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Introduction  
 
 Overview  
 

 

This book differs from most other books on TCP/IP because it focuses on how to implement the 
TCP/IP protocols using the most prevalent TCP/IP routing device in use today, the Cisco router. 
The book provides detailed descriptions, examples, and configurations that can be used for 
building real-world internetworks. The text begins at a level appropriate for the TCP/IP and router 
novice, but advances to cover topics such as routing protocol optimization, security, implementing 
multiprotocol networks, and troubleshooting techniques that experienced router engineers will find 
useful.  

 

 

The TCP/IP set of networking protocols rapidly is becoming the de facto standard for local and 
wide area networking. Its prominence is due in part to its openness. It is considered an open 
standard because no one commercial organization controls the standard. This allows all vendors 
an equal footing when developing TCP/IP products and gives devices from different vendors a 
better-than-even chance of working together properly.  

 
 In addition to being an open standard, the TCP/IP protocols have proved themselves durable in 
the largest network in the world, the Internet.  

 

 

Fueling the current growth of the Internet are World Wide Web services, which make it easy for 
anyone who can operate a computer mouse to retrieve information from anywhere in the world. 
This technology is so attractive to organizations that most forward-thinking companies are building 
much of their information storage and retrieval systems around it on their own internal intranets. 
Intranets use the same TCP/IP network protocols as the public Internet but are implemented on 
the company's own private network.  

 

 
To support this new computing paradigm, a TCP/IP network is required. To implement a TCP/IP 
network, you need routers. If you are involved in any way with network administration, design, or 
management, router technology either is or will become important to you.  

 

 
This book is clearly not a novel, and I don't expect it to be read as one. Of course, you can start at 
Chapter 1 and read all chapters in sequence, but this is not how I use my technical books. I suspect 
that most people will read the chapters that are of particular interest to them at different times. To 
support this type of use, there is some duplication of information across chapters when necessary.  

 



 Terminology  
 

 

Throughout the book, I have used some terms that should be defined. First, let's discuss how we 
identify, in networking terms, computers that are grouped together. An internetwork is a collection 
of networks connected together. A network refers to all devices that belong to one network 
number. A subnetwork, or subnet, is a section of a network configured to act as if it were a 
separate network as far as other computers configured on the same network number are 
concerned.  

 

 
Another potentially confusing term is that of gateway. In general networking terms, a gateway is an 
Application layer device, something that converts from one type of communications protocol to 
another. In TCP/IP language, a gateway is synonymous with a router.  

 



Conventions  
 

 

Outputs from Cisco router screen displays are presented in many figures and parts of the text. Any 
text or commands that are to be entered into the terminal attached to the router are in boldface 
type; the nonbold text represents what is displayed by the router. In these screen displays, I have 
had to indicate that at times, a shifting key and letter key must be depressed simultaneously to get 
the desired response. An example is <Ctrl-Z>, which means that you hold down the key labeled 
"Ctrl" while pressing the "Z" key.  

 



Chapter 1: Router Basics  
 
 Objectives  
 
 The objectives of this chapter are as follows:  
 
   •Explain the role of a router in an internetwork.  
 
   •Discuss how a router is both similar to and different from other network computing devices.  
 
   •Introduce the Cisco router user interface.  
 



Router Concepts  
 

 

This section introduces router technology and its responsibility in an internetwork, an accepted 
networking industry term for a set of many interconnected networks. Each individual network will 
have its own network number that must be unique for that particular internetwork. If some of the 
terms used here are unfamiliar, don't worry; all the ideas presented in this overview are discussed 
in more detail and explained fully in later chapters.  

 
 Routers direct traffic through an internetwork, based on information learned from network 
protocols. Let's discuss some of the goals of these computer network protocols.  

 

 

With an internetwork that has hundreds or even thousands of computers linked together, there has 
to be some agreed-upon way for those devices to address one another and communicate. As a 
network grows larger, it is not feasible for each computer to keep track of the individual address of 
every other computer on the internetwork. There must be some scheme for reducing the amount of 
information each computer has to hold locally in order to communicate with every other computer. 

 

 

The scheme used involves splitting an internetwork into many discrete but connected networks, 
which may themselves be split into subnetworks (Fig. 1-1). The job of keeping track of these 
discrete networks is then given to specialized computers called routers. Using this method, the 
network computers need only keep track of the networks on the internetwork, rather than keeping 
track of every network computer.  

 

 

  
 
 Figure 1-1: Interconnection of networks and subnetworks on an internetwork 

   
 

 

The best analogy I can think of for describing how computers on an internetwork address each 
other is the postal service. When you address a letter, you provide an apartment number, street 
name and number, town, and state. In computer terms, messages are delivered by application port 
number, host number, subnet number, and network number (Fig. 1-2). These terms will be 
discussed fully in subsequent sections.  

 



 

  
 
 Figure 1-2: Comparing the Postal Service to an internetwork addressing scheme 

   
 

 
The key concept is that when the postal service receives a letter for delivery to another town, the 
first thing postal workers do is to send it to the distribution office in the destination town. From 
there the letter goes to the people that deliver for that particular street, and finally, the letter is 
delivered to its destination.  

 

 
Computer networks follow a similar process. The message sent on the internetwork initially gets 
sent to a router that is connected to the destination network number. This router, in effect acting as 
a distribution center for this network, will send the message out on the destination subnet number, 
and finally the message is delivered to the destination port number in the destination machine.  

 

 

Figure 1-3 shows a simple internetwork with routers connecting different network numbers. In this 
figure, networks 1, 2, 3, and 4 have hosts on them and networks 5, 6, and 7 do not. Networks 5, 6, 
and 7 are there purely to connect the routers over a local or wide area network. In this 
internetwork, hosts X and Z must be configured for the same network number (in this case, 2). In 
addition, the router interfaces that are connected to the same network (for example, interface 2 on 
router C and interface 1 on router A), must be configured for the same network number (in this 
case, 5).  



 

  
 
 Figure 1-3: Simple internetwork connectivity 

   
 

 

Using the postal service analogy again, routers that are connected to two networks can be thought 
of as houses that have entrances on two streets. In Fig. 1-4, we see a house that has two 
entrances, one on Subnet-1 Street and the other on Subnet-2 Street. Both the address on Subnet-
1 Street and the address on Subnet-2 Street are good for purposes of delivering a letter to the 
house. This is analogous to a router being connected to two network numbers. In Fig. 1-3, the 
address for interface 1, interface 2, or interface 3 is good for delivering a message to router A.  

 

 

  
 
 Figure 1-4: Illustration of multiple addresses reaching the same location 

   
 

 

Routers by their very nature seek to route packets from one network number to another. This 
statement has two immediate practical implications for us. First, you cannot configure the same 
network number on more than one interface on a router. (Much later we will cover the case in 
which subnet masks allow the same network number, but different subnet numbers, to be 
configured on different interfaces on the same router.) Second, because a broadcast has a 
destination network number, a router does not forward broadcasts by default. (Again, we will 
discuss later how a router can be configured to forward broadcast packets).  



 Routers Compared to Bridges  
 

 

Routers typically are used to connect geographically dispersed networks together, and to make 
feasible connecting a large number of computers together. Before routers became popular, 
bridges often were used to achieve the same goals. Bridges were good for small networks, but had 
problems working in larger environments. Bridges keep track of all the individual computers on a 
network. The problem with using bridges to connect large numbers of computers together is that 
bridges do not understand network numbers, so any broadcast generated anywhere on the 
network gets sent everywhere. The difference between how routers and bridges handle 
broadcasts is illustrated in Fig. 1-5.  

 

 

  
 
 Figure 1-5: Illustration of how routers and bridges handle broadcasts differently 

   
 
 Many PC networking systems make extensive use of broadcasts, which leads to bridged networks 
having significant amounts of their usable bandwidth consumed by broadcasts.  

 
 At this point, it is worth contrasting the routing decisions made by routers and typical workstations 
or hosts on an internetwork.  

 

 
A typical workstation (a PC running a popular TCP/IP stack, for example) will require some manual 
configuration before it can operate on a TCP/IP network. At a minimum, you will have to configure 
an IP address, a subnet mask, and a default gateway.  

 

 

The routing decisions of a workstation configured in this manner are simple. If the workstation has 
to send a packet to another machine that is on the same network number, the packet is sent 
directly to the destination machine. If the destination is on a different network number, the packet 
is forwarded to the default gateway for routing through the internetwork and on to the final 
destination.  

 

 Routers make more complex decisions. They must know how to get to all other network numbers 
on the internetwork and the best way to route the packets, and they need to keep track of an 
internetwork topology that is constantly changing due to equipment or other failures. To execute 



these responsibilities, a router maintains a routing table, which lists all the known network numbers 
and how to get to them. Routers also use routing protocols that keep the routing table accurate for 
a changing internetwork.  

 
 Routers Compared to Other Computers  
 

 

Now let's look at how a Cisco router is similar to and different from other computers on an 
internetwork. A router is similar to other computers in that it has memory, an operating system, a 
configuration, and a user interface. (In Cisco routers, the operating system is called the 
Internetwork Operating System, or IOS, and is proprietary to Cisco.) A router also has a boot 
process similar to other computers in that bootstrap code is loaded from ROM, which enables the 
machine to load its operating system and configuration into memory.  

 
 What makes a router different from other computers is the user interface and the configuration of 
memory.  

 

 
Router Memory Types. Typically a DOS or Unix system has one physical bank of memory chips 
that will be allocated by software to different functions. Routers have separate banks of memory, 
each dedicated to a different function. The function of these memory banks also differs between 
routers. An overview of the function of router memory types is presented in Table 1.1.  

 

 

ROM. Read-only memory (ROM) contains a copy of the IOS that the router is using. The 7000-
series routers have ROM chips on the route processor board. The 4000 has ROM chips on the 
motherboard. In the 7000 and the 4000, the ROM chips can be upgraded to contain new versions 
of IOS. In the 2500 router and 1000-series LAN extender, the ROM chips cannot be upgraded and 
contain a very limited operating system, just enough to make the router operational. The IOS for a 
2500-series router is contained in what is known as flash memory.  

 
 Table 1.1: Summary of Router Memory Details  
 
    
 
 Type of 
Memory  

 

 
 7000   4000   2500   

 
    
 
 ROM   

 
 Upgradeable IOS   Upgradeable IOS   Non-upgradeable basic 

OS  
 

 
 RAM Shared   

 
 Storage Buffers  

 Storage Buffers  
 Storage Buffers  

 

 
 RAM Main   

 

 
IOS loaded from Flash, 
plus route tables and 
other data structures  

 as 7000   Routing tables and 
other IOS data 
structures only  

 

 
 Flash  

 
 Contains IOS 

 
Contains IOS 

  



 Flash    Contains IOS  Contains IOS  Contains IOS (Router 
runs IOS from flash)  

 
 NVRAM   

 
 Config files  

 Config files  
 Config files  

 

 

 
Note: Because the 2500 series runs its IOS from flash memory, a 2500 might not have enough 
memory in it to have the IOS upgraded while the router is running. In the 7000 and 4000 series the 
IOS is running in main RAM; therefore flash can be upgraded while the router is running.   

 
    
 

 

If you are running a version of Cisco IOS earlier than version 11, you will see one unnerving 
feature of the 2500 series if you attach a terminal to the console port during boot-up. The ROM 
IOS checks the configuration file and will not recognize most of the commands. This results in 
many error messages being reported to the screen. This is normal operation. When the IOS in 
flash memory loads, normally no error messages are displayed.  

 

 
RAM. Random access memory (RAM) is split by the IOS into shared and main memory. Main 
memory is used to store router configuration and IOS data structures relevant to the protocol being 
routed. For IP, main memory is used for such things as holding routing tables and ARP tables; for 
IPX, main memory holds SAP and other tables. (These terms are explained later.)  

 

 
Shared memory buffers packets waiting to be processed. This type of memory is only used by 
4000- and 2500-series routers. The 7000 routers have a switch processor that controls the flow of 
packets through the router.  

 

 
Flash Memory. Flash memory holds the current version of IOS running on the router. Flash 
memory is erasable memory that can be overwritten with newer versions of the IOS—unlike ROM, 
which is located in physical chips that cannot have their contents overwritten.  

 
 NVRAM. Nonvolatile RAM (NVRAM) does not lose its contents when the router is switched off. 
NVRAM holds the router configuration.  

 
 Booting a Router. Routers boot up in a similar fashion to PCs; the procedure is as follows:  
 
   1.Load bootstrap program from ROM.  
 
   2.Load operating system (IOS, the Internetwork Operating System) from flash memory.  
 
   3.Find and load configuration file in NVRAM or on a prespecified network server. If no 

configuration file exists, the router enters setup mode.  
 



Getting to Know Your Router  
 
 This section explains connecting a terminal to a router, understanding the Cisco user interface, 
and executing basic Cisco commands.  

 
 Connecting a Terminal to a Cisco Router  
 

 
The discussion here uses connection to a Cisco 2500-series router as an example. Throughout 
this section, it is assumed that the router to which you are connecting has already received a basic 
configuration. A later section will cover configuring a router from scratch.  

 

 
Figure 1-6 shows the connections that we need to make at the rear of a 2501. Each router will 
come with a console connection kit, which comprises a black RJ-45 cable and an array of 
connectors. To connect a Wyse or other standard ASCII terminal as the console, do the following: 

 
   1.Connect the RJ-45 cable to the console port on the back of the router.  
 
   2.Connect the 25-pin attachment labeled "terminal" to the other end of the RJ-45 cable.  
 
   3.Connect a male-to-male gender changer to this 25-pin connector.  
 
   4.Connect this 25-pin attachment to the Wyse port.  
 

 

  
 
 Figure 1-6: Router console port to ASCII terminal connections 

   
 
 A gender changer is needed because many ASCII terminal providers supply only female 
connectors on their terminals.  

 

 
If you want to connect your router to a PC and run a terminal emulator of some kind, life is easier. 
Most PCs come with 9-pin serial port connectors, so just connect the 9-pin serial connector to the 
RJ-45 cable and link the router console port to the PC serial port. As long as you set your terminal 
emulation program to 9600 bps, with 8 data bits, no parity, and 1 stop bit, you should be okay.  



 
 The Cisco User Interface  
 

 

A large part of this text will be devoted to entering configuration, reporting, or other commands, 
and viewing the router's responses. To do this efficiently in practice, it will help you to know how 
the Cisco user interface works. Think of this as similar to learning DOSKEY in the PC world or the 
vi editor in the Unix world. It's important to know at the beginning that you do not have to type in 
the entire command for the router to know what to do for you. As long as you type enough to 
identify a unique command, the router will accept it. Here's an example:  

 
 Hostname#wri t  
 

 
This is the abbreviation for the command write terminal; the string wri t is enough 
information for the router to interpret the command correctly, and, as we shall see later, this 
command will cause the router to display its configuration to the screen.  

 

 
Assuming you have connected a terminal to the console port of a previously configured router, you 
will be presented with a password or router prompt. After entering an appropriate password, if 
necessary, the display will look something like this:  

 
 Hostname>  
 

 
At this stage, we can start to enter commands. In the Cisco user interface, there are two levels of 
access: user and privileged. The first level of access that allows you to view router status is known 
as user EXEC mode.  

 

 
The privileged mode is known as privileged EXEC mode. This mode is needed to view router 
configuration, change configuration, and run debugging commands. Privileged EXEC mode often 
is referred to as Enable mode because, in order to get into privileged EXEC mode, you have to 
enter the enable command followed by an appropriate password. This is achieved as follows:  

 
 Hostname>enablePress the Enter key  
 password:Supply the Enable password, then press Enter  
 Hostname#  
 
 The visual evidence that you now have Enable privilege is that the command prompt has now 
changed to a # character alone.  

 

 

Before we proceed, you also need to be aware that the router can be in one of two modes. The 
first is what I will term view mode. With this mode, you can enter the show and debug commands. 
This allows you to view the status of interfaces, protocols, and other items related to the router. It 
is the mode that the router will be in after you first log on. The second is configuration mode. This 
allows you to alter the configuration running in the router at that time. This is important to realize, 
because as soon as you press the Enter key after entering a configuration command, that 
command takes immediate effect even before you leave configuration mode. You can get into 
configuration mode only after gaining Enable privilege. This is achieved as follows:  

 



 Hostname#config terminalPress Enter  
 Enter configuration commands, one per line. End with Ctrl/Z.  
 Hostname(config)#  
 

 
Note that the line telling you to end with Ctrl-Z is echoed back by the computer. The command to 
get into configuration mode in this case tells the router that it is to be configured from the terminal. 
The router also can be told to get its configuration from a network server; this will be covered later. 
You will notice that the prompt changes to remind you that you are in configuration mode.  

 
 The following is an example of how to enter configuration commands for the Ethernet 0 interface:  
 
 Hostname(config)#interface ethernet0Press the Enter key  
 Hostname(config-int)#  
 
 To move back one level, type in the following:  
 
 Hostname(config-int)#exitPress the Enter key  
 Hostname(config)#  
 
 If you wish to exit configuration mode from any level, simultaneously hold down the Ctrl and press 
the Z key:  

 
 Hostname(config-int)<Ctrl-Z>Press the Enter key  
 Hostname#  
 
 To exit Enable mode, type in the following:  
 
 Hostname#exitPress the Enter key  
 Hostname>  
 
 You now have the basics for navigating the user interface.  
 
 Shortcuts.The following lists the more useful of the available keystrokes for the Cisco IOS. If 
<Ctrl-x> appears, it means you should hold down the Ctrl while pressing the character x key.  

 

 

Arrow Keys. The arrow keys are useful only with an ANSI/VT100-emulating terminal. The up and 
down keys display the command history; for example, pressing the up arrow will display the 
previous command. By default, 10 commands are kept in the history. If you want to change that, 
go into configuration mode and type in terminal history xx, where xx is the number of 
commands to remember. The down arrow key will go forward in the command history.  

If you are not using an ANSI/VT100 terminal or emulation, the command history can still be 



in the command history.  
 
 Backspace or DEL. Either of these keys deletes the character before the cursor.  
 
 Tab or Enter. Each of these keys executes the command entered.  
 
 The ? Key. Possibly the most useful key in the user interface, the "?" key, can be entered at any 
time to find out what can be entered next. This is best illustrated with an example:  

 
 Hostname>show ip route ?  
 

 
 Press the Enter key   

 bgp    Border Gateway Protocol   
 Connected    Connected networks   
 egp    Exterior Gateways protocol   
 eigrp    Enhanced Interior Gateway Routing Protocol   
 igrp    Interior Gateway Routing Protocol   
 isis    ISO is-is   
 ospf    Open Shortest Path First   
 rip    Routing Information Protocol   
 static    Static routes   
 summary    summary of all routes   
 supernets-only    show supernet entries only   

 Hostname>show ip route  
 

    

 

 
After the question mark is entered, the router informs you of the options available to complete the 
command, and re-enters the command typed in so far, so that all you need to do is select the 
appropriate option. As soon as you see a <cr> option in the available command listing, you know 
that you can press the Enter key and the router will execute the command.  

 

 
A point to note here is that if the list of options extends past one screen, the last line of the display 
will show More. Pressing the keyboard space bar will show the next page of information, and 
pressing the Enter key will show the next single line of information.  

 
 The following key combinations illustrate useful commands:  
 
   •<Ctrl-A>  

 
Move cursor to beginning of line.  

 

 
   •<Ctrl-B>  

 
Move cursor back one character.  

 

 
   •<Ctrl-D>  

 
Delete the character the cursor is on.  

 

 
   •<Ctrl-H> 

 
Same as backspace, i.e., delete the character before the cursor. 

 



   •<Ctrl-H>  Same as backspace, i.e., delete the character before the cursor.  
 
   •<Ctrl-K>  

 
Delete characters to end of line. The characters are held in a buffer and can 
be recalled for later insertion in a command line.  

 

 
   •<Ctrl-U>  

 
Delete to end of line; again, the characters go to a buffer.  

 

 
   •<Ctrl-V>  

 
Used to insert control characters in the command line. It tells the user 
interface to treat the next character literally, rather than as an editor 
command.  

 

 
   •<Ctrl-W>  

 
Delete the previous word.  

 

 
   •<Ctrl-Y>  

 
Paste the character from the buffer (same as the yank command in Unix).  

 

 
   •Esc <  

 
Show the first line from the history buffer.  

 

 
   •Esc >  

 
Show the last line from the history buffer.  

 

 
   •Esc b  

 
Move cursor back one word.  

 

 
   •Esc d  

 
Delete the word in front of the cursor.  

 

 
   •Esc f  

 
Move the cursor forward one word.  

 

 
   •Esc Del  

 
Delete the word before the cursor.  

 

 

 

Many administrators with either a PC or UNIX background ask about a full-screen editor within the 
IOS for altering configuration. This is unlikely ever to be available. A full-screen editor within the IOS 
raises questions of when command syntax is checked, at what time the changed configuration 
takes effect, and so forth. Once you are familiar with the user interface, it does seem efficient and 
simple to use. In Chapter 3 we'll look at how a full screen text editor can be used to edit an ASCII 
file, which can then be loaded via a TFTP server on to a router. The router configuration files are 
stored as ASCII. This is particularly useful if you have multiple routers to configure, each needing a 
similar configuration.  

 



Summary  
 

 
This chapter looked at the role of a router in an internetwork, and contrasted that with the operation 
of other network devices, such as PCs and bridges. We also saw how to connect a terminal to the 
console port of a router, so that the basics of the Cisco user interface could be explored.  

 



Chapter 2: TCP/IP Communications  
 
 Objectives  
 
 The objectives of this chapter are as follows:  
 
   •Introduce the TCP/IP and OSI communication models.  
 
   •Define the protocols of the TCP/IP protocol suite.  
 
   •Explore the addressing schemes used by the different layers of the TCP/IP protocol suite.  
 
   •Examine how the protocols and reference tables maintained by the protocols cooperate to 

transport a packet through an internetwork.  
 
   •Serve as a technology primer. (Chapter 3 deals with the practical aspects of implementing the 

protocols discussed here on Cisco router equipment.)  
 



What Is TCP/IP?  
 

 

TCP/IP (Transmission Control Protocol/Internet Protocol) is a suite of network protocols. TCP and 
IP are only two of the protocols within this suite; they are, however, two of the most important. A 
protocol specification is comparable to a language. As with any spoken language, there are rules 
regarding the meaning of certain sounds, and which words signal the beginning or ending of a 
conversation.  

 

 
TCP/IP is a set of rules that can be considered computer language, equivalent in human terms to 
English or French. Just as a human who speaks only English and a human who speaks only 
French will find it difficult to have a meaningful conversation, so a computer that speaks only 
TCP/IP will have difficulty exchanging information with a computer that speaks only Novell's IPX.  

 
 With TCP/IP enabled, computers using dissimilar operating systems are able to exchange data in 
an orderly fashion.  

 

 

The most commonly quoted model for describing data communications is the Open Systems 
Interconnection (OSI) model. This seven-layer model was defined for the OSI set of protocols and 
gives us a framework for examining the roles and responsibilities of each protocol within the 
TCP/IP suite. Throughout the remainder of this book, protocols will be referred to as belonging to a 
specific OSI model layer, such as layer 2 or layer 3. The following gives a brief definition of the OSI 
model and then compares it to the Department of Defense four-layer data communications model 
that originally was used to classify protocols within the TCP/IP protocol suite. In order for you to 
communicate effectively with network engineers, you need at least a basic understanding of this 
OSI model.  

 
 The OSI Data Communications Model  
 

 

The OSI Reference Model provides a model for computer networking. The OSI Reference Model 
was defined by the International Standards Organization (ISO) and consists of seven layers. Each 
layer has a task to perform. The layers are: Application, Presentation, Session, Transport, 
Network, Data Link, and Physical. The layers from Application through Network generally are 
implemented in software. The Data Link and Physical layers are implemented with both hardware 
and software. Table 2.1 outlines the responsibilities of these seven layers.  

 
 Table 2.1: OSI Reference Model Layer Definitions  
 
    
 
 Layer   

 
 Description  

 

 
    
 
 Layer 7: Application layer   

 

 
The Application layer consists of application programs and the 
user interface. It is through features in this layer that all 
exchange of meaningful information occurs between users.  

 

   



 Layer 6: Presentation layer    The Presentation layer defines the representation of data, so 
that data is exchanged in an understandable format.  

 
 Layer 5: Session layer   

 

 
The Session layer sets up and terminates communications on 
the network. It also manages the dialogue between users and 
systems. It is at this level that user and machine names are 
interpreted.  

 

 
 Layer 4: Transport layer   

 

 
The Transport layer controls the quality and reliability of the 
data transmission. Packets are sequenced and acknowledged 
at this layer. An example of a layer 4 protocol is TCP.  

 

 
 Layer 3: Network layer   

 

 

The Network layer routes data through the network. It 
allowsany properly configured pair of nodes on an internetwork 
to communicate. The Network layer calculates routes and 
controls congestion. An example of a layer 3 protocol is 
NetWare's IPX.  

 

 
 Layer 2: Data Link layer   

 

 
The Data Link layer packages and unpackages data for 
transmission across a single link. It deals with data corruption 
(through checksumming) and coordination of shared media. An 
example of a layer 2 protocol is Ethernet.  

 

 
 Layer 1: Physical layer   

 

 

The Physical layer establishes the physical connection 
betweena computer and the network. It also controls the 
transmission of information and specifies the mechanical and 
electrical characteristics of the protocol in terms of connector 
size, pin assignments, and voltage levels. An example of a 
layer 1 protocol is RS-232.  

 

 
    
 

 

The concept behind this model of network computer communication is that, at the Application 
layer, an application will want to send some data to another application residing on another 
machine on the network. An example may be a workstation mail program wishing to send mail to 
another user via a mail server. The workstation mail application has to take the text of the 
message to be sent and package it in some way with an address of its destination. This 
information must somehow be encoded into electrical signals representing binary 1s and 0s that 
can be transmitted over a network cable.  

 

 

In this example, the application at layer 7 will define what text has to be sent. To reach its 
destination on another machine, the message must descend through the layers of this model, 
through software layers, through the network card and cable hardware, across a network cable of 
some kind, and ascend through the corresponding layers on the destination machine to the 
destination application.  

 
 As the message descends through the layers, it looks less like human language and more like the 
1s and 0s that a computer understands.  



 
The terminology used by the ISO to describe this process is as precise and as abstract as one 
would expect of a large international committee. It will be used in this example for the sake of 
clarification.  

 

 
The two key ideas to absorb from the following discussion are that each layer will only "talk" to its 
corresponding layer on another machine, and each layer encapsulates information from the layer 
above as the message descends through the layers for transmission.  

 

 

The message that each layer on the sending machine will send to its corresponding layer on the 
receiving machine is termed a Protocol Data Unit (PDU). The message that passes between 
layers on the same machine is called a Service Data Unit (SDU). To make it clear about which 
type of data unit we are talking, each PDU and SDU has a prefix attached. For example, referring 
to Fig. 2-1, consider the Transport layer sending a Transport PDU from the sending to the 
receiving machine. To get the TPDU from the sending to the receiving machine, the sending 
machine's Transport layer sends a Network SDU to its Network layer. The Network layer passes 
an LSDU to the Data Link layer, which passes a PhSDU to the Physical layer for transmission on 
to the network cable.  

 

 
At the receiving machine, the process is reversed, until the Network layer sends a Network SDU to 
the Transport layer, at which point we can say that the receiving machine's Transport layer has 
received a TPDU from the sending machine.  

 

 
An important concept about this layered model is that as the information passes down through the 
layers, the software responsible for each layer will add its own header information. This concept is 
referred to as encapsulation; each layer is said to encapsulate the information from a higher layer. 

 

 

  
 
 Figure 2-1: Units of communication described in the OSI data communications model 

   
 

 
Consider Fig. 2-2. Using the example of a mail message, "Hello Fred," that is sent from the 
sending machine to the receiving machine, we can describe the communications process as 
follows:  



 

  
 
 Figure 2-2: Encapsulation through the layers of the OSI model 

   
 

 

The "Hello Fred" message, along with other Application data, will be delivered to the layer 6 
protocol as a PSDU. The layer 6 protocol adds its header information and passes an SSDU down 
to the layer 5 protocol. The layer 5 protocol cannot interpret the layer 6 header or anything else in 
the SSDU, and treats all of the SSDU as user data. To pass a TSDU to the layer 4 protocol (the 
Transport layer), the layer 5 protocol adds a layer 5 header in front of the SSDU, and this process 
continues until a PhSDU is given to the Physical layer, where binary 1s and 0s are converted into 
electrical signals for transmission over the network media.  

 

 

At the receiving machine, the electrical signals are translated into 1s and 0s by the Physical layer, 
and the layer 2 (Data Link) protocol interprets these 1s and 0s as frames, removes the layer 2 
header generated by the sending machine's layer 2 protocol, and passes an LSDU up to its 
Network layer. Again, this process of each layer removing its own header and passing the 
information upwards continues until "Hello Fred" and the other Application data are delivered to the 
receiving machine's Application layer.  

 

 
The ISO designed protocols for all layers in this model. These protocols, however, have not 
become as widely quoted or used as the model that defines their operation. The main reason for 
this is that the TCP/IP protocol suite was already defined, in widespread use, and proven to work 
well in many environments.  

 
 Next we look at how the Department of Defense in the United States defined a model for computer 
communications and implemented this model with the TCP/IP protocol suite.  

 
 Department of Defense Model  
 

 
The Department of Defense (DoD) has defined a four-layer networking model. Each layer of this 
model consists of a number of protocols that are collectively referred to as the TCP/IP protocol 
suite.  

 



Requests for Comments (RFC). The RFCs are submitted by various Internet users who are 
proposing new protocols, suggesting improvements of existing protocols, or even offering 
comments on the state of the network. These documents are online on various systems on the 
Internet, and are available to anyone.  

 

 
Table 2.2 shows the DoD's four-layer model. You can see that the layers of the DoD model do not 
precisely match those of the OSI model. For example, in DoD terms IP is a layer 2 protocol, 
whereas in OSI terms it is a layer 3 protocol. Throughout the rest of this book, when a protocol 
function is referred to as belonging to a particular layer, it is the OSI layer definition that is used.  

 
 Table 2.2 : The DoD Data Communications Model  
 
    
 
 Layer   

 
 Description  

 

 
    
 
 Layer 4: Application layer   

 

 
The Application layer consists of application programs and serves 
as the window, or network interface. It is through this window that 
all exchange of meaningful information occurs between 
communication users. Examples includes Telnet and SMTP.  

 

 
 Layer 3: Host-to-Host 
Transport layer  

 
 Provides end-to-end data delivery services. The    

 
    

 
 protocols at this layer are TCP and UDP.  

 

 
 Layer 2: Internet layer   

 
 Defines the datagram or frame format and handles   

 

 
    

 
 routing data through an internetwork. Examples   

 

 
    

 
 include IP and ICMP.  

 

 
 Layer 1: Network Access 
layer  

 

 
 Defines how to access a specific network topology such as 
Ethernet or Token-Ring.  

 

 
    
 

 
Application Layer. Several protocols make up the Application layer of the TCP/IP suite. This layer 
of the TCP/IP protocol suite corresponds roughly to the Application, Presentation, and Session 
layers of OSI Reference Model. The protocols implemented at the Application layer are:  

 
   •Telnet  This a terminal emulation service that provides remote login over the network.  



 
   •FTP  File Transfer Protocol is used for interactive file transfer.  
 
   •NFS  The Network File System allows directories on a host computer to be shared by other 

machines on the network.  
 
 Each application normally requires two separate programs: a client program and a server program 
(often referred to as a daemon).  

 

 
The daemon program runs in the background on the host server and may start when the system 
starts. More often, daemon programs are started by the INETD process, which starts and stops 
these programs as required by the system. A user, on the other hand, executes the client program 
to gain access to the server.  

 
 As we shall see, some Application layer protocols use different Transport layer protocols; for 
example, Telnet and SMTP rely on TCP, whereas RIP and DNS rely on UDP.  

 

 

Host-to-Host Transport Layer. The Host-to-Host Transport layer is often referred to simply as the 
Transport layer; for convenience, I will do this also. This layer is responsible for delivering packets 
between the Internet layer and an application. An important concept in the world of TCP/IP 
communications is that of port numbers (sometimes referred to as socket numbers). Each 
application running in the computer will be given a unique port number at the Transport layer.  

 

 
This can be thought of as the application's address within the host machine. The most common 
port numbers assigned can be viewed on any Unix machine in the /etc/services file. This file lists 
common applications, and which Transport layer protocol and port number each application uses.  

 

 

There are two types of protocol within the Transport layer. The first we shall look at is TCP, which 
is a connection-oriented protocol. The type of communication this protocol delivers is known as 
reliable data delivery. When this type of protocol sends data between two machines, the sending 
machine first informs the network that it needs to start a conversation with some other machine on 
the network. The network then informs the intended receiving machine that a connection is 
requested, and the request either is accepted or refused. This is similar to using the telephone 
system in that the sender knows whether the intended recipient is there and available before data 
is sent. Typically, a connection-oriented protocol has the following features:  

 
   •The network guarantees that all packets sent will be delivered in the correct order, without loss or 

duplication. If this is not possible, the network will terminate the call.  
 
   •If a network becomes overly busy, future call requests are refused in order to preserve the 

integrity of existing calls.  
 

 

Thus it is not possible to send a broadcast packet using a connection-oriented protocol. By 
definition, a broadcast packet is sent to multiple hosts on the same network. The first thing a 
connection-oriented protocol tries to do is contact the intended destination machine and see if it 
will accept new calls. In a properly designed network addressing scheme, no computer will claim to 
own a broadcast address.  

 



 

The second type of protocol at the Transport layer is a connectionless protocol, which in the case 
of TCP/IP is the User Datagram Protocol (UDP). A connectionless protocol transmits its data onto 
the network with a destination address, and assumes that it will get there. This is similar to using 
the postal service. The network does its best to deliver the data intact and in the correct order, but 
if multiple paths exist between sender and receiver, out-of-sequence packet delivery is likely. 
Connectionless protocols assume that the application running in the Application layer takes care of 
these things.  

 

 

The choice of using a connection-oriented or a connectionless protocol is not always as 
straightforward as it might seem. A connection-oriented protocol may seem attractive because of 
the guarantees it gives, but often the overhead (particularly in terms of packet acknowledgment) 
can make certain system implementations impossible. It is generally an application developer 
issue and will not be discussed further here.  

 

 

Transmission Control Protocol (TCP).The Transmission Control Protocol is the DoD's 
connection-oriented Transport layer protocol and provides a reliable connection for data exchange 
between different hosts. With this protocol, all packets are sequenced and acknowledged, and a 
virtual circuit is established for communications. Upper-level applications using TCP include the 
following:  

 
   •Virtual Terminal Protocol (Telnet)  
 
   •File Transfer Protocol (FTP)  
 
   •Simple Mail Transfer Protocol (SMTP)  
 

 
TCP provides reliability through the use of acknowledgments with retransmission. The idea of an 
acknowledgment is that the receiving machine has to reply to the sending machine that the 
message sent was received intact. If an acknowledgment is not received, the sending machine will 
assume that the message was not received and will retransmit it.  

 

 
If the receiving machine had to reply to every packet, the result would be a lot of overhead on the 
network (assuming that most packets get through in a well-designed network). To reduce 
overhead, TCP employs a concept called windowing.  

 

 

The window size advertised by a receiving machine tells the sending machine how many bytes it 
can accept—essentially how much space is available in its receive buffer. The sending machine 
uses the window size to determine how much data can be sent before it must receive another 
acknowledgment. If an acknowledgment is not received within the specified window size, 
retransmission occurs beginning with the last acknowledged data. Typically, if the receiving 
machine's receive buffer is getting full, it will advertise a decreasing window size to slow the rate of 
incoming traffic. If a window size of zero is advertised, the sender will not send any further data 
until it receives an acknowledgment with a nonzero window value.  

 
 The window size normally is determined by an algorithm coded into the TCP protocol stack, and 
varies according to the characteristics of the host machines and network in use.  

 
 To establish a TCP connection, a three-step handshake is exchanged between sender and 
receiver to establish a dialogue before data is transmitted. This process is illustrated in Fig. 2-3.  



 

 

  
 
 Figure 2-3: The TCP three-way handshake to initiate a connection 

   
 

 

To initiate communications, the sending machine transmits a Synchronize Sequence Numbers 
(SYN) packet to the receiving machine, to inform the receiving machine that a new connection is 
requested and to state which number will be used as the starting point for numbering the 
messages sent. These sequence numbers are used to ensure that packets received are 
processed in the order sent. For the process to continue, the receiving machine must acknowledge 
this SYN packet and tell the sender the sequence number at which it will start sending data. This is 
achieved by the receiving machine returning a SYN ACK packet to the sending machine. Finally, 
the sending machine sends an acknowledgment of the information sent by the receiving machine 
and sends the first data.  

 

 
This process provides proof positive, before any message transmission occurs, that the receiving 
machine is alive and ready to receive data. To close the connection, a similar three-step 
handshake is exchanged, using the FIN packet.  

 
 TCP views the data sent as a continuous stream of information. Fragmenting information into 
discrete packets to be sent over a network is the responsibility of the DoD Internet layer.  

 

 

User Datagram Protocol (UDP). The User Datagram Protocol provides unreliable, connectionless 
delivery service. It lets the upper-level applications send sections of messages, or datagrams, 
without the overhead involved in acknowledging packets and maintaining a virtual connection. The 
one similarity between TCP and UDP is that UDP also uses port numbers to identify applications 
running in the sending and receiving machines.  

 

 
With UDP you have no way of knowing whether or when the message arrives at its destination, or 
the order in which messages sent are received. Because there are no acknowledgments or three-
step handshakes to begin data transmission with UDP, it is possible to use this protocol for 
broadcast messages that are sent to all hosts on a network.  

 
 Upper-level applications using UDP include the following:  
 
   •Trivial File Transfer Protocol (TFTP)  
 
   •Network File System (NFS)  
 
   •Broadcasts  
 



 
Internet Layer. The Internet Protocol (IP) is the most important protocol of the Internet layer. All 
traffic, incoming and outgoing, goes through IP. The primary purpose of the Internet layer is to 
route packets between different hosts, which is accomplished by the addressing scheme of IP. The 
Internet layer consists of four protocols, as shown in Table 2.3.  

 

 

Internet Protocol (IP). IP is a connectionless protocol and does not guarantee delivery of packets 
across a network. IP relies on higher-layer protocols either in the Transport or Application layers to 
provide connection-oriented service if necessary. (In some older implementations, the Data Link 
layer is used; see the section on X.25 and LAPB in Chap. 6.) The IP header contains many fields, 
the most important of which are the Source Address, Destination Address, and Time To Live. The 
format of IP addresses is explained later in this chapter.  

 
 Table 2.3 : DoD Model Internet Layer Protocols  
 
    
 
 Protocol  Description  

 

 
    
 
 Internet Protocol  The Internet Protocol (IP) provides datagram 

service between hosts. It is responsible for 
addressing packets, packet routing, 
fragmentation, and reassembly, and moving 
data between the Transport and Network 
Access layers.  

 

 
 Internet Control Message Protocol  The Internet Control Message Protocol (ICMP) 

lets routers and hosts send error or control 
messages to other routers or hosts.  

 

 
 Address Resolution Protocol  The Address Resolution Protocol (ARP) 

translates a host's software address to a 
hardware address.  

 

 
 Reverse Address Resolution Protocol  The Reverse Address Resolution Protocol 

(RARP) determines a software address from a 
hardware address. Diskless workstations often 
use this proto-col when booting up, to find out 
what their IP address will be. DHCP, which is 
a superset of BOOTP, is more commonly 
deployed than RARP for this functionality 
these days.  

 

 
    

Delivering a packet from one machine on the internetwork to another is handled by IP. Based on 



application on PC1 needs to send data first to PC2, and then to PC3.  
 

 

  
 
 Figure 2-4: Delivering packets on the same segment and across routers 

   
 

 

In the first instance, where PC1 needs to send to PC2, examination of the destination address tells 
IP that the destination is on the same network number. In this case, the packet is sent directly to 
PC2. In the case in which PC1 needs to send a packet to PC3, examination of the destination 
address tells IP on PC1 that PC3 is on a different network. In this case, PC1 will examine its 
configuration and send the packet to its default gateway for routing to the final destination. The 
terms gateway and router are interchangeable in most TCP/IP documentation. A gateway or router 
(however one refers to it) is responsible for routing packets between different physical networks.  

 

 

The Time To Live field is used to ensure that a packet caught in a routing loop (i.e., a packet 
circulating between routers and never reaching a destination) does not stay in the internetwork 
forever. Each time a packet travels through a router, its Time To Live field is reduced by one. If this 
value reaches zero, a router will discard the packet. Different routing protocols have different initial 
values for the Time To Live field. The initial value for the TTL field is usually 255. However, some 
IP stacks implement a value of 64. We will revisit this issue in Chapter 4.  

 
 ICMP. The Internet Control Message Protocol performs four main functions, which are:  
 
   •Flow control  When a receiving machine is too busy to accept the incoming stream of data from a 

sending machine, it sends a Source Quench Message to temporarily stop the stream of data.  
 

   
•Unreachable destination alerts  If a machine on the network detects that a destination is 
unreachable, either because the destination address does not match an operating machine on the 
network, or due to a link failure, it will send a Destination Unreachable message to the sending 
machine.  

 

   

•Redirecting routes  A gateway sends an ICMP redirect message to tell a sending machine to use 
another gateway. Consider an example in which a gateway receives from a sending machine a 
packet that is destined for a given network. If the gateway knows that the destination network can 
be reached more efficiently by the sending machine using a different gateway, it will tell the 
sending machine so, by issuing an ICMP redirect.  

 
   •Checking remote hosts  ICMP echo messages are used to check the physical connectivity of 

machines on an internetwork. The ICMP echo packet is more commonly known as a ping packet.  
 



Internet protocol used to associate an IP address to a physical address, typically Ethernet or 
Token-Ring 802.2 MAC addresses. (MAC addresses are discussed more fully in Chap. 3.) Each IP 
device on the network maintains an address resolution table. This table maps MAC addresses to 
IP addresses. When a computer that uses IP for network communication wants to deliver a 
message to another computer on the same network segment, the MAC address is responsible for 
getting the packet to the correct workstation.  

 

 
RARP is used to supply an IP address to a diskless workstation at boot time. A diskless 
workstation will know its MAC address, and will request an IP address at boot time from a RARP 
server via a broadcast.  

 

 

Network Access Layer. The Network Access layer relates the Internet software layer to the 
hardware that carries the data, and it is the lowest layer in the DoD data communications model. 
The key point to understand is that network numbers are not understood at this layer; the 
addresses used at the Network Access layer have significance only for the network segment on 
which the packet is transmitted. The addresses at the Network Access layer do not traverse a 
router.  

 

 
Unlike the other layers in the DoD model, the Network Access layer must know the details of the 
underlying network so that packets can be formed correctly and sent across the physical network 
in place.  

 

 
The functions performed at this layer include forming network packets and using MAC addresses 
to deliver packets on a network segment. It is here that the protocols define those electrical and 
mechanical specifications of communication that allow a packet to be transported on a given 
network.  

 

 

By means of a Frame Check Sequence (FCS), this layer ensures that packets that have been 
subjected to interference during transmission are not accepted at their layer 2 destination. The 
FCS is calculated by the sending machine and attached to the message sent. The receiving 
machine performs the same calculation and assumes that, if its FCS matches that received with 
the packet, that packet is okay. If the FCS values do not match, the packet is discarded. Typically, 
at this layer protocols do not re-request the transmission of damaged and discarded frames. (An 
exception is X.25's LAPB protocol, discussed in Chap. 6.)  

 

 
The Network Access layer specifies the physical (hardware) medium for data transmission. The 
Institute of Electrical and Electronics Engineers (IEEE) Project 802 established standards that 
define interface and protocol specifications for various network topologies.  

 

 

The people on Project 802 split the OSI Data Link layer in two. Project 802 created the Logical 
Link Control (LLC) sublayer and the Media Access Control (MAC) sublayer. The LLC sublayer 
defines how a receiving machine discards damaged packets. The MAC sublayer handles issues of 
supplying globally unique hardware addresses to device interfaces.The following sections list MAC 
specifications defined by the 802 committees. Each of these MAC standards defines a unique 
packet (or frame) format.  

 
 802.3 (Ethernet). The following Ethernet protocols use a bus topology and the media types listed: 
 
   •10Base5Thick Ethernet, 50-? coaxial, 10 Mbps  



 
   •10Base2Thin Ethernet, 50-? coaxial, 10 Mbps  
 
   •1Base5Twisted-pair, 1 Mbps  
 
   •10Base-TTwisted-pair, 10 Mbps  
 
 802.4 (Token Bus).Common token bus protocols include the following:  
 
   •Carrierband 1 Mbps, phase continuous, FSK, 75-? coaxial  
 
   •Carrierband 5−10 Mbps, phase coherent, FSK, 75-? coaxial  
 
   •Broadband 1, 5, 10 Mbps, multilevel, duobinary, AM/PSK, 75-? coaxial  
 
 802.5 (Token Ring). Token ring networks (such as IBM's Token-Ring) use the following protocols: 
 
   •1 Mbps, shielded twisted-pair (IEEE)  
 
   •4 Mbps, shielded twisted-pair (IEEE)  
 
   •16 Mbps, shielded twisted-pair (IBM)  
 
   •16 Mbps, early token release (IBM)  
 



TCP/IP Addressing  
 

 
As previously illustrated, when connecting two systems using TCP/IP, each protocol layer on one 
host communicates directly with the corresponding layer on the other host. For example, the DoD 
Network Access layer on one host communicates directly with the Network Access layer on 
another host. Each layer will use its own addressing scheme:  

 
   •The Application layer uses a hostname.  
 
   •The Transport layer uses a port number.  
 
   •The Internet layer uses an IP address.  
 
   •The Network Access layer uses a MAC address.  
 

 

Now that all the terms we need to use have been introduced, we start to look at how things really 
work in an internetwork. The goal of the seven OSI layers of communication protocols is to form a 
packet that is correctly encoded for the network topology in use (such as Ethernet or Token-Ring), 
and to direct the packet to the correct destination—or at least to the next router in sequence to 
reach the desired destination. Figure 2-5 shows how the various addresses have to be assembled 
before a packet can be transferred on a network.  

 

 
  

 
 Figure 2-5: Addresses used in a packet to deliver application data across a network 

   
 

 
We will now examine in more detail the addressing used at each layer of the DoD model, and 
conclude the chapter with a summary that illustrates how all the addresses work together to deliver 
a packet.  

 
 Application Layer Addressing  
 

 
The Application layer is the interface to the user. At this layer, computers are addressed by 
hostnames, as it is easier for humans to refer to computers by name rather than by IP address. 
For example, you could call the VAX system in the sales department Sales-VAX, or use any other 
name that is convenient.  

 

 

In the case of the Internet, which contains thousands of systems, two different computers could 
well have the same name assigned by a local administrator. For example, two different companies 
might both choose to name the VAX system in their sales departments Sales-VAX. To avoid 
confusion, the Internet has a number of domains. Each domain has sub domains that can have 
further divisions as necessary. The Internet includes the following domains and usages:  



 
   •MILUsed by the Department of Defense  
 
   •EDUUsed by colleges and universities  
 
   •COMUsed by corporations and other commercial entities  
 
   •NETUsed by those managing the Internet  
 

 
The domain name for a host consists of a set of subdomains separated by periods. For example, 
the computer Sales-VAX located at the Acme company might have a Sales-VAX.acme.com 
domain name. This is referred to as a fully qualified hostname. If one wishes to communicate with 
a host that is at another Internet site, the fully qualified hostname must be used.  

 

 

Hostnames cannot be used as an address in forming a packet to be sent over a network, so they 
are converted to IP addresses, which are used in addressing a packet. To translate a hostname to 
an IP address, a computer typically will refer to a hosts file (normally stored locally in the /etc 
subdirectory) or a Domain Name Service server on the internetwork, which is, effectively, a 
centralized hosts file.  

 
 The hosts file contains three columns: hostname, IP address, and alias. (There can be multiple 
aliases.) Here's an example:  

 
 123.45.45.45Host1Host1.acme.com  
 
 345.12.12.12 Host2Host2.acme.com  
 
 173.23.6.4 Host3Host3.acme.com  
 
 127.0.0.1 localhost  
 

 
Manually keeping all hosts files on all machines on an internetwork the same can become quite a 
headache. DNS enables you to point hosts to a DNS server on the network, which will resolve 
hostnames to IP addresses for many hosts. This reduces administration, as you only have to 
maintain one database, not multiple hosts files.  

 
 Transport Layer Addressing  
 

 
The Transport layer addresses are quite simple: They consist of a destination and source port 
number. A portion of an /etc/services file from a Unix machine that lists certain well-known port 
numbers is shown below:  

 
 ftp   

 
 21/tcp  

 

   



 telnet    23/tcp  
 
 smtp   

 
 25/tcp  

 

 
 tftp   

 
 69/udp  

 

 
 snmp   

 
 161/udp  

 

 

 

For each Application layer protocol, this tells us the port number and whether the Transport layer 
protocol is TCP or UDP. The port numbers given are destination port numbers. If, for example, a 
computer needs to establish a Telnet session to another computer, it will set a destination port 
address of 23 and pick a random source port address of value greater than 1023. Port numbers 
lower than 1023 are reserved as "well-known" destination port numbers.  

 
 Internet Layer Addressing  
 

 

At the Internet layer, all hosts must have a software address. In TCP/IP the software address for a 
host is the Internet or IP address. This address identifies the network to which the host is attached. 
Routers use this address to forward messages to the correct destination. This layer of addressing 
is the most labor-intensive for network administrators, so we will spend more time on this than any 
other layer.  

 

 
The Internet address of a host consists of 4 bytes or octets, which contain both a network and a 
node address. For every computer, the network portion of its address must match the network 
address of every other computer on that network. The host portion, however, must be unique for 
that network number.  

 

 
If a computer is on the Internet, it is using a network address assigned by the Network Information 
Center of Chantilly, VA, known as the InterNIC, which operates under the authority of the Internet 
Assigned Numbers Authority. Typically an Internet service provider assigns the numbers for 
organizations or individuals. Normally the address is in dotted decimal notation.  

 

 
The Internet Protocol supports three classes of Internet network addresses: A, B, and C, as shown 
in the following table. The important point here is that the value of the first octet defines the class 
to which the address belongs. These classes are summarized in Table 2.4, and shown graphically 
in Fig. 2-6.  

 
 Examples of network numbers (in bold) followed by host addresses for each of the classes appear 
below.  

 
 Class A100.1.1.1  
 
 Class B165.8.1.1  
 
 Class C199.119.99.1  



 To keep track of all the network numbers on an internetwork, each machine maintains a routing 
table.  

 
 Table 2.4 : Internet Address Classes  
 
    
 
 Address Class   

 
 Characteristics  

 

 
    
 
 Class A Networks   

 

 
In a class A network, the first byte is the network address and the 
final 3 bytes are for the host address. There are 126 Class A 
networks, each having up to 16,777,216 hosts. On the Internet, all 
Class A addresses have been assigned.  

 

 
 Class B Networks   

 

 
In a class B network, the first byte is in the 128 to 191 range. The 
first 2 bytes identify the network and the last 2 bytes identify the 
host within that network.  

 

 
 Class C Networks   

 

 
In a class C network, the first byte is in the 192 to 223 range. The 
first 3 bytes define the network and the last byte defines the host 
within that network.  

 

 
    
 

 

  
 
 Figure 2-6: Class A, B, and C network numbers 

   
 

 The Routing Table. Each entry in a routing table provides a variety of information, including the 
ultimate destination network number, a metric, the IP address of the next router in sequence to get 
to the destination (if appropriate), and the interface through which to reach this destination. The 



metric is a measure of how good the route is—basically, the lower the metric, the better the route. 
Other information can be present in routing tables, including various timers associated with the 
route. The routing table can have entries from the following sources:  

 
   •RIP, IGRP, or some other routing protocol  
 
   •Manual entries that can be default or static  
 

 

Static routes are routes that are added manually; a destination and gateway address are specified 
for either a specific host (such as 193.1.1.1), or for an entire network (such as 193.1.1.0). A default 
route can be added by specifying a destination address of 0.0.0.0 when entering a static route. If a 
packet is destined for a network number not listed in the routing table, the default route entry tells 
the router to which IP address it should forward packets. It is assumed that the router to which the 
packet is forwarded will know how to get the packet to its ultimate destination.  

 

 

Life gets more complicated when we use netmasks to split a network number into several subnets. 
A specific example of applying and changing subnet masks on a Cisco router is given in Chap. 3, 
but we will discuss the basic theory here. Most people new to the subject have some difficulty 
understanding how netmasks work. If the following discussion does not help you, don't panic. 
When we get to Chap. 3 and see the effect that changing netmasks has on a real network, things 
should become more clear.  

 

 
Subnet Masks. Netmasks are used to split a network into a collection of smaller subnetworks. 
This may be done to reduce network traffic on each subnetwork, or to make the internetwork more 
manageable. To all intents and purposes, each subnetwork functions as if it were an independent 
network.  

 

 
Communication between a node on a local subnetwork and a node on a different subnetwork is 
like communication between nodes on two different networks. To a user, routing between 
subnetworks is transparent. Internally, however, the IP software recognizes any IP addresses that 
are destined for a subnetwork and sends those packets to the gateway for that subnetwork.  

 

 
In an internetwork without netmasks, the routing table keeps track of network numbers. In an 
internetwork with netmasks, the routing table maintains a list of subnets and how to reach them. 
When netmasks are used, an IP address is interpreted as follows:  

 
 IP address = Network address.Subnetwork address.Host address  
 
 This shows that when a network is divided into subnetworks, the host address portion of the IP 
address is divided into two parts, the subnetwork address and the host address.  

 

 
For example, if a network has the Class B IP network address portion 129.47, the remainder of the 
IP address can be divided into subnetwork addresses and host addresses. The network 
administrator controls this division to allow for maximum flexibility for network development at the 
site.  



 
A subnet mask is the mechanism that defines how the host portion of the IP address is divided into 
subnetwork addresses and local host address portions. The subnet mask is a 32-bit (4-byte) 
number, just as an IP address is.  

 
 To understand the mechanics of the netmask, it is important to know a little binary arithmetic. We 
will go through the process of working out how netmasks work. Then I will show you a shortcut.  

 

 
In binary, the only digits available are 0 and 1. This means that the rightmost digit of a binary 
number represents the amount of 1s in the number, either 0 or 1. The next digit represents the 
number of 2s the next digit the number of 4s, etc. To convert the 8-bit binary number 01101001 to 
the more familiar decimal, we need to use the map below:  

 
 128   

 
 64  

  
 32   

  
 16  

 8  
 4 

 2 
 1  

 

 
 0   

 
 1  

  
 1   

  
 0  

 1  
 0 

 0 
 1  

 

 

 
This binary number is in fact 105 in the more familiar decimal. You can check this by using a 
scientific calculator. If you have eight 0s in a binary number, the decimal value is obviously 0. If 
you have eight ones, the decimal value is 255.  

 
 To see how a netmask splits up the host portion into subnet address and host address, it is 
necessary to convert both the IP address and the netmask to binary.  

 

 
Once the IP address and netmask have been converted to binary, a logical AND is performed 
between the address and netmask (which means the resultant value is 1 if both IP and netmask 
value are a 1; otherwise the result is 0). Let's look at the example computation in Fig. 2-7.  

 
    

 
   

   
   

   
  

   
 

 
 IP address:    201.222.5.121 

   
   

   
  

   
 

 
 Subnet mask:   

 
 255.255.255.248 

   
   

    
  

   
 

 
    Network 

Number  
 

 Subnetwork 
Number  

       
 
 Host Address   

 
    

 
   

   
   

   
  

   
 

 
 201.222.5.121:    11001001   

 11011110 
 00000101 

 01111 
  

 001  
 

 
 255.255.255.248:    11111111   

 11111111 
 11111111 

 11111 
  

 000  
 

 
    

 
    

 

 
 Subnet:   11001001  

 
11011110

 
00000101

 
01111

  
 000 

 



 Subnet:    11001001   11011110 00000101 01111  000  
 
    

 
201   

 222  
 5  

   
  

 120  
 

 
 Figure 2-7: Calculating a subnet mask 

   
 

 

Thus the resultant subnet address is 201.222.5.120. This netmask is said to have 5 bits in the 
subnet field, which leaves 3 bits to define hosts. Note that the last 3 bits of the fourth byte are 
separated off to show the effect of the netmask. With 3 binary bits, there are eight possible values 
(0 through 7). There are, however, only six of these addresses that can be used for hosts on this 
subnet. This is because the first and last values are reserved. The first is reserved for identifying 
the subnet number itself, and the last is the broadcast address for that subnet. This is shown for 
our example IP address and netmask below:  

 
 IP address  = 201.222.5.121  

 

 
 Subnet mask  = 255.255.255.248  

 

 
 Subnet address  = 201.222.5.120  

 

 
 Usable subnet host addresses  = 201.222.5.121 − 201.222.5.126  

 

 
 Subnet broadcast address  = 201.222.5.127  

 

 
 It is good to work through a few examples to understand how it works. Try to work out the subnet 
address, usable host addresses, and broadcast address for the following:  

 
 IP address  = 164.2.34.35  

 

 
 netmask  = 255.255.255.224  

 

 
 IP address  = 101.2.3.18  

 

 
 netmask  = 255.255.0.0  

 

 
 The answers are given at the end of this chapter.  
 
 A quicker way to work it out, which you can use once you are happy with what is going on, is as 
follows:  

 
   •Write down the netmask in binary.  
 
   •Look at the decimal value of the rightmost 1 in the netmask. 



   •Look at the decimal value of the rightmost 1 in the netmask.  
 
 This decimal value tells you what increment in the IP address puts you into a new subnet.  
 
 This is best explained by using an example. Let's say we have a netmask of 255.255.255.224. 
Converting this to binary, we get:  

 
 11111111.11111111.11111111.11100000  
 

 
We can see that the 1s end in the spot that represents the number of 32s we have in the number. 
This means that with every increment of 32 in the IP address, we go into a new subnet. We can 
illustrate this by applying this netmask to the following IP address:  

 
 150.2.3.56  
 
 With the 255.255.255.224 netmask, we get a new subnet every 32 addresses, so the subnets will 
start at:  

 
 150.2.3.0  
 
 150.2.3.32  
 
 150.2.3.64  
 
 150.2.3.96  
 
 150.2.3.128  
 
 150.2.3.160  
 
 150.2.3.192  
 
 150.2.3.224  
 
 So, for the address 150.2.3.56, with a netmask of 255.255.255.224, the subnet address is 
150.2.3.32.  

 

 
Tables 2.5 and 2.6 show how many hosts and subnets result when a range of subnet masks is 
applied to both class B and C networks. Always note that the first and last address for a host or a 
subnet cannot be used.  

 
 Network Access Layer Addressing  



 

 
The Network Access layer addresses can be referred to by several names, which include MAC, 
hardware, and physical addresses. I refer to them as MAC addresses. A MAC address is used by 
one of the network types defined by the Project 802 committee, basically either an Ethernet or 
token-passing network.  

 
 A MAC address is a collection of 6 bytes of information, usually represented with hexadecimal 
numbers and looking something like this:  

 
 08:CA:00:12:34:56  
 

 

Every MAC address in the world is unique. The way this is ensured is that a central body assigns 
the first 3 bytes to manufacturers as a prefix, and the manufacturer then numbers the devices with 
3 additional bytes that are numbered sequentially. If a manufacturer runs out of numbers to assign, 
it can always get a new prefix. If you ever see a device on a network with a MAC address that 
begins with 00.00.0C, you know it is a Cisco device.  

 
 Table 2.5 : Class B Subnetting  
 
    
 
 Bits   

 
 Subnet Mask   

 Subnets  
 Hosts  

 

 
    
 
 2   

 
 255.255.192.0   

 2  
 16382  

 

 
 3   

 
 255.255.224.0   

 6  
 8190  

 

 
 4   

 
 255.255.240.0   

 14  
 4094  

 

 
 5   

 
 255.255.248.0   

 30  
 2046  

 

 
 6   

 
 255.255.252.0   

 62  
 1022  

 

 
 7   

 
 255.255.254.0   

 126  
 510  

 

 
 8   

 
 255.255.255.0   

 254  
 254  

 

 
 9   

 
 255.255.255.128   

 510  
 126  

 

 
 10   

 
 255.255.255.192   

 1022  
 62  

 



 
 11   

 
 255.255.255.224   

 2046  
 30  

 

 
 12   

 
 255.255.255.240   

 4094  
 14  

 

 
 13   

 
 255.255.255.248   

 8190  
 6  

 

 
 14   

 
 255.255.255.252   

 16382  
 2  

 

 
    
 
 Table 2.6 : Class C Subnetting  
 
    
 
 Bits   

 
 Subnet Mask   

 Subnets  
 Hosts  

 

 
    
 
 2   

 
 255.255.192   

 2  
 62  

 

 
 3   

 
 255.255.224   

 6  
 30  

 

 
 4   

 
 255.255.240   

 14  
 14  

 

 
 5   

 
 255.255.248   

 30  
 6  

 

 
 6   

 
 255.255.252   

 62  
 2  

 

 
    
 

 
MAC addresses are used to deliver packets to their destination on one network. People often ask, 
"If there is a guaranteed-unique MAC address on the internetwork, why bother assigning IP 
addresses?"  

 

 

The answer goes back to the analogy of delivering a letter via the postal service, discussed in 
Chap. 1. The postal service is efficient because it uses distribution points, generally located in 
each city. An internetwork is the same in that it uses a router as a distribution point for a network 
number. If there were no IP addresses, each router would have to keep track of the location of 
every MAC address on the internetwork. This soon becomes unwieldy in an internetwork of any 
size.  

 



 

So, we have IP addresses that are responsible for getting a packet delivered to the correct network 
(or subnet if netmasks are used), and MAC addresses are then used to deliver the packet locally. 
What actually happens as a packet is transported through an internetwork is that the source and 
destination MAC addresses change each time the packet travels through a router, whereas the IP 
source and destination addresses remain constant. This is illustrated in Fig. 2-8.  

 

 
This figure shows that when PC1 sends a packet to PC2 through the router, the source and 
destination IP addresses remain constant, but the MAC addresses change as the packet moves 
from one network segment to another through the router.  

 

 

  
 
 Figure 2-8: How the MAC addresses used in addressing a packet change as it traverses an 
internetwork 

   
 



 Putting It All Together  
 

 
We have covered all the issues necessary to be able to explain how the TCP/IP protocols and 
reference tables (the routing and ARP tables) cooperate to transport a packet through an 
internetwork.  

 
 In the following explanation, we take the example of a PC trying to establish a Telnet session with 
a host machine that is located on the other side of a router.  

 

 

Assuming the PC is running a Telnet client application, the command Telnet Sales-VAX is 
entered into the PC. By selecting the Telnet application, the destination port number is set to 23. 
Next, the hostname Sales-VAX needs to be resolved, meaning that its IP address needs to be 
found. This is done by either referencing Sales-VAX in the locally held hosts file, or requesting the 
IP address for Sales-VAX from a DNS server on the network.  

 

 

Once the IP address has been determined, the PC looks to see if the destination IP address is on 
the same network (or subnet if netmasks are used). In this case it is not, so the PC will set the 
destination MAC address to that of its default gateway. The PC refers to its ARP table to determine 
the MAC address of the default gateway. If the IP address of the default gateway is not listed with 
a corresponding MAC address, the PC will issue an ARP broadcast to determine the MAC 
address. Once the MAC address of the default gateway is determined, all source and destination 
addresses are known and the packet is forwarded to the default gateway.  

 

 
The default gateway will now receive the packet, examine the destination IP address and 
immediately look at its routing table. If the destination is on a directly connected segment, the 
default gateway will reference its ARP table, find the MAC address associated with the destination 
IP address of the Sales-VAX machine, and forward the packet to its final destination.  

 
 This process is re-examined in Chap. 3, when you will have a chance to see the previously 
described processes work in a Cisco router environment.  

 



 Summary  
 

 

In this chapter we defined what a protocol is and explored two models for data communications, 
the OSI and TCP/IP (DoD) model. Specific protocols within the TCP/IP protocol stack were 
identified and the relevant addressing schemes used by each were explained. The discussion on 
addressing also introduced the concept of the subnet mask and how that can be used to divide a 
network into many subnetworks. Finally, we saw an overview of how TCP/IP protocols and 
reference tables cooperate to deliver a packet across an internetwork.  

 
 Answers to Netmask Questions  
 
 IP address  

 
= 164.2.34.35  

 

 
 netmask  

 
= 255.255.255.224  

 

 
 subnet address  

 
= 162.2.34.32  

 

 
 usable host 
addresses  

 
= 162.2.34.33 to 62   

 
 broadcast address  

 
= 162.2.34.63  

 

 
 IP address  

 
= 101.2.3.18  

 

 
 netmask  

 
= 255.255.0.0  

 

 
 subnet address  

 
= 101.2.0.0  

 

 
 usable host 
addresses  

 
= 101.2.0.1 to 101.2.255.254   

 
 broadcast address  

 
= 101.2..255.255  

 



Chapter 3: Configuring Cisco Routers  
 
 Objectives  
 
 The objectives of this chapter are to  
 
   •Illustrate how to configure a Cisco router using the Setup feature, configuration mode, and how to 

retrieve a configuration file from a network server.  
 
   •Understand and be able to modify router configuration files.  
 

   
•Build a lab that will be used to explore how Cisco routers interact on a simple internetwork and 
see how the Cisco IOS reports some simple faults. This lab will be used in later chapters to 
explore Cisco router configurations for implementing various network protocols and systems.  

 
   •Perform elementary troubleshooting of the lab internetwork.  
 



 Sources for Configuring a Router  
 
 A router can be configured from three sources:  
 
   •Manually, using a terminal connected to the console port (or logged in over a network via a Telnet 

session).  
 
   •Through commands stored in nonvolatile memory.  
 
   •Through commands stored in a file residing on a TFTP server somewhere on the network.  
 
 A summary of these commands is given in Table 3.1.  
 
 Configuring a Router Manually  
 

 
When a router is configured manually, we can use the Cisco Setup utility, provided that the router 
does not have a configuration file already in existence. Alternatively, we can change an existing 
configuration using the configureterminal command.  

 
 Configuring a Router Using Setup. This first example of configuring a router assumes that you 
are attaching a terminal to your router and configuring it for the first time.  

 
 Table 3.1: Configure Commands  
 
    
 
 Command   

 
 Description  

 

 
    
 
 configure terminal   

 

 

Executes configuration commands from the terminal. Use this 
command to make changes to the configuration file from the console 
port or a telnet session. Once changes are entered press <Ctrl-Z> to 
end the update mode session. Note that the shortest unique 
command identifier may be used; in this case, configuration mode 
can be invoked by entering conf t.  

 

 
 Configure memory   

 
 Executes configuration commands stored in NVRAM.  

 

 
 Configure network   

 

 
Retrieves configuration commands are stored in a network server and 
load that configuration into memory. You will be prompted for the IP 
address of the TFTP server to connect to, as well as the configuration 
filename.  

 



 
    
 

 

When you connect a router to a terminal and power it up for the first time, the text displayed will be 
similar to that shown in Fig. 3-1. If this is a new router that has not been configured, there will be 
no configuration in memory and the router will go into the initial configuration dialog. If you wish to 
return a configured router to this state, type in write erase when in privileged user mode to 
erase the configuration in memory. In Fig. 3-1, the text in bold is that which was entered.  

 
 We will now explain all the entries and modify this to be a working configuration.  
 

 

Deciphering the Initial Configuration File. A router configuration file is plain ASCII text. This text 
file is read at boot time and put into effect as a working configuration by the router operating 
system, the IOS. By entering router configuration mode, commands can be entered that will add, 
modify, or delete configuration options while the router is running. Router configuration files can be 
saved as plain text on a TFTP server, modified by a full-screen text editor, and reloaded via TFTP. 

 
 Having completed the exercise for giving our new router a random configuration, let's take a more 
detailed look at what this configuration file means.  

 
 The first entry, hostname Router1, defines the text the router will use as a prompt; this router 
will generate a prompt Router1>.  

 
 The enablesecret entry indicates that a secret password has been supplied to get into Enable 
mode. The password is encrypted and cannot be viewed from the configuration file.  

 

 
The enable password enter tells us that the password "enter" can be used to get into Enable 
mode. On later versions of Cisco IOS, configuring both an enable secret and an enable password 
means that only the enable secret will allow you into Enable mode. Earlier versions of IOS did not 
recognize an enable secret and would allow entry to Enable mode with the enable password only. 

 
   
 
    

 
 Notice: NVRAM invalid, possibly due to write erase.  

 

 
    

 
 --- System Configuration Dialog --  

 

 
    

 
 At any point you may enter a question mark ? for help.  

 

 
    

 
 Refer to the Getting Started Guide for additional help.  

 

 
    

 
 Use ctrl-c to abort configuration dialog at any prompt.  

 

 
    

 
 Default settings are in square brackets [ ].  

 



 
    

 
 Would you like to enter the initial configuration dialog? [yes]:y  

 

 
    

 
 First, would you like to see the current interface summary? [yes]:y  

 

 
    

 
 Any interface listed with OK? value "NO" does not have a valid configuration  

 

 
    

 
 InterfaceIP-AddressOK?MethodStatusProtocol  

 

 
    

 
 Ethernet0unassignedNOnot setupdown  

 

 
    

 
 Serial0unassignedNOnot setdowndown  

 

 
    

 
 Serial1unassignedNOnot setdowndown  

 

 
    

 
 Configuring global parameters  

 

 
    

 
 Enter host name [Router]: router1  

 

 
    

 
 The enable secret is a one-way cryptographic secret usedinstead of the enable password 
when it exists.  

 

 
    

 
 Enter enable secret: test  

 

 
    

 
 The enable password is used when there is no enable secretand when using older 
software and some boot images.  

 

 
    

 
 Enter enable password: enter  

 

 
    

 
 Enter virtual terminal password: access  

 

 
    

 
 Configure SNMP Network Management? [yes]: n  

 

 
    

 
 Configure IP? [yes]: n  

 

 
    

 
 Configure IGRP routing? [yes]: n  

 

 
    

 
 Configure RIP routing? [no]: n  

 

 
    

 
 Configuring interface parameters:  

 

   



     Configuring interface Ethernet0:  
 
    

 
 Is this interface in use? [yes]: y  

 

 
    

 
 Configure IP for this interface? [yes]: y  

 

 
    

 
 Configure IP Unnumbered on this interface? [no]: n  

 

 
    

 
 IP address for this interface: 123.45.45.45  

 

 
    

 
 Number of bits in subnet filed [0]: 0  

 

 
    

 
 Class A network is 123.0.0.0, 0 subnet bits; mask is 255.0.0.0  

 

 
    

 
 Configuring interface Serial0:  

 

 
    

 
 Is this interface in use? [yes]: y  

 

 
    

 
 Configure IP on this interface? [yes]: y  

 

 
    

 
 IP address for this interface: 122.22.22.22  

 

 
    

 
 Number of bits in subnet field [0]: 0  

 

 
    

 
 Class A network is 122.0.0.0, 0 subnet bits; mask is 255.0.0.0  

 

 
    

 
 Configuring interface Serial1:  

 

 
    

 
 Is this interface in use? [yes]: n  

 

 
    

 
 The following configuration command script was created:  

 

 
    

 
 hostname router1  

 

 
    

 
 enable secret 5 $1$UtL7$KqpczYUWglg4pnWYbNYD0.  

 

 
    

 
 enable password enter  

 

 
    

 
 line vty 0 4  

 

 
   

 
 password access 

 



     password access  
 
    

 
 no snmp-server  

 

 
    

 
 !  

 

 
    

 
 ip routing  

 

 
    

 
 !  

 

 
    

 
 interface Ethernet0  

 

 
    

 
 ip address 123.45.45.45 255.0.0.0  

 

 
    

 
 !  

 

 
    

 
 interface Serial0  

 

 
    

 
 ip address 122.22.22.22 255.0.0.0  

 

 
    

 
 !  

 

 
    

 
 interface Serial1  

 

 
    

 
 shutdown  

 

 
    

 
 no ip address  

 

 
    

 
 !  

 

 
    

 
 end  

 

 
    

 
 Building configuration…yes/no]: y  

 

 
    

 
 Use the enabled mode "configure" command to modify this configuration.  

 

 
 Figure 3-1: The Cisco setup utility 

   

The next entries that require explanation are those that refer to router access via virtual terminals 



(Telnet access). These entries are shown as follows:  
 
 line vty 0 4  
 password access  
 

 
The first line defines five allowable Telnet accesses (numbered 0 through 4), and the next line 
states that a password "access" will be required before a command prompt is presented to any 
Telnet session requesting access to the system.  

 

 

The next configuration command, nosnmp-server, disables the Simple Network Management 
Protocol process on the router. SNMP is an Application level protocol that runs atop UDP, and will 
be covered in more detail in Chap. 7. Unless you are implementing a secure SNMP system, it is 
recommended that you disable SNMP on the router. If you enable the default SNMP process on a 
Cisco router, any intruder who knows SNMP will be able to retrieve the router configuration and 
enable password. The intruder then could cause serious disruption to your network, from which 
you might not be able to recover without physically replacing all the routers in the network.  

 
 The iprouting entry simply enables IP routing on the router. The next set of entries shown 
configures the Ethernet 0 port.  

 
 interface ethernet0  
 ip address 123.45.45.45 255.0.0.0  
 

 
This configuration defines an IP address of 123.45.45.45 for the Ethernet 0 port, with a netmask of 
255.0.0.0. This is the default mask for a class A network number and was selected by the router 
because we stated that 0 bits should be contained in the subnet field when the router was 
configured.  

 
 The next two lines define the basic configuration of the Serial 0 port to have an IP address of 
122.22.22.22, again with a default class A netmask.  

 
 interface serial0  
 ip address 122.22.22.22 255.0.0.0  
 

 
The next section defines the configuration for the Serial 1 port, which is not in use on this router. 
The shutdown entry defines this port as being closed and not in operation. The noipaddress 
indicates that an IP address has not yet been assigned to this port.  

 
 interface serial1  
 shutdown  
 no ip address  
 
 The exclamation points shown in the configuration file are merely separators used to display router 
component configurations in sections.  



 
Configuring Routers from the Command Prompt. Now that we know how to give a router a 
basic configuration file and understand the contents of this configuration file, we can modify the file 
so that it becomes useful.  

 
 When configuring Cisco routers, you need to be aware that there are three classes of commands:  
 
   •Global  A single-line command that affects the function of the whole unit.  
 
   •Major  A command that indicates a particular interface or process that is being configured. Each 

major command must have at least one subcommand.  
 
   •Subcommand  Subcommands are used after a major command to configure a process or 

interface.  
 
 To display router configurations, the commands shown in Table 3.2 can be used.  
 

 
Global commands. The first class of command we will examine are global commands. Global 
commands normally appear at the top of the router configuration file, and are used to address 
configuration details that affect the operation of the router as a whole. The global commands 
defined in the configuration file above are as follows:  

 
 hostname router1  
 enable secret 5 $1$UtL7$KqpczYUWgIg4pnWYbNYD0  
 enable password enter  
 no snmp-server  
 ip routing  
 
 To modify a global parameter, type the following at the enable prompt:  
 
 Router1#conf t  
 
 The router will reply with the following:  
 
 Enter configuration commands, one per line. End with Ctrl/Z.  
 Router1(config)#  
 
 Table 3.2: Configuration Display Commands  
 
    
 
 Command 
Syntax  

 

 
 Command   Description   



 
    
 
 sh conf   

 
 Show Configuration  

 

Displays the contents of NVRAM. The 
configuration file loaded at boot time is stored 
here. Upon boot, the router copies the 
configuration file from NVRAM into RAM. This is 
the configuration that the router was started 
with, or the configuration the last time the 
write mem command was executed, which 
writes the running configuration to NVRAM.  

 

 
 wri term   

 
 Write Terminal   Displays current configuration on the terminal 

that is running in memory.  
 

 
    
 

 
You now can type configuration commands that affect global parameters on the router. When you 
press the Enter key at the end of a line, the command takes effect and is entered into the 
configura-tion file.  

 
 The following are examples of global commands you might wish to enter in the router 
configuration.  

 
 Router(config)#hostname Newname  
 Newname(config)#  
 
 The hostname command changes the hostname of the router and immediately is reflected in the 
prompt when the command is entered, as shown above.  

 

 
The router can be told to configure at boot time from system ROM, flash memory, or a 
configuration file held on a TFTP server on the network. A router configuration file can list all three 
options and the router will try to boot from the source listed first. If that fails, it will try the second 
source, and so forth. The commands to boot from these sources are as follows:  

 

   
•Boot System ROM  This indicates that the router will be booted from ROM chips on the Route 
Processor. These chips are read-only and cannot be written to. You can update these chips by 
requesting new ones from Cisco.  

 
   •Boot System Flash  The router will be booted from flash. Flash memory can contain more 

than one version of the IOS. Routers can be ordered with additional flash memory.  
 
   •Boot System Filename IP-Address  Boot from the network. The most typical option is to 

configure a 2500-series router to boot from flash, if available, or from ROM.  
 
 At the configuration prompts, type the following:  



 
 Newname(config)#boot system flash  
 Newname(config)#boot system rom  
 

 
Press <Ctrl-Z> to exit configuration mode. This will enter the above commands in the sequence 
shown in the configuration file. The new configuration can be viewed with the writeterminal 
command.  

 
 Another global command you will most likely want to enter is shown as follows:  
 
 Newname(config)#no ip domain-lookup  
 

 

This command is useful, particularly if, like me, you are not the world's greatest typist. If you make 
a spelling mistake when trying to enter a command (when you are in View rather than 
Configuration mode), the router does not recognize the command. It will assume that this strange 
word is the name of a host on the network and that you wish to establish a Telnet session with it. 
The router will not find the strange hostname in its own host table and will try to find a Domain 
Name Server on the network in the hope that the DNS machine will know the IP address of the 
strange host. Either you do not have an available DNS machine or, if one is available, it will not 
have details of this strangely named host. The router, therefore, fails to establish a Telnet session. 
This takes some time. To stop an unnecessary search, enter the noIPdomain-lookup command 
in Configuration mode. It just makes life easier.  

 

 
Major Commands and Subcommands. The thing that differentiates a global command from a 
major command on a router configuration file is that the global command is on one line. A major 
command is followed by, at the least, a one-line subcommand that relates to the major command.  

 
 The major commands in the initial configuration file are listed next, with the associated 
subcommands indented:  

 
 line vty 0 4  
 password access  
 interface Ethernet0  
 ip address 123.45.45.45 255.0.0.0  
 interface Serial0  
 ip address 122.22.22.22 255.0.0.0  
 interface Serial1  
 shutdown  
 no ip address  
 
 To experiment with configuring major commands, and their associated subcommands, we will look 
at configuring the following:  

 
   •Give the Ethernet port an IP address of 192.1.1.1, with a subnet mask of 255.255.255.192.  



 
   •Configure Serial 0 to have an unnumbered IP address.  
 
   •Configure Serial 1 with an IP address of 193.1.1.1 and a subnet mask of 255.255.255.0.  
 
   •Configure Serial 1 to have a secondary IP address of 194.1.1.1, with a netmask of 255.255.255.0. 
 
 At the Enable prompt, type the following:  
 
 Newname#conf t  
 Newname(configure)#int eo  
 Newname(config-if)#ip address 192.1.1.1 255.255.255.192  
 Newname (config-if)#<Ctrl-Z>  
 
 This completes the configuration for the Ethernet 0 port. Note that the prompt changes when you 
have entered a major command and are about to enter subcommands.  

 

 
The IP unnumbered feature, which we are about to configure for the Serial 0 interface, is 
discussed in more detail in Chap. 7; however, a basic introduction is useful here. IP unnumbered is 
used on point-to-point links to reduce the number of subnets that need to be allocated on an 
internetwork. This is illustrated in Fig. 3-2.  

 

 

  
 
 Figure 3-2: Example of a point-to-point link used with IP unnumbered 

   
 

 

Assuming that IGRP is the routing protocol used on this network, subnet mask information is not 
transmitted in routing updates; therefore all interfaces that have IP addresses assigned to them 
must use the same netmask in order for the routing tables to be updated properly. Let's say that at 
both site 1 and site 2 we want to apply a netmask that will allow 62 usable IP addresses in the 
subnet (remember the first and last address in a subnet cannot be assigned to a host or router 



interface). The netmask in this case will be 255.255.255.192.  
 

 

If limited address space is available (meaning that the network has to use Internet-compatible 
addresses, which were assigned to a corporation by an Internet service provider), applying a 
netmask of 255.255.255.192 to both serial ports will waste 60 addresses on the internetwork. This 
is because a separate subnet is assigned to the link between router 1 and router 2, but only the 
serial ports on these routers need an IP address.  

 

 
IP unnumbered gets around this problem by letting the router know that the serial port is on a 
point-to-point link, and allows each serial port to use the address of its respective router's Ethernet 
port for communications across the link. Using IP unnumbered in this fashion prevents us from 
having to allocate a whole subnet to a point-to-point link.  

 
 Newname#conf t  
 Newname(config)#int S0  
 Newname(config-if)#ip unnumbered E0  
 
 The Serial 1 line will be configured by entering the following:  
 
 Newname(config)#int S1  
 Newname(config-if)#ip address 193.1.1.1 255.255.255.0  
 Newname(config-if)#ip address 194.1.1.1 255.255.255.0 sec  
 

 
A secondary IP address may be assigned to a router port if the number of host machines on that 
segment is about to exceed the number allowable by the current IP address and subnet scheme. 
By assigning a secondary IP address, new hosts may be added to that segment without the need 
to reconfigure all the host's IP addresses already on the segment.  

 
 Configuring a Router from a Network Server  
 

 

What typically happens when a Cisco router network is being rolled out is that a base configuration 
for all routers is defined, and has the modified IP addresses for each location. It makes life easier if 
this base configuration can be loaded into each router from a network server each time a new 
router is installed. It is more time-efficient to modify an existing configuration than to create one 
from scratch.  

 

 
There is a simple way to achieve this, using any machine that can act as a TFTP (Trivial File 
Transfer Protocol) server. Many of the more full-featured TCP/IP stacks available commercially 
provide TFTP server functionality. Any Unix machine also can act as a TFTP server.  

 

 
TFTP is a simple file transfer protocol that is not as complex or as fully functional as FTP. TFTP 
has little in the way of security, user authentication, or end-to-end reliability, because it uses UDP 
rather than TCP as the layer 4 protocol.  

 
 Let's look at setting up a Unix machine as a TFTP server, saving the configuration file of a router to 
this TFTP server, and then reloading the configuration.  



 
 TFTP is called into action by the INETD daemon process whenever the server machine receives a 
request on UDP port 69, which is the port number permanently assigned to TFTP.  

 

 
To have TFTP started in the "secure" mode, the appropriate line in the inetd.conf must be 
uncommented. In a standard inetd.conf file in a Unix machine, there are two TFTP entries, as 
shown below:  

 
 #tftpdgramudpwaitnouser/etc/tftpdtftpd  
 tftpdgramudpwaitroot/etc/tftpdtftpd-s/cisco  
 

 

The line containing the tftpd-s is the one in which we are interested. The only modification you 
need make to this line is to specify which directory you want to become the TFTP secure directory. 
In this case, it is the /cisco directory. The only thing that makes this "secure" is that the specified 
directory is the only one that can be written to or read from; it does not offer user-level security in 
terms of usernames and passwords. These entries correctly show the insecure option for starting 
TFTP as commented out, by starting that line with the # character.  

 

 

Once we have secure TFTP available, and a configuration similar to that shown in Fig. 3-3, we can 
store and retrieve configurations as plain ASCII text. In the last section we used the conft 
command to configure from the terminal and the writ command to display the running 
configuration on the terminal. Now we will look at the wrinet command to write the configuration 
to a network server and the conf net command to configure the router from a network server.  

 

 

  
 
 Figure 3-3: Network configuration for storing and retrieving router configuration files 

   
 

 

To successfully write a router configuration to a TFTP server, the file name used to store the file 
must already exist in the secure directory and have read, write, and execute privileges. In the 
following example, the file router.conf must exist in the /cisco directory of the TFTP Unix server 
(which has address 209.1.1.1), with rwxrwxrwx rights. The following is taken from a Cisco router 
screen being told to save its configuration to a network server. Note the !!!! characters indicate a 
file transfer is occurring. Once the file router.conf is stored on the TFTP server, it can be edited 
and stored as any other file name, and is ready to be loaded into another computer.  

 
 Router1#wri net  
 Remote host[ ]? 209.1.1.1  



 Name of configuration file to write [router-confg]?router.conf  
 Write file router.conf on host 209.1.1.1 [confirm]? (press enter to confirm) Writing router.conf: !!!!! [OK]  
 
 To configure a router from a network server, the following commands have to be input to the 
router:  

 
 Router1#conf net  
 Host or network configuration file[host]? (press enter to accept default)  
 Address of remote host [255.255.255.255]?209.1.1.1  
 Name of configuration file [router-confg]?router.conf  
 Configure using router.conf from 209.1.1.1 [confirm]? (press enter to confirm)  
 Loading router.conf from 209.1.1.1 (via ethernet 0) !!!!!!!!!  
 Router#  
 

 

The preceding discussion assumed that the router being configured from the network server had a 
largely blank configuration. This is not always the case. There are times when you will need to 
work on a new configuration for a router that is already in service, maybe test the configuration out 
in a lab, then load the new configuration onto the router in the field. Using the conf net command in 
this situation will not provide the results you want. If you do try to use conf net here, the new and 
existing router configurations are in fact merged.  

 

 
In this situation the best thing to do is copy the new configuration from the network server to the 
router using the copy tftp startup-config command, then perform a reload on the router once the 
transfer has taken place. This process will completely replace the existing configuration with the 
one you loaded from the network server.  

 
 Configuring a Router Using Auto-Install  
 

 
Auto-install is a feature of Cisco routers that was designed to enable a new router to come out of 
its box, get connected to a leased line at a site, download the correct configuration from a network 
TFTP server, and be up and running without any intervention from the remote site staff. This idea 
is useful for initial installation or maintenance replacement of faulty router hardware.  

 

 

This is a very attractive idea for a typical organization that has centrally located network 
engineering staff responsible for connecting remote offices to the corporate network. In practice, it 
is not always a good idea to depend on this to work in a first-time installation. The reason has 
nothing to do with the Cisco implementation, but relates to the fact that telephone company leased 
lines tend to have problems when they are first installed.  

 

 

If anything disrupts the process of configuration file download, such as a spike or some other 
interruption to service on the line, the configuration file will be corrupted (remember that TFTP 
uses UDP and therefore does not have error recovery or retransmissions). When a configuration 
file is corrupted, the newly installed router will not be reachable over the leased line network 
connection, and will not use the auto-configuration procedure at boot time once it has a 
configuration file.  



 

 
Auto-configuration is useful for getting the correct configuration file to a replacement router. When 
a router is replaced in the field, it is assumed that the initial line problems have been solved and 
the configuration file will be safely transmitted over the line.  

 

 

Let's discuss how auto-configuration works. It is assumed that a network configuration similar to 
that defined in Fig. 3-4 is available for this process. Step 1 is that the new router to receive the 
configuration is connected via a DTE/DCE cable to what we will call the staging router. In this 
configuration, the staging router Serial 0 port must be connected to the DCE end of the cable and 
be configured to supply a clock signal. (The details of this configuration are given later in this 
chapter when we build the lab environment.) When the new router is powered on, it will issue what 
is known as a broadcast SLARP request out of its serial port.  

 

 

  
 
 Figure 3-4: Using auto-install to configure a router 

   
 

 
SLARP stands for Serial Line Address Resolution Protocol. When the staging router serial port 
receives the SLARP request, it replies by giving the new router its IP address. Once the new router 
receives this IP address, it will add 1 to it and take that IP address as its own. A word of caution: 
This works only for the first two addresses in a network or subnetwork. An example will clarify this. 

 
 Suppose the Serial 0 port on the staging router has address 1.1.1.1, and through the SLARP 
process, the serial port on the new router will configure itself to have address 1.1.1.2.  

 

 
Once the new router has an IP address, the auto-configuration process configured into the IOS 
operating system will seek out a file named network-confg (located on the Cisco Works Unix 
machine), and reference a hostname associated with the 1.1.1.2 address. The new router does 
this by issuing a broadcast on UDP port 69. The staging router must have a   

 

 

global command to forward UDP broadcasts, and the Serial 0 port must have an IP-helper entry on 
the serial port directing this broadcast to the IP address of the Cisco Works management station. 
The Forward Protocol command and the Serial 0 IP-helper command appear in the configuration 
of the staging router as follows (assume the management machine has an IP address of 
151.3.5.5):  



 
 !  
 interface serial 0  
 ip address 1.1.1.1 255.0.0.0  
 ip-helper 151.3.5.5  
 !  
 ip forward-protocol udp  
 !  
 
 The effect of these two commands is to take a broadcast sent on the 1.0.0.0 network and direct it 
to the IP address 151.3.5.5.  

 
 The network-confg file lists entries similar to the following  
 
 iphostnewrouter1.1.1.2  
 

 

Once the new router has found its hostname ("newrouter," for instance), for argument's sake it will 
issue a TFTP request for a configuration file named newrouter-config. The configuration file must be 
located in the TFTP directory on the Unix machine, as must the network-confg file. Assuming the 
appropriately named configuration file is there, the router will start downloading its configuration 
from the TFTP directory of the Cisco Works machine.  

 



 Setting Up a Lab  
 

 

By this stage, we have covered the basics of TPC/IP operation, how to use the Cisco router user 
interface, and how to change addresses on router ports. What we are going to do is to set up a lab 
for purposes of experiment. If you want to do this yourself, you need three Cisco 2500-series 
routers, a hub, and what is known as a Cisco DTE/DCE cable. (We will define a DTE and DCE, 
and explain their importance, later in this section.) This is a minimal set of equipment, which allows 
us to do meaningful work without the need to dedicate a high-end router to this task.  

 
 The physical connections for the internetwork on which we are going to experiment are shown in 
Fig. 3-5. The router configurations are shown in Fig. 3-6.  

 

 

  
 
 Figure 3-5: Three-router lab configuration 

   
 
   
 
 Configuration for router 1  
 
    

 
 Hostname router1  

 

 
    

 
 !  

 

 
    

 
 enable secret 5 $1$W6qH$DTNrEHmJm6QqYcMu5PRh.  

 

 
    

 
 enable password test  

 

 
    

 
 !  

 

 
    

 
 interface Ethernet0  

 



 
    

 
 ip address 120.1.1.1 255.0.0.0  

 

 
    

 
 !  

 

 
    

 
 interface Serial0  

 

 
    

 
 no ip address  

 

 
    

 
 shutdown  

 

 
    

 
 !  

 

 
    

 
 interface Serial1  

 

 
    

 
 no ip address  

 

 
    

 
 shutdown  

 

 
    

 
 !  

 

 
    

 
 line con0  

 

 
    

 
 line aux 0  

 

 
    

 
 transport input all'  

 

 
    

 
 line vty 0 4  

 

 
    

 
 password access  

 

 
    

 
 login  

 

 
    

 
 !  

 

 
    

 
 end  

 

 
 Configuration for router 2  
 
    

 
 version 10.3  

 



 
    

 
 !  

 

 
    

 
 hostname router2  

 

 
    

 
 !  

 

 
    

 
 enable secret 5 $1$/P2r$ob00lmzYqpogV0U1g1O8U/  

 

 
    

 
 enable password test  

 

 
    

 
 !  

 

 
    

 
 interface Ethernet0  

 

 
    

 
 ip address 120.1.1.2 255.0.0.0  

 

 
    

 
 !  

 

 
    

 
 interface Serial0  

 

 
    

 
 ip address 150.1.1.1 255.255.0.0  

 

 
    

 
 !  

 

 
    

 
 interface Serial1  

 

 
    

 
 no ip address  

 

 
    

 
 shutdown  

 

 
    

 
 !  

 

 
    

 
 !  

 

 
    

 
 line con 0  

 

 
    

 
 line aux 0  

 

 
    

 
 line vty 0 4  

 



 
    

 
 password ilx  

 

 
    

 
 login  

 

 
    

 
 !  

 

 
    

 
 end  

 

 
 Configuration for router 3  
 
    

 
 Current configuration:  

 

 
    

 
 !  

 

 
    

 
 version 10.3  

 

 
    

 
 !  

 

 
    

 
 hostname router3  

 

 
    

 
 !  

 

 
    

 
 enable secret 5 $1$cNaQ$a4jcvrXlzVO4cwJB7RP5j1  

 

 
    

 
 enable password test  

 

 
    

 
 !  

 

 
    

 
 interface Ethernet0  

 

 
    

 
 ip address 193.1.1.1 255.255.255.0  

 

 
    

 
 shutdown  

 

 
    

 
 !  

 

 
    

 
 interface Serial0  

 

 
    

 
 ip address 150.1.1.2 255.255.0.0  

 



 
    

 
 clockrate 64000  

 

 
    

 
 !  

 

 
    

 
 interface Serial1  

 

 
    

 
 no ip address  

 

 
    

 
 shutdown  

 

 
    

 
 !  

 

 
    

 
 !  

 

 
    

 
 line con 0  

 

 
    

 
 line aux 0  

 

 
    

 
 transport input all  

 

 
    

 
 line vty 0 4  

 

 
    

 
 password ilx  

 

 
    

 
 login  

 

 
    

 
 !  

 

 
    

 
 end  

 

 
 Figure 3-6: Initial configuration files for the three lab routers 

   
 

 
The only entry that should be unfamiliar in these router configurations is the clockrate64000 
entry in router 3. To understand why this is there, we need to understand how router serial ports 
normally communicate via digital modem devices (normally referred to as CSU/DSU).  

 

 
To permanently connect two routers located in disparate locations, with a data transmission rate of 
56 kbps or higher, you normally will use a digital leased line. The digital leased line terminates in a 
CSU/DSU, which is then connected to the router serial ports at both ends of the link, as shown in 
Fig. 3-7.  



 

 

  
 
 Figure 3-7: Router to CSU/DSU connection 

   
 

 
In datacomm-speak, the router serial port will be configured as a DTE, which stands for Data 
Terminal Equipment. The CSU/DSU will be configured as DCE, for Data Communications 
Equipment. Why is this important? Because of the functions of the connector pins on each device. 

 

 

Most people are somewhat familiar with the RS-232 serial interface specification. In this 
specification, pin 2 is transmit data (Tx) and pin 3 is receive data (Rx). When a PC is connected to 
a modem, we have a DTE connected to a DCE and use a straight-through cable, meaning that 
pins 1 through 25 on one end of the cable are connected to the corresponding pins on the other 
end of the cable. If we want to connect a PC serial port to a printer serial port, we would be 
connecting two DTE devices, so we'd use a crossover cable. This cable eliminates the need for a 
modem by physically connecting pin 2 on one end of the cable to pin 3 on the other end, and vice 
versa.  

 

 

This is necessary; otherwise both DTE devices would try to transmit data on the same connector 
pin. This is a problem because each pin has only unidirectional functionality, meaning that it can 
be used either for sending or receiving signals. The simple rule to remember is that a DTE 
communicates with a DCE; DCE-to-DCE or DTE-to-DTE connections need something devious in 
the cabling to make them work.  

 

 
The same concept holds true in the Cisco world. The Cisco serial port has 60 connector pins; the 
function of each pin depends on whether the port is configured as a DTE or a DCE. The next 
question is how a port decides whether it should be a DTE or DCE, and how you can tell.  

 

 

The Cisco serial port has 60 pins, far more than you need to transmit and control data, and some 
of the pins are dedicated to "sensing" which cable is connected. The way it works is that each 
Cisco cable has a certain number of pins connected together (effectively looping pins together on 
each end of the cable), giving every cable a unique configuration. When the cable is plugged into 
the serial port, the port can tell which pins are looped together, and as a result, decides whether it 
will be a DTE or DCE.  

 



 With a Cisco 2500 and a Cisco DTE/DCE cable, this effect easily can be seen; plug one end of the 
DTE/DCE cable into the Serial 0 port of the router, and issue the following command:  

 
 Router2>show controllers serial 0  
 
 The displayed output will be as shown in Fig. 3-8.  
 
   
 
    

 
 HD unit 0, idb = 0x80668, driver structure at 0x820E8  

 

 
    

 
 buffer size 1524 HD unit 0, V.35 DTE cable  

 

 
    

 
 cpb = 0x11, eda = 0x4800, cda = 0x4814  

 

 
    

 
 Rx ring with 16 entries at 0x114800  

 

 
    

 
 00 bd_ptr=0x4800 pak=0x084018 ds=0x11D840 status=80 pak_size=22  

 

 
    

 
 01 bd_ptr=0x4814 pak=0x083BB0 ds=0x11C418 status=80 pak_size=0  

 

 
    

 
 01 bd_ptr=0x4814 pak=0x083BB0 ds=0x11C418 status=80 pak_size=0  

 

 
    

 
 02 bd_ptr=0x4828 pak=0x083D28 ds=0x11CAD0 status=80 pak_size=0  

 

 
    

 
 03 bd_ptr=0x483C pak=0x083EA0 ds=0x11D188 status=80 pak_size=0  

 

 
    

 
 04 bd_ptr=0x4850 pak=0x084190 ds=0x11DEF8 status=80 pak_size=0  

 

 
    

 
 05 bd_ptr=0x4864 pak=0x084308 ds=0x11E5B0 status=80 pak_size=0  

 

 
    

 
 06 bd_ptr=0x4878 pak=0x084480 ds=0x11EC68 status=80 pak_size=0  

 

 
    

 
 07 bd_ptr=0x488C pak=0x0845F8 ds=0x11F320 status=80 pak_size=0  

 

 
    

 
 08 bd_ptr=0x48A0 pak=0x082D00 ds=0x1180E8 status=80 pak_size=0  

 

 
    

 
 09 bd_ptr=0x48B4 pak=0x082E78 ds=0x1187A0 status=80 pak_size=0  

 

 
    

 
 10 bd_ptr=0x48C8 pak=0x082FF0 ds=0x118E58 status=80 pak_size=0  

 



 
    

 
 11 bd_ptr=0x48DC pak=0x083168 ds=0x119510 status=80 pak_size=0  

 

 
    

 
 12 bd_ptr=0x48F0 pak=0x0832E0 ds=0x119BC8 status=80 pak_size=0  

 

 
    

 
 13 bd_ptr=0x4904 pak=0x0835D0 ds=0x11A938 status=80 pak_size=0  

 

 
    

 
 14 bd_ptr=0x4918 pak=0x083748 ds=0x11AFF0 status=80 pak_size=0  

 

 
    

 
 15 bd_ptr=0x492C pak=0x0838C0 ds=0x11B6A8 status=80 pak_size=0  

 

 
    

 
 16 bd_ptr=0x4940 pak=0x083A38 ds=0x11BD60 status=80 pak_size=0  

 

 
    

 
 cpb = 0x11, eda = 0x5000, cda = 0x5000  

 

 
    

 
 TX ring with 4 entries at 0x115000  

 

 
    

 
 00 bd_ptr=0x5000 pak=0x000000 ds=0x000000 status=80 pak_size=0  

 

 
    

 
 01 bd_ptr=0x5014 pak=0x000000 ds=0x000000 status=80 pak_size=0  

 

 
    

 
 02 bd_ptr=0x5028 pak=0x000000 ds=0x000000 status=80 pak_size=0  

 

 
    

 
 03 bd_ptr=0x503C pak=0x000000 ds=0x000000 status=80 pak_size=0  

 

 
    

 
 04 bd_ptr=0x5050 pak=0x000000 ds=0x000000 status=80 pak_size=0  

 

 
    

 
 0 missed datagrams, 0 overruns  

 

 
    

 
 0 bad datagram encapsulations, 0 memory errors  

 

 
    

 
 0 transmitter underruns  

 

 
 Figure 3-8: Output of show controllers command with DTE cable 

   
 

 
Look at the shaded line and disregard the rest of the screen output for the moment. With this end 
of the cable, the port is sensing that it should assume a DTE configuration. Now disconnect the 
DTE/DCE cable and plug the other end into the serial port. Issuing the same command displays 
the information shown in Fig. 3-9.  

   



       
 
    

 
 HD unit 0, idb = 0x7AA6C, driver structure at 0x7C528  

 

 
    

 
 buffer size 1524 HD unit 0, V.35 DCE cable clockrate 64000  

 

 
    

 
 cpb = 0x21, eda = 0x4940, cda = 0x4800  

 

 
    

 
 Rx ring with 16 entries at 0x214800  

 

 
    

 
 00 bd_ptr=0x4800 pak=0x07E030 ds=0x214C418 status=80 pak_size=0  

 

 
    

 
 01 bd_ptr=0x4814 pak=0x07E1AC ds=0x21CAD0 status=80 pak_size=0  

 

 
    

 
 02 bd_ptr=0x4828 pak=0x07E328 ds=0x21D188 status=80 pak_size=0  

 

 
    

 
 03 bd_ptr=0x483C pak=0x07E4A4 ds=0x21D840 status=80 pak_size=0  

 

 
    

 
 04 bd_ptr=0x4850 pak=0x07E620 ds=0x21DEF8 status=80 pak_size=0  

 

 
    

 
 05 bd_ptr=0x4864 pak=0x07E79C ds=0x21E5B0 status=80 pak_size=0  

 

 
    

 
 06 bd_ptr=0x4878 pak=0x07E918 ds=0x21EC68 status=80 pak_size=0  

 

 
    

 
 07 bd_ptr=0x488C pak=0x07EA94 ds=0x21F320 status=80 pak_size=0  

 

 
    

 
 08 bd_ptr=0x48A0 pak=0x07D158 ds=0x2180E8 status=80 pak_size=0  

 

 
    

 
 09 bd_ptr=0x48B4 pak=0x07D450 ds=0x218E58 status=80 pak_size=0  

 

 
    

 
 10 bd_ptr=0x48C8 pak=0x07D5CC ds=0x219510 status=80 pak_size=0  

 

 
    

 
 11 bd_ptr=0x48DC pak=0x07D748 ds=0x219BC8 status=80 pak_size=0  

 

 
    

 
 12 bd_ptr=0x48F0 pak=0x07D8C4 ds=0x21A280 status=80 pak_size=0  

 

 
    

 
 13 bd_ptr=0x4904 pak=0x07DA40 ds=0x21A938 status=80 pak_size=0  

 

 
    

 
 14 bd_ptr=0x4918 pak=0x07DBBC ds=0x21AFF0 status=80 pak_size=0  

 

 
   

 
 15 bd_ptr=0x492C pak=0x07DD38 ds=0x21B6A8 status=80 pak_size=0 

 



     15 bd_ptr=0x492C pak=0x07DD38 ds=0x21B6A8 status=80 pak_size=0  
 
    

 
 16 bd_ptr=0x4940 pak=0x07DEB4 ds=0x21BD60 status=80 pak_size=0  

 

 
    

 
 cpb = 0x21, eda = 0x503C, cda = 0x503C  

 

 
    

 
 TX ring with 4 entries at 0x215000  

 

 
    

 
 00 bd_ptr=0x5000 pak=0x000000 ds=0x200078 status=80 pak_size=22  

 

 
    

 
 01 bd_ptr=0x5014 pak=0x000000 ds=0x200078 status=80 pak_size=22  

 

 
    

 
 02 bd_ptr=0x5028 pak=0x000000 ds=0x200078 status=80 pak_size=22  

 

 
    

 
 03 bd_ptr=0x503C pak=0x000000 ds=0x200078 status=80 pak_size=22  

 

 
    

 
 04 bd_ptr=0x5050 pak=0x000000 ds=0x200078 status=80 pak_size=22  

 

 
    

 
 0 missed datagrams, 0 overruns  

 

 
    

 
 0 bad datagram encapsulations, 0 memory errors  

 

 
    

 
 0 transmitter underruns  

 

 
 Figure 3-9: Output of show controllers command with DCE cable 

   
 
 As you can see, the port has sensed a different cable connector configuration and has configured 
itself to be a DCE.  

 
 By using the DTE/DCE cable to connect router 2 and router 3 together (Fig. 3-5), the two serial 
ports will be able to communicate, with one configured as DTE and the other as DCE.  

 

 

So far, so good. The question remains, however, as to why there is the clockrate 64000 entry 
in the configuration of router 3. Referring back to Fig. 3-7, we see that router serial ports normally 
are connected to a CSU/DSU. Cisco serial ports use synchronous communication, which means a 
separate clock source is used to synchronize the router interaction with the CSU/DSU. Normally 
that clock signal is supplied by the CSU/DSU (which, in turn, is normally configured to take its 
clock signal from the network of the telephone company supplying the leased line).   

 

 
In the lab environment there are no CSU/DSUs, so we have to tell one of the ports to generate a 
clock signal, to mimic what the CSU/DSU would normally provide. The clockrate command only 
takes effect for a port that is configured as a DCE.  



 

 
The clockrate 64000 command tells the port (if it is configured as a DCE) to generate a clock 
signal that simulates the port being connected to a 64 kbps line. Other values to simulate other line 
speeds are available.  

 
 We now will begin to explore the TCP/IP communication process between these three routers.  
 

 
The ICMP ping command, which stands for Packet Internet Groper, sends a packet to a specified 
destination and requests a response. Let's see what happens if we try to ping router 2 from router 
1. At the command prompt of router 1, input the following:  

 
 Router1>ping120.1.1.2  
 
 The router will display the following on the screen:  
 
 Type escape sequence to abort.  
 Sending 5, 100-byte ICMP Echos to 120.1.1.2, timeout is 2 seconds:  
 .!!!!  
 Success rate is 80 percent (4/5), round-trip min/avg/max = 28/75/112 ms  
 
 Why are only four of five packets returned? Could it be that a packet gets lost occasionally? Well, 
let's try it again.  

 
 Router1>ping 120.1.1.2  
 Type escape sequence to abort.  
 Sending 5, 100-byte ICMP Echos to 120.1.1.2, timeout is 2 seconds:  
 !!!!!  
 Success rate is 100 percent (5/5), round-trip min/avg/max = 1/2/4 ms  
 

 
This time all five packets sent receive a reply. Try it as many times as you like and you'll see that 
every packet sent gets a reply. To understand why this happens, we must consider what the router 
is doing when a ping packet is sent. The router has to construct a correctly formatted Ethernet 
packet, with the necessary addresses to get from source to destination.  

 
 To do this, the router must identify the following four addresses:  
 
   •Source MAC address  
 
   •Source IP address  
 
   •Destination MAC address  
 



   •Destination IP address  
 

 

The router knows its own MAC and IP address, and the ping command defined the destination IP 
address. What is missing is the destination MAC address. In Chap. 2 we discussed the ARP 
protocol, which maintains the ARP table that maps MAC addresses to IP addresses. When router 
1 first tries to send out a ping packet, it does not have the MAC address of router 2, so it cannot 
complete the construction of the first ping packet. It then sends out a broadcast ARP request to 
find out the MAC address of router 2. (Router 1 actually tries to find out the MAC address 
associated with the destination IP address specified in the ping command.) Once router 2 replies, 
the MAC/IP address pair is put in the ARP table. When router 1 tries to send a packet to router 2 a 
second time, it has all the information and the ping packet can be correctly constructed. That is 
why only the very first ping fails and all other pings succeed.  

 
 We can demonstrate this interaction as follows. Input the following on router 1:  
 
 Router1>show ip arp  
 
 ProtocolAddressAge (min)Hardware AddrTypeInterface  
 Internet120.1.1.1-0000.0c47.42ddARPAEthernet0  
 Internet120.1.1.220000.0c47.0457ARPAEthernet0  
 
 Turn off router 1 and then turn it back on. When presented with the router prompt, input the same 
command. The output now shows the following:  

 
 Router1>sho ip arp  
 
 ProtocolAddressAge (min)Hardware AddrTypeInterface  
 Internet120.1.1.1-0000.0c47.42ddARPAEthernet0  
 
 As you can see, after the router is rebooted, only its own MAC address is in the ARP table. To ping 
router 2, an ARP broadcast must be sent to determine the MAC address of router 2.  

 
 Now, try the same thing from router 2 to ping router 3. Input the following to router 2:  
 
 Router2>ping 150.1.1.2  
 Type escape sequence to abort.  
 Sending 5, 100-byte ICMP Echos to 150.1.1.2, timeout is 2 seconds:  
 !!!!!  
 Success rate is 100 percent (5/5), round-trip min/avg/max = 28/30/32 ms  

The success rate is 100 percent the first time out. Why did this work on the first try, and the ping 



information it needs to send a ping packet out on a serial port.  
 
 We have reached the point where router 1 can ping router 2 and router 2 can ping router 3. Should 
router 1 be able to ping router 3? Try that by entering the following into router 1:  

 
 Router1>ping 150.1.1.2  
 Type escape sequence to abort.  
 Sending 5, 100-byte ICMP Echos to 150.1.1.2, timeout is 2 seconds:  
 ……  
 Success rate is 0 percent (0/5)  
 

 
As you can see, it does not work. To solve this problem, we need to look at the routing table, often 
a good place to start when troubleshooting router problems. We can display the routing table by 
inputting the following to router 1:  

 
 Router1>show ip route  
 Codes:C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP  
 D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area  
 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP  
 i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default  
 Gateway of last resort is not set  
 
 C120.0.0.0 is directly connected, Ethernet0  
 

 

As you can see, the routing table has entries only for the 120.0.0.0 network. (Remember, we 
configured the port with default subnet masks, so having a first octet value of 120 means we have 
a class A network, and therefore only the first octet is used to identify the network number.) In this 
instance, the router realizes that the destination address, 150.1.1.2, is on the 150.1.0.0 network (a 
class B network). The router will realize that this is not a directly connected network and will refer 
to its routing table to determine which router should get the ping packet in order to reach the 
150.1.0.0 network. Clearly, without an entry in its routing table for the 150.1.0.0 network, the router 
can go no further.  

 
 You can enter the route directly into the router's routing table with the following input:  
 
 Router1>ena  
 Password:  
 Router1#conf t  
 Enter configuration commands, one per line. End with Ctrl/Z.  
 Router1(config)#ip route 150.1.0.0 120.1.1.2  
 Router1(config)#<Ctrl-Z>  
 Router1#  



 
 This tells router 1 that the next router to go to on the way to the 150.1.0.0 network is that with the 
address 120.1.1.2. This is shown in the routing table as follows:  

 
 router1>show ip route  
 Codes:C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP  
 D- EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area  
 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP  
 i- IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default  
 Gateway of last resort is not set  
 
 C120.0.0.0 is directly connected, Ethernet0  
 S150.1.0.0 [1/0] via 120.1.1.2  
 
 So what happens if we now try to ping 150.1.1.2 from router 1?  
 
 Router1>ping 150.1.1.2  
 Type escape sequence to abort.  
 Sending 5, 100-byte ICMP Echos to 150.1.1.2, timeout is 2 seconds:  
 ……  
 Success rate is 0 percent (0/5)  
 

 

It still fails. What happens is that router 1 now knows to pass the packet to router 2 to get to the 
150.1.0.0 network. Once the packet is delivered to router 3, router 3 will try to reply to 120.1.1.1. 
Router 3 does not have a route to the 120.0.0.0 network, so the ping fails again. To resolve this, 
we need to add a route to the 120.0.0.0 network in the routing table of router 3. This is done as 
follows:  

 
 Router3(config)#ip route 120.0.0.0 150.1.1.1  
 Router3(config)#<Ctrl-Z>  
 Router3#  
 
 The routing table of router 3 now looks like this:  
 
 Router3#sho ip route  
 Codes:C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP  
 D- EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area  
 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP  
 i- IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default  
 Gateway of last resort is not set  
 



 S120.0.0.0 [1/0] via 150.1.1.1  
 C150.1.0.0 is directly connected, Serial0  
 
 Note that the routes entered are either static (meaning they are in the router's configuration), or 
connected (meaning they are directly connected to one of the router's interfaces).  

 
 Now if we go back to router 1 and ping router 3, we see what we wanted to see all along:  
 
 Router1>ping 150.1.1.2  
 Type escape sequence to abort.  
 Sending 5, 100-byte ICMP Echos to 150.1.1.2, timeout is 2 seconds:  
 !!!!!  
 Success rate is 100 percent (5/5), round-trip min/avg/max = 28/30/32 ms  
 

 
Adding routes manually in this fashion rapidly becomes cumbersome for a growing network. To 
automate the routing table update process, routing protocols are run on the routers. Chapter 4 
covers routing protocols in depth; at this time, however, we shall look in overview at the 
configuration of Cisco's Interior Gateway Routing Protocol (IGRP).  

 
 We are now going to remove the static routes we configured in the routers and configure IGRP on 
each router so that it will make the required entries in the routing table for us.  

 
 First, remove the static routes. To do this type the following into router 1:  
 
 Router1#no ip route 150.1.0.0 120.1.1.2  
 
 Into router 3, type the following:  
 
 Router3#no ip route 120.0.0.0 150.1.1.1  
 

 
This introduces the "no" form of command. Whenever you need to remove an entry in the router's 
configuration, simply enter configuration mode and type the word "no" followed by the 
configuration entry you want to remove.  

 
 Making standard IGRP a running process on all three routers is a simple configuration change, 
and can be executed as follows for router 2:  

 
 Router2#conf t  
 Router2(config)#router igrp 9  
 Router2(config-router)#network 150.1.0.0  
 Router2(config-router)#network 120.0.0.0  
 Router2(config-router)#<Ctrl-Z>  



 

 

Once you have entered configuration mode, you define the router process IGRP as belonging to 
an Autonomous System number 9. It does not matter what number you assign as the Autonomous 
System number in this case. All you need do is assign the same number to all three router IGRP 
processes. IGRP processes simply will exchange route information with other processes belonging 
to the same Autonomous System number.  

 

 
The two network entries are there to tell IGRP what networks to advertise in its initial IGRP packet. 
The rule to follow is that you must configure a network entry for each directly connected network 
number. Note that, because IGRP does not send subnet mask information in its updates, the 
entries here are concerned only with network (not subnetwork) numbers.  

 
 The entries for router 1 and router 3 are made as follows:  
 
 Router1#conf t  
 Router1(config)#router igrp 9  
 Router1(config-router)#network 120.0.0.0  
 Router1(config-router)#<Ctrl-Z>  
 
 Router3#conf t  
 Router3(config)#router igrp 9  
 Router3(config-router)#network 150.1.0.0  
 Router3(config-router)#<Ctrl>Z  
 
 The three router configurations now appear as shown in Fig. 3-10.  
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 Router 3  
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 enable secret 5 $1$cNaQ$a4jcvrXlzVO4cwJB7RP5j1  
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 ip address 193.1.1.1 255.255.255.0  
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 ip address 150.1.1.2 255.255.0.0  

 

 
    

 
 clockrate 64000  
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 Figure 3-10: Lab router configuration with IGRP enabled 

   
 

 
After a few minutes have elapsed, IGRP will have advertised the network numbers throughout this 
small internetwork and have updated the routing tables with appropriate entries. The routing table 
for router 1 is as shown here:  

 
 Router1>show ip route  
 Codes:C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP  
 D- EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area  
 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP  
 i- IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default  
 Gateway of last resort is not set  
 
 C120.0.0.0 is directly connected, Ethernet0 



 C120.0.0.0 is directly connected, Ethernet0  
 I150.1.0.0 [100/8576] via 120.1.1.2, 00:01:20, Ethernet0  
 
 And the routing table for router 3 is as follows:  
 
 Router3>show ip route  
 Codes:C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP  
 D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area  
 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP  
 i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default  
 Gateway of last resort is not set  
 
 I120.0.0.0 [100/8576] via 150.1.1.1, 00:01:14, Serial0  
 C150.1.0.0 is directly connected, Serial0  
 
 The thing to note is that the routing table indicates that the routes necessary for router 1 and 3 to 
ping each other were learned from IGRP and are no longer static routes as they were originally.  

 

 
It is now worth exploring the application of subnets in a real environment. What we are about to do 
is configure all ports on this small internetwork to be in subnets of the network number 160.4.0.0. 
To accomplish this, we need to change the address and netmask of all ports and the IGRP 
configuration for each router. For router 1, these changes are put into effect by the following input: 

 
 Router1(config)#int e0  
 Router1(config-int)#ip address 160.4.1.33 255.255.255.224  
 Router1(config-int)#exit  
 Router1(config)#router igrp 9  
 Router1(config-router)#no network 120.0.0.0  
 Router1(config-router)#network 160.4.0.0  
 Router1(config-router)#<Ctrl-Z>  
 

 
The configuration for router 1 is illustrated in Fig. 3-11. To configure router 2 and view its 
configuration, follow the commands shown in Fig. 3-12. In order to configure router 3, use the 
commands shown in Fig. 3-13.  
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 Figure 3-11: Router 1 configured for subnets 

   
        
 
    

 
 Router2# conf t  

 

 
    

 
 Enter configuration commands, one per line. End with CtrlZ  

 

 
    

 
 Router2(config)#int e0  

 

 
    

 
 Router2(config-int)#ip address 160.4.1.34 255.255.255.224  

 

 
    

 
 Router2(config-int)#int s0  

 

 
    

 
 Router2(config-int)#ip address 160.4.1.65 255.255.255.224  

 

 
    

 
 router2(config-if)# exit  

 

 
    

 
 router2(config)#router igrp 9  

 

 
    

 
 router2(config-router)# no net 120.0.0.0  

 

 
    

 
 router2(config-router)#no net 150.1.0.0  

 

 
   

 
 router2(config-router)# net 160.4.0.0 

 



     router2(config-router)# net 160.4.0.0  
 
    

 
 router2(config-router)# <ctrl>Z  

 

 
    

 
 router2#  

 

 
    

 
 The configuration for router 2 now looks like the following:  
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 Building configuration…  

 

 
    

 
 Current configuration:  
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 Figure 3-12: Router 2 configured for subnets 

   
 
    

 
   

 

 
    

 
 Router3# conf t  

 

 
    

 
 Enter configuration commands, one per line. End with CNTL/Z.  

 

 
    

 
 router3(config)# int s0  

 



 
    

 
 router3(config-if)# ip address 160.4.1.66 255.255.255.224  

 

 
    

 
 router3(config-if)# exit  

 

 
    

 
 router3(config)#router igrp 9  

 

 
    

 
 router3(config-router)#no net 150.1.0.0  

 

 
    

 
 router3(config-router)# net 160.4.0.0  

 

 
    

 
 router2(config-router)# exit  

 

 
    

 
 router3(confug)#  

 

 
    

 
 The configuration for router 3 now looks like the following:  
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 Current configuration:  
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 enable password test  
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 ip address 193.1.1.1 255.255.255.0  

 

 
    

 
 shutdown  
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 Figure 3-13: Router 3 configured for subnets 

   
 

 
Note that when configuring IGRP, the same network number is defined on each router. In this 
case, when IGRP advertisements are received, it is assumed that the same subnet mask is used 
on all interfaces on the internetwork and the correct entries in the routing tables are then made. 
The routing tables now appear as follows:  

 
 Router1>show ip route  
 Codes:C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP  
 D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area  
 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP  
 i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default  
 Gateway of last resort is not set  
 
 160.4.0.0 255.255.255.224 is subnetted, 2 subnets  
 C 160.4.1.32 is directly connected, Ethernet0  
 I 160.4.1.64 [100/8576] via 160.4.1.34, 00:00:00, Ethernet0  
 
 Router2>show ip route  
 Codes:C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP  
 D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area  
 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP  
 i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default  
 Gateway of last resort is not set  
 
 160.4.0.0 255.255.255.224 is subnetted, 2 subnets  
 C 160.4.1.32 is directly connected, Ethernet0  
 C 160.4.1.64 is directly connected, Serial0  
 
 Router3>show ip route  
 Codes:C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP  
 D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area  
 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP  
 i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default  



 Gateway of last resort is not set  
 
 160.4.0.0 255.255.255.224 is subnetted, 2 subnets  
 I 160.4.1.32 [100/8576] via 160.4.1.65, 00:01:07, Serial0  
 C 160.4.1.64 is directly connected, Serial0  
 

 
An interesting point is that the network number that is tracked in the routing table is a derived 
value. By looking at both the assigned IP address and the subnet mask, the subnetwork number is 
calculated. This effect can be clearly illustrated by changing the IP address of the serial port on 
router 3, keeping the subnet mask the same, then viewing the new routing table:  

 
 Router3(config)#interface serial 0  
 Router3(config-int)#ip address 160.4.1.100 255.255.255.224  
 
 The routing table now looks like this:  
 
 Router3>show ip route  
 
 Codes:C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP  
 
 D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area  
 
 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP  
 
 i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default  
 
 Gateway of last resort is not set  
 
 160.4.0.0 255.255.255.224 is subnetted, 2 subnets  
 
 I 160.4.1.32 [100/8576] via 160.4.1.65, 00:01:07, Serial0  
 
 C 160.4.1.96 is directly connected, Serial0  
 
 As you can see, the routing table automatically adjusted to keep track of a new network number 
associated with that interface, simply because you changed the IP address of that interface.  

 

 

As a point of interest, this is the exact opposite of the way that NetWare protocols work. In 
NetWare, you assign one network number to a server and all workstations on that network work out 
their own address. With TCP/IP, you assign addresses and a subnet mask to all workstation 
interfaces and the network number is calculated from that. We will be discussing the NetWare 
protocols more fully in Chap. 5.  

 



 Lab Exercises  
 
 We will now alter the configuration to make things stop working and look at how these problems 
can be identified and resolved.  

 
 Make these changes to the lab environment and we will troubleshoot the network and get it back 
into a working state.  

 
   1.Change the encapsulation on router 3 Serial 0 port to ppp.  
 
   2.Change the polarity of the DTE/DCE cable, so that the end of the cable connected to the router 

2 Serial 0 port is connected to the router 3 Serial 0 port.  
 
   3.Configure the Ethernet 0 port on router 1 to be shut down.  
 
   4.Change the Autonomous System number of the IGRP process on router 2 to 15.  
 
   5.Disconnect the Ethernet 0 port on router 2 from the hub.  
 
 To effect the router configuration changes, perform the following:  
 
 Router3#conf t  
 Router3(config)#int s0  
 Router3(config-if)encapsulation ppp  
 
 Router1#conf t  
 Router1(config)#int e0  
 Router1(config-if)shutdown  
 
 Router2#conf t  
 Router2(config)#no router igrp 9  
 Router2(config)#router igrp 15  
 Router2(config-router)network 160.4.0.0  
 

 
A troubleshooting procedure should follow the previously described OSI seven-layer model of 
communications. You need to check the Physical layer first, then the Data Link and so forth, until 
the system is communicating properly.  

 
 Overview of Physical Layer Troubleshooting  
 

 
A visual check shows whether cables are connected, but may not show a cable break. The best 
way to determine whether a router port is physically connected is to use the show interface 



command and interpret the screen output. Perform the following on router 2:  
 
 Router2#show interface serial 0  
 Ethernet0 is up, line protocol down  
 

 
This is the first line of the output, and shows you that the port is okay, but was not able to establish 
a protocol session. This is either due to an unplugged/broken cable, or a broken transceiver. In this 
case, the cable is simply unplugged; replugging the cable brings the line protocol up. The problem 
generated by change number 5 has been detected and corrected.  

 
 Next on the Physical level you should check the serial port connections. Entering the following in 
router 2 will bring up a screen display, the last line of which is as shown.  

 
 Router2#show interface serial 0  
   .  
   .  
 DCD=up DSR=up DTR=up RTS=up CTS=up  
 

 

This indicates that the physical connectivity to this port is working, and all the expected EIA signals 
are present. The port is, however, showing that the line protocol is down. This is due to either 
clocking problems or mismatched encapsulation. To resolve this, we issue the 
showcontrollersserial0 command on both router 2 and 3, and check that the router 
configuring its Serial 0 port as a DCE has the clockrate 64000 entry in its configuration. By 
changing the polarity of the DTE/DCE cable, we match the DCE port with the "clockrate 
64000"-configured serial port and resolve the problem caused by change 2.  

 
 The final Physical layer issue to determine whether any ports that need to be in use are physically 
shut down. Enter the following on router 1.  

 
 Router1#show interface ethernet 0  
 Ethernet0 is administratively down, line protocol down  
 

 
The first line of the screen output as shown indicates that the port has been shut down by the 
administrator, by the shutdown entry in the port's configuration. This can be fixed by issuing the 
noshutdown command in interface configuration mode, which resolves the problem caused by 
change 3.  

 
 Overview of Data Link Layer Troubleshooting  
 
 For Data Link layer troubleshooting, we refer to the router configuration. The only thing to check 
here is that connected ports share the same Data   

 

 Link layer encapsulation. By issuing the writ command to both router 2 and 3, we see 
mismatched layer 2 encapsulations. By viewing the configurations, we see PPP as the 



With no encapsulation, the Cisco HDLC default is used. Taking out the encapsulation ppp 
entry from the Serial 0 port of router 3 resolves problem 1.  

 
 Overview of Network Layer Troubleshooting  
 

 

Once the layer 1 and 2 problems have been resolved, only the Network layer remains to be 
checked in our scenario. We know that with IGRP, routing information is exchanged only between 
systems belonging to the same Autonomous System number. By reviewing the router 
configurations, we see that router 2 has a different AS number than router 1 and 3. Changing the 
AS to match enables all routers to share route information, which resolves problem 4. All routers 
can now ping one other again, because IGRP can now update each router's routing table with the 
necessary information.  

 



Summary  
 

 
This chapter covered how to configure a new router using Cisco's Setup feature, viewing and 
understanding the configuration file that this generates, and modifying this file using the Cisco 
configuration mode. How to store and retrieve these files from a network TFTP server was 
covered, including use of the auto-configuration routine.  

 
 The chapter concluded with instructions on how to build a simple laboratory of three Cisco routers 
to enable us to explore how routers interact in a small internetwork.  

 



Chapter 4:Routing Protocols Used in TCP/IP  
 
 Objectives  
 

 
This chapter examines various routing protocols popular in the TCP/IP world. By the end of this 
chapter you should have a good theoretical understanding of the following protocols and know how 
they are implemented in a Cisco environment.  

 
   •RIP version 1  
 
   •IGRP  
 
   •EIGRP  
 
   •OSPF  
 
   •Integrated IS-IS  
 
   •EGP and BGP  
 

 

Additionally, you should be able to choose which routing protocol to use for different situations. 
Finally, the process of redistribution, which enables multiple routing protocols to communicate on 
one internetwork, will be explained, and examples of implementation given. We will discuss the 
theory of each protocol, its good and bad points, and examine how the protocol can be configured 
on Cisco routers.  

 



Routing Protocol Responsibilities  
 

 
Routing protocols exist to keep routing tables accurate, even though the internetwork they are 
operating on will be changing due to equipment or line failures and the addition of new network 
segments.  

 

 
To keep tables accurate, a routing protocol operation has two parts. The first sends 
advertisements (referred to as routing updates) out from a router, regarding the location of network 
numbers it knows about. The second receives and processes these routing updates in a way that 
keeps the router's routing table directing traffic efficiently.  

 

 
There are two main types of routing protocols, the Interior Gateway Routing Protocol and the 
Exterior Gateway Routing Protocol. To understand the difference between these two, we need to 
define what an autonomous system is on an internetwork. Figure 4-1 shows a large internetwork 
split into three autonomous systems.  

 

 

  
 
 Figure 4-1: An internetwork split into three autonomous systems 

   
 

 

The idea behind autonomous systems is as follows. Imagine there are three different 
internetworks, one managed by an American-based team, one by a UK-based team, and one by a 
team based in Japan. Each of these internetworks is managed in a different way and has different 
policies. Suppose these three internetworks need to be connected so they can exchange 
information, but the separate network management teams want to retain their own policies and 
want to control the routing updates received from the newly connected internetworks.  

 

 
One way to meet these goals is to define an Exterior Gateway Routing Protocol process on the 
routers that connect the three internetworks. In Fig. 4-1, these are routers R1-1, R2-1 and R3-1. 
The Exterior Gateway Protocol limits the amount of routing information that is exchanged among 
these three internetworks and allows them to be managed differently.  

 
Within each autonomous system, all routers would run an Interior Gateway Routing Protocol, 
which assumes that the whole internetwork is under the management of one body and, by default, 



exchanges routing information freely with all other routers in the same autonomous system. 
Sophisticated Interior Gateway Routing Protocols, such as Cisco's IGRP, however, have the 
functionality to act as Exterior Gateway Routing Protocols. As with most things in computer 
networking, clear-cut definitions are hard to come by.  

 

 
Exterior Gateway Routing Protocols and multiple autonomous system numbers are used on the 
Internet but rarely in the commercial environment, so we shall concentrate mainly on the Interior 
Gateway Routing Protocols in this chapter.  

 

 
The world of Interior Gateway Routing Protocols is split into two camps, one known as distance 
vector and the other as link state. In the next section, we discuss two distance vector routing 
protocol algorithms, RIP and IGRP, followed by a discussion of the hybrid EIGRP. After that, we 
shall look at two link state protocols, OSPF and Integrated IS-IS.  

 



Interior Gateway Protocols: Distance Vector  
 

 
The first distance vector protocol was the Routing Information Protocol, (RIP). The discussion that 
follows on RIP fully explains how a distance vector routing protocol works. We will review the 
generic distance vector algorithm, followed by discussion of RIP version 1 as the first protocol of 
this type.  

 
 Generic Distance Vector  
 

 

The distance vector algorithm (sometimes referred to as the Bellman-Ford algorithm for the people 
who invented it), requires each machine involved in the routing process to keep track of its 
"distance" from all other possible destinations. What happens is that a router is programmed to 
construct a table of all possible destinations (in terms of network numbers) and measure the 
distance to each location. The only information a router has at boot time is what networks are 
directly attached to it. So how can it find out about all other possible destinations?  

 

 
Each router is programmed so that it announces all the destinations it knows about, along with the 
distance to each. Once a router starts hearing all the advertisements from other routers, it can start 
to list all the possible destinations and calculate the shortest path to these destinations—the one 
kept in the routing table.  

 

 
So a distance vector protocol will, on a regular basis, send out an update that contains all the 
information contained in the machine's routing table. These updates are sent only to neighboring 
routers on directly connected segments. One of the key differences between distance vector and 
link state routing is that link state protocols send information to routers on remote segments.  

 

 

Once these updates get to a router, the router will then use a collection of algorithms and timers to 
decide what entries should be put into the routing table of the machine that is receiving the 
updates. Another key aspect of distance vector protocols is that any given machine knows only the 
next hop in the sequence to deliver the packet to its ultimate destination. In link state protocols, 
each machine has a complete map of the network it is in (or, more accurately, the routing area it is 
in—but we will come to that later).  

 
 To finish this introduction, let's take a high-level overview of the code behind the distance vector 
algorithm:  

 
   1.Each router has a unique identification on the internetwork.  
 
   2.Every router will identify a metric to be associated with each link directly connected to itself.  
 
   3.All routers will start advertising directly connected links with a metric of zero.  
 

   
4.Every router transmits to neighbors the complete information regarding all destinations and their 
metric when the router first boots, then periodically, and whenever a router becomes aware of a 
change.  

 
5.Each router determines which directly connected neighbor offers the lowest metric to each 
l i



location.  
 
 RIP: The Routing Information Protocol  
 

 
The first Interior Gateway Protocol (IGP) was the Routing Information Protocol, or "RIP" as it 
became known. RIP was designed for an environment that had only a relatively small number of 
machines, and these machines were connected with links that had identical characteristics.  

 

 

As the first IGP, RIP gained widespread use and was distributed free with BSD Unix as the routed 
daemon process. As today's heterogeneous networks grow and become more diverse, RIP has 
been improved upon with more modern, more full-featured distance vector protocols. RIP is still in 
widespread use and is the only routing protocol that Unix machines universally understand.Okay, 
before we get into the workings of RIP, let's refresh our memories regarding what a routing table 
looks like. To display a Cisco router's routing table, do the following:  

 
 Codes:C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP  
 D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area  
 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP  
 i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default  
 Gateway of last resort is not set  
 
 160.4.0.0 255.255.255.224 is subnetted, 2 subnets  
 C 160.4.1.32 is directly connected, Ethernet0  
 R 160.4.1.64 [120/1] via 160.4.1.34, 00:00:12, Ethernet0  
 

 

In the first column, the router tells us how it learned about the routing table entries. The legend at 
the top of the display explains what these abbreviations mean. For example, C means that the 
network is directly connected to the router on the specified interface. S stands for static route and 
means that the route to this destination network is hard-coded into the router's configuration. R 
means that the router learned of this destination network via a RIP update.  

 

 

The rest of the entry in the router's routing table states which interface to use for the specified 
network, and which router to send the packet to next if the destination network is on another part of 
the internetwork. In this case, the RIP entry is telling us to use the router with address 160.4.1.34 
in order to get to the 160.4.1.64.subnet, and that this router is connected to the Ethernet 0 
interface.  

 

 
Let's look at the rest of this entry in more detail. The [120/1] entry in the RIP line first gives the 
value of the administrative distance, and then the metric. The administrative distance is a value 
assigned to routing protocols. RIP has a value of 120, OSPF of 110, IGRP of 100, EIGRP of 90, 
static of 1, and directly connected of 0.  

 

 This administrative distance is used if two routing protocols advertise the same route to the same 
router. In this case, the router will prefer the route supplied by the routing protocol with the lowest 
value for administrative distance. The logic behind this is that, because Cisco routers give you the 



routing protocols are not comparable; RIP only goes up to a metric of 16, while IGRP goes to more 
than 16 million, so this other measure is used to show preference for the routing protocols in use. 
EIGRP is most preferred, IGRP next, then OSPF and finally RIP.  

 
 The 00:00:12 value is a counter that indicates the amount of time that has passed since the router 
received an advertisement for this route.  

 
 We will now discuss how RIP handles its responsibilities as a routing protocol in more detail.  
 

 
The Basics of How RIP Works. Once configured on an internetwork, the operation of RIP and its 
interaction with the routing table is fairly straightforward. By default, every 30 seconds each RIP-
enabled device sends out a RIP update message, comprising routing information from the 
machine's routing table. This message includes the following:  

 
   •Destination address of host or network.  
 
   •The IP address of the gateway sending the update.  
 
   •A metric that indicates the distance (in terms of hops) to the destination.  
 

 
It is worth noting that interfaces on a Unix machine or a router can be defined as passive. If that is 
done, the interface in question does not send out any RIP updates; it merely listens for updates 
from other machines.  

 

 

Once a routing device receives an update, it processes the new information, which it compares 
with that in the existing routing table. If the routing update includes a new destination network, it is 
added to the routing table. If the router receives a route with a smaller metric to an existing 
destination, it replaces the existing route. If an entry in the update message has the same 
destination network and gateway but a different metric, it will use the new metric to update the 
routing table.  

 

 

This covers how routers handle a static network using RIP; some additions to the protocol are in 
place to handle changes in topology, such as a downed link. If the preceding were the only logic 
coded into a router, it would not recover from a downed link because it remembers only the best 
route to any given destination. If the gateway, or link to that gateway, should fail, the routing table 
might never reflect the change.  

 

 

That's because, so far, the logic defined depended upon a gateway notifying its neighbors of 
whether its metrics had changed. If the gateway could no longer communicate, it could not notify 
its neighbors of a change. To handle such situations, RIP employs timers: It sends out messages 
(every 30 seconds by default), and the protocol assumes that if a gateway or specific route is not 
heard from within 180 seconds, it no longer is available. Once it determines that a route is 
unavailable, the router sends a special message that notifies its neighbors of the unavailable route. 
After 270 seconds, if nothing is heard from the gateways or route, this information is flushed from 
the router's routing table. These timers are known as the update, invalid, and flush timers, 
respectively.  

 

 To understand fully how a router deals with link or other failures on the internetwork, we need to 
explore other issues, starting with the count to infinity problem. With a router that uses RIP as its 



explore other issues, starting with the count to infinity problem. With a router that uses RIP as its 
routing protocol, "infinity" turns out to be 16. Clearly, some further explanation is needed here.  

 

 

RIP's interpretation of infinity as the number 16 relates to the Time To Live (TTL) field in the IP 
layer header. Each time a packet travels through a router, its TTL field (with initial value of 15) is 
decreased by one. When the TTL value reaches 0, the packet is discarded and no longer exists in 
the internetwork. This feature is there to stop a packet caught in a routing loop from being switched 
back and forth forever between routers. Obviously we want the TTL value to be high enough to 
allow us to send correctly routed packets through whatever network size we want to implement, 
but small enough so that packets are not kept in a routing loop for too long. In a RIP-based 
network, this value is fixed at 15. With IGRP, we can set the value to whatever we like.  

 

 
Let's see how this situation of a circulating packet can occur, and what features in RIP have been 
implemented to minimize its occurrence. Referring to Fig. 4-2, consider the situation wherein a PC 
on network 3 needs to send a message to a PC on network 1.  

 

 

  
 
 Figure 4-2: An internetwork in which Split Horizon prevents routing loops 

   
 

 

First let's examine what happens with RIP during normal operation. Router A initially will advertise 
that it knows about networks 1 and 2. Router B will advertise that it knows about networks 2 and 3. 
(This is similar to the lab we set up in Chap. 3.) After these initial advertisements, both routers 
know about all three networks. If router B sends an update to router A, stating that it knows how to 
get to network 1, we can run into some problems. Here's how this can happen.  

 

 

Suppose the interface on router A goes down and router A cannot contact network 1. If router B is 
advertising to router A a route to network 1, router A will think that it can get to network 1 by 
sending a packet to router B. So, if a PC on network 3 wants to send a packet to a PC on network 
1 and the interface on router A to network 1 goes down, the packet will get caught in a routing 
loop. This happens because router B will decide that to get to network 1, it must send the packet to 
router A. Router A knows that its directly connected interface to network 1 is down and that 
network 1 cannot be reached that way. Since router A has received an update from router B 
stating that it knows how to get to network 1, the packet will get sent back to router B and the 
process starts all over. The only thing that stops this process is the count to infinity.  

 

 

The Split Horizon algorithm was designed to counter this problem. The effect of the Split Horizon 
rule is that a router will send out different routing update messages on different interfaces. In 
effect, a router never sends out information on an interface that it learned from that interface. The 
logic is that if a router first learns of a network from an adjacent router, that adjacent router must 
be nearer the network. The effect of this rule in the sample internetwork of Fig. 4-2 is that router B 
will have learned about network 1 from router A, and therefore, according to Split Horizon, router B 
will not include network 1 in its routing updates sent to router A.   



 

 

RIP version 1 implemented Split Horizon with Poison Reverse Update. This formidable-sounding 
title is, in fact, a small modification to the Split Horizon algorithm described above. All it means is 
that, instead of not advertising routes to the source, routes are advertised back to the source with 
a metric of 16, which will make the source router ignore the route. It is perceived that explicitly 
telling a router to ignore a route is better than not telling it about the route in the first place.  

 

 
All this means in practice (if the fault condition is in effect) is that a PC will know that it cannot send 
a message to a PC on network 1 more quickly. This could mean that a user knows he cannot send 
his message, or this knowledge could kick off some dial-backup facilities to restore service more 
quickly.  

 

 
Split Horizon, with or without Poison Reverse, only counters routing loops between adjacent 
routers. Let's look at Fig. 4-3 and see a situation in which Split Horizon will not save us from a 
routing loop.  

 

 

  
 
 Figure 4-3: An internetwork in which RIP's maximum metric value causes problems 

   
 

 

Suppose router C gets a packet destined for network 1; then, in normal operation, the packet is 
sent to router A for delivery. If the interface on router A to network 1 goes down, router A knows it 
cannot deliver the packet to network 1 directly and will seek an alternate route. Split Horizon stops 
router C from telling router A that it knows how to get to network 1, but it will tell router B. After the 
network 1 interface failure on router A, router B will no longer hear about network 1 from router A, 
but will hear about it from router C. Therefore, router B will be free to advertise a route to network 1 
to router A, stating that it can get to network 1 via router C. This leads to a routing loop between 
routers A, B, and C, even though Split Horizon is in effect.  

 
 Another time when the value 16 has significance in a RIP-based network is when a network has 
been built that has a path through more than 15 routers from source to destination.  

 
Router D will hear about two ways to get to Network 1, one from router A and one from router C. 
Router A will advertise network 1 to both C and D with a metric of 1. Router C will increment this 
metric by 1 (to indicate the packet has traveled through a router) and will readvertise this route to 



D. Router D will get both of these updates and select router A as the best way to get to network 1, 
because it has the lowest metric. Now suppose router A had received a routing update from 
network X, which had a route with a metric of 15. Router A will add 1 to the metric, making it 16. 
The next router to receive this in an update from A will declare that it is infinity and will eliminate 
this route from its routing table (if the route existed there in the first place)—or, at the very least, 
fail to add this route to its routing table.  

 

 
This means that routers B, C, and D will not be able to reach anything on network X, because RIP 
will think that network X is too far away. This is annoying, particularly if all of the links and routers 
are functioning correctly.  

 

 

Triggered Updates and Hold-Downs. The larger a network grows, the more difficult it is to get all 
the routing tables on all the routers updated correctly. The time it takes for all the routing tables to 
get adjusted by a routing protocol is called the convergencetime. To speed up this process, RIP 
employs triggered updates, which means that whenever a RIP-enabled router learns of a topology 
change, such as a link becoming unavailable, it will not wait for the next scheduled routing update 
to be sent out, but will instead send out a triggered update immediately.  

 

 

Unfortunately, this does not work for all situations. Look at Fig. 4-4 to examine what happens if the 
link between A and B becomes unavailable. When routers A and B realize that they are no longer 
connected, they will notify their neighbors of the link failure via a triggered update. All router 
devices receiving this news will issue triggered updates to their neighbors, indicating the change in 
topology. Problems occur if, for example, router E is made aware of the change before router D. 
Router E adjusts its routing table to reflect that the A-to-B link is no longer available; however, if 
router D has not heard of this change and sends to E a regular update message (assuming that 
the A-to-B link is still available), E will reinstate the A-to-B link in its routing table.  

 

 

  
 
 Figure 4-4: A larger internetwork in which the use of hold-downs is necessary 

   
 

 
In this situation, the benefit of using triggered updates has been negated, and we still have to wait 
for the A-to-B route to expire in all the routing tables in the network. A method for improving the 
convergence time in this type of situation is the hold-down timer.  

 

 

The hold-down rule states that when a route is removed, no update to that route will be accepted 
for a given period of time. In our example, this means router E will ignore the update from router D 
attempting to reinstate the A-to-B route. This gives the triggered updates time to get to all other 
routers, ensuring that any new routes are not just reinstating an old link. The downside of this 
scheme is that the system will not reach convergence in the quickest possible time. However, 
convergence time with triggered updates and hold-downs is much better than without.  



 Now that we have explained the operation of RIP, we can go back to the lab and explore the 
information that the router will give us regarding RIP.  

 
 The command show ip route 160.4.1.64 gives some expla-nation of the summarized 
display given when a Show ip route is executed.  

 
 router1#sho ip route 160.4.1.64  
 Routing entry for 160.4.1.64 255.255.255.224  
 Known via "rip", distance 120, metric 1  
 Redistributing via rip  
 Last update from 160.4.1.34 on Ethernet0, 00:00:26 ago  
 Routing Descriptor Blocks:  
 * 160.4.1.34, from 160.4.1.34, 00:00:26 ago, via Ethernet0  
 Route metric is 1, traffic share count is 1  
 

 
The point of interest is that the display tells us the netmask used in determining subnet values, in 
this case 255.255.255.224. In addition, it explains that the 120 value is the administrative distance 
and the metric is 1. Further, it explains that the last update for this route was obtained 26 seconds 
ago from address 160.4.1.34 on Ethernet 0.  

 
 The next command, show ip protocols, gives us the timer values, discussed in the preceding 
section, for this specific RIP system.  

 
 router1#sho ip protocols  
 Routing Protocol is "rip"  
 Sending updates every 30 seconds, next due in 22 seconds  
 Invalid after 180 seconds, hold down 180, flushed after 240  
 Outgoing update filter list for all interfaces is not set  
 Incoming update filter list for all interfaces is not set  
 Redistributing: rip  
 Routing for Networks:  
 160.4.0.0  
 Routing Information Sources:  
 GatewayDistanceLast Update  
 160.4.1.341200:00:16  
 Distance: (default is 120)  
 

 
Problems with RIP. In today's large, heterogeneous networks that connect Ethernet segments to 
serial-line wide area links and dial-up links, the following problems make the use of RIP far from 
ideal.  

 

   •As the network grows, destinations that require a metric of more than 15 become unreachable. 
This is particularly bad if a network administrator applies a metric of more than 1 to a link, to 



This is particularly bad if a network administrator applies a metric of more than 1 to a link, to 
indicate a slow transmission time.  

 

   
•The overly simplistic metric generates a suboptimal routing table, resulting in packets being sent 
over slow (or otherwise costly) links when better paths are available. Other routing protocols use a 
more complex metric to include the throughput of each link in use.  

 

   
•RIP-enabled devices will accept RIP updates from any device. This enables a misconfigured 
device to disrupt an entire network quite easily. Other protocols allow "neighbors" to be defined as 
the only ones from which to accept routing updates.  

 

   
•RIP does not carry subnet mask information in updates. It assumes all interfaces on the network 
have the same mask. Because of this, the network can run out of usable Internet-compatible 
addresses earlier than is necessary.  

 
   •On larger internetworks, convergence time is unacceptably slow (greater than 5 min) for most 

commercial applications such as database access or financial transactions.  
 

   
•The Split Horizon with Poison Reverse Update algorithm in RIP only counters routing loops 
between adjacent routers. Other routing protocols employ more sophisticated mechanisms to 
counter larger routing loops, thereby allowing the safe use of a zero hold-down value, which 
speeds up convergence time considerably.  

 
   •RIP updates use more bandwidth than other protocols, mainly because the whole routing table is 

sent in updates.  
 

 
Even though it may not be the best protocol available, there are still those who have to introduce 
Cisco routers into a largely Unix-based routing environment, and the only routing protocol that 
routers can use to exchange information reliably with Unix machines is RIP. With that in mind, let's 
see what needs to be done to configure RIP on a Cisco router.  

 
 The first step is to enable the process on the router, which is achieved as follows:  
 
 Router1(config)#router rip  
 Router1(config-router)network A.B.C.D  
 

 
The first line defines RIP as a running process, and the second defines the whole network number 
that will be advertised by RIP on initial startup of the routing process. You need to add entries for 
all the network numbers that are directly connected. If there may be interfaces on the router that 
you do not want to send routing updates through, consider Fig. 4-5.  

 

 
  

 
 Figure 4-5: The use of passive interfaces on a RIP internetwork 

   



 

 

In this figure, the Ethernet 0 port is connected to a local area network. This network may contain 
routers advertising routes that you do not want to get to the global wide area net. To stop the 
router sending any of these local routes over the global net, use the passive interface 
command as shown next. This command stops the router from sending out any updates on the 
specified interface.  

 
 Router1(config-router) #passive interface SO  
 

 
RIP is a broadcast protocol, so in order for routing updates to reach routers on nonbroadcast 
networks, you must configure the Cisco IOS to permit this exchange of routing information. This is 
a fairly rare occurrence. Consider Fig. 4-6.  

 

 

  
 
 Figure 4-6: Configuring RIP to send routing updates to a specified router 

   
 

 
Suppose you have two sites connected via a public frame relay network and want router 1 to send 
RIP updates to router 2. With a default configuration for RIP, the frame relay network will not 
broadcast the RIP update to all connected devices, so we have to tell router 1 to send a directed 
RIP update message to router 2. This is achieved as follows:  

 
 where W.X.Y.Z. is the IP address of router 2.  
 
 In summary, the RIP configuration utilizing all these features is shown as follows:  
 
   •router rip  
 
   •network A.B.C.D  
 
   •passive interface serial 0  
 
   •neighbor W.X.Y.Z  
 

 

It is possible to change the value of the update, invalid, and flush timers along with the value of 
hold-down. I do not recommend you do this for RIP. The only reason to use RIP on a router is if 
you are exchanging routing information with a Unix machine, and it is likely that the timers and 
hold-down value for the Unix machine are not easily configurable. If you are concerned enough 
about the performance of your routing protocol to adjust the timers, you should not be using RIP, 
but rather something such as IGRP, and use redistribution (discussed later in this chapter) to 



exchange route information with Unix machines.  
 

 
RIP performed its job well, given what it was designed for, but its time as the only routing protocol 
to run on a large and diverse network is over. Let's look at how Cisco improved things with the 
Interior Gateway Routing Protocol, IGRP.  

 
 IGRP: Interior Gateway Routing Protocol  
 
 Cisco's stated goals for IGRP include the following:  
 
   •Stable, optimal routing for large internetworks, with no routing loops occurring.  
 
   •Fast response to changes in network topology.  
 
   •Ability to handle multiple "types of service" (though not currently implemented).  
 
   •Low overhead in terms of bandwidth and router processor utilization.  
 
   •Ability to split traffic among several parallel routes when they are of roughly equal desirability.  
 

 
The key differences between RIP and IGRP are in the metric, poisoning algorithm, and use of 
default gateway. IGRP's Split Horizon, triggered updates, and hold-downs are implemented in a 
fashion similar to RIP.  

 

 
IGRP Metrics. IGRP computes a vector of metrics that is used to characterize paths. This metric 
value can exceed 16 million, which allows a great deal of flexibility when mathematically describing 
link characteristics. This composite metric (as defined by Cisco) is calculated as follows:  

 
 [(K1/B) + (K2xD)]xR  
 
 where   
 
 K1, K2 = constants  
 
   
 
 B =   

 
 unloaded path bandwidth x (1–channel occupancy). This is for the narrowest 
bandwidth segment of the path.  

 

 
 D =   

 
 Topological delay  

 

 
 R =   

 
 reliability  

 



 
 Two additional data elements are passed in routing updates: hop count and Maximum 
Transmission Unit, although neither currently are used in the calculation.  

 

 

K1 and K2 indicate the weight to be assigned to bandwidth and delay, and are defined by the type 
of service requested for a packet. In reality, the metric calculation is much simpler than this 
equation would suggest. If two routers are connected via their Serial 0 ports, the default bandwidth 
assumed for the metric calculation is 1.544 Mbps (T-1 speed). For a T-1, IGRP assigns a 
composite delay of 21,000 µs. By default K1 = 10,000,000; K2 = 100,000; and R = 1. This gives a 
metric of 8576 for every serial port connection on a network, regardless of the actual line capacity 
in place. This metric value can be viewed by using the show ip route A.B.C.D command, in 
which A.B.C.D is the IP address of a device on the other side of the serial port link. An example is 
shown as follows:  

 
 router1#sho ip rout 160.4.1.64  
 Routing entry for 160.4.1.64 255.255.255.224  
 Known via "igrp 9", distance 100, metric 8576  
 Redistributing via igrp 9  
 Last update from 160.4.1.34 on Ethernet0, 00:00:33 ago  
 Routing Descriptor Blocks:  
 * 160.4.1.34, from 160.4.1.34, 00:00:33 ago, via Ethernet0  
 Route metric is 8576, traffic share count is 1  
 Total delay is 21000 microseconds, minimum bandwidth is 1544 Kbit  
 Reliability 255/255, minimum MTU 1500 bytes  
 Loading 1/255, Hops 0  
 

 
Metric values can be customized using the bandwidth interface command for each serial 
port, to factor in actual bandwidth available for each link for metric calculations. This is a good 
idea.  

 
 As stated, the Cisco IOS, unless it is configured otherwise, will decide that each serial link is using 
a T-1 for the purposes of metric calculation.   

 
 This can be verified by issuing the following command on router A (see Fig. 4-7).  
 

 

  
 
 Figure 4-7: Internetwork in which interface bandwidth commands are necessary 

   



 
 RouterA>show interface serial 1  
 Serial1 is up, line protocol is up  
 Hardware is HD64570  
 Internet address is 160.4.1.65 255.255.255.224  
 MTU 1500 bytes, BW 1544 Kbit, DLY 20000 usec, rely 255/255, load 1/255  
 

 
The first four lines of command output are shown. As you can see, the bandwidth assumed is that 
of a T-1, even though a 64 kbps line is in use. It would have been nice if this bandwidth value had 
used what was actually there by default; because the router is getting the clock signal from the line 
CSU/DSU, it does have the information to do so—but the connection in the Cisco IOS is not made. 

 

 

Why is this important? As previously stated, IGRP will split traffic between paths that it thinks are 
of equal value in terms of the composite metric. If no adjustments are manually made to the router 
configuration to change the value of bandwidth used for the 64 kbps links in the metric calculation, 
router A will calculate the metric from network 1 to network 2 as 17152 (8576 + 8576) for both the 
route through router D and the route through router B. Transferring a file from a machine on 
network 1 to a machine on network 2 will mean that the traffic is split equally between these two 
paths. As you can see, the available bandwidth of these two paths is actually very different, which 
will lead to a suboptimal rate of file transfer.  

 
 The way to fix this is to assign appropriate bandwidth values to each link. This is achieved as 
follows:  

 
 RouterA(config)#interface serial 1  
 RouterA(config-int)#bandwidth 64000  
 

 
The same should be done for the Serial 1 interface on router B. The result of this is that the route 
from network 1 to network 2 will have a far lower metric through router D than through router B. As 
the routes no longer have equal metrics, for a file transfer from network 1 to network 2, the path 
through router D will carry all the traffic.  

 

 

In the Cisco IOS, the concept of variance can be used to define unequal-cost load balancing. This 
means that if up to four paths are roughly equal, traffic will be split among them, in inverse 
proportion to their metric value. These alternative path metrics must be within a specified variance 
multiplier of the best metric. The variance value multiplied by the best metric defines the upper 
value of the metric of the links that will be considered for unequal-cost load balancing. In Fig. 4-8, 
we see an internetwork that, with appropriate settings of variance, will allow traffic between 
network 1 and network 2 to be split between routes through router B and D, in proportion to the 
bandwidth available.  

 

 

  



 
 Figure 4-8: Internetwork in which the use of variance is recommended 

   
 

 

In this instance it is desirable to have traffic between network 1 and 2 split between the two paths. 
If the variance is set to a value greater than 1, traffic may be split over paths of unequal metric. A 
value of 1 is the default and means that traffic will only be sent over the best path, or split between 
equal paths. If the variance is set to 1.5, it means that any path with a metric up to 1.5 times the 
metric of the best path will be added to the routing table and used when sending traffic.  

 
 The variance multiplier is set as follows:  
 
 RouterA(config-router)#variance 1.5  
 

 

Caution must be taken with network design due to IGRP's ability to use load balancing. As long as 
either the Data Link or Transport layer protocol can handle receiving out-of-sequence packets, 
everything is fine. If one is using frame relay, for example, to transport UDP packets in an 
internetwork with multiple routes between networks, however, the IGRP feature will cause 
problems, because neither frame relay nor UDP guarantee correct sequencing of packets. In this 
instance, using TCP as the transport protocol, or swapping to LAPB for the link-level protocol, will 
resolve the problem.  

 

 

IGRP Route Poisoning. The poisoning algorithm used in IGRP can counter larger routing loops 
than can the Split Horizon with Poison Reverse used by RIP. RIP's poisoning algorithm only 
counters routing loops between adjacent routers. IGRP will poison routes in which metric 
increases by a factor of 10 percent or more after an update. This is based on the logic that routing 
loops generate continually increasing metrics. Using this type of poisoning rule will mean that 
certain valid routes will be erroneously deleted from routing tables. If routes are valid, however, 
they will be reinstated by the next regular update message. The key advantage to this type of 
poisoning is that it safely allows a zero hold-down value, which speeds up network convergence 
time considerably.  

 

 
IGRP Default Gateway. For routers, the network number 0.0.0.0 has special significance to 
identify a specified router as the default gateway. A default gateway is used by the router when it 
has to forward a packet destined for a network that is not explicitly listed in the routing table. 
Consider this routing table from a Unix machine:  

 
 Network Gateway FlagsRefCntUseInterface  
 123.0.0.0134.4.4.4UG405000le0  
 134.4.0.0134.4.4.1UG507000le0  
 0.0.0.0 134.4.4.5UG102000le0  
 

 

This router knows about two real networks (the 123.0.0.0 and 134.4.0.0), as well as the default 
network of 0.0.0.0. If the router has to forward a packet to anything other than the two real 
networks about which it knows, it will send the packet to the router with IP address 134.4.4.5, 
hoping that it will know how to get the packet to its final destination. This function is useful if you 
want to reduce the amount of network numbers a Unix machine must know about, but still have it 
participate in routing decisions. Consider Fig. 4-9, which shows an internetwork that would 



generate the routing table shown above.  
 

 

  
 
 Figure 4-9: Internetwork with one router operating as the default 

   
 

 

In this internetwork, the Unix machine is effectively delegating all the WAN routing decisions to the 
WAN router, which is acting as a boundary router to the global network. Routing protocols will 
circulate information about this default route in routing updates as if it were a real network. This 
can cause problems if this one gateway, defined as the default, becomes unavailable. With RIP, 
0.0.0.0 is the only way to define a default gateway.  

 

 
IGRP takes a different approach that allows real networks to be flagged as candidates for being a 
default. This is achieved by turning on a bit associated with those networks, marking the networks 
as being a candidate. Periodically IGRP scans the routers offering a path to this flagged network, 
selects the path with the lowest metric, and uses that as the default (Fig. 4-10).  

 

 

  
 
 Figure 4-10: Internetwork using Cisco's default-network feature 

   



 

 

In this figure, two routers, router 1 and router 2, both have a connection to the global Internet, 
which in this case is accessed via the 130.6.0.0 class B network. In this internetwork, the network 
number that is used to access the Internet will be flagged as the default in both of the routers that 
are connected to the Internet. This is done by entering the following global configuration command 
into both router 1 and router 2:  

 
 Router(config)#ip default-network 130.6.0.0  
 

 
In this case, an asterisk will appear in the routing table of all routers against the entry for the 
130.6.0.0 network, indicating that this is the default network. All routers should choose router 1 as 
the way to access this network number.  

 

 

Now suppose host 1 has router 5 configured as its default gateway. This means that it will send all 
packets not destined for the local network to router 5. Router 5 will have selected router 1 as the 
way to get to the default network. Thus, if host 1 has to send a packet to 202.14.5.3, which is on 
the Internet, it will send the packets to router 5. Router 5 will realize it does not have a route to the 
202.14.5.0 network and will send the packet to router 1, which it already has chosen as its route to 
the default network. As long as router 1 has an entry to the 202.14.5.0 network, the packet will be 
delivered.  

 

 
The concept is that if a default network is identified, and a router does not have a route to a given 
network, it will send the packet to the default network, assuming that some router on the way to the 
default network will have a routing table entry for the ultimate destination.  

 
 This keeps local routers, such as router 5 in Fig. 4-10, from having to maintain very large routing 
tables.  

 

 
One command that could be confusing is the ip default-gateway command. You might think 
that it defines a default gateway for the routing table to use during normal operation. It does not. 
This command is there for upgrading routers remotely; we will revisit it in Chap. 7.  

 

 

Before we move on, let's just see the default-network command operate in the lab we used in 
Chap. 3. If we configure the routers as previously shown in Chap. 3 and Fig. 3.5, and connect the 
Ethernet 0 port on router 3 to the hub, we will bring the Ethernet 0 port on router 3 into the up 
state, which means it can participate in the routing processes. Router 1 does not have a routing 
process configured, but is configured with a static route to 150.1.0.0 via 120.1.1.2. Router 2 is 
running IGRP with network subcommands for 120.0.0.0 and 150.1.0.0. Router 3 has a router IGRP 
process with network subcommands for 150.1.0.0 and 193.1.1.0. Finally, router 1 is configured to 
have the following entry in its configuration:  

 
 Router1(config)#ip default-network 150.1.0.0  
 
 We want router 1 to be able to ping the 193.1.1.1 interface on router 3 by sending a ping packet to 
router 2, which is marked as the router to go to for the default network 150.1.0.0.  

 
 This will cause router 1 to mark with an asterisk the entry for the 150.1.0.0 network in its routing 
table, denoting that this is a candidate for default.  



 
 The routing tables for routers 1, 2, and 3 now look like this:  
 
 Router1>show ip route  
 C120.0.0.0 is directly connected, Ethernet 0  
 S*150.1.0.0 [1/0] via 120.1.1.2  
 Router2>show ip route  
 C120.0.0.0 is directly connected, Ethernet 0  
 C150.1.0.0 is directly connected, Serial 0  
 I193.1.1.0 [10018576] via 150.1.1.2, 00:00:40, Serial 0  
 Router3>show ip route  
 I120.0.0.0 [10018576] via 150.1.1.1, 00:00:52, Serial 0  
 C150.1.0.0 is directly connected, Serial 0  
 C193.1.1.0 is directly connected, Ethernet 0  
 
 If we try to ping 193.1.1.1 from router 1, the following happens:  
 

   
1.Router 1 sees that the 193.1.1.0 network is not listed in its routing table. It then sees that 
network 150.1.0.0 is flagged as default, so the router sends the packet destined for 193.1.1.1 to 
the router that knows the way to the default network, that being router 2.  

 
   2.Router 2, which knows about network 193.1.1.0, receives the packet, so the packet is forwarded 

on to router 3.  
 
   3.Router 3 receives the packet and delivers it to 193.1.1.1.  
 
   4.To reply to 120.1.1.1, router 3 has an entry in its routing table to pass the packet to router 2, 

which passes the reply packet back to router 1.  
 
 This feature is useful because it minimizes the number of entries needed in the routing table of 
router 1.  

 
 Configuring IGRP. The following is a typical configuration to define IGRP as a routing protocol on 
a Cisco router:  

 
 router igrp 12  
 timers basic 15 45 0 60  
 network 162.4.0.0  
 network 193.1.1.0  
 no metric holddown  
 metric maximum-hop 50  
 



 
The first line defines the routing protocol to be IGRP, for the autonomous system 12. An 
autonomous system is a network that is administered by one person or one group. For most 
organizations, every routing device will have the same autonomous system number. IGRP will not 
exchange updates with routers from different autonomous system numbers.  

 

 
The second line shortens the default value of IGRP timers. The values indicated here use: 15 
seconds for the basic time constant, for when regular update messages are broadcast; 45 seconds 
for route expiry, if no updates for that route are received; 0 seconds for hold-down, and 60 
seconds for flushing the route from the routing table.  

 
 The third and fourth lines identify the networks directly attached to the routing device being 
configured.  

 
 The fifth line disables hold-downs, meaning that after the route for a given network has been 
removed, a new route for that destination network will be accepted immediately.  

 

 
The sixth line removes packets if they have passed through 50 routers. This number should be 
large enough to allow all valid routes within your network, but as low as possible to speed up the 
removal of any packets caught in a routing loop.  

 

 
When used with appropriate entries in the interface configurations to identify the correct bandwidth 
value to use in metric calculations, the foregoing configuration should serve most internetworks 
well. This configuration for IGRP timers is known as Fast IGRP, as it speeds up network 
convergence time considerably, compared to standard IGRP timers.  

 
 As with RIP, a neighbor can be defined if routing updates need to be sent to a router that is only 
reachable over a network that does not support a broadcast protocol.  

 

 
IGRP will service most networks very well. There are only a few instances when IGRP causes 
problems on an internetwork. These problems are endemic to all distance vector protocols. If the 
following scenario fits the description of your internetwork, you should consider reviewing the use 
of a link state protocol, or the hybrid EIGRP.  

 

 

Suppose that your organization is using an InterNIC-assigned class B network number, split into 
several hundred subnets allocated to geographically dispersed sites. Each site has a dial backup 
link to a central location. If the link to a site goes down and the site equipment dials in to the 
central location, all routers on the network need to know that this has happened, and also the new 
way to reach this site. Triggered updates get sent around the whole network and all routing tables 
are adjusted.  

 

 

A distance vector protocol will send out periodically all the information from its routing table (with 
some minor adjustments for the Split Horizon rule). If there are enough subnets in the routing 
table, these periodic updates can swamp a dial-up link. Link state and hybrid protocols send 
updates that contain only the information relevant to the change that has occurred on the 
internetwork.  

 
 The question of distance vector versus link state is not an easy one to answer. We shall revisit how 
to make this choice at the end of the chapter.  

 



EIGRP: The Hybrid Protocol  
 

 
In the early 1990s, Cisco introduced Enhanced IGRP, which uses the same distance vector 
technology found in IGRP for the underlying metric calculations. What has changed are the route 
advertising procedures, and the calculation of entries into the routing table. These procedures are 
like those of a link state protocol. The key components of EIGRP are:  

 
   •Neighbor discovery/recovery  
 
   •Reliable transport protocol  
 
   •DUAL finite state machine  
 
   •Variable-length subnet masks  
 

 

Neighbor discovery is the process by which a router learns of other routers on directly attached 
links. EIGRP uses small hello packets for neighbor discovery (as long as a router receives hello 
messages from a neighboring router, it assumes that the neighbor is functioning and they can 
exchange routing information). The key point is that EIGRP uses partial updates. When the state 
of a link or router changes, EIGRP sends out only the information necessary to those needing to 
hear about it, instead of sending the entire routing table to all neighbors. This clearly minimizes the 
bandwidth used by EIGRP regular update messages when compared to those used by IGRP.  

 

 

At the heart of EIGRP is the Diffusing Update Algorithm (DUAL), the decision process for all route 
computations. DUAL uses distance information to select efficient, loop-free paths and selects the 
best route for insertion into the routing table, as well as a feasible successor. This feasible 
successor is used if the primary route becomes unavailable, thus avoiding a complete 
recalculation of the algorithm in the event of a link failure, and hence lowering convergence time. 
EIGRP also introduced a Reliable Transport Protocol to ensure guaranteed, ordered delivery of 
routing updates, rather than relying on broadcasts.  

 

 
A key design feature of EIGRP is that it will support routing for protocols other than IP. EIGRP also 
supports routing for IPX and AppleTalk network protocols. This has some advantages in a mixed 
networking environment in that only one routing protocol need be configured.  

 

 
EIGRP supports variable-length subnet masks (VLSM), which increase flexibility for the use of 
netmasks in internetwork design. Previously we discussed why an internetwork could have only 
one value of netmask assigned, as neither RIP nor IGRP carried netmask information in routing 
updates. EIGRP does carry this information.  

 

 
The functionality afforded by VLSM is most useful when an organization has a limited address 
space assigned by the InterNIC, and has to supply these addresses to several sites of varying size 
(see Fig. 4-11).  

 



 

  
 
 Figure 4-11: Internetwork in which VLSM is used 

   
 

 

We can see that network 2 must support 50 usable addresses, and network 1 must support 10. If 
network 2 has the most hosts at one site on the internetwork, and we are using RIP or IGRP, we 
would have to assign a netmask of 255.255.255.192, which gives us 62 usable addresses on each 
subnet. This would waste 52 usable addresses on network 1. With EIGRP we can assign a 
netmask of 255.255.255.192 to the Ethernet 0 port of router 2 and a 255.255.255.240 to the 
Ethernet 0 port of router 1. EIGRP will transmit this netmask information in its updates and routing 
table integrity will be maintained.  

 
 Inside EIGRP  
 

 

The first table we will look at is the neighbor table. Neighbors are discovered when they send a 
hello packet to a neighboring router. All hello packets are used to form the neighbor table, which is 
where routers keep information regarding the state of adjacent neighbors. Hello packets include a 
HoldTime, the amount of time in which a router receiving the hello packet will treat the sender of 
the hello as reachable. If another hello is not received within the HoldTime, DUAL is informed of 
the change of state. This table also keeps track of Reliable Transport Protocol (RTP) sequence 
numbers and estimates an appropriate time for retransmission requests for RTP packets.  

 

 

EIGRP has a topology table that contains all destinations advertised by neighboring routers, along 
with the metric value for each destination. This topology table forms the basis for input to the 
DUAL calculations. The output of DUAL feeds into the routing table. A topology table entry for a 
destination can be in one of two states, either active or passive (the normal condition). A route only 
becomes active when an event occurs to cause a route recalculation due to some router or link 
becoming unavailable.  

 

 

An entry in the topology table gets moved to the routing table when what is known as a feasible 
successor has been found. A feasible successor can be thought of as the best alternative path to a 
destination, if the best path fails. If there is a feasible successor for an entry in the topology table, 
and the neighbor chosen for this entry stops sending hello packets, the entry will not go active in 
the topology table. Having a feasible successor therefore is a good thing, because it avoids a full 
recalculation of the DUAL algorithm in the event of a network failure.  

 

 
EIGRP is a proprietary Cisco technology, and therefore has good compatibility with IGRP. EIGRP 
updates are not backwardly compatible with IGRP updates, but there is an automatic redistribution 
scheme for interoperability of IGRP and EIGRP routes, and there exist directly translatable metrics 
between IGRP and EIGRP. (Redistribution will be discussed later in this chapter.)  

 
 Configuring EIGRP  
 
 The following is a typical configuration to define EIGRP as a routing protocol on a Cisco router:  



 
 router eigrp 13  
 network 170.4.0.0  
 network 200.10.1.0  
 
 The first line defines EIGRP as a process on the router for autonomous system 13. The second 
and third lines identify the directly attached networks that participate in the routing process.  

 
 EIGRP supports unequal-cost load balancing by the variance command in a fashion similar to that 
discussed for IGRP; in fact, the same command is used to specify the variance multiplier.  

 
 One area of configuration that differs between IGRP and EIGRP is the option to disable route 
summarization. Route summarization is explained below.  

 

 

In Fig. 4-12 we have two companies, Company A and Company B. Let's say Company A has to 
provide an information service to two locations of Company B. Company B uses the 170.2.0.0 
network, with a netmask of 255.255.255.0, which means it can provide 254 subnets, each capable 
of supporting 254 hosts with this one network number. Company A uses the 150.1.0.0 network, 
with subnet masks applied, so that this one network number can be used to connect many client 
sites to its internetwork.  

 

 

  
 
 Figure 4-12: Internetwork in which route summarization causes a problem 

   
 

 

If both companies are using EIGRP with a default configuration, the internetwork addressing 
shown in Fig. 4-12 will not work properly. The reason for that is that whole network numbers are 
summarized at their boundary. This means that the routers in the 150.1.0.0 internetwork do not 
see the 170.2.0.0 subnets, but rather see only an advertisement for the entire route. With IGRP or 
RIP, nothing can be done to change this, but with EIGRP there is an option we can use.  

 

 
This can be a difficult concept for network administrators who have been accustomed to using 
netmasks on one network number and expect separate subnets to be treated as separate 



networks.  
 
 EIGRP provides the option to turn off route summerization, which means that network 150.1.0.0 
will be able to accommodate more than one connection to the 170.2.0.0 network.  

 

 

To help understand why this is so, let's consider the decision-making process a router within the 
150.1.0.0 network goes through when it has to forward a packet to, say, 170.2.4.4 as an example. 
The first thing the router will do is determine the whole network number that the destination is on, 
which is 170.2.0.0. It will then look for an entry in its routing table for that network. The routing 
table will keep track of individual subnets within the 150.1.0.0 network, but does not do the same 
for external networks by default. This is so because it will not receive subnet information for the 
170.2.0.0 network from the routers at the Company B locations.  

 
 In the case of Fig. 4-12, there will be two equal-cost routes in Company A's router to 170.2.0.0, so 
traffic will be split between them, irrespective of which subnet is the packet's real destination.  

 

 

With EIGRP, route summarization can be disabled; the routing tables in 150.1.0.0 routers will 
maintain the two entries for the two subnets in the 170.2.0.0 network and be able to properly 
deliver packets to both subnets. The way this is done is to disable route summarization for all 
EIGRP processes. This means that router 1 and router 2 in Fig. 4-12 will send subnet information 
regarding the 170.2.0.0 network to the routers in Company A's routers.  

 
 To do this, enter the following EIGRP configuration commands for all routers involved in accessing 
subnets on multiple network numbers:  

 
 Router1(config)#router eigrp 11  
 Router1(config-router)no auto-summary  
 



EIGRP: The Hybrid Protocol  
 

 
In the early 1990s, Cisco introduced Enhanced IGRP, which uses the same distance vector 
technology found in IGRP for the underlying metric calculations. What has changed are the route 
advertising procedures, and the calculation of entries into the routing table. These procedures are 
like those of a link state protocol. The key components of EIGRP are:  

 
   •Neighbor discovery/recovery  
 
   •Reliable transport protocol  
 
   •DUAL finite state machine  
 
   •Variable-length subnet masks  
 

 

Neighbor discovery is the process by which a router learns of other routers on directly attached 
links. EIGRP uses small hello packets for neighbor discovery (as long as a router receives hello 
messages from a neighboring router, it assumes that the neighbor is functioning and they can 
exchange routing information). The key point is that EIGRP uses partial updates. When the state 
of a link or router changes, EIGRP sends out only the information necessary to those needing to 
hear about it, instead of sending the entire routing table to all neighbors. This clearly minimizes the 
bandwidth used by EIGRP regular update messages when compared to those used by IGRP.  

 

 

At the heart of EIGRP is the Diffusing Update Algorithm (DUAL), the decision process for all route 
computations. DUAL uses distance information to select efficient, loop-free paths and selects the 
best route for insertion into the routing table, as well as a feasible successor. This feasible 
successor is used if the primary route becomes unavailable, thus avoiding a complete 
recalculation of the algorithm in the event of a link failure, and hence lowering convergence time. 
EIGRP also introduced a Reliable Transport Protocol to ensure guaranteed, ordered delivery of 
routing updates, rather than relying on broadcasts.  

 

 
A key design feature of EIGRP is that it will support routing for protocols other than IP. EIGRP also 
supports routing for IPX and AppleTalk network protocols. This has some advantages in a mixed 
networking environment in that only one routing protocol need be configured.  

 

 
EIGRP supports variable-length subnet masks (VLSM), which increase flexibility for the use of 
netmasks in internetwork design. Previously we discussed why an internetwork could have only 
one value of netmask assigned, as neither RIP nor IGRP carried netmask information in routing 
updates. EIGRP does carry this information.  

 

 
The functionality afforded by VLSM is most useful when an organization has a limited address 
space assigned by the InterNIC, and has to supply these addresses to several sites of varying size 
(see Fig. 4-11).  

 



 

  
 
 Figure 4-11: Internetwork in which VLSM is used 

   
 

 

We can see that network 2 must support 50 usable addresses, and network 1 must support 10. If 
network 2 has the most hosts at one site on the internetwork, and we are using RIP or IGRP, we 
would have to assign a netmask of 255.255.255.192, which gives us 62 usable addresses on each 
subnet. This would waste 52 usable addresses on network 1. With EIGRP we can assign a 
netmask of 255.255.255.192 to the Ethernet 0 port of router 2 and a 255.255.255.240 to the 
Ethernet 0 port of router 1. EIGRP will transmit this netmask information in its updates and routing 
table integrity will be maintained.  

 
 Inside EIGRP  
 

 

The first table we will look at is the neighbor table. Neighbors are discovered when they send a 
hello packet to a neighboring router. All hello packets are used to form the neighbor table, which is 
where routers keep information regarding the state of adjacent neighbors. Hello packets include a 
HoldTime, the amount of time in which a router receiving the hello packet will treat the sender of 
the hello as reachable. If another hello is not received within the HoldTime, DUAL is informed of 
the change of state. This table also keeps track of Reliable Transport Protocol (RTP) sequence 
numbers and estimates an appropriate time for retransmission requests for RTP packets.  

 

 

EIGRP has a topology table that contains all destinations advertised by neighboring routers, along 
with the metric value for each destination. This topology table forms the basis for input to the 
DUAL calculations. The output of DUAL feeds into the routing table. A topology table entry for a 
destination can be in one of two states, either active or passive (the normal condition). A route only 
becomes active when an event occurs to cause a route recalculation due to some router or link 
becoming unavailable.  

 

 

An entry in the topology table gets moved to the routing table when what is known as a feasible 
successor has been found. A feasible successor can be thought of as the best alternative path to a 
destination, if the best path fails. If there is a feasible successor for an entry in the topology table, 
and the neighbor chosen for this entry stops sending hello packets, the entry will not go active in 
the topology table. Having a feasible successor therefore is a good thing, because it avoids a full 
recalculation of the DUAL algorithm in the event of a network failure.  

 

 
EIGRP is a proprietary Cisco technology, and therefore has good compatibility with IGRP. EIGRP 
updates are not backwardly compatible with IGRP updates, but there is an automatic redistribution 
scheme for interoperability of IGRP and EIGRP routes, and there exist directly translatable metrics 
between IGRP and EIGRP. (Redistribution will be discussed later in this chapter.)  

 
 Configuring EIGRP  
 
 The following is a typical configuration to define EIGRP as a routing protocol on a Cisco router:  



 
 router eigrp 13  
 network 170.4.0.0  
 network 200.10.1.0  
 
 The first line defines EIGRP as a process on the router for autonomous system 13. The second 
and third lines identify the directly attached networks that participate in the routing process.  

 
 EIGRP supports unequal-cost load balancing by the variance command in a fashion similar to that 
discussed for IGRP; in fact, the same command is used to specify the variance multiplier.  

 
 One area of configuration that differs between IGRP and EIGRP is the option to disable route 
summarization. Route summarization is explained below.  

 

 

In Fig. 4-12 we have two companies, Company A and Company B. Let's say Company A has to 
provide an information service to two locations of Company B. Company B uses the 170.2.0.0 
network, with a netmask of 255.255.255.0, which means it can provide 254 subnets, each capable 
of supporting 254 hosts with this one network number. Company A uses the 150.1.0.0 network, 
with subnet masks applied, so that this one network number can be used to connect many client 
sites to its internetwork.  

 

 

  
 
 Figure 4-12: Internetwork in which route summarization causes a problem 

   
 

 

If both companies are using EIGRP with a default configuration, the internetwork addressing 
shown in Fig. 4-12 will not work properly. The reason for that is that whole network numbers are 
summarized at their boundary. This means that the routers in the 150.1.0.0 internetwork do not 
see the 170.2.0.0 subnets, but rather see only an advertisement for the entire route. With IGRP or 
RIP, nothing can be done to change this, but with EIGRP there is an option we can use.  

 

 
This can be a difficult concept for network administrators who have been accustomed to using 
netmasks on one network number and expect separate subnets to be treated as separate 



networks.  
 
 EIGRP provides the option to turn off route summerization, which means that network 150.1.0.0 
will be able to accommodate more than one connection to the 170.2.0.0 network.  

 

 

To help understand why this is so, let's consider the decision-making process a router within the 
150.1.0.0 network goes through when it has to forward a packet to, say, 170.2.4.4 as an example. 
The first thing the router will do is determine the whole network number that the destination is on, 
which is 170.2.0.0. It will then look for an entry in its routing table for that network. The routing 
table will keep track of individual subnets within the 150.1.0.0 network, but does not do the same 
for external networks by default. This is so because it will not receive subnet information for the 
170.2.0.0 network from the routers at the Company B locations.  

 
 In the case of Fig. 4-12, there will be two equal-cost routes in Company A's router to 170.2.0.0, so 
traffic will be split between them, irrespective of which subnet is the packet's real destination.  

 

 

With EIGRP, route summarization can be disabled; the routing tables in 150.1.0.0 routers will 
maintain the two entries for the two subnets in the 170.2.0.0 network and be able to properly 
deliver packets to both subnets. The way this is done is to disable route summarization for all 
EIGRP processes. This means that router 1 and router 2 in Fig. 4-12 will send subnet information 
regarding the 170.2.0.0 network to the routers in Company A's routers.  

 
 To do this, enter the following EIGRP configuration commands for all routers involved in accessing 
subnets on multiple network numbers:  

 
 Router1(config)#router eigrp 11  
 Router1(config-router)no auto-summary  
 



Exterior Gateway Routing Protocols  
 

 
These protocols are designed to regulate what traffic can travel between different autonomous 
systems and protect each from any bugs in another AS. The mechanisms we will examine here 
are static routing, the Exterior Gateway Protocol, and the Border Gateway Protocol.  

 
 Static Routing  
 

 
Usually an experienced network administrator will seek to minimize any manual configuration. In 
the case of exterior routing, this might be different, because static routing offers a number of 
advantages when routing between autonomous systems. These advantages can be summarized 
as follows:  

 
   •Complete flexibility over the advertisement of subnets and their next-hop routers.  
 
   •No routing protocol traffic travels over the link connecting autonomous systems.  
 
   •Because no routing protocol is operating over the inter-AS link, there is no possibility of a faulty 

router in one AS affecting the other AS.  
 

 

The down sides are obvious. Static routes do not adapt to link failures, and manual configuration 
can be a headache to maintain. Despite these down sides, static routing often is a popular choice 
for connecting internetworks that do not "trust" one another. Let's say autonomous system 1 
consists of network numbers 45.0.0.0 and 46.0.0.0, and autonomous system 2 consists of network 
numbers 47.0.0.0 and 48.0.0.0. This is illustrated in Fig. 4-21.  

 

 

  
 
 Figure 4-21: Internetwork used to discuss static routing 

   
 
 To complete static routing for connecting these two autonomous systems together, use the 
following commands:  

 
 RouterA(config)#ip route 47.0.0.0 255.0.0.0 80.4.4.5  
 RouterA(config)#ip route 48.0.0.0 255.0.0.0 80.4.4.5  
 
 RouterB(config)#ip route 45.0.0.0 255.0.0.0 80.4.4.4  
 RouterB(config)#ip route 46.0.0.0 255.0.0.0 80.4.4.4  
 
 This tells each autonomous system how to get to networks in the other autonomous system.  



 
 Exterior Gateway Protocol  
 

 
The Exterior Gateway Protocol, or EGP, has three components, neighbor acquisition, neighbor 
reachability, and routing information. EGP was designed to add a measure of automation to the 
configuration of routes between different autonomous systems. EGP has been superseded by the 
Border Gateway Protocol, (BGP), so we will not spend too much time on it.  

 

 

EGP Neighbor Acquisition. We can use Fig. 4-21 to discuss how EGP works. Suppose router A 
has been configured to initiate a neighbor relationship with router B. This will initiate a neighbor 
acquisition packet to be sent from router A to router B. If router B has been configured to accept a 
neighbor relationship with A, this packet is accepted. The neighbor reachability mechanism is the 
hello packet, used to verify that a router that is accepted as a neighbor is still functioning. The 
routing information of EGP is similar to distance vector protocols, but it omits the metric for routes 
advertised. EGP was implemented like this because it was designed for the Internet, when it was 
assumed that there would be a core network with separate routing domains connected to this core 
by one router.  

 

 
The major problem with using EGP in a more generalized network is that, because no use is made 
of metrics, if there is more than one path to a destination, packets can easily get caught in routing 
loops (Fig. 4-22).  

 

 

  
 
 Figure 4-22: A sample internetwork in which EGP does not work 

   
 

 

If router R4 receives a packet for AS1, it will have two routes to AS2, one via R3 and one via R6. 
Because there are no metrics involved, the routes are equal in R4's determination, so it may 
choose either. Let's say it chooses to send the packet to R3. R3 also has two routes to AS1, one 
via R4 and one to R1. Again, these routes are equal in R3's consideration, so the packet could be 
returned to R4, where the cycle starts over again. Clearly, EGP has problems for a general 
environment, so I would recommend leaving it alone.  

 
 BGP: Border Gateway Protocol  
 



 

BGP was introduced to improve upon EGP. One of BGP's main features is that it introduces a 
reliable transport protocol to ensure that route updates are received. BGP also implements a keep-
alive mechanism, ensuring that BGP routers know if neighboring BGP routers fail. BGP does not 
transmit metrics with its route updates, but does transmit a path for each AS that lists the 
autonomous systems to be visited on the way to the destination AS. BGP thus avoids the 
circulating-packet problem of EGP.  

 
 BGP works on the principle of enforcing policies. A policy is manually configured and allows a 
BGP-enabled router to rate possible routes to other autonomous systems, selecting the best path. 

 
 Configuring BGP.We can use Fig. 4-22 to discuss how to configure BGP on a router. In this 
example, let's take router R6. To configure BGP we will perform the following:  

 
   •Define BGP as a routing process.  
 
   •Define the networks internal to this AS that are going to be advertised.  
 
   •Define the relationships that this router will have with its neighbors.  
 
   •Assign administrative weights to paths to control the path selection process.  
 

 
This is a basic configuration for BGP. There are, however, many further configuration 
customizations that can be made. If you really want to get into complex BGP configuration, I would 
recommend talking to a Cisco Systems engineer who can help you with customizing BGP for your 
particular internetwork.  

 
 For a basic configuration, the following commands are entered into router R6:  
 
 Router6(config)#router bgp 3  
 Router6(config-router)#network 147.30.0.0  
 Router6(config-router)#network 150.1.0.0  
 Router6(config-router)#neighbor 147.30.1.1 remote-as 3  
 Router6(config-router)#neighbor 160.4.5.5 remote-as 2  
 

 

The first line in this configuration defines BGP for autonomous system 3 on router 6. The next two 
lines define the network numbers internal to AS 3 that will be advertised via BGP. The fourth line 
defines an internal neighbor that is in the same AS. The BGP process on router 6 will now 
exchange information with a BGP process defined on R5. The fifth line defines the neighbor in a 
different AS with which router 6 will exchange information.  

 

 
The effect of this configuration is that R6 will share information about networks 147.30.0.0 and 
150.1.0.0 with the two specified routers via BGP updates.The last thing left to do in our basic 
configuration of BGP is to assign administrative weights to control the path selection process. In 
the following example, a weight of 40,000 is assigned to the path to router R4.  

 
 Router6(config-router)#neighbor 160.4.5.5 40000 



 Router6(config-router)#neighbor 160.4.5.5 40000  
 

 
This administrative weight can vary between 0 and 65535, with the default being 32768. The effect 
of increasing the weight to R4 is to make it less attractive when R6 is calculating which paths to 
use.  

 



Redistributing Route Information between Protocols  
 

 

If you have the opportunity to build a network from scratch, and could design it such that the only 
devices to run routing protocols are routers, you could choose your favorite routing protocol and 
use that exclusively. Typically, however, the situation is that there is an existing network with an 
existing routing protocol in place and, more often than not, Unix machines have some routing 
responsibilities in a network. Because most Unix machines only support RIP, and it is unlikely that 
RIP will be the best choice of routing protocol for an internetwork of any size, the question arises of 
how more than one routing protocol can coexist on an internetwork, either permanently or during a 
period of migration.  

 

 

The answer is redistribution. A router can be configured to run more than one routing protocol and 
redistribute route information between the two protocols. The idea is that the internetwork will have 
multiple domains, each operating with a different routing protocol. At the border between these 
domains, one router has the responsibility of running both routing protocols and informing each 
domain about the other's networks in the appropriate routing protocol. This is illustrated in Fig. 4-
23.  

 

 
  

 
 Figure 4-23: An internetwork where the use of redistribution is appropriate 

   
 

 

In this figure, the router has to run both RIP and IGRP, then inform domain A about the networks in 
domain B with RIP updates and inform domain B about domain A's networks using IGRP updates. 
The router in this figure will only be able to assign one metric to all the routes that it redistributes 
from one domain to another; it cannot translate metrics between protocols. At first, this may seem 
to be a drawback, that all networks are redistributed with the same metric value, no matter where 
they are located in the other domain. In reality this is not a problem, because to get from domain A 
to domain B, all connections have to go through the same router; the initial part of the journey is 
identical when sending packets between domains.  

 

 
In Fig. 4-23, a packet destined for domain A, originating in domain B, reaches router 1. Router 1 
then has a routing table filled with entries for the networks in domain A that have been calculated 
using RIP updates. The packet will follow the best path to its destination network.  

 
 The following is an example of how, in Fig. 4-23, the routing protocol processes could be 
configured on router 1 to redistribute routes between the RIP and IGRP domains.  

 
 If we take a basic configuration for both RIP and IGRP, we add the redistribute commands shown 
in bold type:  

 
 router igrp 12  
 timers basic 15 45 0 60  
 network 164.8.0.0  
 network 193.1.1.0  



 no metric holddown  
 metric maximum-hop 50  
 redistribute rip  
 default - metric 300 344 200 200 200  
 router rip  
 network 150.1.0.0  
 network 120.0.0.0  
 redistribute igrp 12  
 default-metric 3  
 
 This assumes that domain A has network numbers 150.1.0.0 and 120.0.0.0 in it, and domain B 
has networks 164.8.0.0 and 193.1.1.0 in it.  

 

 

The five values following the default-metric entry in the router IGRP section are the metrics 
that will be sent out in IGRP updates, for routes learned about via RIP. In the router RIP section, 
routes learned from IGRP updates will be advertised with a metric of 3. It must be noted that the 
numbers shown here are random. In most instances this does not matter, because all cross-
domain traffic has to go through router 1 as previously explained.  

 
 We will now look at a few more examples of redistributing route information between protocols of 
different types.  

 
 Redistributing between RIP and OSPF  
 

 
Let's take the example of one RIP domain and one OSPF domain needing to exchange 
information (Fig. 4-24). This is very much like the last example we used to redistribute route 
information between RIP and IGRP.  

 

 

  
 
 Figure 4-24: Internetwork redistributing between the OSPF and RIP protocols 

   
 
As before, we have connected the Ethernet 0 ports of router 1 and router 3 to the same hub, so 
that the Ethernet 0 port of router 3 can be brought in to an up state and participate in the routing 



processes, even though these two Ethernet ports are on different network numbers. This is not 
good practice in general and should be used only in a lab environment.  

 
 The configurations and routing table for each router in this instance are shown in Fig. 4-25.  
 
   
 
    

 
 router1 #wri t  

 

 
    

 
 Building configuration...  

 

 
    

 
 Current configuration:  

 

 
    

 
 !  

 

 
    

 
 version 10.3   

 

 
    

 
 hostname router1  

 

 
    

 
 !  

 

 
    

 
 enable secret 5 $1$W6qH$DTNrEHmJrn6QqYcMu5PRh.  

 

 
    

 
 enable password test  

 

 
    

 
 !  

 

 
    

 
 !  

 

 
    

 
 interface Ethernet0  

 

 
    

 
 ip address 120.1.1.1 255.0.0.0  

 

 
    

 
 !  

 

 
    

 
 interface Serial0  

 

 
    

 
 no ip address  

 

 
    

 
 shutdown  

 



 
    

 
 !  

 

 
    

 
 interface Serial1  

 

 
    

 
 no ip address  

 

 
    

 
 shutdown  

 

 
    

 
 !  

 

 
    

 
 router rip  

 

 
    

 
 network 120.0.0.0  

 

 
    

 
 !  

 

 
    

 
 !  

 

 
    

 
 line con 0  

 

 
    

 
 line 1 16  

 

 
    

 
 transport input all  

 

 
    

 
 line aux 0  

 

 
    

 
 transport input all  

 

 
    

 
 line vty 0 4  

 

 
    

 
 password ilx  

 

 
    

 
 login  

 

 
    

 
 !  

 

 
    

 
 end  

 

 
    

 
 router1#sho ip route  

 



 
    

 
 Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP   

 

 
    

 
 D - EIGRP, EX - EIGRP extemal, O - OSPF, IA - OSPF inter area   

 

 
    

 
 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP   

 

 
    

 
 i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate defauft   

 

 
    

 
 Gateway of last resort is not set  

 

 
    

 
 C 120.0.0.0 is directly connected, Ethernet0  

 

 
    

 
 R 150.1.0.0 [120/4] via 120.1.1.2, 00:00:1 1, Ethernet0  

 

 
    

 
 Router 2  

 

 
    

 
 router2#wri t  

 

 
    

 
 Building configuration...  

 

 
    

 
 Current configuration:  

 

 
    

 
 version 10.3  

 

 
    

 
 !  

 

     
hostnamerouter2 
 
!  

 

     enable secret 5 $1$/P2r$ob00lmzYqpogV0U1g1O8U/   
 
    

 
 enable password test  

 

 
    

 
 !  

 

 
    

 
 interface Ethernet0  

 

 
    

 
 ip address 120.1.1.2 255.0.0.0  

 

 
    

 
 !  

 



 
    

 
 interface Serial0  

 

 
    

 
 ip address 150.1.1.1 255.255.0.0  

 

 
    

 
 !  

 

 
    

 
 interface Serial1  

 

 
    

 
 no ip address  

 

 
    

 
 shutdown  

 

 
    

 
 !  

 

 
    

 
 router ospf 10  

 

 
    

 
 redistribute rip  

 

 
    

 
 network 150.1.0.0 0.0.255.255 area 1  

 

 
    

 
 defauft-metric 64000  

 

 
    

 
 !  

 

 
    

 
 router rip  

 

 
    

 
 redistribute ospf 10  

 

 
    

 
 network 120.0.0.0  

 

 
    

 
 default-metric 4  

 

 
    

 
 !  

 

 
    

 
 !  

 

 
    

 
 line con 0  

 

 
    

 
 line 1 16  

 



 
    

 
 line aux 0  

 

 
    

 
 line vty 0 4  

 

 
    

 
 password ilx  

 

 
    

 
 login  

 

 
    

 
 !  

 

 
    

 
 end  

 

 
    

 
 router2#show ip route  

 

 
    

 
 Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP   

 

 
    

 
 D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area   

 

 
    

 
 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP   

 

 
    

 
 i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default  

 

 
    

 
 Gateway of last resort is not set  

 

 
    

 
 C 120.0.0.0 is directly connected, Ethernet0  

 

 
    

 
 C 150.1.0.0 is directly connected, Serial0  

 

 
    

 
 Router 3  

 

 
    

 
 router3#wri t  

 

 
    

 
 Building configuration...  

 

 
    

 
 Current configuration:  

 

 
    

 
 !  

 

 
    

 
 version 10.3  

 



 
    

 
 hostname router3  

 

 
    

 
 !  

 

 
    

 
 enable secret 5 $1$cNaQ$a4jcvrXlzVO4cwJB7RP5j1  

 

     
enable password test 
 
!  

 

     !   
 
    

 
 interface Ethernet0  

 

 
    

 
 ip address 193.1.1.1 255.255.255.0  

 

 
    

 
 !  

 

 
    

 
 interface Serial0  

 

 
    

 
 ip address 150.1.1.2 255.255.0.0  

 

 
    

 
 clockrate 64000  

 

 
    

 
 !  

 

 
    

 
 interface Serial1  

 

 
    

 
 no ip address  

 

 
    

 
 shutdown  

 

 
    

 
 !  

 

 
    

 
 router ospf 10  

 

 
    

 
 network 150.1.0.0 0.0.255.255 area 1  

 

 
    

 
 !  

 

 
    

 
 !  

 



 
    

 
 line con 0  

 

 
    

 
 exec-timeout 0 0  

 

 
    

 
 line 1 16  

 

 
    

 
 transport input all  

 

 
    

 
 line aux 0  

 

 
    

 
 transport input all  

 

 
    

 
 line vty 0 4  

 

 
    

 
 password ilx  

 

 
    

 
 login  

 

 
    

 
 !  

 

 
    

 
 end  

 

 
    

 
 router3#sho ip route  

 

 
    

 
 Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP   

 

 
    

 
 D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area   

 

 
    

 
 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP   

 

 
    

 
 i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate defauft  

 

 
    

 
 Gateway of last resort is not set  

 

 
    

 
 O E2 120.0.0.0 [110/64000] via 150.1.1.1, 02:03:51, Serial0  

 

 
    

 
 C 150.1.0.O is directly connected, Serial0  

 

 
    

 
 C 193. 1. 1.0 is directly connected, Ethernet0  

 



 
 Figure 4-25: Router configurations and routing tables for OSPF and RIP redistribution 

   
 

 

The routing tables of router 3 and 1 show that the redistribution process functioned as expected. 
Router 3 knows about 120.0.0.0 via the OSPF process on router 2, and uses the OSPF default 
metric set in router 2 for that destination. Router 3 considers 120.0.0.0 as an external network, as 
the RIP domain is considered a different autonomous system. Router 1 knows about network 
150.1.0.0 from the RIP process on router 2, and uses the RIP default metric set on router 2 for this 
entry.  

 
 In this small internetwork, RIP does not need to send advertisements out the Serial 0 port of router 
2, so it can be disabled on this port by adding the following entry in router 2.  

 
 Router2(config)#router rip  
 Router2(config-router)#passive-interface serial 0  
 

 

If this setup were part of a larger internetwork, there would be the possibility of a route existing 
from router 3 to router 1, via some other router that also is performing redistribution. This could 
cause a routing loop under certain conditions. To prevent this possible loop condition, it is a good 
idea to tell the RIP process on all routers performing redistribution to prevent routes that originated 
in the RIP domain from being readvertised back in to the RIP domain from the OSPF domain. To 
achieve this, we use access lists. An access list is a useful feature that allows almost infinite 
customization of the operation of your network.  

 

 
An access list contains a series of commands that either permit or deny specific types of packets 
from getting through a given interface. These access lists are applied to either inbound or 
outbound packets.  

 

 
The objective of the access list here is to tell all routers redistributing from OSPF into RIP not to 
send information regarding the 150.1.0.0 network from the OSPF domain back to the RIP domain. 
The entries in the configuration of router 2 to achieve this are as follows:  

 
 router rip  
 distribute-list 9 out ospf 12  
 !  
 access-list 9 deny 150.1.0.0 0.0.255.255  
 access-list 9 permit 0.0.0.0 255.255.255.255  
 

 

The first line in the router RIP section specifies the access list number, 9, to be applied to packets 
coming out of the OSPF autonomous system 12. The access list itself contains two entries, the 
first of which is to deny any packets from the 150.1.0.0 network. The 0.0.255.255 is a mask value. 
The second entry permits all other packets. This is necessary because the last, and unseen, line in 
any access list denies all packets.  

 
Another, potentially more useful example is to examine how OSPF could be added to the 
backbone of a simple internetwork that uses RIP for nonbackbone locations. This can be done if 



we reconfigure our lab a little, by using two more DTE/DCE cables. The configuration that we will 
build in our routers is shown in Fig. 4-26.  

 

 

  
 
 Figure 4-26: OSPF as a backbone protocol for a RIP internetwork 

   
 

 
In this configuration, RIP does not communicate between routers over the OSPF area 0 backbone, 
so we will use the passive-interface command to stop those RIP advertisements coming out 
of the serial interfaces of all routers with the following configuration entries.  

 
 Router rip  
 passive-interface serial 0  
 passive-interface serial 1  
 
 RIP routes can then be redistributed in to the OSPF area 0 with the following commands:  
 
 router ospf 9  
 redistribute rip subnets  
 

 
This differs from previous redistribution commands because we are explicitly telling OSPF to 
redistribute subnet information. Without this command, OSPF will redistribute only those networks 
without netmask information.  

 
 All RIP domains receive route information from other RIP domains and the OSPF backbone via the 
following configuration entries:  

 
 router rip  
 redistribute ospf 9  
 default-metric 10  
 
 The final configurations and routing tables for this example are given in Fig. 4-27.  
 
    

 
   

 



 
    

 
 router 1  

 

 
    

 
 routerl #wri t  

 

 
    

 
 Building configuration...  

 

 
    

 
 Current configuration:  

 

 
    

 
 !  

 

 
    

 
 version 10.3  

 

 
    

 
 hostname router1  

 

 
    

 
 !  

 

 
    

 
 enable secret 5 $1$W6qH$DTNrEHmJrn6QqYcMu5PRh.  

 

 
    

 
 enable password test  

 

 
    

 
 !  

 

 
    

 
 !  

 

 
    

 
 interface Ethernet0  

 

 
    

 
 ip address 160.4.10.1 255.255.255.0  

 

 
    

 
 !  

 

 
    

 
 interface Serial0  

 

 
    

 
 ip address 160.4.6.2 255.255.255.0  

 

 
    

 
 !  

 

 
    

 
 interface Serial1  

 

 
    

 
 ip address 160.4.7.2 255.255.255.0  

 



 
    

 
 !  

 

 
    

 
 router ospf 9  

 

 
    

 
 redistribute rip subnets  

 

 
    

 
 network 160.4.6.0 0.0.0.255 area 0  

 

 
    

 
 network 160.4.7.0 0.0.0.255 area 0  

 

 
    

 
 !  

 

 
    

 
 router rip  

 

 
    

 
 redistribute ospf 9  

 

 
    

 
 passive-interface Serial0  

 

 
    

 
 passive-interface Serial1  

 

 
    

 
 network 160.4.0.0  

 

 
    

 
 default-metric 3  

 

 
    

 
 !  

 

 
    

 
 !  

 

 
    

 
 line con 0  

 

 
    

 
 line 1 16  

 

 
    

 
 transport input all  

 

 
    

 
 line aux 0  

 

 
    

 
 transport input all  

 

 
    

 
 line vty 0 4  

 



 
    

 
 password ilx  

 

 
    

 
 login  

 

 
    

 
 !  

 

 
    

 
 end  

 

 
    

 
 router1#sho ip route  

 

 
    

 
 Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP   

 

 
    

 
 D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area   

 

 
    

 
 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP   

 

 
    

 
 i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default  

 

 
    

 
 Gateway of last resort is not set  

 

 
    

 
 160.4.0.0 255.255.255.0 is subnetted, 6 subnets  

 

 
    

 
 O E2160.4.40.0 [110/20] via 160.4.6.1, 00:05:59, Serial0  

 

 
      

 

   
O 160.4.5.0 [110/128] via 160.4.7.1, 00:05:59, Serial1 
 
[1 10/1 28] via 160.4.6.1, 00:05:59, Serial0  

 

 
    

 
 C160.4.6.0 is directly connected, Serial0  

 

 
    

 
 C160.4.7.0 is directly connected, Serial1  

 

 
    

 
 C160.4.10.0 is directly connected, Ethernet0  

 

 
    

 
 O E2160.4.30.0 [110/20] via 160.4.7.1, 00:05:59, Serial1  

 

 
    

 
 router 2  

 

 
    

 
 router2#wri t  

 

   



     Building configuration...  
 
    

 
 Current configuration:  

 

 
    

 
 !  

 

 
    

 
 version 10.3  

 

 
    

 
 !  

 

 
    

 
 hostname router2  

 

 
    

 
 !  

 

 
    

 
 enable secret 5 $1$/P2r$ob00lmzYqpogVOU1g1O8U/  

 

 
    

 
 enable password test  

 

 
    

 
 !  

 

 
    

 
 interface Ethernet0  

 

 
    

 
 ip address 160.4.40.1 255.255.255.0  

 

 
    

 
 !  

 

 
    

 
 interface Serial0  

 

 
    

 
 ip address 160.4.6.1 255.255.255.0  

 

 
    

 
 clockrate 64000  

 

 
    

 
 !  

 

 
    

 
 interface Serial1  

 

 
    

 
 ip address 160.4.5.2 255.255.255.0  

 

 
    

 
 clockrate 64000  

 

 
   

 
 ! 

 



     !  
 
    

 
 router ospf 9  

 

 
    

 
 redistribute rip subnets  

 

 
    

 
 network 160.4.5.0 0.0.0.255 area 0  

 

 
    

 
 network 160.4.6.0 0.0.0.255 area 0  

 

 
    

 
 !  

 

 
    

 
 router rip  

 

 
    

 
 redistribute ospf 9  

 

 
    

 
 passive-interface Serial0  

 

 
    

 
 passive-interface Serial1  

 

 
    

 
 network 160.4.0.0  

 

 
    

 
 defauft-metric 6  

 

 
    

 
 !  

 

 
    

 
 !  

 

 
    

 
 line con 0  

 

 
    

 
 line 1 16  

 

 
    

 
 line aux 0  

 

 
    

 
 line vty 0 4  

 

 
    

 
 password ilx  

 

 
    

 
 login  

 

 
   

 
 ! 

 



     !  
 
    

 
 end  

 

 
    

 
 router2#show ip route  

 

 
    

 
 Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP   

 

 
    

 
 D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area   

 

 
    

 
 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP   

 

 
    

 
 i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default  

 

 
    

 
 Gateway of last resort is not set  

 

 
    

 
 160.4.0.0 255.255.255.0 is subnetted, 6 subnets  

 

 
    

 
 C160.4.40.0 is directly connected, Ethernet0  

 

 
    

 
 C160.4.5.0 is directly connected, Serial1  

 

 
    

 
 C160.4.6.0 is directly connected, Serial0  

 

 
    

 
 O160.4.7.0 [110/128] via 160.4.6.2, 00:06:58, Serial0  

 

 
    

 
 [110/1 28] via 160.4.5.1, 00:06:58, Serial1  

 

 
    

 
 O E2 160.4.10.0 [110/20] via 160.4.6.2, 00:06:58, Serial0  

 

 
    

 
 O E2 160.4.30.0 [110/20] via 160.4.5.1, 00:06:58, Serial1  

 

 
    

 
 router 3  

 

 
    

 
 router3#wri t  

 

 
    

 
 Building configuration...  

 

 
    

 
 Current configuration:  

 

 
   

 
 ! 

 



     !  
 
    

 
 version 10.3  

 

 
    

 
 !  

 

 
    

 
 hostname router3  

 

 
    

 
 !  

 

 
    

 
 enable secret 5 $1$cNaQ$a4jcvrXlzVO4cwJB7RP5j1  

 

 
    

 
 enable password test  

 

 
    

 
 !  

 

 
    

 
 interface Ethernet0  

 

 
    

 
 ip address 160.4.30.1 255.255.255.0  

 

 
    

 
 !  

 

 
    

 
 interface Serial0  

 

 
    

 
 ip address 160.4.7.1 255.255.255.0  

 

 
    

 
 clockrate 64000  

 

 
    

 
 !  

 

 
    

 
 interface Serial1  

 

 
    

 
 ip address 160.4.5.1 255.255.255.0  

 

 
    

 
 !  

 

 
    

 
 roader ospf 9  

 

 
    

 
 redistribute rip subnets  

 

 
   

 
 network 160.4.7.0 0.0.0.255 area 0 

 



     network 160.4.7.0 0.0.0.255 area 0  
 
    

 
 network 160.4.5.0 0.0.0.255 area 0  

 

 
    

 
 !  

 

 
    

 
 router rip  

 

 
    

 
 redistribute ospf 9  

 

 
    

 
 passive-interface Serial0  

 

 
    

 
 passive-interface Serial1  

 

 
    

 
 network 160.4.0.0  

 

 
    

 
 defauft-metric 4  

 

 
    

 
 !  

 

 
    

 
 line con 0  

 

 
    

 
 exec-timeout 0 0  

 

 
    

 
 line 1 16  

 

 
    

 
 transport input all  

 

 
    

 
 line aux 0  

 

 
    

 
 transport input all  

 

 
    

 

 
line vty 0 4 
 
password ilx  

 

 
    

 
 login  

 

 
    

 
 !  

 

 
    

 
 end  

 



 
    

 
 router3#sho ip route  

 

 
    

 
 Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP   

 

 
    

 
 D - EIGRP, EX - EIGRP external, 0 - OSPF, IA - OSPF irder area   

 

 
    

 
 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP   

 

 
    

 
 i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default  

 

 
    

 
 Gateway of last resort is not set  

 

 
    

 
 160.4.0.0 255.255.255.0 is subnetted, 6 subnets  

 

 
    

 
 O E2 160.4.40.0 [110/20] via 160.4.5.2, 00:07:45, Serial1  

 

 
    

 
 C160.4.5.0 is directly connected, Serial1  

 

 
    

 
 O160.4.6.0 [110/128] via 160.4.7.2, 00:07:46, Serial0  

 

 
    

 
 [1 10/1 28] via 160.4.5.2, 00:07:46, Serial1  

 

 
    

 
 C160.4.7.0 is directly connected, Serial0  

 

 
    

 
 O E2160.4.10.0 [110/20] via 160.4.7.2, 00:07:46, Serial0  

 

 
    

 
 C160.4.30.0 is directly connected, Ethernet0  

 

 
 Figure 4-27: Router configurations and routing tables for redistribution between an OSPF 
backbone and RIP domains 

   
 

 
This gives us the results we expect, with each router knowing about all six subnets on the 
internetwork. As you can see from these routing tables, OSPF will share traffic between paths of 
equal metric. This is illustrated by looking at the routing table for router 3. In this routing table, 
160.4.6.0 has two equal-cost paths, one via router 1, and one via router 2.  

 
 Routing between Autonomous Systems  
 
Let's now look at a different situation, one in which we have different autonomous systems, both 
running EIGRP, that need to exchange route information. In this example, it is assumed that both 



autonomous systems are under common administration and the use of an exterior gateway 
protocol is not necessary.  

 

 
By default, EIGRP will only send route advertisements to the one autonomous system; if two 
EIGRP processes for two autonomous systems are running on the same router, however, 
redistribution can be used to transfer information between each AS routing database.  

 

 
Let's say we have a router with one interface in autonomous system 15, network 120.0.0.0, and 
one in autonomous system 16, network 150.1.0.0. Our objective is to transfer information 
regarding 120.0.0.0 into AS 16. The route protocol sections for this router are shown as follows:  

 
    

 
 router eigrp 15  

 

     network 120.0.0.0   
     redistribute eigrp 16   
     distribute-list 5 out eigrp 16   
     router eigrp 16   
     network 150.1.0.0   
     !   
     access-list 5 permit 120.0.0.0   
 

 
The third line of this configuration enables the router to redistribute information from AS 16 into AS 
15. The fourth line, in conjunction with the final line, restricts the information that is redistributed 
from AS 16 to only those routes in the 120.0.0.0 network.  

 
 IP Version 6  
 

 

With all the good things we have discussed that are available for the current version of IP (version 
4), why is there a need to discuss upgrading to IP version 6, sometimes referred to as IP Next 
Generation? For most private networks, the benefits of upgrading are not yet clear. The most 
commonly quoted benefit of Ipv6 is its increased address space. IPv6 uses a 128-bit address field, 
as opposed to the 32-bit space of IPv4. However, IPv4 has plenty of address size available for 
even the largest of private networks. IPv6 is most likely to deliver benefits to the private network by 
improved security at the network layer, routing table size reduction (reducing memory and 
processing requirements of routers) and improved auto-addressing of mobile users.  

 

 
IPv6 is a different story for the Internet. There are plans to radically increase the number of 
Internet addressable devices, to make even household and consumer goods Internet addressable. 
That does require lots more address space. With that in mind, let's briefly look at how the current 
form of IPv6 came into being.  

Background. Having decided that the Internet needed the capability for drastically larger address 



accepted in the marketplace as Ipv4.  
 

 
The second proposal became known as IPv7, then TP/IX and eventually CATNIP. This proposal 
was centered around the idea of defining a common packet format that would be compatible with 
IP, CLNP, and IPX. This proposal did not however reach maturity fast enough for the IAB.  

 

 

The third and ultimately successful proposal started life as IP in IP. The basis of this proposal was 
to define two layers for the Internet, one for the backbone, and one for local deployment. This idea 
was refined in a proposal called IP Address Encapsulation, which became the preferred transition 
mechanism for Simple IP. Simple IP was basically an increase in address space from 32 to 64 bits 
and a cleanup of obsolete Ipv4 features to reduce the IP header size. SIP merged with a proposal 
called PIP, that improved upon Ipv4's routing efficiency to create a proposal called SIP Plus, 
known as SIPP. By modifying the address space, the IAB accepted this proposal as the way 
forward and called the protocol Ipv6. IPv5 was not chosen as it had already been allocated to a 
real time streaming protocol.  

 

 

Technical Overview. Increasing the size of the address fields is the easier part. Coping with IP 
reachability (by this I mean the ability of routers to navigate a packet through the network from 
source to destination), in a massively larger Internet is a significantly greater challenge. The only 
known technique that is adequate to contain the routing overhead for a system as large as the 
current Internet is the technique of hierarchical routing. In the absence of any other alternatives, 
the Internet routing system (both for IPv4 and IPv6 address space) still needs to rely on the 
technique of hierarchical routing.  

 

 

While hierarchical routing certainly provides good scaling capabilities, it imposes restrictions for it 
to be effective. Among the most important restrictions is the requirement that the address 
assignment should reflect the underlying network topology. The practical implication of this is that 
once assigned, IP addresses need to be restricted to the geographic area of their origin, similar in 
concept to how the telephone network assigns an area code to a given geographic area. This 
concept is illustrated in Fig. 4-28.  

 

 

  
 

 
Figure 4-28: Hierarchical addressing. With hierarchical addresses, ISPs in given geographic 
locations will have a set prefix. Changing ISPs or the physical connections into the Internet will 
mean renumbering to maintain effective address hierarchy. 

   



 
 Consequently, if a network changes its point of connection to the Internet, it may have to change 
its addressing as well.  

 

 
This immediately causes an issue if a company changes its ISP, as it may require a renumbering 
exercise to maintain an effective Internet address hierarchy. Therefore, an essential precondition 
for hierarchical routing is the availability of practical renumbering technologies.  

 

 
In IPv6, renumbering is handled by more sophisticated autoconfiguration capabilities than IPv4, 
enabling an IPv6 host to renumber without significant human intervention. Although 
autoconfiguration can simplify the configuration of new hosts, its main benefit is its ability to 
maintain effective Internet routing hierarchy.  

 

 

To simplify host renumbering, IPv6 requires IPv6 hosts to be able to support multiple IPv6 
addresses per interface. This is similar in concept to the Cisco interface command "secondary IP 
address," which allows an interface to use two IP addresses. The IPv6 mechanism of multiple 
addresses per interface goes further however. IPv6 allows the ability to identify an IPv6 address 
assigned to an interface as either "valid," "deprecated," or "invalid." A host can use a valid address 
both for the existing communications and for establishing new communications. In contrast, the 
host could use a deprecated address only for the existing communications, but is not allowed to 
use such an address for new communications. Finally, if a host has an address that is invalid, that 
address cannot be used for any of the new or existing communications. In the process of 
renumbering, a host's current IPv6 address would become deprecated, and the host would acquire 
(through one of the IPv6 address autoconfiguration mechanisms) a new (valid) address. As a 
result, all the new communications would use the new address.  

 

 

IPv6 address autoconfiguration is supported via both stateful and stateless mechanisms. The 
stateful autoconfiguration is based on DHCP, appropriately modified for IPv6. The stateless 
address autoconfiguration eliminates the need to maintain DHCP servers. With stateless 
autoconfiguration, a host is expected to construct its IPv6 address by concatenating its MAC 
address with the subnet prefix that the host learns by using neighbor discovery from the routers 
that are on the same subnetwork as the host.  

 
 Getting a new address to a device is only part of the story. There are still a whole host of issues 
that are not covered by existing renumbering methods, including:  

 

   
•Updating Domain Name System (DNS) databases for all the nodes whose addresses have been 
changed. It would also involve updating the information about the addresses of the DNS servers 
within the site.  

 
   •Renumbering involves changing routers' configuration information (for example, access control 

list filters and reachability information).  
 
   •Some TCP/IP applications rely on the configuration information (configuration databases) 

expressed in terms of IP addresses.  
 
   •If clients licensing databases are configured for a specific IP address, renumbering a site would 

involve changing the configuration information maintained by the clients.  
 



 None of these issues are covered by available renumbering methods. Maintaining effective 
hierarchy by renumbering still presents significant implementation problems.  

 

 

How IPv6 Headers Work. IPv6 has kept most of the characteristics of the original IPv4 protocol; 
the Internet could not have been so successful if the design of IPv4 had significant flaws. Thus, the 
IPv6 header bears more than a passing resemblance to the Ipv4 header. IPv6 headers are 
composed of an initial 64 bits followed by two 128-bit fields for source and destination addresses. 
The initial 64 bits consist of the following fields:  

 
   •Version  
 
   •Class  
 
   •Flow label  
 
   •Length of payload  
 
   •Type  
 
   •Hop limit  
 

 

This is a simplification of the Ipv4 header, as it assigns a fixed format to all headers, removes the 
header checksum and the hop by hop segmentation procedure. The most significant of these 
changes is the removal of the hop by hop segmentation procedure. Previously, if a host had to 
send data across several media types from source to destination, the possibility existed that a 
packet would be sent that was too large for some media types to handle. For example, sending a 
packet from token ring network that has a maximum packet size of 4K to ethernet with a maximum 
packet size of just over 1.5K. In this case, the router connecting the two media types would 
segment the original packet. This does not happen in an Ipv6 network, which uses a procedure 
called path MTU discovery, ensuring that no segmentation is necessary.  

 

 
On top of this fairly simple header, IPv6 supports the concept of header extensions. When header 
extensions are used, the final bits of each header define the function of the next header to follow, 
except in the case of the final header, which defines that the payload is to follow. This principle is 
illustrated in Fig. 4-29.  

 
 The available extension headers include the following:  
 
   •Routing header  
 
   •Fragment header  
 
   •Authentication header  
 
   •Encrypted security payload  



 
   •Destinations option header  
 

 

  
 
 Figure 4-29: Header extensions. 

   
 

 
Ipv6 Address Routing. With IPv4, we had the familiar setup of the first octet defining a class A, B, 
C or D address, which told us (along with any subnet mask applied), how to identify the network, 
subnetwork, and node numbers. Ipv6 is somewhat different in this respect, and we shall examine 
those differences here.  

 

 

In IPv6 there are three categories of address, unicast, multicast, and anycast; there is no 
broadcast. Unicast is the same as point to point communication, a packet is sent to a specific 
address and no other. This address corresponds to a specific interface on a device. Multicast 
refers to the process of one packet being sent to a number of recipients. This is different to 
broadcast. With broadcasts, the packet sent is delivered to all devices on the subnet the broadcast 
is destined for. With multicast, the option exists for only a subset of devices on the destination 
subnet to receive the packet. The anycast option is similar to multicast; the difference is that the 
packet is only delivered to the first device in the anycast group that can receive the packet; it is not 
sent to all devices in the anycast group.  

 
 The convention for writing down these 128-bit addresses is to use blocks of four hexadecimal 
numbers separated by colons. An example is given below:  

 

 

This is somewhat cumbersome. Not so much for users, that should be using names to address 
hosts in any case, but for administrators that still need to type numbers in to configuration files and 
databases. To abbreviate the notation, it will be convention to drop leading zeroes. This will be 
useful, particularly in the early days of IPv6, when most of the address space will be filled with 
zeroes. This convention is expanded to cover what is known as the double colon notation, which 
says if a double colon appears in an address, fill the address out to 128 bits by inserting the 
necessary number of zeroes between the double colons. Here's an example:  

 
 0000:0000:0000:0000:1111:2222:3333:4444  
 
 Could be represented by:  
 
 ::1111:2222:3333:4444  



 

 
Ipv6 address notation also has a facility to define a prefix in the same way that IPv4 did. In IPv4, 
the number of bits assigned to the address prefix, which determines the subnet address, could be 
identified by using the "slash" notation. An example that assigns the first twenty-four bits of a class 
B (which is equivalent to a netmask of 255.255.255.0) address to the subnet is given below:  

 
 173.8.4.3/24  
 
 The same can be done with Ipv6, the following example will identify the first 64 bits as the prefix to 
be used in routing tables that identify individual network segments.  

 
 FEDC::1234:2345:2222/64  
 

 

Unicast Addresses. The format of a global unicast address for an Ipv6 node is shown in Fig. 4-
30. The first three bits, with value 010 identify the address as an aggregatable global unicast 
address. The subsequent fields are all now fixed length fields that replace the Registry and the 
variable length provider Ids of earlier incarnations of IPv6. With 13 bits allocated to the Top Level 
Aggregator, there are a possible 8,192 TLA assignments. This is expected to be enough to cover 
the necessary points of access to the core of the future Internet. Each one of these TLA 
assignments equates in physical terms to a backbone provider, or an exchange point.  

 

 

  
 
 Figure 4-30: Format of an IPv6 unicast address. 

   
 

 
The Next Level Aggregator (NLA) equates to a specific ISP, and the Site Local Aggregator (SLA) 
equates to a segment at a given site, or end user location. With re-numbering in this scheme, the 
TLA and NLA may change, but the SLA and Interface ID will remain constant.  

 

 
In fact, the interface ID will be a globally unique number, using the IEEE EUI-64 form, which is 
based on the more familiar 48 bit IEEE 802 MAC address specification. Given a 48 bit MAC 
address, you can generate a 64 bit EUI-64 address by inserting hexadecimal FF and FE between 
the third and fourth octet of the original MAC address.  

 

 
There are some special addresses in Ipv6, just as there were special addresses in Ipv4, like the 
127.0.0.1 loopback address. In Ipv6 the special addresses of interest include unspecified, 
loopback, site local and link local addresses.  

 
 The unspecified address consists of all zeroes, it may be used by a station as a source address, 
before it has received an IP address.  

 
 The loopback address in Ipv6 is simply 1, which can be noted as ::1.  



 

 
Organizations that wish to run their internal network on Ipv6 technology can do so with site local 
addresses. Site local addressing has its own prefix, 1111 1110 11. The complete site local address 
will consist of this prefix, a set of zeroes, the subnet ID and the interface ID.  

 

 
Devices that have not been configured with a provider based address or site local address may 
use link local addresses, which consist of the link local prefix (111 1110 10), a set of zeroes and an 
interface ID.  

 

 
Multicast and Anycast Addresses. Ipv4 has supported multicast since 1988, when class D 
addresses and IGMP (Internet Group Multicast Protocol) were proposed for this purpose. Ipv6 has 
been designed with multicast facilities built in to Ipv6 ICMP.  

 

 

The IPv6 multicast format is shown in Fig. 4-31 and consists of eight ones, followed by a four bit 
flag, four bit scope and 112 bit Group ID. All the flag field does is identify an address as transient, if 
it is not an address that will be permanently assigned (like those in use on experimental networks 
such as the MBONE). The scope field is used to limit the propagation of multicast packets, like 
keeping a videoconference local, rather than having it find its way on to the global Internet.  

 

 
  

 
 Figure 4-31: Format of an IPv6 multicast address. 

   
 
 Examples of multicast addresses are FF02::1 that addresses all nodes, and FF02::5 that identifies 
all OSPF routers.  

 

 
Anycast is still very new. The idea is that there will be well known addresses, similar in 
construction to multicast addresses, the difference is that the anycast packet is delivered to the 
nearest device that is a member of the anycast group. This functionality can be used to identify 
things like the nearest time or name server on the network.  

 

 
Inter and Intra Domain Routing. Intra domain routing is the more familiar routing for managers of 
private networks. We have looked at Intra domain routing within an Autonomous System by the 
use of IPv4 versions of RIP, OSPF, IGRP and others. IETF working groups are updating RIP and 
OSPF to accommodate Ipv6 and we can expect IPv6 versions of Cisco protocols like EIGRP also. 

 

 

The updates to OSPF are minimal, essentially wherever a 32 bit address appeared in routing 
databases, a 128 bit address now appears for the IPv6 version. IPv6 RIP still uses distance vector 
mechanisms of update, like UDP broadcast updates every thirty seconds of route tables, to 
neighbors. The updates to RIP have been minimal. Most of the shortfalls of the original protocol 
have remained, and it is not expected that RIP will be widely deployed in Ipv6 environments.  

 
Inter domain routing in Ipv6 is a different story. One of the greatest challenges to the Internet as it 
currently stands is the size of the routing tables at the core and the overhead necessary in table 
maintenance. In 1995, the Internet was in grave danger of falling over and not recovering. Only a 



quick fix supplied by Cisco kept it running. This fix reduced the amount of route updates sent on 
the Internet, reducing the amount of table calculation the Internet's central routers had to perform 
and the bandwidth used on core Internet links for these updates.  

 

 

To reduce the size necessary for core Internet router routing tables, entries in these tables must be 
aggregated. Currently this takes the form of things like assigning any 194.x.x.x class C network to 
Europe, thus allowing Internet routers in the rest of the world to have one aggregated entry in their 
routing tables for all these class C networks, instead of individual entries for each one all pointing 
in the same direction.  

 

 
The plan for Ipv6 inter domain routing is to apply hierarchy to provider addresses, to minimize the 
number of entries in core Internet routers. This presupposes the addressing scheme deployed in 
Ipv6 reflects the network topology.  

 

 

Additionally, inter domain route updates will be exchanged via the Inter Domain Routing Protocol 
(IDRP), which is a significant departure from the current practice, that uses BGP4. The reason that 
BGP4 is not used in the Ipv6 world is that BGP4 was too heavily optimized for use in a 32 bit 
address world and could not be easily modified for 128 bit addresses. The main differences 
between BGP and IDRP are listed below:  

 
   •BGP uses TCP as the transport for update messages, whereas IDRP uses a datagram service.  
 
   •BGP used 16 bit autonomous system numbers to identify a domain, whereas IDRP uses variable 

length address prefixes.  
 
   •IDRP aggregates autonomous system paths by the use of routing confederations.  
 

 

Neighbor Discovery. Neighbor Discovery describes the interaction between nodes on the same 
network segment in an Ipv6 network. For example, to send a packet to a remote network, the 
device originating the packet needs to find a media address for the next hop router to send the 
packet to. In Ipv4, this was provided by the Address Resolution Protocol that maintained a list of 
media addresses (like MAC) to IP address information.  

 

 

In IPv6, there are noticeable improvements in this area. All the mechanisms related to the 
interaction among hosts and routers on a single network segment are consolidated into a single 
protocol, the Neighbor Discovery Protocol (ND). ND replaces the IPv4 by the Address Resolution 
Protocol (ARP), Internet Control Message Protocol (ICMP) Router Discovery, and ICMP redirect, 
as well as providing some enhancements.  

 

 
In contrast to IPv4, where the IP-to-link-layer address resolution is based on using ARP 
broadcasts, the IP-to-link-layer address resolution in IPv6 uses multicast. This allows a significant 
reduction in the number of address resolution-related interrupts on nodes other than the target of 
the resolution.  

 

 IPv6 replaces the ICMP redirect message with the ND redirect message. To support multiple IP 
subnetworks on the same physical network segment, IPv6 relaxes the constraint on accepting 
redirects, allowing a host to accept redirects regardless of whether or not the next hop (specified 
by the redirect) is on the same IP subnetwork as the host itself. Moreover, in contrast to IPv4, in 



could only identify a router, the target address carried by an ND redirect message could either 
identify a router or the ultimate destination (host). To avoid an extra step needed to resolve IP-to-
link-layer address mapping, the ND redirect message includes both the IPv6 and the link-layer 
addresses of the target.  

 

 
One of the common problems associated with the host to its first-hop router interaction is the 
problem of detecting router failures ("dead" router detection). To minimize disruptions in the 
presence of router failures, ND introduces an explicit mechanism that allows one node (either a 
host or a router) to verify if a node (either a host or a router) on the same network segment is up.  

 

 
In contrast with IPv4, the addressing information acquired through ND carries explicit timeouts. 
Explicit timeouts set by the senders of information allow the senders to directly control the lifetime 
of the information. This feature is expected to be especially important in the situations where the 
information could be fairly dynamic (for example, in the presence of mobile hosts).  

 

 

ND provides hosts with such information as the maximum hop count that hosts should use in 
outgoing packets and some datalink layer specific parameters, such as the maximum transmission 
unit (MTU). While ND improves the interaction among nodes (hosts, routers) on the same network 
segment, not all of these improvements would always be available via this protocol. Most of the 
functionality provided by ND assumes the link layer media supports multicast capabilities in a 
simple fashion (similar to what is available on Ethernet). In an environment where the link-layer 
multicast is either nonexistent, such as in Asynchronous Transfer Mode (ATM) or relatively 
expensive, relying on multicast servers to support full ND, functionality may be suboptimal.  

 

 

The Transition from IPv4 to IPv6 Providing a manageable transition from IPv4 to IPv6 is crucial 
for the success of IPv6. During the transition period, it would be essential to maintain compatibility 
with the existing installed base of IPv4 hosts and routers. Because it is very difficult to predict how 
long the transition would take, it would be safe to assume that such compatibility would be needed 
for a very long time. In fact many predict that a transition to a further enhanced IP protocol will be 
underway while the Internet is still transitioning to Ipv6.  

 
 In a somewhat simplistic model, the transition process could be viewed as consisting of two 
components, transition to IPv6 hosts and transition to IPv6 routing.  

 

 
Transition to IPv6 hosts is based on the assumption that every IPv6 host would have two stacks, 
IPv6 and IPv4. Such a dual host would also have an API that would support IPv4 and IPv6. The 
API is likely to be an extension of the current (IPv4) API.  

 
 Implementing IPv6 stack on hosts and developing IPv6 capable APIs are essential IPv6 transition 
steps.  

 

 
However, these steps are by no means sufficient to make IPv6 useful. In fact, until a sufficient 
number of networking applications is ported to the IPv6-capable APIs, it would be unrealistic to 
assume widespread use of IPv6.  

 

 
Therefore, from a host vendor perspective, the impact of supporting IPv6 is likely to spread across 
the whole TCP/IP stack from the network layer all the way up to the application layer. The amount 
of effort needed to accomplish this, and the potentials for introducing software bugs as a result of 
doing the modifications, should not be underestimated.  



 
Transition to IPv6 routing assumes deployment of routers that would be able to support both IPv4 
and IPv6 routing protocols and packet forwarding. The routing protocols that are expected to be 
used with IPv6 (at least initially) are mostly straightforward extensions of the existing IPv4 routing 
protocols. Thus we should not expect any significant problems within the IPv6 routing system.  

 

 

To minimize interdependencies, transition to IPv6 routing assumes that there will be 
noncontiguous IPv6 segments throughout the Internet. IPv6 connectivity among hosts in different 
segments will be supported by tunneling IPv6 within IPv4 packets. Therefore, the use of IPv4 
tunnels to carry IPv6 traffic over IPv4 only routers is an essential component of the IPv6 routing 
transition.  

 

 

IPv6 transition allows for two types of tunnels: automatic and manually configured. Automatic 
tunnels do not require manually configured individual tunnels. However, the use of automatic has 
two requirements. IPv6 addresses of the hosts that are reachable through automatic tunnels have 
to be IPv4 compatible, and also IPv4 addresses that are used to form IPv6 addresses of these 
hosts (IPv4 compatible addresses) have to be routable. In addition, the use of automatic tunnels is 
currently defined only when the remote endpoint of a tunnel is a host. Use of automatic tunnels 
between routers is not defined.  

 

 
The ability to form automatic tunnels between any pair of IPv6 hosts whose IPv6 addresses are 
IPv4 compatible allows these hosts to use IPv6 encapsulated into IPv4 end-to-end, without 
requiring any routers on the path between these hosts to support IPv6. This facilitates the 
transition of Ipv6 host addresses to be undertaken independently of the upgrade to Ipv6 routing.  

 

 
IPv6 Security. Security is a built-in (feature) of the Ipv6 protocol. Security takes the form of both 
authentication and encryption at the IP level in the new protocol. Ipv6 does not, however, have 
procedures for authorization; that is still in the domain of application-level programs.  

 

 
The IETF has an organization known as the IP Security (IPsec) Working Group, which is 
responsible for developing standards for IP-layer security mechanisms for both IPv4 and IPv6. The 
group is also developing generic key management protocols for use in the Internet.  

 

 
Authentication provides the ability for a recipient of a packet to be sure that the source address is 
authentic, and that the packet has not been altered during transmission. Encryption ensures that 
only the intended recipient can read the content of the packet.  

 

 

To successfully deliver these benefits, a key system is employed, whereby senders and receivers 
agree on the key value to be used. The generic key management system adopted by the 
designers of Ipv6 is the ISAKMP-OAKLEY mechanism. ISAKMP stands for the Internet Security 
Association and Key Management Protocol, it provides a generic implementation of key 
management protocols. ISAKMP messages are exchanged over UDP using port 500. ISAKMP 
allows several types of key exchange mechanisms to be used, but in the case of Ipv6, the 
OAKLEY proposals seem most likely to be adopted.  

 

 

In addition to the key system, senders and receivers must generate a set of agreements that 
constitute a security association. This association consists of the key, the authentication or 
encryption algorithm and other parameters, such as the lifetime of the key. With a security 
association in place, receivers will only decode a packet if the packet can be linked with a 
particular security association. To this end, all Ipv6 authenticated and encrypted packets carry a 
Security Parameter Index (SPI). Typically the SPI is chosen by the receiver, to specify the way a 
packet must be constructed to be properly received.  



 

 

In practical terms, authentication is delivered in the IPv6 world via one of the generic header 
extensions previously discussed, the Authentication Header. The authentication data is generated 
by performing a mathematical operation on the source address, plus some fields of the IP header, 
then sending this value along with the original packet contents. The algorithm used to generate the 
encrypted value (referred to as the checksum) is keyed MD5, which is a variant of the Message 
Digest 5 algorithm.  

 
 This algorithm is extremely difficult to reverse engineer and ensures that the source address has 
not been tampered with and the packet originates from the expected source.  

 

 

The Authentication Header does not however encrypt the payload. At this stage packets are still 
vulnerable to being read by those not intended as the recipient. When this is to be avoided, the 
Encrypted Security Payload (ESP) header is used. The ESP is always the first header after the 
IPv6 header, as it encrypts the authentication and payload data. The default method of encryption 
is based on a Data Encryption Standard, known as Cipher Block Chaining.  

 

 

The enhanced security functions provided at the IP layer of Ipv6, will lend themselves to use with 
mobile computers, communication between secure hosts, and to securely perform network 
operations such as neighbor discovery and the exchange of route information. However, it must be 
noted that if options such as being able to encrypt route updates, a significant increase in route 
processor load will be experienced, particularly during times of link failure, that cause triggered 
updates and route re-calculation to be performed.  

 

 
Ipv6 over Different Link Level Topologies. Although the previously discussed Neighbor 
Discovery procedures are equally applicable across different media, there are some differences to 
the way that Ipv6 packets are constructed for specific link level topologies.  

 

 
Ethernet is the simplest case, so let's look at that first. An Ethernet packet carrying IPv6 data will 
look like the packet in Fig. 4-32. As previously discussed, Ethernet II headers have a type field that 
identifies the network layer protocol occupying the data field in the Ethernet packet. Ipv6 uses a 
type field value of 86DD.  

 

 
  

 
 Figure 4-32: An Ethernet packet encapsulating IPv6. 

   
 

 

In an Ethernet environment, each workstation's IPv6 address is derived by combining the Link 
Local Prefix (which is assigned by a local address server) and the 64-bit EUI address of the 
interface. This address is then used as the source Ipv6 address in the Ipv6 header. Link level 
addresses of devices on the same network segment will be determined by the generic Neighbor 
Discovery routines.  

 
Ipv6 in a FDDI environment is very similar, with only a few differences. FDDI is a token 
environment with counter-rotating tokens circulating through the physical ring that connects the 



FDDI nodes. Each frame contains a FDDI and LLC header, which precedes the Ipv6 header, as 
shown in Fig. 4-33.  

 

 

  
 
 Figure 4-33: An FDDI packet encapsulating IPV6. 

   
 

 
FDDI Ipv6 addresses are generated in exactly the same way as Ethernet Ipv6 addresses, by 
combining the Link Local Prefix and the link level 64 bit EUI format address of the FDDI interface. 
The rest of the packet fields can be described as follows:  

 
 FC is the FDDI frame code, which is set to a value in the range 50 to 57 and can be used to define 
the frame's priority in the ring.  

 
 The Destination and Source FDDI addresses will be 48 bit values assigned to the interface.  
 
 The Destination and Source Service Access Point (DSAP and SSAP) are set to 33 hex, and the 
Link Level Control CTL field is set to 03 to denote unnumbered information.  

 
 The Organizationally Unique Identifier (OUI) will be set to zero and the Ethertype will be set to 
86DD, to identify Ipv6 as the network layer protocol.  

 

 
A token ring frame is constructed as shown in Fig. 4-34, and essentially uses the same fields as a 
FDDI packet, plus the extra fields necessary for token ring operation. As with Ipv4 within a token 
ring frame, the token ring frame encapsulation uses the SNAP (Sub-Network Access Protocol) 
encapsulation type.  

 

 

  
 
 Figure 4-34: A token ring packet encapsulating IPV6. 

   

The DSAP, SSAP, CTL and OUI fields are as for an FDDI packet, with the Start Delimiter, Access 



environments, the RIF is inserted directly after the source MAC address.  
 

 

The Point to Point Protocol (PPP) will be used for transferring Ipv6 packets over serial links. PPP 
is a link level protocol that, like Ethernet, supports several network layer protocols. A PPP session 
starts with a link level negotiation that must complete before the network layer can establish 
communication. To open Ipv6 communication, the Ipv6 Control Protocol (Ipv6CP) also needs to 
complete a negotiation process. Ipv6CP is similar to the regular PPP Link Control Protocol, and in 
this case is used by end stations to negotiate Ipv6 options like compression algorithms to be used. 
Ipv6CP uses hex value 8057 in the PPP protocol type field. Once Ipv6CP has completed 
negotiation, Ipv6 packets use a protocol field value of hex 0057.  

 

 

The interesting part with Ipv6 over PPP comes when it's time to assign an Ipv6 address to an 
interface. With the previous link level protocols, there was a globally unique EUI address to work 
with, to ensure that the Ipv6 address generated for the interface was globally unique. Typically 
serial interfaces do not have such an address assigned. To overcome this situation, PPP 
interfaces use a 64 bit "interface token" that ensures interface on either end of the PPP link have 
unique addresses. The 64 bit token is concatenated with the prefix FE80::/64 to produce a link-
local address for use on the PPP link. There are four options to choose from, when constructing 
the IPv6 interface token.  

 

   
•Use an EUI that is owned by the device using the serial port. This works well for devices like 
routers that use a LAN interface to connect a LAN to a WAN, as the LAN interface will have a 
MAC and hence EUI address assigned. This does not however work so well for stand–alone PCs 
that do not have a LAN connection, no such MAC address is assigned in that situation.  

 
   •If no EUI is available, build a unique 64 bit address from some unique value associated with the 

device, such as a telephone number.  
 
   •If neither EUI nor unique values are available, choose a random value from a number generator.  
 
   •If no number generator is available, set the source Ipv6 address to zero.  
 
 Once each interface has decided upon its token value, the interface on each end of the PPP link will 
confirm that the other is using a different token value and communication begins.  

 



 Summary  
 

 
In this chapter we examined how routers automatically update their routing tables to keep optimal 
routes to all network numbers, in spite of a changing internetwork topology. At the high level, there 
are two types of routing protocol, Interior and Exterior Gateway Protocols.  

 

 
Interior Gateway Protocols are designed to exchange full routing information between all routers in 
the same autonomous system. An autonomous system is the largest entity in a routing hierarchy. 
Exterior Gateway Protocols are designed to transfer information between different autonomous 
systems in a controlled fashion.  

 
 Interior Gateway Protocols are further subdivided into distance vector and link state protocols.  
 

 

Distance vector protocols only exchange information with neighbors on directly connected 
segments, using broadcast routing updates. It is the duty of each router to pass on route 
information learned from one neighboring router to another. These routing updates perform the 
function of transferring route information and act as keep-alives. Virtually all the routing table 
entries are sent in each routing update. Distance vector protocols require the use of several 
mechanisms to maintain an optimal routing environment, including Split Horizon, Poison Reverse, 
triggered updates, and hold-downs.  

 

 

Link state protocols use separate mechanisms to update other routers and to send keep-alive 
messages. Routes are advertised using link state advertisements, which are explicitly sent to 
every other router in a given routing area. Keep-alives are sent in the form of small hello packets 
between routers. Sending LSAs to all routers in a given area enables each router to generate a 
complete map of that routing area. Link state protocols apply the Dijkstra algorithm to this 
database to generate routes for entry into the routing table.  

 

 
In general, link state protocols scale better for very large internetworks, producing acceptable 
convergence times and less routing protocol traffic in the event of link failures. By "very large," I 
mean an internetwork servicing over 1500 locations. Link state protocols, however, have to deal 
with more internal structures to process and thus require more router CPU and memory.  

 

 

In a Cisco environment, you have the choice of IGRP, EIGRP, or OSPF as the Interior Gateway 
Routing Protocol. In most cases, IGRP is adequate and is the most familiar to network 
administrators who have been accustomed to RIP. EIGRP and OSPF can provide better 
convergence times, but are more complex to customize. EIGRP, and particularly OSPF, require 
more RAM and a faster processor in the router device for adequate performance.  

 

 
For most users, if an External Gateway Protocol is necessary at all, static routing is normally 
adequate. Finally we looked at the new IPv6 protocol. This protocol will be of most interest to ISPs 
and is unlikely to be widely used in private networks for many years.   

 



Chapter 5: Adding Support for Legacy LANs  
 
 Objectives  
 
 In this chapter we will examine:  
 
   •How we can use Cisco routers to transport protocols other than TCP/IP.  
 
   •Network protocols included in corporate networks, such as Novell NetWare's IPX, the IBM SNA 

protocols, and Windows NT NetBEUI.  
 
   •An overview of how bridging technology is implemented on Cisco routers.  
 

 
The approach will be to give an overview of each technology, discuss integrating each protocol into 
a TCP/IP environment, and then give configuration examples of how to implement these protocols 
on Cisco routers.  

 



Novell NetWare's IPX/SPX Protocols  
 

 

Novell's NetWare product, which is installed in more than 50 percent of LANs worldwide, uses the 
IPX/SPX (Internetwork Packet Exchange and Sequenced Packet Exchange) protocol as its basis 
for communications. NetWare was designed as a departmental server operating system, originally 
meant to service up to 100 users. Novell's marketing strategy was to aim for the departments that 
did not want to wait in line for corporate MIS departments to deliver systems that they could 
instead buy off the shelf. This strategy was well-timed—it coincided with cheap, powerful PCs 
becoming available—and became phenomenally successful.  

 

 

To make it as easy as possible for departments to implement a LAN protocol, Novell designed the 
IPX/SPX protocols, which eliminate the need to number individual nodes in a network. Because it 
was assumed that NetWare would be implemented in an environment in which all nodes were 
connected via a high-capacity Ethernet LAN, NetWare designers also programmed a number of 
features into the original NetWare Core Protocol set that made it easy to connect a NetWare LAN, 
but fairly costly in terms of bandwidth utilization.  

 

 

As a result of NetWare's success, IPX became a de facto standard and many third-party 
developers developed applications for it. This was all well and good until it became necessary to 
transport NetWare traffic over wide area networks that do not have the bandwidth available that an 
Ethernet LAN does. To resolve these issues, protocols such as the NetWare Link State Protocol 
and IPXWAN were developed.  

 

 

NetWare is a client/server system; as such, all communications pass between the client software 
on a workstation PC and the server. Client PCs do not communicate directly. This contrasts with 
the TCP/IP communications model, which is designed to allow any machine to send information 
directly to any other machine without the need to go to a central server first. The TCP/IP 
communications model is often referred to as peer-to-peer networking.  

 
 We will look at an overview of NetWare protocol technology before discussing specific router 
implementations of these protocols.  

 
 Overview of IPX and SPX  
 

 

IPX and SPX span the layer 3 and layer 4 protocol functions in OSI terms and, as such, do have 
fields in the header for network numbers. IPX is a connectionless datagram protocol, similar in 
many ways to IP; SPX provides connection-oriented delivery similar to TCP. A packet containing 
an IPX destination and source address also will contain the MAC destination and source in the 
layer 2 header, as previously described for TCP/IP communications. The major difference between 
NetWare and TCP/IP implementations is that on a NetWare LAN, you assign a network number for 
a given segment and all nodes use their MAC address in combination with this network number to 
generate their own station address. In TCP/IP every workstation is given an IP address, and the 
network number is derived from that value and any subnet masks applied.  

 

 
The IPX header always starts with the hexadecimal value FFFF. The IPX header is somewhat 
similar to an IP header, carrying essentially the same information. The key information carried is as 
follows:  

 
   •Destination network, node and socket numbers  



 
   •Source network, node and socket numbers  
 
   •Transport Control byte  
 
   •Length of IPX header and data  
 

 

These are fairly self-explanatory, except for the Transport Control byte. To propagate route 
information, IPX uses a version of RIP that closely resembles that implemented by the Xerox 
Networking System. As with other RIP implementations, the maximum number of hops a packet is 
allowed to traverse is 15, and the 16th router will discard the packet. When a packet is originated, 
this value is set to 0 and is incremented as the packet passes through each successive IPX router. 
As you can see, the IPX Transport Control byte performs the same function as the IP Time To Live 
field.  

 
 The destination network value is obvious; however, this value is set to 00-00-00 if the destination 
server is on the same network number as the client sending the packet.  

 

 

The destination node address has a differing value depending on whether a NetWare client or 
server is sending the packet. If the packet was sent by a server, it will contain the destination 
workstation's MAC address, and if it was sent by a workstation to a server, it will contain the value 
00-00-00-00-00-01. It must be noted that the MAC information in the layer 2 header will contain the 
appropriate MAC address for the destination machine, whether that is a server or a workstation.  

 
 Source and destination sockets are used in IPX/SPX communications in the same way as in 
TCP/IP, i.e., a socket identifies the address of a program running in a machine.  

 

 
SPX adds additional fields to the layer 3 header, which include source and destination connection 
IDs, and sequence and acknowledgment numbers. Since SPX operates as a connection-oriented 
protocol, it operates on a handshake principle to initiate and close connections, similar to TCP.  

 

 
With SPX, a constant stream of traffic between the client and server is generated by the protocol 
and is independent of any user data that needs to be transmitted between the two. This stream of 
traffic uses timers to decide when to re-request responses if none are received. The timers you 
may wish to adjust on the workstation or server software are:  

 
   •SPX listen timeout  
 
   •SPX verify timeout  
 
   •SPX abort timeout  
 
   •SPX Ack wait timeout  
 
   •SPX watchdog verify timeout  
 



   •SPX watchdog abort timeout  
 
 In Novell documentation, the default values for these timers are given in ticks, with one tick being 
the standard PC clock tick, roughly /18th of a second.  

 
 NetWare Client-to-Server Communication  
 

 

The NetWare client protocols are implemented in two parts: The first is the IPX/SPX protocol, the 
second is the shell, or redirector. Applications that need only to use the services of IPX/SPX need 
only to load the first part (typically the IPXODI.COM file). To communicate with a NetWare server, 
the NetWare shell or redirector must be loaded as well. The purpose of this shell is to intercept all 
requests from a workstation application and to determine if the request will be serviced by the local 
OS or the server resources.  

 

 

The workstation shell handles all interaction with the server, including interpreting route information 
and server service advertising. Novell did a good job with the design of this software, given its 
intended market, because it hides the process of address assignment and routing issues from the 
person installing the network. There is a price to be paid for this, however. The price paid is in the 
amount of network bandwidth consumed by the Service Advertising Protocol (SAP), Routing 
Information Protocol (RIP), and NetWare Core Protocol (NCP), roughly in that order.  

 

 
The NetWare Core Protocol is the language that NetWare clients and servers use to talk to one 
another. Typical NCP functions are to deliver file reads or writes, set drive mappings, search 
directories, and so forth. Novell does not publish many details about NCP because it is considered 
to be confidential.  

 

 
The area of NetWare communications that is of most interest to us is the Service Advertising 
Protocol (SAP). It is via SAPs that a workstation finds out what servers are available on the 
network to connect to. There are three types of SAP packet:  

 
   •Periodic SAP information broadcasts  
 
   •SAP service queries  
 
   •SAP service responses  
 

 

In essence, the SAP information broadcasts are used to advertise information that a server has 
within its bindery if it is a NetWare 3.x server, or NetWare Directory Service (NDS) if it is a 4.x 
server. A NetWare server's bindery is a flat-file database of resources and clients on a network, 
whereas the directory service keeps this information as objects in a hierarchical database. These 
SAP broadcasts occur by default every 60 seconds.  

 
 When a service is broadcast, it is given a server type number, the most common of which are 
listed as follows:  

 
 Type   

 
 Function  

 

 
 4  

 
 File server 

 



 4    File server  
 
 7   

 
 Print server  

 

 
 21   

 
 NAS SNA gateway  

 

 
 98   

 
 NetWare Access Server  

 

 

 
With many (more than 20) NetWare servers interconnected, the size of these SAP broadcasts can 
become troublesome for heavily utilized WAN links. Overutilization during broadcast phases can 
cause packets to be dropped by a router attempting to forward traffic on the link.  

 

 
The service queries performed by SAP are executed when a workstation wants to find a particular 
service on the network. Service queries effectively are queries of the network database file kept on 
the server (be this a bindery or directory service). The most common example of this is the Get 
Nearest Server query.  

 

 

When a client starts the NetWare shell, a Get Nearest Server SAP is broadcast on the network, 
and either a NetWare server or router can answer these broadcasts. When this broadcast is sent 
out, all servers on the network reply, but the client will establish a connection only with the first one 
to reply. The first to reply will not necessarily be the server defined as the "preferred" server in the 
client's configuration. In this case, the workstation will connect to the first server to reply, just to 
query its database to find out how to get to the preferred server.  

 

 

The IPX header previously described has a destination network number field that is used for 
routing purposes. NetWare servers and routers provide information on the networks they know 
about by using a version of RIP, in the normal distance vector protocol fashion, via broadcasts. 
This routing information is contained in routing information tables located at each router and server 
on the internetwork.  

 

 

NetWare's RIP operates much the same way as does the RIP version 1 described previously for IP 
networks. RIP update broadcasts are sent out when a router initializes, when specific route 
information is requested, periodically to maintain tables, when a change occurs, or when a router 
is going down. In addition, NetWare RIP employs Split Horizon, although Poison Reverse and 
hold-down timers are not used. The metric used by NetWare RIP is the number of ticks to get to a 
destination. If two routes have the same tick value, the number of hops is used as a tie-breaker. 
This is an improvement on IP RIP, as the tick value is a better measure of the speed of delivery of 
a given route.  

 

 

RIP is used on initial startup of the client shell. After the SAP Get Nearest Server broadcast 
sequence is completed, and the quickest server replies first, the workstation must find a route to 
that server. This is achieved by using the RIP request broadcast. When this broadcast is sent out, 
the workstation is requesting route information for the network number it needs to reach. The 
router servicing routes to this network number will respond.  

 
 Configuring Basic IPX Routing  
 

 With few exceptions, Cisco's implementation of Novell's IPX provides full routing functionality. The 
only part that is proprietary to Cisco is the use of IPX over X.25 or T-1 connections. For these 



only part that is proprietary to Cisco is the use of IPX over X.25 or T-1 connections. For these 
connections, you must have Cisco routers on both ends of the connection.  

 

 

One of the most useful features of Cisco IPX routing is that you can use EIGRP as the routing 
protocol. EIGRP provides automatic redistribution between RIP and EIGRP domains, the 
opportunity to traverse up to 224 routers in a network, and use of incremental SAP updates. 
Incremental SAPs are used when EIGRP routers exchange information. Because EIGRP utilizes a 
reliable transport mechanism for updates, a router does not need to continuously send out all SAP 
information in regular broadcasts. With incremental SAPs, SAP information is sent out only when it 
changes.  

 
 Assuming that you have a version of Cisco IOS loaded that is licensed to run IPX, the first task 
involved in getting IPX routing functional is to use the global ipx routing command as follows:  

 
 Router1(config)#ipx routing  
 

 

Once this is done, IPX network numbers can be assigned to the router's interfaces. Care must be 
taken when installing a new router on an existing IPX network. If one of the router's interfaces is 
connected to an existing IPX network with an address that does not match that already in use, the 
NetWare servers will complain, displaying error messages that another device is disagreeing with 
them. This situation stops the new router from participating in IPX routing on the network.  

 

 
When the IPX network number is assigned, you have the opportunity to define the encapsulation 
type used for frames on that interface. This is of particular interest on an Ethernet LAN interface, in 
which the encapsulation used for the layer 2 Ethernet frame can take any one of four values.  

 

 
By default, NetWare servers prior to version 4 used a Novell-specific implementation of the IEEE 
802.3 Ethernet frame. This type of frame only supported IPX as the network layer 3 protocol. To 
use this type of encapsulation for an Ethernet port, type the following (assuming that we use an 
IPX network number of 5):  

 
 Router1(config)#interface E0  
 Router1(config-int)ipx network 5 encapsulation novell-ether  
 
 Note that the Ethernet encapsulation is specified for the IPX protocol on this interface, but other 
protocols such as IP may be routed on this interface using a different encapsulation.  

 

 

On many LANs, TCP/IP connectivity had to be added after the original IPX installation. The default 
NetWare frame type could not support TCP/IP, so many network administrators configured their 
NetWare servers to use both the default and Ethernet_II frame type for IPX communications. This 
allowed individual client workstations to be migrated from Novell 802.3 to Ethernet_II. The 
drawback is that it doubled SAP, RIP, and other NetWare administration packets on the network, 
so typically Novell 802.3 was removed from the server when all workstations had been converted 
to Ethernet_II.  

 
 To change the Ethernet encapsulation on an Ethernet interface to Ethernet_II, perform the 
following:  

 
 Router1(config)#interface E0 



 Router1(config)#interface E0  
 Router1(config-int)#ipx network 5 encapsulation arpa  
 

 
Novell realized that the single protocol restriction of its proprietary encapsulation was a significant 
drawback, so for NetWare 3.12 and 4.x Novell changed the default encapsulation to conform to the 
802.2 standard.  

 
 To implement this encapsulation on an Ethernet interface, input the following configuration:  
 
 Router1(config)#interface E0  
 Router1(config-int)#ipx network 5 encapsulation sap  
 
 The final encapsulation is rarely used for Ethernet interfaces, but you may come across it. It is the 
Sub Network Access Protocol (SNAP). Ethernet SNAP can be configured as follows:  

 
 Router1(config)#interface E0  
 Router1(config-int)#ipx network 5 encapsulation snap  
 

 
The way to determine which encapsulation is running is to use the show interface command 
that we have seen before. The encapsulation type is given on the fifth line of the display for an 
Ethernet interface.  

 
 Viewing Potential Problems  
 

 
By enabling global IPX routing capability and assigning a network number to interfaces, the basic 
configuration for a Cisco router to participate in IPX routing is complete. It is only now, however, 
that the real work begins in order to get IPX routing working efficiently over a variety of network 
media.  

 

 
We need to explore some commands that will show us potential problems and see the effects of 
optimization commands that we will execute. The first (and often the most telling) command 
display is that shown by issuing the show ipx servers command, shown in Fig. 5-1.  

 

 

This shows the servers advertising SAP messages to the router. If this display is empty and you 
know there are functional NetWare servers on the same LAN as the router, it is a good indication 
that the encapsulation set on the router is different from that used by the servers to adver-tise 
SAPs. As you can see, the same server can advertise a number of services; for example, server 
NWARE1 advertises many services, including types 4, 107, 115, 12E, 12B, and 130. The show 
ipx servers command output also tells you the source of the information (in this case all entries 
are by periodic updates), the source network, node number and port number of the entry, route 
metric in terms of ticks and hops, and the interface through which it is reachable.  

 
    

 
   

 

 
    

 
 router1>show ipx server  

 



 
    

 
 Codes: S - static, P - periodic, E - EIGRP, N - NLSP, H - Holddown, + = detail  

 

 
    

 
 11 total IPXservers  

 

 
    

 
 Table ordering is based on routing and server info  

 

 
    

 
 Type   

  
 Name  

 NetAddress Port  
 Route 

  
 Hops   

 ITF  
 

 
    

 
    

 

 
 P   

 
 4   

  
 Nware1  

 789A.0000.0000.0001:0451 
 2/01   

  
 1   

 E0  
 

 
 P   

 
 4   

  
 Nware2  

 78A.0000.0000.0001:0451 
 3/02   

  
 2   

 E0  
 

 
 P   

 
 4B    

 
 SER4.00-
4  

 789A.0000.0000.0001:8059  2/01    
 
 2    E0   

 
 P   

 
 77   

  
 Nware1  

 789A.0000.0000.0001:0000 
 2/01   

  
 2   

 E0  
 

 
 P   

 
 107   

  
 Nware1  

 789A.0000.0000.0001:8104 
 2/01   

  
 2   

 E0  
 

 
 P   

 
 115   

  
 Nware1  

 789A.0000.0000.0001:4005 
 2/01   

  
 2   

 E0  
 

 
 P   

 
 12B   

  
 Nware1  

 789A.0000.0000.0001:405A 
 2/01   

  
 2   

 E0  
 

 
 P   

 
 12E   

  
 Nware1  

 789A.0000.0000.0001:405D 
 2/01   

  
 2   

 E0  
 

 
 P   

 
 130   

  
 Nware1  

 789A.0000.0000.0001:1F80 
 2/01   

  
 2   

 E0  
 

 
 P   

 
 23F   

  
 Nware1  

 789A.0000.0000.0001:907B 
 2/01   

  
 2   

 E0  
 

 
 P   

 
 44C   

  
 1095U1  

 789A.0000.0000.0001:8600 
 2/01   

  
 2   

 E0  
 

 
    

 
    

 

 
 Figure 5-1: Screen output of the show ipx servers command 

   
 
It is quite easy for periodic SAP advertisements to completely overwhelm a WAN link for many 
seconds. Let's perform some calculations to show how this happens. A SAP packet can contain up 



to seven 64-byte entries, which, along with IPX and other information, gives a total of 488 bytes. 
Let's say that, including file servers, database servers, and print servers, there is a total of 50 
NetWare devices on an internetwork. Each NetWare device typically will be advertising 10 different 
SAP services, giving a total of 500 SAPs. If we are using a 64 kbps line, let's work out the impact 
these regular SAP updates will have.  

 
 For 500 SAPs you need a total of 72 packets (71 packets each carrying 7 SAPs and 1 packet 
carrying 3 SAPS).  

 
 This means that for the fully loaded advertisements we need 71x488 = 34,648 bytes, plus 49 bytes 
for the one partially filled SAP packet, for a total of 34,697 bytes.  

 
 To convert this in to a number of bits, multiply by 8, which gives us a total of 277,576 bits.  
 

 
This can be viewed in two ways. First, we know these updates are sent out every minute, so we 
can work out the bits sent out per second to get the amount of bandwidth consumed by the 
updates. This is 277,576/60 = 4626 bits per second.  

 
 Alternatively, because these updates are sent out all at once every 60 seconds, we can see how 
long it will take to send this number of bits. This is calculated as follows;  

 
 277,576 bits / 64 kbps = 4.4 seconds 

   
 
 Therefore with this many SAPs communicating on a 64 kbps line, you know that for at least 4.4 
seconds out of every minute, total bandwidth will be consumed by the SAP advertisements.  

 
 Now let's look at the regular RIP updates. To view the known routes, issue the show ipx route 
command shown in Fig. 5-2, which also gives an explanation of the display entries.  

 
   
 
    

 
 router1>show ipx route  

 

 
    

 
 Codes: C - connected primary network, c - connected secondary network  

 

 
    

 
 S - Static, F - Floating static, L - Local (internal), W - IPXWAN, R - RIP, E - EIGRP, N - 
NLSP, X - External, s - seconds, u - uses  

 

 
    

 
 3 total IPX routes. Up to 1 parallel paths and 16 hops allowed  

 

 
    

 
 No default route known  

 

 
    

 
 C800(SAP)E0  

 



 
    

 
 C111(PPP)As1  

 

 
    

 
 R789A[03/02] via890.0000.0010.062a30sE0  

 

 
 Figure 5-2: Screen output of the show ipx route command 

   
 

 
This display is similar to the IP routing table examined earlier. The table shows how the route was 
discovered, what the network number is, which interface is nearest that network, and the next hop, 
if appropriate.  

 

 

Each RIP update contains 40 bytes of header and up to fifty 8-byte network numbers. If there are 
200 RIP routes, we get four full RIP packets, which is 4x440 = 1760 bytes. To convert this into bits, 
we multiply by 8, which yields 14,080. If you divide 14,080 by 60, this is 235 bits per second. 
Transferring this amount of data at 64 kbps speed takes less than a second, so you can see that 
SAP updates are far more of a concern than are RIP updates.  

 
 To view a summary of the IPX traffic that has passed through this interface, issue the show ipx 
traffic command shown in Fig. 5-3.  

 
   
 
    

 
 router1>show ipx traffic  

 

 
    

 
 System traffic for 0.0000.0000.0001 System-Name: router1  

 

 
    

 
 Rcvd:155098 total, 40 format errors, 0 checksum errors, 0 bad hop count, 90 packets 
pitched, 90212 local destination, o multicast  

 

 
    

 
 Bcast:90345 received, 14789 sent  

 

 
    

 
 1333 encapsulation failed, 305 no route  

 

 
    

 
 SAP:470 SAP requests, 231 SAP replies, 7 servers  

 

 
    

 
 18332 SAP advertisements received, 7200 sent  

 

 
    

 
 0 SAP flash updates sent, O SAP poison sent  

 

 
    

 
 0 SAP format errors  

 

 
    

 
 RIP:439 RIP requests, 403 RIP replies, 3 routes  

 



 
    

 
 59338 RIP advertisements received, 4769 sent  

 

 
    

 
 620 RIP flash updates sent, 0 RIP poison sent  

 

 
    

 
 0 RIP format errors  

 

 
    

 
 Echo:Rcvd 0 requests 0 replies  

 

 
    

 
 Sent 0 requests, 0 replies  

 

 
    

 
 760 unknown: 0 no socket, 0 filtered, 33 no helper  

 

 
    

 
 0 SAPs throttled, freed NDB len 0  

 

 
 Figure 5-3: Screen output of the show ipx traffic command 

   
 

 
This display is useful for viewing the amount of traffic generated by all the different types of 
NetWare communications protocols. It shows 158,054 packets received, of which 18,644 were 
SAPs. This is normal, but if SAPs become 20 percent of traffic, you should seek to reduce the 
SAPs by the methods discussed later in this chapter.  

 
 Optimizing IPX Routing and Service Advertising  
 

 
There are many ways to reduce the overhead of IPX-based communications on an internetwork. 
You will get the best return immediately by setting up an access list that restricts transmission of 
SAPs over the wide area link to only those that are absolutely necessary. A typical access list and 
its application are shown as follows:  

 
 interface Ethernet0  
 ipx input-sap-filter 1000  
 !  
 access-list 1000 permit 123.0000.0000.0001 4  
 

 

The first entry is part of the configuration for the Ethernet 0 port, and applies access list number 
1000 to any packets coming into this port. The second section is the access list itself. This access 
list permits the device on network 123 with the IPX address of 0000.0000.0001 to pass type-4 
SAPs only. If the 4 were omitted, the list would allow the Ethernet port to pass all SAPs from this 
device. Clearly this device is a NetWare server, as all NetWare servers use the value 
0000.0000.0001 for their internal node address. The result of applying this access list is that 
computers on the other end of this WAN link will hear only about this server on network 123.  

 
This is what is known as a SAP access list, and is identified as such because it is numbered in the 

1000 1099 SAP li b li d i fil If hi li b i



range 1000 to 1099. SAP access lists can be applied as input or output filters. If this list were being 
configured on an access router providing dial- up services, you would have a choice of applying an 
input filter on the Ethernet interface, which restricts the SAPs coming into the router and limits the 
entries in the output of the show ipx servers command, or placing an output list on each dial- 
up interface in use.  

 

 

Applying an input list as shown in this example requires only one entry in the configuration of the 
Ethernet interface, but does restrict all other asynchronous interfaces on the router to being 
capable of connecting only to this one server. Applying an output list on each dial-up interface 
means that the router perceives all other servers on its Ethernet interface, giving you the flexibility 
of allowing different dial-up interfaces access to different IPX servers. However, it requires more 
work to configure access lists for each dial-up interface.  

 

 
The next type of access list to add to further reduce WAN traffic is a network filter list to restrict 
which networks are added to the routing table and hence reduce the size of IPX RIP updates sent 
out every minute. The configuration to achieve this is shown as follows:  

 
 interface Ethernet 0  
 ipx input-network-filter 800  
 !  
 access-list 800 permit 234  
 
 In this example, standard access list 800 (standard access lists go from 800 to 899) permits 
routing updates from network 234, but denies all others.  

 

 

If you are able to restrict WAN traffic to only those SAPs and RIP updates that are necessary for 
the remote servers and workstations to function correctly, you have gone a long way toward 
optimizing your internetwork, although there is more that can be done. As previously stated, SAP 
and RIP updates are sent out every minute; with many updates to be sent out at once, this update 
traffic can fill up all available bandwidth, cause buffers to fill, and in the worst case, cause the 
router to drop packets entirely. To alleviate this situation, you can have the router introduce a delay 
between SAP and RIP packets being sent out.  

 

 

You can set the interpacket delay for SAPs by using the ipx output-sap-delay command. 
This command is configured on a per-interface basis and specifies the delay between packets in 
milliseconds. Novell recommends a value of 55 milliseconds for a Cisco router, because some 
older NetWare servers cannot keep up with Cisco's default delay of 0 milliseconds. If the problem 
you are trying to solve is related to WAN utilization, the best delay value to use will depend on the 
routers, traffic patterns, and links in use. Trial and error is the only real answer, but a value of 55 
milliseconds is probably as good a starting point for experimentation as any.  

 

 

The final thing you can do to optimize IPX SAP communication over a WAN link is to increase the 
amount of time between SAP updates. By using the ipx sap-interval command, you can set 
the SAP update period on specified WAN interfaces higher than the 1-minute default. NetWare 
workstations and servers on LANs require SAP updates every minute. As WAN interfaces typically 
connect two routers together over one link, you can configure the routers to exchange SAPs at 
intervals greater than a minute. The ipx sap-interval command can be applied to the router 
interfaces on both ends of a link to reduce WAN transmission of SAP information while maintaining 
the regular 1-minute updates on LAN interfaces for the NetWare workstation and servers. An 
example of the use of this command is:  



 
 interface serial 0  
 ipx sap-interval 10  
 
 This configuration sets the SAP update interval to 10 minutes for SAPs being sent out the Serial 0 
port. A similar command, ipx   

 
 update-time, can be used to increase the interval between RIP updates over a WAN link. This is 
an example of increasing the RIP update timer to 2 minutes:  

 
 interface serial 0  
 ipx update-interval 120  
 

 

An alternative to relying on dynamic processes like RIP and SAP advertisements to control 
NetWare networking is to create static routing tables. This has the advantage of eliminating WAN 
bandwidth utilized by these protocols and is simpler to set up than configuring packet delays 
(which must be the same on all routers) and access lists. The down side is that routing information 
does not adjust automatically to link or other network failures. Static routing can be implemented 
by the use of the ipx route and ipx sap commands. Use the following to add a static route to 
the routing table:  

 
 Router1(config)#ipx route aa abc.0000.0010.2345  
 

 
The aa in this command refers to the network number for which you wish to add a route. This is 
followed by the network number and node address of the device to use as the next hop to get to 
this network. The command structure and concept are exactly the same as adding a static route 
for a TCP/IP internetwork.  

 

 

Static IPX SAP entries are added using the ipx sap command. Each static SAP assignment 
overrides any identical entry learned dynamically, regardless of its administrative distance, tick, or 
hop count. Within the ipx sap command you must specify the route to the service-providing 
machine. The Cisco router will not add this static SAP until it has learned a route to this machine, 
either by an IPX RIP update or a static route entry. An example of this command follows:  

 
 Router1(config)#ipx sap fserver 4 543.0000.0010.9876 451 1  
 

 
This command first specifies the name of the machine to add to the SAP table, in this case 
fserver, which is then followed by the network number and node address of this machine. This 
information is followed by the IPX socket used by this SAP advertisement and the number of hops 
to the machine specified.  

 

 

One final option to look at for reducing the bandwidth used by regular SAP and RIP updates is 
snapshot routing, which is a time-triggered routing update facility. Snapshot routing enables 
remote routers to learn route and SAP information from a central router during a prespecified 
active period. This information is then stored for a predefined quiet period until the next scheduled 
active period. In addition to specifying the active and quiet periods, a retry period also is set for 
snapshot routing. This retry period comes into effect if no routing information is exchanged during 



an active period, and is in place so that a device does not have to wait for an entire quiet period if 
routing information is missed during an active period.  

 
 Snapshot routing is implemented via the snapshot client on one side of the WAN link and snapshot 
server command on the other side of the WAN link.  

 
 Optimizing Periodic NetWare Maintenance Traffic  
 

 

Novell NetWare is a complete network operating system and, as such, utilizes periodic updates in 
addition to those generated to keep routing and service tables updated. Although these updates do 
not consume significant bandwidth, they can be annoying if a dial-on-demand routing (DDR) 
solution is chosen for economic reasons. Clearly, if a local NetWare server is constantly sending 
updates to a remote server, the DDR link will be established and costs incurred even when no user 
data needs to be transmitted. These periodic updates comprise the following:  

 
   •NetWare IPX watchdog  
 
   •SPX keep-alives  
 
   •NetWare serialization packets  
 
   •NetWare 4 time synchronization traffic  
 

 

The NetWare operating system has many protocols that are considered part of the NetWare Core 
Protocol; watchdog packets are considered part of the NCP set. The purpose of the watchdog 
packet is to monitor active connections and to terminate connections if the client machine does not 
respond appropriately to a watchdog packet request. The only two parameters of interest that can 
be altered for the watchdog service defined on the NetWare file server itself are in the 
AUTOEXEC.NCF file as follows:  

 
 set delay between watchdog packets = y  
 set number of watchdog packets = z  
 

 
The default for y is 59.3 seconds, but can vary between 15 seconds and 20 minutes. The default 
for z is 10, but is configurable anywhere between 5 and 100. Clearly if these values are increased, 
less use will be made of WAN links by the watchdog protocol.  

 

 

In place of changing these parameters on the server, you can configure a router to respond to the 
server's watchdog packets on behalf of a remote client. This is termed IPX spoofing. The obvious 
downside to doing this is that a router local to the NetWare server may keep connections open for 
remote client PCs that are in fact no longer in use. The effect this has is to use up one of the 
concurrent user accesses allowed within the NetWare server license. (Typically a NetWare server 
is sold with a license for 100 or 250 concurrent users.) To enable IPX spoofing, input the following 
global configuration command. (There are no arguments to specify for this command.)  

 
 Router1(config)#ipx watchdog spoof  



 

 

The next periodic update we will examine is the SPX keep-alive. SPX is a connection-oriented 
protocol typically used by a network printer process (such as RPRINTER) or an application 
gateway (such as Novell's SAA gateway). To maintain an SPX connection during periods when no 
data is transmitted, both ends of an SPX connection transmit keep-alive messages every 3 
seconds by default. (This is the NetWare 3.x default; NetWare 4.x sends SPX keep-alives every 6 
seconds by default.) Keep-alive values on the server side cannot be user-configured, but they can 
be set on the client side, from a default of every 3 seconds up to one keep-alive every hour. An 
alternative to changing this default in the NetWare software is to implement SPX keep-alive 
spoofing on Cisco routers positioned between a client PC and NetWare server. Consider Fig. 5-4.  

 

 

  
 
 Figure 5-4: Network configuration for IPX/SPX spoofing 

   
 

 
In this illustration, router 1 is spoofing onto IPX network A for the NetWare server and router 2 is 
spoofing onto IPX network C for the client PC SPX processes, and SPX keep-alives are kept off 
the WAN. SPX spoofing is implemented using the following global configuration commands:  

 
 Router1(config)#ipx spx-spoof  
 Router1(config)#ipx spx-idle-time 90  
 
 The first command enables SPX spoofing and the second command specifies the amount of time 
in seconds (90 in this case) before spoofing of keep-alive packets can occur.  

 

 

Novell implements a 66-second unicast to all servers on the same internetwork to provide for 
comparison of license serialization numbers on servers in use. This is there to protect Novell from 
a user reinstalling the same software license on multiple servers on the same internetwork. If a 
serialization packet is detected that has the same license number as the server receiving the 
packet, a server copyright violation message is broadcast to all users and the NetWare server 
consoles. There are no specific commands to stop these packets within the Cisco IOS, and the 
only way to block these serialization packets traversing a WAN is to use an access list.  

 
NetWare 4.1 Considerations. The main administrative problem with NetWare 3 was that user 
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accounts were defined on a per-server basis. In a LAN servicing several hundred or more users, 
several NetWare servers would have to be deployed and users would have to be given specific 
accounts on every NetWare server to which they needed access. This forced network managers to 
implement a maze of login commands to enable each user to get access to all the shared data 
needed.  

 

 

To eliminate this problem, Novell introduced NetWare Directory Services (NDS), which replaced 
the flat-file user information database (the bindery) with a hierarchical, object-oriented replicated 
database. The advantage is that with the same database of user information on every server, a 
user can gain access to all resources needed with just one logon. With replication comes the 
problem of ensuring synchronization among these databases. To ensure synchronization, 
NetWare 4.1 timestamps each event with a unique code. (An event is a change to the database.) 
The timestamps are used to establish the correct order of events, set expiration dates, and record 
time values. NetWare 4.1 can define up to four different time servers:  

 
   1.Reference time server passes the time derived from its own hardware clock to Secondary time 

servers and client PCs.  
 
   2.Primary time server synchronizes network time with reference to at least one other Primary or 

Reference time server.  
 
   3.Secondary time server receives the time from a Reference or Primary and passes it on to client 

PCs.  
 

   
4.Single-reference time server is used on networks with only one server and cannot coexist with 
Primary or Reference time servers. The Single-reference time server uses the time from its own 
hardware clock and passes it on to Secondary time servers and client PCs.  

 

 

This synchronization of time between servers across a network can add to network congestion and 
activate dial-on-demand links unnecessarily. Novell offers a TIMESYNC.NLM program that can be 
loaded on a NetWare 4.1 server to reduce the amount of time synchronization packet traffic. The 
best way to limit the amount of this type of traffic over WAN links is to locate time servers 
appropriately on the network (Fig. 5-5).  

 

 

  
 
 Figure 5-5: Locating NetWare time servers on an internetwork 



 Figure 5-5: Locating NetWare time servers on an internetwork 

   
 

 
In this internetwork, there is one Reference time server, SA. This will supply time synchronization 
to servers SB and SC. Server SC will, in turn, supply time synchronization to server SD. Because 
SC was made a Primary time server, it is the only server that needs to communicate with the 
Reference server on network Y.  

 
 Configuring EIGRP for IPX  
 

 

We already have discussed how RIP in the IP world can provide less-than-optimal routing. The 
same is true of RIP in the world of IPX routing. If you are implementing IPX over a wide area 
network, you should consider making the WAN routing protocol EIGRP. EIGRP is more efficient 
and provides quicker network convergence time over router-to- router links than does IPX RIP. 
Because NetWare servers can only understand IPX RIP, however, we have the same issues in the 
Novell world as we did in the IP world when connecting Unix machines to an IGRP WAN.  

 

 
We can make EIGRP the routing protocol for the WAN links, and use either static routes on the 
NetWare servers or redistribution on the routers, to enable the Novell servers to participate in 
routing across the WAN. To define IPX EIGRP on a Cisco router, enter the following commands:  

 
 Router1(config)#ipx router eigrp 22  
 Router1(config)#network aaa  
 

 
The first line defines the IPX EIGRP routing process on the router to be part of autonomous 
system number 22. The second (and potentially subsequent lines defined) identifies the IPX 
network numbers directly connected to the router that will participate in the EIGRP route 
advertisements.  

 

 
By default, EIGRP will redistribute IPX RIP routes into EIGRP as external routes and EIGRP 
routes into IPX RIP. An example of how to disable redistribution for IPX RIP updates into an 
EIGRP autonomous system is:  

 
 Router1(config)#ipx router eigrp 23  
 Router(config)#no redistribute rip  
 

 
The operation of EIGRP is configurable and can be optimized to reduce WAN bandwidth utilization 
if necessary. The first step toward reducing EIGRP bandwidth utilization is to increase the interval 
between hello packets. If this value is increased, the hold time for that autonomous system also 
must be increased.  



 

As previously stated, hello packets are sent by routers running EIGRP on a regular basis. These 
hello packets enable routers to learn dynamically of other routers on directly connected networks. 
In addition to learning about neighbors, the hello packets are used to identify a neighbor that has 
become unreachable. If a hello packet is not received from a neighbor within the hold time, the 
neighbor is assumed to have become unreachable. The hold time is normally set to three times the 
hello packet interval. To increase the hello packet interval and hold time, perform the following 
configuration commands:  

 
 Router1(config)#ipx hello-interval eigrp 22 15  
 Router1(config)#ipx hold-time eigrp 22 45  
 

 
These commands executed on all routers within autonomous system 22 will increase the hello 
packet interval from the default 5 seconds to 15 seconds and the hold time from a default 15 
seconds to 45 seconds.  

 

 

In addition to the access list method of controlling SAP updates, EIGRP offers further opportunities 
to reduce the amount of WAN bandwidth consumed by SAP traffic. If an EIGRP neighbor is 
discovered on an interface, the router can be configured to send SAP updates either at a 
prespecified interval or only when changes occur. When no EIGRP neighbor is found on an 
interface, periodic SAPs are always sent. In Fig. 5-6, the default behavior of EIGRP for router 1 will 
be to use periodic SAPs on interface Ethernet 0, and send only SAP updates on Serial 0, when 
change to the SAP table occurs; this is an incremental update.  

 

 

  
 
 Figure 5-6: IPX EIGRP-based internetworks 

   
 

 

This default behavior is fine for most instances; however, we can optimize the SAP traffic sent out 
the Ethernet 0 port of router 2 by changing the default behavior. We want to do this because the 
default behavior assumes that a NetWare server will be connected to any LAN interface on the 
router and therefore periodic updates are sent out. But in this case, the only device on the Ethernet 
0 port of router 2 is an EIGRP router, which gives us the option to use incremental updates. The 
following commands will implement this change to default behavior for autonomous system 24 on 
Ethernet 0.  

 
 Router2(config)#interface E0  
 Router2(config-int)#ipx sap-incremental eigrp 24  
 
 The Basics of NLSP and IPXWAN Operation  



 

An alternative to using EIGRP over WAN links is the new NLSP and IPXWAN protocols designed 
by Novell. The NetWare Link Services Protocol (NLSP) was introduced to address the limitations 
of the IPX RIP and SAP update processes, and is equivalent to using a link state protocol such as 
OSPF for IP routing instead of a distance vector protocol like IGRP. IPXWAN was designed to 
reduce the WAN bandwidth utilization of IPX routing, and is a connection startup protocol. Once 
the IPXWAN startup procedure has been completed, very little WAN bandwidth is utilized by IPX 
routing over the WAN link. NSLP will operate over IPXWAN wide area links, as will other protocols 
like RIP and SAP. IPXWAN does not require a specific IPX network number to be associated with 
the serial link; it will use an internal network number.  

 

 
NLSP is derived from the OSI's link state protocol, IS-IS. The key difference between NLSP and 
other link state protocols is that it does not currently support the use of areas. An NLSP network is 
similar to having all router devices in area 0 of an OSPF autonomous system. Using a link state 
protocol requires each router to keep a complete topology map of the internetwork in its memory.  

 

 

As changes in topology occur, routers detecting the change send link state advertisements to all 
routers. This initiates execution of the Dijkstra algorithm, which results in the recalculation of the 
topology database. Since these advertisements are sent out only when a failure of some kind 
occurs, as opposed to every 60 seconds as in the distance vector RIP, more efficient use of 
bandwidth results. The RIP/SAP routing method continues to be supported for linking different 
NLSP areas. Novell has stated that NLSP soon will be enhanced to support linking of separate 
NLSP areas directly together.  

 

 

The most significant challenge involved in implementing NLSP is the probable renumbering of IPX 
network numbers that will be necessary. Typically, IPX network numbers were assigned randomly, 
as address hierarchy is not important in IPX RIP/SAP networks. Address hierarchy is, however, 
essential to the efficient operation of a link state routing protocol. Renumbering to implement 
hierarchy in IPX is a serious undertaking and requires significant planning, which is the reason for 
the slow uptake of NLSP in the marketplace. Next, we discuss the operation of NLSP routing.  

 

 

As with other link state routing protocols, NLSP routers must exchange hello packets on direct 
connections to determine who their neighbors are before exchanging route information. Once all 
the neighbors have been identified, each router sends a link state advertisement describing its 
immediate neighbors. After this, NLSP routers propagate network information via link state 
advertisements to other routers in the area. This process continues until routers become adjacent. 
When two routers are adjacent, they have the same topology database of the internetwork.  

 

 

Once widespread adjacency is realized, the topology database is assumed correct if hello packets 
are continually received from all routers. Once three hello packets have been missed for a specific 
router, that router is assumed to be unreachable and the Dijkstra algorithm is run to adjust routing 
tables. Finally, a designated NLSP router on the internetwork periodically floods link state 
advertisements to all routers on the internetwork. This flood of packets includes sequence 
numbers of previous link state advertisements so that NLSP routers can verify they have the most 
recent and complete set of LSAs.  

 

 
Before we consider specific router configurations for NLSP, we will look at the general operation of 
IPXWAN. Typically, NLSP and IPXWAN are implemented together, although they are not 
interdependent. One can be implemented without the other; NLSP does, however, require 
IPXWAN on serial links.  

 



Point Protocol (PPP), X.25, and frame relay. Before IPXWAN (a layer 3 protocol) can initiate, these 
layer 2 protocols must establish their WAN connection. Initialization of the layer 2 protocols starts a 
hello process to begin the IPXWAN process.  

 

 

One of the routers will act as the primary requester, while the other acts as a slave that simply 
responds to these requests. The router having the higher internal network number value will be 
chosen as the primary requester. The two routers will agree on which routing protocol to use, 
typically RIP/SAP or NLSP, and then the requester proposes a network number to be assigned to 
the link. Finally the two routers agree on configuration details such as link delay and throughput 
available for the link.  

 

 
Configuring NLSP and IPXWAN. To set up IPXWAN and NLSP, a number of global and interface 
configuration commands must be executed. The prerequisites for implementing the global and 
interface commands for these protocols are as follows:  

 
   •Global IPX routing must already be enabled before IPXWAN or NLSP commands will be 

accepted.  
 
   •NLSP LAN interfaces must already have an IPX network number entry.  
 
   •IPXWAN interfaces must have no IPX network number assigned.  
 
 The following input details the necessary global commands:  
 
 Router1(config)#ipx internal-network 8  
 Router1(config)#ipx router nlsp  
 Router1(config)#area-address 0 0  
 

 

The first command defines the IPX internal network number that NLSP and IPXWAN will use to 
form adjacencies and to decide which router will be the primary requester. This number must be 
unique across the IPX internetwork. NLSP and IPXWAN will advertise and accept packets for this 
internal network number out of all interfaces, unless restricted by a distribute list. It is worth noting 
that the NLSP process adds a host address of 01 to this network number, which is a reachable 
address when using the ipx ping command. (IPX ping is not as useful as ICMP ping; not all 
NetWare devices support IPX ping.)  

 

 
The second command line enables NLSP on the router and the third specifies the area address to 
use in the form of an address and mask. As NLSP supports only one area at the moment, zero 
values for both the area number and mask are adequate.  

 
 This completes global configuration. IPXWAN must be enabled for each serial interface, as must 
NLSP for each interface that is to participate in NLSP routing.  

 
 Let's now look at the interface configuration commands for IPXWAN.  
 
 Router1(config)#interface serial 0  



 Router1(config-int)#no ipx network  
 Router1(config-int)#ipx ipxwan  
 

 

The first interface configuration command will not be reflected in the configuration file, and is input 
only as a safety measure to make sure that no network number is assigned to the link being used 
by the IPXWAN protocol. The second command simply enables the IPXWAN protocol. This 
second command can be followed by many option arguments, but the default option with no 
arguments normally is adequate. The configuration shown will use the Cisco default encapsulation 
for the layer 2 protocol, the Cisco-specific HDLC. If you want to change this to PPP, the 
encapsulation ppp interface command should be entered.  

 

 
Optimizing NLSP. Although NLSP and IPXWAN are considerably more efficient than the older 
RIP/SAP method of disseminating network information, some optimization of IPX and NLSP 
operation is possible.  

 

 
RIP and SAP are enabled by default for every interface that has an IPX configuration, which 
means that these interfaces always respond to RIP and SAP requests. When NLSP is enabled on 
an interface, the router only sends RIP and SAP traffic if it hears of RIP updates or SAP 
advertisements. This behavior can be modified by the following interface configuration commands: 

 
   •ipx nlsp rip off stops the router from sending RIP updates out the specified interface.  
 
   •ipx nlsp rip on has the router always send RIP updates out this interface.  
 
   •ipx nlsp rip auto returns the interface to default behavior.  
 
   •ipx nlsp sap off stops the router from generating periodic SAP updates.  
 
   •ipx nlsp sap on has the router always generate periodic SAP updates for this interface.  
 
   •ipx nlsp sap auto returns the interface to default behavior.  
 

 
When SAP/RIP is used, the maximum hop count permissible is 15 by default, which can be 
restrictive for large internetworks. The maximum hop count accepted from RIP update packets can 
be set to any value up to 254 (the example shows 50 hops) with the following command:  

 
 Router1(config)#ipx maximum-hops 50  
 
 The process we will go through to customize an NLSP setup is outlined as follows:  
 
   •Configure the routers so that the least busy router is chosen as the designated router (DR).  
 
   •Assign predetermined metric values to a link to directly influence route selection.  
 



   •Lengthen the NLSP transmission and retransmission intervals to reduce NLSP network traffic.  
 
   •Lengthen the link service advertisement intervals to reduce LSA bandwidth utilization.  
 

 

On each LAN interface, NLSP selects a designated router in the same way as other link state 
protocols do. A DR generates routing information on behalf of all routers on the LAN to reduce 
protocol traffic on the LAN segment. If the DR were not there, each router on the LAN would have 
to send LSA information to all the other routers. The selection of a DR usually is automatic, but it 
can be influenced by router configuration commands.  

 

 

Because the DR performs more work than other routers on the LAN, you might wish to ensure that 
either the least busy or most powerful router always is chosen as the DR. To ensure that a chosen 
router becomes the DR, increase its priority from the default of 44 to make it the system with the 
highest priority. To give a router a priority of 55, input the following commands. (This is for a router 
with its Ethernet 0 port connected to the LAN determining its DR.)  

 
 Router1(config)#interface E 0  
 Router1(config-int)#ipx nlsp priority 55  
 

 
NLSP assigns a metric to a link that is based on the link throughput (similar to IGRP). No account 
of load is taken into consideration. If you want to manually influence the selection of routes, you 
can change the metric assigned to any link with the following command (the example shows a 
metric of 100):  

 
 Router1(config)#interface Serial 0  
 Router1(config-int)#ipx nlsp metric 100  
 

 
The NLSP transmission and retransmission timers are adequate for just about every installation. If 
you feel the need to alter these parameters, however, the following commands show how to set 
the hello packet interval to 20 seconds and the LSA retransmission time to 60 seconds:  

 
 Router1(config)#interface E 0  
 Router1(config-int)#ipx nlsp hello-interval 20  
 Router1(config-int)#ipx nlsp retransmit-interval 60  
 

 
Similarly, the intervals at which LSAs are sent out and the frequency of the Dijkstra (the Shortest 
Path First) algorithm execution normally are adequate. If your network contains links that are 
constantly changing state from up to down, however, these values can be modified as follows to 
an LSA interval of 20 seconds and minimum time between SPF calculation of 60 seconds:  

 
 Router1(config)#lsp-gen-interval 20  
 Router1(config)#spf-interval 60  
 
 If these values are changed, they should be uniform across an entire internetwork for efficient 
operation.  



 

 
Monitoring an NLSP/IPXWAN Internetwork. Let's look at the pertinent configuration details of 
the Cisco router at the center of the internetwork shown in Fig. 5-7. This router is set up to run 
NLSP on all interfaces and IPXWAN on its serial link to NetWare server 3, as shown in the excerpt 
from its configuration file also in Fig. 5-7.  

 

 

  
 
 Figure 5-7: An NLSP- and IPXWAN-based internetwork 

   
 

 

The global configuration entries enable IPX routing, set the internal IPX network number, and 
enable NLSP routing with the appropriate area address and mask. On each Ethernet interface, a 
network number is assigned and NLSP is enabled. It is assumed that the default Ethernet 
encapsulation type is used both by the router and the NetWare servers. The serial interface uses 
PPP for its encapsulation and is enabled for both IPXWAN and NLSP. The serial link has no IPX 
network number associated with it; it uses an unnumbered link by default.  

 
 The operation of IPXWAN can be monitored by the show ipx interface serial 0 
command, which produces the output shown in Fig. 5-8.  

 
   
 
    

 
 router1>show ipx interface serial 0  

 

 
    

 
 Serial 0 is up, line protocol is up  

 

 
    

 
 IPX address is 0 0000.0010.000 [up] line-up RIPPQ: 0, SAPPQ: 0  

 

 
    

 
 Delay of this IPXnetwork, in tcks is 31 throughput 0 link delay  

 

 
    

 
 Local IPXWAN Node ID:10/router1  

 



 
    

 
 Network when IPXWAN master0 IPXWAN delay (master owns):31  

 

 
    

 
 IPXWAN Retry Interval:20 IPXWAN Retry limit:3  

 

 
    

 
 IPXWAN Routing negotiated: RIP Unnumbered  

 

 
    

 
 IPXWAN State:Slave: Connecty  

 

 
    

 
 State change reason: Received Router Info Req as xlave  

 

 
    

 
 Last received remote node info: 15/NW3  

 

 
    

 
 Client mode disabled, Static mode disabled, Error mode is reset  

 

 
    

 
 IPX SAP update interval is 1 minute  

 

 
    

 
 IPX type 20 propagation packet forwarding is disabled  

 

 
    

 
 Outgoing access list is not set  

 

 
    

 
 IPX Helper list is not set  

 

 
    

 
 SAP GNS procerssing enabled, delay 0 ms, output filter list is not set  

 

 
 Figure 5-8: The show ipx interface serial command 0 for an IPXWAN interface 

   
 

 
The IPXWAN node number is defined by the internal IPX network number and the router's 
configured hostname, which in this instance is 10/Router1. The IPXWAN state indicates that it is 
a responder (slave), rather than a requester and is connected to a NetWare server named NW3, 
configured with an internal network number of 15.  

 
 To monitor the NLSP routes, issue the show ipx route command to view the IPX routing table, 
as shown in Fig. 5-9.  

 
   
 
    

 
 router1>show ipx route  

 

 
    

 
 Codes: C - connected primary network, c - connected secondary network  

 



 
    

 
 S - Static, F - Floating static, L - Local (internal), W - IPXWAN, R - RIP, E - EIGRP, N - 
NLSP, X - External, s - seconds, u - uses  

 

 
    

 
 4 total IPX routes. Up to 1 parallel paths and 16 hops allowed  

 

 
    

 
 No default route known  

 

 
    

 
 L800(SAPE0  

 

 
    

 
 C111(PPP)As1  

 

 
    

 
 W5[20] [02/01] via3.0000.0210.98bc30sE0  

 

 
 Figure 5-9: Monitoring NLSP routes 

   
 

 
This routing table labels the internal network number with an L indicator, the directly connected 
Ethernet networks with a C indicator, NLSP routes with an N indicator, and the IPXWAN network 
with a W indicator. These two commands give you all the information that is necessary to 
determine the state of NLSP and IPXWAN routing.  

 
 NetBIOS over IPX  
 

 

The IPX packet type 20 is used to transport IPX NetBIOS packets through a network. NetBIOS 
was designed as a fast and efficient protocol for small individual networks. As such, NetBIOS does 
not use a network number when addressing a destination node; it is assumed that the destination 
is on the same network segment. NetBIOS implements a broadcast mechanism to communicate 
between nodes. Broadcasts normally are blocked by a router, so if we want broadcasts to traverse 
a router, we must specifically configure it to do so. In NetBIOS networking, nodes are addressed 
with a unique alphanumeric name. If two NetBIOS nodes need to communicate via a Cisco router, 
it is possible to configure the router to forward IPX packet type 20 broadcasts between specified 
networks. Figure 5-10 provides an example of this.  

 

 
Suppose that in this network we want NetBIOS nodes Eric and Ernie to communicate. This means 
we have to enable IPX packet type 20 to traverse the router between network aaa and ccc. As no 
NetBIOS nodes are on network bbb, no type 20 packets need to be sent onto that network. The 
relevant parts of a router configuration are shown in Fig. 5-11.  

 
 The command that enables reception and forwarding of NetBIOS packets on an interface is the ipx 
type-20-propagation command configured for interfaces Ethernet 0 and Ethernet 2.  

 



Bridging Nonroutable Protocols  
 

 

Some networking systems, such as Digital Equipment's LAT (Local Area Transport) do not define 
network numbers in packets sent out on a network. If a packet does not have a specific destination 
network number, a router will assume that the packet is destined for the local segment and will not 
forward it to any other network. In most cases this is the right thing to do; there are some 
instances, however, in which two devices need to communicate using a nonroutable protocol, and 
a router stands between them. One option to enable these two machines to communicate is to use 
the bridging capability of Cisco routers.  

 

 

  
 
 Figure 5-10: Forwarding NetBIOS packets through a Cisco router 

   
 
    

 
 INTERFACE ETHERNET 0  

 

 
    

 
 IPX NETWORK AAA  

 

 
    

 
 IPX TYPE-20-PROPAGATION  

 

 
    

 
 INTERFACE ETHERNET 1  

 

 
    

 
 IPX NETWORK BBB  

 

 
    

 
 INTERFACE ETHERNET 2  

 

 
    

 
 IPX NETWORK CCC  

 

 
    

 
 IPX TYPE-20-PROPAGATION  

 

 
 Figure 5-11: Configuration for the router in Figure 5-10 

   
 
Before we get into the specifics of using a Cisco router as a bridge, let's review the operation of the 
two types of bridge that have been widely implemented in the market, transparent bridges and 
source route bridges. What has ended up being available in the marketplace are bridges that 



typically do both transparent and source route bridging. A device acting as this type of bridge will 
act as a transparent bridge if the layer 2 header does not contain a Routing Information Field, and 
will act as a pure source routing bridge if there is a Routing Information Field. The following will 
discuss the operation of transparent and source route bridging separately.  

 
 Transparent Bridges  
 

 

The transparent bridge was developed to allow protocols that were designed to operate on only a 
single LAN to work in a multi-LAN environment. Protocols of this type expect a packet to be 
received by the destination workstation to arrive unaltered by its progress through the LAN. The 
basic job of a transparent bridge, therefore, is to receive packets, store them, and retransmit them 
on other LANs connected to the bridge, making it useful for extending the limits of a LAN.  

 

 

In a Token-Ring environment, a transparent bridge can increase the number of workstations on a 
ring. Each time a token gets passed from workstation to workstation on a ring, the clock signal 
degrades. A transparent bridge can be used to connect two physical rings and allow more 
workstations to be connected because it uses a different clock and token for each ring. As far as 
any layer 3 software is concerned, however, the two rings are still on the same network number.  

 

 
A transparent bridge will do more than this, though, because a learning bridge will "learn" which 
MAC addresses of workstations are on which LAN cable and either forward or block packets 
according to a list of MAC addresses associated with interfaces kept in the bridge. Let's examine 
how the bridge operates in the multi-LAN environment of Fig. 5-12.  

 

 

  
 
 Figure 5-12: Transparent bridge operation 

   
 

 
First it must be noted that as far as any layer 3 protocols, such as IP or IPX are concerned, LAN 1 
and LAN 2 in this figure are the same network number. The process operated by the transparent 
bridge is as follows:  

 
   •Listen to every packet on every interface.  
 
   •For each packet heard, keep track of the packet's source MAC address and the interface from 

which it originated. This is referred to as a station cache.  
 

   •Look at the destination field in the MAC header. If this address is not found in the station cache, 
forward the packet to all interfaces other than the one on which the packet was received. If the 



originating the packet, the packet is dropped; otherwise duplicate delivery of packets for that 
packet would result.  

 

   
•Keep track of the age of each entry in the station cache. An entry is deleted after a period of time 
if no packets are received with that address as the source address. This ensures that if a 
workstation is moved from one LAN to another, the "old" entry in the station cache associating that 
address with a now incorrect interface is deleted.  

 

 
Using this logic, and assuming that workstations A, B, C, and D in Fig. 5-12 all communicate with 
one another, the bridge will produce a station cache that associates workstations A and B with 
interface 1, then C and D with interface 2. This potentially relieves congestion in a network. All 
traffic that originates at and is destined for LAN 1 will not be seen on LAN 2 and vice versa.  

 

 
This form of bridging works well for any LAN topology that does not include multiple paths between 
two LANs. We know that multiple paths between network segments is desirable to maintain 
connectivity if one path fails for one reason or another. Let's look at what a simple transparent 
bridge would do if implemented in a LAN environment such as that shown in Fig. 5-13.  

 

 

  
 
 Figure 5-13: Network with multiple bridge paths between LANs 

   
 

 

Let's say this network is starting up and the station cache for both bridge A and B are empty. 
Suppose a workstation on LAN 1—let it be termed "workstation X"—wants to send a packet. 
Bridges A and B will receive this packet, note that workstation X is on LAN 1, and queue the 
packet for transmission onto LAN 2. Either bridge A or bridge B will be the first to transmit the 
packet onto LAN 2; for argument's sake, say bridge A is first. This causes bridge B to receive the 
packet with workstation X as the source address on LAN 2, since a transparent bridge transmits a 
packet without altering header information. Bridge B will note that workstation X is on LAN 2 and 
will forward the packet to LAN 1. Bridge A will then resend the packet to LAN 2. You can see that 
this ends up a nasty mess.  

 

 
Because a routed network typically will have multiple paths between LANs, turning on bridging 
capability could be as disastrous as in the example above if it were not for the spanning tree 
algorithm implemented on Cisco routers.  

 



subset of the LAN interconnections that provides a loop-free path from any LAN to any other LAN. 
In essence, the bridge will select which interfaces will forward packets and which will not. 
Interfaces that will forward packets are considered to be part of the spanning tree. To achieve this, 
each bridge sends out a configuration bridge protocol data unit (BPDU). The configuration BPDU 
contains enough information to enable all bridges to collectively:  

 
   •Select a single bridge that will act as the "root" of the spanning tree.  
 
   •Calculate the distance of the shortest path from itself to the root bridge.  
 
   •Designate, for each LAN segment, one of the bridges as the one "closest" to the root. That bridge 

will handle all communication from that LAN to the root bridge.  
 
   •Let each bridge choose one of its interfaces as its root interface, which will gives the best path to 

the root bridge.  
 

   
•Allow each bridge to mark the root interface—and any other interfaces on it that have been 
elected as designated bridges for the LAN to which it is connected—as being included in the 
spanning tree.  

 

 
Packets will then be forwarded to and from interfaces included in the spanning tree. Packets 
received from interfaces not in the spanning tree are discarded and packets are never forwarded 
onto interfaces that are not part of the spanning tree.  

 

 
Configuring Transparent Bridging. When configuring a Cisco router to act as a transparent 
bridge, you need to decide the following before entering any configuration commands into the 
router:  

 
   •Which interfaces are going to participate in bridging and what the bridge group number for these 

interfaces will be.  
 
   •Which spanning tree protocol to use.  
 

 

In Fig. 5-14 we have a router with four interfaces, three of which belong to bridge group 1. If the 
router had more interfaces, and if a second group of interfaces were chosen to form a bridge 
group, the two bridge groups would not be able to pass traffic between them; in effect, different 
bridge groups act as different bridges and do not pass configuration BPDUs between them. In the 
example of Fig. 5-14, IP traffic is routed between the interfaces and all other protocols are bridged. 

 

 

In the configuration of the router in Fig. 5-14, the bridge protocol command defines the 
spanning tree algorithm to use; for transparent bridging that is either IEEE or DEC. This value 
must be consistent between all routers forming part of the same spanning tree. The group number 
is a decimal number from 1−9 that identifies the set of bridged interfaces. This configuration 
command option is implemented in case you want to set up on the same router sets of interfaces 
that belong to different bridging groups.  



 

  
 
 Figure 5-14: Network and router configuration for basic transparent bridging 

   
 

 

In Fig. 5-14, router A has been configured for Ethernet 0, Ethernet 1, and Serial 0 to be part of 
bridge group 1. This bridge group number has significance only within router A, where it identifies 
the interfaces that will participate in bridging on that router. Router B has bridge group 1 defined as 
well. Again, this has relevance only within router B. Packets could just as well be bridged between 
routers A and B if the Serial 0, Ethernet 0, and Ethernet 1 interfaces on router B were made part of 
bridge group 2.  

 

 

Extending transparent bridging to include dozens of Cisco routers is a simple matter, as the same 
configuration given here is replicated on each router to be included in the spanning tree. As long 
as each router to be included in the spanning tree has an interface that is configured to bridge 
transparently, and is connected to an interface on another router that is configured to bridge 
transparently, all such routers will be included in the spanning tree.  

 
 Source Routing Bridges  
 
 Source routing at one time competed with transparent bridging to become the 802.1 standard for 
connecting LANs at the layer 2 level.   

 

 
When spanning tree bridges became the preferred 802.1 standard, source routing was taken 
before the 802.5 committee and was adopted as a standard for Token-Ring LANs. As such, it is 
only really used when connecting Token-Ring LANs.  

 

 

The idea behind source routing is that each workstation will maintain in its memory a list of how to 
reach every other workstation; let's call this the route cache. When a workstation needs to send a 
packet, it will reference this route cache and insert route information in the layer 2 header of the 
packet, telling the packet the exact route to take to reach the destination. This route information is 
in the form of a sequence of LAN and bridge numbers that must be traversed in the sequence 
specified in order to reach the destination.  

 



participate in source route bridging. To inform a receiving node that the packet has source route 
information rather than user data after the source address, the multicast bit in the source address 
is set to 1. Prior to source route bridging, this multicast bit was never used.  

 

 

  
 
 Figure 5-15: Layer 2 headers with and without the source multicast bit set 

   
 

 

If a workstation needs to send a packet to a destination not currently in the route cache, this 
workstation will send out an explorer packet addressed to that destination. An explorer packet 
traverses every LAN segment in the network. When an explorer packet reaches a bridge on its 
travels and could travel one of many ways, the bridge replicates the explorer packet onto every 
LAN segment attached to that bridge. Each explorer packet keeps a log of LANs and bridges 
through which it passes.  

 

 

Ultimately the destination workstation will receive many explorer packets from the originating 
workstation and will, by some mechanism, tell the originating workstation the best route to enter 
into the route cache. Whether the destination or originating workstation actually calculates the 
route information, and what the exact details of the best route are, is open to vendor 
implementation and not specified in the standards.  

 

 

Configuring Source Route Bridging. The first difference between transparent bridging and 
source route bridging becomes apparent when we look at the configuration commands. In 
transparent bridging, it was necessary only to identify the interfaces on each router that were to 
participate in transparent bridging and the spanning tree algorithm would work out which interfaces 
on each router in the spanning tree would be used for forwarding packets. Source route bridging is 
not so simple and requires every LAN and every source route bridge to be uniquely identified in 
the network. Configuration of a Cisco router for source route bridging is simple if we consider a 
bridge that has only two interfaces configured for source route bridging, as shown in Fig. 5-16. 
This then becomes a matter of bridging between pairs of Token-Ring LANs.  

 

 

  
 
 Figure 5-16: A simple source route bridge network 

   

The following commands configure the Token-Ring 0 and Token-Ring 1 ports for source route 



bridging.  
 
 Router1(config)#interface to 0  
 Router1(config-int)#source-bridge 10 2 11  
 Router1(config-int)#interface to 1  
 Router1(config-int)#source-bridge 11 2 10  
 
 The first source bridge configuration command arguments for the Token-Ring 0 interface can 
be explained as follows:  

 

   
•The local ring number for interface Token-Ring 0 is in this case 10, but it can be a decimal 
number between 1 and 4095. This number uniquely identifies the ring on that interface within the 
bridged network.  

 
   •The bridge number, which must be between 1 and 15, is in this case 2, and it uniquely identifies 

the bridge connecting the two rings within the bridged network.  
 
   •The target ring, which is the network number of the second ring in the ring pair, must be between 

1 and 4095, and in this case is 11.  
 
 The second source bridge command is for the Token-Ring 1 port and merely reverses what 
this interface sees as the local and destination ring.  

 

 

If a bridge has more than two interfaces that need source route bridging, an internal virtual ring 
needs to be defined and each "real" interface is bridged to the virtual ring. This configuration is 
shown in Fig. 5-17, with each external ring (100, 101, and 102) individually bridged to the internal 
ring 20, via router 1, which is identified with a source route bridging number of 5. ("Router 1" is the 
configured hostname of the router.)  

 

 

  
 
 Figure 5-17: A source route bridging for more than two LANs 

   



 

 

It is worth noting that source route bridging has significance only on Token-Ring interfaces. If you 
are using a Cisco access server to provide remote dial-up services to a Token-Ring LAN, the dial-
up ports will not use a Token-Ring encapsulation; they will probably use PPP. Network 
administrators may be forgiven for thinking that since all workstations on a LAN must have source 
routing enabled to get access to servers on remote rings, the dial-up workstations would need this 
too. This is, in fact, not the case. As the dial-up workstations are using PPP as a layer 2 protocol, 
there is no place to insert source route information in the layer 2 header.  

 
 Source Route Transparent Bridging  
 

 

What is implemented in the main is source route transparent bridging, in which a bridge will use 
source routing information if the multicast bit in the source address is set to 1 (this bit is now 
known as the Routing InformationIndicator), and transparent bridging if the Routing Information 
Indicator is not set. Figure 5-18 shows a bridged network with a router configuration for both 
source route and transparent bridging.  

 
 The tasks to be accomplished when configuring a router to perform both transparent and source 
route bridging are as follows:  

 
   •For transparent bridging on Ethernet interfaces, define a transparent bridge process and 

associate a number with it.  
 
   •Define which spanning tree algorithm will be used by the Ethernet ports.  
 

 

  
 
 Figure 5-18: Router configuration for source route transparent bridging 

   
 
   •Define an internal ring that can be paired with all external token rings.  
 



   
•Define the automatic spanning tree function for the source route network. Note that the interfaces 
in a source route network can transparently bridge packets. The interfaces in a source route 
network will, however, define a separate spanning tree from the transparent bridge interfaces in 
the Ethernet network.  

 
   •Associate each Ethernet port with a specific bridge group.  
 
   •Enable the spanning tree function for each interface to be part of the source-route-based 

spanning tree.  
 
   •Associate each Ethernet and Token-Ring port with a transparent bridge group.  
 

 

It seems complicated—and it is. I do not mind admitting that I do not like bridging, and I think that 
source route bridging does not scale well in a network of any size. Most people these days will use 
a layer 3 protocol (either IP or IPX), so there is little need to try to muscle layer 3 functionality into 
a layer 2 protocol. Having said that, if you really do have to implement source route transparent 
bridging and need to understand the commands shown in Fig. 5-18, an explanation follows.  

 

 

The bridge 5 protocol ieee command defines a transparent bridge process with ID 5. This 
command partners with the interface command bridge-group 5 that identifies all the interfaces 
to be part of this transparent bridge group. The source-bridge ring-group 9 command 
defines the internal virtual ring with which all external rings will be paired. The bridge 8 
protocol ibm command defines the spanning tree algorithm for this router and associates it with 
an ID of 8. This command partners with the interface command source-bridge spanning 8 
that identifies all Token-Ring ports that will participate in defining the spanning tree for the Token-
Ring side of the network. The final command is the source-bridge 200 1 9 command, which 
gives this bridge a source route bridging ID of 1 and links the Token-Ring network number on the 
specific interface (in this case 200) to the internal virtual token ring (number 9).  

 



IBM Networking  
 

 

IBM networking is a topic vast enough to justify the writing of many, many volumes. Here we have 
only one section in a chapter to give an overview of the most common things a network 
administrator will have to do when integrating IBM applications over a TCP/IP-based Cisco router 
network. Typically, Cisco routers are implemented to reduce or totally eliminate the need for IBM 
front-end processors (FEPs). FEPs direct SNA traffic over a network, typically using low-speed 
9600 bps lines. The drive to reduce FEP utilization comes from an economic need to reduce the 
cost of FEP support and to provide a cost-effective WAN that can deliver client/server IP-based, as 
well as SNA, applications.  

 

 

Typically Cisco routers get introduced in an IBM data center via direct channel attachment to 
replace a FEP and in each remote branch location connected to the data center. The data center 
router will route IP traffic over the WAN as normal and use a technology called Data Link Switching
to transport SNA or NetBIOS traffic over the same WAN. At the remote branch end of the network, 
a small 2500-series router can be used both to connect LAN workstations to the WAN that can 
receive IP traffic, and to connect an IBM terminal controller that receives SNA traffic to service 
local IBM 3270 terminals.  

 
 Overview of IBM Technology  
 

 

Let's face it, all this TCP/IP internetworking stuff may be fun, but what really delivers the benefits of 
computer technology to an organization is a well-designed, reliable, and responsive application. 
IBM technology has been the technology of choice for mission-critical applications for the past 20 
years and will be with us for many more. The basic reason for this is that it works. With IBM's 
NetView management system, network managers also have an effective tool to monitor, 
troubleshoot, and (important for mission-critical applications), guarantee response times of 
applications.  

 

 

IBM technology is hierarchical and fits well into an organization that works in a structured fashion, 
as everything is controlled by a central MIS department. Clearly, in today's faster-moving business 
environment, such central control with its inherent backlogs is not the favored approach for many 
organizations when planning future information systems development. Having said that, if an 
existing application is in place and serving its users well, there is little need to replace it just to 
make a network manager's life easier. Given that IBM applications will be around for a while, it is 
more cost-effective to integrate them into a multiprotocol network than to provide a separate 
network just for that traffic. Let's now look at IBM's communication technology in a little more 
detail.  

 

 

IBM Networking Systems. The most prevalent IBM networking system is the Systems Network 
Architecture (SNA). SNA is a centralized hierarchical networking model that assigns specific roles 
to machines within the overall network. IBM mainframe operating systems (such as MVS, VM, or 
VSE) were designed to have access to an SNA network via VTAM, the Virtual 
Telecommunications Access Method, which defines which computers will connect to which 
applications. Applications in this environment are written to interface to VTAM through Logical Unit 
(LU) sessions. LU sessions are established, terminated, and controlled via a VTAM function called 
the System Services Control Point (SSCP). For IBM network staff, the terms LU and PU (Physical 
Unit) are frequently referenced terms. Defining an LU of 2 identifies a 3270 terminal session, for 
example. In addition, each type of terminating device (such as a printer or workstation) will have a 
different PU number associated with it.  

 



 

IBM networkers are accustomed to having a method by which to allocate specific bandwidth 
resources to different types of traffic. This is not available as standard within TCP/IP, which relies 
on vendor-specific features such as Cisco's priority or custom queuing to duplicate that 
functionality. Being a centralized hierarchy, SNA provides good security with the RACF system, 
which is not matched very well by any security system currently implemented in the TCP/IP world. 
Again, TCP/IP standards rely on vendor-specific implementations such as Cisco access lists and 
TACACS+ (all of these extensions will be covered in subsequent sections).  

 

 

A totally different IBM architecture is the Advanced Peer-to-Peer Networking scheme (APPN), 
which was designed for the AS/400 environment. In this architecture, the Logical Unit used is 
LU6.2, which applications use via a program interface called Advanced Program-to-Program 
Communication (APPC). Instead of 3270 sessions, the AS/400 operating system uses 5250 
sessions to communicate between the server and workstation. A large part of why IBM systems 
lost popularity was due to these different architectures associated with different hardware 
platforms. In many organizations, network staff had to implement multiple cabling systems and 
users needed multiple terminals on their desks to access different IBM systems.  

 

 

TCP/IP Support Provided by IBM. IBM mainframe and midrange computers will support TCP/IP 
connectivity directly via the TN3270 and TN5250 protocols. These protocols allow a user 
workstation running only TCP/IP communications software to run 3270 and 5250 applications over 
a TCP/IP network. Most of the functionality required by a user to run IBM applications is provided 
by the TN3270 and TN5250 protocols; however, some features are missing that might be 
important to some users.  

 

 
In TN3270, the print job confirmation feature, important to users such as stockbrokers looking for 
trade confirmations, is not supported by the TCP/IP LPR/LPD printing mechanism. Also, the 
SysReq and Attn keys used to swap between mainframe applications is not fully supported under 
TCP/IP.  

 

 
In TN5250, most terminal emulation, printing, and file-sharing functions are available, but file 
transfer has been a problem. APPN allows sophisticated querying of DB2 databases to retrieve 
data. With TN5250, there are no APPN functions, so it is much more difficult to retrieve query 
output from a DB2 database.  

 

 
IBM has resolved these problems with a technology called Multiprotocol Transport Networking 
(MPTN). Using this technology, an APPC application can communicate over a TCP/IP network 
without the need for client workstations to load multiple protocol stacks. IBM achieves this by use 
of an application call translator that maps APPN to TCP/IP sockets function calls.  

 
 With an introduction to the IBM technology and an idea of some of the problems, let's look at how 
Cisco deals with them.  

 
 Cisco's Approach to IBM Technology Integration  
 

 
Cisco provides many options for integrating IBM applications into a multiprotocol environment, 
ranging from direct channel attachment to a mainframe, to encapsulation of SNA protocols in IP 
packets using techniques such as STUN and DLSw.   

 



guarantee response times. Typically, SNA applications have predictable low bandwidth 
consumption, whereas TCP/IP protocols are typified by bursts of traffic, often generating a need 
for high bandwidth availability. To alleviate these fears, Cisco implemented priority output queuing,
which enables network administrators to prioritize traffic based upon protocol, message size, 
physical interface, or SNA device. If this mechanism is deemed inadequate, Cisco's custom 
queuing allows specific bandwidth to be allocated to different types of traffic, in effect providing 
separate channels on the one link for the different types of traffic carried.  

 

 

Direct Channel Attachment. Let's take an overview of channel attachment, as shown in Fig. 5-19. 
In an IBM mainframe, Input/Output Processors (IOPs) communicate between the main CPU and 
the mainframe channel, which is an intelligent processor that handles communication with external 
devices. The Cisco Channel Interface Processor (CIP) can connect directly to a mainframe 
channel for high-speed communication between a mainframe and a router network. A CIP in a 
Cisco router replaces the need for an IBM 3172 controller to provide communication for terminal 
and printer devices. Channel attachment technologies that Cisco supports for CIP implementation 
are as follows:  

 
   •ESCON, a fiber optic link between an ES/9000 mainframe channel and the CIP.  
 
   •Parallel bus-and-tag for connecting to System 370 and subsequent mainframes.  
 
   •Common Link Access for Workstation (CLAW), which enables the CIP to provide the functionality 

of a 3172 controller.  
 

 

  
 
 Figure 5-19: Connecting a mainframe and router via channel attachment 

   
 

 

The CIP works in conjunction with an appropriate interface adapter card, the ESCON Channel 
Adapter (ECA) for fiber connection, or the bus-and-tag Parallel Channel Adapter (PCA). One CIP 
supports two interface cards and up to 240 devices. When installed in a Cisco router, the CIP can 
be configured much like any other interface. The CIP will use TCP/IP to communicate with the 
mainframe channel, so the mainframe needs to be running TCP/IP. If the mainframe has VM for an 
operating system, it must be running IBM TCP/IP for VM version 2, release 2; if it is running MVS, 
it must support IBM TCP/IP for MVS version 2, release 2.1.  



 

 

To get the CIP up and working, a compatible configuration must be entered into the CIP interface 
and the IBM channel. Before we look at those configurations, it should be noted that the CIP can 
be installed only in a modular Cisco router. The modular series routers (the 4x00- and 7x00-series) 
are supplied as a chassis in which modules with different interfaces can be installed. The 2500-
series routers come with a fixed configuration and have no slots for additional cards to be installed. 
So far, configurations given for routers have assumed a 2500-series router.  

 

 

To configure an interface for a modular router, we first need to specify the slot number of the card. 
For example, if we have a four-interface Ethernet module inserted in the slot 0 of a 4700 router, 
the Ethernet interfaces will be addressed as Ethernet 0/1, Ethernet 0/2, Ethernet 0/3, and Ethernet 
0/4. All show and interface configuration commands must reference the specific slot and 
Ethernet interface in this way. The same is true of a CIP card. The following shows how to select 
port 1 of a CIP interface card in slot 0:  

 
 Router1(config)#interface channel 0/1  
 Router1(config-int)#  
 

 
Now that the router is in configuration mode for the CIP interface connected to the IBM channel, a 
basic configuration can be input to establish IP communication between the IBM channel and the 
CIP. The configuration commands to define a router process, and assign an IP address and CLAW 
parameters are shown as follows:  

 
 router eigrp 30  
 network 172.8.0.0  
 network 173.2.0.0  
 !  
 interface channel 0/1  
 ip address 172.8.5.1 255.255.255.0  
 claw 01 0 173.2.6.4 MVSM/C D100 tcpip tcpip  
 
 The CLAW parameters are not obvious and should be configured with help from a Cisco Systems 
engineer. Essentially, the CLAW arguments can be defined as follows:  

 
   •The 01 is the path that is a value between 01 and FF, which is always 01 for an ESCON 

connection.  
 
   •The next 0 value is a device address from the UNITADD value in the host IOCP file and should 

be obtained from the IBM host administrator.  
 

   
•The rest of the values are derived from the Device, Home, and Link values from the host TCP/IP 
configuration files and refer to the host IP address, host name, device name, and host and device 
applications.  

 

 
Once operational, the CIP can be monitored and controlled much the same as any other interface 
on a Cisco router. All the usual show interface, show controller, and shutdown/no 



shutdown commands work in the same fashion as for Ethernet or serial interfaces.  
 

 

STUN and DLSw. Cisco's Serial Tunnel (STUN) feature was designed to allow IBM FEP machines 
to communicate with each other over an IP network. STUN encapsulates the SDLC frames used to 
communicate between FEPs within an IP packet for transmission over an IP internetwork. This 
provides flexibility in internetwork design and enables SNA and IP traffic to share the same wide 
area links, reducing costs and simplifying management. DLSw, which stands for Data Link 
Switching, provides a method for encapsulating IBM layer 2 LAN protocols within IP packets.  

 

 

Using STUN to Interconnect FEP Machines. The most popular implementation of STUN 
provides local acknowledgment between the router and the FEP, to keep this traffic off the WAN. 
This does, however, require knowledge of the Network Control Program (NCP) SDLC addressing 
scheme setup in the connected FEP. Figure 5-20 shows how FEPs are connected with and 
without STUN-enabled routers between them.  

 

 

As you can see, the Serial 0 port on both router 1 and router 2 takes the place of a modem that 
previously connected to the FEP. This means that the FEP is expecting to connect to a DCE 
device. Therefore the router-to-FEP cable must have the configuration that sets the router port as 
a DCE, and we must enter a clockrate command in the configuration of interface Serial 0, just 
as we did in the original lab setup in Chap. 3 when we were connecting two router ports directly 
together.  

 
 Before we see the configurations for router 1 and router 2, let's discuss what we need to achieve 
with the configuration.  

 

 

  
 
 Figure 5-20: Connecting STUN-enabled routers between IBM FEPs 

   

STUN-enabled routers communicate on a peer-to-peer basis and we need some way of identifying 



the serial interface was down for any reason.  
 

 

Next, all the STUN peers that need to communicate as a group must be assigned the same STUN 
protocol group number. STUN peers will not exchange information with peers in another group 
number. The stun protocol-group command also defines the type of STUN operation for the 
link. The most popular option is the SDLC option, which provides local acknowledgment to the FEP 
and keeps this traffic off the serial link. The other popular option is the basic option of this 
command, which does not provide local acknowledgment, but does simplify router configuration 
slightly.  

 

 

Using the SDLC option of the stun protocol-group command necessitates configuring the 
serial port connected to the FEP with an appropriate SDLC address number, which should be 
provided by the IBM FEP administrator. This option provides local acknowledgment of link-level 
packets, and therefore reduces WAN traffic. Once the SDLC address has been defined, we need 
to use the stun route address xinterface serialy command, where x is the SDLC 
address number and y is the serial port through which you wish to direct STUN-encapsulated FEP 
frames. A stun route address ff interface serialy command directs broadcast SDLC 
traffic through the same STUN-enabled interface.  

 
 A typical STUN configuration for router 1 and router 2 in Fig. 5-20 is shown in Fig. 5-21.  
 

 

  
 
 Figure 5-21: Router 1 and router 2 configuration from Figure 5-20 

   
 

 
Data Link Switching. Now let's look at the DLSw standard, as defined in RFC 1745. DLSw was 
designed to allow the transportation of SNA and NetBIOS traffic over an IP wide area network. The 
standard came into being largely as a result of problems encountered when trying to scale source 
route bridging to larger networks. Problems inherent in the source route bridge protocol include:  

 
   •Bridge hop-count limit of 7.  
 
   •Excessive generation of broadcast explorer packets, consuming WAN bandwidth.  
 
   •Unwanted timeouts at the Data Link level over WAN links.  



 

 

It is important to realize that DLSw is not a layer 3 protocol and therefore does not perform routing. 
DLSw is a layer 2 protocol and works on the basis of establishing a DLSw circuit between two 
routers in an IP network. When DLSw is implemented, local Data Link level (layer 2) 
communications are terminated at the local router, enabling that router to provide link-level 
acknowledgments. This functionality effectively turns a connection between two machines 
communicating via a DLSw router pair into three sections. At each end of the link, the machines 
will establish a connection with the DLSw router (typically a source route connection), and the two 
DLSw routers will establish TCP connections to carry the traffic over the IP WAN. In Fig. 5-22, PC 
A exchanges link-level acknowledgments with router 1, and PC B exchanges link-level 
acknowledgments with router 2; router 1 and router 2 exchange DLSw information via TCP 
connections.  

 

 

  
 
 Figure 5-22: The three links used to establish a DLSw connection over an IP network 

   
 

 

In fact, before it is possible to switch SNA or NetBIOS traffic between two DLSw-enabled routers, 
these routers must establish two TCP connections. Once the TCP connections are established, 
various data will be exchanged between the routers, the most noteworthy of which are the MAC 
addresses and NetBIOS names each router can reach. So how does DLSw direct traffic through 
an IP network?  

 

 

The process is essentially the same for both SNA and NetBIOS switching. Both protocols will seek 
out the location of a destination by some type of explorer packet sent out on the network. The 
explorer packet asks all devices if they can get to the desired destination. One of the DLSw routers 
on the IP network should respond that it can reach the destination, at which time the TCP 
connections between the routers are made, and the packet can be sent from source to destination 
over the IP WAN.   

 

 

There are many permutations and combinations of possible interconnects that might need to be 
made via DLSw links. We shall examine the example of connecting a remote Token-Ring LAN to a 
central SDLC IBM controller here, and in the next section on Windows NT, we will look at the 
example of connecting two Ethernet segments together via DLSw, so that NetBEUI traffic can be 
switched over an IP WAN.  



 
 The example shown in Fig. 5-23 is of a DLSw implementation that connects an SDLC controller to 
a remote Token-Ring LAN via an IP WAN.  

 

 

  
 
 Figure 5-23: Using DLSw to connect an SDLC controller to a remote token ring 

   
 
 Let's discuss the configuration commands implemented one by one.  
 
 Command source-bridge ring-group 1000 defines a DLSw router group. Routers will 
establish DLSw connections only with other routers in the same ring group.  

 

   
•Command dlsw local-peer peer-id 180.4.1.1 enables DLSw on the router and gives 
the router a DLSw ID, which is taken from the loopback address defined, just as was done for 
STUN in the previous section.  

 

   
•Command dlsw remote-peer 1000 tcp 180.4.3.2 identifies a remote peer with which to 
exchange DLSw information using TCP. In this command, the 1000 value is the ring-group 
number and must match that set by the source-bridge ring-group command.  

 

   
•Command sdlc vmac 1234.3174.0000 sets a MAC address for the serial port connecting to 
the SDLC controller. This is a necessary part of enabling the link-level addressing for DLSw, 
enabling complete source-to-destination addressing using link-level addresses.  

 
   •Command sdlc role primary sets this end of the link as the primary.  
 

   
•In command sdlc xid 06 12345, XID requests and responses are exchanged prior to a link 
between the router and the controller reaching an up state. The XID is derived from parameters 
set in VTAM and must be determined by the IBM administrator.  

 
•Command sdlc partner 1234.5678.9abc 06 defines the MAC address of the token ring on 



the remote router that will be communicated with, and the SDLC ID number of the link connecting 
the two DLSw routers together.  

 
   •Command sdlc dlsw 5 associates the DLSw and SDLC processes, so that DLSw will switch 

SDLC ID 5 traffic.  
 

   
•Command source-bridge 5 4 1000 enables source routing for the token ring attached to 
router 2 and defines the token ring as ring number 5, router 2 as bridge number 4, and the 
destination ring as number 1000.  

 
   •Command bridge 8 protocol ibm defines the spanning tree algorithm for this router and 

associates it with an ID of 8.  
 
   •Command source-bridge spanning 8 identifies all the Token-Ring ports that will participate 

in defining the spanning tree for the Token-Ring side of the network.  
 
 As you can see, this type of configuration is not trivial and takes significant cooperation between 
IBM data center staff and those responsible for Cisco router management.  

 



Networking Windows NT  
 

 

Windows NT has the fastest-growing market share of any network operating system (NOS) 
currently in the market. It seems that Microsoft has finally produced a NOS with which to challenge 
the leadership position of Novell's NetWare. NT bases much of its LAN communication on 
NetBEUI, the NetBIOS Extended User Interface, which is a legacy from Microsoft's LAN Manager 
and IBM's PC LAN products. NT, however, has built into the operating system the ability to 
interface to IPX/SPX, TCP/IP, and DLC (Data Link Control).  

 

 
I will not go into the details of setting up these protocols using Windows NT utilities; there are 
plenty of Microsoft manuals and Microsoft Press publications to do that for you. What will be 
covered here is an overview of what NT servers use to communicate network information, and 
what the options and issues are for interconnecting NT servers and workstations over a WAN.  

 
 Windows NT Network Protocols  
 
 In this section we will examine the transport protocols of Windows NT, which are NetBEUI, 
NWLink, TCP/IP, and DLC.  

 

 
NetBEUI. NetBEUI originally was designed for small LANs of around 20 to 100 workstations. As 
such, it was not designed with any concept of network numbers and is therefore a nonroutable 
protocol. Windows implements NetBEUI 3.0, which uses the NetBEUI Frame (NBF) protocol that is 
based on the NetBIOS frame type and therefore is compatible with previous versions of NetBEUI.  

 

 

In communications based on NetBIOS, computers are referred to by name rather than address. 
Packets on the local segment are still delivered by MAC address, with each station on the network 
maintaining a computer-name-to-MAC-address translation. On a single LAN segment, NetBIOS 
communications deliver better performance than a routable protocol because the communication 
process is simpler. These days, however, there are very few networks installed that only ever need 
to connect to fewer then 100 other computers. Recognizing the problems of NetBEUI in larger 
environments, Microsoft chose TCP/IP as its strategic WAN protocol for Windows NT 
implementations.  

 

 

NWLink. NWLink is the native Windows NT protocol for Novell's IPX/SPX protocol suite. NWLink 
provides the same functionality that IPX.COM or IPXODI.COM files did for a machine using the 
Open Data Link Interface (ODI) specification, namely the ability to use IPX as a transport protocol. 
To connect to a NetWare server requires the use of VLM programs for an ODI machine, or the 
Client Services for NetWare (CSNW) redirector for Windows NT.  

 
 NWLink is useful if you have a mixed environment of NT and NetWare servers and need an NT 
machine to communicate with both.  

 

 

TCP/IP. In the Windows NT world, TCP/IP is used as a transport protocol, primarily for WAN 
connections. Later in this section we will be discussing functions of the NT server that generate 
network traffic, most of which can be encapsulated within TCP/IP. This is useful for minimizing the 
number of protocols that need to be supported on the WAN, but can be an issue if the 
encapsulated NetBEUI traffic starts to reach significant levels. We will discuss this later.  

 
The NT implementation for TCP/IP includes SNMP and DHCP support, as well as the Windows 
I t t N S i (WINS) hi h i t i t l d t b f t t IP



Internet Name Service (WINS), which maintains a central database of computer-name-to-IP-
address translations. NetBT, which stands for NetBIOS over TCP/IP, also is supported by NT for 
NetBIOS communication with remote machines via encapsulation in TCP/IP.  

 

 

Data Link Control. An important difference between DLC and the other protocols supported by 
Windows NT is that DLC is not meant to be used as a primary means of workstation-to-server 
communication. That's because DLC does not have a NetBIOS interface. Even when other 
protocols such as TCP/IP are used for workstation-to-server communications, a NetBIOS interface 
is needed to encapsulate NetBIOS traffic within this other protocol, just as NT computers need to 
pass NetBEUI among themselves to function.  

 
 The DLC protocol needs to be implemented only on machines that either access IBM mainframes 
using certain emulation packages, or print to some older types of Hewlett-Packard printers.  

 
 Windows NT Network Traffic  
 

 

In the world of NetWare servers, we saw that SAP advertisements primarily, and RIP updates 
secondly, are the means by which the NOS itself steals available bandwidth from the applications 
we wish to run over our internetwork. SAP and RIP were designed to advertise servers, available 
services, and the means to get to those services. In the world of Windows NT, there is the browser 
service that performs an equivalent function.  

 

 

In our discussion of optimizing NetWare protocols for transmission over WANs, we saw that the 
Cisco IOS had many options for directly controlling the propagation of IPX SAP and RIP packets, 
because IPX is a routable protocol. Because the Windows NT browser service is based on 
NetBEUI transport, which is not routable, there is no opportunity for such a fine degree of control 
over the propagation of these packets by the Cisco IOS. We will, however, discuss the options for 
maintaining browser service over WAN links.  

 

 

Windows NT Browser Service Overview. The Windows NT browser service is available to 
enable the sharing of resources across the network. This is achieved by the election of master and 
backup browser servers on each network segment. The browser servers keep track of shareable 
services on the network, and client computers query the browser servers to see what is available. 
The types of network traffic that this process generates are illustrated as follows.  

 
   •Each potential browser will advertise its candidacy via browser election packets, and an election 

process will take place to determine which machines become primary or backup servers.  
 
   •The master browser sends to backup browsers a new list of servers every 15 minutes.  
 
   •Nonbrowsers, potential browsers, and backup browsers announce their presence every 1 to 12 

minutes.  
 
   •Workstations retrieve shareable resource information from their backup browsers on an as-

needed basis.  
 
 Let's examine these concepts a little more closely.  



 
Browser Types. A browser is a computer that holds information about services on the network, 
file servers, printers, shared directories, etc. The job of providing a browser service to nonbrowser 
machines is spread among several computers on a network, as defined in the following:  

 

   
•Master browser maintains a list of all available network services and distributes the list to backup 
browsers. No client machine requests information directly of the master browser; client machines 
only request information directly from backup browsers. For each Windows NT workgroup or 
domain defined, there is only one master browser per Windows NT Workgroup or Domain.  

 
   •Backup browsers receive a copy of the browser list from the master browser and send it to client 

computers as requested.  
 
   •Potential browser is a computer that could be a browser if so instructed by the master browser.  
 

 

An election process takes place to determine which computer will become the master browser and 
which computers will become backup browsers. An election is forced if a client computer or 
backup browser cannot locate a master browser, or when a computer configured to be a preferred 
master browser is powered on. The election is initiated by the broadcasting of an election packet to 
all machines on that network. The election process ensures that only one computer becomes the 
master browser; the selection is based on the type and version of the operating system each 
machine is running.  

 
 Browser Traffic. Assuming that browser election has taken place and the master browser and 
backups are operational, we can describe the traffic generated by the browser as follows.  

 

 

After the initial boot sequence, a computer running the server process (workstations can run this 
process in addition to NT servers), will announce its presence to its domain's master browser. This 
computer is then added to the master browser's list of network services available. The first time a 
client computer wants to locate a network resource, it will contact the master browser for a list of 
backup browsers, and requests the list of network resources (domains, servers, etc.) from a 
backup server. The client computer now has what it needs to view, select, and attach to the 
available network resources.  

 

 

The client PC now has a list of available resources. What happens if one of those resources 
becomes unavailable? There are browser announcements going on continually on a network. 
These announcements are similar in concept to routing update advertisements, i.e., as long as a 
router continually advertises route updates, it will still be considered usable by the other routers. 
Similarly, as long as a browser or server announces itself periodically, it will be considered 
available; if it stops announcing itself, however, it is deleted from the network resource list.  

 

 

Initially every computer on the network will announce itself every minute to the master browser, 
although eventually this period is extended to 12 minutes. Backup servers request an updated 
resource list from the master browser every 15 minutes. When a master browser wins an election, 
it will request all systems to register with it. Systems will respond randomly within 30 seconds, to 
stop the master browser from becoming overwhelmed with responses.  

 

 If a nonbrowser machine fails, it could take up to 51 minutes for the rest of the machines on the 
network to find out about it. If a nonbrowser or backup browser computer does not announce itself 



In the case of a master browser, the failure is detected the next time any machine tries to contact 
the master browser, and an election immediately takes place.  

 

 

In addition to this traffic, master browsers broadcast network resource information between 
domains as well as within domains every 15 minutes. If a master browser that is sending its 
network resource information to another domain fails, it will take 45 minutes for that network 
resource information to be deleted from the domain receiving that information. Basically, a master 
browser will wait for three announcement periods before it deletes resource information coming 
from another domain.  

 
 Transporting Windows NT Traffic over a WAN  
 

 
We have seen that in a Windows NT-based network there is a lot of broadcast NetBEUI traffic that 
essentially is using NetBIOS frame types. NetBEUI is not routable, so should we connect sites 
together on a WAN-based network on Data Link level bridges?  

 
 I would not recommend it. We covered the issues of bridge-based networks earlier in this chapter, 
and outlined why building networks based on Data Link layer bridges is no longer popular.  

 

 
We have two options, the first of which is the use of DLSw to transport the NetBIOS frames over 
the WAN links. The second is the use of a WINS server that will use unicast TCP/IP packets to 
announce specific services to prespecified servers across an IP WAN.  

 

 

Connecting NT Networks via DLSw. Earlier we discussed using DLSw as a technology to carry 
Token-Ring-based NetBIOS traffic over TCP/IP WANs. This can be extended to the case for 
transporting NetBEUI traffic between Ethernet LANs via a TCP/IP WAN relatively easily. A typical 
internetwork for supporting this type of connectivity and corresponding router configurations are 
shown in Fig. 5-24.  

 

 

  
 
 Figure 5-24: Transporting Ethernet-based NetBEUI packets over a router-based  

   



 
We need to achieve a tunnel between router 1 and router 2 that will transport any NetBEUI packet 
between LAN 1 and LAN 2. The configuration for router 1 and router 2 to achieve this is given in 
Fig. 5-24, which we will discuss line by line.  

 
 The following commands configure router 1 for passing NetBIOS packets via DLSw over a TCP 
connection.  

 

   
•Command dlsw local-peer peer-id 162.8.5.1 enables DLSw on the router and 
identifies the interface with IP address 162.8.5.1 (in this case the Ethernet 0 interface) as the one 
being presented with NetBIOS packets.  

 
   •Command dlsw remote-peer tcp 162.8.6.1 identifies the IP address of the remote device 

with which to exchange traffic   
 
   •using TCP. In this case, it is the Ethernet interface of router 2. In essence, the local peer and 

remote peer identify the two ends that will use TCP to carry NetBIOS packets between them.  
 

   
•Command dlsw bridge-group 1 is used to enable DLSw+ on the Ethernet interfaces that are 
assigned membership of bridge group 1 in interface configurations. In effect, DLSw+ is attached to 
a transparent bridge group, meaning the NetBIOS packets are exchanged transparently between 
all members of the bridge group.  

 
   •Commands interface ethernet 0 through bridge-group 1 identify this Ethernet interface 

as participating in the transparent bridge group 1.  
 

 
The commands for router 2 are basically a mirror image of the commands entered for router 1, and 
you can see that the local peer for one router becomes the remote peer for its companion router, 
and vice versa.  

 

 

This method of providing NetBIOS connectivity over a TCP connection works, but does not give 
you much control over which NetBIOS packets get forwarded and which do not. If there are 
multiple NT servers at each location, all the NetBIOS packets they generate will be forwarded over 
the link whether you want them to be or not. A slightly better option is to use the facilities within 
Microsoft's software to encapsulate NetBEUI traffic within TCP/IP directly within the NT server 
itself.  

 

 

Using WINS to Announce Services Over an IP WAN. At the most basic level, a NetBIOS-based 
application needs to see computer names, while IP devices need to work with IP numbers. If the 
communication medium between two machines trying to communicate with each other via a 
NetBIOS- based packet is an IP network, there must be a mechanism for mapping NetBIOS 
names to IP addresses and converting the IP addresses back to NetBIOS names. This mechanism 
is the NetBIOS over TCP/IP protocol, otherwise known as NBT.  

 

 There are four types of node defined in NBT: the B, P, M, and H node. The B node issues a 
broadcast on the network every time it needs to locate a computer on the network that owns a 



around, i.e., it will contact a known name server first, and if that fails, send out a broadcast to 
locate a host.  

 

 
This procedure is similar in concept to how IP hosts resolve host names to IP addresses. An IP 
host will refer to either a local hosts file or a DNS server to resolve a hostname to an IP address. 
NetBIOS-name-to-IP-address resolution is executed by a broadcast, reference to a local 
LMHOSTS file or a central Windows Internet Name Service (WINS) server.  

 
 The order of search used by Microsoft clients for NBT name resolution is as follows:  
 
   1.The internal name cache is checked first.  
 
   2.NBT queries the WINS server specified in its configuration.  
 
   3.A broadcast is issued.  
 
   4.NBT searches the locally defined LMHOSTS file.  
 
   5.NBT issues a DNS query to a DNS server for name resolution (a last-gasp effort!).  
 
 The LMHOSTS file is a flat ASCII file that looks very similar to the hosts file used by IP nodes. A 
typical LMHOSTS entry is shown as follows.  

 
 193.1.1.1 My_server #remote server  
 
 The 193.1.1.1 is the IP address of the computer using My_server as a NetBIOS name, while 
comments follow the # character.  

 

 

Interestingly, NetBIOS does not use port numbers to identify processes running within a host. 
Each process running in a host must be assigned a different service name and have a separate 
entry in the LMHOSTS file. So if My_server is running an SNA gateway application and a 
client/server application, it will need two entries in the LMHOSTS file, each one mapping the 
appropriate NetBIOS service name of the application running to the IP address 193.1.1.1. In this 
respect, the IP model is more efficient because only one entry per machine needs to go into the 
host's file, and any applications running within a host are identified by port number by the transport 
layer protocol.  

 

 

Managing LMHOSTS files distributed all around an internetwork presents the same problems as 
managing distributed hosts files. WINS was implemented as a service to offer the same 
functionality as DNS by providing a central repository for name resolution information. WINS is a 
proprietary Microsoft technology, and therefore does have some nicely integrated features if you 
are using an NT server. For example, if you are running both WINS and DHCP from the same   

 

 
NT server, WINS can read the DHCP databases to find out the NetBIOS names and IP addresses 
registered. A client configured for WINS and DHCP will also register coordinated computer name 
and IP address information as it comes online.  



 

 
What all this means to a real internetwork is that by implementing either a WINS server or 
LMHOSTS file, and loading the NBT protocol on NT servers, you can have announcements made 
by NT servers over an IP network. Let's look at maintaining browser functionality if you have NT 
servers at distributed locations, interconnected by an IP WAN as shown in Fig. 5-25.  

 

 

  
 
 Figure 5-25: IP WAN connectivity in a Windows NT environment 

   
 

 

In Fig. 5-25 we assume that server 1 is running WINS and the workstations on that LAN are 
configured to use it for IP name resolution. With a default workstation configuration, WS1 will be 
able to contact directly any computer on LAN 1 and any remote computer with an IP address and 
name defined in the WINS server. Remote services, such as server 2, need to be configured to 
register with the server 1 WINS process. In a large environment, having all services register with 
one central WINS server and keeping their listing alive with regular announcements can become 
burdensome. To counter this issue, Microsoft enables a distributed WINS strategy to be 
implemented, in much the same way that DNS operates as a distributed database.  

 

 

Whichever way you choose to enable NT computers to use the browser service over a WAN, WAN 
bandwidth will be consumed. Every network mechanism uses some bandwidth to maintain 
information about connections. In each of Windows NT browsing, NetWare SAP/RIP or IPXWAN 
and NLSP, or IP routing protocols such as IGRP and OSPF, it comes down to how you configure 
the services for your particular installation. All of these options can work in the vast majority of 
cases.  

 
 Implementing Quality of Service Features  
 
 In this section we'll look at some of the newer protocols that have been developed to add a degree 
of service guarantee to protocol designs that did not originally consider such concepts.  

 
In the world of LANs, Ethernet seems to have won the battle for the hearts and minds of network 
managers over token ring (occasionally referred to as broken string). Despite advances such as 
early token release and token switching, token ring has not been able to keep pace with Ethernet 



technology; switched segments, 100 Megabit per second Ethernet and the looming gigabit 
Ethernet. I side with the majority and believe that this is the right thing, however, token ring by its 
nature is deterministic, whereas Ethernet is not, which raises issues when we start to consider 
guaranteeing network performance.  

 

 

By design, Ethernet creates all nodes on the network equal in terms of their access to network 
resources. Any device that wants to send data on the network can do so at any time, as long as no 
other device is transmitting. This is a good thing for data-oriented networks. Increasingly, however, 
organizations are looking to leverage the investment made in Ethernet networks to deliver 
multimedia audio and video applications to the desktop. These sophisticated multimedia 
applications need guaranteed amounts of bandwidth and fixed latency to operate well, presenting 
some significant challenges to the basic Ethernet protocol.  

 

 

Background Considerations. To guarantee network performance, for specific traffic streams, you 
must dedicate some network resources to those streams. An Ethernet network does not 
distinguish between packets carrying a videoconference, access to a mission critical database, 
game data or Internet information. Currently, Ethernet cannot deliver service guarantees for two 
reasons. First, the only restriction on any node seeking to gain full access to Ethernet's 10-Mbps 
throughput is that no other node can be using the network at that time. If a node transmitting non-
critical data wants to launch a large file transfer that will funnel resources from critical network 
traffic, it can. Second, Ethernet packets are of varying lengths; it takes anywhere from 51.2 
microseconds to 1.2 milliseconds to transmit an Ethernet frame onto a network cable. As a result, 
critical data will face uncertain delays.  

 

 

Proponents of ATM say these challenges to performance guarantees on Ethernet are so 
fundamental to the way Ethernet operates that it is not feasible to use Ethernet for multimedia 
applications that require such guarantees. The Ethernet crowd counters this by noting 
improvements in Ethernet bandwidth and other advances such as the Resource Reservation 
Protocol (RSVP), the Real-time Transport Protocol (RTP) and IPMulticast.  

 

 

In practice, most engineering decisions are a compromise. In this case, the pluses for Ethernet are 
that it has a huge installed base, most network administrators understand its operation, and it is 
significantly cheaper than competing technologies. Grafting performance guarantee capabilities 
onto Ethernet produces a theoretically sub-optimal solution, but one that is good enough for most 
users.  

 

 

On a theoretical level, ATM has two features that make it a technology more appropriate for 
delivering performance guarantees. First, ATM uses a fixed cell length, which reduces latency in 
switches and reduces variable delays in the network. By having a fixed cell (a cell is equivalent in 
ATM terms to an Ethernet packet) length, switching of cells can be done by hardware, which is 
much faster than software, as there is no fragmentation and reassembly of packets to worry about. 
Second, ATM is most commonly a connection-oriented technology that uses a call setup 
procedure for every conversation, which gives the network an opportunity to guarantee 
performance levels during call initiation. Calling ATM a connection-oriented technology does not 
mean that it is a reliable delivery mechanism like the LAP-B data-link protocol found in X.25. There 
are no cell-recovery procedures because ATM leaves retransmission to higher-layer protocols. 
ATM performance guarantees are managed by a traffic contract that is negotiated during call setup 
between the network and the device requesting the connection. The device requesting connection 
will ask for one of four classes of service, and the network either will agree to this service level and 
permit the connection or the connection will be denied. The traffic contract places demands on the 
call-initiating device; if it tries to send more traffic than originally stated, the excess traffic may be 
discarded by the network.  



 

 
RSVP, RTP, and IP Multicast. Delivering high-quality audio and video over Ethernet networks 
requires performance guarantees, which are provided by a combination of the RSVP, RTP, and IP 
Multicast capabilities.  

 

 

RSVP has the job of reserving a specific bandwidth for a stream of data on the network. This is 
complemented by RTP, which minimizes the effects of packet loss and latency (packet delay) on 
audio and video content. IP Multicast enables the machine originating the traffic flow for audio or 
video content to send the stream only once, no matter what the number of receivers, or the subnet 
on which they are located.  

 

 

To reserve a given level of bandwidth end to end, all devices in the chain from source to 
destination must support RSVP. In practice, an RSVP-enabled host will request a certain service 
level from the network, essentially a performance guarantee from all the routers in the path from 
source to destination. The network will either agree to this request and reserve the requested 
bandwidth or terminate the requested session.  

 
 Within the RSVP host software, admission control and policy control modules are executed.  
 

 

Admission control determines if the node can obtain the requested resources necessary to meet 
the requested performance level on the network at that time. Policy control checks whether the 
application has administrative permission to make this reservation. If both these checks succeed, 
the host RSVP software sets parameters in a packet classifier and packet scheduler to obtain the 
desired performance level from the network. The packet classifier defines the service level for 
every packet, and the packet scheduler orders packets for transmission to obtain the network 
resources. The RSVP request for a given performance level is made by an RSVP aware 
application (in the Microsoft Windows world, this is made via calls to the WinSock 2 library), 
requesting that a certain service model define the bandwidth required or the delay that can be 
tolerated.  

 

 

In practice, only two service models are widely deployed: guaranteed service and controlled-load 
service. The guaranteed-service model ensures that the delay restrictions requested by a host 
originating an RSVP call are met. The controlled-load service model makes no guarantees, but 
admits new RSVP connections only up to the point where service starts to deteriorate. Beyond 
that, new connection requests are denied.  

 

 

Controlled load was the model implemented by Cisco when it demonstrated its RSVP offering at 
the NetWorld1Interop show. Using an RSVP-enabled version of Intel Corp.'s ProShare presenter 
application displaying video, an RSVP session was established through an internetwork of Cisco 
routers, and the videostream remained intact. With RSVP disabled, the video stream through the 
internetwork was disrupted and did not display properly.  

 

 
RSVP is not a routing protocol and does not calculate appropriate routes to take through an 
internetwork. It uses routing table entries generated by other protocols, such as the Routing 
Information Protocol (RIP) or Open Shortest Path First (OSPF), to determine the next router in 
sequence to deliver packets to. As such, RSVP will adapt to new routes as they appear.  

 

 

It must be conceded that RSVP works better over point-to-point links than over LAN connections. 
This is because the network represents a queue of data that is not directly under the control of the 
device making RSVP guarantees. For example, a router can offer guarantees for one RSVP 



stream on one connected network, but the router does not know the loads or the timing of those 
loads that neighboring systems will present.  

 

 

RTP is an applications-layer protocol that uses time stamps and sequence information in its 
header to recover from delay variations and packet loss in a stream of traffic transmitted on an 
internetwork. An RTP session works best when established within an RSVP connection (see Fig. 
5-26). In this arrangement, the RSVP connection is established by a network device requesting a 
performance level from the network. Once this RSVP connection is established, the application in 
the device requesting the connection can use RTP to deliver video and other delay-sensitive data. 
As a network administrator, you would be involved only in setting up RSVP parameters. RTP 
operation is in the realm of application programmers.  

 

 

  
 
 Figure 5-26: Illustrating the concept of an RTP stream operating within an RSVP envelope. 

   
 

 

Multicast is fundamentally different than unicast (point-to-point) and broadcast communications. 
Central to the theme of multicast communication is that a recipient has to initiate the process of 
joining the group of hosts receiving a specific multicast. The multicast is sent once by the 
originator, it is routable (pure broadcasts by default, are not), and is not sent to segments where 
hosts have not registered to receive the multicast.  

 

 

Implementation Issues. To successfully implement multicast features, both hosts and routers 
must have multicast capability. On hosts, the Internet Group Multicast Protocol (IGMP) is now part 
of Windows. In routers, there are several routing protocols that facilitate multicast routing. The 
Distance Vector Multicast Routing Protocol (DVMRP), Protocol Independent Multicast (PIM) and 
Multicast Open Shortest Path First (MOSPF).  

 

 
It is probable that performance guarantees are only required for a portion of the network's traffic, 
such as the multimedia applications. To accommodate all types of traffic on the same network, 
RSVP is used to allocate some fixed portion of the available bandwidth to the real-time traffic, 
while leaving some bandwidth available for the regular data LAN traffic.  

 

 In addition to a bandwidth reservation, RSVP lets real-time traffic reserve the network resources 
necessary for consistent latency. To do this, routers sort and prioritize packets before transmission 
on to the network media. To deploy RSVP, you should determine the amount of available 



on to the network media. To deploy RSVP, you should determine the amount of available 
bandwidth that can be reserved by RSVP streams, the amount set aside for low-volume, bursty 
data traffic and the amount of bandwidth allowed per host for a reserved application flow.  

 

 

Cisco has implemented RSVP as a means of providing performance guarantees over Ethernet in 
its routing devices. Assuming that you have version 11.2 or higher of Cisco's Internetwork 
Operating System (IOS), you can implement RSVP. The following configuration enables RSVP on 
Ethernet 0, with 1,000-Kbps total reserved for RSVP, and no single RSVP flow to reserve more 
than 100 Kbps:  

 
 Interface ethernet 0  
 ip rsvp bandwidth 1000 100  
 

 

As you can see, RSVP is simple to set up and administer and provides improved performance 
guarantees for multimedia applications that are transported over Ethernet networks. When further 
enhanced by an application's use of RTP, better results can be achieved. Given that Ethernet has 
been extended to deliver 100 Mbps and Gigabit Ethernet is on the horizon, there seems plenty of 
life left in this technology to meet the demands of multimedia applications.  

 



Summary  
 

 
In this chapter we explored the options available when using Cisco routers to interconnect IPX, 
IBM, nonroutable, and Windows NT networking protocols. We looked at how to minimize the effect 
that normal operations of these protocols has on available WAN bandwidth. Finally, we reviewed 
some newer protocols like RSVP and RTP that seek to enhance legacy networks.  

 



Chapter 6: Supporting Popular WAN Technologies  
 
 Objectives  
 
 This chapter will look at how Cisco routers are configured for the most popular WAN technologies 
used today. We will:  

 
   •Look at how the underlying technology works.  
 
   •Examine the Cisco router configuration commands available by looking at examples of how these 

commands can be used in real-world configurations.  
 



Frame Relay  
 

 

Frame relay is a layer 2 WAN protocol and, as such, does not understand the concept of network 
numbers. In a LAN, layer 2 addressing is normally defined by MAC addresses. In frame relay, 
addressing is defined by Data Link ConnectionIdentifiers (DLCI, pronounced "del-see" by those 
familiar with frame relay implementations). DLCI numbers are not used as destination addresses 
such as LAN-based MAC addresses. A DLCI number only has significance locally, and not across 
the frame relay network.  

 

 

Frame relay is a statistical multiplexed service. That means it allows several logical connections 
(often referred to as channels) to coexist over the same physical connection and allocates 
bandwidth dynamically among all users of that link. This is in contrast to a Time Division 
Multiplexed (TDM) service, which allocates a fixed amount of bandwidth to multiple channels on 
the same line. When frame relay was first introduced, many network engineers thought of it as a 
cut-down version of X.25. This was because frame relay is similar to X.25 in many ways, except it 
does not provide the same level of error correction. X.25 was designed as a packet switching 
network technology at a time when the wide area network links available were mainly analog lines 
that were prone to periods of poor transmission quality, and that introduced errors into packets 
transmitted across a network.  

 

 

When frame relay was introduced, more and more digital circuits were available that provided 
better-quality transmission and, on average, higher reliability. Also, higher-level protocols such as 
TCP that performed error correction and flow control were becoming increasingly popular. The 
designers of frame relay decided, therefore, to cut out all the link-level acknowledgments and other 
overhead associated with X.25 connections that were there to deal with unreliable links.  

 

 

Frame relay performs as much error checking as does Ethernet in that a Frame Check Sequence 
(FCS) derived from a Cyclic Redundancy Check (CRC) calculation is appended to each frame 
sent, which is checked by the receiving station. This FCS allows a receiving station to disregard a 
frame that has been altered in transit; however, neither frame relay nor Ethernet will re-request the 
damaged frame. Frame relay, therefore, offers better utilization of available bandwidth and is faster 
at transferring data than X.25, because it does not have to generate, receive, or process 
acknowledgments.  

 

 

Frame relay does rely on the applications communicating over a frame relay link to handle error 
recovery. If an application uses a connection-oriented protocol such as TCP for its Transport layer 
protocol, TCP will handle error recovery and flow control issues. If an application uses a 
connectionless protocol such as UDP for its Transport layer protocol, specific programming within 
the application must be coded to handle error recovery and flow control.  

 

 

X.25 as a specification merely dealt with how a DTE device will communicate with a DCE device 
and made no mention of how packets would get routed through a network. That's the same with 
frame relay. Frame relay networks may use a variety of mechanisms to route traffic from source to 
destination, and each one is proprietary to a vendor or group of vendors. What this means to us is 
that, typically, a Cisco router will be configured to connect to a public frame relay service without 
regard as to how the packets that are sent over that network are routed.  

 

 

Frame relay and X.25 both operate using the concepts of a permanent virtual circuit (PVC) and a 
switched virtual circuit (SVC). An SVC uses a Call Setup procedure to establish a connection from 
source to destination in the same way a telephone does. A PVC is permanently connected 
between source and destination and operates in much the same way as a leased line. Although 



frame relay originally was proposed as a standard for packet transmission over ISDN using SVCs, 
it has gained far wider acceptance as a WAN technology using PVCs on a shared public network.  

 

 

Let me say first of all that I see little point in implementing frame relay on a private network. Frame 
relay makes the most sense when the same network is going to be used by many organizations 
and sharing of the bandwidth between locations is called for. I therefore will restrict the rest of this 
discussion with the assumption that we are talking about connecting Cisco routers at one or more 
locations to a public shared frame relay service.  

 
 Before we look into the details of frame relay, let's look at when frame relay is appropriate and 
identify some of its pitfalls. Frame relay is ideally suited to networks that fit the following criteria:  

 

   
•Many geographically dispersed locations need a permanent connection to a central site, but 
cannot cost-justify the provision of a leased circuit from each of the remote sites to the central 
location.  

 
   •The traffic to be transported tends to come in bursts or spurts, rather than in a constant stream.  
 
   •Applications accessed over the frame relay connection use a connection-oriented protocol to 

handle error recovery and flow control.  
 
   •Unpredictable application response time is not a big issue.  
 
   •Remote sites change location, or new sites are added on a regular basis.  
 

 

If a network's goals match closely with the above, frame relay is a technology to consider. What 
makes frame relay attractive from the telephone company's point of view is that bandwidth can be 
allocated among many customers. When viewed statistically for a large population on the frame 
relay network, this makes sense. The probability that thousands of customers all want to use the 
network to the full extent at the same time is statistically quite small. Therefore, if everyone takes 
their proper turn at the bandwidth, the telephone company can sell more bandwidth than is 
available throughout the network. This enables the telephone company to offer a cheaper service 
via a shared frame relay network, but one that does not come with the same guarantees of 
throughput. This cheaper service often is billed at the same rate irrespective of location, and so is 
particularly attractive for connecting remote sites that may be thousands of miles away.  

 

 

To counter user concerns over throughput guarantees, there is a frame relay feature called the 
Committed Information Rate (CIR). Prior to implementation of CIR, a user would get, for example, 
a 64 kbps line into a commercial frame relay service, but the throughput would vary, depending on 
other customer utilization of the frame relay network. Sometimes the throughput was 
unacceptable. The CIR guarantees a customer that the throughput on any given link would not 
drop below the CIR rate. In addition to the CIR, an agreement with a frame relay service provider 
generally allows a customer to have bursts of traffic up to another specified level, typically the 
speed of the connection into the frame relay service.  

 

 Shared frame relay services are certainly a cost-effective way to provide remote branches with 
occasional access to central e-mail, gateway, and application servers for internal users who can 
accept occasional slow response times. Frame relay is not appropriate for delivering mission-



used for an application that needs guaranteed throughput, the CIR must be set to the guaranteed 
bandwidth needed. This can be as expensive as getting dedicated bandwidth from the same 
telephone company.  

 

 
There is a final concern I want to share with you before we move on to look at this technology in 
more detail. In Fig. 6-1, we see a typical frame relay implementation for a company with five 
remote branches.  

 

 

  
 
 Figure 6-1: Typical frame relay network configuration 

   
 

 

Router 1 connects the central site with the servers to a commercial frame relay service. Routers 2 
through 6 connect remote branches to the same frame relay service. Frame relay is not a 
broadcast medium, so any routing updates, or SAP updates for IPX traffic, need to be sent point-
to-point to each location. This can tax the link from router 1 into the frame relay network as the 
number of branches grows. It is not uncommon to find 50 percent or more of a central site router's 
bandwidth into the frame relay service consumed with routing information packets. This situation 
can be avoided, as we shall see later, but requires careful design and a good knowledge of how 
the interconnected systems work. Frame relay should never be considered a plug-and-play 
technology.  

 
 Frame Relay Terms  
 

 

The first frame relay term you need to understand, the DLCI, already has been introduced. A DLCI 
is supplied for each end of a PVC by the frame relay provider. A DLCI number is used to identify 
each PVC defined at a location. At the central location shown in Fig. 6-1, there are DLCI numbers 
1, 4, 6, 8, and 10. It is best to think of each DLCI as identifying a pipe that leads to a specific 
protocol address. For example, DLCI 1 leads to the IP address of Serial 0 on router 2, DLCI 4 
leads to the IP address of Serial 0 on router 3, and so forth.  

If you are implementing a TCP/IP solution over frame relay, remember that frame relay is a layer 2 



Features."  
 
 As with most networking technologies, there are several configuration options, and here we will 
look at the most common.  

 

 
Basic frame relay is depicted in Fig. 6-2 and merely connects two locations together over a PVC. 
This is not very different from connecting these sites together via a leased line. The only difference 
is the fact that the bandwidth between the two sites is shared with other users of the frame relay 
network.  

 

 

  
 
 Figure 6-2: Simple frame relay connectivity 

   
 

 

In this figure, router 1 is connected to router 2 via a PVC, which is defined within the frame relay 
cloud as existing from DLCI 1 to DLCI 2. In basic frame relay, other locations within the frame relay 
cloud could use these DLCI numbers because a DLCI has only local significance. This type of 
frame relay use is limited and has been superseded by use of what is known as the LMI 
extensions.  

 
 LMI stands for Local Management Interface and provides additional frame relay features that 
include:  

 
   •Use of Inverse ARP to automatically determine the protocol address of the device on the remote 

end of a DLCI.  
 

   
•Simple flow control to provide XON/XOFF-type flow control for the interface as a whole. This is 
intended for applications communicating over frame relay that cannot use the congestion flags 
sent by frame relay networks.  

 
   •Multicasting to allow the sender to send one copy of a frame that will be delivered to multiple 

destinations. This is useful for routing update and address resolution protocol traffic.  
 

   
•Virtual Circuit Status messaging to allow LMI-enabled network connections to maintain 
information about the status of PVCs across the network, notifying other nodes if one node 
becomes unreachable.  

 

 
Cisco joined with Northern Telecom, Stratacom, and DEC to define an LMI standard to deliver 
these benefits in anticipation of an open standard for LMI. The other commonly implemented LMI 
type is now ANSI, which was defined by that standards body some time after the four vendors 
above released theirs.  



 

In addition to the LMI type, you can set the frame relay encapsulation to either Cisco or IETF if you 
are connecting to another vendor's equipment across a frame relay network. Cisco did not create 
these additional options to make an open standard proprietary or to make life difficult. Rather, 
Cisco created these standards in order to deliver benefits to users prior to standards bodies 
making a workable definition available to those wanting to deploy frame relay networks.  

 
 Configuring Frame Relay Features  
 

 

As stated previously, frame relay is a technology that connects two end points across a network. 
These end points are identified within the network by DLCI numbers; the DLCI-to-DLCI connection 
is known as a PVC. We will examine configuration of a central Cisco router serial interface, first in 
a frame relay point-to-point connection, then in a multipoint connection, and finally with sub-
interfaces. We also will explain how inverse ARP simplifies configuration and why the Split Horizon 
algorithm is not enabled on frame relay ports (unless sub-interfaces are used).  

 

 
Basic Configuration. The simplest example of frame relay is that shown in Fig. 6-2. In that case, 
the frame relay provider assigns a DLCI address of 1 to the location of router 1, and 2 to the 
location with router 2. Let's look at how we build the configuration for the serial port of router 1.  

 
 In interface configuration mode for the Serial 0 port of router 1, type the following:  
 
 Router1(config-int)#ip address 132.3.8.7 255.255.255.0  
 Router1(config-int)#encapsulation frame relay  
 

 
This defines frame relay encapsulation for the Serial 0 port. The only optional argument that can 
be supplied on this command is ietf, which would configure the interface to use the IETF rather 
than the Cisco encapsulation. Your frame relay provider will inform you if this argument is 
necessary.  

 

 
The next configuration entry will be to define the LMI type. This command can have one of three 
values. The default is Cisco, while optional arguments can specify ANSI or q933a, the latter 
being the ITU standard. Again, your frame relay provider should let you know which to use.  

 
 Router1(config-int)#frame-relay lmi-type ansi  
 

 

Next we have to tell the router which destination DLCI should be used to reach a given IP address. 
This discussion assumes that manual configuration of frame relay maps is necessary; in a 
subsequent section we will examine how inverse ARP makes this unnecessary. For router 1, the 
132.3.8.0 subnet is reachable through the Serial 0 interface, so all packets for that subnet are sent 
out Serial 0. The frame relay supplier will have set up the PVC to send anything that originates at 
one end of the PVC out the other end.  

 

 

The potential exists for many PVCs to be associated with one physical interface, so we must tell 
the serial port which DLCI number to use to get to which protocol address destination. Therefore, 
we have to tell it that to reach IP address 132.3.8.9, it will use DLCI 1. With this DLCI information, 
the frame relay network can deliver the packet to its desired destination. This configuration is 
achieved with the following command:  

 
 Router1(config-int)#frame-relay map ip 132.3.8.9 1 broadcast 



 Router1(config-int)#frame-relay map ip 132.3.8.9 1 broadcast  
 

 

The argument broadcast enables router 1 to send broadcast routing updates to router 2 through 
this PVC. If the Serial 0 port on router 2 were to be configured in the same way, the two routers 
could communicate via frame relay. With only one PVC, this level of configuration may seem like 
overkill—and it is—but the next example will show why it is necessary. Later in this chapter, when 
we use our three lab routers to configure a test frame relay network, we will see that a properly 
configured network and interface will remove the need to enter multiple frame-relay map 
commands.  

 

 

This is all well and good, but it is not taking advantage of one of the main benefits of frame relay, 
which is the ability to multiplex many links onto one. This feature tends to be useful for a central 
router that must connect to many remote sites, a situation shown in Fig. 6-1. To enable router 1 in 
Fig. 6-1 to reach routers 2 through 6, the configuration we have so far can be extended with 
additional map statements. The first step, however, will be to buy the additional PVCs from the 
frame relay carrier and obtain the local DLCI numbers that identify PVCs to all the remote 
locations. Assume we are delivered the following DLCI assignments and IP address allocations:  

 
 Router   

 
 Serial 0 IP Address  

 DLCI at router 1  
 Remote DLCI  

 

 
 1   

 
 132.3.8.7  

   
   

 

 
 2   

 
 132.3.8.9  

 1  
 3  

 

 
 3   

 
 132.3.8.8  

 4  
 5  

 

 
 4   

 
 132.3.8.10  

 6  
 7  

 

 
 5   

 
 132.3.8.11  

 8  
 9  

 

 
 6   

 
 132.3.8.12  

 10  
 11  

 

 

 

To reach all remote routers, router 1 would need the configuration shown in Fig. 6-3. This shows 
that router 1 has 5 DLCIs configured, and tells it which DLCI to use to get the packets delivered to 
the appropriate IP address. At first it may seem that, by addressing packets to a DLCI number that 
is defined at the router 1 location, the packets are not really being sent anywhere. The best way to 
think of this, though, is to think of each DLCI as a pipe, and as long as router 1 puts the packet in 
the correct pipe, the frame relay network will deliver the packet to the correct destination.  

 

 

Inverse ARP. As you can see, configuring all these frame relay map statements can become a 
bore, especially if you have upwards of 20 locations. Fortunately there is a mechanism that will 
save us from all this manual effort, and that is InverseARP. Inverse ARP works in conjunction with 
the LMI to deliver enough information to routers attached to a frame relay network, so that no 
frame relay map statements need to be manually configured.  

 
   



 
    

 
 INTERFACE SERIAL 0  

 

 
    

 
 IP ADDRESS 132.3.8.7 255.255.255.0  

 

 
    

 
 ENCAPSULATION FRAME RELAY  

 

 
    

 
 FRAME-RELAY LMI-TYPE ANSI  

 

 
    

 
 FRAME-RELAY MAP IP 132.3.8.9 1 BROADCAST  

 

 
    

 
 FRAME-RELAY MAP IP 132.3.8.8 4 BROADCAST  

 

 
    

 
 FRAME-RELAY MAP IP 132.3.8.10 6 BROADCAST  

 

 
    

 
 FRAME-RELAY MAP IP 132.3.8.11 8 BROADCAST  

 

 
    

 
 FRAME-RELAY MAP IP 132.3.8.12 10 BROADCAST  

 

 
 Figure 6-3: Configuration for router 1 in Figure 6-1 

   
 

 

Upon startup, the LMI will announce to an attached router all the DLCI numbers that are 
configured on the physical link connecting the router to the network. The router will then send 
Inverse ARP requests out each DLCI to find out the protocol address configured on the other end 
of each DLCI's PVC. In this way, a router will generate its own list of what IP addresses are 
reachable through which DLCI number.  

 

 

Fully Meshed Frame Relay Networks. For IP implemented over frame relay networks, the Split 
Horizon rule is disabled. This allows a central router to readvertise routes learned from one remote 
location on a serial interface to other remote locations connected to the same serial interface. In 
Fig. 6-1, this means that all routers will end up with entries in their routing tables for net 1 through 
net 6.  

 

 

Some other protocols, such as those used in Apple networking, will not allow Split Horizon to be 
turned off, so routes cannot be readvertised out of the interface from which they were learned. To 
provide full routing capability across a frame relay network with these protocols requires a 
separate link from each location to every other location. This type of connectivity is referred to as a 
fully meshed network (Fig. 6-4).  

 



 

  
 
 Figure 6-4: Fully meshed frame relay network 

   
 

 

A fully meshed network gives each router a specific DLCI number with which to reach every other 
router. This scheme does allow complete communication between all locations, but requires a 
large number of PVCs to be bought from the frame relay provider. As the number of nodes on the 
network increases, the number of PVCs needed grows exponentially, which can make this 
technology uneconomic to deploy. Now that Cisco has made sub-interfaces available, however, 
we have a method to get around this for these Apple protocols.  

 

 
Frame Relay Sub-Interfaces. The simplest way to deploy sub-interfaces for full remote-branch-to-
remote-branch connectivity is to implement sub-interfaces in a point-to-point configuration. Sub-
interfaces can be deployed as point-to-point, or multipoint (the default).  

 

 

A sub-interface allows you to effectively split one physical port into multiple logical ports. The 
advantage this gives is that if you configure the sub-interfaces as point-to-point links, each sub-
interface is treated as if it were a separate connection by the layer 3 protocol and each sub-
interface will appear as a separate entry in the routing table, with a different subnetwork ID 
associated with it. A sub-interface configured in multipoint mode behaves the same as the 
interfaces we have configured so far. Let's look at how a sub-interface configured in point-to-point 
mode allows us to configure a fully meshed network for protocols that cannot disable Split Horizon, 
without buying additional PVCs and DLCIs from a frame relay provider.  

 

 
What we want to achieve with a sub-interface is to assign a complete subnet to each PVC, so that 
a router with multiple PVCs terminating in its serial port (that is, the serial port has multiple DLCI 
numbers associated with it in the frame relay network) will assign a separate entry in its routing 
table for each PVC link (Fig. 6-5).  

 

 

  
 
 Figure 6-5: Sub-interfaces on a frame relay connection 



 Figure 6-5: Sub-interfaces on a frame relay connection 

   
 

 
If router 1 is appropriately configured with sub-interfaces, it will have a separate entry in its routing 
table for the PVC that goes from itself to router 2, and from itself to router 3. Let's take a look at the 
configuration of these three routers as shown in Fig. 6-6.  

 

 
This configuration assumes that the default encapsulation and LMI type is in effect, and that 
Inverse ARP (enabled by default on a frame relay port) is not disabled. For router 1 we have sub-
interface 0.1 and 0.2 on separate subnets.  

 
    

 
   

 

 
    

 
 CONFIGURATION FOR ROUTER 1  

 

 
    

 
 INTERFACE SERIAL 0  

 

 
    

 
 ENCAPSULATION FRAME RELAY  

 

 
    

 
 INTERFACE S0.1 POINT-TO-POINT  

 

 
    

 
 FRAME-RELAY INTERFACE-DLCI 1 BROADCAST   

 

 
    

 
 IP ADDRESS 164.8.5.1 255.255.255.0  

 

 
    

 
 !  

 

 
    

 
 INTERFACE S 0.2 POINT-TO-POINT   

 

 
    

 
 FRAME-RELAY INTERFACE DLCI 2 BROADCAST   

 

 
    

 
 IP ADDRESS 164.8.6.1 255.255.255.0  

 

 
    

 
 CONFIGURATION FOR ROUTER 2  

 

 
    

 
 INTERFACE SERIAL 0  

 

 
    

 
 IP ADDRESS 164.8.5.2 255.255.255.0  

 

 
    

 
 ENCAPSULATION FRAME RELAY  

 

 
   

 
 ! 

 



     !  
 
    

 
 CONFIGURATION FOR ROUTER 3  

 

 
    

 
 INTERFACE SERIAL 0  

 

 
    

 
 IP ADDRESS 164.8.6.2 255.255.255.0  

 

 
    

 
 ENCAPSULATION FRAME RELAY  

 

 
    

 
 !  

 

 
 Figure 6-6: Router configuration for frame relay sub-interfaces 

   
 

 
Sub-interface 0.1 is configured for subnet 164.8.5.0 and is associated with DLCI 1. The Serial 0 
port on router 2 is configured for an IP address on the same subnet and by the LMI/Inverse ARP 
process described earlier will map DLCI 14 to IP address 164.8.5.1.  

 

 
Similarly, the sub-interface 0.2 has an IP address configured on the same subnet as the Serial 0 
port on router 3. Router 3 also will use the LMI/inverse ARP process to map DLCI 13 to IP address 
164.8.6.1.  

 

 
With this configuration, router 1 will have separate entries in its routing table for the subnets used 
by router 2 and router 3. Router 1 will broadcast routing updates to router 2 and router 3, so that 
both routers get their routing tables updated with entries for the 164.8.5.0 and 164.8.6.0. 
subnetwork. This allows router 2 and router 3 to communicate with each other via router 1.  

 

 
This type of configuration makes the serial interface on router 1 appear as multiple interfaces to 
the layer 3 protocols, but on a Data Link and Physical layer it is considered one interface, with 
multiple PVCs multiplexed on it by the frame relay network.  

 
 Configuring a Test Frame Relay Network  
 

 
We will now reconfigure our three lab routers to have one perform the function of a frame relay 
switch. Two other routers will be configured as remote branches connecting into the frame relay 
switch. The configuration we will use is shown in Fig. 6-7.  



 

  
 
 Figure 6-7: Configuration for a test frame relay network 

   
 

 

In this configuration, router 1 takes the place of a frame relay cloud. To build this lab environment, 
the first thing we must do is ensure that the DTE/DCE cables connecting router 1 to router 2 and 
router 3 are connected with the correct polarity. The goal here is to get both serial ports on router 1 
to act as DCE rather than DTE, and the only way to do that in a lab environment—using cables 
instead of CSU/DSU devices to connect routers—is to connect the correct end of a DTE/DCE 
cable into the serial port. Use the show controller serial 0 command after you have 
connected the DTE/DCE cable to the Serial 0 port. If the output from this command indicates a 
DTE configuration, use the other end of the cable to connect to router 1. The same goes for the 
Serial 1 port.  

 

 
The configuration shown in Fig. 6-7 uses the default Cisco frame relay encapsulation and LMI, as 
well as leaving Inverse ARP functioning. Router 1 is configured as a pure frame relay switch. The 
following explains all the frame relay entries in this configuration.  

 
   •Global command frame-relay switching enables the frame relay switching process for this 

router and must be enabled before any interface configuration commands are entered.  
 
   •Command encapsulation frame-relay sets frame relay encapsulation for this interface.  
 

   
•Command frame-relay intf-type dce sets the interface as a frame relay DCE device. The 
default is DTE; therefore routers 2 and 3, which need to be DTE, do not have a corresponding 
command.  

 

   

•Command frame-relay route 17 interface serial1 18 configures the static routing of 
the switch based on DLCI number. The command syntax configures the router so that any packets 
inbound on DLCI 17 will be routed out interface Serial 1, on DLCI 18 (note that DLCIs can have a 
value in the range 16–1007). The values shown are for the Serial 0 port; for the Serial 1 port, 
packets are inbound on DLCI 18 and routed to Serial 0 on DLCI 17.  

 



noting that the frame relay maps are generated through the LMI and Inverse ARP mechanism and 
require no explicit configuration of either router. Note that IGRP was configured for both router 2 
and router 3, and because broadcasts are enabled by default, routing information traversed the 
frame relay switch, updating the routing tables of router 2 and 3. Therefore, router 2 is able to ping 
the   

 
 Ethernet port of router 3 and vice versa. Figure 6-8 shows the output of some interesting frame 
relay show commands that can be used to view the state of the frame relay network.  

 
   
 
    

 
 SHOW FRAME-RELAY ROUTE COMMAND ON ROUTER 1  

 

 
    

 
 INPUT INTTINPUT DLCIOUTPUT INTTOUTPUT DLCISTATUS  

 

 
    

 
 SERIAL 017SERIAL 118ACTIVE  

 

 
    

 
 SERIAL 118SERIAL 017ACTIVE  

 

 
    

 
 SHOW FRAME-RELAY PVC FOR ROUTER 1  

 

 
    

 
 PVC STATISTICS FOR INTERFACE SERIAL0 (FRAME RELAY DCE)  

 

 
    

 
 DLCI = 17, DLCI USAGE = SWITCHED, PVC STATUS = ACTIVE, INTERFACE = 
SERIAL0  

 

 
    

 
 INPUT PKTS 53OUTPUT 56IN BYTES 4378  

 

 
    

 
 OUT BYTES 4536DROPPED PKTS 0IN FECN PKTS 0  

 

 
    

 
 IN BECN PKTS 0OUT FECN PKTS 0OUT BECN PKTS 0  

 

 
    

 
 IN DE PKTS 0OUT DE PKTS 0  

 

 
    

 
 PVC CREATE TIME 1:09:09LAST TIME PVC STATUS CHANGED 1:00:29  

 

 
    

 
 NUM PKTS SWITCHED 53  

 

 
    

 
 PVC STATISTICS FOR INTERFACE SERIAL1 (FRAME RELAY DCE)  

 

 
    

 
 DLCI = 18, DLCI USAGE = SWITCHED, PVC STATUS = ACTIVE, INTERFACE = 
SERIAL1   

 



 
    

 
 INPUT PKTS 56OUTPUT 53IN BYTES 4536  

 

 
    

 
 OUT BYTES 4378DROPPED PKTS 0IN FECN PKTS 0  

 

 
    

 
 IN BECN PKTS 0OUT FECN PKTS 0OUT BECN PKTS 0  

 

 
    

 
 IN DE PKTS 0OUT DE PKTS 0  

 

 
    

 
 PVC CREATE TIME 1:06:50LAST TIME PVC STATUS CHANGED 1:03:01  

 

 
    

 
 NUM PKTS SWITCHED 56  

 

 
    

 
 SHOW FRAME-RELAY PVC FOR ROUTER 2  

 

 
    

 
 PVC STATISTICS FOR INTERFACE SERIAL0 (FRAME RELAY DTE)  

 

 
    

 
 DLCI = 17, DLCI USAGE = LOCAL, PVC STATUS = ACTIVE, INTERFACE = SERIAL0 

 

 
    

 
 INPUT PKTS 60OUTPUT 57IN BYTES 4848  

 

 
    

 
 OUT BYTES 4690DROPPED PKTS 1IN FECN PKTS 0  

 

 
    

 
 IN BECN PKTS 0OUT FECN PKTS 0OUT BECN PKTS 0  

 

 
    

 
 IN DE PKTS 0OUT DE PKTS 0  

 

 
    

 
 PVC CREATE TIME 1:07:54LAST TIME PVC STATUS CHANGED 1:05:24  

 

 
    

 
 SHOW FRAME LMI OUTPUT FOR ROUTER 2  

 

 
    

 
 INVALID UNNUMBERED INFO 0INVALID PROT DISC 0  

 

 
    

 
 INVALID DUMMY CALL REF 0INVALID MSG TYPE 0  

 

 
    

 
 INVALID STATUS MESSAGE 0INVALID LOCK SHIFT 0  

 

 
    

 
 INVALID INFORMATION ID 0INVALID REPORT IE LEN 0  

 

 
    

 
 INVALID REPORT REQUEST 0INVALID KEEP IE LEN 0   

 



 
    

 
 NUM STATUS ENQ. SENT 410NUM STATUS MSGS RCVD 409   

 

 
    

 
 NUM UPDATE STATUS RCVD 0NUM STATUS TIMEOUTS 1  

 

 
    

 
 SHO FRAME MAP OUTPUT FOR ROUTER 2  

 

 
    

 
 SERIAL0 (UP): IP 163.4.8.2 DLCI 17(0X11, 0X410), DYNAMIC, BROADCAST, 
STATUS   

 

 
    

 
 DEFINED, ACTIVE  

 

 
 Figure 6-8: Useful show commands for the test network 

   
 

 

The first output shown in Fig. 6-8 is for the show frame-relay route command, which is 
useful when trying to troubleshoot PVC problems. This command tells you which DLCIs are active 
and where they route from and to on the frame relay router interfaces. The other display for router 
1 shows the output for the show frame-relay pvc command, which gives more detailed 
information on each DLCI operational in the switch. The number of dropped packets gives you an 
idea of how well the switch is performing its duties—clearly the fewer drops, the better.  

 

 

If the number of drops is high, but you notice the FECN and BECN packets increasing more 
rapidly than usual, it could be an early sign that the network is running out of bandwidth. FECN 
and BECN packets indicate congestion on the network and tell switches to hold off sending traffic. 
As long as the packet buffers in switches can hold traffic peaks, packets do not have to be 
dropped. If too many packets for the available bandwidth or buffers are coming in, however, the 
switch will drop packets at some stage. The show frame-relay pvc command for router 2 has 
the same display as discussed above, but only for DLCI 17, the one associated with router 2 in this 
network.  

 

 
The next two displays show, respectively, the LMI status and the frame relay maps for router 2. The 
frame relay map is as expected, i.e., router 2 knows that the DLCI presented to it by the switch 
(DLCI 17) will lead it to IP address 163.4.8.2, which is on router 3.  

 



 SMDS: Switched Multimegabit Data Service  
 

 

SMDS, or Switched Multimegabit Data Service, has not yet gained significant market penetration, 
although it has begun to experience some growth. SMDS was viewed as a stepping stone to ATM, 
since some of the communications equipment and media are common to the two technologies. As 
SMDS is not available everywhere, and there is more interest in ATM, SMDS has had a hard time 
getting into the mainstream.  

 

 
SMDS does, however, have some penetration; if your long-distance carrier is MCI, you may have 
cause to use this technology. The attraction of SMDS is that it has the potential to provide high-
speed, link-level connections (initially in the 1 to 34 Mbps range) with the economy of a shared 
public network, and exhibits many of the qualities of a LAN.  

 

 
In an SMDS network, each node has a unique 10-digit address. Each digit is in binary-coded 
decimal, with 4 bits used to represent values 0 through 9. Bellcore, the "keeper" of the SMDS 
standard, assigns a 64-bit address for SMDS, which has the following allocation:  

 
   •The most significant 4 bits are either 1100 to indicate an individual address, or 1110 to indicate a 

group address.  
 
   •The next 4 most significant bits are used for the country code, which is 0001 for the United 

States.  
 
   •The next 40 bits are the binary-coded decimal bits representing the 10-decimal digit station 

address.  
 
   •The final 16 bits are currently padded with ones.  
 

 

To address a node on the SMDS network, all you need do is put the node's SMDS address in the 
destination field of the SMDS frame. In this way, SMDS behaves in a fashion similar to Ethernet or 
Token-Ring, which delivers frames according to MAC addresses. A key difference between SMDS 
and these LAN technologies, however, is the maximum frame size allowed. Ethernet allows just 
over 1500 bytes, and Token-Ring just over 4000 bytes, but SMDS allows up to 9188 bytes. These 
SMDS frames are segmented into ATM-sized 53-byte cells for transfer across the network. A large 
frame size gives SMDS the ability to encapsulate complete LAN frames, such as Ethernet, Token-
Ring, and FDDI, for transportation over the SMDS network.  

 

 

An SMDS network can accept full-bandwidth connections from DS0 (64 kbps) and DS1 (1.544 
Mbps) circuits, or an access class, which is a bandwidth slice of a higher-speed link such as a DS3 
(45 Mbps). These links terminate at what is known as the Subscriber Network Interface (SNI) and 
connect to the Customer Premises Equipment (CPE). The SNI typically is an SMDS CSU/DSU 
device and the CPE in this case will be a Cisco router. These elements are illustrated in Fig. 6-9.  

 



 

  
 
 Figure 6-9: SMDS network components 

   
 

 
SMDS is based on the 802.6 standard for Metropolitan Area Networks (MAN), which defines a 
Distributed Queue Dual Bus, and is a connectionless technology. The key difference between 
SMDS and 802.6 is that SMDS does not utilize a dual-bus architecture; instead, connections are 
centered on a hub and deployed in a star configuration.  

 
 SMDS Protocols  
 

 
SMDS has its own layer 1 and layer 2 protocols that specify the physical connections and voltage 
levels used, along with the layer 2 addresses. These protocols are implemented in the SMDS 
Interface Protocol (SIP). SIP has three levels, with SIP levels 2 and 3 defining the Data Link layer 
functions.  

 

 

SMDS carries IP information quite effectively. Let's say IP as a layer 3 (in OSI terms) protocol 
hands a frame down to the SIP level 3 protocol. SIP 3 will place a header and trailer on this frame 
to form a level 3 Protocol Data Unit. (This is "layer 3" in SMDS parlance, which is a part of the 
layer 2 protocol in OSI terms.) This expanded frame has SMDS source and destination addresses 
that include the aforementioned country codes and 10-digit decimal addresses.  

 

 

The expanded frame is passed down to the SIP level 2 protocol, which cuts this expanded frame 
into 44-byte chunks, to which get added a header and trailer, enabling reassembly of the frame 
once the 44-byte chunks have been received by the destination. These 44-byte chunks are termed 
level 2 Protocol Data Units. The SIP level 1 protocol provides appropriate framing and timing for 
the transmission medium in use. The relationship between OSI and SIP layers is illustrated in Fig. 
6-10.  



 

  
 
 Figure 6-10: SMDS communication layers compared to OSI 

   
 

 
In the example given above, SMDS is acting like a LAN as far as the IP level is concerned, with 
the only difference being that, instead of regular ARP and the ARP table, there must be a way of 
resolving IP addresses to SMDS 10-digit addresses.  

 

 

In SMDS, IP ARP functionality is provided by address groups, which also are referred to as 
Multiple Logical IP Subnetworks by RFC 1209. Address groups are a group of predefined SMDS 
hosts that listen to a specific multicast address as well as to their SMDS node address. In this 
instance, if an IP host needs to find an SMDS address for an IP address in order to send a frame, 
an ARP query is sent to the address group and the SMDS host with the appropriate address 
responds with its SMDS address. Routing broadcast updates are distributed the same way across 
SMDS.  

 
 Typically, SIP levels 1 and 2 are implemented in the SMDS CSU/DSU, and SIP level 3 is 
implemented in the Cisco router.  

 
 Configuring SMDS  
 

 
Because SMDS is not as widely deployed as the other network technologies presented in this 
chapter, we will examine only one simple configuration. The tasks to complete to configure an 
interface for connection to an SMDS service are as follows:  

 
   •Define an interface to have SMDS encapsulation.  
 
   •Associate an IP address with this interface to be mapped to the SMDS address supplied by the 

carrier company.  
 
   •Define the SMDS broadcast address to be associated with the interface, so that ARP and routing 

broadcasts are passed between SMDS nodes as needed.  
 
   •Enable ARP and routing on the interface.  
 
 Figure 6-11 shows the Cisco IOS configuration commands that could be appropriate for the serial 
0 port of router 1 in Fig. 6-9.  



 
   
 
    

 
 INTERFACE SERIAL 0  

 

 
    

 
 IP ADDRESS 164.4.4.3 255.255.255.0  

 

 
    

 
 ENCAPSULATION SMDS  

 

 
    

 
 SMDS ADDRESS C234.5678.9070.FFFF  

 

 
    

 
 SMDS MULTICAST IP E654.5678.333.FFF  

 

 
    

 
 SMDS ENABLE-ARP  

 

 
 Figure 6-11: Sample router configurations for SMDS 

   
 
 The following discusses the SMDS-specific commands in the configuration for Serial 0:  
 

   
•Command encapsulation smds sets the encapsulation to SMDS for the interface. Note that 
although the SMDS standard allows a maximum frame size of 9188, the Cisco serial port has 
buffer constraints that limit it to a frame size (MTU) of 4500. If the MTU size is set to a value 
greater than 4500 prior to the encapsulation SMDS command, performance problems may occur.  

 

   
•Command smds address c234.5678.9010.ffff defines the SMDS address for this 
interface supplied by the SMDS network vendor. All addresses must be entered in this notation, 
with dots separating each four digits. Individual node addresses start with the letter "c" and 
multicast addresses start with the letter "e."  

 

   
•Command smds multicast ip e654.5678.3333.ffff defines the multicast address for 
the access group to which this interface belongs. An optional argument can be used here to 
associate a secondary IP address with this port and a different SMDS multicast address, so that 
the same port can belong to two access groups simultaneously.  

 

   
•Command smds enable-arp enables the ARP function for SMDS address resolution across 
the SMDS network. The only restriction on this command is that the SMDS address must already 
be defined.  

 



X.25  
 

 
X.25 has never been as widely deployed in the United States as it has in Europe, and particularly 
in the last few years its popularity has declined. It is still an important protocol, however, and we 
will discuss the basic operation of the protocol and simple X.25 configurations for Cisco routers.  

 

 

X.25 is a packet-switched technology that supports PVCs, SVCs, and statistical multiplexing in the 
same way that frame relay does. The X.25 standards also define error correction, flow control 
procedures, and guaranteeing the correct sequencing for delivery of packets. The X.25 
specifications only really covered DTE-to-DCE communication, leaving all X.25 routing functions to 
be defined by vendors of X.25 equipment.  

 

 

The penalty to be paid for all this seemingly good stuff in terms of reliability is performance. The 
acknowledgments, buffering, and retransmission that happen within the X.25 protocols add latency 
(especially if there are many hops between source and destination), meaning this protocol 
provides poor performance for carrying TCP traffic that already handles these functions. If your 
main interest is in networking TCP/IP protocols and transporting legacy protocols such as IPX, 
SNA, or NetBIOS over a TCP/IP network, it is unlikely you will deploy X.25. In such situations, 
X.25 is really a competing technology to TCP/IP. Bearing this in mind, in the example 
configurations, we will only look at how two IP nodes can communicate across an X.25 network via 
encapsulation of IP data within an X.25 frame for transmission over an X.25 network (termed 
tunneling). We'll also examine how to translate X.25 traffic to IP, so that a host using TCP/IP 
communications can communicate with an X.25 host.  

 
 X.25 Basics  
 

 

The physical layer of X.25 is described by the X.21 standard, which is a 15-pin connector. X.21bis 
was defined to utilize the same functions within a 25-pin connector. This was done to leverage the 
large available pool of 25-pin connectors in the marketplace. The X.21bis standard specifies 
support of line speeds up to 48 kbps. Just as the V.35 standard only specifies speeds up to 48 
kbps but is commonly run at T-1 speeds (1.544 Mbps), the X.21bis standard will also work at faster 
speeds as long as the cables used are not too long.  

 

 

The X.25 second layer 2 is the Link Access Procedure Balanced (LAPB), which is in many ways 
similar to HDLC. This protocol is responsible for data transfer between a DTE and DCE, link status 
reporting and synchronization, and error recovery. The LAPB protocol handles all the reliability 
issues previously discussed. It is worth introducing the most common layer 2 header functions, 
and how they fit into establishing a DTE-to-DCE X.25 link.  

 

 

Link establishment uses unnumbered frames; numbered frames are used once the call is 
established and data is being transferred. The following step sequences, as shown in Fig. 6-12, 
can be viewed on a protocol analyzer that can decode X.25 frames. It is assumed that the link is 
using LAPB, rather than the older LAP protocol. LAP had more stages for establishing a call, and 
starts communication with a Set Asynchronous Response Mode (SARM) instead of a Set 
Asynchronous Balanced Mode (SABM). You need to make sure that both ends of the link are 
using the same protocol at this level.  

 



 

  
 
 Figure 6-12: X.25 DTE-to-DCE flow control sequence 

   
 
   1.The normal operation is for the DCE device to be sending out DISC (disconnect) frames at a 

time interval determined by its T-1 timer setting. This indicates that it is ready to receive a call.  
 
   2.The DTE device will initialize the link with one command, the SABM, which initiates the DCE 

sending back an Unnumbered Acknowledgment.  
 

   

3.The DTE starts sending data using information frames, each of which is acknowledged by RR 
frames. RR frames are sent by the DCE and indicate that the receiver is ready for more 
information. If the DCE has information to send to the DTE, it can do this using the same RR 
frame that acknowledged receipt of DTE data. If the RR frame contains data, it is known as a 
piggyback acknowledgment.  

 

   
4.If the DTE sends enough information to fill the buffers of the DCE, the DCE will send back a 
Receiver Not Ready (RNR) frame. Upon receipt of a RNR frame, the DTE will remain idle for the 
length of its T-1 timer, then poll the DCE to see if it is ready.  

 

   
5.The DCE will respond to a poll with more RNR packets until it has space in its buffer to take 
more data, at which time it will send an RR frame to allow the DTE to start sending more 
Information frames.  

 
   6.The link is cleared by the DTE sending a DISC (disconnect frame), which is responded to by an 

Unnumbered Acknowledgment.  
 

 
The third layer protocol in X.25 is called the Packet Layer Procedure (PLP) and provides the 
procedures for the control of virtual circuits within the X.25 network. The lower two layers have 
local significance, whereas the packet level has end-to-end significance, as illustrated in Fig. 6-13. 



 

  
 
 Figure 6-13: X.25 level-three protocols have end-to-end significance 

   
 

 

X.25 assigns Logical Channel Numbers (LCNs) to the multiple logical connections to a DTE that 
can exist over one physical link. In this respect, LCNs are similar to frame relay DLCI numbers 
when the frame relay interface is in point-to-point mode. LCNs do not have end-to-end 
significance; rather, they are only used between a specific DTE/DCE pair. This means that the 
same LCN number can exist in many places on an X.25 network without causing problems. In 
theory, an LCN can have a value between 0 and 4096; rarely, however, is there the ability or the 
need to configure more than 255 LCNs on one physical link. LCNs must be assigned to a DTE with 
some care, however. A call collision would result if both the DTE and DCE were trying to initiate 
calls on the same LCN. The LCN that most people refer to is actually made up of a Logical 
Channel Group Number and Logical Channel Number. If an X.25 network provider allocates you a 
12-bit LCN, you have both LCGN and LCN. If the provider gives you a 4-bit LCGN and an 8-bit 
LCN, combine the two with the LCGN at the front to get a 12-digit LCN.  

 

 

Figure 6-14 illustrates two hosts and a printer that have unique X.25 addresses having significance 
throughout the X.25 network. These addresses, known as Network User Addresses (NUAs), 
conform to the X.121 recommendation for public data networks, which specifies an address length 
of 14 digits, with 12 being mandatory and 2 being optional. The first four digits are known as the 
data network identification number (DNIC); the first three identify the country, while the fourth 
identifies the network within the country. The next eight digits are the national number, and the last 
two are optional subaddressing numbers allocated by the user, not the network provider.  

 

 

  
 
 Figure 6-14: Two hosts and one printer connected to an X.25 WAN 

   
 
 Configuring an X.25 Network Connection  
 

 In this section we will use the three lab routers used in the frame relay example. One router will be 
configured as an X.25 router to emulate an X.25 network. The other two will connect as X.25 DTE 



devices, and will encapsulate IP traffic within X.25 to transport IP traffic over the X.25 network. 
This configuration is illustrated in Fig. 6-15.  

 

 

  
 
 Figure 6-15: Configuration of a test X.25 network 

   
 
 The key configuration tasks are:  
 
   1.Enable X.25 routing on router 1 and configure it to route packets between router 2 and router 3 

based on X.25 address.  
 
   2.Assign each serial interface connected via the X.25 network an IP address from the same IP 

network (or subnetwork) number.  
 
   3.Assign X.25 NUAs to the serial ports of router 2 and router 3.  
 
   4.Configure router 2 and router 3 for a routing protocol and enable routing protocol updates to 

traverse the X.25 network.  
 

 
This configuration establishes between router 2 and router 3 a virtual circuit that allows IP traffic to 
be encapsulated within X.25, routed through the X.25 network, and delivered to the correct IP 
address. The configurations for these routers are shown in Fig. 6-16, and the outputs of the show 
commands to be examined are illustrated in Fig. 6-17.  

 
   
 
    

 
 Configuration for router 3  

 

 
    

 
 !  

 

 
    

 
 interface Ethernet0  

 

 
    

 
 ip address 200.2.2.1 255.255.255.0  

 

 
    

 
 !  

 

 
    

 
 interface Serial0  

 



 
    

 
 ip address 193.1.1.2 255.255.255.0  

 

 
    

 
 encapsulation x25  

 

 
    

 
 x25 address 21234567894  

 

 
    

 
 x25 map ip 193.1.1.1 21234554321 broadcast  

 

 
    

 
 !  

 

 
    

 
 interface Serial1  

 

 
    

 
 ip address 160.4.5.1 255.255.255.0  

 

 
    

 
 shutdown  

 

 
    

 
 !  

 

 
    

 
 router igrp 12  

 

 
    

 
 network 200.2.2.0  

 

 
    

 
 network 193.1.1.0  

 

 
    

 
 !Configuration for router 2  

 

 
    

 
 !  

 

 
    

 
 interface Ethernet0  

 

 
    

 
 ip address 200.1.1.1 255.255.255.0  

 

 
    

 
 !  

 

 
    

 
 interface Serial0  

 

 
    

 
 ip address 193.1.1.1 255.255.255.0  

 

 
    

 
 encapsulation x25  

 



 
    

 
 x25 address 21234554321  

 

 
    

 
 x25 map ip 193.1.1.2 21234567894 broadcast  

 

 
    

 
 !  

 

 
    

 
 interface Serial1  

 

 
    

 
 ip address 160.4.5.2 255.255.255.0  

 

 
    

 
 shutdown  

 

 
    

 
 clockrate 64000  

 

 
    

 
 !  

 

 
    

 
 router igrp 12  

 

 
    

 
 network 200.1.1.0  

 

 
    

 
 network 193.1.1.0  

 

 
    

 
 !  

 

 
    

 
 Configuration for router 1  

 

 
    

 
 !  

 

 
    

 
 x25 routing  

 

 
    

 
 !  

 

 
    

 
 interface Ethernet0  

 

 
    

 
 ip address 200.1.1.1 255.255.255.0  

 

 
    

 
 shutdown  

 

 
    

 
 !  

 



 
    

 
 interface Serial0  

 

 
    

 
 no ip address  

 

 
    

 
 encapsulation x25 dce  

 

 
    

 
 clockrate 19200  

 

 
    

 
 !  

 

 
    

 
 interface Serial1  

 

 
    

 
 no ip address  

 

 
    

 
 encapsulation x25 dce  

 

 
    

 
 clockrate 19200  

 

 
    

 
 !  

 

 
    

 
 x25 route 21234554321 interface Serial0  

 

 
    

 
 x25 route 21234567894 interface Serial1  

 

 
    

 
 !  

 

 
 Figure 6-16: Router configurations for text X.25 network 

   
 
 Let's look at the configurations first. Router 3 and router 2 have similar configurations, so I will give 
a full explanation only of the configuration for the serial 0 port of router 3.  

 

   
•Command encapsulation x25 sets the frame encapsulation to X.25 in the default DTE mode. 
Modification to the X.25 encapsulation type can be specified with optional arguments to this 
command; for example, ietf could follow this command to specify the IETF type X.25 framing.  

 

   
•Command x25 address 21234554321 assigns this port the specified NUA. The NUA is used 
by the X.25 routers to route traffic from source to destination. This number normally will be 
assigned by the X.25 network provider.  

 
•Command x25 map ip 193.1.1.1 21234554321 broadcast tells router 3 that whenever it 



needs to reach IP address 193.1.1.1, it will send packets across the X.25 network to NUA 
2122344321. The broadcast argument enables forwarding of broadcast routing updates.  

 

 
The rest of this configuration should be self-explanatory by now. Router 1 is emulating a public 
X.25 network by performing routing based on X.25 NUAs. The pertinent commands that configure 
X.25 on router 1 are explained below:  

 
   •Command x25 routing globally enables routing based on X.25 NUA on the router.  
 

   

•Command encapsulation x25 dce configures the serial ports to be X.25 DCE devices. At 
the physical level, the cable end plugged into the serial port configures the serial port to be a 
Physical layer DCE, as shown by the show controllers serial 0 command. X.25 requires 
an X.25 assignment of DTE and DCE also. Clearly, a DTE needs to connect to a DCE, because 
leaving both connected ports as the default DTE would not enable the line protocol to come up. 
You can view the X.25 DTE/DCE assignment with the show interface serial 0 command, 
as shown in Fig. 6-17.  

 

   
•Command x25 route 21234554321 interface serial 0 tells the router to send traffic 
destined for this NUA (21234554321) out of port Serial 0. Configuration commands such as these 
are used to build the X.25 routing table, as shown by the show x25route command in Fig. 6-17. 

 

 
The result of this configuration is that from router 2, you can enter the command ping 
200.2.2.1 and successfully ping the Ethernet port of router 3 across the X.25 network. Note that 
IGRP updates the routing tables of all IP enabled routers in this network.  

 
   
 
 Show commands for router 1  
 
 router1#sho x25 route  
 
 NumberX.121CUDForward To  
 
 121234554321Serial0, 1 uses  
 
 2 21234567894Serial1, 0 uses  
 
 router1#sho x25 vc  
 
 SVC 1024, State: D1, Interface: Serial1  
 
 Started 1:13:09, last input 0:00:25, output 0:00:07  
 
 Connects 21234567894 21234554321 to Serial0 VC 1  



 
 Window size input: 2, output: 2  
 
 Packet size input: 128, output: 128  
 
 PS: 5 PR: 5 ACK: 5 Remote PR: 4 RCNT: 0 RNR: FALSE  
 
 Retransmits: 0 Timer (secs): 0 Reassembly (bytes): 0  
 
 Held Fragments/Packets: 0/0  
 
 Bytes 3076/3076 Packets 61/61 Resets 0/0 RNRs 0/0 REJs 0/0 INTs 0/0  
 
 SVC 1, State: D1, Interface: Serial0  
 
 Started 1:13:22, last input 0:00:20, output 0:00:38  
 
 Connects 21234567894 21234554321 from Serial1 VC 1024  
 
 Window size input: 2, output: 2  
 
 Packet size input: 128, output: 128  
 
 PS: 5 PR: 5 ACK: 4 Remote PR: 5 RCNT: 1 RNR: FALSE  
 
 Retransmits: 0 Timer (secs): 0 Reassembly (bytes): 0  
 
 Held Fragments/Packets: 0/0  
 
 Bytes 3076/3076 Packets 61/61 Resets 0/0 RNRs 0/0 REJs 0/0 INTs 0/0  
 
 Show commands for router 2  
 
 router2>show x25 vc  
 
 SVC 1, State: D1, Interface: Serial0  
 
 Started 1:17:03, last input 0:00:04, output 0:00:05   
 
 Connects 21234567894   



 
 ip 193.1.1.2  
 
 cisco cud pid, no Tx data PID  
 
 Window size input: 2, output: 2  
 
 Packet size input: 128, output: 128  
 
 PS: 0 PR: 0 ACK: 7 Remote PR: 0 RCNT: 1 RNR: FALSE  
 
 Retransmits: 0 Timer (secs): 0 Reassembly (bytes): 0  
 
 Held Fragments/Packets: 0/0  
 
 Bytes 3214/3214 Packets 64/64 Resets 0/0 RNRs 0/0 REJs 0/0 INTs 0/0  
 
 router2>sho x25 map  
 
 Serial0: X.121 21234567894 ip 193.1.1.2  
 
 PERMANENT, BROADCAST, 1 VC: 1*  
 
 Show command for router 3  
 
 router3#show x25 vc  
 
 SVC 1024, State: D1, Interface: Serial0  
 
 Started 1:19:38, last input 0:00:08, output 0:01:16  
 
 Connects 21234554321   
 
 ip 193.1.1.1  
 
 cisco cud pid, no Tx data PID  
 
 Window size input: 2, output: 2  
 
 Packet size input: 128, output: 128  



 
 PS: 1 PR: 2 ACK: 1 Remote PR: 1 RCNT: 1 RNR: FALSE  
 
 Retransmits: 0 Timer (secs): 0 Reassembly (bytes): 0  
 
 Held Fragments/Packets: 0/0  
 
 Bytes 3260/3306 Packets 65/66 Resets 0/0 RNRs 0/0 REJs 0/0 INTs 0/0  
 
 router3#show x25 map  
 
 Serial0: X.121 21234554321 ip 193.1.1.1  
 
 PERMANENT, BROADCAST, 1 VC: 1024*  
 
 router3#sho int s0  
 
 Serial0 is up, line protocol is up  
 
 Hardware is HD64570  
 
 Internet address is 193.1.1.2 255.255.255.0  
 
 MTU 1500 bytes, BW 1544 Kbit, DLY 20000 usec, rely 255/255, load 1/255  
 
 Encapsulation X25, loopback not set  
 
 LAPB DTE, modulo 8, k 7, N1 12056, N2 20  
 
 T1 3000, interface outage (partial T3) 0, T4 0  
 
 State CONNECT, VS 3, VR 3, Remote VR 3, Retransmissions 0  
 
 Queues: U/S frames 0, I frames 0, unack. 0, retx 0  
 
 IFRAMEs 91/91 RNRs 0/0 REJs 0/0 SABM/Es 179/1 FRMRs 0/0 DISCs 0/0   
 
 X25 DTE, address 21234567894, state Rl, modulo 8, timer 0  
 
 Defaults: cisco encapsulation, idle 0, nvc 1  



 
 input/output window sizes 2/2, packet sizes 128/128  
 
 Timers: T20 180, T21 200, T22 180, T23 180, TH 0  
 
 Channels: Incoming-only none, Two-way 1-1024, Outgoing-only none  
 
 RESTARTs 1/1 CALLs 1+0/0+0/0+0 DIAGs 0/0  
 
 Last input 0:00:54, output 0:00:54, output hang never  
 
 Last clearing of "show interface" counters never  
 
 Output queue 0/40, 0 drops; input queue 0/75, 0 drops  
 
 5 minute input rate 0 bits/sec, 0 packets/sec  
 
 5 minute output rate 0 bits/sec, 0 packets/sec  
 
 2293 packets input, 45539 bytes, 0 no buffer  
 
 Received 0 broadcasts, 0 runts, 0 giants  
 
 208 input errors, 1 CRC, 0 frame, 3 overrun, 10 ignored, 1 abort  
 
 2254 packets output, 43027 bytes, 0 underruns  
 
 0 output errors, 0 collisions, 60 interface resets, 0 restarts  
 
 0 output buffer failures, 0 output buffers swapped out  
 
 156 carrier transitions  
 
 DCD=up DSR=up DTR=up RTS=up CTS=up  
 
 Figure 6-17: The show commands for the test X.25 network 

   
 
Cisco routers also can perform protocol translation, and in this case we will look at translating 
between IP and X.25. This feature is useful if a third party provides an X.25 connection and sends 
you X.25-encapsulated data, but you want to deliver it to a host that uses only the TCP/IP 



communications protocol suite. This can be achieved by connecting a cisco router between the 
TCP/IP and X.25 hosts. We configure one port to establish an X.25 connection with the X.25 
network and a separate port to communicate using IP. The router is then enabled to route both IP 
and X.25 traffic. The key part to the configuration is to tell the router to translate between IP and 
X.25.  

 

 

Let's say that an IP host needs to initiate communications with an X.25 host with an NUA of 
1234567890. What we do is associate the IP address 195.1.1.1 with the X.25 address 
1234567890 within the translation router. Then if the IP host needs to send data to a machine it 
thinks is at IP address 195.1.1.1, the translation router will establish an IP connection to the IP 
host and pretend to be 195.1.1.1, then establish an X.25 session to the X.25 host and deliver the 
message to it in X.25 format. The configuration to do this is given in Fig. 6-18 and the X.25 
command is explained fully as follows.  

 
   •Command x25 routing enables the router to perform routing based on X.25 address.  
 

   
•Command translate tcp 195.1.1.1 binary stream x25 1234567890 takes packets 
destined for IP address 195.1.1.1, takes the data out of them, repackages this data in X.25, and 
then sends the translated packets to host 1234567890.  

 
   •Command x25 route 1234567890 serial0 tells the router which interface to use to get to 

the X.25 address 1234567890.  
 

 
It is necessary to give the serial port of router 1 in Fig. 6-18 an IP address in the same network as 
the IP address that is being translated so that the router accepts the packet prior to it being 
translated.  

 

 

  
 
 Figure 6-18: Network configuration for X.25–IP translation 

   
 
 Viewing X.25 Connection Status  



 

We will now examine the show commands illustrated in Fig. 6-17. The first command, show x25 
route shows the X.25 routing table for router 1. This display numbers each entry starting at 1 in 
the first column, then associates each X.121 address (otherwise referred to as the NUA) with the 
appropriate serial interface. This display states, for example, that the X.121 address 21234554321 
can be reached via port Serial 0.  

 

 

The show x25 vc command shows information about the active virtual circuits on this router. In 
this case, two SVCs have been established, one with ID 1024 and one with ID 1. The normal state 
for this type of connection is as shown, D1. This command is useful for seeing statistics on the 
general status of the virtual circuit, such as the number of Receiver Not Ready and Frame Reject 
(REJ) packets counted.  

 

 
The show x25 map command shows any X.25 mappings defined for the router. In this case, 
router 2 has the Serial 0 port mapped for the X.121 address 212234567894, for IP address 
193.1.1.2. This map is identified as a permanent mapping, meaning that it was configured with the 
X.25 map interface command and will forward broadcast datagrams destined for the IP host.  

 

 
The show interface serial 0 command shows useful summary information on the link. 
Primarily this command shows whether the port is up (physical connection is okay) and if the 
protocol is up (the line is synchronized). Beyond that, the key elements of the display are as 
follows:  

 
   •The LAPB DTE identifies this serial port as a DTE configuration, which will work only if the serial 

port of the corresponding device to which it is connected has a LAPB DCE configuration.  
 

   
•The modulo 8 indicates that this interface is not using extended addressing. If it were using 
extended addressing, this entry would show modulo 128. If needed, this parameter will be 
defined by the X.25 network provider.  

 
   •The N1 12056 indicates the maximum layer 2 frame size. Under the X.25 DTE section, the 

packet size (at the X.25 layer three level) is given as 128.  
 
   •The N2 20 indicates that the interface will allow 20 retries before timing out.  
 

   

•The T1 3000 indicates the T1 timer has a value of 3 seconds. When a command frame is sent, 
the sender will start this T1 timer. The transmitter will wait for the T1 timer to expire before it 
receives an acknowledgment of the command frame. If this timer expires without 
acknowledgment, the sender polls its destination to demand an immediate response. If a response 
is received, the unacknowledged packet is resent; if there is no response, the link is reset.  

 
   •The X25 DTE entry shows the X.121 address and normal operational state of the interface, which 

is R1.  
 
   •The Input/Output window size defines the number of packets that may be transmitted 

before an acknowledgment is received. This value can vary between 1 and 7, with a default of 2.  
 
 It is important that all these values match between the X.25 DTE and DCE devices. The following 
discusses how these values can be modified, if necessary.  



 
 Customizing X.25 Parameters  
 

 

The first customization we will look at is assigning a range of numbers to be used by each type of 
virtual circuit. To recap, there are PVCs and SVCs, and communication between a DTE and DCE 
needs a unique virtual circuit number for each direction of communication. Between any DTE/DCE 
pair, the assignable values are from 1 to 4095. In the show x25 vc command output of Fig. 6-17, 
you can see that on router 1, two SVCs are active, one with LCN 1024 and one with LCN 1. SVC 
1024 is associated with getting to router 3 and SVC 1 is associated with getting to router 2. These 
are two-way SVCs, taking the default values for the high and low LCN values. If two more SVCs 
were defined on this link, they would take the values 1023 and 2.  

 

 
An X.25 network vendor may decide to allocate specific LCN ranges for different types of PVCs, 
and if this deviates from the default, you will have to alter your ranges. SVCs can be incoming, 
two-way, or outgoing, and a value can be assigned for the low and high value in each type's range 
by using the following commands in interface configuration mode:  

 
   •x25 lic valueDefines the low incoming circuit number.  
 
   •x25 hic valueDefines the high incoming circuit number.  
 
   •x25 ltc valueDefines the low two-way circuit number.  
 
   •x25 htc valueDefines the high two-way circuit number.  
 
   •x25 loc valueDefines the low outgoing circuit number.  
 
   •x25 hoc valueDefines the high outgoing circuit number.  
 
   •x25 pvc valueDefines the PVC circuit number.  
 

 
Note in the preceding commands that the word value is substituted with the desired circuit number 
for that command. If you have to specify circuit number ranges explicitly, you must adhere to the 
following numbering scheme:  

 
   •PVCs must have the lowest range.  
 
   •The next highest range is assigned to the incoming calls.  
 
   •The next highest range is assigned to the two-way calls.  
 
   •The highest range is assigned to the outgoing calls.  
 
X.25 packet sizes also may be customized for both incoming and outgoing packets on an 
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interface. The packet sizes may be changed with the following commands in interface 
configuration mode:  

 
   •x25 ips bytesTo specify the input packet size in bytes.  
 
   •x25 ops bytesTo specify the output packet size in bytes.  
 

 
X.25 uses a windowing mechanism with a default window size of 2. With reliable links, this default 
value can be increased throughout the network to improve performance. This is achieved with the 
following commands:  

 
   •x25 win valueThe value defines the number of packets that can be received without an 

acknowledgment.  
 
   •X25 wout valueThe value defines the number of packets that can be sent without an 

acknowledgment.  
 

 
Finally, as previously mentioned, the modulo can be regular (modulo 8), which allows virtual circuit 
window sizes up to 7, or enhanced (modulo 128), which allows window sizes up to 127 packets. 
This can be changed with the following command in interface configuration mode.  

 
   •X25 modulo valueThe value is either 8 or 128.  
 

 

X.25 is rarely implemented in a private network these days; straight TCP/IP is far more popular. 
LAPB, however, does retain some popularity even when a TCP/IP network is implemented. Serial 
links typically use Cisco's default encapsulation of the Cisco proprietary HDLC. This is an efficient 
protocol but lacks error recovery. If a network link is experiencing noise interference and is carrying 
large amounts of UDP data, changing the encapsulation in the link from the default HDLC to LAPB 
will provide error recovery at the link layer, where before there was none.  

 



Point-to-Point Protocols  
 

 
In this section we look briefly at the older Serial Line Interface Protocol (SLIP), the newer Point-to-
Point Protocol (PPP) that largely replaced it, and give an overview of HDLC. These protocols all 
provide connectivity in point-to-point connections; they do not provide multipoint communication, 
as does frame relay, or full routing functionality, as does X.25.  

 
 SLIP Communications  
 

 

SLIP, as its name suggests, supports point-to-point communication for IP only. It was the first 
point-to-point protocol to do so for asynchronous connections and still has widespread support 
from many Unix vendors. The SLIP frame is very simple: There is no header, no error checking, 
and no option to define a protocol. (It is always assumed that IP is the higher-layer protocol.) SLIP 
is mainly used for asynchronous dial-up connections. Even for this limited application, SLIP is 
generally found wanting these days; there is no authentication process available, for example, 
which is a common requirement for security-minded organizations implementing a dial-up facility.  

 

 

SLIP works only on asynchronous lines, and does not support address negotiation as part of the 
link startup procedure. The only time you are likely to need to use SLIP is when connecting to a 
third party's Unix machine via dial-up. Any new dial-up facilities being implemented should use 
PPP. In this instance, you will be provided with an IP address by the third-party administrator to 
use for the dial-up connection. The following is a simple configuration for an asynchronous port 
using SLIP:  

 
 Interface Async 1  
 encapsulation slip  
 ip address 193.1.1.1 255.255.255.0  
 
 This configuration may need to be enhanced with modifications to default hold queue lengths, 
buffers, and packet switching mode; we will address these issues in the discussion of PPP.  

 
 PPP Communications  
 

 

PPP is the more modern point-to-point protocol; key features are that it supports the simultaneous 
running of multiple protocols over one link, synchronous as well as asynchronous communications, 
dynamic address assignment, and authentication. PPP is a layer 2 (Data Link) protocol; there is, 
however, a whole link negotiation process that must be completed before two nodes can exchange 
information at the Data Link level. Let's examine this negotiation process as a set of phases.  

 

 

The first phase comprises exchange of Link Control Protocol packets. This is like an initial 
introduction. The two ends agree on the general characteristics of the communication that is about 
to take place, such as the use of compression or the maximum frame size. An optional phase 
checks the line quality to see if it can be used to bring up the Network layer protocols. Once the 
link configuration is agreed upon, an optional authentication process may take place, via either the 
PAP or CHAP protocol.  

 
The Password Authentication Protocol (PAP) was the first authentication protocol deployed for 
PPP. To explain the way it works, imagine you have a remote PC using a dial connection to 



connect to a central router. In this setup, you configure a PAP username and password in the 
remote PC, which matches a username and password configured in the central router. When the 
remote PC dials the central router, it will start sending its PAP username and password repeatedly 
until it either is granted a connection, or the connection is terminated. This is a step up from having 
no authentication, but is open to a break-in method known as modem playback. Using this method, 
an intruder hooks into the telephone line, records the modem negotiation transmissions, and plays 
them back later. By doing this method, the intruder has recorded the username and password for 
future use.  

 

 

The Challenge Handshake Authentication Protocol (CHAP) is a stronger authentication process. 
With CHAP, the remote PC will initiate a connection, negotiate the LCP parameters, and then be 
met with a "challenge" from the central router. The challenge comes in the form of an encryption 
key that is unique for every connection made. The remote PC then will use the encryption key to 
encode its username and password before submitting it to the central router. When the central 
router receives the encrypted username and password, it will decrypt them using the key sent for 
that connection and compare them against the valid usernames and passwords for which it is 
configured. The connection is either authenticated and progresses, or is terminated at this stage.  

 

 

This method defeats modem playback because the encryption key is different each time; for every 
connection, it produces a different set of encrypted characters for exchange between remote PC 
and central router. Within CHAP, there are several different algorithms that may be used for 
encryption, the most popular being the MD5 algorithm. CHAP's authentication processes typically 
take place only at link startup time, but the specification allows for this challenge to be issued 
repeatedly during the lifetime of the connection. Implementation of this feature is up to individual 
vendors.  

 

 

Once authentication is complete, the next stage involves defining the particular Network Control 
Protocols to be encapsulated within PPP. The only choices generally available in popular PC PPP 
stack implementations are IPCP, for encapsulating IP traffic, and IPXCP for encapsulating IPX 
traffic; however, a PPP session can support both simultaneously. Each NCP protocol will negotiate 
the specifics of communication for its Network layer protocol. Once the NCP negotiations are 
complete, the two endpoints can exchange data at the Data Link (layer 2) level for each of the 
Network (layer 3) protocols configured. Now that we know what PPP does, let's take a brief look at 
its frame format, as illustrated in Fig. 6-19.  

 
   
 
 Figure 6-19: The PPP frame format 

   
 

 

This frame contains both useful and redundant fields. The redundant fields are the address and 
control fields, which always carry the same entries. The address field contains an all-ones byte, 
the layer 2 broadcast address. (Because PPP only connects two entities together, specific layer 2 
addressing is not necessary and individual layer 2 addresses are not assigned.) The control field 
always contains the binary value 00000011, which defines the type of communication used. The 
useful fields are the flag, to indicate the start of a frame, the protocol field, which identifies the layer 
3 protocol encapsulated in the frame, and the Frame Check Sequence to ensure no errors were 
introduced into the frame during transmission.  

 



asynchronous communications, some of which can be considered more art than science. We will 
examine the most common commands and then consider how these commands can be put 
together in a sample configuration.  

 
 The first command, as always when specifying a link layer protocol, is to define the encapsulation 
for the chosen interface. This is achieved with the following commands:  

 
 Router1(config)#interface async 1  
 Router1(config-int)#encapsulation ppp  
 

 

If we are specifying PPP encapsulation, this implies that the asynchronous port will be used for a 
network connection. We therefore should place the port in dedicated mode. The mode choice for 
an async port is either dedicated or interactive. Placing the port in interactive mode presents the 
user with a command prompt and allows the user to manually input user name, passwords, and 
other connection-related information. For security reasons, I prefer to keep the async mode as 
dedicated, which is achieved with the following command:  

 
 Router1(config-int)#async mode dedicated  
 

 

Next you will want to enable Van Jacobsen header compression. In reality, compressing headers 
makes comparatively little difference in link bandwidth consumed by the protocol, but with 
asynchronous communications you should do everything possible to improve throughput. Header 
compression is turned on by default, but it does not hurt to enable it in case it had been previously 
disabled. This is achieved in interface configuration mode:  

 
 Router1(config-int)#ip tcp header-compression on  
 

 

The next issue is to assign IP addresses to the ports and to computers connecting to those ports. 
You have a choice, either to hard-code IP addresses into computers connecting to the async ports, 
or have the address assigned to the computer when it connects to the async port. If you choose 
the first option, you must ensure that the IP address assigned to the computer dialing in is in the 
same subnet as the address range assigned to the async ports themselves.  

 

 

My preference is to have the IP address assigned to the computer by the async port upon 
connection. This makes life simpler and does not restrict a computer to being able to dial in to only 
one location. To have the async interface assign an IP address to a computer when it connects, 
three separate configurations need to take place. First the async port must be given an 
unnumbered address. (IP unnumbered is covered more fully in Chap. 7.) Next, the async port must 
be configured to deliver a specific IP address to the connecting computer. Finally, the connecting 
computer must have no IP address configured. The two entries in the router port configuration, to 
define IP unnumbered and 193.1.1.1 as the address assigned to a connecting computer, are as 
follows:  

 
 Router1(config)#interface async1  
 Router1(config-int)#ip unnumbered ethernet 0  
 Router1(config-int)#async default ip address 193.1.1.1  



 

Next we discuss Asynchronous Control Character Maps (ACCMs). Flow control between 
asynchronous devices can either be of the hardware or the software variety. Hardware flow control
relies on pin signaling, such as the state of the Data Set Ready (DSR) or Data Terminal Ready 
(DTR) pins to stop and start transmission. Software flow control uses special characters 
transmitted between asynchronous devices to stop and start transmission. When relying on 
characters transmitted between devices to signal modem actions, there is always a danger that 
strings within the data transmitted will match these special command strings and be 
inappropriately interpreted by the modems.  

 

 

An ACCM can be configured to tell the port to ignore specified control characters within the data 
stream. The value of ACCM that tells an async port to ignore XON/XOFF (software flow control) 
characters in the data transmitted is A0000 in hexadecimal. This is the default value; if a TCP 
stack on the computer connecting to the async port does not support ACCM negotiation, however, 
the port will be forced to use an ACCM of FFFFFFFF. In this case, it is useful to manually set the 
ACCM with the following command:  

 
 Router1(config-int)#ppp accm match 000a0000  
 

 
Next, we want to enable CHAP authentication on the link. This is done in two stages; first the 
CHAP user name and password are set in global configuration, then CHAP is enabled on the 
desired interface. This is achieved through the following commands:  

 
 Router1(config)#username chris password lewis  
 Router1(config)#interface async 1  
 Router1(config-int)#ppp authentication chap  
 

 

If an asynchronous router is being used to route traffic from a LAN to a dial-up or other slow link, it 
can be desirable to slow down the speed at which packets are switched from one interface to 
another. If packets are switched from an Ethernet port running at 10 Mbps directly to an async port 
running at 19.2 kbps, the async port can quickly get overwhelmed. By entering the no ip 
route-cache command as   

 

 
shown below, the packets are switched at a slower speed. Effectively, this command, entered for 
each async interface in use, stops the router from caching destination addresses and forces a 
table lookup every time a packet needs to be routed.  

 
 Router1(config-int)#no ip route-cache  
 

 
One aspect of asynchronous communication that causes endless confusion is the DTE rate 
configured for a port and its meaning in terms of data throughput on an async line. The receive 
and transmit DTE rate of async port 1 is set by the following commands, to 38,400 bits per second. 

 
 Router1(config)#line 1  
 Router1(config-line)#rxpseed 38400  
 Router1(config-line)#txspeed 38400  
 



each packet is sent from the router port to the modem. If the modem can only transfer data across 
a dial-up link at 14.4 kbps, it will use its flow control procedures to stop more packets from coming 
out of the router port than it can safely transfer across the link. Thus, over the course of 10 or 20 
seconds, the amount of data transferred between the router port and the modem port will not be 
greater than an average of 14.4 kbps; however, each packet that the router does transmit will be 
received at a speed of 38.4 kbps from the device sending async characters.  

 

 

These days most modems employ V.42bis compression, which will allow a modem to sustain 
effective throughputs that are higher than the modem-to-modem connection rate. V.42 
compression is generally quoted at providing up to four times the data throughput that the 
connection rate would suggest. For example, with four-to-one compression, a 14.4 kbps link will 
support 57.6 kbps throughput. The effective compression ratio is determined by how compressible 
the data being transported is. Compressible data includes things such as ASCII text, although 
binary file transfers are not normally very compressible.  

 

 

In brief, V.42bis compression looks for common sequences of bits and the modems agree to 
assign special characters to represent these often-repeated character sequences. By transmitting 
a special character, the modem may have to transfer only 1 byte of data, rather than the 4 bytes 
that both modems know it represents. Once a receiving modem receives a special character, it will 
send out the full associated character string on its DTE port.  

 

 

Many newcomers to the world of asynchronous communications ask why, even if the DTE rate is 
set to 115,200 bps, communications across an async link are so slow, often slower than an ISDN 
link operating at 64 kbps. The answer is that you very rarely get sustained throughput of 115,200 
on an async link. While each packet may be transferred between the router and modem at 
115,200 bps, the modem flow control will stop the router port from transmitting continuously at that 
speed.  

 

 
Chapter 8 gets into troubleshooting serial communication problems in more depth, but two 
configuration commands that help asynchronous communications are worth considering here. The 
first is the hold-queue command.  

 

 

The hold queue of each interface has a specified size, which is the number of packets waiting to 
be transmitted that it can hold before the interface starts dropping packets. This value can be set 
for both incoming and outgoing packets. For asynchronous interfaces, it is worthwhile increasing 
the sizes of both the incoming and outgoing hold queues, which in the following example increases 
both values to 90.  

 
 Router1(config-int)#hold-queue 90 in  
 Router1(config-int)#hold-queue 90 out  
 

 

If an interface (Async 1, for example) is exceeding its hold queue limits, an increased number of 
drops will be seen in the show interface async 1 command. Drops also can increase if the 
router buffers for given packet sizes are overflowing. The second command we will overview here 
is the one that sets the number of packet buffers available in the router. To view the state of packet 
buffer use, enter the show buffers command. The output will show you the number of small, 
medium, large, very large, and huge buffers used and available, and the number of occasions on 
which buffers of a type were needed but a packet was dropped because none were available 
(shown as failures).  



 

A point to note is that packets can be dropped even if the maximum number of buffers has not 
been exceeded. This phenomenon occurs if several packets of one particular size arrive at the 
router very quickly and the router cannot create buffers fast enough. If you suspect this may be 
happening, you can set the number of buffers of a given size to be permanently available. The 
following is an extract from a router configuration that has had its medium-size buffer allocation 
altered from the default.  

 
 !  
 buffers medium initial 40  
 buffers medium min-free 20  
 buffers medium permanent 50  
 buffers medium max-free 40  
 

 

The first entry defines the number of temporary buffers that are to be available after a reload, 
which is useful for high-traffic environments. The second statement forces the router to try to 
always have 20 medium buffers free, and if a traffic surge reduces the number of free medium 
buffers to below 20, the router automatically will try to create more. The third entry defines 60 
permanent buffers, which once created are not retrieved by the IOS for reuse of their memory 
allocation. Finally, the max-free 40 entry ensures that memory is not wasted on unused buffers 
by returning memory used by more than 40 free medium buffers to the router's general memory 
pool.  

 

 

Synchronous PPP Configurations. If a WAN is being built based on point-to-point links between 
router serial ports, the popular choices for the link-level encapsulation are the default Cisco version 
of HDLC and PPP operating in synchronous mode. PPP is a more modern protocol and offers 
better link-level authentication than Cisco's HDLC, but there is one compelling reason to build your 
network based on the Cisco HDLC. Consider Fig. 6-20.  

 
   
 
 Figure 6-20: Router serial interfaces connected via CSU/DSU devices 

   
 

 

Suppose the line protocol on the connected Serial 0 ports will not come up, but everything looks 
good with the interface configurations, so you want to test the line connecting the two CSU/DSU 
devices. A good way to start troubleshooting this situation is to first put CSU/DSU 1 in loopback 
and see if the line protocol on the Serial 0 interface of router 1 comes up, as shown by the show 
interface serial 0 command. If this is okay, take CSU/DSU 1 out of loopback and put 
CSU/DSU 2 in loopback, then see if the Serial 0 interface comes up as a result. This is a simple 
yet powerful technique for locating a problem in a communication system, and works well if the 
encapsulation for both Serial 0 interfaces is set to default Cisco HDLC. With PPP encapsulation, 
an interface protocol will not reach an up state when connected to a CSU/DSU in loopback; you 
therefore do not have this type of troubleshooting as an option.  

A situation in which you really do need to use synchronous PPP is one in which you decide to use 



location installation. We will take some time now to explore configuring one of these devices.  
 

 

In this configuration, the Cisco 1001 has two interfaces connected, a V.35 connector to the 
CSU/DSU and an Ethernet connection to the local PC. There is no configuration in the 1001; all 
configuration is kept in the central router, which makes installation and remote support of this 
device simple enough that even nontechnical staff can connect the device as needed. There are 
two parts to the configuration of the central router interface, one for the router 1 serial interface and 
one for the virtual LAN extender, which is configured as a LEX interface on router 1. The Serial 0 
interface configuration for router 1 in Fig. 6-21 is given as follows:  

 
 !  
 interface serial 0  
 no ip address  
 encapsulation ppp  
 !  
 
 The configuration for the LEX port that also exists on router 1 is as follows:  
 
 !  
 
 interface lex 0  
 ip address 195.1.1.1 255.255.255.0  
 lex burned-in-address 0000.0c32.8165  
 !  
 

 

  
 
 Figure 6-21: LAN extender network connections 

   
 

 

The lex burned-in-address is the MAC address of the Cisco 1001 being installed. When a 
LAN extender is installed, all the workstations connected to it are given addresses on the same 
subnet as the LEX port. With the configuration above, the PC in Fig. 6-21 would be addressed 
195.1.1.2, while subsequent PCs connected to the 1001 device LAN would have addresses 
195.1.1.3, 195.1.1.4, and so forth.  

 

 As you can see, all configuration that makes the connection unique is under the LEX configuration. 
This means that you can connect a remote LAN extender to any serial port that has no IP address 
and PPP encapsulation configuration. When a LEX first connects to the central router, it will try to 
bind to whatever port to which it is connected. To see the status of a LEX connection, issue the 



command show interface LEX 0, which will tell you what port the LEX is bound to, the LEX 
MAC address, its IP address, and the Ethernet encapsulation type. Once you know to what port 
the LEX is bound, you can use the show interface serial 0 command (assuming the LEX is 
bound to Serial 0) to see the number of interface resets, carrier transitions, and CSU/DSU signals. 

 

 

The price to pay for this relatively cheap and simple way of connecting remote devices is in the 
area of advanced troubleshooting information. To report problems, the LEX relies upon a set of 
front panel lights. Under normal conditions, these lights flicker to indicate traffic passing over the 
link. During error conditions, the lights blink solidly a number of times. The number of times the 
lights blink indicates the nature of the problem. It can be a challenge to get nontechnical users to 
notice the difference between a flicker and a solid blink and to correctly count the number of blinks 
generated by the LEX. The errors reported by the front panel lights are as follows:  

 
 •One blink  

 
The serial link is down.  

 

 
 •Two blinks  

 
No clock received from CSU/DSU.  

 

 
 •Three blinks  

 
Excessive CRC errors on the line.  

 

 
 •Four blinks  

 
Noisy line.  

 

 
 •Five blinks  

 
CSU/DSU in loopback.  

 

 
 •Six blinks  

 
PPP link negotiation failed.  

 

 
 SDLC  
 

 
Many of the protocols we have discussed are based on the High-level Data Link Control protocol 
(HDLC) format, which is related to IBM's Synchronous Data Link Control (SDLC). It is worth briefly 
looking at how these protocols work and at their interrelationships.  

 

 

SDLC was designed for serial link communications in SNA networks in the 1970s and is in use for 
that purpose today. SDLC is a bit-oriented protocol; previously, protocols like IBM's BiSync and 
DEC's DDCMP were byte-oriented. Bit-oriented protocols offer more flexibility, are more efficient, 
and have now completely replaced byte-oriented protocols for new product development. Once 
IBM had written SDLC, it was used as a basis for further development by several standards bodies 
to produce SDLC variants, which are listed as follows:  

 
   •The ISO based its development of the HDLC protocol on SDLC.  
 
   •LAPB was created by the CCITT (now called the ITU, the International Telecommunications 

Union), which used HDLC as its starting point.  
 
   •The IEEE 802.2 used HDLC as a base for developing its link-level protocols for the LAN 

environment.  



 
It is worth noting that the IBM QLLC protocol can be implemented at the Data Link layer when 
transporting SNA data over X.25 networks. In this scenario, QLLC and X.25 replace SDLC in the 
SNA protocol stack.  

 

 

An IBM protocol, SDLC is geared toward everything being controlled by a central processor. SDLC 
defines a primary end and a secondary end for communications, with the primary end establishing 
and clearing links and polling the secondary ends to see if they want to communicate with the 
primary. An SDLC primary can communicate with one or more secondary devices via a point-to-
point, multipoint (star), or loop (ring) topology. The SDLC frame format is shown in Fig. 6-22. The 
HDLC, LAPB, and 802.2 variants of SDLC do not define primary and secondary devices in 
communication.  

 

 
  

 
 Figure 6-22: SDLC frame format 

   
 
 SDLC frames are either Information frames for carrying user data and higher layer protocol 
information, Supervisory for status reporting, or Unnumbered for initializing an SDLC secondary.  

 

 

HDLC is closely related to SDLC, but instead of one transfer mode, HDLC supports three. HDLC's 
Normal Response Mode is how SDLC operates, wherein a secondary cannot communicate until 
the primary gives it permission. The HDLC Asynchronous ResponseMode allows a secondary to 
initiate communication, which is the method used by the X.25 LAP protocol. HDLC also supports 
Asynchronous Balanced Mode, which is used by the X.25 LAPB protocol and allows any node to 
communicate with any other without permission from a primary.  

 
 LAPB operates only in Asynchronous Balanced Mode, allowing either the DTE or DCE device to 
initiate calls. The device that initiates calls becomes the primary for the duration of that call.  

 

 

The IEEE 802.2 committee split the ISO Data Link layer in two, the upper half of which is the 
Logical Link Control (LLC) sublayer, and the lower half being the Media Access Control (MAC) 
sublayer. The 802.2 LLC layer interfaces with layer 3 protocols via Service Access Points (SAPs) 
and different LAN media, such as 802.3 and 802.5 implemented at the MAC layer. IEEE 802.2 has 
a similar frame format to SDLC.  

 
 ISDN  
 

 

ISDN stands for Integrated Services Digital Network; it is a synchronous dial-up service offered by 
most local telephone companies these days. Unlike many of the other networking technologies we 
have examined, ISDN is not a packet-switching technology; rather, it is a circuit-switched 
technology, similar to the plain old telephone service (POTS). My recommendation when 
implementing ISDN for a single PC is to not use one of the devices that connect to the serial 
COMx port on a PC. They may be easy to set up, but you will not get the full benefits of ISDN 
communications. These devices have to use asynchronous communications to exchange data with 
the PC serial port. You will get better performance if you connect ISDN synchronously all the way 
to your PC, as the serial port circuitry is not as efficient as a LAN card at getting data on and off 
your PC's bus.  



 

 

Cisco offers a standard solution for this with the 1000-series LAN extenders. The 1004 LAN 
extender will take an ISDN BRI circuit in one side and an RJ-45 connector for Ethernet connectivity 
in the other side. If you then use a crossover RJ-45 cable, a twisted-pair Ethernet card in the PC 
can be connected directly to the Cisco 1004. This is shown in Fig. 6-23. In fact, the configuration 
shown in Fig. 6-23 could support an additional 22 remote PCs establishing ISDN connections 
simultaneously through ISDN to the one PRI connection.  

 

 

  
 
 Figure 6-23: Communicating synchronously from a remote PC to a router via ISDN 

   
 
 ISDN Terminology. With ISDN there is a slew of new terms that might seem daunting at first; in 
reality they are quite simple, so let's define them first.  

 

 

Basic Rate ISDN (BRI). A BRI consists of two B channels and one D channel. The B channels 
each have 64 kbps capacity, with the D channel being used for call signaling and having 16 kbps 
capacity. The two B (known as bearer) channels can be used for voice or data, and can be 
combined to provide 128 kbps throughput. BRI access is via the same copper telephone lines that 
now provide regular telephone service to homes. The attraction of this technology for telephone 
companies is that it allows higher-speed services to be delivered using the existing cabling. In 
many locations, however, the existing copper has had to be upgraded to support the encoding 
necessary to transmit this amount of data over a line.  

 

 

Primary Rate ISDN (PRI). PRI services are delivered by a T-1 circuit (1.544 Mbps) in the United 
States and an E-1 (2.048 Mbps) in Europe. In the United States, a T-1 delivering PRI is split into 
24 channels of 64 kbps, one of which is used as the D channel for signaling, leaving 23 for voice, 
data, or bonding together to form a connection of higher than 64 kbps. When a T-1 circuit provides 
channelized service, 8 kbps is lost to the channelization process, giving an available bandwidth of 
1.536 kbps. A typical application for PRI would be to provide 23 central dial ports for remote 
branches to dial into on an as-needed basis. A PRI can be terminated in an RJ-45 type connector, 
which can be directly connected to a Cisco router device such as an AS-5200, or a PRI interface 
on a 7000-series router. This means that you can provide 23 dial connections on one physical 
interface without having to worry about individual modems and cabling.  

 

 
Link Access Protocol D Channel. LAPD is a derivative of X.25's LAPB protocol and is used by 
the ISDN equipment at your site to communicate with the telephone company's central office 
switch all the while the connection is active.  

 

 
Terminal Endpoint Identifier. TEI is a unique identifier for each of the up to eight devices that can 
hang off of an ISDN connection. Typically the TEI will be configured by the network via D channel 
exchanges, but it may be necessary to configure these identifiers by hand.  



 

 

Q.931. The D channel uses control messages that conform to the ITU Q.931 specification to 
establish, terminate, and report on status of B channel connections. It is worth confirming that 
these control signals pass through a separate D channel (termed out-of-band); if a separate D 
channel network is not available, an extra 8 kbps is taken out of each B channel, leaving only 56 
kbps available for data transmission.  

 

 
SAPI. Frame relay or X.25 frames as well as control messages can traverse the D channel. It is 
the Service Access Point Identifier field in the LAPD frame that identifies which type of traffic is 
using the link.  

 

 

SPIDs and DNs. A SAPI/TEI pair identifies a particular device on a given ISDN link, but has only 
local significance. For a call to traverse an ISDN network, network-wide parameters need to be 
defined. In concept, a SAPI/TEI pair are the same as an LCN in an X.25 network, in that the LCN 
is significant between a DTE and DCE, but an NUA is necessary to route traffic across an X.25 
network. To establish an ISDN connection, you need a directory number (DN), which looks 
identical to a regular telephone number. With a DN, you know what number to use to call another 
ISDN user. That is not enough, however. We know that an ISDN connection may have many 
different types of devices attached, so to inform the ISDN switch in the telephone company's 
network what you have at your location, the telephone company will assign you one or more 
service profile IDs (SPIDs) that identify the equipment you are using on your ISDN connection.  

 

 
Switch Types. You must know the Central Office switch type used by your ISDN provider and 
configure that in the device connecting to the ISDN circuit. In the United States, the switch type 
might be AT&T 5ess and 4ess, or Northern Telecom MS-100; in the United Kingdom, it might be 
Net3 and Net5; and in Germany, it is 1TR6.  

 

 

Network Termination 1 (NT1). An NT1 is a device that converts ISDN digital line communications 
to the type used by the BRI interface. Outside of the United States, this is typically supplied by the 
telephone company, but inside the United States, subscribers generally have to supply their own 
NT1. In effect, it is the circuitry that interfaces your ISDN connection to the ISDN local loop 
network.  

 

 

Terminal Endpoint Devices (TE1 and TE2). A TE1 is a native ISDN interface on a piece of 
communications equipment, such as a BRI interface on a Cisco router. A TE2 device is one that 
requires a Terminal Adapter (TA) to generate BRI signals for it. The TA converts RS-232 or V.35 
signals in to BRI signals. A Cisco router serial interface needs to be connected to an NT1 via a TA 
device.  

 

 

Let's see how a typical ISDN call is established by referring to Fig. 6-24, which shows how a TE1 
is directly connected to the NT1 device, whereas a TE2 needs a TA device to connect to the ISDN 
network. Imagine we want to call a digital telephone that has an ISDN phone number of 123-4567. 
To do this, the originating equipment connects to the telephone company's Central Office switch. 
The CO switch knows what type of device the originating equipment is through its associated 
SPID. Next, the number 123-4567 is passed to the switch as the destination. The CO switch will 
then locate via SPID an appropriate device at the destination number that can accept the call. A D 
channel conversation takes place and a B channel is allocated from source to destination to 
transport data between the two ISDN devices.  

 

 
Configuring ISDN BRI Services. ISDN connections generally are configured as a type of Dial on 
Demand Routing (DDR). This provides for a dial backup service to a leased line link, a dial 



connection for occasional   
 

 

  
 
 Figure 6-24: ISDN device interconnections 

   
 
 Internet access, or a remote site dialing a central location for occasional server access.  
 

 
The first example is for a Cisco 2501 that has its Serial 0 interface attached to a leased line 
connected to a central site. The Serial 1 port is connected to a Terminal Adapter device that dials 
back to the central site if the primary leased line on Serial 0 fails. In this application, some of the 
configuration commands need to be entered into the Terminal Adapter and some into the router.  

 

 

For the Terminal Adapter configuration, we need to identify the ISDN provider's switch type, the 
number to dial, and the SPID assigned for the connection. In the router, we need to identify what 
will cause a dial connection to be made. Typically for this type of application, the router serial port 
connected to the Terminal Adapter will raise the DTR signal when a connection is needed; the TA 
will sense this and, having all the information necessary to make the desired connection, will 
initiate a call. This is the relevant configuration for the Serial 0 and Serial 1 ports:  

 
 interface serial 0  
 backup delay 10 45  
 backup interface serial 1  
 !  
 interface serial 1  
 ip unnumbered serial 0  
 

 
The command backup delay 10 45 for Serial 0 configures the router to attempt to establish a 
backup connection if the primary connection loses a carrier signal for more than 10 seconds, and 
will maintain that backup connection until the primary carrier signal has been constantly up for at 
least 45 seconds.  

 
 The command backup serial interface 1 tells the router that Serial 1 is to be used as the 
backup interface. This command sets DTR low until the port is activated to establish a connection. 

 

 The only necessary command for the Serial 1 port is the one giving it an IP address, which in this 
case is an unnumbered IP address, linked to the address of Serial 0. (IP unnumbered will be 
covered in Chap. 7.) There typically will be an ISDN circuit ready at the central site to receive this 



the routing table on the central site router has adjusted so that it knows to get to the remote router 
via a new interface. (The routing protocol implemented, such as IGRP, will make these 
adjustments for you.)  

 

 

The second example is for a router that has a BRI port and therefore does not need a TA device. 
The goal is to provide connectivity to a set of centrally located servers on an as-needed basis. The 
access needed from this router to the servers is sporadic, so the ISDN solution is implemented 
because a leased line connection is not cost-justified. This setup is illustrated in Fig. 6-25, along 
with pertinent extracts from the router configurations.  

 

 

  
 
 Figure 6-25: A dial-on-demand routing solution using a router BRI interface 

   
 

 

In this application, the ISDN link is made only when there is traffic that the DDR interface on router 
1 deems "interesting." We have to tell the router what traffic is worth establishing a link for. For 
example, you probably will not want the ISDN link to be brought up every time a router wants to 
send a regular broadcast IGRP update. These types of links are usually set up with static routes to 
reduce ISDN utilization. You would therefore not enable a routing protocol process on router 1. 
The process to define a link can be summarized as follows:  

 
   •Configure global ISDN parameters.  
 
   •Identify the packet types that will initiate an ISDN connection.  
 
   •Define and configure the interface over which these identified packets will be sent out.  
 
   •Set the call parameters to be used for establishing the DDR link, such as the number to call.  
 
 The configurations illustrated in Fig. 6-25 are similar enough for the remote and central router BRI 
ports that we will explain only the remote router BRI port configuration in detail.  



 Global command isdn switch-type basic-dms100 defines the switch type used by the 
ISDN provider company.  

 

 

Global command dialer-list 5 protocol ip permit is paired with the dialer-group 5 
interface command. The dialer-list command here states that IP packets destined for, or 
routed through, the interface tagged as belonging to dialer-group 5 are "interesting" and will trigger 
a DDR connection. More complex permissions can be defined by the use of access lists. In order 
to use an access list, one must be defined in global configuration. If access list 101 is created, this 
access list can then be associated with a dial list with the following dialer-list 5 list 101. 
Appropriately specifying access list 101 will allow you to define specific IP addresses or protocols 
(such as Telnet or FTP) that may or may not cause a DDR connection to be made.  

 
 The commands encapsulation ppp, ip address, and ip route are as explained 
elsewhere.  

 
 Command dialer-group 5 identifies the BRI 0 interface as belonging to this group, essentially 
marking BRI 0 as the port that will respond to the interesting packets defined by dialer-list 5.  

 
 Command isdn spid1 0987654321 sets the SPID number for this ISDN connection as 
supplied by the ISDN connection provider.  

 
 Command dialer idle-timeout 200 specifies that if there is no traffic on the connection for 
200 seconds, the link will be dropped.  

 

 

Command dialer map ip 164.3.8.2 name router2 1234567 maps the telephone 
number 1234567 to the IP address 164.8.3.2. If router 1 wants to send a packet to the 164.3.6.0 
subnet, its routing table will identify 164.3.8.2 as the address to which to forward the packet, 
setting off a DDR connection and causing router 1 to dial 1234567. This command can be modified 
if you know that the number you are dialing is a 56 kbps rather than 64 kbps ISDN connection. In 
this case, the command would be dialer map ip 164.3.8.2 name router2 speed 56 
1234567. If we want to make router 2 a receive-only connection, we can input this command with 
no phone number argument. It is required to give the hostname of the router being called in this 
command, which must be the same as that defined in the username command (in this case, 
router 2).  

 
 Command ppp authentication chap identifies that CHAP authentication will be enforced 
prior to the granting of a connection.  

 

 

Command username router2 password aaa generically identifies a username and password 
pair that is authenticated to connect to this router. If a workstation were connecting, it would have 
to use "router 2" and "aaa" to successfully negotiate CHAP. We now, however, have two routers 
that are connecting together and negotiating authentication. The username that each router will 
use is its hostname, and the password that it will use is the password set in this command. What 
all this means is that the username on router 1 must be the same as the hostname of router 2, and 
that both routers must have the same password set.  

 
 Command ip route 164.3.6.0 255.255.255.0 164.3.8.2 defines a static route in the 
routing table that identifies that the BRI interface on router 2 is the next hop for subnet 164.3.6.0.  



 

The third example is a user who wants to establish an ISDN connection from home to a central site 
when a network resource located at a central site is required. This type of requirement is well-
suited to the Cisco 1004 configuration illustrated in Fig. 6-23. The 1004 is used in the United 
States because it has a built-in NT1, whereas the 1003 does not have an NT1 and is used 
elsewhere in the world; the NT1 in that case is usually supplied by the ISDN provider. The Cisco 
1004 is very different from the 1001 discussed earlier. The 1004 has a PCMCIA slot for a memory 
card that holds the configuration. The 1004 is a router, running the full Cisco IOS, whereas the 
1001 is a bridge.  

 

 
The configuration for a 1004 is therefore the same as the remote router in the second example 
discussed above. A 1004 memory card can be configured at a central location and sent out to a 
remote site for a nontechnical person to insert in the PCMCIA slot.  

 

 

Configuring ISDN PRI Services. In this section we will discuss how a PRI could be configured for 
multiple sites to dial into. A PRI is effectively 23 B channels and one D channel, each with 64 kbps 
bandwidth, all on one physical link. When setting up a central location with many interfaces 
available, it is more efficient to set up the interfaces so that a remote site can dial into any 
interface. This gives you more efficient use of the interfaces and you do not have to dedicate any 
to particular sites. Working on the theory that not all remote sites are connected at the same time, 
setting up the PRI to allow any site to dial any interface allows you to set up fewer interfaces than 
there are remote sites, yet provide service to all locations as they need it.  

 

 

There are two methods for allowing remote sites to dial into any interface in a pool. With the first, 
the remote site gets its address from the interface it dials into at connection time. In the second 
method, the PRI is configured as some type of rotary group and has dynamic routing enabled so 
that all interfaces act as one pool of interfaces. The first option is best suited to single workstations 
dialing in, typically on asynchronous communications. The reason for this is that a single 
workstation does not need an IP address when it is operating in a standalone mode, and gets one 
when it needs one for networking. The second option is better suited for providing central backup 
for remote LANs. IP addresses will be assigned to the workstations on these LANs prior to 
establishment of the backup link, so some type of dynamic routing is necessary for the rotary to 
operate effectively.  

 

 

Now we will examine the second option. There are some additional steps involved in setting up a 
PRI that are not necessary when setting up a BRI. A PRI is delivered on a T-1 in the United States 
and Japan, and on an E-1 elsewhere in the world. The settings shown here are for a T-1 circuit. To 
connect to a PRI, you need a CT1 Network processor Module for the 4x00-series router, or a 
Multichannel Interface Processor for the 7x00-series router. Let's assume we are using a 4700 
router for the commands that follow.  



 

  
 
 Figure 6-26: PRI configuration for remote routers to connect to via ISDN 

   
 

 

Figure 6-26 illustrates a typical configuration for setting up a PRI to act as a rotary pool of 
interfaces for incoming connections that already have a configured IP address. The figure shows 
only one remote site (router1), but the configuration presented should support 50 or more remote 
sites occasionally dialing in. The key difference between the setup for a single dial connection and 
this multiconnection setup is that the username/password pair for each remote router must be 
configured on the central 4700. In addition, a dialer map statement must be present in the 4700 
dialer1 interface section for each remote router. On subsequent versions of the Cisco IOS, 
dialer map statements are not necessary, and the router uses Inverse ARP in the same manner 
as it does in a frame relay network to map IP addresses to router names and telephone numbers. 
Let's examine each command in this configuration.  

 
   •Command isdn switch-type dms-100 defines the switch type used by the telephone 

company as a Northern Telecom DMS-100.  
 
   •Command username router1 password aaa defines the valid username and password 

pairs for all remote routers dialing in.  
 
   •Command controller t1 0 sets the necessary configuration for the T1 controller card in the 

4700 slot 0.  
 
   •Command framing esf configures the T-1 controller slot 0 as the Extended Super Frame 

frame type, which is that used in the United States.  
 
   •Command linecode b8zs defines the line-code type as Binary 8 with Zero Substitute. This is 

the value required for T-1 PRIs in the United States.  

Command interface dialer1 is there to avoid having to enter the same thing into the router 



dialer rotary group 1).  
 

 

Command ip unnumbered Ethernet0 is covered more fully in Chap. 7, but in this instance it 
lets the dialer 1 interface "borrow" an IP address from the Ethernet port. The BRI port at the 
remote end also will have an IP unnumbered configuration. IP unnumbered enables point-to-point 
connections to route packets between the networks at each end of the link, without dedicating a 
specific subnet number to the point-to-point link. Without this feature, it would not be possible to 
pool the central PRI connections. If each PRI channel had its own subnet, it could only directly 
communicate with other IP devices on that same subnet.  

 
 The remaining commands of interest are as follows:  
 
   •Command encapsulation ppp sets the encapsulation to PPP.  
 
   •Command no ip route-cache slows the speed of packets switched from a fast to a slow link. 
 
   •Command dialer idle-timeout 300 drops the connection after an idle time of 300 

seconds.  
 
   •Command dialer-group 1 identifies the traffic that is to pass over the link as specified in the 

dialer list command.  
 
   •Command pppauthentication chap was discussed in the previous section on BRI.  
 
   •Command dialer map ip 164.8.4.1 name router1 was discussed in the previous 

section.  
 
   •Command dialer list 1 protocol ip permit was discussed in the previous section.  
 

   
•Command interface serial 0:23 identifies the 24th channel, the D channel, because the 
channel numbers start at zero. The commands in this section configure all the B channel interface 
parameters.  

 
   •Command dialer rotary-group 1 applies all the configuration commands specified in the 
interface dialer 1 section to the B channels.  

 
 Simple ISDN Monitoring. There are two basic commands for viewing the status of ISDN BRI 
connections: the show controller bri and show interface bri commands.   

 

 

Command show controller bri displays status regarding the physical connection of the 
ISDN D and B channels. The most useful part of this display is that it states for each B and D 
channel whether the layer 1 (Physical layer) connection is activated. This is useful when 
performing remote diagnostics. If you can Telnet to the router, this command will tell you if a 
functioning ISDN line has been connected to the BRI port. The equivalent command for a PRI 
connection is the show controller t1 command.  



 
Command show interface bri0 1 2 shows the connection status of the two B channels. If 
the numbers 1 and 2 are omitted, this command displays D channel information. The sort of 
information   

 

 
this command display gives you includes whether the PPP protocols such as LCP and IPCP 
successfully negotiated, the input and output data rate, the number of packets dropped, and the 
state of the hold queues.  

 
 Miscellaneous ISDN. There are a few ISDN commands that may prove useful in special situations 
and they are presented here in no particular order.  

 

 

Use command isdn caller 212654xxxx if you want to accept calls only from a specified 
number. The format shown here is useful if you know that calls may be originating from several 
extensions in the one location. The calls accepted start with 212654, but may have any value for 
the last four digits. If you want to accept calls from only one number, you may specify the whole 
number, also. Care should be taken with this command, because if the ISDN switch to which you 
are connected does not support this feature, using this command will block all incoming calls.  

 

 
Command isdn not-end-to-end 56 sets the line speed for incoming calls to 56 kbps. This is 
useful if you know that the originating caller has a 56 kbps connection, but your receiver has a 64 
kbps connection. If calls originate at one speed and are delivered at another, problems could occur 
with data corruption.  

 

 
Command dialer in-band, if applied to an asynchronous interface, means that modem chat 
scripts will be used. If applied to a synchronous interface, it means that V.25bis commands will be 
used. Basically, this command configures the interface to use the bearer (B) channel for call setup 
and teardown on an ISDN connection, rather than the usual D channel.  

 

 
Command dialer load-threshold 191 configures the interface to start using the second B 
channel when the first has reached, in this case, 75 percent capacity. The figure 191 is 75 percent 
of 255; the valid numerical range for this command is 1−255.  

 

 
Command dialer string 1234567 is a simpler command to use than the dialer map 
command if the interface being configured is going to dial only one location. Essentially this 
command specifies the number that will be dialed whenever a connection is initiated.  

 

 

Command BACKUP LOAD X Y can be used for router setups where a dialer group is not defined 
and you want to have an ISDN connection established to add bandwidth to a link that is getting 
congested. The example shown below configures a secondary line to activate (in physical terms 
this means that the serial interface will raise the DTR signal) once the traffic threshold on the 
primary interface exceeds 80%. Additionally, when the combined bandwidth utilization of the 
primary plus secondary falls to below 50% of the primary link's bandwidth, the secondary link will 
disconnect the ISDN connection.  

 
 Interface serial 0  
 Backup interface serial 1  
 Backup load 80 50  



 
Of course, this assumes that an external ISDN terminal adapter is used to connect the router serial 
interface to the ISDN line and that the terminal adapter is configured to dial on DTR and has all the 
necessary information to dial (destination number, switch type, etc).  

 



 Additional WAN Technologies  
 

 
To finish this chapter, we'll discuss some general terms, technologies, and devices used in WAN 
implementations. First, let's take a closer look at the Cisco serial ports that interface to WAN 
connections.  

 
 Cisco Serial Interfaces  
 

 

Cisco serial interfaces are either built in, as with the fixed-configuration routers such as the 2500-
series, or installed, as with the Fast Serial Interface Processor (FSIP) card, for modular routers 
such as the 7500-series. Either way, the interface itself is basically the same device that will 
support speeds up to T-1 (1.544 Mbps) in the United States, and E-1 (2.048 Mbps) elsewhere. The 
only restriction here is that the FSIP card has two 4-port modules, with each module capable of 
supporting four T-1 connections; only three E-1 connections can be supported simultaneously 
because the aggregate throughput on this card cannot exceed 8 Mbps.  

 

 

The Cisco serial port uses a proprietary 60-pin connector and configures itself according to the 
cable and equipment that are connected to it. As discussed in Chap. 3, a Cisco serial port will 
configure itself as DTE or DCE depending on the cable end connected to it. Cisco serial port 
cables will terminate in EIA-232, EIA-449, X.21, or V.35 connectors. These standards have 
differing capabilities regarding the distance over which they can transport communications at 
varying speeds. Table 6.1 shows the distances over which it is safe to deliver data at varying 
speeds for these interface standards. These are not necessarily hard-and-fast rules; it is possible 
to use longer cables—but if you do so, you start running the risk of frame errors being introduced 
by interference on the cable.  

 
 Table 6-1: Serial Communications Distance Limitations  
 
    
 
 Rate   

 
 EIA-232 Distance (feet)  

 EIA-449, X.21, V.35 Distance (feet)  
 

 
    
 
 9600   

 
 50  

 1,025  
 

 
 56,000   

 
 8.5  

 102  
 

 
 1,536,000   

 
 N/A  

 50  
 

 
    
 

 
EIA-232 cannot transmit a given speed of data at the same rate as the other interface standards 
because it uses unbalanced signals. The terms balanced and unbalanced are often used in data 
communications, so we will explain the difference between these two types of communication 



here.  
 

 

First we need to understand a little of what voltage is. Volts measure what is known as the 
electrical potential difference between two objects. Measuring a difference requires a common 
reference point for measurement against in order to make the number meaningful. It's like 
measuring the height of a mountain with reference to sea level rather than against the next closest 
mountain. It's the same with volts. They normally are quoted as so many volts above what is 
known as ground, which is taken as 0 volts, i.e., the electrical potential of the planet Earth.  

 

 

Just as there is nothing inherently dangerous about standing on top of a tall building, there is 
nothing inherently dangerous about being at a certain voltage level. The danger comes if you fall 
off the building and come in to contact with the ground at high velocity. The same is true if you are 
at a given voltage level and come into contact with something at a different voltage level. When 
two objects at different voltage levels come into contact with each other, they will try to equalize 
their voltage by having current (amperes) flow between them.  

 

 

In data communications, signals that represent data are measured in terms of a particular voltage 
level. In unbalanced communications, there is only one wire carrying the data signal, and its 
voltage level is measured against ground (i.e., the Earth's voltage level). With balanced 
communications, two wires are used to transmit the signal, and the signal voltage level is 
measured between these wires. Using two wires for data transmission significantly improves a 
cable's ability to deal with electrical interference.  

 

 

The idea behind why two wires are better at dealing with electrical interference is simple. If a two-
wire system is transferring data and is subject to electrical interference, both wires are similarly 
affected. Therefore, the interference should make no difference to the circuitry receiving the two-
wire transmission, which determines the voltage level, and hence the signal, as the difference in 
electrical potential between the two wires. With unbalanced single-wire transmission, any electrical 
interference on the line directly affects the voltage potential of that wire with respect to ground. 
Therefore, unbalanced data transmission is less able than balanced transmission to deliver 
uncorrupted signals in the presence of electrical interference.  

 

 

Serial Interface Configuration. If a serial interface is acting as a DCE and is generating a clock 
signal with the clockrate command, the normal operation is for the attached DTE device to 
return this clock signal to the serial port. If the attached DTE device does not return the clock 
signal to the serial port, you should configure the port with the transmit-clock-internal 
command.  

 

 
Encoding of binary 1 and 0 is normally done according to the Non-Return to Zero (NRZ) standard. 
With EIA-232 connections in IBM environments, you may need to change the encoding to Non-
Return to Zero Inverted (NRZI) standard as follows.  

 
 Router1(config)#interface serial 0  
 Router1(config-int)#nrzi-encoding  
 

 
Cisco serial ports use a 16-bit Cyclic Redundancy Check (CRC) Frame Check Sequence (FCS). If 
a Cisco serial interface is communicating directly with another Cisco serial interface, better 
performance might be obtained by using a 32-bit CRC, as fewer retransmissions occur with a 32-
bit CRC. To enable 32-bit CRCs, perform the following in interface configuration mode:  

 
 Router1(config-int)#crc32 



 Router1(config-int)#crc32  
 

 

High-Speed Serial Interface. I have mentioned technologies in this book that make use of speeds 
higher than T-1 speeds, for example, SMDS or frame relay delivered on a T-3 circuit. To 
accommodate these higher transmission rates, a modular Cisco router uses a High-Speed Serial 
Interface (HSSI). The HSSI, just one, is delivered on an HSSI Interface Processor (HIP) card. The 
HIP card is inserted in any slot on a 7x00-series router and interfaces directly to the router bus 
architecture, the Cisco eXtended bus, or cxbus.  

 

 

The HSSI is now a recognized standard, known as the EIA612/613 standard and operating at 
speeds of up to 52 Mbps. This enables the interface to be used for SONET (51.82 Mbps), T-3 (45 
Mbps), and E-3 (34 Mbps) services. The HSSI on the HIP is different from other Cisco serial ports 
in that it uses a 50-pin Centronics connector and requires a special cable to connect to the 
incoming line's DSU device. In other words, a regular SCSI cable will not do. Once installed and 
connected, the HSSI can be configured and monitored just as any other serial port. The following 
example applies an IP address of 193.1.1.1 to an HSSI on a HIP inserted in slot 2 in a 7x00 series 
router.  

 
 Router1(config)#interface hssi 2/0  
 Router1(config-int)#ip address 193.1.1.1 255.255.255.0  
 

 
All Cisco serial ports are numbered starting at 0, and as there is only one HSSI on a HIP, it will 
always be port 0. Any other special encoding necessary, such as framing type or linecode, will be 
specified by the supplier of the high-speed line.  

 
 Line Types  
 

 
For more than 25 years, telephone companies have been converting from analog to digital 
transmission their networks that carry voice transmission. Nearly all of the bulk communications 
between telephone company switching points is digital. It is only over the last mile or so from a CO 
to a home or small business that the communication is analog.  

 

 

You may have wondered why so much of data communications is based upon 64 kbps circuits or 
multiples thereof. The reason is that, in digital terms, it used to take 64 kbps to cleanly transmit a 
voice signal. This single voice channel is referred to as a DS0. Data communications came along 
after the digitization of voice traffic, and therefore "piggybacked" on the voice technology in place. 
Let's take a brief look at the basic unit of digital transmission lines, the 64 kbps circuit.  

 

 

Dataphone Digital Service (DDS). Dataphone Digital Service, or DDS as it is commonly referred 
to, actually gives you only 56 kbps throughput. The additional 8 kbps is not available for data 
transfer and is used to ensure synchronization between the two ends of the DDS circuit. This is a 
function of the Alternate Mark Inversion (AMI) data encoding technique. DDS is essentially 
supplied over the same pairs of copper wires used for regular analog telephone connections, and 
two pairs, for a total of four wires, are needed for the service.  

 

 In the United States, the telephone company will install the line up to what is known as the 
"demarc," a point of demarcation with respect to troubleshooting responsibility. The demarc is a 
RJ-48 connector, to which you must connect a CSU/DSU device. In Europe and other parts of the 



one; the Channel Service Unit (CSU) interfaces to the telephone company's network for DDS and 
T-1 services, whereas the Data Service Unit (DSU), interfaces to your equipment, in this case a 
router.  

 

 

In many locations, 64 kbps lines are now available through the use of B8ZS (Bipolar with 8 Zero 
Substitution) encoding that replaces AMI. This gives you back the full 64 kbps by use of a more 
intelligent line coding mechanism. This 64 kbps service is known as Clear Channel Capability or 
Clear 64. All you need to make sure of in your CSU configuration is that it has AMI encoding for 56 
kbps services and B8ZS for 64 kbps service.  

 

 
T-1, Fractional T-1, and T-3 Services. A T-1 is a collection of 24 DS0 circuits, and often is 
referred to as a DS1. T-1 service may be delivered as either channelized or unchannelized. The 
unchannelized option is the easiest to understand. In effect, the unchannelized T-1 acts as a 1.536 
Mbps pipe that connects to one serial interface.  

 

 

In its channelized form, the T-1 can be used to deliver 24 time slots, each having 64 kbps 
throughput, or the PRI service previously discussed in the section on ISDN. The channelized T-1 
has two typical applications. The first is to supply 24 DS0 connections over one physical link. A T-1 
configured this way can be directly connected to one of the two ports on a MIP card inserted in a 
7x00-series router, or the one available port on the CT1 card inserted in a 4700-series router. 
Once connected, the T-1 can be addressed as 24 separate serial interfaces. The telephone 
company can "groom" each of the separate DS0 channels to any location on its network that is 
serviced by an individual DS0 circuit. This is done via a device termed the Digital Access Cross 
Connect (DACC).  

 

 
Using a T-1 in this way simplifies central site equipment management considerably. Consider a 
head office that needs to be connected to (conveniently) 23 remote branches. All that is necessary 
in the head office is one T-1 connected to a MIP or CT1 card; no additional CSU/DSU or cabling 
requirements are necessary.  

 
 The following is an example of how to get into configuration mode for the 22nd DS0 channel on a 
channelized T-1 connected to port 0 in a MIP card that is inserted in slot 1 of a 7x00-series router. 

 
 Router1(config)#interface serial 1/0:22  
 Router1(config-int)#  
 
 From here, an IP address can be assigned, encapsulation defined, and any other configuration 
entered, just as for any other physical serial port.  

 

 

A T-1 also can be used as an efficient way to deliver analog phone services, but to do this, an 
additional piece of equipment, a channel bank, is necessary to convert the digital T-1 signals to 24 
analog telephone lines. This can be useful if you need to configure many centrally located dial-up 
ports, into which roving users will dial into with analog modems. The Cisco AS-5200 has a built-in 
channel bank and modems so that simply by connecting a single T-1 connector to it, you can have 
up to 24 modem calls answered simultaneously. In fact, the AS-5200 is even a little more clever 
than that. The AS-5200 also has a built-in T-1 multiplexer, giving it hybrid functionality for call 
answering. This means that if you connect a T-1 configured as a PRI to an AS-5200, the AS-5200 
will autodetect if the incoming call is from a digital ISDN or analog caller and will answer the call 
with the appropriate equipment.  



 
As we discussed previously for DS0 channels, a T-1 can use either AMI or B8ZS encoding and 
either the Extended Super Frame (ESF) or D4 framing format. As long as your T-1 equipment (I'm 
assuming it's a router) is configured to be the same as that used by the telephone company, you 
should be okay.  

 

 

In Europe and elsewhere, multiple DS0 services are delivered on an E-1, which comprises 32 DS0 
channels, giving 2.048 Mbps throughput. The E-1 uses High Density Bipolar 3 (HDB3) encoding. If 
you order a 256 kbps or 384 kbps circuit from your carrier, you will get a T-1 installed and be 
allocated only the appropriate number of DS0 channels needed to give you the desired throughput. 
This service is known as fractional T-1 and is a good idea. The one constant in data networking is 
the increased need for bandwidth, so it makes sense to install capacity that is easily upgraded, as 
it probably will be needed at a later stage anyway.  

 

 

A T-3 or DS3 connection is a collection of 672 DS0 circuits of 64 kbps each, which gives a total 
throughput of 43,008 kbps. (DS3 is the term used for this speed communication over any medium, 
whereas T-3 is specific to transmission over copper wires.) The actual circuit speed is somewhat 
faster than that, but some effective bandwidth is lost to synchronization traffic. An HSSI is the only 
interface that a Cisco router can use to connect to a T-3.  

 
 The hierarchy of these circuits just discussed is as follows: a single DS3 comprises seven DS2 
channels, which break out to 28 DS1 channels, generating a total of 672 DS0 channels.  

 

 

All this potential for faster and faster throughput does not always materialize. Imagine that a 
company needs to perform a mission-critical file transfer across the Atlantic five times a day. The 
file transfer uses TCP as the layer 4 protocol to guarantee correct sequencing of packets and to 
guarantee delivery. The file that is being transferred is getting bigger and taking longer to transfer, 
so the company is prepared to spend money to upgrade the link to speed up the file transfer. The 
transatlantic link is currently running at 384 kbps, and the plan is to upgrade the link to 512 kbps. 
Will this speed up the transfer? It depends.  

 

 
TCP works on the basis of requiring from the receiving device an acknowledgment confirming that 
the packets sent have arrived safely before it will send more packets. The number of packets TCP 
will send before it stops and waits for an acknowledgment is defined by the Window size.  

 

 

Let's say the Window size is set initially at 7500 bytes. Now, if you measure the round-trip delay 
across the Atlantic, it normally will come to around 160 milliseconds (0.16 seconds). So we have to 
ask ourselves, "How long does it take to clock 7500 bytes onto the link?" If it takes less than 160 
milliseconds, the sending device stops transmitting and waits for an acknowledgment from the 
receiver before it will send any more packets. If this occurs, clearly the full bandwidth is not being 
utilized. So let's work out what will happen.  

 

 

Multiplying 7500 by 8 bits per byte yields 60,000 bits. A 384,000 bps link will take 0.156 seconds 
(60,000/384,000) to clock this number of bits onto the line. You can see that if the round-trip time is 
0.16 seconds, the transmitter already will have been waiting for 0.04 second before it transfers any 
more data. Increasing the speed of the link to anything above 384 kbps means that the sending 
device will just spend more time idle, waiting for acknowledgments, and the speed of the file 
transfer will not improve.  

 

 
The only way to improve the effective throughput if a higher-speed line is installed is to increase the 
Window size. If this value is changed on one machine, it must be changed on all other machines 
with which the machine communicates—which might be something of an implementation challenge. 



 



Summary  
 
 This chapter examined the underlying technological operation of popular WAN protocols and 
discussed how to configure these protocols on   

 

 
Cisco router interfaces. The public data network technologies examined were frame relay, SMDS, 
and X.25. The point-to-point protocols illustrated were SLIP, asynchronous and synchronous PPP, 
SDLC, and ISDN. The chapter concluded with a brief discussion of additional WAN technologies, 
such as Cisco serial interfaces, and the different digital line types that are commonly available.  

 



Chapter 7: Building a TCP/IP Router-Based 
Network  
 
 Objectives  
 
 In this chapter we will:  
 
   •Examine various options for building your internetwork in a scalable, robust, manageable, and 

cost-effective manner.  
 
   •Give some general guidelines and some options for each category, so you can choose which is 

most appropriate for your situation.  
 
   •Apply selected technology options to construct a sample internetwork.  
 



 The Base Internetwork  
 

 
Here we will outline the sample internetwork we will build at the end of this chapter. This 
internetwork will form the basis for discussion of implementation, security, backup, and 
management issues as we progress through the chapter. First, let's define what we want to 
connect together.  

 

 

We will assume a data center in Chicago, where the head office also is located, and approximately 
100 branch offices clustered around major cities, such as New York, Atlanta, Dallas, San 
Francisco, and Los Angeles. A typical branch office has 20 PCs that need access to hosts located 
in the Chicago data center, local applications, e-mail, and the Internet. There also is a growing 
need to support staff working from home and roving users with dial access.  

 
 The issues that need to be resolved are as follows:  
 
   •Do I use InterNIC/IANA-assigned IP addresses, or make up my own?  
 
   •What topology will be used?  
 
   •What IP addressing scheme and routing protocol will I use?  
 
   •What options are available for providing backup links in the event of line failure?  
 
   •How do I minimize the manual-support burden for IP address and name resolution?  
 
   •What reasonable security measures should I enforce?  
 
   •How can I reduce support costs by making this internetwork easily manageable from one 

location?  
 

 

These issues will form the basis of discussion for the following sections. With internetwork design, 
as with many other aspects of networked computing, many options are available, and each will be 
appropriate for one application and inappropriate for another. I hope to be fairly unbiased in my 
presentation of each option, but I will favor those solutions with which I have had the most success. 
The bulk of this chapter will discuss the options available to you for internetwork configuration. At 
the end of this chapter we will return to the aforementioned requirements and select appropriate 
configuration options to service them.  

 



IANA or Not IANA?  
 

 

IANA stands for the Internet Assigned Numbers Authority, which is essentially an independent 
body responsible for assigning Internet addresses, well-known port numbers, autonomous system 
numbers, and other centrally administered Internet resources. The people who actually assign IP 
addresses for use on the Internet in the United States are those at InterNIC. If you have to apply 
directly for Internet addresses (that is, if you do not want to go through an Internet service provider, 
or ISP), the documentation you have to fill out states that the InterNIC assigns Internet addresses 
under the authority of IANA. In Europe, address assignment is handled by the Resaux IP 
Europeans (RIPE), and the Asia Pacific NetworkInformation Center (APNIC) assigns addresses in 
Asia.  

 

 
The question is, do you use on your internetwork IP addresses that are globally valid on the 
Internet, or do you make up your own numbers to suit your particular internetwork's needs? Let's 
take a few moments to consider the benefits and pitfalls of each approach.  

 

 

Assuming that a firewall of some kind is in place to separate your internetwork from the Internet 
(firewalls will be considered in more depth later in this chapter), the question boils down to: Should 
I use network address translation or a firewall's proxy server function to allow me the freedom of 
assigning my own addressing scheme, or do I want to get InterNIC addresses and be part of the 
global Internet addressing scheme?  

 

 

We first should discuss the benefits of using a proxy server. If you have any concerns regarding 
security, it is appropriate to use a proxy server firewall machine as a single connection point from 
your internetwork to the Internet. A proxy server separates two networks from each other, but 
allows only prespecified communication between the two to occur. A proxy server has two sides, 
the inside (your internetwork) and the outside (the Internet), and is configured to allow only certain 
types of communication to take place.  

 

 

This means that if you decide to allow outgoing Telnet sessions, and if a client PC on the inside of 
a proxy server wants to establish a Telnet session with a host on the outside of the proxy server 
(the Internet side), a direct Telnet session between the two machines will not be made. What does 
happen is that the client PC will establish a Telnet session with the proxy server, the proxy server 
will establish a separate session with the host on the Internet, and the proxy server will pass 
information between the two. As far as the client PC and the Internet host are concerned, they are 
talking to each other directly; in reality, however, the client PC is talking to the client side of the 
proxy server, and the Internet host is talking to the Internet side of the proxy server. The proxy 
server passes any traffic that we have previously determined is allowable onto the other side, and, 
optionally, logs all communications that have taken place.  

 

 

As a side benefit, this type of server shields the internal network numbering scheme from the 
external network. This means that an Internet proxy firewall server will have a set of InterNIC-
assigned addresses on the Internet side and some user-defined addressing scheme on the 
internal side. To enable communication between the two, the proxy server maps internal to 
external addresses.  

 

 

If you choose to implement your own addressing, this proxy server feature gives you a lot of 
freedom to design an appropriate networking scheme for the internal network. Addresses assigned 
by the InterNIC are typically Class C addresses, which might not fit the internal network's needs. 
Also, the application process to get addresses directly from the InterNIC is arduous, to say the 
least.  



 

 
The same benefits of shielding the internal network numbering scheme can be delivered by a 
network address translation server. An address translation server changes the addresses in 
packet headers, as packets pass through it. This type of server does not run any application 
software and does not require hosts to run proxy-aware applications.  

 

 

There are, however, some potential issues related to implementing your own IP addressing 
scheme that are avoided when addresses are obtained from the InterNIC. The most obvious is that 
if you assign to your internal network a network number that already is in use on the Internet, you 
will not be able to communicate with the Internet sites using that address. The problem is that the 
routing table on the proxy server directs all packets destined for that network number back to the 
internal network.  

 

 
The Internet Assigned Numbers Authority (IANA) foresaw this problem and reserved some Class 
A, B, and C network numbers for use by internal networks that were isolated from the Internet by a 
proxy server. These reserved addresses are as follows:  

 
 Class A10.0.0.0  
 
 Class B172.16.0.0 to 172.31.0.0  
 
 Class C192.168.xxx.0  (where xxx is any value 0–255)  
 

 

This means that any number of organizations can use these addresses for their internal networks 
and still be assured of reaching all Internet sites. This solution creates another problem, however, 
because firewalls are not used only to connect to the Internet. Corporations in increasing numbers 
are connecting their networks to each other and need to secure communications between the two. 
This is particularly true for information service companies that deliver their information to a client's 
network. If two organizations use 172.16.0.0 as their internal network, they cannot connect their 
networks together unless one of them renumbers. The only alternative to renumbering would be 
for the two corporations to go through a double address translation stage, which would be difficult 
to manage. There are some benefits to having InterNIC-assigned addresses on your internal 
network. You have the peace of mind of knowing that your network can be safely hidden from the 
Internet, yet you still have the ability to access every Internet site out there. In addition, if you need 
to connect to another company's network, you should be okay. The chances of any given 
organization implementing network address translation and choosing your assigned address for 
their internal network are small.  

 

 

On the downside, using InterNIC addresses can be restrictive and can necessitate implementation 
of a very complex network numbering scheme. If you have only 200 hosts that need addresses, 
you are likely to get only one Class C address. If you are particularly unlucky during the appli-
cation process, you will not even be assigned Class C addresses. Some applicants now are 
expected to use only portions of a Class C network address, which requires a routing protocol that 
supports discontinuous subnets. This may cause restrictions to network design, or at the very 
least, a complex numbering scheme that will prove difficult to troubleshoot.  

 

 

I recommend that unless you already have adequate addresses assigned by the InterNIC, you do 
not use InterNIC-assigned numbers for your internal internetwork. Most people who implement 
network address translation will use the IANA-reserved addresses, typically the Class A network 
number 10. If you are concerned that you might need to connect your internetwork to another 



company that has implemented network number 10 for its internal network, use network number 4 
or 5. These class A numbers are reserved for the military and are not present on the Internet.  

 
 The rest of this chapter will assume that we have decided to hide the internal network numbering 
scheme and are free to assign a network numbering scheme that makes things easy to administer. 

 



 Internetwork Topology  
 

 

In general, we can identify three classes of service within an internetwork: backbone, distribution, 
and local services. These three levels of service define a hierarchical design. The backbone 
services are at the center of the hierarchy, and handle routing of traffic between distribution 
centers. The distribution centers are responsible for interfacing the backbone to the local services, 
which are located in each site. At each site, the local services connect individual hosts (multiuser 
machines and PC workstations) to the distribution network.  

 

 

In the requirement we have specified above, each major location, such as New York, Atlanta, and 
Los Angeles, becomes a distribution center, as illustrated in Fig. 7-1. The distribution center 
concept is a simple one in that it can be used to associate a specific range of IP addresses with 
one geographic location. This simplifies matters when troubleshooting, can reduce the size of 
routing tables, and hence can reduce the size of routing updates.  

 

 

  
 
 Figure 7-1: Distribution centers connected via a backbone network 

   
 
 This topology gives you the flexibility to implement either a distance vector or link state routing 
protocol. We shall now look at alternatives for interconnecting sites on the backbone.  

 
 Backbone Topologies  
 

 
The following discussions are based on connecting the main centers together. The goals for this 
part of the hierarchy are high availability, higher levels of throughput, and the ability to add new 
distribution centers with a minimum of disruption of service to the internetwork as a whole.  

 

 

Star Topology. The star network topology is illustrated in Fig. 7-2, which shows Chicago in the 
center, with all lines emanating from there to the main locations. This topology is a simple one to 
understand and troubleshoot. It does, however, place a greater processing burden on the central 
router located in Chicago, because all traffic passing between distribution centers must pass 
through that router. In addition, only one full-time connection goes to each location. That means 
that if one of the main lines from a distribution center to the central site fails, all communication to 
or from that center stops until some dial backup mechanism reestablishes the link.  

 



 

  
 
 Figure 7-2: A backbone network utilizing a star topology 

   
 

 

If the bandwidth necessary to provide full communications between a distribution center and the 
central site is greater than 128 kbps (what is achievable with a single ISDN connection), there are 
no simple and inexpensive ways to establish a dial backup connection. Multilink PPP is just 
becoming available, and there are some proprietary ways to perform what is termed inverse 
multiplexing, the combining of several ISDN connections and making them appear as one line. 
This could be an option for the star topology if you decide to implement it.  

 

 
Ring Topology. The ring topology, as its name suggests, forms a ring around all the main 
distribution centers (Fig. 7-3). The advantage is that each site has two permanent connections to 
it, so in the event of a single line failure, an alternate path is available to deliver traffic.  

 

 

  
 
 Figure 7-3: A backbone network utilizing a ring topology 

   
 

 

The downside is that traffic destined for Dallas from Chicago has to pass along the link from 
Chicago to New York, then to Atlanta, and finally to Dallas. This places a higher bandwidth 
utilization on the Chicago-to-New-York link than is necessary, because that link is carrying traffic 
destined for Dallas. Also, since it uses more lines than the star topology, there is less likely to be 
money for a dial backup system, which is okay since there are two lines feeding each location. If 
any two lines fail, however, the network is down hard until one of them comes back.  



 

Fully Meshed Topology. This is the ultimate in resiliency, minimizing the number of intermediate 
routers through which traffic must pass, and reducing the amount of traffic on each link. The 
obvious drawback is the cost of all the leased lines. There are very few situations that justify a fully 
meshed network, because just adding one more distribution center to the backbone takes up 
significant resources in terms of router ports at each location. A fully meshed network is shown in 
Fig. 7-4.  

 

 

  
 
 Figure 7-4: A backbone network utilizing a fully meshed topology 

   
 

 

Partially Meshed Topology. The concept behind the partially meshed network should be familiar 
to all those who have been involved in internetwork design, and that concept is compromise. The 
partially meshed network, as illustrated in Fig. 7-5, adds a few cross- connect lines to the ring 
topology, but not quite as many as would a fully meshed network. This is the most popular form of 
internetwork backbone because it can be adjusted to suit the requirements of the organization. 
Typically, the more important locations will receive the most connections feeding it. Also, network 
redundancy can be added as required, without the need to redesign the whole topology.  

 

 

  
 
 Figure 7-5: A backbone network utilizing a partially meshed topology 

   
 

 A backbone of this design does not rely on dial backup of its links; rather, it assumes that at least 
one of the main lines feeding each distribution center will be up at all times. Having alternate paths 
available in case of line failure complicates the process of deciding what size link to install between 



distribution centers. Let's say it is estimated that a 128 kbps line will adequately handle the traffic 
requirements between New York and Atlanta under normal conditions in the internetwork 
illustrated in Fig. 7-5.  

 

 

Now suppose the link between Dallas and Atlanta fails. Assuming that a dynamic routing protocol 
of some kind is in operation, traffic between Dallas and Atlanta will be routed through Chicago, 
New York, and on to Atlanta. The link between New York and Atlanta is now carrying its normal 
load, plus whatever normally flows between Dallas and Atlanta. If the combined level of this traffic 
is significantly above 128 kbps, the effects could be disastrous for the inter-network. If the 
combined traffic is, say, in the region of 160 kbps, backbone routers will begin to drop packets as 
soon as buffers start to overflow.  

 

 
If this traffic is based on a connectionless protocol (like UDP), the data is merely missed, but if the 
traffic utilizes a connection-oriented protocol (such as TCP), even more traffic will be sent as 
retransmissions occur. This effect causes the New-York-to-Atlanta link to be overutilized and thus 
virtually unusable.  

 

 

In this scenario, having an alternate path has made things even worse. Instead of the line failure 
affecting communication only between Dallas and Atlanta, it now adversely affects New-York-to-
Atlanta traffic, and potentially Dallas-to-Chicago traffic, and Chicago-to-New-York traffic as well. As 
a general guideline, if you are going to rely on alternate paths to provide backup in the event of a 
link failure, backbone links should be no more than 50 percent utilized under normal conditions.  

 

 

The Public Network Concept. The public network concept means that you delegate to a network 
vendor the management of the backbone and distribution center internetworking issues. Typically 
you will provide a single link (with optional dial backup, or duplicate leased line) from each remote 
site to the network vendor's cloud, and leave it up to the vendor to deliver the traffic to the main 
office location.  

 

 

This type of approach has become popular with frame relay networks, as discussed more fully in 
Chap. 6. A frame relay solution even can be used to eliminate the need for distribution centers, as 
each office location could be linked directly to the frame relay service. Frame relay services 
became popular when frame relay vendors were trying to introduce the technology. Often a 
company could buy a very low CIR, and hence pay very little for the connectivity in relative terms, 
yet still get acceptable throughput. The reason for this was that the frame relay networks had 
surplus capacity.  

 

 

This was not a frame relay vendor's idea of a good deal. From a vendor's perspective, the goal is 
to oversubscribe the shared network and thus lower costs, resulting in higher profits for the vendor 
and lowered prices for customers. This may seem a harsh judgment, but I know of many 
companies that bought a very cheap 4 kbps or so CIR and were very happy with its performance 
to begin with (often they were able to get burst rates of throughput of over 100 kbps), but became 
unhappy when the frame relay service became more popular and their allowable throughput 
diminished to much nearer 4 kbps, which made the network useless from their perspective.  

 

 The simple solution is to increase the CIR and pay the network vendor more money. I believe, 
however, that internetworks are there to provide users with reliable and responsive service to 
applications. If you need 64 kbps to do that, you need a 64 kbps CIR, which might start to 
approach the costs of having your own dedicated bandwidth. The bottom line is that with your own 



you need to get to users is Internet, e-mail, and occasional file transfer capabilities, frame relay or 
some other shared network solution might meet your needs. If you have to deliver mission-critical 
applications and therefore need guaranteed uptimes and response times, you need your own 
bandwidth.  

 
 Distribution Center Topologies  
 

 
Conceptually, anything that was done with the backbone could be repeated for the distribution 
centers to interconnect individual sites to the internetwork. However, the distribution centers have 
a different function to perform than the backbone links and routers, which makes the star topology 
with dial backup by far the most common choice.  

 

 

The link between a distribution center and a particular office where users are located has to carry 
traffic only for that office and therefore has a lower bandwidth requirement than does a backbone 
link. This makes dial backup utilizing technologies such as ISDN more attractive, as the dial-up link 
in this situation is more likely to be able to handle the traffic. The other network topologies are 
feasible, but the cost is rarely justified.  

 

 
Assuming that at the distribution level we have individual links going from the distribution center to 
each site, we have a choice to make regarding dial backup. We can provide no dial backup if the 
network connection is not mission-critical, provide dial backup to the distribution center, or provide 
a central dial backup solution at the head office.  

 

 

Deciding whether to provide one central pool of dial ports or distributed ports at each distribution 
point depends on what the users at each site ultimately need to access. Given that the remote 
sites need access to head office hosts, we have to consider where other servers, such as e-mail 
and office automation servers, will be located. The options for locations for these types of servers 
are the head office, the distribution center, and the remote site.  

 

 
The most efficient design from the perspective of dial-up port utilization is to provide one central 
pool of ports. This enables you to provide the least number of ports and still provide sufficient 
backup capability for realistic network outages. If separate pools of ports are made available at 
each distribution center, more ports overall are necessary to provide adequate cover.  

 

 
If all services to which users need access over the internetwork are located at the head office, it 
makes sense to go with one pool of ports located at the head office. If the user sites need access 
to servers located at the distribution centers as well as at the head office, it makes more sense to 
provide individual dial-up pools at the distribution centers.  

 

 

There is one additional benefit to providing a central dial-up pool at the head office, and that is if a 
major outage that affects the whole internetwork, the dial-up pool can be used to bypass the 
internetwork. That option is not available with distributed dial-up pools in the distribution centers. 
There might be a slim chance that something will happen to bring down the entire internetwork, but 
it is not unheard of. More than one well-known long-distance telephone company has had 
problems on its network that have affected regional and even national data services.  

 

 
All of this seems quite simple and is basically common sense; the decision of where to locate the 
dial-up ports, however, is inexorably linked to the IP addressing scheme used and the routing 
protocol implemented. Route summarization is a feature of IP networking using distance vector 
routing protocols such as IGRP. Let's discuss what this means with reference to Fig. 7-6.  



 

 

  
 
 Figure 7-6: IP addressing scheme that requires sites to use dial backup located in thedistribution 
center 

   
 

 

This figure shows an internetwork utilizing the addresses reserved by the InterNIC for companies 
using network address translation to connect to the Internet. The backbone uses the Class B 
network number and the distribution centers use Class C addresses implemented with a 
255.255.255.224 subnet mask. This gives six subnets, each supporting a maximum of 30 hosts. 
Assuming that a distance vector routing protocol is in use, route summarization means that the 
distribution center shown will only advertise each Class C network back to the backbone, as the 
backbone is a different network number. Under normal conditions this is okay, because traffic 
traveling from the head office network to a Class C subnet will take the same path through the 
backbone until it reaches the distribution center. If, however, site A in Fig. 7-6 loses its link to the 
distribution center and dials in to a central pool of dial-up ports, we have a problem. We now have 
two physical connections between the 172.16.0.0 network and the 192.168.1.0 network.  

 

 

In this situation, routers at the head office will have to choose between a route to the 192.168.1.0 
network via the dial-up port, or through the backbone. This is because the routing tables in the 
head office routers will accept only whole network number for networks that are not directly 
connected. What ends up happening is that whichever of the two routes to 193.168.1.0 has the 
lowest metric is the one that gets entered in the head office routing tables, and the other route to 
the 193.168.1.0 network will never get traffic.  

 

 

If this network numbering scheme is chosen, distributed dial-up port pools are the only option. If 
the whole internetwork was based on the one Class A or Class B network, appropriately 
subnetted, either central or distributed dial-up port pools would work. This is because all sites are 
on the same major network number and subnet mask information is utilized throughout the 
internetwork to identify where individual subnets are physically attached.  

 
 Head Office and Remote Site Topologies  
 

 

At a user site, such as site A in Fig. 7-6, the on-site router connects the site LAN to the distribution 
center and initiates dial backup when needed. A host machine such as a user PC typically will be 
configured for one router address as the default router, sometimes referred to as the default 
gateway. This means that if the PC has to send traffic to a network address that is not on the 
directly connected segment, it will send the traffic to the default router, which will be expected to 
handle routing of traffic through the distribution and backbone networks. This becomes a problem 
only if the site router fails, but this is a rare occurrence and should be easily and quickly fixed by a 
hardware swap-out.  



 

 

This type of routing is fine for a user site that services up to 20 or so single-user PCs, but it might 
not serve the needs of the central site with multiuser hosts that are accessed by more than 100 
remote offices. To eliminate the central router as a single point of failure, Cisco has developed the 
Hot Standby Router Protocol (HSRP), a proprietary mechanism for providing the functionality of 
the IETF's Router Discovery Protocol (IRDP).  

 

 
The functionality these protocols provide can best be explained with reference to Fig. 7-7, which 
shows how the WAN interconnections illustrated in Fig. 7-5 may be implemented with physical 
hardware for the Chicago head office.  

 

 

  
 
 Figure 7-7: A potential network configuration for the Chicago head office 

   
 

 

If hosts 1 through 3 are configured using default gateways, each host will send all traffic destined 
for remote network numbers to its default gateway. What happens if this router fails? All the router 
devices on the network (assuming that a routing protocol such as IGRP is in use) will adjust their 
routing tables to reflect this change in network topology and will recalculate new paths to route 
around the failure. The hosts, however, do not run IGRP and cannot participate in this process. 
The hosts will continue sending traffic destined for remote networks to the failed router and remote 
access to the hosts will not be restored.  

 

 

IRDP is a mechanism that requires a host TCP/IP stack that is IRDP-aware. A host that uses IRDP 
to get around this problem listens for hello packets from the router it is using to get to remote 
networks. If the hello packets stop arriving, the host will start using another router to get to remote 
networks. Unfortunately not all hosts support IRDP, and to support these non-IRDP hosts, Cisco 
developed HSRP.  

 

 

To implement HSRP, you manually configure each host to use a default gateway IP address of a 
router that does not physically exist, in essence a "ghost" router, which is referred to in the Cisco 
documentation as a phantom. In Fig. 7-7, router 1 and router 2 will be configured to provide HSRP 
functionality to hosts 1 through 3. To achieve this, we enable HSRP on router 1 and router 2 and 
configure them to respond to hosts sending traffic to the phantom router MAC address. Note that 
you do not configure the phantom's MAC address anywhere; you just assign an IP address for the 
phantom in the configuration of routers 1 and 2 that matches the default gateway IP address 
configured in the hosts. Whichever of router 1 or router 2 gets elected as the active router will 
respond to ARP requests for the phantom's MAC address with a MAC address allocated from a 
pool of Cisco MAC addresses reserved for phantoms.  

 
Using the addressing scheme of Fig. 7-7, we could define the default gateway for all hosts as 
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193.1.1.6. The process by which one of these hosts delivers a packet to a remote client PC, e.g., 
200.1.1.1, would be like this:  

 
   •The destination network is not 193.1.1.0, therefore the host will send the packet to the default 

gateway.  
 
   •The ARP table will be referenced to determine the MAC address of the default gateway.  
 
   •A packet will be formed with the destination IP address of 200.1.1.1 and with destination MAC 

address as that of the default gateway.  
 

 

Routers 1 and 2 will be configured to run HSRP, which at boot time elects one of the routers as the 
active HSRP router. This active router will respond to all traffic sent to the MAC address of the 
device numbered 193.1.1.6. Routers 1 and 2 will continually exchange hello packets and in the 
event the active router becomes unavailable, the standby router will take over routing packets 
addressed to the MAC address of the phantom router.  

 
 To enable HSRP on routers 1 and 2, the following configuration commands need to be entered for 
both routers:  

 
 Router(config)#interface Ethernet 0  
 Router(config-int)#standby ip 193.1.1.6  
 

 
Any host ARP requests for the MAC address of 193.1.1.6 will be answered by the active router. As 
long as the active router is up, it will handle all packets sent to the phantom router, and if the active 
router fails, the standby router takes over routing responsibility for the phantom router with no 
change in configuration or ARP tables of the hosts.  

 
 Designing Physical Network Layout  
 

 
Each networking technology has its own physical restrictions and requirements within its own 
specifications. There are, however, some generic guidelines that are useful when designing an 
internetwork that has to provide a high degree of availability.  

 

 

Communication Vendor Issues. The first thing to consider if you are going to install ISDN links 
as dial backups to the main communication lines is that the leased lines and ISDN lines likely will 
be provided by different vendors and delivered to a site by separate networks. If the ISDN and 
main link are provided by one vendor service to one of your remote locations which, then 
experiences a lack of service due to problems at one of your communication vendor's central 
offices, going to dial backup is unlikely to help, as the ISDN connection most likely will be routed 
through the same central office that is experiencing problems.  

There are additional issues to consider for a central site. Typically at a central site that is housing 



broken, the vendor can always get traffic to you by using the other side.  
 

 

This works only if the two fiber cables being used to deliver the service to your central site never 
use the same physical path. This means there must be two points of access to your building so 
that the fibers can be diversely routed into your premises. I have seen several organizations that 
had hoped to reap the reliability benefits of being on a SONET ring but were unable to do so 
because both fibers were pulled through the same access point to the building. In this case, if one 
fiber gets broken, for example, if road workers break all cables going into one side of your building, 
both fibers will be broken, thus taking away part of the benefit of being on a SONET ring.  

 

 

In metropolitan areas, many sites will be serviced with fiber links directly to the building. In less 
densely populated areas, communication vendors typically have to extend service to a building 
using a direct copper link of some kind. Typically it is not cost-justified for a communication vendor 
to extend a SONET ring to a remote area. In the main, this is something you just have to live with. 
The issue you face is that copper connections are more susceptible to interference than fiber 
cables, and you should expect more problems getting a copper-connected site operating at full 
throughput than you would with a fiber-connected site.  

 



Reducing Manual Configuration  
 

 
So far we have discussed issues related to internetwork design and configuration that have 
assumed all devices have an IP address configured. Manually configuring IP addresses for each 
host router and PC implemented on a large internetwork can be a time-consuming task. There are, 
however, some mechanisms such as RARP, BOOTP, and DHCP that can reduce this burden.  

 
 RARP: Reverse Address Resolution Protocol  
 

 

Reverse Address Resolution Protocol (RARP) converts MAC addresses into IP addresses, which 
is the reverse of what the regular ARP protocol does. RARP originally was designed for supplying 
IP addresses to diskless workstations in an Ethernet environment. A diskless workstation has no 
hard drive on which to locate its IP address; it does, however, have a unique MAC address on its 
network card. When the diskless workstation boots up, it sends out a layer 2 broadcast (all 1s in 
the destination MAC address). When a server running RARP receives one of these broadcasts, it 
looks up a table (in a Unix machine, this table is usually located in the /etc/ethers file) and supplies 
the IP address that the table associates with the MAC address back to the machine originating the 
broadcast.  

 

 

The functionality of RARP was enhanced by the bootstrap protocol BOOTP, and later the Dynamic 
Host Configuration Protocol. DHCP is a superset of what BOOTP does. BOOTP and DHCP are 
implemented with both client and server software, the former to request IP configuration 
information, and the latter to assign it. Because DHCP was developed after BOOTP, DHCP 
servers will service IP configuration information to BOOTP clients.  

 
 DHCP: Dynamic Host Configuration Protocol  
 

 
Assuming that a DHCP server exists on the same local segment as a client machine needing to 
find its IP configuration via DHCP, the client machine will issue a broadcast on startup of the IP 
protocol stack. This broadcast will contain the source MAC address of the workstation, which will 
be examined by the DHCP server.  

 

 
A DHCP server can operate in one of three modes, the first of which is automatic assignment, 
which permanently assigns the one IP address to a given workstation. This is appropriate for 
environments with plenty of available addresses for the number of hosts on the network, typically 
one that is connecting to the Internet via a Network Address Translation machine of some kind.  

 

 

The second mode, dynamic addressing, allocates IP addresses to hosts for a predetermined 
amount of time. In this configuration, IP addresses are returned to a pool of addresses that can be 
reassigned as new hosts become available and old hosts are retired. Dynamic addressing is most 
appropriate for sites that have a limited address space and need to reallocate addresses as soon 
as a host is retired. Typically, these sites are using InterNIC-assigned addresses and are 
connected directly to the Internet.  

 

 
The third mode for DHCP, manual mode, uses DHCP merely as a transport mechanism for a 
network administrator to manually assign IP configuration information to a workstation. Manual 
mode is rarely used for DHCP implementations.  

 



 

DHCP is the most popular method of automatically assigning IP addresses, and is the default 
method used by Microsoft products. DHCP has been put forward by many as a method to simplify 
renumbering of an internetwork, should that become necessary for any reason. It would be much 
simpler to change the IP information on a few dozen DHCP servers than on hundreds or 
thousands of hosts. The downside is that there is no built-in cooperation between DHCP and DNS 
(discussed in the next section). Obviously the DNS information will become useless if a host is 
using an IP address different from the one listed in the DNS database.  

 
 Next we'll discuss how to centrally manage host names, then cover a Cisco product that can co-
ordinate DHCP and DNS activities.  

 
 Centrally Managing Host Names  
 

 
So far, we have only discussed translation of host names to IP addresses via reference to a host 
table. On a large internetwork, distributed host files on numerous hosts become burdensome to 
manage. Imagine moving a host from one subnet to another and having to manually alter 
hundreds of host files located around the internetwork to reflect that change.  

 

 

Fortunately, there is a service called Domain Name Service (DNS) that enables you to centrally 
manage the mapping of host names to IP addresses. DNS does not rely on one large table, but is 
a distributed database that guarantees new host information will be disseminated across the 
internetwork as needed. The major drawback of DNS is that there is no way for a new host to 
advertise itself to DNS when it comes online. Although DNS will distribute information throughout 
an internetwork, a host initially must be manually configured into a central DNS machine when the 
host first comes online.  

 

 

You have to configure each host to use DNS in preference to a host file for name resolution, and 
supply the IP address of the DNS server that must be referenced. When a DNS server receives a 
request for information regarding a host it does not currently know about, the request is passed on 
to what is known as an authoritative server. Typically each domain has an authoritative server that 
supplies answers to several DNS servers that each have a manageable number of hosts to 
service. A previous version of DNS was called nameservice. Nameservice and DNS are 
differentiated by the port numbers they use; nameservice uses port number 42 and DNS uses 53.  

 

 
If your internetwork is going to accommodate more than a dozen or so hosts, it is worth 
implementing DNS. In the following discussion, we will examine in overview how DNS is 
implemented on the Internet. It is a good model for illustrating how DNS can be scaled to very 
large internetworks.  

 

 

A DNS hierarchy is similar to the hierarchy of a computer’s file system. At the top is the root 
domain consisting of a group of root servers, which service the top-level domains. These top-level 
domains are broken into organizational and geographic domains. For example, geographic 
domains include .uk for the United Kingdom, .de for Germany, and .jp for Japan. Normally no 
country-specific domain is associated with the United States. The U.S. top-level domain is split into 
organizational groups, such as .com for commercial enterprises, .gov for government agencies, 
and so forth. Some of the top-level domains for the United States are shown in Fig. 7-8.  



 

  
 
 Figure 7-8: Top-level domains for the Internet 

   
 

 
Just as you can locate files in a file system by following a path from the root, you can locate hosts 
or particular DNS servers by following their paths through the DNS hierarchy. For example, a host 
called elvis in the domain stars within the commercial organization oldies is locatable by the name 
elvis.stars.oldies.com.  

 

 

In some ways the operation of DNS can be thought of as similar to the way routing tables work for 
routing packets through an internetwork. No single DNS server has a complete picture of the 
whole hierarchy; it just knows what is the next DNS server in the chain to which it is to pass the 
request. A particular domain is reachable when pointers for that domain exist in the domain above 
it. Computers in the .edu domain cannot access computers in the .work.com domain until a pointer 
to the DNS server of the .work subdomain is placed in the servers of the .com domain. A DNS 
database in the .com DNS servers contains name server records that identify the names of the 
DNS servers for each domain directly under the .com domain.  

 

 

Let's clarify this by considering an example. Supposing a domain under .edu has been created 
called .univ and a domain under .com has been created called .work (illustrated in Fig. 7-8). Now, 
a computer in the .univ domain (let's say it is named vax) needs to contact a machine in the 
.work.com domain (which is called sun). The task to accomplish here is to provide to the machine 
vax.univ.edu, the IP address of sun.work.com. The process to complete this task is as follows:  

 

   
•The vax.univ.edu host is configured to have its DNS server as the machine with IP address 
201.1.2.3, so it sends a DNS request to that IP address. This computer must be reachable by 
vax.univ.edu.  

 

   
•Host vax.univ.edu receives a reply stating that a machine named overtime.work.com has all DNS 
information for the .work.com domain, and the IP address of overtime.work.com is included in the 
reply.  

 
   •Host vax.univ.edu will then send a query to the IP address of overtime.work.com for the IP 

address of sun.work.com.  
 
   •The computer overtime.work.com replies with the requested IP address, so vax.univ.edu can now 

contact sun.work.com.  
 

 DNS is normally implemented on a Unix machine via the Berkeley Internet Name Domain (BIND) 
programs. BIND has two elements, the Name Server and the Resolver. The Resolver forms 



through libraries). The Name Server answers queries, but only computers supplying DNS 
information need to run the Name Server.  

 

 

On a Unix machine running BIND, the named.hosts file contains most of the domain information, 
converting host names to IP addresses and also containing information about the mail servers for 
that particular domain. DNS and BIND are subjects that justify a complete book in their own right. 
The preceding discussion is intended to give a very brief overview of how DNS can simplify 
administration of a large TCP/IP-based internetwork. If you want to set up DNS on your network (I 
recommend that you do), refer to the publication DNS and BIND by Cricket Liu and Paul Albitz, 
published by O'Reilly and Associates.  

 
 If you can configure DNS and either BOOTP or DHCP, your life as administrator of a large TCP/IP-
based internetwork will be much simpler.  

 
 Integrating the Operation of DNS and DHCP  
 

 
Cisco have released a product called the Cisco DNS/DHCP Manager, known as the CDDM for 
short. What we'll look at in this section is an overview of the system components, how DNS and 
DHCP are coordinated by the CDDM, coping with multiple logical networks on the same physical 
wire, and creating a new domain.  

 

 

CDDM System Components. The key to understanding how this integration works is to realize 
that DHCP is the primary tool that allocates IP addresses and updates DNS database entries with 
new IP address information. DNS is the passive receiver in this integrated product. The CDDM 
consists of a Domain Name Manager, which is a graphical DNS management tool that runs on the 
usual platforms of Solaris, HP/UX and AIX, and a DHCP server that does the dynamic updating of 
DNS with IP addresses assigned to DHCP clients.  

 

 

Using a graphical tool like the DNM to update your DNS configuration, rather than manually editing 
ASCII zone transfer files has many benefits. Notably, the Domain Name Manager browser reduces 
common configuration errors by checking the syntax of each new entry. The Cisco DHCP server 
automatically updates the Domain Name Manager with the IP address and domain name of the 
new nodes on the network. The Domain Name Manager then propagates this information to DNS 
servers on the network. As such, the Domain Name Manager replaces an organization's existing 
primary DNS server and becomes the source of DNS information for the entire network.  

 

 

Many hosts that are accessed via the World Wide Web use information in DNS to verify that 
incoming connections are from a legitimate computer. If both an A record and a PTR record are 
registered for the incoming client, the server assumes that a responsible network administrator has 
assigned this name and address. If the information in the DNS is incomplete or missing, many 
servers will reject connections from the client.  

 

 
To simplify the process of bringing a new host on-line, the Cisco Domain Name Manager 
automatically adds the PTR record into the DNS configuration. The PTR record is the mapping 
between an IP address and a DNS name and is also known as reverse mapping. Omitting the PTR 
record is one of the most common mistakes when managing a DNS server.  

 

 For networks that use NT extensively as the applications and file/print services server, the CDDM 
provides enhanced TCP/IP services for NT that are sorely lacking in the base product. These 



network devices including routers and a syslog server to log error messages from network devices 
over the network.  

 

 

More frequently these days, organizations are deploying Ethernet switches that allow a reduction 
in network segment traffic, along with a flattening of the IP addressing scheme. The main benefit of 
this is to use fewer router ports in an internetwork, which produces a cost saving. Problems have 
occurred with traditional devices when DHCP is to be implemented on a segment that has more 
than 254 hosts and class C addressing is in use. This is becoming more common, as address 
depletion of registered Internet addresses results in blocks of class C addresses being the only 
ones available.  

 

 

It is feasible to have multiple class C networks assigned to the same physical segment, however, 
this does cause difficulties for many DHCP servers. These DHCP servers expect one physical 
segment to be associated with only one network number. By contrast, the Cisco DHCP server 
supports address pools that contain multiple logical networks on the same physical network. 
Additionally, the Cisco DHCP server can combine pools of IP addresses from multiple networks 
into a single large pool of addresses. The DHCP server also supports BOOTP to enable you to 
manage BOOTP and DHCP from one server.  

 

 
The Specifics of CDDM Operation. Having overviewed the operation of CDDM, let's look in more 
detail at how it is set up. As previously stated, the cornerstone of the CDDM is the Domain Name 
Manager (DNM) Server, which lets you manage zone data, specifically, host names and 
addresses from across a network.  

 
 The zone data originates in ASCII text files called "zone files," which primary name servers read 
on start-up and propagate to "secondary" name servers via zone transfers.  

 

 
Many network managers choose to advertise only their secondary name servers, and dedicate 
their primary name servers to perform zone transfers. The CDDM supports this approach by 
assigning zone transfer and name resolution to separate servers.  

 

 
The DNM server takes over the role of zone transfers but leaves the role of name resolution to 
DNS servers. DNS servers configured as "secondary" name servers can obtain zone transfers 
from a DNM, but the DNM server must not be advertised as a name server with NS (name server) 
records because it does not resolve names.  

 

 
Every time you modify the DNM server's database, the DNM server increments the appropriate 
zone serial numbers so that the corresponding secondary name servers can detect a change in 
the zones for which they are authoritative and request zone transfers.  

 

 

Normally, you could not run a DNM server and a DNS server on the same host because both 
servers listen on port 53 for zone transfer requests. The CDDM, however, includes an enhanced 
DNS server that can request zone transfers over any port. The Cisco DNS server is based on 
BIND 4.9.5, so you can both use existing zone files and receive new zone data from your DNM 
server. Cisco's on-line documentation uses an example of port 705 to receive data from a DNM 
server.  

The DNM operates as a client server application on a network. The DNM server maintains a single 



DNM client.  
 

 
A special DNM client is called the DNM Browser which simplifies everyday DNS management 
tasks such as adding new hosts or changing host addresses and lets you configure DNM servers 
from remote hosts. The DNM Browser presents a view of the domain name space in an outline-
style layout that makes it easy to browse through domains.  

 

 
The DNM Browser communicates with DNM servers over TCP/IP, so you can manage DNS 
names from remote hosts. On UNIX platforms, the DNM Browser is an X client. On Windows NT 
and Windows 95, the DNM Browser is a native Windows application.  

 
 As you grow your network, the DNM browser will automatically:  
 
   •Modify inverse mappings when you add new hosts, and propagates name server records 

appropriately when you create new subdomains  
 
   •Check for domain name conflicts  
 
   •Finds available IP addresses on specified networks  
 
   •Import existing DNS zone files and export zone files and UNIX-style host tables  
 

 

To manage a DNM server's database from a DNM client, you must have a DNM server account. 
When you connect to a DNM server you must supply a valid user name and password. If you use 
the DNM Browser, you enter your account information when prompted. You can use the 
DHCP/BootP server to manage the DNM server, however, you must configure the DHCP/BootP 
server with valid account information to do so.  

 

 
The previously mentioned Cisco DHCP/BootP server can be configured to behave as a DNM 
client, which allows you to automatically coordinate names in DNS with names in the DHCP/BootP 
server's database.  

 

 
Note the DHCP/BootP server can only update the DNM server with information from its DHCP 
database. The DHCP/BootP server does not propagate information from its BootP database to the 
DNM server.  

 

 
Traditionally, DHCP and BootP databases have been managed independently of the DNS. With 
most DHCP and BootP servers, every time you add a host entry to the DHCP database, you must 
also add corresponding domain names for the host: one in the parent domain and another in the 
in-addr.arpa domain.  

 

 
The Cisco DHCP/BootP server and DNM server eliminate the need to manually coordinate the 
DNS with your DHCP or BootP databases by dynamically updating zones dedicated to your DHCP 
clients.  

 



in multiple domains. If your network requires multiple DNM servers, you must configure a unique 
DHCP/BootP server for each DNM server. Make sure that the DNM server is authoritative for both 
your dynamic host names and the corresponding addresses via the inverse domains under the in-
addr.arpa domain. Of course if your network requires more than one DHCP/BootP server, make 
sure they each use a separate, unique domain.  

 

 

One implementation recommendation is to define a dynamic domain for DHCP clients. The 
DHCP/BootP server lets you choose the name of a domain to which it will add domain names for 
DHCP clients. For example, if your domain is best-company.com, you might reserve the domain, 
dhcp.best-company.com, for DHCP clients. All clients then acquire host names such as 
machine1.dhcp.best-company.com when they accept DHCP leases from your DHCP/BootP 
server.  

 
 The DHCP/BootP server can support only one dynamic domain, but the DNM server can 
accommodate multiple DHCP/BootP servers if they are configured for different dynamic domains.  

 

 
If you do implement a dynamic domain, you should avoid adding names to this domain by any 
means other than by the DHCP/BootP server. If you manually add names to a dynamic domain, 
the DHCP server may delete them, depending on how you configure it.  

 
 There are two methods of specifying how the DHCP/BootP server chooses names for DHCP 
clients.  

 

 

The first method is to create a fixed set of host names based on the DHCP database entry name 
for each IP address pool and propagate those names to the DNM server every time the 
DHCP/BootP server starts. If a host already has the entry name (for example, test), subsequent 
hosts are assigned the entry name with a number appended to it (for example, test1 or test2). 
Each time you start the DHCP/BootP server, it checks its list of outstanding leases and, if 
necessary, it updates the DNM server to rebuild the dynamic domain, even if you did not change 
any of the corresponding DHCP entries.  

 

 

The second method will let the DHCP client request a host name, and add a new domain name to 
the DNM server when the client accepts the DHCP server's offer. If the client does not request a 
name, the DHCP/BootP server assigns a name based on the DHCP database entry much the 
same as method 1. The DHCP/BootP server only adds a name to the dynamic domain when a 
client accepts a lease. Similarly, the DHCP/BootP server only deletes a name from the dynamic 
domain when the corresponding lease expires.  

 

 

Supporting Multiple Logical Networks on the Same Physical Network. The DHCP/BootP 
server lets you create a pool of IP addresses that spans multiple logical subnets, using the sc 
(subnet continuation) option tag, a functional extension of DHCP. This option tag is useful when 
you need to pool addresses from different networks, such as two Class C networks or a Class B 
and a Class C network.  

 

 
For example, suppose you need to offer a pool of 400 addresses and your network is composed of 
two Class C networks. The sc option tag lets you combine the two subnets and put all 400 
addresses in the pool.  

 

 Most IP routers let you forward DHCP/BootP requests received on a local interface to a specific 
host. This forwarding feature is often called BootP helper or BootP forwarder. On Cisco routers, 
you can control BootP forwarding with the Cisco IOS commands ip helper-address and set dhcp 



you can control BootP forwarding with the Cisco IOS commands ip helper-address and set dhcp 
relay. The action of these commands is to pick up a UDP broadcast on a local segment and direct 
them to the IP address specified in the ip helper-address command.  

 

 

When routers forward DHCP/BootP requests, they place their own IP addresses in the 
DHCP/BootP packet in a field called "GIADDR." The router inserts the IP address of the interface 
(called the "primary" interface) on which it received the original DHCP/BootP request. The 
DHCP/BootP server uses the address in the GIADDR field to determine the IP subnet from which 
the request originated so it can determine which pool of addresses to use before allocating an IP 
address to the DHCP/BootP client.  

 

 

When you run multiple IP network numbers on the same physical network, you typically assign 
multiple IP addresses to a router interface by use of the secondary IP address interface 
configuration command. Because the DHCP/BootP server only allocates addresses based on the 
GIADDR field, and because it only receives the router's primary address in the GIADDR field, you 
must configure the DHCP/BootP server to associate the other network addresses with the primary 
subnet using the Subnet Continuation parameter (sc option tag). You can specify an arbitrary 
number of secondary address pools in the DHCP configuration, to make all addresses in the 
primary and secondary entries available to DHCP clients on the corresponding network segments. 
DHCP entries that contain sc option tags must appear after the entry for the subnet they specify in 
the DHCP configuration editor's entry list.  

 

 
Creating a New Domain. To complete our discussion of the CDDM and its components, we'll look 
at the specifics of creating a new domain. Clearly as new revisions of the CDDM these steps will 
change, but the following procedure should give you a good feel for what it takes to operate the 
CDDM.  

 

 
First we'll create a test domain using the DNM Browser, then we'll configure the DNS server as a 
secondary name server for the test domain. Next we'll configure the Syslog service for 
troubleshooting DHCP and BootP service, and look at how to manage the DNM server via the 
DHCP server and finally how to configure the BootP service.  

 
 So, let's get started by using the DNM Browser to create and propagate the best-company.com 
domain.  

 
 Using a Windows NT system as an example, double-click the DNM Browser icon in the directory in 
which you installed CDDM, and choose DNM Browser from the Windows Start menu.  

 
 Next, in the Authentication for local host dialog box, enter admin in both the Username and in the 
Password fields, and click OK.  

 

 

Next, choose Add from the Edit menu in the DNM Browser main window and enter best-
company.com in the Fully Qualified Name field. Check that the Modify records box is enabled, and 
click OK. When the Modify Resource Records window appears, select the Authority tab. Click 
Reset to Suggested Values, at which point the DNM Browser inserts a set of suggested SOA 
values. You can then change the Primary Name Server field to name1.best-company.com. Once 
this is completed, change the Responsible Person Mailbox field to my_e-mail@best-company.com 
(insert an appropriate e-mail address for my_e-mail).  

 

 Now, click the Name servers "+" button in the Name Server Records group, type name1.best-
company.com in the Name servers field, and click OK. The best-company.com domain should now 



company.com in the Name servers field, and click OK. The best-company.com domain should now 
appear in the DNM Browser.  

 

 
Next choose Add from the Browser's Edit menu, and in the Fully Qualified Name field of the Add 
dialog box, type name1.best-company.com, then make sure that the Modify records box is 
enabled, and click OK.  

 

 
In the Basic tab of the Modify Resource Records window, click the "+" button in the Address 
Records group. In the Add IP Address dialog box, type 172.45.1.1 (or whatever IP address is 
appropriate) in the Starting IP Address field, and click OK. When the Modify Resource Records 
dialog box is active again, click OK, name1 now appears in the DNM Browser.  

 

 
You can add a host (called for example host.best-company.com) by repeating the above. To 
refresh the DNM Browser's display, choose Reload from the Edit menu. The address 172.45.1.2 
should be automatically assigned.  

 

 
Note that although the DNM server automatically creates the "reverse" pointer records, it does not 
create a Start of Authority (SOA) record. To add the SOA records for the 1.1.10.in-addr.arpa 
domain, make sure 1.1.10.in-addr.arpa is selected in the DNM browser window, then choose 
Modify from the Edit menu.  

 

 
Once the Modify Resource Records dialog box appears, select Authority in the Modify Resource 
Records window, and click Reset to Suggested Values. The DNM Browser inserts a set of 
suggested SOA values.  

 

 

Next you must change the Primary Name Server field to name1.best-company.com, change the 
Responsible Person Mailbox field to an appropriate e-mail address and click the Name servers "+" 
button in the Name Server Records group to enter name1.best-company.com, then click OK. The 
icon for 1.1.10.in-addr.arpa in the DNM Browser now indicates the new SOA record with a red 
triangle.  

 

 
There are lots of other tasks associated with the CDDM that you can complete, like setting up a 
secondary system. As you gain familiarity with this very useful tool, you can expand the scope of 
the CDDM activities to largely automate the assigning of hostnames and IP addresses on your 
network.  

 



 Securing a TCP/IP Internetwork  
 

 

Security is a concern to all network mangers and administrators, but the level of security that is 
appropriate for any given internetwork can be determined only by those responsible for that 
internetwork. Obviously, an internetwork servicing financial transactions between banks justifies 
more security measures than an internetwork providing access to public-domain technical articles. 
When implementing security measures, there often is a tradeoff between security and user-
friendliness. The risk of a security breach, along with its likely occurrence and its impact on the 
internetwork owner, must be judged on a case-by-case basis.  

 
 Broadly, there are three areas to be considered when security is designed into an internetwork: 
physical, network, and application layer issues.  

 
 Application Layer Measures  
 

 

At the Application layer, features such as Application level usernames and passwords can be 
implemented, and parameters such as the number of concurrent logins for each username, 
frequency at which a password will be forced to change, and minimum length of passwords can be 
enforced. Typically, all traditional multiuser systems (such as mini- or mainframe hosts, and PC 
servers like Novell or Windows NT) support these type of features as standard. For further 
information on the Application-level security features of any network operating system, refer to the 
supplier's documentation.  

 

 

As more and more information is made available via the World Wide Web technologies such as 
HyperText Markup Language (HTML) and HyperText Transport Protocol (HTTP), new Application 
layer security issues have arisen. We will highlight some of the issues associated with 
implementing security measures at the Application level for the newer Web-based technologies 
that utilize browsers and Web servers. These issues are relevant to securing communications on 
either an internal intranet or the public Internet. It should be noted that the following discussion is 
intended only to introduce the concepts of Application level security, because the focus of this 
book is on the Network and lower layers and how Cisco implements the features of these layers.  

 
 Traditional servers (NetWare, NT, etc.) authenticate users based on the use of stateful protocols. 
This means that a user establishes a connection   

 

 
to the server and that connection is maintained for the duration of the user's session. At any one 
time, the server will know who is logged on and from where. HTTP servers were designed for the 
rapid and efficient delivery of hypertext documents and therefore use a stateless protocol. An 
HTTP connection has four distinct stages:  

 
   1.The client contacts the server at the Internet address specified in the URL.  
 
   2.The client requests service, and delivers information about what it can and cannot support.  
 
   3.The server sends the state of the transaction and, if successful, the data requested; if 

unsuccessful, it transmits a failure code.  
 

4.Ultimately the connection is closed and the server does not maintain any memory of the 
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transaction that just took place.  
 

 

Because the server does not maintain a connection, it does not know if multiple people are using 
the same username and password, or from what protocol address they are connecting. This is a 
concern, as users could share usernames and passwords with unauthorized individuals without 
any loss of service to themselves. What is needed is a mechanism that restores the functionality of 
allowing only one username and password to be used from one location at a time.  

 

 
Cookies can help in this situation. In HTTP terms, a cookie is a type of license with a unique ID 
number. Cookies give you the ability to force a user to log in again if he or she uses the same 
username and password from a different workstation. Cookies work like this:  

 

   
•A user logs in for the first time, in this case his/her browser has no cookie to present. The server 
either issues a cookie associated with this user if the user has logged in before, or issues a new 
cookie number if the user has not.  

 
   •If a request from another workstation using the same username and password comes along, the 

server issues a new cookie to that connection, making the original cookie invalid.  
 

   
•The user at the original workstation makes another request, with the cookie number originally 
received. The server sees that a new cookie number already has been issued and returns an 
"unauthorized" header, prompting the user for the username/password pair.  

 
 This mechanism ensures that each username and password pair can be used only from one 
location at a time. Cookies don't answer all   

 
 security issues, but they are a piece of the puzzle for providing security features in an environment 
using Web-based technologies.  

 

 
Overview of Cryptography. Having illustrated the conceptual difference between the traditional 
stateful protocols and the Web-based stateless protocols, we will discuss what technologies can 
address the following concerns:  

 
   1.How do I authenticate users so that I can be assured users are who they claim to be?  
 
   2.How can I authorize users for some network services and not others?  
 
   3.How can I ensure that store-and-forward (e-mail) applications, as well as direct browser-to-

server communications, are conducted privately?  
 
   4.How do I ensure that messages have not been altered during transmission?  
 
 The foundation for supplying answers to these questions is based on cryptography, which is a set 
of technologies that provides the following capabilities:  

 
   •Authentication to identify a user, particular computer, or organization on the internetwork.  



 
   •Digital signatures and signature verification to associate a verified signature with a particular user. 
 
   •Encryption and decryption to ensure that unauthorized users cannot intercept and read a 

message before it reaches its destination.  
 
   •Authorization, using access control lists to restrict users to accessing specified resources.  
 

 

There are two types of cryptography that use a key system to encrypt and decrypt messages, 
symmetric-key and public-key. The following explanations are simplifications of what actually takes 
place; the implementations use sophisticated mathematical techniques to ensure their integrity. 
Symmetric-key cryptography uses the same key to encrypt and decrypt a message. The problem 
with this method is the need to securely coordinate the same key to be in use at both ends of the 
communication. If it is transmitted between sender and receiver, it is open to being captured and 
used by a malicious third party.  

 

 

Public-key cryptography uses a different approach, wherein each user has a public key and a 
private key. When user 1 wants to send a message to user 2, user 1 uses the public key of user 2 
to encrypt the message before it is sent. The public key of user 2 is freely available to any other 
user. When user 2 receives the message, it is decrypted using the private key of user 2. 
Sophisticated mathematical techniques ensure that a message encrypted using the public key can 
be decrypted only by using the proper private key. This enables messages to be securely 
exchanged without the sender and receiver having to share secret information before they 
communicate.  

 

 
In addition to public-key cryptography, public-key certificates, which are also called digital IDs, can 
be used to authenticate users to ensure they are who they claim to be. Certificates are small files 
containing user-specific information. Defined in an ITU standard (X.509), certificates include the 
following information:  

 
   •A name uniquely identifying the owner of the certificate. This name includes the username, 

company, or organization with which the user is associated, and the user's country of residence.  
 
   •The name and digital signature of the device that issued the certificate to the user.  
 
   •The owner's public key.  
 
   •The period during which the certificate is valid.  
 

 
Public-Key Technologies. Public-key technology is implemented in industry-standard protocols 
such as the Secure Sockets Layer (SSL) and the Secure Multipurpose Internet Mail Extensions 
(S/MIME) protocols. These protocols address the issues raised at the beginning of the section as 
follows:  

 
   •Authentication of users is by digital certificates.  
 

•Authorization, to grant users access to specific resources, is provided by binding users listed in 
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access control lists to certificates and checking of digital signatures.  
 
   •Ensuring privacy of communication between two computers is enabled by the use of public-key 

technologies.  
 

   
•Ensuring that messages have not been altered during transmission is covered by the 
implementation of Digest algorithms, such as Message Digest 5 (MD5) as used by Cisco's 
implementation of CHAP. CHAP will be discussed more fully in the section on Network layer 
security.  

 

 
Typically, browser-to-Webserver communications are based on HTTP, which uses a default port 
number of 80 for communications. SSL uses port 443, so you can force all connections to use SSL 
and therefore be subject to SSL security features by allowing connections to a Web server only 
using port 443. This is easily achieved by using Cisco access lists, as shown in Fig. 7-9.  

 

 

  
 
 Figure 7-9: Implementing a router to force LAN systems to use a Secure Sockets layer connection 
(port 443) 

   
 
 Packet-Level Security  
 

 

In this section we cover issues related to Cisco router configuration that affect the overall security 
of your internetwork. This comprises Data Link (encryption) as well as Network layer (routing 
restriction) functions. As with Application layer security, there is a trade-off between providing a 
user-friendly system and one that is highly secure. A balance must be struck that provides 
reasonable ease of access to authorized users and restricts access to unauthorized persons.  

 

 

It must be understood that users can undermine security measures if these measures do not fit 
with work practices. Many times I have seen usernames and passwords written on pieces of paper 
that have been stuck to a screen. Users resorted to this kind of behavior because the passwords 
were changed too frequently and were obscure. To implement security measures fully, you must 
have the backing of senior management, must educate users about security issues, and must 
have agreed-upon procedures known to everyone in the organization.  



 

 
Having said this, there are many security measures a network administrator can implement without 
user knowledge that will significantly improve the security of the internetwork. Let's talk first about 
controlling access to Cisco routers.  

 

 

Password Access to Cisco Routers. First let's see what can be done to restrict unauthorized 
users from attaching an ASCII terminal to the console port and determining information about the 
internetwork by using well-known show commands. There is no default password assigned to the 
console port; simply by attaching the appropriately configured terminal and pressing the Enter key, 
you get the router prompt echoed to the screen. You can add a console password with the 
following commands:  

 
 Router1(config)#line console 0  
 Router1(config-line)#login  
 Router1(config-line)#password gr8scot  
 

 

Now each time a terminal is connected to the console port, a password prompt rather than the 
router prompt is presented to the user trying to get access. On Cisco 2500-series routers, the 
auxiliary port can be used the same way as a console port to attach an ASCII terminal for 
displaying the router prompt. It is a good idea to password-protect the auxiliary port by using the 
following commands:  

 
 Router1(config)#line aux 0  
 Router1(config-line)#login  
 Router1(config-line)#password gr8scot  
 

 
It is always best to make the nonprivileged-mode password a relatively easy-to-remember 
combination of alphanumeric characters. The password shown here is an abbreviation of the 
statement, "Great Scott!"  

 

 
A similar situation is true for Telnet access, and it is a good idea to prompt users with Telnet 
access to the router for a nonprivileged-mode password before allowing them to see the router 
prompt. Each   

 

 
Telnet session is identified by the router as a virtual terminal. Many simultaneous virtual terminal 
accesses can be supported, but a typical configuration puts a five-session limit on Telnet access. It 
does this by identifying terminals 0 through 4, which is implemented with the following commands: 

 
 Router1(config)#line vty 0 4  
 Router1(config)#login  
 Router1(config)#password you8it  
 

 

This discussion covers what can be done to secure access to nonprivileged mode on a Cisco 
router. Restricting access to privileged mode is even more crucial than restricting access to 
nonprivileged mode. Once nonprivileged mode has been gained to the router, only the security of 
the Enable password or secret stops an unauthorized user from getting full control of the router. 



Only the network administration staff needs to know the Enable password or secret that allows a 
user into privileged mode, and it therefore should be obscure and changed frequently. It is part of a 
network administrator's job to keep track of such things.  

 
 The Enable secret is always encrypted in the router configuration. If privileged mode access to a 
router is given through an Enable password, it should be encrypted in the configuration as follows: 

 
 Router1(config)#service password-encryption  
 
 This command is followed by no arguments and encrypts all password displays.  
 

 

Centralizing Router Access. It generally is good practice to limit any type of remote access to 
routers on your internetwork to a limited set of network numbers. It's typical for one network 
number to be dedicated for use by network administrative staff only. It is then possible to configure 
a router to accept network connections that can be used for router management functions only if 
they originate with this particular network.  

 

 

It is possible to restrict this type of access to just one service, such as Telnet, from a central 
location. Ping, SNMP, and TFTP are useful utilities when managing remote devices; however, so 
restricting access to just one network number usually is sufficient. This can be achieved by 
implementing a simple access list on all routers. Access list 13, shown next, (defined in global 
configuration mode) identifies the network used by administration staff to get to the routers, which 
is the 200.1.1.0 network.  

 
 Router1(config)#Access-list 13 permit 200.1.1.0 0.0.0.255  
 

 
Once this list has been defined, it must be applied to an interface. If this list is applied to the virtual 
terminal lines, because the only connections coming into these ports are Telnet sessions, the only 
Telnet sessions accepted will be those that originate from the 200.1.1.0 network. Applying this 
access list to the virtual terminal lines is done via the access-class command as shown:  

 
 Router1(config)#line vty 0 4  
 

 

The TACACS Security System. The discussion so far has centered around defining access 
configurations on each individual router. It is possible to centralize password administration for a 
large number of remote routers by using the TACACS system. TACACS stands for the Terminal 
Access Controller Access Control System. Though TACACS usually is deployed to centralize 
management of CHAP usernames and passwords, which are defined on a per-interface basis, it 
also can be used to authenticate users seeking Telnet (and hence Enable) access to a router. 
TACACS provides the freedom to authenticate individual users and log their activity, whereas an 
Enable password defined on a router is a global configuration and its use cannot be traced to a 
specific user.  

 

 

To configure this type of access checking, you need to set up the TACACS daemon on a Unix 
machine, configure all routers to reference that Unix machine for TACACS authorization, and 
configure the virtual terminals to use TACACS to check login requests. Assuming that a Unix 
machine is appropriately configured for TACACS, with the address 210.1.1.1, the configuration for 
each remote router to will be as follows:  



 
 tacacs-server host 200.1.1.1  
 tacacs-server last-resort password  
 !  
 line vty 0 4  
 login tacacs  
 

 

The first line identifies as a global configuration the IP address of the TACACS host machine. The 
next entry configures the router to prompt the user trying to get access to use the standard login 
password defined with the Enable password command. This command comes into play if the 
router cannot gain access to the TACACS server defined in the first configuration entry. The entry 
login tacacs refers all requests for connections coming in over the virtual terminals to the 
TACACS server for authentication.  

 

 
With this configuration, access to the nonprivileged mode is authenticated by the TACACS server. 
Access to Enable mode can be similarly checked by TACACS if the following configuration 
commands are added:  

 
 !  
 tacacs-server extended  
 enable use-tacacs  
 tacacs-server authenticate enable  
 enable last-resort password  
 !  
 
 Here's what these commands do:  
 
   •Command tacacs-server extended initializes the router to use extended TACACS mode.  
 
   •Command enable use-tacacs tells the router to use TACACS to decide whether a user 

should be allowed to enter privileged mode.  
 

   
•Command tacacs-server authenticate enable is necessary, and if it is not in the 
configuration, you will be locked out of the router. In this example, it may appear redundant, as this 
command defines the Enable form of authentication, but it can be used to authenticate protocol 
connections and more sophisticated options using access lists.  

 
   •Command enable last-resort password allows use of the Enable password in the router's 

configuration if the TACACS server is unavailable.  
 
 The TACACS server authenticates users against those listed in its configuration. Usernames and 
passwords are simply listed in the TACACS server as shown here:  

 
 username user1 password aaa12  



 username user2 password bbb34  
 

 

Extensions to the Cisco-supplied TACACS system allow for the use of a token card that is 
synchronized with the TACACS server software, which changes the password for users every 
three minutes. To successfully log in to such a system, the user must carry a token card that 
displays the new password every three minutes. This makes a system very secure; however, the 
user must keep the token card in a safe place, separate from the computer where the login takes 
place. Leaving the token card next to the computer being used for login is as ineffective in terms of 
providing the intended level of security as posting the password on the screen.  

 

 

Securing Intercomputer Communication. In the previous section we looked at using passwords 
and TACACS to restrict access to privileged and nonprivileged mode on the router. Here we will 
look at using CHAP and TACACS for the authenticating, authorizing, and accounting of computers 
attempting to make connections to the internetwork and participate in the routing of packets. CHAP 
is preferred over PAP as a method for authenticating users because it is not susceptible to the 
modem playback issues discussed in Chap. 6. CHAP is available only on a point-to-point link; in 
Cisco router terms, this means serial interfaces, async interfaces, or ISDN interfaces. You cannot 
implement CHAP on a LAN interface.  

 

 

The basic idea behind the operation of CHAP is that the router receiving a request for a connection 
will have a list of usernames and associated passwords. The computer wanting to connect will 
have to supply one of these valid username and password pairs in order to gain access. 
Implementing CHAP on serial interfaces connecting routers together uses the same configuration 
as defined for the ISDN connections using CHAP as illustrated in Chap. 6. Here we will discuss 
how TACACS, can enhance the security features of CHAP.  

 

 

Many of the configuration commands for using TACACS to provide security on network 
connections begin with the letters AAA, which stand for Authentication, Authorization, and 
Accounting. Authentication is used to identify valid users and allow them access, and to disallow 
access for intruders. Authorization determines what services on the internetwork the user can 
access. Accounting tracks which user did what and when, which can be used for audit-trail 
purposes.  

 

 
We now will examine the commands that you put into a router or access server to enable TACACS 
when using AAA security on network connections. Let's list a typical configuration that would be 
input on a router to configure it for centralized TACACS+ management, and then discuss each 
command in turn. Figure 7-10 shows the configuration; command explanations follow.  

 

 

  



 
 Figure 7-10: Typical router configuration for centralized TACACS+ management 

   
 

 
Command aaa new-model enables TACACS+, as the Cisco implementation of TACACS is 
known. This can be done either by the tacacs-serverextended command shown earlier, or by 
the aaa new-model command, which enables the AAA access control mechanism and 
TACACS+.  

 

 
Command tacacs-server host 210.5.5.1 identifies the IP address of the TACACS+ host 
that should be referenced. This command appears twice in the configuration, allowing the router to 
search for more than one TACACS+ server on the internetwork in case one is unavailable.  

 

 
Command aaa authentication login default tacacs+ line sets AAA authentication 
at login, which in the case of a serial line connection is when both ends of the point-to-point 
connection are physically connected and the routers attempt to bring up the lineprotocol.  

 

 

The preceding command is used to create an authentication list called default, which specifies 
up to four methods of authentication that may be used. At this stage, we have just created the list, 
but it has not yet been applied to a line or connection. Further down in this configuration, these 
access methods have been applied to lines 1 to 16 and the Serial 0 interface. In this command, we 
have specified a single option for authenticating any computer that belongs to the default group for 
authentication. Authentication for this group can be achieved only by using TACACS+ 
authentication. This command covers authenticating users for nonprivileged mode access.  

 

 

Command aaa authentication enable default tacacs+ enable defines how 
privileged mode (Enable mode) access is authenticated. In the same way that the previous 
command defined tacacs+ as the method of authenticating access to nonprivileged mode for the 
default group, this command defines tacacs+ and the Enable password as methods for 
authenticating users belonging to the list default for privileged-mode access.  

 

 

In the command aaa authorization network tacacs+, the word network specifies that 
authorization is required for all network functions, including all PPP connections, and that 
TACACS+ authentication will be used to verify service provision. The stem of this command is aaa 
authorization, which can be followed by one of the words network, connection, or exec to 
specify which function will be subject to the authorization methods that follow (in this case 
tacacs+).  

 

 
Command aaa authentication ppp default tacacs+ enable defines TACACS+ 
followed by the Enable password as the authentication methods available for serial interfaces that 
belong to the default list. This command specifies a list name default that is used for the 
interface command ppp authentication chap default.  

 

 
In this configuration we have looked at three configuration options for the aaa authentication 
command; AAA authentication will invoke authorization for nonprivileged (login), privileged 
(Enable), and PPP access.  

 
Command aaa accounting connection start-stop tacacs+ sets up the accounting 



function, now that authentication and authorization configurations have been defined. Within this 
command we specify what events will trigger accounting, which in this case is the starting or 
stopping of any outbound Telnet or Rlogin session as defined by the argument connection. 
Logging of the specified events is sent only to the TACACS+ server.  

 
 Command line 1 16 specifies the line range number we are about to configure.  
 

 
Command login authentication default sets the methods to be used to authenticate 
connections on lines 1 through 16 as those specified by the default list. These methods for the 
default list are specified in the aaa authentication login default command.  

 
 Command interface serial 0 identifies the serial interface we are going to configure for 
authentication.  

 
 Command ppp authentication chap default uses the default list specified in the aaa 
authentication ppp default command to authorize PPP connections on this interface.  

 

 

In summary, there are global authorization commands for login, enable, and PPP access, with 
each command defining a list name and the authorization methods that will be used on the line or 
interface the list name is applied to. The configuration shown uses the default list (as defined in the 
global aaa authentication login command) to authenticate login requests on line 1 through 
16, and the default list (as defined in the aaa authentication ppp command) for 
authenticating PPP connections on interface Serial 0.  

 

 

SNMP Security Issues. We will discuss the Simple Network Management Protocol (SNMP) as a 
way of simplifying the management of a large internetwork of routers later in this chapter. If you 
enable SNMP on your routers, you are opening the door for potential security loopholes. SNMP 
can be used to gather statistics, obtain configuration information, or change the configuration of 
the router.  

 

 

An SNMP command issued to an SNMP-enabled router is accompanied by what is known as a 
community string, which has either read-only or read/write access to the router. The community 
string is used to identify an SNMP server station to the SNMP agent enabled on the router. Only 
when the correct community string is supplied will the router agent act upon the SNMP command. 
With SNMP version 1, this community string is passed over the network in clear text, so anyone 
who is capable of capturing a packet on the network can obtain the community strings. With SNMP 
version 2, which is supported on Cisco IOS version 10.3 and later, communication between an 
SNMP agent and server uses the MD5 algorithm for authentication to prevent unauthorized users 
from gaining the SNMP community strings.  

 

 

If you are using SNMP version 2, there is a further precaution to take to ensure that unauthorized 
individuals cannot obtain the SNMP community strings, and that is to change the read/write 
community string to something known only to authorized personnel. If SNMP is enabled without a 
specified community string, the default of public is assumed. With this knowledge, unauthorized 
personnel can gain full SNMP access to any router with an SNMP agent enabled that does not 
specify an R/W community string.  

 

 Before we look at the commands to enable the SNMP agent on a router, we need to explore one 
further concept. Access lists are useful for defining which IP addresses can be used by stations 



issuing SNMP commands to routers. This feature restricts those workstations eligible to issue 
SNMP commands to the one or two management stations you have on the internetwork.  

 
 The following router configuration defines station 200.1.1.1 as able to issue read-only commands, 
and station 200.1.1.2 as able to issue read and write commands.  

 
 !  
 access-list 1 permit 200.1.1.1  
 access-list 2 permit 200.1.1.2  
 snmp-server community 1view RO 1  
 snmp-server community power1 RW 2  
 

 
The router will grant read-only access to the station with source address 200.1.1.1 only if it 
supplies the community string 1view, and the station with source address 200.1.1.2 will have 
read/write access if it supplies the community string power1.  

 

 

Once a workstation is authenticated to issue SNMP commands, the router's Management 
Information Base, or MIB, can be queried and manipulated. The MIB contains configuration, 
statistical, and status information about the router. SNMP commands can issue "get" strings to 
obtain information from the MIB about the status of interfaces, passwords, and so forth, and then 
can set new values with "set" strings.  

 

 
The Router as a Basic Firewall. Many computer configurations could be considered a firewall of 
some description. The role of a firewall is to keep unwanted traffic out of our internetwork, typically 
to prevent an unauthorized user from accessing computers on our internetwork, or finding out 
information about the internetwork.  

 

 
The simplest form of firewall is a router configured with appropriate access lists that restrict traffic 
based on source, destination, or service type. Beyond this, features such as application wrappers 
and proxies should be evaluated, depending on the connectivity and security needs of your 
internetwork.  

 

 

A wrapper is a Unix host application that takes the place of regular host daemons such as Telnet 
and FTP, and provides extra functionality beyond the regular daemon. When an inbound request 
for one of the wrapper services arrives at the host, the source requesting the service is checked by 
the wrapper to see if it is authorized to make the request. If the wrapper decides the request is 
from an approved source, the request is granted.  

 

 

A proxy provides tighter security features. Proxy servers completely separate the internal and 
external traffic, passing information between the two in a controlled fashion. There are two types of 
proxy, circuit-level and application-level. A circuit-level proxy works on a low level, forwarding 
traffic without regard to the data content of a packet. An application-level proxy unbundles, 
repackages, and forwards packets, understanding the nature of the communication taking place. 
For in-depth discussion of constructing application-level firewalls, refer to Firewalls and Internet 
Security, by Cheswick and Bellovin, published by Addison-Wesley.  

We will discuss in more depth here the use of a Cisco router to provide some firewall capability 



type of firewall is illustrated in Fig. 7-11.  
 

 

  
 
 Figure 7-11: Connections for a basic firewall implementation 

   
 

 
The Information Server provides DNS, Webserver, or e-mail services that both the internal and 
external networks need to utilize. The external network generally is the Internet (which is what I will 
assume throughout the rest of this discussion), but the same considerations apply when you are 
connecting your internetwork to any external network.  

 
 The goals of implementing restrictions on the traffic passing through this router are as follows:  
 
   1.Allow the hosts on the internal network to contact the computers they need to contact in the 

external network.  
 
   2.Allow users on the external network access only to the information server, and to use only the 

services we want them to use.  
 

 
We achieve these goals by implementing an access list on the router. Since a router can read 
source address, destination address, protocol type, and port number, it is possible to tell the router 
what it should or should not allow, with a high degree of customization.  

 

 

Before we examine access list construction, let's review TCP and UDP communications. With TCP 
connections, it is easy to identify which machine is initiating communication because there is a 
specific call setup sequence starting with a SYN packet. This enables a router to allow TCP 
connections that originate from one interface but not those from another. This enables you to 
configure the router to do things such as allowing Telnet sessions to the external network, but 
deny any sessions originating from the external network.  

 

 

It's a different story with UDP connections. UDP conversations have no discernible beginning, end, 
or acknowledgment, making it impossible for a router that uses only protocol information to 
determine whether a UDP packet is originating a conversation, or part of an existing conversation. 
What we can do is restrict traffic on the basis of its source and destination. For example, we can 
restrict all traffic coming into our network from the external network, allowing it only to connect to 
the information server.  



 

 

Securing a Router by Access Lists. Before we start building the configuration for this elementary 
firewall router, let’s review the construction of a Cisco access list. IP access lists are either regular 
if numbered between 1 and 99, or extended if numbered between 100 and 199. A regular access 
list enables you to permit or deny traffic based on the source node or network address. An 
extended list is much more sophisticated, and enables you to restrict traffic based on protocol, 
source, and destination, and to allow established connections.  

 

 

Allowing established connections is useful, for example, if you want hosts on the internal side of 
the router to be able to establish a Telnet session to a host on the external side, but do not want 
an external host to have the ability to establish a Telnet session with an internal host. When 
configured for established connections, a router will allow a TCP connection into the internal 
network only if it is part of a conversation initiated by a host on the internal network.  

 

 

An access list will execute each line in order, until either a match for the packet type is found, or 
the end of a list is reached and the packet is discarded. With this type of processing, the sequence 
of access list entries is important. To keep things simple, all permit statements should be entered 
first, followed by deny statements. At the end of every access list is an unseen, implicit deny 
statement that denies everything. This makes sense, as typically you will want to allow a certain 
type of access through an interface and deny all others. The implicit deny saves you the bother of 
having to end all your access lists with a deny-everything statement.  

 

 

Let's consider what we want to do with the access list for the router in Fig. 7-11. Assuming that the 
external network is the Internet, we want to allow external users to establish TCP connections to 
the information server for HTTP access to Web pages, Telnet, and SMTP sessions for mail, and 
allow UDP packets to pass for DNS traffic. Let's look at how each connection is established and 
how we will code these restrictions into the router's access list.  

 

 

HTTP, Telnet, and SMTP all use TCP as the Transport layer protocol, with port numbers 80, 23, 
and 25, respectively. The port numbers listed are the port numbers that the host daemon program 
listens to for requests. When a client PC wants to establish an HTTP session with a Web server, 
for example, it will send a TCP request destined for port 80 addressed to the IP number of the 
Web server. The source port number used by the client PC is a random number in the range of 
1024 to 65,535. Each end of the communication will be identified with an IP address/port pair. In 
this configuration, we are not concerned with restricting packets going out onto the Internet; we are 
interested only in restricting what comes in. To do that, we create an accesslist that permits 
connections using TCP ports 80, 23, and 25 to the IP address of the information server only, and 
apply that access list to packets inbound on the Serial 0 port of router 1. The access list is created 
in global configuration mode as follows:  

 
 access-list 101 permit tcp 0.0.0.0 255.255.255.255 200.1.1.3 0.0.0.0 eq 80  
 access-list 101 permit tcp 0.0.0.0 255.255.255.255 200.1.1.3 0.0.0.0 eq 23  
 access-list 101 permit tcp 0.0.0.0 255.255.255.255 200.1.1.3 0.0.0.0 eq 25  
 

 
The 0.0.0.0 255.255.255.255 in each line allows any source address. The 200.1.1.3 0.0.0.0 allows 
only packets destined for IP address 200.1.1.3. Had the mask been set to 0.0.0.255, that would 
have allowed through any packets destined for the 200.1.1.0 Class C network.  

 



 
All access lists are created in the same manner, and it is when they are applied in the router 
configuration that the syntax changes. When applied to an interface, the access list is applied as 
an access group, and when applied to a line, the access list is applied as an access class. When 
applied to routing updates, an access list is applied as a distribute list.  

 
 Access list 101 is applied to interface Serial 0 as follows:  
 
 Router1(config)#interface serial 0  
 Router1(config-int)#ip access-group 101 in  
 

 

Next we allow remote machines to issue DNS queries to our information server. To enable hosts 
on the Internet to query our information server, we must allow in packets destined for UDP port 53. 
In addition, we need to allow TCP port 53 packets into our network for Zone Transfers (this will be 
from a machine specified by the ISP). We can let Zone Transfers and DNS queries through by 
specifying the following additions to our access list:  

 
 access-list 101 permit tcp 210.7.6.5 0.0.0.0 200.1.1.3 0.0.0.0 eq 53  
 access-list 101 permit udp 0.0.0.0 255.255.255.255 200.1.1.3 0.0.0.0 eq 53  
 

 
The 210.7.6.5 is the server address specified by the ISP. We can finally add the entry to allow 
incoming packets addressed to high-numbered ports, for replies to connections originated from 
within our network, by the following:  

 
 access-list 101 permit tcp 0.0.0.0 255.255.255.255 200.1.1.3 0.0.0.0 gt 1023  
 access-list 101 permit udp 0.0.0.0 255.255.255.255 200.1.1.3 0.0.0.0 gt 1023  
 

 

We now have entries in the router configuration that allow packets destined for TCP ports 80, 23, 
25, 53, and those greater than 1023, as well as UDP port 53 and those greater than 1023. There 
are two more restrictions on the access list that we should implement to improve the security on 
this system. The first is to deny packets using the loopback source address (127.0.0.1). It is 
possible for a malicious intruder to fool our information server into thinking that the loopback 
address can be reached via the firewall router, and thus the intruder can capture packets not 
meant for the outside world. This can be restricted by the following access list entry:  

 
 access-list 101 deny ip 127.0.0.1 0.0.0.0 0.0.0.0 255.255.255.255  
 

 
The same situation arises if an intruder uses the local network number as a source address, 
enabling him or her to get packets destined for local hosts sent out the firewall. This can be 
negated by another entry in the access list as follows:  

 
 access-list 101 ip deny 200.1.1.0 0.0.0.255 0.0.0.0 255.255.255.255  
 



the firewall. The first is to deny any ICMP redirect messages from the external network. Intruders 
can use ICMP redirects to tell routers to redirect traffic to them instead of sending it to its legitimate 
destination, and thus gain access to information they should not have. ICMP redirects are useful 
for an internal internetwork, but are a security problem when you allow them through from external 
or untrusted networks. ICMP redirects can be denied on a per-interface basis. In this example, we 
want to prevent ICMP redirects from entering the router on interface Serial 0, which is 
implemented as follows:  

 
 Router1(config)#interface serial 0  
 Router1(config)#no ip redirects  
 

 

The next potential security risk we want to eliminate is the use of source routing. Source routing, 
as described in Chap. 5, uses layer 2 (Data Link layer) information to route a packet through the 
internetwork. This technique overrides the layer 3 routing information; by doing so, it could allow 
an intruder to specify incorrect route selections for packets on the local network. The intruder could 
instruct packets that would be delivered locally to be delivered to his or her workstation on the 
external network. Source routing can be disabled with the following global command:  

 
 Router1(config)#no ip source-route  
 

 

Problems with a One-Router Firewall. Although it might seem that we have tied things up pretty 
tight, this solution has a number of areas that many will find unacceptable for most business 
environments. The main two issues are that internal network topology can be determined from the 
outside, and that you are allowing external users direct access to an information server that has 
complete information on your network.  

 

 

Although we have restricted access to the information server to well-known applications such as 
Telnet and SMTP, obscure security loopholes do surface from time to time. The greatest risk is 
that by allowing anyone on the Internet direct access to your information server, an intruder will be 
able to place a program on the information server and launch an attack on your network from your 
own information server. There is an organization that lists the applications that you should deny 
because they are known to have security loopholes in them. This organization, the Computer 
Emergency Response Team (CERT), recommends that you do not allow the services listed in 
Table 7.1.  

 

 
CERT recommends that DNS zone transfers not be allowed, yet we have configured them. The 
relationship you have with the external network vendor (in this case an ISP) determines whether 
you are going to allow this service or not.  

 
 Table 7.1 : CERT Advisory Service Listing  
 
    
 
 Service   

 
 Port Type  

 Port Number  
 

 
    
 
 DNS Zone Transfers  

 
 TCP 

 
53 

 



 DNS Zone Transfers    TCP  53  
 
 TFTP daemon   

 
 UDP  

 69  
 

 
 link   

 
 TCP  

 87  
 

 
 Sun RPC   

 
 TCP and UDP  

 111  
 

 
 NFS   

 
 UDP  

 2049  
 

 
 BSD Unix r commands   

 
 TCP  

 512–514  
 

 
 line print daemon   

 
 TCP  

 515  
 

 
 UUCP daemon   

 
 TCP  

 540  
 

 
 Open Windows   

 
 TCP and UDP  

 2000  
 

 
 X Window   

 
 TCP and UDP  

 6000  
 

 
    
 

 

A Better Router Firewall. The previous router configuration allowed incoming queries only to the 
information server. The problem, as previously mentioned, is that a competent intruder could get 
access to the information server from somewhere on the Internet and launch an attack on other 
computers in our network from the information server. We have made openings in our firewall 
configuration to allow the intruder to get in—on port numbers 80, 21, 25, 53, or any port higher 
than 1023.  

 

 

To improve security, we can implement a router that has three configured interfaces, allowing us to 
reduce the traffic permitted into our internal network. The one interface that is connected to our 
internal network only allows outgoing connections for TCP. Of course, for any communication to 
take place, packets must travel in both directions. By specifying that an interface will support only 
outgoing connections, we mean that incoming packets are allowed, if they are in response to a 
request initiated by a computer on our internal network. The connections to support this type of 
configuration are shown in Fig. 7-12.  



 

  
 
 Figure 7-12: Connections for a three-interface router firewall 

   
 

 
With this configuration, there is no harm in leaving the previously constructed access list for the 
Serial 0 interface intact and implementing another access list for the Ethernet 0 interface. The 
access list for this interface is simple and is given as follows:  

 
 access list 102 permit tcp any any established  
 
 This access list is applied as follows to the Ethernet 0 interface:  
 
 Router1(config)#interface ethernet 0  
 Router1(config-int)#access-group 102 out  
 

 

The problem with this configuration is that we still have to allow responses to DNS queries back in. 
Let's say a host on the internal LAN wants to retrieve a document from the Web, for example, 
address http://www.intel.com. The first thing that needs to happen is for that name to be resolved 
to an IP address. The information server on the internal network (which is providing local DNS 
service) needs to get information from the an external DNS server to obtain the IP address for 
intel.com. The reply with the required information will come back on UDP, aimed at the port 
number on which the information server initiated the request (a port greater than 1023).  

 

 

To minimize our exposure, we probably will have DNS on the internal LAN set with a pointer to the 
information server on the sacrificial LAN. So when a host needs to resolve the IP address of 
intel.com, it will request the information from the local DNS server, which will request the 
information of the server on the sacrificial LAN. The sacrificial LAN server will get the information 
from the Internet root servers and pass it back to the internal DNS server, which finally gives the IP 
address to the host. We can get the information we need to the internal DNS server with the 
following addition to access list 102.  

 
 access-list 102 permit udp 210.1.2.2 255.255.255.255 200.1.1.3 255.255.255.255 gt 1023  
 



means our internal LAN can send anything it likes into the router for forwarding onto the external 
network. The only restriction applies if a machine on the external network or the sacrificial LAN 
wants to send a packet to our nternal network. In this case, the packet comes into the router and 
attempts to go out from the router onto our internal network. These are the packets we want to 
stop, so the access list is applied on the Ethernet 0 port for packets outbound from the router.  

 

 
The only exception to this is if a computer on the external network tries to respond to a TCP 
connection request that originated from a computer on our internal network. In that case, the ACK 
bit will be set on the packet coming from the external network, indicating that it is a reply, and the 
router will pass it on to the internal LAN.  

 

 

You might think that a devious attacker could set the ACK bit on a packet to get it through our 
firewall. An attacker might do this, but it will not help establish a connection to anything on our 
internal LAN, for a connection can be established only with a SYN packet, rather than an ACK. To 
break this security, the attacker would have to inject packets in to an existing TCP stream, which is 
a complex procedure. (There are programs of this type available on the Internet.) Of course, we 
still have the issue of an intruder launching an attack from the server on the sacrificial LAN using 
UDP port numbers greater than 1023.  

 

 

At this stage, the only packets that can originate from outside our internal network and be passed 
through the router to our internal network are packets from the sacrificial LAN server to a UDP port 
greater than 1023. Given that SMTP uses TCP port 25, you may wonder how mail gets from the 
external network to the internal LAN. Mail systems use the concept of the post office, which is 
used as a distribution center for mail messages. Messages are stored in the post office and 
forwarded to their destination when new messages are requested by a user, typically at user login 
time.  

 

 

The server on the sacrificial LAN is set up to accept mail messages from the Internet, and a post 
office machine on the internal LAN can be set up to retrieve mail messages on a regular basis. 
This maintains security by allowing TCP packets into our internal network only if they are a 
response to a TCP request that originated from within our internal network, and allows us to 
retrieve mail messages from the Internet. By using a three-interface router, we have reduced the 
number of potential security loopholes through which an intruder could gain access to our internal 
network. We can, however, further improve the situation.  

 
 Cisco's PIX Firewall  
 

 

To provide the type of security that most organizations require these days requires implementation 
of a dedicated firewall computer. Router firewalls are only filters at best, and they do not hide the 
structure of your internal network from an inquisitive intruder. As long as you allow a machine on 
an external network (in our example, either the Internet or the sacrificial LAN) direct access to a 
machine on your internal network, the possibility exists that an attacker will compromise the 
security of the machine on your internal LAN and be able to host attacks onto other machines from 
there.  

 

 

Most dedicated firewall machines that offer proxy services are based on Unix systems, which have 
their own security flaws. Cisco offers the PIX (Private Internet eXchange) firewall that runs its own 
custom operating system and so far has proved to be resilient to attacks aimed at compromising 
its security. Let's have a quick review of how a proxy system works, before we discuss in more 
detail the stateful network address translation operation of the PIX firewall.  



 

Overview of Proxy Server Operation. Proxy servers are a popular form of Application level 
firewall technology. In concept, one side of the proxy is connected to the external network, and one 
side of the proxy is connected to the internal network. So far, this is no different from our firewall 
router. Let's consider an example of establishing a Telnet session through a proxy server to 
illustrate how it provides additional levels of security.  

 

 

If a machine on the external network seeks to establish a Telnet session with a machine on the 
internal LAN, the proxy will run two instances of Telnet, one to communicate with the external LAN, 
and another to communicate with the internal LAN. The job of the proxy is to pass information 
between the two Telnet connections. The benefit is that nothing from the external network can 
establish a direct session with a machine on the internal network.  

 

 

A malicious user from the external network is prevented from gaining direct access to the internal 
LAN information server and cannot launch an attack from that server to other machines on the 
internal LAN. The attacker will never know the real IP address of the information server, because 
only the IP address used by the proxy server to communicate with the outside world will be 
available. A significant benefit to this type of operation is that the addressing scheme of the 
internal LAN is completely hidden from users on the outside of the proxy server.   

 

 
Because a proxy server has a pool of external addresses to map to internal addresses, when 
internal computers request external connections, no computer on the outside can establish a 
connection with a machine on the inside. That's so because an external machine will never know 
which external address maps to computers on the inside of the proxy.  

 
 With this setup, you still have to worry about how a client PC on the internal LAN resolves 
hostnames to addresses for hosts out on the Internet.  

 

 

Most configurations of this type run DNS on the proxy machine. DNS on the proxy machine will 
then know about computers on both the internal and external networks and can service locally 
generated DNS queries directly. The drawback is that an external user is able to find out some 
information regarding the internal topology through the proxy server. The proxy does, however, 
stop a malicious external user from actually getting to those computers.  

 

 

All the good stuff a proxy gives you is dependent on the security of the operating system on which 
it runs. In most cases this is Unix, a complex system to set up securely. Additionally, running two 
instances of Telnet, FTP, WWW services, etc., requires an expensive and powerful processor. The 
PIX firewall provides the same benefits without these two drawbacks. The PIX runs its own secure 
operating system and delivers proxy-type benefits by directly manipulating the header information 
of packets without the need to run two versions of service programs.  

 

 

Implementation of PIX poses one significant problem. To enable hosts on an internal LAN to 
access the network numbers on the Internet, the PIX must advertise a default route through itself 
to internal LAN routers. This means that all internal LAN hosts will send all packets destined for 
networks not listed in their routing tables to the PIX. This is fine for normal operation. If a network 
failure eliminates an internal network number from host routing tables, however, traffic destined for 
that network number will now be sent to the PIX. This may overwhelm the PIX connection to the 
Internet and take it out of service.  

PIX Operation. The Private Internet eXchange (PIX) machine requires a router to connect to an 



in Fig. 7-13.  
 

 

  
 
 Figure 7-13: Using a PIX for securely connecting an internal LAN to the Internet 

   
 

 

The PIX has two Ethernet interfaces, one for connection to the internal LAN, and one for 
connection to the router that interfaces to the Internet or other external network. The external 
interface has a range of addresses that it can use to communicate with the external network. The 
internal interface is configured with an IP address appropriate for the internal network numbering 
scheme. The main job of the PIX is to map internal to external addresses whenever internal 
computers need to communicate with the external network.  

 

 

This makes internal computers appear to the external world as if they are directly connected to the 
external interface of the PIX. Because the external interface of the PIX is Ethernet, MAC 
addresses are needed to deliver packets to hosts. To make the internal hosts appear as if they are 
on the external interface at the Data Link as well as the Network layer, the PIX runs Proxy ARP. 
Proxy ARP assigns Data Link MAC addresses to the external Network layer IP addresses, making 
internal computers look as if they are on the external interface to the Data Link layer protocols.  

 

 

In most cases, the communication with the external network originates from within the internal 
network. As the PIX operates on the packet rather than application level (the way proxy servers 
do), the PIX can keep track of UDP conversations as well as TCP connections. When an internal 
computer wants to communicate with an external computer, the PIX logs the internal source 
address and dynamically allocates an address from the external pool of addresses and logs the 
translation. This is known as stateful NAT, as the PIX remembers to whom it is talking, and which 
computer originated the conversation. Packets coming into the internal network from the external 
network are permitted only if they belong to an already identified conversation.  

 

 
The source address of the internal computer is compared to a table of existing translations, and if 
an existing translation exists, the external address already assigned is used. If an existing entry is 
not present, a new external address is allocated. Entries in this translation time out with a 
preconfigured timeout value.  



 
This mechanism is efficient for most normal implementations. In this fashion, a small number of 
assigned Internet numbers can service a large community of internal computers, as not all internal 
computers will want to connect to the Internet at the same time.  

 

 

There are instances, however, when you need to allow external computers to initiate a 
conversation with selected internal computers. Typically these include services such as e-mail, 
WWW servers, and FTP hosts. The PIX allows you to hard-code an external address to an internal 
address that does not time out. In this case, the usual filtering on destination address and port 
numbers can be applied. An external user still cannot gain any knowledge of the internal network 
without cracking into the PIX itself. Without knowledge of the internal network, a malicious user 
cannot stage attacks on the internal network from internal hosts.  

 

 
With the PIX protecting your internal LAN, you might want to locate e-mail, WWW servers, and 
FTP hosts on the outside network. The PIX then can give secure access to these machines for 
internal users, and external users have access to these services without having to traverse the 
internal LAN.  

 

 

Another key security feature of the PIX is that it randomizes the sequence numbers of TCP 
packets. Since IP address spoofing was documented in 1985, it has been possible for intruders to 
take control of an existing TCP connection and, using that, send their own data to computers on an 
internal LAN. To do this, the intruder has to guess the correct sequence number. With normal 
TCP/IP implementations this is easy, because most start a conversation with the same number 
each time a connection is initiated. The PIX, however, uses an algorithm to randomize the 
generation of sequence numbers, making it virtually impossible for an attacker to guess the 
sequence numbers in use for existing connections.  

 

 

A Simple PIX Configuration. Configuring the PIX is a relatively straightforward task. It is much 
simpler than setting up a proxy server and multiple DNS machines to provide an equivalent level of 
security. In concept, what you need to do is assign an IP address and pool of addresses to use for 
access on the outside, and an IP address and netmask for the internal connection, RIP, timeout, 
and additional security information. Figure 7-14 shows a sample configuration.  

 

 

  
 
 Figure 7-14: A simple PIX configuration 

   
 

   
•Command ifconfig outside 200.119.33.70 netmask 255.255.255.240 link rj 
up assigns the IP address and netmask to the outside LAN card, specifies the link type as RJ-45 
for twisted-pair cabling, and enables the interface with the up keyword.  

 
   •Command ifconfig inside 1.1.1.2 netmask 255.255.255.0 link rj up performs 

the same configuration options for the inside LAN card.  



 
   •Command global -a 200.119.33.171-200.119.33.174 configures the pool of global 

Internet addresses that will be used   
 
   •to communicate with computers on the Internet. At least two addresses must be assigned with 

this command.  
 
   •Command route outside 200.119.33.161 specifies the machine with this IP address as 

the default gateway for the network on the outside.  
 
   •Command route inside 1.1.1.1 specifies the machine with this IP address as the default 

gateway for the internal network.  
 
   •Command timeout xlate 24:00:00 conn 12:00:00 sets the translate and connection 

idle timeout values. The values shown here are the defaults of 24 and 12 hours, respectively.  
 

   
•Command rip inside nodefault nopassive modifies RIP behavior for the inside 
interface. The nodefault means that a default route is not advertised to the internal network, and 
nopassive disables passive RIP on the inside interface.  

 
   •Command rip outside nopassive configures the PIX to not listen to RIP updates coming 

from the outside network.  
 
   •Command loghost 0.0.0.0 disables logging. If you want to log events to a Unix syslog 

machine, you must specify its IP address with this command.  
 
   •Command telnet 200.119.33.161 allows Telnet session to be established with the PIX only 

from the machine using this source address.  
 

   
•Command arp -t 600 changes the ARP persistence timer to 600 seconds. With this command 
entered, the PIX will keep entries in its ARP table for 600 seconds after the last packet was 
received from a given computer.  

 

 
This simple configuration is appropriate for connecting to the Internet an internal LAN that does not 
have any WWW or FTP hosts that external computers need in order to initiate connections. You 
can add a static translation that makes an inside host contactable from the outside by using the 
static and conduit commands. An example of this addition is given as follows:  

 
 static -a 200.119.33.175 1.1.1.5 secure  
 conduit 200.119.33.175 tcp:11.1.1.5/32-25  
 

 
The first command adds a static map and defines that the external address 200.119.33.175 will be 
mapped permanently to the internal address 1.1.1.5 in a secure fashion. This means that very few 
services will be allowed through on this static map, e.g., no SMTP or DNS.  

 
If we want to receive mail on the internal machine, for example, we need to create an exception to 



this security for the specified service. The conduit command creates the exception for us. The 
conduit command specifies that the external host with address 11.1.1.5 will be able to connect 
on TCP port 25 to the external address 200.119.33.175 (which is statically mapped to the internal 
machine 1.1.1.5). The 32 near the end of the conduit command specifies that all 32 bits of the 
source address will be used for comparison to decide if the connection is allowed. A value of 24 
would allow any host from the 11.1.1.0 subnet to establish a connection.  

 

 

Once you have the PIX up and running, you have delivered a secure Internet connection for your 
internal LAN. Outside hosts typically will be able to ping only the external interface, and internal 
hosts ping only the internal interface. An attacker on the outside of the PIX will not be able to find 
open ports on the outside connection to which to attach, or to determine the IP addresses of any of 
the machines on the inside. Even if told the IP address of machines on the inside, pinging or 
attaching to them directly will beimpossible.  

 

 

One other application for which the PIX is useful is the connection of two sites via an untrusted 
network such as the Internet. The PIX has a private link feature that encrypts data sent between 
two PIX machines. This could be a cost-effective solution for connecting two remote sites together 
via the Internet, while being assured that an intruder could neither gain unauthorized access, nor 
passively read the data sent between the two sites.  

 
 Physical Layer Security  
 

 

Physical layer security is concerned with securing physical access to internetwork devices. A 
subsequent section in this chapter will show you how to determine the Enable password, or see 
the router's entire configuration, if physical access can be gained to the device. The simple rule is 
that all live routers on an internetwork should be kept in a safe place, with only authorized 
individuals able to gain access to the rooms in which they are located. Once data is routed out of 
one of your routers and onto a telephone company's network, you no longer can guarantee the 
physical security of the data you are transporting. Although rare, it is possible for intruders to 
passively listen to the traffic transmitted on selected cables in the phone company system. This is 
a minimal risk, as there are generally more fruitful ways to get physical access to interesting data.  

 

 
Generally the greatest security risks come from Internet and dial-in connections. If you follow the 
PIX guidelines for Internet connections and the CHAP and TACACS guidelines for dial-in 
connections, you will be protected.  

 



IP Unnumbered and Data Compression  
 

 
This section illustrates the use of two configuration options for Cisco routers that do not fall neatly 
in to any other section. Both IP unnumbered and data compression, useful when building an 
internetwork, are explained fully here.  

 
 IP Unnumbered  
 

 

IP unnumbered has been explained in overview previously. The first benefit of IP unnumbered is 
that it allows you to save on IP address space. This is particularly important if you are using 
InterNIC-assigned addresses on your internetwork. The second benefit is that any interface 
configured as IP unnumbered can communicate with any other interface configured as IP 
unnumbered, and we need not worry about either interface being on the same subnet as the 
interface to which it is connected. This will be important when we design a dial backup solution.  

 

 

The concept behind IP unnumbered is that you do not have to assign a whole subnet to a point-to-
point connection. Serial ports on a router can "borrow" an IP address from another interface for 
communication over point-to-point links. This concept is best explored by using the three-router lab 
we put together earlier. The only change to the router setup is that router 1 and router 2 now are 
connected via their serial ports, as shown in Fig. 7-15.  

 

 

  
 
 Figure 7-15: Lab configuration of IP unnumbered investigation with working route updates 

   
 

 
With the IP addressing scheme shown in Fig. 7-15, effectively one major network number with two 
subnets, the route information about subnets is maintained, as we can see by looking at the 
routing table on router 2 and router 3.  

 
 Router2>show ip route  
 120.0.0.0 255.255.255.224 is subnetted, 2 subnets  
 I120.1.1.32 [100/8576] via 120.1.1.33, 00:00:42, serial1  



 C120.1.1.0 is directly connected, serial 0  
 
 Router3>show ip route  
 120.0.0.0 255.255.255.224 is subnetted, 2 subnets  
 C120.1.1.32 is directly connected, ethernet 0  
 I120.1.1.0 [100/10476] via 120.1.1.2 00:00:19, serial1  
 

 

This routing table shows us that router 3 has successfully learned about the 120.1.1.0 subnet from 
Serial 1, which is being announced from router 2 with the source address 120.1.1.2. This is as we 
would expect, as the Serial 1 interface on router 2 is borrowing the address from its Serial 0 
interface. If the Serial 1 interfaces on both routers had their own addressing, we would expect the 
routing table in router 3 to indicate that it had learned of the 120.1.1.0 subnet from the address of 
the Serial 1 interface on router 2, not the borrowed one.  

 
 IP unnumbered is easy to break: Just change the address of the Ethernet interface on router 3 to 
193.1.1.33 and see what happens, as illustrated in Fig. 7-16.  

 

 

  
 
 Figure 7-16: Lab configuration for IP unnumbered investigation with nonworking route updates 

   
 

 
To speed the process of the routing table in router 2 adapting to the change in topology, issue the 
reload command when in privileged mode. After router 2 has completed its reload, try to ping 
120.1.1.2 from router 3. The ping fails, so let's look at the routing table of router 3.  

 
 Router3>show ip route  
 120.0.0.0 255.255.255.224 is subnetted, 1 subnets  
 I120.1.1.0 [100/10476] via 120.1.1.2, 00:00:18, serial 1  
 193.1.1.0 255.255.255.224 is subnetted, 1 subnets  
 C193.1.1.32 is directly connected, Ethernet 0  



 
 Everything here appears to be fine, so let's examine the routing table of router 2 to see if we can 
determine the problem.  

 
 Router2>show ip route  
 120.0.0.0 255.255.255.224 is subnetted, 1 subnets  
 C120.1.1.0 is directly connected, serial 0  
 193.1.1.0 is variably subnetted, 2 subnets, 2 masks  
 I193.1.1.0 255.255.255.0 [100/8576] via 193.1.1.33 00:01:15, serial 1  
 I193.1.1.32 255.255.255.255 [100/8576] via 193.1.1.33 00:01:15, serial 1  
 

 

Straight away, the words variably subnetted should make you aware that something is wrong. 
From the discussion on IGRP in Chap. 4, we know that IGRP does not handle variable-length 
subnet masks properly, so any variable-length subnetting is likely to cause us problems. Looking 
more closely, we see that router 2 is treating 193.1.1.32 as a host address, because it assigned a 
netmask of 255.255.255.255 to that address. Treating 193.1.1.32 this way means that there is no 
entry for the 193.1.1.32 subnet, and therefore no way to reach 193.1.1.33.  

 

 

The reason behind all this is that subnet information is not transported across major network 
number boundaries and an IP unnumbered link is treated in a similar way to a boundary between 
two major network numbers. So router 3 will advertise the 193.1.1.32 subnet to router 2, which is 
not expecting subnet information; it is expecting only major network information, so it treats 
193.1.1.32 as a host.  

 
 A simple rule by which to remember this is that the network numbers on either side of an IP 
unnumbered link can use netmasks only if they belong to the same major network number.  

 
 Data Compression  
 

 

Once you have optimized the traffic over your internetwork by applying access lists to all 
appropriate types of traffic and periodic updates, you can further improve the efficiency of WAN 
links by data compression, a cost-effective way to improve the throughput available on a given link. 
If you have a 64 kbps link that is approaching saturation point, your choices are to upgrade to a 
128 kbps link or to see if you can get more out of the existing link by data compression.  

 

 

All data compression schemes work on the basis of two devices connected on one link, both 
running the same algorithm that compresses the data on the transmitting device and 
decompresses the data on the receiving device. Conceptually, two types of data compression can 
be applied, depending on the type of data being transported. These two types of data are lossy 
and lossless.  

 
At first, a method called “lossy”—a name that implies it will lose data—might not seem particularly 
attractive. There are types of data, however, such as voice or video transmission, that are still 
usable despite a certain amount of lost data. Allowing some lost data significantly increases the 
factor by which data can be compressed. JPEG and MPEG are examples of lossy data 
compression. In our case, though, we are building networks that need to deliver data to computers 
that typically do not accept any significant data loss. Lossless data compression comes either as 
statistical or dictionary form. The statistical method is not particularly applicable here, as it relies on 



the traffic that is being compressed to be consistent and predictable, when internetwork traffic 
tends to be neither. Cisco’s data compression methods, STAC and Predictor, are based on the 
dictionary style of compression. These methods rely on the two communicating devices sharing a 
common dictionary that maps special codes to actual traffic patterns. STAC is based on the 
Lempel-Ziv algorithm that identifies commonly transmitted sequences and replaces those 
sequences in the data stream with a smaller code. This code is then recognized at the receiving 
end, extracted from the data stream, and the original sequence inserted in the data stream. In this 
manner, less data is sent over the WAN link even as transmission of the same raw data is 
permitted.  

 

 

Predictor tries to predict the next sequence of characters, based upon a statistical analysis of what 
was transmitted previously. My experience has led me to use the STAC algorithm, which, although 
it is more CPU-intensive than Predictor, requires less memory to operate. No matter which method 
you choose, you can expect an increase in latency. Compression algorithms delay the passage of 
data through an internetwork. While typically this is not very significant, some client/server 
applications that are sensitive to timing issues may be disrupted by the operation of data 
compression algorithms.  

 

 

One of the great marketing hypes of the networking world has been the advertisement of 
impressive compression rates from vendors offering data compression technology. To its credit, 
Cisco has always advertised the limitations of compression technology as well as its potential 
benefits. First of all, there is no such thing as a definitive value for the compression rate you will 
get on your internetwork. Compression rates are totally dependent on the type of traffic being 
transmitted. If your traffic is mainly ASCII text with 70 to 80 percent data redundancy, you may get 
a compression ratio near 4:1. A typical target for internetworks that carry a mix of traffic is more 
realistically 2:1. When you implement data compression, you must keep a close eye on the 
processor and memory utilization. The commands to monitor these statistics are show proc and 
show proc mem, respectively.  

 

 

Implementing Data Compression. The first data compression technique to which most people 
are introduced is header compression, as implemented by the Van Jacobson algorithm. This type 
of compression can deliver benefits when the traffic transported consists of many small packets, 
such as Telnet traffic. The processing requirements for this type of compression are high, and it is 
therefore rarely implemented on links with greater throughput than 64 kbps. The most popular 
implementation of Van Jacobson header compression is for asynchronous links, where it is 
implemented on a per-interface basis. Many popular PC PPP stacks that drive asynchronous 
communication implement this type of header compression as default.  

 

 
The following enables Van Jacobson header compression on interface Async 1, where the 
passive keyword suppresses compression until a compressed header has been received from 
the computer connecting to this port.  

 
 Router1(config)#interface async 1  
 Router1(config-int)#ip tcp header-compression passive  
 

 Clearly, Van Jacobson header compression works only for IP traffic. Better overall compression 
ratios can be achieved by compressing the whole data stream coming out of an interface by using 



the actual user data and therefore will not be readable by the router receiving the compressed data 
stream.  

 

 

A clear disadvantage to this type of compression is that, if traffic has to traverse many routers from 
source to destination, potentially significant increases in latency may occur. That can happen 
because traffic is compressed and decompressed at every router through which the traffic passes. 
This is necessary for the receiving router to read the uncompressed header information and decide 
where to forward the packet.  

 

 

Per-interface compression delivers typical compression rates of 2:1 and is therefore worth serious 
consideration for internetworks with fewer than 10 routers between any source and destination. 
This type of compression can be implemented for point- to-point protocols such as PPP or the 
default Cisco HDLC. The following example shows implementation for PPP on the Serial 0 
interface. For this method to work, both serial ports connected on the point-to-point link must be 
similarly configured for compression.  

 
 Router1(config)#interface serial 0  
 Router1(config-int)#encapsulation ppp  
 Router1(config-int)#compress stac  
 

 

The per-interface type of compression that requires each router to decompress the received 
packet before it can be forwarded is not applicable for use on a public network such as frame relay 
or X.25. The devices within the public network probably will not be configured to decompress the 
packets in order to determine the header information needed to forward packets within the public 
network. For connection to public networks, Cisco supports compression on a per-virtual-circuit 
basis. This type of compression leaves the header information intact and compresses only the 
user data being sent. An example of implementing this type of configuration for an X.25 network is 
shown as follows. As with per-interface compression, both serial ports that are connected (this 
time via a public network), must be similarly configured.  

 
 Router1(config)#interface serial 0  
 Router1(config-int)#x25 map compressedtcp 193.1.1.1 1234567879 compress  
 

 

This command implements TCP header compression with the compressedtcp keyword. Per-
virtual-circuit compression is implemented via the compress keyword at the end of the command. 
Great care should be taken when you are considering implementing compression on a per-virtual-
circuit basis. Each virtual circuit needs its own dictionary, which quickly uses up most of the 
available memory in a router. My happiest experiences with compression have been with per-
interface compression on networks with a maximum hop count of around 6 or 7 from any source to 
any destination.  

 



Overview of Managing an Internetwork  
 

 

Network management is one of the hot topics of the internetworking world. The idea of being able 
to control, optimize, and fix anything on a large, geographically dispersed internetwork from one 
central location is very appealing. Applications that enabled a network manager to monitor, 
troubleshoot, and reconfigure remote network devices tended to be vendor-specific until the 
Simple Network Management Protocol (SNMP) came along.  

 

 

We should not forget that many of the functions of network management can be accomplished 
without SNMP. For example, we can use TFTP for configuration management, and Telnet for 
show and debug commands. (Common commands of this type are covered in the Chap. 8 section 
on "Troubleshooting.") The fact that documentation of a particular device states that it supports 
SNMP does not mean that it will fit nicely into the network management system you are putting 
together. We'll examine why in the next section on the components of an SNMP system.  

 
 SNMP System Components  
 

 
SNMP version 1 is the most widely implemented version today. Network management applications 
that fully support SNMP version 2 features are only now becoming available. The basic 
subsystems of an SNMP v1 system are shown in Fig. 7-17.  

 

 

  
 
 Figure 7-17: SNMP system components 

   
 

 

Let's start our discussion with the Management Information Base. The MIB is a database of 
objects arranged in hierarchical form, similar to that shown in Fig. 7-18. The exact numbering of 
leaves in the MIB tree shown in Fig. 7-18 is not important, because it is a fictitious tree; the issue is 
how the database stores, retrieves, and modifies values. Each level in the hierarchy has 
containers numbered from 1 onward. SNMP messages coming from a management station are of 
either the get type or set type. If a management station needs to determine the status of the 
device's Serial 0 port, it will issue a get command followed by the string 1.2.1.1. This period-
separated value identifies the value in the MIB hierarchy to be retrieved. A management station 
can be used to set certain variables, such as setting a port from being administratively shut down 
to up by a similar mechanism of identifying the correct period-separated string for the variable that 
needs to be changed in the MIB hierarchy.  

 



 

  
 
 Figure 7-18: An example of a MIB hierarchy 

   
 

 

If the documentation for a device tells you that it can be managed by SNMP, it may well mean that 
it has a MIB and a device agent (shown as the SNMP agent in Fig. 7-17) to interpret SNMP 
strings. Unless you want to spend hours writing programs to generate appropriate set, get, and 
other commands with the appropriate strings to follow the commands, you should check on 
whether the network management station application you intend to use has a management entity 
for the device in question. A management entity is software that resides on the management 
station and provides a friendly interface for the user to request information or set variables on the 
remote device. Cisco provides management entities for Cisco devices as part of CiscoWorks, its 
SNMP-based network management system.  

 
 Systems Management Objectives  
 
 There are many models for network management, and here I'll present the short list of what you 
can reasonably be expected to achieve with current network management tools.  

 
   •Centralized distribution of Cisco operating system software.  
 
   •Centralized configuration management.  
 

   
•Event management for notifying an operator or other network administrator of the following: faults, 
attempted security breaches, performance failures (such as buffer overflow, overutilization of 
available bandwidth, excessive dropped packets, etc.).  

 
   •Log generation for audit and review purposes.  
 

 The big question when you're setting up a systems management system is: Do you collect 
information from remote devices by traps or by polling them? A trap is generated when a device 
agent becomes aware that a monitored event, such as an interface going down, has occurred. 
Collecting data via traps is risky, since it relies on the device and its line of communication to you 
being up and operational. Polls, on the other hand, are initiated by the network management 



being up and operational. Polls, on the other hand, are initiated by the network management 
station and proactively request information from remote devices. If the device does not respond, 
you have a pretty clear indication that something is wrong. The problem with polling every device 
on the network for status of all its monitored variables is that the traffic generated can become too 
high for the internetwork to support. This is a bigger problem the larger the network becomes.  

 

 

Deciding how to split what you monitor via traps and what you monitor via polls is more of an art 
than a science, and it depends on the size of your internetwork, the interconnections in place, and 
the criticality of the various variables you wish to monitor. A reasonable starting point might be to 
poll key devices on a fairly infrequent basis, say once every 10 minutes, to check that they are 
functioning and accessible, then set traps for more detailed alerts, such as individual links to 
remote sites going up or down. If you really need to monitor specific MIB variables, such as 
dropped packets or bandwidth utilization, you have to poll the remote device for those particular 
values. This can place an unacceptable burden on the bandwidth available for user traffic on a 
large and growing internetwork.  

 

 
We’ll revisit these issues in the section on the CiscoWorks management station. For now, let’s look 
at what we need to do on each router out in the field to bring it under the control of a centralized 
management system.  

 
 Sample Router Configuration for SNMP Management  
 
 The following commands taken from a router configuration file define the basics for enabling a 
router to be monitored from an SNMP management station.  

 
 access-list 2 permit 193.1.1.0 0.0.0.255  
 snmp-server community hagar RW 2  
 snmp-server packetsize 4096  
 snmp-server trap-authentication  
 snmp-server host 193.1.1.1 public  
 
 Let's explore these commands one by one, then look at some additional SNMP commands.  
 

 

Command snmp-server community hagar RW 2 allows read and write access to hosts 
presenting the SNMP community string hagar if access list 2 permits it. The community string is 
like a password; a device wanting SNMP read and write access to the router will need to supply 
the correct community string. Access list 2 only permits packets from the 193.1.1.0 network. (It is 
assumed that your network management station is on this network number.) It is a good security 
measure to restrict SNMP access to hosts on your network management LAN.  

 

 
Command snmp-serverpacketsize4096 raises the maximum packet size, which for SNMP 
communications defaults to 484 bytes—very small. It is more efficient in terms of network resource 
utilization to send a smaller number of larger packets than to send many small packets.  

 

 Command snmp-server trap-authentication works hand-in-hand with the snmp-
serverhost command. By enabling trap authentication, you are telling the router to send an 



when the router becomes aware of any entity sending SNMP commands with an incorrect 
community string (i.e., one that is failing authentication).  

 

 

Command snmp-serverhost193.1.1.1 public identifies the host address to send traps 
back to. If you want to send traps to multiple hosts, they must each have their own snmp-server 
host entries. The community string sent along with the trap is public, a default community string 
name. As it stands, this command sends traps of all types; optional keywords can limit the traps 
sent to specific types, such as tty (for when a TCP connection closes) or snmp (for traps defined 
in RFC 1157).  

 
 Some additional snmp commands you may wish to consider to expand the functionality of an 
SNMP monitoring system are as follows:  

 

 
Command snmp-server queue-length can help handle situations where a router does not 
have an entry in its routing table to reach the management station, or is in a state where traps are 
being constantly generated, and a queue of messages to be sent out is building up. This command 
specifies the maximum number of messages that will be outstanding at one time; the default is 10. 

 

 

Command snmp-servertrap-source specifies the interface, and by implication the IP address, 
to use for the source address when sending traps back to the management station. This could be 
useful if you know that all the serial ports on your internetwork routers belong to one major network 
number. You then can accept only those traps coming from this major network number and add 
some security to the process of trap collection.  

 

 

The use of SNMP generally has been a good thing for people charged with managing 
internetworks. I recommend you use caution, however, when deciding which management station 
software to use, and be careful about deciding what you monitor via polling devices. Ideally, what 
you should look for in implementing a network management system is a minimum amount of traffic 
overhead placed on the internetwork, combined with operators being notified of monitored events 
on the internetwork as they happen. A network management station generally utilizes a graphical 
display of some kind, and uses visual prompts to notify operators of events on the internetwork. In 
most cases these events can trigger such things as e-mail and beeper notification.  

 

 

I stated earlier that the optimal way to monitor an internetwork was to poll the most significant 
devices and set traps for all the ancillary devices and variable thresholds in which you are 
interested. With the management systems available today, achieving this is not always 
straightforward. Some management stations will not allow the status of a monitored device to be 
set when a trap is received. These management stations accept the trap, then poll the device to 
determine the exact nature of the trap sent. In other cases, the SNMP-managed device is a 
problem because some device agents do not allow traps to be generated for all the MIB variables 
that you want to monitor. In this situation, the only way to determine if a MIB variable that you have 
interest in has exceeded a given value is to poll the device and retrieve the MIB variable directly.  

 
 All this makes optimal management of an internetwork via SNMP a significant challenge. The key 
points to consider when purchasing a management system are summarized as follows:  

 
   1.Will the management station respond appropriately to traps sent by monitored devices and not 

require a separate poll to be sent to the monitored device?  
 
   2.Can you obtain device agents that will send traps for all the variables you wish to monitor?  



 
   3.Can you set traps and threshold limits for all the variables you want to monitor simply by using a 

graphical user interface, without having to resort to programming arcane strings?  
 
   4.If the management system suffers a catastrophic failure, can you use a text interface to manage 

device operation over modem lines?  
 
 Overview of Managing an Internetwork with CiscoWorks  
 

 

CiscoWorks is Cisco's network management station software, which is supported on Sun Net 
Manager, IBM's NetView for AIX, and HP Openview platforms. CiscoWorks provides facilities for 
managing router configurations, notifying operators when specific events occur, and writing logs 
for audit purposes. CiscoWorks also has functions to help with performance and fault 
management. We will focus on the performance and fault management functions provided within 
the IOS user interface when we cover troubleshooting in Chap. 8.  

 

 

The goal of this book is to introduce Cisco router technology to those with responsibility for, or 
interest in, internetworked environments. It is possible to effectively run and manage a Cisco router 
internetwork without a system such as CiscoWorks. When your internetwork grows to more than 
60 or 70 routers, however, simple administrative tasks like changing the Enable password, or 
implementing a new configuration command on all routers, become onerous. This section provides 
a brief overview of CiscoWorks and how it can help monitor events and manage router 
configurations. The next section will cover loading IOS software on remote routers.  

 

 

CiscoWorks Concepts. CiscoWorks (CW) is installed as an add-in to existing network 
management platforms such as HP Openview or Sun Net Manager. CW runs as separate 
applications under these management platforms. The means of accessing these applications is 
different for each platform, so we'll look at the functionality these applications provide, rather than 
focusing on how to access them from all platforms.  

 

 

  
 
 Figure 7-19: Top-level map display on HP-Openview 

   
 

 

The foundation of the CW system is a Sybase database that keeps track of your internetwork's IP 
devices, their configuration, and selected status data. This database is presented graphically as 
maps on the management station display. Figure 7-19 shows a top-level map display for a sample 
internetwork. Typically, this top-level display will allow you to select a Point Of Presence (POP) 
location and display the detail of connections in that area via another map display.  



 

 

Usually there will be several users of the CW system, which allows different usernames to be 
assigned their own passwords and appropriate user privileges. To set up the CW system, the 
internetwork either is searched automatically or devices are added manually. If devices are found 
automatically, it is done by IP address and you will want to modify the device type to be the 
specific Cisco router in use. Once you are satisfied that you have collected all the information, you 
will synchronize the CW Sybase database with the management system's database that you have 
installed.  

 

 

The main benefits of CW are the ability to poll devices and receive traps to generate alerts for 
operators, and to simplify configuration changes through the Snap-In Manager tool, which allows 
you to set configuration changes for multiple routers on your network. The CW station can be used 
as the TFTP server for auto-install procedures and to retrieve remote router configurations on a 
regular basis for backup purposes.  

 

 
CW notifies an operator of a network event—such as a polled device becoming unreachable, or an 
interface going down on a router enabled to send traps—by the color of the device's display 
changing from green to red. An alert box appears on the screen and, optionally, audio alarms can 
be set off.  

 

 
It must be noted that running a CW system efficiently is not a trivial task; it requires substantial 
knowledge of the underlying management platform and the operating system on which it is 
running.  

 

 
Router Software Management with CiscoWorks. We have discussed using a TFTP server to 
store and download router configuration files, particularly for the auto-install procedure. Using plain 
TFTP will simplify things for you; some CiscoWorks applications will assist you even further. CW 
comes as a set of applications, the most useful of which we will overview here.  

 

 

The CW Configuration Management application allows you to edit, upload, and download Cisco 
router configuration files. In general, the process involves creating a file by using a text editor, then 
executing the filetodatabase command in the configuration management window, followed by 
the databasetodevice command. This ensures that the Sybase database on the CW computer 
holds the most recent copy of the device's configuration.  

 

 

The Configuration Management application has another feature that is sometimes useful in 
troubleshooting because it allows you to compare two configuration files and identify differences 
between the two. This can help in determining whether configuration changes made to a router 
have caused an internetwork problem. This is of value only if you have configurations for both 
before and after the internetwork problem started. Some users of CW systems perform an 
overnight backup of all router configurations, just for this purpose.  

 

 

The Device Software Manager application simplifies the procedure for upgrading IOS or microcode 
remotely. This application actually consists of three applications: the Software Library Manager, to 
maintain and list the sources of software available; the Software Inventory Manager, to list current 
software status and sort device information according to platform and software image; and the 
Device Software Manager, to automatically upgrade the system software on a selected router. This 
software automatically performs all the tasks detailed in the section on remotely upgrading IOS 
from a TFTP server, which is covered in detail in the next section.  

 



 

Global Command Manager allows you to automate the running CW applications such as 
upgrading devices or sending common configuration changes to routers. The application's concept 
is the same as that of the Unix cron utility. Any Unix or CW command that you can specify 
manually can be automated to execute at a specified time. The Global Command Manager can be 
used to schedule database tasks such as backups and purge of log files, device polling to retrieve 
MIB variable information, and use of the Configuration Snap-In Manager. For a command to be 
executed by this application, it must be created as a global command, which will add it to a log file 
of commands to be executed at the specified time.  

 

 

The Configuration Snap-In Manager allows a common set of configuration commands to be sent to 
a set of devices. To use this application, define a set of commands as a snap-in, which can be 
applied to a defined set of devices. Snap-in commands must be of the same type; for example, 
you can send three snmp-server commands in one set, but you can't send an snmp-server 
and a logging buffered command in one set. The most useful things you can do with this 
application are to globally change the Enable password on your router configuration, and change 
security management station configurations such as access lists or source addresses.  

 
 Remotely Upgrading Router IOS from a TFTP Server  
 

 

Different routers in the Cisco product line have different capabilities regarding the loading of IOS 
from a remote location. Some of the higher-end routers, such as the 7000- and 7500-series, have 
enough memory facilities to allow a new version of IOS to be loaded remotely, and the new IOS to 
take effect when the router is next booted or when a reload is issued. These routers also allow you 
to keep more than one version of IOS held in memory, in case you need to fall back to a prior 
version because of a problem with the new version.  

 

 

In all probability, the most common router implemented in a Cisco internetwork is the 2500-series, 
because it is the cheapest and provides the functionality needed to bring a small remote office 
online to the corporate internetwork. One of the compromises in delivering a product like the 2500 
is that it is limited in available memory. A 2500 router runs its IOS from flash memory rather than 
ROM. To upgrade the IOS in this type of router, the flash memory must first be erased, so that the 
new version of IOS can become the first file in flash memory and hence be the one from which the 
router is running.  

 

 

To safely erase the contents of flash memory, you must be running at least a small operating 
system from somewhere other than flash; otherwise the router will stop running. This is where the 
Cisco Rxboot image comes into play. This boot image is a small operating system that runs from 
ROM chips on the router motherboard, and provides just enough functionality to boot the router 
with empty flash memory and load a new version of the IOS into flash.  

 
 Because the 2500-series is the most complex to upgrade remotely, and probably the most 
common device we need to upgrade remotely, we will examine its upgrade process in detail here.  

 

 
The Rxboot ROM Program. Rxboot supports Telnet and TFTP operations, but does not support 
routing, SNMP, routers with more than one interface enabled, TACACS, or IP unnumbered. These 
limitations have implications when you want to remotely upgrade router configuration.  

 

 The first step is to shut down all interfaces except for the serial port on which the router is to 
receive the new version of IOS. In addition, if the serial port normally uses IP unnumbered, it must 



command must be entered into the configuration of the router in global configuration mode, prior to 
the upgrade.  

 

 
To execute an upgrade process, you must have a computer to use for Telnet access to the remote 
2500, and a TFTP server somewhere on the internetwork that has loaded onto it a copy of the new 
version of the IOS. We covered TFTP server configuration in Chap. 3 when we discussed loading 
configuration files over a LAN. The same TFTP server configuration can be used for this purpose.  

 
 Preview of the Upgrade Process. We will discuss each step in detail, but it is useful here to 
check a summary view of what we are about to do.  

 
   1.Check that the TFTP server can ping the remote router to be upgraded, and configure the 

remote router to use a default gateway once its routing functionality has been disabled.  
 
   2.Load the new version of IOS on to the TFTP server, ready for loading onto the remote router.  
 
   3.Play it safe by completing a backup of the remote router's IOS and configuration file, should 

things go wrong.  
 
   4.Reboot the router to use the Rxboot image, by loading its operating system from the ROM chips. 
 

   
5.Copy the new version of IOS to the remote router's flash memory and check that the checksum 
is the same as the file on the TFTP server, to ensure that nothing happened to the new version of 
IOS in transit.  

 
   6.Boot the router from flash memory and check to make sure everything is functional before 

moving on to the next router.  
 
 Executing a Remote Upgrade. Let's consider a situation in which a remote 2501 needs to have 
its IOS upgraded, as shown in Fig. 7-20.  

 

 

  



 
 Figure 7-20: Internetwork configuration for remotely upgrading a 2500 router 

   
 
 First, Telnet to the 2501 router and issue the following command:  
 
 2501>ping 193.1.1.1  
 
 Unless you get success at the ping level, you are not going to get very far, so it's worth checking 
this before we go any further.  

 
 Next, all serial ports other than the one we will use for the upgrade must be shut down and the 
ipdefault-gateway command entered, as follows:  

 
 2501(config)#interface serial 1  
 2501(config-int)#shutdown  
 2501(config-int)#exit  
 2501(config)#ip default-gateway 210.18.1.5  
 2501(config)#<Ctrl-Z>  
 2501#write memory  
 
 No change will be seen to the routing table of the 2501 router at this stage. The ip default-
gateway command does not take effect until the routing process is disabled.  

 

 
Loading the new version of IOS onto the TFTP server can be done many ways, from a software 
distribution disk, from Cisco's Internet site, or loading onto the TFTP server from a router already 
running the new IOS version. Whichever method you choose, you need to know the filename 
used. Let's look at saving the existing IOS to the TFTP server as a fallback consideration.  

 

 
To save the IOS image file to the TFTP server, you must know the image filename, which can be 
determined by issuing the show flash all command. A sample screen output shown in Fig. 7-
21 displays the router's IOS image filename, which in is 10_3_7.ip in this case.  

 



 

  
 
 Figure 7-21: Screen output of the show flash all command 

   
 
 The commands, subsequent router prompts, and responses to save this filename to the TFTP 
server are seen in Fig. 7-22.  

 

 

  
 
 Figure 7-22: Screen output of the copy flash TFTP command to save a router's IOS to a TFTP 
server 

   
 

 
Now we start the real work. The 2501 router must be booted from ROM to use the Rxboot program 
as its operating system. To achieve this, the configuration register on the 2501 must be changed 
from 102 in hex, to 101 in hex, which is achieved as follows:  

 
 2501#conf t  
 2501(config)#config-reg 0x101  
 2501(config)#<Ctrl-Z>  
 2501#reload  
 

 
At this stage, the Telnet session you have established to the router will be terminated while it 
reloads its operating system from boot ROM. For many, this is nerve-wracking the first time they 
attempt the process. Don't worry. Everybody has to do this for the first time once, and the process 
does work well.  



 
 After you give the router a few minutes to reload, you should be able to Telnet back in to it, and 
instead of the familiar login prompt, you will see the following prompt:  

 
 2501(boot)>.  
 
 To get into Enable mode, you will have to type the Enable password, and not the Enable secret. 
The Rxboot program does not recognize the Enable secret.  

 

 

Next we want to load the new IOS from the TFTP server. Let's again play it safe by checking that 
the 2501 router can ping the TFTP server. Assuming that all is okay, we can proceed. If something 
has happened on the internetwork to prevent IP connectivity from the 2501 to the TFTP server, 
that must be resolved before we can continue. The new IOS is downloaded with the copy tftp 
flash command as shown next.  

 
 2501(boot)#copy tftp flash  
 IP address or name of remote host [255.255.255.255]?193.1.1.1  
 Name of file to copy? "New IOS filename"  
 Copy "new IOS filename" from 193.1.1.1 into flash address space? [confirm] <Enter>  
 Erase flash address space before writing? [confirm] <Enter>  
 loading from 193.1.1.1 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  
 

 

The exclamation points indicate that a data transfer is in progress. The next stage is to verify that 
the file was transmitted successfully without alteration from the source. You can check this by 
verifying that the checksum shown at the end of the display from the copy tftp flash 
command matches that of the new IOS image as reported on the software distribution materials 
(either a disk, or as stated on the Cisco Internet site). If the checksum values don't match, again 
execute the copytftp flash command. If after several attempts the checksums still don't 
match, try to reload the original file before executing yet again. If noisy line is introducing errors 
into the new IOS image as it is downloaded (remember TFTP uses UDP and not TCP, so there is 
no error correction), you should not boot the router from flash until the noise problem has been 
fixed and a good IOS version has been loaded into flash.  

 
 Assuming that the new IOS image is loaded successfully, you can return the router to normal 
operation as follows:  

 
 2501(boot)#conf t  
 2501(config)#config-reg 0x102  
 2501(config)#no ip default-gateway 210.18.1.5  
 2501(config)#<Ctrl-Z>  
 2501#reload  
 

 
Once the reload has executed and you can Telnet back in to the router, you can remove the 
shutdown command from the Serial 1 port and the 2501 should be functioning with a new version of 



IOS.  
 



Overview of Cisco Router Password Recovery Procedures  
 

 
It should never happen, but it is possible that the router Enable password or secret may get lost, 
thus denying configuration or many troubleshooting options. There is a way to break into the router 
if you can operate an ASCII terminal directly connected to the console port. The process in 
overview is as follows.  

 
   •Power cycle the router and break out of the bootstrap program.  
 

   
•Change the configuration register, to allow you either to get into Enable mode without a password 
(if the flash image is intact), or to view the current configuration. Then initialize the router so that 
the router will boot from the ROM system image.  

 
   •Either enter the show configuration command to display the router configuration file and 

read the Enable password, or change the Enable password directly.  
 
   •Change the configuration register back to its initial setting, and power cycle the router.  
 

 

A few words of caution are in order here. Suppose that the image of IOS in flash memory is not 
intact and you elect to change the configuration register so that you can read only the 
configuration. As you saw in the original configuration file, knowing the Enable password will not 
help you if there is an Enable secret set. The Enable secret always appears encrypted in the 
configuration file. If an Enable secret is set, all this process will allow you to do is write down the 
configuration, or save it to a TFTP server, so that you can issue the write erase command and 
then recreate the router configuration with a password you know. If an Enable secret is not set, but 
the Enable password is encrypted, you are in the same situation.  

 

 
The exact process for each of the routers in Cisco's product line varies slightly. Here is a step-by-
step guide of what to do for all the Cisco 2500, 680x0-based 4000- and 7000-series routers. The 
4700-series routers are based on a different processor and have a different procedure, which can 
be obtained directly from Cisco.  

 

 
First, type the show version command and note the configuration register setting. If the console 
port has had a login password set that you do not know, you can assume that the configuration 
register is 0x2102 or 0x102.  

 

 

With an ASCII terminal or PC running a terminal emulator attached to the console port, turn on the 
router and enter the break sequence during the first 60 seconds of the router bootup. The most 
difficult part of the procedure often is determining the break sequence. For Microsoft terminal 
products, such as Windows Terminal and Windows 95 Hyperterminal, the break sequence is the 
Control and Pause keys pressed simultaneously. For Procomm it is the Alt and B keys pressed 
simultaneously. When the correct break sequence is entered, the router will present a ">" prompt 
with no router name.  

 

 

Next you must decide if you are going to enter the mode that allows you only to view and erase the 
configuration, or if you are going to restart the router so that you can get directly into Enable mode 
and change the configuration. Assuming that the flash memory is okay, enter o/r0x42, which 
configures the router to boot from flash. Entering o/r0x41 has the router boot from the boot 
ROMs next time the IOS is reloaded. As we know, the boot ROMs of a 2500 only contain a 



stripped-down version of IOS. Note the first character is the letter "o" and the fourth character is 
the numeral "0".  

 
 Next type the letter "I" at the > prompt and hit enter, which will initialize the router.  
 
 The router will now attempt to go through the setup procedure, and you will just answer no to all 
the prompts, which will leave you with a Router> prompt.  

 

 

From here, you can get into privileged mode by entering the word Enable, from which you can 
view or change the configuration. You should proceed with some caution at this stage if you do not 
want to lose your existing configuration file. If you used the o/r0x42 command and want to 
change the configuration, issue the conf mem command to copy the configuration file from 
NVRAM into working memory; otherwise all the changes you make will be to the configuration file 
in RAM, which prior to the confmem command was blank. If you did not realize this, made 
configuration changes to the blank file, and saved it prior to reloading the router software, you 
would overwrite the original configuration file that you want to keep. Once you have issued the 
conf mem command, you can enter configuration mode and alter the original configuration file, as 
it is now in RAM. Enter configuration mode with the conf t command.  

 

 
Once you have changed the Enable password, or completed whatever configuration changes you 
want, enter config-reg 0x102 at the configure prompt, then press <Ctrl-Z> to exit from 
configuration mode. Type reload at the Router# prompt and select Yes to save the configuration. 

 



Putting Together the Sample Internetwork  
 

 

In this section, I will pull together the various sections of this chapter to illustrate how the concepts 
presented can be integrated to build an internetwork. The requirements of each and every 
individual internetwork vary considerably. It is unlikely that the design I present here will be the 
optimal one for your internetwork; however, it does present a reasonable base from which to start. 
Unlike in other chapters, where I have tried to be objective, in this section I have to be opinionated, 
because without a specific problem to solve with documented evidence, there are only opinions.  

 

 

Where applicable, I will highlight tradeoffs made and areas where the design presented will run 
into problems under certain types of traffic loads. Additionally, most of what I say is based on my 
practical experience and therefore cannot be taken as statistically significant, as I am only one 
engineer among thousands. Having suitably qualified the statements I am about to make, in an 
attempt to save my home and family from those who hold views different from mine, I shall press 
on.  

 
 Defining the Problem  
 

 

As mentioned at the outset of this chapter, we have an organization headquartered in Chicago, 
with concentrations of branches around New York, Atlanta, Dallas, Los Angeles, and San 
Francisco. All hosts are located in Chicago, with local Windows NT servers in each remote site for 
delivering file and print services. The internetwork must deliver host access, Internet, e-mail, and 
remote dial access to all users. Here are the design decisions I have made:  

 
   1.The Windows NT servers in each branch will use TCP/IP for WAN communications, utilizing a 

centralized WINS server located in Chicago for name resolution.  
 

   
2.Dial-up services for users operating outside their branch will be provided centrally via a pool of 
asynchronous interfaces located in Chicago. Users then access their branch-based NT servers 
over the WAN. To dial the asynchronous interfaces in Chicago, the users dial an 800 number.  

 
   3.The backbone will rely on multiple links between distribution centers rather than on dial backups 

for redundancy.  
 

   
4.Branch routers will use ISDN to establish a dial backup connection in the event that their link to 
their distribution center (New York, Atlanta, Los Angeles, etc.) goes down. The ISDN link will be 
made back to the central location in Chicago.  

 
   5.The whole internetwork will be based on one of the IANA-reserved Class B addresses and 

connected to the Internet via a PIX firewall located in Chicago.  
 
   6.HSRP will not be used at the Chicago location, so we will have to think about how to protect host 

access from being lost by one router failing.  
 
   7.I will use individual leased lines rather than a commercial frame relay service.  
 
   8.I will use Cisco HDLC rather than PPP for the encapsulation on the point-to-point WAN links.  



 

 

Let's see if I can justify my reasons for setting things up this way. First of all, let's tackle the idea of 
distributed rather than centralized Windows NT servers. Some high-level managers I know like the 
idea of centralizing servers for ease of administration and point out that workstation-to-server 
communications can be achieved over a WAN link as easily as over a LAN link. This is true, and I 
can set up a workstation to access a server over a WAN link and it will work well. The issue I take 
with this scheme is with how well it scales as the network grows. Basically, it does not. The more 
workstations you add, the more traffic the WAN link has to support—not only requests for file 
services, but announcements, advertisements, and other overhead generated by network 
operating systems grow as the number of workstations grow.  

 

 

Next, let's discuss providing Internet services from the central location. This is enough to give a 
network administrator a heart attack on the spot. Just think: All those graphics, audio files, 
searches, and so forth taking up valuable WAN bandwidth. I agree that providing Internet services 
over your own WAN bandwidth when the Internet already has bandwidth available in the branch 
office locations may seem like a waste. I believe, however, that connecting your internetwork to the 
Internet is one of the prime security risks you run.  

 

 

My opinion is that allocating lower priority to Internet traffic over the WAN and feeling good about 
secure centralized Internet access is a good tradeoff. Additionally, there are technical problems 
involved in providing one router to a remote site to access the corporate WAN and another to 
access the Internet. PCs can define only one router as the default, either the WAN or the Internet 
router. Therefore, providing Internet access at remote locations requires a more complex router, 
one that probably has a proxy server to connect to the Internet. This becomes costly.  

 

 

So what about the backbone having multiple routes between distribution centers, and no dial 
backup for these links? This is easy: As the backbone links grow in capacity, they become more 
and more difficult to back up with dial links. With a sensible backbone configuration, you can 
design in enough redundancy for your needs. T-1 and fractional T-1 services are reliable these 
days, and if you experience specific problems, additional links can be added piecemeal to improve 
redundancy.  

 

 

A big point of contention for many business managers is justifying the potential additional costs of 
individual leased lines compared to subscription to a public frame relay network. The arguments I 
gave in the frame relay section still hold. Frame relay networks were good when first put together, 
when utilization was low, because you could subscribe to a low CIR and get substantially more 
throughput on average. Now that vendors' frame relay networks are more fully subscribed, that 
"free" bandwidth is not available and performance over these networks is not what it was. In some 
cases, the need to specify a CIR approaching what you would need on a leased-line basis 
approaches the cost of having your own dedicated bandwidth. I also like having control of how my 
network traffic gets from source to destination, not to mention that since these frame relay 
networks are public, you face additional security risks that you don't encounter with your own 
leased lines.  

 

 

Next, why have dial-up users dial the central location and access local files over the WAN instead 
of having them dial the branch location? In this case, the argument to provide a central rather than 
distributed resource wins out. With a central dial-up pool, you can set up an 800 number service 
and get a lower rate for users calling long-distance to access their data. While users will be using 
WAN bandwidth to access NT server files, they will not be using WAN bandwidth to access host 
applications or the Internet, so I think it’s a wash. (I would not allow any application to be 
downloaded over a dial-up link, however; all applications need to be loaded on the hard drives of 
the computers being used for dial-up connections.)  



 

 

I feel confident that I will have full backing in this judgment from anyone who has tried to remotely 
support an asynchronous communications server, modem, and telephone line. A central pool of 
ports that can be tested, one in which bad ports can be busied out and components easily 
replaced, is a significantly smaller headache than distributed facilities. Some branch managers 
argue that when they go home and want to dial in, it is a local call to the office, so why do they 
have to dial an 800 number and incur expense for the company? This may be true, but I believe 
that most calls will be made by users traveling on business and would be long-distance phone 
calls anyway. I’ll stick with a central dial pool on both technical and cost grounds.  

 

 

Next, let’s talk about using Cisco HDLC rather than PPP for the point-to-point links on the 
internetwork. PPP offers the opportunity for CHAP authentication, which HDLC does not, and is a 
more modern protocol with generally more configuration options. The deciding factor for me, 
though, is that with Cisco HDLC, you can put a CSU/DSU device in loopback, and if the 
connection between the router port and the CSU/DSU is good, the line protocol will come up. With 
PPP it will not. This is a good starting point to have when you are trying to troubleshoot, 
particularly an initial line installation. If, however, you choose to utilize any LAN extender devices, 
you will have to use PPP. I will choose PPP for the asynchronous links, as the improved security 
features of this protocol make it the obvious choice for a potential security loophole such as dial-up 
connections.  

 

 

Now we will discuss having the remote site routers use ISDN to dial the central location in 
Chicago, rather than their distribution center, in the event of a line failure. This has many 
implications, not the least of which is how you choose to implement your IP addressing scheme. 
The first point to consider is what IP address the interface on the branch router will have for dialing 
in to a central pool. It’s not feasible for these interfaces to have their own IP addresses.  

 

 

Think about what happens when the ISDN connection to the backup pool is made. Normally a 
router interface will expect the directly connected devices to be addressed on the same subnet as 
itself. In addition, a subnet on a properly designed internetwork will appear at only one location. So 
what subnet does the backup pool use? This cannot be resolved if you assign specific addresses 
to the backup pool, as you will never know which subnet from the field will be trying to dial in. So 
both the serial interface used for ISDN dial backup and the interfaces in the central location dial 
backup pool must use IP unnumbered.  

 

 

Next, should we implement one Class B network number with subnets, or allocate one network 
number for the backbone and different network numbers for the distribution and branch 
connections? The latter option reduces the size of the routing tables in the backbone routers, and 
hence reduces the size of routing updates. The reason is that network numbers are summarized 
into one route at the boundary between major network numbers. This means that a network 
number that is broken up into multiple subnets in the distribution center will only have one entry in 
the routing table of the backbone router. As we have chosen to have branch routers connect to the 
central location in Chicago, however, we cannot implement an addressing scheme with one 
network number for the backbone and separate network numbers for the distribution centers.  

 
 Figure 7-23 illustrates one way to interconnect sites in our sample WAN.  
 



 

  
 
 Figure 7-23: Illustration of how the sample network could be connected and addressed 

   
 

 

With just one network number and multiple subnets, the routing tables (and hence the size of 
routing updates) grow as the number of branches grows. This can be a problem for branches 
connected on dial backup, as large routing updates can consume significant bandwidth. If the 
internetwork grows to the point that it's servicing more than 1000 branches, you might be forced to 
implement a distributed dial backup scheme. An option we will consider is using access lists 
applied as distribution lists to restrict the size of routing advertisements sent on low bandwidth 
links.  

 

 

With a central dial backup pool of ports, we will implement one network number for the entire 
internetwork and choose an appropriate netmask for all interfaces. I could choose a netmask of 
255.255.255.224. This gives 30 usable addresses for each location and 2046 subnets. If a location 
has more workstations than that, a secondary address can be used to give another 30 usable 
addresses from a different subnet. If, in our sample internetwork, most of the sites have more than 
30 workstations, we can assign a netmask of 255.255.255.192 for all interfaces, which gives us 62 
usable addresses for each subnet, with 1022 subnets. Let's use 255.255.255.192, as this company 
cannot imagine having more than 1000 locations, and having more usable addresses in the subnet 
makes it easier if a few branches are larger than 30 workstations.  

 
 The Central Site Configuration  
 

 

This is where all the hosts and access points for the Internet, as well as the pool of ISDN ports 
used for dial backup connections, are located. When putting together an internetwork of this type, I 
would go to great pains to ensure that access to the hosts is via the TCP/IP protocols. Most hosts 
support TCP/IP directly and allow remote client computers to connect via Telnet, and even IBM 
hosts have capabilities for this through TN3270 and TN5250. An emerging technology—software 
loaded on the host that allows hosts to be accessed via HTTP and display host information in a 
WWW format—also is a possibility. As long as we restrict our WAN to using TCP/IP, however, we 
are in good shape whichever way we go.  

 

 The next big decision is how to connect the central site LAN to the WAN. We have said that HSRP 
will not be used in this instance, and why not? Well, HSRP is a really good idea if both of the 
routers that are sharing the responsibility of servicing traffic sent to the phantom have equally good 



routers that are sharing the responsibility of servicing traffic sent to the phantom have equally good 
routes to all destinations. This is not the case in our internetwork, so let's look at what would 
happen if we were to implement HSRP here.  

 

 

An HSRP configuration has two routers, one of which will be elected to service traffic sent to the 
phantom. In our internetwork, we may choose to connect San Francisco and Los Angeles to one 
router, and New York and Atlanta to the other. This configuration would enable traffic to get to all 
distribution centers even if one of the HSRP routers failed. Let's look at what happens during 
normal operation.  

 

 

Say the router connected to San Francisco and Los Angeles is elected as the primary and will then 
service all requests sent to the phantom. Traffic bound for New York and Atlanta, therefore, will be 
sent to Los Angeles first and the direct links to New York and Atlanta will not be used. The only 
time they would be used is if the router connected to San Francisco and Los Angeles failed. 
Clearly this is far from an optimal situation. In this case I recommend a low-tech solution: Have an 
identically configured standby WAN 4700 router in the same cabinet as the live one, and manually 
swap over connections if it fails.  

 

 

If you need the resilience that HSRP offers, then you need to put together a more complex set of 
WAN interconnections, something like that shown in Fig. 7-24. This configuration has each router 
in the HSRP pair with the same WAN connections; it does not matter so much which router gets 
elected as the master and routes all the traffic bound for the HSRP phantom. As you can see, 
HSRP gets expensive on WAN bandwidth and the lines connected to the inactive HSRP router do 
not carry any traffic. Given that Cisco hardware really is reliable, in this situation I would stick with 
the manual swap-over option.  

 

 

  
 
 Figure 7-24: WAN interconnectivity of HSRP implementation 

   
 

 
Finally, for the central site, we should mention that a separate LAN has been set aside for the 
network management station. This is so we can tell all the routers out in the field to accept SNMP 
commands only from this LAN. The final configuration for the central location in Chicago is given in 
Fig. 7-25.  



 

  
 
 Figure 7-25: Central location network configuration 

   
 
 Distribution Center Configuration  
 

 

The distribution center configuration is fairly simple. Each distribution center router will have serial 
port connections to the backbone and serial port connections to the individual branches. There are 
no Ethernet connections because no servers are located at the distribution center in this design, 
and no ISDN connections because the branches dial back to the central location if a local loop 
fails.  

 

 

The issues related to managing the distribution routers are more procedural than technical. First, 
will the distribution center router be located in a branch, or in a communication vendor's facility? 
The advantage to it being located with other communications equipment in a vendor's facility is 
that it will be in a secured room, probably one with air-conditioning, uninterruptible power supply, 
and maybe even a backup generator. This might be costly, however, and most of the vendor's 
facilities are not staffed; if the router needs rebooting, or it fails and needs to be replaced, the 
distribution center will be out of action until someone can make the trip there to do the necessary 
work.  

 
 Remote Site Configuration  
 

 

Here I choose to give the Serial 0 port a fixed IP address and use IP unnumbered for the ISDN 
backup. I have covered why we use IP unnumbered for the ISDN backup port, but why don't we 
use it for the primary connection? The section on upgrading IOS for 2500-series routers gives us 
the answer. Operating from the Rxboot program, IP unnumbered is not supported. It is simpler to 
assign an IP address for the port that will be used during the upgrade process than to change the 
IP configuration just for the upgrade.  

 

 

The next question is why use an ISDN terminal adapter instead of a built-in BRI? In the 
internetwork as it stands, using a built-in BRI probably makes more sense. Let's look to the future, 
however. Many businesses, as they grow and their dependency on technology gets more 
significant, look to developing a disaster recovery plan. Typically a disaster recovery site will be 
built. Let's consider what happens if the central site burns down and operations need to be run 
from the disaster recovery site.  



 

All the distribution centers are hard-wired to the primary location, so what we need to achieve is 
the ability for all branches to dial into the disaster recovery site. Under normal conditions, the ISDN 
dial port is configured to dial the original central location. If that location has burned down, there is 
no way to Telnet to the branch routers and change the dial string so that they dial to the backup 
site. If you have a terminal adapter, however, you can instruct branch personnel to change the 
ISDN numbers dialed through the front panel of the terminal adapter and pull out the primary 
connection in the branch router's Serial 0 port. You now have a means of connecting branches to 
your disaster recovery site fairly quickly, albeit with some manual intervention. The remote site 
configuration discussed here is illustrated in Fig. 7-26.  

 

 

  
 
 Figure 7-26: Remote site network configuration 

   
 
 ISDN Backup and Asynchronous Dial-Up Service Configuration  
 

 
Chapter 6 gives detailed configuration for the router that is to provide the ISDN backup pool and 
we will not repeat that discussion here. Configuration of asynchronous communications also has 
been discussed in Chap. 6, under the section on PPP communications. The key points for 
configuring an asynchronous routed interface are:  

 
   •IP addresses are assigned to a computer at connect time, a step that simplifies providing the 

ability for any computer to connect to any port.  
 
   •CHAP authentication is in place and managed by a TACACS server that logs what user logged in, 

when, and for how long.  
 
 Miscellaneous Issues  
 

 There are many miscellaneous issues to consider when assembling an internetwork of this kind. 
The first, and probably most important, is the type of routing protocol to implement. My choice is 



state routing protocol implementation, you will always have work; however, I seem to find better 
things to do with my time.  

 

 

For the type of internetwork we are talking about here, Fast IGRP or EIGRP are perfectly 
adequate. IGRP has been around longer and therefore is very stable. EIGRP has become more 
stable in recent times and is ready for deployment in large internetworks. I have a slight preference 
for EIGRP at this stage. An important part of taking advantage of the enhanced facilities of modern 
routing protocols is defining the correct bandwidth in the configuration of each serial interface 
used. This is imperative, as it ensures that the most appropriate metric is calculated for each route. 
If a bandwidth command is not implemented on each interface, the default of T-1 bandwidth is 
assumed for the purposes of metric calculations, and suboptimal route selection results.  

 

 

With the design presented, it is possible to have only one LAN interface on each host and NT 
server and have everyone delegate routing responsibilities to a router, by use of the default 
gateway command in each host and server. I like this way of doing things. Cisco routers are much 
better routers than any host or server. Servers and hosts should do what they do best: serve 
applications, file, and print services to users, and authenticate usernames. Routing should be left 
to the specialist router devices.  

 

 

The next issue to consider is how to get to know your internetwork once it is operational. Despite 
advances in network management in recent years, there is still no real substitute for a network 
administrator knowing how the internetwork operates under normal conditions and being able to 
spot trends and abnormal activity. “Abnormal activity” might mean an intruder or a new application 
behaving inefficiently. In many cases, the only way to know what is at fault is to know in some 
detail how the internetwork performs when all is well. So what should be monitored? Here is a 
short list of generic criteria, which you probably will add to for your specific situation, but this list is 
a good start. We will cover these measurements again in Chap. 8, from a troubleshooting 
perspective.  

 
 The show interface command (discussed in more detail in Chap. 8) should become a good 
friend. It will give you the following information very easily for each interface you want to examine:  

 

   
•Current throughput, presented as a 5-minute average: There may be times when you want to 
know the throughput over a shorter time span. Unfortunately, you cannot do this with a Cisco 
router; you need a network analyzer of some type to get this information.  

 

   
•Number of packets dropped by the router: Typically a router will drop a packet if its buffers are 
full, or the hold-queue value (which is the number of packets allowed to be outstanding for a 
particular interface) is exceeded.  

 

 
It is also worth knowing how many carrier transitions are normal for the lines used on your 
internetwork. This normally should be a low number, as it represents how many times the leased 
line supplied by the telephone company went down and came back up again.  

 

 
In addition, the show buffers command presents useful information. This display (again, 
discussed in more detail in Chap. 8) shows the different sizes of buffers, their utilization, and 
whether you are running out of buffers of a specific size on a regular basis.  

 

 The show proc and show proc mem commands help you keep track of processor and memory 
utilization, which should not be subject to large changes. You can collect these values either 
manually or regularly via SNMP from a management station. If you can keep track of all these 



manually or regularly via SNMP from a management station. If you can keep track of all these 
variables, you should be in a good position to determine what has caused a problem when it 
arrives—and problems always come along for an internetwork. It’s part of life.  

 



 Summary  
 

 
This chapter discussed the technologies you might wish to deploy when building your own Cisco 
router TCP/IP-based internetwork. After this discussion, a sample network was presented that 
would service a fairly generic set of requirements. The issues covered were network topology 
selection, reducing manual management tasks, and securing the internetwork.  

 



Chapter 8: Troubleshooting  
 
 Objectives  
 

 

Troubleshooting is rather a nebulous thing to discuss. Until a specific problem crops up, we're just 
hypothesizing. The art of troubleshooting—and I do consider it as much of an art as a science—is 
in knowing where to look for the source of the problem. This comes through an analytical thought 
process. It is possible to learn all the facts available about communications systems and not be 
effective at resolving problems. Hands-on experience is the best teacher on the subject of 
troubleshooting; still I will:  

 
   •Outline a simple process that will get you on the right track to solve most problems.  
 
   •Focus mainly on specific examples.  
 



A General Troubleshooting Blueprint  
 

 

One of the best math tutors I ever had gave me some simple but effective advice. He said that 
before I try to solve a problem, I should write down what I have to find out and what information I 
have to work with. This advice carries over to troubleshooting internetwork problems as well, i.e., if 
you can get a clear definition of what you are trying to do and gather appropriate information on 
the problem, you are well on the way to solving the problem.  

 

 

When solving mathematics problems, all the information needed generally is presented to you, but 
when solving internetwork problems you have to get the information yourself. Cisco makes this as 
straightforward as it can be by extensive show and debug commands. You, however, must know 
which of these commands to use in a given situation in order to get the information you need. 
Therein lies the art.  

 
 Internetwork problems generally fall into one of the following categories:  
 
   1.A Physical layer issue with device interconnection, hardware, or line failure.  
 
   2.A Data Link layer issue involving configuration of internetwork device interfaces.  
 
   3.A Network layer issue with network protocol configuration or operation.  
 
   4.Performance or traffic congestion problems causing Transport layer timeouts.  
 
   5.A software bug either in the application using the internetwork, or within the Cisco IOS itself.  
 

 

The first four points follow the first four layers of the ISO data communications model, starting at 
layer 1, the Physical level. The fifth point covers all issues that arise in the top three layers of the 
ISO model. This is generally the way I recommend people start to troubleshoot internetwork 
problems. Start from the Physical layer and work upward. It may not always work out so neatly that 
you can pinpoint an internetwork problem as being sourced within one layer's operation, but 
checking the operation of protocols on a layer-by-layer basis will give you a good view of how the 
problem manifests itself.  

 

 

Before reviewing the simple troubleshooting scenario explored in Chap. 3, there is one more point 
to consider before you rush in to fix things. In many cases, it is very simple to make the situation 
drastically worse. By rushing in and changing the configuration of devices on an internetwork, 
problems can occur that make the original situation seem like Nirvana. The next two points always 
should be at the forefront of your mind when you're troubleshooting:  

 
   1.Only change one variable at a time and observe the effect this has on the problem.  
 
   2.Always but always, and without exception, have a means of backing out of the change you are 

about to make.  
 
There are a few other subtleties to consider, such as the effect on the processing power that 
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issuing a given debugging command will have, but we will cover these on a case-by-case basis 
when we examine examples. If you adhere to the aforementioned two guidelines, you should be in 
good shape, and will probably not turn a problem into a crisis.  

 

 
I will not examine the use of third-party devices such as LAN or WAN analyzers, although there are 
many excellent products on the market that will help you. In the main, the tools provided by Cisco 
are adequate to troubleshoot the vast majority of problems encountered. If you master all that Cisco 
offers you, however, by all means explore third-party devices.  

 



Troubleshooting the First Three ISO Layers  
 

 
In this section, we'll review the process of troubleshooting internetwork problems that was first 
introduced at the end of Chap. 3. This will not prepare us to do much real troubleshooting work, 
but does get the thought process started off in the right direction. The real troubleshooting work 
starts when we consider the individual cases that follow.  

 
 The hypothetical problem we have to solve in the review taken in this section is that router 1 
cannot ping router 3 via router 2 on the simple internetwork shown in Fig. 8-1.  

 

 

  
 
 Figure 8-1: Three router setups for basic troubleshooting review 

   
 

 

We will consider simple troubleshooting techniques at each of the first three layers of the ISO data 
communications model. In practice, you would troubleshoot a connectivity problem such as this 
one link at a time from source to destination, testing the Physical, Data Link, and Network layer 
operations in turn, attempting to identify the point where the communication is failing. We consider 
each layer separately here as an introduction to troubleshooting techniques and to highlight that 
similar commands display different information for different interface types.  

 
 Simple Troubleshooting at the Physical Layer  
 
 Troubleshooting the Physical layer deals with issues such as:  
 
   1.Are the devices physically connected in an appropriate way?  
 
   2.Are interconnecting cables correct?  
 
   3.Are the CSU/DSU devices configured and operating properly?  
 



 

So the problem we have to solve is that router 1 cannot ping router 3. Having stated the problem, 
we need to gather information, which we will do beginning with the Physical layer issues. The first 
thing we can do at the Physical level is check to determine whether the devices are physically 
connected. This is okay if the routers are all in one location, since we can just take a look, but if 
they are geographically dispersed, we need to use displays generated by the Cisco IOS to tell us 
the state of physical connections. Imagine router 1 and router 2 are local in New York, and router 3 
is in Atlanta.  

 

 

Seeing whether the Ethernet interfaces are connected for router 1 and router 2 should be 
straightforward. Cisco routers typically have an AUI connector for an Ethernet interface, and as 
most cabling these days is based around twisted-pair cables, a transceiver is used to convert 
media from the AUI 10Base5 to 10Base-T. A transceiver has an LED display to tell you if it is 
connected to the router interface and whether it is receiving traffic from a hub.  

 

 
So let's think about what could happen on a physical connection level to stop things from working, 
and then see how Cisco IOS can or cannot report the condition, which is necessary if we want to 
troubleshoot a remote connection such as the Ethernet 0 interface on router 3.  

 
   1.Transceiver disconnected from Ethernet interface.  
 
   2.Transceiver connected to Ethernet interface, but disconnected from hub.  
 
   3.Ethernet interface connected to hub on which it is the only device.  
 

 

We generally can gather pertinent information by using one or more of the following: a show 
command, a debug command, or a ping/trace command. We know that our problem is that 
router 3 is not reachable from router 1 by using the ping command, so let's start the 
troubleshooting process with the show command on the Ethernet interface of router 1, as 
illustrated in Fig. 8-2.  

 
   
 
 router1 #show int eO  
 
 Ethernet0 is up, line protocol is up  
 
 Hardware is Lance, address is 0000.0c47.42dd (bia 0000.0c47.42dd)  
 
 Internet address is 164.7.1.67 255.255.255.224  
 
 MTU 1500 bytes, BW 10000 Kbit, DLY 1000 usec, rely 255/255, load 1/255  
 
 Encapsulation ARPA, loopback not set, keepalive set (10 sec)  
 
 ARP type: ARPA, ARP Timeout 4:00:00  



 
 Last input 0:00:01, output 0:00:00, output hang never  
 
 Last clearing of "show interface" counters never  
 
 Output queue 0/40, 0 drops; input queue 0/75, 0 drops  
 
 5 minute input rate 8000 bits/sec, 4 packets/sec  
 
 5 minute output rate 8000 bits/sec, 4 packets/sec  
 
 717 packets input, 297281 bytes, 0 no buffer  
 
 Received 567 broadcasts, 0 runts, 0 giants  
 
 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort  
 
 0 input packets with dribble condition detected  
 
 3756 packets output, 475281 bytes, 0 underruns  
 
 0 output errors, 0 collisions, 1 interface resets, 0 restarts  
 
 0 output buffer failures, 0 output buffers swapped out  
 
 Figure 8-2: Output of the show interface ethernet 0 command 

   
 

 

The first place to look on this display is at the status of the interface and the line protocol. 
Generically, a show command will display the interface as up, down, or administratively down; the 
line protocol will either be up or down. "Administratively down" means that the shutdown 
command has been entered into the configuration of the interface and needs to be removed with 
the no shutdown command. With LAN interfaces, the interface will never show a down condition 
unless something is seriously wrong with the router hardware. We will consider the case in which 
an asynchronous interface can report a down condition due to a misconfigured interface in the 
section on troubleshooting asynchronous communications.  

 

 

For LANinterfaces, we are left with using the status of the line protocol to tell us if the physical 
connections are made. With the transceiver disconnected from the AUI interface, the line protocol 
is down. With the transceiver connected to the AUI interface, but disconnected from the hub, the 
line protocol report is still down. With the router the only device connected to the hub, the line 
protocol reports up.  

 



 
At this stage, the only other command to look at is the media-type command if you are using a 
4000-series router. This command can configure an interface for either 10Base-T or AUI operation; 
this command, set in interface configuration mode, must match the type of connection physically 
made to the router interface.  

 

 
As you can see, we have limited remote monitoring capabilities to tell whether the physical 
connections are made for LAN connections. The best we can do remotely is see if the line protocol 
is up or down. If it is down, we have to get someone local to check the physical connections, 
because the only way to bring it up is to connect the interface to a working hub.  

 

 

Before we move on to checking the status of the physical connections for the serial interfaces, we 
should try to determine if the router is connected to the correct hub to reach the devices it must 
reach. We do this by pinging the IP addresses of the other devices that we expect to be on the 
same segment. If we are operating in a Cisco IPX network environment, we can also issue IPX 
ping commands. Not all Novell servers support this functionality, so it cannot be used as a general 
troubleshooting tool such as the IP ping utility.  

 

 

Now let's look at using Cisco IOS to check physical connectivity of the serial interfaces in use. In 
practice, I would now move on to checking the Data Link and Network layer issues with the 
Ethernet interfaces before moving on to the serial interfaces. For this introduction, however, it is 
useful to contrast the function of the show interface command for Ethernet and serial 
interfaces.  

 
 The show interface serial 0 command issued on router 2 produces the display shown in 
Fig. 8-3.  

 
   
 
 router2#show int serial 0   
 
 Serial0 is up, line protocol is up   
 
 Hardware is HD64570  
 
 Internet address is 164.7.1.97 255.255.255.224  
 
 MTU 1500 bytes, BW 1544 Kbit, DLY 20000 usec, rely 255/255, load 1/255  
 
 Encapsulation HDLC, loopback not set, keepalive set (10 sec)  
 
 Last input 0:00:01, output 0:00:00, output hang never  
 
 Last clearing of "show interface" counters never  
 
 Output queue 0/40, 0 drops; input queue 0/75, 0 drops  



 
 5 minute input rate 4000 bits/sec, 3 packets/sec  
 
 5 minute output rate 4000 bds/sec, 3 packets/sec  
 
 336 packets input, 226009 bytes, 0 no buffer  
 
 Received 95 broadcasts, 0 runts, 0 giants  
 
 0 input errors, 0 CRC, 0 ftame, 0 overrun, 0 ignored, 0 abort  
 
 3372 packets output, 293703 bytes, 0 underruns  
 
 0 output errors, 0 collisions, 1007 interface resets, 0 restarts  
 
 0 output buffer failures, 0 output buffers swapped out  
 
 12 carrier transitions  
 
 DCD=up DSR=up DTR=up RTS=up CTS=up  
 
 Figure 8-3: Output of the show interface serial 0 command on router 2 

   
 

 
The main points of interest regarding the physical connections are the status of the interface, the 
line protocol, and the status of the EIA signals given at the bottom of the display. Let's first 
consider what might be wrong at the Physical level and consider how we might use this display to 
detect these problems. At the Physical level, we will want to detect the following:  

 
   1.Is the serial interface connected to a working CSU/DSU device?  
 
   2.Is the local CSU/DSU communicating properly with the remote CSU/DSU?  
 
   3.Is the remote CSU/DSU connected to the remote router serial port?  
 

 

Again we want to see the show interface serial 0 command report that the interface is up 
and the line protocol is up. First, what will happen if the serial interface on router 3 is disconnected 
from the local CSU/DSU? The interface reports down and the line protocol also reports a down 
state. We also see that the EIA signals DCD, DSR, and CTS disappear. EIA signals are either 
generated from the router interface or the CSU/DSU device. In this case, the CSU/DSU generates 
DCD (carrier detect), DSR (data set ready), and CTS (clear to send). If these signals are not 
present, we know that the cable between the interface and the CSU/DSU is disconnected, or that 
the CSU/DSU is powered off.  



 

 

We should also check the show controllers serial 0 command at this stage to check 
whether the correct cable is connected to the serial interface. Remember from Chap. 3 that the 
serial interface will configure itself as a DTE or DCE depending on the configuration of the cable 
connected to it. A CSU/DSU device is always a DCE, so the router interface must be configured as 
a DTE.  

 

 

Assuming that the correct cable is in use and that the CSU/DSU is powered on and connected to 
the router serial interface, how do we tell if the connection between the local and remote CSU/DSU 
is good? In a case in which the line between local and remote CSU/DSU has failed, we look at the 
show interface serial 0 output again, and see that all the EIA signals are present except 
the DCD signal. This tells us that the router-to-local-CSU/DSU connection is made, but there is no 
carrier signal between the CSU/DSU devices. This is the way that a router typically reports that a 
leased-line connection has gone down.  

 

 

If we can get to the stage at which the show interface serial 0 command shows all signals 
present, the last thing to check on the Physical level is the remote CSU/DSU-to-remote-router 
interface connection. If you have a way of logging into the remote router 3, such as a dial-up 
connection to the console port, you can issue the show interface serial 0 command to see 
if the EIA signals are present, thus confirming the remote CSU/DSU-to-router interface 
connectivity. Without a way to log into router 3, you have to rely on local personnel to confirm 
connections and that devices are powered up.  

 
 As you can see, at the Physical layer we can get useful information from Cisco IOS for serial 
connections, but limited information for Ethernet connections.  

 
 Simple Data Link Layer Troubleshooting  
 

 
Again, we will look at the Data Link layer issues for both Ethernet and serial interfaces to contrast 
the information that similar commands present for different interface types. At the Data Link layer, 
the protocols are concerned with forming frames and synchronizing devices prior to the exchange 
of data.  

 

 

For Ethernet interfaces, we are mainly concerned about confirming that the interface has the same 
encapsulation as the other devices with which it must communicate. We can see the encapsulation 
used either by examining the router configuration, or by looking at the show interface 
ethernet 0 command and reading the fifth line of the output. There are four options for Ethernet 
encapsulation; other networking systems, unfortunately, know them by different names. A 
comparison of Cisco and Novell terminology is given as follows:  

 
   •ARPA is known to Novell systems as the ethernet_ii frame type. This is a common frame 

type for implementing IP on NetWare-based networks.  
 
   •SNAP is known to Novell systems as frame type ethernet_snap. The SNAP encapsulation is 

more common in Token-Ring environments.  
 
   •SAP is known as ethernet_802.2 and is the default frame type for NetWare 3.12, 4.x, and 

later servers.  



 

   
•Cisco's term for Novell's 802.3 is novell-ether. Novell implemented its own frame type, 802.3, 
when NetWare was designed. This caused some confusion in the world of support personnel. 
IEEE 802.3 can support many layer 3 protocols; Novell 802.3, however, supports only IPX at the 
Network layer. Cisco avoids this confusion by referring to Novell's 802.3 as novell-ether.  

 

 
Before you can proceed any further, the encapsulation on the interfaces must match that of the 
other devices with which it is to communicate. For Ethernet devices, that is all we need to check 
for this problem. In the section on troubleshooting Ethernet, we will look at other Data Link layer 
issues such as undersized or oversized packets and collisions.  

 

 
For serial interfaces, the encapsulation must be the same on the communicating interfaces. The 
best way to check this is by looking at the configuration of each connected interface. 
Encapsulation on serial interfaces can be one of the following:  

 
   •ATM-DXI  
 
   •Frame relay  
 
   •HDLC  
 
   •LAPB  
 
   •PPP  
 
   •SMDS  
 
   •X.25  
 

 
For serial interfaces, we can check to make sure the clock signal is operating correctly by issuing 
the show controllers serial 0 command. This display will show the speed of the clock 
signal received from the CSU/DSU device, if present. This is important, because if the clock signal 
is not there, the serial interface and CSU/DSU cannot communicate.  

 

 

The clock signal is one area in which Ethernet and serial interfaces differ considerably. With serial 
interfaces, a constant clock signal synchronizes router interface to CSU/DSU communications. On 
an Ethernet interface, there is no such synchronization signal. Each packet sent on Ethernet uses 
the preamble at the front of the Ethernet frame to synchronize all devices on the Ethernet network 
as the frame is transmitted.  

 
 Simple Troubleshooting at the Network Layer  
 

 

An Ethernet interface will show the line protocol as up, even if there are no other devices on its 
network segment; it does not need to see another IP device. It's different with serial interfaces. 
Before the line protocol comes up, serial interfaces need to see a device on the other end of the 
serial link that has an IP address in the same network number or subnet for which its serial 



interface is configured.  
 

 

This is an important point. In order for the network or subnet number for which a serial interface is 
configured to appear in the router's routing table, the serial interface's line protocol must be up. So 
even if everything is correct at the Physical and Data Link layers, the routing table will not have the 
necessary entries to allow router 1 to ping router 3 if the router 1 and router 2 Serial 0 interfaces 
are not addressed for the same subnet.  

 

 

Network layer troubleshooting is based around viewing the routing table on the routers along the 
path from source to destination, along with examining the IP addresses (or other protocol IDs) of 
those router interfaces. Typically, if routes do not appear in a routing table, you will check to see 
that appropriate static, default, or dynamic routes have been entered and then either configure any 
missing routes manually, or troubleshoot any dynamic routing process, such as RIP or IGRP, to 
get the routing tables updated.  

 

 

As we have just shown, if a router's line protocol is down, all the routes that were accessible 
through that interface will be eliminated from the routing table. This is a good justification for 
following the process of Physical and Data Link troubleshooting before beginning Network layer 
troubleshooting. If you jump straight into Network layer troubleshooting, you could start to 
investigate a routing protocol issue, whereas the real problem might be, for example, with a line 
protocol down due to a missing CSU/DSU clock signal.  

 
 Summary of a Simple Troubleshooting Process  
 

 
Let's try to summarize what we would do to troubleshoot if router 1 were not able to ping router 3. 
When following this process, you must rectify any unexpected results from the show commands 
before proceeding to the next stage, such as reconnecting disconnected cables, and correcting 
incompatible encapsulation types, IP addresses, and routing processes.  

 
   1.Issue the show interface ethernet 0 command on router 1, to make sure that the 

interface and line protocol are up.  
 
   2.Ping the address of the Ethernet 0 interface on router 2 from router 1.  
 
   3.Telnet into router 2 and issue the show interface serial 0 command and check that the 

interface and line protocol are up.  
 
   4.Ping router 3 from router 2.  
 
   5.Issue the show ip route command on all three routers to check that a route at the IP level 

exists between source and destination.  
 
   6.Ping router 3 from router 1.  
 

 This process is simplified greatly if you have more than one way to remotely log into a remote 
router. If your only means to log onto a router located in another city is via the serial interface 



some dial-up facility to a console port, even if it requires local personnel to power on the modem 
before you can get in, greatly improves your abilities to troubleshoot.  

 

 

As with dial access, the importance of documentation cannot be overstressed. My 
recommendation is that you try to automate documentation by regularly downloading router 
configurations to a central management station, so that you do not have to rely on manual 
procedures. In my experience, manual procedures are never maintained for long in the fast-
moving world of internetwork management.  

 

 

Having taken an overview of troubleshooting, we will examine specific problems and specific 
troubleshooting commands in more depth. The next section will examine troubleshooting specific 
interface types. The techniques used to analyze problems in this section will be useful when 
troubleshooting connectivity for individual segments from source to destination. A subsequent 
section will examine troubleshooting protocol-specific issues and problems with multilink end-to-
end connectivity.  

 

 

If you can get access to a Cisco router while you read this section, I recommend that you 
familiarize yourself with the use of the "?" character. While in privileged mode, you can use the "?" 
character after the show or debug keywords to inform you of what displays are available to give 
you information on the status of interfaces, protocols, and router processes. An example of using 
the show ? command is given in Fig. 8-4, and it should be noted that each of the options 
displayed as a result of the show ? command have sub-options under them. For example, typing 
show ip ? would display just the show commands for IP.  

 
   
 
 router3#sho ?  
 
 access-expressionList access expression  
 
 access-listsList access lists  
 
 aliasesDisplay alias commands  
 
 arpARP table  
 
 asyncInformation on terminal lines used as router interfaces  
 
 bridgeBridge Forwarding/Filtering Database [verbose]  
 
 buffersBuffer pool statistics  
 
 cdpCDP information clockDisplay the system clock  
 
 cmnsConnection-Mode networking services (CMNS) information  



 
 compressShow compression statistics.  
 
 configurationContents of Non-Volatile memory  
 
 controllersInterface controller status  
 
 debuggingState of each debugging option  
 
 dhcpDynamic Host Configuration Protocol status  
 
 dialerDialer parameters and statistics  
 
 dnsixShows Dnsix/DMDP information  
 
 dxiatm-dxi information  
 
 entryQueued terminal entries  
 
 flashSystem Flash information flh-logFlash Load Helper log buffer  
 
 frame-relayFrame-Relay information  
 
 historyDisplay the session command history  
 
 hostsIP domain-name, lookup style, nameservers, and host table  
 
 interfacesInterface status and configuration  
 
 ipIP information  
 
 lineTTY line information  
 
 llc2IBM LLC2 circuit information  
 
 loggingShow the contents of logging buffers  
 
 memoryMemory statistics  
 
 ntpNetwork time protocol  



 
 printersShow LPD printer information  
 
 privilegeShow current privilege level  
 
 processesActive process statistics  
 
 protocolsActive network routing protocols  
 
 queueShow queue contents  
 
 queueingShow queueing configuration  
 
 registryFunction registration information  
 
 reloadScheduled reload information  
 
 rhostsRemote-host+user equivalences  
 
 rifRIF cache entries  
 
 route-maproute-map information  
 
 running-configCurrent operating configuration  
 
 sessionsInformation about Telnet connections  
 
 sandsSMDS information  
 
 snapshotSnapshot parameters and statistics  
 
 snapsnap statistics  
 
 spanning-treeSpanning tree topology  
 
 stacksProcess stack utilization  
 
 standbyHot standby protocol information  
 
 startup-configContents of startup configuration  



 
 subsystemList subsystems  
 
 tcpStatus of TCP connections  
 
 terminalDisplay terminal configuration parameters  
 
 usersDisplay information about terminal lines  
 
 versionSystem hardware and software status  
 
 whoamiInfo on current tty line  
 
 x25X.25 information  
 
 Figure 8-4: The show ? screen output to list all show options 

   
 



Troubleshooting Interface Problems  
 
 In this section, we'll examine serial, asynchronous, Ethernet, and Token-Ring interfaces, the most 
commonly implemented types of interface.  

 
 Troubleshooting Serial Interfaces  
 

 

Serial interfaces are used with many different types of encapsulation: Cisco HDLC, PPP, frame 
relay, X.25, etc. In this section, we'll examine serial interface troubleshooting in some depth, 
assuming the default Cisco HDLC encapsulation. Most of what is done here is applicable no 
matter what the interface encapsulation is. Troubleshooting activities that are specific to one type 
of encapsulation will be examined in the section on troubleshooting protocol problems.  

 

 
Show Interface Serial Revisited. When connectivity problems arise on a specific serial interface, 
the first place to start is always with the show interface serial X command, to analyze its 
screen display. Figure 8-3 showed a typical screen display generated by the show interface 
serial command, and Table 8.1 explains each entry of interest to us in this display.  

 
 Table 8.1: Explanation of Show Interface Serial Command Display:  
 
    
 
 Screen Output   

 
 Explanation  

 

 
    
 
 Serial 0   

 
 Displays whether the interface is up, down, administratively 
down, or disabled.  

 

 
 line protocol   

 
 Displays an up down or looped condition.  

 

 
 Hardware is   

 
 Identifies the hardware type with a code.  

 

 
 MTU   

 
 Maximum Transmission Unit, the maximum message size that 
will be sent out this interface before it is fragmented.  

 

 
 Bandwidth   

 
 The value used by certain routing protocols (such as IGRP) for 
calculating a metric to associate with this interface's link.  

 

 
 DLY   

 
 The value for delay that the IOS assigns to a link of this 
bandwidth for metric calculation purposes.  

 

 
 Rely   

 

 
The reliability of the link measured as a fraction of 255. This 
value is used in metric calculations for which it is usually taken 

 



to be 1.  
 
 Load   

 
 The load on the interface bandwidth, as a fraction of 255, which 
is used by some routing protocols for metric calculation.  

 

 
 Encapsulation   

 
 This reports which Data Link layer protocol is used for 
encapsulating packets sent on this interface.  

 

 
 loopback   

 
 Displays whether a software loopback condition has been set.  

 

 
 Keepalive   

 
 Indicates whether keep-alive packets have been explicitly 
defined for this interface.  

 

 
 last input, last output   

 
 Length of time since last packet input or output on this 
interface.  

 

 
 Last clearing of show 
interface  

 

 
 Reports when the last time the interface statistics, such as 
drops, were cleared.  

 

 
 output queue   

 
 Reports the size of the output queue and the number of packets 
dropped on this interface since the last clearing of statistics.  

 

 
 input queue   

 
 Reports the size of the input queue and number of packets 
dropped on this interface since the last clearing of statistics.  

 

 
 input rate   

 

 
The rate of traffic inbound on this interface, measured as an 
average over 5 minutes and quoted in bits per second and 
packets per second.  

 

 
 Output rate   

 

 
The rate of traffic inbound on this interface, measured as an 
average over 5 minutes and quoted in bits per second and 
packets per second.  

 

 
 Packets and byte input   

 
 The number of packets and bytes input since the last clearing 
of counters.  

 

 
 Received   

 

 
A breakdown of the type of traffic received, as broadcasts, runts 
(packets shorter than allowed by the encapsulation method 
used), giants (long packets), and input errors such as CRC, 
frame, and overrun errors.  

 

 
 output   

 
 Number of packets and bytes output since the last clearing of 
counters, along with appropriate output error statistics.  

 

 
 interface resets   

 
 The number of times the line protocol has had to restart due to 
an interruption in end-to-end connectivity.  

 

 
 carrier transitions  

 



 carrier transitions    The number of times the DCD signal has been lost and 
returned.  

 
 EIA signals   

 
 The status of DCD, RTS, CTS, DTR, and DSR.  

 

 
    
 
 Interface and Line Protocol Status in Detail. Let's look at the possible combinations of interface 
and line protocol status that can be reported in the show interface serial command.  

 
   •Serial 0 up, line protocol up  
 
   •Serial 0 up, line protocol down  
 
   •Serial 0 down, line protocol down  
 
   •Serial 0 up, line protocol up (looped)  
 
   •Serial 0 up, line protocol down (disabled)  
 
   •Serial 0 administratively down, line protocol down  
 
 The Serial 0 interface up and the line protocol up is the fully working condition. Both the interface 
and line protocol have initialized and protocol keep-alives are being exchanged.  

 

 

The most common fault condition, Serial 0 up but line protocol down, can be due to a variety of 
conditions. This display tells you that the router is connected to a device that is providing a DCD 
signal, indicating that a carrier signal is present between the local and remote CSU/DSU. Due to a 
problem with router configuration or CSU/DSU operation, however, protocol keep-alives are not 
being exchanged properly between the two ends of the connection. This condition is reported if 
there are problems with clocking on the CSU/DSU, if the two serial interfaces connected via the 
link are not on the same subnet, when there is a noisy leased line or a remote router failure of 
some kind.  

 

 

The best way to troubleshoot this condition is to follow the loopback tests outlined in a later section 
in this chapter. If these procedures do not identify the problem, and you are sure both routers are 
configured correctly, use the debug serialinterface command (also covered in a later 
section in this chapter) to identify clocking problems. If all else fails, start to replace pieces of 
hardware until the faulty device has been located.  

 

 

If both the Serial 0 interface and the line protocol are down, it means that the serial interface is not 
sensing a carrier detect (DCD) signal from its attached CSU/DSU. This can be due to a telephone 
company line problem, a cabling issue or a CSU/DSU failure. The most frequent cause of this 
display is a problem with the telephone company's leased line. Following loopback tests, outlined 
later in this chapter, will identify which link in the chain is causing the problem.  



 

When you put a CSU/DSU in loopback mode, the condition of Serial 0 up and the line protocol up 
(looped) is displayed. The router interface recognizes that it is receiving the same keep-alive 
messages it is sending. If you see the condition reported when the local CSU/DSU is in loopback, 
you know all is good with the router and CSU/DSU interface and connecting cable. If this condition 
is displayed when just the remote CSU/DSU is in loopback, you know all is good up to the line 
interface of the remote CSU/DSU. If the line protocol will not come up when the loopback is 
removed from the remote CSU/DSU, there is something wrong with the remote CSU/DSU DTE 
interface, the cable between the remote CSU/DSU and the remote router, or the remote router 
itself (including its configuration).  

 

 
The condition of Serial 0 up and line protocol down (disabled) is seen if the router interface has 
received more than 5000 errors during one keep-alive period (which is 10 seconds by default). The 
most likely cause of this condition is either a faulty CSU/DSU device at either end of the link, or a 
faulty telephone company line.  

 

 
Finally, the condition of Serial 0 administratively down and line protocol down is reported when the 
shutdown command has been entered into the configuration of the interface. The condition is 
removed by taking the entry out of the interface configuration by entering the no shutdown 
command.  

 

 
Troubleshooting Packet Drops and Errors. Once we have an up condition for both the interface 
and line protocol, the basic communications across a serial link are established. There are, 
however, plenty of potential problems that can arise, and in this section we'll examine problems 
reported with packet drops and errors.  

 

 

Packet drops, whatever the cause, are generally a bad thing. If the packet dropped by the router is 
part of a TCP stream, the packet will be retransmitted, adding to network load; if it is part of a UDP 
broadcast and there are no other Application or Data Link layer retransmission mechanisms in 
place, the packet and its associated information will be lost forever. The goal for drops either input 
to, or output from, an interface is for them to be zero (or some very low number with infrequent 
increments in their value).  

 

 

If packet drops are increasing regularly, it typically means there is more traffic passing through the 
interface than the interface can handle. If this is due to attempts to send more packets through the 
interface than the physical bandwidth of the line will allow, the only solution is to increase the 
capacity of the line in use. This is the expensive solution (in terms of dollars to the telephone 
company), but simple; in many, if not most cases, however, drops occur for reasons other than 
lack of available bandwidth.  

 

 

The first place to look is the status of the input and output hold queues in the show interface 
serial command output. Hold queues are specific to an interface and are set while in interface 
configuration mode. If you see that the number of packets in the hold queue (the hold queue 
defines the number of packets that can be held awaiting hand-off to a transmit buffer) is reaching 
the maximum allowed, it is worth trying to increase the size of the hold queue. It is possible that by 
doing this, more misses appear at the stage at which packets are buffered as reported by the 
show buffers command. We will examine router buffers and how they can be optimized later in 
this section.  

 

 
The way to think about a packet passing through a router is that it comes into an interface hold 
queue, gets passed off to a system buffer of an appropriate size, and is switched to the desired 
interface to be sent to its next hop destination.  



 

 

The nature of LAN traffic means that it is bursty, i.e., lots of packets arrive at one time instead of in 
a constant predictable stream. This makes it difficult to issue the show interface serial 
command at the right moment and catch overutilization of hold queues. The show serial 
interface command is a static display, a snapshot at the moment you issue the command. If 
you see drops reported after the input or output queue usage statistics, however, it costs little to 
increase the size of these queues and see if that improves matters. An example of increasing an 
output hold queue from its default of 40 to 100 packets is given as follows:  

 
 Router1(config)#interface serial 0  
 Router1(config-int)#hold-queue 100 out  
 

 

The other configuration change that should be made as a matter of course when experiencing 
packet drops on an interface is for the no ip route-cache command to be entered in to the 
configuration of the interface experiencing drops. This command forces packets routed through 
this interface to be process switched rather than fast switched. Fast switching means that packet 
destinations are held in memory and the routing decision is made without interrupting the route 
processor. Route switching means that the route processor will be involved in each packet routing 
decision. The net effect of using this command to make packets process switched is that it slows 
down traffic passing through the interface. At first this may seem against your design goals, but 
when you are switching packets from an ethernet to a 64K or even T-1 line, it is better to slow 
down packets through an interface than to have them dropped because an interface is 
overwhelmed with packets.  

 
 The next place to look for problems if packets are being dropped is the show buffers command, 
a sample output of which is illustrated in Fig. 8-5.  

 
   
 
 router3#show buffers   
 
 Buffer elements:  
 
 406 in free list (500 max allowed)   
 
 114 hits, 0 misses, 0 created  
 
 Public buffer pools:  
 
 Small buffers, 104 bytes (total 50, permanent 50):   
 
 50 in free list (20 min, 150 max allowed)  
 
 5 hits, 0 misses, 0 trims, 0 created  
 



 Middle buffers, 600 bytes (total 25, permanent 25):   
 
 25 in free list (1 0 min, 150 max allowed)  
 
 12 hits, 0 misses, 0 trims, 0 created  
 
 Big buffers, 1524 bytes (total 50, permanent 50):   
 
 50 in free list (5 min, 150 max allowed)  
 
 5 hits, 0 misses, 0 trims, 0 created  
 
 VeryBig buffers, 4520 bytes (total 10, permanent 10):   
 
 10 in free list (O min, 100 max allowed)   
 
 10 in free list (O min, 1 00 max allowed)   
 
 Large buffers, 5024 bytes (total 0, permanent 0):   
 
 0 in free list (0 min, 10 max allowed)   
 
 0 hits, 0 misses, 0 trims, 0 created  
 
 Huge buffers, 18024 bytes (total 0, permanent 0):   
 
 0 in free list (0 min, 4 max allowed)  
 
 0 hits, 0 misses, 0 trims, 0 created  
 
 Interface buffer pools:  
 
 Ethernet0 buffers, 1524 bytes (total 32, permanent 32):   
 
 8 in free list (0 min, 32 max allowed)   
 
 24 hits, 0 fallbacks  
 
 8 max cache size, 8 in cache  
 
 Serial0 buffers, 1524 bytes (total 32, permanent 32):  



 Serial0 buffers, 1524 bytes (total 32, permanent 32):   
 
 7 in free list (0 min, 32 max allowed)   
 
 25 hits, 0 fallbacks  
 
 8 max cache size, 8 in cache  
 
 Serial1 buffers, 1524 bytes (total 32, permanent 32):   
 
 7 in free list (0 min, 32 max allowed)   
 
 25 hits, 0 fallbacks  
 
 8 max cache size, 8 in cache  
 
 0 failures (0 no memory)  
 
 Figure 8-5: Output of the show buffers command 

   
 

 

A router has buffers of five different sizes, and will place an incoming packet in the smallest buffer 
size possible. With reference to Fig. 8-5, you can see that on an Ethernet network with a maximum 
packet size of just over 1500 bytes, no "verybig," large, or huge buffers will be utilized. On 
networks that use Token-Ring, on which the maximum packet size is more than 4 kilobytes, some 
verybig or large buffers may be used. Let's examine what each entry in this display means.  

 
 Buffer Elements. These are nothing that you should be directly concerned with; they are markers 
used by the IOS to keep track of buffers and where they reside in memory.  

 

 

Hits, Misses, Trims, and Created. A hit occurs when an attempt to allocate a buffer is successful, 
and indicates the desired state of affairs regarding the operation of available buffer resources. A 
miss is not necessarily a bad thing, although its name can give rise to some concern. The number 
of misses is the number of times the buffer pool needed to grow because a buffer was required, 
but no buffer of the appropriate size was available. Trims and created reflect the number of buffers 
deleted and added for a given buffer size and illustrate the dynamic nature of system buffer 
allocation in Cisco routers.  

 
 Small, Middle, Big, Verybig, Large, and Huge Buffers. These names represent blocks of main 
memory used to hold network packets.  

Total, Permanent, Free List, Min, and Max Allowed.These values are quoted for each size of 



the operating system will allow to be free at any given time.  
 

 

Interface Buffer Pools, Fallbacks, and Failures. The interface buffer pools are small amounts of 
fixed memory allocated to packets passing through an interface. These buffers cannot be directly 
manipulated by router configuration commands. The display for the interface buffer pool contains 
many entries that are the same as for the public buffer pools. The exceptions are fallbacks and 
failures. Fallbacks occur when a buffer cannot be allocated from the interface pool and needs to be 
allocated from the public pool, which is a normal occurrence and does not warrant any particular 
action. Failures are a bad thing, since the failures are the number of times a buffer allocation failed 
because a buffer was not available, which results in a lost packet. The display additionally tells you 
how many of these failures were a result of no memory being available to create a new buffer.  

 

 
Once you have optimized hold queues and buffers as much as possible, and potentially increased 
the amount of physical memory available for main RAM, the only option left for reducing persistent 
drops is to increase the bandwidth on the link.  

 

 

In practice, trial and error is generally the only way to optimize the size of hold queue and buffer 
pool. The statistic with which you should be most concerned is the number of drops reported by 
the show interface command. If you are experiencing drops, first try increasing the size of the 
hold queue. If this does not help, it might be that there are not enough buffers of a certain size. 
The system will create more buffers as they are needed, but this takes time.  

 

 

While the system is creating more buffers, it is possible for the hold queue to be overrun and to 
start dropping packets. If you suspect this might be the case, you will need to increase the number 
of buffers of the size that is reporting misses. A similar situation can occur if you see a lot of trims 
and created for a given size of buffer, since it takes time for the router to add or delete a buffer. If 
you see lots of trims or created, you should increase the max-free and min-free amounts for the 
buffer size in question. The effect of increasing the min-free and max-free value should ensure that 
there always will be enough buffers available to take incoming packets, without the need for the 
system to create more buffers.  

 

 
Although it is nice to be able to have a system with few or no drops, the steps taken to minimize 
drops (increasing hold queues and buffers) add latency to the link, which can cause problems for 
protocols such as DEC's LAT, which does not tolerate delays.  

 

 
In addition to reporting drops experienced on a given interface, the show interface serial 
command also gives useful information on many of the different types of errors that can be 
encountered on a line. The errors are grouped under input and output errors as follows:  

 
   •Input errors: CRC, frame, overrun, abort  
 
   •Output errors: collisions, interface resets, carrier transitions  
 

 
Input errors generally come from a faulty leased line, CSU/DSU hardware, or out-of-spec cable. 
CRC errors mean that the packet received is not the same as the packet sent, indicating that there 
is interference on the transmission path. All cables, telephone company lines, and CSU/DSU 
services should be checked if this value is 1 percent or more of total traffic.  

 



this type can come from interference of the kind that results in a CRC error. Additionally, framing 
errors can occur whenever CSU/DSU setups (framing and line coding values) on either end of the 
link are incompatible with the framing of the line in use. All internetwork devices should be 
configured to use a clock from one source, because if devices on the one link are using disparate 
clock sources, framing errors can occur.  

 

 
Overruns are rare; they occur if packets arrive too quickly for the router to handle. This typically is 
a problem only if the router CPU utilization is very high and all you can do is upgrade to a router 
with a faster processor, or try to offload some of the work of the router to another device.  

 

 

Abort packets occur when an illegal sequence of bits has been received. Typically, to maintain 
synchronization, a sequence of seven or more 1s is not allowed by line coding schemes. If seven 
or more 1s appear in a data stream, 0s are inserted to transmit the packet over the line, and are 
removed at the receiving end. Therefore, a packet containing seven 1s is a code violation and 
results in an abort.  

 

 
Output errors generally have a lesser impact on internetwork performance than input errors. The 
show interface serial command lists collisions, which are only really applicable to Ethernet 
media, so rarely will this number be anything other than 0.  

 

 
If interface reset errors are reported, it is because keep-alive packets are being missed. This could 
be caused by constant carrier transitions (which will be covered next), or significant output drops, 
or increasing numbers of input errors. Generally, one of these other reported problems must be 
resolved to resolve interface reset problems.  

 
 Carrier transitions are counted whenever the carrier signal changes state. This typically is due to a 
faulty line, or, on a less regular basis, CSU/DSU failure or faulty cabling.  

 

 

Resolving Problems with Clock Sources. A single reliable clock source is essential for 
synchronous communications over a telephone company data line. The speed of the clock source 
determines the bandwidth of the line that is available for data transmission. For example, a 128 
kbps line will have a clock source running at 128,000 cycles per second. This means that the clock 
source will "clock" 128 kilobits of data onto the line in 1 second.  

 

 

A string of data being transmitted down a line consists of 1s and 0s, represented by electrical 
signals at a given voltage level. The clock tells all devices that are communicating what length of 
time is used to represent a 1 or a 0. Let's say for argument's sake that the clock states that a 
constant voltage level for 8 µs represents 1 bit (roughly what our 128 kbps clock does). If a 
constant voltage level is transmitted for 16 µs, that means that 2 bits of the same value have been 
sent. You can see that if the communicating devices do not agree precisely on the clock signal, 
they will not be able to interpret data sent between them properly.  

 

 

When you look at the connectors between a CSU/DSU and a router interface, you see many pins, 
some of which are dedicated to producing a clock signal. Between CSU/DSU devices, there is a 
telephone company line of some type that has far fewer connectors, typically two or four wires. 
Due to the lack of individual wires on a line, the clock signal is embedded in the data stream sent 
over the line. This means that the CSU/DSU must derive a clock signal from the data that passes 
through it.  

 



stream contains eight or more 0s, the CSU/DSU encoding mechanism must insert a 1-bit value for 
transmission over the line and remove it from the data stream at the other end. This technique is 
referred to as maintaining one's density. The line supplied to you by the telephone company and 
your CSU/DSU must agree on the method of maintaining one's density, or the clock source will be 
lost and errors will occur. For example, T-1 lines now use Extended Superframe Format (ESF) 
framing with Binary 8-Zero Substitution (B8ZS). Previously, T-1 lines used Superframe Format 
framing with Alternate Mark Inversion (AMI) encoding.  

 

 
If there are significant input errors (between 0.5 percent and 1.5 percent of traffic), you should 
check that all clock sources are set to the same source and that all use the same framing and 
encoding schemes.  

 

 

So far we have talked about the clock source that is used to transmit data between CSU/DSU 
devices. A clock also is used to transmit data between the CSU/DSU and the router interface. The 
CSU/DSU retrieves a clock signal from the data it receives over the line to use for transmitting data 
to the router interface. On this link, no encoding schemes are necessary, as a separate wire 
carries the clock signal. When it comes time for the router interface to send data back to the 
CSU/DSU, the router generates its own clock and transmits it on a pin known as the serial clock 
transmit external (SCTE) pin. When the CSU/DSU device uses this clock rather than the one it 
derived over the line from data stream received, it is better able to decipher the data from the 
router without error. You should check that your CSU/DSU devices support and are configured for 
SCTE timing, especially if data rates above 64 kbps are used.  

 

 

If an interface reports increasing input errors, leading you to suspect problems with the clock 
source, the best means of tracking down the problem are by using loopback and ping tests to 
identify which link in the chain from source to destination is causing a problem; these tests are 
covered in the next section. The following points summarize what we have discussed so far 
regarding the resolution of clocking problems:  

 
   1.Check that both CSU/DSU devices take their clock source from the line.  
 

   
2.Check that the CSU/DSU device has a configuration that matches the line supplied by the 
telephone company; this includes framing, encoding, and other line characteristics, such as 
impedance level.  

 
   3.Check that SCTE is in use by both CSU/DSU devices.  
 
   4.Check that cable lengths are within specification and are of the shielded type if problems with 

interference on cables persist.  
 

 

CSU/DSU Loopback Tests. Loopback tests are useful for identifying where in the chain of links 
from source to destination either communications are failing, or errors are being introduced. Most 
CSU/DSU devices have an option to go into what is referred to as digital loopback. Digital 
loopback provides two loops, one from the CSU/DSU to the router interface and the other from the 
CSU/DSU to the telco leased line. By putting first the local CSU/DSU in loopback, as shown in Fig. 
8-6, we can see if the connection from router 1 to CSU/DSU1 is okay by looking at the show 
interface serial 0 output on router 1. We also can view the state of the connection from 
router 2 all the way through the telco network to CSU/DSU1.  



 

  
 
 Figure 8-6: Putting a CSU/DSU in digital loopback 

   
 

 

I have stated that loopback tests do not work for synchronous PPP connections, and neither do 
they work for X.25 or frame relay connections. If, however, the type of communications you're 
using allows loopbacks (such as the Cisco HDLC encapsulation), they are a useful troubleshooting 
tool. On more complex internetworks, where connections pass through many router devices, ping 
tests help you identify where connectivity fails and, potentially, which link is introducing errors in 
communication. To check connectivity, the ping command issued in nonprivileged mode sends 5 
ICMP ping packets, each of 100 bytes. This is good for checking physical connectivity and 
ensuring that routing tables have all the necessary entries. To use the ping command to check 
the integrity of connections, you must be in privileged mode, which gives you options to set the 
size, number, and data pattern of ping packets sent. A typical screen display for pinging in 
privileged mode is given in Fig. 8-7.  

 
   
 
 router2#ping  
 
 Protocol [ip]:  
 
 Target IP address: 164.7.1.67  
 
 Repeat count [5]: 100  
 
 Datagram size [100]: 1000  
 
 Timeout in seconds [2]:  
 
 Extended commands [n]: y  
 
 Source address: 164.7.1.97  
 
 Type of service [0]:  
 
 Set DF bit in IP header? [no]:  
 
 Data pattern [0xABCD]: 0xFFF 



 Data pattern [0xABCD]: 0xFFF  
 
 Loose, Strict, Record, Timestamp, Verbose[V]:  
 
 Sweep range of sizes [n]:  
 
 Type escape sequence to abort.  
 
 Sending 100, 1000-byte ICMP Echos to 164.7.1.67, timeout is 2 seconds:  
 
 Packet has data pattern 0x0FFF  
 
 Reply to request 0 (8 ms)  
 
 Reply to request 1 (4 ms)  
 
 Reply to request 2 (4 ms)  
 
 Reply to request 3 (8 ms)  
 
 Reply to request 4 (4 ms)  
 
 Reply to request 5 (4 ms)  
 
 Reply to request 6 (8 ms)  
 
 Reply to request 7 (4 ms)  
 
 Reply to request 8 (4 ms)  
 
 Reply to request 9 (4 ms)  
 
 Reply to request 10 (4 ms)  
 
 Figure 8-7: Use of ping in privileged mode 

   
 

 
The extra functionality of the extended ping allows you to generate traffic on a serial link in order to 
test how the link operates under full-load conditions. Also, by specifying an all 1s or all 0s data 
pattern, the coding and framing configurations can be tested.  



 

There are options to configure loopbacks for certain Cisco interface types. Essentially, Cisco 
interfaces that have a built-in CSU/DSU, like the 2524, 2525 or interfaces like the HSSI or 
channelized T-1 controller, will be able to use this command. However, the following loopback 
commands will have no effect if an X.21 interface is in use, as the X.21 specification does not 
include a loopback definition.  

 

 
Loopback tests can be used on Ethernet, and token ring interfaces; however, it is most useful for 
serial interfaces, where the serial interface itself is the DTE and the associated CSU/DSU is the 
DCE.  

 

 

An example of the use of this command is with the HSSI, that supports loopback dte, loopback line 
and loopback remote commands. The loopback dte command loops packets to the DTE within the 
CSU/DSU. This is useful in testing whether there are any problems with the interface itself. If this 
test passes, the loopback line command can be used, which loops packets through the CSU/DSU 
and thus tests the DCE device. The loopback remote places the CSU/DSU at the other end of the 
land line in loopback mode and loops packets across the land line and back again.  

 

 

Debug Serial Interface Command. There are many debug commands that can be used when 
troubleshooting serial communications, which are specific to the encapsulation used on the 
interface. We will examine some of these encapsulation-specific debug displays when we consider 
troubleshooting the specific protocol in question. At this stage, we will consider the debug 
serial command screen output generated when the interface is using the default Cisco HDLC 
encapsulation.  

 
 Before we look at this display, let's review how best to use debug mode on Cisco routers.  
 

 
Debug mode potentially can use a lot of processor power and cause the router to drop a high 
percentage of packets. In fact, one sure way to make a router stop functioning until it is powered 
off, then on, is to issue the debug all command. This will debug all packets passing through the 
router and, if there is even a modest amount of network traffic, will bring the router to its knees.  

 

 

The most efficient way to have the router report debug information is to use the logging 
buffered global command to have the debug command output written to a log file. The output 
then can be viewed with the show log command. At times you may elect to see debug messages 
appear on the terminal display as they are generated. This can be achieved either by attaching a 
terminal directly to the console port of the router, or, if accessing the router via Telnet, issuing the 
term mon command. This command copies the output going to the console to your Telnet 
session.  

 

 

Debug information usually is checked once all other standard troubleshooting procedures have 
failed. If the line protocol continually reports a down condition when all configurations and 
connections appear to be good, you can use the debug serialinterface command to see if a 
timing issue at either end of the communication link is interfering with the exchange of keep-alive 
messages. A typical screen output for the debug serial interface command is illustrated in 
Fig. 8-8.  

 
   
 
 Serial0: HDLC myseq 129, mineseen 129, yourseen 129, line up  



 
 Serial0: HDLC myseq 130, mineseen 130, yourseen 130, line up  
 
 Serial0: HDLC myseq 131, mineseen 131, yourseen 131, line up  
 
 Serial0: HDLC myseq 132, mineseen 132, yourseen 132, line up  
 
 Serial0: HDLC myseq 133, mineseen 133, yourseen 133, line up  
 
 Serial0: HDLC myseq 134, mineseen 134, yourseen 134, line up  
 
 Serial0: HDLC myseq 135, mineseen 135, yourseen 135, line up  
 
 Serial0: HDLC myseq 136, mineseen 136, yourseen 136, line up  
 
 Serial0: HDLC myseq 137, mineseen 137, yourseen 137, line up  
 
 Serial0: HDLC myseq 138, mineseen 138, yourseen 138, line up  
 
 Serial0: HDLC myseq 139, mineseen 139, yourseen 139, line up  
 
 Figure 8-8: Log output for the debug serial interface command 

   
 

 

The myseq (my sequence), mineseen, and yourseen are the interesting parts of this display. 
During normal operation, the myseq and mineseen values are equal and increment after each 
keep-alive is sent by this router. The myseq is the sequence number of the keep-alive sent, and 
the mineseen is the sequence number last acknowledged by the remote router. The yourseen 
value is the last sequence number received from the remote router. It is normal for a keep-alive 
message to be lost once in a while, but three consecutive missed keep-alives causes the link to be 
reset. When the link is reset, the sequence numbers revert back to the last acknowledged 
sequence number values.  

 
 If everything else on the link looks good, but you are consistently missing keep-alives, you should 
report this condition to the telephone company that supplies your lines.  

 
 Troubleshooting Asynchronous Communications  
 

 

Asynchronous communications are one of the most problematic areas in providing comprehensive 
internetwork services to an organization. We covered the security aspects of dial-up networking in 
Chap. 7 with CHAP and use of a TACACS server. The main challenge of asynchronous 
communications, however, is providing reliable service to users. The chief issue is minimizing 
drops while transporting what is typically LAN-based traffic over an asynchronous link. A LAN 
operates at 10 Mbps or above, whereas modems at best connect at 28.8 kbps, but very often, due 



to line conditions, only at 26.4 or 21.6 kbps. With V.42bis compression, throughput rates can 
exceed 50 kbps temporarily, but this can pose problems for many applications.  

 

 

Assuming that you have minimized all service and route advertisements with the use of access 
lists for the protocols in use over the asynchronous link, the discussion in the previous section on 
dealing with input and output drops via manipulation of the hold queues and buffer pools applies. 
Exact settings for hold queues and buffers can be determined only on a case-by-case basis and 
may require the installation of more main RAM in the router.  

 

 

Before we examine router-based troubleshooting of asynchronous communications, let's review 
external factors that can contribute to poor or nonperformance of a dial-up link. The first is the 
configuration of the PC hardware at the remote end. A remote PC must be using a 16550 UART 
(Universal Asynchronous Receive Transmit) chip in the circuitry of the serial port used to connect 
to the remote modem. Previous UART chips were inadequate; for example, the 8250 operated 
only at up to 9600 kbps and, although the 16450 operated at higher speeds, its buffer capabilities 
were too limited for it to be useful. If the remote PC does not use a 16550, throughput will be 
severely limited, which will increase the number of packets dropped by the router.  

 

 

The next external factor is the quality of the connection made between the local and remote 
modem by the telephone company switch. Even in a perfect system, you should expect around 3 
percent of connections to fail because of poor connections provided by the telephone company 
switch. Significantly more failures can be experienced if one of the local loops from the telephone 
company central office to either the local or remote modem is of poor quality.  

 

 

Some higher-end modems provide a front panel display that reports the dBm receive and transmit 
levels, the signal quality, and the error rate of the attached line. A poor signal quality or high error 
rate means you should contact the telephone company and have them check that local loop. In 
many cases, telephone companies will check only to determine that a dial tone is delivered by the 
local loop and will look no further. If this happens, it is useful to be able to quote the receive and 
transmit dBm levels. The receive dbm level should be around-9 to -15 dBm; if it is out of that 
range, the telephone company should be able to get the line back in specification.  

 

 
We have appropriate router access lists, hold queues, buffer settings, V.34 modems for both the 
router interface and remote PC (which uses a 16550 UART), and good local loop dial connections 
at both ends. What else do we need to check?  

 

 

The next thing to check is the setup of the modems used at both ends of the link. The setup for the 
modem attached to the remote PC is not so much of a problem, because it normally is initiated 
every time you make a new dial connection. Most PC communication programs have you identify 
the modem you are using and send an appropriate setup string prior to issuing the dial command. 
The modem connected to the router interface is, however, a different story. That modem normally 
sits there waiting for a connection to arrive from a remote modem and does not receive a setup 
string prior to that connection being made. This means that the modem should receive its setup 
prior to it having to answer any calls, and should have that setup saved to memory. It also means 
that you should have a way to initiate a modem remotely, if one loses its configuration or needs to 
be replaced.  



 

A simple way to do this is to use modems that allow configuration via a front panel. An alternative 
is to connect the modem to a router asynchronous interface and initiate a reverse Telnet session 
to the interface to send setup commands to the modem. Let's say you are logged on to router 1 
and want to initiate a reverse Telnet session to the first asynchronous port. You would accomplish 
this by entering the following:  

 
 Router1>telnet 193.1.1.1 2001  
 

 

This assumes that 193.1.1.1 is an interface on the router that has its line protocol up. The number 
20 has to precede the number of the asynchronous interface to which you wish to connect. If 
router 1 is an access server, such as the 2511 (which has 16 asynchronous ports), the 01 interface 
will be the first asynchronous interface. If router 1 is a 2501, the 01 interface is the auxiliary 
interface. On a 2511, the auxiliary interface is number 17. A Telnet session to an asynchronous 
interface will be refused only if a user already is connected on the interface, or the modem inout 
line command has not been executed. (We will review the configurations necessary for the line 
section later in this section.)  

 

 

Once the Telnet session has been established, you can verify connectivity by typing the letters AT 
followed by the Enter key, to get an OK echoed back from the modem. You then can send the 
setup string appropriate for your modem and set it up the way you want. A typical setup string will 
have the modem answer after one ring, lock in the DTE rate to a given value, hang up the 
connection if the DTR signal is not present, set the DCD signal to high only on carrier detect, 
enable compression, utilize hardware flow control, and write this configuration to memory.  

 

 

The item in the modem configuration just given that needs further explanation is locking of the DTE 
rate, which is the speed of communications from the modem to the router interface. Generally, 
modems set the DTE rate to automatic, meaning that the modem will set its DTE rate according to 
the speed of the communication sent from the device connected to it. In the case of a modem 
connected to a router interface used for dial-in connections, this does not work. For a dial-in 
connection, the modem initiates communication with the router interface. This means that nothing 
is being sent from the router to the modem to set the modem DTE rate. Therefore, the modem 
DTE rate must be preset in the modem to equal the DTE rate of the router async interface for the 
modem to initiate communications. If you are using V.34 modems, setting the router interface and 
modem DTE rate for 115,200 bps will give you the best potential for the highest throughput.  

 

 
For serial interfaces, the show commands we made use of were the show interface and show 
controllers commands. For asynchronous interfaces, the show interface and show line 
commands provide the most useful information.  

 
 Taking the first asynchronous interface as an example, the show interface async 1 
command produces a screen display similar to that illustrated in Fig. 8-9.  

 
   
 
 router2#show int async 1  
 
 Async1 is up, line protocol is down  
 
 Hardware is Async Serial 



 Hardware is Async Serial  
 
 Interface is unnumbered. Using address of Ethernet0 (164.7.1.66)   
 
 MTU 1500 bytes, BW 9 Kbit, DLY 100000 usec, rely 255/255, load 1/255  
 
 Encapsulation PPP, loopback not set, keepalive set (10 sec)   
 
 DTR is pulsed for 5 seconds on reset   
 
 lcp state = REQSENT  
 
 ncp ccp state = NOT NEGOTIATED ncp ipcp state = NOT NEGOTIATED   
 
 ncp osicp state NOT NEGOTIATED ncp ipxcp state = NOT NEGOTIATED   
 
 ncp xnscp state = NOT NEGOTIATED ncp vinescp state = NOT NEGOTIATED  
 
 ncp deccp state = NOT NEGOTIATED ncp bridgecp state = NOT NEGOTIATED  
 
 ncp atalkcp state = NOT NEGOTIATED ncp lex state = NOT NEGOTIATED   
 
 ncp cdp state = NOT NEGOTIATED  
 
 Last input never, oldput 0:00:00, output hang never  
 
 Last clearing of "show interface" counters never  
 
 Output queue 0/100, 0 drops; input queue 1/100, 0 drops  
 
 5 minute input rate 0 bits/sec, 0 packets/sec  
 
 5 minute output rate 0 bits/sec, 0 packets/sec  
 
 0 packets input, 0 bytes, 0 no buffer  
 
 Received 0 broadcasts, 0 runts, 0 giants  
 
 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort  
 
 36 packets output, 864 bytes, 0 underruns 



 36 packets output, 864 bytes, 0 underruns  
 
 0 output errors, 0 collisions, 0 interface resets, 0 restarts  
 
 0 output buff er failures, 0 output buffers swapped out  
 
 0 carrier transitions  
 
 Figure 8-9: Output of show interface async 1 command 

   
 

 

The status reported for the interface still is given as up, even if carrier detect is not high, which is 
unlike the show serial interface display. The only time the interface will report a down 
condition is if the encapsulation type is not set for the interface. The line protocol display behaves 
the same as the line protocol for the serial interface. Other than the interface and line protocol 
status, the show interface async 1 command is as useful for monitoring throughput, drops, 
and resets as it is for serial interfaces.  

 

 

One additional set of information that the show interface command provides is related to the 
fact it uses PPP encapsulation. With this configuration, the show command reports the status of 
the PPP, LCP, and NCP protocols. These reports are the most valuable when multiple protocols 
are being used on the one link. For example, if IP and IPX are being used on this interface, you 
would expect to see the ipcp and ipxcp state as negotiated when a user has dialed in. If the 
user is experiencing difficulty in accessing some applications and not others over the dial link, it 
might be because one of the protocols has not successfully negotiated. In this situation, the 
interface and line protocol will report up, and the only indication that one of the protocols in use 
over the link has failed is the state of the NCP negotiations.  

 
 The major omission for the show interface async 1 display is in reporting the status of EIA 
signals. This is given in the show line 1 command, which is illustrated in Fig. 8-10.  

 
   
 
 router2#show line 1  
 
 Tty TypTxtRxA Modem Roty AccO Acci Uses Noise Overruns  
 
 A 1 TTY 9600/9600 - - - - - 0 0 0/0  
 
 Line 1, Location: "", Type: ""  
 
 Length: 24 lines, Width: 80 columns  
 
 Baud rate (TX/RX) is 9600/9600, no parity, 2 stopbits, 8 databits   



 
 Status: Ready, Active, Async interface active  
 
 Capabilities: Line is permanent async interface  
 
 Modem state: Ready  
 
 Special Chars: Escape Hold Stop Start Disconnect Activation  
 
 ^^X none - - none  
 
 Timeouts: Idle EXEC Idle Session Modem Answer Session Dispatch  
 
 0:10:00 nevernonenot set  
 
 Session limit is not set.  
 
 Time since activation: never  
 
 Editing is enabled.  
 
 History is enabled, history size is 10.  
 
 Full user help is disabled  
 
 Allowed transports are pad telnet riogin. Preferred is telnet.  
 
 No output characters are padded  
 
 No special data dispatching characters  
 
 Modem hardware state: noCTS noDSR DTR RTS  
 
 Line is running PPP routing.  
 
 0 output packets queued, 1 input packets.  
 
 Async Escape map is 11111111111111111111111111111111  
 
 Figure 8-10: Output of show line command 



   
 

 

The show line command displays the receive and transmit speeds set for that interface, whether 
hardware flow control has been set, and the status of the EIA signals CTS, DSR, DTR, and RTS. 
Unlike serial interfaces, in which all configuration is entered under the serial interface section, 
asynchronous interfaces have some things (such as encapsulation and hold queues) set on the 
interface, and DTE rate and modem control set under the line configuration. A typical line 
configuration that would appear in a router configuration file and be applied to asynchronous 
interfaces 1 through 16 is given as follows.  

 
 Line 1 16  
 modem inout  
 rxspeed 115200  
 txspeed 115200  
 

 

All configuration changes made on line 1 will apply to asynchronous interface 1, and it is easiest 
just to think of the line commands as extensions to the interface configuration commands. The 
rxspeed and txspeed commands set the receive and transmit DTE rates to 115,200 (which has 
to match the setting for the DTE rate on the attached modem), and the modem inout command 
enables modem control for the interface.  

 
 The reporting of the EIA signals on the show line 1 display is interesting. If no modem is 
connected to asynchronous interface 1, the EIA signals report:  

 
 noCTS noDSR DTR RTS  
 
 If a modem is attached that has CTS high, the EIA signals are reported as:  
 
 CTS noDSR DTR RTS  
 

 
which is the normal display for an interface connected to a modem on which no remote modems 
currently are connected. (Your modem should be configured to have CTS high by default, lowering 
the signal only to throttle traffic.) When a remote modem calls in and establishes a connection, 
carrier detect will be raised on the modem and the EIA signals will be reported as:  

 
 CTS DSR DTR RTS  
 

 

The connection from a 2511 router to a modem on an asynchronous interface is via an RJ-45 
cable, which has 8 wires. The function of these wires are assigned to RTS (request to send), DTR 
(data terminal ready), Txd (transmit data), Sig Gnd ( signal ground), Cab Gnd (cable ground), Rxd 
(receive data), DSR (data set ready) and CTS (clear to send). As we just saw, using the IOS show 
line command, the status of only four of these signals is reported. As long as you realize that the 
status of DSR reported by the command is more usefully interpreted as the status of the DCD 
signal, you can get by with reporting on just these four signals.  

 



asynchronous interface is the PPP encapsulation. If you're troubleshooting the interface and line 
configuration on the router and the modem connections, setup, and telephone line do not resolve 
problems, you can get additional information from the debug ppp commands.  

 

 

The debug ppp command can be followed by one of four keywords: packet, negotiation, 
errors, or chap. The screen outputs from these commands are hard to understand and it's 
difficult to derive useful information from them. If this command does generate screen output, 
however, at least you know that everything on the Physical layer is working. If you have to resort to 
using these commands, start with the debug ppp errors and report these to Cisco technical 
support. The type of problems that are resolved by the debug commands are usually related to 
improper PPP commands being sent by a faulty PPP driver on the remote PC, which these days is 
a rare occurrence.  

 

 
Asynchronous Troubleshooting Summary. If you have a correctly configured remote PC and 
modem that can successfully dial in to one interface, but not to another, the steps outlined next will 
help identify where the problem lies.  

 
   1.Use the show line command and check that the CTS signal is present, to prove that the 

modem is connected to the correct interface and powered up.  
 
   2.Check that the line rxspeed and txspeed match that of the modem.  
 
   3.Check all the modem settings and the operation of the telephone line attached to the modem. 

(Connecting the line to an analog telephone handset lets you hear if the line is okay.)  
 
   4.Check encapsulation and CHAP setting for the interface.  
 
   5.Use the debug ppp command to see if PPP errors are being reported and seek help from Cisco 

technical support if necessary.  
 
 If communication over the asynchronous link is poor, do the following:  
 
   1.Check the number of drops and buffer pool misses and increase the size of hold queues or 

buffer pools that are experiencing problems.  
 
   2.Check your modem for reports on the telephone line quality and dBm levels.  
 
   3.Check the speed of modem connection; it should be at or above 21.6 kbps. If it is not, try to 

change telephone lines on either or both ends.  
 
   4.Make sure that the DTE rate for all device interfaces is 115,200 bps and compression is enabled 

on both modems.  
 
   5.Check that the remote PC has a 16550 UART chip in use in its serial port.  
 
 Troubleshooting Ethernet  



 

 

Compared to the problems encountered with serial and asynchronous interfaces, troubleshooting 
the setup of Cisco Ethernet interfaces is simple. The most common problems on Ethernet 
interfaces have nothing to do with how the router is set up; rather, the problems typically involve 
overutilization of bandwidth, a high number of collisions, or systems using incompatible frame 
types.  

 

 

Collisions, drops, utilization (as reported by throughput), and frame type are reported on the show 
interface ethernet 0 command as illustrated in Fig. 8-2. Other problems, such as LAN card 
drivers incorrectly forming frames that are either too long (giants) or too short (runts), are rare 
these days. The major challenges of implementing Ethernet networks are in the areas of physical 
design and management of cabling systems. We will review how Cisco IOS screen displays report 
typical Ethernet problems.  

 

 

Once the Ethernet interface and line protocol report an up condition, which is achieved by 
connecting the Ethernet interface to a hub, little optimization can be achieved through interface 
configuration. The most significant factor in serial line performance problems we examined was 
with packet drops. You rarely see drops on an Ethernet interface, even on a heavily utilized 
segment. The only time drops are likely to become a factor is when you have a router connecting a 
heavily utilized FDDI ring and an Ethernet segment. The FDDI ring operates at a much higher rate 
than the Ethernet and may overwhelm the Ethernet interface with packets that need to be switched 
onto the Ethernet segment. If this happens in your internetwork, the same steps used in optimizing 
a serial interface, i.e., of disabling fast switching by use of the no ip route-cache command on 
the Ethernet interface, and adjusting buffers and hold queues, might help.  

 

 

In most cases, drops on an Ethernet interface are rare. This is due in part to the way Ethernet 
operates. Any node at any time can transmit on the LAN cable as long as no other node is using 
the cable. Therefore packets are stored in a router for a relatively short period of time before being 
switched out an Ethernet interface and do not get held in buffers or hold queues. On an Ethernet 
interface, congestion normally displays itself through packet collisions after the packets have been 
transmitted out of an interface.  

 

 
Collisions occur when two interfaces try to transmit a packet onto the network cable at the same 
time. A small number of collisions is expected in an Ethernet network, but the obvious question is 
what constitutes "a small number." That is different for each network; if you see a collision more 
than once every 3 to 5 seconds, you should investigate the source.  

 

 
The source of collisions usually is the result of cabling that is too long, overly high utilization, or 
what is commonly referred to as a deaf node, one that has faulty circuitry that keeps it from 
hearing other nodes using the network cable.  

 

 

Again, we have the question of what utilization is too high. Again the answer is that it is different for 
every network. If your network has a high percentage of broadcast packets, the utilization at which 
performance starts to degrade will be lower than for a network with few broadcasts. Typically, if the 
network utilization reaches 40 percent, you can expect problems. The way you detect utilization on 
a Cisco router is by the throughput on the interface. This statistic as reported by the 5-minute 
average is not particularly useful, as short peaks in utilization are not reported. If your router is 
reporting excessive collisions for any reason, you are better off using a LAN analyzer to determine 
if utilization is the cause of the problem.  

 
Out-of-specification cabling causes more collisions because a node will listen to the network cable 
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for a set period of time before determining that no other node is using it. The further away another 
node is, the greater the propagation delay of the signal from that node to the listening node. If a 
node is further away than the specification states, there will be more instances when a listening 
node determines that the network cable is free, when in fact the cable is carrying a packet that has 
not yet reached the listening node. Under such conditions, a collision will result when the listening 
node transmits a packet.  

 

 

The only time you should have to look closely at the router Ethernet interface configuration is when 
the interface and line protocol report an up state and all physical connections to another node are 
good, but they still cannot communicate. The probable cause of this problem is that the two nodes 
are using incompatible frame types. The frame type is displayed on the output of the show 
interface ethernet 0 command. If you know the frame type used by the other node, it 
should be a simple mater to match them up.  

 

 

If you need to communicate with two devices on the same network that use different frame types, 
you can use sub-interfaces on the router interface and assign different encapsulation frame types 
for each sub-interface. A sample configuration for assigning both the ethernet_ii and novell-
ether (802.3) frame types to different sub-interfaces on the Ethernet 0 physical interface for a 
Novell network is given here.  

 
 Interface ethernet 0.1  
 ipx network 1234 encapsulation arpa  
 Interface ethernet 0.2  
 ipx network 5678 encapsulation novell-ether  
 
 As you see, each sub-interface is considered a different network, since it is not possible to assign 
different frame types to the same interface for the same network number.  

 
 Troubleshooting Token-Ring  
 

 

Token-Ring and Ethernet both handle communication between computer nodes on a local area 
network. That is where the similarity between these two technologies ends, however. Token-Ring 
is a deterministic system, which means that its performance is always predictable (in theory) and 
that only one node on the network has the choice of using the network at any given time. This is 
achieved by having a special packet, called the token, that constantly circulates the ring. The only 
node that can transmit is the one with the token. This method eliminates the possibility of 
collisions, but does potentially waste transmission time by always asking all nodes if they have 
anything to send on the network, even if they have nothing to send.  

 

 
Because Token-Ring interfaces have to hold packets for transmission until the router receives the 
token, you sometimes need to adjust hold queue sizes from the default to eliminate packet drops. 
Drops are reported in the show interfacetokenring command, as illustrated in Fig. 8-11.  

 
   
 
 Router1>show int to0  
 
 Tokenring0 is up, line protocol is up 



 Tokenring0 is up, line protocol is up  
 
 Hardware is TMS380, address is 0000.3Oe2.c44d  
 
 Internet address is 194.3.3.2 255.255.255.0  
 
 MTU 4464 bytes, BW 16000 Kbit, DLY 630 usec, rely, 255/255, load 1/255 Encapsulation SNAP, 
loopback not set, keepalive set (10 sec)  

 
 ARP type: SNAP, ARP timeout 4:00j0  
 
 Ring speed: 16Mbps  
 
 Single ring node, Transparent Bridge Capable  
 
 Group address: 0x00000000, Functional Address: 0x08800000   
 
 Ethernet Transit OUI: 0x0000F8  
 
 Last input0:00:00, output 0:00:00, output hang never  
 
 Last clearing of "show interface" counters never  
 
 Output queue 0/40, 0 drops: input queue 0/100, 0 drops  
 
 5 minute input rate 9000 bits/sec, 9 packets/sec  
 
 5 minute output rate 1000 bhs/sec, 3 packets/sec  
 
 7471015 packets input, 1593087959 bytes, 0 no buffer   
 
 Received 8888699 broadcasts, 0 runts, 0 giants   
 
 0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort   
 
 2902191 packets output, 253383249 bytes, 0 underruns   
 
 0 output errors, 0 collisions, 1 interface resets, 0 restarts   
 
 0 output buffer failures, 0 output buffers swapped out   



 
 4 transitions  
 
 Figure 8-11: Output of the show interface tokenring 0 command 

   
 

 

When a Token-Ring network is initialized, one node on the ring is elected the Active Monitor. This 
node is responsible for monitoring the passage of the token around the ring, deleting duplicate 
tokens if they occur, and generally making sure that everything runs smoothly. The process of 
electing an Active Monitor is transparent to network users and to network administrators. The 
show interface tokenring command will display the ring status as "initializing" if the router 
has just been connected to the ring. This is because the router interface will need to be added into 
the sequence of computers to receive the token. This process is referred to as the router interface 
"being inserted into the ring." If a hardware error has occurred, the show interface 
tokenring command will report an interface status of Reset.  

 

 
The most common problems reported on token rings are incompatible ring speeds, ring beaconing 
conditions, source routing not enabled, or a large number of transitions. Ring speeds can be set 
either to 4 Mbps or to 16 Mbps with the commands shown as follows.  

 
 Router1(config)#interface tokenring 0  
 Router1(config-int)#ring-speed 4  
 

 
The default is 16 Mbps, and if the interface is changed to 4 Mbps with the command above, the 
interface speed can be changed back again with the ring-speed 16 configuration command. 
The current ring speed setting is given in the screen display of the show interface 
tokenring command.  

 

 

Ring beaconing occurs when a serious problem with a network component, such as the cabling, 
Multistation Access Unit (MSAU), or a node interface is detected. As a token gets passed around a 
ring, each node receives the token from its Nearest ActiveUpstream Neighbor (NAUN). Should a 
node not receive a valid token from its NAUN, the node will report a beacon condition to all other 
stations on the network. In theory, this should initiate an auto-reconfiguration process, whereby the 
suspect NAUN and node reporting the beacon are taken out of the ring and normal operation is 
restored for the rest of the ring. I have rarely seen this work in practice. If a serious problem exists 
and a node sends out beacon frames, the problem generally has to be fixed by manual 
intervention before the ring is operational again.   

 

 

Source routing was discussed in detail in Chap. 5. The show interface tokenring command 
display tells you whether the interface is configured for source routing. The display will either 
indicate the interface is a single ring node or multi-ringnode. Multi-ring nodes are 
enabled to collect and utilize RIF field information and therefore can participate in source routing. 
This line also tells you the type of bridging for which the interface is enabled. The interface whose 
show interfacetokenring command is displayed in Fig. 8-11 is enabled only for transparent 
bridging and not for source route bridging. For the commands needed to enable source route 
bridging on an interface, refer to the section on Chap. 5 on source route bridging.  

 
If transitions are reported on an interface, it indicates that the ring made a transition from an up to 
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a down state, or vice versa. A continually increasing count of transitions means that either the ring 
or the router interface are experiencing problems and you need to investigate cabling and 
hardware problems.  

 

 

There are other commands that will give you information on Token-Ring packets, but little additional 
information is presented that will assist in the resolution of common problems. When working with 
Cisco technical support, you may be required to note the displays given by the show 
controllers tokenring command, which gives information on the hardware interface and 
summary packet statistics. The other command that sometimes is used is the debug tokenring 
command that identifies the MAC source and destination addresses for every packet that passes 
through the interface.  

 



Troubleshooting Protocol Problems  
 

 
In this section we'll cover two main areas. First, we will look at troubleshooting general IP 
connectivity related to routing protocol issues. Second, we'll examine basic troubleshooting for 
popular WAN protocols. In both of these sections we will consider troubleshooting lost connectivity 
and poor performance.  

 
 Troubleshooting IP Connectivity  
 

 

The usual way to determine if a device is reachable via the IP protocol on an internetwork is by 
using the ping utility. Ping sends an ICMP packet from the source to the specified destination. If 
successful, the returned ping packet proves that all Physical, Data Link, and Network layer 
functions are operating correctly from the source to the destination. For the purposes of this 
discussion, failed IP connectivity will mean that a ping packet does not get a reply. It will be 
assumed that all physical connections are in place and all interfaces and line protocols are up 
along the path from source to destination. Initially, the discussion focuses on distance vector 
protocols; a section on OSPF follows.  

 

 

Troubleshooting Distance Vector Protocols. If a ping is failing in an internetwork with good 
Physical and Data Link connections, the first place to look are the routing tables of all routing 
devices between the source and destination. Each one in turn should have an entry that states the 
next hop for the ultimate destination network number. For example, if you are trying to ping a 
device with an IP address of 164.7.8.33 and the netmask in use on your internetwork is 
255.255.255.224, then you would expect to see an entry for the subnet 164.7.8.32 in all the routing 
tables between the ping source and its destination.  

 

 

This simple statement, although neat, might not be always true. Suppose the device from which 
you are sending the ping is on the 170.5.0.0 network and, as routes are summarized at the 
boundary between major network numbers, each of the devices on this network will have only one 
entry in its routing table for the 164.7.0.0 network. Once the path from source to destination takes 
you from the 170.5.0.0 network into the 164.7.0.0 network, you expect to see entries for the 
164.7.32.0 subnet. In addition, you expect to see entries in the routing table of all the devices from 
the destination to the source, for the source's subnet number, so that the ping reply can find its 
way back to the source.  

 

 
So what do we do if one of the devices is missing a routing table entry? The first thing is to check 
that each device has a routing protocol appropriately enabled. This means that all devices need a 
routing protocol enabled for the same autonomous system number, and network entries need to 
be configured for each network that is directly attached to a router.  

 

 

By viewing the configuration of all the routing devices from source to destination, you confirm that 
all devices are in fact correctly configured for a routing protocol. What next? You probably want to 
use some debug commands, starting with debug ipigrp events, which tells you which hosts 
sent IGRP information and to which hosts IGRP information was sent. The debug ip igrp 
transactions command details the content of the IGRP updates received and sent in terms of 
the network numbers and their associated metrics. In a network using RIP, debug ip rip tells 
you the content of routing updates and which routers they are sent to and received from. Figure 8-
12 provides sample outputs from these commands.  

   
   



     LOG OUTPUT OF DEBUG IP IGRP EVENTS COMMAND  
 
    

 
 IGRP: received update from invalid source 193.1.1.1 on Ethernet0  

 

 
    

 
 IGRP: received update from 164.7.1.98 on Serial0  

 

 
    

 
 IGRP: Update contains 0 interior, 1 system, and 0 exterior routes.  

 

 
    

 
 IGRP: Total routes in update: 1  

 

 
    

 
 IGRP: sending update to 255.255.255.255 via Ethernet0 (164.7.1.66)  

 

 
    

 
 IGRP: Update contains 1 interior, 1 system, and 0 exterior routes.  

 

 
    

 
 IGRP: Total routes in update: 2  

 

 
    

 
 IGRP: sending update to 255.255.255.255 via Serial0 (164.7.1.97)  

 

 
    

 
 IGRP: Update contains 1 interior, 0 system, and 0 exterior routes.  

 

 
    

 
 IGRP: Total routes in update: 1  

 

 
    

 

 
The first line is interesting as it identifies an IGRP update that appeared on this 
interface from a source on a different network number and is therefore not 
accepted on this interface. The rest of the display identifies valid updates received 
and sent via broadcast.  

 

 
    

 
 LOG OUTPUT OF DEBUG IP IGRP TRANSACTIONS COMMAND  

 

 
    

 
 IGRP: sending update to 255.255.255.255 via Ethernet0 (164.7.1.66)  

 

 
    

 
 subnet 164.7.1.96, metric=8476  

 

 
    

 
 network 193.1.1.0, metric=8576  

 

 
    

 
 IGRP: sending update to 255.255.255.255 via Serial0 (164.7.1.97)   

 

 
    

 
 subnet 164.7.1.64, metric=1100  

 

 
    

 
 IGRP: received update from invalid source 193.1.1.1 on Ethernet0  

 

 
   

 
 IGRP: received update from 164.7.1.98 on Serial0 

 



     IGRP: received update from 164.7.1.98 on Serial0  
 
    

 
 network 193.1.1.0, metric 8576 (neighbor 1100)  

 

 
    

 
 This command logs more detailed information on each routing update received 
and sent.  

 

 
    

 
 LOG OUTPUT OF DEBUG IP RIP COMMAND  

 

 
    

 
 RIP: sending update to 255.255.255.255 via Serial0 (164.7.1.97)  

 

 
    

 
 RIP: Update contains 1 routes  

 

 
    

 
 RIP: received update from invalid source 193.1.1.1 on Ethernet0   

 

 
    

 
 RIP: received update from 164.7.1.98 on Serial0   

 

 
    

 
 193.1.1.0 in 1 hops  

 

 
    

 
 RIP: sending update to 255.255.255.255 via Ethernet0 (164.7.1.66)   

 

 
    

 
 subnet 164.7.1.96, metric 1   

 

 
    

 
 network 193.1.1.0, metric 2  

 

 
    

 
 This log output shows the detail of RIP updates sent and received, including the 
interface received on and route metrics.  

 

 
 Figure 8-12: Control statements and the number of paths they generate 

   
 

 

If the Physical and Data Link layer connections between the source and destination are good and 
the routing protocols are correctly configured but appropriate routes still do not appear in all the 
routing tables necessary, the output from these commands should give a clue as to where the 
route information is being dropped. The route information might be dropped because of passive 
interfaces, incorrectly configured redistribution, access lists, or distribute lists.  

 

 

Assuming the output of the debug commands identifies where in the chain of routers from source 
to destination the required routing information is being dropped, you can examine the configuration 
of the suspect router to check for any passive interfaces that will not send out any routing updates, 
or those that have a distribute list applied. Distribute lists are useful if you want to reduce the size 
of routing updates sent. A distribute list works with a defined access list to identify the routes that 
will be advertised and the routes that will not. An example configuration of this combination is 
given here, allowing updates only from the 164.7.0.0 network number for the IGRP protocol.  



 
 access-list 1 permit 164.7.0.0  
 router igrp 11  
 network 164.7.0.0  
 distribute-list 1 out  
 

 

If there are no impediments to routing information by passive interfaces or distribution lists, 
incorrectly configured redistribution could be causing route update problems. If you suspect 
redistribution, the first thing to check is the default metric configured for redistributed routes. If this 
is missing or using a value that makes subsequent routers discard the route information, an 
adjustment in its value is necessary.  

 

 

Having covered typical problems with Network layer configuration that result in lost connectivity, 
what can we do if two nodes can communicate, but there is a severe performance problem? We 
first would look at Physical and Data Link issues, such as performance of leased lines, framing or 
line errors, buffers, and hold queues. If checking these areas fails to cover any problems, we can 
examine what is happening at the Network layer to cause slow performance. The best tool for 
diagnosing performance problems that are suspected to being due to Network layer operation is 
the Cisco trace command. An example of the use of trace is given in Fig. 8-13.  

 
   
 
 Router1>trace ip 164.7.1.97  
 

 

Type escape sequence to abort. 
 
Tracing the route to 164.7.1.97 
 
1 164.7.1.66 4 msec 4 msec*  

 
 Router1>trace ip 164.7.1.98  
 

 

Type escape sequence to abort. 
 
Tracing the route to 164.7.1.98 
 
1 164.7.1.66 4 msec 4 msec 4 msec 
 
2 164.7.1.98 20 msec 20 msec*  

 
 Router1>trace ip 164.7.1.99  
 

 
Type escape sequence to abort. 
 
Tracing the route to 164.7.1.99  

 
1 164.7.1.66 4 msec 4 msec 4 msec  



 
2 164.7.1.98 16 msec 20 msec 16 msec  
 
3 164.7.1.97 16 msec 16 msec 16 msec  
 
4 164.7.1.98 32 msec 32 msec 32 msec  
 
5 164.7.1.97 32 msecRouter1 >  

 
 Figure 8-13: Use of the trace command 

   
 

 

In the first part of the display, we see how trace reports a successful ping from router 1 to router 
3 through router 2 in the lab setup of three routers we have used throughout the book. The trace 
reports the path that is taken from source to destination. The second part of Fig. 8-13 shows an 
unsuccessful trace. Here, the trace command reports that the router can find the subnet where 
the destination IP address should be located, but it cannot find the host on the subnet, so it queries 
all devices it knows about on this subnet to see if they know about the target address. This display 
will continue indefinitely until it is stopped by the break sequence (pressing the Ctrl and 6 keys 
simultaneously).  

 

 

With internetworks that are either poorly designed, or which are experiencing a fault condition, the 
paths selected for routes can become suboptimal, leading to poor performance. A typical example 
of this is if a bridge or repeater is connected through the internetwork to two interfaces on a router. 
This will lead to a router receiving duplicate routing updates—effectively receiving the same 
updates on two interfaces. This is a condition that a router cannot deal with effectively, and 
unpredictable routing decisions result. The trace command output can identify these types of 
problems by reporting the path packets take from source to destination. If a suboptimal path is 
taken, the interconnections made on the internetwork need to be examined to resolve any 
conditions that the routing protocols cannot handle.  

 

 

Overview of OSPF Troubleshooting. OSPF and other link state protocols are more complex to 
troubleshoot than distance vector protocols. The problem we will consider initially is that of a ping 
packet that is not returned successfully from a remote host. Assuming that the Physical and Data 
Link layers have checked out and that all devices have OSPF enabled for the same autonomous 
system number, troubleshooting an OSPF internetwork starts off in the same way as for an IGRP 
internetwork. The first task is to review the routing table entries, because each routing device from 
source to destination must have routing table entries that enable a packet to be routed in both 
directions for a ping request to be successful.  

 

 

Assuming that the ping fails because of a lack of routing table entries, we would look first for any 
passive interfaces or distribute lists stopping the route information from being disseminated. If 
none exists, the OSPF configuration for each router device must be reviewed. All interfaces that 
are to participate in OSPF routing need to have the network numbers to which they belong listed in 
the network commands that are entered as subcommands under the OSPF major command.  

 

 
You can check whether OSPF is running on all expected interfaces by issuing the show ip ospf 
interface command for each interface. (A sample display was illustrated in Fig. 4-17.) 
Obviously, any interface that is not reporting OSPF information for this command is incorrectly 
configured and needs to be investigated.  



 
Another useful command for troubleshooting at this level is the show ip ospf neighbor 
command, illustrated in Fig. 8-14, which identifies all the neighbors the router knows about via the 
OSPF protocol. If a router that you expect to see on this list does not show up, further investigation 
into the missing router's configuration is required.  

 
   
 
    

 
 Router1#show ip ospf neighbor  

 

 
    

 
 ID    

 
 Pri   

 
 State   Dead 

Time  
 

 
Address   

 
    

 
 Interface  

 

 
    

 
 193.1.1.137   

  
 1   

  
 FULL/DR  

 0:00:31 
 160.8.8.3  

 Ethernet0  
 

 
   

 
 193.3.4.1   

  
 1   

  
 FULL/DROTHER 

 0:00:33 
 160.3.48.1 

 Serial0  
 

 
   

 
 192.1.8.2   

  
 1   

  
 FULL/DROTHER 

 0:00:33 
 160.3.48.20 

 Serial0  
 

 
   

 
 193.1.1.1   

  
 5   

  
 5  

 FULL/DR 
 0:00:33  

 160.3.48.18  
 

 
    

 
 Serial0  

 

 
    

 
 Router1#show ip ospf neighbor 193.1.1.37  

 

 
    

 
 Neighbor 193.1.1.37, interface address 160.8.8.3  

 

 
    

 
 In the area 0.0.0.0 via interface Ethernet0  

 

 
    

 
 Neighbor priority is 1, State is FULL  

 

 
    

 
 Options 2  

 

 
    

 
 Dead timer due in 0:00:32  

 

 
    

 
 Link State retransmission due in 0:00:04  

 

 
    

 
 Neighbor 193.1.1.37, interface address 192.31.48.189   

 

 
    

 
 In the area 0.0.0.0 via interface Seriali0  

 



 
    

 
 Neighbor priority is 5, State is FULL  

 

 
    

 
 Options 2  

 

 
    

 
 Dead timer due in 0:00:32  

 

 
    

 
 Link State retransmission due in 0:00:03  

 

 
    

 

 
The ID is the router ID of the OSPF neighbor, Pri is the priority of this router that affects it 
being chosen as a designated router, Address is the source address of the interface that 
advertised this router, which was received through the interface listed.  

 

 
 Figure 8-14: Output of the show IP OSPF neighbor command 

   
 

 

If all the routers appear in the show ip ospf neighbor and all interfaces are enabled for 
OSPF, but you still cannot ping the desired host, check to make sure that each OSPF area has at 
least one border router and that border router is connected to area 0. The only way to check this is 
by viewing the configuration of the border router. This is an important configuration requirement for 
OSPF internetworks, as all interarea communication has to go through area 0.  

 

 
The last consideration is that of mismatched hello and dead timers. These timers can be viewed in 
the show ip ospf interface display. The value for these timers should be the same for all 
interfaces. If mismatched values are found, they can be altered in interface configuration mode by 
the ip ospf dead-interval and ip ospf hello-interval commands.  

 
 Troubleshooting Packet-Oriented WAN Protocols  
 

 

This section will provide the essential information for initial troubleshooting of the packet-oriented 
WAN protocols, frame relay and X.25. The focus of this section is to explore why nodes might not 
be communicating for each of the protocols considered. Typically, there is more in the router 
configuration of an X.25 connection that can cause intermittent or poor performance than in a 
frame relay connection.  

 

 

A frame relay connection is normally configured for connection to a public network, and 
performance issues with this type of connection are generally linked to the public network itself, or 
to Physical layer issues such as noisy lines or router buffer problems. Troubleshooting noisy lines 
and router buffer problems for frame relay follow the same process as described previously. We 
shall therefore look mainly at what can cause connectivity to fail in a frame relay environment. With 
X.25, we will look at router issues that can contribute to poor performance as well as to no 
connectivity.  

 

 

Troubleshooting Lack of Connectivity over Frame Relay. The most usual configuration for 
connecting a router to a public frame relay network is for the public frame relay network to send 
data link connection identifier (DLCI) information to the router via an agreed LMI interface type. 
Again assuming that everything at the Physical and Data Link layers are working and that the 



show interface serial command reports an up condition for both interface and line protocol 
status, we will first want to see if LMI information is being received and sent.  

 

 

The place to start is with the show frame-relay map command, as shown in Fig. 6-8, which will 
tell you if the router has successfully learned of the remote device protocol IDs. If this process has 
failed, there will be no entries in the display of this command. The process that should take place 
is that the local management interface (LMI) informs the router of the available DLCI numbers and 
the router uses inverse ARP to determine the protocol address of the devices at the other end of 
the PVCs identified by the DLCIs.  

 

 

If a router is not registering the available DLCIs on its frame relay connection (which can be 
determined by issuing the show frame-relay PVC command as illustrated in Fig. 6-8), you 
should determine whether the switch is sending the information via the LMI. In this situation, the 
debug frame-relay lmi command should be used. If the frame relay switch is sending DLCI 
numbers via the LMI, they will be listed in the output of this command. If this debug command lists 
DLCI numbers being sent by the frame relay switch that are not shown in the show frame 
relay map command, the LMI type used by the router should be confirmed as correct. If no DLCI 
numbers are listed, you need to contact the company supplying the frame relay connection to have 
the frame relay switch send the correct data.  

 

 

This covers LMI operation; checking whether Inverse ARP worked is a little more tricky. If the 
router learns about its DLCI numbers, but does not establish entries in its show frame-relay 
map command output, there are two possibilities. Either the two nodes communicating over the 
frame relay network are not configured to send broadcast routing updates, or the frame relay 
network is improperly configured. Chapter 6 covered setup of broadcast IGRP updates over frame 
relay links, and I will not repeat that here. If you find a situation in which the router knows of its 
DLCI numbers, and you are sure that all connected devices are set up for broadcast, and that 
IGRP, or some other appropriate routing protocol, is properly enabled on the connected devices, 
you have to inform the frame relay provider that Inverse ARP is not working over the network and 
seek help. In the meantime, static maps can be entered into the router with the frame-relay 
map command.  

 

 

Troubleshooting Lack of Connectivity over X.25. There are many similarities between a frame 
relay link and an X.25 link, such as the use of packet switching, PVC and SVC allocation, and 
support for multiple logical connections being established over a single physical connection. The 
differences between the two technologies are significant enough, however, to justify different 
troubleshooting procedures.  

 

 

In frame relay, the DLCI number provides the key to delivering traffic on a frame relay connection. 
In X.25, the X.121 address is the key addressing element. A DLCI and an X.121 address are very 
different things. The DLCI has only local significance, so the same DLCI number can be assigned 
at both ends of the link and it will still work. The X.121 address, by contrast, has significance 
throughout the X.25 network and is an address that can be used to identify a single host on the 
network. Also, X.25 does not have the same Inverse ARP capabilities, so the router's configuration 
must be filled with all the necessary X.25 map statements to map IP to X.25 addresses.  

 

 
Having established that X.25 is a very different type of packet switching technology to frame relay, 
let's consider how to resolve X.25 issues that can result in no connectivity across a network, then 
those that result in poor connectivity.  



 
The case that we will use for this discussion is of two IP networks interconnected via an X.25 
network, which is similar to the configuration used in the discussion on configuring X.25 interfaces 
in Chap. 6.  

 

 

Assuming that all the Physical layer issues having to do with leased lines and cables are 
operational but connectivity across the X.25 network is still not available, we need consider what at 
the X.25 level can stop communication. The first thing to do is determine that the X.121 addresses 
are correct, both for the address assigned to your X.25 interface and those used to address 
remote hosts in the X.25 map statements.  

 

 

Next, check that one of the devices is configured as an X.25 DTE and the other as an X.25 DCE. 
This has nothing to do with the DTE and DCE that we talk about at the Data Link level, where we 
are concerned with the DCE supplying a clock signal for synchronization. In X.25, there is a DTE 
and DCE specification at the Network layer as well as at the Data Link layer. The default condition 
is for the interface to be configured as an X.25 DTE. To change it to DCE, the encapsulation 
configuration command must be entered as encapsulation x25 dce.  

 

 
Next, check whether routing updates are getting from and to the remote locations. To do this, you 
must view the configuration of the routers and make sure that all the X.25 map statements include 
the keyword broadcast. This keyword ensures that IGRP or other routing protocol updates are 
transported over the X.25 network to all remote locations defined in the X.25 map statements.  

 
 The remaining issues that we shall consider can degrade performance, or in severe cases, deny 
connectivity altogether over an X.25 network.  

 

 

The show interface serial command output for an interface with X.25 encapsulation (as 
illustrated in Chap. 6), lists frame reject (REJ), Receiver Not Ready (RNR), Frame Error (FRMR), 
line disconnects (DISC) and protocol restart (RESTART) values that should all be low, by which I 
mean less than 0.5 percent of the number of information frames (IFRAME). If any of these values 
is greater than this 0.5 percent number, there is a problem either at the Physical level with the 
hardware and leased lines, or there is a configuration mismatch. With X.25 connections, you need 
to be concerned about matching the configuration of many variables for the connected devices at 
both the LAPB and X.25 level to ensure optimum communication. Table 8.2 lists the ID of the 
variable as reported in show interface serial and show x25 vc commands, a description 
of this variable, and the configuration command to change the variable.  

 
 Table 8.2: LAPB and X.25 Configuration Variables:  
 
    
 
 ID of the Variable   

 
 Description  

 Configuration Command  
 

 
    
 
 LAPB T1   

 

 
Retransmission timer, or how long 
the router will wait for an 
acknowledgment before polling for a 
response  

 
lapb t1 (value in milliseconds)  



 
 LAPB N1   

 
 Maximum bits per frame  

 lapb n1 (no. of bits)  
 

 
 LAPB N2   

 

 
Number of retransmit attempts 
allowed before the link is declared 
down  

 lapb n2 (no. of tries)   

 
 LAPB k   

 

 
LAPB window size, the maximum 
number of frames that can be 
transmitted before an 
acknowledgment is required  

 
lapb k (number)   

 
 LAPB modulo   

 

 
Frame numbering scheme, the 
maximum window size is the 
modulo less 1  

 lapb modulo (8 or 128)   

 
 channels: incoming, 
two-way, outgoing  

 

 

 
The lowest and highest permissible 
incoming, outgoing, and two-way 
X.25 logical channel numbers  

 x25 lic, hic, ltc, htc, loc, hoc   

 
 x25 modulo   

 
 The packet sequence numbering 
scheme  

 x25 modulo (8 or 128)   

 
 window size input, 
output  

 

 
 The window size configured for X.25 
inbound and outbound packets  

 x25 win, wout   

 
 packet size input, 
output  

 

 
 The maximum X.25 packet size    

 
x25 ips, ops  

 

 
 x25 timers  
 
   
 
 and clear timers   

 
 T10–13 for a DCE and T20–23 for 
DTE, set the restart, call, reset,  

 

x25 t10 t11, t12, t13, t20, t21, 
t22, t23 

  

 

 
    
 

 

If you can verify cabling, hardware, and leased-line operation; have appropriate addresses and 
X.25 DTE/DCE configuration; and can verify that all of the variables listed in Table 8.1 are 
compatible between the two communication devices, there should be no reason to stop 
communication. If problems still exist, the last resort is to connect a serial line analyzer and see if 
one end is sending the SABM initialization sequence and the other is responding with UA frames. 
If all the troubleshooting activities listed here check out okay (i.e., that everything is functioning as 
it should), you should contact the X.25 network vendor and ask for assistance in resolving any 
other issues.  

 



 
The outputs of the debuglapb and debug x25 commands provide extensive and in-depth 
analysis of the communication between X.25-connected devices. If you are going to spend 
considerable amounts of time with LAPB and X.25 communication problems, it is worth referring to 
the Cisco documentation or talking to a Cisco Systems engineer.  

 



Summary  
 

 

In this chapter, we presented a troubleshooting blueprint that recommends that you start 
troubleshooting from the Physical layer, then move up the OSI layers through the Data Link and 
Network layers to the network application. The basic troubleshooting scenario presented in Chap. 3
was reviewed, followed by troubleshooting for serial interfaces, asynchronous communications, 
Ethernet, Token-Ring, frame relay, and X.25 protocols.  
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