  
  Input 

failure
  High    0.0064    0.0064    0.0021    0    0.0064    0.0086    0.0299  

  Output 
failure

  Low    0.0687    0.088    0.0043    0.0064    0.0579    0.1373    0.3604  

  Self -
 shutdown  

  High    0.0665    0    0.0215    0.0043    0    0.0773    0.1696  

  Unstable 
behavior

  High    0.0687    0.0172    0.0021    0.0021    0.0064    0.088    0.1845  

  Totals        0.2468    0.1352    0.1201    0.0557    0.0707    0.3713      
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 Further elaboration of failure types and corresponding recovery actions are 
documented in Table  15.2 , showing expected number of failures and failure rates 
for the various failure categories.     

RELIABILITY CALCULATIONS 

Probability of Failure 

 Using the data from Tables  15.1  and  15.2 , and assuming that failures occur according 
to a Poisson distribution, we are able to calculate several interesting reliability 
metrics. The Poisson distribution is most often used in situations where the probabil-
ity of the next state in a process is only dependent on the present state — the so - called 
memoryless systems. For example, when the probability of the next failure is only 
dependent on the present state (e.g., loss of battery power) of the mobile phone when 
a failure occurs  [MUS87] . This is a reasonable assumption because, for example, 
prior calls by the mobile device should have no effect on the current failure probabil-
ity of the device. Then the probability of x mobile phone failures occurring during 
operating time t, is given by Equation  15.1 :

    P x t
e t

x
,

t x

( , )
( )

!
=

−λ λ
    (15.1)  

  where  λ  is the failure rate. Note that when x    =    0, Equation  15.1  yields the classical 
reliability expression R(t)    =    e −λ t . 

 Using the fraction of failures in each category in Table  15.1  and the 533 total 
failure reports that are available, you can compute the expected  number of failures 
shown in Table  15.2  by multiplying the fraction of failures by 533. In addition, the 

Table 15.2    Expected Number of Failures, Failure Rates, and Recovery Rates 

   Failure type  
   Service 
phone

   Recovery Action  

   Unreported  
   n 

Totals  
   Failure 
rate λ   Reboot  

   Remove 
battery

   Wait for 
response

   Repeat 
operation

  Freeze    19.45    12.58    48.02    22.87    0.00    32.03    134.96    9.64  
  Input    3.41    3.41    1.12    0.00    3.41    4.58    15.94    1.14  
  Output    36.62    46.90    2.29    3.41    30.86    73.18    193.27    13.80  
  Self -

 shutdown  
  35.44    0.00    11.46    2.29    0.00    41.20    90.40    6.46  

  Unstable 
behavior

  36.62    9.17    1.12    1.12    3.41    46.90    98.34    7.02  

  Totals    131.54    72.06    64.01    29.69    37.68    197.90    n      
  Recovery 

rate
  9.40    5.15    4.57    2.12    2.69    14.14          
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failure rate was computed for each failure type and recovery action by λ     =    n/t, where 
n is the “ Totals ”  column and row of Table  15.2  and t is equal to 14 months — the 
length of time during which the failure data was collected. With the failure rate in 
hand, you can compute the probability of one or more failures during the operational 
time for each failure type (i.e., unreliability  at operational time t). This is done in 
Equation  15.2 :

    P x t
e t

x

t x

( , )
( )

!
.> = − ⎡

⎣⎢
⎤
⎦⎥

−

0 1
λ λ

    (15.2)   

 The result is shown in Figure  15.2 , where two of the high severity failure categories 
are plotted. The fi gure indicates that over the life of a mobile phone — reports indicate 
that phones are discarded every 18 months — it is highly unlikely that there would 
be failure - free service for these failure categories. The same result was obtained for 
the other failure categories but it was infeasible to include them in the same fi gure. 
The results suggest that, given the fact that memory violations are the cause of the 
majority of the failures, vendors should provide better protection against memory 
violations, such as validity checks on memory access to ensure that the correct area 
of memory is being accessed.   

 Figure  15.3  shows an application of Equation  15.1  applied to the input failure 
category where an improvement in reliability is achieved by switching from a failed 
phone to a nonfailed phone in the backup network. This process is only possible in 
the case of an organization with multiple cell phone users at various locations, such 
that a user with a working phone can take over communication from a user with a 
failed phone.   

Figure 15.2     Mobile phone: probability of one or more failures P(x    >    0) versus operating time t. 
Series 1: Input failure, high severity; expected number of failures    =    15.94; failure rate    =    1.14 failures 
per month. Series 3: Unstable behavior, high severity; expected number of failures    =    98.74; failure 
rate    =    7.02 failures per month.  
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Figure 15.3     Context -  and network - aware mobile data network. P(x, t), probability of x number of 
input failures in operational time t; t 1 , cell phone 1: failure in 1 hour, cell phone 2: no failure; t 2 , 
network split. Improvement in reliability    =    0.3592. Cell phone 2 exhibits context awareness and 
mobile connectivity to obtain GPS location information.  
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 Another perspective of failure characteristics is shown in Figure  15.4 , where 
interestingly, you can identify the best customer strategy, based on using the expected 
number of failures and failure rates corresponding to the recovery action categories. 
Figure  15.4  shows that for mobile phone usage time of less than 4 months, the best 
customer action is to wait for a response from the phone. For extended usage (i.e., 
t    >    4), none of the alternatives would be more advantageous than the others.    

Stabilization Time 

 It is of interest to compute the operating time  during  which a specifi ed reliability 
requirement is achieved. This is the stabilization time mentioned earlier that increases 
with decreasing failure rate for a specifi ed reliability. This time is computed by 
solving R(t)    =    e −λ t  for t, as follows:

    t
LN R t

,= − ( ( ))

λ
    (15.3)  

  where R(t) is now the specifi ed reliability. 
 Again using the high severity types of failures, Equation  15.3  is computed in 

Figure  15.5 , where you can see that for  low failure rate, input failures , the specifi ed 
reliability is achieved for a longer  stabilization time than for  high failure rate, 
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Figure 15.4     Mobile phone: probability of one or more failures related to recovery action P (x    >    0) 
versus operational time t. Series 1: Service phone, expected number of failures    =    131.54, failure 
rate    =    9.40 failures per month. Series 2: Wait for response, expected number of failures    =    29.69, 
failure rate    =    2.12 failures per month. Series 3: Repeat operation, expected number of failures    =    37.68, 
failure rate    =    2.69 failures per month.  
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Figure 15.5     Mobile phone: stabilization time t versus specifi ed reliability R(t) for failure types. 
Series 2: Input failure, high severity, failure rate    =    1.14 failures per month, meets reliability 
requirement for 2.78 days of operation. Series 4: Unstable behavior, high severity, failure rate    =    7.02 
failures per month, meets reliability requirement for 0.45 days of operation.  
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unstable behavior failures . Figure  16.6  presents the corresponding information for 
recovery actions, where the fi nding of Figure  15.4  is confi rmed: the best customer 
strategy is to wait for a response. Doing so would result in the longest stabilization 
time of the various recovery actions.     

MOBILE DEVICE CONTEXT AWARENESS 

 Information about the user ’ s environment offers new opportunities to improve per-
sonalized applications. Such applications constantly need to monitor the environ-
ment (e.g., connectivity to access points, as identifi ed by sending test signals) — called 
context— to allow the application to react according to this context. Context aware-
ness is especially interesting in mobile scenarios where the context of the application 
is highly dynamic in which the application must deal with the constraints of presen-
tation (e.g., small display screen) and communication restrictions (e.g., noisy signal 
propagation conditions)  [HOF03] . With regard to location awareness, most WLANs 
positioning systems use  received signal strength  ( RSS ) as important information to 
estimate the location of a mobile station (see Fig.  15.1 ). RSS can be obtained at the 
access points or at the mobile device  [YEU07] . 

Figure 15.6     Mobile phone: stabilization time t versus specifi ed reliability R(t) for recovery actions. 
Series 1: Service phone, failure rate    =    9.40 failures per month, meets requirement for 0.34 days of 
operation. Series 2: Wait for response, failure rate    =    2.12 failures per month, meets requirement for 
1.49 days of operation. Series 3: Repeat operation, failure rate    =    2.69 failures per month, meets 
requirement for 1.17 days of operation.  
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 A user who is moving with his or her mobile device is not permanently con-
nected to a network, as depicted in Figure  15.1 . In the case of WLAN, Bluetooth, 
or other wireless connections, if a user gets out of range of access points, the user 
is switched to other access points. Since permanent connections are not guaranteed, 
an application cannot rely on remote servers. This discontinuity of network connec-
tions has to be taken into account when designing an architecture for mobile devices. 
But the network connection is not the only difference of mobile versus nonmobile 
applications. Mobile devices are much more personal, meaning that the user of a 
mobile device seldom changes  [HOF03] . This characteristic is a benefi t in disguise 
because, unlike the case of nonmobile users, there is only a single user who can be 
the source of user - injected errors. 

 Regarding the need to save energy, a mobile device can be turned off, or some 
features can be disabled when they are not required. While this saves energy, a 
deactivated sensor cannot sense any information about the context and, therefore, 
the context cannot be determined until the sensor is turned on again  [HOF03] . 

 On the basis of these special characteristics of a mobile device scenario, the 
following requirements for an architecture to support context awareness on mobile 
devices have been identifi ed:

•      Lightweightness .      The framework has to take into account the restrictions on 
limited processing power. For example, current IEEE 802.11 power saving 
schemes provide limited savings for Voice over Internet Protocol (VoIP) wire-
less traffi c. A novel scheme named Adaptive Microsleep (AMS) can be 
applied to solve this problem. AMS is well suited for power saving on mobile 
VoIP devices by adapting to power needs. For example, when power require-
ments are low, the amount of time that devices spend in a low power sleep 
state is increased, but doing so without introducing additional delays that 
would noticeably deteriorate voice quality  [CHA07] .  

•      Extensibility .      Since available sensors (i.e., a mobile device part that can sense 
information, such as connectivity with an access point) and extension slots 
are limited, it is not possible for a single device to sense all context informa-
tion. Therefore, the architecture should support connections to sensors that 
are the most important for a given application.  

•      Robustness .      The architecture has to guard against disconnections of remote 
sensors (e.g., sensor associated with access point).  

•      Context Sharing .      Provide a mechanism for sharing context information (i.e., 
information about wireless environment [S/N]) with other mobile devices.    

 The  context architecture  comprises the following types of context:

•      Time .      The current time, as provided by the system clock of the mobile device.  

•      Location .      Represents the current (physical) position of the mobile device 
using Global Positioning System (GPS) coordinates. This context is typically 
set by an adaptor, which reads a GPS receiver. This is illustrated in Figure 
 15.3  where cell phone 2 obtains GPS - provided location information.  
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•      Device Identifi cation .      Consists of an identifi er, which should be unique, and 
a device type, which can be used to distinguish between different types of 
devices, such as desktop PCs, laptops, and personal digital assistants (PDAs).  

•      User .      Identifi es the current user of the device  [HOF03] .  

•      Network .      Contains information about the available network connection types 
of the device (e.g., access point, wired network). This context can provide 
additional information, such as the likelihood of the abort of a connection and 
the connection available bandwidth.  

•      Operating Context  ( OC ) .      This is defi ned by the device hardware and soft-
ware, the target user, and other characteristics, such as the communications 
carrier. For example, consider the following two OCs: 

•      OC1: target device    =    Nokia N90 (defi nes device hardware and software), 
target user    =    subscribers of carrier A.  

•      OC2: target device    =    Nokia N90 (defi nes device hardware and software), 
target user    =    subscribers of carrier B.      

 Note that both OCs are for the same physical device. 

Interoperability of Mobile Devices with Other 
Computing Infrastructures 

 In the near future, personal mobile devices will become ingredients of other infra-
structures, such as electric power grids. Computing techniques have been devised 
to enhance mobile devices so that their interoperability with grid infrastructures will 
be achieved by employing  Personal Augmented Computing Environment  ( PACE ). 
PACE characteristics include (1) collaborative mobile device visualization (e.g., 
electric utility and customer meter reading), (2) context - aware methods for mobile 
devices to achieve effi cient utilization of grid resources (e.g., electric utility mobile 
device senses power outage and invokes backup power supply), and (3) integration 
of mobile devices and environmental infrastructures (e.g., amalgamation of electric 
utility and customer mobile devices with electric utility substation to achieve effi -
cient power usage)  [LUO07] . This development is important because it facilitates 
the production of common power utility software and common customer software, 
thus achieving software portability  [MIK07] .  

Context-Aware Migratory Service 

 Due to the vagaries of context aware services, a model is needed of service interac-
tion in ad hoc networks, based on the concept of context - aware migratory service. 
Unlike a regular service that always executes on the same node, a context - aware 
migratory service is capable of migrating to different nodes in the network in order 
to effectively accomplish its task. For example, a mobile device lacking connectivity 
to an access point can migrate to another access point. The service migration is 
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context aware because it is triggered by context changes of the nodes in the ad hoc 
network  [RIV07] . An example is cell phone mobility in Figure  15.1 , triggered by 
sensing an intrusion. 

 When failures occur, the mobile network has to try to fi nd other devices to 
execute the mobile programs. If it is successful in fi nding such a device, it will 
transfer program control to that device  [KUN] . You can consider the probability 
P(x    >    0) of one or more failures x of the failing device versus the probability of 
x     =    0 failures P (x    =    0) of the nonfailing device, and compute the improvement in 
reliability. This process is illustrated in Figure  15.3 .   

NETWORK-AWARE APPLICATIONS 

 A network - aware application attempts to adjust its resource demands in response to 
network performance variations. In most current network - aware applications, 
changes in network environments refer to changes in the following parameters of 
network quality: bandwidth, which is the minimum link capacity among all the links 
from a source mobile device to a destination mobile device; throughput, which is 
measured in rate of data transfer [CAO04]; and reliability. When these parameters 
decrease, the network - aware application slows the utilization of resources to refl ect 
the decrease in performance. Contrariwise, when parameters increase, resource 
utilization is increased.  

MOBILE DEVICE PERFORMANCE 

User-Perceived Response Time 

 Today, most personal mobile devices are multimedia enabled and support a variety 
of concurrently running applications, such as audio and video players, word proces-
sors, and Web browsers. Media - processing applications are often computationally 
complex. As a result, the user - perceived application response times are often poor 
when multiple applications are concurrently executed. By using application - specifi c 
buffering techniques, as shown in Figure  15.1 , the workload of these applications 
can be “ shaped ”  to fi t the available processor bandwidth  [CHA06] .  

Mobile Phone Performance Assessment 

 Performance is an important quality attribute of a software system but it is not always 
considered when mobile phone software is designed. Furthermore, software evolves 
and these changes can negatively affect performance. New requirements could 
introduce performance problems and the need for a different design. Performance 
assessment is a way to highlight design fl aws or ineffi ciencies. Periodic performance 
assessments can help to discover potential bottlenecks  [DEL04] . For example, in 
Figure  15.1 , a potential bottleneck to accurately locate the Internet Protocol (IP) 
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phone is the RSS. This parameter can be tuned to avoid a bottleneck by adjusting 
receiver sensitivity in the phone.  

Storage Capabilities 

 Mobile computing devices with several networking interfaces have become com-
monplace (e.g., text messaging, Internet Web sites). Networked data storage facilities 
greatly extend their use. The storage architecture for such devices is a critical per-
formance factor. A two - level structure is used in which one component, the mobile 
memory cache, moves when the device is mobile  [MAP07] , as illustrated in Figure 
 15.1 . In addition, there is a fi xed location secondary storage component that is 
capable of storing large amounts of mobile network data.  

Signal-to-Noise Ratio 

 As mentioned previously, and as shown in Figure  15.1 , S/N is an important perfor-
mance attribute of a mobile network. Data from mobile device vendors about actual 
S/N are not available for this analysis; however, surrogates in Equation  15.4  are 
based on the ratio of reliability (R(t)    =    signal) to unreliability (U(t)    =    noise):

    S N R t U t/ / .= ( ) ( )     (15.4)   

 Using this metric, you can see in Figure  15.7  that the mobile phone customer would 
not enjoy a good S/N for more than 4 months of usage.

Problem:  Is there a limitation to computing S/N as shown above, and if so, 
what is the limitation? Answer the question by formulating an equivalent 
equation for S/N.    

Solution:  To obtain the answer, compute S/N as follows:
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 Thus, S/N is only a function of reliability (i.e., signal) instead of signal  and  noise! 
However, given the lack of signal and noise data, this is the best we can do.   

SUMMARY AND CONCLUSIONS 

 In conformance with the chapter objective, a variety of mobile device issues have 
been addressed that differ dramatically from those of wired networks. Where data 
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were available, as in the case of reliability, quantitative methods were employed to 
assess reliability. A conclusion based on this analysis is that mobile device reliability 
is only satisfactory for the fi rst few months of operation. If signifi cant advances are 
to be made in reliability, it will be necessary to make improvements in both hardware 
and software reliability, particularly as it relates to memory management. 

 Where quantitative data were not available for issues such as context and 
network awareness in mobile networks, it was shown how mobile networks can 
adapt to changing conditions, such as a network split in Figure  15.3 , using a network -
 awareness approach. There is an urgent need for further research centered on col-
lecting and analyzing reliability and performance data related to context and network 
awareness because these applications represent the greatest potential for improve-
ment in mobile networks, supporting, for example, the intelligent use of resources 
in an electric grid network.  
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Chapter 16

Signal - Driven Software Model 
for Mobile Devices 

T here is a paucity of software models that deal with mobile devices. Therefore, the motiva-
tion for this chapter is to build on the mobile device material learned in Chapter  15  and apply 
it to the development of important mobile device software models. Issues in mobile device 
reliability are explored, using a signal - driven software model for mobile devices. Based on 
mobile phone failure data reported in the literature, the model is implemented in two dimen-
sions: by type of failure and by type of failure recovery action. Based on these calculations, 
it can be concluded that current mobile devices are unable to provide highly reliable service 
for more than a few months of operation. In addition, a novel signal - to - noise ratio (S/N) 
representation of reliability is developed and applied to the failure and recovery action data. 
Having discovered that S/N infl uences test effectiveness, it can be shown that S/N can be 
used to prioritize software modules for testing.    

INTRODUCTION

 You may ask: what is so important about signal - driven software models? How do 
they differ from plain old input - driven software models? Well, there are signifi cant 
differences because mobile devices operate in a hostile communications environ-
ment, confronted by adverse atmospheric conditions and physical barriers to signal 
propagation. Thus, software models for mobile devices must take these conditions 
into account. 

 The key issues in mobile computing include mobility - related reliability and 
testing problems, such as loss or degradation of wireless connections, high latency 
wireless networks, and low quality connections (e.g., caused by network failures) 
 [POU06] . To address the reliability issue, a signal - driven software model for mobile 
devices is developed and shown in Figure  16.1 . In the physical mobile device 
system, signal strength is critical to effective communication. Mobile devices use 
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received signal strength to estimate the location of other devices and stations 
 [YEU07] . Analogously, signal strength in a software model is important because, 
with high signal  strength S, representing the number of correct software modules, 
and low noise  strength N, representing the number of failed software modules, reli-
ability will be increased, as shown in Figure  16.1 , by  decreasing  the ratio N/S. This 
formulation of  signal - to - noise ratio  ( S/N ) may seem strange because traditionally, 
signal and noise are represented by electrical signals. This is appropriate for hard-
ware that can process signals represented by voltage, but, for software, a representa-
tion is needed that pertains to the correctness of the software production process.   

Mobile Device Software Reliability and Testing 

 In software products, often the failure rate decreases after installation, eventually 
reaching a steady state. The time it takes for a product to reach its steady - state reli-
ability depends on different product parameters. Stabilization time is the time taken 
after installation for the reliability of the product to asymptotically approach a con-
stant value  [SAU06] . In mobile devices, achieving stabilization is a function of 
parameters, such as quality of communication between mobile devices and between 
mobile devices and mobile network, as represented by S/N. Interestingly, S/N does 
not have to be limited to measurement in physical systems. It can be used as a 
measure of software reliability in Figure  16.1 . 

 Reliability becomes even more critical as new applications emerge for mobile 
phones (e.g., robot control, traffi c control, and telemedicine). In such scenarios, a 
device failure affecting the application could result in a signifi cant loss or hazard 
(e.g., a robot performing uncontrolled actions)  [CIN07] . The challenges to reliability 
are amplifi ed because of the problems with current - generation wireless technologies. 

Figure 16.1     Signal - driven software model for mobile devices.  

Modulator
Negative

Amplifier

Translator for

GPRS  to

Communications

Carrier
Demodulator

Noise

Suppression

Decrease N

Signal Generator

Module Requirements
for GPRS

Requirements Inspection

Noise Noise

Design Code Test Reliability

Analysis

Operation

Requirements Ambiguity

Feedback Correction Signal (Revised Requirements)

S/N = Signal/Noise = # Correct Modules/# Failed Modules

Failed Modules
Correct Modules

Reliability = 1–(N/S)

C = S–N

o User Interface

o Communications Interface

o Built in Resources (video)

o Software Defined Device

Freeze Failure in User Interface,

Severity: High

N
S

S

Correct Memory

Leakage of

Battery Software

Increase S

Test Cases

Predictions

Operational

Environment

Emulator Mobility Data

Stress



398 Computer, Network, Software, and Hardware Engineering with Applications

Whether it be due to signal dead zones, environmental conditions, a crowded con-
centration of mobile devices, or simply a device going offl ine to save data charge 
costs, mobile wireless devices do not have the same communication reliability as 
their wired counterparts  [LAR07] .  

Testing Challenges 

 Users have high expectations for the reliability of the software on mobile devices. 
Users require devices to be reliable and stable. They will not be comfortable with a 
mobile device that crashes and loses personal data. This requires the device manu-
facturer and software vendors to guarantee the high quality of their products. Testing 
is their most important tool. The testing of mobile devices is diffi cult because the 
environment is complex .  To be effective, the execution of tests should interact with 
end users, wireless signals ,  and the wireless network. The diversity of mobile devices 
reduces the reusability of test cases. The devices are highly resource constrained in 
terms of processing and communication ability and in memory capacity; test plans 
must recognize these constraints. 

 The testing approach must be highly nonintrusive to the mobile device environ-
ment in order that test results refl ect realistic operating conditions. Also, device 
behavior is highly interactive. The devices constantly accept activations from users 
and send responses back for the user to take further action. Since it is diffi cult to 
predict a user ’ s actions, many of the usage scenarios are diffi cult to automate. 

 The development of software for mobile computing devices is very diffi cult due 
to the limited computational resources of these devices (i.e., a great deal of func-
tionality must be squeezed into a small memory space). This highly compact func-
tionality must be refl ected in the testing strategy (i.e., testing must be performed in 
the constrained memory of the mobile device, not in the software development 
platform). Furthermore, mobile device tasks are susceptible to errors because 
changes in network connectivity and locations may lead to sudden and unpredict-
able changes. A change in mobile network and mobile device location may imply 
movement away from the servers currently in use, and toward new ones. For 
example, a handheld computing device with a short - range radio link, such as IEEE 
802.11b or Bluetooth, carried across the fl oors of an offi ce building, may have 
access to different resources, such as printers and directory information for visitors, 
on each fl oor. Therefore, to construct reliable application software, the developer 
must test it in the operating environment of the mobile devices  [SAT03] . However, 
it is impractical to physically visit all the places where the device may operate. 
Therefore, it is necessary to emulate the operational environment as shown in 
Figure  16.1 . 

 Another testing challenge is to include the number of active users connected to 
mobile networks. This is an important aspect that affects the reliability of the con-
nection and the performance of the device, as perceived by the user. More active 
users lead to fewer available communication timeslots, which decreases the through-
put per user and, as a result, the latency increases  [HOL06] . Latency is defi ned as 
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the time required for the data signal to be transmitted through the communications 
medium  [ROU04] . Latency is the reciprocal of data rate that is tabulated for mobile 
devices in Table  16.1 . A queuing model — not covered in this chapter — could be 
developed, using message transmission rate as queue arrival rate, and a variable 
number of active users, in order to estimate latency during performance testing.     

MOBILE DEVICE CHARACTERISTICS 

 Mobile devices have unique characteristics that must be taken into consideration 
when modeling reliability and testing. These characteristics are the following 
 [FIT07] : 

Static versus Dynamic 

 The static part of the mobile device is its hardware; the dynamic part that can respond 
to changing operating conditions, is its software. The industry is developing a 
software - defi ned device that can be dynamically defi ned in real time. The software -
 defi ned device provides needed functionality (e.g., short - range to long - range com-
munication). The specifi cation of requirements for such a device is suggested in 
Figure  16.1 .  

Interfaces

 Interfaces have been a major source of failures in computer systems because the 
joining of disparate components of a system is a complex process, subject to many 
failures, for example the interface between a mobile device and a mobile network. 
Thus, interfaces represent the major software modules to be developed by the mobile 
device process in Figure  16.1 : user interface (e.g., user keying of mobile device), 
communication interface (e.g., mobile device to cellular communication), and built -
 in resources (e.g., interface between mobile device built - in video reception and its 
display).

Communication Systems 

 Various mobile device characteristics are tabulated in Table  16.1 . Assembling these 
data helps us to identify a mobile device technology with a relatively low reliability 
rating, appropriate for applying a reliability model for worst - case analysis —  General 
Packet Radio Service  ( GPRS ). The reliability analysis of GPRS has general appli-
cability because it is used in several applications. An important characteristic of 
mobile devices is that a given device may communicate with more than one com-
munications carrier  [COM] . Thus, in Figure  16.1  we show GPRS requirements 
being translated to software code compatible for operating with a communications 
carrier. 
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 In order to understand how mobile devices fail and the consequent recovery 
actions, the following defi nitions are provided in the succeeding sections, followed 
by elaborations of failure and recovery action characteristics  [CIN07] .  

Failure Types 

•       Freeze (Lock - Up or a Halting Failure).  The device ’ s output becomes con-
stant, and the device does not respond to the user ’ s input.  

•       Input Failure.  User inputs have no effect on device behavior (e.g., device 
keys do not work).  

•       Output Failure.  The device, in response to an input sequence, delivers an 
output sequence that deviates from the expected one. Examples include inac-
curacy in battery charge indicator, ring or music volume different from the 
confi gured one, and event reminders going off at wrong times.  

•       Self - Shutdown (Silent Failure).  The device shuts itself down, and no service 
is delivered at the user.  

•       Unstable Behavior (Erratic Failure).  The device exhibits erratic behavior 
without any input inserted by the user (e.g., backlight fl ashing and self -
 activation of applications). Unstable behavior can be caused by programming 
errors induced by the trend toward integration of complete systems on a chip 
that requires the placement of larger and larger chips into complex and small 
mobile devices  [ZAN93] .     

Recovery Actions 

 User - initiated actions to recover from a device failure can be classifi ed according to 
the following categories:

•       Service the Phone.  The user has to bring the phone to a service center for 
assistance. Often, when the failure is fi rmware related, the recovery consists 
of either a master reset (all the settings are reset to the factory settings and 
the user ’ s content is removed from the memory) or a fi rmware update (i.e., 
uploading a new version of the fi rmware). Firmware is software instructions 
embodied in a read - only memory as opposed to using a read – write memory. 
Problems are fi xed by substituting malfunctioning components (e.g., screen, 
keypad, fi rmware) or by replacing the entire device with a new one.  

•       Reboot (Reset the Mobile Device).  The user turns off the device and then 
turns it on to restore the correct operation (a temporary corrupted state is 
cleaned up by the reboot). Related to reboot is a panic event. A panic event 
represents a nonrecoverable error condition signaled to the mobile device 
operating system kernel by either the user or by applications. Information 
associated with a panic event is delivered to the operating system kernel, 
which decides on the recovery action (e.g., system reboot).  
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•       Remove Battery.  Battery removal is mainly performed when the phone 
freezes. In this case, the phone often does not respond to the power on/off 
button. Battery removal can clean up a permanent corrupted state (e.g., cor-
rupted memory contents); however, this is a crude way to invoke power 
management. Improved power management is needed in mobile devices to 
increase their utilization  [YUK03] . Battery problems can be mitigated by 
using a power - saving technique that increases the amount of time devices 
spend in a low power sleep state, but doing so without introducing additional 
delays that would noticeably degrade performance  [CHA07] .  

•       Wait for a Response.  Often it is suffi cient to wait for a certain amount of time 
to let the device deliver the expected service.  

•       Repeat the Action.  Repeating the action is sometime suffi cient to get the 
mobile device working properly (i.e., the problem was transient).     

Failure Severity 

 Failure severity is classifi ed according to the user perspective and defi nes severity 
levels corresponding to the diffi culty of the recovery action(s).

•       High.  A failure is considered to be of high severity when recovery requires 
the assistance of service personnel.  

•       Medium.  A failure is considered to be of medium severity when the recovery 
requires reboot or battery removal.  

•       Low.  A failure is considered to be of low severity if the device operation can 
be reestablished by repeating the action or waiting for a certain amount of 
time.     

Failure Characteristics 

 Mobile device failure characteristics are compiled in Table  16.1 . Despite their high 
occurrence, output failures are low severity, since repeating the action is often suf-
fi cient to restore the device to correct the operation. On the other hand, self - shutdown 
and unstable behavior are considered to be high - severity failures because they must 
be corrected by servicing the phone or removing the battery. Phone freezes are 
medium severity, since rebooting occurs only in 2.36% of the freeze failures. While 
input failures are high severity when device keys do not work, their frequency of 
occurrence is low. 

 Additionally, failure occurrences can be associated with the user activity at the 
time of the failure. In particular, 13% of failures occur during voice calls, 5.4% while 
creating, sending, and receiving text messages, 3.6% while using Bluetooth, and 
2.4% when manipulating images. Finally, the history of mobile device usage indi-
cates that there are memory leaks (i.e., loss of data in mobile device memory), 
incorrect use of the device resources (e.g., excessive activation of wireless com-
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munication links by the user), bad handling by software of pointers to mobile device 
instructions and data, and incorrect management of buffer sizes (e.g., too little 
memory space allocated to buffers, resulting in buffer overfl ow).  

Recovery Action Characteristics 

 From the recovery action perspective, reboots are an effective way to recover from 
output failures (8.80% of the total number of failures). This indicates that output 
failures are often due to a temporary software corrupted state, which is cleaned up 
by the reboot. This is also confi rmed by the fact that repeating the action is often 
suffi cient to restore a correct device operation. Freezes are usually recovered by 
pulling out the battery (9.01%) or recovered by simply waiting for the phone to 
respond (4.29%). This may indicate that a certain fraction of battery removals and 
reboots in response to freezes is due to frustrated user actions.  

Probability of Failure and Recovery Action 

 The empirical failure probability for different types of failures and the probability 
of recovery action, given a failure, are shown in Table  16.2   [YUK03] . These prob-
abilities allow us to estimate both the signal (number of correct modules) and noise 
(number of failed modules) in Figure  16.1  and, hence, the reliability of a mobile 
device. For the purpose of illustration, assume that the data in Table  16.2  apply to 

Table 16.2    Probability of Failure and Corresponding Recovery Action 

   Failure type     Severity  

   Probability of recovery action given a failure  

   Probability 
of failure  

   Recovery action  

   Service 
phone     Reboot  

   Remove 
battery

   Wait for 
response

   Repeat 
operation     Unreported  

  Freeze    Medium    0.0365    0.0236    0.0901    0.0429    0    0.0601    0.2532  
  Input failure    High    0.0064    0.0064    0.0021    0    0.0064    0.0086    0.0299  
  Output 

failure
  Low    0.0687    0.088    0.0043    0.0064    0.0579    0.1373    0.3626  

  Self -
 shutdown  

  High    0.0665    0    0.0215    0.0043    0    0.0773    0.1696  

  Unstable 
behavior

  High    0.0687    0.0172    0.0021    0.0021    0.0064    0.088    0.1845  

      Totals                              
  Probability of 

recovery
action

      0.2468    0.1352    0.1201    0.0557    0.0707    0.3713    0.9998  
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the GPRS mobile device whose communication characteristics were defi ned in Table 
 16.1 . The reason for this is that, as mentioned previously, GPRS has a relatively low 
reliability rating (see Table  16.1 ). Thus, it would be interesting to focus on this 
device.     

MOBILE DEVICE RELIABILITY MODEL 

Focus on Failure Type 

 Using the mobile device empirical probabilities of failure and recovery in Table  16.2 , 
construct a simple model of reliability based on the S/N shown in Figure  16.1 , 
focusing on failure type. This analysis will allow you to understand the relationship 
between failures, recovery actions, and reliability. Assuming the probabilities P ij  of 
a recovery action of type j, given a failure of type i, are independent, the probability 
of a failure of type i is estimated in Equation  16.1 . This equation sums the probability 
of a failure of type i over all recovery actions n. Regarding the assumption of inde-
pendence, we have no reason to believe, for example, that rebooting, as the result 
of a freeze failure, depends on servicing the device:

    P Pi ij

j

n

=
=

∑
1

.     (16.1)   

 Failure severity is refl ected in the model according to the following severity codes 
that were defi ned earlier: severity  high , code    =    3; severity  medium , code    =    2; and 
severity low , code    =    1. Then, the expected number of failed modules of failure type 
i, where M is the total number of modules in a mobile device, is given by Equation 
 16.2 ; this is the noise factor N in Figure  16.1 :

    N P sMi i= .     (16.2)   

 The total number of modules M must be equal to the number of correct modules S i
(signal) plus the number of failed modules N i  (noise). Thus the signal S, based on 
failure type i, is computed in Equation  16.3 :

    S M N P s Mi i i= − = −( ) .1     (16.3)   

 As indicated in Figure  16.1 , reliability R i  of a mobile device when failures of type 
i occur is related to the inverse of the S/N (i.e., unreliability). Using this fact and 
Equations  16.2  and  16.3 , produce Equation  16.4 :

    R N /S P sM/ P s M for Ri i i i i i= − = − − ≥1 1 1 0( ) ( ( ) ), .     (16.4)   

 Again, using Equations  16.2  and  16.3 , the S/N, based on failure type i, is computed 
as follows:

    S /N P s M/P sM P s /P si i i i i i= − = −( ) ( ) .1 1     (16.5)   
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 It is also important to estimate the feedback control signal C i  in Figure  16.1  that 
refers to the difference between number of correct modules (S i ) and number of failed 
modules (N i ) for failure type i. This feedback would be used to revise mobile device 
requirements for the purpose of driving N i  to 0 and C i  to    =    S i . This idea is imple-
mented for failure type i in Equation  16.6 . However, if C i  is negative, it indicates 
that there is more noise than signal and that the software is in need of signifi cant 
software development process improvement to reduce failures of type i.

    C S Ni i i= − .     (16.6)    

Focus on Recovery Action Type 

 Again, using the mobile device empirical probabilities of failure and recovery, P ij , 
in Table  16.2 , construct another part of the reliability model based on the S/N shown 
in Figure  16.1 , focusing on recovery action type j. In this case, estimate P j  in Equa-
tion  16.7  as the probability of failure across the failure types i associated with a 
given recovery action type j:

    P Pj ij

i

f

=
=

∑
1

,     (16.7)  

  where f is the number of failure types. 
 Whereas previously the interest was in assessing reliability as a function of 

failure type, now the focus is on reliability as a function of recovery action type. 
This assessment identifi es which recovery actions produce the highest reliability. 
Analogues to the failure type analysis, develop the reliability and S/N equations for 
recovery type as follows. 

 Since the expected recovery action is a probabilistic function of the failure 
types, compute a weighted sum of the probabilities P ij , weighed by the failure sever-
ity code s ij . The idea, as in the case of failure types, is to represent failure severity 
in the computation of expected number of failed modules, where now severity 
refl ects both failure type and recovery type. Thus, the expected number of failed 
modules of recovery type j, where M is the total number of mobile device modules, 
and f is the total number of failures, is given by Equation  16.8 :

    N M P s for j nj ij ij

i

f

= =
=

∑
1

1, , , .…     (16.8)   

 In order to compute the signal, use the fact that M must equal the sum of correct 
modules S j  and failed modules N j . Thus the signal S j , the number of correct modules, 
based on recovery action j, is computed in Equation  16.9  by using Equation  16.8 :

    S M N M P sj j ij ij

i

f

= − = −
⎛
⎝⎜

⎞
⎠⎟=

∑1
1

.     (16.9)   
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 Reliability R j , based on recovery action type j, is related to the inverse of the S/N, 
as follows:

    R N S

M P s

M N
for Rj j j

ij ij

i

f

j
j= − = −

−( )

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

≥=
∑

1 1 01( / ) , .     (16.10)   

 In addition, the S/N, based on recovery type j and reliability R j , from Equation  16.10 , 
is computed as follows:

    S /N / Rj j j= −1 1( ).     (16.11)   

 Again it is important to estimate the difference that exists between correct modules 
and failed modules. This feedback would be used to revise requirements for the 
purpose of driving the noise N j  to 0 and C j  to be equal to the signal S j . This idea is 
implemented in Equation  16.12  for recovery action type j in Equation  16.12 . 
However, if C j  is negative, it indicates that there is more noise than signal and 
that the recovery method j is dysfunctional and that other recovery options should 
be considered, for example central server monitoring of the health of the mobile 
device.

    C S Nj j j= − .     (16.12)    

Model Limitations 

 In revising software requirements, it is important to recognize that there are both 
explicit and implied requirements  [MCC02] . In the case of mobile devices, this is a 
tricky issue because there is no direct developer – customer relationship (i.e., develop-
ers produce for a mass mobile device market). Almost all requirements are implicit 
(e.g., able to connect to a mobile network on demand) as opposed to explicit require-
ments, such as the obvious one of having power when the device is turned on. This 
issue illustrates the fact that there are aspects of mobile device development that 
cannot be quantifi ed in a model, such as the one in Figure  16.1 . For example, noise 
in the fi gure, representing requirements ambiguity, and quantifi ed as number of 
failed modules, may capture power failure but not unsatisfactory Web search results. 

 Another limitation of the model is the absence of workload in Figure  16.1 . 
Measurements show that software reliability results cannot be considered representa-
tive unless the system workload is taken into account  [IYE85] . For example, the 
reliability of a mobile device will decrease nonlinearly with the amount of interactive 
processing (e.g., number of simultaneous mobile network connections). This prop-
erty could be simulated but is diffi cult to address in an analytical model.

Question for Reader:  It was stated above that S/N would not be an appropriate 
metric for evaluating Web search results if noise is represented by number 
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Figure 16.2     Noise N i  (number of failed modules) versus total number of modules M. Failure types: 
Series 2: Input: high severity; Series 3: Output: low severity; Series 4: Self - shutdown: High severity, 
freeze: medium Severity; Series 5: Unstable behavior: high severity.  
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of failed modules. That being the case, is there an appropriate metric that 
uses S/N for evaluating Web search results?  

Answer:  Signal could be represented by the number of successful Web search 
results and noise could be represented by the number of unsuccessful Web 
search results. The Web search application objective would be to maximize 
the S/N.     

Failure-Type Estimation Results 

 Figure  16.2  identifi es major noise contributors:  unstable behavior  and  self - shutdown
that the noise suppression process in Figure  16.1  needs to emphasize in order to 
improve the S/N. In Figure  16.3 , the S/N indexes reliability (e.g., high S/N yields 
high reliability). Only two failure types are shown because the others have negative 
reliability (i.e., noise exceeds signal). Thus, S/N can be used to rank the reliability 
of mobile device software.   

 Figure  16.4  shows that the feedback signal C i     =    S i     –    N i  is negative in Figure 
 16.1  for  freeze  and  unstable behavior  failure types. Therefore, negative feedback 
is needed to correct modules because in these cases there are more failed modules 
than correct modules. Although positive feedback is also important, the modules 
with failure types associated with negative feedback should receive priority 
attention.     
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Figure 16.3     Signal - to - noise ratio S/N versus probability of failure P i  for failure type i.  
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Figure 16.4     Correction signal C i  (number of modules) versus total number of modules M. Failure 
types: Series 1: Freeze, medium severity; Series 2: Input, high severity; Series 3: Output, low severity; 
Series 4: Self - shutdown, high severity; Series 5: Unstable behavior, high severity.  
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EXPECTED NUMBER OF FAILURES AND FAILURE 
RATE ANALYSIS 

 In order to extend the modeling effort into the mobile device operating time domain, 
use the expected number of failures and failure rate data, organized by failure type 
and recovery type, in Table  16.3   [YUK03] . These data permit more than one dimen-
sion to be represented in the model. The dimension presented so far has been static, 
confi ned to, for example, reliability as a function of module count. There has been 
no accounting of mobile device operating time. Unfortunately, the distribution of 
failures over time is not available. Only the expected number of failures shown in 
Table  16.3  and the operating time t    =    14   months, which were used to compute the 
failure rates λ , were available. Thus, the model is limited to using a simple time -
 based reliability model, like the one based on the classical exponential distribution. 
A justifi cation of the model is that it is conservative because it does not exhibit reli-
ability growth. In fact, it shows just the opposite — reliability decreasing with operat-
ing time. In addition, exponentially distributed failure times refl ect a high probability 
of short times and a low probability of long times. Furthermore, my aim is to 
compare reliabilities by failure type and recovery action type, and not to accurately 
predict reliability for particular types. Therefore, any shortcoming in the model will 
occur for all failure and recovery action - type predictions. Thus, predict reliability 
over a specifi ed operating time of the mobile device t, using Equation  16.13 :

    R t e t( ) .= −λ     (16.13)     

Table 16.3    Expected Number of Failures and Failure Rates 

   Failure type  

   Recovery action  

   Totals  

   Failure 
type failure 

rate ( λ )  
   Service 
phone     Reboot  

   Remove 
battery

   Wait for 
response

   Repeat 
operation     Unreported  

  Freeze    19.45    12.58    48.02    22.87    0.00    32.03    134.96    9.64  
  Input 

failure
  3.41    3.41    1.12    0.00    3.41    4.58    15.94    1.14  

  Output 
failure

  36.62    46.90    2.29    3.41    30.86    73.18    193.27    13.80  

  Self -
 shutdown  

  35.44    0.00    11.46    2.29    0.00    41.20    90.40    6.46  

  Unstable 
behavior

  36.62    9.17    1.12    1.12    3.41    46.90    98.34    7.02  

  Totals    131.54    72.06    64.01    29.69    37.68    197.90          
  Recovery 

action
recovery
rate

  9.40    5.15    4.57    2.12    2.69     λ     Failures per 
month
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Operating Time 

 It is of interest to compute the operating time during which a specifi ed reliability 
requirement R(t) is to be achieved. This time is equal to the mission duration that 
can be achieved for a specifi ed R(t). This time is computed by solving R(t) in Equa-
tion  16.13  for t as follows:

    t
LN R t

.m =
− ( ( ))

λ
    (16.14)   

 You can see that for a specifi ed reliability requirement R(t), the larger the failure 
rate λ , the shorter the mission duration that can be achieved.  

Results Based on Failure Rate Analysis 

 Figure  16.5  is interesting because it shows that only one failure type — Input — has 
acceptable reliability, and, then, only at low operating times. The other types require 
drastic reductions in failure rate by eliminating software faults to qualify as accept-
able. This result is reinforced by Figure  16.6 , which shows failure type Input being 
the only type that achieves the required mission duration of one month.     

Figure 16.5     Reliability R(t) versus operating time t. Failure types: Series 1: Freeze, failure 
rate    =    0.69 failures per month; Series 2: Input, failure rate    =    0.08 failures per month; Series 3: Output, 
failure rate    =    0.99 failures per month; Series 4: Self - shutdown, failure rate    =    0.46 failures per month; 
Series 5: Unstable behavior, failure rate    =     0.50 failures per month.  
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Figure 16.6     Mission duration t m  versus failure rate lambda.  
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MOBILE DEVICE TESTING EFFECTIVENESS 

 Testing and reliability have a synergistic relationship, as shown in Figure  16.1 . That 
is, module device failure data generated from test results drive reliability model 
analysis and the analysis highlights the parts of the software that deserve priority in 
testing, and reliability predictions infl uence the selection of test cases. The signal 
and noise relationships can be used to quantify test effectiveness. Test effectiveness 
of failure type i, E i , is defi ned as the ratio of the change in noise  Δ N i  (i.e., number 
of corrected failed modules) to the total number of modules M. Test effectiveness 
is expressed in Equation  16.15 :

    E
N

M
i

i=
Δ

.     (16.15)   

 To compute  Δ N i , defi ne   Ni
* as the reduced noise accomplished through testing of 

failure type i (i.e., reduced number of failed modules):

    ΔN N Ni i i= − *.     (16.16)   

 Recalling from Equation  16.5  the computation of S/N, express   Ni
* as shown in Equa-

tion  16.17 :

    N S P s / P si i i i
* ( ) ( ).= −1     (16.17)   
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 Then Equation  16.16  is reformulated for failure type i, substituting Equation  16.2  
for N i  and Equation  16.17  for   Ni

*, as follows:

    ΔN N N MP s S P s P si i i i i i i= − = − −( )* ( ) /( ) .1     (16.18)   

 Finally, Equation  16.15  is recomputed in Equation  16.19  to obtain the fi nal form of 
test effectiveness by failure type:

    E MP s S P s / P s Mi i i i i= − −( ( ) ( )) .1     (16.19)   

 Note that E i     >    0 corresponds to a small signal S i  and E i     <    0 corresponds to a large 
signal. The fi rst case refl ects the fact that large gains in noise reduction would be 
achieved through testing if the number of correct modules, due to eliminating fail-
ures of type i, is already  small. The second case refl ects the fact that small gains in 
noise reduction would be achieved through testing if the number of correct modules 
is already  large. Thus, test effectiveness can be used to prioritize modules for testing: 
the higher the value of E i  (low signal), the higher the priority of modules for testing. 

 Using similar reasoning for recovery action types and calling on Equations 
 16.8  – 16.10, test effectiveness for recovery action type j is computed in Equation 
 16.20 :

    E
N

M
N N M P s S R M for Rj

j
j j ij ij

i

f

j j j= = −( ) =
⎛
⎝⎜

⎞
⎠⎟

− − ≥
=

∑Δ * / ( ( ) / ), .
1

1 0     (16.20)   

 In this case, note that E j     >    0 corresponds to a small signal S j  and E j     <    0 corresponds 
to a large signal. The fi rst case refl ects the fact that large gains in noise reduction 
would be achieved through testing if the number of correct modules, due to recovery 
action j, is already  small. The second case refl ects the fact that small gains in noise 
reduction would be achieved through testing if the number of correct modules, due 
to recovery action j, is already  large. Thus, again, test effectiveness can be used to 
prioritize modules for testing: the higher the value of E j  (low signal), the higher the 
priority of modules for testing. 

Test Time 

 Related to test effectiveness is the duration of test necessary to achieve that effec-
tiveness. Estimate this time based on the reduction in number of failed modules Δ N i
achieved by test effectiveness E i , for failure rate  λi  and failure type i, which is tabu-
lated in Table  16.3 . Thus, test duration t i  is estimated for failure type i, and number 
of failures f, using Equation  16.15 , in Equation  16.21  that expresses the fact that 
test time is equal to the number of failed modules that are corrected divided by the 
failure rate. Test duration serves as a test stopping rule:

    t f E M / for Ei i i i= >( ) , ,λ 0     (16.21)  

  where E i M    =     Δ N i  and f is the number of failures per failed module. 
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 A similar equation is formulated for recovery action types:

    t f E M / for Ej j j j= >( ) , ,λ 0     (16.22)   

 It is recognized that this formulation of test time may understate the time required 
to identify all mobile device hazards. To adequately evaluate the reliability of a 
mobile device, the analyst must stress it to identify both hardware and software 
failures. Using failure data, such as that in Tables  16.1 – 16.3 , the analyst can run 
realistic tests that stress the hardware and software to fail by using the test times 
given by Equations  16.21  and  16.22  as baselines, and gradually increasing them 
until the device fails  [STA97] . Applying a stress test to a mobile device is shown in 
Figure  16.1 .   

FAILURE TYPE AND RECOVERY 
ACTION TYPE RESULTS 

Signal-to-Noise Ratio 

 Figure  16.7  shows the plots of S/N failure type and S/N recovery action type along 
with the S/N limit    =    1 (i.e., number of correct modules    =    number of failed modules). 
Failure types below the limit should be investigated to identify the cause of exces-
sive failures in the mobile device software development process. Correspondingly, 
recovery action types below the limit need attention to identify why the recovery 
software is not able to provide effective recovery.    

Figure 16.7     Signal - to - noise ratio S/N versus probability of failure and probability of recovery 
action. Series1: Failure type S/N. Series 2: Recovery action type S/N. 
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Figure 16.8     Reliability R(t) versus operating time t. Series 1: Input failure type, failure rate    =    0.08 
failures per month. Series 2: Reliability limit. Series 3: Wait for response recovery action, failure 
rate    =    0.15 failures per month.  
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 Figure  16.8  shows, as Figure  16.7  had shown, that one of the best user recovery 
actions is to wait for a response. This strategy showed the second best S/N in Figure 
 16.7  and the highest reliability in Figure  16.8  (the other recovery action reliabilities 
are all lower, but are not shown). However, recovery action reliability lags the input 
failure reliability and never achieves the reliability limit. This result indicates that 
these example mobile devices need improved reliability even after  responding to a 
failure.    

Mission Duration 

 Assume that an acceptable mission duration for the mobile device user is 1   month 
to achieve a specifi ed reliability of 0.90. Then Figure  16.9  demonstrates that the only 
situation in which this could occur is when the mobile device is subject to an input 
failure. All other failures would result in unacceptable mission duration at the speci-
fi ed reliability. Also note that all recovery actions are defi cient with respect to 
achieving the desired mission duration after failures occur. Thus, mobile device 
manufacturers should improve the quality of their recovery action software. In 
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Figure 16.9     Mission duration t m  versus failure rate lambda. Series 1: Recovery action type. Series 
2: Failure type.  
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particular, users should not have to wait for a response in order to recover from a 
failure. Response to failures should be so effective that users should be unaware of 
this strategy! The best way of avoiding user frustration is by  designing in  higher 
quality.    

Test Effectiveness 

 Figure  16.10  demonstrates, perhaps counterintuitively, that test effectiveness 
increases  with  lower  S/N. The reason is that lower S/N means higher noise, which 
represents many failed modules that are subject to correction. Figure  16.10  allows 
one to identify the test effectiveness for a given number of modules that are being 
tested for a mobile device. The other two failure types are not shown because their 
test effectiveness are negative and do not plot well on the same graph.    

Test Time 

 Test time is modeled as a two - phase sequence: fi rst, test cases are based on type of 
failure (e.g., freeze) followed by test cases that are based on recovery action (e.g., 
remove battery). In the fi rst phase, test time  increases  with  decreasing  S/N (i.e., 
many failed modules compared with the number of correct modules), as shown in 
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Figure 16.10     Test effi ciency E i  for failure type i versus total number of modules M. Series 1: 
Freeze failure, S/N    =    0.97. Series 2: Self - shutdown failure, S/N    =    0.88. Series 3: Unstable behavior 
failure, S/N    =    0.81.  
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Figure  16.11 . In the second phase, the focus of testing and debugging is recovery 
actions. Recovery action testing takes less time than failure type testing because 
many bugs have already been removed by failure type testing by the time recovery 
action testing takes place. In addition, recovery type testing is based on test cases 
under the control of the tester (e.g., try removing the battery, and see what happens). 
In the case of failure type testing, the tester is at the mercy of the operating environ-
ment of the mobile device (e.g., failures caused by noise in the communications 
network). Thus, failure type testing takes more time. Another characteristic of both 
failure type and recovery action type testing is that decreasing reliability necessitates 
increasing test time, as shown in Figure  16.11 .     

SUMMARY OF RESULTS 

 Whichever measure was being analyzed, whether noise, S/N, reliability, minimum 
acceptable operating time (mission duration), or test effectiveness, and whether the 
focus was failure type or recovery action type, the sample of mobile devices did not, 
in general, meet requirements. Since this is a large, representative, and recent 
sample, the results suggest that mobile devices should be improved so that they are 
really usable by customers. While it is true that users discard mobile devices on 
average every 18   months  [CIN07] , results indicate that severe reliability problem 
will prevail short of 18   months. For example, see Figure  16.5 .  
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FUTURE MOBILE DEVICE DEVELOPMENTS 
AND RESEARCH 

Grid Computing 

 In the near future, personal mobile devices will become ingredients of other infra-
structures, such as the electric grid. Computing techniques have been devised to 
enhance mobile devices so that their interoperability with other mobile devices and 
electric grid infrastructure will be improved, such as the  Personal Augmented Com-
puting Environment  ( PACE ). PACE characteristics include (1) collaborative visual-
ization using display clusters composed by mobile devices, for example, electric 
utility and customer mobile electric meter reading devices collaborating in the pre-
sentation of meter readings, and (2) context - aware methods for mobile devices to 
achieve effi cient utilization of grid resources, for example, intelligent mobile meter 
readers being aware of, and communicating with, electric substations  [LUO07] . 
Future research will be directed toward creating software development models 
for mobile devices to communicate with the electric grid in a collaborative process-
ing mode.  

Context-Aware Migratory Service 

 Because a mobile process can involve context - aware migratory tasks (e.g., sudden 
need for the mobile device to move with the user [context aware] and connect to a 

Figure 16.11     Test time t for failure type and recovery action type versus total number of modules. 
Series 1: Self - shutdown failure, S/N    =    0.88. Series 2: Unstable behavior failure, S/N    =    0.81. Series 3: 
Freeze failure, S/N    =    0.97. Series 4: Remove battery recovery action, reliability    =    0.65. Series 5: Wait 
for response recovery action, reliability    =    0.88.  
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hot spot [migratory]) and heterogeneous mobile devices (e.g., smartphones, meter 
readers), the mobile device model must account for context and migration. When 
failures occur, the mobile network has to try to fi nd another mobile device to execute 
the current process. If it is successful in fi nding such a device, it will transfer the 
process to this device  [KUN] . Unlike a stationary service that always executes on 
the same node, a context - aware migratory service is capable of migrating to different 
nodes in the network in order to effectively accomplish its task. Thus, the interaction 
between a user application and a migratory service can continue uninterrupted, 
except for small delays generated by the migration process. This model provides 
two advantages. First, when a node becomes unsuitable for hosting a service, the 
user application does not need to perform any new service discovery because the 
current service can automatically migrate to a node that is qualifi ed for accomplish-
ing the current task (e.g., when an electric grid substation fails, the mobile meter 
reader can be automatically connected to an operational substation). Second, the 
migratory service incorporates all the state information (e.g., power usage reported 
at the failed substation before it failed) necessary to resume the interaction with the 
user when the migration to a different node has completed  [RIV07] .   
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Chapter 17

Object - Oriented Analysis 
and Design Applied to 
Mathematical Software 

O bject - oriented (O - O) methods are highly touted in the literature as the solution to the 
world ’ s software reliability problems. While this  may  be true, there seems to be little support-
ing evidence. Also, based on O - O project results in the literature, you would wonder how 
well earlier methods, such as structured analysis and design, would have fared. There is a 
natural relationship between O - O attributes and the modeling of physical systems, such as 
the software for controlling a nuclear reactor. However, such a relationship is not obvious for 
modeling mathematical software, such as programs designed to predict software reliability. 
The rationale for using mathematics as the basis of comparison with O - O methods is that the 
solution of mathematical equations is a common computer application; indeed, it was the 
reason the fi rst computers were developed. While some O - O diagrams are useful for provid-
ing high - level visibility of computer program structure, in the main, prediction equations, 
coupled with a directed graph representation of the computer program, are better tools for 
modeling mathematical software. Thus, it is important for the reader to learn for which appli-
cations O - O methods can be applied and for which applications O - O methods would be 
misapplied.    

INTRODUCTION

 It is assumed that the reader has a basic understanding of probability and statistics. 
Where this is not the case, the following reference will be helpful: David M. Levine, 
Patricia P. Ramsey, and Robert K. Smidt,  Applied Statistics for Engineers and Sci-
entists  (New York: Prentice - Hall, 2001). 

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F. 
Schneidewind.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley & 
Sons, Inc.
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Defi nitions 

 First, defi nitions are presented to assist the reader in understanding the sections that 
follow.

Object.  In a computer program, any entity that can execute in a computer or 
can support execution, such as an interrupt from an input device and the 
software instructions that support interrupt processing.  

Class.  A classifi cation of objects, such as  program interrupts , where an interrupt 
from an input device is an object .  

Inheritance.  A property of object - oriented design that allows an object to 
acquire the properties of its class (e.g., the object input device interrupt
inherits the property jump to fi rst interrupt processing instruction  from the 
class of interrupts ).  

Directed Graph.  A graph whose edges are ordered pairs of nodes. That is, each 
edge is preceded by a node and followed by another node. A directed graph 
can be used to represent a computer program, where edges represent program 
branches and nodes represent program statements.  

Unifi ed Modeling Language (UML).  Standardized notation and set of diagrams 
for supporting object - oriented (O - O) analysis and design.  

Activity Diagram.  In the UML, activity diagrams are used to describe the 
operational step - by - step workfl ows of software components in a system. An 
activity diagram shows computer program control fl ows.  

Sequence Diagram.  A sequence diagram in UML is an interaction diagram that 
shows how software processes (e.g., computer code for computing a math-
ematical function) operate with one another and in what order.  

State Diagram.  A diagram that shows states (e.g., a computer program is pro-
cessing an interrupt) and transitions between states (e.g., transition from the 
state of processing an interrupt to the state of returning to the interrupted 
program).

Cyclomatic Complexity Metric.  (Number of edges    –    number of nodes)    +    1 in 
a directed graph. Cyclomatic complexity can be used to represent the 
number of independent paths in a computer program, where an independent 
path is one that cannot be formed by combining other paths in the directed 
graph.

Information Hiding.  A software design technique that  “ hides ”  system details 
(e.g., disk format) in the interface between modules rather than in modules, 
so that system changes will only affect the interface, and hopefully increase 
software reliability, as a result.  

Procedure.  Portion of software code (e.g., subroutine) within a software program  

Encapsulation.  In O - O programming, encapsulation is the inclusion within a 
program object of all the resources needed for the object to function. For 
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example, the object interrupt processing  would include instructions for pro-
cessing an interrupt, pointer to the fi rst interrupt processing instruction in 
memory, and the return address of the instruction that would have been 
executed if the interrupt had not occurred.      

CAN O-O METHODS BE APPLIED TO 
MATHEMATICS?

 To see whether O - O methods can be applied to mathematical software, experiments 
are conducted to compare this approach with using equations and directed graph 
representations of computer program code to see whether O - O analysis, design, and 
language are applicable in general to mathematical models and, in particular, to 
developing the mathematics for software reliability models. It is recognized that 
there are many applications of O - O methods other than mathematical models, but 
this is such a fundamental computer application that it is expected that any  design 
method would do well. 

 The perfect mathematical programming environment would automatically 
transform systems of equations into effi cient symbolic and numerical programs. It 
would select solution routines that have good convergence properties for the given 
problem. It would also formulate equations from problem specifi cations. Although 
it is easy to imagine such an automatic environment, it is more realistic to assume 
that the user will interact with the system, supplying information to help it choose 
the right algorithms and transformations. Such a system is ObjectMath, which is a 
high - level programming environment with a modeling language based on the com-
puter algebra language Mathematica. The ObjectMath language augments Mathe-
matica with classes and other O - O language constructs. However, ObjectMath 
focuses on mathematical modeling rather than on O - O programming  [FRI95] . While 
this development is impressive, it is focused on the mathematical modeling of physi-
cal objects rather than on mathematical software reliability, which is the application 
that is evaluated for O - O applicability in this chapter. 

O-O Approach versus Mathematics 

 The ease of mapping real - world objects to the O - O model, enabling software reuse 
and the support of various tools, have led to its wide acceptance  [SEN07] . While it 
is easy to see that the O - O approach is compatible with developing, let us say, an 
elevator system or Web site, it is not clear how this approach applies to developing 
mathematical functions. In the case of a Web site, there are activities (e.g., user 
access to a Web server) so that an activity diagram would apply. Also, in the case 
of an elevator system, there are the activities of passengers accessing and riding in 
elevators. Interestingly, even in applications such as elevator systems, there can be 
limitations to the O - O approach. For example, although the UML sequence diagrams 
are capable of representing sequential interactions (e.g., only a single elevator fl oor 
request at a time), they are not capable of properly representing concurrent interac-
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tions (e.g., elevator passengers on different fl oors concurrently pressing up and down 
buttons). Therefore, it is necessary to have a model capable of representing both 
sequential and concurrent interactions between objects  [RYA06] . 

 Now, in the case of equations, would activity diagrams and state diagrams 
apply? Would it make sense to consider an equation as an object? To pursue answers 
to these questions, the O - O approach will be used to model facets of the software 
reliability models and compare the result with the mathematical model approach. 

 In explicating the mathematical model approach, you can use the directed graph 
representation of the mathematical model. This approach has the advantages of 
showing iteration, computing cyclomatic complexity metrics from the directed 
graph, and identifying the key parts of the program to test  [MCC76] . Interestingly, 
there seems to be no comparable features of the O - O approach. For example,  itera-
tion  in O - O is defi ned as: an operation that permits all parts of an object to be 
accessed in a well - defi ned order  [BOO94] . Note that repetition is not explicitly 
mentioned. This defi nition does not ring true for writing a mathematical program in 
which we simply want to repeat the execution of an equation. 

 Proponents of O - O claim many benefi ts. Unfortunately, these claims are not 
accompanied by a discussion of disadvantages. An obvious one is that O - O is highly 
abstract, and based on experience in teaching this model, students fi nd the abstrac-
tions diffi cult to grasp. In fact, some researchers employ UML without stating why 
they are using it  [SEL04] . The O - O approaches suffer because they are too syntax 
oriented (e.g., emphasis on UML diagramming techniques) and lack a proper and 
simple semantic foundation (e.g., mathematical equations that communicate the 
meaning of the application). A precise description and common understanding of 
the semantics, as well as the relations between the various UML diagrams for the 
description of software systems, is missing  [BRO01] . 

 As claimed, the benefi ts of O - O analysis and design specifi cally include the 
following  [GRA]  (comments added where the claim is challenged):

•      Required changes are localized and unexpected interactions with other 
program modules are unlikely. (How is this different from information hiding 
and modular design?)  

•      Inheritance makes O - O systems more extensible, contributing to more rapid 
development. (Equations have variables and parameters that can be made 
extensible by changing the data used in the variables and parameters.)  

•      Object - based design is suitable for distributed, parallel, or sequential 
implementation. (Equations can be used in any of the aforementioned 
implementations)

•      Objects correspond more closely to the products and processes in the con-
ceptual worlds of the designer and user, leading to greater traceability of 
product and process. (This can be accomplished by effective software man-
agement requiring traceability among software products and the process steps 
that produce them; also, mathematical models do not preclude the use of 
objects.)
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•      Shared data areas are protected, reducing the possibility of unexpected modi-
fi cations or other update anomalies; this is an operating and security system 
property, not a property of the design paradigm. (Independent of the design 
paradigm, data can be protected by access controls and encryption.)  

•      O - O provides various views of a software system that are useful for under-
standing and maintaining the code  [SAL04] . (While this is true, equations 
provide an excellent view of its implemented software, which is useful for 
debugging.)

•      O - O can be effective for reengineering from a software system designed with 
procedures to an O - O perspective to provide better code visibility  [ZOU02] .  

•      O - O can be used for transforming the states of legacy software (i.e., software 
that, while old, must be maintained because it is still valuable to the using 
organization) to O - O software, thus providing greater clarity of system states 
 [ZOU021] .      

ELEMENTS OF A REQUIREMENT 

 In analysis and design, models are built to seek an understanding of the requirements 
or to specify the systems to be built. To be useful, the model should be abstract (does 
not contain unnecessary details), complete (captures all relevant aspects), unambigu-
ous (meaning is clearly expressed), and well integrated (the various parts fi t together 
to form a coherent whole)  [KGU96] . Although a worthy statement of the objectives 
of analysis and design, it is a tall order because it is diffi cult to  not  include unneces-
sary details and at the same time capture all relevant aspects. It is diffi cult, particu-
larly in the requirements phase of a project, to know what is unnecessary and what 
is relevant. The following is an approach to identifying the elements of a requirement 
for the purpose of making a requirement understandable.

Object.  The focus of attention (e.g., software reliability).  

Function.  A function is the task that the object must achieve (e.g., software 
reliability [object] must achieve its specifi cation [task] during test and operat-
ing time). In programming languages, a function is a subroutine that can, if 
required, return a single value to the caller (the part of the program which 
invoked the function). The strength of functions lies in the fact that they are 
programs within a program. Functions are written for two major reasons: (1) 
to provide frequently used operations that can be accessed by many programs
or from many points  within a  single program  and (2) to modularize complex 
programs and make the maintenance and understanding of such programs 
easier. In C ++ , a function is a named, independent section of code that per-
forms a specifi c task and optionally returns a value to the calling program. 
User - defi ned functions are functions that programmers create for specialized 
tasks.

Limit.  Constraint imposed on a function (e.g., software reliability must exceed 
0.9500 for all operating times).  
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Parameter.  A model numerical factor estimated from data (e.g., software reli-
ability parameters estimated from failure data).  

Variable.  A model predictor specifi ed in a function (e.g., predictor of software 
reliability).

Equation.  Mathematical implementation of a function: relationship among vari-
ables and parameters (e.g.,   reliability R t p t dtT= = ∫

∞
( ) ( ( ) ), where p(t) is a 

probability density function.  

Model.  Representation of objects, functions, limits, parameters, variables, and 
equations.    

Requirement Implementation 

Programming Language Statements.  Statements that implement a model on a 
computer (e.g., C ++  statements).  

Data.  Historical data (e.g., failure counts in time intervals) for estimating model 
parameters and for computing actual model quantities, based on historical 
failure data (e.g., actual reliability).  

Iteration.  Repetition of an operation (e.g., reading failure data from a fi le).  

Decision Operations.  Control program fl ow (e.g., processing failure data depen-
dent on its value).      

EXAMPLE OF COMPARING O-O WITH 
MATHEMATICAL APPROACHES 

 The  mathematical concept  of a  function  expresses dependence between two or more 
quantities, one of which is known and the other which is produced. A function 
associates a single output to each input element drawn from a fi xed set. In Equation 
 17.1 , P(x t , t) is a function of x t  and t. 

 A  variable  assumes values based on a function, such as x t  and t in Equation 
 17.1 . The term usually occurs in opposition to  parameter , which is a symbol for a 
nonvarying value, such as λ  in Equation  17.1 . 

 You can use Equation  17.1  to see an example of how a Poisson failure occur-
rence model and its associated function, reliability, would be implemented with the 
two approaches. In developing the implementation approaches, each facet of the 
failure model is defi ned and analyzed in order to illustrate how well the two 
approaches apply. 

 In the Poisson distribution of failure occurrence, P(x t , t), in Equation  17.1 ,  λ  is 
the failure rate, x t  is failure count at test or operating time t, and t is the time of 
failure occurrence:

    P x t
t e

x
.t

x t

t

t

( , )
( )

!

( )

=
−λ λ

    (17.1)   
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 In order to compute Equation  17.1 , the failure rate  λ  must be computed in Equa-
tion  17.2 :

    
λ = =

∑ x

t
,

t

i

n

n

1
    (17.2)  

  where t n  is the last failure time. 
 Now, reliability, with exponentially distributed operating times t, can be obtained 

from Equation  17.1  by setting x t     =    0. Reliability R(t) is shown in Equation  17.3 :

    R t e .t( ) = −λ     (17.3)   

Comparing O-O and Mathematical 
Defi nition of Terms 

 Table  17.1  contains defi nitions and comparisons of terms from the O - O and math-
ematical domains. Multiple defi nitions are valid because the appropriate defi nition 
depends on the context  of the application. For example, mathematical terms could 
be cast in the context of developing a failure model, such as Equation  17.1 .     

O-O CONCEPTS APPLIED TO POISSON 
FAILURE MODEL 

 At this stage in the comparison, the O - O representation of the Poisson failure 
model is developed by fi rst defi ning the model objects and then showing how the 
UML diagrams can be used to model the elements. In showing these diagrams, it is 
not suggested that all of them are needed to model mathematical software (e.g., 
Poisson failure model). Rather, the goal is to illuminate the various perspectives 
that the diagrams provide and determine which are the best for a mathematical 
application.

Objects

 Objects have two characteristics: state and behavior  [BOO94]  (e.g., Poisson failure 
model object  is executed [state] and the result is stored [behavior]). Objects also 
possess attributes (e.g., failure rate, failure count, and failure time).  

Activity Diagram 

 The purpose of the activity diagram is to model the procedural fl ow of actions in a 
system.  [DOU98] . Activity diagrams can be used to model the activities associated 
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with implementing a function, such as the Poisson failure model. The activity 
diagram for the Poisson failure model is shown in Figure  17.1 . Notice that in addi-
tion to modeling the fl ow of producing the function, the diagram also includes deci-
sion activities such as determining when all of the input has been read.    

Sequence Diagram 

 Sequence diagrams show the sequence of operations between objects and the 
sequence of program steps that are required to implement a model  [DOU98] . 
The sequence diagram for the Poisson failure model is shown in Figure  17.2 . While 
activity diagrams are one dimensional, sequence diagrams provide both the sequence 
of model operations on data and the sequence of steps that implement the model 
operations.    

State Diagram 

 The state of an object represents the results of its behavior  [BOO94] . For example, 
once failure count data have been read in Figure  17.1 , this is a trigger (event) for 
the Poisson failure model (object) to store the failure count (action), and go to the 
“ sum failure count ”  state. This is called a state transition. Each state transition con-

Figure 17.1     Activity diagram for Poisson failure model. t n , last failure time.  
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nects two states  [BOO94] . Before constructing the state diagram in Figure  17.3 , it 
is useful to identify the model states, events, actions, and state transitions, as shown 
in Table  17.2 .      

Class Diagram 

 A class diagram shows the relationships among classes, objects of a class, and the 
methods (operations) performed on the classes. When a class is declared, it is identi-
fi ed by name, attributes, and methods. According to Eden  [EDE02] , the absence of 
variable symbols is one of the major shortcomings of class diagrams. However, this 
does not have to be the case, as shown in Figure  17.4 , where mathematical symbols 

Figure 17.2     Poisson model sequence diagram. t n , last failure time.  
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Table 17.2    Poisson Failure Model State, Events, Actions, and State Transitions 

   State     Event/Action     State transition  

  start    Read failure count x i /store x i     Sum x i
  Sum x i     Read failure time t/compute failure rate    Compute P(x t , t)  
  Compute P(x t , t)    Store P(x t , t)/plot P(x t , t) versus x t     Plot P(x t , t) versus t  
  end          

Figure 17.4     Poisson failure model class diagram.  
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for the Poisson distribution have been added. The primary usefulness of this class 
diagram is to provide a template for using various objects (probability functions) 
and their attributes ( variables  and  parameters ) in the same probability distribution 
class in an O - O programming language.   

Class

 A set of objects that have common attributes  [BOO94] . For example, the class of 
probability distributions is comprised of the objects Poisson, exponential, normal, 
uniform, and so on.  

Method

 An operation on an object that is part of the declaration of a class  [BOO94] : the 
read failure count x i  operation performed on the Poisson failure model class diagram 
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in Figure  17.4 . Once the classes have been identifi ed in Figure  17.4 , the interfaces 
with objects and between objects can be specifi ed. Then you would identify the 
services the objects are to perform (e.g., read, sum), and messages they may send 
(e.g., Object Failure Time t    →    Object Failure rate  λ ) and receive (e.g., Object 
Failure rate λ     ←    Object Failure Time t) in Figure  17.4   [HOF97] . The relationship 
between objects must be designed with great care, because they determine how 
well the run - time program will perform  [GAM95] . For example, in Figure  17.4 , 
an effi cient implementation is obtained by the objects  failure count  and  failure 
time  feeding the object  failure rate . Then, the failure rate  λ  is computed. Last, 
objects failure count ,  failure time , and  failure rate  feed object  Poisson  for comput-
ing P(x t , t).   

Summary of O-O Diagrams Properties 

 Based on an analysis of the O - O diagrams, the activity and sequence diagrams were 
the most useful for designing the Poisson failure model function in C ++  (see Appen-
dix for the code). The reason is that these diagrams portray the sequence of activities 
in the code that are necessary to compute the function.   

APPLYING MATHEMATICAL MODELING TO 
THE POISSON FAILURE MODEL 

 A modeling method has two major components: a model (e.g., Poisson failure 
model) and a procedure (e.g., the steps below in implementing the Poisson failure 
model). The model consists of the underlying concepts (e.g., failure occurrences 
distributed according to a Poisson process) and associated notation (e.g., equations 
and C ++  syntax). The procedure consists of a number of steps (e.g., failure data 
identifi cation) required to construct the model  [KGU96] . In the mathematical model-
ing approach, the equations suggest the steps to implement the program. In the O - O 
approach, the sequence diagram (see Fig.  17.2 ) can be used to identify program 
steps. However, the mathematical modeling approach has an advantage because in 
all of the O - O references, there is no mention about the nasty details in writing 
computer code of items such as iteration control, variable types, array bounds, and 
sequence of computer code fragments, all of which can have a signifi cant effect on 
correctness of program execution. The identifi cation of these coding details fl ow 
more naturally from mathematical expressions. Furthermore, in the O - O paradigm, 
data are sometimes relegated to an obscure role that has nothing to do with the col-
lection and processing of raw data (e.g., amassing failure data and identifying its 
statistical distribution). For example, in Real - Time UML: Developing Effi cient 
Objects for Embedded Systems  [ DOU98 , p.310], the author describes data collection 
as assembling primitive data attributes that may be structured in a myriad of ways, 
including stacks, queues, lists, vectors, and a forest of trees, to the exclusion of 
discussing raw data collection and processing.  
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MATHEMATICAL MODELING DESIGN 
APPROACH EXAMPLE 

 The objective of this section is to show the reader the details of implementing soft-
ware, using the National Aeronautics and Space Administration (NASA) Space 
Shuttle fl ight software as an example. The following approach is comprised of two 
synchronized program development activities: Identify the several phases and steps 
in program implementation and, in addition, construct a directed graph of the 
program logic consisting of nodes (program functions While, If, Else, Set, Read, 
Write, Store, and Compute) and edges (Transfer Control, Iteration Control, and 
Return). The directed graph will serve as the vehicle for expressing C ++  program 
logic, and, in addition, allow you to identify the key paths to test based on the cyc-
lomatic complexity metric  [MCC76] . 

Failure Data Identifi cation Phase 

 Identify the number of failure counts that occur at test time t, x t . The NASA Space 
Shuttle fl ight software OI6 failure data are used as an example, and identifi es the 
times t when the failures occurred. These failure data (x t ) were obtained from the 
Shuttle contractor and are organized by the number of days (t) since the software 
was released by the contractor to NASA. The data are listed in Table  17.3  along 
with the test paths used to debug the C ++  program.    

Table 17.3    Shuttle  OI 6 Failure Data 

  Failure time    Failure count    Factorial  
  Poisson 

failure model    Reliability  

   Test path     t     x t      x t!      P(x t , t)     R(t)  

  56    0    1    0.8658    0.8658    E  
  71    2    2    0.0139    0.8330    A,B,C,D,F,G  

  104    1    1    0.2048    0.7651    E  
  105    0    1    0.7632    0.7632    E  
  119    2    2    0.0345    0.7362    A,B,C,D,F,G  
  293    1    1    0.3548    0.4704    E  
  382    1    1    0.3678    0.3741    E  
  525    1    1    0.3499    0.2589    E  
  711    1    1    0.2935    0.1604    E  

  1355    1    1    0.1066    0.0306    E  
  1748    1    1    0.0500    0.0111    E  
  1951    1    1    0.0331    0.0066    E  
  2307    1    1    0.0157    0.0026    E  
  5438    1    1    0.0000    0.0000    E  

   Failure rate  λ     =    0.002574.   
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C++ Program Logic Development Phase 

 This section is dedicated to developing the logic of the C ++  program that is used to 
implement the Poisson failure model. The steps that follow correspond to the logic 
in Figure  17.5 .

While  1 Component    

  Node 1:  While  there is more failure data x t
  Edge 1, 2:  Transfer Control

  Node 2:  Store  x t
  Edge 2, 3:  Transfer Control

  Node 3:  If   not  reached end of failure data x t  input  

  Edge 3, 1: Iteration Control ,  Return  to  While  1  

  Edge 3, 4:  Transfer Control  to  While  4 Component   

While  4 Component  

  Node 4:  While  there is more failure time data t  

  Edge 4, 5:  Transfer Control

  Node 5:  Store  t  

  Edge 5, 6:  Transfer Control

  Node 6:  If   not  reached end of failure time data t input  

  Edge 6, 4:  Iteration Control ,  Return  to  While  4  

  Edge 6, 7:  Transfer Control  to  While  7 Component   

While  7 Component  

  Node 7:  While  there are more failure counts x t
  Edge 7, 8:  Transfer Control

  Node 8:  Compute  cumulative x t
  Edge 8, 9:  Transfer Control

  Node 9:  Compute  failure rate  λ     =    cumulative x t /t n  (last failure time)  

  Edge 9, 10:  Transfer Control

  Node 10:  Write  failure rate  λ
  Edge 10, 11:  Transfer Control  to  While  11 Component   

While  11 Component  

  Node 11:  While  there is more failure data x t
  Edge 11, 12:  Transfer Control

  Node 12:  If  x t     ≤    1  

  Edge 12, 12a:  Transfer Control
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Figure 17.5     Directed graph of Poisson failure model.  
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  Node 12a:  Set  factorial x t !    =    1  

  Edge: 12, 13:  Transfer Control

  Node 13:  Else , case for x t     >    1  

  Edge 13, 14:  Transfer Control to While  14 Component   

While  14 Component  

  Node 14:  While  there is more failure data x t     >    1  

  Edge: 14, 15  Transfer Control

  Node 15:  Compute  factorial x t !,  Iteration Control ,  Return  to  While  14  

  Edge 15, 16:  Transfer Control

  Node 16:  Compute  Poisson failure model, P(x t , t)  

  Edge 16, 17:  Transfer Control

  Node 17:  Set  x t   =  0 in P (x t , t) and  Compute  Reliability, R(0, t)  

  Edge 17, 18:  Transfer Control

  Node 18:  Write  failure time data t, failure data x t , factorial x t !, Poisson failure 
model, P(x t , t), and Reliability R(t),  Iteration Control ,  Return  to  While  11 
Component     

Identifying Independent Paths and Evaluating 
Program Test Coverage 

 Cyclomatic complexity is computed as cc    =    e    −    n    +    1, where e is the number of 
edges (branches) and n is the number of nodes (statements) in the directed graph 
representation of a program. In the directed graph of Figure  17.5  there are e    =    24 
edges and n    =    18 nodes, so cc    =    7. This is equal to the number of  independent  paths 
 [MCC76] . An independent path is one that cannot be constructed from other paths. 
This is why the last independent path G in Figure  17.5  does not repeat the logic 
produced by other paths. Note that independent path E corresponds to x t     ≤    1 and the 
other paths correspond to x t     >    1. 

 According to McCabe, a good test strategy is to exercise the independent paths 
in debugging because this strategy does a good job of exercising many, but not all, 
of the paths  [MCC76] . This is the test strategy shown in Table  17.3 , where the test 
paths associated with the program input variables t and x t  are listed. Unfortunately, 
the McCabe test strategy does not provide complete coverage of all code executions 
that could result in a fault. Suppose you are working with a programming language 
that supports exceptions (i.e., an automatic change in program fl ow control, such as 
the reception of an interrupt). An exception will cause an automatic change in control 
fl ow without the use of an instruction for testing a condition and branching on the 
condition. Each statement in a program could potentially cause one or more excep-
tions to be raised, depending on conditions (e.g., incorrect input data or division by 
zero). Testing for  all  possible exceptions in  all  possible places where an exception 
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could be raised is impractical. Therefore, a minimum acceptable level of coverage 
must provide assurance that all possible exceptions are raised at least once  [BER] . 
One defense against this problem is to check the validity of input data before it is 
stored and to check denominators for zero prior to division operations. Thus, no test 
strategy is perfect, including McCabe ’ s. A combination of methods is required to 
ensure adequate coverage. 

 In addition to providing a method for identifying independent paths and, hence, 
a testing strategy, cyclomatic complexity is a metric for evaluating the relative 
quality of software systems [ MCC76, MUN96 ], based on the theory that higher 
complexity software has lower quality. For example, the cyclomatic complexity of 
the Poisson failure model, which equals 7, could be compared with other failure 
models (e.g., Weibull) in order to rank quality for the purpose of prioritizing the test 
effort. That is, if the Weibull model cyclomatic complexity equaled 5, more effort 
would be expended on testing the Poisson model.  

Program Execution Results 

 It is insuffi cient to limit verifi cation of the correctness of program output to the 
identifi cation of independent paths and the associated test strategy, as in Figure  17.5  
and Table  17.3 . In addition, it is important to see whether the computation results 
appear to be reasonable. This is done in Figure  17.6 , where probability of failure 
P(xt , t) and reliability R(t) are plotted against t. An important verifi cation step is to 
match P(x t , t) with R(t) for x t     =    0; the two quantities should be equal. Indeed, they 

Figure 17.6     NASA space shuttle OI6: probability of failure P(x t , t) and reliability R(t) versus time 
t. Series 1: P(x t , t). Series 2: R(t).  
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are. Although not a part of verifi cation, you should note whether reliability, derived 
from the Poisson failure model, is reasonable based on the software that the model 
represents. In this case it is not reasonable because the Shuttle fl ight software exhib-
its reliability growth (i.e., increases with operating time). Thus, based on Figure 
 17.6 , the software would never be able to achieve a specifi ed reliability, such as 
0.9500. Therefore, alternate models (e.g., Weibull) would be evaluated.    

Summary of Software Development Approaches 

 The combination of the directed graph in Figure  17.5  and the failure data in Table 
 17.3  provides detailed information for developing the computer code that is not 
possible by using the UML diagrams in Figures  17.1 – 17.4 . However, these fi gures 
do  provide a baseline for starting the development process that is useful for showing 
the big picture before getting mired in the details. Therefore, there is no  “ one size 
fi ts all ”  solution to the problem of selecting the appropriate software development 
paradigm. Rather, it depends on the phase of development, the system view that is 
desired, and the level of detail that is compatible with the phase and view.   

APPLYING O-O METHODS TO MATHEMATICAL 
MODEL

 While it has been indicated that O - O techniques are not particularly appropriate for 
modeling the mathematical software product , it can be valuable for portraying the 
process  that develops the product, as Figure  17.7  attests. The Poisson failure model 
process  activity diagram in Figure  17.7  documents all the steps necessary to defi ne 
the components of the model and the outputs that result from each step. Thus an 
optimal combination of methods would be the approaches depicted in Figure  17.5  
and Table  17.3  for developing software product logic, integrated with the technique 
portrayed in Figure  17.7  for the software development process.

Figure 17.7     Poisson failure model process activity diagram.  
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Question for Reader:  Is there any other factor in software development that 
may be more important to achieving high software reliability than the factors 
that have been discussed in this chapter?    

Answer:  The most important factor is the quality of the personnel developing the 
software! Unfortunately, this is a factor that is infeasible to quantify. The best 
that a developer organization can do is to have prospective development per-
sonnel design and program small, representative samples of the real system, 
and execute the programs on a computer. Then, select personnel by evaluating 
the results for accuracy, reliability, and quality of design documentation.     

SUMMARY AND CONCLUSIONS 

 Where there is a great deal of application state change (e.g., elevator goes down, then goes 
up) accompanied by interaction of people with computerized systems (e.g., user pushes down 
button and signal sent to elevator computer control), O - O analysis and design is quite appro-
priate. These applications can be modeled with the aid of activity, sequence, and state dia-
grams. On the other hand, when these attributes are absent and the goal is to develop 
mathematical software, equations do just fi ne because they  are  the models of mathematics. 
Also, the development of mathematical software can benefi t from using directed graphs to 
represent program logic. The benefi ts are threefold: equations and directed graphs are a model 
for writing code that is very close to the results that the equations must achieve, a model is 
provided for developing test strategies, and a by - product of the directed graph is a complexity 
metric that can be used to evaluate the reliability of the software design.  
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APPENDIX

C++ Code for Poisson Failure Model and Reliability 
Based on Poisson Failure Model 

  // factorial (xt)  =  xt  *  (xt  - 1)    . . .    .  *  1 

 // failure rate lambda  =  sum (xt) / tn 

 // Poisson failure model: P (xt, t)  =  (((lambda  *  
t) ̂ xt)  *  exp ( -  lambda  *  t)) / xt! 

 // Reliability: R (t)  =  exp ( -  lambda  *  t) 

  

 #include  < iostream >  

 #include  < math.h > // specify math library 

 #include  < stdio.h >  

 #include  < string.h >  

 #include  < fstream >  

  

 using namespace std; 

 using std::cout; // specify standard screen 
output 

 using std::cin; // specify standard screen input 

 using std::endl; // specify standard end of line 
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 int main () 

 { 

 double xt [40], fact, failurecount, t [40] ; // 
declare failure count at time t array, factorial of 
xt, 

 // number of xt failure counts while loop control, 
failure time array 

 int factcount, i, j; // declare factorial while loop 
control, xtarray and while loop control index, 

 // index of number of xt failure counts 

 int tn, n; // last failure time, index of last 
failure time 

 double cumfail, lambda, P, R; // declare summation 
of xt, failure rate, Poisson failure model, 
reliability 

 FILE  * fp;//pointer to type FILE 

 fp  =  fopen( ̋ c:/models/numbers1.txt ̋ ,  ̋ w ̋ ); // file 
for writing factorial output 

 ifstream infile ; // declare failure count xt input 

 infile.open( ̋ c:/models/modelfailuredata.txt ̋ ); 

 ifstream infile1 ; // declare failure time t 

 infile1.open( ̋ c:/models/Tdata.txt ̋ ); 

 i  =  0; 

 while(!infile.eof()) 

 // while eof not reached for xt failure count, store 
data in array 

 { 

 infile  >  > xt [i]; 

 if(!infile.eof()) // if eof not reached for xt 
failure count, increment xt data array index 

 { 

 i  =  i  +  1; // increment xt data array index 

 } 

 } 

 failurecount  =  xt [0]; // store number of xt failure 
counts 

 i  =  0; 

 while(!infile1.eof()) 
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 // while eof not reached for time of failure t, store 
data in array 

 { 

 infile1  >  > t [i]; 

 if(!infile1.eof()) // if eof not reached for time of 
failure, increment xt data array index 

 { 

 i  =  i  +  1; // increment t data array index 

 } 

 } 

 n  =  t [0] ; // store last failure time index 

 tn  =  t [n]; // store last failure time 

  

 i  =  1; // initialize failure count index 

 cumfail  =  0; // initialize cumulative xt 

 while (i  <  =  failurecount)// iterate while 
accumulating failure count xt 

 { 

 cumfail  =  cumfail  +  xt [i]; // sum xt 

 i  =  i  +  1; // increment sum xt index 

 } 

  

 lambda  =  cumfail / tn; // compute failure rate 

 fprintf (fp, ̋ %s%\n ̋ ,  ̋ failure rate ̋ , (char) 6); 

 fprintf (fp, ̋ %f%c%\n ̋ , lambda, (char) 6); 

  

 j  =  1; // initialize while loop index for each 
factorial computation 

 i  =  1; // initialize while loop index for iterating 
on each factorial computation 

  

 while (j  <  =  failurecount)// iterate while there are 
still failure counts 

 { 

 if (xt [i]  <  = 1) // simple case 

 { 
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 fact  =  1; 

 i  =  i  +  1; 

 } 

 else // case for xt  > 1 

 { 

 factcount  =  xt [i]; // initialize failure count xt 

 fact  =  xt [j]; // initialize factorial value 

 while (i  <  =  factcount  &  &  xt [i]  > 1) // iterate while 
there are still more factors xt  > 1 

 { 

 fact  =  (fact)  *  (xt [i]  -  1); // compute factorial 

 i  =  i  +  1; // increment second while loop index 

 } 

 } 

 P  =  (pow (lambda  *  t [j], xt [j]) *  (exp ( -  lambda  *  
t [j]))) / fact ; // compute Poisson model 

  

 R  =  (pow (lambda  *  t [j], 0)  *  (exp ( -  lambda  *  t 
[j]))) / 1 ; // compute reliability by setting xt  =  
0 and fact  =  1 in P 

 fprintf (fp, ̋ %s%\n ̋ ,  ̋ failure time ̋ , (char) 6); 

 fprintf (fp, ̋ %f%c%\n ̋ , t [j], (char) 6); 

  

 fprintf (fp, ̋ %s%\n ̋ ,  ̋ factorial of ̋ , (char) 6); 

 fprintf (fp, ̋ %f%c%\n ̋ , xt [j], (char) 6); 

 fprintf (fp, ̋ %f%c%\n ̋ , fact, (char) 6); 

  

 fprintf (fp, ̋ %s%\n ̋ ,  ̋ Poisson failure model ̋ , (char) 
6); 

 fprintf (fp, ̋ %f%c%\n ̋ , P, (char) 6); 

 fprintf (fp, ̋ %s%\n ̋ ,  ̋ reliability ̋ , (char) 6); 

 fprintf (fp, ̋ %f%c%\n ̋ , R, (char) 6); 

 j  =  j  + 1; // increment second while loop index 

 } 

 return 0; 

 }    



Chapter 18

Tutorial on Hardware 
and Software Reliability, 
Maintainability, and 
Availability 

C omputer systems, whether hardware or software, are subject to failure. Precisely, what is 
a failure? It is defi ned as: The inability of a system or system component to perform a required 
function within specifi ed limits. A failure may be produced when a fault is encountered and 
a loss of the expected service to the user results  [IEE07] . This brings us to the question of 
what is a fault? A fault is a defect in the hardware or computer code that can be the cause of 
one or more failures  [IEE07] . Software - based systems have become the dominant player in 
the computer systems world. It is imperative that computer systems operate reliably, consider-
ing the criticality of software, particularly in safety critical systems. Software and hardware 
do not operate in a vacuum. Therefore, both software and hardware are addressed in this 
tutorial in an integrated fashion. The narrative of the tutorial is augmented with illustrative 
solved problems. 

 It is important for an organization to have a disciplined process if it is to produce high 
reliability software. This process uses a life - cycle approach to software reliability that takes 
into account the risk to reliability due to requirements changes. A requirements change may 
induce ambiguity and uncertainty in the development process that may cause errors in imple-
menting the changes. Subsequently, these errors may propagate through later phases of 
development and maintenance  [SCH01] . In view of the life - cycle ramifi cations of the software 
reliability process, maintenance is included in this tutorial. Furthermore, because reliability 
and maintainability determine availability, the latter is also included.    

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F. 
Schneidewind.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley & 
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RELIABILITY BASICS 

 To set the stage for discussing software and hardware model, the following defi ni-
tions and concepts are provided:

   Component: Any hardware or software entity, such as a module, subsystem, or 
system.

  t: Operating time.  

  P(T    ≤    t): Probability that operating time T of a component is  ≤ t (also known as 
 cumulative distribution function  [ CDF ]).  

λ : Failure rate (software or hardware failure rate).  

  Reliability R(t): P(T    >    t): probability of software or hardware surviving for 
T    >    t    =    1    –    P(T    ≤    t)  [LYU96] .  

  Hazard function: letting operating time t have the probability density function 
p(t), the instantaneous failure rate  at time t, defi ned as  [LYU96] : 

     h t p t /R t( ) ( ) ( ),=     (18.1)  

  where p(t) is defi ned as the probability that a failure will occur in the interval 
t, t    +    1.    

 The hazard function is frequently described in reliability literature, but a reliability 
metric that is more practical for calculations with empirical data is the failure rate 
f(t). This is defi ned as the number of failures n(t) in the interval t divided by t: 
f(t)    =    n(t)/t. The reason the hazard function may be impractical when dealing with 
empirical data is that the probability density function p(t) may not be known.  

HARDWARE RELIABILITY 

 The exponential failure distribution with constant failure rate is particularly appli-
cable to hardware reliability because it is assumed that the failure rate remains 
constant after the initial burn in period and before wear out occurs. 

Exponential Failure Distribution: λe–λt

 This distribution has a constant failure rate  λ . The exponential distribution is the 
only failure distribution that has a constant failure rate λ  and a constant hazard func-
tion h(t) in the operations phase of the life cycle. This failure rate is    =      1/ t , where 
t  is the mean time to failure (MTTF). 

 Then, the reliability is:

    R t e t( ) .= −λ     (18.2)   

 Then using Equation  18.1 , the hazard function for exponentially distributed 
failures is:
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    h t p t /R t e /et t( ) ( ) ( ) .= = =− −λ λλ λ     (18.3)   

 Then adapting Equation  18.2  to use MTTF, Equation  18.4  is produced:

    R t e .t t( ) ( / )= −     (18.4)   

 If we wish to solve for t for a given value of R(t), Equation  18.5  is solved for t:

    t R t t.= − ln( ( ))     (18.5)  

Problem

Specifi cations

1.      Hardware in a computer system should have an expected ( mean)  life 
t > 100, 000 (MTTF) hours at a reliability of R(t)    =    0.85. What is the 
minimum number of hours t the computer system would have to survive 
to meet these specifi cations?  

2.      If the hardware should have a 0.85 probability of surviving (i.e., reli-
ability) for t    >    50,000   hours, what is the MTTF required to meet these 
specifi cations?    

Solution

1.     Use Equation  18.5  to compute t: 

     t hours= − = − − =ln( . )( , ) ( . )( , ) .0 85 100 000 0 1625 100 000 16, 250

2.     Solve Equation  18.26  for   t :

     t t hours= − = − =/[ ln( ( ))] , /[ ln( . )] .R t 50 000 0 85 307, 692           

MULTIPLE COMPONENT RELIABILITY ANALYSIS 

 Due to the fact that the majority of computer systems in the industry employ multiple 
components, the reliability analysis must be focused on predicting reliability for 
these systems. Hardware (and software) components can be operated in serial or 
hardware confi gurations. In hardware, the differences are more obvious because of 
the physical connection between components. In software, the difference is not 
obvious because there is no physical connection. The difference is based on how the 
components execute, as indicated in Figure  18.1 .   

Parallel System 

 As Figure  18.1  shows, the purpose of a parallel system is to provide a redundant 
confi guration so that if one component fails, another component can take its place, 
thus increasing reliability. The reliability of a single component i, operating for a 
time t, is designated by R i (t). The unreliability is then (1    –    R i (t)). 
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 Referring to Figure  18.1 , the reliability of n components operating in parallel 
is given by  [MUS87] :

    R t R t .i

i

n

( ) ( ( ))= − −
=

∏1 1
1

    (18.6)   

 This equation is obtained by observing that the unreliability of n components in 
parallel is computed by the product of the individual component unreliabilities. 
Then, the reliability of n components is obtained by subtracting this product from 1. 

 The most common parallel confi guration involves using two components, so 
using Equation  18.6  and some algebraic manipulation, the reliability of two compo-
nents operating in parallel is given by:

    R t R t R t R t R t R t R t2( ) [ ( ) ( )] [ ( ) ( )] [( ( ))( ( ))].= + − = − − −1 2 1 1 21 1 1     (18.7)   

 If both components have the same reliability, then:

    R t 2R t R t( ) ( ) ( ).= − 2     (18.8)   

 A traditional assumption in reliability is that the time between failures is exponen-
tially distributed  [LYU96] . This is based on the idea that there is a higher probability 

Figure 18.1     Parallel and serial reliability confi gurations. Parallel hardware, components physically 
connected in parallel; parallel software, components execute concurrently in time; serial hardware, 
components physically connected in series; serial software, components execute serially in time.  
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of small times between failures and a low probability of large times between failures. 
Therefore, when failures are exponentially distributed with failure rate λ , then the 
reliability in Equation  18.1 .2 becomes:

    R t e et t( ) .= −− −2 2λ λ     (18.9)   

 MTTF refers to the average time  to  the next failure  [MUS87] . It is a common metric 
for hardware reliability because the physics of failures is well understood. However, 
it can be misleading because equipment will fail at specifi c times and not according 
to a mean value! MTTF is even less applicable for software because the distribution 
of time when software fails can be erratic. Before proceeding further, it is important 
to note that just because the distribution  of failure times for both hardware and 
software is a better metric of reliability, it does not mean that MTTF and mean time 
between failures (MTBF; see below) are not used! These metrics have become so 
embedded in the lore of reliability that it is imperative to describe their usage. 

 In the case of hardware, MTTF is used when components are not repaired (i.e., 
replaced). In other words, with no repair, the time to next failure is  direct , with no 
intervening repair time. In nonredundant software systems, the software must be 
repaired to continue operation, unless the fault causing the failure is trivial. There-
fore, MTTF is not completely applicable for this type of software. On the other hand, 
for redundant software systems (e.g., fault tolerant), MTTF is applicable, with the 
caveat noted above. 

 MTBF, defi ned as the average time  between  failures, is used when components 
are repaired  [MUS87] . Thus, it is the time between failures, with an intervening 
repair time. 

 The general form for MTTF, whether hardware or software, is derived from the 
reliability function R(t), as follows:   ∫

∞
0 R t dt( )   [LYU96] . 

 Therefore, the MTTF for the two component parallel arrangement, from Equa-
tion  18.1 .3, is given by:

    t R t dt e e dt
e et t

t t

= = − =
−⎡

⎣⎢
⎤
⎦⎥

−
−⎡

⎣⎢
∞

− −
∞ − ∞ −

∫ ∫( ) ( )
0

2

0
0

2

2
2

2
λ λ

λ λ

λ λ
⎤⎤
⎦⎥

=
∞

0

1 5.

λ
.     (18.10)    

Series System 

 Often, particularly for software systems, in order to produce a conservative predic-
tion of reliability, components are assumed to operate in series for the  purpose  of 
reliability prediction  [KEL97] . This represents the weakest link in the chain concept 
(i.e., the system would fail if any  component fails). 

 Then this conservative reliability approach of  n  components operating in series 
is given by  [MUS87] :

    R t R ti

i=1

n

( ) ( ).= ∏     (18.11)   
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 Using Equation  18.11 , the reliability of two components operating in series, with 
equal reliabilities, is given by Equation  18.12 , if the failures are exponentially 
distributed:

    R t R t e t( ) ( ) .= = −2 2λ     (18.12)   

 Then, the MTTF for the series arrangement is given next:

    t R t dt e
e

.t
t

= = =
−[ ]

=
∞

−
∞

∞

∫ ∫( )
0

2

0

2
0

2

1

2
λ

λ

λ λ
    (18.13)   

 It is often of interest to predict the improvement that can be achieved by using a 
parallel rater than a series confi guration. Then, using Equations  18.9  and  18.12 , the 
improvement of the parallel system reliability over a series system, for two compo-
nents, can be shown as:

    RI 2e e e 2(e et t t t t= − − = −− − − − −( ) ).λ λ λ λ λ2 2 2     (18.14)   

 In addition, using Equations  18.10  and  18.13 , the increase in  MTTF  can be shown 
to be:

    
1 5 1

2

.
\ .

λ λ
λ− = 1     (18.15)   

 It is not only the improvement RI that is of interest. In addition, the rate of change 
of RI will reveal the rate of change of RI that will indicate how fast the improvement 
will occur. Then, differentiating RI (Eq.  18.14 ) with respect to t, and setting it    =    0, 
gives us Equation  18.16 :

    
d RI

d t
e e .t t( )

( )
( ) ( )= − − − =− −2 2 2 02λ λλ λ     (18.16)   

 Noting that the derivative of Equation  18.16  is negative, because the fi rst negative 
term decreases less rapidly than the second positive term, we know that Equation 
 18.16  will provide a value of t that will maximize RI. 

 Then, solving Equation  18.1 .10 for t yields t *  as the value of t that maxi-
mizes RI:

    t* = −( / )(log( . )).1 0 5λ     (18.17)  

Problem:  For a computer system with failure rate of  λ     =    0.001 failures per hour 
and time to failure  listed below, plot Equations  18.3 ,  18.6 , and  18.14  on the 
same graph, versus t, and indicate the value of t    =    t *  that maximizes RI, 
assuming an exponential distribution of time to failure t. 

   t (hours)  

  100  
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  200  

  300  

  400  

  500  

  600  

  700  

  800  

  900  

  1000  

  1100  

  1200  

  1300  

  1400  

  1400  

  1500  

  1600  

  1700  

  1800  

  1900  

  2000    

Solution:  Figure  18.2  contrasts parallel reliability, serial reliability, and the 
improvement of parallel over serial reliability. The fi gure also delineates the 
operating time where the greatest improvement is achieved. A reliability 
analyst, using this plot, would understand that at t    =    683   hours the greatest 
gain in reliability would occur and that at operating times either below or 
above this value, the gain falls off rapidly.      

Number of Components that are Needed to Achieve Reliability Goals 

 When the reliability of a system is required to be R n (t) in a parallel confi guration, 
the required number n components, each with a reliability of R(t), is:

    R t R tn
n( ) ( ( )) .= − −1 1     (18.18)   

 Solving Equation  18.18  for n yields:

    n R t / R tn= − −ln( ( )) ln( ( )).1 1     (18.19)  

Problem:  How many components are needed to operate in parallel, if each 
component has a reliability of R(t)    =    0.80, and it is desired to achieve a 
system reliability of R n (t)    =    0.98?  
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Figure 18.2     Reliability R(t) versus operating time t.  
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Solution:  Solving Equation  18.18  for  n , yields: 

     

n R t / R t /

/
n= − − =

= − −
ln( ( )) ln( ( )) (ln( . ) ln( . ))

. .

1 1 0 02 0 20

3 912 1 609 == =2 43. .components 3

COMPUTER SYSTEM MAINTENANCE 
AND AVAILABILITY 

Preventive Maintenance Strategy.  Routine inspection and service activities 
designed to detect potential failure conditions and make adjustments and 
repairs that will help prevent major operating problems  [MON96] . 

 Two fundamental preventive strategies are differentiated,  time -  and 
condition - based preventive maintenance . In time - based preventive mainte-
nance, after a fi xed period of time, a component is serviced or overhauled, 
independent of the wear of the component at that moment. In condition - based 
preventive maintenance, one inspects a condition of a component, according 
to some schedule. If the condition exceeds a specifi ed critical value, preven-
tive maintenance is performed. With regard to the timing of the inspections, 
there are two variants, constant  and  condition - based inspection interval . If 
one applies a constant inspection interval, an inspection is performed after a 
fi xed period of time, analogous to time - based preventive maintenance. When 
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deciding to perform a condition - based inspection interval, the time until the 
next inspection depends on the condition in the previous inspection. If the 
condition in the previous inspection was good, the time until the next inspec-
tion will be quite long. If the condition in the previous inspection was bad, 
the time until the next inspection will be quite short.  

Predictive Maintenance Strategy.  Predictive maintenance is a condition - based 
approach to maintenance. The approach is based on predicting component 
condition in order to assess whether components will fail during some future 
period, and then taking action to avoid the consequences of the failures.     

COMPONENT AVAILABILITY 

 Now, in order to compute component availability, a number of quantities must be 
defi ned:

   t p : duration of component preventive maintenance  

  t o : duration of component operation  

  t f : duration of component failure  

  t r : duration of component repair  

  f p : frequency of component preventive maintenance  

  f o : frequency of component operation  

  f f : frequency of component failures  

  f r : frequency of component repair  

t : mean time to component failure    

 With the defi nitions in hand, availability A, can be computed:

    A
f t

f t f t f t f t
o o

o o p p f f r r

=
+ + +

.     (18.20)   

 Availability is also expressed by:

    A t t tr= +/( ).     (18.21)   

 These quantities are portrayed graphically in Figure  18.3 .

Figure 18.3     Computer maintenance process. t p , duration of preventive maintenance; t o , duration of 
operation; t f , duration of failure; t r , duration of repair.  

tp to tf tr to tp
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cycle
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Problem:  Given the data below for a system, compute the availability A.   

   Duration of operation: t o     =    10  

  Duration of preventive maintenance: t p     =    1  

  Duration of failure: t f     =    0.5  

  Duration of repair t r     =    2  

  Frequency of operation: f o     =    20  

  Frequency of preventive maintenance: f p     =    20 (for every operation there is 
preventive maintenance)  

  Frequency of failure: f f     =    4  

  Frequency of repair: f r     =    4 (for every failure there is a repair)      

 Then, using Equation  18.20 :

    
A

f t

f t f t f t f t
o o

o o p p f f r r

=
+ + +

=
+ +

( )( )

( )( ) ( )( ) ( )( .

20 10

20 10 20 1 4 0 5)) ( )( )

. ( ).

+
=

4 2

0 870 system availability

SOFTWARE RELIABILITY ENGINEERING 
RISK ANALYSIS 

  Software reliability engineering  ( SRE ) is an established discipline that can help 
organizations improve the reliability of their products and processes. The IEEE/
American Institute of Aeronautics and Astronautics (AIAA) defi nes SRE as  “ the 
application of statistical techniques to data collected during system development and 
operation to specify, predict, estimate, and assess the reliability of software - based 
systems.”  The IEEE/AIAA recommended practice is a composite of models and 
tools and describes the “ what and how ”  of SRE  [IEE07] . It is important for an 
organization to have a disciplined process if it is to produce high reliability software. 
The process includes a life - cycle approach to SRE that takes into account the risk 
to reliability due to requirements changes. A requirements change may induce ambi-
guity and uncertainty in the development process that cause errors in implementing 
the changes. Subsequently, these errors may propagate through later phases of devel-
opment and maintenance. These errors may result in signifi cant risks associated with 
implementing the requirements. For example, reliability risk (i.e., risk of faults and 
failures induced by changes in requirements) may be incurred by defi ciencies in the 
process (e.g., lack of precision in requirements). Figure  18.4  shows the overall SRE 
closed - loop holistic process   

 In the fi gure, risk factors are metrics that indicate the degree of risk in introduc-
ing a new requirement or making a requirements change. For example, in the 
National Aeronautics and Space Administration (NASA) Space Shuttle, program 
size and complexity, number of confl icting requirements, and memory requirements 
have been shown to be signifi cantly related to reliability (i.e., increases in these risk 
factors are associated with decreases in reliability)  [SCH07] . Organizations should 
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conduct studies to determine what factors are contributing to reliability degradation. 
Then, as in Figure  18.4 , organizations could use feedback from operations, testing, 
design, and programming to determine which risk factors are associated with reli-
ability, and revise requirements, if necessary. For example, if requirements risk 
assessment fi nds that through risk factor analysis that defects are occurring because 
of excessive program size, design and programming would receive revised require-
ments to modularize the software. 

 A reliability risk assessment should be based on the risk to reliability due to 
software defects or errors caused by requirements and requirements changes. The 
method to ascertain risk based on the number of requirements and the impact of 
changes to requirements is inexact, but nevertheless, it necessary for early require-
ments assessments of large - scale systems. 

Criteria for Safety 

 In safety - critical systems in particular, safety criteria are used in conjunction with 
risk factors to assess whether a system is safe to operate. Two criteria are used. One 
is based on predicted remaining failures in relation to a threshold and the second is 
based on the predicted time to next failure in relation to mission duration  [SCH97] . 
These criteria are computed as follows: 

 Compute predicted  remaining failures  r(t t )    <    r c , where r c  is a specifi ed remaining 
failures critical value, and compute predicted time to next failure  T F (t t )    >    t m , where 
tm  is mission duration. 

 Once r(t t ) has been predicted, the risk criterion metric (RCM) for  remaining 
failures  at total test time t t  is computed in Equation  18.22 :

    RCM r t
r t r

r

r t

r
t

t c

c

t

c

( )
( ) ( )

.=
−

= −1     (18.22)   

 In order to illustrate the remaining failure risk criterion in relation to the predicted 
maximum number of failures in the software F( ∞ ), the following parameter is 
needed:

Figure 18.4     Software reliability engineering risk analysis.  

Requirements

Risk Assessment

Software Design and

Programming
Testing Operations

field failure

rate
field failure

rate

field failure

rate

testing

failure

rate

defects

requirements

revise

requirements

based on

risk factors

consider risk factors in

design and

programming

adjust testing strategy

based on defects and

field failure rate

defects
release

software



454 Computer, Network, Software, and Hardware Engineering with Applications

 p(t): Fraction of remaining failures predicted at time t t  in Equation  18.23 :

    p t
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    (18.23)   

 The RCM for  time to next failure  at total test time t t  is computed in Equation  18.24  
based on the predicted time to next failure in Equation  18.25   [SCH07] :
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  where  β  and  α  are parameters estimated from the failure data. Parameter  β  is the 
rate of change of the failure rate and α  is the initial failure rate. The parameter s is 
the starting failure interval count that produces the most accurate reliability predic-
tions, and X s– 1  is the observed failure count in the range of the test data from s to t t . 
Finally, F(t t ) refers to the specifi ed number of failures — usually one — that is used in 
the prediction.

Problem

Part 1: Remaining Failures Risk

 Using one of the models in IEEE/AIAA  [IEE07] , recommended for initial 
use, and either the software reliability tool Statistical Modeling and Estima-
tion of Reliability Functions for Software (SMERFS) or CASRE, compute 
Equations 18.2.3 and  18.2 .4 to produce Figures  18.5  and  18.6  for the NASA 
Space Shuttle software release OI6. The failure counts for each value of test 
time t t  for OI6 are shown in Table  18.1 . Once you have inputted a text fi le 
of these counts, one at a time, the software reliability tools will compute 
r(tt ) and F( ∞ )for each of the 10 cases. The tools can be downloaded at
 http://www.slingcode.com/smerfs/  for SMERFS and at  http://www.
openchannelfoundation.org/projects/CASRE_3.0  for CASRE.     

Part 2: Time to Next Failure Risk

 In this part, a specifi c recommended model in  [IEE07]  is used  [SCH97]  in 
order to illustrate the use of this model ’ s predicted time to next failure and 
the application of the prediction to evaluating the risk of not satisfying the 
mission duration requirement, as formulated in Equation  18.24 . Other recom-
mended models could be used to perform the analysis. 

 After using one of the tools to estimate the parameters in Equation  18.24 , 
predict T F (t t ) for one more failure and plot it and the RCM, in Figure  18.7 , 
as a function of the test time t t  in Table  18.1 .    
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Figure 18.5     Predicted remaining failures r(t t ) and risk criterion metric RCM r(t t ) versus test time t t
for NASA space shuttle release OI6. Series 1: r(t t ). Series 2: RCM r(t t ). Series 3: remaining failures 
critical value r c .  
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Figure 18.6     Cost of testing t t  versus software quality p(t t ) for NASA space shuttle release OI6. Test 
time t t  represents cost, fraction remaining failures p(t t ) represents software quality.  
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Solution to Part 1:  Figure  18.5  delineates the test time    =    5, where the risk of 
exceeding the critical value of remaining failures is unacceptable. Therefore, 
a test time of at least 6 is required. Figure  18.6  shows how the software reli-
ability analyst can do a trade - off of the cost of testing version with the quality 
of software produced by testing. Since test time is usually directly related to 
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Table 18.1    Failure Counts for  NASA  Space Shuttle Software Release  OI 6 

   t t       5       6       7       8       9       10       11       12       13       14

      0    0    0    0    0    0    0    0    0    0  
      2    2    2    2    2    2    2    2    2    2  
      1    1    1    1    1    1    1    1    1    1  
      2    2    2    2    2    2    2    2    2    2  
      0    0    0    0    0    0    0    0    0    0  
          0    0    0    0    0    0    0    0    0  
              0    0    0    0    0    0    0    0  
                  0    0    0    0    0    0    0  
                      0    0    0    0    0    0  
                          0    0    0    0    0  
                              0    0    0    0  
                                  0    0    0  
                                      1    1  
                                          1  

Figure 18.7     Predicted time to next failure T F  (t t ) and risk criterion metric RCM T F (t t ) versus test 
time t t . Series 1: T F (t t ). Series: 2: RCM T F (t t ). Series 3: Mission duration: t m .  
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cost, the fi gure indicates that a very high cost would be incurred for attempt-
ing to achieve almost fault - free software. Therefore, tolerating a fraction of 
remaining failures of about 0.0600 would be practical.  

Solution to Part 2:  Switching now to the evaluation of risk with respect to time 
to next failure, Figure  18.7  demonstrates that unless the test time is greater 
than 12, the time to failure will not exceed the mission duration. The engineer 
using such a plot would use a mission duration appropriate for the software 
being tested. The concept behind Figure  18.7  is that the software should be 
tested suffi ciently long such that the RCM goes negative.      

PARAMETER ANALYSIS 

 It is possible to assess risk after the parameters  α  and  β  have been estimated by a 
tool, such as SMERFS and CASRE  [IEE07] , but  before  predictions are made. An 
example is provided in Figure  18.8 , where remaining failures and its risk criterion 
are plotted against the parameter ratio (PR) β / α   [SCH07] . The reason for this result 
is that a high value of β  means that the failure rate decreases rapidly, and coupled 
with a low value of α , leads to high reliability. High reliability in turn means low 
risk of unsafe software. Furthermore, increasing values of PR are associated with 
increasing values of test time, thus decreasing risk. Thus, even  before  predictions 
are made, it is possible to know how much test time is required to yield predictions 
that the software is safe to deploy. In Figure  18.8 , this time is 6, corresponding to 
the same result in Figure  18.7 . A cautionary note is that the foregoing analysis is an 

Figure 18.8     Risk criterion metric: RCM r(t t ) and remaining failures r(t t ) versus parameter ratio PR 
(beta/alpha) for NASA space shuttle software release OI6. Series 1: Predicted r(t t ). Series 2: RCM r(t t ).  
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a priori assessment of likely risk results and does not mean, necessarily, that high 
values of β / α  will lead to low risk.

Problem:  After obtaining estimates of  β  and  α  using one of the reliability tools 
for each value of test time in Table  18.1 , plot Figure  18.8  to show that risk 
decreases with the PR.       

OVERVIEW OF RECOMMENDED SOFTWARE 
RELIABILITY MODELS 

 In IEEE/AIAA  [IEEE07] , it is stated that there are  “ initial models ”  recommended for 
using on an application, but if these models do not satisfy the organization ’ s need, 
other models that are described in the document could be used. Since this tutorial has 
included several practice problems, based in part on models, an overview is presented 
of two of the initially recommended models: Musa – Okumoto and Schneidewind. The 
third model — generalized exponential — involves a great amount of detail that cannot 
be presented here. For readers interested in more detail on these models or to learn 
about the other models, the recommended practice can be consulted.  

MUSA–OKUMOTO LOGARITHMIC POISSON 
EXECUTION TIME MODEL 

Objectives

 The logarithmic Poisson model is applicable when the testing is done according to 
an operational profi le that has variations in frequency of application functions and 
when early fault corrections have a greater effect on the failure rate than later ones. 
Thus, the failure rate has a decreasing slope. The operational profi le is a set of func-
tions and their probabilities of use  [MUS99] .  

Assumptions

 The assumptions for this model are:

•      The software is operated in a similar manner as the anticipated operational 
usage.

•      Failures are independent of each other.  

•      The failure rate decreases exponentially with execution time.     

Structure

 From the model assumptions we have: 
λ (t)    =    failure rate after t amount of execution time has been expended  λ0 e –θμ (t) . 



Tutorial on Hardware and Software Reliability, Maintainability, and Availability 459

 The parameter  λ0  is the initial failure rate parameter and  θ  is the failure rate 
decay parameter with θ     >    0. 

 Using a reparameterization of  β0     =     θ− 1  and  β1     =     λ0θ , the estimates of  β0  and  β1

are made, as shown in Equations  18.26  and  18.27 , respectively:

    ˆ
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 Here, t n  is the cumulative central processing unit (CPU) time from the start of the 
program to the current time. During this period, n failures have been observed. Once 
estimates are made for β0  and  β1 , the estimates for  θ  and  λ0  are made in Equations 
 18.28  and 18.29:

    ˆ ln ˆ ,θ β= +( )1
1 1

n
tn     (18.28)  

    ˆ ˆ ˆ .λ β β0 0 1=     (18.29)    

Limitation

 The failure rate may rise as modifi cations are made to the software violating the 
assumption of decreasing failure rate.  

Data Requirements 

 The required data are either: 
 The time between failures, represented by X i’ s. 
 The time of the failure nth occurrences, given by   t Xn i

n
i= ∑ =1 .

Applications

 The major applications are described below. These are separate but related applica-
tions that, in total, comprise an integrated reliability program.

Prediction.  Predicting future failure times and fault corrections.  

Control.  Comparing prediction results with predefi ned goals and fl agging soft-
ware that fails to meet goals.  

Assessment.  Determining what action to take for software that fails to meet 
goals (e.g., intensify inspection, intensify testing, redesign software, and 
revise process). The formulation of test strategies is also a part of assessment. 
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It involves the determination of priority, duration, and completion date of 
testing, and allocation of personnel and computer resources to testing.     

Reliability Predictions 

 In Musa et al.  [MUS87] , it is shown that from the assumptions above and the fact 
that the derivative of the mean value function of failure count is the failure rate 
function, Equation  18.30  is obtained:

ˆ ( )μ τ τ= mean number of failures experienced by time is expendeed .= +( )1
10ˆ ln ˆ ˆ

θ
λ θτ

 (18.30)    

Implementation and Application Status 

 The model has been implemented by the Naval Surface Warfare Center, Dahlgren, 
Virginia as part of SMERFS and in CASRE.   

SCHNEIDEWIND MODEL 

Objectives

 The objectives of this model  [SCH97]  are to predict following software reliability 
metrics:

•      F(t 1 , t 2 ): Predicted failure count in the range [t 1 , t 2 ]  

•      F( ∞ ): Predicted failure count in the range [1,  ∞ ]; maximum failures over the 
life of the software  

•      F(t): Predicted failure count in the range [1, t]  

•      p(t): Fraction of remaining failures predicted at time t  

•      Q(t): Operational quality predicted at time t; the complement of p(t); the 
degree to which software is free of remaining faults (failures)  

•      r(t t ): Remaining failures predicted at test time t t
•      t t : Test time predicted for given r(t t )  

•      T F (t t ): Time to next failure predicted at test time t t

Parameters Used in the Predictions 

•       α : Initial failure rate  

•       β : Rate of change of failure rate  
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•      r c : Critical value of remaining failures used in computing the RCM for remain-
ing failures: (RCM) r(t t )  

•      t m : Mission duration (end time – start time) used in computing the RCM for 
time to next failure: RCM T F (t t )    

 The philosophy of this model is that as testing proceeds with time, the failure detec-
tion process changes. Furthermore, recent failure counts are usually of more use than 
earlier counts in predicting the future. Three approaches can be employed in utilizing 
the failure count data (i.e., number of failures detected per unit of time). Suppose 
there are t intervals of testing and f i  failures were detected in the ith interval, one of 
the following is done:

•      Use all of the failures for the t intervals.  

•      Ignore the failure counts completely from the fi rst s    –    1 time intervals 
(1    ≤    s    ≤    t) and only use the data from intervals s through t.  

•      Use the cumulative failure count from intervals 1 through s    –    1:   F fs 1 i
s

i− =
−= ∑ 1

1 .    

 The fi rst approach should be used when it is determined that the failure counts from 
all of the intervals are useful in predicting future counts. This would be the case 
with new software where little is known about its failure count distribution. The 
second approach should be used when it is determined that a signifi cant change in 
the failure detection process has occurred and thus only the last t – s    +    1 intervals are 
useful in future failure forecasts. The last approach is an intermediate one between 
the other two. Here, the combined failure counts from the fi rst s    –    1 intervals and 
the individual counts from the remaining intervals are representative of the failure 
and detection behavior for future predictions. This approach is used when the fi rst 
s    –    1 interval failure counts are not as signifi cant as in the fi rst approach, but are 
suffi ciently important not to be discarded, as in the second approach.  

Assumptions

•      The number of failures detected in one interval is independent of the failure 
count in another. Note that in practice, this assumption has not proved to be 
a factor in obtaining prediction accuracy.  

•      Only new failures are counted.  

•      The fault correction rate is proportional to the number of faults to be 
corrected.

•      The software is tested in a manner similar to the anticipated operational usage.  

•      The mean number of detected failures decreases from one interval to the next.  

•      The rate of failure detection is proportional to the number of failures within 
the program at the time of test. The failure detection process is assumed to 
be a nonhomogeneous Poisson process with an exponentially decreasing 
failure detection rate  [SCH07] . The rate is of the form f(t)    =     α e −β (t − s + 1)  for the 
tth interval where α     >    0 and  β     >    0 are the parameters of the model.     
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Structure

 The  method of maximum likelihood  ( MLE ) is used to estimate parameters. This 
method is based on the concept of maximizing the probability that the true values 
of the parameters are observed in the failure data  [MUS99] . Two parameters are 
used in the model that were previously defi ned:  α  and  β . In these estimates, t is the 
last observed failure count interval; s is the starting interval for using observed 
failure data in parameter estimation; X k  is the number of observed failures in interval 
k ; X s– 1  is the number of failures observed from 1 through s – 1 intervals; X s,t  is the 
number of observed failures from interval s through t; and X t     =    X s– 1     +    X s,t . The 
likelihood function (based on MLE) is then developed as:
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 Equation  18.31  is used to derive the equations for estimating  α  and  β  for each of 
the three approaches described earlier. The parameter estimates can be obtained by 
using the SMERFS or CASRE tools.  

Approach 1 

 Use all of the failure counts from interval 1 through t (i.e., s    =    1). Equations  18.32  
and  18.33  are used to estimate  β  and  α , respectively:
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Approach 2 

 Use failure counts only in intervals s through t (i.e., 1    ≤    s    ≤    t). Equations  18.34  and 
 18.35  are used to estimate  β  and  α , respectively. (Note that approach 2 is equivalent 
to approach 1 for s    =    1.)
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Approach 3 

 Use cumulative failure counts in intervals 1 through s    –    1 and individual failure 
counts in intervals s through t (i.e., 2    ≤    s    ≤    t). This approach is intermediate to 
approach 1, which uses all of the data, and approach 2, which discards “ old ”  data. 
Equations  18.36  and  18.37  are used to estimate  β  and  α , respectively. (Note that 
approach 3 is equivalent to approach 1 for s    =    2.)
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Limitations

•      Model does not account for the possibility that failures in different intervals 
may be related  

•      Model does not account for repetition of failures  

•      Model does not account for the possibility that failures can increase over time 
as the result of software modifi cations    

 These limitations should be ameliorated by confi guring the software into versions 
that, starting with the second version, the next version represents the previous 
version plus modifi cations introduced by the next version. Each version represents 
a different module for reliability prediction purposes. The model is used to predict 
reliability for each module. Then, the software system reliability is predicted by 
considering the N modules to be connected in series (i.e., worst - case situation), and 
computing the MTTF for N modules in series  [SCH02] .

Data Requirements 

 The only data requirements are the number of failures, f i , i    =    1,    . . .    , t, per testing 
interval. A reliability database should be created for several reasons: input data sets 
will be rerun, if necessary, to produce multiple predictions rather than relying on a 
single prediction; reliability predictions and assessments could be made for various 
projects; and predicted reliability could be compared with actual reliability for 
these projects. This database will allow the model user to perform several useful 
analyses: to see how well the model is performing; to compare reliability across 
projects to see whether there are development factors that contribute to reliability; 
and to see whether reliability is improving over time for a given project or across 
projects.
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Applications

 The major model applications are described below. These are separate but related 
uses of the model that, in total, comprise an integrated reliability program.

•       Prediction.  Predicting future reliability metrics such as remaining failures and 
time to next failure.  

•       Control.  Comparing prediction results with predefi ned reliability goals and 
fl agging software that fails to meet those goals.  

•       Assessment.  Determining what action to take for software that fails to meet 
goals (e.g., intensify inspection, intensify testing, redesign software, and 
revise process). The formulation of test strategies is also part of assessment. 
Test strategy formulation involves the determination of: priority, duration and 
completion date of testing, allocation of personnel, and allocation of computer 
resources to testing.  

•       Risk Analysis.  Compute RCMs for remaining failures and time to next failure.    

 Predict  test time  required to achieve a specifi ed  number of remaining failures  at t t , 
r(tt ) in Equation  18.38 :

    t tt r t= [log[ /( [ ( )])]] / .α β β     (18.38)    

Implementation and Application Status 

 The model has been implemented in FORTRAN and C ++  by the Naval Surface 
Warfare Center, Dahlgren, Virginia as part of the SMERFS. In addition, it has been 
implemented in CASRE. It can be run on an IBM PCs under all Windows operating 
systems.

 Known applications of this model are:

•      IBM, Houston, Texas: Reliability prediction and assessment of the on - board 
NASA Space Shuttle software  

•      Naval Surface Warfare Center, Dahlgren, Virginia: Research in reliability 
prediction and analysis of the TRIDENT I and II Fire Control Software  

•      Marine Corps Tactical Systems Support Activity, Camp Pendleton, California: 
Development of distributed system reliability models  

•      NASA JPL, Pasadena, California: Experiments with multimodel software 
reliability approach  

•      NASA Goddard Space Flight Center, Greenbelt, Maryland: Development of 
fault correction prediction models  

•      NASA Goddard Space Flight Center  

•      Hughes Aircraft Co., Fullerton, California: Integrated, multimodel approach 
to reliability prediction      
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SUMMARY

 The purpose of this tutorial has been twofold: (1) to serve as a companion to the IEEE/AIAA 
Recommended Practice on Software Reliability and (2) to assist the engineer in understanding 
and applying the principles of hardware and software reliability, and the related subjects of 
maintainability and availability. Due to the prevalence of software - based systems, the focus 
has been on learning how to produce high reliability software. However, since hardware faults 
and failures can cause the highest quality software to fail to meet user expectations, consider-
able coverage of hardware reliability was provided. Practice problems with solutions were 
included to provide the reader with real - world applications of the principles that were 
discussed.
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 Practice Problems with Solutions 1     

     These practice problems are related to the following chapters:

   Chapter  1 : Digital Logic and Microprocessor Design  

  Chapter  2 : Case Study in Computer Design  

  Chapter  6 : Network Systems  

  Chapter  9 : Programming Languages  

  Chapter  10 : Operating Systems  

  Chapter  11 : Software Reliability and Safety  

  In addition, there are circuit analysis problems that support Chapters  1  and  2 .     

CHAPTER 1 (DIGITAL LOGIC AND 
MICROPROCESSOR DESIGN) AND CHAPTER  2
(CASE STUDY IN COMPUTER DESIGN) 

Number Representation in Floating -Point Format 

Problem 1

Given:  S is a sign bit where 0 indicates positive 1 and 0 indicates negative; 
exponent is a 7 - bit excess 64 power of 2; mantissa is an 8 - bit fraction. 

Problem:  A 16 - bit word, N    =    4000 16 , represents what decimal numeric value? 

Solution:  4000 16     =    0100   0000   0000   0000 

 Sign 0    =    positive, mantissa    =    0000   0000, excess 64 power of 2 exponent    =    
1000000    –    1000000    =    0 

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F. 
Schneidewind.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley & 
Sons, Inc.
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Answer:    N = 0 (2)0   = 0.0 
Mantissa     Exponent

  Problem 2  

Given:  The fl oating point format design shown in Figure  1 .   

Problem:  Can the decimal number 111.875 be stored in this format? If not, what 
decimal values can be stored? 

Solution:  111.875 cannot be stored because the mantissa 0.875 requires more 
than 8   bits. However, 118.75 can be stored because this mantissa 0.75 
requires only 7   bits, as shown in the following number conversions:

0 875 0 3611 0 110110 1011 10 0 75 0 411 0 10010 16 2 10 16. . . : , . . .= = = =bits 11011 7

3 6 11 4 11
2: bits

 These conversions are achieved by successively dividing the decimal number by 16, 
recording the remainders, and assigning the remainders to the hexadecimal numbers 
in reverse order.  

Encoding

One-Hot Encoding 

 One - hot encoding is a type of data encoding in which an individual fl ip - fl op is dedi-
cated to only one state of the data. Thus, only one fl ip - fl op, which stores the data, 
can be active, or hot, at a time. 

  Problem 3  

Given:  A central processing unit (CPU) is designed with one - hot encoding. This 
CPU cycles through 16 states and produces 32 control signals (one for fl ip -
fl op output  high  and one for output  low , for each of 16 states). 

Problem:  How many fl ip - fl ops are required? 

Answer:  Sixteen are required, corresponding to each of the 16 states.   

Figure 1     Floating point format.  

7 6 5 2 1 0 7 6 5 4 34 3 2 1 0

Byte 0 Byte 1

Normalized MantissaExcess 64 ExponentSign

2(e–64) × 0.1ffffffff

8 bits in Normalized Mantissa: “1” in left-most bit position
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Table 1    Hamming Code Words 

  D 6     D 5     D 4     D 3     D 2     D 1     D 0
  I 3     I 2     I 1     P 2     I 0     P 1     P 0
  1    1    1    1    0    0    0  
  1    1    0    0    1    1    0  
  1    0    1    0    1    0    1  

Error Detection and Correction 

 The  Hamming Code  is a type of error detection and correction code that uses parity 
bits as a check for possible errors in the information bits. It is capable of detecting 
two bits in error and correcting one. 

  D 6     D 5     D 4     D 3     D 2     D 1     D 0     Data bit positions  
  I 3     I 2     I 1     P 2     I 0     P 1     P 0     Code word  

 Parity bits (P) are located in data bit positions P 0 , P 1 , and P 2.

 Information bits (I 3 , I 2 , I 1 , I 0 ) are located in the remaining bit positions. 

  Problem 4  

Given:  Hamming code words in Table  1 . One of the code words has information 
bits 1110 2 .   

Problem:  What is the correct Hamming Code word? 

Solution:  Only the fi rst code word has the required information bits (in red). 
Therefore, the code word is 1111000 2 . 

Parity Error Detection 

 In even parity error detection, if the number of one bits, including the parity bit, is 
an even number, the data are assumed to be correct; otherwise, a one - bit error is 
assumed. In odd parity error detection, if the number of one bits, including the parity 
bit, is an odd number, the data are assumed to be correct; otherwise, a one - bit error 
is assumed. Thus,  parity error detection  can detect one - bit errors but cannot correct 
these errors. If a parity error is detected at the receiver, a negative acknowledgement 
is sent to the transmitter to retransmit the message. 

  Problem 5  

Problem:  It is desired to use even parity error detection in a digital circuit, where P is 
the parity bit. Which of the data below would generate even parity error signals?

   P  

  0010 odd (error)  

  0100 odd (error)  

  0101 even (correct)  

  0111 odd (error)    
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Cyclic Redundancy Check ( CRC)

 This is a sophisticated error detection and correction process that uses mathematical 
polynomials for detecting and correcting multiple errors. 

 A message of degree n is the polynomial M(x) is: x n     +    x n− 1     +    x n− 2     +     . . .     +    x 0 . 
 The sender and receiver must agree on a generator polynomial G(x) of degree 

k    ≤    n in advance of transmission. 
 Both the high and low bits of G(x) must be 1. 
 M(x) must be longer than G(x). 
 k zeros are appended to M(x), yielding the transmitted message T(x)    =    M(x) x k . 
 The remaining operations are shown in the following example: 
Example :

    M x x x( ) = + + =2 1 111

 Use G(x)    =    x    +    1    =    11 because M(x) can be divided by G(x) (i.e., the degree of 
G(x)    =    1    ≤    degree of M(x)    =    2). 

 k    =    degree 1, therefore append one zero to M(x), yielding the following trans-
mitted message:

    T(x) = M(x)x = x + x + x = 2 + 2 + 2 = 14 = 1110k 3 2 3 2 1
10 16.

 Divide T(x) by G(x), using modulo 2 division, and record remainder R(x), using 
modulo 2 division:

      

)11 110

11

001

00

010

00

1R x 0

.

( ) =

100

 Now, subtract remainder R(x)    =    10 from M(x)x k     =    1110, using Exclusive Or sub-
traction (modulo 2):

    M x x R xk( ) ( ) .⊕ = ⊕ =1110 10 1100

 At the receiver, divide (M(x)x k     �    R(x)) by G(x) and check for zero remainder. If 
this is the case, there is no error in transmission; otherwise, there are one or more 
errors, so retransmit:
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)11 1100

11

000

00

00

100

 Check: 12/3    =    4. 
 The remainder is zero, so there is no error in transmission. 

  Problem 6  

Given:  CRC polynomial: x 16     +    x 12     +    x 5     +    1    =    x 16     +    x 12     +    x 5     +    x 0     =    2 16     +    2 12     +    2 5     
+    1    =    65536    +    4096    +    32    +    1 

Problem:  What is the hexadecimal equivalent of this CRC polynomial? 

 The solution is obtained by placing ones in the power of twos positions, cor-
responding to the decimal numbers as follows: 

      
x16 + x12+ x5 + 1 = 1  0001  0000  0010   0001 = 1102116

     65536      4096             32           1 

Proof:  x 16     +    x 12     +    x 5     +    1    =    69,665 10 . Convert 11021 16  to base 10:

    ( ) ( ) ( ) ( ) , , ,1 16 1 16 2 16 1 16 65 536 4 096 32 1 69 6654 3 1 0* * * *+ + + = + + + =

Instruction Formats 

  Problem 7  

Given:  The instruction register below contains AB6 16  as the next instruction to 
be executed. Assuming this is an  add accumulator to operand at effective 
address  instruction, the instruction format is the following: 

11 10 7 6 0
Op Code Address Instruction register

 1 0101  011 0110

Indirect address indicator 

 Identify the op code bits: 
 Bolded bits are op code bits: AB6 16     =    1 010 1 011 0110 (hexadecimal converted 

to binary) 

Solution:  Using indirect addressing as signifi ed by bit 11    =    1: Op code bits    =    bits 
10:7    =     0101 : add accumulator    +    operand at effective address 011 0110 
(address located at 011 0110). 



Practice Problems with Solutions 1 471

  Problem 8  

Given:  The above instruction format in Problem 7 of 12   bits per word. 

Problem:  What is the maximum memory size in bits? 

Answer:  There are 2 7  addresses, each of which is 12 bits long. Therefore, 
memory size    =    12    ×    2 7  bits    =    12    ×    128    =    1536 bits.  

Pipeline Systems 

 Number of clock cycles required in pipelined system    =    Number of clock cycles 
required in conventional system    –    Number of overlapped clock cycles in pipelined 
system    =    mn    –    (m    –    1)(n    –    1), where m is the number of instructions and n is the 
number of clock cycles required by the fi rst instruction. This is the case because for 
the fi rst instruction, there is no preceding instruction to overlap with. Therefore, 
there are m    –    1 overlapped instructions. Also, the last clock cycle of the m    –    1 over-
lapped instructions are not overlapped with a clock cycle of the preceding instruc-
tions, yielding (m    –    1)(n    –    1) overlapped clock cycles in a pipeline system. 

  Problem 9  

 There are four instructions in a pipelined system. How many clock cycles are 
required to execute the four instructions? 

Solution:  The fi rst instruction requires n    =    4 clock cycles and each of the remain-
ing (m    –    1) instructions require only 1 clock cycle because these (m    –    1) instruc-
tions are overlapped with the preceding instructions, yielding n    +    (m    –    1)    =    
4    +    3 clock cycles. 

  Problem 10  

 What is the increase in speed of the pipelined system in Problem 9 versus a non-
pipelined system? 

Solution:  The speed ratio    =    Number of clock cycles required in conventional 
system/Number of clock cycles required in a pipelined system    =    mn/
(m    +    n    –    1)    =    16/7    =    2.286. If m is large, the increase in speed approaches 
the maximum speed  of  n  clock cycles per instruction. 

  Problem 11  

 Pipeline  throughput  is defi ned as the  number of instructions , m, per  total clock cycle 
time  required to process m instructions    =    (m instructions)/((number of clock cycles 
per instruction * time per clock cycle))    =    (m)/(m    +    n    –    1)T, where T is clock cycle 
time per instruction. For a typical microprocessor with a clock speed of 10   MHz 
(107  cycles per second), T    =    1/10 7  seconds. 

 What is the throughput for a four - instruction pipeline? 
Solution:  m/((m    +    n    –    1)T)    =    4/((7)(1/10 7 )))    =    (4)(10 7 )/7    =    5.71 million instruc-

tions per second. 

  Problem 12  

Pipeline effi ciency  is computed as: actual speed increase/maximum speed increase. 
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 What is the effi ciency for the pipeline in Problem 10? 

Solution:  (mn/(mn/m    +    n    –    1))/n    =    2.286/4    =    0.5715. 

  Problem 13  

 What governs the clock cycle frequency of a pipeline system? 

Solution:  The pipeline with the slowest processing time. 

  Problem 14  

 What is needed to maintain performance in a pipeline system, when needed resources 
such as hardware are not available? 

Solution:  More resources can be employed, if available, or the pipeline can be 
stalled (e.g., no instructions executed until needed hardware is available). 

  Problem 15  

 How many instructions can a nonpipeline computer execute at a time? 

Solution:  Only one instruction at a time.  

Shifting and Comparators 

Problem 16
 What is the process and purpose of the arithmetic right shift? 

Solution:  Arithmetic right shifting is performed to divide a quantity by 2 n  and 
round down ( “ 0 ”  inserted in least signifi cant bit [LSB] position), where n is 
the number of bits shifted. The sign bit is preserved in the right shift. 

  Problem 17  

 What is the process and purpose of the arithmetic left shift? 

Solution:  Multiply a quantity by 2 n . The sign bit is lost because the high order 
data bit is shifted into the sign position. 

  Problem 18  

 What is the process and purpose of the right rotate logical shift and the left rotate 
logical shift? 

Solution:  The right and left rotate logical shifts can be used, for example, to 
identify whether database application A or B should be executed dependent 
on a series of bits in a register (0 for application A and 1 for application B). 
For each shift of one bit, A or B would be selected. See Figure  2  for details 
of the four shifting operations, where for each operation, one bit is shifted.   

  Problem 19  

 How can a circuit be designed to analyze branch instruction logic in a program? 

Solution:  Figure  3  shows how a comparator and its accompanying shift control 
logic can be designed to determine whether data originally in registers A and 
B, and then transferred to busses A and B, have the relationships A    =    B, 



Practice Problems with Solutions 1 473

Figure 2     Shifting operations.  

0 0 0 0 0 11 1

1 0 10 0

Right Arithmetic Shift lost
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0 0 00 0 01 1
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0 0 00 0 11 1
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+ 5

divide by 2n and round down

Left Arithmetic Shift

inserted

sign bit lost

+ 11

+ 22

multiply by 2n

n = number of bits shifted

Right Rotate Logical Shift

Left Rotate Logical Shift

0 0 0

A    >    B, or A    <    B. Thus, in a program, branch 1 would be taken if A    =    B; 
branch 2 would be taken if A    >    B; and branch 3 would be taken if A    <    B.   

  Problem 20  

 Figure  4  shows that the hexadecimal quantity 5A has experienced a rotated 
left shift of 3   bit positions. What is the resultant quantity in hexadecimal and 
decimal?   

Solution:  As the conversion operation in Figure  4  shows, the result is D2 in 
hexadecimal and 210 decimal.  



Figure 4     Rotate left shift operation.  

0 1 0 1 1 0 1 0
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Figure 5     Decoder circuit.  
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Figure 3     Comparator circuit.  
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Decoders

 A decoder is a combinational circuit that selects one of n inputs and produces 2 n

outputs, where n is the number of input bits, as shown in Figure  5 .   

  Problem 21  

Given:  Decoder circuit in Figure  5 , showing selected n inputs and 2 n  outputs, 
with an odd parity generator that signifi es no error, if the number of output 
bits, including the parity bit, is odd. 

Problem:  How many outputs are required to address the inputs A, B, C in the 
decoder circuit? 

Solution:  Figure  5  shows that when there are three inputs to the decoder, eight 
outputs are required. In addition, Table  2  shows the parity that is required to 
ensure no error for the various input combinations.    

Flip-Flop Circuits 

 J - K fl ip - fl op next state output Q(t    +    1) is a function of inputs J and K, and present 
state fl ip - fl op outputs Q(t) and   Q t( ):

    Q t JQ t KQ t( ) ( ) ( )+ = +1

  Problem 22  

Given:  Figure  6  shows a J - K fl ip - fl op circuit that includes six gates. The current 
fl ip - fl op state Q 1 Q 2 Q 3     =    100.   

Problem:

(a)     Identify the types of gates.    

Solution:  EXCLUSIVE OR: Gates 1 and 3; NAND: Gates 2, 4, and 6; EXCLU-
SIVE OR: Gate 5. 

Table 2    Decoder Circuit Parity Generation 

  A    B    C    P  
  0    0    0    1  
  0    0    1    0  
  0    1    0    0  
  0    1    1    1  
  1    0    0    0  
  1    0    1    1  
  1    1    0    1  
  1    1    1    0  
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Figure 6     J - K fl ip - fl op circuit.  
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Problem:

(b)     Determine the output of each gate.    

Solution:  See Figure  6 . 

Problem:

(c)     Determine the next state of the fl ip - fl op outputs.    

Solution:

    Q t J Q t K Q t AB C D C D1 1 1 11 0 1( ) ( ) ( ) ( )( ) ( )( )+ = + = + + = +
    Q t J Q t K Q t A B CD A B2 2 2 2 21 1 0( ) ( ) ( ) ( )( ) ( )( )+ = + = + + = +
    Q t J Q t K Q t EF EF E F EF EF3 3 3 3 31 1 0( ) ( ) ( ) ( )( ) ( )( )+ = + = + + + = +

Multiplexers

 The multiplexer circuit in Figure  7  produces a single output Y for four inputs, x 0 , 
x1 , x 2 , and x 3 , depending on the values of the selector bits, s 0 , s 1 , using an OR output 
function.   

  Problem 23  

 Develop the output functions for the multiplexer circuit in Figure  7 . 
Solution:  Figure  7  shows the output function.  
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Figure 7     Multiplexer and demultiplexer circuits.  
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Demultiplexers

 A demultiplexer causes an input x to be transferred to one of 2 n  output lines, where 
n is the number of select inputs in Figure  7 . 

  Problem 24  

 Develop the output functions for the demultiplexer circuit in Figure  7 . 

Solution:  Figure  7  shows the output functions. 

Timing Relationships

  Problem 25  

Given:  Timing relationships pertaining to D fl ip - fl ops in Figure  8 .   

Problem:  What is the timing diagram for input signals A and M and what is the 
value of the output? 
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Figure 8     Timing relationships.  
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Solution:  Figure  8  shows that by virtue of ANDing inputs A and B, the 
output    =    AB. The timing diagram shows that output AB has a frequency of 
5 MHz governed by the durations of the 10 MHz clock when both inputs A 
and B are positive. 

Programmable Logic Array  ( PLA)

 A PLA consists of programmable AND and OR gates. It can be programmed to 
implement a Boolean sum of product terms. 

  Problem 26  

 Draw a logic diagram showing how the PLA should be designed to implement the 

functions   Z AB BC2 = + , Z AB AC1 = + , and   Z AC BC0 = + .

Solution:  The design is shown in Figure  9 .    
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Figure 9     Programmable logic array.  
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State Machine Diagrams 

 As Figure  10  shows, state transition diagrams are useful for tracking state transitions 
in a digital system. For example, in Figure  10 , state transitions are triggered by switch 
openings and closings, which cause transitions from present states to next states.   
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Table 3    Switch State Transition Table 

   Present switch condition     Present state     State transition condition     Next state  

  SW    =    0    0    SW    =    0    0  
  SW    =    0    0    SW    =    1    1  
  SW    =    1    1    SW    =    0    1  
  SW    =    0    1    SW    =    1    2  
  SW    =    1    2    SW    =    1    2  
  SW    =    1    2    SW    =    0    3  
  SW    =    0    3    SW    =    0    3  
  SW    =    0    3    SW    =    1    0  

Figure 10     Switch state diagram. SW, switch. SW    =    0, closed; SW    =    1, open.  
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SW = 0
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SW = 0
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SW = 1
SW = 0

State Transition Condition

SW = 1

SW: switch = 0, closed, switch = 1 open

  Problem 27  

 Develop the state transition table corresponding to Figure  10 . 

Solution:  See Table  3 .    

Edge-Triggered D Flip -Flop Circuit 

 The output state Q(t    +    1) of a D fl ip - fl op is governed by the falling edge of the clock 
pulse in Figure  11 : Q(t    +    1)    =    D on the falling edge.   

  Problem 28  

 Given the characteristic of the D fl ip - fl op, draw the timing diagram for the circuit 
in Figure  11 . 

Solution:  See Figure  11 .  
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Figure 11     Edge - triggered fl ip - fl op circuit.  
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State Machine Design 

 The design of state machines involves identifying states, state transitions, and the 
sequences of state transitions, where a sequence is the order in which transitions 
occur. 

  Problem 29  

 For the elevator example in Figure  12 , identify the correct sequence of state 
transitions.   

Solution:  As seen in Figure  12  and based on the logic of elevator operations, 
the correct sequence is: (current fl oor (Nc)    →    request fl oor (Nr)    →    destina-
tion fl oor (Nd))  or  (request fl oor (Nr)    →    destination fl oor (Nd)). 

  Problem 30  

 In Figure  12 , what are the next states for current state 3 and what are the correspond-
ing state transitions? 

Solution:  Referring to Figure  12 , the next state 3 is caused by elevator staying 
at Nd1; the next state 4 is caused by elevator going to Nr2. 
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Figure 12     State machine example. Nc, current fl oor; Nr, request fl oor; Nd, destination fl oor. 
Numbers designate specifi c fl oor.  
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  Problem 31  

 In Figure  12 , give an example of an illegal state transition. 

Solution:  State 2    →    State 4 is illegal because it would be illogical to transition 
from one request fl oor to another request fl oor without fi rst going to a des-
tination fl oor.   

CHAPTER 9 (PROGRAMMING LANGUAGES) AND 
CHAPTER 10 (OPERATING SYSTEMS) 

Queue Data Structure 

 One approach for managing data and instructions is the queue that uses a fi rst - in, 
fi rst - out discipline. An application is the processing by a microprocessor, on a non-
priority basis, of a stream of inputs. 

  Problem 32  

 For an input of KJIHGFEDCBA, what is the output order for a fi rst - in, fi rst - out 
discipline?

Solution:  Figure  13  shows the output ordering of the input data.    

Stack Data Structure 

 Another one of the important software design approaches is to use the push - down 
stack, which is particularly valuable when interrupts occur and it is necessary to 
service the interrupts and later return to the main program. The stack facilitates this 
process by pushing the contents of the program counter and special registers onto a 
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memory area called the stack. The stack operates on a last - in, fi rst - out basis, meaning 
that the register contents that were last pushed are on the top of the stack, for 
example, the program counter, so that the program is pointing to the address of the 
next instruction to be executed. 

  Problem 33  

 For an input of ABCDEFGHIJK, what is the output order for a last - in, fi rst - out 
discipline?

Solution:  Figure  13  shows the output ordering of the input data.  

Instructions Designed to Perform Functions 

 Instruction sequences can be designed to perform certain functions such as generat-
ing a square wave in a register, using a set of binary bits to represent the output (i.e., 
square wave), or generating a Fibonacci number sequence. 

  Problem 34  

 Show how a square wave can be generated, using an accumulator, input register A, 
and output register B. 

Solution:  See Figure  14  for the result.   

Figure 13     Queue and stack processing.  
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Figure 14     Square wave generation.  
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  Problem 35  

 Produce a program to compute Fibonacci numbers, where a Fibonacci number is 
defi ned as the sum of the previous two numbers, for example, 1, 1, 2, 3, 5, 8, and 13. 

Solution:  Table  4  shows the program.    

Software Specifi cations 

  Problem 36  

 What must software specifi cations contain to be complete? 

Solution:  There must be details of expected inputs and outputs, details of pro-
cessing requirements, and details of design requirements. 
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  Problem 37  

 The object - oriented design process involves specifying a conceptual model, which 
consists of actors, uses cases, classes, objects comprising a class, and operations. 
With this defi nition in mind, draw the design process for an elevator example. 

Solution:  The object - oriented design process is shown in Figure  15 .    

Table 4    Fibonacci Number Program 

   Command     Description  

  i    =    0    Set fi rst Fibonacci number index  
  n(i), n(i    +    1)    =    1    Set fi rst two Fibonacci numbers    =    1  
  While (i    <    N) do Functions F and C    Keep inputting and computing while i    <    N 

Fibonacci numbers  
  Function F (input n(i))    Input Fibonacci number    =    n(i)  
  Function C (n(i)    +    n(i    +    1))    Compute Fibonacci number  
  Function C (n(i)    +    n(i    +    1))    →    output    Output Fibonacci number  
  i    =    i    +    1    Increment Fibonacci number index  
  Return (While)    Continue with Functions F and C  

Figure 15     Object - oriented conceptual model.  
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Structure Chart 

Problem 38

 For a structure chart, we need to know: (1) all the modules in the chart, (2) all the 
data items in the chart, (3) the organization of the modules, and (4) all the com-
munications among modules. 

 Using this concept, design a structure chart for the elevator system depicted in 
Figure  15 . 

Solution:  The structure chart design is shown in Figure  16 .     

CHAPTER 11: SOFTWARE RELIABILITY AND SAFETY 

Quality Assurance 

Integration Testing 

 Integration testing can be accomplished either in a top - down or bottom - up fashion. 
In bottom - up testing, drivers are required for modules at a higher level to call 

Figure 16     Structured design diagram.  
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modules at a lower level, and test cases are required for doing integrated testing 
between modules at higher and lower levels. A disadvantage of bottom - up testing is 
that the most important modules — those at the top level — are not tested fi rst. On the 
other hand, top - down testing is more complex. For this type of testing, stubs are 
required that simulate the lower level module data and instructions, which have not 
yet been tested, for the benefi t of higher level modules. 

  Problem 39  

 Design top - down and bottom - up testing schemes for modules A, B, C, D, and E. 

Solution:  The testing schemes are shown in Figure  17 . These types of tests assist 
in the verifi cation process that is aimed at assuring that the testing schemes 
are faithful to the software design. In addition, these tests are augmented by 
inspections, which are a peer review process for examining code to help 
assure its correctness.    

Array and Matrices 

 Arrays are one - dimensional data structures with values and indices that point to the 
values, such as the adjacency list in Figure  18 . Matrices are two - dimensional data 
structures that have two sets of indices, one to point to values in one of the dimen-
sions, and another set to point to values in the second dimension. An adjacency list 
can be used for this purpose.   

 Some problems involving arrays and matrices are concerned with effi cient 
processing when the matrix is sparse (i.e., many zero elements in matrix). In this 
case, an adjacency list (pointers to nonzero elements) combined with a linked list 
can be used. For an n    ×    n matrix with zero elements, the number of nonzero elements 
that would make the link list superior to a matrix can be computed. 

  Problem 40  

 Portray the two data structure alternatives, described above, and compute the storage 
requirement for the two alternatives. 

Solution:  Figure  18  shows the logic of the alternatives and the computation of 
the competing storage requirements. 

  Problem 41  

 Using the result obtained in Problem 39, compute the number of zero entries Z and 
the number of nonzero entries N. 

Solution:

 Matrix storage requirement (matrix plus pointers): 32n 2     +    32n 
 Link list storage requirement (linked list plus pointers): 32n    +    64(n 2     –    Z)

    32 32 32 64 64 322 2 2n n n n Z Z n+ = + − =( ), ,

 zero entries Z    =    0.5n 2 , N    =    n 2     –    0.5 n 2     =    0.5 n 2

 In other words, for this problem, the number of nonzero entries equals the 
number of zero entries. If Z were larger, the linked list would require less storage 
than the matrix.  



488 Computer, Network, Software, and Hardware Engineering with Applications

Figure 17     Integrated testing designs.  

Test

A,B,C,D,

E,F, G

Test

B, E, F

Test C
Test

D, G

Test E Test F
Test G

Module A

Test Cases for

Modules A, B,

C, D, E, F, G

DeludoMCeludoMBeludoM

Module E Module F
Module G

Driver for Module B

Test Cases for

Modules B, E,

F

Driver fo Module E

Driver for Module F

Driver for Module C

Driver for Module D

Test Cases for

Modules D, G

Driver for Module G

Bottom-Up Testing

Test

A, B, E

Test A

Test

A, D, G

Test

A, B

Test

A, C

Test

A, D

Test

A, C, F

Module A

Test

A,B,C, D,

E,F,G

Module B Module C DeludoM

Test Case for

Module A

Stub for Testing A with B

Module E Module F Module G

Stub for Testing A with C

Stub for Testing A with D

Stub for Testing A, B, E

Stub for Testing A, B, E

Stub for Testing A, C, F Stub for Testing A, D, G

Stub for Testing A, C, F

Stub for Testing A, D, G

Top-Down Testing



Practice Problems with Solutions 1 489

Nested Program Logic 

 The number of paths (i.e. number of program executions or number of calls) in a 
nested program  can be determined by drawing a fl ow chart, as shown in Figure  19 .   

  Problem 42  

 Based on Figure  19 , what is the formula for computing the number of paths? 

Solution:  See Figure  19 .    

CHAPTER 6: NETWORK SYSTEMS 

Network Diameter 

 The network diameter is the maximum of the distances between all possible pairs 
of nodes (e.g., computers) of a graph of a network, without backtracking  (i.e., revisit-
ing a node on a path). This concept is used for identifying the maximum distance 
data would have to travel in a network. The appropriate bandwidth would be pro-
grammed to meet this requirement. 

  Problem 43  

Given:  Figure  20  showing network connections.   

 Determine the network diameter. 

Solution:  The various paths, links, and maximum number of links are shown in 
Table  5 , based on the network topology in Figure  20 , yielding diameter    =    4 
links (A    →    E    →    B    →    C    →    D).   

Figure 18     Array and matrix data structure design. Z, number of zero elements.  
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Figure 19     Flow chart problem.  
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Figure 20     Network connectivity.  
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  Problem 44  

 What series of instruction functions will generate a square wave with a 50% duty 
cycle to control the output of data on a network? Show the instructions and their 
functions and the results of the instruction functions executions. 

Solution:  Table  6  shows the instruction functions and Table  7  shows the results 
of the instruction functions executions.    

Analog-to-Digital Conversion to Support Network 
Operations

  Problem 45  

Given:  Analog - to - digital converter network support circuit diagram in Figure 
 21 .   

 What address is used to access network Channel B of the converter? 

Solution:  The circuit diagram shows how the address bits (01000000) are con-
fi gured to support the access of network Channel B at address 40 16 .  
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Table 5    Network Connectivity 

   Path     Links     Number of links  

  A    →    B    A    →    B    1  
  A    →    E    →    B    A    →    E, E    →    B    2  
  A    →    B    →    C    A    →    B, B    →    C    2  
  A    →    E    →    B    →    C    A    →    E, E    →    B, B    →    C    3  
  A    →    E    →    D    →    C    A    →    E, E    →    D, D    →    C    3  
  A    →    B    →    C    →    D    A    →    B, B    →    C, C    →    D    3  
  A    →    E    →    B    →    C    →    D    A    →    E, E    →    B, B    →    C, C    →    D     4
  A    →    E    →    D    A    →    E, E    →    D    2  
  A    →    E    A    →    E    1  
  A    →    B    →    C    →    D    →    E    A    →    B, B    →    C, C    →    D, D    →    E    4  
  A    →    B    →    E    A    →    B, B    →    E    2  
  B    →    C    B    →    C    1  
  B    →    E    B    →    E    1  
  B    →    C    →    D    →    E    B    →    C, C    →    D, D    →    E    3  
  B    →    E    →    D    B    →    E, E    →    D    2  
  B    →    C    →    D    B    →    C, C    →    D    2  
  C    →    D    C    →    D    1  
  C    →    D    →    E    C    →    D, D    →    E    2  
  C    →    D    →    E    →    B    C    →    D, D    →    E, E    →    B    3  
  D    →    E    D    →    E    1  
  D    →    E    →    B    D    →    E, E    →    B    2  
  D    →    E    →    B    →    C    D    →    E, E    →    B, B    →    C    3  
  E    →    B    E    →    B    1  
  E    →    B    →    C    E    →    B, B    →    C    2  
  E    →    B    →    C    →    D    E    →    B, B    →    C, C    →    D    3  
  E    →    D    E    →    D    1  

Hubs versus Switches 

Problem 46
 Figure  22  demonstrates that compared with hubs, switches increase bandwidth 

(no collisions) and security (memory of switches provides security checking). Why 
is this the case?   

Solution:  Because collisions are possible using hubs but not possible using 
switches.

Connection Hijacking 

 Transmission Control Protocol (TCP) session hijacking occurs when a hacker 
takes over a TCP session  during  a session between two computers. Since most 
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Table 6    Instruction Functions 

   Instruction     Function  

  CLR (clear accumulator)    0    →    ACC  
  IN B (transfer  “ 1 ”  from input device to 

register B)  
  1    →    B  

  ADD (add register B    =    1 to accumulator)    ACC    =    ACC    +    B  
  SHR (shift accumulator logical right 4   bits)    ACC [7:4]    →    ACC [3:0], 0    →    ACC [7:4]  
  SHL (shift accumulator logical lift 2   bits)    ACC [7:2]    ←    ACC [5:0], ACC [1:0]    ←    0  
  OUT (out put accumulator to register C)    ACC    →    C  

Table 7    Square Wave Instruction Function Execution Results 

   Instruction     Instruction result     Square wave result  

  CLR (clear accumulator)    0    →    ACC      
  IN B (transfer  “ 1 ”  from 

input device to 
register B)  

  1    →    B  

  ADD (add register 
B    =    1 to accumulator)  

  ACC    =    ACC    +    B  

  SHR (shift accumulator 
logical right 4 bits)  

  ACC [7:0]    →    ACC [3:0], 
0    →    ACC [7:4]  

  SHL (shift accumulator 
logical lift 2 bits)  

  ACC [7:2]    ←    ACC [5:0], 
ACC [1:0]    ←    0  

  OUT (out put 
accumulator to 
register C)  

  ACC    →    C  

Figure 21     Analog - to - digital converter circuit.  
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authentications only occur at the start of a TCP session, this allows the hacker to 
gain access to a computer. A popular hacking method uses source - routed Internet 
Pro tocol (IP) packets. Source - routed packets identify the source address in the 
packet. A hacker at node A listens for packets originating at nodes B or C. If such 
traffi c passes through node A, it allows the hacker to participate in a conversation 
between B and C. This is known as a  “ man - in - the - middle attack. ”  A common com-
ponent of such an attack is to execute a denial - of - service  ( DoS ) attack against nodes 
B and C. 

  Problem 47  

 Draw an Internet diagram depicting the connectivity that would permit the security 
breaches described above. 

Solution:  Figure  23  shows the Internet vulnerabilities that would allow security 
problems to occur.    

Figure 22     Hubs versus switches.  
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RS 232 C Data Transmission 

 Coding effi ciency is defi ned as the (number of data bits)/total number of bits (data 
plus control). 

  Problem 48  

 Referencing the fi gure below, what is the coding effi ciency? 

Solution:  As can be seen in the fi gure, there are 8 data bits out of a total of 11 
bits. Therefore, coding effi ciency    =    8/11    =    73%. 

      

              2 stop bits                    8 data bits             start bit 

Topology and Hardware 

 Various combinations of network topology and hardware are shown in Figure  24 . 
The main characteristic of 10 Base T Ethernet  is that each computer is individually 
connected to a hub. The hub has no storage; therefore, data cannot be buffered. 
This scheme does have an advantage over the bus because, with each computer 
having its own connection to the hub, collisions of data on the network are avoided. 
Because the bus is shared by many devices, collisions on the connected Ethernets 
are unavoidable. However, the bus is the traditional way to connect Ethernets 
because this type of connection is highly standardized and economical. A later 
version of Ethernet uses switches to direct traffi c. This confi guration avoids 
collisions.   

Figure 23     Internet connections.  
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 The most rudimentary connectivity device is the repeater. Its function is to 
repeat a signal, necessitated by the fact that signals can lose strength in traversing 
a network. The bridge has storage and routing capability that allows it to transfer 
traffi c from one network to another. The primary application of the bridge is where 
most of the traffi c is within the connected networks, with occasional traffi c between 
networks.

Figure 24     Network connectivity alternatives.  
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  Problem 49  

 In Figure  24 , indicate whether collisions will or will not occur for the various con-
nection methods. 

Solution:  See annotations on Figure  24 .  

Adjacency Matrix in Network Topology 

Defi nition:  An adjacency matrix is a means of representing which vertices of a 
network topology graph are adjacent (i.e., directly connected by edges). 

  Problem 50  

Given:  Graph of vertices V i  below. 

 What is the adjacency matrix of vertices V i  and edges e i ? 

      

V1         e1             V2

e4              e5              e2

   

V4           e3 V3

Solution:  Using the above defi nition, the adjacency matrix is shown in Table  8 , 
where “ 1 ”  indicates a connection:    

Data Compression 

 Data compression is used to economize on data transmission or computation by 
eliminating bits that are not required in an application. For example, rather than use 
the hexadecimal format for the input number 16 in a computation, the binary repre-
sentation is used. Thus, rather than 8   bits in hexadecimal, 5   bits in binary are used 
in the computation. 

Table 8    Adjacency Matrix for Vertices V i  and Edges e i

      V 1     V 2     V 3     V 4

  V 1     0    1(e 1 )    0    1(e 4 )  
  V 2     1(e 1 )    0    1(e 2 )    1(e 5 )  
  V 3     0    1(e 2 )    0    1(e 3 )  
  V 4     1(e 4 )    1(e 5 )    1(e 3 )    0  
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 Using data transmission to illustrate the decompression technique, the time required 
to transmit x bits of data in the noncompressed mode    =    x/B n , where B n  is the bandwidth 
in bits per second (bps) for uncompressed data. With a compression factor r    ≥    1, data 
will be compressed by x/r. The  time  that it takes to compress and decompress x bits of 
data is x/B c , where B c  is the rate of compression/decompression. Thus, the  time  to com-
press, transmit, and decompress x bits of data is (x/B c )    +    ((x/r)/B n ). Then, compassion/
decompression is benefi cial if the (time to compress, transmit, and decompress x bits of 
data)    <    (time required to transmit x bits of data in the noncompressed mode):

    ( ) (( ) ) ( ), (( (x/B x/r /B x/B which is equivalent to B r/ rc n n c+ < > −11) ).Bn

  Problem 51  

 What is the value of the above inequality for r    =    2? 
Solution:  B c     >    2 B n  (rate of compression/decompression    >    (2 bandwidth in bps 

for uncompressed data)).  

Network Channel Capacity 

Defi nitions 

    C: Channel capacity (bps) (Shannon ’ s theorem)  

  BW: Bandwidth (hertz, Hz, or megahertz, MHz)  

  S: Signal power (watts)  

  N: Noise power (watts)  

  N o : Noise spectral density (watts/Hz or MHz)  

  P 0 : Power in system 0 (watts)  

  P 1 : Power in system 1 (watts)  

  G: Gain or loss between P 0  and P 1  or between S and N (decibels)   
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  Problem 52  

Given:  Network channel capacity C    =    22.368   bps, signal power S    =    14   watts, 
noise power N    =    2   watts. 
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 What is the required bandwidth BW of the network channel? 

Solution:

    
BW
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=
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Problem 53
Given:  A microwave link is used to transmit binary data and has the following 

specifi cations: transmission bandwidth BW    =    24   MHz, received signal - to -
 noise ratio    =    G    =    20   dB. 

 According to Shannon ’ s theorem, what is the network channel capacity C in mega-
bits per second? 

Solution:
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Computer Circuit Analysis 

Bode Plot and Amplifi ers 

 A Bode plot relates the  absolute  value of the transfer function (|output/input|)    =    |V 2 /
V1 | in Figure  25  to  ω     =    2 π f, where f    =    signal frequency, for example, an audio circuit 
that amplifi es sound in a laptop computer.   

  Problem 54  

Given:  Amplifi er diagram in Figure  25 . 

Problem:  Identify the transfer function. Plot the transfer function versus  ω . 

Solution:  Figure  25  shows the computation of the transfer function, according 
to the above defi nition. In addition, the fi gure shows the Bode plot, whose 
shape is governed by the fact that V 2 /V 1     =    1/ ω CR is an inverse function of 
ω     =    2 π f. Thus, V 2 /V 1  will continually decrease with f, and the 0   dB point 
corresponds to ωc     =    1/RC, where V 2 /V 1     =    1.   

Operational Amplifi er 

 This is a direct - current circuit amplifi er that can be used to, for example, boost the 
signal derived from a sensor to a value that can be used in computer processing. 

  Problem 55  

 This problem, portrayed in Figure  26 , involves determining the operational amplifi er 
output voltage, V o , given the temperature sensor input voltage V s  and the various 
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resistor values. Develop equations for impedance of total circuit, voltages, and cur-
rents, using Figure  26  as a guide.   

Solution:

 Impedance of total circuit, Z 1 , comprised of series and parallel resistance 
circuits:

Figure 25     Amplifi er diagram and Bode plot.  
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    Z R
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 then, the current I 1  is computed as:
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 The current I 2  is computed by dividing the voltage across it by its resistance:
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 additionally, I 3     =    I 1     –    I 2 , thus:
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 The output voltage V o  is across the resistor R 3  in Figure  26 :

    V I R I
V V

R
Ro

s o= = −
−⎡

⎣⎢
⎤
⎦⎥

3 2 1
1

2,

 then substituting I 1  in this equation produces:
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 The amplifi cation factor, V o /V s , in Figure  26 , is computed, using the foregoing equa-
tion, as follows:
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 The interpretation of this result is that 1 ° C measured by the temperature sensor cor-
responds to V s     =    1   V on input, increased by the operational amplifi er to 0.0454   V 
on output. 
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  Problem 56  

 It is required to determine the clock frequency in Figure  27 , given that the output 
frequency for the motors is 400   Hz.   

Solution:  Using the truth table in Table  9 , it can be seen that the fl ip - fl op next 
state outputs Q 1  (t    +    1) and Q 2  (t    +    1), which are connected to the motors, 
change state only when the motor variables change (X 1     =    0    →    1 and 
X2     =    1    →    0), indicated by the bolded items, requiring two clock pulses. 
Therefore, the input clock frequency    =    800   Hz, as shown in Figure  27 .    

  Shifting Circuits 

  Problem 57  

Given:  Arithmetic right shifting circuit in Figure  28 , where the initial value of 
D2 D 1 D 0     =    001.   

Figure 27     Motor circuit.  

X1(t)

X2(t)

motors generate 400 Hz flip-flop signals

D1(t)

Q1(t)

D2(t) = 

Q2(t)

_____

1Q (t)
___

2Q (t)
X1(t)

Q1 (t + 1) =
____

1X (t)
____

1X (t)

=

= X1(t)

=
________

1Q (t 1)+

= X1(t)

Q2 (t + 1) = 

____

1X (t)

X2(t) X2(t)

=

=

___ ____

2 2Q (t 1) X (t)+ =

CLK

800 Hz

____

1X (t)

X t2( )=X t1( )= X t1( )=X t1( ) X t1( )

Table 9    D Flip - Flop Truth Table 

   X 1 (t)     X 2 (t)
D t1( ) =        Q t1( ) = Q t1 1( )+ Q t1 1( )+    D 2 (t)    =    

X2 (t)
   Q 2 (t)    =    
X1 (t)

   Q 2 (t    +    1)   
=    X 2 (t)

Q t2 1( )+

  0    0    1    1    1    0    0    0    0    1  
0      1     1    1     1     0    1    0     1     0  
1      0     0    0     0     1    0    1     0     1  
  1    1    0    0    0    1    1    1    1    0  
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 How many nonrepeating states are required for the counter to complete its cycle? 

Solution:

 First, notice the XOR (Exclusive OR) logical property: D 2     =    D 1     �    D 0  (D 2     =    0, 
if D 1  and D 0  are the same, and D 2     =    1, if D 1  and D 0  are different). Then, referencing 
the truth table in Table  10 , you can see that the circuit transitions through  seven
states  when the initial state is repeated at the seventh state.       

Figure 28     Right shift operation.  

D0D1D2

D2 = D1 XOR D0

0 0 1

Right shift

Initial state

Table 10    Shifting Circuit Truth Table 

Operation D2 D1 D0 D2 = D1 + D0

Initial state 0 0 1

D2 = D1 + D0 1 0 1 1

Right shift 0 (insert 0) 1 0

D2 = D1 + D0 1 1 0 1

Right shift 0 (insert 0) 1 1

D2 = D1 + D0 0 1 1 0

Right shift, repeated 
state, with Initial state

0 (insert 0) 0 1



 Practice Problems with Solutions 2     

     These practice problems are related to the following chapters:

   Chapter  1 : Digital Logic and Microprocessor Design  

  Chapter  2 : Case Study in Computer Design  

  Chapter  9 : Programming Languages  

  Chapter  10 . Operating Systems  

  Chapter  4 : Analog and Digital Computer Interactions     

CHAPTER 1 (DIGITAL LOGIC AND 
MICROPROCESSOR DESIGN) AND CHAPTER  2
(CASE STUDY IN COMPUTER DESIGN) 

Hard Disk Properties 

Areal Density     =    ((bits per track)(number of tracks))/(disk radius)  

Average Access Time     =    average latency    +    average seek time  

Average Latency     =    revolution time/2  

Revolution Time     =    1/(revolutions per unit time)  

Average Latency     =    1/((2)(revolutions per unit time))  

Average Seek Time     =    time to move from a given track to adjacent track    

  Problem 1(a)  

Given:  10,000 bits per track, 1,000 tracks, disk diameter    =    15.24   cm 

Problem:  What is the areal density? 

Computer, Network, Software, and Hardware Engineering with Applications, First Edition. Norman F. 
Schneidewind.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley & 
Sons, Inc.
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Answer: Areal Density     =    ((bits per track)(number of tracks))/(disk radius)    =    
((10,000   bits per track)(1,000 tracks))/(7.62   cm)    =    1.31    ×    10 6  bits per 
centimeter

  Problem 1(b)  

Given: Average Seek Time     =    20 milliseconds (ms), rotational speed    =    2,000 
revolutions per minute (rpm) 

Problem:  What is the Average Access Time? 

Answer: Average Access Time     =    average latency    +    average seek time 

Average Latency     =    1/((2)(revolutions per unit time))    =    (1/(2)(2,000   rpm/60 
seconds per minute)    =    0.015 seconds    =    15   ms 

Average Access Time     =    15   ms    +    20   ms    =    35   ms 

Disk Transmission Time     =    (data quantity)/(transmission rate) 

  Problem 2  

Given:  The contents of a 20 megabyte disk are transferred at a rate of 2400   bits 
per second. 

Problem:  What is the time required for this transmission? 

Solution: Transmission Time     =    (data quantity)/(transmission rate)    =    (20    ×    1,048,576   
bytes    ×    8   bits per byte)/2400   bits per second    =    69,905 seconds 

 69,905 seconds/3,600 seconds per hour    =    19.42 hours  

Memory Properties 

  Problem 3  

Problem:  For the following instruction format, what is the required memory 
size?

Solution:  25 addresses    ×    12   bits per address    =    32    ×    12    =    384   bits 

      

parity op code      address 
11    10-5             4-0 

  Problem 4  

 What is the Word  Access Time  for a  random access memory  ( RAM )? 
Answer:  Time required to locate and read or write a word in RAM  

Computer Software Fundamentals 

Problem 5

Problem:  Flow chart the following:
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Figure 1     Problem 5.  

C = B + C

(A > B) AND (A > C)

(B > A) AND (B > C) 

(B > A) AND (B < C) 

C = A + C

B = B – A

PLACE1
Start

PLACE2

Stop

Y
N

Y
N

Y
N

Input

A,B,C

   If (A    >    B) AND (A    >    C), (C    =    B    +    C),  →  PLACE1  

  If (B    >    A) AND (B    >    C), (C    =    A    +    C),  →  PLACE2  

  If (B    >    A) AND (B    <    C), (B    =    B    –    A),  →  PLACE1    
Solution:  See Figure  1 .   

  Problem 6  

Problem:  Flow chart the following: 

 If (A    >    10) AND (A    <    14), (A    =    A    –    X) 

 If (A    <    10) OR (A    >    14), exit 

Solution:  See Figure  2 .   

  Problem 7  

Problem:  Flow chart the following: fi nding the  real  roots of a second - degree 
polynomial, where the coeffi cients a, b, and c are read from an input unit 
and the results are printed. The equation is: ax 2     +    bx    +    c    =    0, and the roots 
are computed in Figure  3 .    
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Figure 3     Roots of polynomial.  

Read
c,b,c

t1 = – b
b

t2 = t1
2

Subroutine t1

Subroutine t2

a, c

3 2t = t – 4ac

Subroutine t3

22

21

–b+ b – 4ac –b– b – 4ac
x = ,x =
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Y

Figure 2     Problem 6.  
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Bubble Sort 

 This sort is performed by comparing x i  with x i+ 1 . If x i     >    x i+ 1 , x i  and x i+ 1  are inter-
changed ( “ swapped ” ); if x i     ≤    x i+ 1 , no interchange takes place. This process continues 
until there are no more swaps. Then the sorted list is printed in ascending order. 

  Problem 8  

Problem:  Using a bubble sort, draw a fl owchart for this process, for sorting the 
data in ascending order. 

Solution:  Figure  4  shows the fl ow chart process.    

Binary Search 

 Let n    =    number of items to sort and p    =    number of comparisons required. First, the 
list to be searched must be sorted. Then, the search starts in the middle of the list 
and tests this item for equality with the search key. If equal, the search is fi nished. 
If search key    >    middle item, confi ne remaining search to lower half of list; other-
wise, confi ne remaining search to upper half of list. 

  Problem 9  

 Derive the expression for number of comparisons p required to search a list of n 
items, using the binary search method, and compute p for n    =    1,    .   .   .    , 10. Lastly, make 
a plot of p versus n. 

Solution:  The derivation follows. The example is tabulated in Table  1  and the 
plot is shown in Figure  5 .     

 For n    =    1, p    =    0 (no items to sort); for n    =    2, p    =    1 (two items requiring one com-
parison); for n    =    4, p    =    2 (one comparison for two of the items and one comparison 
for the other two items), and so on. Thus, n    =    2 p .

    p n n= =log ( ) log ( ) / log ( )2 10 10 2

Figure 4     Bubble sort.  

Read xi

xi+1

xi > xi+1
si = xi+1

si+1 = xi

i = 0

Y

si = xi

si+1 = xi+1

N

Read n

I = n

Print sorted list si

Y

i = i + 1

N
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Table 1    Binary Search 

  Number of items    Number of comparisons  

   n     p    =    log 10 (n)/log 10 (2)  

  1    0.00  
  2    1.00  
  3    1.58  
  4    2.00  
  5    2.32  
  6    2.58  
  7    2.81  
  8    3.00  
  9    3.17  
  10    3.32  

Figure 5     Number of comparisons p versus number of items n in binary search.  
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p = log2 n

Computer Architecture 

Problem 10
 A control line with a width of 4   bits can control how many microprocessor 
operations?

Answer:  2 4     =    16 operations (e.g., input, process, output). 

  Problem 11  

 A computer that has a single word size of 16   bits has how many bits in a double word? 

Answer:  32   bits.  
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Digital Logic 

Transistor–Transistor Logic 

 Any voltage between  + 2 and  + 5 is considered to be binary 1; voltages outside this 
range are considered binary 0. 

  Problem 12  

Problem:  What binary value does 4   V in  transistor – transistor logic  ( TTL ) 
represent?

Solution:  As shown in Table  2 , the value    =    1.    

Memory Characteristics 

Problem 13
 A 64K byte RAM can store how many bytes? 

Answer:  64    ×    2 10     =    65,536   bytes, where K    =    2 10     =    1,024. 

  Problem 14  

 A 65,536 byte RAM can store how many bits? 

Answer:  65,536    ×    8   bits per byte    =    524,288   bits.  

Minterms

 A minterm is a  product  term of Boolean variables, such as   AB C D. Adjacent min-
terms in Table  3  are separated by one bit, for example,   AB C D and   AB C D. This 
formatting method provides for combining minterms into the minimum sum of 
products Boolean function (see below).   

  Problem 15  

 Given the terms A, B, C, and D in Table  3 , what is the minterm m 5     =    0101 2 ? 
Solution:  Table  3  shows the required minterm    =      AB C D. Note that inverted 

Boolean variables represent binary 0 (e.g.,   A = 0) and noninverted Boolean variables 
represent binary 1 (e.g., A    =    1).  

Table 2    TTL Logic Voltage versus Binary Value 

   Voltage     Binary value  

+ 5    1  
+4      1
+ 3    1  
+ 2    1  
+ 1    0  
+ 0.8    0  

  0    0  
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Sum of Products and Product of Sums 

 A  sum of products  is formed by  summing  the  product terms  obtained wherever there 
is a 1  for the function F(A, B, C), as illustrated in Table  4 . The product terms are 
called minterms . A  product of sums  is formed by fi nding the  product of sums terms
obtained wherever there is a 0  for the function F(A, B, C), as illustrated in Table  4 . 
The sum terms are called maxterms . Note that  positive logic  is used for Sum of 
Products (e.g., A    =    1 and   A = 0) (minterms), and negative logic  is used for Product 
of Sums (e.g., A    =    0 and   A = 1) (maxterms). Also note that when there are only 
single terms in the expressions, as in Table  4 , the sum of products  in each cell  is 
simply a single product and the product of sums in each cell  is simply a single sum.   

  Problem 16  

Given:  Table  4  values of A, B, and C. 

Problem:  What is the sum of products (minterms) and product of sums (max-
terms) in Table  4 ? 

Solution:  Form the sum of products and the product of sums, according to the 
relationships of the terms in Table  4 .  

Table 4    Sum of Products and Product of Sums 

   A     B     C  
   Minterms: F(A,B,C), Sum 
of Products, positive logic

   Maxterms: F (A,B,C), Product 
of Sums, negative logic

  0    0    0  A B C = 1   A    +    B    +    C    =    0  
  0    0    1  ABC = 1 A B C+ + = 0
  0    1    0  A B C = 1       A B C+ + = 0
  0    1    1  A BC = 1 A B C+ + = 0
  1    0    0  A B C = 1 A B C+ + = 0
  1    0    1  A B C = 1 A B C+ + = 0
  1    1    0  AB C = 1      A B C+ + = 0
  1    1    1    ABC    =    1  A B C+ + = 0

Table 3    Minterm Illustration 

        D = =0 0   D    =    1  
  000  ABC         

  001  A B C         

  011  A BC         
  010  AB C A B C D   Required minterm:   AB C D
  110  AB C         
  111    ABC          
  101  A B C         
  100  A B C         
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Karnaugh Map 

 The expressions for the  sum of products  and  product of sums  can be minimized by 
creating a Karnaugh map that will capture both types of digital logic in one table 
and show the relationship between the two. That is, the Product of Sums, using 
positive logic , is equal to the Sum of Products, using  negative logic . 

  Problem 17  

 Using the following example, demonstrate the above relationships in Table  5 .   
 Minterms:   F A B C ABC ABC m m BC A A BC( , , ) ( )= + = + = + =3 7  (positive 

logic)
 Maxterms: 

   
F A B C A B C A B C A B C A B C A B C A B C

M M M

( , , ) ( )( )( )( )( )( )= + + + + + + + + + + + +
= 0 1 2MM M M negative logic BC4 5 6 ( ) =

.

   Minterms Sum of Products    =    BC 
 Maxterms Product of Sums    =    Product of Sums    =    BC  

Logic Functions 

 Logic functions are very useful for designing digital circuits. The truth table in Table 
 6  gives the outputs of each function, based on the inputs.   

 Negative OR: NOR:   A B+
 Exclusive OR: XOR:   A B A B+
 Invert XOR to obtain Exclusive NOR 

Table 6    Truth Table for NOR, XOR and XNOR 

   A     B     NOR:   A B+      XOR:   A B A B+      XNOR:   AB A B+

  0    0    1    0    1  
  0    1    0    1    0  
  1    0    0    1    0  
  1    1    0    0    1  

Table 5    Karnaugh Map of Sum of Products and Product of Sums 

BC

A 00 01 11 10

0 M0 = 0 M1 = 0 m3 = 1 M2 = 0

1 M4 = 0 M5 = 0 m7 = 1 M6 = 0

C B BC C
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 XNOR:  
A B A B A B A B A B A B A A AB A B B B

AB A B AB

+ = = + + = + + +

= + + + =

( )( ) ( )( )

0 0 ++ A B

Problem 18

 Using Table  7 , and  positive voltage logic , what are the binary values for the XOR 
function, F(A, B) in Table  7 ?   

Solution:  Convert  − 5   V to binary 0 and 0   V to binary 1 in Table  7 . This opera-
tion shows the F(A, B)    =    XOR, based on logic rules in Table  6 . Note that 
for XOR, F(A, B)    =    1 when either A or B    =    1, but not both    =    0 or    =    1. 

  Problem 19  

 If  negative voltage logic  is used in the truth table, as shown in Table  8 , what func-
tion is produced for F(A, B)?   

Solution:  Convert  − 5   V to binary 1 and 0   V to binary 0 in Table  8 . Referring 
to Table  8 , and comparing it with the logic rules in Table  6 , it is seen that 
the XNOR function is produced. Note that the Table  8  result is the inverse 
of the Table  7  result (XNOR is inverse of NOR):

    
A B A B AB AB A B A B A A AB A B B B

AB A B 0 AB A

+ = = + + = + + +

= + + + = +

( )( ) ( )( )

0   B

Logic Network Design 

De Morgan ’ s theorem  (  A B A B+ =  and   AB A B= + ) is used to simplify complex 
logic equations and the resultant digital logic. The theorem is used to simplify 

Table 7    Truth Table Using Positive Voltage Logic (F(A, B)    =    XOR)) 

   A     B       F A B : A B A B( , ) +

– 5   V (0)     – 5   V(0)    (0)(1)    +    (1)(0)    =    0:  − 5   V (0)  
– 5   V(0)    0   V (1)    (0)(0)    +    (1)(1)    =    1: 0   V (1)  
  0   V (1)     – 5   V(0)    (1)(1)    +    (0)(0)    =    1: 1   V (1)  
  0   V (1)    0   V (1)    (1)(0)    +    (0)(1)    =    0:  − 5   V (0)  

Table 8    Truth Table Using Negative Voltage Logic (F(A, B)    =    XNOR) 

   A     B       F A B AB A B( , ) : +

– 5   V (1)     – 5   V(1)    (1)(1)    +    (0)(0)    =    1:  − 5   V (1)  
– 5   V(1)    0   V (0)    (1)(0)    +    (0)(1)    =    0: V (0)  
  0   V (0)     – 5   V (1)    (0)(1)    +    (1)(0)    =    0: 0   V (0)  
  0   V (0)    0   V (0)    (0)(0)    +    (1)(1)    =    1:  − 5   V (1)  
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relatively simple expressions, as contrasted with Karnaugh maps, which can minimize 
complex Boolean expressions. The application of this theorem is shown in Problem 20. 

  Problem 20  

 Suppose it is required to simplify   F AB AB= (( )( ))

Solution:

 Applying  De Morgan ’ s theorem :

    
( )( ) ( )( )

( ) ( )

AB AB A B A B A A A B A B B B A B A B

A B A B A B

= + + = + + + = +

+ = (( ) ( )( )A B A B A B AB= + + =

Problem 21

 Then, demonstrate equivalence between   (( )( ))AB AB  and AB in Table  9 .    

Karnaugh Maps 

Problem 22
 A Karnaugh map, showing  maxterms , appears in Table  10 . A  maxterm  appears for 
cells that contain 0: M 4     =    100, M 5     =    101, and M 6     =    110. Notice that  negative logic
is used for labeling maxterms (e.g., M 3  corresponds to   100 = A BC ).     

 For maxterms M 4 , M 5 , and M 6 , which maxterms are adjacent in the Karnaugh 
map?

Solution:  Referring to Table  10 , maxterms M 4  and M 5  and M 4  and M 6  are adja-
cent (i.e., adjacent cells have a difference of 1   bit). M 4  and M 5  differ by 
C    =    0, 1. M 4  and M 6  differ by B    =    0, 1. 

Table 9    Truth Table to Demonstrate Equivalence between F and AB 

   A     B  AB        AB AB        F AB AB= (( )( ))    A B  

  0    0    1    1    0    0  
  0    1    1    1    0    0  
  1    0    1    1    0    0  
  1    1    0    0    1    1  

Table 10    Karnaugh Map of Maxterms 

BC

A 00 01 11 10

0

1 0 0 0

M4
M5 M6
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Table 12    Sum of Products and Product of Sums Karnaugh Map 

          Sum of Products    =      C A C B C A B+ = +( )

  Product of Sums    =      C A B( )+

AB

C 00 01 11 10

0 0 1 1 1

1 0 0 0 0

A + B C
—

C
—

B C
—

A
Maxterm Maxterm Minterm Minterm

Table 11    Sum of Products and Product of Sums Truth Table 

         AB  

  C    00    01    11    10  
  0  0 1      1      1
  1  0      0      0      0

   Sum of Products 
(Minterms)    =      C A B A B A B C A A B B A B C A B C A C B(( ) ( ) ( )) ((( ) ( ) ( ))) ( )+ + + + + = + + + + + = + = +

  Problem 23  

 Given the values of 0 and 1 in Table  11 , what is the  sum of products  value?   
Solution:  The  sum of products  is formed, using the terms A, B, and C, wherever 

1 s appear in the table, using  positive logic . These are the  minterms , bolded. 

  Problem 24  

 What digital logic is used to produce the  product of sums  in Table  11 ? 
Solution:  The  product of sums  is produced according to the cells that have  0 s 

in Table  11 . These are the maxterms, italicized, as shown in Table  11 , using 
negative logic . 

 Product of Sums (Maxterms)    =      ( )( )( )( )C A B C A B C A B C A B+ + + + + + + +

  Problem 25  

 In Table  12 , show the simplifi cation of both Sum of Products and Product of Sums, 
based on the values recorded in the truth table, Table 11.   

Solution:  See the Karnaugh map solution for simplifying Sum of Products and 
Product of Sums in Table  12 . 

 Thus the sum of products and product of sums are equal. 

( )C A B+ +
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Table 14    Karnaugh Map 

AB

C 00 01 11 10

0 1 1 1 1

1 X X 1

X: don’t care
C
— A

F A C= +

  Problem 26  

 Given the Karnaugh map in Table  13  that has 1s inserted, develop the Boolean 
expression F.   

Solution:  Use the minimum number of enclosures to encompass the 1s in Table 
 13 . This process yields the minimum expression for F. 

  Problem 27  

 In the Karnaugh map, shown in Table  14 , what is the minimum Boolean expression 
that can be developed?   

Solution:  The key to the solution is to use the “don’ t care (X) cells to maximum 
advantage. The meaning of  “ don ’ t care ”  cells is that the minimum Boolean 
expression that can be developed is not affected by the cells with Xs. In this 
problem, only one of the Xs is required to obtain the required coverage. 

  Problem 28  

 For the maxterm function   ∏( )M M M M1 3 4 7 , what is the logic that implements this 
function?

Solution:  Obtain maximum coverage by enclosing the minimum number of 0 
cells in the Karnaugh map of Table  15 , taking advantage of the don ’ t care 

Table 13    Karnaugh Map 

          F    =      C D A B C D C A B BD C A B+ + + +

AB

CD 00 01 11 10

00 1 1

01 1 1 1 1

11 1 1

10 1

C D
—

A
—

B
— C

—
D C

—
A
—

B BD C
—

A B
—
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Table 16    Truth Table 

    Inputs      Outputs  

  A    B    C    D    E    F  
  0    0    0    0    1    1  
  0    0    1    0    X    1  
  0    1    0    X    1    0  
  0    1    1    0    0    0  
  1    0    0    1    1    X  
  1    0    1    1    1    X  
  1    1    0    0    X    X  
  1    1    1    X    1    X  

Table 17    Karnaugh Map: D Output 

          Sum of Products:   D A B=
  Product of Sums:   D A B=

BC

A 00 01 11 10

0 0 0 0 D = X

1 D = 1 D = 1 D = X 0

A B
—

A B
—

Table 15    Karnaugh Map 

AB

C 00 01 11 10

0 M4 = 0

1 M1 = 0 M3 = 0 M7 = 0 X

C
—

A
—

 + B

F A C= +

term X. The  negative  logic product of sums solution is shown at the bottom 
of Table  15 .   

 For the truth table in Table  16  develop the Karnaugh map for the  outputs  D (Table 
 17 ), E (Table  18 ), and F (Table  19 ), taking into account the don ’ t care conditions 
(X), for both sum of products  and  product of sums . Then use the Karnaugh maps to 
write the Boolean expressions for the outputs. In addition, show the Veitch diagram 
in Table  20  for the  outputs  D, E, and. F. (A Veitch diagram shows the Boolean logic 
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Table 20    Veitch Diagram 

BC

00 01 11 10

B
— B

C
— C

C
—

0 A
—

D = 0 D = 0 D = 0 D = X

E = 1 E = X E = 0 E = 1

F = 1 F = 1 F = 0 F = 0

1 A D = 1 D = 1 D = X D = 0

E = 1 E = 1 E = 1 E = X

F = X F = X F = X F = X

Table 18    Karnaugh Map: E Output 

          Sum of Products:   E A C= +
  Product of Sums:   E A C= +

BC

A 00 01 11 10

0 E = 1 E = X 0 E = 1

1 E = 1 E = 1 E = 1 E = X

A + C
—

A C
—

Table 19    Karnaugh Map: F Output 

BC

A 00 01 11 10

0 F = 1 F = 1 F = 0 F = 0

1 F = X F = X F = X F = X

Sum of Products: F = B
—

Product of Sums: F = B
—

for the relationships between input  variables A, B, and C and  output  variables D, E, 
and F.)   

Solution:  Tables  17 – 19  show how the Karnaugh map is used to obtain the 
minimum Boolean expressions for the outputs  D, E, and F, using the 1 and 
X values for sum of products  (positive logic) and 0 and X values for  product 
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Figure 6     OR gate logic.  
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Figure 7     NAND gate logic.  
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Figure 8     NOR gate logic.  
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D A B A B= + =
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B

___

C

A
_______

__ ___

A C A C+ =

of sums  (negative logic) in Table  16 . We see in every case that  sum of prod-
ucts     =     product of sums .   

  Problem 29  

 For the  sum of products  Karnaugh maps in Tables  17 – 19 , develop the digital logic 
diagram.

Solution:  This digital logic is shown in Figures  6 – 8 , corresponding to Tables 
 17 – 19 , respectively, for implementing the  sum of products  (minterms) 
circuits.   

  Problem 30  

 Now develop the digital logic in Figures  6 – 8  to implement the  product of sums
(maxterms).

Solution:  The logic Figures  6 – 8  is used to implement the  product of sums  (max-
terms) circuit. The implementations are the same because  sum of prod-
ucts     =     product of sums .  
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Decoders

 A decoder generates 2 n   possible  outputs for n inputs, when enabled. 

  Problem 31  

Problem:  Considering the block diagram of the 4 - to - 16 decoder circuit shown 
in Figure  9 , develop a circuit using NAND gate logic to implement the 
outputs to the microprocessor ports.   

Solution:  Based on the design of the decoder block diagram shown in Figure  9 , 
the NAND gate logic for the outputs to the microprocessor ports is shown 
in Figure  9 . 

  Problem 32  

Problem:  Produce a 4 - to - 16 decoder, but only the outputs Y    =    1 in the truth 
table, Table 21, are required. Use a Karnaugh map in Table  22  to minimize 
the complexity of the circuit. 

Figure 9     Decoder circuits. I/O, input/output.  

select output

A7 A6 A5 A4 A3 A2 A1 A0

Address Lines

D C B A

2
4
 = 16 addresses

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

___

1G

___

2G

enables

active low outputs (output low when address low) 

to microprocessor I/O ports Decoder Block Diagram)

o

_________ ___ ___ ___ ___

DCBA D C B A= + + +

1

A7

A6

A5
A4

D
C
B
A

G1

G2

___

1G

___

2G

0

0

1

1

Decoder Selection of Microprocessor Ports
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Table 21    A 4 - to - 16 Decoder Truth Table 

    Address     Output  

  A 3     A 2     A 1     A 0     Y  
0      0      0      0     Y 0     =     1
  0    0    0    1    Y 1     =    0  
0      0      1      0     Y 2     =     1
  0    0    1    1    Y 3     =    0  
0      1      0      0     Y 4     =     1
  0    1    0    1    Y 5     =    0  
0      1      1      0     Y 6     =     1
  0    1    1    1    Y 7     =    0  
1      0      0      0     Y 8     =     1
  1    0    0    1    Y 9     =    0  
1      0      1      0     Y 10     =     1
  1    0    1    1    Y 11     =    1  
  1    1    0    0    Y 12     =    0  
1      1      0      1     Y 13     =     1
  1    1    1    0    Y 14     =    0  
1      1      1      1     Y 15     =     1

Table 22    Karnaugh Map of 4 - to - 16 Decoder 

  Proof of   Y Y Y Y A  A

A  A  A  A A  A  A  A A  A  A  A A  A3 2 1 0 3 2 1 0 3 2 1 0 3

0 2 4 6 3 0+ + + =

= + + + 22 1 0

3 2 0 1 1 3 2 0 1 1

3 2 0 3 2 0

 A  A

A  A  A A A A  A A  A A

A  A  A A  A  A

= + + +

= +

( ) ( )

== + =A  A  A A A  A3 0 2 2 3 0( )

A1A0

00 01 11 10

A3A2

00 Y0 = 1 Y2 = 1

01 Y4 = 1 Y6 = 1

11 Y13 = 1 Y15 = 1

10 Y8 = 1 Y10 = 1

—
A3

—
A0 A3

—
A2

—
A0 A3 A2 A0

—
A3

—
A0 A3

—
A2

—
A0

Y0 + Y2 + Y4 + Y6 = 
—
A3

—
A0 , Y13 + Y15 = A3A2A0, Y8 + Y10 = A3

—
A2

—
A0 , Y13 + Y15 = A3A1A0
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Solution:  Using Table  21 , where the bolded values correspond to Y    =    1 outputs, 
and the logic simplifi cation provided by the Karnaugh map in Table  22 , write 
the Boolean expressions for the combined, simplifi ed  outputs, and the  indi-
vidual outputs , as a function of the address bits, and produce the decoder 
circuit in Figure  10 .     

 Similar proofs could be developed for the other values of Y.  

Figure 10     A 4 - to - 16 decoder circuit.  
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Table 23    Quine – McCluskey Method for   F A B C A B C A B C A B C B C A A)= + + + = + +(

               Difference of 1      Difference of 1  

  Minterm    ABC    Minterms    Minterms    Minterms    prime implicant  

  0  A B C   000                      
  1  A B C   001    0,1    00 -               
  4  A B C   100    4,5    10 -     0,1,4,5     - 0 -   B
  5  A B C   101  

B C(A A) B C C B+ = + =( )

Quine–McCluskey Method 

 This method is an alternative to the Karnaugh map for minimizing a Boolean func-
tion. This method is used to represent a difference of 1 between two adjacent min-
terms, such as   A B C and   A B C, yielding   A B- -= 00 . The symbol  -  is placed where 
is a difference in minterm bit values, such as between 00 -  and 10 -  in Table  23 , yield-
ing  - 0 - . This process continues until the four minterms 0, 1, 4, 5and show a difference 
of 1 (00 -  compared with 10 - ), yielding a prime implicant ( - 0 - ), where a prime impli-
cant results from combining the maximum number of minterms, as in Table  23 .   

  Problem 33  

 Find the prime implicant for the function   F A B C A B C A B C A B C= + + + .

Solution:  Table  23  shows the prime implicant solution:   B

Synchronous Sequential Networks 

 A Synchronous Sequential Network has both fl ip - fl ops and memory. 
Reset– Set (RS) Flip - Flop
 The next states, Q(t    +    1) and   Q t( )+1 , are the following:

    Q t S R Q t and Q t S R Q t S R Q t S R Q t( ) ( ) ( ) ( ) ( )( ( )) ( )( ( ))+ = + + = + = = +1 1

 The states S    =    1 (set) and R    =    1 (reset) are not allowed simultaneously in an RS 
fl ip - fl op because this would constitute an indeterminate state. The RS fl ip - fl op is the 
building block for all other fl ip - fl ops (JK, D, and T) because these fl ip - fl ops can be 
derived from the RS fl ip fl op.  

JK Flip -Flop

 The next states, Q (t    +    1) and   Q t( )+1 , are the following:

    Q t J Q t K Q t( ) ( ) ( )+ = +1

    
Q t J Q t) K Q t J Q t K Q t J Q t K Q t

J

( ) ( ( ) ( ( ))( ( )) ( ( ))( ( ))

(

+ = + = = +

=

1

KK Q t KQ t+ +( )) ( )
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D Flip -Flop

 In the D fl ip - fl op, Q follows D: Q(t    +    1)    =    D,   Q t D( )+ =1

  Problem 34  

Given:  RS fl ip - fl op timing sequence in Figure  11 .   

 What is the set (S) sequence in Figure  11 ? 

Solution:  Based on the next states rules above, and assuming Q(t)    =    0, the 
sequence S    =    101, as shown in Figure  11 , where the set – reset sequence 
occurs on the falling edge of the clock pulse. 

  Problem 35  

 As shown in Figure 12, an RS fl ip - fl op will cycle through set and reset states based 
on the next states rules, input values, and the initial values of the fl ip - fl op. 

 Develop the expression for the next state Q(t    +    1) of the RS fl ip - fl op output. 

Solution:  The next state Q(t    +    1) is shown in Figure  12 .   

  Problem 36  

 Given the fl ip - fl op circuit in Figure  13 , develop the Boolean expressions for the 
inputs S 1 , R 1 , J 2 , R 2 , and D 3  as a function of the present states Q 1 , Q 2 , and Q 3  of 

Figure 12     RS fl ip - fl op states.  
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black: reset
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Figure 11     RS fl ip - fl op sequence.  
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Figure 13     Flip - fl op circuit and state transition diagram.  
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the fl ip - fl ops. Use these expressions to construct the state transition diagram in 
Figure  13 .   

Solution:  First construct the fl ip - fl op state table in Table  24 , identifying the 
fl ip - fl op  present state outputs  and  inputs . Then, using the Boolean expres-
sions previously developed for the RS, JK, and D fl ip - fl ops, identify the  next
fl ip - fl op output states . Finally, based on the state transitions (mapping of 
Present State of Flip - Flop Outputs to Next State of Flip - Flop Outputs), 
bolded in Table  24 , construct the state transition diagram in Figure  13 .   

  Problem 37  

 Based on the JK fl ip - fl op counter circuit diagram in Figure  14 , develop the state 
table, Table 25, and the state transition diagram for the circuit.   

Solution:  First, using the circuit diagram in Figure  14 , write the Boolean expres-
sions for the fl ip - fl op inputs and the current states of fl ip - fl op outputs; the 
fl ip - fl op state table in Table  25  is the result. Next, using the next state expres-
sion for the JK fl ip - fl op,   Q t J Q t K Q t( ) ( ) ( )+ = +1 , formulate the next state 
values in Table  25 , color coding the corresponding state transitions in Table 
 25  and Figure  14 . Last, using the present states of fl ip - fl op inputs and outputs, 
create the state transition diagram in Figure  14 .    

T Flip -Flop

 The T fl ip - fl op is a single - input version of the JK fl ip - fl op:   Q t J Q t K Q t( ) ( ) ( )+ = +1 ,
where T is analogous to J and   Tis analogous to   K, as demonstrated in the T fl ip - fl op 
next state Boolean expression below. This fl ip - fl op is typically used in the design of 
binary counters because counter operation requires complementation. The T fl ip - fl op 
output toggles with each clock pulse, if T    =    1, causing complementation of the input, 
as demonstrated in the following:

    Q t T Q t T Q t for T Q t Q t( ) ( ) ( ), , ( ) ( )+ = + = + =1 1 1

  Problem 38  

Given:  T - fl ip - fl op timing diagram in Figure  15 .   

 Design the circuit to implement the timing diagram sequence. 
Solution:  Based on the input, T, identify the values of the present states of fl ip -

fl op outputs in Table  26 . Then, using the T fl ip - fl op logic rules, compute the 
Boolean expressions for the next state fl ip - fl op outputs in Table  26 . Finally, 
apply the next states values to the design of the circuit in Figure  16 , noting 
that state changes occur on the rising edge of the T pulse in Figure  15 .      

Ripple Counter 

 The external clock is only connected to the clock input of the fi rst JK fl ip - fl op in 
Figure  17 . Therefore, the fi rst fl ip - fl op changes state at the falling edge of each clock 
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Figure 14     JK fl ip fl op counter diagrams.  
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pulse, but the other fl ip - fl ops change only when triggered at the clock input by the 
Q t( ) input from the preceding fl ip - fl op in Figure  17 . Because of the inherent propaga-
tion delay through a fl ip - fl op, the transition of the input clock pulse and the transition 
of the   Q t( ) output of each fl ip - fl op cannot occur at exactly the same time. Therefore, 
the fl ip - fl ops cannot be triggered simultaneously, thus producing an asynchronous 
operation, with the next stage JK fl ip - fl op output generated according to 
Q t J Q t K Q t( ) ( ) ( )+ = +1 , where J    =    1 and   K = 0 in Figure  17 . Thus,   Q t Q t( ) ( )+ =1 .   

  Problem 39  

 Design a ripple counter that will count from 0000 (decimal 0) to 1111 (decimal 15) 
and cycle back to 0000. 

Solution:  Figure  17  shows the logic design and timing sequence. Table  27  tabu-
lates the present and next fl ip - fl op ripple counter states, where the most 
signifi cant bit position is   Q t Q t33 1( ) ( )+ =  and the least signifi cant bit position 
is   Q t Q t00 1( ) ( )+ = .   



Ta
bl

e 
25

  
  JK

 F
lip

 - F
lo

p 
St

at
e 

Ta
bl

e 

    E
xt

er
na

l 
in

pu
ts

  
    Fl

ip
 - fl

 o
p 

in
pu

ts
  

    Pr
es

en
t 

st
at

es
 o

f 
fl i

p -
 fl o

p 
ou

tp
ut

s

  A
  

  B
  

  C
  

J
Q

t
Q

t
A

B
C

=
(

)
(

)  
   

 
K

B
A

=
  J B

     =
    Q

 C (
t)

  
  K

 B   
  =   

 Q
 A (

t)
J

Q
t

Q
t

C
A

B
=

(
)

(
)

  K
 C   

  =   
 Q

 B (
t)

  
  Q

 A (
t)

    =
    A

  
  Q

 B (
t)

    =
    B

  
  Q

 C (
t)

    =
    C

  

  0  
  0  

  0  
   0 

  
   1 

  
   0 

  
   0 

  
   1 

  
   0 

  
   0 

  
   0 

  
   0

  0  
  0  

  1  
   0 

  
   1 

  
   1 

  
   0 

  
   1 

  
   0 

  
   0 

  
   0 

  
   1

  0  
  1  

  0  
   1 

  
   0 

  
   0 

  
   0 

  
   0 

  
   1 

  
   0 

  
   1 

  
   0

  0  
  1  

  1  
   0 

  
   0 

  
   1 

  
   0 

  
   0 

  
   1 

  
   0 

  
   1 

  
   1

  1  
  0  

  0  
   0 

  
   1 

  
   0 

  
   1 

  
   0 

  
   0 

  
   1 

  
   0 

  
   0

  1  
  0  

  1  
   0 

  
   1 

  
   1 

  
   1  

  
   0 

  
   0 

  
   1 

  
   0 

  
   1

  1  
  1  

  0  
   1 

  
   0 

  
   0 

  
   1 

  
   0 

  
   1 

  
   1 

  
   1 

  
   0

  1  
  1  

  1  
   0 

  
   0 

  
   1 

  
   1 

  
   0 

  
   1 

  
   1 

  
   1 

  
   1

  N
ex

t 
st

at
es

 o
f 

fl i
p -

 fl o
p 

ou
tp

ut
s  

J
Q

(t
)

A
A

  
   

 
K

Q
(t

)
A

A
  

  Q
 A (

t  
  +   

 1)
  

   
 J
Q

(t
)

B
B

  
   

 
K

Q
(t

)
B

B
  

  Q
 B (

t  
  +   

 1)
  

   
 J
Q

(t
)

C
C

  
   

 
K

Q
(t

)
C

C
  

  Q
 C (

t  
  +   

 1)
  

  0  
  0  

   0 
  

  0  
  0  

   0 
  

  0  
  1  

   1
  0  

  0  
   0 

  
  1  

  0  
   1 

  
  0  

  1  
   1

  1  
  0  

   1 
  

  0  
  1  

   1 
  

  0  
  0  

   0
  0  

  0  
   0 

  
  0  

  1  
   1 

  
  0  

  0  
   0

  0  
  0  

   0 
  

  0  
  0  

   0 
  

  0  
  1  

   1
  0  

  0  
   0 

  
  1  

  0  
   1 

  
  0  

  1  
   1

  0  
  1  

   1 
  

  0  
  0  

   0 
  

  0  
  0  

   0
  0  

  1  
   1 

  
  0  

  0  
   0 

  
  0  

  0  
   0

529



530 Computer, Network, Software, and Hardware Engineering with Applications

Figure 15     T fl ip - fl op present state changes.  

Q
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 The design uses the next state relationship:   Q t J Q t K Q t Q t( ) ( ) ( ) ( )+ = + =1

  Problem 40  

Given:  Digital circuit in Figure  18 .   

 Produce the state transition diagram corresponding to this circuit. 
Solution:  First, using the Boolean expression for JK, D, and RS fl ip - fl ops, 

identify the relationships between Q 3 (t    +    1) and JK, between Q 2 (t    +    1) and 
D, and between Q 1 (t    +    1) and RS.

T Q tA( )+ T Q tB( )+ T Q tC( )+

Table 26    T Flip - Flop State Table 

   Input  
    Present states of 
fl ip - fl op outputs      Next states of fl ip - fl op outputs  

  T    Q A (t)    Q B (t)    Q C (t)  
Q t T Q tA A( ) ( )+ =1       Q t T Q tB B( ) ( )+ =1       Q t T Q tC C( ) ( )+ =1

  1    1    0    0    0    1    1  
  0    1    0    0    1    0    0  
  1    1    1    0    0    0    1  
  0    1    1    0    1    1    0  
  1    0    1    1    1    0    0  
  0    0    1    1    0    1    1  
  1    0    0    1    1    1    0  
  0    0    0    1    0    0    1  
  1    1    0    1    0    1    0  
  0    1    0    1    1    0    1  
  1    1    1    1    0    0    0  
  0    1    1    1    1    1    1  
  1    0    0    0    1    1    1  
  0    0    0    0    0    0    0  
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Figure 16     T fl ip - fl op logic diagram.  
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Figure 18     Digital circuit and state transition diagram.  
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 Document these relationships in the state table, Table 28, and identify the present 
state– next state transitions. Then, use the state transitions in Table  28  to design the 
state transition diagram in Figure  18 . For example, present state 000 leads to next 
state 001 in Table  28  and Figure  18 .   

  Problem 41  

Given:  The circuit diagram of a JK fl ip - fl op counter is shown in Figure  19 . Note 
that this circuit does not count sequentially. It could be used, for example, 
in elevator control, where the states would represent the sequence of fl oors 
traversed by the elevator. Provide the state transition and timing diagrams 
corresponding to the circuit design.   

Solution:  Using the JK fl ip - fl op Boolean expression rules below, solve for the 
Boolean expressions of fl ip - fl op inputs, present fl ip - fl op output states, and 
next fl ip - fl op output states in Table  29 . Use the results in Table  29  to design 
the state transition and timing diagrams in Figure  19 .

    K J Q t1 3 3= ( )
    J Q t1 3= ( )

    K2 1=
    J2 1=
    K3 1=
    J Q t Q t3 1 2= ( ) ( )

    Q t J Q t K Q t Q t Q t J Q t Q t1 1 1 1 1 3 1 3 3 11( ) ( ) ( ) ( ) ( ) ( ) ( )+ = + = +

    Q t J Q t K Q t Q t Q t Q t2 2 2 2 2 2 2 21 1 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )+ = + = + =

    Q t J Q t K Q t Q t Q t Q t Q t Q t Q t3 3 3 3 3 1 2 3 3 1 21 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (+ = + = + = )) ( )Q t3    

( Q t Q t Q t )1 2 3( ( ) ( )) ( )+ (Q t Q t )(Q (t))2 3 1( ) ( )

Table 28    Flip - Flop State Table 

    Present fl ip - fl op 
output states      Next fl ip - fl op output states  

  Q 3 (t)    Q 2 (t)    Q 1 (t)  
Q t Q (t)Q (t)33 21( )+ =

Q t Q t Q t2 1 21( ) ( ) ( )+ =
Q t Q t1 21( ) ( )+ = +

  0    0    0    0    0    1  
  0    0    1    0    1    1  
  0    1    0    1    0    0  
  0    1    1    1    0    1  
  1    0    0    1    0    1  
  1    0    1    1    1    1  
  1    1    0    1    0    0  
  1    1    1    0    0    0  
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Problem 42
 Design a D fl ip - fl op circuit that has the input sequences X shown in Figure  20 , where 
the clock pulse CLK triggers each of the inputs X to enter the circuit.   

Solution:  First, the fl ip - fl op state table, Table 30, is developed, where the D 
fl ip - fl op next states follow the X inputs. Second, Karnaugh maps are used in 
Tables  31  and  32  in an  attempt  to simplify the expressions for A 0  and A 1 , 
respectively. It can be seen that no simplifi cation results from employing the 
Karnaugh map. A Karnaugh map is not necessary for A 2  because there is 

Figure 19     Counter circuit design, state transition diagram, and timing diagram.  
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only one cell in Table  30  that has the value  “ 1 ” . This is the cell corresponding 
to   A X X X X2 0 1 2 3= . Figure  20  shows the circuit design and the relevant 
Boolean expressions.    

    Problem 43  

 Design a circuit to control shaft 90 °  rotations, using two inputs, R and C, and clock 
pulse. The inputs and clock pulse are applied to D fl ip - fl ops that cause state changes, 
each state change representing a 90 °  rotation, as shown in Figure  21 .   

Solution:  First, depict the shaft rotation positions and corresponding state transi-
tions in Figure  21 . Second, in Table  33 , document the inputs and present 
states that cause the next state transitions. Finally, using Table  33 , design the 
digital logic circuit in Figure  21 .   

Figure 20     Digital fl ip - fl op circuit.  
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Table 30    Flip - Flop States Table 

    Inputs      Outputs      Flip - fl op next states  

  X 0     X 1     X 2     X 3
A X X0 0 1=

  A 1     =    X 0 X 1 A X X X X2 0 1 2= 3

  Q 0 (t    +    1)    
=    X 0

  Q 1 (t    +    1)    
=    X 1

  Q 2 (t    +    1)    
=    X 2

  Q 3 (t    +    1)  
=    X 3

  1    0    0    0    1    0    0    1    0    0    0  
  1    1    0    0    1    1    0    1    1    0    0  
  1    1    1    0    1    1    1    1    1    1    0  
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Table 31    Karnaugh Map for   A X X X X0 0 1= +2 3

X0X1 X2X3

00 00 01 11 10

01

11 1 1

10 1

—
X2

—
X3 X0 X1

Table 32    Karnaugh Map for A 1     =    X 0 X 1

X0X1 X2X3

00 00 01 11 10

01

11 1 1

10

X0X1

  Problem 44  

 Given the fl ow chart in Figure  22 , design the corresponding digital circuit.   
Solution:  Figure  22  shows the digital circuit design.    

CHAPTER 9 (PROGRAMMING LANGUAGES) AND 
CHAPTER 10 (OPERATING SYSTEMS) 

Programming Languages 

Problem 45
Given:  J    =    15, K    =    4, L    =    9, and M    =    19 

Problem:  What is the value of  logical  variable X in (a) and (b) below? 

Solution:

(a)     X    =    J. LT .L. OR K.GE. (M    –    J): (15    <    9)  OR 4     ≥     (19     –     15) , X    =    true 
because 4     ≥     (19     –     15)

(b)     X    =    J. GT. L. OR K. LT. (M    –    J): ( 15     >     9) OR  4    <    (19    –    15), X    =    true 
because 15     >     9

Problem 46
 What is the value of Q in the program below? 

Solution:  Based on the evaluation of the IF statement, goto line 10: Q    =    10 
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Figure 21     Shaft rotation diagrams.  
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Table 33    Shaft Rotation State Transitions 

   Input     Shaft rotation     Present state     Next state  

R C = 00   90 ° S (t) R C0 =       S t R CS (t)1 0( )+ =1
R C = 01   180 ° S (t) R C1 =       S t R CS (t)2 1( )+ =1
R C 10=   270 ° S (t) R C2 =   S 3 (t)    =    RCS 0 (t)  
  RC    =    11    360 °     S 3 (t)    =    RC  S t R CS (t)0 3( )+ =1
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Figure 22     Flow chart and digital circuit.  
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  R  =  18  

  S  =  6  

  T  =  2  

  Q  =  R/(S T )  –  T, Q  =  (18/(6 2 ))  –  2  =   -  1.5  

  IF Q (10, 20, 30) // IF Q    <    0, GOTO 10; IF Q  =  0, GOTO 20; IF Q    >    0, GOTO 30  

  // Q    <    0, therefore, goto 10  

  10 Q  =  10 // Q changed from  –  1.5 to 10    

  Problem 47  

 Develop a fl ow chart and write the corresponding program to multiply 10 numbers, 
where the product is not to exceed 5. 

Solution:  The fl ow chart and program are shown in Figure  23 .    

Floating-Point Format 

 n    =    (f) * (b) e , where  n     =    non - fl oating - point number, f    =    fraction, b    =    base    =    2 for 
binary computations, and e    =    exponent. 

  Problem 48  

 Find the values of f, b, and e corresponding to the number n    =    4104. 

Solution:  First, for ease of number handling, convert to base 16 by successively 
dividing by 16 and recording the remainders in reverse order, and then to 
base 2 by recording the base 16 numbers in base 2 format, as follows:

Figure 23     Flow chart and program for multiplying numbers.  

j = 0

P(j) = N(1) P(j): product, N(1): first number

j =10 end

>

j = j + 1

P(j) = P(j) * N (j)
Multiply numbers

Test for multiplying 10 numbers

P(j)=5

=

= >

j = 0, P(j) = N(j)

While (j=10)
{

j = j + 1

P(j) =P(j) * N(j)

If (P(j)=5
{

else

{

end

}

}

end

}
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    4104 1008 0001 0000 0000 100010 16 2= =

 Second, fi nd the exponent and fraction that will result in a normalized mantissa (i.e., 
the most signifi cant bit is a one). 

 Third, using n    =    (f) * (b) e , where n    =    the number 4104 10 , f    =    normalized man-
tissa, b    =    base 2, and e    =    exponent, fi nd f and e that will result in a normalized 
mantissa:

    
f / /e e e e e= = = + = = + =− − −( ) ( ) ( )) ( ) (( ) ( ) ( )4104 2 2 4096 2 8 2 2 2 212 3 12 3 3 ))( )

( )( )( )

2 1

2 513

9

3

+
= −e

 The value of f that satisfi es this relationship is  + 0.5010 10 , by trial and error, and the 
corresponding value of e is + 13 10 : (2 (3– 13) )(513)    =    0.0009766 * 513    =    0.5010 10  The 
trial - and - error process involves trying values of e that will result in the fi rst value 
of (2 (3– e) ) that will generate a normalized mantissa when multiplied by 513. 

 These values are converted to binary by dividing 0.5010 10  successively by 2 and 
recording the remainders. 

 Proof of correct conversion: 0.5010 10  * 2 13     =    0.5010 10  * 8192    =    4104.  

C++ Programming 

Problem 49
 Write a function in C ++  to compute   sinθ ω= t

Solution:

 void computesine (double); // function prototype 

 main() 

 { 

 double computesine (double w, double t, double 
angle); // function call 

 { 

 double result, w, t, angle;// function definition 

 angle  =  w  *  t;// compute angle 

 result  =  sin (pow (angle, .5));// compute sine of 
square root of angle 

 return result;// return the result to caller 

 }// match with function call 

 return 0;// return to the operating system 

 } // executable code ends here, match with main  
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Problem 50

 Write a function in C ++  to convert inches to feet 
Solution:

 void convert (double); // function prototype 

 main() 

 { 

 double convert (double inches, double feet); // 
function call 

 { 

 double inches, feet;// function definition 

 feet  =  inches/ 12;// convert inches to feet 

 return feet;// return the result to caller 

 }// match with function call 

 return 0;// return to the operating system 

 } // executable code ends here, match with main  

Problem 51

 Write a function in C ++  to sum numbers in a list that are greater than or equal 
to 10. 

Solution:  See the fl owchart in Figure  24  and the C ++  code below for implemen-
tation of fl owchart logic.   

 void sum (double);// function prototype 

 main () 

 { 

 double sum (double X (i), double S (i), int n, int 
i) //function call, define i th  number X (i), number 
sum S (i), number of numbers n, number index i 

 { 

 double result, X (i), S (i); // function definition 

 int n, i; 

 S (i)  =  0;// initialize sum 

 While (i    <     =  n) 

 { 

 cout  <  <   ″ input number  =  ″ ;// tell user to input i th  
number 

 cin  >  >  x (i); 
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 if (X (i)    ≥    10) 

 { 

 result  =  S (i)  +  X (i); // sum number, if number    ≥    10 

 }// match with  ″ if ″  

 i  =  i  +  1; 

 }/ /match with function call 

 return result; // return the result to caller 

Figure 24     Sum numbers fl owchart.  
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 return 0;// return to the operating system 

 } // executable code ends here, match with main  

Problem 52

 Write a C ++  function to fi nd the minimum of three integers A, B, and C. 

Solution:  The implementation of the logic is the following and Figure  25  shows 
the fl owchart of the logic:   

 void compare (int);// function prototype 

 main () 

Figure 25     Flowchart of minimum of three numbers logic.  
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 { 

 int compare (int A, int B, int C) //function call, 
define integers A, B, and C 

 { 

 int result, A, B, C; // function definition 

 cout  <  <   ″ input A  =  ″ ;// tell user to input integer A 

 cin  >  >  A; 

 cout  <  <   ″ input B  =  ″ ;// tell user to input integer B 

 cin  >  >  B; 

 cout  <  <   ″ input C  =   ″ ;// tell user to input integer C 

 cin  >  >  C; 

 if ((A    <    B)  &  &  (A    <    C) 

 { 

 result  =  A;//integer A is smallest 

  } 

  if ((B    <    A)  &  &  (B    <    C) 

 { 

 result  =  B;//integer B is smallest 

  } 

  else 

 { 

 result  =  C;//integer B is smallest 

 } 

 }/ /match with function call 

 return result; // return the result to caller 

 return 0;// return to the operating system 

 } // executable code ends here, match with main  

Problem 53

 Write a C ++  function to compute spring force F, given inputs of spring constant K 
and distance X, 

Solution:  The function is the following: 

 void springforce (double);// function prototype 

 main () 

 { 
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 double springforce (double F, double K, double X) //
function call, define Force, F, Spring Constant, K, 
and Distance, X 

 { 

 double F, K, X; // function definition 

 cout  <  <   ″ input K  =  ″ ;// tell user to input Spring 
Constant, K, 

 cin  >  >  K; 

 cout  <  <   ″ input X  =  ″ ;// tell user to input Distance, X 

 cin  >  >  X; 

 F  =  K * X;//compute spring force 

 }/ /match with function call 

 return F; // return the result to caller 

 return 0;// return to the operating system 

 } // executable code ends here, match with main  

  Problem 54  

 If a    =    10, what is the value of the C ++  operation  ++ a? 

Solution:  The operator  “++”  means incrimination. Therefore,  ++ 10    =    11.   

CHAPTER 4: ANALOG AND DIGITAL COMPUTER 
INTERACTIONS

Elements and Integration 

 Analog computer elements are shown in Figure  26 .   

  Problem 55  

 Using the elements in Figure  26 , mechanize the integration of the differential equa-
tions shown below. 

Solution:  See differential equations implementations in Figure  26 .  

Simulation

Time Scaling 

 Speed up or slow down a simulation compared with real time. Scale speed up    =    ht, 
slow down    =    t/h, where t is time and h is scale factor. 

  Problem 56  

 Using the differential equation below, slow it down. 
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Figure 26     Analog computer elements and integration examples.  
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Solution:  See below for how the scale factor slows down the simulation and the 
analog computer implementation in Figure  27 .
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Magnitude Scaling 

 Because the operational amplifi ers in an analog computer have a limited voltage 
range, it may be necessary to use magnitude scaling of differential equations. Let 
the expected maximum value of a term in the differential equation be M, and the 
desired maximum value, due to the limited voltage range, be N. Then terms are 
multiplied by (N/M). 

  Problem 57  

 Scale the original differential equation below and show the analog computer imple-
mentation in Figure  28 .   

Solution:  See the magnitude scaling below and the analog computer implemen-
tation in Figure  28 .

Figure 27     Applying slow - down scale factor.  
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Network of Analog Computer Components 

 Simultaneous differential equations can be solved using a network of analog com-
puter components. 

  Problem 58  

 Using an analog computer network, solve the following equations:

    

− = − −

− = −

dx

dt
x x

dx

dt
x 0.4x

1
1

1
2

2

2
2 1

0 8 0 7 0 3. . .

Solution:  The mechanization of the equations in the analog computer network 
is shown in Figure  29 .   

  Problem 59  

 Draw the analog computer circuit for the following equation:

    V V V dt0 1 24= − +∫ ( )

Solution:  The equation implementation is shown in Figure  30 .   

Figure 28     Magnitude scaling.  
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Figure 29     Simultaneous differential equations.  
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Figure 32     Spring mass circuit.  
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  Problem 60  

 Draw the analog computer circuit for the following standard equation format:
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Solution:  the equation implementation is shown in Figure  31 .   

  Problem 61  

Given:  The mechanical spring system shown in Figure  32 .   
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 Develop the simulation diagram and, from this diagram, formulate the differ-
ential equations. Last, diagram the analog computer implementation. 

Solution:  Figure  32  shows the simulation diagram. Then, the differential equa-
tion is developed as follows, using a for acceleration, and noting that dashpot 
force is proportional to force F velocity v and spring force is proportional to 
the spring coeffi cients K 1  and K 2 .

    

F ma Cv  K x K x basic equation

F m
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dt
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dt
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Digital - to - Analog Conversion     (DAC)
 In a digital - to - analog converter, the bits — from the most signifi cant bit to the 

least signifi cant bit — are implemented with digital logic gates. The digital bits are 
weighted according to their contribution to the output voltage V out . Depending on 
which bits are set to 1 and which are set to 0, the output voltage, V out , will be a 
stepped value between 0   V and  Vref  minus the value of the minimum step  volts. For 
a digital value VAL of N bits, V out     =    ((V ref /2 N ) * VAL), where for a typical CMOS 
logic voltage, V ref     =    3.3   V. 

  Problem 62  

 What is the value of V out  for a Minimum VAL output of 1   bit? 

Solution:

    V  V/ bits *  bit  Vout = =( . ) .3 3 2 1 0 105

Problem 63
 What is the value of V out  for a Maximum VAL output of 31   bits? 
Solution:

    V  V/ bits *  bits  Vout = =( . ) .3 3 2 31 3 25

Problem 64
Problem:  The  voltage per step  of a digital - to - analog converter, with a voltage 

range from − 5 to  + 5   volts, for a 4 - bit output is: 
Solution:  (10   V/2 4  steps)    =    0.625   V per step  

Analog-to-Digital (A/D) Conversion 

Sample-and-Hold Circuit 

 A sample - and - hold circuit is used to avoid having the input change while analog to 
digital conversion is taking place.  
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Conversion Process 

 The capacitor C in Figure  33  assists in the conversion of analog input to digital 
output by the duration of its charge. This is accomplished by measuring the time it 
takes to charge and discharge the capacitor into the resistor R. The larger the value 
of C, for a given value of R, the longer it takes to charge and discharge the capacitor, 
and, hence, the slower the rise and fall in voltage, respectively. Conversely, the 
smaller the value of C, the less time it takes to charge and discharge the capacitor, 
and, hence, the faster the rise and fall in voltage, respectively. The product CR is 
known as the time constant of a circuit.   

 The converter integrates the constant, positive analog input signal V in  in Figure 
 33  in the fi rst phase, t 1 , t 2 , and integrates the constant, negative reference voltage 
Vref  in the second phase, t 2 , t 3 . At the end of phase 1, C has been charged by V in  to 
generate the voltage V across the RC circuit, given by:

    V
CR

V dtin
t

t

= ∫1

1

2

.

 Similarly, at the end of phase 2, C has been discharged by V ref  to generate the output 
voltage V across the RC circuit, given by:

    V
CR

V dtref
t

t

= ∫1

2

3

.

 The voltage rise in phase 1 is equal to the voltage fall in phase 2. Thus, we obtain 
the following:
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Figure 33     Analog - to - digital converter.  
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 Since V in  and V ref  are constants, we obtain:

    V
V

CR
t t

V

CR
t tin ref= − = −( ) ( ).2 1 3 2

 The time period of charge in phase 1 is determined by the clock in Figure  33  that 
produces M pulses with a pulse period    =    T. Thus, t 2     =    MT. Now, if N is the number 
of clock pulses in phase 2, t 3     =    NT. Therefore, assuming t 1     =    0, the resultant com-
putation is:

    
V

CR
MT

V

CR
NT MT

V

V

N

M
.in ref in

ref

= − = −⎛
⎝⎜

⎞
⎠⎟( ), 1

 The accuracy of conversion in phase 2    =    (output voltage V divided by number of 
binary bits B produced in the conversion), as governed by the number of clock pulses 
N, during the allowable conversion time. Thus, accuracy    =    V/B. B is chosen to be 
the binary number less than N during the allowable conversion time. This value of 
B is equal to the maximum binary counter count in Figure  33 . 

  Problem 65  

Given:  In Figure  33 , the clock rate in phase 2    =    1/(t 3     −    t 2 )    =    3   MHz, reference 
voltage, V ref     =    5   V, and output voltage V    =    10   V. The conversion process 
must be completed in less than 1   ms. 

 What is the value of CR? Is it possible to complete the conversion in less than 
1   ms? 

Solution:

    
V V CR t t CR V V t t (5/10)(1/(3*10 )) ms

0

ref 3 2 ref 3 2
3= − = − =

=
( / )( ), / ( )

..166*10 ms 0.166 seconds3− = .

 Yes, it is possible to complete the conversion in less than 1   ms. 

  Problem 66  

 What is the accuracy of the A/D converter in Figure  33 , with a clock rate of 3   MHz, 
if the conversion must be completed in less than 1   ms? 

Solution:

 In 1   ms, with a clock rate of 3   MHz, there are N    =    (3,000,000 pulses per 
second * 0.001 seconds    =    3,000 pulses). The closest binary count less than 3,000 is 
2048    =    2 11 . Thus, an 11 - bit counter would be specifi ed in Figure  33 . Then, the accu-
racy for a 10   V output    =    10/2048    =    0.00488   V per count.      
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Reliable Messaging Technology of Web 

Services 14, 2
Remaining Failures 11, 1; 13, 12
Remaining Failures Analysis Results 8, 20
Remaining Failures Criterion 11, 8
Remaining Failures Is a Decreasing 

Function 13, 12
Remaining Failures Requirement 11, 9
Remaining Failures Risk 11, 8
Remaining Faults and Failures 8, 5
Remove Battery 15, 5; 16, 6
Remove Faults 14, 11
Repeat the Action 15, 5; 16, 6
Repeat the Execution of an Equation 17, 3

Repeating the Action Is Often Suffi cient to 
Restore a Correct Device Operation 15,
6; 16, 6

Reported Failure Data 15, 3
Repository of Data 14, 1
Repository of Services 14, 1
Represent Failure Severity in the 

Computation of Expected Number of 
Failed Modules 16, 9

Represent the Generic View of the 
Application Design 4, 25

Representative Failure Data 14, 5
Representative of the Web Environment 14,

5
Requests for Web Pages 7, 9
Required Changes Are Localized 17, 4
Required Failure Rate Reduction 12, 16
Required Reliability 11, 2; 14, 11
Required Reliability at a Reasonable Cost 

12, 16
Required Reliability Is Satisfi ed for Only a 

Limited Range of Operating Time 14,
18

Required Response Time 4, 19
Required Sampling Frequency Is the 

Desired Signal Frequency Emanating 
from the Input Analog Voltage 3, 14

Requirement Implementation 17, 5
Requirement Management Risks 11, 2
Requirements 11, 4
Requirements for an Architecture to 

Support Context-Awareness 15, 12
Requirements such as Reliability 

Specifi cations and the Means for Testing 
Reliability, Are Largely Absent from 
Current Standards 4, 1

Residual Failures 11, 3
Residual Faults 11, 2
Residual Problems 13, 12
Resolution 3, 10
Resolution Error Is Determined by the 

Smallest Change That Can Be Detected 
at the Sensor Output 3, 13

Resource Usage and Performance Risks 11,
2

Resource Utilization Is Increased 15, 14
Resources Needed for the Object to 

Function 17, 2
Response Time 10, 6
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Response Time: Difference in Time 
Between Completion of Request and 
Initiation of Request 4, 3

Response Time Computation and Display 
4, 16

Response Time Error Control Function 4,
16

Response Time Difference 4, 19
Response Time of Service Request 4, 19
Restrictions on Limited Processing Power 

15, 12
Result Is Stored (Behavior) 17, 8
Results Based on Failure Rate Analysis 16,

12
Results of Digital Computation (Analog to 

Digital Voltage Conversion) 3, 10
Results That the Equations Must Achieve 

17, 20
Resume the Interaction with the User When 

the Migration to a Different Node Has 
Completed 16, 24

Retrained to Deal with Minor Change 13,
1

Return Address of the Instruction 17, 2
Reusability Characterization 13
Revising Probabilities of Remaining 

Failures Based on Fault And Failure 
Correction 8, 15

Revising Reliabilities Based on Fault And 
Failure Correction 8, 18

Rigorous Reliability Testing 14, 1
Risk Analysis 13, 1
Risk-Based Reliability Prediction 11, 4
Risk of Carrying Viruses and Other 

Malware 15, 1
Risk Control 11, 9
Risk Control and Mitigation 11, 9
Risk Criterion Metric 13, 15
Risk Evaluation 11, 1
Risk Function 13, 15
Risk Goal 11, 5
Risk of Mission Failure 11, 3
Risk of Power Loss 15, 2
Risk Trends Positive 13, 13
Risks of Operating Mobile Devices 15, 1
Risky Requirements 11, 4
Roadmap for Improving Real-Time System 

Design 4, 25
Robotic Web Services 14, 2

Robustness 15, 13
Routes Are Subject to Frequent Breakage 

15, 3
Rule of Considering Real-World 

Operational Details during Abstract 
Design 4, 3

R-S Flip Flop 1, 42
Run Realistic Tests That Stress the 

Hardware and Software to Fail 16, 14

S/N Can Be Used to Rank the Reliability of 
Mobile Device Software 16, 10

S/N Can Be Used to Prioritize Software 
Modules for Testing 16, 13

S/N Infl uences Test Effectiveness 16, 1
S/N Limit 16, 16
S/N Ratio Is Computed and Test Software 

is Used to Compare the Required Ratio 
with the Ratio Actually Generated in the 
Network 7, 14

Safe Mission 11, 3
Safer, Lower Risk Alternative 13, 15
Safety Against Cost 11, 5
Safety of the Mission 11, 2
Sample Data 13, 1
Sample and Hold Circuit 3, 4
Sample and Hold Circuit Must Sample 

Input at a Rate at Least Twice the 
Frequency of the Input in Order to 
Produce the Desired Output 3, 14

Satisfy All the Functional Requirements and 
Timeliness Demands 4, 1

Satisfy Response Time Requirements 4,
25

Save Energy 15, 12
Schedule Test Time 13, 4
Scheduled Operating Times 12, 2
Scheduling Algorithms 10, 6
Scheduling Effi ciency 10, 7
Scheduling Policy 10, 11
Scheduling and Timing Risks 11, 2
Schneidewind Software Reliability Model 

11, 3; 13, 4
Secondary Storage Component 15, 15
Security 15, 1
Security Breach on the Device 15, 1
Select Personnel by Evaluating the Results 

for Accuracy, Reliability, and Quality of 
Design Documentation 17, 19
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Select Solution Routines That Have Good 
Convergence Properties for the Given 
Problem 17, 2

Self-Shutdown 16, 5
Self-Shutdown (Silent Failure) 15, 4
Self-Shutdown and Unstable Behavior Are 

Considered to Be High-Severity Failures 
16, 6

Self-Shutdown and Unstable Behavior Are 
High-Severity Failures 15, 6

Send Responses Back for the User 16, 3
Sense All Context Information 15, 13
Sensitivity Can Be Interpreted as Sensor 

Error 3, 12
Sensor Attached to Access Point Records 

the Range Between the Mobile Device 
and the Access Point 7, 14

Sensor Error Occurs When the Input Range 
Exceeds the Output Range 3, 13

Sensor Is a Device That Receives and 
Responds to a Signal 3, 12

Sensor’s Sensitivity Indicates How Much 
the Sensor’s Output Changes When the 
Measured Quantity Changes 3, 12

Separation of Application Concerns and 
Implementation 4, 2

Sequence Analysis 2, 10
Sequence Diagram Is an Interaction 

Diagram That Shows How Software 
Processes Operate with One Another and 
in What Order 17, 2

Sequence Diagrams Are Capable of 
Representing Sequential Interactions 
(e.g., Only a Single Elevator Floor 
Request at a Time) 17, 3

Sequence Diagrams Provide Both the 
Sequence of Model Operations on Data 
and the Sequence of Steps That 
Implement the Model Operations 17, 9

Sequence Diagrams Show the Sequence of 
Operations Between Objects and the 
Sequence of Program Steps That Are 
Required to Implement a Model 17, 9

Sequence Failure Rate 2, 11; 7, 5
Sequence of Fault and Failure Injection 7,

5
Sequence Input Rate 7, 9
Sequence of Interactions 14, 4
Sequence of Operations 12, 13

Sequence of Operations on the Network 6,
1

Sequence Probability 2, 10
Sequence Probability and Sequence 

Response Time Predictions and Analysis 
2, 10

Sequence of the Reliability Simulation 7, 5
Sequence Relationships 2, 10
Sequence Response Time 2, 10
Sequences Associated with Local Network 

Components 7, 6
Sequential Circuits 1, 39
Sequential System 12, 2
Series Component 12, 2
Series Confi guration 12, 3
Series-Parallel Confi guration 12, 5
Series System Reliability 12, 3
Server Component Is the First in Line for 

Reliability Improvement 14, 18
Server Consists of Multiple Single-

Threaded Processes, Each of Which 
Handles One Request at a Time 6, 2

Server-Side Problems 14, 16
Server Uses the Error Control Function to 

Increase the Clock Rate 4, 17
Service Performance 14
Service the Phone 15, 5; 16, 5
Service Requirements Impose Ordering on 

the Invocation of Operations 14, 3
Session and Presentation Layer Services 5,

7
Several Metrics of Real-Time System 

Performance Are Modeled and Evaluated 
4, 1

Severe Reliability Problem Will Prevail 
Short of 18 Months 16, 17

Severity Levels Corresponding to the 
Diffi culty of the Recovery Action(s) 15,
6; 16, 4

Severity Refl ects Both Failure Type and 
Recovery Type 16, 9

Shape Parameter 12, 15
Shape of the Reliability Function 12, 15
Shared Data Areas Are Protected, Reducing 

the Possibility of Unexpected 
Modifi cations 17, 4

Shared, Noisy, Highly Variable, and 
Limited Wireless Communication Links 
7, 12
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Shift Register Design 1, 71
Short-Term Scheduler 10, 7
Shuttle Continuous Software Testing 

Regimen 11, 4
Shuttle Flight Software 13, 9
Shuttle Flight Software Exhibits Reliability 

Growth (i.e., Increases with Operating 
Time) 17, 17

Signal (# of Correct Modules) 16
Signal Conversion Circuits as a Single 

Integrated System 3, 15
Signal Could Be Represented by Number of 

Successful Web Search Results 16, 10
Signal Dead Zones 16, 2
Signal Distortion 3, 11
Signal Driven Software Model 16, 1
Signal Fading 15, 3
Signal Interference in the Available 

Spectrum, Particularly in Wireless 
Systems Is a Network Standards Issue 7,
13

Signal an Intrusion When There Is a Match 
15, 3

Signal Must Be Sampled at Least Twice Its 
Frequency 3, 11

Signal and Noise Are Measured 7, 14
Signal to Noise Ratio 7, 1; 15, 1
Signal to Noise Ratio Indexes Reliability 

16, 1
Signal to Noise Ratio Is Tested by 

Propagating the Signal and Noise to an 
Oscilloscope Where

Signal to Noise Ratio (S/N) Representation 
of Reliability 16, 1

Signal to Noise Ratio (S/N) Stability (i.e., 
S/N >> 1) 15, 3

Signal and Noise Relationships Can Be 
Used to Quantify Test Effectiveness 16,
17

Signal Representation Distortion 3, 11
Signal Strength Is Critical 16, 1
Signal That Network Quality Should Be 

Improved 7, 9
Signature Recognition and Anomaly 

Detection 15, 2
Signature Recognition Techniques Establish 

a Profi le 15, 2
Signature Recognition Techniques Match 

Entities 15, 2

Signatures of Known Entity Intrusions 15,
2

Signifi cant Contributors to Unreliability 14,
10

Signifi cant Loss or Hazard 15, 3; 16, 3
Signifi cant Number of Failures 14, 4
Signifi cant Probability of Multiple Failed 

Components 12, 9
Simple Client-Server Requests for Web 

Pages 14, 2
Simple Semantic Foundation (e.g., 

Mathematical Equations That 
Communicate the Meaning of the 
Application) 17, 5

Simulate the Injection of Faults and 
Failures into a Replica of a Computer 
Network 7, 1

Simulating Network Reliability 7, 4
Simulation Can Be Used to Generate 

Random Changes in Voltage 3, 13
Simulation Error Analysis 3, 13
Simulation Queuing Models 6, 42
Single Cells Capable of Crude Computation 

13, 1
Single Communication Functions 14, 18
Single Component Failure 12, 19
Single Partition 12, 12
Size of Main Memory 10, 13
Small Gains in Noise Reduction Would Be 

Achieved Through Testing If the Number 
of Correct Modules Is Already Large 16,
13

Smallest Sub-Functions 12, 12
Smallest Web Page Request Packet 7,

2
Smart Electric Meter System 3, 15
Smart Meter Microcomputer 3, 5
Smart Meters in Smart Electric Grid 

Systems 3, 9
Smart Phones Do Not Have a Means to 

Detect and Collect Failures 15, 5
Smart Phones Have More Complex 

Architecture Than Voice Centric Mobile 
Phones 15, 4

Software Compatibility 7, 9
Software Compatibility Standards Issue 

7
Software Components in Series 12, 12
Software Confi guration 11, 3
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Software Defi ned Device Provides Needed 
Functionality (e.g., Short Range to Long 
Range Communication) 16, 4

Software Demonstrating the Lowest 
Probability of Failure 14, 11

Software Developers Can Incorporate 
Compatibility into Standards 7, 10

Software Development Cycle 11, 4
Software Development Models for Mobile 

Devices to Communicate with the 
Electric Grid in a Collaborative 
Processing Mode 16, 24

Software Development Process 17, 19
Software Dimension 8, 2
Software, Due to Its Complexity, Has 

Caused More Problems Than Hardware 
7, 9

Software Evolves and These Changes Can 
Negatively Affect Performance 15, 15

Software Failures 14, 5
Software Compatibility Standards Issue 7,

9
Software for Controlling a Nuclear Reactor 

17, 1
Software Functions 4, 11
Software Has the Best Prediction Accuracy 

14, 10
Software Inoperable 12
Software Is First Modeled Abstractly 

without Considering Its Execution 
Platform 4, 2

Software Is in Need of Signifi cant Software 
Development Process Improvement to 
Reduce Failures 16, 8

Software Is Released 13, 4
Software Level 4, 5
Software Management Requiring 

Traceability among Software Products 
and the Process Steps That Produce 
Them 17, 4

Software Mobile Network Products 15, 3
Software Models That Deal with Mobile 

Devices 16, 1
Software Portability 15, 14
Software Product Logic 17, 19
Software Redundancy 12, 18
Software Reliability (Object) Must Achieve 

Its Specifi cation (Task) during Test and 
Operating Time) 17, 5

Software Reliability Assessment Problem 
13, 18

Software Reliability Improvement 13, 3
Software Reliability Prediction Metrics 13,

18
Software Reliability Profi le Implementation 

11, 3
Software Reliability Results 13, 11
Software Reliability Results Cannot Be 

Considered Representative 16, 10
Software Reuse and Support of Various 

Tools 17, 3
Software System Could Be Operated Safely 

13, 15
Software System Designed with Procedures 

to an O-O Perspective 17, 4
Software Written in Event-Driven Style 

Typically Waits for an Event to Occur 4,
6

Software Would Never Be Able to Achieve 
a Specifi ed Reliability 17, 18

Source of Failure Data 11, 3
Specifi ed Critical Value 11
Specifi ed Network Hardware and Software 

7, 13
Specifi ed Number of Failures 13, 15
Specifi ed Number of Remaining Failures 

13, 13
Specifi ed Reliability 11, 1; 12, 4; 15, 1
Specifi ed Reliability Requirement 16, 11
Specifi ed Reliability Values 15, 1
Specifying a Requirement, While 

Neglecting to Provide a Rationale 7, 13
Spectrum Considerations 7, 13
SR Latch 1, 40
Stabilization Time 15, 3; 16, 1
Stabilization Time Is the Operating Time 

during Which Specifi ed Reliability Is 
Achieved 15, 3

Stack 1, 4
Standard Communication Protocols 14, 2
Standard for Hardwired Networks 7, 10
Standard for the Recovery of Failed Web 

Services 14, 2
Standard Internet Protocols 14, 1
Standardization Simplifi es Interoperability 

14, 2
State Diagram: Diagram That Shows States 

and Transitions Between States 17, 2
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State Diagrams Are Effective for 
Representing This Environment 4, 8

State Machines to Model the Order of Web 
Service Operations 14, 3

State of an Object Represents the Results of 
Its Behavior 17, 10

State Transition Connects Two States 17,
10

State Transition Probabilities 14, 4
State Transition That Causes a Web Server 

to become Active 14, 9
State Transitions 14, 9
State Transitions That Must Be Tested 4, 22
Statement Execution Result 13, 3
States and State Transitions 4, 6
States and State Transitions Form the Core 

Processes 4, 8
Static Part of the Mobile Device Is Its 

Hardware 16, 3
Stationary Service Always Executes on the 

Same Node 16, 24
Statistical Metrics to Compute and Predict 

Reliability for Illustrative Web Servers 
14, 6

Statistical Modeling Theory for the 
Evaluation of Web-Based System 
Reliability 14, 6

Statistical Routine 7, 2
Statistical Testing and Reliability Analysis 

14, 11
Steady State Reliability 16, 1
Steps Necessary to Defi ne the Components 

of the Model 17, 19
Steps in Real-Time System Design 4, 2
Storage 2, 1
Storage (Digital Data Stored in Database) 

3, 10
Storage Architecture 15, 15
Storage Capabilities 15, 15
Storage Capacity Prediction 7, 9
Storage Requirement Test Is Conducted 

with Test Software by Comparing the 
Database Capacity with the Web Page 
Storage Requirement 7, 14

Storage Requirements Must Be Predicted 
7, 9

Storage System with Suffi cient Capacity to 
Support the Input, Storage, and Output of 
Real-Time Transactions 4, 12

Strategy Does a Good Job of Exercising 
Many, but Not All, of the Paths 17, 17

Strength of Functions Lies in the Fact That 
They Are Programs within a Program 
17, 5

Stress to Identify Both Hardware and 
Software Failures 16, 14

Strong Partitioning 12, 12
Strong Partitioning of Applications 12, 12
Structural Hazards 1, 9
Structure 9, 5
Structure of Reliability Equations 12, 4
Structure of a Software Application 12, 13
Structured Analysis and Design 17, 1
Study the Effects of Increasing Bandwidth 

and Operating Time on Communication 
Channel Reliability 14, 22

Subcontracting Risks 11, 2
Subject the System to Increasing Values of 

Mission Duration 13, 8
Success of HPC Computing Will Depend 

on the Ability to Provide High Reliability 
14, 5

Success of the Input Received Function 12,
2

Successful Execution 13, 3
Successful Intrusion Increases the Noise in 

a Mobile Network 15, 2
Successful Operation Between a Pair of 

Nodes 8, 3
Sudden Jumps in Hazard Function 14, 10
Sudden Need for the Mobile Device to 

Move with the user (Context Aware) 16,
24

Sum Failure Count State 17, 10
Sum of Correct Modules and Failed 

Modules 16, 9
Summary of Queuing Model Computations 

for Present and Proposed Internets 6, 30
Summary of Simulation Model 

Computations 6, 55
Summary of Software Development 

Approaches 17, 18
Summation of Link Delay, Processing 

Time, and Wait Time 5, 12
Summing the Node and Link Times 7, 5
Super Computer 12, 16
Superiority of Neural Network Criterion 

13, 13
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Superiority of Neural Network Reliability 
Criterion Limit 13, 8

Support Multimedia Services 7, 13
Support Requirements 9, 11
Synchronized Program Development 

Activities 17, 13
Synchronous and Asynchronous 

Communication among Components 12,
13

Syntax Oriented (e.g., Emphasis on UML 
Diagramming Techniques) 17, 3

System Bus with Suffi cient Bandwidth to 
Accommodate Expected Data Transfer 
Requirements 4, 14

System Changes Will Only Affect the 
Interface 17, 2

System Clock of the Mobile Device 15, 13
System Confi guration Descriptions 14, 3
System Decomposition Into Components 9,

2
System Error 4, 19
System Error Feedback Correction 4, 19
System Failures Include User and Computer 

Operator Errors 14, 10
System Functionality Risks 11, 2
System Identifi cation 13, 1
System Level 4, 5
System Must Be Capable of Detecting 

Logical as Well as Timing Errors in the 
Design 4, 23

System Must Respond to Asynchronous 
Events 4, 8

System Queues Are Used to Store Backlog 
of User Requests 4, 4

System Reliability 12, 2
System Reliability Model 12, 1
System Resources, such as Microprocessor 

Cycles, Communication Bandwidth, and 
Storage Memory Are Restricted 4, 1

System, Software, and Hardware Failure 
Rates 14, 11

System Storage 4, 6
System Validation 12, 13
System View That Is Desired 17
System Workload Is Taken into Account 

16, 10

T Flip Flop 1, 49
Target User 15, 13

TCP Connection to the Web Server 14, 4
TCP/IP Is a Protocol That Interfaces with 

Local Network Protocols such as 
Ethernet 7, 10

TCP/IP Is a Protocol That Operates at the 
Transport Layer of the Seven Layer 
Network 7, 10

Teaching Neural Networks 13, 2
Telecom Service Providers 7, 12
Template for Using Various Objects 

(Probability Functions) and Their 
Attributes (Variables and Parameters) in 
the Same Probability Distribution Class 
17, 11

Test Bed for Testing Networks 7, 14
Test Case Selection Is Designed to Provide 

Adequate Coverage of System 
Components by Deriving Test Cases from 
Software Designs 4, 22

Test Cases Are Based on Recovery Action 
(e.g., Remove Battery) 16, 17

Test Cases Are Based on Type of Failure 
(e.g., Freeze) 16, 17

Test Data Design 2, 8
Test Duration Serves as a Test Stopping 

Rule 16, 14
Test Effectiveness Can Be Used to 

Prioritize Modules for Testing 16, 13
Test Effectiveness of Failure Type 16, 17
Test Effectiveness Increases with Lower 

Signal to Noise Ratio 16, 16
Test Effectiveness Is the Duration of Test 

Necessary to Achieve That Effectiveness 
16, 14

Test the Interaction in Terms of 
Performance Results 4, 22

Test Interval 13, 4
Test Measurements Are Instrumented 7,

14
Test Paths Associated with the Program 

Input Variables 17, 17
Test Paths Used to Debug the C+ + 

Program 17, 13
Test Plan 2, 7
Test Plan Support Functions 2, 7
Test Plans Must Recognize Constraints 16,

3
Test Results Refl ect Realistic Operating 

Conditions 16, 3
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Test Software Compares the Actual Range 
with the Received Range 7, 14

Test Software Computes Required Time and 
Compares It with Clock Time 7, 14

Test Software Records a Compatibility 
Result If the Signal Is Received 7, 14

Test Strategies 2, 6
Test Time 11, 2; 13, 2; 16, 14
Test Time Increases with Decreasing Signal 

to Noise Ratio (i.e., Many Failed 
Modules Compared with the Number of 
Correct Modules) 16, 17

Test Time Is Equal to Number of Failed 
Modules That Are Corrected Divided by 
the Failure Rate 16, 14

Test Time Is Modeled as a Two Phase 
Sequence 16, 17

Testing 12, 1; 14, 1
Testing for All Possible Exceptions in all 

Possible Places Where an Exception 
Could Be Raised Is Impractical 17, 17

Testing Approach Must Be Highly Non-
Intrusive 16, 3

Testing Challenge Is to Include the Number 
of Active Users Connected to Mobile 
Networks 16, 3

Testing Challenges 16, 2
Testing of Mobile Devices Is Diffi cult 

Because the Environment Is Complex 
16, 2

Testing Must Be Performed in the 
Constrained Memory of the Mobile 
Device 16, 3

Testing Problems 16, 1
Testing and Reliability Have a Synergistic 

Relationship 16, 12
Testing under Simulated Operational 

Conditions 11, 4
Testing for a Time to Assure High 

Reliability 12, 12
Tests Should Interact with End Users, 

Wireless Signals, and the Wireless 
Network 16, 3

Text Message Was Being Received 15, 5
Text Messaging 15, 15
Thorough Testing of Real-Time Systems 4,

22
Thread-Based Architecture 6, 2
Throughput 4, 21; 10, 6; 15, 14

Throughput per User 16, 3
Time 7, 1; 15, 1
Time-Based Reliability Model 16
Time of Completion of Service Request 4,

19
Time-Driven Software Design Style 

Corresponds to Using Cyclic Activities, 
Triggered by Time 4, 7

Time to Failure 11, 2
Time to Failure Risk 11, 6
Time to Failure across Various Time 

Intervals 13, 15
Time of Failure Occurrence 17, 6
Time to Let the Device Deliver the 

Expected Service 15, 5
Time to Next Failure 11, 6; 13, 15
Time Required to Request a Web page from 

Web Server 7, 14
Time of Service Request 4, 6, 19
Time Slice Length Strategy 10, 8
Time of Switch Action 10, 13
Time in System 6, 45
Time of Testing Software 13, 2
Times When the Failures Occurred 17, 12
Timing Constraints Are Addressed in 

Analyzing Real-Time System 
Performance 4, 2

Today, Many Computer Systems Are Being 
Used to Measure and Control Real-World 
Processes 4, 2

To Minimize Low Pass Filter Error, 
Maximize the Signal to Noise Ratio S/N 
3, 14

To Minimize Operational Amplifi er Error, 
Ensure That the Output/Input Ratio = 
Amplifi cation Factor 3, 14

To Minimize Voltage Sensor Error, the 
Sensor Should Produce an Output 
Change to Input Change Ratio =  1 3, 14

To Prevent Sample and Hold Circuit Error, 
Ensure That the Circuit Can Sample at a 
Frequency fsh >  Desired Frequency fi 3,
14

Too Little Memory Space Allocated to 
Buffers, Resulting in Buffer Overfl ow 
16, 7

Topology 2, 2
Total Expected Operational Time 4, 21
Total Number of Failures 16, 7
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Total Number of Failures Reported at the 
Scheduled Test Time Interval 13, 12

Total Number of Mobile Device Modules 
16, 9

Total Number of Modules in a Mobile 
Device 16, 6

Total Paging Time 10, 13
Total Quantity of Data Processed at all 

Nodes and Associated Links in a 
Network 7, 8

Total Scheduled Test Time 13, 7
Total System Reliability Analysis 14, 1
Total System Reliability Models 14, 18
Traceability of Product and Process 17, 4
Track the Hazard Function Produced by 

Web Servers 14, 10
Tracked by Using User and Computer 

Operator Logs 14, 10
Traditional System 14, 1
Traditional Testing Methods 4, 21
Trained to Operate in a Specifi c 

Environment 13, 1
Transfer the Process to this Device 16, 24
Transfer Program Control 15
Transformed to a Software Design Model 

on the Target Platform 4, 2
Transition Information 14, 3
Transmission Control Protocol (TCP) 

Connection to the Remote Web Server 
14, 10

Traverse All Links and Nodes to the Web 
SERVER 7, 9

Tree Structure 14, 3
Trend to Connect More Devices Will also 

Accelerate, Facilitated by the Increasing 
Installation of Internet Protocol version 6 
(IPv6) 6, 2

Trigger (Event) for the Poisson Failure 
Model (Object) to Store the Failure 
Count (Action) 17, 10

Triggered by Sensing an Intrusion 15, 14
Triggering of Flip-fl ops 1, 3
Turnaround 10, 6
Type of Failure and Category of Failure 

Recovery Action 15, 1
Type of Failure Recovery Action 16, 1
Types of Failures 14, 3; 16
Types of Failures and Responses to the 

Failures 15, 1

Types of Synchronous Sequential Circuits 
1, 57

Unacceptable Mission Duration at the 
Specifi ed Reliability 16, 16

Unambiguous (Meaning Is Clearly 
Expressed) 17, 4

Ultimately, the Particular Characteristics of 
the Application Must Be Considered 4,
25

Unexpected Interactions with other Program 
Modules Are Unlikely 17, 4

Unifi ed Hardware-Software Reliability 
Model 12, 13

Unifi ed Modeling Language: Standardized 
Notation and Set of Diagrams 17, 2

Unifi ed Modeling Language (UML) 
Diagrams Can Be Used to Model the 
Elements 17, 8

Unifi ed System That Includes A/ D 
Conversion 3, 9

Units 9, 11
Unreliability 15, 7
Unreliable and Unmaintainable Code 4,

2
Unstable Behavior (Erratic Failure) 15, 4;

16, 6
Unweighted Probability 14, 9
Upload Direction (i.e., Request for Web 

page) and Download Direction (i.e., 
Delivery of Web Page) 6, 1

Upon Failure Detection, the Logger Gathers 
Useful Information 15, 5

Usage Scenarios Are Diffi cult to Automate 
16, 3

Use of Compatible Interfaces 7, 14
Use the Generic Design to Guide the 

Development of the Application-Specifi c 
Design 4, 1

Use of Low Power Enables Longer Battery 
Life Applications such as a Personal Data 
Assistant 7, 13

Use Standardized Interfaces 7, 12
Useful for Debugging 17, 4
User Computers and Mobile Devices Would 

Access a Web Server by Providing a 
Universal Resource Locator (URL) (Web 
Site Address) to the Internet Service 
Provider 6, 2
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User-Defi ned Functions Are Functions That 
Programmers Create for Specialized 
Tasks 17, 5

User of the Device 15, 13
User Having to Restart the Application 15,

4
User-Initiated Actions to Recover from a 

Device Failure 16, 5
User-Injected Errors 15, 12
User Interface 16, 4
User Is Switched to Other Access Points 

15, 12
User of a Mobile Device Seldom Changes 

15, 12
User Mobility 7, 12
User Perceived Application Response Times 

Are Often Poor 15, 14
User-Perceived Reliability and Availability 

Data 12, 13
User Perceived Response Time 15, 14
User System Requests Must Be Queued 

Because the System Controller Is Unable 
to Respond to All Requests Immediately 
44

User Turns Off the Device and Then Turns 
It On to Restore the Correct Operation 
15, 5

User Will Interact with the System, 
Supplying Information to Help It Choose 
the Right Algorithms and 
Transformations 17, 3

Users Experience a Failure (Freeze or Self 
Shutdown) 15,4

Users’ Requests Can Be Supported by a 
Proxy 14, 5

Users Should Not Have to Wait for a 
Response in Order to Recover from a 
Failure 16, 16

Using the Successful Time Obtained from 
the Previous Test, and Compares It with 
the Specifi ed Reliability 7, 14

Utility of the Prediction Is to Delineate The 
Maximum Storage Requirement 7, 9

Utilization of Resources 15, 14

Validating Real-Time Systems 12, 13
Validation of Computer System Reliability 

12, 13
Validity Checks on Memory Access 15, 7

Validity of Equation 13, 4
Validity of the Neural Network Criterion 

Limit 13, 5
Validity of Reliability Predictions 14, 8
Valuable for Portraying the Process That 

Develops the Product 17, 19
Value of Total Web Services 14, 18
Value-Added Total Web Services 14, 18
Variable: A Model Predictor Specifi ed in a 

Function (e.g., Predictor of Software 
Reliability) 17, 5

Variable Assumes Values Based on a 
Function 17, 6

Variable Number of Active Users 16, 3
Variance Between Actual and Predicted 

Values 12, 13
Vendors Should Provide Better Protection 

Against Memory Violations 15, 7
Verifi cation Error Can Be Minimized 4, 22
Verifi cation Step 17, 17
Verifying That the Specifi cations Can Be 

Achieved 7, 15
Very High Reliability Software And 

Hardware Components 12, 19
Virtual Operating Systems 10, 18
Visual Language Alternative 9, 19
Voice and Data in Wired Networks 

Increasingly Converge to Use the Internet 
7, 11

Voice over Internet Protocol (VoIP) 15, 12
Voltage Regulation 3, 10
Voltage Regulator of the Electric 

Distribution System 3, 9
Voltage Sensor 3, 12
Voting Mechanism 14, 2

Wait an Amount of Time 15, 5
Wait for a Response 16, 6
Wait Time 6, 9
Waiting for the Phone to Respond 16, 7
Weak Spots in Component and System 

Reliability 14, 1
Web Client 14, 2
Web Client and Server Interactions 14, 9
Web Client Directly Accessing the Web 

Server to Obtain a Page 14, 4
Web Client Meets the Reliability 

Requirement 14, 17
Web Client Reliability Analysis 14, 16



596 Index

Web Client to Web Server Access Time 14,
1

Web Database 14, 4
Web Page Design 14, 3
Web Page Lengths Being Processed and 

Waiting for Processing by the Web 
Servers 6, 55

Web Page Syntax 14, 3
Web Server 6, 2; 14, 1
Web Server Consists of a Single Multi-

Threaded Process; Each Thread Handles 
One Request at a Time 6, 2

Web Server Failure Data 14, 5
Web Server Interactions 14, 3
Web Server Processing 6, 17
Web Server Processing: Wired and Wireless 

6, 53
Web Server Proxy 14, 4
Web Server Reliability Analysis 14, 6
Web Server Reliability Analysis Based on 

Operating Time 14, 11
Web Server Reliability Requirement 14, 6
Web Service-Fault Tolerance Mechanism 

14, 2
Web Services Are Implemented in Different 

Redundant Versions 14, 2
Web Services Providers 14, 1
Web Services State Transitions 14, 3
Web System Communication 14, 2
Web System Error Rate 14,17
Web System Functions 14, 18
Web System Path Data 14, 2
Web System Reliability Approach 14, 1
Web System Reliability Predictions 14,

23
Web System Service and Reliability 14, 5
Web System State Transition Diagram 14,

3
Web Transaction 14, 4
Weibull Distribution Proved Appropriate for 

Predicting System, Software, and 
Hardware Reliability 14, 6

Weibull Failure Distribution 12, 15
Weibull Model Results 12, 15
Weibull Reliability Model 12, 20
Weigh Remaining Failures 13, 17
Weighed by the Failure Severity Code 16,

9

Weighted Connections Following a 
Specifi ed Structure 13, 1

Weighted Probability of State Transition 
14, 9

Weighted Sum of the Probabilities 16, 9
What Is Design? 9, 1
When a Class Is Declared, It Is Identifi ed 

by Name, Attributes, and Methods 17, 11
When Failures Occur, the Mobile Network 

Has to Try to Find Another Mobile 
Device 16, 24

When Testing and Performance Evaluation 
Are Performed, the Particular 
Characteristics of the Application Must 
Be Considered 4, 2

Wired LANs 15, 3
Wired and Wireless Internets Are Included 

in the Analysis 6, 1
Wireless Channel Conditions Are Inherently 

More Vulnerable 15, 3
Wireless Communication 15, 3
Wireless LANS Do Not Have the Luxury of 

Delay or Shut Down 15, 3
Wireless LANS Require Much Higher 

Reliability 15, 3
Wireless Link Is Much Less Reliable Than 

Wired Connections 15, 4
Wireless Local Area and Home Networks 

7, 10
Wireless Local Area Networks (WLAN) 

Positioning Systems 15, 12
Wireless Media Have Limited and Variable 

Ranges 15,3
Wireless Networks IEEE802 Family of 

Standards 7, 12
Wireless Standards 7, 10
Wireless Standard Organizations Are 

Revising Existing Standards 7, 12
Wireless to Access Internet Resources 14, 2
Wireless Video Phone and Multimedia 

Message Systems 7, 12
Workarounds 11, 10
Workload Characteristics 14, 11
Writing Computer Code: Iteration Control, 

Variable Types, Array Bounds, and 
Sequence of Computer Code Fragments 
17, 13

Wrong Branch 12, 14


