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Preface

This volume provides an introduction to the theory and design of compo-
site structures of steel and concrete. Readers are assumed to be familiar
with the elastic and plastic theories for the analysis for bending and shear
of cross-sections of beams and columns of a single material, such
as structural steel, and to have some knowledge of reinforced concrete. No
previous knowledge is assumed of the concept of shear connection within a
member composed of concrete and structural steel, nor of the use of
profiled steel sheeting in composite slabs. Shear connection is covered in
depth in Chapter 2 and Appendix A, and the principal types of composite
member in Chapters 3, 4 and 5.

All material of a fundamental nature that is applicable to both buildings
and bridges is included, plus more detailed information and a worked
example relating to buildings. Subjects mainly relevant to bridges are
covered in Volume 2. These include composite plate and box girders and
design for repeated loading.

The design methods are illustrated by sample calculations. For this
purpose a simple problem, or variations of it, has been used throughout the
volume. The reader will find that the strengths of materials, loadings, and
dimensions for this structure soon remain in the memory. The design
should not be assumed to be an optimum solution to the problem, because
one object here has been to encounter a wide range of design problems,
whereas in practice one seeks to avoid them.

This volume is intended for undergraduate and graduate students, for
university teachers, and for engineers in professional practice who seek
familiarity with composite structures. Most readers will wish to develop the
skills needed both to design new structures and to predict the behaviour of
existing ones. This is now always done using guidance from a code of
practice. The most comprehensive and broadly-based code available is
Eurocode 4, which is introduced in Chapter 1. It makes use of recent
research and of current practice, particularly that of western Europe and
Australasia. It has much in common with the latest national codes in these
regions, but its scope is wider. It is fully consistent with the latest codes for
the design of concrete and steel structures, Eurocodes 2 and 3 respectively.

All the design methods explained in this volume are those of the

ix



X Preface

Eurocodes. The worked example, a multi-storey framed structure for a
building, includes design to draft Eurocode 4: Part 1.2 for resistance to
fire.

At the time of writing, the relevant Parts of Eurocodes 2, 3, and 4 have
been issued throughout western Europe for trial use for a period of three
years. In each country, each code is accompanied by its National
Application Document (NAD), to enable it to be used before other
European standards to which it refers (e.g. for actions (loadings)) are
complete.

These documents may not yet be widely available, so this volume is self-
contained. Readers do not need access to any Eurocodes, international
standards, or NADs; but they should not assume that the worked examples
here are fully in accordance with the Eurocodes as implemented in their
own country. It is quite likely that some of the values used for vy and ¢
factors will be different.

Engineers who need to use a Eurocode in professional practice should
also consult the relevant Designers’ Handbook. These are available in
English for Parts 1.1 of Eurocodes 2, 3, and 4. They can only be read in
conjunction with the relevant code. They are essentially commentaries,
starting from a higher level of existing knowledge than that assumed here.

The use of the Eurocodes as the basis for this volume has led to the re-
writing of over 80% of the first edition, and the provision of a new set of
worked examples.

The author has since 1959 shared the excitements of research on compo-
site structures with many colleagues and research students, and has since
1972 shared the challenge of drafting Eurocode 4: Part 1.1 with other
members of multi-national committees, particularly Henri Mathieu,
Karlheinz Roik, Jan Stark, and David Anderson. The substantial contri-
butions made by these friends and colleagues to the author’s understanding
of this subject are gratefully acknowledged. However, responsibility for
what is presented here rests with the writer, who would be glad to be
informed of any errors that may be found.

Thanks are due also to Joan Carrington, for secretarial assistance with
Eurocode 4, as well as this volume, to Jill Linfoot, for the diagrams, and to
the Engineering Department, the University of Warwick, for other facili-
ties provided.

R.P. Johnson
March 1994
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Symbols

The symbols used in the Eurocodes are based on ISO 3898: 1987, ‘Bases
for design of structures — Notation — General symbols’. They are more
consistent than in current British codes, and have generally been used in
this volume.

accidental action; area

distance; geometrical data

width; breadth

factor; critical perimeter; secant stiffness

distance

diameter; depth; distance

effect of actions; modulus of elasticity
eccentricity; distance

action; force

strength (of a material); natural frequency; factor
characteristic compressive strength of concrete
characteristic yield strength of reinforcement
nominal tensile yield strength of structural steel
permanent action; shear modulus

permanent action

horizontal force

height; thickness

second moment of area

coefficient

coefficient; factor; connector modulus; stiffness
length; span

length; span

bending moment; mass

design value of the resisting bending moment
design value of the applied internal bending moment
bending moment per unit width; mass per unit length or area;
factor for composite slab

axial force; number of shear connectors

modular ratio; number
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Symbols

shear resistance of a shear connector
pitch (spacing)

variable action

variable action

resistance; response factor; reaction
radius of gyration

internal forces and moments; width of slab
spacing; slip

thickness; time

perimeter; distance

shear force; vertical force or load
shear force per unit length

section modulus

crack width; load per unit length
value of a property of a material
distance; axis

distance; axis

shape factor

distance; axis; lever arm

angle; ratio; factor

angle; ratio; factor

partial safety factor (always with subscript: e.g. A, F, G, M, Q, a,
C,8,V)

A difference in . . . (precedes main symbol)

S steel contribution ratio; deflection

€ strain; coefficient

{  critical damping ratio

n  coefficient; resistance ratio

0 temperature _

A load factor; slenderness ratio (or \)

p coefficient of friction; moment ratio

v Poisson’s ratio

P unit mass; reinforcement ratio

o normal stress

T shear stress

b diameter of a reinforcing bar; rotation; curvature
x  reduction factor (for buckling); ratio

¢ factors defining representative values of variable actions; stress ratio
Subscripts

A accidental

a

structural steel




Symbols

b  buckling; beam

c compression; concrete; cylinder
cr critical

cu cube

d  design

e elastic (or el); effective (or eff)
f flange; full; finishes; fire; Fourier
G  permanent

g  centre of area

h  hogging

i index (replacing a numeral)

k  characteristic

1 Iongitudinal

LT lateral-torsional
M material
m mean
min minimum
n neutral axis
(possibly supplementing a) profiled steel sheeting; perimeter; plastic
pl  plastic
Q variable
R  resistance
r reduced; rib
rms root mean square
S internal force; internal moment
s reinforcing steel; shear span; slab
t tension; total (overall); transverse
u ultimate
v related to shear connection
w web
X axis along a member
y  major axis of cross-section; yield
z minor axis of cross-section
¢  diameter

,1,2, etc. particular values






Chapter 1
Introduction

1.1 Composite beams and slabs

The design of structures for buildings and bridges is mainly concerned with
the provision and support of load-bearing horizontal surfaces. Except in
long-span bridges, these floors or decks are usually made of reinforced
concrete, for no other material has a better combination of low cost, high
strength, and resistance to corrosion, abrasion, and fire.

The economical span for a reinforced concrete slab is little more than
that at which its thickness becomes just sufficient to resist the point loads to
which it may be subjected or, in buildings, to provide the sound insulation
required. For spans of more than a few metres it is cheaper to support the
slab on beams or walls than to thicken it. When the beams are also of
concrete, the monolithic nature of the construction makes it possible
for a substantial breadth of slab to act as the top flange of the beam that
supports it.

At spans of more than about 10 m, and particularly where the suscepti-
bility of steel to damage by fire is not a problem, as for example in bridges
and multi-storey car parks, steel beams become cheaper than concrete
beams. It used to be customary to design the steelwork to carry the whole
weight of the concrete slab and its loading; but by about 1950 the develop-
ment of shear connectors had made it practicable to connect the slab to the
beam, and so to obtain the T-beam action that had long been used in
concrete construction. The term ‘composite beam’ as used in this book
refers to this type of structure.

The same term is used for beams in which prestressed and in-situ
concrete act together, and there are many other examples of composite
action in structures, such as between brick walls and beams supporting
them, or between a steel-framed shed and its cladding; but these are
outside the scope of this book.

No income is received from money invested in the construction of a
multi-storey building such as a large office block until the building is
occupied. For a construction time of two years, this loss of income from
capital may be 10% of the total cost of the building; that is, about one-third
of the cost of the structure. The construction time is strongly influenced by

1



2 Composite Structures of Steel and Concrete

the time taken to construct a typical floor of the building, and here
structural steel has an advantage over in-sifu concrete.

Even more time can be saved if the floor slabs are cast on permanent
steel formwork that acts first as a working platform, and then as bottom
reinforcement for the slab. This formwork, known as profiled steel sheet-
ing, has long been used in tall buildings in North America.(!) Its use is
.now standard practice in most regions where the sheeting is readily avail-
able, such as Europe, Australasia and Japan. These floors span in one
direction only, and are known as composite slabs. Where the steel sheet is
flat, so that two-way spanning occurs, the structure is known as a composite
plate. These occur in box-girder bridges, and are covered in Chapter 9
(Volume 2).

Profiled sheeting and partial-thickness precast concrete slabs are known
as structurally participating formwork. Fibre-reinforced plastic or cement
sheeting, sometimes used in bridges, is referred to as structurally non-
participating, because once the concrete slab has hardened, the strength of
the sheeting is ignored in design.

The degree of fire protection that must be provided is another factor that
influences the choice between concrete, composite and steel structures,
and here concrete has an advantage. Little or no fire protection is required
for open multi-storey car parks, a moderate amount for office blocks, and
most of all for warehouses and public buildings. Many methods have been
developed for providing steelwork with fire protection.® Design against
fire and the prediction of resistance to fire is known as fire engineering.
There are relevant codes of practice, including a draft European code for
composite structures.’” Full or partial encasement in concrete is an
economical method for steel columns, since the casing makes the columns
much stronger. Full encasement of steel beams, once common, is now
more expensive than the use of lightweight non-structural materials. It is
used for some bridge beams (Volume 2). Concrete encasement of the web
only, cast before the beam is erected, is more common in continental
Europe than in the UK. It enhances the buckling resistance of the member
(Section 3.5.2), as well as providing fire protection.

The choice between steel, concrete, and composite construction for a
particular structure thus depends on many factors that are outside the
scope of this book. Composite construction is particularly competitive for
medium or long span structures where a concrete slab or deck is needed for
other reasons, where there is a premium on rapid construction, and where
a low or medium level of fire protection to steelwork is sufficient.




Introduction
1.2 Composite columns and frames

When the stanchions in steel frames were first encased in concrete to
protect them from fire, they were still designed for the applied load as if
uncased. It was then realised that encasement reduced the effective
slenderness of the column, and so increased its buckling load. Empirical
methods for calculating the reduced slenderness still survive in some design
codes for structural steelwork (Section 5.2).

This simple approach is not rational, for the concrete encasement also
carries its share of both the axial load and the bending moments. More
economical design methods, validated by tests, are now available
(Section 5.6).

Where fire protection for the steel is not required, a composite column
can be constructed without the use of formwork by filling a steel tube with
concrete. A notable early use of filled tubes (1966) was in a four-level
motorway interchange.® Design methods are now available for their use
in buildings (Section 5.6.7). '

In framed structures, there may be composite beams, composite
columns, or both. Design methods have to take account of the interaction
between beams and columns, so that many types of beam-to-column
connection must be considered. Their behaviour can range from
‘nominally pinned’ to ‘rigid’, and influences bending moments throughout
the frame. Two buildings with rigid-jointed composite frames were built in
Great Britain in the early 1960s, in Cambridge'® and London®. Current
practice is mainly to use nominally pinned connections. In buildings, it is
expensive to make connections so stiff that they can be modelled as ‘rigid’.
Even the simplest connections have sufficient stiffness to reduce deflexions
of beams to an extent that is useful, so there is much current interest in
testing connections and developing design methods for frames with ‘semi-
rigid’ connections. No such method is yet widely accepted (Section 5.3).

1.3 Design philosophy and the Eurocodes

1.3.1 Background

In design, account must be taken of the random nature of loading, the
variability of materials, and the defects that occur in construction, to
reduce the probability of unserviceability or failure of the structure during
its design life to an acceptably low level. Extensive study of this subject
since about 1950 has led to the incorporation of the older ‘safety factor’ and
‘load factor’ design methods into a comprehensive ‘limit state’ design
philosophy. Its first important application in Great Britain was in 1972, in
CP 110, The structural use of concrete. All recent British and most inter-
national codes of practice for the design of structures now use it.




4 Composite Structures of Steel and Concrete

Work on international codes began after the Second World War, first on
concrete structures and then on steel structures. A committee for composite
structures, set up in 1971, prepared the Model Code of 1981.(” Soon after
January 1993 had been set as the target date for the completion of the
Common Market in Europe, the Commission of the European Communities
began (in 1982) to support work on documents now known as Eurocodes. It
acts for the twelve countries of the European Union (formerly the EEC). In
1990, the seven countries of the European Free Trade Area (EFTA) joined
in, and responsibility for managing the work was transferred to the Comité
Européen Normalisation (CEN). This is an association of the national stan-
dards institutions of the 19 countries, which extend from Iceland and Finland
in the north to Portugal and Greece in the south.

It is now planned to prepare nine Eurocodes with a total of over 50
Parts. Each is published first as a preliminary standard (ENV), accomp-
anied in each country by a National Application Document. All of the
Eurocodes relevant to this volume are or soon will be at this stage. They
are as follows:

Eurocode 1: Part 1, Basis of design;®

Eurocode 1: Basis of design, and actions. Part 2, General rules and
gravity and impressed loads, snow, wind, and fire;®

Eurocode 2: Part 1.1, Design of concrete structures; General rules and
rules for buildings;?

Eurocode 3: Part 1.1, Design of steel structures; General rules and rules
for buildings;V

Eurocode 4: Part 1.1, Design of composite steel and concrete structures;
General rules and rules for buildings;'?

Eurocode 4: Part 1.2, Structural fire design.®

At the end of its ENV period of three years, each Part of a Eurocode is
revised, and will then be published as an EN (European standard), so the
EN versions of the Parts listed above should appear from 1998 onwards. It
is the intention that a few years later all relevant national codes in the 19
countries will be withdrawn from use. ‘

The current British code that is most relevant to this volume is BS 5950:
Part 3: Section 3.1: 1990.( It has much in common with Eurocode 4: Part
1.1, because the two were developed in parallel. The design philosophy,
terminology, and notations of the Eurocodes have been harmonised to a
greater extent than those of the current British codes, so it is convenient
generally to follow the Eurocodes in this volume. Eurocode 4: Part 1.1 will
be cited simply as ‘Eurocode 4’ or ‘EC4’, and reference will be made to
significant differences from BS 5950.

This volume is intended to be self-contained, and to provide an introduc-
tion to its subject. Those who use Eurocode 4 in professional practice may
need to refer to the relevant Handbook. !>
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1.3.2 Limit state design philosophy

1.3.2.1 Actions

Parts 1.1 of Eurocodes 2, 3 and 4 each have a Chapter 2, ‘Basis of design’,
in which the definitions, classifications, and principles of limit state design
are set out in detail, with emphasis on design of structures for buildings.
Much of these chapters will eventually be superseded by Eurocode 1: Part
1, where the scope is being extended to include bridges, towers, masts,
silos and tanks, foundations, etc.

The word ‘actions’ in the title of Eurocode 1: Part 2 does not appear in
British codes. Actions are classified as

® direct actions (forces or loads applied to the structure), or

¢ indirect actions (deformations imposed on the structure, for example by
settlement of foundations, change of temperature, or shrinkage of
concrete).

‘Actions’ thus has a wider meaning than ‘loads’. Similarly, the Eurocode
term ‘effects of actions’ has a wider meaning than ‘stress resultant’, be-
cause it includes stresses, strains, deformations, crack widths, etc., as well
as bending moments, shear forces, etc. The Eurocode term for ‘stress
resultant’ is ‘internal force or moment’.

The scope of the following introduction to limit state design is limited to
that of the design examples in this volume. There are two classes of limit
states:

e ultimate, which are associated with structural failure; and
® serviceability, such as excessive deformation, vibration, or width of
cracks in concrete.

There are three types of design situation:

® persistent, corresponding to normal use;
e transient, for example, during construction; and
® accidental, such as fire or earthquake.

There are three main types of action:

¢ permanent (G), such as self-weight of a structure, sometimes called
‘dead load’;

® variable (Q), such as imposed, wind or snow load, sometimes called ‘live
load’; and

® accidental (A), such as impact from a vehicle.

The spatial variation of an action is either:

o fixed (typical of permanent actions); or
o free (typical of other actions), and meaning that the action may occur
over only a part of the area or length concerned.
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Permanent actions are represented (and specified) by a characteristic
value, Gy. ‘Characteristic’ implies a defined fractile of an assumed statisti-
cal distribution of the action, modelled as a random variable. For perma-
nent loads it is usually the mean value (50% fractile).

Variable loads have four representative values:

o characteristic (Qy), normally the lower 5% fractile;

e combination (VeQy), for use where the action is assumed to accompany
the design value of another variable action;

® frequent (Y1Qy); and

® quasi-permanent (Y, Oy ).

Values of the combination factors i, Uy, and ¥, (all less than 1.0) are

given in the relevant Part of Eurocode 1. For example, for imposed loads

on the floors of offices, category B, they are 0.7, 0.5 and 0.3, respectively.
Design values of actions are, in general, Fy = ygFy, and in particular:

G4 = v6Gx (1-1)
Q4 =v0@k or Q4= voWiOx (1.2)

where yg and yq are partial safety factors for actions, given in Eurocode 1.
They depend on the limit state considered, and on whether the action is
unfavourable or favourable for (i.e. tends to increase or decrease) the
action effect considered. The values used in this volume are given in
Table 1.1.

Table 1.1 Values of yg and yq for persistent design situations.

Type of action Permanent Variable

unfavourable  favourable  unfavourable  favourable

Ultimate limit states 1.35* 1.35* L5 0
Serviceability limit states 1.0 1.0 1.0 0

*Except for checking loss of equilibrium, or where the coefficient of variation is large.

The effects of actions are the responses of the structure to the actions:
E4 = E(Fq) (1.3)

where the function E represents the process of structural analysis. Where
the effect is an internal force or moment, it is sometimes denoted Sy (from
the French word sollicitation), and verification for an ultimate limit state
consists of checking that

Sa=<Ry or Egz=Ry (14)
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where R, is the relevant design resistance of the system or member or
cross-section considered.

1.3.2.2 Resistances

Resistances, Ry, are calculated using design values of properties of ma-
terials, Xj, given by

_ X
™M (1.5)

where Xy is a characteristic value of the property, and +yy is the partial
safety factor for that property.

The characteristic value is typically a 5% lower fractile (e.g. for com-
pressive strength of concrete). Where the statistical distribution is not well
established, it is replaced by a nominal value (e.g. the yield strength of
structural steel) that is so chosen that it can be used in design in place
of Xk.

Xy

Table 1.2 Values of yy for resistances and properties of materials.

Material Structural  Reinforcing  Profiled Concrete Shear
steel steel sheeting connection
Property fy fex fyp facor foy Pry
Symbol for ym Ya s Yap Ye v
Ultimate limit states 1.10 1.15 1.10 1.5 1.25
Serviceability limit :
states 1.0 1.0 1.0 1.00r1.3 1.0

Notation: f, and f,,, are nominal yield strengths, fx is a characteristic yield strength, and f,, and f,, are
respectively characteristic cylinder and cube strengths.

In Eurocode 4, the subscript M in -y is replaced by a letter that indicates
the material concerned, as shown in Table 1.2, which gives the values of vy
used in this volume. A welded stud shear connector is treated like a single
material, even though its resistance to shear, Py, is influenced by the
properties of both steel and concrete.

1.3.2.3 ‘Boxed values’ of g, yv, and s

In the Eurocodes, numerical values given for these factors (and for certain
other data) are enclosed in boxes. These indicate that the Members of
CEN (the national standards organisations) are allowed to specify other
values in their National Application Documents. This may be necessary
where characteristic actions are being taken from national codes, or where




8 Composite Structures of Steel and Concrete

a country wishes to use a different margin of safety from that given by the
boxed values.

The value of v,, for structural steel, at ultimate limit states has been
particularly controversial, and several countries (including the UK) are
expected to adopt values lower than the 1.10 given in the Eurocodes and
used in this volume.

1.3.2.4 Combinations of actions

The Eurocodes treat systematically a subject for which many empirical
procedures have been used in the past. For ultimate limit states, the
principles are:

e permanent actions are present in all combinations;

® cach variable action is chosen in turn to be the ‘leading’ action (i.e. to
have its full design value), and is combined with lower ‘combination’
values of other relevant variable actions;

® the design action effect is the most unfavourable of those calculated by
this process.

The use of combination values allows for the lack of correlation between
time-dependent variable actions.

As an example, it is assumed that a bending moment M, in a member is
influenced by its own weight (G), by an imposed vertical load (Q,) and by
wind loading (Q;). The fundamental combinations for verification for
persistent design situations are:

Y6GOx + va10k,1 + Ya2v0,20x 2 (1.6)

and

Y6Gx + Yai1¥o,10k,1 + Y0202 - )

In practice, it is usually obvious which combination will govern. For
low-rise buildings, wind is rarely critical for floors, so expression (1.6), with
imposed load leading, would be used; but for a long-span lightweight roof,
expression (1.7) could govern, and both positive and negative wind press-
ures would be considered.

The combination for accidental design situations is given in Section
3.3.7.

For serviceability limit states, three combinations are defined. The most
onerous of these, the ‘rare’ combination, is recommended in Eurocode 4
for checking deformations of beams and columns. For the example given
above, it is:

Gy + Ok,1 + Vo20k2 (1.8)
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Gy + ¥g,10k1 + Ok2- (1.9)
Assuming that Q; is the leading variable action, the others are:

¢ frequent combination:

Gx + 41,10¢1 + ¥220k 2 (1.10)
® quasi-permanent combination:
G + $2,10x,1 + Y220k 2 (1.11)

The quasi-permanent combination is recommended in Eurocode 4 for
checking widths of cracks in concrete. The frequent combination is not at
present used in Eurocode 4: Part 1.1.

The values of the combination factors to be used in this volume, taken
from draft Eurocode 1, are given in Table 1.3.

Table 1.3 Combination factors.

Factor Yo Uy Y
Imposed floor loading in office

building, category C 0.7 0.7 0.6
Wind loading 0.6 0.5 0

1.3.2.5 Simplified combinations of actions

Eurocode 4 allows the use of simplified combinations for the design of
building structures. For the example above, and assuming that Q, is more
adverse than Q,, they are as follows:

e for ultimate limit states, the more adverse of

YoGx + Y010k 1 (1.12)
and
Y6Gx + 0.9 (o101 + ¥020k2) (1.13)
® for the rare combination at serviceability limit states, the more adverse
of
Gy + Gk (1.19)
and

Gy + 0.9(Ok1 + Ok2). (1.1‘5)
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1.3.2.6 Comments on limit state design philosophy

‘Working stress’ or ‘permissible stress’ design has been replaced by limit
states design partly because limit states provide identifiable criteria for
satisfactory performance. Stresses cannot be calculated with the same
confidence as resistances of members, and high values may or may not be
significant.

One apparent disadvantage of limit states design is that as limit states
occur at various load levels, several sets of design calculations are needed,
whereas with some older methods, one was sufficient. This is only partly
true, for it has been found possible when drafting codes of practice to
identify many situations in which design for, say, ultimate limit states will
automatically ensure that certain types of serviceability will not occur; and
vice versa. In Eurocode 4: Part 1.1 it has generally been possible to avoid
specifying limiting stresses for serviceability limit states, by using the
methods described in Sections 3.4.5, 3.7, 4.2.5 and 4 .4.

1.4 Properties of materials

Information on the properties of structural steel, concrete, and reinforce-
ment is readily available. Only that which has particular relevance to
composite structures will be given here.

For the determination of the bending moments and shear forces in a
beam or framed structure (known as ‘global analysis’) all three materials
can be assumed to behave in a linear-elastic manner, though an effective
modulus has to be used for the concrete, to allow for its creep under
sustained compressive stress. The effects of cracking of concrete in tension,
and of shrinkage, can be allowed for, but are rarely significant in buildings.

oty for steel

in tension
1.0L ]
steel
fc/fcufor concrete
in compression
concrete
0 0.002 0.004 0.006 0.008

tensile or compressive strain

Fig. 1.1 Stress—strain curves for concrete and structural steel.
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Rigid-plastic global analysis can sometimes be used (Section 4.3.3),
despite the profound difference between a typical stress-strain curve for
concrete in compression, and those for structural steel or reinforcement, in
tension or compression, that is illustrated in Fig. 1.1. Concrete reaches its
maximum compressive stress at a strain of between 0.002 and 0.003, and at
higher strains it crushes, losing almost all its compressive strength. It is
very brittle in tension, having a strain capacity of only about 0.0001
(i.e. 0.1 mm per metre) before it cracks. The figure also shows that the
maximum stress reached by concrete in a beam or column is little more
than 80% of its cube strength. Steel yields at a strain similar to that given
for crushing of concrete, but on further straining the stress in steel con-
tinues to increase slowly, until the total strain is at least 40 times the yield
strain. The subsequent necking and fracture is of significance for composite
members only above internal supports of continuous beams, for the useful
resistance of a cross-section is reached when all of the steel yields, when
steel in compression buckles, or when concrete crushes.

Resistances of cross-sections are determined (‘local analysis’) using
plastic analysis wherever possible, because results of elastic analyses are
unreliable, unless careful account is taken of cracking, shrinkage, and
creep of concrete, and also because plastic analysis is simpler and leads to
more economical design.

The higher value of yy that is used for concrete, in comparison with steel
(Table 1.2) reflects not only the higher variability of the strength of test
specimens, but also the variation in the strength of concrete over the depth
of a member, due to migration of water before setting, and the larger
errors in the dimensions of cross-sections, particularly in the positions of
reinforcing bars.

Brief comments are now given on individual materials.

Concrete

A typical strength class for concrete in Eurocodes 2 and 4 is denoted
C25/30, where the characteristic compressive strengths at 28 days are
fex = 25 N/mm? (cylinder) and f,, = 30 N/mm? (cube). All design formulae
use fox, not f.,, so in worked examples here, ‘Grade 30’ concrete (in British
terminology) will be used, with f;, taken as 25 N/mm?. Other properties for
this concrete, given in Eurocode 4, are as follows:

® mean tensile strength, f.m = 2.6 N/mm?

® with upper and lower 5% fractiles: f.q 095 = 3.3 N/mm?
fek 0.0s = 1.8 N/mm?

® basic shear strength, Trgq = 0.25 foy 0.05/Yc = 0.30 N/mm?

e coefficient of linear thermal expansion, 10 X 1075 per °C.

‘Normal-density’ concrete typically has a density, p, of 2400 kg/m3. It is
used for composite columns and web encasement in worked examples
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here, but the floor slabs are constructed in lightweight-aggregate concrete
with density p = 1900 kg/m>. The mean secant modulus of elasticity is given
in Eurocode 4 for grade C25/30 concrete as

E.m = 30.5 (p/2400)? kN/mm?,

with p in kg/m® units.

Reinforcing steel
Standard strength grades for reinforcing steel will be specified in EN
- 1008019 in terms of a characteristic yield strength fi,. Values of f;; used in
worked examples here are 460 N/mm?, for ribbed bars, and 500 N/mm?, for
welded steel fabric or mesh. It is assumed here that both types of reinforce-
ment satisfy the specifications for ‘high bond action’ and ‘high ductility’ to
be given in EN 10 080.

The modulus of elasticity for reinforcement, E, is normally taken as
200 kN/mm?; but in a composite section it may be assumed to have the
value for structural steel, E, = 210 kN/mm?, as the error is negligible.

Structural steel

Standard strength grades for structural steel are given in EN 10 02517 in
terms of a nominal yield strength f, and ultimate tensile strength f,,. These
values may be adopted as characteristic values in calculations. The grade
used in worked examples here is S 355, for which

fy =355 N/mm?, f, = 510 N/mm?

for elements of all thicknesses up to 40 mm.

The density of structural steel is assumed to be 7850 kg/m>. Its coef-
ficient of linear thermal expansion is given in Eurocode 3 as 12 X 107 per
°C, but for simplicity the value 10 X 10~ per °C (as for reinforcement
and normal-density concrete) may be used in the design of composite
structures for buildings.

Profiled steel sheeting

This material is available with yield strengths (f;,,) ranging from 235 N/mm?*
to at least 460 N/mm?, in profiles with depths ranging from 45 mm to over
200 mm, and with a wide range of shapes. These include both re-entrant
and open troughs, as in Fig. 3.9. There are various methods for achieving
composite action with a concrete slab, discussed in Section 2.4.3.

Sheets are normally between 0.8 mm and 1.5 mm thick, and are pro-
tected from corrosion by a zinc coating about 0.02 mm thick on each face.
Elastic properties of the material may be assumed to be as for structural
steel.

Shear connectors
Details of these and the measurement of their resistance to shear are given
in Chapter 2.
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1.5 Direct actions (loading)

The characteristic loadings to be used in worked examples are now given.
They are taken from draft Eurocode 1.

The permanent loads (dead load) are the weights of the structure and its
finishes. In composite members, the structural steel component is usually
built first, so a distinction must be made between load resisted by the steel
component only, and load applied to the member after the concrete has
developed sufficient strength for composite action to be effective. The
division of the dead load between these categories depends on the method
of construction. Composite beams and slabs are classified as propped or
unpropped. In propped construction, the steel member is supported at
intervals along its length until the concrete has reached a certain pro-
portion, usually three-quarters, of its design strength. The whole of the
dead load is then assumed to be resisted by the composite member. Where
no props are used, it is assumed in elastic analysis that the steel member
alone resists its own weight and that of the formwork and the concrete slab.
Other dead loads such as floor finishes and internal walls are added later,
and so are assumed to be carried by the composite member. In ultimate-
strength methods of analysis (Section 3.5.3) it can be assumed that the
effect of the method of construction of the resistance of a member is
negligible.

The principal vertical variable load in a building is a uniformly-
distributed load on each floor. For offices, Eurocode 1: Part 2.4 gives ‘for
areas subject to overcrowding and access areas’ its characteristic value as

gx = 5.0 kN/m?. (1.16)
For checking resistance to point loads a concentrated load
Ox =7.0kN (1.17)

is specified, acting on any area 50 mm square. These rather high loads are
chosen to allow for a possible change of use of the building. A more typical
loading g, for an office floor is 3.0 kN/m?.

Where a member such as a column is carrying loads g, from n storeys
(n > 2), the total of these loads may be multiplied by a factor

2+ (=2 (1.18)
n

n

where \yg is given in Table 1.3. This allows for the low probability that all n
floors will be fully loaded at once.

The principal horizontal variable load for a building is wind. Wind loads
are given in Eurocode 1: Part 2.7.They usually consist of pressure or
suction on each external surface, though frictional drag may be significant
on large flat areas. Wind loads rarely influence the design of composite
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beams, but can be important in framed structures not braced against side-
sway (Section 5.4.2) and in all tall buildings.

Methods of calculation that consider distributed and point loads are
sufficient for all types of direct action. Indirect actions such as differential
changes of temperature and shrinkage of concrete can cause stresses and
deflections in composite structures, but rarely influence the structural
design of buildings. Their effects in composite bridge beams are explained
in Volume 2.

1.6 Methods of analysis and design

The purpose of this section is to provide a preview of the principal methods
of analysis used in this volume, and to show that most of them are
straightforward applications of methods in common use for steel or for
concrete structures.

The steel designer will be familiar with the elementary elastic theory of
bending, and the simple plastic theory in which the whole cross-section of a
member is assumed to be at yield, in either tension or compression. Both
theories are used for composite members, the differences being as follows:

® concrete in tension is usually neglected in elastic theory, and always
neglected in plastic theory;

® in the elastic theory, concrete in compression is ‘transformed’ to steel
by dividing its breadth by the modular ratio E/E,;

¢ in the plastic theory, the equivalent ‘yield stress’ of concrete in com-
pression is assumed in Eurocodes 2 and 4 to be 0.85 £, where f4 is the
characteristic cylinder strength of the concrete. Examples of this
method will be found in Sections 3.5.3 and 5.6.4.

In the UK, the compressive strength of concrete is specified as a cube
strength, f.,. In the strength classes defined in the Eurocodes (C20/25 to
C50/60) the ratios f./f., range from 0.78 to 0.83, so the stress 0.85 fy
corresponds to a value between 0.66 £, and 0.70 f,. It is thus consistent
with BS 59504 which uses 0.67 feu for the unfactored plastic resistance of
cross-sections.

The factor 0.85 takes account of several differences between a standard
cylinder test and what concrete experiences in a structural member. These
include the longer duration of loading in the structure, the presence of a
stress gradient across the section considered, and differences in the bound-
ary conditions for the concrete.

The concrete designer will be familiar with the method of transformed
sections, and with the rectangular-stress-block theory outlined above.
The basic difference from the elastic behaviour of reinforced con-
crete beams is that the steel section in a composite beam is more than
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Fig. 1.2 Shear stresses in elastic I-section.

tension reinforcement, because it has a significant bending stiffness of its
own. It also resists most of the vertical shear.

The formulae for the elastic properties of composite sections are more
complex that those for steel or reinforced concrete sections. The chief
reason is that the neutral axis for bending may lie in the web, the steel
flange, or the concrete flange of the member. The theory is not in principle
any more complex than that used for a steel I-beam.

Longitudinal shear
Students usually find this subject troublesome even though the formula

_ VA

T=— (1.19)

is familiar from their study of vertical shear stress in elastic beams, so a

note on the use of this formula may be helpful. Its proof can be found in
any undergraduate-level textbook on strength of materials.

We consider first the shear stresses in the elastic I-beam shown in Fig.
1.2 due to a vertical shear force V. For the cross-section 1-2 through the
web, the ‘excluded area’ is the flange, of area A¢, and the distance y of its
centroid from the neutral axis is 2(k — ¢;). The longitudinal shear stress Ty,
on plane 1-2, of breadth ¢, is therefore

_ 2 VA — 1)

T12 It
W
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where [ is the second moment of area of the section about the axis XX.

Consideration of the longitudinal equilibrium of the small element 1234
s_hows that if its area £t is much less than A¢, then the mean shear stress on
planes 14 and 2-3 is given approximately by

_1
Tials = 5T120w

Repeated use of (1.19) for various cross-sections shows that the variation
of longitudinal shear stress is parabolic in the web and linear in the flanges,
as shown in Fig. 1.2.

The second example is the elastic beam shown in section in Fig. 1.3. This
represents a composite beam in sagging bending, with the neutral axis at
depth x, a concrete slab of thickness k., and the interface between the slab
and the structural steel (which is assumed to have no top flange) at level
6-5. The concrete has been transformed to steel, so the cross-hatched area
is the equivalent steel section. The concrete in area ABCD is assumed to
be cracked, to resist no longitudinal stress, but to be capable of transferring
shear stress.

Equation (1.19) is based on rate of change of bending stress, so in
applying it here, area ABCD is omitted when the ‘excluded area’ is
calculated. Let the cross-hatched area of flange be A;, as before. The
longitudinal shear stress on plane 6-5 is given by

VA¢y
It,,
where y is the distance from the centroid of the excluded area to the

(1.20)

Tes =

T4 =723

| ~ I
|

T2z T
L -

Fig. 1.3 Shear stresses in a composite section with the neutral axis in the concrete slab.
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neutral axis, not to plane 6-5. If A and y are calculated for the cross-
hatched area below plane 6-5, the same value 765 is obtained, because it is
the equality of these two Ays that determines the value x.

For plane 6-5, the shear force per unit length of beam (symbol v), equal
to Tgstw, is more meaningful than 745 because this is the force resisted by the
shear connectors, according to elastic theory. This theory is used for the
design of shear connection in bridge decks, but not in buildings, as there is
a simpler ultimate-strength method (Section 3.6).

For a plane such as 2-3, the longitudinal shear force per unit length is
given by equation (1.19) as

VAzy (1.21)
.

The shear stress in the concrete on this plane, 7, is

V= TX =

v
== 22
=g (1.22)
It is not equal to 7,3 because the cracked concrete can resist shear; and it
does not have to be divided by the modular ratio, even though the
transformed section is of steel, because the transformation is of widths, not
depths. This is a stress on an area that has not been reduced by transform-
ation. An alternative explanation is that shear forces v from equation
(1.21) are independent of the material considered, because transformation
does not alter the ratio Ays/1.
The variation of 7. across the width of the concrete flange is ‘triangular’
as shown at the top of Fig. 1.3.

Longitudinal slip

Shear connectors are not rigid, so that a small longitudinal slip occurs
between the steel and concrete components of a composite beam. The
problem does not arise in other types of structure, and relevant analyses
are quite complex (Section 2.6 and Appendix A). They are not needed in
design, for which simplified methods have been developed.

Deflections

The effects of creep and shrinkage make the calculation of deflections in
reinforced concrete beams more complex than for steel beams, but the
limiting span/depth ratios given in codes such as BS 8110"® provide a
simple means of checking for excessive deflection. These are unreliable for
composite beams, especially where unpropped construction is used, so
deflections are normally checked by calculations similar to those used for
reinforced concrete, as shown in Section 3.7.

Vertical shear
The methods used for steel beams are applicable also to composite beams.
In beams with slender webs, some advantage can be taken of the connec-
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tion of the steel beam to a concrete slab; but the resistance of a concrete
flange to vertical shear is normally neglected, as it is much less than that of
the steel member.

Buckling of flanges and webs of beams

This will be a new problem to many designers of reinforced concrete. In
continuous beams it leads to restrictions on the slenderness of unstiffened
flanges and webs (Section 3.5.2). In Eurocode 4, these are identical to
those given for steel beams in Eurocode 3; and in the British code,® the
values for webs are slightly more restrictive than those for steel beams.

Crack-width control

The maximum spacings for reinforcing bars recommended in codes for
reinforced concrete are intended to limit the widths of cracks in concrete,
for reasons of appearance and to avoid corrosion of reinforcement. In
composite structures for buildings, cracking is likely to be a problem only
in encased beams, or where the top surfaces of continuous beams are
exposed to corrosion. The principles of crack-width control are as for
reinforced concrete, but calculations may be more complicated (Section
4.2.5). They can normally be avoided by using the bar-spacing rules given
in Eurocode 4.

Continuous beams

In developing a simple design method for continuous beams in buildings
(Chapter 4), use has been made of the simple plastic theory (as used for
steel structures) and of redistribution of moments (as used for concrete
structures).

Columns

The only British code that gives a design method for composite columns is
BS 5400: Part 5, ‘Composite bridges’, and that method (described in
Chapter 14, Volume 2) is rather complex for use in buildings. Eurocode 4
given a new and simpler method, developed in Germany, which is
described in Section 5.6.

Framed structures for buildings

Composite members normally form part of a frame that is essentially steel,
rather than concrete, so the design methods given in Eurocode 4 (Section
5.4) are based on those of Eurocode 3, for steel structures. Beam-to-
column connections are classified in the same way, and the same criteria
are used for classifying frames as ‘braced’ or ‘unbraced’ and as ‘sway’ or
‘non-sway’. No design method for composite frames has yet been devel-
oped that is both simple and rational, and much research is in progress,
particularly on design using semi-rigid connections.
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Structural fire design

The high thermal conductivity of structural steel and profiled steel sheeting
causes them to lose strength in fire more quickly than concrete does.
Structures for buildings are required to have fire resistance of minimum
duration (typically, 30 minutes to 2 hours) to enable occupants to escape,
and to protect fire fighters. This leads to the provision either of minimum
thicknesses of concrete and areas of reinforcement, or of thermal insu-
lation for steelwork. Fire testing combined with parametric studies by
finite-element analysis have led to reliable design methods. Fire engineer-
ing is an extensive subject, so only a few of these methods are explained
here, in Sections 3.3.7, 3.10, and 5.6.2, with worked examples in Sections
3.4.6

and 3.11.4.
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Shear Connection

2.1 Introduction

The established design methods for reinforced concrete and for structural
steel give no help with the basic problem of connecting steel to the
concrete. The force applied to this connection is mainly, but not entirely,
longitudinal shear. As with bolted and welded joints, the connection is a
region of severe and complex stress that defies accurate analysis, and so
methods of connection have been developed empirically and verified by
tests. They are described in Section 2.4.

The simplest type of composite member used in practice occurs in floor
structures of the type shown in Fig. 3.1. The concrete floor slab is continu-
ous over the steel I-sections, and is supported by them. It is designed to
span in the y-direction in the same way as when supported by walls or the
ribs of reinforced concrete T-beams. When shear connection is provided
between the steel member and the concrete slab, the two together span in
the x-direction as a composite beam. The steel member has not been
described as a ‘beam’, because its main function at midspan is to resist
tension, as does the reinforcement in a T-beam. The compression is
assumed to be resisted by an ‘effective’ breadth of slab, as explained in
Section 3.4.

In buildings, but not in bridges, these concrete slabs are often composite
with profiled steel sheeting (Fig. 2.8), which rests on the top flange of the
steel beam. Other types of cross-section that can occur in composite beams
are shown in Fig. 2.1.

" Fig. 2.1 Typical cross-sections of composite beams.

20
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Fig. 2.2 Effect of shear connection on bending and shear stresses.

The ultimate-strength design methods used for shear connection in
beams and columns in buildings are described in Sections 3.6 and 5.6.6,
respectively. The elasticity-based methods used in bridges are explained in
Section 8.5 and Chapter 10 in Volume 2.

The subjects of the present chapter are: the effects of shear connection
on the behaviour of very simple beams, current methods of shear connec-
tion, standard tests on shear connectors, and shear connection in compo-
site slabs.

2.2 Simply-supported beam of rectangular cross-section

Flitched beams, whose strength depended on shear connection between
parallel timbers, were used in mediaeval times, and survive today in the
form of glued-laminated construction. Such a beam, made from two mem-
bers of equal size (Fig. 2.2), will now be studied. It carries a load w per unit
length over a span L, and its components are made of an elastic material
with Young’s modulus E. The weight of the beam is neglected.
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2.2.1 No shear connection

We assume first that there is no shear connection or friction on the
interface AB. The upper beam cannot deflect more than the lower one, so
each carries load w/2 per unit length as if it were an isolated beam of
second moment of area bh>/12, and the vertical compressive stress across
the interface is w/2b. The midspan bending moment in each beam is
wL?/16. By elementary beam theory, the stress distribution at midspan
is as in Fig. 2.2.(c), and the maximum bending stress in each comporient,
o, is given by

_ Mymax _ wL* 12 b _ 3wL? @.1)

I 16 bH*2  8bh?’ '

The maximum shear stress, T, occurs near a support. The parabolic distri-
bution given by simple elastic theory is shown in Fig. 2.2(d); and at the
centre-line of each member,

_3wL1l _3wL 2.2)
2 4 bh 8bh
The maximum deflection , 3, is given by the usual formula
_SwR”)L* _ 5 wi2L* _ swL® 2.3)

384E1 384 2 Ebi°  GAEbK

The bending moment in each beam at a section distant x from midspan is
M, = w(L? — 4x%)/16, so that the longitudinal strain €, at the bottom fibre
of the upper beam is

_ Mymax _ 12 2

“T TEl 8Ebh2 (L7 = 4. ¢
There is an equal and opposite strain in the top fibre of the lower beam, so
that the difference between the strains in these adjacent fibres, known as
the slip strain, is 2e,.

It is easy to show by experiment with two or more flexible wooden laths
or rulers that under load, the end faces of the two-component beam have
the shape shown in Fig. 2.3(a). The slip at the interface, s, is zero atx = 0
(from symmetry) and a maximum at x = +1/2. The cross-section atx = 0 is
the only one where plane sections remain plane. The slip strain, defined
above, is not the same as slip. In the same way that strain is rate of change
of displacement, slip strain is the rate of change of slip along the beam.
Thus from (2.4),

ds 3w
— = 2¢, L2 — 4x2 2.5
R Y T T ). @3)
Integration gives
s = (3L% — 4x%). (2.6)

4Ebh2




Shear Connection 23

The constant of integration is zero, since s = 0 when x = 0, so that (2.6)
gives the distribution of slip along the beam.

Results (2.5) and (2.6) for the beam studied in Section 2.7 are plotted in
Fig. 2.3. This shows that at midspan, slip strain is a maximum and slip is
zero, and at the ends of the beam, slip is a maximum and slip strain is zero.
From (2.6), the maximum slip (when x = L/2) is wL*/4Ebh?. Some idea of
the magnitude of this slip is given by relating it to the maximum deflection
of the two beams. From (2.3), the ratio of slip to deflection is 3.24/L. The
ratio L/2h for a beam is typically about 20, so that the end slip is less than a
tenth of the deflection. We conclude that shear connection must be very stiff
if it is to be effective.

(a) deflected shape

——-—no interaction

partial interaction slip,mm
1R 8.1mm
v
1t (E) Y
/
/
6:08_ .
// ~ /
/ \ / 0.45mm
’ \ -5 /
/ \\ >
/ / 5
/ \ / X,metres
// \ /
/
/ \ -4{
,/ \ //
/ 105 \\ /
1 \ ,/
. v =81
- x,metres 3
(b) slip strain (c) slip

Fig. 2.3 Deflections, slip strain and slip.

2.2.2 Full interaction

It is now assumed that the two halves of the beam shown in Fig. 2.2 are
joined together by an infinitely stiff shear connection. The two members
then behave as one. Slip and slip strain are everywhere zero, and it can be
assumed that plane sections remain plane. This situation is known as full
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interaction. With one exception (Section 3.5.3), all design of composite
beams and columns in practice is based on the assumption that full inter-
action is achieved.

For the composite beam of breadth » and depth 2k, I = 2bK3/3, and
elementary theory gives the midspan bending moment as wL?8. The
extreme fibre bending stress is

o= My wax _ wL? 3 _ 3wlL? @2.7)

I 8 26K 16bH*

The vertical shear at section x is

Vy=wx (2.8)
so the shear stress at the neutral axis is

. _3 1 3wx (2.9)

x = 2" 0bh ~ abh

and the maximum shear stress is

3wL
=W 2.10
=S (2.10)

The stresses are compared in Figs. 2.2(c) and (d) with those for the
non-composite beam. Owing to the provision of the shear connection, the
maximum shear stress is unchanged, but the maximum bending stress is

halved.
The midspan deflection is

4 4
384EI 256Ebh®

which is one-quarter of the previous deflection (equation (2.3)). Thus the
provision of shear connection increases both the strength and the stiffness
of a beam of given size, and in practice leads to a reduction in the size of
the beam required for a given loading, and usually to a reduction in its cost.

In this example — but not always — the interface AOB coincides with the
neutral axis of the composite member, so that the maximum longitudinal
shear stress at the interface is equal to the maximum vertical shear stress,
which occurs at x = x L/2 and is 3wL/8bh, from (2.10).

The shear connection must be designed for the longitudinal shear per
unit length, v, which is known as the shear flow. In this example it is
given by

3wx
L =1hb = =, 2.12)
V=T m (

The total shear flow in a half span is found, by integration of equation
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(2.12), to be 3wL?/(32h). Typically, L/2h = 20, so the shear connection in
the whole span has to resist a total shear force

3L
2 X ——wl=8wlL.
32hw 8w

Thus, this shear force is eight times the total load carried by the beam. A
useful rule of thumb is that the strength of the shear connection for a beam
is an order of magnitude greater than the load to be carried; it shows that
shear connection has to be very strong.

In elastic design, the shear connectors are spaced in accordance with the
shear flow. Thus, if the design shear resistance of a connector is Prq, the
pitch or spacing at which they should be provided, p, is given by pvy ¥ Prg.
From equation (2.12) this is

pp Rt (2.13)

This is known as ‘triangular’ spacing, from the shape of the graph of v
against x (Fig. 2.4).

Fig. 2.4 Shear flow for ‘triangular’ spacing of connectors.

2.3 Uplift

In the preceding example, the stress normal to the interface AOB
(Fig. 2.2) was everywhere compressive, and equal to w/2b except at the
ends of the beam. The stress would have been tensile if the load w had
been applied to the lower member. Such loading is unlikely, except when
travelling cranes are suspended from the steelwork of a composite floor
above; but there are other situations in which stresses tending to cause
uplift can occur at the interface. These arise from complex effects such as
the torsional stiffness of reinforced concrete slabs forming flanges of
composite beams, the triaxial stresses in the vicinity of shear connectors
and, in box-girder bridges, the torsional stiffness of the steel box.
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Tension across the interface can also occur in beams of non-uniform
section or with partially completed flanges. Two members without shear
connection, as shown in Fig. 2.5, provide a simple example. AB is sup-
ported on CD and carries distributed loading. It can easily be shown by
elastic theory that if the flexural rigidity of AB exceeds about one-tenth of
that of CD, then the whole of the load on AB is transferred to CD at points
A and B, with separation of the beams between these points. If AB was
connected to CD, there would be uplift forces at midspan.

2L L 2L

Fig. 2.5 Uplift forces.

Almost all connectors used in practice are therefore so shaped that they
provide resistance to uplift as well as to slip. Uplift forces are so much less
than shear forces that it is not normally necessary to calculate or estimate
them for design purposes, provided that connectors with some uplift
resistance are used.

2.4 Methods of shear connection

2.4.1 Bond

Until the use of deformed bars became common, most of the reinforce-
ment for concrete consisted of smooth mild-steel bars. The transfer of
shear from steel to concrete was assumed to occur by bond or adhesion at
the concrete—steel interface. Where the steel component of a composite
member is surrounded by reinforced concrete, as in an encased beam,
Fig. 2.1(c), or an encased stanchion, Fig. 5.15, the analogy with reinforced
concrete suggests that no shear connectors need be provided. Tests have
shown that this is usually true for cased stanchions and filled tubes, where
bond stresses are low, and also for cased beams in the elastic range. But in
design it is necessary to restrict bond stress to a low value, to provide
a margin for the incalculable effects of shrinkage of concrete, poor ad-
hesion to the underside of steel surfaces, and stresses due to variations of
temperature.

Research on the ultimate strength of cased beams!® has shown that at
high loads, calculated bond stresses have little meaning, due to the devel-
opment of cracking and local bond failures. If longitudinal shear failure
occurs, it is invariably on a surface such as AA in Fig. 2.1(c), and not
around the perimeter of the steel section. For these reasons, British codes
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of practice do not allow ultimate-strength design methods to be used for
composite beams without shear connectors.

Most composite beams have cross-sections of types (a) or (b) in Fig. 2.1.
Tests on such beams show that at low loads, most of the longitudinal shear
is transferred by bond at the interface, that bond breaks down at higher
loads, and that once broken it cannot be restored. So in design calcu-
lations, bond strength is taken as zero, and in research, bond is deliberately
destroyed by greasing the steel flange before the concrete is cast. For
uncased beams, the most practicable form of shear connection is some
form of dowel welded to the top flange of the steel member and sub-
sequently surrounded by in-situ concrete when the floor or deck slab is
cast.

2.4.2 Shear connectors

The most widely used type of connector is the headed stud (Fig. 2.6).
These range in diameter from 13 to 25 mm, and in length (k) from 65 to 100
mm, though longer studs are sometimes used. The current British code of
practice®® requires the steel from which the studs are manufactured to
have an ultimate tensile strength of at least 450 N/mm? and an elongation
of at least 15%. The advantages of stud connectors are that the welding
process is rapid, they provide little obstruction to reinforcement in the
concrete slab, and they are equally strong and stiff in shear in all directions
normal to the axis of the stud.

not less
than 1.5d
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Fig. 2.6 Headed stud shear connector.

There are two factors that influence the diameter of studs. One is the
welding process, which becomes increasingly difficult and expensive at
diameters exceeding 20 mm, and the other is the thickness ¢ (Fig. 2.6) of
the plate or flange to which the stud is welded. A study made in the
USA® found that the full static strength of the stud can be developed if
d/t is less than about 2.7, and a limit of 2.5 is given in Eurocode 4. Tests
using repeated loading®" led to the rule in the British bridge code®? that
where the flange plate is subjected to fluctuating tensile stress, d/t may not
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exceed 1.5. These rules prevent the use of welded studs as shear connec-
tion in composite slabs.

The maximum shear force that can be resisted by a stud is relatively low,
about 150 kN. Other types of connector with higher strength have been
developed, primarily for use in bridges. These are bars with hoops
(Fig. 2.7(a)), tees with hoops, horseshoes, and channels (Fig. 2.7(b)).
Bars with hoops are the strongest of these, with ultimate shear strengths up
to 1000 kN. Eurocode 4 also gives design rules for block connectors,
anchors made from reinforcing bars, angle connectors and friction-grip
bolts. Epoxy adhesives have been tried, but it is not clear how resistance to
uplift can reliably be provided where the slab is attached to the steel
member only at its lower surface.
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Fig. 2.7 Other types of shear connector.

2.4.3 Shear connection for profiled steel sheeting

This material is commonly used as permanent formwork for floor slabs in
buildings, then known as composite slabs. Typical cross-sections are shown
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in Figs 2.8, 2.14, 2.20, and 3.12. As it is impracticable to weld shear
connectors to material that may be less than 1 mm thick, shear connection
is provided either by pressed or rolled dimples that project into the
concrete, or by giving the steel profile a re-entrant shape that prevents
separation of the steel from the concrete.

The resistance of composite slabs to longitudinal shear is covered in
Section 2.8, and their design in Section 3.3.

part sectionA A
showing dimples

Fig. 2.8 Composite slab.

2.5 Properties of shear connectors

The property of a shear connector most relevant to design is the relation-
ship between the shear force transmitted, P, and the slip at the interface, s.
This load-slip curve should ideally be found from tests on composite
beams, but in practice a simpler specimen is necessary. Most of the data on
connectors have been obtained from various types of ‘push-out’ or ‘push’
test. The flanges of a short length of steel I-section are connected to two
small concrete slabs. The details of the ‘standard push test’ of Eurocode 4
are shown in Fig. 2.9. The slabs are bedded onto the lower platen of a
compression-testing machine or frame, and load is applied to the upper
end of the steel section. Slip between the steel member and the two slabs is
measured at several points, and the average slip is plotted against the load
per connector. A typical load-slip curve is shown in Fig. 2.10, from a test
using composite slabs.@

In practice, designers normally specify shear connectors for which
strengths have already been established, for it is an expensive matter to
carry out sufficient tests to determine design strengths for a new type of
connector. If reliable results are to be obtained, the test must be specified
in detail, for the load-slip relationship is influenced by many variables,
including:

(1) number of connectors in the test specimen,
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(2) mean longitudinal stress in the concrete slab surrounding the
connectors,

(3) size, arrangement, and strength of slab reinforcement in the vicinity of
the connectors,

(4) thickness of concrete surrounding the connectors,

(5) freedom of the base of each slab to move laterally, and so to impose
uplift forces on the connectors,

(6) bond at the steel-concrete interface,

(7) strength of the concrete slab, and

(8) degree of compaction of the concrete surrounding the base of each
connector.

The details shown in Fig. 2.9 include requirements relevant to items
1 to 6. The amount of reinforcement specified and the size of the slabs are
greater than for the British standard test,®? which has barely changed
since it was introduced in 1965. The Eurocode test gives results that are less
influenced by splitting of the slabs, and so give better predictions of the
behaviour of connectors in beams.®

¢p 180_11_180 i 180
! I ]
0 t + -
P ! 1 Q
L | | .u._,
c.-: ! ® &) N
I ' o
. R
L » T | °
- Ve &} [
« b [ '
i | 8
[=]
b - 149
I ) | _4;..8 —
[ 150 | 260 | 200 | 200 | 200 @E
D r T ' ve
bedded in mortar or gypsum
v -
0% G0
00 L8
b, o b . reinforcement:

ribbed bars of 10mm dia

100
600

steel section: HE260B or
254 x 254 x 89kgUC

Fig. 2.9 Standard push test.



Shear Connection

100 - .

load per
stud, kN

50 b

1 L I 1 1

0 2 4 6 8 10
slip, mm

Fig. 2.10 Typical load-slip curve for 19-mm stud connectors in a composite slab.

Tests have to be done for a range of concrete strengths, because the
strength of the concrete influences the mode of failure, as well as the
failure load. Studs may reach their maximum load when the concrete
surrounding them fails, but in stronger concrete, they shear off. This is why
the design shear resistance of studs with h/d = 4 is given in Eurocode 4 as
the lesser of two values:

2
Peg = 0.8fu(wd"/4) (2.14)
Yv
and
2 172
Py = 0.29d°(f. E.,,) (2.15)
Yv

where f, is the ultimate tensile strength of the steel (< 500 N/mm?), and
fex and E, are the cylinder strength and mean secant (elastic) modulus of
the concrete, respectively. Dimensions & and d are shown in Fig. 2.6. The
value recommended for the partial safety factor vy, is 1.25, based on
statistical calibration studies. When f, = 450 N/mm?, equation (2.14)
governs when f,, exceeds about 30 N/mm?.

—1

al —

Fig. 2.11 Bearing stress on the shank of a stud connector.

2L

Ignoring v, it is evident that equation (2.14) represents shear failure in
the shank of the stud at a mean stress of 0.8,. To explain equation (2.15),
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let us assume that the force Pg is distributed over a length of connector
equal to twice the shank diameter, because research has shown that the
bearing stress on a shank is concentrated near the base, as sketched in
Fig. 2.11. An approximate mean stress is then 0.145 (fckEcm)llz. Its value,
as given by Eurocode 4, ranges from 110 N/mm? for class C20/25 concrete
to 171 N/mm? for class C40/50 concrete, so for these concretes the mean
bearing stress at concrete failure ranges from 5.5f to 4.3f.. This estimate
ignores the enlarged diameter at the weld collar at the base of the stud,
shown in Fig. 2.6; but it is clear that the effective compressive strength is
several times the cylinder strength of the concrete.

This very high strength is possible only because the concrete bearing on
the connector is restrained laterally by the surrounding concrete, its rein-
forcement, and the steel flange. The results of push tests are likely to be
influenced by the degree of compaction of the concrete, and even by the
arrangement of particles of aggregate, in this small but critical region. This
is thought to be the main reason for the scatter of the results obtained.

The usual way of allowing for this scatter is to specify that the character-
istic resistance Pgy be taken as 10% below the lowest of the results from
three tests, and then corrected for any excess of the measured strength of
the connector material above the minimum specified value.

The load-slip curve for a connector in a beam is influenced by the
difference between the longitudinal stress in a concrete flange and that in
the slabs in a push test. Where the flange is in compression the load/slip
ratio (the stiffness) in the elastic range exceeds the push-test value, but the
ultimate strength is about the same. For slabs in tension (e.g. in a region
of hogging moment), the connection is significantly less stiff®? but the
ultimate shear resistance is only slightly lower. This is one reason why
partial shear connection (Section 3.6) is allowed in Eurocode 4 only in
regions-of sagging bending moment.

There are two situations in which the resistance of a connector found
from push tests may be too high for use in design. One is repeated loading,
such as that due to the passage of traffic over a bridge. This subject is
covered in Chapter 10 (Volume 2). The other is where the lateral restraint
to the concrete in contact with the connector is less than that provided in a
push test, as in a haunched beam with connectors too close to a free surface
(Fig. 2.12). For this reason, the use of the standard equations for resistance
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Fig. 2.12 Haunch with connectors too close to a free surface.
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Fig. 2.13 Detailing rules for haunches.

of connectors is allowed in haunched beams only where the cross-section of
the haunch satisfies certain conditions. In Eurocode 4, these are that the
concrete cover to the side of the connectors may not be less than 50 mm
(line AB in Fig. 2.13), and that the free concrete surface may not lie within
the line CD, which runs from the base of the connector at an angle of 45°
with the steel flange. A haunch that just satisfies these rules is shown as
EFG.

There are also rules for the detailing of reinforcement for haunches,
which apply also at the free edge of an L-beam.

Tests show that the ability of lightweight-aggregate concrete to resist the
high local stresses at shear connectors is slightly less than that of normal-
density concrete of the same cube strength. This is allowed for in Eurocode
4 by the lower value of E., that is specified for lightweight concrete. For
concrete of density 1750 kg/m>, the resistance given by equation (2.15) is
only 73% of that for normal-density concrete. This is considered in the UK
to be too low; the corresponding ratio in BS 59504 is 90%.

2.5.1 Stud connectors used with profiled steel sheeting

Where profiled sheeting is used, stud connectors are located within con-
crete ribs that have the shape of a haunch, which may run in any direction
relative to the direction of span of the composite beam. Tests show that the
shear resistance of connectors is sometimes lower than it is in a solid slab,
for materials of the same strength, because of local failure of the concrete
rib.

For this reason, Eurocode 4 specifies reduction factors, applied to the
resistance Prq found from equation (2.14) or (2.15). For sheeting with ribs
parallel to the beam, the factor is

b, [h
k=06-"2—-1]=<1.0
—oste(t 219
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where the dimensions b,, hp, and h are illustrated in Fig. 2.14, and his
taken as not greater than s, + 75 mm.

d
h P
centroidat centroidal
axis of sheet axis of sheet

Fig. 2.14 Composite beam and composite slab spanning in the same direction.

For sheeting with ribs transverse to the beam the factor is

0.7 b, (h
‘= VN h, (hp 1) (2.17)

where N, is the number of connectors in one rib where it crosses a beam,
not to be taken as greater than 2 in calculations.

These factors are based on formulae developed in North America®
modified to allow for the results of more recent tests™> 23 on European
profiles. It is known that they do not provide a uniform margin of safety.
More test data are needed to enable them to be improved, and as a basis
for reduction factors for connectors other than studs. Also, a distinction
should perhaps be made between studs welded to the steel flange through a
hole in the sheeting (the usual practice in some countries) and the British
(and North American) practice of ‘through-deck welding’.

2.6 Partial interaction

In studying the simple composite beam with full interaction (Section
2.2.2), it was assumed that slip was everywhere zero. However, the results
of push tests show (e.g. Fig. 2.10) that even at the smallest loads, slip is not
zero. It is therefore necessary to know how the behaviour of a beam is
modified by the presence of slip. This is best illustrated by an analysis
based on elastic theory. It leads to a differential equation that has to be
solved afresh for each type of loading, and is therefore too complex for use
in design offices. Even so, partial-interaction theory is useful, for it
provides a starting point for the development of simpler methods for
- predicting the behaviour of beams at working load, and finds application in
the calculation of interface shear forces due to shrinkage and differential
thermal expansion.
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The problem to be studied and the relevant variables are defined below.
The details of the theory, and of its application to a composite beam, are
given in Appendix A.The results and comments on them are given below
and in Section 2.7.

Elastic analysis is relevant to situations in which the loads on connectors
do not exceed about half their ultimate strength. The relevant part OB of
the load-slip curve (Fig. 2.10) can be replaced with little error by the
straight line OB. The ratio of load to slip given by this line is known as the
connector modulus, k.
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Fig. 2.15 Simply-supported composite beam.

For simplicity, the scope of the analysis is restricted to a simply
supported composite beam of span L (Fig. 2.15), carrying a distributed
load w per unit length. The cross-section consists of a concrete slab of
thickness A, cross-sectional area A., and second moment of area I, and a
symmetrical steel section with corresponding properties A, A,, and I,. The
distance between the centroids of the concrete and steel cross-sections, d.,
is given by

s (2.18)

Shear connectors of modulus & are provided at uniform spacing p along the
length of the beam.

The elastic modulus of the steel is E,, and that of the concrete for short-
term loading is E;. Allowance is made for creep of concrete by using an
effective modulus E; in the analysis, where

E¢ = k.E.,

and k. is a reduction coefficient, calculated from the ratio of creep strain to
elastic strain. The modular ratio n is defined by n = E,/E_, so that

_ kcEa
" .

Eg

(2.19)




36 Composite Structures of Steel and Concrete

The concrete is assumed to be as stiff in tension as in compression, for it is
found that tensile stresses in concrete are low enough for little error to
result in this analysis, except when the degree of shear connection is very
low. S

The results of the analysis are expressed in terms of two functions of the
cross-section of the member and the stiffness of its shear connection, o and
B. These are defined by the following equations, in which notation estab-
lished in CP117: Part 2 has been used.

1 n 1
—_ = + = (2.20)
AO kcAc Aa
1 I
2 _g24 b 2.21
Oy (2.21)
=y (2.22)
n
o=k (2.23)
PEJyA’
A'pd
B = _]i’_.c, (2.24)

In a composite beam, the steel section is thinner than the concrete
section, and the steel has a much higher coefficient of thermal conductivity.
Thus the steel responds more rapidly than the concrete to changes of
temperature. If the two components were free, their lengths would change
at different rates; but the shear connection prevents this, and the resulting
stresses in both materials can be large enough to influence design. The
shrinkage of the concrete slab has a similar effect. A simple way of
allowing for such differential strains in this analysis is to assume that after
connection to the steel, the concrete slab shortens uniformly, by an amount
€. per unit length, relative to the steel.

It is shown in Appendix A that the governing equation relating slip s to
distance along the beam from midspan, x, is

B wt= - oo (2.25)
and that the boundary conditions for the present problem are:
s=0 when x =0
% = —¢€, when x = £ L/2 (2.26)

The solution of (2.25) is then

s = Bwx — (M> sech (%) sinh ox. (2.27)
o



Shear Connection 37

Expressions for the slip strain and the stresses throughout the beam can be
obtained from this result. The stresses at a cross-section are found to
depend on the loading, boundary conditions and shear connection for the
whole beam. They cannot be calculated from the bending moment and
shear force at the section considered. This is the main reason why design
methods simple enough for use in practice have to be based on full-
interaction theory.

2.7 Effect of slip on stresses and deflections

Full-interaction and no-interaction elastic analyses are given in Section 2.2
for a composite beam made from two elements of equal size and stiffness.
Its cross-section (Fig. 2.2(b)) can be considered as the transformed section
for the steel and concrete beam shown in Fig. 2.16. Partial-interaction
analysis of this beam (Appendix A) illustrates well the effect of connector
flexibility on interface slip and hence on stresses and deflections, even
though the cross-section is not one that would be used in practice.
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Fig. 2.16 Transformed section of steel and concrete beam.

The numerical values, chosen to be typical of a composite beam, are
given in Section A.2. Substitution in (2.27) gives the relation between s and
x for a beam of depth 0.6 m and span 10 m as

10% = 1.05x — 0.0017 sinh (1.36x). (2.28)

The maximum slip occurs at the ends of the span, where x = =5 m. From
equation (2.28), it is +£0.45 mm.

The results obtained in Sections 2.2.1 and 2.2.2 are also applicable to
this beam. From equation (2.6), the maximum slip if there were no shear
connection would be 8.1 mm. Thus the shear connectors reduce end slip
substantially, but do not eliminate it. The variations of slip strain and
slip along the span for no interaction and partial interaction are shown in
Fig. 2.3.
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The connector modulus k was taken as 150 kN/mm (Appendix A). The
maximum load per connector is k times the maximum slip, so the partial-
interaction theory gives this load as 67 kN, which is sufficiently far below
the ultimate strength of 100 kN per connector for the assumption of a
linear load-slip relationship to be reasonable. Longitudinal strains at
midspan given by full-interaction and partial-interaction theories are
shown in Fig. 2.17. The increase in extreme-fibre strain due to slip,
28 x107%, is much less than the slip strain at the interface, 104 X 1075, The
maximum compressive stress in the concrete is increased by slip from 12.2
to 12.8 N/mm?, a change of 5%. This higher stress is 43% of the cube
strength, so the assumption of elastic behaviour is reasonable.
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Fig. 2.17 Longitudinal strains at midspan.

The ratio of the partial-interaction curvature to the full-interaction
curvature is 690/610, or 1.13. Integration of curvatures along the beam
shows that the increase in deflection, due to slip, is also about 13%. The
effects of slip on deflection are found in practice to be less than is implied
by this example, because here a rather low value of connector modulus has
been used, and the effect of bond has been neglected.

The longitudinal compressive force in the concrete at midspan is pro-
portional to the mean compressive strain. From Fig. 2.17, this is 305 X
10~ for full interaction and 293 X 10~ for partial interaction, a reduction
of 4%.

The influence of slip on the flexural behaviour of the member may be
summarised as follows. The bending moment at midspan, wL?/8, can be
considered to be the sum of a ‘concrete’ moment M., a ‘steel’ moment M,,
and a ‘composite’ moment Fd, (Fig. A.1):

2
Mc+Ma+ch=lv8£.
In the full-interaction analysis, Fd, contributes 75% of the total moment,
and M. and M, 12.5% each. The partial-interaction analysis shows that slip
reduces the contribution from Fd, to 72% of the total, so that the contri-
butions from M. and M, rise to 14%, corresponding to an increase in
curvature of (14 — 12.5)/12.5, or about 13%.



Shear Connection 39

full
400

X, metres

Fig. 2.18 Longitudinal shear force per unit length.

The interface shear force per unit length, vy, is given by equation (2.12)
for full interaction and by equations (A.1) and (2.28) for partial inter-
action. The expressions for v, over a half span are plotted in Fig. 2.18, and
show that in the elastic range, the distribution of loading on the connectors
is similar to that given by full-interaction theory. The reasons for using
uniform rather than ‘triangular’ spacing of connectors are discussed in
Section 3.6.

2.8 Longitudinal shear in composite slabs

There are three types of shear connection between a profiled steel sheet
and a concrete slab. At first, reliance was placed on the natural bond
between the two. This is unreliable unless separation at the interface
(‘uplift’) is prevented, so sheets with re-entrant profiles, such as Holorib,
were developed. This type of shear connection is known as ‘frictional
interlock’. The second type is ‘mechanical interlock’, provided by pressing
dimples or ribs (Fig. 2.8) into the sheet. The effectiveness of these emboss-
ments depends entirely on their depth, which must be accurately controlled
during manufacture. The third type of shear connection is ‘end anchorage’.
This can be provided where the end of a sheet rests on a steel beam, by
means of shot-fired pins, or by welding studs through the sheeting to the
steel flange.

2.8.1 The m-k or shear-bond test

The effectiveness of shear connection is studied by means of loading tests
on simply-supported composite slabs, as sketched in Fig. 2.19. Specifica-
tions for such tests are given in Section 10.3 of Eurocode 4 and in BS 5950:
Part 4.2”) The length of each shear span, L, is usually L/4, where L is the
span, which is typically about 3.0 m. There are three possible modes of
failure:

¢ in flexure, at a cross-section such as 1-1 in Fig. 2.19;
® in longitudinal shear, along a length such as 2-2; and
® in vertical shear, at a cross-section such as 3-3.
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Fig. 2.20 Bending resistance of a composite slab.
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Fig. 2.21 Definition of m and k.

The expected mode of failure in a test depends on the ratio of L to the
effective depth d,, of the slab, shown in Fig. 2.20. In tests to Eurocode 4,
the results are plotted on a diagram with axes V/bd, and Ay/bL, (Fig.
2.21), for reasons that are now explained.

At high Lyd,,, flexural failure occurs. The maximum bending moment,
M,, is given by

M, = VL, (2.29)
where V is the maximum vertical shear, assumed to be much greater than
the self-weight of the slab. A test specimen, of breadth b, should include a
number of complete wavelengths of sheeting, of total cross-sectional area
A,,. Flexural failure is modelled by simple plastic theory, with all the steel
at its yield stress, f,, (Fig. 2.20), and sufficient concrete at 0.85 f., where f,
is the cylinder strength, for longitudinal equilibrium. The lever arm is a
little less than d,,, but approximately,

M, < A fop & - (2.30)
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From equation (2.29)

|4 M A
—_ =" oc—PlXE ) (2.31)
bd, bd,L, bL

The strength fy;, is not varied during a series of tests, and has no influence
on longitudinal shear failure. It is therefore omitted from the axes on Fig.
2.21, and equation (2.31) shows that flexural failure should plot as a
straight line through the origin.

Atlow Lg/d,,, vertical shear failure occurs. The mean vertical shear stress
on the concrete is roughly equal to V/bd,. It is assumed in current codes
that the ratio Ay/bL has little influence on its ultimate value, so vertical
shear failures are represented by a horizontal line on Fig. 2.21. However,
Patrick and Bridge®® have shown that this should be a rising curve.

Longitudinal shear failures occur at intermediate values of Ly/dp,, and lie
near the line

|4 A,
—=m (—) +k ' (2.32)
bd, bL,

as shown by AB on Fig. 2.21, where m and k are constants to be deter-
mined by testing. Design based on equation (2.32) is one of the two
methods given in Eurocode 4. (The other is treated in Section 3.3.2.) The
present method is similar to one that has been widely used for several
decades,?”? known as the ‘m-k method’. In that method, m and k are
usually defined by the equation

V = bd,(f)"? (2.33)

Ap
m———+k
i
where f, is the measured cylinder or cube strength of the concrete. This
equation can give unsatisfactory results for m and k when f; varies widely
within a series of tests, so f. has been omitted from equation (2.32).
A comparison of the two methods*> has shown that this has little effect on
m; but the two equations give different values for k, in different units.
A value found by, for example, the method of BS 5950: Part 4 cannot be
used in design to Eurocode 4; but a new value can be determined from the

original test data.

A typical set of tests consists of a group of three, with Ly/d,, such that the
results lie near point A on Fig. 2.21, and a second group with lower Ly/d,,,
such that the results lie near point B. Values of m and k are found for a line
drawn below the lowest result in each group, at a distance that allows for
the scatter of the test data.

All six failures have to be in longitudinal shear. These failures typically
commence when a crack occurs in the concrete under one of the load
points, associated with loss of bond along the shear span and measurable
slip at the end of the span. If this leads to failure of the slab, the shear
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connection is classified as ‘brittle’. Such failures occur suddenly, and are
penalised in design to Eurocode 4 by a 20% reduction in design resistance.

Where the eventual failure load exceeds the load causing the first end
slip by more than 10%, the failure is classified as ‘ductile’. Recently-
developed profiles for sheeting have better mechanical interlock than
carlier shapes, which relied more on frictional interlock and were more
susceptible to ‘brittle’ failure. The influence of bond is minimised in the
standard test, by the application of several thousand cycles of repeated
loading up to 1.5 times the expected loading in service, before loading to
failure.

When a new profile is developed, values of m and & have to be deter-
mined, in principle, for each thickness of sheeting, each overall depth of
slab to be used, and for a range of concrete strengths. Codes allow some
simplification, but the testing remains a long and costly process. The m-k
test is also unsatisfactory in other ways.(>- 39 A test using much smaller
specimens, that may in time replace it, is now described.

2.8.2 The slip-block test

This test has been developed in Australia since 1989, 3D for profiles that
provide ductile shear connection. A piece of sheeting one wavelength wide
and about 300 mm long is attached by spot welding to a baseplate
(Fig. 2.22). A cover slab of similar thickness to the composite slab is cast
on it. A vertical load V is applied through rollers, and a horizontal force H
as shown in the figure. Longitudinal slip, s, is measured.

The procedure is illustrated in Fig. 2.23. Bond is broken in a preliminary
test. A load V is applied (point A), and kept constant while H is increased
until slip begins (point B). The load V is then slowly reduced, so that
slipping occurs and H falls off slightly. This is continued until the block is

Fig. 2.22 Slip-block test.
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Fig. 2.23 Results of a slip-block test.

about to lift at one end (point C). Load V is again increased (to point D),
and the cycle is repeated, this time at slightly greater slip. Further cycles
follow, as shown by slip lines GH, etc., on Fig. 2.23(b). The slope of each
slip line gives a value for the coefficient of friction, p., and its intercept on
the H-axis in Fig. 2.23(a) gives a value for 7,b/, where 1, is the mean shear
stress per unit horizontal area, because

H=r1bl+ pV.

The values of T, and p. so found are plotted against the slips at points C, F,
H, etc., as shown in Fig. 2.23(c). This shows clearly how ductile the
connection is. For design, single values of 1, and p can be used. It has been
found®? that accurate predictions of the behaviour of composite slabs are
obtained when the values used correspond to between 2 mm and 3 mm of
slip in the slip-block test.

The design procedure for a composite slab using this method is explained
in Section 3.4.3.



Chapter 3

Simply-supported Composite Slabs
and Beams

3.1 Introduction

The subjects of this and subsequent chapters are treated in the sequence in
which they developed. Relevant structural behaviour is discovered by
experience or research, and is then represented by mathematical models.
These make use of standardised properties of materials, such as the yield
strength of steel, and enable the behaviour of a member under load to be
predicted. The models are developed into design rules, as found in codes of
practice, by simplifying them wherever possible, defining their scope and
introducing partial safety factors.

Research workers often propose alternative models, and language bar-
riers are such that the model preferred in one country may be little known
elsewhere. The writers of codes try to select the most rational and widely-
applicable of the available models, but must also consider existing design
practices and the need for simplicity. The design rules used in this volume
are taken from the Eurocodes, which differ slightly from the corresponding
British codes; but the underlying models are usually the same, and signifi-
cant differences will be explained.

There will inevitably be minor differences between the methods used
here and those of any code which the reader may consult. Only the
preliminary (ENV) versions of the Eurocodes are yet available, and each
country can choose ‘national’ values for the partial safety factors, that may
differ from those given in the codes.

The methods to be described are illustrated by the design calculations for
part of a framed structure for a building. To avoid repetition, the results
obtained at each stage are used in subsequent work. Much of the material
on beams finds application also in bridge structures, which are treated in
Volume 2.

The notation used is that of the Eurocodes. It is more consistent than
that used in current British codes, less ambiguous, but sometimes more
complex. It is listed at the start of the book. The following comments on it
may be useful.

44
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(1) The following subscripts are widely used:

a structural steel (French: acier)

ap (or p) profiled steel sheeting

c concrete

d design (implying that -y factors are included)

k characteristic (implying that -y factors are not included)
] reinforcing steel

related to shear connection.

(2) The notation f; for yield strength of stuctural steel is used because it is
so well established; but f,, would be more consistent.

(3) Design checks for ultimate limit states consist typically of verifying that
a bending moment (for example) calculated from actions does not
exceed a bending resistance. The notation for this is

Mgy < Mgy 3.1)

where S refers to actions (French: sollicitation) and R to resistance. It
is useful to make this clear distinction between action effect and

<

resistance.
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Fig. 3.1 Design example — structure for a typical floor.

3.2 The design example

In a framed structure for a wing of a building, the columns are arranged at
4 m centres in two rows 9 m apart. A design is required for a typical floor,
which consists of a composite floor slab continuous over and composite
with steel beams that span between the columns as shown in Fig. 3.1. The
characteristic strengths and the partial safety factors at the ultimate limit
state for materials ('yy) are assumed to be as follows:
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structural steel; yield strength fy =355 N/mm?, «v,= 1.10

reinforcement; yield strength fi = 460 N'mm?, v, = 1.15

concrete; cube strength fou= 30Nmm? v, =15
2

welded steel fabric; yield strength ~ f, = 500 N'mm~, -+, = 1.15
shear connectors; 19-mm headed studs

100 mm high; ultimate strength f, = 450 N'mm?, «y, = 1.25.

Other properties of the concrete

Lightweight-aggregate concrete is used, with unit mass p = 1900 kg/m>.
The Eurocodes give the following values for other properties of this
concrete:

characteristic cylinder strength: fx = 25N/mm?
secant modulus of elasticity: E, = 19.1kN/mm?
modular ratio for short-term loading: n = 210/19.1 = 11.0
characteristic tensile strengths: '

mean value fum = 2.6 N/mm?

5% lower fractile fuxoos = 1.8 N/mm?.

Creep of concrete is allowed for by using an effective modulus Egy, =
Ecm/3.

Resistance of the shear connectors
The design shear resistance is given by equation (2.15) and is
~0.29 x 19%(25 x 19100)%3

= 57.9kN. 3.2
1.25 x 1000 G-2)

PRd

Permanent actions
The unit weight of the concrete is increased from 19 to 20 kN/m? to allow
for reinforcement, and the unit weight of structural steel is taken as 77
kN/m>.

The characteristic weight of floor and ceiling finishes is taken as
1.3 kN/m?, plus an allowance of 1.2 kN/m? for non-structural partition
walls.

Variable actions

The floors to be designed are assumed to be in category C of Eurocode 1:
Part 2, ‘areas susceptible to overcrowding, including access areas’. The
characteristic variable loadings are as given in Chapter 1:

gy = 5.0 kN/m? (1.16)bis
or
« = 7.0 kN on a 50-mm square area. (1.17)bis

3.3 Composite floor slabs

Composite slabs have for several decades been the most widely used
method of suspended floor construction for steel-framed buildings in North
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America. Within the last twenty years there have been many advances
in design procedures, and a wide range of profiled sheetings has become
available in Europe. The British Standard for the design of composite
floors®” first appeared in 1982, and there are preliminary Eurocodes for
design of both the sheeting alone®? and the composite slab@?),

The steel sheeting has to support not only the wet concrete for the floor
slab, but other loads that are imposed during concreting. These may
include the heaping of concrete and pipeline or pumping loads. The
minimum characteristic value given for these in Eurocode 4 is 1.5 kN/m? on
any area 3 m by 3 m, plus 0.75 kN/m? on the remaining area.

Profiled steel sheeting

The sheeting is very thin, for economic reasons; usually between 0.8 mm
and 1.2 mm. It has to be galvanised to resist corrosion, and this adds about
0.04 mm to the overall thickness. It is specified in Eurocode 3:Part 1.3 that
where design is based on the nominal thickness of the steel, the sheet must
have at least 95% of that thickness — but it is not a simple matter for the
user to check this! The sheets are pressed or cold rolled, and are typically
about 1 m wide and up to 6 m long. They are designed to span in the
longitudinal direction only. For many years, sheets were typically 50 mm
deep, and the limiting span was about 3 m. The cost of propping the sheets
during concreting led to the development of deeper profiles; but design of
composite slabs is still often governed by a limit on deflection. There
is then no advantage in using a high-yield steel, so most sheeting in the UK
is of mild steel.

The local buckling stress of a flat panel within sheeting should ideally
exceed its yield strength; but this requires breadth/thickness ratios of less
than about 35. Modern profiles have local stiffening ribs, but it is difficult
to achieve slendernesses less than about 50, so that for flexure, the sections
are in Class 4 (i.c. the buckling stress is below the yield stress). Calculation
of the resistance to bending then becomes complex, and involves trial and
error. :

The specified or nominal yield strength is that of the flat sheet from
which the sheeting is made. In the finished product, the yield strength is
higher at every bend and corner, because of work hardening.

To enable it to fulfil its second role, as reinforcement for the concrete
slab, dimples are pressed into the surface of the sheeting, to act as shear
connectors. These dimpled areas may not be fully effective in resisting
longitudinal stress, so both they and the local buckling reduce the second
moment of area (I) of the sheeting to below the value calculated for the
gross steel section.

For these reasons, manufacturers commission tests on prototype sheets,
and provide designers either with test-based values of resistance and
stiffness, or with ‘safe-load’ tables calculated from those values.
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Design of composite slab

The cross-sectional area of steel sheeting that is needed for the construc-
tion phase often provides more than enough bottom reinforcement for the
composite slab. It is then usual to design the slabs as simply-supported.
The concrete is of course continuous over the supporting beams, and
alternate sheets may be as well (e.g. if 6-m sheets are used for a succession
of 3-m spans).

These ‘simply-supported’ slabs require top longitudinal reinforcement at
their supports, to control the widths of cracks. The amount is specified in
Eurocode 4 as 0.2% of the cross-sectional area of concrete above the steel
ribs for unpropped construction, and 0.4% for propped construction.

Long-span slabs are sometimes designed as continuous over their
supports.They are analysed as described in Section 4.7. Several action
effects that have to be considered in the design of composite slabs are
now considered. The methods are illustrated by the worked example in
Section 3.4.

3.3.1 Resistance of composite slabs to sagging bending

The width of slab considered in calculations, b, is usually taken as one
metre, but for clarity only a width of one wavelength is shown in Fig. 3.2.
The overall thickness A, is required by Eurocode 4 to be not less than
80 mm; and the thickness of concrete above the ‘main flat surface’ of the
top of the ribs of the sheeting, to be not less than 40 mm. Normally, this
thickness is 60 mm or more, to provide sufficient sound or fire insulation,
and resistance to concentrated loads.

Except where the sheeting is unusually deep, the neutral axis for bending
lies in the concrete, where there is full shear connection; but in regions
with partial shear connection, there is always a neutral axis within the steel
section. Local buckling of compressed sheeting then has to be considered.
This is done by using effective widths of flat regions of sheeting. These
widths are allowed (in Eurocode 4) to be up to twice the limits given for
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Fig. 3.2 Resistance of composite slab to sagging bending.
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Class 1 steel web plates in beams, because the concrete prevents the
sheeting from buckling upwards, which shortens the wavelength of the
buckles.

For sheeting in tension, the width of embossments should be neglected
in calculating the effective area, unless tests have shown that a larger area
is effective.

For these reasons, the effective area per metre width, A, and the height
of the centre of area above the bottom of the sheet, e, are usually based on
tests. These usually show that e, the height of the plastic neutral axis of
the sheeting, is different from e.

Because local buckling is allowed for in this way, the bending resistance
can be calculated by simple plastic theory. There are three situations, as
follows.

(1) Neutral axis above the sheeting

The assumed distribution of longitudinal bending stresses is shown in
Fig. 3.2(b). There must be full shear connection, so that the compressive
force in the concrete, N, is equal to the yield force for the steel:

AL,
Ny = Np, = 5% (3.3)
Yap

where v, is the partial safety factor for the nominal yield strength fy, of
the sheeting. The depth of the stress block in the concrete is given by

Net
x=—d G4
b(0.85ful)
For simplicity, and consistency with the method for composite beams, the
depth to the neutral axis is assumed to be x, even though this is not in

accordance with Eurocode 2. This method is therefore valid when
x<h, (3.5)
and gives
M, grq= ch(dp — 0.5x) (3.6)

where M, rq is the design resistance to sagging bending.

(2) Neutral axis within the sheeting, and full shear connection
The stress distribution is shown in Fig. 3.2(c). The force N is now less
than Np,, and is given by

0.85f,

[+

because compression within ribs is neglected, for simplicity. There is no
simple method of calculating x, because of the complex properties of

N, = bh, (3.7)



50 Composite Structures of Steel and Concrete

profiled sheeting, so the following approximate method is used. The tensile
force in the sheeting is decomposed, as shown in Figs 3.2(d) and (e), into a
force at the bottom equal to N, (the compressive force) and a force N,,
where

N, = N,. (3.8)

The equal and opposite forces N,. provide a resistance moment M,
equal to the resistance moment for the sheeting, M,,,, reduced by the effect
of the axial force N,. It should be noted that in Eurocode 4: Part 1.1, the
value of the symbol N depends on the ratio x/h.. It is the lesser of the two
values given by equations (3.3) and (3.7). This can be confusing; so for
clarity here, a further symbol Np, is introduced. It always has the value

N, = 2ol (3.9)
'Yap .

The subscript f in N ¢ denotes full shear connection. Where there is partial

shear connection, the compressive force in the concrete slab is N, which

cannot exceed N.

The relationship between M, /My, and N.¢/N,, depends on the profile,
but is typically as shown by the dashed line ABC in Fig. 3.3(a). This is
approximated in Eurocode 4 by the equation

M, =125M [1 - &} =M (3.10)
pr pa vaa pa’ .

which is shown as ADC. The resistance moment is then given by
Mp.Rd = cf< + Mpl' (3.11)

as shown in Fig. 3.2(d) and (e). The lever arm z is found by the approxi-
mation shown by line EF in Fig. 3.3(b). This is clearly correct when N =
Npa, because N, is then zero, so M, is zero. Equation (3.6) with x = A
then gives M, rq. The lever arm is

z=d,~0.5h,=h,— e~ 0.5k, (3.12)
Mpr/Mpa h,-0.5h~2z
A A
125 R
1.0 &% &
el — —— F
I N ¢/N
| CL pa
) 0 1.0
(a) (b)

Fig. 3.3 Equations (3.10) and (3.14).
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as given by point F.

To check point E, we assume that N is nearly zero (e.g. if the concrete
is very weak), so that N, = 0 and M, = M,,. The neutral axis for M,
alone is at height e, above the bottom of the sheet, and the lever arm for
the force N is

z=h,— ey~ 0.5h,, (3.13)

as given by point E. This method has been validated by tests.

The line EF is given by
e, — e)N,
z=h,—05h,—e,+ (& = Nt (3.14)
Ny,

(3) Partial shear connection

The compressive force in the slab, N, is now less than N and is deter-
mined by the strength of the shear connection. The depth x of the stress
block is given by

N,
x=—2S——<p_. 3.1
b8 ) e 319
There is a second neutral axis within the steel sheeting, and the stress
blocks are as shown in Fig. 3.2(b), for the slab (with force N, not N), and
Fig. 3.2(c) for the sheeting. The calculation of M, rq is as for method (2),
except that N is replaced by N, Ny, by N, and k. by x, so that:
e, — e)N,
2=h,—05x —e,+ (—T)c, (3.16)
cf

N
M, = 1.25M,, [1 - N—ﬂ * M, ,

(3.17)

Myra =Nz + M, (3.18)

3.3.2 Resistance of composite slabs to longitudinal shear

For profiled sheeting that relies on frictional interlock to transmit longi-
tudinal shear, there is no satisfactory conceptual model. This led to the
development of the shear-bond test, described in Section 2.8.1, and the
empirical ‘m-k’ method of design, where the shear resistance is given by an
equation based on (2.33), in the British code®” or on equation (2.32), in
Eurocode 4. With the safety factor added, the Eurocode equation is

bd, [’Z—fe + k]
S S (3.19)

Vira =
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where m and k are constants with dimensions of stress, determined from
shear-bond tests, and V) rq is the design vertical shear resistance for a
width of slab b. It is based on the vertical shear at an end support at which
longitudinal shear failure occurs in a shear span of length L, shown by line
2-2 in Fig. 2.19.

For uniformly-distributed load on a span L, the length L, is taken as L/4.
The principle that is used when calculating L, for other loadings is now
illustrated by an example.

0 Li2 L2 |
wlL I

-

(a) composite | w

slab >
pres L

wlL
(b} shear %wm
force 0 0
equat < ]\
areas L
wl -w
(c) shear 7//
force 0 ya 0

h \
Ls=3L/8 | -wL

Fig. 3.4 Calculation of L for composite slab.

Calculation of L

The composite slab shown in Fig. 3.4(a) has a distributed load w per unit
length and a centre point load wL, so the shear force diagram is as shown
in Fig. 3.4(b). A new shear force diagram is constructed for a span with two
point loads only, and the same two end reactions, such that the areas of the
positive and negative parts of the diagram equal those of the original
diagram. This is shown in Fig. 3.4(c), in which each shaded area is 3wL?/8.
The positions of the point loads define the lengths of the shear spans. Here,
each one is 3L/8.

Defects of the m-k method
The method has proved to be an adequate design tool for profiles with
short spans and rather brittle behaviour, that have been widely used in
North America. But to exploit fully the ductile behaviour of profiles now -
available, with good mechanical interlock and longer spans, it is necessary
to use a partial-interaction method, as explained below.

The defects of the m-k method and of profiles with brittle behaviour are
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given in papers that set out the new methods, by Bode and Sauerborn
in Germany®®® and by Patrick and Bridge in Australia®?. They are as
follows.

(1) The m-k method is not based on a mechanical model, so that conserva-
tive assumptions have to be made in design when the dimensions,
materials, or loading differ from those used in the tests. The calcu-
lation of L, above, is an example of this.

(2) Many additional tests are needed before the range of application can
be extended; for example, to include end anchorage or the use of
longitudinal reinforcing bars.

(3) The method of evaluation of test data is the same, whether the failure
is brittle or ductile. The use in Eurocode 4 of a penalty factor of 0.8 for
brittle behaviour does not adequately represent the advantage of using
sheeting with good mechanical interlock, because this increases with
span. :

Partial-interaction design

The method based on shear-bond tests® is described first. The method
based on slip-block tests,*? described later, takes more specific account of
the effects of friction near supports and can be more economical for short
spans.

For composite slabs of given cross-section and materials, the result of
each shear-bond test on a profile with ductile behaviour enables the degree
of partial shear connection in that test to be calculated. This gives the
compressive force N, transferred from the sheeting to the slab within the
shear span of known length L. It is assumed that before maximum load is
reached, there is complete redistribution of longitudinal shear stress at'the
interface, so a value for the mean ultimate shear stress 7, can be calculated.
This is done for a range of shear spans, and the lowest 7, thus found is the
basis for a design value, T, rq. (This is where the greater effect of friction in
short spans is neglected.)

At an end support, the bending resistance of the slab is that of the
sheeting alone (unless it is enhanced by the use of end anchorage, as
described later). At any section at distance x from the support, the force in
the slab can be calculated from 1, rq, and the method of Section 3.3.1(3)
enables the bending resistance M, rq at that section to be calculated. There
is usually a midspan region where full shear connection is achieved, and
M, rq is independent of x.

For safe design, this curve of M, rq as a function of x (the resistance
diagram) must at all points lie above the bending-moment diagram for the
applied loading. If the loading is increased until the curves touch, the
position of the point of contact gives the location of the cross-section of
flexural failure and, if the interaction is partial, the length of the shear
span.
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The resistance diagram can easily be modified to take advantage of any
end anchorage or slab reinforcement, and the loading diagram can be of
any shape.

The method based on data from slip-block tests is similar, except that the
resistance is increased near end supports, by an allowance for the effects of
friction.

A worked example using data from shear-bond tests is given in Section
3.4.3.

The only type of end anchorage for which design rules are given in
British or European codes is the headed stud, welded through the sheeting
to the top flange of a steel beam. The resistance of the anchorage is based
on local failure of the sheeting, as explained in commentaries on Eurocode
4: Part 1.17) and BS 5950: Part 3.1.5

3.3.3 Resistance of composite slabs to vertical shear

Tests show that resistance to vertical shear is provided mainly by the
concrete ribs. For open profiles, their effective width b, should be taken as
the mean width, though the width at the centroidal axis (Fig. 3.2(a)) is
accurate enough. For re-entrant profiles, the minimum width should be
used.

Design methods are based on those for shear in reinforced concrete
T-beams. In Eurocode 4, the resistance of a composite slab with ribs of
effective width b, at spacing b is given as

Vyra = %dp Trak,(1.2 + 40p) per unit width (3.20)
where d,, is the depth to the centroidal axis (Fig. 3.2(a)),
Trq is the basic shear strength of the concrete (Section 1.4),
k, allows for the higher shear strength of shallow members, given
by
k, = (1.6 — d;) = 1, with d, in m,
p allows for a small contribution from the profiled sheeting. It is
given by
o= <o (3.21)
bod, )
where Ap is the effective area of sheeting in tension within the width b,
which can usually be taken as the total area within that width.

In reality, the shear stress in the side walls of the steel troughs may
be quite high during the construction phase. This can be ignored when
checking the composite slab, and Vg4 should be taken as the whole of the
vertical shear, including that initially resisted by the sheeting.

Resistance to vertical shear is most likely to be critical in design where
span/depth ratios are low, as is the case for beams.
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Fig. 3.5 Critical perimeter for punching shear.

3.3.4 Punching shear

Where a thin composite slab has to be designed to resist point loads
(e.g. from a steel wheel of a loaded trolley), resistance to punching shear
may be critical. Failure is assumed to occur on a ‘critical perimeter’, of
length C,, which is defined as for reinforced concrete slabs. For a loaded
area ap, by by, remote from a free edge, and 45° spread through a screed of
thickness h;, it is as shown in Fig. 3.5(a):

(3.22)
C, = 2mh, + 2(2d, + a, — 2h) + 2b,, + 8h;.
By analogy with equation (3.20), the design resistance is
Vp.Rd = Cpthdev(l.Z + 40p) (3.23)

where k. is the thickness of the slab above the sheeting. Small ribs of the
type shown in Fig. 3.5(b) can be neglected when A, is determined.

3.3.5 Concentrated point and line loads

Since composite slabs span in one direction only, their ability to carry
masonry partition walls or other heavy local loads is limited. Rules are
given in Eurocode 4 (and in the British code) for widths of composite slabs
effective for bending and vertical shear resistance, for point and line loads,
as functions of the shape and size of the loaded area. These are based on a
mixture of simplified analyses, test data, and experience.

They are illustrated here for a rectangular loaded area a,, by by, with its
centre distance L, from the nearer support of a slab of span L, as shown in
Fig. 3.6(a). The load may be assumed to be distributed over a width by,
defined by lines at 45° (Fig. 3.6(b)), where

by = by + 2(he + k) (3.24)
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where Ay is the thickness of finishes, if any. The codes do not refer to
distribution in the spanwise direction, but it would be reasonable to use the
same rule, and take the loaded length as

U = ay + 2(he + hy). (3.25)

The width of slab assumed to be effective for global analysis (for
continuous slabs only) and for resistance is given by

L .
be = by + kL, [1 - ﬂ < width of slab (3.26)

where k is taken as 2 for bending and longitudinal shear (except for interior
spans of continuous slabs, where k = 1.33) and as 1 for vertical shear.

For a simply-supported slab and point load Qy4, the sagging moment per
unit width of slab on line AD in Fig. 3.6(a) is thus

1-Le
L
sy = QuLy ——, (3.27)
e .

which is a maximum when L, = L/2.

The variation of b, with L, is shown in Fig. 3.6(a). The load is assumed
to be uniformly distributed along line BC, whereas the resistance is distrib-
uted along line AD, so there is sagging transverse bending under the load.
The maximum sagging bending moment is at E, and is given by

~b
Mg, = 0 0e = bm (3.28)

(a)

L
N
[

- LQ beam

Fig. 3.6 Effective width of composite slab, for point load.
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The sheeting has no tensile strength in this direction, because the cor-
rugations can open out, so bottom reinforcement (Fig. 3.6(b)) must be
provided. It is suggested that this reinforcement should be spread over the
length a,, given by equation (3.25).

It is stated in Eurocode 4 that where transverse reinforcement is
provided with a cross-sectional area of at least 0.2% of the area of concrete
above the ribs of the sheeting, no calculations are needed for characteristic
concentrated loads not exceeding 7.5 kN. Calculations in Section 3.4 show
that for the slab considered there, more than 0.2% appears to be necess-
ary, so in that case the preceding rules are more conservative than the
concession.

Vertical shear should be checked along a line such as FG, when L is
such that FG is above the edge of the flange of the steel beam. It rarely
governs design.

3.3.6 Serviceability limit states for composite slabs

Cracking of concrete

The lower surface of the slab is protected by the sheeting. Cracking will
occur in the top surface where the slab is continuous over a supporting
beam, and will be wider if each span of the slab is designed as simply-
supported, rather than continuous, and if the spans are propped during
construction.

For these reasons, longitudinal reinforcement should be provided above
internal supports. The minimum amounts are given by Eurocode 4 as 0.2%
of the area of concrete above the sheeting, for unpropped construction,
and 0.4% if propping is used. These amounts exceed that specified in the
British code, but even they may not ensure that crack widths do not
exceed 0.3 mm. If the environment is corrosive (e.g. de-icing salt on the
floor of a parking area), the slabs should be designed as continuous, with
cracking controlled in accordance with Eurocode 2 (or an equivalent
national code).

Deflection

Where composite slabs are designed as simply-supported and are not
hidden by false ceilings, deflection may govern design. The maximum
acceptable deflection is more a matter for the client than the designer; but
if predicted deflections are large, the designer may have to allow for the
extra weight of concrete in floors that are cast with a horizontal top surface,
and provide clearance above non-structural partitions.

Eurocode 4 gives the following guidance. The deflection of sheeting due
to its own weight and the wet concrete slab should not exceed L/180 or
20 mm, where L is the effective span. This span can be reduced to any
desired level by using propped construction — but this increases cost.
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For the ‘in-service’ situation, the rare loading combination is normally
used. The maximum deflection below the level of the supports should not
exceed span/250, and the increase of deflection after construction (due to
creep and to variable load) should not exceed span/300, or span/350 if the
floor supports brittle finishes or partitions. The Eurocode states that when
verifying the composite slab, the deflection defined in the previous para-
graph, above, need not be included. For a 4-m span, this suggests that the
total deflection could be

20 + 4000/250 = 36 mm,

which would certainly be noticeable in practice.

It is known from experience that deflections are not excessive when
span-to-depth ratios are kept within certain limits. These are given in
Eurocode 4 as 25 for simply-supported slabs, 32 for spans with one end
continuous, and 35 for internal spans. ‘Depth’ is not defined in Eurocode 4,
but in Eurocode 2 these limits relate to effective depths, so for composite
slabs the depth should be taken as dj, in Fig. 3.2 rather than A,.

These limits are most likely to be exceeded in an external span, designed
as simply-supported. Where possible, reference should then be made to
the result of a test. Eurocode 4 advises that no account need be taken of
the additional deflection due to end slip, provided that the load at which
end slip reached 0.5 mm exceeded the design service load by more than
20% . Otherwise, slip should be allowed for (using test data) or end anchors
should be provided. Where no test data are available, use of the tied arch
model (which is usually conservative) is recommended.

Even for an end span, the provision of anti-crack reinforcement, as
specified above, should reduce deflection by a useful amount. For internal
spans, the Eurocode recommends that the second moment of area of the
slab should be taken as the mean of values calculated for the cracked and
uncracked sections. Some of these points are illustrated in the worked
example in Section 3.4,

3.3.7 Fire resistance

All buildings are vulnerable to damage from fire, which is usually the first
accidental design situation to be considered in design, and is the only one
treated in this volume.

In the worked example, design is in accordance with the 1993 draft of
Eurocode 4: Part 1.2, ‘Structural fire design’.*® The concepts and
methods used are now introduced. Italic print is used for terms that are
defined in Eurocode 4: Part 1.2, or in Part 2.2 of Eurocode 1, ‘Actions on
structures exposed to fire’.C®

Buildings are divided by separating members into fire compartments. A
fire is assumed to be confined to one compartment only, which must be
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designed to contain it for a specified failure time (or fire resistance time)
when subjected to a given temperature—time environment or fire exposure.
A standard fire exposure is given in Eurocode 1: Part 2.2, and other curves
are available that depend on the fire load density (calorific energy per unit
area, for complete combustion of all combustible materials) within the
compartment considered. These temperature—time curves are reproduced
in furnaces for fire testing, and are simplified models of the effects of real
fires.

The walls, floor, and ceiling that enclose a compartment must have a
separating function. This is defined using two criteria:

® thermal insulation criterion, denoted I, concerned with limiting the
transmission of heat by conduction, and

® integrity criterion, denoted E, concerned with preventing the passage of
flames and hot gases into an adjacent compartment.

The structure of a compartment must have a loadbearing function,
denoted R (resistance), to ensure that it can resist the design effects of
actions specified for the fire situation including the effects of thermal
expansion, for a period not less than the specified failure time. The fire
resistance class of a member or compartment is denoted (for example) R60,
which means that its failure time is not less than 60 minutes.

Criterion I is met mainly by specifying minimum thicknesses of incom-
bustible insulating materials. These also contribute to meeting criterion E,
which has structural implications as well. For example, excessive thermal
hogging of a beam heated from below can create a gap between it and a
separating wall below.

Codes give limits to the temperature rise of non-exposed surfaces,
relevant to criterion I, and detailing rules relevant to criteria I and E.
Design calculations relate mainly to criterion R, and only these are dis-
cussed further, in this volume.

It will be seen that, for practicable design, it is necessary to simplify the
predictions of both the action effects and the resistances, to a greater
extent than for ‘cold’ design. This last term refers to the normal design for
persistent situations and ultimate limit states.

3.3.7.1 Partial safety factors for fire

It is recommended in Eurocode 1: Part 1 that all factors -y for accidental
actions should be 1.0; i.e. that these actions should be so defined that
Yr,t = 1.0 is the appropriate factor. Subscript f means “fire’.

For materials, design is based essentially on characteristic or nominal
properties; so for most materials, and for shear connection, Yum,f = 1.0; but
the reduction below vy for persistent design situations is then much
greater for concrete (1.5 — 1.0) than for structural steel (1.1 or 1.05 — 1.0).
The yield strength is also a conservative measure of the stress in steel at
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large deformations, because of strain hardening, so it is likely that the
boxed value of yy ¢ for structural steel (i.e. v, ¢) will be 0.9 in Eurocodes 3
and 4. This value will be used in the worked example.

3.3.7.2 Design action effects for fire

For a structural member with one type only of permanent loading and no
prestress, the combination for accidental design situations given in
Eurocode 1: Part 1® simplifies to

Gy + Ag + 011 Qxr + ‘21 Uy Qi (3.29)
>

where Aq is the design value of the accidental action, and other symbols
are as in Section 1.3.2. '

A floor structure for a building is usually designed for distributed loads
gk and gy; and for fire, A4 can be taken as zero. For beams and slabs, the
‘simply-supported’ moments and shears are proportional to the total load
per unit area. To avoid additional global analyses for fire, the action effects
E; 4 are often assumed to be given by

Ef.d = "]fEd = 0.6Ed (3.30)
where E,4 are the effects for cold design for ultimate limit states.
The value n; = 0.6 is based on the boxed vyg values in Eurocode 1: Part 1,

as follows. From equations (3.29) and (3.30), and expression (1.6) with
Qx2 =0, and §; = 0.7 (Table 1.3):

. 1.0 + 0.7 &
ne=JYoaskt Wik 8, (3.31)

Yok t Yodk 135 + 1.5%
8x
The value of m; falls from 0.64 to 0.55 as the ratio gi/gy rises from 0.5 to
2.0, so m; = 0.6 is a typical value, accurate to within 10%.

It often occurs in cold design that the resistance provided, Ry, exceeds
the relevant action effect,Ey. This is allowed for in fire design as follows. A
resistance ratio m* is calculated from

E
* = g —d (3.32)
m e R,
The verification condition (R; 4 = E; 4) then becomes
R; 4 = M*Ry. (3.33)

This enables tabulated design data to be presented in terms of n*, which
lies between 0.3 and 0.7.

3.3.7.3 Thermal properties of materials

Stress—strain curves for steel and concrete are given as functions of tem-
perature (0) in draft Eurocode 4: Part 1.2. (They may later be replaced by
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cross-references to Parts 1.2 of Eurocodes 3 and 2, respectively.) These are
used as necessary in the worked example.

3.3.7.4 Design for load bearing function

The three methods given in Eurocode 4: Part 1.2 are outlined below. The
first (given last in the Code) has the widest scope, but is the most complex.
It is primarily a research tool, used to validate simpler methods.

(1) Advanced calculation models

These methods rely mainly on finite-element computations, which are
done in three stages, starting with a given structure, materials, and fire
exposure.

(a) The theory of heat transfer is used to obtain distributions of tempera-
ture (6) throughout the structure as functions of the time (¢) since the
start of the fire.

(b) From the temperatures, distributions of thermal strains and of the
stiffness and strength of the materials throughout the structure are
computed, for various times, ¢.

(c) The design resistances of the structure are computed at various times,
't, using data from stage (b). These resistances diminish as ¢ increases,
and eventually one of them falls below the corresponding design action
effect. The structure satisfies criterion R if the time when this occurs
exceeds the specified failure time.

(2) Simple calculation models

These methods enable the three preceding stages to be applied, in simpli-
fied form, in checks on the resistances of cross-sections. These are
normally done only for the temperature distribution at the specified failure
time, assuming that beams and slabs are simply-supported and columns are
pin-ended at each floor level. The model for a composite slab is explained
in Section 3.3.7.5.

(3) Tabulated data

For cross-sections of beams and columns that are often used in practice,
results of calculations by methods (1) or (2) are presented in Eurocode 4:
Part 1.2 as tabulated values of minimum dimensions, areas of reinforce-
ment, etc., for each fire resistance class. Methods of this type are used for
the beams and columns of the worked example in this volume.

3.3.7.5 Simple calculation model for unprotected composite slab

It is assumed that the dimensions and properties of materials for the slab
are known, that its cold design was for distributed loading on simply-
supported spans, for which the bending moments R4 and E4 are known, so
that n* (equation (3.32)) is known.
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Fig. 3.7 Effective thickness of composite slab.

It is assumed that the required fire resistance period (¢ ,) is 60 minutes,
and that the profiled sheeting, not protected by insulation, is heated from
below by the standard fire.

The thermal insulation provided by the slab is assumed to depend only
on its effective thickness. For class 160, the minimum effective thickness of
lightweight concrete is given in Eurocode 4: Part 1.2 as

h, = 0.9(90 — h;) mm (3.34)

where h; is the thickness of the screed layer above the slab (but A3 < 20

mm). The thickness k. depends on the geometry of the profile:
hl bw 1

h2ef = h2 but = 1.5h1

and A, >50mm (3.35)

where the symbols are defined in Fig. 3.7(a). Some ratios, x./h;, plotted in
Fig. 3.7(b), shown how A, increases as the rib size (represented by b,/b,,
and hy/h,) increases.

For the bending resistance of the slab, the strength of the steel sheeting
and the tensile strength of the concrete are ignored, so reinforcing bars
have to be provided within the ribs. Their temperature, and hence their
yield strength, depends on their effective distance from the hot surfaces,
represented by u, defined by

1_ 1 + 1 + 1
u \/ul vlla \/U3
where u, to us are distances (mm) shown in Fig. 3.8(a).

For #, = 60 minutes, the design temperature 6, of this reinforcement is
given in Eurocode 4: Part 1.2 in degrees C as

9, = 1175 — 350u < 810°C, (u < 3.3). (3.37)

(3.36)
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Fig. 3.8 Design data for temperatures in composite slab.

The concrete near the top of the slab is well protected from fire, so its
compressive strength is assumed not to be reduced.

These assumptions enable the sagging moment of resistance to be calcu-
lated. If this does not exceed n*Ry (equation (3.33)), the difference can
often be made up by using hogging resistance at the end of each span. The
top reinforcement, provided initially to control cracking, can be assumed
not to be weakened by fire. The concrete is modelled as a uniform slab of
thickness 4., defined above. The design temperature profile for lightweight
concrete and class R60, as given in Eurocode 4: Part 1.2, is shown in Fig.
3.8(b), in which x is the distance above the lower surface of the effective
slab, of thickness h.. The curve feo/fcy is explained on page 73.

3.4 Example: composite slab

The strengths of materials and characteristic actions for this structure are
given in Section 3.2, and a typical floor is shown in Fig. 3.1. The following
calculations illustrate the methods described in Section 3.3. In practice, the
calculations may be done by the company that provides the sheeting, and
presented as ‘safe load tables’; but here it is assumed that only raw test data
are available.

For unpropped construction, the sheeting for a span of 4 m would need
to be over 100 mm deep. Few such products are available, so it is assumed
that the sheets will be propped at midspan during construction. The profile
chosen is CF 70, manufactured by Precision Metal Forming, Ltd of
Cheltenham, Gloucestershire, UK. Its overall depth is 70 mm, but the
cross-section (Fig. 3.9) is such that the span/depth ratio based on this depth
(28.6) is misleading. A more realistic value is 2000/55, which is 36.4. This
should be adequate, as there is continuity over the prop between the two
2-m spans.
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The next step is to choose a thickness for the composite slab, which will
be designed as simply-supported over each 4-m span. The characteristic
point load is fairly high (7.0 kN, equation (1.17)), so an overall thickness
of 150 mm is assumed for the slab. The centroid of the sheeting is 30 mm
above its lower surface, so the effective depth (dp) is 120 mm and the
span/depth ratio is 4000/120, or 33.3. It is normal for these ratios to be
higher than typical values used for beams. Preliminary calculations then
show that CF 70 sheeting of nominal thickness 0.9 mm should be sufficient.

Structural properties of profiled sheetings, determined in accordance
with Eurocode 4: Part 1.1, are not available, as that code is not yet in force;
but the test data on CF 70/09 sheeting are sufficient to enable them to be
approximated. This has been done in the Designers’ Handbook to
Eurocode 4: Part 1.1, and the results for sagging bending are given here
and in Fig. 3.9.

Guaranteed minimum yield strength, fpp = 280 N/mm?.
Design thickness, allowing for zinc, t, = 0.86 mm.
Effective area of cross-section, A, = 1185 mm?/m.
Second moment of area, I, = 0.57x 10° mm*/m.
Characteristic plastic moment of

resistance, Mpa = 4.92 kN m/m.
Distance of centroid above base, e = 30 mm.
Distance of plastic neutral axis above

base, e, = 33 mm.
Characteristic resistance to vertical

shear, Voa = 49.2kN/m.
For resistance to longitudinal shear, m = 184 N/mm>

k = 0.0530 N/mm>.

For partial-interaction design, Tyra = 0.23 N/mm?.

Weight of composite slab
(p = 1900 kg/m3), g = 2.41kN/m?

Ap=1185mm?/m

80 Ip= 0.57x10°mm*/m
1p=0.86
lastic
40 _ Eweutgcl axis _
o _ centroidal e 7/
9—3.0 | ? axis | ‘\P R |
i |
—oim\t 138 L b =162 — i
. 300 !

Fig. 3.9 Typical cross-section of CF 70/0.9 profiled stcel sheeting.
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These data are illustrative only, and should not be used in engineering
practice.

3.4.1 Profiled steel sheeting as shuttering

The construction load is 1.5 kN/m? on any area 3 m square (Section 3.3), so
the design loads are:

® permanent: g4 = 2.41 X 1.35 = 3.25 kN/m?,
® variable: gy=15X15 =2.25kN/m?.

The top flanges of the supporting steel beams are assumed to be at least
0.15 m wide, and the width of the prop is neglected, so the effective length
of each of the two spans is

4000 — 150 + 70
€ = 2

The 70 is the depth of the sheeting. This rule is taken from BS 5950: Part
4,27 as none is given in Eurocode 4.

L = 1960 mm.

imposed load wet concrete
WW/ sheeting

g_—l | 1

A prop 77 B CTT
40 i | 1960 ‘I 1960 ' l_ﬂ

Fig. 3.10 Profiled sheeting during construction.

Flexure and vertical shear

The most adverse loading for sagging bending is shown in Fig. 3.10, in
which the weight of the sheeting alone in span BC is neglected. The
maximum design bending moments are:

® sagging Mg, = 0.0959 X 5.5 x 1.96% = 2.03 kN m/m,
® hogging Mgy = 0.0625 X 5.5 X 1.96% = 1.32 kN m/m.

With v,, = 1.1, the design resistance is Mgy = 4.92/1.1 = 4.47 kN m/m,
which is ample.

Vertical shear rarely governs design of profiled sheeting. Here, the
maximum value, to the left of point B in Fig. 3.10, is

Vsa = 0.56 X 5.5 X 1.96 = 6.0 kN/m,
far below the design resistance (49.2/1.1 = 44.7 kN/m).
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Deflection
The design serviceability load is 2.41 + 1.5 = 3.91 kN/m?. It is assumed
that the prop does not deflect. The maximum deflection in span AB, if BC
is unloaded, is . '
4 4
5, = wLe _ 3.91 X196 — 2.6 mm. (3.38)
185E,l, 185 x 0.21 X 0.57

This is span/754, which is very low.

3.4.2 Composite.slab — flexure and vertical shear

This continuous slab is designed as a series of simply-supported spans. The
effective span is the lesser of the distance between centres of supports (4.0
m), and the clear span (assumed to be 3.85 m) plus the effective depth of
the slab (0.12 m), so L, = 3.97 m.

For vertical shear, the span is taken as 4.0 m, so that the design loading
for the beams includes the whole area of slab.

The design ultimate loadings are:

e permanent:  gg = (2.41 + 2.5) X 1.35 = 6.63 kN/m?,
® variable: ga=5x%x15 = 7.5 kN/m?.
The midspan bending moment is:

3.97%

Mg, = 14.13 x = 27.8 kN m/m.

For the bending resistance, from equation (3.3),

0.28
Ny = 1185 x 225 = 302 kN/m.
of 1.1 m (3.39)

The design compressive strength of the concrete is 0.85 X 25/1.5 = 14.2
N/mm?, so from equation (3.4), the depth of the stress block is

302
=22 213 mm.
VY mm (3.40)

This is less than A (which can be taken as 95 mm for this profile (Fig. 3.9)),
so from equation (3.6),

M, g = 302 (0.12 — 0.011) = 32.9 kN m/m. (3.41)

The bending resistance is sufficient.
The design vertical shear for a span of 4 m is

Vea= 2(6.63 + 7.5) = 28.3 kN/m.
The resistance is given by equation (3.20). From Fig. 3.9:
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b,=162mm, b=300mm, d,= 120 mm.
The area A, is
A, = 0.86 (162 — 26 + 66) = 174 mm?,
so from equation (3.21)

174
=" _0.00
P= Tz x 120~ 000

and
k,=1.6—-0.12 = 1.48 m.

The basic shear strength (Section 1.4) is 7gq = 0.30 N/mm?, so from
equation (3.20),
162

Vira= 355X 120 X 0.3 X 1.48(1.2 + 0.36) = 45 kN/m, (3.42)

which is ample.

3.4.3 Composite slab ~ longitudinal shear

Longitudinal shear is checked by both the ‘m-k’ and ‘partial-interaction’
methods, which are explained in Section 3.3.2. From equation (3.19), the
m-k method gives the vertical shear resistance as

[mAp ]
+k
bL,
Vigra = bd, ——— = 26.2 kN/m. (3.43)
VYvs
The values used are:
b = 1.0m, m = 184 N/mm?,
d, = 120 mm, k = 0.0530 N/mm?,
A, = 1185 mm?%m, s = 1.25,
L, = L/4 =993 mm,

where v, is taken as equal to vy, in Table 1.2, and the other values are
given above.

The design vertical shear is 28.3 kN/m (Section 3.4.2), so the slab is not
strong enough, using this method.

Partial-interaction method

The mean design resistance to longitudinal shear, 7, rq, is taken as 0.23
N/mm? for this slab (page 64). Account is taken of the shape of the profile
when this value is determined from test data, so the shear resistance per
metre width of sheeting is 0.23 kN per mm length. From equation (3.39),
the compressive force in the slab for full shear connection, N, is
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Fig. 3.11 Partial-interaction method, for longitudinal shear.

equal to Np,, and is 302 kN/m. The required length of shear span to
develop this force (in absence of any end anchorage) is

Ly=—%L =" = 1313 mm. (3.44)

(This equation is given in clause E.3(2) of Eurocode 4: Part 1.1.) The
depth of the stress block in the concrete, now denoted x;, is then 21.3 mm,
from equation (3.40). At a distance L, (<L) from an end support, the
degree of shear connection is given by

y=tx _Ne _x (3.45)
Ly Ny x

where N, is the force in the slab and x the depth of the stress block.
Equations (3.16) to (3.18) then become:

=150 — 0.5vx;— 33 + 3v = 117 — 7.6v

My, = 125 X 4.47(1 — v) = 5.59(1 — v) % 4.47 (3.46)
Mp.Rd = vaZ + Mpl'

These enable M, rq to be calculated for any value of L, between zero
and L. The curve so obtained is given in Fig. 3.11. The bending-moment
diagram for the loading, also shown, is a parabola with maximum value
27.8 kNm/m at midspan (from Section 3.4.2).

It is evident that the resistance is sufficient at all cross-sections, so in this
example the partial-interaction method is less conservative than the m-k
method. This is because more advantage can be taken of the ductile load-
slip behaviour of these slabs, established by testing.

3.4.4 ILeocal effects of point load

The design point load is @sq = 7.0 X 1.5 = 10.5 kN on any area 50 mm
square, from equation (1.17) in Section 3.2. The slab has to be checked for



Simply-supported Composite Slabs and Beams 69

punching shear and local bending. It is assumed that the thickness h; of
floor finish is at least 50 mm, so the data are:

b, =a,= 50 mm, h;=50mm, A =95mm, dp = 120 mm.

The small ribs at the top of the sheeting (Fig. 3.9) are neglected, so the
thickness of slab above the sheeting is taken as 95 mm. Other data are as
used in calculations for vertical shear (Section 3.4.2):

Tra = 0.3 N/mn?, k,=148m, p = 0.009.

Punching shear
From equation (3.22) in Section 3.3.4:

Cp, = 2mh; + 2(2d;, + a, — 2h;) + 2b, + 8h; = 1297 mm.
From equation (3.23):
Vp.Rd = CJ’CTdeV(l'Z + 40p) = 85 kN,

so the resistance is eight times the action. But local bending is not so
simple.

Local bending
From equations (3.24) and (3.25) in Section 3.3.5,

am = by = ap + 2(hs + hc) = 340 mm.

The most adverse situation for local sagging bending is when the load is at
midspan, so L, (Fig. 3.6) is 1.99 m. From equation (3.26), the effective
width of slab is

L
b, = by, + 2L, [1 - —E} =233 m.
L

From equation (3.27), the sagging moment per unit width is

-k

L
= 4.48 kN m/m,

mgq = Q4L
[
which is well below the resistance of the slab, 32.9 kNm/m.
The transverse sagging moment under the load is given by equation
(3.28):
b, — b
Mgq = Qq—= ) =
This is resisted by a breadth ay, of reinforced concrete slab (Fig. 3.6), so
the moment per unit width is

= 2.61 kN m.
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mgy = %% = 7.68 kN m/m.
If the bottom reinforcement consists of 7-mm bars resting on the ribs of the
sheeting, the effective depth of the slab is 80 — 7/2 = 76 mm. If the
reinforcement is fabric with fg = 500 N/mm? and bars at 200 mm pitch,

the area per metre width is 193 mm?, and the force at yield is
193 X 0.500/1.15 = 83.9 kN/m.
The depth of the concrete stress block is
x = 83.9/(0.85 x 25/1.5) = 5.92 mm
so the lever arm is 76 — 2.96 = 73 mm and
mggq = 83.9 X 0.073 = 6.12 KNm/m.

Using this method, the spacing of the 7-mm bars would have to be
reduced to about 150 mm to provide a resistance exceeding 7.68 kN m/m.
“These calculations are approximate, and conservative in comparison
with experience. It will be found later that for this slab, other limit states
govern much of the slab reinforcement; but in regions where they do not,
fabric of area 193 mm?%m would probably be provided, as it satisfies the
empirical rule given in clause 7.4.2.2(5) of Eurocode 4: Part 1.1 (Section
3.3.5).

3.4.5 Composite slab — serviceability

Cracking of concrete above supporting beams
Following Section 3.3.6, continuity across the steel beams should be pro-
vided by reinforcement of area 0.4% of the area of concrete. Hence,

A = 0.004 x 1000 X 80 = 320 mm%m. (3.47)

The detailing is best left until longitudinal shear in the beam and fire
resistance have been considered.

Deflection
Realistic calculations would have to allow not only for the use of propped
construction, but also for the presence of the reinforcement of area A,
calculated above. Both effects reduce deflections. The most adverse
situation probably occurs at an end of the building, where the last 4-m span
has continuity at one end only. Deflections should not be excessive there if
the span-to-depth ratio is less than 32 (Section 3.3.6). The actual value is
3970/120 = 33.1, so some calculations are now given. For simplicity, the
mean of the short-term and long-term modular ratios is used. From Section
3.2, this is:




Simply-supported Composite Slabs and Beams 71

=11+33=22.

Second moments of area of the unreinforced composite slab, calculated in
‘steel’ units by the transformed section method are:

e if uncracked I, = 12.1 x 10° mm*/m
® cracked, sagging bending I, = 8.1 x 10 mm*m.
iThe mean value, used here, is:
I, =10.1 X 10° mm*m. (3.48)

The self-weight of the slab is 2.41 kN/m?, so the load on the prop
(Fig. 3.10), treated as the central support of a two-span beam, is

F=2x0.625 X 2.41 X 1.96 = 5.9 kN/m.

This is assumed to act as a line load on the composite slab, when the props
are removed. There is in addition a load of 2.5 kN/m? from finishes and
partitions (g), and an imposed load g of 5.0 kN/m.

The midspan deflection (for a simply-supported slab) is

3
5= L [F el s q)L] =3.6+114=150mm, (3.49)

~ 48EI 8
with L = 3.97 m and E = 210 kN/mm?. Hence,
3_ 1 1
L 3970 265

This is less than the limit of 1/250 recommended in Eurocodes 3 and 4,
and would be reduced by the crack-control reinforcement above one
support. It would, however, be increased by any settlement of the props
during construction.

3.4.6 Composite slab — fire design

The slab is designed for a standard fire duration of 60 minutes, using
methods that are explained in Section 3.3.7.
The characteristic loads are:

g = 4.9 kN/m?
gi = 5.0 kN/m?
so from equation (3.31),
n; = 0.595.

For cold design, the midspan bending moments are:
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Ey =27.8 kN m/m
R4 = 32.9 kN m/m

so from equation (3.32),

n* = 0.50,
and from equation (3.33),
Mgas = Rs 4= 16.45 KN m/m. (3.50)
For calculating the effective thickness, the dimensions in Fig. 3.7(a) are:
h, = 95 mm, h, = 55 mm, h; = 20 mm, '
b, = 136 mm, b,, = 300 mm
so from equation (3.35), hyer = 55 mm and
h, =95 [1 + ;3—(6) ;—2] = 120 mm. (3.51)

From equation (3.34), the required thickness is
h, = 0.9(90 — 70) = 63 mm,

so criterion I60 is easily satisfied.

For bending resistance at midspan, it is assumed that 8-mm reinforcing
bars are located above each rib in the position shown to scale in Fig. 3.8,
and also in Fig. 3.12(a). This enables them to be fixed to transverse bars or
fabric that rests on the small top ribs shown in Fig. 3.9. The dimensions to
the hot steel surfaces are then:

uy = 72 mm, u, = 102 mm, u; = 60 mm.

From equation (3.36),
u=209.

From equation (3.37),
0, = 160°C.

At this temperature, the proportional limit for cold-worked reinforcing
steel is given in Eurocode 4: Part 1.2 as 0.94 f, but the stress reaches
1.0f at strains well below 2%, and this stress may be used as the design -
value.

The area of reinforcement per metre width is 168 mm?, and f,, = 460
N/mm?, so the tensile force is 77.3 kN/m. The depth of the concrete stress
block (with y. = 1.0) is

77.3

x=m=3.6mm.

The lever arm is
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z=150 — 60 — 1.8 = 88.2 mm,
so that

(3.52)

Mpgg, =773 X 0.088 = 6.8 kN m/m.

This is less than half the required value (equation (3.50)), so the contri-
bution from crack-control reinforcement at the supports is now considered,
using data from Eurocode 4: Part 1.2.

From Section 3.4.5, A, = 320 mm?*m, so 8-mm bars at 150 mm spacing
(336 mm%*m) are provided with 20 mm of top cover, as shown in Fig.
3.12(a). The force per unit width, double the previous value, is 154 kN/m.
The effective thickness of the slab is 120 mm. The variation of its design
temperature 0, with distance x above its notional lower surface is shown in
Fig. 3.8(b). From this curve, the variation of the compressive strength of
the concrete with x is determined, and is shown, as f./fx, in Fig. 3.8(b).

The mean compressive strength over the bottom 13 mm of the effective
slab is 0.61 x 25 = 15.2 N/mm?. This provides a compressive force

F,=0.85 x 152 X 13 = 168 kN/m (3.53)

which exceeds the force in the top reinforcement. The lever arm (Fig. 3.12)
is 89 mm, so the hogging moment of resistance is

Mygy, = 154 X 0.089 = 13.7 kN m/m (3.54)

Rigid-plastic global analysis (plastic hinge analysis) may be used for
checking the resistance of continuous slabs in fire. The sum of the sagging
and hogging resistances here, from results (3.52) and (3.54) is 20.5
kN m/m, which exceeds the wL2/8’ moment given in equation (3 50).
A separate calculation would be required for an end span.

The top reinforcement used here (T8 bars at 150 mm) also serves as
transverse reinforcement for the concrete flange of each composite beam
(Section 3.6.3.2) as well as crack-control reinforcement. This design could

lo_. 150 150

I
0' i-re ". 1 _ 154 kN
e - T

x
f — — 8% ,—51- 1
R o ¥
W 085x152Nlmm

(a) cross-section above composite beam  (b) stress blocks for hogging
bending

Fig. 3.12 Composite slab — design for fire.
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thus be cheaper overall than the provision of thermal insulation below the
sheeting.

3.5 Composite beams — sagging bending and vertical shear

Composite beams in buildings are usually supported by connections to
steel or composite columns. The cheapest connections have little flexural
strength, so it is convenient to design the beams as simply-supported. Such
beams have the following advantages over beams designed as continuous at
supports:

® very little of the steel web is in compression, and the steel top flange is
restrained by the slab, so the resistance of the beam is not limited by
buckling of steel;

® webs are less highly stressed, so it is easier to provide holes in them for
the passage of services;

® bending moments and vertical shear forces are statically determinate,
and are not influenced by cracking, creep, or shrinkage of concrete;

® there is no interaction between the behaviour of adjacent spans;

® bending moments in columns are lower, provided that the frame is
braced against sidesway;

® no concrete at the top of the slab is in tension, except over supports

® global analyses are simpler, and design is quicker.

The behaviour and design of midspan regions of continuous beams are
similar to those of simply-supported beams, considered in this chapter. The
other aspects of continuous beams are treated in Chapter 4.

3.5.1 Effective cross-section

The presence of profiled steel sheeting in a slab is normally ignored when
the slab is considered as part of the top flange of a composite beam.
Longitudinal shear in the slab (explained in Section 1.6) causes shear strain
in its plane, with the result that vertical cross-sections through the compo-
site T-beam do not remain plane, when it is loaded. At a cross-section, the
mean longitudinal bending stress through the thickness of the slab varies as
sketched in Fig. 3.13.

Simple bending theory can still give the correct value of the maximum
stress (at point D) if the true flange breadth B is replaced by an effective
breadth, b, such that the area GHJK equals the area ACDEF. Research
based on elastic theory has shown that the ratio b/B depends in a complex
way on the ratio of B to the span L, the type of loading, the boundary
conditions at the supports, and other variables.

For beams in buildings, it is usually accurate enough to assume that the
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Fig. 3.13 Use of effective width to allow for shear lag.

effective width is /,/8 on each side of the steel web, where [, is the distance
between points of zero bending moment. For a simply-supported beam,
this is equal to the span, L, so that

i

Boge = (3.55)
provided that a width of slab L/8 is present on each side of the web.

Where profiled sheeting spans at right angles to the span of the beam (as
in the worked example here), only the concrete above its ribs can resist
longitudinal compression (e.g. its effective thickness in Fig. 3.9 is 80 mm).
Where ribs run parallel to the span of the beam, the concrete within ribs
can be included, though it is rarely necessary to do so.

Longitudinal reinforcement within the slab is usually neglected in re-
gions of sagging bending.

3.5.2 Classification of steel elements in compression

Because of local buckling, the ability of a steel flange or web to resist
compression depends on its slenderness, represented by its breadth/
thickness ratio. In design to Eurocode 4, as in Eurocode 3, each flange or
web in compression is placed in one of four classes. The highest (least
slender) class is Class 1 (plastic). The class of a cross-section of a composite
beam is the lower of the classes of its web and compression flange, and this
class determines the design procedures that are available.

This well-established system is summarised in Table 3.1. The Eurocodes
allow several methods of plastic global analysis, of which rigid-plastic
analysis (plastic hinge analysis) is the simplest. This is considered further in
Section 4.3.3.

The Eurocodes give several idealised stress—strain curves for use in
plastic section analysis, of which only the simplest (rectangular stress
blocks) are used in this volume.
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Table 3.1 Classification of sections, and methods of analysis.

Slenderness class and name 1 2 3 4
plastic compact semi-compact slender

Method of global analysis plastic® elastic elastic elastic

Analysis of cross-sections plastic® plastic® elastic) elastic®

Maximum ratio c/t for flanges
of rolled I-sections:

uncased web 8.14 8.95 12.2 no limit
encased web 8.14 12.2 17.1 no limit

Notes: (1) hole-in-the-web method enables plastic analysis to be used;
(2) with reduced effective width or yicld strength;
(3) for Grade 50 steel (f, = 355 N/mm?); c is half the width of a flange of thickness #;
(4) elastic analysis may be used, but is more conservative.

The class boundaries are defined by limiting slenderness ratios that are
proportional to (fy)'o'5 , where f, is the nominal yield strength of the steel.
This allows for the influence of yielding on loss of resistance during
buckling. The ratios in Eurocode 4: Part 1.1 for steel with f, = 355 N/mm?
are given in Table 3.1 for uniformly compressed flanges of rolled I-
sections, of overall width 2c.

Encasement of webs in concrete, illlustrated in Fig. 3.31, is done primar-
ily to improve resistance to fire (Section 3.10). It also prevents rotation of a
flange towards the web, which occurs during local buckling, and so enables
higher ¢/t ratios to be used at the class 2/3 and 3/4 boundaries, as shown. At
the higher compressive strains that are relied on in plastic hinge analysis,
the encasement is weakened by crushing of concrete, so the c/t ratio at the
class 1/2 boundary is unchanged.

The class of a steel web is strongly influenced by the proportion of its
clear depth, d, that is in compression, as shown in Fig. 3.14. For the class
1/2 and 2/3 boundaries, plastic stress blocks are used, and the limiting d/t
ratios are given in Eurocodes 3 and 4 as functions of &, defined in Fig. 3.14.
The curves show, for example, that a web with d/t = 40 moves from Class 1
to Class 3 when a increases from 0.7 to 0.8. This high rate of change is
significant in the design of continuous beams (Section 4.2.1).

For the class 3/4 boundary, elastic stress distributions are used, defined
by the ratio §. Pure bending (no net axial force) corresponds to o = 0.5,
but to § = —1. The elastic neutral axis is normally higher, in a composite
T-beam, than the plastic neutral axis, and its positions for propped and
unpropped construction are different, so the curve for the class 3/4 bound-
ary is not comparable with the others in Fig.3.14.

For simply-supported composite beams, the steel compression flange is
restrained from local buckling (and also from lateral buckling) by its
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Fig. 3.14 Classification of webs, for f, = 355 N/mm?.

connection to the concrete slab, and so is in Class 1. The plastic neutral axis
for full interaction is usually within the slab or steel top flange, so the web
is not in compression, when flexural failure occurs, unless partial shear
connection (Section 3.5.3.1) is used. Even then, « is sufficiently small for
the web to be in Class 1 or 2. (This may not be so for the much deeper plate
or box girders used in bridges.)

During construction of a composite beam, the steel beam alone may be
in a lower slenderness class than the completed composite beam, and may
be susceptible to lateral buckling. Design for this situation is governed by a
code for steel structures (e.g. Eurocode 3).

3.5.3 Resistance to sagging bending

3.5.3.1 Cross-sections in Class 1 or 2

The methods of calculation for sections in Class 1 or 2 are in principle the
same as those for composite slabs, explained in Section 3.3.1, to which
reference should be made. The main assumptions are as follows:

® the tensile strength of concrete is neglected;
® plane cross-sections of the structural steel and reinforced concrete parts
of a composite section each remain plane;

and, for plastic analysis of sections only:

o the effective area of the structural steel member is stressed to its design
yield strength f,/y, in tension or compression;
® the effective area of concrete in compression resists a stress of 0.85f./v.
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constant over the whole depth between the plastic neutral axis and the
most compressed fibre of the concrete.

In deriving the formulae below, it is assumed that the steel member is a
rolled I-section, of cross-sectional area A,, and the slab is composite, with
profiled sheeting that spans between adjacent steel members. The compo-
site section is in Class 1 or 2, so that the whole of the design load can be
assumed to be resisted by the composite member, whether the construction
was propped or unpropped. This is because the inelastic behaviour that
precedes flexural failure allows internal redistribution of stresses to occur.

The effective section is shown in Fig. 3.15(a). As for composite slabs,
there are three common situations, as follows. The first two occur only
where full shear connection is provided.

(1) Neutrél axis within the concrete slab
The stress blocks are shown in Fig. 3.15(b). The depth x, assumed to be the
position of the plastic neutral axis, is found by resolving longitudinally:

A 0.85
N, = Ay _ b gx for (3.56)

Ya Ye

This method is valid when
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Fig. 3.15 Resistance to sagging bending of composite section in Class 1 or 2.
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Taking moments about the line of action of the force in the slab,
Af, (

a

x
My ra = hg + h, — '2') (3.57)
where h, defines the position of the centre of area of the steel section,
which need not be symmetrical about its major (y—y) axis.

(2) Neutral axis within the steel top flange
The force N, given by

N = bogh, 2ok (3.58)
c
is now less than the yield force for the steel section, denoted by
A.f,
Nypi = 23X, (3.59)
Ya
so the neutral axis is at a depth x > h,, and is assumed to lie within the steel
top flange (Fig. 3.15(c)). The condition for this is

o < 2bgt; Iy . (3.60)
Ya

The distance x is most easily calculated by assuming that the strength of the

steel in compression is 2f,/y,, so that the force N, 1 and its line of action

can be left unchanged. Resolving longitudinally to determine x:

N,

apl — N,

Na.pl = ch + Nac = ch + be(x - hl) Z‘x. (3.61)
Ya
Taking moments about the line of action of the force in the slab,
h x—h,+h
Mpl.Rd = Na.pl (hg + ht - EC) - Nac '——2‘:‘_t (3.62)

If x is found to exceed h; + #, the plastic neutral axis lies within the steel
web, and M, rq can be found by a similar method.

(3) Partial shear connection

The symbol N was used in paragraphs (1) and (2) above for consistency
with the treatment of composite slabs in Eurocode 4 and in Section 3.3.1.
In design, its value is always the lesser of the two values given by equations
(3.56) and (3.58). It is the force which the shear connectors between the
section of maximum sagging moment and each free end of the beam
(a ‘shear span’) must be designed to resist, if full shear connection is to be
provided. In draft Eurocode 4: Part 1.1 2 the symbol used in the clause
on partial shear connection in beams is F¢, so in this explanation it is used
in place of N. ’
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Let us suppose that the shear connection is designed to resist a force F,,
smaller than F. If each connector has the same resistance to shear, and
the number in each shear span is N, then the degree of shear connection is
defined by:

degree of shear connection = N_E (3.63)
N, |4 F cf

where N is the number of connectors required for full shear connection.

The plastic moment of resistance of a composite slab with partial shear
connection had to be derived in Section 3.3.1(3) by an empirical method,
because the flexural properties of profiled sheeting are so complex. For
composite beams, simple plastic theory can be used.

The depth of the compressive stress block in the slab, x., is given by

F,

[

0.85beff@ (3.64)

[

X, =

and is always less than h.. The distribution of longitudinal strain in
the cross-section is intermediate between the two distributions shown
(for stress) in Fig. 2.2(c), and is shown in Fig. 3.15(d), in which C means
compressive strain. The neutral axis in the slab is at a depth x,, greater than
X, as shown.

In design of reinforced concrete beams and slabs it is generally assumed
that x/x, is between 0.8 and 0.9. The less accurate assumption x. = x, is
made for composite beams and slabs to avoid the complexity that other-
wise occurs in design when x,. = ki, or, for beams with non-composite slabs,
x. =~ h,. This introduces an error in My, that is on the unsafe side, but is
negligible for composite beams. It is not negligible for composite columns,
where it is allowed for (Section 5.6.5.1).

There is a second neutral axis within the steel I-section. If it lies within
the steel top flange, the stress blocks are as shown in Fig. 3.15(c), except
that the block for the force N is replaced by a shallower one, for force F.
By analogy with equation (3.62) the resistance moment is

X, — X, + h,

> (3.65)

X
MRd = a.pl(hg + ht_ Ec) - Fc
If the second neutral axis lies within the steel web, the stress blocks are
as shown in Fig. 3.15(e). Taking moments about the top surface of the slab,
the resistance moment is

t x, +h +t
- Nacf(ht + 5‘) - Nawv——zt f, (3.66)

chc
Mgy = Nypilthg + hy) — >

where
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of = 2bste =,
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a
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Naw=Na _Fc_Nacf'

.pl
Use of partial shear connection in design

The curve ABC in Fig. 3.16 shows a typical relationship between
Mgg/Mp ra and degree of shear connection F./Fy, found by using the
preceding equations for assumed values of F./F.¢. When F is taken as zero,
then

Mgy = Mapl.Rd

where M, rq is the resistance of the steel section alone.

1.0
equilibrium—,
MRa/Mpird method B

7/ . .
/- metnad "
Mapird  [*A |
Mp1.Rd |
0 ol Fr 0

Fig. 3.16 Design methods for partial shear connection.

The curve is not valid for very low degrees of shear connection, for
reasons explained in Section 3.6.2. Where it is valid, it is evident that a
substantial saving in the cost of shear connectors can be obtained (e.g. by
using N/N; = F./Fy = 0.7) when the required bending resistance Mg, is
only slightly below M, rq.

Where profiled sheeting is used, there is sometimes too little space in the
troughs for N; connectors to be provided within a shear span, and then
partial-connection design becomes essential.

Unfortunately, curve ABC in Fig. 3.16 cannot be represented by a
simple algebraic expression. In practice, it is therefore sometimes replaced
(conservatively) by the line AC, given by

Mgy - M
F, = ( sd ~ Mapira ) F,. (3.67)
Mpl.Rd - Mapl.Rd

In design, Mgq is known, and My, rd, Mapi.ra @and Fs are easily calcu-
lated, so this equation gives directly the design force F, and hence the
number of connectors required in each shear span:
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N=NF-F (3.68)
Fy Pgrg
where PR is the design resistance of one connector.

The design of shear connection is considered in greater depth in Section
3.6.

Variation in bending resistance along a span

In design, the bending resistance of a simply-supported beam is checked
first at the section of maximum sagging moment, which is usually at
midspan. For a steel beam of uniform section, the bending resistance is
then obviously sufficient, elsewhere within the span; but this may not be so
for a composite beam. Its bending resistance depends on the number of
shear connectors between the nearer end support and the cross-section
considered. This is shown by curve ABC in Fig. 3.16, because the x-
coordinate is proportional to the number of connectors.

Suppose, for example, that a beam of span L is designed with partial
shear connection and N/N; = 0.5 at midspan. Curve ABC is redrawn in
Fig. 3.17(a), with the bending resistance at midspan, Mgq max, denoted by
B. If the connectors are uniformly spaced along the span, as is usual in
buildings, then the axis N/Nj is also an axis x/L, where x is the distance
from the nearer support, and N is the number of connectors effective in
transferring the compression to the concrete slab over a length x from a
free end. Only these connectors can contribute to the bending resistance
Mgaq x at that section, denoted E in Fig. 3.17(b). In other words, bending
failure at section E would be caused (in the design model) by longitudinal
shear failure along length DE of the interface between the steel flange and
the concrete slab.

A
MRd B _ _ !B — = T,
mox = o — |
. MRd /// | ~ MSd
bending ~ F N

moment 7 i N

7 l N 1
A / I
% A\
! -

(@) 0 | 0.5 N/Njand il 1.0

v y

(b)

Fig. 3.17 Variation of bending resistance along a span.
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Which section would in fact fail first depends on the shape of the
bending-moment diagram for the loading. For uniformly-distributed load-
ing, the curve for Msq, is parabolic, and curve OFB in Fig. 3.17(a) shows
that failure would occur at or near midspan. The addition of significant
point loads (e.g. from small columns) at the quarter-span points changes
the curve from OFB to 0GB. Failure would occur near section E. A design
in which Mg4 at midspan was equated to Mgg max Would be unsafe.

This is why design codes would not allow the 0.5N; connectors to be
spaced uniformly along the half span, for this loading. The number
required for section E would be calculated first, and spaced uniformly
along DE. The remainder would be located between E and midspan, at
wider spacing. Spacing of connectors is further discussed in Section 3.6.1.

3.5.3.2 Cross-sections in Class 3 or 4

The resistance to bending of a beam of semi-compact or slender section is
governed usually by the maximum stress in the steel section, calculated by
elastic theory. Account has to be taken of the method of construction
(propped or unpropped) and of the creep of concrete. The resistance may
be as low as 0.7M,; gy, so it is fortunate that in design, it is almost always
possible to ensure that sections in sagging bending are in Class 1 or 2. This
is more difficult for hogging bending, as explained in Section 4.2.1.

3.5.4 Resistance to vertical shear

In a simply-supported steel beam, bending stresses near a support are
within the elastic range even when the design ultimate load is applied; but
in a composite beam, maximum slip occurs at end supports, so bending
stresses found by simple elastic theory, based on plane sections remaining
plane, may be unreliable.

Vertical shear stresses are calculated from rates of change (do/dx) of
bending stresses o, and so cannot easily be found near an end of a
composite beam. It has been shown in tests®” that some of the vertical
shear is resisted by the concrete slab, but there is no simple design model
for this, as the contribution from the slab is influenced by whether it is
continuous across the end support, by how much it is cracked, and by local
details of the shear connection.

It is therefore assumed in practice that vertical shear is resisted by the
steel beam alone, exactly as if it were not composite. The web thickness of
most rolled steel I-sections is sufficient to avoid buckling in shear, and then
design is simple. The shear area A, for such a section is given in Eurocode
30D a5

A, =104 hyt,,, (3.69)

with notation as in Fig. 3.15(a). The shear resistance is calculated by
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assuming that the yield strength in shear is fy/\/3 (von Mises yield
criterion), and that the whole of area A, can reach this stress:
V3
Voira = Ay fy . (3.70)
Ya

This is thus a ‘rectangular stress block’ plastic model, based essentially on
test data.

The maximum slenderness of an unstiffened web for which shear
buckling can be neglected is given in Eurocode 4 as

£<69e

w

if the web is not encased in concrete, and

;d. < 124e (3.71)
if it is encased, with appropriate reinfor;:ement. The dimensions d and t,,
are shown in Fig 3.15(a), and
235)“2
€=|— 3.72
( 7, (3.72)

with f, in N/mm? units. This allows for the influence of yielding on shear
buckling.

Design based on shear buckling is more common in bridges than in
buildings, so it is treated in Volume 2.

Interaction between bending and shear can influence the design of
continuous beams, and is treated in Section 4.2.2.

3.6 Composite beams — longitudinal shear

3.6.1 Critical lengths and cross-sections

It will be shown in Section 3.7 that the bending moment at which yielding
of steel first occurs in a simply-supported composite beam can be below
70% of the ultimate moment. If the bending-moment diagram is parabolic,
then at ultimate load partial yielding of the steel beam can extend over
more than half of the span.

At the interface between steel and concrete, the distribution of longi-
tudinal shear is influenced by yielding, and also by the spacing of the
connectors, their load/slip properties, and shrinkage and creep of the
concrete slab. For these reasons, no attempt is made in design to calculate
this distribution. Wherever possible, connectors are uniformly spaced
along the span.
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It was shown in Section 3.5.3 that this cannot always be done. For beams
with all critical sections in Class 1 or 2, uniform spacing is allowed by
Eurocode 4 along each critical length, which is a length of the interface -
between two adjacent critical cross-sections. These are defined as

® sections of maximum bending moment,

® supports,

® sections subjected to heavy concentrated loads,

® places where there is a sudden change of cross-section of the beam, and
® free ends of cantilevers.

There is also a definition for tapering members.

Where the loading is uniformly-distributed, a typical design procedure,
for half the span of a beam, whether simply-supported or continuous,
would be as follows.

(1) Determine the compressive force required in the concrete slab at the
section of maximum sagging moment, as explained in Section 3.5.3.
Let this be F_.

(2) Determine the tensile force in the concrete slab at the support that is
assumed to contribute to the bending resistance at that section (i.e.
zero for a simple support, even if crack-control reinforcement is pres-
ent; and the yield force in the longitudinal reinforcement, if the span is
designed as continuous). Let this force be F;.

(3) If there is a critical cross-section between these two sections, deter-
mine the force in the slab at that section. The bending moment will
usually be below the yield moment, so elastic analysis of the section
can be used.

(4) Choose the type of connector to be used, and determine its design
resistance to shear, Prq, as explained in Section 2.5.

(5) The number of connectors required for the half span is

_Ek+ K

(3.73)
PRd

N

The number required within a critical length where the change in longitudi-
nal force is AF is AF/Pgg.

An alternative to the method of step (3) would be to use the shear force
diagram for the half span considered. Such a diagram is shown in Fig. 3.18
for the length ABC of a span AD, which is continuous at A and has a heavy
point load at B. The critical sections are A, B, and C. The total number of
connectors is shared between lengths AB and BC in proportion to the
areas of the shear force diagram, OEFH and GJH.

In practice it might be necessary to provide a few extra connectors along
BC, because codes limit the maximum spacing of connectors, to prevent
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Fig. 3.18 Vertical shear in beam with off-centre point load.

uplift of the slab relative to the steel beam, and to ensure that the steel top
flange is sufficiently restrained from local and lateral buckling.

3.6.2 Ductile and non-ductile connectors

The use of uniform spacing is possible because all connectors have some
ductility, or slip capacity. This term has no standard definition, but is
typically assumed to be the maximum slip at which a connector can resist
90% of its characteristic shear resistance, as defined by the falling branch
of a load-slip curve obtained in a standard push test.

The slip capacity of headed stud connectors increases with the diameter
of the shank, and has been found to be about 6 mm for 19-mm studs in
solid concrete slabs.®® Higher values are found in tests with single studs
placed centrally within the troughs of profiled steel sheeting.

Slip enables longitudinal shear to be redistributed between the connec-
tors in a critical length, before any of them fail. The slip required for this
purpose increases at low degrees of shear connection, and as the critical
length increases (a scale effect). A connector that is ‘ductile’ (has sufficient
slip capacity) for a short span becomes ‘non-ductile’ in a long span, for
which a more conservative design method must be used.

The definitions of ‘ductile’ connectors given in Eurocode 4 for headed
studs welded to a steel beam with equal flanges are shown in Fig. 3.19. The
more liberal definition, for use where the slab is composite, is subject to
several restrictions, based on the limited scope of current research data on
slip capacity.

Most other types of connector are treated in Eurocode 4 as ‘non-ductile’
for all spans, because until recently few push tests were continued beyond
maximum load, which was usually reached at a slip of less than 3 mm, so
that slip capacity was not determined. The push test specified in British
codes since 1965 is, in any case, unsuitable for this purpose, because the
reinforcement in the slabs is insufficient to prevent longitudinal splitting
(Section 2.5).
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Fig. 3.19 Decfinition of ‘ductile’ for welded studs and some other connectors, for steel
sections with equal flanges.

Where non-ductile connectors are used, design for full shear connection
is the same (in Eurocode 4) as for ductile connectors, but for N/N¢ < 1, the
two methods shown in Fig. 3.16 are replaced by methods that require
higher ratios N/N; for a given value of Msy/Mp ra. These are approxi-
mations to elastic behaviour, and so rely less on slip capacity. They are
explained in Reference 15. There is also a rule in Eurocode 4 that limits the
use of uniform spacing of non-ductile connectors.

3.6.3 Transverse reinforcement

The reinforcing bars shown in Fig. 3.20 are longitudinal reinforcement for
the concrete slab, to enable it to span between the beam shown and those
either side of it. They also enhance the resistance to longitudinal shear of
vertical cross-sections such as B-B. Bars provided for that purpose are
known as ‘transverse reinforcement’, as their direction is transverse to the
axis of the composite beam. Like stirrups in the web of a reinforced
concrete T-beam, they supplement the shear strength of the concrete, and
their behaviour can be represented by a truss analogy.

A B D B
BB RN T | N Y|
Msd BRI R Ry N AP ‘ ) he
Cent, 'I-“. R |.‘..'|' > ...-:
vsT'c'.l,o\ Bl e iHe' RN
VAR IR 7777774 g
A g D

Fig. 3.20 Surfaces of potential failure in longitudinal shear.
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The design rules for these bars are extensive, as account has to be taken
of many types and arrangements of shear connectors, of haunches, of the
use of precast or composite slabs, and of interaction between the longitudi-
nal shear per unit length on the section considered, vsq4, and the transverse
bending moment, shown as M in Fig. 3.20. The loading on the slab also
causes vertical shear stress on planes such as B-B; but this is usually so
much less than the longitudinal shear stress vg4/A., on the plane, that it can
be neglected.

The notation here is that of Eurocode 4: Part 1.1;(!? A, is the cross-
sectional area per unit length of beam of the concrete shear surface being
considered. The word ‘surface’ is used here because EFGH in Fig. 3.20,
although not a plane, is another potential surface of shear failure. In
practice, the rules for minimum height of shear connectors ensure that in
slabs of uniform thickness, planes such as B-B are more critical; but this
may not be so for haunched slabs, considered later.

The design longitudinal shear per unit length for surface EFGH is the
same as that for the shear connection, and in a symmetrical T-beam half of
that value is assumed to be transferred through each of planes B-B and
D-D. For an L-beam or where the flange of the steel beam is wide
(Fig. 3.21), the more accurate expressions should be used:

vgg = — and vpp=—=
BB < 7 oD =
where v is the design shear for the shear connection and b is the effective

width of the concrete flange.
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Fig. 3.21 T-beam with asymmetrical concrete flange.

Effective area of reinforcement

For planes such as B-B in Fig. 3.20, the effective area of transverse
reinforcement per unit length of beam, A, is the whole of the reinforce-
ment that is fully anchored on both sides of the plane (i.e. able to develop
its yield strength in tension). This is so even where the top bars are fully
stressed by the bending moment Mg, because this tension is balanced by
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transverse compression, which enhances the shear resistance in the region
CJ by an amount at least equivalent to the contribution the reinforcement
would make, in absence of transverse bending.

Effective areas are treated in more detail in Volume 2.

3.6.3.1 Design rules for transverse reinforcement in solid slabs

Part of a composite beam is shown in plan in Fig. 3.22. The truss model for
transverse reinforcement is illustrated by triangle ACE, in which CE
represents the reinforcement for a unit length of the beam, A., and v is the
design shear force per unit length. The force v, applied at some point A, is
transferred by concrete struts AC and AE, at 45° to the axis of the beam.
The strut force at C is balanced by compression in the slab and tension in
the reinforcement. The model fails when the reinforcement yields. The
tensile force in it is equal to the shear on a plane such as B-B caused by the
force v, so the model gives a design equation of the form

_= de = ACV f( 'y (3_74)

2

where the first term is the contribution from the strength of the concrete in
shear.

This result is assumed to be valid whatever the length of the notional
struts in the slab (e.g. FG), and relies to some extent on the shear flow v
being fairly uniform within the shear span, because the reinforcement
associated with the force v at A is in practice provided at cross-section A,
not at some point between A and midspan. The type of cracking observed
in tests where shear failure occurs, shown in Fig. 3.22, is consistent with the
model.

The design equation in Eurocode 4: Part 1.1 is

c

Vg = 2.5 A iy + AL (3.75)
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Fig. 3.22 Truss model for transverse reinforcement.
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where

= 0.25 fctk0.0S (376)

and fuo.0s is the characteristic tensile strength (lower 5% fractile) of
the concrete. This strength, as given in Eurocodes 2 and 4, ranges from
about 0.06 f., for strong concrete to 0.07 f., for weak concrete. The first
term in equation (3.75) is thus approximately 0.04 A . mfie/Ye.

The corresponding equation in the British code BS 59501% is (when
Yo = 1.5, vy = 1.15)

VRa = 0.045 Acvnf;—“ + O.SOSACJ%. (3.77)
[ 8

The cube strength f, is approximately 1.25 f., so the British code
assumes a higher contribution from the concrete and a lower one from the
reinforcement, but is otherwise the same as that of Eurocode 4. The rules
have been checked against test data, as far as possible, but these data cover
only a few of the many situations that can occur.

The symbol m in equations (3.75) and (3.77) is a modification factor for
lightweight-aggregate concrete. It allows for the reduction in the ratio
E /f« as the unit weight of the concrete, p, is reduced below 24 kN/m?, and
is given in Eurocode 4 by

p
=03+0.7_. 3.78
1 24 3.78)
The British code gives m = 0.8 for all lightweight-aggregate concretes
with p = 17.2 kN/m®. This agrees closely with Eurocode 4 when p = 17.2
kN/m>. . :

Limits to the use of equation (3.75)

As with stirrups in reinforced concrete beams, an upper limit to the validity
of the model of Fig. 3.22 is set, as the area A, is increased, by the crushing
strength of the concrete in the diagonal struts. The limit is given in
Eurocode 4 as '

Vag < 02 ATk, (3.79)

C
The expression was copied from the rule in Eurocode 2: Part 1.12% for a

similar situation, for consistency. It corresponds to A, < 0.85% when f,; =
32 N/mm?, fy = 460 N/mm?, and m = 1.

The compressive stress in the concrete struts when the limit of equation
(3.79) is reached can be estimated as follows. For unit length of beam, the
strut is 1/V2 wide and A, deep. The force in it is V2VR4, so the compres-
sive stress is limited by equation (3.79) to 0.4 1 fu/v., which appears to be
rather conservative.

The corresponding limit in the British code®™ was deduced from a



Simply-supported Composite Slabs and Beamns 91

study®? of test data for composite beams, not on a method for reinforced
concrete T-beams. It is:

Vra < 0.8 Agn(fon) (3.80)

This is over 30% higher than the Eurocode limit when f., = 25 N/mm?, and
about the same at fo = 45 N/mm?.

A minimum area for transverse reinforcement, irrespective of the longi-
tudinal shear, is specified in Eurocode 4, as 0.002 times the effective area
of the concrete slab. This empirical rule provides some protection against
fracture or excessive local strain of the reinforcement when cracks first
occur. It is suggested that the area of slab assumed to be effective should be
the area used for the calculation of A, in equation (3.75), which may
include concrete within ribs where the sheeting spans transversely.

Haunched slabs

Further design rules are required for the transverse reinforcement in
haunches of the type shown in Fig. 2.1(b). These are more common in
bridges than in buildings, so the subject is covered in Volume 2. Haunches
encased in thin steel sheeting are considered below.

3.6.3.2 Transverse reinforcement in composite slabs

Where profiled sheeting spans in the direction transverse to the span of the
beam, as shown in Fig. 3.15(a), it can be assumed to be effective as bottom
transverse reinforcement where the sheets are continuous over the beam.
Where they are not, as in the figure, the effective area of sheeting depends
on how the ends of the sheets are attached to the steel top flange.

Where studs are welded to the flange through the sheeting, resistance to
transverse tension is governed by local yielding of the thin sheeting around
the stud. The design bearing resistance of a stud with a weld collar of
diameter dg, in sheeting of thickness ¢ is given in Eurocode 4 as

T
’YHP

Py ra = kodgot (3.81)

where
a
kp=1+—,<4.0,
¢ ddo
Jyp is the yield strength of the sheeting, and dimension a is shown in
Fig. 3.23. The formula corresponds to the assumption that yielding of the
sheet occurs in direct tension along BC and in shear, at stress fyp/2, along

AB and CD. For studs at longitudinal spacing s, the contribution to vgy
(equation (3.75)) is

Py ra

== (3.82)
N

This contribution is significant in practice where conventional studs are
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used: but small-diameter shot-fired pins are less effective, because of the
limit kp=4.

Where the span of the sheeting is parallel to that of the beam, transverse
tension causes the corrugations to open out, so v,q is taken as zero.

~—

4

L—a(dedo)——l

Fig. 3.23 Bearing resistance of profiled sheeting.
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Fig. 3.24 Detailing rules for shear connection.

3.6.4 Detailing rules

Where shear connectors are attached to a steel flange, there will be
transverse reinforcement, and there may be a haunch (local thickening of
the slab, as in Fig. 2.1(b)) or profiled steel sheeting. No reliable models
exist for the three-dimensional state of stress in such a region, even in the
elastic range, so the details of the design are governed by arbitrary rules of
proportion, based essentially on experience.

Several of the rules given in Eurocode 4: Part 1.1 are shown in Fig. 3.24.
The left-hand half shows profiled sheeting that spans transversely, and the
right-hand half shows a haunch.
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The minimum dimensions for the head of a stud, the rule /& = 34, and the
30-mm projection above bottom reinforcement, are to ensure sufficient
resistance to uplift.

The rule d < 2.5¢ is to avoid local failure of the steel flange, caused by
load from the connector. For repeated (fatigue) loading, a lower limit to
dlts is specified (Volume 2).

The 50-mm side cover to a connector and the < 45° rule are to prevent
local bursting or crushing of the concrete at the base of the connector; and
the 20-mm dimension to the flange tip is to avoid local overstress of the
flange and to protect the connector from corrosion.

The minimum centre-to-centre spacing of stud connectors of diameter d
is 5d in the longitudinal direction, 2.5d across the width of a steel flange in
solid slabs, and 4d in composite slabs. These rules are to enable concrete to
be properly compacted, and to avoid local overstress of the slab.

The maximum longitudinal spacing of connectors is normally limited to
the lesser of 800 mm and six times the total slab thickness, because the
transfer of shear is assumed in design to be continuous along the span, and
also to avoid excessive uplift.

There are corresponding rules for connectors other than studs. All such
rules relevant to stresses should in principle give ratios of dimensions;
where actual dimensions are given, there may be an implied assumption
(e.g. that studs are between 16 mm and 22 mm in diameter), or it may be
that corrosion or crack widths are relevant.

3.7 Stresses and deflections in service

A composite beam is usually designed first for ultimate limit states. Its
behaviour in service must then be checked. For a simply-supported beam,
the most critical serviceability limit state is usually excessive deflection,
which can govern the design where unpropped construction is used. Floor
structures subjected to dynamic loading (e.g. as in a gymnasium) are also
susceptible to excessive vibration (Section 3.11.3.2).

Cracking of concrete is a problem only in fully-encased beams, which are
rarely used, and in hogging regions of continuous beams (Section 4.2.5).

Some codes of practice limit stresses in service; but excessive stress is not
itself a limit state. It may however invalidate a method of analysis (e.g.
linear-elastic theory) that would otherwise be suitable for checking com-
pliance with a serviceability criterion. No stress limits are specified in
Eurocode 4: Part 1.1. The policy is to use elastic analysis, allowing for
shear lag and creep; and to modify the results, where necessary, to allow
for yielding of steel and, where partial shear connection is used, for
excessive slip.

If yielding of structural steel occurs in service, in a typical composite



94 Composite Structures of Steel and Concrete

beam for a building, it will be in the bottom flange, near midspan. The
likelihood of this depends on the ratio between the characteristic variable
and permanent loads, given by

on the partial safety factors used for both actions and materials, on the
method of construction used, and on the shape factor for the composite
section. This factor is given by

z=Mo
M,
where M, is the bending moment at which yield of steel first occurs. For
sagging bending, it is typically between 1.25 and 1.35 for propped construc-
tion, but can rise to 1.45 or above, for unpropped construction.
Deflections are usually checked for the rare combination of actions,
given in equation (1.8). So for a beam designed for distributed loads g, and

gy only, the ratio of design bending moments (ultimate/serviceability) is

_1.35g + 1.5g _1.35+ L.5r
B g+gq o1+ r
This ratio ranges from 1.42 at r = 0.8 to 1.44 at r = 1.6.
For this comparison, it can be assumed that

M
M —~_pl
pl.Rd >

Ya
and from these expressions, the stress in steel in service will reach or
exceed the yield stress if

(3.83)

Z > y,p.
The values given above show that this is unlikely for propped construction,
but might occur for unpropped construction when v, for structural steel
is assumed to be 1.05 or less, rather than 1.10 as recommended in Euro-
code 4.

Where the bending resistance of a composite section is governed by local
buckling, as in a Class 3 section, elastic section analysis is used for ultimate
limit states, and then stresses and/or deflections in service are less likely to
influence design.

As shown below, elastic analysis of a composite section is more complex
than plastic analysis, because account has to be taken of the method of
construction and of the effects of creep. The following three types of
loading then have to be considered separately:

e load carried by the steel beam,
® short-term load carried by the composite beam,
® long-term load carried by the composite beam.
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3.7.1 Elastic analysis of composite sections in sagging bending

It is assumed first that full shear connection is provided, so that the effect
of slip can be neglected. All other assumptions are as for the elastic
analysis of reinforced concrete sections by the method of transformed
sections. The algebra is different because the flexural rigidity of the steel
section alone is so much greater than that of reinforcing bars.

For generality, the steel section is assumed to be asymmetrical
(Fig. 3.25) with cross-sectional area A,, second moment of area I,, and
centre of area distance z, below the top surface of the concrete slab, which
is of uniform overall thickness A, and effective width beg.

The modular ratio for short-term loading is

E

n=-=-=2

E

[4

where the subscripts a and c refer to structural steel and concrete, respect-
ively. For long-term loading, a value n/3 is a good approximation. For
simplicity, a single value n/2 is sometimes used for both types of loading.
From here onwards, the symbol # is used for whatever modular ratio is
appropriate, so it is defined by

n = Ea (3.84)
E.
where E( is the relevant effective modulus for the concrete.

It is usual to neglect reinforcement in compression, concrete in tension,
and also concrete between the ribs of profiled sheeting, even when the
sheeting spans longitudinally. The condition for the neutral-axis depth x to
be less than A, is

1, K
Ay(zg— h) < 5bcff ;c. (3.85)

The neutral-axis depth is then given by the usual “first moments of area’
equation,

L e |
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Fig. 3.25 Elastic analysis of composite beam section in sagging bending.
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1 x2
a(zg - X) 2 cff n (386)

and the second moment of area, in ‘steel’ units, by

I=1,+ Az, — x)? +beff3 : (3.87)
If condition (3.85) is not satisfied, then the neutral-axis depth exceeds A,
and is given by

Azg— %) = bgche %’3 (3.88)
The second moment of area is
bgh, h2 h.\?
—_ 2 c
I=1,+ Az, — x)* + eﬁ: [12 (x - 3) } (3.89)

In global analyses, it is sometimes convenient to use values of / based on
the uncracked composite section. The values of x and I are then given by
equations (3.88) and (3.89) above, whether x exceeds A or not. In sagging
bending, the difference between the ‘cracked’ and ‘uncracked’ values of /is
usually small.

Stresses due to a sagging bending moment M are normally calculated in
concrete only at level 1 in Fig. 3.25, and in steel at levels 3 and 4. These
stresses are, with tensile stress positive:

o = ":;‘ | (3.90)
u = Mtl‘_x_) (3.91)
o = M(’Hf_l_ht‘ﬁ _ (3.92)

Deflections

These are calculated by the well-known formulae from elastic theory, using
Young’s modulus for structural steel. For example, the deflection of a
simply-supported composite beam of span L due to distributed load g per
_ unit length is

_ SaL* (3.93)

¢ 384E,l
Where the shear connection is partial (i.e. N/Ny<1), the increase in
deflection due to longitudinal slip depends on the method of construction.
The total deflection d is given approximately in both Eurocode 412 and BS
59504 as
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e I

with &k = 0.5 for propped construction
k = 0.3 for unpropped construction

where 3, is the deflection for the steel beam acting alone. This expression
is obviously correct when N/N; = 1, and gives too low a result when
NINg = 0. Its use is allowed where N/N; = 0.4.

Eurocode 4, unlike BS 5950, allows this increase in deflection to be
ignored in unpropped construction where:

® cither N/N¢ = 0.5 or the forces on the connectors do not exceed 0.7 Pg,
where Pgy is their characteristic resistance, and

® for slabs with transverse ribs, the height of the ribs does not exceed
80 mm.

The arbitrary nature of these rules underlines the difficulty of predicting
deflections accurately.

3.7.2 The use of limiting span-to-depth ratios

Calculations using formulae like those derived above are not only long;
they are also inaccurate. It is almost as much an art as a science to predict
during design the long-term deflection of a beam in a building. It is possible
to allow in calculations for some of the factors that influence deflection,
such as creep and shrinkage of concrete; but there are others that cannot
be quantified. In developing the limiting span/depth ratios for the British
code CP 110, Beeby™® identified nine reasons why deflections of rein-
forced concrete beams in service were usually less than those calculated by
the designers, and increased his theoretical span/depth ratios by 36% to
allow for them. Many of the reasons apply equally to composite beams, the
most significant of them being the variations in the elasticity, shrinkage and
creep properties of the concrete, the stiffening effect of finishes, and
restraint and partial fixity at the supports.

The other problem is the difficulty of defining when a deflection becomes
‘excessive’. In practice, complaints often arise from the cracking of plaster
on partition walls, which can occur when the deflection of the supporting
beam is as low as span/800.¢“?) For partitions and in-fill panels generally,
the relevant deflection is that which takes place after their construction.
This can exceed that due to the finishes and imposed load, for dead-load
creep deflections continue to increase for several years after construction.
It is good practice to provide partitions with appropriate joints and clear-
ances. When this is not done the relevant deflection should not exceed
span/350. Where appearance is the only criterion, it is recommended that
the full-load deflection, including the effects of creep and shrinkage, of a
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suspended span below the level of its supports should not exceed span/250;
but for roof beams constructed to a fall, greater deflection may be accept-
able. The difficulty of assessing the accuracy and significance of a calcu-
lated deflection is such that simplified methods of calculation are justified.

3.8 Effects of shrinkage of concrete and of temperature

In the fairly dry environment of a building, an unrestrained concrete slab
could be expected to shrink by 0.03% of its length (3 mm in 10 m) or more.
In a composite beam, the slab is restrained by the steel member, which
exerts a tensile force on it, through the shear connectors near the free ends
of the beam, so its apparent shrinkage is less than the ‘free’ shrinkage. The
forces on the shear connectors act in the opposite direction to those due to
the loads, and so can be neglected in design.

The stresses due to shrinkage develop slowly, and so are reduced by
creep of the concrete, but the increase they cause in the deflection of a
composite beam may be significant. An approximate and usually conserva-
tive rule of thumb for estimating this deflection in a simply supported beam
is to take it as equal to the long-term deflection due to the weight of the
concrete slab acting on the composite member.

In the beam studied in Section 3.11, this rule gives an additional deflec-
tion of 9 mm, whereas the calculated long-term deflection due to a shrink-
age of 0.03% (with a modular ratio n = 22) is 10 mm.

In beams for buildings, it can usually be assumed that tabulated span/
depth ratios are sufficiently conservative to allow for shrinkage deflections;
but the designer should be alert for situations where the problem may be
unusually severe (e.g. thick slabs on small steel beams, electrically heated
floors, and concrete mixes with high ‘free shrinkage’).

It is recommended in Eurocode 4 that effects of shrinkage should be
considered when the span/depth ratio of the beam exceeds 20 and the free
shrinkage strain exceeds 0.04%. For dry environments, typical values of
this strain are given as 0.0325% for normal-weight concrete and 0.05% for
lightweight concrete.

Composite beams also deflect when the slab is colder than the steel
member. Such differential temperatures rarely occur in buildings, but are
important in beams for bridges. Methods of calculation for shrinkage and
temperature effects are given in Volume 2.

3.9 Vibration of composite floor structures

In British Standard 6472, ‘Evaluation of human exposure to vibration in
buildings (1 Hz to 80 Hz)’,D the performance of a floor structure is
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considered to be satisfactory when the probability of annoyance to users of
the floor, or of complaints from them about interference with activities, is
low. There can be no simple specification of the dynamic properties that
would make a floor structure ‘serviceable’ in this respect, because the local
causes of vibration, the type of work done in the space concerned, and the
psychology of its users are all relevant.

An excellent guide to this complex subject is available.*? It and BS 6472
provided much of the basis for the following introduction to vibration
design, which is limited to the situation in the design example — a typical
floor of an office building, shown in Fig. 3.1.

Sources of vibration excitation

Vibration from external sources, such as highway or rail traffic, is rarely
severe enough to influence design. If it is, the building should be isolated at
foundation level.

Vibration from machinery in the building, such as lifts and travelling
cranes, should be isolated at or near its source. In the design of a floor
structure, it should be necessary to consider only sources of vibration on or
near that floor. Near gymnasia or dance floors, the effects of rhythmic
movement of groups of people can be troublesome; but in most buildings
only two situations need be considered:

® people walking across a floor with a pace frequency between 1.4 Hz and
2.5 Hz; and
e an impulse, such as the effect of the fall of a heavy object.

Typical reactions on floors from people walking have been analysed by
Fourier series. The basic fundamental component has an amplitude of
about 240 N. The second and third harmonics are smaller, but are relevant
to design. Fundamental natural frequencies of floor structures (fp) often lie
within the frequency range of third harmonics (4.2 Hz to 7.5 Hz). The
number of cycles of this harmonic, as a person walks across the span of a
floor, can be sufficient for the amplitude of forced vibration to approach its
steady-state value. This situation will be considered in more detail later.

Pedestrian movement causes little vibration of floor structures with f
exceeding about 7 Hz, but these should be checked for the effect of an
impulsive load. The consequences that most influence human reactions are
the peak vertical velocity of the floor, which is proportional to the impulse,
and the time for the vibration to decay, which increases with reduction in
the damping ratio of the floor structure. Design guidance is available for
this situation,“>*? which is not further discussed here.

Human reaction to vibration
Models for human response to continuous vibration are given in BS 6472.
For vibration of a floor that supports people who are standing or sitting,
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Fig. 3.26 Curves of constant human response to vibration, and Fourier component factor.

rather than lying down, the model consists of a base curve of root-mean-
square (r.m.s.) acceleration against fundamental natural frequency of the
floor, and higher curves of similar shape. These are shown in the double
logarithmic plot of Fig. 3.26. Each curve represents an approximately
uniform level of human response. The base curve, denoted by R = 1,
where R is the response factor, corresponds to a ‘minimal level of adverse
comment from occupants’ of sensitive locations such as hospital operating
theatres and precision laboratories.

Curves for other values of R are obtained by multiplying the ordinates of
the base curve of R. Those for R = 4, 8 and 16 are shown. The appropriate
value of R for use in design depends on the environment. The British
Standard gives:

R = 4 for offices,
R = 8 for workshops,

with the comment that use of double those values ‘may result in adverse
comment’, which ‘may increase significantly’ if the magnitudes of vibration
are quadrupled.

Some relaxation is possible if the vibration is not continuous. Wyatt
recommends that a floor subject to a person walking at resonant frequency
once a minute could reasonably be permitted a response double the value
acceptable for continuous oscillation.

(42)

3.9.1 Prediction of fundamental natural frequency

In composite floors that need checking for vibration, damping is sufficient-
ly low for its influence on natural frequencies to be neglected. For free
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elastic vibration of a beam or one-way slab of uniform section, the funda-
mental natural frequency is
EI 172
fo=K (———) (3.95)

mL*
where K = w/2 for simple supports, and
K = 3.56 for both ends fixed against rotation.

Values for other end conditions and multi-span members are given by
Wyatt.?) The relevant flexural rigidity is EI (per unit width, for slabs), L
is the span, and m the vibrating mass per unit length (beams) or unit area
(slabs). Concrete in slabs should normally be assumed to be uncracked,
and the dynamic modulus of elasticity should be used for concrete, in both
beams and slabs. This modulus, E.4, is typically about 8 kN/mm? higher
than the static modulus, for normal-density concrete, and 3 to 6 kN/mm?
higher, for lightweight-aggregate concretes of density not less than 1800
kg/m®. For composite beams in sagging bending, approximate allowance
for these effects can be made by increasing the value of I for variable
loading by 10%.

Unless a more accurate estimate can be made, the mass m is usually
taken as the mass of the characteristic permanent load plus 10% of the
characteristic variable load .

A convenient method of calculating fy is to find first the midspan
deflection, 3, say, caused by the weight of the mass m. For simply-
supported members this is

_ SmgL*
™ 384EIl
Substitution for m in equation (3.95) gives
17.8
=—° 3.96
fo=v (3.9)

with 8., in millimetres. _

Equation (3.96) is useful for a beam or slab considered alone. But in a
typical floor, with composite slabs continuous over a series of parallel
composite beams, the total deflection (3, say) is the sum of deflections 3,
for the slab relative to the beams that support it, and &, for the beams. A
good estimate of the fundamental natural frequency is then given by

17.8

fo= Vs (3.97)
It follows from equations (3.96) and (3.97) that

11 1
fo fo o fo

where fo and fyp, are the frequencies for the slab and the beam, respect-
ively, each considered alone. Equations (3.97) and (3.98) can be used also
for members that are not simply-supported.

(3.98)
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Fig. 3.27 Cross-section of vibrating floor structure showing typical fundamental mode.

For a single-span layout of the type shown in Fig. 3.1, each beam
vibrates as if simply-supported, so the length L. of the vibrating area can
be taken as the span, L. The width S of the vibrating area will be several
times the beam spacing, s. A cross-section through this area is likely to be
as shown in Fig. 3.27, with most spans of the composite slab vibrating as if
fixed-ended. It follows from equation (3.95) that:

w( EI, \2
® for the beam, i :
or the beam foo > (msL4) (3.99)
EI 12
® for the slab, fos = 3.56 ( j) (3.100)
ms

where m is the vibrating mass per unit area, and s is the spacing of the
beams, and subscripts b and s mean beam and slab, respectively.

3.9.2 Response of a composite floor to pedestrian traffic

It is assumed that the floor reaches its steady state of damped vibration
under harmonic excitation from a person walking at between 1.4 Hz and
2 Hz, and that for the floor, fy > 3 Hz, to avoid resonance with the first
harmonic, which has an amplitude of 240 N. The effective force ampli-
tude is

F =240C; (3.101)

where C; is the Fourier component factor. It takes account of the differ-
ence between the frequency of the pedestrian’s paces and the natural
frequency of the floor, and is given as a function of f; in Fig. 3.26.

The static deflection of the floor is F/k., and the magnification factor at
resonance is 1/(2(), where { is the critical damping ratio. This should
normally be taken as 0.03 for open-plan offices with composite floors,
though Wyatt? reports values as low as 0.015 for unfurnished floors. The
vertical displacement y for steady-state vibration thus has frequency f, and
is given approximately by

y sin 2mfit.

T 2k

The r.m.s. value of the acceleration is found by differentiating twice and
dividing by V2:
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F
a2 F 3.102
Orms = 4 f N2k L (3.102)

The effective stiffness k. depends on the vibrating area of floor, LS. The
width S can be computed in terms of the relevant flexural rigidities per unit
width of floor, which are I, and Iy/s. It is given by Wyatt“? as

EI )1/4
L]
mfg

This can be explained as follows. For a typical floor, foy, is several times f,

so from equation (3.98), f, is a good estimate of fy. Substituting m2f,?
from equation (3.99) into equation (3.103) gives

1/4
S_s6(k)
L I

§=45 ( (3.103)

Thus, the higher the ratio between the stiffness of the slab and the beam,
the greater is the ratio of the equivalent width of the slab to the span of the
beams, as would be expected.

By analogy with a simple spring-mass system, the fundamental fre-
quency can be defined by

1 ke 12
fo=7- ( Me) (3.104)

where k. is the effective stiffness. The effective mass M. is given approxi-
mately by

From equation (3.104),
ko = w*fimSL.
With F from equation (3.101), equation (3.102) then gives

C
=340 —L—, 3.105
rms mSL ¢ ( )
with S given by equation (3.103).
From the definition of the response factor R,

a..=5x107°R m/s?

rms

so from equation (3.105), c
f

mSL{
in kg, m units. This equation is given on p.28 of Reference 42.

For floors with layouts of the type shown in Fig. 3.1, and that satisfy the
assumptions made above, checking for susceptibility to vibration caused by

R = 68000 (3.106)
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pedestrian traffic consists of finding f, from equation (3.98), and g, or R,
as given above, and comparing the result with the target response curve, as
in Fig. 3.26.

Relevant calculations are given in Section 3.11.3.2.

The preceding summary is intended only to provide an introduction to a
versatile design method, and to apply it to a single type of structure. For
use in practice, reference should be made to more complete accounts of the
method and its background.®!- 42

3.10 Fire resistance of composite beams

Fire design, based on the 1993 draft Eurocode 4: Part 1.2, ‘Structural fire
design’, is introducted in Section 3.3.7, the whole of which is applicable to
composite beams, as well as to slabs, except Section 3.3.7.5.

Beams rarely have insulation or integrity functions, and have then to be
designed only for the loadbearing function, R. The fire resistance class is
normally the same as that of the slab that acts as the top flange of the beam,
so only the structural steel section needs further protection. This may be
provided by full encasement in concrete or a lightweight fire-resisting
material. A more recent method is to encase only the web in concrete. This
can be done before the beam is erected (except near end connections), and
gives a cross-section of the type shown in Fig. 3.31.

In a fire, the exposed bottom flange loses its strength, but the protected
web and top flange do not. For the higher load levels n* (defined in Section
3.3.7.2) and longer periods of fire resistance, minimum areas of longitudi-
nal reinforcement within the encasement, Ag, are specified, in terms of the
cross-sectional area Ay of the steel bottom flange. The minimum depth A,
and breadth bs of the steel I-section are also specified, for each standard
fire resistance period.

ﬂl
600F 4
hq,min -
mm
400 -
200
i B
i 1 1 g 0 1 [
0 100 200 300 100 200 300
(@) bf,min mm (b} bt,min mm

Fig. 3.28 Tabulated data for web-encased beams, class R60.
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The requirements of draft Eurocode 4: Part 1.2 for 60 minutes’ fire
exposure (class R60) are shown in Fig. 3.28. The minimum dimensions h,
and by increase with m*, as shown by the three lines in Fig. 3.28(a). For
other values of n*, interpolation may be used.

The minimum ratios A'/A¢ are zero for n* = 0.3 (ABC) and n* = 0.5
(ADE). For m* = 0.7 they are indicated within the regions where they
apply. To ensure that the additional reinforcement maintains its strength
for the period of fire exposure, minimum distances a; and a, are specified,
in terms of by, and the fire class. Those for class R60 are shown in
Fig. 3.28(b).

The validity of tabulated data of this type is inevitably limited. The
principal conditions for its use, given in the Eurocode, are as follows.
The notation is as in Fig. 3.15.

(a) The composite beam must be simply-supported with
ty<bg18, t<2t,, h=120mm, f,<355N/mm’ beg<5m.

(b) If the slab is composite, the voids formed above the steel beam by
trapezoidal profiles must be filled with fire-resistant material.

(c) The web must be encased in normal-density concrete, held in place by
stirrups, fabric, or stud connectors that pass through or are welded to
the steel web.

The data given in Fig. 3.28 are used for the design example in Section
3.11.4. The Eurocode also gives both simple and advanced calculation
models, which are often less conservative than the tabulated data, and
have wider applicability. These are outside the scope of this volume.

3.11 Example: simply-supported composite beam

In this example, a typical composite T-beam is designed for the floor
structure shown in Fig. 3.1, using the materials specified in Section 3.2, and
the floor design given in Section 3.4. Ultimate limit states are considered
first. An appropriate procedure that minimises trial and error is as follows:

(1) Choose the types and strengths of materials to be used.
(2) Ensure that the design brief is complete. For this example it is
assumed that:

® no special provision of holes for services is required;

® the main source of vibration is pedestrian traffic on the floor, and
occupants’ sensitivity to vibration is typical of that found in office
buildings;

® the specified fire resistance class is R60.
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Make policy decisions. For this design (for example):
® steel member to be rolled universal beam (UB) section;
® propped construction to be avoided, even if this involves pre-
cambering the steel beam;
® fire resistance to be provided by encasing the web, but not the
bottom flange, in concrete.
With guidance from typical span-to-depth ratios for composite
beams, guess the overall depth of the beam, and hence the depth 4,
of the steel section.
Guess the weight of the beam, and hence estimate the design mid-
span bending moment, Mg,.
Assume the lever arm to be (in the notation of Fig. 3.2)
’ h h

24 p —c
2 t o2

and find the required area of steel, A,, if full shear connection is to
be used, from

A&(£+h—ﬂ)>M . (3.107)
a Ya\2 t 2 Sd .
For partial shear connection, A, should be increased.

If full shear connection is to be used, check that the yield force in the
steel, Aa(fy/va), is less than the compressive resistance of the con-
crete slab, berhc(0.85f/vc). If it is not, the plastic neutral axis will
be in the steel — unusual in buildings ~ and A, as found above will be
too small.

Knowing &, and A,, select a rolled steel section. Check that its web
can resist the design vertical shear at an end of the beam.

Design the shear connection to provide the required bending resist-
ance at midspan.

Check deflections and vibration in service.

Design for fire resistance.

3.11.1 Composite beam — flexure and vertical shear

From Section 3.4, the uniform characteristic loads from a 4.0-m width of

floor are:
permanent, g, = 2.4 X 4 = 9.6 kN/m on steel alone
& =2.5X%X4=10kN/m on the composite beam
variable, g =5 X 4 =20 kN/m on the composite beam.

The weight of the beam and its fire protection is estimated to be 2.2 kN/m,
so the design ultimate loads are:
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Fig. 3.29 Cross-section and stress blocks for composite beam in sagging bending.

gy = 1.35(19.6 + 2.2) = 29.4 kN/m

gq=15x20 = 30 kN/m.
The midspan bending moment for L = 9.0 m is:
2
Mg, = 59.4 X %= 601 kNm, (3.108)
and the design vertical shear is:
Vea= 59.4 X 4.5 = 267 kN. (3.109)

It has been assumed that the composite section will be in Class 1, so that
the effects of unpropped construction can be ignored at ultimate limit
states.

Deflection of this beam is likely to influence its design, because of the
use of steel with f, = 355 N/mm? (grade 50), lightweight-aggregate con-
crete, and unpropped construction. The relatively low span-to-depth ratio
of 16 is therefore chosen, giving an overall depth of 9000/16 = 562 mm.
The slab is 150 mm thick (Fig. 3.9), so for the steel beam, #, =~ 412 mm.
From equation (3.107) the required area of steel is

4~ 601 x 10°
2 (355/1.1) (206 + 150 — 40)

The most suitable rolled I-section appears to be 406 x 178 UB 54
(A, = 6840 mm?); but with profiled sheeting it is usually necessary to use
partial shear connection, so the next size larger is chosen, 406 X 178 UB
60. Its relevant properties are shown in Fig. 3.29.

We guess that for full shear connection, the depth x of the plastic neutral
axis is less than A; (80 mm), so x is found from equation (3.56) with
begs = 2.25 m from equation (3.55):

Ny = 7600 x 2322 = 2 25 [0.85 x 2>
11 15

= 5890 mm?.
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whence

x =77 mm,
and N = 2453 kN. From equation (3.57), the full-interaction moment of
resistance is

0.077

My rq = 2453 10.203 + 0.15 — — = 771 kN m. (3.110)

This is well above Mgq, as expected.
From equation (3.69) the shear area of this rolled section is

A, =1.04 x 406 X 7.8 = 3293 mm?>.
From equation (3.70) the resistance to vertical shear is

0.355/V3

= 614 kN, 3.111
1.1 ( )

which far exceeds Vg4, as is usual in composite beams when rolled steel
I-sections are used.

3.11.2 Composite beam — shear connection and transverse
reinforcement

The required degree of shear connection is first found by the interpolation
method, assuming that the connectors are ductile. The plastic resistance
moment of the steel section is
Waplfy  1.194 X 355
Ya 1.1
(W is the Eurocode symbol for section modulus). The ratio N/N;is given by
equations (3.67) and (3.68):
N _F, _ 601 — 386
N; Fy 771 —386

My ra = =386 kNm (3.112)

= 0.56.

The condition for stud connectors to be treated as ductile when the span is
9.0 m is given by Fig. 3.19 as

N

f

= 0.52.

To provide an example of the use of the equilibrium method, the
bending resistance is now calculated using N = 0.52 N;. The notation of
Fig. 3.15(d) will be used.

The force F, is 0.52 times the full-interaction value:




Simply-supported Composite Slabs and Beams 109

F, = 0.52 X 2453 = 1276 kN (3.113)

and since for Ny, x = 77 mm, x. = 0.52 X 77 = 40 mm.
Assuming that there is a neutral axis within the steel top flange, the depth
of flange in compression is

2453 - 1276
0.178 x 2 x 355/1.1

= 10.2 mm.

This is less that # (12.8 mm) so the assumption is correct, and the stress
blocks are as shown in Fig. 3.29(b). Taking moments about the top surface
of the slab,

My ga = 2453 X 0.353 — 1276 X 0.020 — 1177 X 0.155
=658 kN m (3.114)

which exceeds Mgq (601 kN m).

The interpolation method (above) gave My grq = 601 kN m with N/N; =
0.56, so the equilibrium method is significantly less conservative. It is
possible that when Eurocode 4: Part 1.1 comes into regular use, some
countries may allow for this by specifying a value of vy, for use with the
equilibrium method about 5% higher than the value used generally.

For this example, N/N; = 0.52 will be used.

Number and spacing of shear connectors
It is assumed that 19-mm stud connectors will be used, 100 mm long. The
length after welding is about 5 mm less, so the height of the studs is taken
as 95 mm. Prgq is given by equation (3.2) as 57.9 kN per stud.

For the sheeting used here, the width b, (Fig. 2.14) is 162 mm, from
Fig. 3.9, and the other dimensions that influence the reduction factor ., for
the resistance of studs in ribs are:

hp=70—15=55mm, h =95 mm.

So from equation (2.17),
k, = ;—[—— 1} =150 (N,=1)

=1.06 (N,=2),

but k, may not exceed 1.0. These values show that no reduction need be
made, so that Prq = 57.9 kN per stud.
From equation (3.113) the number of studs needed in each half span is
F, 1276

N =25 =220 _ 2 04, say 23.
Pra 579 sy
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There is one trough every 300 mm, or 15 in a half span. Two studs are
provided in each of the eight troughs nearest to a support, and one in each
of the other seven troughs, giving a total of 23.

Transverse reinforcement
The rules of Eurocode 4 for the use of profiled sheeting as transverse
reinforcement are explained in Section 3.6.3.2. The cross-section in
Fig. 3.30, which is drawn to scale, illustrates the difficulty of complying
with the rule that the sheeting should extend at least 2d,, beyond the
centre of a stud welded through it, where dy, is an estimate of the diameter
of the stud weld, taken as 1.1d, or 20.9 mm here. The 30-mm dimension
just satisfies the relevant rule shown in Fig. 3.24. The clear gap of 34 mm
between the ends of the sheeting will be reduced by tolerances, and could
easily fall below the minimum needed for satisfactory placing of concrete
(about 25 mm).

The longitudinal shear on a plane such as D-D in Fig. 3.30 is greatest
where there are two studs per trough. The total longitudinal shear is

57.9
=2 X === /
1% x03 386 kN/m,

so the design shear for plane D-D is just under half this, so
vgq =~ 193 kN/m.

The contribution from the sheeting is calculated next. In equation
(3.81),

42
ko =1+575=29, 1=09mm, f, =280 N/mm? and v,, = 1.1,
/T8@150 D
.0.

|
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Fig. 3.30 Detail of shear connection.
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s0 Py, ra = 13.9 kN. From equation (3.82),

Vg = % = 46.3 kN/m. (.115)
Equation (3.75) is now used to find the required area of transverse rein-
forcement, putting vy = Vg4t

193 = 2.5A gy + A, 1% + 46.3. (3.116)
Y

S

From Fig. 3.9, the effective area of concrete in shear is approximately

A, =162 x 0355 + 95 X 1000 = 125 X 10> mm%m.

From equation (3.78),

n=03+07(2) = 0.ss.
24

From equation (3.76),

Tra = 0.25 X 18 _ 03 N/mn?.
1.5

Assuming that welded mesh reinforcement is used, with f;, = 500 N/mm?,
equation (3.116) gives

193 = 79.7 + 0.435A, + 46.3,

whence A, = 154 mm?%m. (3.117)

The minimum transverse reinforcement for longitudinal shear is given in
Eurocode 4: Part 1.1 as 0.002 A, or 250 mm?%m here. This can include the
effective area of sheeting, so there is no need to increase A, for this reason.
But for control of cracking of the slab above the beam, it was found
(equation (3.47)) that 320 mm?/m is required, and this governs. The detail
proposed in Section 3.4.6 (8-mm bars at 150 mm spacing) gives 336 mm*/m
and is satisfactory.

3.11.3 Composite beam — deflection and vibration

3.11.3.1 Deflection

The rare combination of loading on the beam consists of the characteristic
loads. From data given in Section 3.11.1 these are:

permanent (steel beam) g =9.6+22=11.8kN/m
permanent (composite beam) g, = 10.0 kN/m (3.118)

variable (composite beam) g = 20.0 kN/m.
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For a simply-supported span of 9 m with distributed load w kN/m and
second moment of area I mm*, the midspan deflection is

_ 5wL* _5x 9% x 10°w
384 EI 384 x 2101

For the steel beam, I = 215 x 10° mm?*, so its deflection during construc-
tion is

= 407 x 1063;-mm. (3.119)

8, =407 x 18 _ 22.3mm (span/403).
215
From Section 3.2, the short-term elastic modulus for the concrete is 19.1
kN/mm?, so for variable loading the modular ratio is

=20 110.

"a = 191

For permanent loading, n, = 3nq = 33.
The second moment of area of the composite section is calculated using
equations (3.85) to (3.89). From Fig. 3.29, relevant values are:

A, = 7600 mm®, z,=353mm, b =2250mm, I,=215x 10°mm*

The minimum thickness of the slab is 80 mm, but for over 90% of its area it
is at least 95 mm thick (Fig. 3.9). For deflection and vibration, mean values
of I are appropriate, so A, is here taken as 95 mm.

For variable load, expression (3.85) gives

1.96 x 10° < 0.923 x 106.
This is not correct, so the neutral-axis depth exceeds k., and equation
(3.88) gives

x = 133 mm. (3.120)
From equation (3.89),

10767 = 215 + 7600(0.353 — 0.133)> +

2250 X 95 (0.095> )
T ( > +0.085)

= 215 + 368 + 155 = 738 mm*. (3.121)

(Numerical values are always of more convenient size in this calculation if
10797 is calculated, rather than 1.)
Similar calculations using n = 33 give:

x=212mm, 107% = 547 mm*. (3.122)
The deflection of the composite beam due to permanent load is

10
5, =407 x—=74
e 0 sa7 7.4 mm,
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and its deflection due to variable load is

34 =407 X %)8- =11.0 mm (span/816).

The total deflection is thus 22.3 + 7.4 + 11.0 = 40.7 mm (span/221).

This exceeds the limit recommended in Section 3.7.2 (span/250), so the
steel beam should be cambered by an amount roughly equivalent to the
short-term deflection due to permanent load. This amount is

10
Sg’i = 22.3 + 407 X%g = 28 mm.

This reduces the subsequent deflection to about 13 mm, or span/692, which
should be satisfactory in most circumstances.

No account was taken in these calculations of any increase in deflection
due to slip, because the conditions under which Eurocode 4 allows use of
equation (3.94) to be omitted are satisfied. In practice, deflections would
be slightly reduced by the stiffness of the concrete in the bottom 55 mm of
the slab, and by the stiffness of the beam-to-column connections.

The use of camber was included here to illustrate the method. In
practice, the designer might prefer to use a slightly heavier steel section
(e.g. 406 x 178 UB67).

Maximum bending stress in the steel section
It is clear from Section 3.7 that the steel member is unlikely to yield under
service loading. The maximum bending stress occurs in the bottom fibre at
midspan. This stress is now calculated, to illustrate the method.

Separate calculations are needed for the three loadings given in
equations (3.118). For distributed load w per unit length, the stress is

2
o=My_wLy
I8l

where y is the distance of the bottom fibre below the neutral axis. From
values given above, the stresses are:

forg,: o =10.1 x 11.8 x% = 113 N/mm?

=101
T

556 — 212 _ 64 N/mn?
547

forg: o =10.1 X 20 §5—67;% = 116 N/mm?.

The total stress is 293 N/mm?, well below the yield stress of 355 N/mm?.
Other bending stresses can be calculated in the same way.

forg,y ¢=10.1x10
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3.11.3.2 Vibration

The method given in Section 3.9 is used. It is assumed that the source of
vibration is intermittent pedestrian traffic. The target value for the
response factor R is 4, if the traffic is continuous, increasing to 8, if there is
about one disturbance per minute.

Fundamental natural frequency

From equations (3.118), the permanent load per beam is 21.8 kN/m. This
includes an allowance of 4.8 kN/m for partitions, which will be treated here
as imposed load. The total imposed (variable) load is then 24.8 kN/m, and
only one-tenth of this will be included, because vibration is likely to be
worse where there are few partitions and little imposed load. The design
load is thus 19.2 kN/m for beams at 4 m centres, giving a vibrating mass:

19200

= —"—— = 400 kg/m>.
4% 981 gm

For the beam, the second moment of area is taken as 10% above the
value in equation (3.121):

10787, = 1.1 x 738 = 812 mm*.

For the slab, the ‘uncracked’ value found in Section 3.4.5 is too low,
because the dynamic modulus Eq is taken as 22 kN/mm?, so that the
modular ratio is n = 210/22 = 9.5. This increases the second moment of
area, in ‘steel’ units, from 12.1 X 10° mm*m to:

107, = 25.1 mm*m.
From equation (3.99) withs =4m, L = 9m,

T (210000 X 812

172
fon =3 ) = 5.72 Hz.

490 x 4 x 9*

From equation (3.100),

210000 x 25.1\}2
fOs = 3.56 (W) = 23.1 Hz.
From equation (3.98),
fo = 5.6 Hz.

This is below 7 Hz, so no check need be made for impulsive loads.

Response of composite floor
Following Section 3.9.2, C; = 0.2 from Fig.3.26. From equation (3.103),
the vibrating width of slab is

210000 x 25.1

= 4.
S 5( 490 x 5.6%

V4
) =19.3m,
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or the actual dimension of the floor normal to the span of the beams, if less.
For a small value of §, the natural frequency would be higher than f; as
calculated here, so it is assumed that the building considered is more than
19.3 m long, and this value is used.

With { = 0.03, equation (3.106) gives the response factor:

_ 68000 x 0.2 _
490 x 19.3 x 9 x 0.03

5.3.

This value exceeds 4 but is well below 8. The conclusion is that continu-
ous pedestrian traffic might result in adverse comment, but the level of
movement typical of an open-plan office would not do so.

3.11.4 Composite beam - fire design

The method used below is explained in Sections 3.3.7 and 3.10.
From equations (3.118) the characteristic loads per unit length of beam
are:

8 = 21.8kN/m, ¢, = 20.0 kN/m.

From equation (3.31),

1 + 0.7(20/21.8)
= = O. O.
M= 135+ 1.5QonLs) - O°

The beam will be designed to have a bending resistance at midspan in
fire resistance class R60. The design bending moment at midspan for cold
design is 601 kN m, from equation (3.108) and the resistance is 658 kN m,
from equation (3.114). The resistance ratio (equation (3.32)) is

601

* = 0.60 x — = 0.55.
1 658
A A
| I
ST,
F |78
_l —T6@250
240
406
U —H |e——35cover
U T12
/
-
01=100 | f |
‘ Voo

47 o st a4 o7

Fig. 3.31 Detail of concrete-encased web.
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Fire protection is provided by encasing the web in normal-density con-
crete, as shown in Fig.3.31, and filling the voids above the steel top flange
with fire-resistant material. This satisfies conditions (b) and (c) of Section
3.10, and all of conditions (a) are satisfied.

For the steel beam, h, = 406 mm and b¢ = 178 mm. This plots as point H
in Fig. 3.28(a). By interpolation, these dimensions are sufficient, when n*
= 0.55.

No additional reinforcement A, would be required for n* = 0.5, and for

n* =07, A,= 034,

So for n* = 0.55,
Al =0.25 x 0.34; = 0.075 x 178 x 12.8 = 171 mm®,

Two T12 bars will be provided (A, = 226 mm?).

The encasement does not increase the resistance of the composite sec-
tion to sagging bending, because all of the concrete is in longitudinal
tension. The width of cracks in the concrete should be controlied, and
Eurocode 4 gives rules for this purpose. Where the design crack width is
0.5 mm, it requires that the spacing of longitudinal bars should not exceed
250 mm. For fire, the rules for the location of bars are, from Fig. 3.28(b)
with b = 178 mm,

a; =95 mm, a,=44mm.

A possible detail for the web encasement, in accordance with these rules, is
shown in Fig. 3.31. The 6-mm stirrups are either welded to the web or
passed through holes in it.

The weight of the encased beam is just below the 2.2 kN/m assumed in
Section 3.11.1.

In a fire, the web encasement preserves the resistance of the beam to
vertical shear, and the slab is thick enough to protect the top transverse
reinforcement and the shear connection.




Chapter 4
Continuous Beams and Slabs, and
Beams in Frames

4.1 Introduction

The definition of ‘continuous composite beam’ given in Eurocode 4: Part
1102 js;

A beam with three or more supports, in which the steel section is either
continuous over internal supports or is jointed by full-strength and rigid
connections, with connections between the beam and each support such
that it can be assumed that the support does not transfer significant
bending moment to the beam. At the internal supports the beam may
have either effective reinforcement or only nominal reinforcement.

Beam-to-column connections in steelwork are classified in Eurocode 3:
Part 1.14D both by stiffness, as:

¢ nominally pinned,
® rigid, or
® semi-rigid,

and by strength, as:

® nominally pinned,
e full-strength, or
® partial-strength.

In Eurocode 4: Part 1.1'2), a ‘composite connection’ is defined as:

A connection between a composite member and any other member in
which reinforcement is intended to contribute to the resistance of the
connection.

The system of classification is as for steel connections, except that
semi-rigid connections are omitted, because design methods for them are
not yet sufficiently developed.

A ‘“full-strength and rigid’ connection has to be at least as stiff and strong
as the beams connected, so a ‘continuous composite beam’ can be analysed
for bending moments as one long member without internal connections, by
methods to be explained in Section 4.3. Bridge girders (Volume 2) are
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usually of this type. The example to be used here is a two-spah beam
continuous over a wall or supporting beam.

In multi-bay plane frames, commonly used in structures for buildings,
the beam-to-column connections are often ‘nominally pinned’. The beams
are then designed as simply-supported. Where full-strength connections
are used, the frame should be analysed as a whole, and the beams are not
‘continuous’ as defined above. These beams are referred to here as ‘beams
in frames’, as are those with partial-strength connections. In comparison
with simple spans, beams in frames have the same advantages and dis-
advantages as continuous beams. The global analysis is more complex than
for continuous beams, because the properties of columns and connections
are involved, but the design of hogging moment regions of the beams is the
same. In Section 4.3 on global analysis, only continuous beams are
considered.

For a given floor slab and design load per unit length of beam, the
advantages of continuous beams over simple spans are:

® higher span/depth ratios can be used, for given limits to deflections;

e cracking of the top surface of a floor slab near internal columns can be
controlled, so that the use of brittle finishes (e.g. terrazzo) is feasible;

o the floor structure has a higher fundamental frequency of vibration, and
so is less susceptible to vibration caused by movements of people;

e the structure is more robust (e.g. in resisting the effects of fire or
explosion).

The principal disadvantage is that design is more complex. Actions on
one span cause action effects in adjacent spans, and the stiffness and
bending resistance of a beam vary along its length.

It is not possible to predict accurately the stresses or deflections in a
continuous beam for a given set of actions. Apart from the variation over
time caused by the shrinkage and creep of concrete, there are the effects of
cracking of concrete. In reinforced concrete beams, these occur at all cross-
sections, and so have little influence on distributions of bending moment.
In composite beams, significant tension in concrete occurs only in hogging
regions. It is influenced by the sequence of construction of the slab, the
method of propping used (if any), and by effects of temperature, shrink-
age, and longitudinal slip.

The flexural rigidity of a fully cracked composite section can be as low as
a quarter of the ‘uncracked’ value, so a wide variation in flexural rigidity
can occur along a continuous beam of uniform section. This leads to
uncertainty in the distribution of longitudinal moments, and hence
in the amount of cracking to be expected. The response to a particular set
of actions also depends on whether it precedes or follows another set of
actions that causes cracking in a different part of the beam.

For these reasons, and also for economy, design is based as far as
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possible on predictions of ultimate strength (which can be checked by
testing) rather than on analyses based on elastic theory. Methods have to
be developed from simplified models of behaviour. The limits set to the
scope of some models seem arbitrary, as they correspond to the range of
available research data, rather than to known limitations of the model.

Almost the whole of Chapter 3, on simply-supported beams and slabs,
applies equally to the sagging moment regions of continuous members.
The properties of hogging moment regions of beams are treated in Section
4.2, which applies also to cantilevers. Then follows the global analysis of
continuous beams, and the calculations of stresses and deflections.

Both rolled steel I- or H-sections and small plate or box girders are
considered, with or without web encasement and composite slabs. It is
always assumed that the concrete slab is above the steel member, because
the use of slabs below steel beams with which they are composite is almost
unknown in buildings, though it occurs in bridges.

4.2 Hogging moment regions of continuous composite beams
4.2.1 Classification of sections, and resistance to bending

4.2.1.1 General

Section 3.5.1, on effective cross-sections of beams, is applicable, except
that the effective width of the concrete flange is usually less at an internal
support than at midspan. This width defines the region of the slab where
longitudinal reinforcement may be assumed to contribute to the hogging
moment of resistance of the beam. There is no contribution from concrete
in compression, because the neutral axis invariably lies below the slab. The
lower part of the encasement to a web is in compression, but its crushing
could limit the rotation capacity of the region, so this compression is at
present ignored in design.

In Eurocode 4, the effective width is given as /,/8 on each side of the
steel web, where [, is the approximate length of the hogging moment
region, which can be taken as one-quarter of each span. So at a support
between spans of length L; and L,, the effective width is:

L025(Ly+ L) L+ L,

e T “4.1)

begs =

provided that at least b.g/2 is present on each side of the web.

The rules for the classification of steel elements in compression (Section
3.5.2) strongly influence the design of hogging moment regions. The
proportions of rolled steel I-sections are so chosen that when they act in
bending, most webs are in Class 1 or 2. But in a composite section,
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addition of longitudinal reinforcement in the slab rapidly increases the
depth of steel web in compression, ad in Fig. 3.14. This figure shows that
when d/t>60, an increase in a of only 0.05 can move a web from Class 1 to
Class 3, which can reduce the design moment of resistance of the section by
up to 30% . This anomaly has led to a rule!'> ) that allows a web in Class 3
to be replaced (in design) by an ‘effective’ web in Class 2. This ‘hole-in-the-
web’ method is explained later. It does not apply to flanges, which can
usually be designed to be in Class 1 or 2, even where plate girders are used.

Design of hogging moment regions is based on the use of full shear
connection (Section 4.2.3).

4.2.1.2  Plastic moment of resistance

A cross-section of a composite beam in hogging bending is shown in
Fig. 4.1(a). The numerical values are for a section that is used in the
following worked example and the diagram is to scale for these values
(except for b.g). The steel bottom flange is in compression, and its class is
easily found, as explained in Section 3.5.2. To classify the web, the
distance x, of the plastic neutral axis above G, the centre of the area of the
steel section, must first be found.

Let A, be the effective area of longitudinal reinforcement within the
effective width b.¢ of the slab. Welded mesh is normally excluded, because
it may not be sufficiently ductile to ensure that it will not fracture before
the design ultimate load for the beam is reached. The design tensile force
in this reinforcement is

£ = Asfs 4.2)
Vs
where f,, is its characteristic yield strength.

0.871,,.= 400N/ mm? g = 208N{mm1
_L ﬁ — T/ Fg=322kN | H
[ ] @ - ——— F\:
s T R " ht= 150 —r \
=;‘ 3 i | 4 ) 2=285

A,/=eoz.m.-n2 ‘\' R ‘ \
—_—d —_— \
ho= 406 Jxesel Pu = ) ; __;}:33:= 2

- —_ —|F — - — N
s
d=360 z
Aq =7600 mm’/ ° \
10'51 =215 mm* _ - e
= . y%a
tw=7.8 _..[ _L % //compressu)n \ !
X ai;- =128 — : - —
L_b 178..‘ 17,5323 N/mm? "ﬁg’l su|'—
=164 N/mm?
(a) (b) (c)

Fig. 4.1 Cross-section and stress distributions for composite beam in hogging bending.
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If there were no tensile reinforcement, the bending resistance would be
that of the steel section,

Waf, _

Ya

where W, is the plastic section modulus and f; is the yield strength. For
rolled sections it is not necessary to calculate the forces F, in the stress
blocks of depth h,/2, nor the lever arm z,, because values of W, are
tabulated; but for plate girders F, and z, have to be calculated.

The simplest way of allowing for the reinforcement is to assume that the
stress in a depth x of web changes from tension to compression, where x, is
given by

(4.3)

M apL,Rd = ala

2
xctw ﬁ = FS’ (4.4)
Ya
provided that (as is usual)
h
xc = ?a - tf.

The depth of web in compression is given by
ad = g + x_, 4.5)

and knowledge of a, d/t,,, and f, enables the web to be classified, as shown
in Fig. 3.14 for f, = 355 N/mm?. If, by this method, a web is found to be in
Class 4, the calculation should be repeated using the elastic neutral axis, as
the curve that separates Class 3 from Class 4 is based on the elastic
behaviour of sections. This is why, in Fig. 3.14, the ratio s is used rather
than a.

Concrete-encased webs in Class 3 are treated as if in Class 2, because the
encasement helps to stabilise the web.

The lever arm z for the two forces F in Fig. 4.1(b) is given by

h, X
=-24p —=¢
T2

where h; is the height of the reinforcement above the interface. If both the
compression flange and the web are in Class 1 or 2, this is the appropriate

model, and the moment of resistance is
Mh,Rd = Mapl,Rd + Fsz' (46)

If the flange is in Class 1 or 2 and the (uncased) web is in Class 3, it is still
possible to use plastic section analysis, by neglecting a region in the centre
of the compressed part of the web, that is assumed to be ineffective
because of buckling. The calculations are more complex, as explained
elsewhere,™>) because this assumption changes the position of the plastic
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neutral axis, and in plate girders may even move it into the steel top flange.
This ‘hole-in-the-web’ method is analogous to the use of effective widths
for the design of steel compression elements in Class 4, which is outside the
scope of this volume. It is an alternative to the use of elastic analysis, as
follows, which is the only method available where the compression flange is
in Class 3. :

Worked example
Figure 4.1(a) shows a cross-section in a region of hogging moment where
the steel section is 406 X 178 UB 60 with f, = 355 N/mm? and dimensions
as shown. Its plastic section modulus, from tables, is W, = 1.194 X
10 mm*. At an internal support between spans of 9.0 m and 12.0 m, the
longitudinal reinforcement is T16 bars, with fy = 460 N/mm?, at 330 mm
spacing. The thickness of slab above the profiled sheeting is 80 mm, so the
reinforcement ratio is 647/(330 x 80) = 0.76%.

What are the class of the section and its design resistance to hogging
moments?

From equation (4.1),

L,+L, 21
St 2 g310m,
16 16 m

b eff
so that four T16 bars are effective, and A, = 804 mm?. Assume initially
that the web is in Class 1 or 2, so that the rectangular stress blocks shown in
Fig. 4.1(b) are relevant. The bottom (compression) flange has ¢/t < 7 and
so is in Class 1, from Table 3.1.

From equation (4.2) with y; = 1.15,

p o A _ 804 X 046

. = 322 kN.
Ys 1.15
From equation (4.4), with y, = 1.1,
Fy 322 x 1.1
= sia = = 64 .
YT oS, 156x0355 0
From equation (4.5), the ratio a is
X 64
=05+==05+_—=10.678.
* d 360

The ratio d/t is 46.1. The maximum ratio for a Class 2 web is 456€/(13a. — 1)
where e = (235/355)"2 = 0.814, so the limit is

d _ 456 x 0.814
_

= = 47.5
t 7.81

and the web is just within Class 2. This can also be seen from Fig. 3.14.
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From Fig. 4.1(b), the lever arm for the forces F; is

o g, %
2

Iz}

z= =203 + 114 — 32 = 285 mm.

N |

For the steel section,

5, 355
Mapl.Rd =W,==1194 X — =385kNm,
Ya 1.1

so from equation (4.6)

My gq = 385 + 322 X 0.285 = 477 kN m.

4.2.1.3 Elastic moment of resistance

In the preceding calculation, it was possible to neglect the influence of the
method of construction of the beam, and the effects of creep, shrinkage,
and temperature, because these become negligible before the plastic
moment of resistance is reached.

Where elastic analysis is used, creep is allowed for in the choice of the
modular ratio n(= E,/E_), and so has no influence on the properties of
all-steel cross-sections. In buildings the effects of shrinkage and tempera-
ture on moments of resistance can usually be neglected, but the method of
construction has to be allowed for. Here, we assume that at the section
considered, the loading causes hogging bending moments M, g4 in the steel
member alone, and M, g4 in the composite member. The small difference
(= 3%) between the elastic moduli for reinforcement and structural steel is
usually neglected.

The height x. of the elastic neutral axis of the composite section
(Fig. 4.1(c)) above that of the steel section is found by taking first moments
of area about the latter axis:

X (A, + Ay = A (% + hs), 4.7)
and the second moment of area of the composite section is
2 h :
I=1+ Ax;+ A, (Ea + hy ~ xe) . (4.8)
The yield moment is almost always governed by the total stress in the steel

bottom flange (at level 4 in Fig. 3.25(a)). The compressive stress due to the
moment M, g4 iS:

h,/2
Cas = M, 54 I (4.9)
a

The remaining stress available is fy/y, — Ga4, 5O the yield moment is:
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:{'ya — a1
Mysg+ M gg=M,gq + ¢ 2 . (4.10)
(A2 + x.)
The design condition is:
M. sq <M gq- (4.11)

The bending moment M, g4 causes no stress in the slab reinforcement. In
propped construction, the tensile stress oy in these bars may govern
design. It is

h/2 + h. — x
Os1 = M Rrq —_( 2 Is xe) (4-12)

and must not exceed fi/v.

Worked example
Let us now assume that the composite section shown in Fig. 4.1(a) is in
Class 3, and that at the ultimate limit state, a hogging moment of 163 kN m
acts on the steel section alone, due to the use of unpropped construction.
What is the design resistance of the section to hogging moments?
From equation (4.7) the position of the elastic neutral axis of the composite
section, neglecting concrete in tension, is given by
_ 804(0.203 + 0.114)
7600 + 804

From equation (4.8), the second moment of area is
10787 = 215 + 7600 x 0.03% + 804(0.203 + 0.114 — 0.03)?
= 288 mm*.

From tables, the elastic section modulus for the steel section is 1.058 x
10° mm>, so the moment M, s, causes a compressive stress at level 4
(the bottom flange):

0.030 m.

5 - 163
a4 1.058

The design yield strength is 355/1.1 = 323 N/mm?, so this leaves 169
N/mm? for resistance to the load applied to the composite member.
The distance of the bottom fibre from the elastic neutral axis is 4,/2 + xo =
0.203 + 0.03 = 0.233 m, so the remaining resistance is

al 288
M_pq = — =169 X 33 = 208 kN m.

y
It is evident from the stress distributions in Fig. 4.1(c) that yield occurs first
in the bottom fibre. The design resistance is
M, gq+ M_pq= 163 + 208 = 371 kN m.
From the preceding worked example, the shape factor is

Mawa 471 o
Mel.Rd 371

= 154 N/mn?.

S
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Fig. 4.2 Resistance to combined bending and vertical shear.

4.2.2 Vertical shear; and moment-shear interaction

As explained in Section 3.5.4, vertical shear is assumed to be resisted by
the web of the steel section (equations (3.69) and (3.70)). The action effect
Vsa must not exceed the plastic shear resistance V) ra (0or some lower
value if shear buckling, not considered here, can occur). -

The design rule of Eurocode 4: Part 1.112 for resistance in combined
bending (whether hogging or sagging) and shear is shown in Fig. 4.2. It is
based on evidence from tests that there is no reduction in bending resist-
ance until Vsq > 0.5V}, ra (point A in the figure), and the assumption that
the reduction at higher shears follows the parabolic curve AB. At point B
the remaining bending resistance M; g4 is that contributed by the flanges of
the composite section, including the reinforcement in the slab. Along curve
AB, the reduced bending resistance is given by

2V,
M, pq = Migq + (Mgyq — M¢grg) [1 - (V sd
pLRd

— 1)2] (4.13)

where Mgy is the resistance when Vgg = 0.

When calculating Mg rq, it is usually accurate enough to ignore the
reinforcement in the slab. When it is included, or where the steel flanges
are of unequal size, only the weaker of the two flanges will be at its design
yield stress.

4.2.3 Longitudinal shear

Section 3.6 on longitudinal shear is applicable to continuous beams and
cantilevers, as well as to simply-supported spans. Some additional com-
ments, relevant to continuous beams, are now given.

For a typical span with uniformly distributing loading, there are only
three critical cross-sections: at the supports and at the section of maximum
sagging moment. Points of contraflexure are not treated as critical sections
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because their location is different for each load case; a complication best
avoided. The number of shear connectors required for a typical critical
length is
_E+F
Prq

where F, is the design tensile force in the reinforcement that is assumed to
contribute to the hogging moment of resistance, and F, is the compressive
force required in the slab at midspan, which may be less than the full-
interaction value.

Full shear connection is assumed in regions of hogging moment, when N
is calculated; but as the connectors may be spaced uniformly between a
support and the critical section at midspan, the number provided in the
hogging region may not correspond to the force F,. It is required in
Eurocode 4 that the shear connectors shall be spaced to suit the curtail-
ment of tension reinforcement; but in practice it is more likely that the
length of these reinforcing bars will be related to the spacing of the shear
connectors, as the latter is constrained by the size and spacing of the
troughs in profiled sheeting.

There are several reasons for the apparently conservative requirement of
Eurocode 4 that full shear connection be provided in hogging regions:

N (3.73)bis

(1) To compensate for some simplifications that may be unconservative:
® neglect of the tensile strength of concrete,
® neglect of strain-hardening of reinforcement,
® neglect of shear due to reinforcement (e.g. welded mesh) provided

for crack-width control that is neglected at ultimate limit states.

(2) Because the design resistance of connectors, Pgy, is assumed not to
depend on whether the surrounding concrete is in compression or
tension. There is evidence that this is slightly unconservative for
hogging regions,®” but slip capacity is probably greater, which is
beneficial.

(3) For simplicity in design, including design for lateral buckling (Section
4.2.4) and for vertical shear with tension-field action.®®

The worked example in Section 4.6 illustrates the situation where the
design resistance to hogging bending is that of the steel section alone, so
that F; = 0 in equation (3.73), even though light reinforcement is present.
It would be prudent then to provide shear connection for that reinforce-
ment, as otherwise the uniform spacing of connectors could lead to under-
provision in the sagging region.

Transverse reinforcement

As for sagging regions, this reinforcement should be related to the shear
resistance of the connectors provided, even where, for detailing reasons,
their resistance exceeds the design longitudinal shear.
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4.2.4 Lateral buckling

Conventional ‘non-distortional’ lateral buckling occurs where the top
flange of a simply-supported steel beam of I-section has insufficient lateral
restraint in the midspan region. Both flanges are assumed to be restrained
laterally at the supports, where the member may be free to rotate about a
vertical axis. The top flange, in compression, is prevented by the web from
buckling vertically, but if the ratio of its breadth by to the span L is low, it
may buckle laterally as shown in Fig. 4.3(a). The cross-section rotates
about a longitudinal axis, but maintains its shape.

It has to be checked that this ‘lateral torsional’ buckling does not occur
during casting of the concrete for a composite beam; but once the concrete
has hardened, the shear connection prevents buckling of this type. The
relevant design methods, being for non-composite beams, are outside the
scope of this book.

Near internal supports of continuous beams, the compressed bottom
flange of the steel section receives lateral support only through a flexible
web; but the slab does prevent twisting of the steel section as a whole. The
flange can only buckle if the web bends, as shown in Fig. 4.3(b). This is
known as ‘distortional’ lateral buckling, and is the subject of this section.

The buckle consists of a single half-wave each side of an internal
support, where lateral restraint is invariably provided. The half-wave
extends over most of the length of the hogging moment region. It is not
sinusoidal, as the point of maximum lateral displacement is within two or
three beam depths of the support, as shown in Fig. 4.4.

It is unlike local flange buckling, where the movement is essentially
vertical, not lateral, and where the cross-section of maximum displacement
is within one flange-width of the support. There is some evidence from
tests(***> that local buckling can initiate lateral buckling, but in design
they are considered separately, and in different ways. Local buckling is
allowed for by the classification system for steel elements in compression

cross sections:
—— —~ at supports
at midspan

slab (not to scale)

(a) torsion ({b) distortion (c) inverted-U frame

Fig. 4.3 Lateral buckling.
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Fig. 4.4 Typical deformation of steel bottom flange in distortional lateral buckling.

(Section 3.5.2). Lateral buckling is avoided by reducing the design moment
of resistance at the internal support, My, rq, to a lower value, My, rq. Local
buckling occurs where the breadth-to-thickness ratio of the flange (by/t;) is
high; lateral buckling occurs where it is low.

Where, as is usual in buildings, the beam is one of several parallel
members, all attached to the same concrete or composite slab, design is
usually based on the ‘continuous inverted-U frame’ model. The tendency
for the bottom flange to displace laterally causes bending of the steel web,
and twisting at top-flange level, which is resisted by bending of the slab, as
shown in Fig. 4.3(c).

Elastic critical moment

Design to Eurocode 4: Part 1.1 is based on the elastic critical moment M.,
at the internal support. The theory for M., considers the response of a
single U-frame (ABCD in Fig. 4.3(c)) to equal and opposite horizontal
forces F at bottom-flange level. It leads to the following rather complex
expression for M,:

— ch4
L

k L2 172
[(GL,t + 7) Eazafz} (4.14)

MCI’
where:  E, and G are the elastic modulus and shear modulus of steel,
I, is the St Venant torsion constant for the steel section,
I, is bit,/12 for the steel bottom flange, and
L is the span.

Where the steel section is symmetric about both axes, k. is a property of
the composite section (which properties A and Iy) given by

B h L,
hi4 + (I, + LylA

e

C

J + hy (4.15)
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where

oo Ay (4.16)

Aazc(A - Aa)
and A,, I, and I, are properties of the structural steel section. (It should
be noted that in Eurocodes, and here, subscripts y and z refer to the major
and minor axes of a steel section, respectively. British practice has been to
use x and y.) The dimensions A, and z. are shown in Fig. 4.5.

The term k; is the stiffness of the U frame, per unit length along the
span, given by
- _kiky

. 4.17
Skt k (“-17)

The stiffness of the slab is represented by k;. Where the slab is in fact

continuous over the beams, even when it is designed as simply-supported,

the stiffness may be taken as

— 4E‘aIZ
a

k, (4.18)
where a is the spacing of the beams and I, is the ‘cracked’ flexural stiffness
of the slab above the beams, when calculated using the area of top
reinforcement per unit length of beam. This reinforcement should be
sufficient to provide the slab with a resistance to hogging bending, Mgy,
that satisfies

o/,

4 v,
This is to ensure that the slab can resist the transverse bending moment
applied to it by the steel web (Fig. 4.3(c)), even when the slab is designed
as simply-supported on the beams. The reinforcement provided for control of

Fig. 4.5 Inverted-U frame.
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Fig. 4.6 Factor C, for an end span of a continuous beam.

cracking and for fire design of the slab will often be sufficient for this
purpose.
The stiffness of the web is represented by k,. For an uncased web,
___Ead
4(1 - vg) hs
where v, is Poisson’s ratio for steel. For an I-section with the web (only)
encased in concrete, as used in the design example here,

k, (4.20)

k, = — Eatubt (4.21)
16h (1 + 4nt, /b;)

where n is the modular ratio for long-term effects. Equation (4.21) was

derived by elastic theory, treating the concrete on one side of the web (Fig.

3.31) as a strut that restrains upward movement of the steel bottom flange

below it.

The buckling moment M., is strongly influenced by the shape of the
bending-moment distribution for the span considered. This is allowed for
by the factor C,4, values for which were obtained by finite-clement ana-
lyses. They range from 6.2 for uniform hogging moment, to above 40
where the region of hogging moment is less than one-tenth of the span.
Values relevant to the design example are given in Fig. 4.6.

In equation (4.14) the term GI,, gives the contribution from St Venant
torsion of the section. It is usually small compared with k,L%*w* and then
can be neglected with little loss of economy. The expression then becomes

kCC4 v(ksEaIafz) v (422)

o

M. =

cr

which is independent of the span L. This enables the values of C, to be
used for all span lengths.

Equation (4.14) for M, is valid only where rules for minimum spacing of
connectors, bending stiffness of the composite slab, and proportions of the
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steel I-section, are satisfied. A more detailed explanation of this method
and simplified versions of some of its rules are available elsewhere.(!>

Buckling moment

The value M, is relevant only to an initially perfect member that remains
elastic. Evidence is limited on the influence of initial imperfections, resi-
dual stresses, and yielding of steel on this type of buckling; but the
Perry-Robertson formulation and the strut curves developed for overall
buckling of steel columns provide a suitable basis. The method of
Eurocode 4: Part 1.1 is therefore as follows.

The slenderness A\ is given for a Class 1 or 2 section by

12
ALt = (A—IP—‘) (4.23)
cr
where M, is the value that would be obtained for My, rq (equation (4.6)) if
Ya and vy, were taken as 1.0. This is because these factors do not occur in
the calculation of M. For a Class 3 section, My, is replaced by the yield
moment.
The buckling moment is given by
(4.24)
My ra = XLTMh R4
where xpr is a function of XLT that in practice is taken from the relevant
strut curve in Eurocode 3: Part 1.1. For rolled steel sections this curve is
given by

r=[dr + @ - MDY but =1 (4.25)
where
drr=0.5[1+ 0210 — 0.2) + N2 (4.26)

From these equations x;r = 1 when )\LT 0.2.

However, evidence from tests and from experience shows that distortio-
nal lateral buckling does not reduce bending resistance to below My, rq
until )\LT exceeds about 0.4, so Eurocode 4 gives a rule that x; 1 may be
taken as 1.0 where ALt < 0.4. It then drops suddenly (e.g. to 0.95 where
)\LT = 0.41), which is a minor defect of the code.

Simplified expression for At
For cross-sections in Class 1 or 2, and with some loss of economy, equation
(4.23) can be replaced by

Ar =50 (1 * 4bftf) [(Eny) (:) (bf)]o'zs “27

provided that the steel section is symmetrical about both axes. This gives a
much simpler calculation. An account of its derivation is available. 1>
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Exemption from check on buckling

Extensive computations based on At = 0.4 enabled conditions to be given
in Eurocode 4 under which no detailed check on resistance to lateral
buckling need be made. The principal condition relates to the overall depth
h, of the steel I-section. For steel with f, = 355 N/mm?, this is that for IPE
sections

h, < 400 mm
or, if the web is encased, (4.28)
h, < 600 mm.

The IPE sections generally have thicker webs than British UB sections.
To qualify for this relaxation, UB sections must satisfy

h\® & _ 5.52 x 10° 429
W be Sy @)

and
ht, <0454, (4.30)

where f, is in N/mm? units, and other symbols are as in Fig. 4.5. Many of
them do not conform, so further work on simplification is needed.

Use of bracing .

Where the buckling resistance of a beam has to be checked, and has been
found using equation (4.24) to be less than the required resistance, the
possibilities are as follows:

(1) Use the longer method of calculation for M, equation (4.14), which
is generally less conservative.

(2) Use a steel section with a less slender web or an encased web.

(3) Provide lateral bracing to compression flanges in the hogging moment
region.

Lateral bracing is commonly used in bridges, but is less convenient in
buildings, where the spacing between adjacent beams is usually wider,
relative to their depth. Some examples of possible types of bracing are
given in a book that covers lateral buckling of haunched composite
beams. )

Little else has been published on the use of bracing for beams in
buildings. It interferes with the provision of services, and is best avoided.

4.2.5 Cracking of concrete

‘Cracking is almost inevitable where reinforced concrete elements of com-
posite beams are subject to tension resulting from either direct loading or
restraint of imposed deformations’. This clause from Eurocode 4: Part
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1.142) distinguishes between two types of cracking. These are treated
separately in Eurocode 4, which follows closely the rules for crack-width
control given in Eurocode 2: Part 1.1.19 In the design of reinforced
concrete it is usually obvious whether reinforcement is required to resist
‘direct loading’, or whether cracking will result from tensile strains
imposed on the element considered. The origin of these strains can be
‘extrinsic’ (external to the member), such as differential settlement of the
supports of a continuous beam, or ‘intrinsic’ (inherent in the member),
such as a temperature gradient or shrinkage of the concrete.

In reinforced concrete, cracking has little influence on tensile forces
caused by direct loading, but it reduces the restraint of an imposed
deformation, and so reduces the tensile force that caused the cracks.
Calculations for load-induced cracking are therefore based on the tensile
force in the reinforcement after cracking (i.e. on the analysis of cracked
cross-sections), whereas calculations for restraint cracking are based on the
tensile force in the concrete just before it cracks.

These concepts are more difficult to apply to composite members, where
there is local restraint from the axial and flexural stiffnesses of the struc-
tural steel component, applied through the shear connectors or by bond. In
a web-encased beam, for example, where the steel tension flange is
stressed by direct loading, the result strains and curvature impose a defor-
mation on the concrete that encases the web. Are the resulting cracks load-
induced or restraint-induced?

Such dilemmas, and the differences between beam-to-column connec-
tions in composite and reinforced concrete frames, made it impossible to
cover cracking in Eurocode 4 simply by cross-reference to Eurocode 2 for
reinforced concrete; and led to a ‘stand-alone’ treatment of two situations:
cracking in a slab that is part of the tension flange of a composite beam,
and in the concrete encasement of a steel web.

‘Cracking shall be limited to a level that will not be expected to impair
the proper functioning of the structure or cause its appearance to be
unacceptable’. This quotation, also from Eurocode 4: Part 1.1, refers to
function and appearance. Within buildings, the concrete of composite
beams is usually subjected to exposure, Class 1 of Eurocode 2: Part 1.1,
‘dry environment’, where crack width has no influence on corrosion of
reinforcement or on durability. This would not be true, however, for the
humid environment of a laundry or an open-air multi-storey car park.

The appearance of a concrete surface may be important where a web-
encased beam is visible from below, but the top surface of a slab is usually
concealed by the floor finish or roof covering. Where the finish is flexible
(e.g. afitted carpet) there may be no need to specify a limit to the width of
cracks; but for brittle finishes or exposed slabs, crack-width control is
essential.

Limiting crack widths are normally specified as a characteristic value wy,
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with a 20% probability of exceedence. Provision is made in Eurocode 4 for
design to the following specifications:

(1) no control (for Class 1 exposure only);

2) wg=0.5mm;

(3) wx = 0.3 mm (for exposure Classes 2 to 4, but not Class 5, ‘aggressive
chemical environment’);

(4) wg <0.3 mm.

For cases (1) to (3), simplified rules are given that do not involve the
calculation of crack widths. These are outlined below. For case (4), crack
widths have to be calculated, in accordance with the Principles of
Eurocode 2: Part 1.1. This case rarely arises in buildings and is not
considered further.

4.2.5.1 No control of crack width

This statement is relevant to serviceability limit states. It is still necessary
to ensure that the concrete retains sufficient integrity to resist shear at
ultimate limit states, by acting as a continuum. It is therefore specified in
Eurocode 4 that longitudinal reinforcement in a concrete flange in tension
shall be not less than:

® 0.4% of the area of concrete, for propped construction, or
® (.2% of the area of concrete, for unpropped construction.

At present, no account is taken of the presence of profiled steel sheeting,
which may be conservative in some situations.

4.2.5.2 Control of restraint-induced cracking

Uncontrolled cracking between widely-spaced bars is avoided, and crack
widths are limited, by:

® using small-diameter bars, which have better bond properties and have
to be more closely spaced than larger bars;

e using ‘high-bond’ bars (ribbed bars or welded mesh);

® ensuring that the reinforcement remains elastic when cracking first
occurs.

The last of these requirements is relevant to restraint cracking, and leads
to a design rule for minimum reinforcement, irrespective of the loading, as
follows.

Let us assume that an area of concrete in uniform tension, A., with an
effective tensile strength, f.., has an area A of reinforcement with yield
strength f,. Just before the concrete cracks, the force in it is Acfee and
the whole of the force is transferred to the reinforcement, which will not
yield if
Afs = Acfere- (4.31)
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This condition is modified, in Eurocode 4, by a factor 0.8 that takes
account of self-equilibrating stresses within the member (that disappear on
cracking), and by a factor

1
= - = .
k=13 (ht2z) ~ 07 (4.32)

that allows for the non-uniform tension in the concrete prior to cracking. In
equation (4.32), h is the thickness of the concrete flange, excluding any
ribs, and z, is the distance of the centroid of the uncracked composite
section (for short-term loading) below the centroid of the concrete flange.
Thus, in a very deep beam, where the tension in the flange is almost
uniform, z, » h, and k. = 1.

Finally, f; in equation (4.31) is replaced by oy, the maximum stress
permitted in the reinforcement immediately after cracking (<fy) which
influences the crack width. This leads to the design rule

A= 0.8 k(.fcteAc' (4.33)
Ot
To use this rule, it is necessary to estimate the value of the tensile
strength f... when the concrete first cracks. If the intrinsic deformation due
to the heat of hydration or the shrinkage of the concrete is large, cracking
could occur within a week of casting, when £, is still low. Where this is
uncertain, it may be appropriate to use the mean value of the tensile
strength corresponding to the specified 28-day strength of the concrete,
fetm, Which is approximately 0.1f, or 0.08f.,, where f,, is the specified
cube strength.
The stress o depends on the design crack width, wy, the diameter ¢ of
the reinforcing bars, and the value of f.. For f;. = 2.5 mm?, o is as given
in Fig. 4.7, but not exceeding f; for the bars to be used.

32 T T T T T T LI—
[)

mm

25 | : .

wk=0.5mm
20 - -

wy=0.3mm

16 + .
12 —ﬁ -
10

8 - -

6 - .
] 1 ) L ] ]

200 300 400

T
1

o, N/mm?

Fig. 4.7 Maximum steel stress for minimum reinforcement, high bond bars.
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Fig. 4.8 Maximum bar spacing for high bond bars.

4.2.5.3 Control of load-induced cracking

A global analysis is required, to determine the bending moment at the
cross-section considered. This is usually a cross-section at an internal
support, where the hogging bending moment is a maximum.

The crack-width limit of 0.3 mm for exposure Classes 2 to 4 is associated
in Eurocode 2: Part 1.1 with the quasi-permanent combination of actions
(Section 1.3.2.4). It is thus assumed that there are no adverse effects if the
cracks are wider for short periods when heavier variable loads are present.
Where unpropped construction is used, load resisted by the steel member
alone is excluded. The global analysis is elastic (Section 4.3.2). If relative
stiffnesses are based on uncracked concrete in regions where the slab is
in tension, the hogging moments will be overestimated, so limited redis-
tribution of moments is allowed in Eurocode 4: up to 15% for hogging
regions in Class 1 or 2, and up to 10% for Class 3 or 4.

The tensile stress in the reinforcement nearest to the relevant concrete
surface is calculated by elastic section analysis, neglecting concrete in
tension. This stress, o, is then increased to a value o by a correction for
tension stiffening, given by

o, =0, + 0.4f°t—"‘A—9 (4.34)
o S

where o = AI/A,I,, and A and I are area of section and second moment of

area, respectively, of the cracked composite section. The subscripts a, c,

and s refer respectively to the structural steel section, the concrete flange,

and the longitudinal reinforcement. The correction is largest for lightly

reinforced slabs (high A./A,) of strong concrete (high tensile strength fe.m).
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Crack control is achieved by limiting the spacing of the longitudinal
reinforcing bars to the values shown in Fig. 4.8, which depend on o, and
wy. Where oy is outside the range of Fig. 4.8, bar diameter is limited
instead, using Fig. 4.7.

A fuller explanation and discussion of the treatment of crack-width
control in Eurocode 4: Part 1.1 is available.> These methods are not fully
satisfactory or comprehensive, being based on a model originally devel-
oped for reinforced concrete beams. Research on crack control in
composite members is limited (e.g. References 47 and 48). Further work
will be needed for the Eurocode on composite bridges, where reliable
control of cracking is more important than it is in buildings.

4.3 Global analysis of continuous beams

4.3.1 General

The subject of Section 4.3 is the determination of design values of bending
moment and vertical shear for ‘continuous beams’ as defined in Section
4.1, caused by the actions specified for both serviceability and ultimate
limit states.

Methods based on linear-elastic theory, treated in Section 4.3.2, are
applicable for all limit states and all four classes of cross-section. The use of
rigid-plastic analysis, also known as plastic hinge analysis, is applicable
only for ultimate limit states, and is subject to the restrictions explained.in
Section 4.3.3; the resulting members may be lighter and/or shallower, and
the analyses are simpler. This is because the design moments for one span
are in practice independent of the actions on adjacent spans, of variation
along the span of the stiffness of the member, of the sequence and method
of construction, and of the effects of temperature and of creep and
shrinkage of concrete. Accurate elastic analysis has none of these advan-
tages, so simplifications have to be made.

Section 3.5.1, on effective cross-sections, applies also to midspan regions
of continuous beams. For analysis of cross-sections, effective widths of
hogging moment regions are generally narrower than those of midspan
regions (Section 4.2.1), but for simplicity, effective widths for global
analysis are assumed to be constant over the whole of each span, and are
taken as the value at midspan. This does not apply to cantilevers, where
the value at the support is used.

It is assumed in global analysis that the effects of longitudinal slip are
negligible. This is reasonable, because partial shear connection is not used
in regions of hogging moment. Its use slightly reduces the flexural stiffness
of a midspan region, but for current levels of minimum shear connection,
the uncertainty is probably less than that which results from cracking of
concrete in hogging regions.
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4.3.2 Elastic analysis

Elastic global analysis requires knowledge of relative (but not absolute)
values of flexural rigidity (EI) over the whole length of the member
analysed. At least three different values of EI are required at each cross-
section, as follows:

(a) for the steel member alone (E,l,), for actions applied before the
member becomes composite, where unpropped construction is used;

(b) for permanent loading on the composite member (E,[), where I is
determined, in ’steel’ units, by the method of transformed sections
using a modular ratio E,/E;, where E; is an effective modulus that
allows for creep of concrete;

(c) for variable loading on the composite member, as above, except that
the modular ratio is E,/E.n, and E , is the mean secant modulus for
short-term loading.

The values (b) and (c) also depend on the sign of the bending moment. In
principle, separate analyses are needed for the actions in (a), and (b), and
for each relevant arrangement of variable loading in (c).

In practice, the following simplifications are made wherever possible.

(1) A value I calculated for the uncracked composite section (denoted /; in
Eurocode 4) is used throughout the span. This is referred to as
‘uncracked’ analysis.

(2) A single value of I, based on a modular ratio (EJEL) + (Eo/Ecp)], is
used for analyses of both types (b) and (c).

(3) Where all spans of the beams have cross-sections in Class 1 or 2 only,
the influence of method of construction is neglected in analyses for
ultimate limit states only, and actions applied to the steel member
alone are included in analyses of type (b).

Separate analyses of type (c) are always needed for different arrange-
ments of variable loading. It is often convenient to analyse the member
for unit distributed loading on each span in turn, and then obtain the
moments and shears for each load arrangement by scaling and combining
the results.

The alternative to ‘uncracked’ analysis is to use in regions where the slab
is cracked a reduced value of I (denoted I, in Eurocode 4), calculated
neglecting concrete in tension but including its reinforcement. This is
known as ‘cracked’ analysis. Its weakness is that there is no simple or
reliable method for deciding which parts of each span are ‘cracked’. They
are different for each load arrangement, and are modified by the effects of
tension stiffening, previous loadings, temperature, creep, shrinkage, and
longitudinal slip. A common assumption is that 15% of each span, adjacent
to each internal support, is ‘cracked’. (Relevant evidence is given in
Volume 2.)



Continuous Beams and Slabs, and Beams in Frames 139

In practice, ‘uncracked’ analysis is usually preferred for ultimate limit
states, with allowance for cracking by redistribution of moments. ‘Cracked’
analysis is used for deflections, as explained in Section 4.3.2.3.

4.3.2.1 Redistribution of moments in continuous beams

Redistribution is an approximate but simple method of modifying the
results of an elastic global analysis to allow for the inelastic behaviour that
occurs in all materials in a composite beam before maximum load is
reached, and also to allow for the effects of cracking of concrete at
serviceability limit states. It is also used in the analysis of beams and frames
of structural steel and of reinforced concrete, with limitations appropriate
to the material and type of member.

It consists of modifying the bending-moment distribution found for a
particular loading while maintaining equilibrium between the actions
(loads) and the bending moments. Moments are reduced at cross-sections
where the ratio of action effect to resistance is highest (usually, at the
internal supports). The effect is to increase the moments of opposite sign
(usually, in the midspan region).

For continuous composite beams, the ratio of action effect to resistance
is higher at internal supports, and lower at midspan, than for most beams
of a single material, and the use of redistribution is essential for economy
in design. It is limited by the onset of local buckling of steel elements in
compression, as shown in Table 4.1, which is taken from Eurocode 4:
Part 1.1.

Table 4.1 Limits to redistribution of hogging moments, per cent of the initial value of the
bending moment to be reduced.

Class of cross-section in 1 2 3 4
hogging moment region

For ‘uncracked’ elastic analysis 40 30 20 10
For ‘cracked’ elastic analysis 25 15 10 0

The differences between the two sets of figures show that ‘uncracked’
analyses have been assumed to give hogging moments that are higher than
those from ‘cracked’ analyses by amounts that are respectively 12%, 13%,
9% and 10% for Classes 1 to 4 (e.g. 140/125 = 1.12).

The hogging moments referred to are the peak values at internal sup-
ports, which do not include supports of cantilevers (at which the moment is
determined by equilibrium and cannot be changed). Where the composite
section is in Class 3 or 4, moments due to loads on the steel member
alone are excluded. The values in Table 4.1 are based on research (e.g.
Reference 49).
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The use of Table 4.1, and the need for redistribution, is illustrated in the
following example. The Eurocode also allows limited redistribution from
midspan regions to supports, but this is rare in practice.

4.3.2.2 Example: redistribution of moments

A composite beam of uniform section (apart from reinforcement) is con-
tinuous over three equal spans L. The cross-sections are in Class 1. For the
ultimate limit state, the design permanent load is g per unit length, and the
variable load is g per unit length, with ¢ = 2,. The sagging moment of
resistance, Mgy, is twice the hogging moment of resistance, Mgy. Find the
minimum required value for Mgy:

(a) by elastic analysis without redistribution,
(b) by elastic analysis with redistribution to Table 4.1,
(c) by rigid-plastic analysis.

For simplicity, consider only the middle span ABC, and only symmetrical
arrangements of variable load.

Bending moment distributions for the middle span given by ‘uncracked’
elastic analysis are shown in Fig. 4.9 for permanent load plus the following
arrangements of variable load:

(1) g on all spans,
(2) g on the centre span only,
(3) g on the end spans only.

The moments are given as multiples of gL%8. Questions (a) to (c) are
now answered.

bendin
momen

+2
(units of

glys)

+1

2 N = _ 20

Fig. 4.9 Bending moment diagrams with redistribution.
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(a) The peak hogging moment, 2.4 gL%8, governs the design, and since
Mgq = 2MRg,

2
Mg, = 4.8 %.

(b) The peak hogging moment at each support is reduced by 40% to 1.44
gL*8. The corresponding sagging moment is (0.6 + 0.96)gL%/8 = 1.56
gL?*/8 (curve (4)). For loadings (2) and (3), 10% redistribution is used,
so that their peak hogging moments are also 1.44 gL%8. This value
governs the design, so that

2
Mg, = 2.88 5‘;—.

(c) The method used is explained in Section 4.3.3. Redistribution is
unlimited, so that support moments for loading (1) are reduced by
58%, to 1.0 gL%/8.

The corresponding sagging moment is (0.6 + 1.4)gL*/8 (curve
(5)).Smaller redistributions are required for the other loadings.The
available resistances at the supports and at midspan are fully used,
when

2
Mp,=2.0 %
The preceding three results for M4 show that the resistance required is
significantly reduced when the degree of redistribution is increased.
For composite beams, use of rigid-plastic analysis can imply even larger
redistribution than the 58% found here.

4.3.2.3 Analysis for deflections

Cracking of concrete and yielding of steel have less influence on deflections
in service than they do on analyses for ultimate limit states, because the
design loads are lower. In short cantilevers and at some internal supports
there may be very little cracking, so deflections may be overestimated by
an analysis where redistribution is used as explained above. Where a low
degree of shear connection is used, deflections may be increased by
longitudinal slip between the slab and the steel beam.

For these reasons, both Eurocode 4: Part 1.14? and BS 59504 give
modified methods of elastic analysis for the prediction of bending moments
at internal supports of continuous beams. Let these hogging moments be
M, and M,, for a loading that would give a maximum sagging moment M,
and a maximum deflection §,, if the span were simply-supported. It can be
shown by elastic analysis of a member of uniform section with uniformly-
distributed load, that the moments M, and M, reduce the midspan deflec-
tion from 3, to 8., where

M+ M,
I

[+

8, =9, [1 ~0.6 (4.35)
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This equation is quite accurate for other realistic loadings, and is given in
BS 5950 for general use. It shows the significance of end moments. For
example, if My = M, = 0.42M,, the deflection 3, is halved. It is not strictly
correct to assume that the maximum deflection occurs at midspan but the
error is negligible.

The method of Eurocode 4 is now described, followed by that of BS
5950. Shear lag has little effect on deflections, but section properties based
on the effective flange width are often used, as they are needed for other
calculations.

The general method given for allowing for the effects of cracking at
internal supports involves two stages of calculation. The ‘uncracked’
flexural stiffness E,I; is needed for each span, and also the ‘cracked’
flexural stiffness E,I; at each internal support.

For the load arrangements considered, the bending moments due to the
load applied to the composite member are first calculated using stiffnesses
E,I,. At each internal support, the maximum tensile stress in the concrete
due to the relevant moment is calculated. This is repeated for other
relevant load arrangements. Let the highest tensile stress thus found, at a
particular support, be o.,. If this stress exceeds 0.15f,, (where [, is the
characteristic cylinder strength), the stiffness E,I; is replaced by E,I, over
15% of the length of the span on each side of that support.

The analyses for bending moments are then repeated using the modified
stiffnesses, and the results are used whether the new values o exceed
0.15f, or not. This method is based on one that has been used for
composite bridge beams since 1967.¢9

Eurocode 4 gives an alternative to re-analysis of the structure, applicable
for beams with critical sections in Class 1, 2 or 3. It is that at every support
where o > 0.15f, the bending moment is multiplied by f;, where

_ Eall -0.35 _
fi (Eal) = 0.6, (4.36)
and corresponding increases are made in the sagging moments in adjacent
spans. This method is available only for spans with equal loadings and
approximately equal length.

Where unpropped construction is used and redistribution exceeding
40% is made in global analyses for ultimate limit states, it is likely that
serviceability loads will cause local yielding of the steel beam at internal
supports. In design to Eurocode 4, allowance may be made for this by
multiplying the moments at relevant supports by a further factor f,

where f, = 0.5if f, is reached before the slab has hardened,
f» = 0.7if f; is reached due to extra loading applied after the slab
has hardened.

These methods are used in the worked example in Section 4.6.5.
In BS 5950, the simplified methods given are based on global analyses
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where the ‘uncracked’ stiffnesses E,J;, are used, and variable load is
present on all spans. The hogging moments so found are reduced by
empirical factors that take account of other arrangements of variable load.

Local yielding of the steel beam, if it occurs, causes an additional
permanent deflection. This is referred to as ‘shakedown’ in BS 5950, and is
allowed for by further reducing the hogging moments at the supports.

The calculation of deflections, with allowance for the effects of slip, is
treated in Section 4.4.

4.3.3 Rigid-plastic analysis

For composite beams, use of rigid-plastic analysis can imply even larger
redistributions of elastic moments than the 58% found in the preceding
example, particularly where spans are of unequal length, or support con-
centrated loads.

Redistribution results from inelastic rotations of short lengths of beam in
regions where ‘plastic hinges’ are assumed in the theory. Rotation may be
limited either by crushing of concrete or buckling of steel, and so depends
on the proportions of the relevant cross-sections, as well as on the shape of
the stress-strain curves for the materials.

Research has led to limitations to the use of rigid-plastic global analysis
for continuous composite beams. Those given in Eurocode 4: Part 1.1
include the following.

(1) At each plastic hinge location:
‘ ® lateral restraint shall be provided,
o the effective cross-section shall be in Class 1,
® the cross-section of the steel component shall be symmetrical about
the plane of its web.

(2) Al effective cross-sections in the member should be in Class 1 or 2.

(3) Adjacent spans should not differ in length by more than 50% of the
shorter span.

(4) End spans should not exceed 115% of the length of the adjacent span.

(5) The member shall not be susceptible to lateral-torsional buckling (i.e.
At < 0.4).

(6) Inanyspan L where more than half of the design load is concentrated
within a length of L/5, then at any sagging hinge, not more than 15%
of the overall depth of the member should be in compression, unless
it can be shown that the hinge will be the last to form in that span.

The method of analysis is well known, being widely used for steel-
framed structures, so only an outline is given here. The principal assump-
tions are as follows.

(1) Collapse (failure) of the structure occurs by rotation of plastic hinges
at constant bending moment, all other deformations being neglected.
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Fig. 4.10 Rigid-plastic global analysis.
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(2) A plastic hinge forms where the bending moment due to the actions
reaches the bending resistance of the member.

(3) Allloads on a span increase in proportion until failure occurs, so the
loading has to be represented by a single parameter.

The value of this parameter at collapse is normally found by assuming a
collapse mechanism, and equating the loss of potential energy of the loads,
due to a small movement of the mechanism, with the energy dissipated in
the plastic hinges. ,

For a beam of uniform section, the only properties required are the
moments of resistance at midspan, M, and at the internal support or
supports, M'y,. Let

M, _
M, . 4.37)

If the beam is continuous at both ends, Fig. 4.10(a), hinges occur at the

ends and at midspan, and
wlL?

(L+ )M, === (4.38)

If the beam is continuous at one end only, the bending moment diagram
at collapse is as shown in Fig. 4.10(b). It can easily be shown that

B = (ﬁ) [+ w2 - 1] (4.39)
and

— 1 272
My = > whL?. (4.40)

4.4 Stresses and deflections in continuous beams

Values of bending stresses at serviceability limit states may be needed in
calculations for control of load-induced cracking of concrete (Section
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4.2.5.3). For prediction of deflections, stresses in the structural steel
member should be calculated at internal supports where unpropped con-
struction is used (Section 4.3.2.3), to establish whether a correction is
needed for the effects of yielding.

Bending moments are determined by elastic global analysis (Section
4.3.2) and then stresses are found as in Section 3.5.3 for sagging moments,
or Section 4.2.1 for hogging moments.

Deflections are much less likely to be excessive in continuous beams than
in simply-supported spans, but they should always be checked where
design for ultimate limit states is based on rigid-plastic global analysis.
Once the bending moments at the ends of a span have been determined,
the maximum deflection for a beam with full shear connection is given with
sufficient accuracy by equation (4.35).

For simply-supported beams, the increase in deflection due to the use of
partial shear connection can be neglected in certain circumstances (Section
3.7.1) and is otherwise given by equation (3.94). These same rules can be
used for continuous beams, where they are a little conservative because
partial shear connection is used only in regions of sagging bending
moment. \

The influence of shrinkage of concrete on deflections is treated in
Section 3.8. For continuous beams, the effect is rarely significant. The
method of calculation is rather complex, because shrinkage causes bending
moments as well as sagging curvature. Details are given in Volume 2.

4.5 Design strategies for continuous beams

Until experience has been gained, the design of a continuous beam may
involve much trial and error. There is no ideal sequence in which decisions
should be made, but the following comments on this subject may be useful.

It is assumed that the span and spacing of the beams is known, that the
floor or roof slab spanning between them has been designed, and that most
or all of the loading on the beams is uniformly-distributed, being either
permanent (g) or variable (g). The beams add little to the total load, so g
and g are known.

One would not be designing a continuous beam if simply-supported
spans were satisfactory, so it can be assumed that simple spans of the
maximum available depth are too weak, or deflect or vibrate too much; or
that continuity is needed for seismic design, or to avoid wide cracks in the
slab, or for some other specific reason.

The provision for services must be considered early. Will the pipes and
ducts run under the beams, through holes in the webs, or above the
slab? Heavily-serviced buildings needing special solutions (castella beams,
stub girders, haunched beams, etc.) are not considered here. The provision




146 Composite Structures of Steel and Concrete

of holes in webs of continuous beams is easiest where the ratio g/g is low,
and a low ¢/g is also the situation where the advantages of continuity over
simple spans are greatest.

Continuity is more advantageous in beams with three or more spans than
where there are only two; and end spans should ideally be shorter than
interior spans. The least benefit is probably obtained where there are two
equal spans. Careful study of the worked example in this volume will show
why. Using a steel section that could span 9.0 m simply-supported, it was
quite difficult to design two continuous spans of only 9.5 m.

A decision with many consequences is the class of the composite section
at internal supports. Two distinct strategies are now compared.

(1) Only crack-control reinforcement is provided in the slab, and is
ignored in the ultimate-strength design. The composite section will
probably be Class 1, and rigid-plastic global analysis can be used,
unless At > 0.4 (Section 4.2.4). Good use is made of the available
bending resistance at midspan.

(2) The reinforcement in the slab at internal supports is used in ultimate-
strength design, and has an effective area at least 1% of that of the
slab. The composite section will certainly be in Class 2, perhaps Class
3. Restrictions on redistribution of moments will probably cause the
design hogging moments, M4  to increase (cf. strategy (1)) faster than
the increase in resistance, Mgy, provided by the reinforcement, and
further increase in the latter may put the section into Class 4. So the
steel section may have to be heavier than for strategy (1), and there
will be more unused bending resistance at midspan. However, that
will allow a lower degree of shear connection to be used. With higher
Mgq4 the bending-moment diagram for lateral-torsional buckling is
more adverse. Deflections are less likely to be troublesome, but the
increase in the diameter of the reinforcing bars makes crack-width
control more difficult.

The method of fire protection to be used may have consequences for the
structural design. For example, web encasement improves the class of the
steel web and the resistance to lateral buckling.

Finally, it has to be decided whether construction will be propped or
unpropped. Propped construction allows a shallower steel beam to be used
— but it will be less stiff, so the dynamic behaviour may be less satisfactory.
Propped construction costs more, and crack-width control is more difficult;
but design is much less likely to be governed by excessive deflection.

The design presented in Section 4.6 is based on strategy (1) above, using
a lightweight-concrete slab and an encased web. This is done to illustrate
methods. It may not be an optimum solution.
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4.6 Example: continuous composite beam

4.6.1 Data

So that use can be made of previous work, the design problem is identical
with that of Chapter 3, except that the building (Fig. 3.1) now consists of
two bays each of span 9.5 m. The transverse beams at 4 m centres are
assumed to be continuous over a central longitudinal wall, and are simply
supported on columns in the outer wall. Thus each beam is as shown in
Fig. 4.11. The use of continuity should offset the increase in span from 9 m
to 9.5 m, so it is assumed initially that the design of the slab and the
midspan region of the beam are as before (Figs 3.12, 3.29 and 3.31), with
the same materials, loads, and partial safety factors. The design loads per
unit length of beam, represented by the general symbol w, and the cor-
responding values of the bending moment wL?%8 for a span of 9.5 m are as

given in Table 4.2.
Other design data from Chapter 3 are as follows.
Structural steel: fy = 35 N/mm?, ffva = 323 N/mm?.
Concrete: fao = 25Nmm? fuly. = 16.7N/mm>.
Bar reinforcement: f, = 460 N'mm? f, /vy, = 400 N/mm?>.
Welded fabric: fu = 500 N/mm? f, /vy, = 435N/mm>
Shear connectors: P = 72.4kN, Pgply, = 57.9kN.

Profiled steel sheeting: type CF 70/0.9, shown in Fig. 3.9.

Composite slab: 150 mm thick, with T8 bars at 150 mm (top) and at 300
mm (bottom), shown in Fig. 3.12, and concrete with p = 1900 kg/m>.

Composite beam: steel section 406 x 178 UB 60, shown in Fig. 3.29,
with shear connection as in Fig. 3.30 and encased web as in Fig. 3.31.

For the steel section:

A, = 7600 mm°, 107°W, ,; = 0.208 mm?,
107%1,, = 215.1 mm*, 107%7, = 12.0 mm*,
Mapl.Rd = 386 kN m, Vpl.Rd = 614 kN.
For the composite section at midspan:
N; = 42.4 studs, My ra = 771 kKN m when N = N;.

(The effect of the small increase in b.g, for the longer span, is
negligible.)

10761, = 738 mm* for n = 11, with x = 133 mm,

107°1; = 616 mm* for n = 22, with x = 185 mm,

10781, = 547 mm* for n = 33, with x = 212 mm,

where x is the depth of the neutral axis below the top of the slab.
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Fig. 411 Continuous beam, with collapse mechanism for span AB.

4.6.2 Flexure and vertical shear

If rigid-plastic global analysis can be used, the value of wL?/8 that can be
resisted by each span is a little less than

My ra + 0.5M 5 g = 964 kN m

if no account is taken of reinforcement in the slab at the internal support,
B, in Fig. 4.11. This is well above wL?%8 for the loading (669 kN m, from
Table 4.2), so this approach to design for the ultimate limit state will be
tried.

It is easily shown by the methods of Section 4.2.1 that both the steel web
and the compression flange are in Class 1 at support B, and that the
composite section at midspan is also in Class 1.

It is assumed now, and checked in Section 4.6.3, that for lateral buckling
of the bottom flange near support B, Ay 1 < 0.4. The other conditions for
the use of plastic analysis (Section 4.3.3) are satisfied, provided that there
is lateral restraint to the steel flange in compression, at each location of a
plastic hinge. For sagging bending, the concrete slab restrains the flange.
For hogging bending, the attachment to the supporting wall must provide

_restraint. The resistance required is not specified, but it can be inferred
from codes for structural steelwork that the lateral force at bottom-flange
level will not exceed 2% of the compressive force in the bottom flange.

In conventional plastic analysis of a beam with two equal spans, the
mechanism of Fig. 4.10(b) is assumed for one of the spans, and the method
of Section 4.3.3 is used to find the required sagging resistance M,, for an
assumed ratio p of hogging to sagging resistance. Here, the hogging
resistance is known, but the sagging resistance is not, because partial shear
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Table 4.2 Loads and bending moments for a span of 9.5 m.

Serviceability limit states Ultimate limit states

Load wL*8 Load wL?/8

kN/m kN m kN/m kN m
Permanent, on steel beam 11.8 133 15.9 179
Permanent, composite 10.0 113 13.5 152
Variable, composite 20.0 226 30.0 338
Total 41.8 472 59.4 669

connection will be used to provide the resistance required, which will be
less than the 771 kN m given in Section 4.6.1.

Span AB is therefore analysed for a loading of 59.4 kN/m, assuming that
the hogging moment at B is 386 kN m, as shown in Fig. 4.11(a). The
reaction at A is

1 386
Ry ==X59.4X09.5— 22 =242 kN.
) > 9.5

The vertical shear is zero at point D, so the length AD is 242/59.4 =
4.07 m, and the sagging moment at D is given by

Mpgq = %x 4.07 X 242 = 492 kN m.

Shear connection will be provided along AD sufficient to give a resistance
of at least 492 kN m at D, so the rigid-plastic analysis gives collapse of span
AB with hinges at D and B.

The minimum design loading for span BC is 29.4 kN/m. Elastic global
analysis of ABC for the loads shown in Fig. 4.11(a) gives a hogging
moment at B well above 386 kN m, so the actual value can be assumed to
be 386 kN m, and the bending-moment diagram is as shown in Fig. 4.11(b).
This is the most critical load arrangement for lateral buckling, because the
length of span BC in compression, 2.76 m, is longer than it would be (1.36
m) if span BC were fully loaded.

The maximum vertical shear in span AB, at B, is

Vea= 59.4 X 9.5 — 242 = 322 kN.

This is 0.53 VR, so in principle the bending resistance should be
reduced, using equation (4.13). The term in square brackets is 0.996 when
Vsda/Vp1.ra = 0.53, so the reduction is obviously negligible.

4.6.3 Lateral buckling

The lateral stability of the steel bottom flange adjacent to support B is
checked using the ‘continuous U-frame’ model explained in Section 4.2.4
and the bending-moment distribution shown for span BC in Fig. 4.11(b).



150 Composite Structures of Steel and Concrete

The UB section used here is not exempt from a check on buckling,
according to Eurocode 4: Part 1.1, because its web is too slender to satisfy
the condition of equation (4.29):

R\ ko (3932128, o
-8 Lfe=[(=—=—=] —355°=1.16 x 107,
(t ) bffy 7.8] 178

W,

which exceeds the limit of 5.52 x 10%.

Use of the simplified expression for the slenderness Ay 1, equation (4.27),
gives a value exceeding 0.4, for which rigid-plastic global analysis is not
valid. The less conservative method that leads to equation (4.22) will
therefore be used. This gives the elastic critical moment at the internal
support:

M_ =

Ccr

kCC4 (ksEaIafz) 1/2' (422)b]S
™
For this beam, A = A, and I, = I, ,so from equations (4.15) and (4.16), k.
= 1.0. For span BC in Fig. 4.11, wL*8 = 29.4 X 9.5%/8 = 332 kN m, so
from Fig. 4.6, & = 1.17 and C, = 22.2.
The term k, represents the stiffness of the U-frame:

= _kik (4.17)bis
Equation (4.21) gives k, for a concrete-encased web. It is assumed that the
normal-density encasement has a modular ratio of 22 for long-term effects,
so that

- EaB 210000 X 7.8 x 178
27 16h(1 + 4nt, /b)) 16 x 393(1 + 88 x 7.8/178)
=1.70 X 10°N.

From equation (4.18), k; = 4E,L,/a, where E, I, is the ‘cracked’ stiffness of
the composite slab in hogging bending. To calculate I the trapezoidal rib
shown in Fig. 3.9 is replaced by a rectangular rib of breadth 162—13 =
149 mm. Using a modular ratio n = 22, the breadth of ‘steel’ rib is
149/(0.3 x 22) = 22.6 mm per metre width of slab, since the ribs are at
0.3 m spacing. The transformed section is thus as shown in Fig. 4.12.
Reinforcement within the rib (Fig. 3.12) is neglected.
The position of the neutral axis is given by

% X 22.6x% = 336(126 — x), whence x = 48 mm,

then
10761, = 336 x 0.078% + 22.6 x 48%3 = 2.88 mm*/mm.

From equation (4.18), with the beam spacing a = 4.0 m,
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Fig. 4.12 Cracked section of composite slab for hogging bending.
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k, = 4 x 210000 X # =0.605 X 10° N,

From equation (4.17),

10°

= 0.446 x 10°N.
2.305

k, =0.605 x 1.7 x

For the steel bottom flange,

12.8

b%tf 3 6 4
I, =—""=178 Xv=6.02><10 mm”.

afz — 12
From equation (4.22),

M, = 222 (0.446 x 210000 X 6.02)z = 5306 kN m.
T
The slenderness Ay is given by equation (4.23), which is

_ v 12 1.1 12
A = M —a, =13 X — = 0.283.
o= (Mona ) = 385 x 21" - 0283

This is less than 0.4, so the member is not weakened by lateral buckling,
which is a condition for the use of rigid-plastic global analysis.

4.6.4 Shear connection and transverse reinforcement

For sagging bending, the resistance required, 492 kN m, is well below the
resistance with full shear connection, 771 kN m, so the minimum degree of
shear connection may be sufficient. For spans of 9.5 m, this is given by
Fig. 3.19 as

N

f

= 0.54.
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In equation (3.67), F./F s may be replaced by N/N¢. This equation for the
interpolation method (Fig. 3.16) then gives

N
Mgqg = My rq + I (Mpra = Mapird)
t

= 386 + 0.54(771 — 386)
= 594 kN m,

which is sufficient.
From Section 4.6.1, N; = 42.4, so the number of studs required in
lengths of 4.07 m each side of point D in Fig. 4.11(b) is

N =0.54 x 424 = 22.9, say 23.
The number of troughs in 4.07 m is 4.07/0.3 = 13.6, so:

® use 2 studs per trough in the ten troughs nearest to point A,
® use 1 stud per trough in the midspan region.

The longitudinal reinforcement at the internal support is determined by
the rules for control of cracking, and the amount provided (Section 4.6.6)
is 8-mm bars at 150-mm spacing. If shear connectors are provided only in
the region of sagging moment, and these bars overlap the connectors
near point E in Fig. 4.11(b), those connectors will be overloaded. If there
is no overlap, wide cracks will occur near point E. Shear connection should
therefore be provided along EB for the crack-control reinforcement.

From equation (4.1) the effective width at E is

9.5
b =2 X T2 =1.188m

and the number of bars within this width is 8. Their area is 402 mm?, so the
design tensile force at yield is

—AS—fSk=402><%= 161 kN.
Y5 1.15

With Prq = 57.9 kN/stud, this requires 3 studs, so the total needed along
DB in Fig. 4.11(b) is 26. There are 18 troughs in this length, so:

® use 2 studs per trough in the ten troughs nearest to point E,
® use 1 stud per trough in the midspan region.

The same number of troughs with two studs is used at each end of the
span for simplicity of detailing and construction, even though this appears
to provide two extra studs. The calculations that led to Fig. 4.11 are only
for a simplified model. The real situations are more complex.
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The transverse reinforcement should be exactly as determined for the
sagging region in Chapter 3.

4.6.5 Check on deflections

The limits to deflections discussed in Section 3.7.2 correspond to the rare
combination of loading (equation (1.8)). Where there is only one type of
variable load, as here, this is simply gy + gx, but three sets of calculations
are required, because part of the permanent load g acts on the steel section
and part on the composite section.

In practice, it is usually accurate enough to combine the two calculations
for the composite member, using a mean value of the modular ratio
(e.g. n = 22 here).

For design purposes, maximum deflection occurs when the variable load
is present on the whole of one span, but not on the other span. The three
loadings are shown in Fig. 4.13, with the bending-moment distributions
given by ‘uncracked’ elastic analyses, in which the beam is assumed to be of
uniform section. The data and results are summarised in Table 4.3, where
Mg is the hogging moment at support B at this stage of the analysis.

Table 4.3 Calculation of maximum deflection.

w M, Mp fi b3 M, 107, &
kKN/m kXNm kNm kKNm mm* mm
g on steel 11.8 133 133 - - 133 215 11.1
g on composite 10 113 113 0.765 0.7 60 547 6.3
g on composite 20 226 113 0.688 0.7 54 738 11.7
(a) permanent load, steel {b) permanent load, composite
11.8 kN/m 10kN/m
AA BA CD AA - BA CA
N3 kNm /{13 kNm
~—- S n—” S

(c) variable load, composite
20kN/m
& I 7.}

113kNm

Fig. 4.13 Loading for deflection of span AB.
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Fig. 4.14 Elastic properties of composite section.

Following the method of Section 4.3.2.3, the maximum tensile stress in
the uncracked composite section at B, o, is now found. This will occur
when variable load acts on both spans, and is calculated using n = 11 for
variable load and n = 33 for permanent load. Using data from Section
4.6.1,

Mx 113 x 212 226 x 133
O¢t = Z 5 | = +
nl; 33 x 547 11 x 738

= 1.33 + 3.70 = 5.03 N/mm?,

where nl, is the ‘uncracked’ second moment of area in ‘concrete’ units.

This stress exceeds 0.15fy (3.75 N/mm?). To avoid re-analysis with
spans of non-uniform section, the correction factor f; given by equation
(4.36) will be used. First, a value is needed for the ‘cracked’ second
moment of area /, at the internal support, taking account of the longitudi-
nal reinforcement. The area of this, A, is given in Section 4.6.4 as 402
mm?. From Fig. 3.12, these 8-mm bars are located 24 + 8 = 32 mm below
the top of the slab (Fig. 4.14). The elastic neutral axis is distance x above
G. Equating first moments of area about G:

402 x 321 = 8002x, whence x = 16 mm.
Hence,

10751, = 215 + 7600 x 0.016> + 402 x 0.305% = 254 mm".

The value of f; for n = 33 is:

—-0.35 —0.35
fi=(h Sy Eall = 0.765.
I, 254

This and the value for n = 11 are given in Table 4.3.
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The maximum compressive stress in the steel bottom fibre is now
calculated, to determine whether the correction factor f, for yielding is
required. As for o, variable load should be assumed to act on both spans.
Using data from Section 4.6.1,

_ Z(Mx4) 133 x 203 113 X 219 + 226 x 219
215 254 254

=126 + 97 + 195 = 418 N/mm?,

where x4 is the distance of the relevant neutral axis above the bottom fibre.
The result shows that yielding occurs (418 > 355), but not until after the
slab has hardened (126 < 355), so from Section 4.3.2.3, f, = 0.7. The
hogging moments M; for use in equation (4.35) are

M, = fi/ ;Mg

and are given in Table 4.3.
Deflections 3, for each loading acting on a simply-supported span are
now required. These are, in general:

4 4 9
=5wL 5%x9.5"x10 ) 505 % 10° (%
I 11

° 384 EI 384 x 210

with w in kN/m and /; in mm*. Using values from Table 4.3 in equation
(4.35) gives the total deflection:

8 = 505 x 10° Z[(I_‘:) (1 06 %;)}

11.8 10 60 20 54
50 + 00 + (21— 06x 22
> [( 215) x 04 547( 0.6 % 113) (738)( 06 % 226)}

=11.1 + 6.3 + 11.7 = 29 mm.

This total deflection is span/327, less than the recommended limit of L/250
given in Eurocode 4 (by cross-reference to Eurocode 3). The change in
deflection after construction (11.7 mm plus the creep-related part of 6.3
mm) is well below the limit of L/350, which is 27 mm.

Even so, these deflections are fairly large for a continuous beam with a
ratio of span to overall depth of only 9500/556 = 17.1. This results from the
use of unpropped construction, high-yield steel, and lightweight concrete.
Deflections of a similar propped structure in mild steel and normal-density
concrete would be much lower.

4.6.6 Control of cracking

The widest cracks will occur at the top surface of the slab, above an internal
support. The reinforcement needed to control the crack width to 0.5 mm,
and also to 0.3 mm, is now determined, as explained in Section 4.2.5.
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No longitudinal reinforcement has been provided for resistance to load-
ing, as design for the ultimate limit state was based on the resistance of the
steel beam alone. The model is therefore that the hogging flexure of
the steel beam under load imposes deformation on the slab above it, so
that the reinforcement should be designed for restraint-induced cracking
by the method of Section 4.2.5.2.

The minimum reinforcement required is given by equation (4.33). It
depends on A, the ‘thickness of the concrete flange’. This varies (Fig. 3.9)
from 80 mm to 150 mm, and is taken for this purpose as 95 mm, as in
Section 3.11.3.

The elastic neutral axis for the uncracked composite section for short-
term loading (i.e. for n = 11) is 133 mm below the top of the slab. The
distance z, defined in Section 4.2.5.2 is therefore 86 mm, as shown in
Fig. 4.14(b). From equation (4.32),

-1 —1
k=14t =(1+2 = 0.66, but = 0.7,
2, 172

so k. = 0.7.

The tensile strength of the concrete when cracks may be expected to
ocCCur, fue, is taken as the mean 28-day tensile strength, f.,. For concrete
with f, = 25 N/mm?, this is given in Eurocode 4 as 2.6 N/mm®.

For a one-metre width of slab, equation (4.33) gives

A, = 0.8k f,, Ae = 0.8 x 0.7 x 2.6 x 22000
st 6 Ot
—0.131 x 22,

Ost

The maximum stress permitted in the reinforcement immediately after
cracking, o, depends on the crack width wy and the bar size ¢, as given in
Fig. 4.7. For wy = 0.5 mm and ¢ < 10 mm, o < 500 N/mm?. This gives A,
= 262 mm?/m, which could be provided by 8-mm bars at 180 mm spacing
(279 mm?/m).

For wy = 0.3 mm and ¢ < 8 mm, Fig. 4.7 gives o < 400 N/mm?, whence
A, = 327 mm%m. This can be provided by 8-mm bars at 150 mm spacing
(336 mm?m) and will be used. This is the same as the top transverse
reinforcement, and so may be available as a welded fabric.

4.7 Continuous composite slabs

The concrete of a composite slab floor is almost always continuous over the
supporting beams, but the individual spans are often designed as simply-
supported (Section 3.3), for simplicity. Where deflections are found to be
excessive, continuous design may be used, as follows.
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Elastic theory is used for the global analysis of continuous sheets acting
as shuttering. Variations of stiffness due to local buckling of compressed
parts can be neglected. Resistance moments of cross-sections are based on
tests (Section 3.3).

Completed composite slabs are generally analysed for ultimate bending
moments in the same way as continuous beams with Class 2 sections.
‘Uncracked’ elastic analysis is used, with up to 30% redistribution of
hogging moments, assuming that the whole load acts on the composite
member. Rigid-plastic global analysis is allowed by Eurocode 4 where
cross-sections at plastic hinges have been shown to have sufficient rotation
capacity, and this check is waived where the spans are less than 3.0 m and
the reinforcement has ‘high ductility’ as defined in Eurocode 2.

At internal supports where the sheeting is continuous, resistance to
hogging bending is calculated by rectangular-stress-block theory, as for
composite beams, except that local buckling is allowed for by using an
effective width for each flat panel of sheeting in compression. This width is
given in Eurocode 4 as twice the value specified for a Class 1 steel web,
thus allowing for the partial restraint from the concrete on one side of the
sheet. Where the sheeting is not continuous at a support, the section is
treated as reinforced concrete.

For the control of cracking at internal supports, Eurocode 4 refers to
Eurocode 2, for reinforced concrete. In practice, the reinforcement to be
provided may be governed by design for resistance to fire, as in Section
3.3.7, or by the transverse reinforcement required for the composite beam
that supports the slab.




Chapter 5
Composite Columns and Frames

5.1 Introduction

A composite frame is defined in Eurocode 4: Part 1.1 as a ‘framed structure
for a building or similar construction works, in which some or all of the
beams and columns are composite members and most of the remaining
members are structural steel members. The use of reinforced or pre-
stressed concrete or masonry members in bracing systems (as defined in
Eurocode 3) is not excluded’.

It is implied by this definition that a composite frame is more similar to a
structural steel frame than to one in reinforced or prestressed concrete. It
is likely to be built by first erecting a frame of steel beams and columns,
then fixing profiled sheeting to the steelwork to provide working platforms,
and finally constructing the reinforced concrete. It follows that the beam-
to-column connections are primarily of structural steel. The resistance of a
connection to bending may exceed that of the beam connected, but in
practice it is more likely to be much lower, even negligible. The behaviour
of the composite frame is then fundamentally different from that of a
reinforced concrete frame, where the connections between beams and
columns are usually monolithic.

The treatment of composite frames in Eurocode 4: Part 1.1 is therefore
related closely to the treatment of steel frames in Eurocode 3, and does not
refer to Eurocode 2, for concrete structures. It provides the basis for this
chapter, because in the UK there is no code of practice for composite
frames or connections, and none that gives a modern method for compo-
site columns in buildings. '

Only one of the many types of framed structure is considered in this
chapter. It is often used for multi-storey buildings, and consists of a three-
dimensional assemblage of horizontal beams and vertical columns on a
rectangular grid. The beams support floor slabs. In the frame now dis-
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Fig. 5.1 A composite frame (simplified).

cussed, Fig. 5.1, the slabs, beams, and columns are all composite. The
slabs span in one direction only, from beam to beam.

At each intersection between beams and columns, the columns are
usually continuous, and the beams are attached to their external faces by
connections. These are usually assumed in design to act as pin joints, but
they may be ‘semi-rigid’ or ‘rigid’.

The bending stiffness of steel columns of H- or I-section is much greater
in the plane of the web (‘major-axis bending’) than in a plane parallel to the
flanges (‘minor-axis bending’). The columns are usually designed with their
webs co-planar with those of the main beams, as shiown in Fig. 5.1(a), so
that beam-column interaction causes major-axis bending in both members.

The beams of type ABC at each floor level and their supporting columns
form a plane frame, as shown in Fig. 5.1(b). The frames also support
minor-axis beams such as AD and CF in Fig. 5.1(a). These are required to
stabilise the columns during erection, and they support the external walls
at each floor level. With the columns, they form a second set of plane
frames, orthogonal to the major-axis frames.

For global analysis for gravity loads, each plane frame is assumed to be
independent of the others. For each storey-height column length, an axial
load Ny and end moments M, and M, are found for the major-axis frame,
and corresponding values N,, My,, and M,, for the minor-axis frame. The
column length is then designed (or an assumed design is checked) for axial
load Ny + N, and for the biaxial bending caused by the four end moments.

Multi-storey plane frames of this type have little resistance to horizontal
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loads, especially where the connections are designed as pin joints.
However, each concrete floor slab acts as a deep beam of great stiffness,
when subjected to horizontal forces in its plane. It can therefore transfer
wind loads to a small number of vertical cantilevers, placed where con-
venient in the building. These are designed to resist horizontal loads, and
have lateral stiffness so much greater than that of the plane frames, that the
latter can be designed for gravity loads only.

The vertical cantilevers usually consist of end walls, known as shear
walls, as shown at HJ in Fig. 5.1(a), or enclosures to lift shafts, staircases,
and vertical ducts, referred to as ‘services cores’. These may be diagonally-
braced steel frames, but are often built in reinforced concrete, even where
the plane frames are steel or composite. Their design is outside the scope
of this volume.

Columns and connections are discussed separately in Sections 5.2 and
5.3. The Eurocode methods for analysis of frames are then explained, with
a worked example. Details of the design method of Eurocode 4 for
columns are then given, followed by calculations for one of the columns in
the frame.

5.2 Composite columns

Steel columns in multi-storey buildings need protection from fire. This is
often provided by encasement in concrete. Until the 1950s, it was normal
practice to use a wet mix of low strength, and to neglect the contribution of
the concrete to the strength and stability of the column. Tests by FaberV
and others then showed that savings could be made by using better-quality
concrete and designing the column as a composite member. This led to the
‘cased strut’” method of design. This was originally (in BS 449) a
permissible-stress method for the steel member, which had to be of H- or
I-section. It is now available in limit-state form.®? The presence of the
concrete is allowed for in two ways. It is assumed to resist a small axial
load, and to reduce the effective slenderness of the steel member, which
increases its resistance to axial load. Resistance to bending moment is
assumed to be provided entirely by the steel. No account is taken of the
resistance of the longitudinal reinforcement in the concrete.

Tests on cased struts under axial and eccentric load show that the BS 449
method gives a very uneven and usually excessive margin of safety. For
example, Jones and Rizk®® quote load factors ranging from 4.7 to 6.7, and
work by Faber®? supports this conclusion. The method has been improved
in BS 5950, but is still generally very conservative. Its main advantage is
that it is simpler than the more rational and economical methods now
available.

One of the earliest methods to take proper account of the interaction
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between steel and concrete in a concrete-encased H-section column is due
to Basu and Sommerville.®¥ It has been extended to include biaxial
bending, and agrees quite well with the results of tests and numerical
simulations.*> It was thought to be too complex for routine use for
columns in buildings, but is included in the British code for composite
bridges.®? Its scope includes concrete-filled steel tubes®” which are used
as bridge piers, for example in multi-level motorway interchanges. The
method is fully described in Volume 2, with worked examples.

The Basu and Sommerville method is based on the use of algebraic
approximations to curves obtained by numerical analyses. For Eurocode 4:
Part 1.1, preference was given to a method developed by Roik, Bergmann,
and others at the University of Bochum. It has wider scope, is based on a
clearer conceptual model, and is slightly simpler. It is described in Section
5.6, with a worked example.

5.3 Beam-to-column connections

5.3.1 Properties of connections

Three types of connection between a steel beam and the flange of an
H-section steel column are shown in Fig. 5.2, and a short end-plate
connection is shown in Fig. 5.17. They are all bolted, because they are
made on site, where welding is expensive and difficult to inspect. The
column shown in Fig. 5.2(a) is in an external wall. At an internal column,
another beam would be connected to the other flange. There may also be
minor-axis beams, connected to the column web as shown in Fig. 5.2(c).

Where the beams are composite and the column is internal, longitudinal
reinforcement in the slab will be continuous past the column, as shown in
Fig. 5.2(c). It may be provided only for the control of cracking; but if it
consists of individual bars, rather than welded fabric, the tension in the
bars may be assumed to contribute to the bending resistance of the
connection, as shown in Fig. 5.2(d). Where rigid-plastic global analysis is
used, small-diameter bars may fracture before the rotation of the hogging
region of the beam becomes large enough for the collapse mechanism to
develop, so these bars should probably be at least 12 mm in diameter. This
limit is the subject of current research.

In the fin-plate connection of Fig. 5.2(a), the bolts are designed mainly
for vertical shear, and the flexural stiffness is low. The end-plate connec-
tion of Fig. 5.2(c) is likely to be ‘semi-rigid’ (defined later). The bolts at A
resist a combination of tension and shear, and bolts in the compression
zone (B and C) are designed for vertical shear only. The web of the column
has to be checked for yielding in tension, in region D, for yielding or
buckling in compression, in region E, and (if an external column) for
shear.
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To achieve a ‘rigid’ connection it may be necessary to use an extended
end plate and to stiffen the column web in regions D and E, as shown in
Fig. 5.2(b).

Assuming that no failure occurs in the column web, the resistance of the
composite connection of Fig. 5.2(c) to hogging bending may be calculated
by simple plastic theory, as shown in Fig. 5.2(d).

Design yield forces are calculated for the reinforcement, Fyy, and for the
bolts at A, Fy,q, taking account in the latter of any vertical shear in excess of
the shear resistance of the bolts at B and C. (It is here assumed that the end
plate and column flange are thick enough to develop the force Fyq in
the bolts.) If the design yield force for the bottom flange, Fys4, €xceeds
F4 + Fyq, the bending resistance is found by taking moments about mid-
depth of the bottom flange:

L, L
Mgq = Fyq (hs +h, - Ef) + de(hb - Ef) (5.1)

If Forg < Foq + Fpq, 2 depth of web x. is assumed to be at yield in
compression (or, if necessary, in combined shear and compression), such
that

Fowa = Fq + Foq — Faga)
and the moment F,yq(x. + £)/2 is deducted from Mgq as calculated above.

The other information needed for design is a curve of hogging bending
moment against rotation of the connection, ¢. This is defined as the
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Fig. 5.2 Elevations of beam-to-column connections.
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rotation additional to that which would occur if the beam continued to its
intersection with the centre-line of the column, as shown in Fig. 5.3. For
steel connections, methods are given in Eurocode 3: Part 1.14D for the
prediction of this curve. Research on the extension of these methods to
composite connections is in progress.®®

It is now assumed that some M- curves are available from tests, for a
particular composite connection. The characteristic curve should be esti-
mated (e.g. by using the lowest of the experiment curves), and its ordinates
should be divided by vy, (presumably take as 1.1, though Eurocode 3 is not
clear on this) to obtain a design curve, such as OABCD in Fig. 5.4. For
design purposes, this is conveniently replaced by the tri-linear diagram
OBEF. The three properties needed for design are:

® the resistance Mpg;
® the maximum rotation at Mgy, shown as ¢g;
® the secant stiffness C.

If for a particular load case the design moment Mg, is lower than Mgy, the
corresponding stiffness (Cs in Fig. 5.4) may be used.

The analysis and design of beam-to-column connections of the types
shown in Fig. 5.2 is covered in Eurocode 3 and also in textbooks on

Fig. 5.3 Rotation of a connection.
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Fig. 5.4 Moment-rotation curve for a connection.
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structural steelwork. The addition of reinforcing bars in the slab is assumed
to have no effect on the resistance to vertical shear, and the effect on the
resistance to bending is given by the term in Fy in equation (5.1). Care
must be taken to avoid connections that are strong but brittle. The plastic
deformation of end plates enhances rotation capacity, so they should not
be too thick; 8 mm or 10 mm is usually sufficient, if a connection is to be
treated as pinned.

5.3.2 Classification of connections

Beam-to-column connections are classified in Eurocode 4, as in Eurocode
3, by rotational stiffness, which is relevant to elastic global analysis, and by
resistance to bending moment, which is relevant to the resistance of a
frame to ultimate loads. For stiffness, the three classes are as follows.

(1) A nominally pinned connection is so designed that it cannot develop
significant moments which might adversely affect members of the
structure.

A connection may be classified as nominally pinned if

c<05E D ¢.2)
Ly,
where C is the rotational stiffness of the connection, and E,l is the
rotational stiffness of the connected beam, of length L,,. The value of E,I,,
should be consistent with that taken for a section adjacent to the con-
nection in global analysis of the frame. The significance of this limit to C
can be illustrated by considering a beam of span L;, and uniform section
that is connected at each end to rigid columns, by connections with
C = 0.5 E,I/Ly. It can be shown by elastic analysis that for a uniformly-
distributed load w per unit length, the restraining (hogging) moments at
each end of the beam are

_ wLy/8

Me
7.5

These end moments act also on the columns, the flexibility of which would
in practice reduce the moments below M. .It is thus assumed that columns
designed for M. = 0 would not be ‘adversely affected’ by bending moment
from the connection.

(2) A rigid connection is so designed that its deformation has no signifi-
cant influence on the distribution of internal forces and moments in the
structure, nor on its overall deformation.

The condition for a connection in a braced frame to be ‘rigid’ is that the
rising portion of its moment-rotation curve should lie above line 0AB in
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Fig. 5.5 Classification of connections.

Fig. 5.5. In this figure, E,l, and Ly, are as defined above, and My, rq is that
for the cross-section of the beam adjacent to the connection, so it will
normally be the resistance to hogging moment.

The amount of redistribution of elastic moment caused by the flexibility
of a connection that is just ‘rigid’ can be quite significant. As an example,
we consider the same beam as before, with properties E,l, and L,
supported at each end by rigid columns, through connections represented
by point A on Fig. 5.5. The beam is so loaded that both end moments are
0.67 Mp ra- The end slopes are therefore given by & = 0.083. The addi-
tional end moments that would be needed to reduce the end slopes to zero
(as they would be for truly ‘rigid’ connections) are 0.167 My rq, SO the
flexibility of the connections causes a redistribution of end moments
0.167/(0.67 + 0.167), or 20%. The situation for a composite beam in
practice is more complex because E,l is not uniform along the span, and
the columns are not rigid.

(3) A semi-rigid connection is one that provides a predictable degree of
interaction between members, but is neither rigid nor nominally pinned.
No application rules are given in Eurocode 4 for the use of semi-rigid
connections, which are the subject of much current research.

The classification of connections by resistance is as follows.

(1) A nominally pinned connection is one that is capable of transmitting
the forces calculated in design, without developing significant moments
which might adversely affect members of the structure. The principal
‘force’ (action effect) for such a connection is vertical shear.

A connection with design resistance Mr4 may be classified as nominally
pinned if Mgy is less than 25% of Mp, rq for the connected beam, and if it
has sufficient rotation capacity. It is not difficult to design connections that
satisfy these conditions. An example is given in Section 5.7.5.



166 Composite Structures of Steel and Concrete

(2) A full-strength connection has a design resistance (to bending, taking
account of co-existing shear) at least equal to that of the member connec-
ted (e.g. Mra=My ra)- There is a separate requirement to check that the
rotation capacity of the connection is sufficient. This can be difficult. It is
waived if

Mgg =12 My zg, (5.3)

so in practice a ‘full-strength’ connection is usually -designed to satisfy
condition (5.3). It can then be assumed that inelastic rotation occurs in the
beam adjacent to the connection. The rotation capacity is then assured by
the classification system for steel elements in compression.

(3) A partial-strength connection may have a resistance less than that of
the member connected; but must have sufficient rotation capacity, if at the
location of a plastic hinge, to enable all the necessary plastic hinges to
develop under the design loads. These connections are at present rarely
used, pending further information on rotation capacity.

5.4 Design of non-sway composite frames

5.4.1 Imperfections

The scope of this section is limited to multi-storey structures of the type
shown in Fig. 5.1, modelled as two sets of plane frames as explained in
Section 5.1. It is assumed that the layout of the beams and columns and the
design ultimate gravity loads on the beams are known.

The first step is to define the imperfections of the frame. These arise
mainly from lack of verticality of columns, but also have to take account of
lack of fit between members, effects of residual stresses in steelwork, and
other minor influences, such as non-uniform temperature of the structure.
The term ‘column’ is used here to mean a member that may extend over
the whole height of the building. A part of it with a length equal to a storey
height is referred to as a ‘column length’, where this is necessary to avoid
ambiguity.

The imperfections within a column length are allowed for by the curves
that give the reduction factor for slenderness, x (Section 5.6.3), not in the
frame imperfections.

Imperfections in beams are allowed for in the classification system for
steel elements in compression, and in design for lateral buckling.

Frame imperfections are represented by an initial sidesway, ¢, as shown
in Fig. 5.6(a) for a single column length of height &, subjected to an axial
load N. The action effects in the column are the same as if it were vertical
and subjected to horizontal forces, N, as shown.

It is assumed that the angle ¢ for a composite frame is the same as for the



Composite Columns and Frames

o

| y
- -—
?N *N N(1-28h/b) N(1+2 g h/b)

(a) (b) f—b —]
& N

B c E T
? h

No | N®
LI F _ 2N® 1

© An AN\ Uongn

Fig. 5.6 Unbraced and braced frames.

corresponding steel frame. This is given in Eurocode 3: Part 1.1 as a
function of the number of storeys n; and the number of columns in the
plane frame considered, n., as follows:

_keks 1 5.4
¢ 200"~ 400 (5-4)
where
1 12
k, = (0.5 + n—) ,<1.0 (5.5)
and
1\12 ,
k, = (0.2 + —) ,<1.0. (5.6)
nS

Thus, a five-storey structure with two-bay plane frames (three columns)
has k. = 0.913, k; = 0.632, and ¢ = 1/347 = 2.89 X 107>, This initial sway
applies in all horizontal directions, and is uniform over the height of the
frame. If, in this example, the storey height were 3.8 m, the overall out-of-
plumb of each column would be assumed to be 3.8 X 5/347 = 0.055 m.

Let the total design ultimate gravity load on the frame, for a particular
combination of actions, be G + Q per storey. The imperfections can then
be represented by a notional horizontal force ¢ (G + Q) at each fioor level
—but there may or may not be an equal and opposite reaction at foundation
level.

To illustrate this, we consider the single-bay single-storey unbraced
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frame ABCD shown in Fig. 5.6(b), with pin joints at A and D, and we
assume sin ¢ = ¢, cos ¢ = 1. The use of additional forces N at B and C is
associated with the assumption that the loads N still act along the columns,
as shown. There are obviously horizontal reactions N at A and D; but the
vertical reactions N are replaced by reactions N(1 + 2¢h/b) at angle ¢ to
the vertical. The total horizontal reaction at A is therefore

N¢—N¢(1 —2¢2) =2N¢2-Z-z0.

The maximum first-order bending moment in the perfect frame is zero.
The imperfection ¢ increases it to Néoh, at corners B and C, which may not
be negligible.

If there are pin joints at these corners, the frame has to be braced against
sidesway by connection to the top of a stiff vertical cantilever EF
(Fig. 5.6(c)). The external reactions now do include horizontal forces
Né at A and D, with an opposite reaction 2N¢ at F; and the vertical
reactions at A and D are independent of ¢.

These simple analyses are first order. That is, they neglect any increase in
the assumed sway ¢ caused by the deformations of the structure under
load. Analyses that take account of this effect are referred to as second
order. A simple example is the elastic theory for the lateral deformation of
an initially crooked pin-ended strut.

5.4.2 Resistance to horizontal forces

In Eurocodes 3 and 4, frames are classified as braced or unbraced, depen-
ding on the layout of the complete structure. They are also classified as
sway or non-sway, depending on the stiffness of the frame for in-plane
horizontal forces.

A braced frame is one where resistance to sway is provided by a separate
bracing system, which is sufficiently stiff to reduce its response to horizon-
tal loads by at least 80% . It is then also a non-sway frame. An example is
ABCD in Fig. 5.6(c).

An unbraced frame (Fig. 5.6(b)) has to resist the horizontal forces that
represent its imperfections, and also horizontal actions such as wind or
earthquake loading. For a particular load case, let the design value of the
total vertical load on the frame be Vgy. It is possible to calculate the
multiple of this loading, AVsq (= V., say), that would cause elastic critical
buckling of the initially perfect frame in a sway mode. There is a well-
known hand method of calculation for simple frames involving s and ¢
functions, which have been tabulated.®” Computer programs are avail-
able for more complex frames.

An unbraced frame is classified as a non-sway frame if A = 10. Its design
may then be based on first-order global analysis. If A < 10, it is a sway
frame, and second-order analysis must be used. Sway frames are outside
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the scope of Eurocode 4: Part 1.1, and are not further considered here. In
multi-storey construction, use of braced frames is almost always cheaper.

Where elastic global analysis is used for beam-and-column plane frames
in building structures, Eurocode 3 gives a simpler alternative to the calcu-
lation of \, for classifying a frame as sway or non-sway. It is applied to each
storey separately, using first-order global analysis. The frame may be
treated as non-sway if, for every storey,

) H

— =< — .

S <017, (.7
where 3 is the relative horizontal displacement over the storey height A,
and H and V are the total horizontal and vertical reactions at the bottom of
the storey.

In large buildings, the bracing system for one wing will usually be
another part of the building, to which this wing is attached at each floor
level. An end of a long thin building is often braced by a shear wall, and
most tower blocks have a central services cores, as explained in Section
5.1. Sometimes, the bracing system may also be a plane frame, as shown by
EF in Fig. 5.6(c). It too is classified as sway or non-sway, as explained
above (but with Vg4 taken as the total vertical load on all the frames
braced), and has to be designed to resist the horizontal forces (real and
notional) acting on all the frames that it braces, as well as the effects of its
own imperfections. For a steel or composite frame, diagonal bracing will
often be required, to form a triangulated structure.

5.4.3 Global analysis of braced frames

5.4.3.1 Actions

This section should be read with reference to Section 4.3, on global
analysis of continuous beams, much of which is applicable. Braced frames
do not have to be designed for horizontal actions, so the load cases are
similar to those for beams. No serviceability checks are normally required
for braced frames, or for composite columns. The columns are designed
using elastic global analysis and plastic section analysis; that is, as if their
cross-sections were in Class 2. The method of construction, propped or
unpropped, is therefore not relevant,

For certain types of imposed load, such as furniture or people, but not
for storage loads, the probability of the occurrence of the factored design
load becomes less as the loaded area increases. The characteristic imposed
load on a column that carries load from » storeys is therefore reduced (in
draft Eurocode 1)) by applying the factor

n
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for n > 2 for areas of categories A and B (essentially, areas for dwelling,
and public premises where crowds rarely congregate); but not for areas
susceptible to overcrowding or used for storage. This reduction does not
apply for load combinations where the imposed load is reduced by a ¢
factor (Section 1.3.2.1).

Maximum bending moments in columns in rigid-jointed frames occur
when not all of the nearby floors carry imposed load. For a column length
AB in a frame with many similar storeys, the most adverse combination of
axial load and bending moment is likely to occur when the imposed load is
applied as in Fig. 5.7(a), for an external column, or Fig. 5.7(b), for an
internal column. The bending-moment distributions for the column are
likely to be as shown.

5.4.3.2 Eccentricity of loading, for columns

The use of ‘nominally pinned’ beam-to-column connections reduces bend-
ing moments in the columns, with corresponding increases in the sagging
moments in the beams. For the beams, it is on the safe side to assume that
the moments in the connections are zero. If this were true, the load from
each beam would be applied to the column at an eccentricity slightly
greater than half the depth A, of the steel column section (Fig. 5.2(a)) for
major-axis connections.

An elastic analysis that modelled the real (non-zero) stiffness of the
connection would give an equivalent eccentricity greater than this. The real
behaviour is more complex. Initially, the end moments increase the tend-
ency of each column length to buckle; but as the load increases, and it
begins to do so, the end moments change sign, and the greater the stiffness
of the connections, the more beneficial is their effect on the column.

Typically, British codes of practice for steel columns have allowed for
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Fig. 5.7 Arrangements of imposed load, for column design.
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this stabilising effect by modelling each storey-height column with an
‘effective length’ about 70% of its actual length (i.e. L¢/L =~ 0.7), but have
specified an ‘equivalent eccentricity of loading’, e = 0.5k, + 100 mm, for
the calculation of end moments.

In some other European countries, the practice has been to assume L, =
L, which makes buckling more critical, and e = 0, which eliminates
bending moments from columns. One justification for using e = 0 is that
the bending moments in the beams are calculated using the span between
column centres, rather than the smaller span between the centres of the
‘pin’ connections. This subject is not yet covered in Eurocodes 3 and 4, and
may be treated in a future annex to Eurocode 3 on the modelling of
structures for buildings. In the following worked example, it is assumed
that L. = L and that the load from a nominally pinned connection acts at
100 mm from the face of the composite column section. For a typical
encased H-section this gives e = 0.5k, + 160 mm.

5.4.3.3 Elastic global analysis

This method of analysis is generally applicable to braced composite frames
with rigid or nominally pinned connections. The flexural stiffness of hog-
ging moment regions of beams is treated as in Section 4.3.2. For columns,
concrete is assumed to be uncracked, and the stiffness of the longitudinal
reinforcement may be included, as it may not be negligible.

Bending moments in beams may be redistributed as in Section 4.3.2, but
end moments found for composite columns may not be reduced, because
there is insufficient knowledge of the rotation capacity of columns.

Where the beam-to-column connections are nominally pinned, as in the
external columns in the worked example in Section 5.5, the bending
moments in a column are easily found by moment distribution for that
member alone.

5.4.3.4 Rigid-plastic global analysis

The use of this method for a braced frame is not excluded by Eurocode 4:
Part 1.1, but there are several conditions that make it unattractive in
practice. In addition to the conditions that apply to beams (Section 4.3.3),
these include the following.

(1) All connections must be shown to have sufficient rotation capacity,
or must be full-strength connections with Mgy = 1.2M rq., as
explained in Section 5.3.2.

(2) Design must ensure that plastic hinges do not occur in composite
columns.
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5.5 Example: composite frame

5.5.1 Data

To enable previous calculations to be used, the structure to be designed has
a composite slab floor that spans 4.0 m between two-span continuous
composite beams with spans of 9.5 m. There are nine storeys, each with
floor-to-floor height of 4.0 m, as shown in Fig. 5.1. For simplicity, it is
assumed that the roof has the same loading and structure as the floors,
though this would not be so in practice. The building stands alone, and is
60 m long.

The materials and loadings are as used previously, and the composite
floor is as designed in Section 3.4. The two-span composite beams are as
designed in Section 4.6, with nominally pinned connections to the external
columns (Section 5.7.5), except that they are not continuous over a central
point support, provided by a wall. There is instead a composite column at
mid-length of each beam, to which each span is connected by a ‘rigid’ and
‘full-strength’ connection. These terms are defined in Section 5.3.2.

The only gravity loads additional to those carried by the beams are the
weight of the columns and the external walls. The characteristic values are
assumed to be as follows:

® for each column gx = 3.0 kN/m, = 12.0 kN per storey,
e for each external wall g, = 60 kN per bay per storey.

The 60-kN load is for 4 X 4 = 16m? of wall, which is assumed to be
supported at each floor level by a beam spanning 4.0 m between adjacent
columns.

The design ultimate gravity load per storey for each column is therefore
the load from one main beam plus:

e for the internal column, 12 X 1.35 = 16.2 kN

e for an external column, 72 X 1.35 = 97.2 kN. (.9

The characteristic wind load is based on wind in a direction parallel to
the longitudinal axes of the main beams. It causes pressure on the wind-
ward wall and suction (i.e. pressure below atmospheric) on the leeward
wall. The sum of these two effects is assumed to be:

Qi wing = 1.5 kN/m? of windward wall. (5.10)

The effects of wind blowing along the building are not considered.

The properties of materials are as summarised in Section 4.6.1, except-
that the concrete in the composite columns is of normal density, with
properties

fu = 25 N/mm?, E_, = 30.5 kN/mm?. (5.11)

The design initial sidesway of a frame such as DEF in Fig. 5.1 is
calculated following Section 5.4.1. The number of storeys, n, is nine, and
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the number of columns in a plane frame, n, is three. From equations (5.4)
to (5.6),
1

— =2.55x 1073, 5.12
393 G-12)

k,=0913, k =0558, &=

This exceeds 1/400, as required.

5.5.2 Design for horizontal forces

It is assumed initially that the bracing system for horizontal load consists of
a reinforced concrete wall at each end of the building, one of which
appears as HJ in Fig. 5.1(a), and a concrete or steel tower enclosing
services, halfway along.

Wind loads are transferred by the external walls to each floor slab which,
for simplicity, is assumed to span 30 m as a simply-supported horizontal
beam 19 m deep, between one wall and the services core. The end walls
will be shown to be feasible, but are not designed. In practice, some of the
horizontal load would probably be resisted by other walls, provided for fire
protection of lift shafts and staircases.

The horizontal load for a typical floor slab (Fig. 5.8) thus consists of a
horizontal load w per unit length, applied along one edge. A typical frame,
such as DEF, can be treated as ‘braced’ and ‘non-sway’, and designed for
gravity loads only.

w=9.7kN/m

! D — H
A
W
E

19000

e J
. F y
I-——— L= 30000 ——I

Fig. 5.8 Plan of typical floor slab.

Frame imperfections are allowed for, as in Fig. 5.6, by applying to each
floor slab a notional force that is ¢ times the total permanent and variable
gravity load for that floor. The characteristic values for an area of floor
19 m by 1 m are:

19
=5XxX —=0.242 kN 5.13
Ox 303 /m ( )

_545x 19 + (2 X 72 + 12)/4

= (0.363 kN/m.
393 6 /m

Gy
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The value 5.45 is the mean permanent load per square metre, including the
weight of the beams.
The characteristic value for wind loading, from equation (5.10), is

W, =15x4=6.0kN/m.

This far exceeds the values Qy and Gy, so the maximum design load will be
found by taking wind, rather than imposed load, as the leading variable in
the combination expression (1.6), explained in Section 1.3.2.4.

From Table 1.3, ¥, for imposed floor loading is 0.7, so the design load is

w=v5Gy + YoWk + 'YQ"r’oQk
= 1.35 X 0.363 + 1.5(6.0 + 0.7 x 0.242) = 9.7 kN/m.

For a span of 30 m, the maximum bending moment and shear force are:

(5.14)

2
M= %= 1091kNm, V= w—2L= 146 kN. (5.15)

To estimate the response of the concrete floor slab, it is assumed initially
to be a beam of depth 19 m and breadth 80 mm. The maximum bending
stress, by simple elastic theory, is

6M 1091
=— =6 X ——— = 0.23 N/mn’.
max = 2 = 0 X g 1o i

The mean shear stress is

g

146
= = 0.10 N/mn?.
Tm =30 x 19 fm

These stresses are obviously acceptable, but a more detailed check should
be made on the reinforcement in regions A and B on Fig. 5.8. The
horizontal deflection of each floor, relative to its supports, is less than
1 mm.

An end wall such as HJ in Fig. 5.8 is assumed, for simplicity, to be
36.0 m high (Fig. 5.1(b)). From equation (5.15), its design horizontal load
at each floor level is 146 kN. The bending moment at the base is

2
M=1:—6x%=23700kNm.

To check the feasibility of designing the wall, it is assumed to be 19 m wide
and 300 mm thick. The maximum bending stress at the base, calculated as
above, is i

6 % 23700

=——=""2 = 1.31 N/mn?,
Tmax = 300 % 192 m
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which is less than one-tenth of the design compressive stress for concrete
with f. = 25 N/mm?. The deflection at the top is about 7 mm.

It is recommended in Eurocode 3 that for serviceability loads, the
maximum horizontal deflection of the structure for a multi-storey building
of height / should not exceed /4/500, which is 72 mm for this building.

These calculations show only that a bracing system of the type proposed
is feasible. It can easily be shown that it would be at least five times as stiff
as a typical plane frame (DEF in Fig. 5.1(a)) for horizontal loading. Each
frame can therefore be treated as ‘braced’ and ‘non-sway’.

5.5.3 Design action effects for columns

The whole of the design variable load for a typical frame is transferred to
its three columns by the major-axis beams. Permanent loading is symmetri-
cal about the plane of the frame, so the minor-axis bending moments
applied to the columns are negligible. The additional gravity loads (ex-
pressions (5.9)) are assumed to cause no major-axis bending moments.
These are caused in the external columns only by the end reactions of the
major-axis beams, which have maximum and minimum values of 242 kN
and 99 kN (Fig. 4.11). The most adverse bending moment distribution in a
column length is when the beam reaction at one end is a minimum (Fig.
5.7), so the model for analysis is as shown in Fig. 5.9(a). Following Section
5.4.3.2, the eccentricity is taken as 0.26 m, as it is assumed that the column
cross-section will be 320 mm square.

For an internal column, rigidly connected to the beams, the model for
elastic analysis is that of Fig. 5.9(c), with fully-loaded beams as in Fig.
5.7(b). Where both spans are fully loaded, each has a bending-moment

L g
P e b Jé/

v 332 | 386
- \13 - - 5
'* Q—l?se >
A8 386 |
(a) {b) (c) - (d)

Fig. 5.9 Analytical models and bending moments for columns (units: kN and m).
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diagram as for span AB in Fig.4.11. There are plastic hinges each side of
the column, so the net moment applied to it is zero.

A span with permanent load only is first assumed to be elastic (an
assumption discussed later). Its fixed-end moment is wL%/8:

9.5%
M;=29.4 % == =332 kN m. (5.16)

For moment distribution, the stiffness EI/L of the fully-loaded spans is
zero, because the plastic hinges can rotate at constant bending moment.
The bending stiffnesses of both the beam and the column can be based on
uncracked concrete, and the modular ratios are taken as twice the short-
term values, to allow for creep. For the column, E,I; is taken as 25.5 X
10" N mm?(from Section 5.7.2) giving

9
(E—I) =255 x&—6.38x 10° N mm.
L col 4

For the beam, I, = 616 X 10° mm* (Section 4.6.1), and the far end is
simply-supported, so the stiffness is

6
075%1—075x210><616x—;9§—10.2x109Nmm.

Moment distribution for the models of Fig. 5.9(a) and (c) gives bending-
moment distributions as in Fig. 5.9(b) and (d). The out-of-balance moment
at end B of the internal column is 386 — 332 = 54 kNm, of which the
column resists 16 + 9 = 25 kN m, so the end moment for the lightly loaded
span increases by 29 kN m to 361 kN m. This is 94% of My, rq for the
section in hogging bending, so the stiffness assumed above for this span is
certainly too high. The design bending moments shown in Fig. 5.9(d)
should therefore be increased.

A conservative assumption would be that the beam has no stiffness. The
effect would be to share the out-of-balance bending moment, 54 kN m,
equally between the upper and lower column lengths at each floor level. A
column length such as AB should then be designed for M; = M, = 27
kN m. This is still quite low for a column of the size assumed, for which the
loading is mainly axial.

Each connection between a beam and the column should be designed
with

Mgy = 1.2 X 386 = 463 kN m,

as an alternative to checking its rotation capacity.
Design calculations for an external column are given in Section 5.7. The
connections to the internal column are not designed.
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(b} (c)

Fig. 5.10 Typical cross-sections of composite columns.

5.6 Simplified design method of Eurocode 4, for columns

5.6.1 Introduction

Background information for Section 5.6 is provided in Section 5.2, ‘Com-
posite columns’, and in Section 5.5.3, on the global analysis of braced
plane frames. Global analysis provides for each column length a design
axial force, Nsq, and applied end moments M; g4 and M, g4. By conven-
tion, M, is the greater of the two end moments, and they are both of the
same sign where they cause single-curvature bending.

Initially, concrete-encased H- or I-sections are considered (Fig. 5.10(a)
and (b)). Where methods for concrete-filled steel tubes (Fig. 5.10(c)) are
different, this is explained in. Section 5.6.7. The encased sections are
assumed to have biaxial symmetry, and to be uniform along each column
length. Applied moments are resolved into the planes of major-axis and
minor-axis bending of the column, and their symbols have additional
subscripts (y and z, respectively) where necessary.

Each end of a column length is assumed to be connected to one or more
beams and to be braced laterally at these points, distance L apart. The
effective length of each column length is here assumed to be L, as
explained in Section 5.4.3.2. Lateral loads on columns are assumed here to
be applied only at the ends of each column length.

The methods explained below are applied separately for each plane of
bending. It often happens that all significant bending occurs in one plane
only. If this is minor-axis bending, no major-axis verification is needed. If it
is major-axis bending, minor-axis buckling must be checked, as explained
in Section 5.6.5.2, because of interaction between the axial load and the
minor-axis imperfections.
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5.6,2 Fire resistance, and detailing rules

Before doing any calculations based on an assumed cross-section for a
composite column, it is wise to check that the section satisfies relevant
limitations on its dimensions.

The resistance to fire of a concrete-encased I-section column is deter-
mined by the thickness of the concrete cover to the steel section and the
reinforcement. For a 90-minute period of resistance, for example, the
limits given by Eurocode 4: Part 1.2 are 40 mm and 20 mm, respectively.

The rules of Eurocode 2: Part 1.1 for minimum cover and reinforcement,
and for maximum and minimum spacing of bars, should be followed. These
ensure resistance to corrosion, safe transmission of bond forces, and
avoidance of spalling of concrete and buckling of longitudinal bars. The
ratio of area of reinforcement to area of concrete allowed for in calculating
resistances should satisfy

0.003 < % <0.04. (5.17)

C

The upper limit is to ensure that the bars are not too congested at overlaps.

The thickness of concrete cover to the steel section that may be used in
calculations has a minimum of 40 mm. A maximum of about one-third of
the depth of the steel member is also specified. This relates to the pro-
portions of columns for which this design method has been validated. The
steel contribution ratio & and the slenderness A (Section 5.6.3) are limited
for the same reason.

The steel contribution ratio is defined by

_ Aufya (5.18)
Npl.Rd
and must satisfy the condition
02=<%8=<09.

If 8 < 0.2, the column should be treated as reinforced concrete; and if
d > 0.9, as structural steel. The term A,fy/v, is the contribution of the
structural steel section to the plastic resistance Np rg, given by equation
(5.27).

5.6.3 Second-order effects

The interaction of the axial load with the initial imperfection of the column
length in the plane of bending considered is allowed for by reducing the
axial resistance of the short column, Ny, .rq, by a factor x that is a function
of the slenderness of the column length, A. The ‘buckling curves’ that relate
X to \ are the same for composite columns as for steel columns. There are
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four of them, labelled a to d, given in Eurocode 3: Part 1.1. They differ
only in the allowance made for imperfections within the column length,
curve a being the most favourable. It is used for concrete-filled tubes. For
encased sections, curves b and ¢ (Fig. 5.11) are used, for major-axis and
minor-axis bending, respectively.

The buckling curves do not allow for the second-order effects of bending
moments applied to the column length. This is done by 1ncreasmg the
greatest first-order bending moment, using a factor k given by

B -
=—F =10 5.19
1- (Nsd/Ncr) ( )

where
M,
B =066 +0.44(--2) > 0.44, (5.20)
1

and N, is the elastic critical load for the column length. The coefficient 8
allows for the more adverse effect of single-curvature bending, shown in
Fig. 5.12(a), than of double-curvature bending, Fig. 5.12(b).

The non-dimensional slenderness \ is given by

_ N_, ,\0.5
x=( P‘-R) , (5.21)
N,

\ AVer
which is similar to equation (4.23) for A 1, and to the definition used for
steel columns. The elastic critical load is

cr

N = a2 (El_£) (5.22)

where /is the buckling length of the column, which is here taken as equal to
its actual length L between centres of restraining beams (known as the
system length).

1.0 | -1
X
0.8 -
0.6 curve ¢
0.4 -
0.2 1 1 ] ] 1 ] |

0 0.2 0.4 0.6 0.8 1.0 1.2 _)‘ 1.4

Fig. 5.11 Buckling curves for x, as a function of slenderness .
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Fig. 5.12 Single-curvature and double-curvature bending.

The ‘effective elastic flexural stiffness’ (EI), is given by

(ED), = E,I, + 0.8E 4l  + EJ (5.23)
where
Ey= Eem
Ye

and the (boxed) value of v, is given as 1.35. This is a rare example of the
use of a -y factor for an elastic property of a material. In the term 0.8 E 4/,
I is the second moment of area of the concrete about the centroid of the
uncracked column section. The term is the effective stiffness of the con-
crete part of the section. It is based partly on test data, and takes some
account of creep; but not sufficient for design of columns with an adverse
combination of slenderness and low bending moments, for which a further
reduction in the effective modulus is specified.

No partial safety factors are applied to the terms for structural steel and
reinforcement in equation (5.23). Despite the use of y. above, N is
considered to be a ‘characteristic’ (i.e. unfactored) value. Hence, the axial
resistance Np r in equation (5.21) is also calculated with all vy = 1, from

Npl.R = Aafy + AC(OSS fck) + Asfsk' (524)

This is the resistance to axial load of a perfect column too short to buckle,
and is known as the ‘squash load’. The area A, is conveniently calculated
from

A.=bh, — A, — A,, (5.25)

in the notation of Fig. 5.10(a). It should not be taken as bch..

It is explained in Section 1.3.2.2 that provision is made in Eurocodes 3
and 4 for the value of vy, to be increased where resistance is influenced by
buckling, though this is not reflected in the boxed values given in the
current (ENV) versions of the codes. For columns, the increase occurs
where both
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A>02 and ]—A\’/-S—d >0.1. (5.26)

This increase in ,, if made, influences many subsequent calculations. This
is why A and N, should be calculated first.

The design resistance of the column length to axial load, allowing for
second-order effects within the column, is given by

Ngpg = XNpl.Rd

where  is given in terms of by the relevant buckling curve in Eurocode 3:
Part 1.1 (Fig. 5.11). The equations for x are as equations (4.25) and (4.26)
without the subscripts LT, and with the imperfection factor 0.21 in
equation (4.26) replaced by 0.34, for curve b, or 0.49, for curve c.

5.6.4 Properties of cross-sections of columns

Design for a combination of axial load and bending about a particular axis
is based on the interaction curve between axial resistance Ngy and resist-
ance to bending about that axis, Mry. The method is best explained using
the non-dimensional curve shown in Fig. 5.13.

The plastic resistance Ny rq is easily found from the design version of
equation (5.24):

co.ss;gk N As&-

Ya Ye Vs
The complexity of hand methods of calculation for M, rq and other points

on the curve has been a major disincentive to the use of composite
columns. The assumptions are as for calculating M, rq for beams: rect-
angular stress blocks with structural steel at a stress *f,/y,, reinforcement
at tfu/vs, and concrete at 0.85f/y. in compression or cracked in tension.
Full shear connection is assumed.

£
Npl.Rd = Aa_y +A

(5.27)

A Npa/ N pa
1.0

\J

M
Rd/ M pl.Rd

Fig. 5.13 Interaction curve for compression and uniaxial bending.
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Fig. 5.14 Polygonal approximations to interaction curve.

The problem lies in the algebra. For major-axis bending of the section
shown in Fig. 5.10(a), there are at least five possible locations of the plastic
neutral axis, each leading to rather complex expressions for Ngq and Mggq.
With this approach, the most practicable hand method is to guess a
position for the neutral axis, and calculate Ngq by summing the forces in
the stress blocks, and Mgy by taking moments of these forces about the
centroid of the uncracked section. This gives one point on Fig. 5.13. Other
points, and hence the curve, are found by repeating the process.

The simplification made in Eurocode 4: Part 1.1 is to replace the curve
by a polygonal diagram, AECDB in Fig. 5.14. An ingenious and fairly
simple method of calculating the coordinates of points B, C, and D is given
in Annex C of the code, and is explained in Appendix B of this volume.
For major-axis bending of encased I-sections, AC may be taken as a
straight line, but for other situations, point E has to be found by the
method outlined above. Its location is not specified, and the first guessed
neutral-axis position is usually good enough.

Transverse shear force may be assumed to be resisted by the steel section
alone. The design method for moment-shear interaction in beams (Section
4.2.2) may be used. In columns, Vsq4 is usually less than 0.5V} rg, sO no
reduction in bending resistance need be made.

5.6.5 Resistance of a column length

5.6.5.1 Uniaxial bending

It is assumed that the interaction curve, Fig. 5.13, has been determined,
that the design axial force Ns4 and maximum bending moment are known,
and that the slenderness factor x has been calculated. Let
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Ko = —sa_ (5.28)

Noird
so that x4 on Fig. 5.13 represents the design axial load.

" Point B on the interaction curve represents failure of the column under
axial load xNp rq, in absence of any applied bending moment. The bend-
ing resistance AB is thus assumed to be equal to the maximum bending
moment caused by the axial load, just before the column fails. When M, =
M, this secondary bending moment is assumed to be proportional to the
axial load; so at some lower load x4/Np ras, its value is given by length CE.
The bending resistance is now CF, so that resistance EF is available for the
applied bending moment.

The secondary bending moment for a given axial load diminishes as
M,/M, falls below 1.0, as illustrated in Fig. 5.12. This is allowed for by
replacing line BEO by BDG, where the ordinate of G is given by

1 - M,/IM,;
X7y
The bending resistance is thus increased from EF to DF.

A further correction is required for the unconservative assumption that
the rectangular stress block for concrete extends to the plastic neutral axis

(Section 3.5.3.1). It is made by reducing the bending resistance by 10% , so
that the verification condition is

Xn = but x < xg. » (5.29)

where
b= g — oy 2 (5.31)
X — Xn

and pg4 and py are given by the interaction curve, for x4 and x; respect-
ively. Use of a polygonal diagram that lies within the interaction curve
appears to be conservative, but in fact is not. This is because it increases .,
for given x, x4 and x,. The error can be excessive, particularly for minor-
axis bending and for filled tubes. This is why the use of an additional point
E is then required.

5.6.5.2 Biaxial bending

It is now assumed that the maximum design bending moments about both
axes, My sq and M, g4, are known, and also Nsq and x. It has to be decided
in which plane failure is expected to occur. This is usually obvious; but if
not, two verifications are required, one for each plane.

For failure in the z-plane, . (= ) is determined as in Section 5.6.5.1,
allowing for imperfections. For the y-plane, imperfections are neglected,
so that ., is given by the length CF in Fig. 5.13. The verification conditions
are:
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M, sq < 09p M, ¢ Ry (5.32)

Mz.Sd = 0'9“‘21‘4pl.z.Rd (533)
M M

y.Sd + z.8d

=< 1.0. (5.34)
p"YMPI.y.Rd leMpl.z.Rd

5.6.6 Longitudinal shear

For end moments M; and M, as defined in Section 5.6.1, the transverse
shear in a column length is (M; — M,)/L. An estimate can be made of the
longitudinal shear stress at the interface between steel and concrete, by
elastic analysis of the uncracked composite section. This is rarely necessary
in multi-storey structures, where these stresses are usually very low.

Higher stresses may occur near connections at a floor level where the
axial load added to the column is a high proportion of the total axial load.
Load added after the column has become composite, Ngg say, may be
assumed to be shared between the steel section, of area A,, and its
encasement on a transformed area basis:

A
Ng. = Ng4 (1 - “A‘a) (5.35)

where Ng . is the force that causes shear at the surface of the steel section
and A is the transformed area of the column in ‘steel’ units.

There is no well-established method for calculating longitudinal shear
stress at the surface of the steel section. Design is usually based on mean
values, found by dividing the force by the perimeter of the section, u,, and
an assumed transmission lenght, /,:

reg = Nse (5.36)
u,l,
Design shear strengths trq due to bond and friction are given in
Eurocode 4: Part 1.1 for several situations. For completely encased

sections,
Trg = 0.6 N/mn?. (5.37)

This is a low value, to take account of the approximate nature of 7g4. The
length [, should not exceed twice the ‘relevant transverse dimension’ which
for an encased H-section is probably the breadth of the steel flange.

No account need be taken of the further transfers of force by shear
between steel and concrete as failure is approached. The best protection
against local failure is provided by the transverse reinforcement (links)
which are required by Eurocode 2 to be more closely spaced near beam-
column intersections than elsewhere.

If local shear stresses are excessive, columns should be provided with
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ultimate loads for this external column, calculated in Sections 5.5.1 and
5.5.3, are as follows:

® axial load per storey, Ngq = 242 + 97.2 = 339 kN
® bending moments (Fig. 5.9(b)): M,;,= + 31.5kNm (5.40)

M, =—13 kNm.

Minor-axis bending is caused only by permanent loads that are equal on
the two sides of the column, so it is assumed that

M, = M, ~0. (5.41)

The factor a,, for number of storeys carried (equation (5.8)) does not apply
because the imposed loading is in Category C; so the design axial load is

Ngg = 339 X 8 = 2712 kN. (5.42)

Design consists of verifying a column of assumed cross-section
(Fig. 5.15) using the methods explained in Section 5.6.

The assumed concrete cover to the reinforcement, 30 mm and to the
structural steel, 57 mm, satisfy the requirements for 90 minutes’ fire
resistance; and also for exposure class 2(b), humid environment, with
frost, which may be appropriate for the external face of the column.

J_ g)cover —’I‘S I"‘_L
T os H 1 s

4 T16 bars

'\ .

320 ] T6 links
206
206 x 204 UC52

m
_ﬂZ.S

{58 204
—.L 320 |

Fig. 5.15 Cross-section of external column.

5.7.2 Slenderness, and properties of the cross-section
The cross-sectional areas of the three materials are:
A, = 6640 mm?, A, =804 mm? A, = 94950 mm?,

The ratio AJ/A. is 0.0085, which satisfies expression (5.17).
From equation (5.27) the design plastic resistance to axial load is

Ny = 2357 n 2017 n 370

P Ya Ye o Y

= 2143 + 1345 + 322 = 3810 kN  (5.43)
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shear connectors. These are best attached to the web of a steel H- or
I-section, because their resistance is enhanced by the confinement pro-
vided by the steel flanges. Design rules are given in Eurocode 4: Part 1.1.

5.6.7 Concrete-filled steel tubes

A typical cross-section of a column of this type is shown in Fig. 5.10(c). To
avoid local buckling of the steel, slendernesses of the walls must satisfy

ft‘- < 52¢ (5.38)

where

(5

and f, is the yield strength in N/mm? units. For concrete-filled circular
hollow sections of diameter d the limit is more generous:

‘_f <90, (5.39)

Design is essentially as for encased H-sections, except that in calculating
the squash load Ny rg, account is taken of the higher resistance of the
concrete, caused by lateral restraint from the steel tube, as follows.

The term 0.85f in equations (5.24) and (5.27) is replaced by f. Also,
for circular sections only, f. is increased to an extent that depends on the
ratios #/d and Msq/Nsqd, and provided that A < 0.5. For a circular section,
there is also a reduction in the effective yield strength of the steel wall used
in calculating Ny, rq, to take account of the circumferential tensile stress in
the wall. This stress provides restraint to lateral expansion of the concrete
caused by the axial load on the column.

A further advantage of filled tubes is that buckling curve a is used, rather
than curve b or c.

5.7 Example: composite column

5.7.1 Data

A design is required for length KL of an external column of the frame DEF
shown in Fig. 5.1. The materials are as used previously (Section 5.5.1).
Values needed here are:

f, = 355 N/mm?, f,, = 460 N/mm?, f,;, = 25 N/mm?, E,,,, = 30.5 kN/mm®.
The frame has been designed as braced (Section 5.5.2). The design
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when vy, = 1.10, y. = 1.5, and vy, = 1.15. With these factors taken as 1.0:

Ny g = 2357 + 2017 + 370 = 4744 kN. (5.44)
From equation (5.18),

2143
8= =0.562 5.45
3810 o2, ©4)

which is within the permitted range.
Second moments of area of the uncracked section are needed for the
calculation of the elastic critical load, N,.

For the steel section,

from tables, 10761, = 52.6 mm*.

For the reinforcement,  107°I_ = 804 x 0.115% = 10.6 mm*.

For the concrete, 10761, = 3207 x 0.32%12 — 52.6 — 10.6
= 811 mm*

and Eq = 30.5/1.35 = 22.6 kN/mm?.

From equation (5.23)
107*(ED), = 0.21 x 52.6 + 0.8 x 0.0226 x 811 + 0.20 x 10.6
= 27.8 N mm?. (5.46)

For global analysis of the frame, account is taken of creep by using an
effective modulus E. = E_,/2 = 15.25 kN/mm?>. By this method,

1072E, 1, = 25.5 N mm? . (5.47)

This value is used in Section 5.5.3.
The effective length of the column is taken as equal to the actual length,
so from equation (5.22)

1000

N, =m?x 27.8 X ¢ = 17150 kN. (5.48)
From equations (5.21) and (5.44) |
— [N, g\0S 4744 \0:5
A= ( P"R) = ( ) = 0.526 . (5.49)
N, 17150
From column curve b in Fig. 5.11, the slenderness reduction factor is
x = 0872 . (5.50)
From equations (5.26) and (5.43), the resistance to axial load is
Nga = XNyi.rg = 0.872 X 3810 = 3322 kN. (5.51)

The design bending moment is now calculated. From equation (5.20),
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A Ngg/N

pLRd

- _'.(_ —
/
/ Tp=0.303

0.353 |- — —_

Xn=0.310 |- | |

0.177 | —
| |

0 H=0198 py=0.445 1.0 | MM

Fig. 5.16 Interaction diagram for major-axis bending.

M 13
= 0.66 + 0.44 —2 = 0.66 — 0.44 x — = 0.48.
B M 066 31.5 8

1
From equations (5.19), (5.42), and (5.48)

. B _ 0.48

- - = 0.57, but = 1.0,
1— (NgJN,) 1 - 2712/17150 !

whence

Coordinates of the polygonal interaction diagram for major-axis bend-
ing, Fig. 5.16, are now calculated by the method of Appendix B. From
equations (B.1),

355 460
fra=27 =323 N/mm?, fi4= 175 = 400 N/mm?,

fog = 0.85 x % = 14.2 N/mm?.

The plastic section moduli are given by equations (B.2) to (B.4):
10‘6Wpa = 0.568 mm? (from tables)
107°W,, = 0.804 x 0.115 = 0.0925 mm’
107%W,,, = 3.2%/4 — 0.568 — 0.0925 = 7.53 ma




Composite Columns and Frames 189

From equation (B.8)

Nomra = 94.95 X 14.2 = 1345 kN, (5.53)

From equation (B.9)
h = 1345
" 0.64 X 14.2 + 0.016(646 — 14.2)
The dimension A2 — t;is 91 mm, so h,, satisfies expression (B.11).
The bending resistance at point D is given by equation (B.7):

My ra = 0.568 X 323 + 0.0925 X 400 + 7.53 X 1‘;_'2

=70.0 mm . (5.54)

=184 + 37 + 53 = 274 kN m. (5.55)

The bending resistance at points B and C is found using equations (B.5),
(B.6), and (B.10):

107°W,,, = 8 x 0.07* = 0.0392 mm®
107°W,,, = (320 — 8) x 0.07° = 1.529 mm’

Mg = 274 — 0.0392 X 323 — 1.529 x 1‘;—'2 = 250 kN m. (5.56)
The ratios plotted in Fig. 5.16 are:
N 1345
—pmRd_ —— —0.353
Nyra 3810
Mmax.Rd — _2_7_1 = 1.096
Mygs 250

and polygon ACDB can be drawn.

5.7.3 Resistance of the column length, for major-axis bending

The ratios x4 and x,, in Fig. 5.16 depend on the design action effects. From
equations (5.28), (5.42), and (5.43),

Ny 2712
Xg=—34 =2"Z2_0712. (5.57)
4 Nypa 3810
From equations (5.29), (5.40), and (5.50),
Xq = x_1+2/Ml = 0.8721—+1§i3-£ = 0.310.

From Fig. 5.16 or by calculation:
p = 0.198, py = 0.445.
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From equation (5.31) or from Fig. 5.16,

b= g — i (Xa = Xn)
X~ Xa
_ 0445 - 0198 X 0402 _ 00
0.872 — 0.310

The design bending resistance is given by equation (5.30):
Mgq = 0.9 pM g = 0.9 X 0.303 X 250 = 68 kN m.

From equation (5.52), Mgy = 31.5 kN m, so the column length has
sufficient resistance, subject to checks on biaxial bending and longitudinal
shear.

5.7.4 Checks on biaxial bending and longitudinal shear

The possibility of buckling about the minor axis is now examined. The
column section is square, but for the steel section, I,, < l,y, S0 Ne, will be
lower, A higher, and x lower than for major-axis buckling. The design
minor-axis bending moment is zero (equation (5.41)),so the design is safe
if p, = 0.

For the cross-section, My ra., < Mp ra.y, 50 the polygonal interaction
diagram is different; but there is no need to use it. It is evident from
Fig. 5.16 that p, = 0 when

Xa = Xz (558)
It is found by calculations similar to those in Section 5.7.3 that:
1072(ED,, = 21.1 Nmm?; N, , = 13020 kN; X = 0.604.

Curve c in Fig. 5.11 then gives x, = 0.783. The ratio xq (= Nsd/Npi.ra) is
the same for both axes, 0.712, so condition (5.58) is satisfied.

Checks on longitudinal shear are described in Section 5.6.6. The design
transverse shear for this column length is

V =
5d L 4

= 11kN.

This is obviously negligible; Vi, ra for the web of the steel section is
320 kN.

The total vertical load applied to the column at one fioor level is 339 kN,
equation (5.40), and 46 kN of this is load applied to the steel beam alone. It
is assumed that the encasement to the column is cast before the floor slab,
so that local longitudinal shear stress at a beam—column intersection should
be calculated for Ngg = 339 kN.

The ratio A./A in equation (5.35) is evaluated using E} = 15.25 kN/mm?,
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as in Section 5.7.2. From cross-sectional areas given there, the transformed
area is

10734 = 6.64 + 0.804 + 94.95 % f—fos = 14.3 mm?.

From equation (5.35),

6.64
Ng.=339(1 - ——] = 182kN.
S ( 14.3)
The perimeter of the steel section is u, = 1140 mm. From equations (5.36)

and (5.37), the transmission length I, is

I, = Nse .18 _ 566 mm.
u,Tgq  1.14 X 0.6
This is less than twice the relevant transverse dimension, 203 mm, so local
bond stress is not excessive.

This calculation neglects any load transferred to the concrete encase-
ment by direct bearing of the three steel beams that are connected to each
floor level, and so is conservative.

This completes the validation of the design assumed for this column
length.

5.7.5 Beam-to-column connection

The connections used for this structure do not make use of composite
action, and so should be designed using a code of practice for structural
steelwork, such as Eurocode 3. As an example, a possible connection
between a main beam and an external column is shown in Fig. 5.17.

F—Wﬂ\
ﬁ: _
40 iF
Tt
250 ‘/’
L+ 1+
B . 1k
bl L
l 50 || 50 I
L— A A
le—170 —
(a) section A- A (b) elevation

Fig. 5.17 Beam-to-column connection.
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The connection is ‘nominally pinned’; as defined in Section 5.3.2.
Flexibility in bending is achieved by using a thin end plate (8 mm), and a
wide spacing (100 mm) of the pairs of M20 bolts, so that plastic defor-
mation of the end plate allows the end of the beam to rotate about line BC
in Fig. 5.17(a), as it deflects under load, without applying much bending
moment to the column.

Both Eurocodes 3 and 4 state a principle of structural integrity, relevant
to the consequences of events like explosions or impacts, but give no
application rules. The British National Application Document for
Eurocode 3: Part 1.1 requires a connection of the type shown in Fig. 5.17
to resist a design tensile force of at least 75 kN, acting along the axis of the
beam.

The only other design action effect is a vertical shear of 242 kN, from
Fig. 4.11, because the shear is assumed to be transferred in the plane of the
connection to the column, so that the bending moment is negligible.

The connection shown in Fig. 5.17 is designed for these two forces,
following rules given in Eurocode 3 for bearing and shear strength of bolts,
shear strength of welds, vertical shear in the end plate, and edge and end
distances for bolt holes, which in this case are 22 mm in diameter.

It will be noted that the bending moment at the face of the steel column
has been assumed to be sagging, in design of the beam (since its span is
taken to the centre-line of the column), hogging (Section 5.5.3) in design of
the column, and zero in design of the connection. These are all simplifi-
cations that are known to be satisfactory in practice.



Appendix A
Partial-interaction Theory

A.1 Theory for simply-supported beam

This subject is introduced in Section 2.6, which gives the assumptions and
notation used in the theory that follows. On first reading, it may be found
helpful to rewrite the algebraic work in a form applicable to a beam with
the very simple cross-section shown in Fig. 2.2. This can be done by
making these substitutions.

Replace A, and A, by bh, and d, by h.
Replace I, and I, by bh*/12.
Put k. = n =1, so that E_, E_, and E_ are replaced by E.

The beam to be analysed is shown in Fig. 2.15, and Fig. A.1 shows in
elevation a short element of the beam, of length dx, distant x from the
midspan cross-section. For clarity, the two components are shown separ-
ated, and displacements are much exaggerated. The slip is s at cross-
section x, and increases over the length of the element to s + (ds/dx) dx,
which is written as s*. This notation is used in Fig. A.1 for increments in
the other variables, M., M,, F, V., and V,, which are respectively the
bending moments, axial force, and vertical shears acting on the two
components of the beam, the suffixes ¢ and a indicating concrete and steel.
It follows from longitudinal equilibrium that the forces F in steel and
concrete are equal. The interface vertical force r per unit length is un-
known, so it cannot be assumed that V, equals V,.

If the interface longitudinal shear is v per unit length, the force on each
component is Vdx. It must be in the direction shown, to be consistent with
the sign of the slip, s. The load-slip relationship is

pv =ks (A1)

since the load per connector is pv.

We first obtain equations deduced from equilibrium, elasticity, and
compatibility, then eliminate M, F, V, and v from them to obtain a
differential equation relating s to x, and finally solve this equation and
insert the boundary conditions. These are as follows.

(1) Zero slip at midspan, from symmetry, so

193
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‘w.dx

-t
n:'

|

=

Fig. A.1 Elevation of element of composite beam.

s=0 when x=0. (A.2)

(2) At the supports, M and F are zero, so the difference between the
longitudinal strains at the interface is the differential strain, €., and

therefore
ds_ —e. when x== L . (A.3)
dx 2
Equilibrium
Resolve longitudinally for one component:
dF
— =y, A4
o v (A4)
Take moments:
dM, 1 dM, 1
dx + Vc = 5 Vh.c, E + Va = EVhS‘. (AS)
The vertical shear at section x is wx, so
Ve + V, = wx. (A.6)
Now 2(h. + h) = d., so from (A.5) and (A.6),
M, + M, + wx = vd_.. (A7)

dx dx
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Elasticity
In beams with adequate shear connection, the effects of uplift are negli-
gible in the elastic range. If there is no gap between the two components,
they must have the same curvature, ¢, and simple beam theory gives the
moment-curvature relations. Using (2.19) for E; , then

M, _ nM. (A.8)
EJl, kUE,]I

c—a’c

¢ =

The longitudinal strains in concrete along AB (Fig. A.1) and in steel along
CD are:

1 nF
=-hd — - A9
I T (A.9)
1 F
€cp =~ 5 b+ = (A.10)

Compatibility
The difference between exp and ecp is the slip strain, so from (A.9) and
(A.10), and putting 3(h. + hs) = d.,

Y A B Al
¢ Ea kCAC Aa ¢ ( ) )

It is now possible to derive the differential equation for s. Eliminating M.
and M, from (A.7) and (A.8),

k.1 do
Ea( ;°+Ia)a—;+wx= vd,. (A.12)

From (A.1) and (2.22),
db _ kd slp — wx
dx EJl,
Differentiating (A.11) and eliminating ¢ from (A.13), F from (A.4), and v
from (A.1):
&s _kdgslp — wdex | ks _ ks ( 2+i)__%x_
dx? E.l, EAop  PE. Ay Ely

(A.13)

Introducing A’ from (2.21), o? from (2.23) and B from (2.24) gives result
(2.25), which is in a standard form:

2
% —a%s = — oBwx . (2.25)

Solving for s,

s = K sinh ax + K, cosh ac + Bwx. (A.14)
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The boundary conditions (A.2) and (A.3) give
K, =0, ¢ =—Kacosh(al2) - pBw

and substitution in (A.14) gives s in terms of x:
s = Bwx — (Ew—+—59) sech (%Li) sinh ox. (2.27) bis
¢3

Other results can now be found as required. For example, the slip strain at
midspan is

(g)Fo = Bw — (Bw + €.) sech (aL/2) (A.15)

and the slip at x = L/2 due to €. alone (i.e. with w = 0), is

(5)emtrn = = = tanh (9‘25) (A.16)

A.2 Example: partial interaction

These calculations are introduced in Section 2.7. They relate to a beam
shown in section in Fig. 2.16, which carries a distributed load w per unit
length over a simply supported span L. The materials are assumed to be
concrete with a characteristic cube strength of 30 N/mm? and mild steel,
with a characteristic yield strength of 250 N/mm?. Creep is neglected
(k. = 1) and we assume n = 10, so for the concrete E, = E, = 20 kN/mm?,
from (2.19).

The dimensions of the beam (Fig. 2.16) are so chosen that the trans-
formed cross-section is square: L =10m, b = 0.6 m, h. = h, = 0.3 m. The
steel member is thus a rectangle of breadth 0.06 m, so that A, = 0.018 m?,
I,=1.35x10"*m*

The design of such a beam on an ultimate-strength basis is likely to lead
to a working or ‘service’ load of about 35 kN/m. If stud connectors 19 mm
in diameter and 100 mm long are used in a single row, an appropriate
spacing would be 0.18 m. Push-out tests give the ultimate shear strength of
such a connector as about 100 kN, and the slip at half this load is usually
between 0.2 and 0.4 mm. Connectors are found to be stiffer in beams than
in push-out tests, so a connector modulus k£ = 150 kN/mm will be assumed
here, corresponding to a slip of 0.33 mm at a load of 50 kN per connector.

The distribution of slip along the beam and the stresses and curvature at
midspan are now found by partial-interaction theory, using the results
obtained in Section A.1, and also by full-interaction theory. The results are
discussed in Section 2.7.
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First o and B are calculated. From (2.22) with I. = nl, (from the shape of
the transformed section) and k. = 1, Iy = 2.7 X 1074 m?.

From (2.20) with A, = nA, and k, = 1, Ay = 0.009 m?,
From (2.21), VA’ = 0.32 + (2.7 x 107/0.009 = 0.12 m?.
From (2.23), with kK = 150 kN/mm and p = 0.18 m,

(2o 150x012
0.18 x 200 x 0.27

whence a = 1.36 m™1. Now L = 10 m, so aL/2 = 6.8, and sech (aL/2) =
0.00223. From (2.24),

_ 0.18 x 0.3
0.12 x 150 x 1000

We assumed w = 35 kN/m, so Bw = 1.05 X 10™* and Bw/a = 0.772 X
10~* m. An expression for the slip in terms of x is now given by (2.27) with
e = 0:

=1.85m"?

= 3.0 X 107 m/kN.

B

10% = 1.05x — 0.0017 sinh (1.36x). (2.28)

This gives the maximum slip (when x = * 5 m) as + 0.45 mm.
This may be compared with the maximum slip if there were no shear
connection, which is given by (2.6) as

wl® 35 x 10°
AEbH? 4 x 20 x 0.6 x 0.3% x 1000

= 8.1 mm.

The stresses at midspan can be deduced from the slip strain and the
curvature. Differentiating (2.28) and putting x = 0,

10 (3) =1.05 — 0.0017 x 1.36 = 1.05
dx x=0
so the slip strain at midspan is 105 X 107%. From (A.13),

d _ 4.64s — 6.5 X 107 %.
dx

Using (2.28) for s and integrating,
105 = ~ 81.5x> — 0.585 cosh (1.36x) + K.
The constant KX is found by putting & = 0 when x = L/2, whence atx = 0,
& = 0.0023 m™!.

The corresponding change of strain between the top and bottom faces of a
member 0.3 m deep is 0.3 x 0.0023, or 690 X 107°. The transformed
cross-section is symmetrical about the interface, so the strain in each
material at this level is half the slip strain, say 52 X 107°, and the strain



198 Composite Structures of Steel and Concrete

distribution is as shown in Fig. 2.17. The stresses in the concrete, found by
multiplying the strains by E. (20 kN/mm?), are 1.04 N/mm? tension and
12.8 N/mm? compression. The tensile stress is below the cracking stress, as

assumed in the analysis.
The maximum compressive stress in the concrete is given by full-

interaction theory (equation (2.7)) as

2
_3wL 3 X 35 x 100 — 12.2 N/mn?.

Ot

T 16bK 16 X 0.6 X 0.09 x 10°




Appendix B
Interaction Curve for Major axis
Bending of Encased I-section Column

Reference is made in Section 5.6.4 to the simplified calculation method
given in Annex C of Eurocode 4: Part 1.1.(”) This method is now used to
determine the coordinates of points B, C, and D of the polygonal inter-
action curve shown in Fig. 5.14, for major-axis bending of the encased
I-section column shown in Fig. B.1. The notation is as used in Eurocode 4,
and in Chapter 5 of this volume.

: b I plcstlc neutral axis for Mp pd
ZZ77 °
B —_— — H — __/
T
h hn

hn tw
cL___ - —
2772~ | = —L l

Fig. B.1 Plastic neutral axes for encased I-section.

It is assumed that for pure bending, the plastic neutral axis lies between
the steel flanges, at distance 4, from the centre of area, G. It is shown in
Eurocode 4 that for points B, C, and D the plastic neutral axes are BB,
CC, and DD in Fig. B.1, respectively.

Design strengths of materials are defined as follows:

A fsx fox
fyd=_y’ fsd = ? fcd_()8Si (Bl)
Ya Ys Ye
Plastic section moduli for the three materials, assuming concrete to be
uncracked, are as follows:

W, = % + bt(h — t;) (or from tables) (B.2)
W, = Age, (B.3)

199
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b.H?
WPC=%_

Plastic section moduli for the region of depth 24, between axes BB and CC
are:

Wyo — Wi (B.4)

Wioan = th2 (B.5)
Wpcn = (bc - tw)hﬁ’ (B6)

where h,, is given by equation (B.9).
For bending about axis DD, only half of the concrete is effective, so that

the bending resistance at point D is
Wecfea (B.7)

Mmax.Rd = Wpafyd + Wpsfsd + 2 .

The longitudinal forces in the steel section and the reinforcement sum to
zero, from symmetry, so the axial compression is Ny, ra/2, where

Npm.Rd = Acfcd' (BS)

The depth A, is found from the condition that when the plastic neutral axis
moves from DD to BB, the axial compression changes from Npy ra/2 to
zero. The stress in area hyt,, of steel web changes by 2f4 (from compres-
sion to tension), and the stress in an area h,(b. — t,) of concrete changes
from f4 to zero, whence

A
% = 28t fya + ha(be — 1) fea) -

Rearranging

= Adfer . (B.9)
2bcfcd + 2l‘w(zfyd - fcd)

When the plastic neutral axis moves from DD to CC, the axial compres-
sion changes from N, ra/2 to Npm rd, because the changes in axial force
are of the same size (but of opposite sign) as when it moves from DD to
BB.

When the plastic neutral axis moves from BB to CC, the resultant of all
the changes in axial force passes through G (from symmetry), so that the
bending resistances at B and C are the same, and are

n

Mpl.Rd = Mmax.Rd - Wpanfyd - Wpcn % (BlO)

The coordinates of points B, C, and D are thus as shown in Fig. 5.14,
where Npm rds Mmax.ra and M, gq are given by equations (B.8), (B.7),
and (B.10) respectively, provided that
h

h, <

2ot (B.11)
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Equations for sections where this condition is not satisfied, and for minor-
axis bending and for concrete-filled tubes are obtained by similar reason-
ing, and are given in Annex C of Eurocode 4: Part 1.1.

The preceding results are used in an example in Section 5.7.2.
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partial 32, 51, 79-83, 96-7, 107
equilibrium method for 81, 108-109
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partial safety factors for 31
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Shear flow 24
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see also Buckling; Slabs, composite
Shear walls 160, 174-5
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deflection of 66
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effective area of 47, 64
embossments on 47, 49
fixing of 91
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properties of 29-33, 47, 64
see also Slabs, composite
Shrinkage of concrete, effects of 14, 26, 36,
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bending of 40, 49-51
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effective width of 95
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fire resistance of 61-3, 71-4
global analysis of 73, 157
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punching shear in 55, 68-70
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113, 137, 193-8
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Slip-block test 42-3, 534

Slip strain 22, 37, 195-6

Span-to-depth ratio 58, 97-8

Squash load see Columns

Standards see British Standards; CEN

Steel see Structural steels; Yielding of steel
in service

Steel contribution ratio see Columns

Strength, characteristic 7
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Stresses

residual 131, 166
see also Beams, stresses in
Stress resultant 5
Structural steels 12
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yMm for, 7-8, 94
Studs, welded 7, 27-8
length after welding 109
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see also Shear connection, detailing of;
Shear connectors

Sway frames 1689
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Symbols xi-xiii, 44-5, 129

System length 179

Temperature, effects of 14, 36, 98

Tension stiffening 136

Testing
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see also Shear connectors; Slip-block test
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Through-deck welding see Welding,
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Torsion 130

Transformed sections, method of 14-15,
95-6, 138 ’

Tubes, steel see Columns, concrete-filled

U-frame see Frame, inverted-U
Uplift 25-6, 195

Verification 6
Vibration 93, 98-104, 113-15, 118
human response to 98-100

Webs
class of 76-7
effective 120-22
encased 2, 76, 105, 115-16, 119, 121, 130
cracking in 133
see also Hole-in-web method; Shear,
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Welding, through-deck 34, 91
Width of flange, effective see Slabs,
concrete, effective width of
Wind, effects of 5, 89, 13-14, 172
Worked examples ix
classification of section 122-3
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continuous 147-56
simply-supported 105-16
composite column 185-91
composite frame 172-6
composite slab 63-74
partial interaction 196-8
redistribution of moments 14041
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This book provides an introduction to the theory and design of
composite structures of steel and concrete. All material of a
fundamental nature that is applicable to both buildings and
bridges is included, plus more detailed information relating to
buildings. -
All the design methods explained in this volume are those of the
draft Eurocodes. The book has been substantially rewritten to
take account of these (Parts 1.1 of Eurocodes 2, 3 and 4 for the
design of concrete, steel and composite structures, and Eurocode
4: Part 1.2 for resistance to fire). A completely new set of worked
examples relating to buildings is presented, in a way that does
not require reference to the codes of practice.

The book will be of interest to undergraduate and graduate
students, university teachers and practising engineers seeking
familiarity with composite structures and the new Eurocodes.
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