| Family Name | | |----------------|--| | Given Name | | | Student Number | | | Centre | | | Signature | | Possible Marks 15 20 45 20 100 Section В C D Total Achieved Marks ### 23 June 2010 ### 6077AC Electrical Systems Safety - Capstone Assessment Time allowed – Three hours plus Ten minutes reading time 29 Pages in this Question Booklet #### TOTAL MARKS AVAILABLE =100 ### Aids to be supplied by college: None. ### Aids to be supplied by student: - Australian/New Zealand Wiring Rules AS/NZS 3000:2007 incorporating amendment 1. - Australian/New Zealand Electrical Installations Selection of Cables AS/NZS 3008.1.1:1998 or 2009. - Service and Installation Rules of NSW incorporating amendment 2. - AS/NZS 3017:2007 Electrical Installation Testing Guidelines. - Student's own marginal notes, indexing and formal amendments may be included in the above regulation books. - Pen, pencil, eraser, rule, calculator. #### Instructions to student: - Mobile phones are to be turned off and removed from your person. You cannot access a mobile phone during this examination. - All questions are to be attempted. - All questions to be answered in the space provided in this **examination paper**. Answers to Section A (multiple choice questions) are to be answered on the sheet attached to this examination paper. - You are not to use any other reference books in this examination. - The whole of this paper is to be handed to the supervisor upon completion. ### Aids permitted where indicated: | Standard | Bilingual | Technical | Programmable | Non-programmable | Electronic | |--------------|--------------|--------------|--------------|------------------|------------| | Dictionaries | Dictionaries | Dictionaries | Calculators | Calculators | Devices | | No | No | No | No | Yes | No | - 2 - ### SECTION A – (15 Marks) Instructions: Select the best answer for the following statements and place an "X" in the appropriate box on the Answer Sheet attached to this examination paper. Each correct answer is worth ONE (1) mark. #### QUESTION 1. (1 Mark) It is required to earth the structural metalwork forming the frame of a dwelling in a domestic installation. How can this connection be made? - (a) 4 mm² bonding conductor provided that the resistance between the earth bar and any part required to be earthed does not exceed 0.5Ω - (b) 2.5 mm² protective earthing conductor provided that the resistance between the earth bar and any part required to be earthed does not exceed 0.5 Ω - (c) appropriately sized protective earthing conductor at one point of the metalwork provided that the resistance between the earth bar and any part required to be earthed does not exceed $0.5~\Omega$ - (d) appropriately sized bonding conductor at one point of the metalwork provided that the resistance between the earth bar and any part required to be earthed does not exceed $0.5~\Omega$ ### QUESTION 2. (1 Mark) What is the minimum allowable load current rating of a separate RCD installed in a domestic installation? The RCD is protecting two (2) final sub circuits each with a 10A CB. The total maximum demand of the two circuits is 9A. - (a) 20A - (b) 10A - (c) 9A - (d) Sum of individual circuit breakers #### QUESTION 3. (1 Mark) From AS/NZS 3000:2007, the maximum permissible voltage drop between the point of supply and the main switch on a 230V main switch board with several final sub-circuits attached is: - (a) 5% Uo - (b) 11.5 V - (c) 5% of the voltage measured at the MSB - (d) not prescribed 6077AC MY2010 ### QUESTION 4. (1 Mark) Under short circuit conditions, what is the maximum permissible sheath temperature for a 25 mm² PVC (V90) Cu single core cable? - (a) 160°C - (b) 90° C - (c) 75° C - (d) 250° C ### QUESTION 5. (1 Mark) What is the standard minimum depth of laying an enclosed service mains cable underground? - (a) 300 mm - (b) 500 mm - (c) 600 mm - (d) 1000 mm ### QUESTION 6. (1 Mark) The colour code that distinguishes a dry chemical powder fire extinguisher is: - (a) red with white stripe - (b) red with black stripe - (c) blue - (d) red #### QUESTION 7. (1 Mark) What is the maximum allowable earth leakage current for a 230V class I appliance with sheathed heating elements? - (a) 30 mA - (b) 0 mA - (c) 0.22 mA - (d) 23 mA ### QUESTION 8. (1 Mark) The sign shown in Figure 1 is an example of a: Figure 1 - (a) prohibition sign - (b) mandatory sign - (c) restriction sign - (d) warning sign ### QUESTION 9. (1 Mark) Automatic disconnection of the supply is required to limit the harmful effects of intenal switchboard arcing. Protection should initiate at a current less than: - (a) 20% of three phase prospective fault level - (b) 20% of single phase prospective fault level - (c) 60% of single phase prospective fault level - (d) 30% of three phase prospective fault level #### QUESTION 10. (1 Mark) What is the maximum allowable resistance of an equipotential bonding conductor? - (a) not specified - (b) 2Ω - (c) 1Ω - (d) 0.5Ω ### QUESTION 11. (1 Mark) With which standard must equipment installed in a hazardous area comply? - (a) AS/NZS 2381.1 - (b) AS2209 - (c) AS3017 - (d) all of the above #### QUESTION 12. (1 Mark) After conducting a risk assessment, what is the first course of action taken to reduce risk? - (a) elimination - (b) PPE - (c) substitution - (d) administration #### QUESTION 13. (1 Mark) A Certificate of compliance of electrical work must be finalised when an electrical installation is tested. The section pertaining to testing should be completed by: - (a) the consumer - (b) the holder of the electrical contracting licence - (c) the qualified supervisor (electrical) who completed the test - (d) a registered installation inspector #### QUESTION 14. (1 Mark) The maximum disconnection time specified for protection against indirect contact for a final sub circuit protecting a lighting circuit is: - (a) unspecified - (b) 0.1 s - (c) 0.4 s - (d) 5 s ### QUESTION 15. (1 Mark) Every conductor shall have a current-carrying capacity that must be: - (a) less than the current for which the circuit is designed (IB) - (b) not less than the circuit breaker nominal rating (IN) - (c) not greater than the current to be carried by the conductor - (d) based on an ambient air temperature of 40°C (END OF SECTION A) ### SECTION B – (20 Marks) Instructions: Blank spaces in the following statements represent omissions. Write the appropriate word, words or information in the spaces provided. Each question is worth TWO (2) marks. ONE (1) mark is deducted for each incorrect or missing reference. TWO (2) marks are deducted for each incorrect answer. - Use AS/NZS 3000:2007 to best answer each question. - Include AS/NZS 3000 references where required. | QUESTION 1. | (2 Marks) | |-------------|-----------| |-------------|-----------| | What distance is lamp? | required between a combustible structural memb | er and a recessed halogen | |---|--|---------------------------| | | | | | | (AS/NZS 3000 Refe | rence:) | | QUESTION 2. | (2 Marks) | | | with the ground a | provide an equipotential bond to a conductive wa
and accessible from within a building? | | | | ••••• | | | | (AS/NZS 3000 Refe | rence:) | | QUESTION 3. | (2 Marks) | | | | mum size and colour of the MEN connection in a otected consumer mains? | main switchboard that is | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | ••••••••••• | | •••••• | | | | | (AS/NZS 3000 Refe | rence· | ### QUESTION 4. (2 Marks) | What is the maxi wet conditions? | mum length of time a perso | on can withstand a touch potential of 65V under | |---|--|---| | | ····· | | | •••••••••••• | | (A CA)7C 2000 D - C | | QUESTION 5. | (2 Marks) | (AS/NZS 3000 Reference:) | | | o use bare copper cable as a | an earth electrode? | | | | | | ••••••••• | | | | | | (AS/NZS 3000 Reference:) | | QUESTION 6. | (2 Marks) | | | What are the spe
zone 2 of a sink h | cific requirements (includinaving a capacity less than 4 | ng IP rating) of a socket outlet installed within 5 litres? | | • | | ••••••••••••••••••••••••••••••••••••••• | | | | | | | | (AS/NZS 3000 Reference:) | | QUESTION 7. | (2 Marks) | | | What is the minir
supplying a 12kW | num rating of a circuit bready range? | aker used to protect a domestic final sub circuit | | | | | | ••••••• | •••••••••••••••••••••••••••••• | (AS/NZS 3000 Reference: | # QUESTION 8. (2 Marks) | Is the following item of electrical e control equipment? Air handling s and smoke. | quipment included in the classification of fire and smoke ystems intended to exhaust and control the spread of fire | |--|---| | | | | | | | | (AS/NZS 3000 Reference:) | | QUESTION 9. (2 Marks) | | | List FIVE (5) criteria that need to be | e addressed when designing an electrical installation: | | (i) | | | (ii) | | | (iii) | | | (iv) | | | (v) | | | | (AS/NZS 3000 Reference:) | | QUESTION 10. (2 Marks) | | | and lifts, shall be capable of maintain | re and smoke control equipment, evacuation equipment ining an adequate supply to such equipment when: | | | | | | (AS/NZS 3000 Reference:) | (END OF SECTION B) Marks ### SECTION C – (45 Marks) Instructions: This section involves calculations. Show all necessary working in the space provided. Marks will be awarded accordingly. Answers are to be highlighted or underlined. ### QUESTION 1. (4 Marks) Parts a to d relate to Figure 1. | L | (a) | Determine the phase impedance of the distribution transformer. | |---|-----
--| | | | | | | | | | | | ••••••••••••••••••••••••••••••••••••••• | | | | | | | | | ### Marks ### SECTION C - (Cont'd) ### QUESTION 1. (cont'd) | 1 | (b) | Determine the distributor's network system impendance, for a 3φ prospective fault current of 30kA at the point of supply. | |---|-----|---| | | | | | | | | | | | | | | | | | 1 | (c) | Assuming a bolted 3\$\phi\$ fault at the M.S.B. as indicated on the diagram, calculate the maximum prospective short circuit current. The Consumer mains consist of 1 x 50 mm² Cu X90 SDI per phase with a route length of 25m. The maximum fault level at the Point of supply is 30kA, as indicated on the diagram. (AS3008 has appropriate tables for conductor resistance – ignore reactance.) | 1 | (d) | From the list below choose a suitable interruption capacity for protective devices installed at the main switch board: | | | | 3kA | | | | 4.5kA | | | | 8kA | | | | 10kA | | | | 15kA | | | | | ### QUESTION 2. (4 Marks) Based on VOLTAGE DROP, determine the minimum size cable for the SINGLE PHASE final sub circuit shown above. ### QUESTION 3. (4 Marks) Cable installation method Based on CURRENT CARRYING CAPACITY, determine the minimum size cable for the SINGLE PHASE final sub circuit shown above. ### QUESTION 4. (4 Marks) | Bas
requ | С | iro | cui | t | sa | tis | fie | S | the | |-------------|---------|-------|---------|-----------|-----|---------|----|-------|---|----|---|-------|----|-----|---------|----------|-------|-----------|-------|-----|----------|----|----------|-------|-------|-------|---|-----|-----|----------|----|-----|-----|---|-----|
 | | |
• • • | • • |
••• | | | | ٠. | ٠ | ٠., | | ••• |
• • | <i>.</i> | • • |
 | | | <i>.</i> | ٠. | | •• | | • • • | | | | | | | | | | | |
 | • • • | • • • • |
 | |
••• | | • • • | | ٠. | | · • • | ٠. | |
 | | • • • |
••• | · • • | ٠. | | ٠. | | • • • | | | | | | | | • • | | | | | |
 | • • • | • • • • |
 | |
 | | | | ٠, | | · • • | ٠. | |
• • | | • • |
• • • | | ٠. | | | <i>.</i> | | | | | | | | | • • | | | | | |
••• | | • • • • |
 | |
 | | • • • | ٠ | | | | ٠. | •• |
 | | • • |
• • • | ••• | ٠. | | ٠. | | | · · · | | | | | | | | | | | | |
 | • • • | |
••• | |
 | •• | • • • | | | | | ٠. | • • |
 | | |
 | •• | ••• | | | | | | | | | | | | | | | | | |
 | | |
••• | |
 | | | | | | | ٠. | |
٠ | · • • | |
 | | | | | | | | . , . | | | | <i>.</i> | | | | | | ### QUESTION 5. (4 Marks) Determine the maximum demand for the following 230V SINGLE Domestic Installation: 36 x 50W down lights 18 x double 10A socket outlets 4 x single 10A socket outlets 1 x 8 kW 230V cooktop 1 x 3.6 kW 230V oven 1 x 15A socket outlet (general purpose) 1 x permanently connected 230V 8A split air conditioner 4 x permanently connected 115W ceiling fans 2 x 10A socket outlets installed > 2.4m for 65W exhaust fans 1 x 400 litre Solar hot water with a 20A quick recovery boost element | Load Group | Load / Qty | Calculation | Maximum
Demand | |------------|------------|-------------|-------------------| | Ai | | | | | Aii | | | | | Bi | | | | | Bii | | | | | Biii | | | | | С | | | | | D | | | | | E | | | | | F | | | | | G | | | | | | Max | imum Demand | | ### QUESTION 6. (7 Marks) Determine the maximum demand for the following 230/400V three-phase MULTIPLE domestic installation, consisting of twenty five (25) individual living units. Electrical equipment associated with each individual (1) unit: ``` 22 x 50W down lights A; 12 x double 10A socket outlets B; 3 x single 10A socket outlets B; 1 x 10A socket outlet for 230V air conditioner B; 2 x permanently connected 120W ceiling fans A; ``` In addition to the load above, six (6) of the units have the following electrical loads. ``` 1 x 11 kW 230V range 1 x 4.8 kW electric storage hot water system ``` The following communal load is also installed: ``` 1 x 400V 3ϕ 18A Atrium air conditioning system 30 x 230V 100W security lights (10 lights per phase) 1 x 400V 35A 3ϕ lift motor ▼ ``` 6077AC MY2010 ### QUESTION 6. (Cont'd) Use only the required load groups in the table below | Load
Group | Load / Qty | Calculation | Red | White | Blue | |---------------|------------|-------------|-----|-------|------| | Ai | | | | | | | Aii | | | | | | | Bi | | | | | | | Bii | | | | | 7 | | Biii | | | | | | | С | | | | | | | D | | | | | | | <u>E</u> | | | | | · | | F | | | | | | | G | | | | | | | Н | | | | | | | I | | | | | - | | Ji | | | | | | | Jii | | | | | | | Jiii | | | | | | | K | | | | | | | L | | | | | | | M | | | | | | | | Maximu | m Demand | | | | ### QUESTION 7. (3 Marks) | Determine the CURRENT CARRYING CAPACITY of the THREE phase 10 mm ² bare multi-core Cu MIMS cable, which is installed flat on a perforated cable tray touching another similar circuit. | |--| | | | | | | | QUESTION 8. (4 Marks) | | Type C C.B. 4 mm ² X90 Cu multicore cable three phase socket outlet | | A 400V three phase final sub circuit supplying a socket outlet is to be wired with 4 mm ² X90 four-core and earth cable. The circuit is protected by a 32A, type C circuit breaker. The voltage drop in the cables supplying the Sub Board is 3.1% of Uo. In order to comply with | AS/NZS 3000:2007 regarding voltage drop, what is the maximum allowable route length of the circuit? 6077AC MY2010 ### QUESTION 10. (6 Marks) Determine the maximum demand for the following 400V NON DOMESTIC RETAIL installation. Each retail shop has light, power and air conditioning loads. The office has light, power and variable volume air conditioning loads. QUESTION 10. (Cont'd) | Unit | Area | Calculation | A | В | С | | |---------|----------------|-------------|---|--|---|--| | 1 | | | | | | | | 2 | | | | | | | | 3 | | | | | | | | 4 | | | | | | | | 5 | | | | And other property of the state | | | | 6 | | | | | | | | 7 | | | | | | | | 8 | | | | | | | | 9 | | | | | | | | 10 | | | | | | | | Carpark | | | | | | | | | Maximum Demand | | | | | | ### (END OF SECTION C) QUESTION 10. (Cont'd) | Unit | Area | Calculation | А | В | С | | |---------|----------------|-------------|---|---|---|--| | 1 | | | | | | | | 2 | | | | | | | | 3 | | | | | | | | 4 | | | | | | | | 5 | | | | | | | | 6 | | | | | | | | 7 | | | | | | | | 8 | | | | | | | | 9 | | | | | | | | 10 | | | | | | | | Carpark | | | | | | | | | Maximum Demand | | | | | | # (END OF SECTION C) 6077AC MY2010 ### SECTION D - (20 Marks) **Instructions:** The questions in this section require some simple drawing. Ensure that the drawing is neat and legible. The use of pencil on the drawing is acceptable in this section only. ### QUESTION 1. (5 Marks) The following diagram shows a sub board in a domestic installation. The sub mains include an active, neutral and earth from the MSB. There are four (4) final sub circuits supplying socket outlets, wired with 2.5 mm², multi-core, V90, Cu cables. The installation condition of all final sub circuits is **fully surrounded by thermal insulation**. Complete all necessary active,
neutral and earth connections for these four final sub-circuits on the wiring diagram below, ensuring the completed wiring complies with the relevant Australian Standards. ### QUESTION 2. (2 Marks) A 16A circuit breaker with the tripping characteristic shown below is protecting a 230V circuit wired with 2.5 mm², multi-core, V90, Cu cable. The circuit is supplying socket outlets. The fault loop impedance was measured at the furthermost point on the circuit using a fault loop impedance instrument. The result was 1.7 Ω at ambient conditions (i.e., 40°C). Answer the following questions showing all working, and support your answer/s by marking the characteristic curve Figure 2 below. Figure 2 ### QUESTION 2. (Cont'd) | a) | Calculate the fault current for an active to earth fault at the furthermost point. | |----|---| | | | | | | | | | | | | | | | | b) | Determine the circuit breaker disconnection time considering the fault condition indicated above. | | | | | | | | | | | | | | c) | Does the circuit meet AS/NZS 3000:2007 requirements for fault loop impedance? | | | YES/NO | | | Why? | | | | | | | | | | | | | | d) | Determine the maximum allowable resistance of the protective earth conductor. | | | | | | | | | | | | | ### QUESTION 3. (4 Marks) The following diagram shows how the switchboard has been prepared, ready for testing the insulation resistance between active and earth of a single-phase power circuit. The circuit is protected by a 32A separate RCD and a 16A MCB. Identify the correct setting for the insulation resistance tester by placing an "X" in the appropriate box and answer the four following questions. The board is electrically isolated. Circle the correct answer The MEN link (2) should be: - a) Connected to position 1 as shown - b) Disconnected The main neutral should be: - a) Disconnected as shown - b) Connected to Position 1 A reading of ∞ M Ω would indicate: - a) Satisfactory result - b) Unsatisfactory result The leads of the testing device are: - a) Correctly connected - b) Incorrectly connected #### **QUESTION 4.** (3 Marks) Answer the question and complete the following table using the diagram below. A correct circuit connection test is being performed. Identify the correct setting for the test equipment by placing an "X" in the appropriate box. The board is electrically isolated. Assuming the socket outlet is correctly connected, complete the table: | Test Equipment Connection | Reading | |--------------------------------|---------| | Active to Earth | | | with socket outlet switched on | | | Active to Earth | | | with socket outlet switch off | | | Neutral to Earth | | | with socket outlet switch off | | | Neutral to Earth | | | with socket outlet switch on | | Identify any fault indicated by a reading of approximately 15 Ω between the neutral and earth socket measured at the socket outlet: © TAFE NSW ### QUESTION 5. (3 Marks) Provide a brief written explanation highlighting why each fault is potentially dangerous. | Fault | Answer | |---|--------| | Insulation
resistance too
low | | | Socket outlet
reversed
active neutral
polarity | | | Intermix of
two lighting
circuit neutrals | | (END OF SECTION D) 6077AC MY2010 ### **Equation Data Sheet** $$\cos\phi = \frac{P}{S} \qquad \cos\phi = \frac{R}{Z} \qquad S = \sqrt{P^2 + Q^2}$$ $$S = VI \qquad P = VI \cos\phi \qquad Q = VI \sin\phi$$ $$f_o = \frac{1}{2\pi\sqrt{LC}} \qquad V_L = \sqrt{3}V_P \qquad I_L = \sqrt{3}I_P$$ $$S = \sqrt{3}V_LI_L \qquad P = \sqrt{3}V_LI_L \cos\phi \qquad Q = \sqrt{3}V_LI_L \sin\phi$$ $$\tan\phi = \sqrt{3}\left(\frac{W_2 - W_1}{W_2 + W_1}\right) \qquad Q = mC\Delta t$$ $$V' = 4.44\Phi fN \qquad \frac{V_1}{V_2} = \frac{N_1}{N_2} \qquad \frac{I_2}{I_1} = \frac{N_1}{N_2}$$ $$N_{syn} = \frac{120f}{P} \qquad s\% = \frac{(n_{yn} - n)}{n_{ym}} \times \frac{100}{1} \qquad f_r = \frac{s\% \times f}{100}$$ $$V_{reg}\% = \frac{(V_{Nq} - V_{FL})}{V_{FL}} \times \frac{100}{1} \qquad V_{reg}\% = \frac{(V_{Np} - V_{FL})}{V_{NL}} \times \frac{100}{1} \qquad I_{ST} = \frac{\psi_{ST}}{V} \times I_{DOL}$$ $$I_{ST} = \frac{1}{3} \times I_{DOL} \qquad I_{solor_H} = \frac{\% TAP}{100} \times I_{DOL} \qquad I_{line_{SH}} = \left(\frac{\% TAP}{100}\right)^2 \times I_{DOL}$$ $$E = \frac{\Phi}{A} \qquad E = \frac{I}{d^2} \qquad \eta_r = \frac{\Phi_r}{P}$$ $$V_L = 0.45V_{ac} \qquad V_L = 0.9V_{ac} \qquad V_L = 1.17V_{plane}$$ $$V_L = 1.35V_{line} \qquad PRV = \sqrt{2}V_{ac} \qquad PRV = 2\sqrt{2}V_{ac}$$ $$PRV = 2.45V_{ac} \qquad V_{ripple} = \sqrt{2}V_{ac} \qquad V_{ripple} = 0.707V_{plane}$$ ### Equation - Data Sheet $$Q = It$$ $$v = \frac{s}{t}$$ $$a = \frac{\Delta v}{t}$$ $$F = ma$$ $$W = F_S$$ $$W = mgh$$ $$W = Pt$$ $$\eta\% = \frac{output}{input} \times \frac{100}{1}$$ $$I = \frac{V}{R}$$ $$P = VI$$ $$P = I^2 R$$ $$P = \frac{V^2}{P}$$ $$R_2 = \frac{R_1 A_1 l_2}{A_2 l_1}$$ $$R_h = R_c (1 + \alpha \Delta t)$$ $$R = \frac{\rho l}{4}$$ $$R_{\gamma} = R_1 + R_2 + R_3$$ $$V_T = V_1 + V_2 + V_3$$ $$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$ $$I_T = I_1 + I_2 + I_3$$ $$V_2 = V_T \frac{R_2}{R_1 + R_2}$$ $$I_2 = I_T \frac{R_1}{R_1 + R_2}$$ $$R_x = \frac{R_A R}{R_B}$$ $$C = \frac{Q}{V}$$ $$\tau = RC$$ $$\frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$$ $$C_7 = C_1 + C_2 + C_3$$ $$C = \frac{A\varepsilon_o \varepsilon_r}{d}$$ $$F_m = IN$$ $$H = \frac{F_m}{l}$$ $$B = \frac{\Phi}{A}$$ $$\Phi = \frac{F_m}{S}$$ $$S = \frac{l}{\mu_o \mu_r A}$$ $$V = N \frac{\Delta \Phi}{\Delta t}$$ $$e = Blv$$ $$L = \frac{\mu_o \mu_r A N^2}{l}$$ $$L = N \frac{\Delta \Phi}{\Delta I}$$ $$V = L \frac{\Delta I}{\Delta t}$$ $$\tau = \frac{L}{R}$$ $$F = Bil$$ $$T = Fr$$ $$E_g = \frac{\Phi Z n P}{60 a}$$ $$P = \frac{2\pi nT}{60}$$ $$t = \frac{1}{f}$$ $$f = \frac{np}{120}$$ $$V = 0.707 V_{\text{max}}$$ $$I = 0.707 I_{\text{max}}$$ $$V_{ave} = 0.637 V_{\rm max}$$ $$I_{ave} = 0.637 I_{\rm max}$$ $$v = V_{\text{max}} \sin \phi$$ $$i = I_{\text{max}} \sin \phi$$ $$I = \frac{V}{7}$$ $$Z = \sqrt{R^2 + \left(X_L - X_C\right)^2}$$ $$X_L = 2\pi f L$$ $$X_C = \frac{1}{2\pi fC}$$ | Name: | | | |-------|--|--| | | | | | • | | | | | | | # ANSWER SHEET - Section A (Multi-choice Questions) Module - 6077AC Examination Date: 23 June 2010 #### Instructions: - Enter your name and college on this sheet. - Place an X in box of your choice. If you make a mistake- circle your answer again. - For your convenience you can remove this page while you answer Section A. Remember to re-attach it to the paper when you hand it in. | Question | a | b | c | d | |-------------------|--------|---|---|---| | 1 | | | | | | 2 | | | | | | 3 | | | | | | 4 | | | | | | 5 | | | | | | 6 | | | | | | 7 | | | | | | 8 | | | | | | 9 | | | | | | 10 | | | | | | 11 | | | | | | 12 | | | | | | 13 | | | | | | 14 | | | | | | 15 | | | | | | Totals | | | | | | Total Correct Sec | tion A | | | | Total Marks Section A:/15 ### **END OF EXAMINATION** College:.... # MARKING GUIDE Module/Unit No: 6077AC Module/Unit Name: Electrical Systems Safety-Capstone Assessment **Exam Date:** 23/6/10 Number of Pages: 29 (including this page) | Family Name | |-------------| | Other name | | Centre | | Signature | Possible mark 15 20 45 20 100 Actual mark ### 23rd June 2010 # 6077AC (Electrical System Safety) Time allowed –Three hours plus Ten minutes reading time 28 Pages in this Question Booklet All Questions to be attempted #### **TOTAL MARKS AVAILABLE = 100** # Marking Guide Section A В \mathbf{C} D Total ### Aids to be supplied by college None ### Aids to be supplied by student - Australian/New Zealand Wiring rules AS/NZS 3000:2007 incorporating amendment 1 - Australian/New Zealand Electrical Installations Selection of Cables AS/NZS 3008.1.1:1998 or 2009 - Service and Installation Rules of NSW incorporating Amendment 2 - AS/NZS 3017:2007 Electrical Installation Testing Guidelines - Students own marginal notes, indexing and formal amendments may be included in the above regulation books. - Pen, pencil, eraser, rule, calculator #### Instructions to Student - Mobile phones are to be turned off and removed from your person. You cannot access a mobile phone during this test. - All questions to be answered in the space provided on this **examination paper**. Answers to Section A multi-choice questions, are to be answered on the sheet attached to this examination paper. - You are not to use any other reference book in this examination. - The whole of this paper is to be handed to the Supervisor upon completion. Aids permitted where indicated: | Standard | Bilingual | Technical | Programmable | Non-programmable | |--------------|--------------|--------------|--------------|------------------| | Dictionaries | Dictionaries | Dictionaries | Calculators | Calculators | | No | No | No | No | Yes | ### SECTION A – (15 Marks) INSTRUCTIONS: Select the best answer for the following statements and place an 'X' in the appropriate box on the Answer Sheet attached to this examination paper. Each correct answer is worth ONE (1) mark. QUESTION 1. (1 Mark) It is required to earth the structural metalwork forming the frame of a dwelling in a domestic installation. How can this connection be made? - (a) 4mm^2 bonding conductor provided that the resistance between the earth bar and any part required to be earthed does not exceed 0.5 Ω - (b) 2.5mm^2 protective earthing conductor provided that the resistance between the earth bar and any part required to be earthed does not exceed 0.5Ω - (c) appropriately sized protective earthing conductor at one point of the metalwork provided that the resistance between the earth bar and any part required to be earthed does not exceed $0.5~\Omega$ - (d) appropriately sized bonding conductor at one point of the metalwork provided that the resistance between the earth
bar and any part required to be earthed does not exceed 0.5Ω QUESTION 2. (1 Mark) What is the minimum allowable load current rating of a separate RCD installed in a domestic installation? The RCD is protecting two (2) final sub circuits each with a 10A CB. The total maximum demand of the two circuits is 9A. - (a) 20A - (b) 10A - (c) 9A - (d) sum of individual circuit breakers QUESTION 3. (1 Mark) From AS/NZS 3000:2007, the maximum permissible voltage drop between the point of supply and the main switch on a 230V main switch board with several final subcircuits attached is: - (a) 5% Uo - (b) 11.5 V - (c) 5% of the voltage measured at the MSB - (d) not prescribed ### QUESTION 4. (1 Mark) Under short circuit conditions, what is the maximum permissible sheath temperature for a 25mm² PVC (V90) Cu single core cable? - (a) 160° C - (b) 90° C - (c) 75° C - (d) 250° C ### QUESTION 5. (1 Mark) What is the standard minimum depth of laying an enclosed service mains cable underground? - (a) 300 mm - (b) 500 mm - (c) 600 mm - (d) 1000 mm #### QUESTION 6. (1 Mark) The colour code that distinguishes a dry chemical powder fire extinguisher is - (a) red with white stripe - (b) red with black stripe - (c) blue - (d) red ### QUESTION 7. (1 Mark) What is the maximum allowable earth leakage current for a 230V class I appliance with sheathed heating elements? - (a) 30 mA - (b) 0 mA - (c) 0.22 mA - (d) 23 mA #### **QUESTION 8.** (1 Mark) The sign shown in Figure 1 is an example of a: - (a) prohibition sign - (b) mandatory sign - (c) restriction sign - (d) warning sign Figure 1 #### **QUESTION 9.** (1 Mark) Automatic disconnection of the supply is required to limit the harmful effects of internal switchboard arcing. Protection should initiate at a current less than: - (a) 20% of three phase prospective fault level - (b) 20% of single phase prospective fault level - (c) 60% of single phase prospective fault level - (d) 30% of three phase prospective fault level #### **QUESTION 10.** (1 Mark) What is the maximum allowable resistance of an equipotential bonding conductor? - (a) not specified - (b) 2Ω - (c) 1Ω - (d) 0.5Ω #### **QUESTION 11.** (1 Mark) With which standard must equipment installed in a hazardous area comply? - (a) AS/NZS 2381.1 - (b) AS2209 - (c) AS3017 - (d) all of the above ### QUESTION 12. (1 Mark) After conducting a risk assessment what is the first choice of action taken to reduce risk is: - (a) elimination - (b) PPE - (c) substitution - (d) administration ### QUESTION 13. (1 Mark) A Certificate of compliance of electrical work must be finalised when an electrical installation is tested. The section pertaining to testing should be completed by: - (a) the consumer - (b) the holder of the electrical contracting licence - (c) the qualified supervisor (electrical) who completed the test - (d) a registered installation inspector ### QUESTION 14. (1 Mark) The maximum disconnection time specified for protection against indirect contact for a final sub circuit protecting a lighting circuit is - (a) unspecified - (b) 0.1 s - (c) 0.4 s - (d) 5s ### QUESTION 15. (1 Mark) ### Every conductor shall have a current-carrying capacity that must be - (a) less than the current for which the circuit is designed (IB) - (b) not less than the circuit breaker nominal rating (IN) - (c) not greater than the current to be carried by the conductor - (d) based on an ambient air temperature of 40°C ### (End of Section A) ### SECTION B – (20 Marks) INSTRUCTIONS: Blank spaces in the following statements represent omissions. Write the appropriate word, words or information in the numbered spaces provided. Each question is worth TWO (2) marks. 1 mark is deducted for each incorrect or missing reference. 2 marks are deducted for each incorrect answer - Use AS/NZS 3000:2007 to best answer each question. - Include AS/NZS 3000 references where required. #### 5.5.3.5 Unprotected consumers mains Exposed conductive parts associated with consumers mains not provided with short-circuit protection on the supply side shall be earthed by a conductor with a current-carrying capacity not less than that of the main neutral conductor This conductor shall be connected to- - (a) the main neutral conductor or bar; or - the main earthing terminal/connection or bar, in which case, accordance with Clause 5.3.5.2, the cross-sectional area of the MEN connection shall be not less than that of the main neutral conductor The MEN connection shall be a conductor complying with Clause 5.3.2 and have a cross-sectional area capable of carrying the maximum current that it may be required to carry under short-circuit conditions. The minimum size shall be not less than, but need not exceed, the current-carrying capacity of the main neutral conductor. Exception: The minimum size of the MEN connection need not exceed that of the main earthing conductor where— - (a) short-circuit protection is provided on the supply side of the consumers - mains; or (b) the earthing of an enclosure containing consumers mains not provided with short-circuit protection on the supply side is made by connection directly to the neutral bar or link in accordance with Clause 5, 5, 3, 5; or - double insulation of the consumers mains conductors is maintained up to the supply terminal/s of the service protective device/s, and short-circuit protection is provided by such device/s. NOTE: An electricity distributor's upstream service protective device may provide short-circuit protection of consumers mains. #### 5.3.5.3 Identification Where the MEN connection is insulated, the insulation shall be coloured green or in a combination of green and yellow, in accordance with Clause 3.8. #### **QUESTION 4.** What is the maximum length of ti 65V under wet conditions? 456 350 ms AS/NZS 3000 Reference (## **QUESTION 5.** Is it permissible to use bare copper YES AS/NZS 3000 Reference (T5.2 **QUESTION 6.** | | | BLE 5.2
EARTH ELECTRODES | | |-------------------|-----------------------|---|--| | Material | Surface treatment | Minimum
dimensions | Minimum surf
treatment
thickness | | | Verti | cal electrodes | | | | Copper clad | Ø12 mm circular rod | 250 µm | | | Copper plated | Ø12 mm circular rod | 250 µm | | Material
Sieel | Stainless (clad) | Ø12 mm circular rod | 500 µm | | Steel | Hot dipped galvanised | Ø16 mm circular rod | 63 µm | | | Hot dipped galvanised | Section with minimum
cross-sectional area of | 63 µm | | | | cross-sectional area of
200 mm ² and with no part
less than 3 mm thick | | | | | |---|-----------------------|---|------|--|--|--| | Non-ferrous
(excluding
aluminium) | Solid | 12 mm | N/A | | | | | | Horizonta | al (strip) electrodes | | | | | | Copper rod | Solid | Ø7 mm circular | N/A | | | | | Copper strip | Solid | 25 mm x 1.6 mm | N/A | | | | | Copper pipe | | Ø15 mm circular x
2.45 mm wall thickness | N/A | | | | | Copper
coble | Bare | 35 mm² | N/A | | | | | Steel pipe | Hot dipped galvanised | Ø20 mm | 63µm | | | | | Steet strip | Hot dipped galvanised | 40 mm x 3 mm | 63µm | | | | P220 What are the specific requirements (ind within zone 2 of a sink having a capacit AS IPX NOT REQUIRED AS/NZS 3000 Reference (6.2.4.26 #### **QUESTION 7.** What is the minimum rating of a circui sub circuit supplying a 12kW range. 32 A MIN | TABLE | 6.1 | P249 | |--|---------|-------------| | GUIDANCE ON THE SELECTIC
ELECTRICAL EQUIPMENT
AND OTHER FIXED WA | FOR BAT | HS, SHOWERS | Zone 2 (a) a shaver outlet; or (b) RCD-protected and in a cupboard (r specific IP rating). (a) < 0.3 m not permitted (b) ≥ 0.3 m no IP rating* but shall have— Clause 6.2.4.2 Socket-outlets (i) RCD protection; (ii) separated supply; or (iii) SELV or PELV supply Clause 6.2.4.3 Switches/ accessories Not permitted Clause 6.2.4. Luminaires IPX4*; or Class II chass II construction (double or reinforced insulation); or SELV or PELV or recessed into ceiling IPX4*; or recessed into ceiling IPX7 and specifically for use and SELV or PELV supply Clause 6.2.4.5 Other Ne IP rating Not permitted Not permitted Not permitted Not permitted *Degree of protection IPX5 required in communal baths/showers 373 TABLE C4 MAXIMUM DEMAND-DOMESTIC COOKING APPLIANCES AS/NZS 3000 Ref Appliance full-load energy rating per phase Assessed maximum demand Not greater than 5000 W 16 A Greater than 5000 W but not greater than 8000 W A CS Greater than 8000 W but not greater than 10000 W 25 A Greater than 10000 W but not greater than 13000 W 32 A 12kw nstalled final ## **QUESTION 8.** | Is the following item of | electrica 7.2.1.2 Fire- and smoke-control equipment P 284 and | |--|---| | smoke control equipments spread of fire and smok | shall be deemed to include the following items and electrical equipment that | | spread of the data smooth | (a) Fire hydrant booster pumps. | | YES \ | (b) Pumps for automatic sprinkler systems, water spray or deluge systems
and similar fire-extinguishing systems. | | | (c) Pumps for fire-hose reels, where such hose reels form the sole means of fire protection, i.e. where fire hydrants and automatic fire-sprinkler systems are not installed. | | | (d) Fire detection and alarm systems. | | A C D 17 C 2000 D C | (e) Air-handling systems intended to exhaust and control the spread of fire and smoke. | | AS/NZS 3000 Reference | | | QUESTION 9. | | | - | | | List five criteria that nee | ed to be addressed when designing an electrical installation. |
| 1 | .6 DESIGN OF AN ELECTRICAL INSTALLATION PSO,51 | | 1 | .6.1 General | | · · · · · · · · · · · · · · · · · · · | an electrical installation shall be designed to— | | (| a) protect persons, livestock and property from harmful effects; | | . (| b) function correctly as intended; | | . (| connect, operate safely and be compatible with the electrici
distribution system, or other source of supply, to which the
electrical installation is to be connected; | | (| d) minimize inconvenience in the event of a fault; and | | (| e) facilitate safe operation, inspection, testing and maintenance. | | AS/NZS 3000 Reference | (1.6.1 | | QUESTION 10. | | | | ed with fire and smoke control equipment, evacuation l be capable of maintaining an adequate supply to such | | 7.2.7 Wiring sy
7.2.7.1 Genera | | | | associated with safety services shall be capable of | | maintaining an a | dequate supply to such equipment when exposed to fire. | | | | | AS/NZS 3000 Reference | (7.2.7.1)OR 7.2.1.1 | (End of Section B) Subject No: 6077AC ## SECTION C – (45 Marks) INSTRUCTIONS: This section involves calculations. Show all necessary working in the space provided, marks will be awarded accordingly. Answers are to be highlighted or underlined. ### QUESTION 1. (4 Marks) Figure 1 Parts a to d relate to figure 1 a) Determine the phase impedance of the distribution transformer. c) Assuming a bolted 3\$\phi\$ fault at the M.S.B. as indicated on the diagram, calculate the maximum prospective short circuit current. The Consumer mains consist of 1 x 50 mm² Cu X90 SDI per phase with a route length of 25m. The maximum fault level at the Point of supply is 30kA, as indicated on the diagram. (AS3008 has appropriate tables for conductor resistance – ignore reactance. Assume conductor initial temperature is 45 deg) d) From the list below choose a suitable interrupting capacity for protective devices installed at the main switch board For course Fuse 3kA 4.5kA 8kA 10kA 15kA Con Correct answer 1 Mark ### QUESTION 2. (4 Marks) Based on VOLTAGE DROP, determine the minimum size cable for the SINGLE PHASE final sub circuit shown above. #### **QUESTION 4.** (4 Marks) Based on FAULT LOOP IMPEDANCE determine if the final sub circuit satisfies the requirements of AS/NZS 3000:2007 – show all references and working # QUESTION 5. (4 Marks) Determine the maximum demand for the following 230V SINGLE Domestic Installation 36 x 50W down lights Ar 18 x double 10A socket outlets A1 4 x single 10A socket outlets Bi 1 x 8 kW 230V cooktop C 1 x 3.6 kW 230V oven C 1 x 15A socket outlet (general purpose) B it 1 x permanently connected 230V 8A split air conditioner 4 x permanently connected 115W ceiling fans 2 x 10A socket outlets installed > 2.4m for 65W exhaust fans Ai 1 x 400 litre Solar hot water with a 20A quick recovery boost element Subject No: 6077AC Deduct 1 mark each incorrect line | Load Group | Load / Qty | Calculation | Maximum
Demand | |------------|---|---|-------------------| | Ai | 36 lights
4 c fans
2 ex fans | 42 points
3A (first 20) + 2A (next 20 or part thereof)
+ 2A (next 20 or part thereof) | 7A | | Aii | | | | | Bi | 18 Dbl 10A
18 x 2=36
4 Single 10A
1 x 8A AC* | 41 points
10A (first 20)
5A (next 20 or part thereof)
5A (next 20 or part thereof) ★ | 20A | | Bii | 1 x 15A socket outlet | 1 point
10A | 10A | | Biii | | | | | С | 8kW CT
3.6kW Oven | 11.6 kW total (50% connected load) $I = 11600 \times 0.5$ 230 =25.2A | 25.2A | | D | | 75×8 =6A | GA | | Е | | | | | F / | 20A Quick
recovery
element | 20A (FLC) 200230 = 4600
I=20A = 11.51 | 20A | | G | | | | | | Max | ximum Demand | 83.1A | CANUSE Subject No: 6077AC Electrical System Safety ©TAFENSW / 8/·/A ## QUESTION 6. (7 Marks) Determine the maximum demand for the following 230/400V three-phase MULTIPLE domestic installation, consisting of twenty five (25) individual living units. Electrical equipment associated with each individual (1) unit: - 22 x 50W down lights - 12 x double 10A socket outlets - 3 x single 10A socket outlets - 1 x 10A socket outlet for 230V air conditioner - 2 x permanently connected 120W ceiling fans In addition to the load above, six (6) of the units have the following electrical loads. - 1 x 11 kW 230V range - 1 x 4.8 kW electric storage hot water system The following communal load is also installed: - 1 x 400V 3φ 18A Atrium air conditioning system - 30 x 230V 100W security lights (10 lights per phase) - 1 x 400V 35A 3φ lift motor 7 MARKS SECTION C - (Cont'd) Use only the required load groups in the table below TCI COL 4 Deduct 1 mark each incorrect line SHOULD RE | | | | | . , , | | |-------|------------|---|--------------------|----------|-----------| | Load | Load / | TCI COL9 Calculation | Red | White | Blue | | Group | Qty | | (9) _{UMT} | (8) unit | | | Ai | lighting | Column 4 9 l/u per ϕ (heaviest)
$5A + 0.25A \times 9 = 7.25A$ heaviest ϕ | 7.25 | 7 | 5+2
7 | | 7 11 | | $3A + 0.23A \times 9 = 7.23A$ Heaviest φ | 7.23 | , | , | | Aii | | | | | | | | 10A skt | Column 4 9 l/u per ϕ_{48} .8A | | | | | Bi | outlets | $15A + 3.75A \times 9 = 52.5A$ heaviest ϕ | 48.8 | 45 | 45 | | Bii | | | | | | | DII | | | | | | | Biii | | - | | | | | | 11kW | Column 3 2 l/u per φ | | | | | C | Cooking | 15A per φ | 15 | 15 | 15 | | D | | Inc in Bi - footnote i | | | | | | | me m Br Toomote r | | | | | Е | | | - | | | | | 4.8 kW | Column 3 2 l/u per \(\phi \) | | / | | | F | O.P.H.W. | $6A \text{ per } 1/u = 6A \times 2 = 12A \text{ per } \phi$ | 12 | 12 | 12 | | G | | | | | | | | 30 bollard | 10 bollard per φ | | | | | Н | | $(10x100)/230 = 4.35A \text{ per } \phi$ | 4.35 | 4.35 | 4.35 | | I | 8 | | | | | | Ji | | | | | 11 | | J1 | 3φ 18A | $75\% \text{ x FLC} = 0.75 \text{ x } 18 = 13.5 \text{A} / \phi$ | 13.5 | 13.5 | 13.5 | | Jii | AC | 7570 KILE 0.75 K 10 15.5117 ¢ | 20.0 | 25.0 | 10,0 | | Jiii | | | | 15 | | | 2111 | 35A 3¢ | 125% x FLC = 1.25 x 35 = 43.8A / φ | 43.8 | 43.8 | 43.8 | | K | Lift | 1.20 1.20 1.30217 \$ | | 29 | | | L | | | | | | | M | | | | | | | | | | | | 22 360000 | | | N | Maximum Demand | 144.7 | 140.7 | 140,7 | | | | | | | | ### QUESTION 7. (3 Marks) Determine the CURRENT CARRYING CAPACITY of the THREE phase 10 mm² bare multi-core Cu MIMS cable, which is installed flat on a perforated cable tray touching another A 400V three phase final sub circuit supplying a socket outlet is to be wired with 4mm² X90 four-core and earth cable. The circuit is protected by a 32A, type C circuit breaker. The voltage drop in the cables supplying the Sub Board is 3.1% of Uo. In order to comply with AS/NZS 3000:2007 regarding volt drop, what is the maximum allowable route length of the circuit? ### **QUESTION 9.** (5 Marks) A 400V THREE phase consumer main is to be enclosed in three separate HD PVC conduits that will be installed touching underground at a depth of 600mm as shown above. The ambient soil temperature is 25 °C. The circuit will be wired with 3 x single core X90 Cu cables in parallel per phase. A three pole 1250A circuit breaker will protect the circuit. b) Determine the minimum required CURRENT CARRYING CAPACITY for each parallel group of cables ``` = \frac{1250}{0.83 \times 0.98} = 1537A 1 Mark ``` c) Determine the minimum cable size. (divide the current equally between the parallel group) ### QUESTION 10. (6 Marks) Determine the maximum demand for the following 230/400V NON DOMESTIC RETAIL installation. Each retail shop has light, power and air conditioning loads. The office has light, power and variable volume air conditioning loads. # SECTION C - (Cont'd) P37/ # TABLE C3 Deduct 1 mark each incorrect line | | | | | L | | |---------|---------------------|---|------|------|------| | Unit | Area | Calculation | A | В | С | | 1 | 200 m ² | $ \begin{array}{c} 100 \text{ VA/m}^2 = 20 \text{kVA} \\ 20000/230 = 87 \text{A (A)} \end{array} $ | 87 | | | | 2 | 400 m ² | $400 \text{ VA/m}^2 = 40 \text{kVA}$
40000/(1.732 x 400) = 57.7 A (A B C) | 57.7 | 57.7 | 57.7 | | 3 | 200 m ² | $100 \text{ VA/m}^2 = 20 \text{kVA}$ $20000/230 = 87 \text{A (B)}$ | | 87 | | | 4 | 100 m ² | $100 \text{ VA/m}^2 = 10 \text{kVA}$ $20000/230 = 43.5 \text{A (B)}$ | | 43.5 | | | 5 | 100 m ² | $100 \text{ VA/m}^2 = 10 \text{kVA}$
10000/(1.732 x 400) = 14.4 A (A B C) | 14.4 | 14.4 | 14.4 | | 6 | 100 m ² | $70 \text{ VA/m}^2 = 7k\text{VA}$
7000/230 = 87A (C)
30.4 A Cc | | | 30.4 | | 7 | 100 m ² | $\frac{30.4A \text{ Cc}}{100 \text{ VA/m}^2 = 10 \text{kVA}}$ $\frac{10000}{(1.732 \text{ x} 400)} = 14.4 \text{A (A B C)}$ | 14.4 | 14.4 | 14.4 | | 8 | 100 m ² | $100 \text{ VA/m}^2 = 10 \text{kVA}$ $10000/230 = 43.5 \text{A (C)}$ | , . | | 43.5 | | 9 | 100 m ² | $100 \text{ VA/m}^2 = 10 \text{kVA}$ $20000/230 = 43.5 \text{A} \text{ (A)}$ | | | 43.5 | | 10 | 100 m ² | $100 \text{ VA/m}^2 = 10 \text{kVA}$
10000/(1.732 x 400) = 14.4 A (A B C) | 14.4 | 14.4 | 14.4 | | Carpark | 1000 m ² | $5 \text{ VA/m}^2 = 5 \text{kVA} $ $5000/230 = 87 \text{A}$ | 21.7 | | | | | Ν | 210 | 231 | 218 | | # (End of Section C) ### SECTION D – (20 Marks) INSTRUCTION: The questions in this section require some simple drawing. Ensure that the drawing is neat and legible. The use of pencil on the drawing is acceptable in this section only. ### **QUESTION 1. (5 Marks)** The following diagram shows a sub board in a domestic installation. The sub mains include an active, neutral and earth from the MSB. There are four (4) final sub circuits supplying socket outlets, wired with 2.5 mm², multi-core, V90, Cu cables. The installation condition of all final sub circuits is
fully surrounded by thermal insulation. Complete all necessary active, neutral and earth connections for these four final subcircuits on the wiring diagram below, ensuring the completed wiring complies with the relevant Australian Standards. DEDUCT 1 MARK each incorrect connection. Deduct 5 MARKS for inclusion of a MEN connection NOTE: AS3000 table C5 allows 16A for 2.5 mm sq cable completely surrounded by thermal insulation. AS3008 is not as generous, therefore either 10A or 16A breakers may be used. #### QUESTION 2. (5 Marks) A 16A circuit breaker with the tripping characteristic shown below is protecting a 230V circuit wired with 2.5 mm 2 , multi-core, V90, Cu cable. The circuit is supplying socket outlets. The fault loop impedance was measured at the furthermost point on the circuit using a fault loop impedance instrument. The result was 1.7 Ω at ambient conditions (ie 40° C). Answer the following questions showing all working, and support your answer/s by marking the characteristic curve Figure 2 below. Figure 2 a) Calculate the fault current for an active to earth fault at the furthermost point. b) Determine the circuit breaker disconnection time considering the fault condition indicated above. c) Does the circuit meet AS/NZS 3000:2007 requirements for fault loop impedance? d) Determine the maximum allowable resistance of the protective earth conductor. **QUESTION 3.** (4 Marks) **DEDUCT 1 MARK each** incorrect answer The following diagram shows how the switchboard has been prepared, ready for testing the insulation resistance between active and earth of a single-phase power circuit. The circuit is protected by a 32A separate RCD and a 16A MCB. Identify the correct setting for the insulation resistance tester by placing an "X" in the appropriate box and answer the four following questions. The board is electrically isolated. Circle the correct answer The MEN link (2) should be: - a) Connected to position las shown - b) Disconnected A reading of ∞ M Ω would indicate: - a) Satisfactory result - b) Unsatisfactory result The main neutral should be: - a) Disconnected as shown - b) Connected to Position 1 The leads of the testing device are: - a) Correctly connected - b) Incorrectly connected **QUESTION 4.** (3 Marks) **DEDUCT 1 MARK** each incorrect answer Answer the question and complete the following table using the diagram below. A correct circuit connection test is being performed. Identify the correct setting for the test equipment by placing an "X" in the appropriate box. The board is electrically isolated. Assuming the socket outlet is correctly connected, complete the table | Test Equipment Connection | Reading | |--|-----------------| | Active to Earth with socket outlet switched on | 10 Ω | | Active to Earth with socket outlet switch off | $\infty \Omega$ | | Neutral to Earth with socket outlet switch off | 5 Ω | | Neutral to Earth with socket outlet switch on | 5 Ω | Identify any fault indicated by a reading of approximately 15 Ω between the neutral and earth socket measured at the socket outlet: | ſ | | 7 | |-----|-----------------------------|---| | - I | A ctive Fouth transposition | | | ŀ | Active Earth transposition | | | L | | | | | | | # QUESTION 5. (3 Marks) Provide a brief written explanation highlighting why each fault is potentially dangerous. | Fault | Answer | | | | | | | | |---|--|--------|--|--|--|--|--|--| | Insulation resistance too | A low insulation resistance between all live conductors and or, as the case may be, all live parts and earth means the | earth | | | | | | | | low | insulation is not adequate to ensure the integrity of the insulation. | | | | | | | | | | This could permit electric shock hazards from inadvertent corfire hazards from short-circuits and equipment damage | ntact; | | | | | | | | Socket outlet
reversed
active neutral
polarity | A polarity fault due to the incorrect connection of active, neutral and earthing conductors may result in parts of appliance such as heating elements and lampholders, remaining energised the switches are in the 'OFF' position. | | | | | | | | | Intermix of two lighting circuit neutrals | A correct circuit connections fault of interconnected conduct between different circuits under some circumstances may cause disconnected neutral connections to become live. | 1 | | | | | | | (End of Section D) ### **Equation Data Sheet** $$\cos \phi = \frac{P}{S} \qquad \cos \phi = \frac{R}{Z} \qquad S = \sqrt{P^2 + Q^2}$$ $$S = VI \qquad P = VI \cos \phi \qquad Q = VI \sin \phi$$ $$f_o = \frac{1}{2\pi\sqrt{LC}} \qquad V_L = \sqrt{3}V_P \qquad I_L = \sqrt{3}I_P$$ $$S = \sqrt{3}V_LI_L \qquad P = \sqrt{3}V_LI_L \cos \phi \qquad Q = \sqrt{3}V_LI_L \sin \phi$$ $$\tan \phi = \sqrt{3} \left(\frac{W_2 - W_1}{W_2 + W_1}\right) \qquad Q = mC\Delta t$$ $$V' = 4.44\Phi fN \qquad \frac{V_1}{V_2} = \frac{N_1}{N_1} \qquad \frac{I_2}{I_1} = \frac{N_1}{N_2}$$ $$N_{sym} = \frac{120f}{p} \qquad s\% = \frac{(N_{yyu} - n)}{N_{sym}} \times \frac{100}{1} \qquad f_\tau = \frac{s\% \times f}{100}$$ $$V_{reg}\% = \frac{(V_{IL} - V_{FL})}{V_{FL}} \times \frac{100}{1} \qquad V_{reg}\% = \frac{(V_{NL} - V_{FL})}{V_{NL}} \times \frac{100}{1} \qquad I_{ST} = \frac{\Phi ZIP}{2\pi a}$$ $$I_{ST} = \frac{1}{3} \times I_{DOL} \qquad I_{suter_{H}} = \frac{9\% TAP}{100} \times I_{DOL} \qquad I_{fine_{H}} = \left(\frac{\% TAP}{100}\right)^2 \times I_{DOL}$$ $$E = \frac{\Phi_{\tau}}{A} \qquad E = \frac{I}{d^2} \qquad \eta_{\tau} = \frac{\Phi_{\tau}}{P}$$ $$V_L = 0.45V_{ac} \qquad V_L = 0.9V_{ac} \qquad V_L = 1.17V_{phase}$$ $$V_L = 1.35V_{lost} \qquad PRV = \sqrt{2}V_{ac} \qquad PRV = 2\sqrt{2}V_{ac}$$ $$PRV = 2.45V_{ac} \qquad V_{ripple} = \sqrt{2}V_{ac} \qquad V_{ripple} = 0.707V_{phase}$$ # **Equation Data Sheet** | | • | | |---|--|---| | Q = It | $v = \frac{s}{t}$ | $a = \frac{\Delta v}{t}$ | | F = ma | W = Fs | W = mgh | | W = Pt | $\eta\% = \frac{output}{input} \times \frac{100}{1}$ | $I = \frac{V}{R}$ | | P = VI | $P = I^2 R$ | $P = \frac{V^2}{R}$ | | $R_2 = \frac{R_1 A_1 l_2}{A_2 l_1}$ | $R_h = R_c (1 + \alpha \Delta t)$ | $R = \frac{\rho l}{A}$ | | $R_T = R_1 + R_2 + R_3$ | $V_T = V_1 + V_2 + V_3$ | $\frac{1}{R_r} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$ | | $I_T = I_1 + I_2 + I_3$ | $V_2 = V_T \frac{R_2}{R_1 + R_2}$ | $I_2 = I_T \frac{R_1}{R_1 + R_2}$ | | $R_x = \frac{R_A R}{R_B}$ | $C = \frac{Q}{V}$ | $\tau = RC$ | | $\frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$ | $C_T = C_1 + C_2 + C_3$ | $C = \frac{A\varepsilon_o \varepsilon_r}{d}$ | | $F_m = IN$ | $H = \frac{F_m}{l}$ | $B = \frac{\Phi}{A}$ | | $\Phi = \frac{F_m}{S}$ | $S = \frac{l}{\mu_o \mu_r A}$ | $V = N \frac{\Delta \Phi}{\Delta t}$ | | e = Blv | $L = \frac{\mu_o \mu_r A N^2}{l}$ | $L = N \frac{\Delta \Phi}{\Delta I}$ | | $V = L \frac{\Delta I}{\Delta t}$ | $\tau = \frac{L}{R}$ | F = Bil | | T = Fr | $E_z = \frac{\Phi Z n P}{60a}$ | $P = \frac{2\pi nT}{60}$ | | $t = \frac{1}{f}$ | $f = \frac{np}{120}$ | $V = 0.707 V_{\text{max}}$ | | $I = 0.707I_{\text{max}}$ | $V_{ave} = 0.637 V_{max}$ | $I_{ave} = 0.637I_{\rm max}$ | | $v = V_{\text{max}} \sin \phi$ | $i = I_{\text{max}} \sin \phi$ | $I = \frac{V}{Z}$ | | $=\sqrt{R^2+\left(X_L-X_C\right)^2}$ | $X_L = 2\pi J L$ | $X_C = \frac{1}{2\pi fC}$ | | N | am | e: | ٠. |---|----|----|----|--|---| | N | am | e: | ٠. | | ٠ | ٠ | ٠ | • | • | ٠ | ٠ | ٠ | • | • | • | • | • | • | • | ٠ | ٠ | ٠ | ٠ | • | • | | College: | |----------| |----------| # **ANSWER SHEET – Section A (Multi-choice Questions)** Module - 6077AC Examination Date: 23rd June 2010 #### **Instructions:** - Enter your name and college on this sheet. - Place an X in box of your choice. If you make a mistake- circle your answer X and choose again. - For your convenience you can remove this page while you answer Section A. Remember to reattach it to the paper when you hand it in. | Question | a | b | c | d | |-------------------------|------|---|----|---| | 1 | A. I | | X | | | 2 | | X | | | | 3 | | | | X | | 4 | X | | | | | 5 | | X | | | | 6 | X | | | | | 7 | | | | X | | 8 | | X | | | | 9 | | | | X | | 10 | | | - | X | | 11 | X | | | | | 12 | X | | | | | 13 | | | X | | | 14 | | | X, | × | | 15 | | X | | | | Totals | 4 | 4 | 3 | 4 | | Total Correct Section A | | | | | 1.5.5.3d P45 Total Marks Section A:/15 # **END OF EXAMINATION** Subject No: 6077AC Electrical System Safety ©TAFENSW