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PREFACE

This book grew out of the lectures I gave at the University of Toronto between 1982
and 1987 and those I have been giving at the Swiss Federal Institute of Technology
Zurich (ETH Zurich) since 1990. The lectures in Toronto were entitled “Energy me-
thods in structural engineering” and “Structural stability”, those in Zurich “Theory of
structures I-III” and “Plate and shell structures”. In addition, the book contains mate-
rial from my lectures on “Applied mechanics” and “Plasticity in reinforced concrete”
(Toronto) as well as “Conceptual design”, “Bridge design”, “Building structures” and
“Structural concrete I-III” (Zurich).

The book is aimed at students and teaching staff as well as practising civil and struc-
tural engineers. Its purpose is to enable readers to model and handle structures sen-
sibly, and to provide support for the planning and checking of structures.

These days, most structural calculations are carried out by computers on the basis of
the finite element method. This book provides only an introduction to that topic. It
concentrates on the fundamentals of the theory of structures, the goal being to convey
appropriate insights into and knowledge about structural behaviour. Framed structures
and plate and shell structures are treated according to elastic theory and plastic theory.
There are many examples and also a number of exercises for the reader to solve in-
dependently. On the whole, the aim is to provide the necessary support so that the
reader, through skilful modelling, can achieve meaningful results just adequate for
the respective engineering issue, using the simplest means possible. In particular,
such an approach will enable the reader to check computer calculations critically
and efficiently – an activity that is always necessary, but unfortunately often neglected.
Moreover, the broader basis of more in-depth knowledge focuses attention on the es-
sentials and creates favourable conditions for the synthesis of the structural, construc-
tional, practical realisation and creative issues so necessary in structural design.

Chapters 3 and 4, which deal with the general principles of structural engineering,
have been heavily influenced by my work as the head of the “Swisscodes” project
of the Swiss Engineers & Architects Association (SIA). The purpose of this project,
carried out between 1998 and 2003, was to revise fully the structures standards of the
SIA, which were subsequently republished as Swiss standards SIA 260 to 267. I am
grateful to the SIA for granting permission to reproduce Fig. 1 and Tab. 1 from
SIA 260 “Basis of structural design” as Fig. 3.1 and Tab. 4.1 in this book. Further,
I would also like to thank the SIA for consenting to the use of the service criteria
agreement and basis of design examples, which formed part of my contribution to
the introduction of SIA 260 in document SIA D 0181, as examples 3.1 and 3.2 here.

In essence, the account of the theory of structures given in this book is based on my
civil engineering studies at ETH Zurich. Hans Ziegler, professor of mechanics, and
Bruno Thürlimann, professor of theory of structures and structural concrete, and
also my dissertation advisor and predecessor, had the greatest influence on me.
Prof. Thürlimann was a staunch advocate of the use of plastic theory in structural
engineering and enjoyed support from Prof. Ziegler for his endeavours in this respect.
I am also grateful to the keen insights provided by Pierre Dubas, professor of theory of
structures and structural steelwork, and Christian Menn, professor of theory of struc-
tures and design, especially with regard to the transfer of theory into practice. Many
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examples and forms of presentation used in this book can be attributed to all four of
these teachers, whom I hold in high esteem, and the Zurich school of theory of structu-
res, which they have shaped to such a great extent.

During my many years as a lecturer in Toronto and Zurich, students gave me many
valuable suggestions for improving my lectures; I am deeply obliged to all of
them. Grateful thanks also go to my current and former assistants at ETH Zurich. Their
great dedication to supervising students and all their other duties connected with
teaching have contributed greatly to the ongoing evolution of the Zurich school of
theory of structures.

Susanna Schenkel, dipl. Ing. ETH, and Matthias Schmidlin, dipl. Arch. ETH/dipl. Ing.
ETH, provided invaluable help during the preparation of the manuscript. Mr. Schmid-
lin produced all the figures and Mrs. Schenkel coordinated the work, maintained con-
tact with the publisher and wrote all the equations and large sections of the text; I am
very grateful to both for their precise and careful work. Furthermore, I would like to
thank Maya Stacey for her typing services. A great vote of thanks also goes to my
personal assistant, Regina Nöthiger, for her help during the preparations for this
book project and for always relieving me from administrative tasks very effectively.
Philip Thrift translated the text from German into English. I should like to thank him
for the care he has taken and also for his helpful suggestions backed up by practical
experience. Finally, I would like to thank the publisher, Ernst & Sohn, for the pleasant
cooperation and the meticulous presentation of this book.

Zurich, February 2013 Peter Marti
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1 THE PURPOSE AND SCOPE OF THEORY OF
STRUCTURES

Without doubt, many are convinced that
the calculations should determine the
dimensions unequivocally and conclu-
sively. However, in the light of the
impossibility of taking into account all
secondary circumstances, every calcu-
lation constitutes only a basis for the
design engineer, who thus has to
grapple with those secondary circum-
stances...

A totally simple form of calculation
alone is therefore possible and sufficient.

Robert MAILLART (1938)

11.2 The basis of theory of structures

1.1 General

Theory of structures is a subdiscipline of applied mechanics which is configured to
suit the needs of civil and structural engineers. The purpose of theory of structures
is to present systematically the knowledge about the behaviour of structures at rest,
to expand that knowledge and to prepare it for practical applications. It forms the basis
for the design of every new structure and the examination of every existing one.

The terms and methods used in the theory of structures enable the engineer to adopt a
uniform approach not tied to any particular type of construction (concrete, steel, com-
posite, timber or masonry). With the advent of the computer in the third quarter of the
20th century, this approach gradually became structural mechanics, the discipline to
which theory of structures belongs today.

At the heart of every theory of structures exercise there is a structural model, which is
obtained through isolation and idealisation and takes into account the geometry of the
structure, the properties of the construction materials and the possible actions. Deter-
mining the action effects, i. e. the structure’s responses to the actions, is carried out
with the help of analytical models that link the governing force and deformation vari-
ables via equilibrium and compatibility conditions plus constitutive equations.

1.2 The basis of theory of structures

Structural behaviour is expressed in the form of internal and external force and
deformation variables (loads and stresses plus displacements and strains). Static
relationships (equilibrium conditions and static boundary conditions, see chapter 5)
link the force variables, kinematic relationships (kinematic relationships and boundary
conditions, see chapter 6) link the deformation variables, and constitutive relation-
ships (see chapter 7) link the internal force and deformation variables. The most gen-
eral statements within the scope of theory of structures are obtained when the internal
and external force and deformation variables are rigorously associated in the form of
work-associated variables (see chapter 8) [1].

Statics is based on three fundamental principles of mechanics. According to the prin-
ciple of virtual work, a (statically admissible) force state (equilibrium set of force vari-
ables) fulfilling the static relationships in conjunction with a (kinematically admis-
sible) deformation state (compatibility set of deformation variables) fulfilling the kine-
matic relationships does not perform any work. Added to this are the reaction prin-
ciple (for every force there is a equal and opposite reaction with the same direction of
action) and the free-body principle (every part removed from a system in equilibrium
undergoing compatible deformation is itself in equilibrium and undergoes compatible
deformation).

Looking beyond its link with mechanics, theory of structures has a special significance
for structural engineering (see chapters 3 and 4). It is a tool for assessing the stability,
strength and stiffness of a structure that either exists or is being designed. This appli-
cation of theory of structures manifests itself in specific methods developed for ascer-
taining structural behaviour in general and (numerical) treatment in individual cases.

Theory of Structures. First Edition. Peter Marti
c 2013 Ernst & Sohn GmbH & Co. KG. Published 2013 by Ernst & Sohn GmbH & Co. KG.



1.3 Methods of theory of structures

The principle of virtual work can be expressed as the principle of virtual deformations
or the principle of virtual forces. The systematic application of these two principles
leads to a series of dual kinematic or static methods. On the kinematic side it is im-
portant to mention LAND’s method for determining influence lines (section 12.3), the
displacement method for solving statically indeterminate framed structures (chap-
ter 17 and section 19.3) and the kinematic method of limit analysis (sections 21.3
and 21.7). On the static side we have the work theorem for determining single deform-
ations (section 14.2), the force method for solving statically indeterminate framed
structures (chapter 16 and section 19.2) and the static method of limit analysis (sec-
tions 21.3 and 21.7).

Assuming linear elastic behaviour and small deformations leads to linear statics, in
which all the force and deformation variables may be superposed. This possibility
of superposition is used extensively in theory of structures, especially in the force
and displacement methods. Introducing unknown force or deformation variables
and superposing their effects on those of external actions results in sets of linear equa-
tions for the unknowns.

However, the superposition law no longer applies in the case of non-linear materials
problems (chapters 20 and 21) and non-linear geometrical problems (chapter 22). In
such instances an (incremental) iterative procedure is generally necessary. Errors
caused by simplifications at the beginning are evaluated step by step and successively
reduced through appropriate corrections.

Analogies can often be used to make complex situations more accessible, or to reduce
them to simpler, known situations. Examples of this are the membrane analogy (sec-
tion 13.4.2) and the sand hill analogy (section 21.4.4) for dealing with elastic or plas-
tic torsion problems, and MOHR’s analogy for determining deformation diagrams
(section 15.3.2). Combined warping and pure torsion problems (section 13.4.4) can
be approached in a similar way to combined shear and bending problems (sec-
tion 18.5.2) or bending problems in beams with tension (section 18.9). Edge disturb-
ance problems in cylindrical shells (sections 18.7.4 and 26.5) can be reduced to the
theory of beams on elastic foundation (section 18.4.4); this theory is also useful for
approximating edge disturbance problems in spherical (section 26.7.3) and other
shells (section 26.7.4). Furthermore, plates (chapter 23) can be idealised as plane
trusses, slabs (chapter 24) as grillages, and folded plates (chapter 25) and shells (chap-
ter 26) as space trusses or spatial frameworks

The development of powerful numerical methods has led to the methods of graphical
statics (section 10.1) gradually losing the importance they had in the past. However,
graphical aids still represent an unbeatable way of illustrating the flow of the forces in
structures, e. g. with thrust lines (section 5.3.2, Figs. 17.19 and 21.7) or truss models
(section 23.4.2). They represent an indispensable foundation for conceptual design
(section 3.2) and the detailing of structural members and their connections.

The development of numerical methods has also brought about a change in the sig-
nificance of experimental statics. From the 1920s through to the 1970s, loading tests
on scale models made from celluloid, acrylic sheet and other materials were central to
understanding the elastic loadbearing behaviour of complex structures. Such tests are
no longer significant today. What continues to be important, however, is scientific test-
ing to verify theoretical models, primarily in conjunction with non-linear phenomena,
new materials or forms of construction and accidental actions. In structural design,
physical models are not only useful for form-finding and detailing, but also very help-
ful when assessing the quality of the structural behaviour of the design. During the
dimensioning, tests are a sensible backup if, for example, there are no appropriate ana-
lytical models available or a large number of identical structural members is required.
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Finally, specific measurements during and after execution enable extremely valuable
comparisons with the predicted behaviour of a structure – a source of experience that is
all too often neglected.

In the numerical methods of theory of structures, it is the finite element method (FEM)
that plays the leading role (section 19.3). These days FEM is the basis of almost all
structural calculations. Users have extremely powerful tools at their disposal in the
shape of appropriate modern computer programs. But to be able to deploy such pro-
grams responsibly, designers should at least understand the basics of the algorithms on
which they are based. First and foremost, however, the engineer ’s knowledge of theory
of structures should enable him or her to check the computer output critically. The
crucial thing here is the ability to be able to approximate complex issues by reducing
them to simple, understandable problems. Adequate training in the classical methods
of theory of structures, which this book aims at, will supply the foundation for that
ability.

1.4 Statics and structural dynamics

When it comes to dynamic problems, the principle of virtual work has to be formulated
taking into account inertial forces (proportional to acceleration): the motion in a sys-
tem is such that at any point in time the internal, external and inertial forces are in
equilibrium. Appropriate additional terms in the equilibrium conditions turn them
into equations of motion, and can be included, for example, within the scope of
the finite element method by way of local and global mass matrices. Instead of a
set of linear equations, this leads to a set of simultaneous ordinary second-order dif-
ferential equations for the (time-dependent) node displacement parameters. Assuming
constant coefficients, the differential equations can be decoupled according to the
method of modal analysis. The associated eigenvalue problem leads to a solution
in the form of superposed natural vibrations.

Generally, damping forces must also be taken into account in the equations of motion.
In order that the differential equations remain linear, it is usual to assume that these
forces are proportional to velocity. And so that a modal analysis remains possible with
decoupled natural vibrations, we use a so-called modal damping for simplicity.

Structural dynamics is essentially readily accessible via statics. However, adding the
dimension of time makes a more in-depth examination necessary so that dynamic pro-
cesses become just as familiar as static phenomena. In the end, engineers prepared to
make the effort obtain a broader view of theory of structures.

1.5 Theory of structures and structural engineering

For structural engineering, theory of structures is an ancillary discipline, like mater-
ials science. The knowledge and experience of practising design engineers in this and
other relevant special subjects, e. g. geotechnics and construction technology, must be
adequate for the complexity and significance of the jobs to which they are assigned.
Furthermore, appropriate practical experience with the respective types of construc-
tion is an essential requirement for managing the design and execution of construction
projects.

Theory of structures plays a role in all phases of conventional project development,
from the preliminary design and tender design to the detail design, but in different
ways, to suit the particular phase. Whereas for the conceptual design rough structural
calculations are adequate, the subsequent phases require analyses of structural safety
and serviceability that can be verified by others – and not just for the final condition of
the structure, but especially for critical conditions during construction.

31.5 Theory of structures and structural engineering



Besides new-build projects, the conservation and often the deconstruction of struc-
tures also throw up their share of interesting theory of structures problems. Frequently
such tasks are far more demanding than those of new structures because fewer, if any,
standards are available to help the engineer, and appraising the current condition of a
structure is often difficult and associated with considerable uncertainties. The devel-
opment of appropriate structural and actions models in such cases can be extremely
tricky yet fascinating.

Looking beyond the immediate uses of structural design, there are various applications
that can be handled with the methods of theory of structures, especially in mechanical
engineering, shipbuilding and automotive manufacture, aerospace engineering, too.
We are thus part of the great interdisciplinary field of structural mechanics.
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2 BRIEF HISTORICAL BACKGROUND

Apart from a few minor modifications, this chapter is based on an earlier essay by the
author [19]. Readers who wish to find out more should consult references [10], [16],
[32] and [33].

Until well into the 19th century, the practical experience of architects, builders and
engineers far exceeded their theoretical knowledge. The scientifically founded know-
ledge of structural behaviour that prevails today had its beginnings in antiquity and the
Middle Ages and evolved with the development of mechanics. However, it was not
until the 18th century that the first attempts were made to use the new findings in prac-
tical construction.

We have to thank the Greek mathematician ARCHIMEDES (c. 287 – c. 212 BC) for
the discovery of hydrostatic buoyancy and for formulating the lever principle for un-
equal straight levers subjected to vertical forces. Besides formulating theories for the
functions of the “simple machines” lever, wedge, screw, pulley and wheel and axle,
Archimedes is also credited with inventing technical artefacts such as the screw pump.

Jordanus DE NEMORE (c. 1200) is thought to have written various treatises that draw
on the works of Greek scholars. But he also added new observations on the cranked
lever and the inclined plane.

Leonardo DA VINCI (1452 – 1519) recognised the principle of resolving a force into
two components, and also applied the term “moment” (force q lever arm) to skew
forces. He also investigated the breakage of a rope due to its own weight (specific
strength), the bending of beams and columns and the equilibrium and failure mech-
anisms of arches. His extremely imaginative and diverse, yet unsystematic, insights
went apparently largely unnoticed during his lifetime.

Simon STEVIN’s (1548 – 1620) approach to the concept of moments and the reso-
lution of forces into components cannot be faulted. He worked on many practical ap-
plications and provided very vivid descriptions, e. g. the funicular polygon and the
“wreath of spheres” experiment to prove the law of the inclined plane.

Pierre VARIGNON (1654 – 1722) identified the connection between the force and
funicular polygons and formulated the theorem of the summability of moments.

Giovanni POLENI (1683 – 1761) analysed the load transfer of the 42m span of the
dome to St. Peter ’s in Rome by constructing the funicular polygon for the weights
corresponding to the individual segments of the vaulting. He selected the funicular
polygon that passed through the centres of the springing and crown joints and estab-
lished that the inverted funicular polygon must lie within the arch profile. In 1743
POLENI was appointed to investigate the damage to the dome of St. Peter ’s, just
as one year before the three mathematicians Ruggiero Giuseppe BOŠCOVIĆ
(1711 – 1787), Thomas LE SEUR (1703 – 1770) and François JACQUIER
(1711 – 1788) had been commissioned to do. Based on the crack pattern observed,
the three mathematicians analysed an assumed mechanism and hence determined a
deficit in the resistance with respect to the thrust in the arch. They recommended add-
ing further horizontal iron hoops (to resist the tension) around the dome to the three
already in place. Although POLENI did not agree with the cause of the damage

52 Brief historical background
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as described by the mathematicians, he did agree with the proposed strengthening
measures.

GALILEO Galilei (1564 – 1642) founded the discipline of strength of materials
through his studies of the failure of the cantilever beam. Starting with the tensile
test as a “thought experiment” and the associated question of the specific strength,
he analysed the equilibrium of a cantilever beam as a cranked lever with its fulcrum
at the bottom edge of the fixed-end cross-section. Applying similitude theory, he de-
termined the failure load relationships of simple beam structures with different geom-
etries. He realised that no structure can exceed a certain given size (maximum span)
determined by the limits of strength and remarked that hollow cross-sections and
cross-sections that vary over the length of the beam can make better use of the strength
than prismatic, solid cross-sections.

Edmé MARIOTTE (1620 – 1684) and Pieter van MUSSCHENBROEK (1692 –
1761) carried out tensile and bending strength tests on various materials, the latter
also buckling strength tests. Applying similitude theory, it became possible to design
a beam. In the bending failure problem, MARIOTTE, like GALILEO, initially as-
sumed that the cantilever beam rotates about the bottom edge of the fixed-end
cross-section, but presumed a triangular distribution of the tensile force over the depth
of the cross-section. In a further step, he introduced the “axe d’équilibre” (neutral axis)
in the middle of the depth of the cross-section and distinguished between zones in
tension and compression, with triangular distributions of the tensile and compressive
forces above and below this axis. Instead of the theoretically correct reduction factor
of 3 of GALILEO’s strength studies, he mistakenly arrived at a value of 1.5; his tests
resulted in a reduction factor of about 2.

Antoine PARENT (1666 – 1716) recognised that the tensile and compressive forces
due to bending must be equal in magnitude and that there are also shear forces acting
on the cross-section. Based on MARIOTTE’s tests, PARENT positioned the neutral
axis somewhat below the middle, i. e. at 45% of the depth of the cross-section, which
when compared with GALILEO’s work leads to a reduction factor of 2.73 for an equal
tensile strength.

Robert HOOKE (1635 – 1703) undertook experiments with springs and reached the
conclusion that the forces in elastic bodies are proportional to the corresponding dis-
placements. He also recognised that some of the fibres in a beam subjected to bending
are pulled and hence extended and some are compressed and hence shortened. Further,
he recommended giving arches the form of an inverted catenary.

Jacob BERNOULLI (1654 – 1705) investigated the deformation of elastic bars with
the help of the infinitesimal calculus introduced by Isaac NEWTON (1643 – 1727)
and Gottfried Wilhelm LEIBNIZ (1646 – 1716). He assumed that the cross-sections
of the bar remain plane during the deformation and discovered that the change in curv-
ature is proportional to the bending forces. However, as he was not yet aware of the
stress concept, the integration of the internal forces over the cross-section, which is
taken for granted today, is missing from his deductions.

The principle of virtual displacements, already used in a simple form by DE
NEMORE, STEVIN and GALILEO, was stated in general form in 1717 by Johann
BERNOULLI (1667 – 1748).

Following a proposal by Daniel BERNOULLI (1700 – 1782), Leonhard EULER
(1707 – 1783) showed that Jacob BERNOULLI’s differential equation of the elastic
curve corresponds to a variational problem. According to this, the integral of the
squares of the curvatures over the length of the bar is a minimum; for homogeneous
prismatic bars, this integral is proportional to the elastically stored deformation work.
EULER’s detailed treatises on elastic curves led to the solution of the eigenvalue prob-
lems of buckling and laterally vibrating bars. Apart from the concept of hydrostatic
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stress, we also have EULER to thank for the free-body principle at the root of all mech-
anics. This principle states that every free body separated with an imaginary cut from a
body in equilibrium is itself in equilibrium; internal forces are thus externalised and
can therefore be dealt with. Starting by considering the individual mass elements of a
body, EULER formulated NEWTON’s law of motion in the form of the theorem of
linear momentum, and also postulated the theorem of angular momentum. Therefore,
equilibrium conditions for forces and moments became special cases of the equations
of motion.

The designation “engineer” had already been used in isolated cases in the Middle Ages
to describe the builders of military apparatus and fortifications. The direct predeces-
sors of civil engineers as we know them today were French engineering officers who
were called upon to carry out civil as well as military tasks. At the suggestion of the
most outstanding of these engineering officers, Sébastien le Prêtre de VAUBAN
(1633 – 1707), the “Corps des ingénieurs du génie militaire” was set up in 1675.
The “Corps des ingénieurs des ponts et chaussées” followed around 1720.

The French engineering officers received scientific, primarily mathematical, training
at state schools. The “Ecole des ponts et chaussées” in Paris, founded in 1747 by
Daniel Charles TRUDAINE (1703 – 1769) and reorganised in 1760 by Jean
Rodolphe PERRONET (1708 – 1794), was at that time unique in Europe. The “Ecole
polytechnique”, which opened in Paris in 1794, was followed by the polytechnic
schools of Prague (1806), Vienna (1815), Karlsruhe (1825) and other cities.

PERRONET was primarily active as a builder of stone bridges. He reduced the widths
of the piers in order to improve the flow cross-section, employed very shallow three-
centred arches and introduced various other new ideas into the design and construction
of such bridges.

Charles Augustin de COULOMB (1736 – 1806) was another French engineering of-
ficer. He set down his practical experience in the building of fortifications in the “Essai
sur une application des règles de maximis et minimis à quelques problèmes de statique
relatifs à l ’architecture”, which was published in 1776. Based on the tensile tests of
samples of stone, he determined the resistance to cleavage fracture per unit area, a
property that he termed “cohesion”. Although shearing-off tests gave a somewhat
larger resistance, COULOMB ignored this difference and, considering possible failure
planes in masonry piers, introduced a friction resistance proportional to the normal
compression on the failure plane. By varying the inclination of the failure plane,
he discovered the smallest possible and hence critical ratio between compressive
strength and cohesion. He proceeded in a similar way when investigating active
and passive earth pressure problems and when determining the upper and lower limits
for arch thrust. COULOMB also concluded the strength problem of the beam in bend-
ing. Using the example of the cantilever beam, he distinguished between internal
forces normal to and parallel with the cross-section and formulated the equilibrium
conditions for the free body separated by the cross-section being studied. In doing
so, he assumed a generally non-linear distribution of the internal forces over the depth
of the beam. For the special case of the rectangular cross-section with linear force dis-
tribution, as with GALILEO’s strength studies, he obtained the right result with a re-
duction factor of 3.

Claude Louis Marie Henri NAVIER (1785 – 1836) was appointed professor at the
“Ecole des ponts et chaussées” in 1819 and the “Ecole polytechnique” in 1831. It
is him we have to thank for today’s form of the differential equation for the beam
in bending, with the modulus of elasticity of the construction material and the princi-
pal moment of inertia of the cross-section. His published lecture notes bring together
the scattered knowledge of his predecessors in a form suitable for practical building
applications. He solved numerous problems of static indeterminacy, investigated the
buckling of elastic bars subjected to eccentric loads and also became involved with
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suspension bridges and many other issues. As a design engineer, NAVIER also had to
cope with setbacks: his Pont des Invalides in Paris, spanning 160 m across the Seine,
was abandoned shortly before completion (1826) because of various difficulties en-
countered during construction.

Augustin Louis CAUCHY (1789 – 1857) abandoned the notion that the stress vector
must be orthogonal to the surface of the section, which applies in hydrostatics, and
established the concept of the stress tensor. He also introduced the strain tensor
and recognised that the linear elastic theory of homogeneous isotropic materials re-
quires two material constants. Important contributions to the ongoing expansion of
elastic theory were supplied by Siméon Denis POISSON (1781 – 1840), Gabriel
LAMÉ (1795 – 1870), Benoı̂t Pierre Emile CLAPEYRON (1799 – 1864), Adhémar
Jean Claude Barré de SAINT-VENANT (1797 – 1886) and others.

Karl CULMANN (1821 – 1881), a professor at Zurich Polytechnic, which had opened
in 1855, established graphical statics, i. e. the geometric/graphic treatment of theory
of structures problems which is especially suitable for trusses. The rigorous applica-
tion of force and funicular polygons enabled him to reduce beam statics to cable statics
and obtain a universally applicable method of integration by adding the closing line to
the funicular polygon. Antonio Luigi Gaudenzio Giuseppe CREMONA (1830 –
1903), Maurice LÉVY (1838 – 1910) and Karl Wilhelm RITTER (1847 – 1906)
were firm advocates of the use of graphical statics.

Emil WINKLER (1835 – 1888) made important contributions to the elastic theory
foundations of theory of structures. He introduced the axial and shear stiffnesses of
elastic bars, investigated thermal deformations, analysed the arch fixed on both sides,
studied beams on elastic foundation and worked on how “stress curves” indicate the
effects of travelling loads, for which Johann Jacob WEYRAUCH (1845 – 1917)
coined the term influence line.

Otto Christian MOHR (1835 – 1918) discovered the analogy between line loads and
bending moments on the one hand and curvatures and deflections of beams on the
other, thus paving the way for the graphical determination of deflection curves. He
introduced his circle diagrams for presenting general stress and strain conditions
and proposed a universal failure hypothesis based on COULOMB’s approach. His
studies of the secondary stresses in trusses, which are due to the fact that the connec-
tions between the members are actually rigid and not hinged as assumed in theory,
gave him the idea of considering joint and bar rotations as unknowns. It was not until
the first decades of the 20th century that this idea was exploited, in the form of the
slope-deflection method for dealing with statically indeterminate systems.

James Clerk MAXWELL (1831 – 1879) regarded elastic trusses as machines working
without energy losses and discovered that the displacement caused by a first unit force
at the position and in the direction of a second unit force is equal to the displacement
caused by the second unit force at the position and in the direction of the first unit
force. This reciprocal theorem is a special case of the interaction relationship for linear
elastic systems named after Enrico BETTI (1823 – 1892). According to this relation-
ship, a first force system does the same work on the displacements of a second force
system as the second system does on the displacements of the first. It is Carlo Alberto
CASTIGLIANO (1847 – 1884) we have to thank for the theorem that the force vari-
ables in an elastic system are equal to the derivatives of the deformation work with
respect to the corresponding deformation variables. Mathias KOENEN (1849 –
1924) transferred the work theorem for the displacement calculation, introduced by
MOHR for trusses, to beams in bending. Friedrich ENGESSER (1848 – 1931) high-
lighted the difference between deformation work and complementary work and thus
paved the way for the treatment of non-linear elastic systems in the theory of struc-
tures.
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Heinrich Franz Bernhard M�LLER-BRESLAU (1851 – 1925) placed the concept of
work at the focus of the formulation of structural analysis theories and developed the
force method for dealing with statically indeterminate systems. Robert LAND
(1857 – 1899) created a method for determining influence lines based on a unit
displacement imposed on the structural system at the position and in the direction
of the relevant force variable. The development of the deformation method by Asger
Skovgaard OSTENFELD (1866 – 1931) concluded the theory of elastic framed struc-
tures with small deformations.

The further evolution of the theory of structures in the 20th century primarily con-
cerned plate and shell structures, stability theory, plastic theory and the development
of computer-aided methods for analysing structures by means of discretised structural
models.
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3 DESIGN OF STRUCTURES

3.1 General

Fig. 3.1 [31] summarises the relationships between various design elements. The ter-
minology in the figure is defined in appendix A1 (together with further specialist
terminology that, generally, is highlighted in italics the first time it is used or explained
in the text).

Fig. 3.1 applies to all construction works or their structures erected in the natural and
built environments, i. e. all the structural members and all the subsoils that are neces-
sary for their equilibrium and for retaining their form. The figure refers to the total life
cycle of the construction works, which extends from design to execution, use and con-
servation right up to deconstruction. Construction works documents corresponding to
the individual phases are listed in a separate column.

Fig. 3.1 and the associated terminology assist in understanding the subject and enable
a uniform, systematic approach to theory and practice for all design, site management
and construction work specialists engaged in the areas of structures and geotechnics.
The figure is not a flow diagram, nor does it refer directly to the conventional course of
a project from preliminary design to tender design and detail design. Rather, it gives
an order to the steps in the process and the relationships between various design elem-
ents, and can be used to understand the connections between and the categorisation of
the specialist terminology used.

The design of a structure encompasses the conceptual design, the structural analysis
and the dimensioning. The conceptual design is all the activities and developments,
and the outcomes thereof, that lead from the service criteria to the structural concept.
The structural analysis uses structural models to determine action effects, i. e. the
responses of the structure to potential actions as a result of execution and use as
well as environmental influences. Dimensioning establishes the sizes, construction
materials and detailing of the structure; the basis for this are structural and construc-
tion technology considerations plus numerical verifications.

The quality of a structure primarily depends on its conceptual design, its detailing and
its execution. The importance of structural analyses and numerical verifications is
often overrated; they are merely tools for guaranteeing an appropriate reliability,
i. e. the behaviour of a structure with respect to structural safety and serviceability
within specified limits.

Key aspects of conceptual design and the associated construction works documents
(service criteria agreement and basis of design) are described below. Structural ana-
lysis and dimensioning are covered in chapter 4.

3.2 Conceptual design

The aim of the draft design is to develop a suitable structural concept, which specifies
the structural system, the most important dimensions, construction material properties
and construction details plus the intended method of construction. It is developed as
part of the integrative planning of the construction works in consultation with all the
specialists involved. The structural concept is based on the overall planning, the

113.2 Conceptual design

Theory of Structures. First Edition. Peter Marti
c 2013 Ernst & Sohn GmbH & Co. KG. Published 2013 by Ernst & Sohn GmbH & Co. KG.



12 3 DESIGN OF STRUCTURES

II FUNDAMENTALS

Environment

Construction works / Structure

Design

Conceptual
design

Service criteria

Requirements Integration and composition
Economy

Robustness
Reliability
Durability

ServiceabilityStructural safety

Draft design Design boundary conditions

Design alternativesHazard scenarios Service situations

Structural concept

Structural analysis

Actions

mechanical
other physical
chemical
biological

Structural model 

Construction material and subsoil properties

Analytical model 

Geometric variables

Dimensioning

Hazard scenarios relevant to dimensioning Service situations relevant to dimensioning

Design situations
transient

Limit states

fatigue resistance
ultimate resistance
overall stability

Structural safety

appearance
comfort
functionality

Serviceability

Load cases
Verification of structural safety Verification of serviceability

Detailing

Execution Preparation for construction
Construction work

Construction inspections
Acceptance

Method of constructionProtection and welfare measures

Commissioning
Design working life
Decommissioning

Use

Conservation

control measurements
inspections
observation

Monitoring

Urgent safety measures

Examination

recommendation for
condition assessment
condition survey

Deconstruction

Supplementary
safety measures

Planning of remedial measures Modification

Maintenance

Repair

Action effects

stresses,
stress resultants,
reactions
deformations,
displacements
action effects
specific to type
of construction

Construction works documents:

Service criteria agreement

Basis of design

Structural calculations

cost estimate,

Technical report

Tender documents
Execution documents
Construction inspection plan

Record of construction

Service instructions
Operation instructions

Monitoring plan
Maintenance plan

Reports, drawings,

Report on remedial measures

minutes of meetings

Reports, general arrangement
and detailed drawings, 
lists of materials,

minutes of meetings

persistent

accidental

remedial measures

Fig. 3.1 Relationships between various design elements



architecture and operational issues and takes into account the boundary conditions
dictated by the environment, legislation, etc.

The draft design includes producing a number of alternatives, taking into account the
relevant design boundary conditions, checking their feasibility and assessing whether
they fulfil the design requirements. In doing so, foreseeable execution and service
situations, also potentially critical situations (hazard scenarios), are reviewed and
experience gained from similar construction projects is incorporated. The structural
concept finally decided upon is the result of an iterative process that presumes equal
amounts of expertise and ingenuity.

The draft design corresponds to a consolidation process, which manifests itself in suc-
cessively better sketches. Such sketches should be drawn freehand but to scale as far as
possible. The instincts of the design engineer can therefore be directly integrated into
the conceptual design, where they are further refined. The dimensions are chosen
based on experience, estimates and rough structural calculations and checked against
the sketches to establish their structural and construction technology feasibility. In
order to assess the effect in three dimensions and to create a basis for the composition
of a design, it is expedient to make use of (physical) working models right from the
early stages of the conceptual design. Perspective drawings produced by a computer
are also very helpful, but cannot replace the tactile experience of a model.

Subjective ideas and decisions based on experience and intuition help to progress the
conceptual design; but they must stand up to objective criticism and therefore must be
checked and should undergo further development. A systematic procedure is therefore
to be recommended, which addresses the following points in succession:

– Clarifying the design boundary conditions and examining their relevance
– Establishing the principal actions and action effects
– Considering potential hazard scenarios and specifying suitable measures for

dealing with the critical hazards
– Considering the foreseeable service situations and specifying appropriate

measures for guaranteeing serviceability
– Estimating potential deterioration of the structure and specifying appropriate

measures to guarantee durability.

The design boundary conditions include, for example:

– Location, hazard zone, topography, alignment, clearances, distances to bound-
aries, maximum and minimum dimensions

– Restrictions regarding design and construction time, design working life
– Statutory instruments (legislation, regulations, directives)
– Budgetary framework
– Quality, availability and reuse of construction materials
– Subsoil properties
– Applicability of methods of construction, transport and erection options
– Maintaining the use of rights of way and services
– Arrangements for monitoring and maintenance measures.

Any of the following influences can represent a hazard, for example:

– Deviations from the assumed values of actions
– Actions arising in the subsoil
– Chemical actions, e. g. as a result of de-icing salt or groundwater
– Resonance effects
– Deviations from the planned values of the ultimate resistance of the structure or

the subsoil
– Curtailment of the ultimate resistance through corrosion, embrittlement or fatigue
– Curtailment of the ultimate resistance through fire, explosion, impact, broken

service lines or earthquake.
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Hazards can be dealt with by applying one or more of the following measures:

– Eliminating, preventing or minimising the hazard
– Inspection or warning systems
– Choosing structural systems with a low susceptibility to the hazards concerned
– Choosing structural systems that can handle local damage or the failure of an

individual structural member or a whole part of the structure without collapsing
completely

– Choosing structural systems that do not fail without warning
– Limiting the spread of fire to fire compartments
– Choosing suitable construction materials
– Appropriate structural analyses and dimensioning
– Careful detailing
– Careful execution according to plan
– Allowing for particular protective measures
– Appropriate monitoring and maintenance.

Every conceptual design must satisfy the requirements resulting from the intended use.
This is primarily the durability over the design working life taking into account the
reliability with respect to structural safety and serviceability as demanded by society
or the client. Further, adequate robustness is necessary in order to limit potential de-
terioration or failure to an extent not disproportionate to its cause.

The true marks of quality of a conceptual design are to be found in its economy,
integration and composition. Economy is to be understood as the moderate use of fi-
nancial and natural resources, related to the total life cycle of the construction works.
Integration is the compatible incorporation of the construction works into its natural
and built environment. Composition is the creation of an aesthetic manifestation
through spatial arrangement, shaping and choice of materials.

Economy is primarily influenced by the choice of the structural system and the
intended method of construction. It is possible to avoid unnecessary ballast and
achieve a more or less consistent utilisation of the construction materials across the
entire structure by segmenting and shaping the structural members in a way that takes
into account the construction work and is based on a rigorous adherence to the flow of
the forces, and also by resolving and, if necessary, prestressing the cross-sections. The
synthesis of structural and construction technology considerations therefore gives rise
to an efficient, essentially well-proportioned primary form for the structure which can
be further refined to achieve the best possible integration and composition.

In terms of the aesthetic quality of a design, special attention should be paid to its
transparency, slenderness, regularity and proportions. In this respect, a critical examin-
ation of the overall three-dimensional appearance viewed from different locations is
always essential, especially with respect to the most unfavourable angles. And in terms
of architectural design aids, limiting the choice to a few simple and distinct measures,
e. g. profiling to emphasize the flow of the forces, is generally to be recommended.

3.3 Service criteria agreement and basis of design

The requirements regarding the properties and behaviour of the construction works
arising from the intended use should be specified at the start of the design work in
the service criteria agreement, which is based on a dialogue between the client
and the project realisation team. The agreement specifies the general objectives for
the use of the construction works, the surroundings and the demands of third parties,
the requirements regarding operation and maintenance, special stipulations of the
client, protection objectives, special risks and the provisions of standards.
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Producing a service criteria agreement is part of the preliminary design. In principle, it
is necessary to record all decisions that are not the sole responsibility of the project
realisation team in a manner that can be understood by the client.

Drawing up the service criteria agreement carefully and prudently is very important to
the orderly progress of the project. Modifications and supplements to the service cri-
teria agreement within the scope of the tender design and detail design should be
avoided as far as possible.

The basic concepts and requirements for further design, execution, use and conserva-
tion which arise out of the conceptual design are described in the basis of design. This
lays down the design working life, the service situations and hazard scenarios con-
sidered, the requirements placed on structural safety, serviceability and durability,
and measures intended to guarantee these (including responsibilities, procedures,
inspections and corrective mechanisms), the assumed subsoil conditions, the main
assumptions regarding the structural and analytical models, the accepted risks and
further conditions relevant to the project. The scope and content of the basis of design
must be appropriate to the significance and hazard of the construction works plus the
risks it poses for the environment.

The basis of design describes the implementation of the service criteria agreement spe-
cific to the construction works in the jargon of the project realisation team. It is part of
the preliminary design and is successively supplemented and refined as the project
undergoes further development in the tender design and detail design stages.

Example 3.1 Service criteria agreement for industrial building XY in Z

1 General objectives for use
1.1 Description of construction and intended use
The project concerns a new industrial building in which household goods are to be manufactured and
sold. The building, rectangular on plan and measuring 25 q 50 m, is to have four storeys above and
two below ground, with storey heights of 4 m and 3 m respectively. The basement storeys intended as
parking facilities for motor cars are to be accessed via ramps on the north side of the building. The
ground floor and first upper floor will be used for storage and production; later usage for retailing
(shopping centre) is not ruled out. Access for goods vehicles is required on the north side of the build-
ing. The second and third upper floors are intended to accommodate display and sales facilities plus
offices. The roof is only accessible for maintenance work; the addition of further storeys at a later date
is not envisaged.
The subsoil is an approx. 15 m thick surface stratum of silty gravel above a deep boulder bed. The
water table is 4 to 5 m below ground level.
For dimensions and intended uses, see Fig. 3.2 to Fig. 3.5.
1.2 Design working life
– Structure 50 years
– Waterproofing, floor finishes and carriageway joints 25 years
– Crash barriers 25 years
– Façade 25 years
– Roof covering 25 years
1.3 Supplementary stipulations regarding use
– BL: Plant rooms plus parking areas for vehicles up to 3.5 t, imposed load = 2 kN/m2

– GF/1st UF: - Storage and production, imposed load = 8 kN/m2

- Use of fork-lifts of type ... with a total (laden) weight of 6 t is possible [1]
- The machines cause no significant vibrations
- The intended subdivision of the floor areas may change over time

– 2nd UF: Sales, imposed load = 5 kN/m2

– 3rd UF: Offices, imposed load = 3 kN/m2

– Roof: Accessible for maintenance only.
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2 Surroundings and third-party requirements
– The A-road (including footway) must remain open for traffic in two directions during the entire

construction period.
– The B-road shall serve as access to the construction site. It is to be kept open for single-lane traffic

from ... onwards and for third-party traffic in both directions from ... onwards.
3 Operational and maintenance requirements
– BL: - Imperviousness to water despite the lack of external insulation, injection of indi-

vidual cracks as required is accepted by the client [2]
- Protection against the effects of de-icing salts for floor slabs, walls and columns
- No ponding

– GF/1st UF: Abrasion-resistant floor covering
– 2nd/3rd UF: Sound insulation to protect against the noise of storage/production
– Roof: Flawless waterproofing and drainage
– Façade: Inspection of fixing elements must be possible.
4 Particular stipulations of the client
– The client requests suspended floors in the form of flat slabs with a maximum depth of 300 mm.

Small column heads beneath the suspended floors will be accepted.
– The type of façade has already been selected. The edges of the suspended floors carry a dead load of

4 kN/m due to non-structural elements and may not deflect by more than 15 mm [3].
– The building must be ready for use 18 months after commencing work on site.
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5 Protection objectives and special risks
– A risk assessment has resulted in a fire resistance of R90 being specified [4].
– With respect to earthquake resistance, the building is classified as class II according to SIA 261.

Later use as a shopping centre (GF to 2nd UF) is therefore possible without the need for strength-
ening measures.

– The possibility of flooding caused by rising waters in the neighbouring river is a risk accepted by
the client.

6 Provisions of standards
The goods vehicle access is to be designed for road traffic loads according to section 10 of SIA 261.
The reduction coefficient according to section 10.3.3 shall be 0.65.
7 Governing documentation
[1] Minutes of meeting No. … of …
[2] Minutes of meeting No. … of …
[3] Minutes of meeting No. … of …
[4] Minutes of meeting No. … of …
8 Signatures
[place], [date] Client: … (company XY) Project realisation team: … (consulting engineers xy)
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Example 3.2 Basis of design for industrial building XY in Z

1 General
– The service criteria agreement forms the starting point for the basis of design [1].
– The design working life of the structure is 50 years. The design working life for replaceable struc-

tural members is 25 years.
– Conditions during construction, especially in connection with excavations, must be investigated in

detail at the tender design and detail design stages.
– The construction inspection plan can essentially be restricted to regulating the responsibilities and

the flow of information. The requirements of SIA 262 and SIA 118-262 apply in all other circum-
stances; these are given in the “Checklists for concrete works” [4].

2 Structural concept
2.1 Structural system
– See description of building in service criteria agreement (Fig. 3.2 to Fig. 3.5).
– In the finished state, a monolithic reinforced concrete construction with loadbearing walls and in-

ternal columns continuous from raft foundation to roof; perimeter and corner columns supported on
peripheral basement walls; raft foundation strengthened below internal columns and service core
(lift shafts); column heads around internal columns, spandrel panels on GF to 3rd UF.

– Prestressed raft foundation and suspended floors (bonded tendons, 4 No. Ø15.7 mm in 75 q 21 mm
steel ducts, concentrated in column strips in N-S direction, distributed in E-W direction).

2.2 Dimensions
– Raft foundation 600 mm, increased locally to 900 mm
– Basement walls 300 mm (wall 5DE 400 mm)
– Internal columns 400 q 400 to 1000 mm, see Tab. 3.1
– Perimeter columns 400 q 300 mm
– Corner columns 300 q 300 mm, L-form on GF, 500 mm leg length
– Loadbearing walls 300 mm
– Suspended floors 280 or 300 mm, see Tab. 3.1
– Spandrel panels 800 q 200 or 250 mm, see Tab. 3.1.
2.3 Construction materials
– Concrete C 30/37 fcd = 20 N/mm2 tcd = 1.1 N/mm2

– Reinforcing steel B500B fsd = 435 N/mm2 ks = 1.08, eud = 4.5 %
– Prestressing steel Y1770S7-15.7 fpk = 1770 N/mm2 fpd = 1320 N/mm2, eud = 2 %

193.3 Service criteria agreement and basis of design

Tab. 3.1 Dimensions in mm

Storey Internal
columns

Column head Suspended floor Spandrel panel
thickness

3rd UF 400 q 400 200 q 1200 q 1200 280 200

2nd UF 400 q 400 200 q 1200 q 1200 280 200

1st UF 400 q 550 250 q 1400 q 1550 280 250

GF 400 q 700 300 q 1600 q 1900 300 250

1st BL 400 q 850 300 q 1600 q 2050 300 -

2nd BL 400 q 1000 200 q 1200 q 1800 280 -



2.4 Construction details

2.5 Method of construction
– Sides to excavation partly sloping, partly supported by sheet piles, temporary dewatering
– Conventional execution of walls and suspended floors with large-panel formwork and concrete

placed by crane or pump
– Construction joints with coupled tendons in raft foundation, basement walls and suspended floors in

bay 3-4 along grid-line 4, construction of eastern part of building to proceed ahead of western part
– Staged prestressing of raft foundation according to progress on site
– Construction of ramp structure after completion of basement levels.
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3 Permanent actions

213.3 Service criteria agreement and basis of design

Tab. 3.2 Permanent actions

Actions Measures Further work Assumptions for structural analysis and
dimensioning

Dead loads - Dimensioning
- Construction inspections

Structural calculations
Construction inspection
plan

Body load = 25 kN/m3

Self-weight of
non-structural
elements

- Dimensioning
- Construction inspections

- Monitoring during use with respect to
modifications

Structural calculations
Construction inspection
plan
Monitoring plan

2nd BL to 3rd UF 3 kN/m2

Roof 3 kN/m2

Perimeter of floor slabs 4 kN/m
Car ramp 3 kN/m2

Fill, ramp 15 kN/m2

Goods vehicle access 5 kN/m2

Prestress - Dimensioning
- Construction inspections

Structural calculations
Construction inspection
plan

sp0 = 0.7fpk = 1239 N/mm2

m = 0.2
D@ = 4 mrad/m

Earth pressure - Dimensioning
- Construction inspections

(excavations, sheet piles)
- Checking the assumed subsoil conditions during

execution
- Comparing measured and calculated sheet pile

wall displacements
- Checking anchor forces

- Inspecting backfill material

Structural calculations
Construction inspection
plan
Construction inspection
plan
Construction inspection
plan
Construction inspection
plan
Construction inspection
plan

gek = 19 kN/m3 [2]
fkl = 28h
ckl = 0

Hydrostatic
pressure

- Dimensioning
- Checking the water level before and during

execution

- Groundwater lowering/construction inspections

Structural calculations
Tender design/
construction inspection
plan
Tender & detail design/
construction inspection
plan

gwk = 10 kN/m3

hwd,max = – 4.0 m [2]



4 Structural safety, serviceability and durability
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Tab. 3.3 Structural safety

Hazard scenario Measures Further work Assumptions for structural analysis and
dimensioning

Failure of excavation
shoring

- Tab. 3.2, earth/hydrostatic pressure
- Restricting storage of materials behind

excavation shoring

Structural calculations
Construction inspection
plan

Tab. 3.2

Anchor failure - Dimensioning
- Construction inspections/monitoring

Structural calculations
Construction inspection
plan

Tab. 3.2

Ground heave - Tab. 3.2, hydrostatic pressure Structural calculations
Construction inspection
plan

gG,sup = 1.6
gG,inf = 0.9
hwd,min = – 7.5 m

Buoyancy, BL - Powerful pumps
- Flood BL as last resort (opening left adjacent

to ramp until floor above 1st BL completed)

Construction inspection
plan

Punching,
raft foundation

- Dimensioning
- Prestressing in stages
- Construction inspections

Structural calculations

Construction inspection
plan

Punching, suspended
floors during construc-
tion

- Dimensioning
- Prestressing of column strip
- Propping
- Construction inspections

Structural calculations

Construction inspection
plan

Blocked roof drainage - Height of parapet 100 mm
- Inspections/regular cleaning of outlets Monitoring plan

Maintenance plan

Ponding considered in imposed load
Snow not critical

Wind - Dimensioning (only critical for façade
incl. fixing elements)

Structural calculations qp0 = 0.9 kN/m2

zg = 450 m
ar = 0.23
z = 16 m
qp = 1.0 kN/m2

Imposed loads/
traffic loads

- Dimensioning
- Signs indicating permissible imposed loads

in building
- Traffic signs and constructional measures at

car ramp
- Checking in the event of changes to the

machinery for storage/production

Structural calculations
Monitoring plan

Monitoring plan

Monitoring plan

Roof cat. H qk = 1 kN/m2

3rd UF cat. B qk = 3 kN/m2

2nd UF cat. D qk = 5 kN/m2

1st UF cat. E qk = 8 kN/m2

GF cat. E qk = 8 kN/m2

1st BL cat. F qk = 2 kN/m2

Qk = 20 kN
2nd BL cat. F qk = 2 kN/m2

Qk = 20 kN
Car ramp qk = 2 kN/m2

Qk = 20 kN
Goods vehicle access b = 11 m

a = 0.65
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Tab. 3.3 Structural safety (Continued)

Hazard scenario Measures Further work Assumptions for structural analysis and
dimensioning

Impact, parking,
A-road

- Concrete perimeter wall
- Reinforced concrete spandrel panel F17 on

GF

Detail design

Impact, B-road - Dimensioning
- Columns C7 and F7 L-form on GF
- Reinforced concrete spandrel panel 7CF on

GF

Structural calculations Qdx = 750 kN
Qdy = 300 kN

Impact, goods
vehicle access

- Dimensioning
- Speed J 30 km/h
- Ramp wall A35
- Unloading platform C12 for deliveries

Structural calculations Qd = 300 kN

Impact, ramp/BL - Dimensioning Structural calculations Qd = 60 kN

Impact, fork-lift,
GF/1st UF

- Dimensioning
- Perimeter reinforced concrete spandrel panel
- Impact protection for internal columns

Structural calculations Gk = 60 kN
Qd = 300 kN
h = 0.8 m

Fire - Fire compartments (staircase/individual
storeys, GF to 3rd UF, divided along
C4-E4-E45-F45)

- Fire resistance R90
- Fire detection system
- Instruction of personnel
- Regular checking of fire protection concept

Tender/detail design

Monitoring plan

Monitoring plan

Concrete cover j 30 mm

Earthquake - Dimensioning
- Measures according to SIA 261

Structural calculations Earthquake zone Z1
Subsoil class E
Construction works class II
j = 0.05
gf = 1.2
q = 2.0

Explosion, BL - Possibly pressure-relief openings
- Inspecting service lines at risk

Tender design
Monitoring plan

Construction works category 1
No verification

Explosion, GF/UF - Regulations for storing hazardous goods Monitoring plan Construction works category 1
No verification

Pipe breakage - Construction inspections

- Inspecting and maintaining service lines at
risk

Construction inspection
plan
Monitoring plan
Maintenance plan
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Tab. 3.4 Serviceability and durability

Requirement Measures Further work Assumptions for structural analysis and
dimensioning

Watertightness, BL - Special requirements for concrete
- Suitable concreting pours
- Careful curing
- Prestressing
- Waterstops in construction joints
- Installing injection hoses for

waterproofing at a later date
- Construction inspections

- Checking the watertightness
- Injection of cracks if required

Tender /detail design

Construction inspection
plan
Monitoring plan
Maintenance plan

Drainage, BL - Fall 2 %
- Properly positioned/adequately sized

outlets
- Construction inspections

- Regular cleaning

Tender/detail design

Construction inspection
plan
Maintenance plan

Waterproof roof - Waterproofing
- Fall 2 %
- Properly positioned/adequately sized

outlets
- Construction inspections

Tender/detail design

Construction inspection
plan

Stiffness of
suspended floors

- Dimensioning
- Prestressing
- Spandrel panels

Structural calculations SIA 260, Tab. 3
Suspended floor edges: w J 15 mm

Crack limitation - Minimum reinforcement
- Suitable concreting pours
- Careful curing
- Prestressing
- Construction inspections

Structural calculations
Detail design

BL/ramp: higher requirements
GF/UF: normal requirements

Sound insulation,
1st UF/2nd UF

- Consult specialist Tender design

Abrasion resistance,
finishes, GF/1st UF

- Granolithic finish, 40 mm Tender/detail design

Corrosion protection,
reinforcement, BL

- Dense finish (asphalt)
- Impregnation/coating of walls and columns
- Thick concrete cover

(exposure class XC4/XD1)
- Concrete cover 40 mm
- Construction inspections

- Regular cleaning
- Checking the chloride content

Tender/detail design

Construction inspection
plan
Maintenance plan
Monitoring plan



5 Accepted risks
– Tanker accident with fire on A-road
– Pressure wave caused by explosion in neighbouring tank farm on A-road
6 Further conditions relevant to the project
– The agreement [3] applies with respect to tensioned and non-tensioned anchorage components in

the areas of the A- and B-roads.
– Plant room BC45 in the basement is continuous over both basement levels without an intermediate

floor and must be accessible from above as well as from both basement levels (opening closed off
with Ø 2 m hatch).

7 Basic information
7.1 Standards
SIA 260 (2003) Basis of structural design
SIA 261 (2003) Actions on structures
SIA 261/1 (2003) Actions on structures – Supplementary specifications
SIA 262 (2003) Concrete structures
SIA 262/1 (2003) Concrete structures – Supplementary specifications
SIA 263 (2003) Steel structures
SIA 263/1 (2003) Steel structures – Supplementary specifications
SIA 267 (2003) Geotechnical design
SIA 267/1 (2003) Geotechnical design – Supplementary specifications.
7.2 Information specific to the project
[1] Service criteria agreement for the industrial building XY in Z, dd.mm.yy, … pp.
[2] Geotechnical report for the industrial site XY in Z, practice of Dr. …, z, dd.mm.yy, … pp.
[3] Contractual agreement between the XY company and the Z local authority concerning anchorage

components in the areas of the A- and B-roads, z, dd.mm.yy, … pp.
7.3 General information
[4] Checklists for concrete structures, consulting engineers xy, z, yy, … pp.
8 Signature
[place], [date] Project realisation team: … (consulting engineers xy)

253.3 Service criteria agreement and basis of design

Tab. 3.4 Serviceability and durability (Continued)

Requirement Measures Further work Assumptions for structural analysis and
dimensioning

Corrosion protection,
reinforcement,
car ramp/
goods vehicle access

- Fall j 2 %
- Effective drainage
- Waterproofing/finishes
- Dense cover concrete

(exposure class XC4/XD3)
- Concrete cover 55 mm
- Construction inspections

- Regular cleaning

Tender/detail design

Construction inspection
plan
Maintenance plan

Corrosion protection,
reinforcement, GF/UF

- Dense cover concrete
(exposure class XC1)

- Concrete cover 30 mm
- Construction inspections

Tender/detail design

Construction inspection
plan

Corrosion protection,
façade fixings

- Stainless steel
- Construction inspections

- Regular inspections

Tender/detail design
Construction inspection
plan
Monitoring plan



Drawing up the service criteria agreement and the basis of design compels the project
realisation team to follow an orderly procedure for the conceptual design. Of course,
this does not compensate for lack of creativity and decisiveness. Applied properly and
limited to the essentials, however, the two documents are very welcome inclusions that
support the conceptual design process. They simplify the overview and pave the way
for discovering useful potential solutions to given problems.

3.4 Summary

1. The design of a structure embraces diverse elements whose relationships with
each other are summarised in Fig. 3.1. The corresponding terminology is defined
in appendix A1.

2. Fig. 3.1 and the associated terminology assist in understanding the subject and
enable a uniform, systematic approach to theory and practice for all design,
site management and construction work specialists engaged in the areas of struc-
tures and geotechnics.

3. The quality of a structure primarily depends on its conceptual design, its detailing
and its execution. Structural analyses and numerical verifications are merely tools
for guaranteeing the behaviour of a structure with respect to structural safety and
serviceability within specified limits.

4. The aim of the draft design is to develop a suitable structural concept, which spe-
cifies the structural system, the most important dimensions, construction material
properties and construction details plus the intended method of construction. It is
developed as part of the integrative planning of the construction works in consul-
tation with all the specialists involved.

5. Subjective ideas and decisions based on experience and intuition help to progress
the conceptual design; but they must stand up to objective criticism and therefore
must be checked and should undergo further development.

6. Drawing up the service criteria agreement and the basis of design compels the
project realisation team to follow an orderly procedure for the conceptual design.

7. All decisions that are not the sole responsibility of the project realisation team
must be recorded in the service criteria agreement in a manner that can be under-
stood by the client. Modifications and supplements to the service criteria agree-
ment within the scope of the tender design and detail design should be avoided as
far as possible.

8. The basis of design describes the implementation of the service criteria agreement
specific to the construction works in the jargon of the project realisation team. It is
part of the preliminary design and is successively supplemented and refined as the
project undergoes further development in the tender design and detail design
stages.

9. Every conceptual design must satisfy the basic requirements concerning adequate
durability, reliability and robustness. The true marks of quality of a conceptual
design are to be found in its economy, integration and composition.

10. Economy is primarily influenced by the choice of the structural system and the
intended method of construction. The synthesis of structural and construction
technology considerations gives rise to an efficient, essentially well-proportioned
primary form for the structure which can be further refined to achieve the best
possible integration and composition.
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3.5 Exercises

3.1 A new, approx. 20 km long footpath is to be built in an Alpine region about
1000 m above sea level. This project calls for the erection of a number of small
structures, in particular:
– 6 footbridges with spans between 6 and 30 m, usable width 1.2 m
– 1 viewing platform of 20 m2 overlooking a gorge
– 1 lookout tower on a tree-covered hill with a platform of 20 m2 at a height of

20 m
– 2 canopies each of 60 m2 over barbecue areas.
You work for the consulting engineers appointed to design these structures and
have been invited to a first (all-day) meeting with the client (including a site
visit).
What preliminary clarifications would you carry out in your office beforehand?

3.2 How would you prepare for the meeting? What would you take with you?
3.3 Draw up a list of questions relevant to the compilation of the service criteria

agreement as a basis for the dialogue with the client.
3.4 What additional information would you like to acquire during the site visit as a

basis for the structural design work and for compiling the basis of design?
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4 STRUCTURAL ANALYSIS AND
DIMENSIONING

4.1 General

We learned in chapter 3 that dimensioning is only one of a number of different meas-
ures for dealing with potential hazards and hence assuring structural safety. Similarly,
dimensioning is only one of a number of different measures for taking into account
foreseeable service situations and hence assuring serviceability.

Where dimensioning is an adequate measure, we speak of a design situation, see
Fig. 3.1. Dimensioning is then carried out on the basis of limit states by specifying
the load cases appropriate to the design situations and supplying appropriate verifica-
tions.

An indispensable part of dimensioning, besides the analytical determination or con-
firmation of the dimensions and the construction material properties as a result of
the verifications, is detailing based on structural and construction technology consider-
ations. Detailing is the process of determining and coordinating the construction details.

The structural analysis forms the starting point for dimensioning. It enables the be-
haviour of a structure to be understood with respect to the design situations requiring
investigation taking into account the critical influences. The methods of structural
analysis, such as those presented in this book, must be based on acknowledged theory
and engineering practice, confirmed by experimental testing where necessary.

The basic concepts and the results of the structural analysis and the dimensioning must
be included in the structural calculations and the technical report.

Checking the plausibility of the results of the structural analysis and the dimensioning
is essential in every case. Equilibrium checks, examining appropriately simplified
structural systems and comparisons with known structural solutions to similar prob-
lems are all excellent ways of carrying out plausibility checks.

4.2 Actions

4.2.1 Actions and action effects

The term actions corresponds to the normal use of the word. It refers to all the mech-
anical (loads, forces), other physical (temperature, humidity), chemical (salts, acids,
alkalis, organic compounds) and biological (bacteria, insects, fungi, algae) effects ex-
perienced by a structure as a result of execution, use and environmental influences.

Action effects are the structure’s response to the actions. Examples of such effects are
stresses, stress resultants, support force variables, strains, displacements and rotations
as well as effects connected with the type of construction, e. g. cracks, corrosion, rot,
etc.

Whether a certain variable is to be regarded as an action or an action effect depends on
the system bounds. If, for example, in a retaining structure the subsoil is regarded as
part of the structure, then the bearing pressure is an action effect, but otherwise an
action applied to the subsoil or the retaining structure. Another example is the
post-tensioning of structural members made from reinforced concrete; during post-
tensioning, the stressing force is considered as an action applied to the reinforced con-
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crete member without the prestressing tendon, but when verifying the structural safety,
it can be interpreted as an action effect.

Deformations are the primary action effects caused by actions such as temperature
changes or the shrinkage or swelling of materials. If these effects are prevented as
a result of kinematic constraints, secondary action effects in the form of residual
stresses, and in the case of statically indeterminate systems, restraints, are the result,
see sections 7.5, 13.2.5, 14.3 and 16.2.

Actions are classified according to how they change over time, how they change with
position and according to their dynamic effect.

Permanent actions G are those actions that remain approximately constant over a
reference period or tend towards a limit value, e. g. dead loads, self-weight of non-
structural elements, prestressing forces. Variable actions Q, e. g. snow loads, wind
loads, imposed loads, are those actions that are not permanently applied, are not con-
stant or do not tend towards a limit value over a reference period. Accidental actions A
are those actions with a low probability of occurrence, which are generally of short
duration but have a significant effect, e. g. the effects of impacts, fires, earthquakes
and explosions.

Actions are designated as fixed when their distribution over the structure is defined,
i. e. when their magnitude and direction, e. g. in snow and wind load models, are
uniquely determined by the value at one point. And vice versa, actions are designated
as free when their distribution over the structure is not defined, e. g. imposed loads in
buildings or the effects of traffic; in such cases the actions are assumed to be applied at
the most unfavourable positions.

When there are no or at best negligible accelerations due to an action, the action is
designated as static, otherwise as dynamic. In the latter case, dynamic effects are often
considered in simplified form as surcharges, by applying equivalent static forces or by
including dynamic factors.

4.2.2 Models of actions and representative values

The relevant standards specify easy-to-use models of actions for the numerical formu-
lation of conventional actions. The magnitude of an action is determined by one or
more scalar indications, which can assume various representative values Frep. The
most important representative value of an action is the characteristic value Fk. It
stands for a certain fractile for permanent actions Gk and for a certain probability
of occurrence for variable actions Qk. In the case of accidental actions, the design va-
lue Ad is specified directly.

The mean value is mostly used for Gk in the case of permanent actions. In the case of
sensitive structures or when G can vary over a wider range (coefficient of variation
i 5 %), upper and lower values Gk,inf and Gk,sup should be used (the 5 % and 95 %
fractiles of the statistical distribution of G). Dead loads are generally determined
on the basis of intended dimensions and average body loads. Mean, upper or lower
values are used for the characteristic values Pk of prestressing forces depending on
the point in time considered and the type of prestressing.

In the case of variable actions, Qk is generally specified in such a way that the prob-
ability of this value being exceeded over a period of one year is 2 % (corresponding to
a 50-year return). The reduction factors c0, c1 and c2 for rare, frequent or quasi per-
manent values of variable actions take into account the lower probability of the simul-
taneous occurrence of the most unfavourable values of several independent actions,
see sections 4.6.3 and 4.6.4.
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Actions arising in the subsoil, especially earth and hydrostatic pressures as well as
subsoil deformations not related to the construction works, must be treated as perman-
ent, variable or accidental actions depending on their variability, duration and prob-
ability of occurrence. The characteristic value of an action arising in the subsoil can be
calculated through soil mechanics analyses, conclusions drawn from the behaviour of
the subsoil or structure, large-scale tests, testing of scale models or by applying
empirical values to the case being considered. An upper or lower value of an action
may be critical depending on the particular design situation.

4.3 Structural models

According to Fig. 3.1, a structural model links the actions to the action effects and
includes the geometrical properties plus the properties of the construction materials
and the subsoil. Linking the individual variables (e. g. forces and deformations) takes
place in an analytical model using appropriate mathematical/physical relationships
(e. g. static and kinematic relationships plus constitutive relationships) as presented
in this book, for example.

The structural model is the result of defining and idealising the structural system. It
must be suitable for predicting the structural behaviour for the design situations that
are to be investigated. Different structural models are suitable depending on the par-
ticular problem. Idealisation as a rigid body is often sufficient, and in many cases for
complex structures the global structural behaviour at least can be idealised with
acceptable accuracy as a (one-dimensional elastic or plastic) framed structure. On
the other hand, in order to analyse local effects, it may be necessary to work with
more elaborate (two- or three-dimensional) models in the form of plate and shell
or three-dimensional structures. The art of handling structural analysis problems
manifests itself in skilful modelling, using the simplest approach possible, which leads
to meaningful results just adequate for the respective problem. By presenting the ap-
propriate principles and including many examples plus exercises for readers to work
through themselves, it is precisely that approach that this book wishes to communi-
cate.

The characteristic value of a geometric variable normally corresponds to the nominal
value anom (e. g. for planned dimensions), sometimes a prudent estimate (e. g. water
table, height of dumped goods). Imperfections are taken into account directly by
way of design values ad .

The properties of construction materials and subsoils are generally represented by
upper or lower characteristic values Xk (generally the 5 % and 95 %fractiles), which
are determined by way of standardised test methods. If necessary, conversion factors h

are used in order to convert the results of tests into values that we can assume are
representative for the structure or the subsoil (e. g. to take into account humidity, tem-
perature or scale effects, the type of failure or the duration of the action).

4.4 Limit states

According to Fig. 3.1, we distinguish between ultimate limit states (structural safety)
and serviceability limit states.

The ultimate limit states concern the safety of the structure and its ancillary elements
plus the safety of persons. We distinguish between four types:

– Type 1 is the overall stability of the structure (lateral buckling, uplift or buoyancy
as a rigid body).

– Type 2 is reaching the ultimate resistance of the structure or one of its parts
(failure due to rupture, excessive deformations, conversion of the structure into a
mechanism or loss of stability).
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– Type 3 is reaching the ultimate resistance of the subsoil (landslide, slope failure,
ground failure).

– Type 4 is reaching the fatigue resistance of the structure or one of its parts.

The serviceability limit states concern the functionality of the construction works, the
comfort of persons using the construction works and the appearance of the construc-
tion works. The design criteria for serviceability can refer to:

– Deformations that impair the functionality or appearance of the construction
works or its ancillary elements or cause damage to non-loadbearing components

– Vibrations that limit the functionality of the construction works or impair the
comfort of persons using the construction works

– Sealing defects that limit the functionality of the construction works or impair the
comfort of persons using the construction works

– Action effects specific to the type of construction, e. g. cracks or slip at
connections, which impair the appearance of the construction works and the
durability of the structure

– Limit values for environmental impacts, e. g. obstructing the flow of groundwater.

From the point of view of durability, the requirements regarding structural safety and
serviceability must be fulfilled within the scope of the intended use and the foreseeable
actions without unforeseeable maintenance and repair costs. Employing suitable meas-
ures during design can create favourable conditions, but durability of the construction
works is essentially influenced by the effective use, monitoring and maintenance of the
construction works. These activities exceed the responsibilities of the project realisa-
tion team. It should be in the interests of the owner and user, and also their respon-
sibility, to ensure that their construction works are used and monitored as intended
and also properly maintained.

4.5 Design situations and load cases

According to Fig. 3.1, there is a hazard scenario or service situation at the bottom of
every design situation. We distinguish between persistent and transient design situ-
ations depending on whether a given design situation governs during a period of time
equal to the design working life or governs during a much shorter period. There are
also accidental design situations, which involve exceptional conditions for the struc-
ture; they include either an accidental situation itself or relate to the situation imme-
diately after an exceptional event (e. g. following an earthquake).

The load cases associated with the design situations must be specified. Every load
case is characterised by a leading action corresponding to the leading hazard in
the hazard scenario and the accompanying actions occurring simultaneously with
it. Generally, it is sufficient to consider one variable accompanying action.

Dimensioning in no way means trying to “cover as many situations as possible” with a
multitude of load cases and accompanying actions, as is very often attempted. Instead,
it means determining the load cases governing a limit state for the structure. This
mostly involves just a few, physically compatible arrangements of actions that occur
simultaneously. The consideration of individual actions as “load cases” (e. g. “snow
load case”, “wind load case”, etc.) and their thoughtless superposition with the help
of the superposition law for geometric and material linear systems (without taking
account of the physical compatibility of the actions) is an approach often encountered
in practice – and is senseless.
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4.6 Verifications

4.6.1 Verification concept

The verification of structural safety and serviceability is generally carried out on the
basis of design values that are specified directly or calculated from characteristic or
other representative values or using a design value function in conjunction with partial
factors. The partial factors take into account uncertainties in the individual variables
but also uncertainties in the models of the actions and resistances. The aim of this is to
achieve a certain reliability, i. e. a certain probability that the requirements regarding
structural safety and serviceability are fulfilled over a given length of time. The partial
factors are specified based on the methods of reliability theory taking into account
construction practice and experience.

In principle, structural safety and serviceability must be verified in every case. How-
ever, a particular verification may not be needed if it can be established that it is not
critical. In addition, one or both of the verifications may not be necessary if it can be
shown that the corresponding requirements are of only minor significance or can be
achieved with structural or construction technology measures; the procedure adopted
must be recorded in the basis of design in such instances.

4.6.2 Design values

The following generally applies for the design value of an action effect:

Ed w gSE Fd, Xd, adf g (4:1)

where Fd = gf Frep, Xd = hXk /gm and ad = anom or ad = anom e Da. The partial fac-
tor gS takes into account uncertainties in the model at the transition from the actions
to the action effects, gf allows for possibly unfavourable discrepancies between the
magnitude of the action F and the representative value Frep, and gm takes into account
unfavourable discrepancies between the properties of the construction material or the
subsoil X and the characteristic value Xk. The conversion factor h and the nominal
value anom of a geometrical property have already been introduced in section 4.3;
Da denotes the difference between the nominal and design values of a geometrical
property for the case that such deviations exert a substantial influence on the reliability
of the structure.

The curly brackets {…} used in (4.1) and in the following signify a design value func-
tion. Depending on the verification, some of the design values given between the
brackets may be omitted, i. e. the relevant variables must be specified from case to
case when applying the equation.

The following generally applies for the design value of the ultimate resistance:

Rd w
R Xd, adf g

gR

(4:2)

where the partial factor gR takes into account the uncertainties in the model of resist-
ance.

As a rule, gS and gf can be combined, according to gF = gS gf , to form one load fac-
tor gF . Further, gR and gm can normally be combined, according to gM = gR gm, to form
one resistance factor gM . Instead of (4.1) and (4.2), the following then applies:

Ed wE gFFrep ,
h Xk

gm

, ad

� �
, Rd wR

h Xk

gM

, ad

� �
(4:3)

Tab. 4.1 contains, for example, the load factors given in [31].

The design values Cd for serviceability limits (e. g. permissible deflections, sway,
eigenfrequencies, etc.) are generally specified or agreed specifically for each project
and take account of the recommended values given in the standards.
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4.6.3 Verification of structural safety

The following design criterion must be fulfilled for type 1 limit states (see sec-
tion 4.4):

Ed,dst JEd,stb (4:4)

where Ed,dst and Ed,stb denote the design values of the destabilising and stabilising ac-
tion effects respectively.

The following design criterion must be fulfilled for type 2 and 3 limit states:

Ed JRd (4:5)

Here, the design values of the action effects for persistent and transient design situ-
ations are to be calculated according to

Ed wE gGGk, gPPk, gQ1Qk1, c0iQki, Xd , ad

n o
(4:6)
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Tab. 4.1 Load factors for the verification of structural safety

Actions gF Limit state

Type 1 Type 2 Type 3

Permanent actions

- unfavourable effect gG,sup 1.10 1) 1.35 1) 1.00

- favourable effect gG,inf 0.90 1) 0.80 1) 1.00

Variable actions

- generally gQ 1.50 1.50 1.30

- road traffic loads gQ 1.50 1.50 1.30

- railway traffic loads gQ 1.45 1.45 1.25

Actions arising in the subsoil

Earth surcharges

- unfavourable effect gG,sup 1.10 1.35 2) 3) 1.00

- favourable effect gG,inf 0.90 0.80 1.00

Earth pressure

- unfavourable effect gG,Q,sup 1.35 1.35 1.00

- favourable effect 4) gG,Q,inf 0.80 0.70 1.00

Hydrostatic pressure

- unfavourable effect gG,Q,sup 1.05 1.20 3) 1.00

- favourable effect gG,Q,inf 0.95 0.90 1.00

1) G is either multiplied by gG,sup or by gG,inf depending on whether the overall effect is favourable or
unfavourable.

2) gG,sup may be reduced linearly from 1.35 to 1.2 for heights of dumped goods from 2 to 6 m.

3) According to SIA 267, lower values are permissible in certain cases when using the observation
method.

4) According to SIA 267, Fd = Rd is valid for passive earth pressure as a favourable action.



and for accidental design situations according to

Ed wE Gk, Pk, Ad, c2iQki, Xd, adf g (4:7)

Please see appendix A2 for the notation used here.

The verification of structural safety for type 4 limit states is carried out essentially
according to (4.5), although special rules for determining the effects of fatigue loads
and the corresponding resistances are applied (see also section 7.6.3).

4.6.4 Verification of serviceability

Verifications of serviceability must be carried out for persistent and transient design
situations, in exceptional cases for accidental design situations as well (e. g. for vital
infrastructure elements such as hospitals, fire stations and ambulance stations follow-
ing an earthquake).

Serviceability is deemed to be satisfied when the design criterion

Ed JCd (4:8)

is fulfilled, where Ed is generally to be calculated according to (4.3)1, with
gF = gm = 1.

We distinguish between three types of load case for persistent and transient design
situations, and determine the governing action effects as follows:

Rare load cases

Ed wE Gk, Pk, Qk1, c0iQki, Xd, adf g (4:9)

Frequent load cases

Ed wE Gk, Pk, c11Qk1, c2iQki, Xd, adf g (4:10)

Quasi permanent load cases

Ed wE Gk, Pk, c2iQki, Xd, adf g (4:11)

Eq. (4.7) applies to the earthquake design situation, although the value used for Ad

should be reduced by 50 % compared with that used in the verification of structural
safety.

4.7 Commentary

Until the 1960s, the dimensioning of structures was carried out using permissible
stresses for the stress resultants calculated based on the elastic system at serviceability
level. The focus was on the behaviour of the structure in the serviceability state. The
aim of limiting the stress was to limit deformations and also to create a sufficient safety
margin against failure.

The introduction of plastic methods of calculation in the 1960s and 1970s brought
about a paradigm change; the focus shifted to the ultimate resistance. Verification
of the stress was replaced by verification of the ultimate load, with the limit load de-
termined according to plastic theory being divided by a global safety factor (in the
order of magnitude of 1.8, but varying depending on the type of construction) to obtain
the permissible load at the serviceability state. It was recognised that every stress and
deformation calculation at the serviceability state is complicated, and essentially
called into question, by the diverse initial stress states caused by, for example, the
production process, and is impossible, at best very difficult, to ascertain in practice.
On the other hand, the limit load is independent of the loading history in the presence
of adequately ductile behaviour and the absence of stability problems.

Regarding verification of structural safety, further developments led to the introduc-
tion of the design level lying between the serviceability and ultimate levels. The global
safety factor was split into a load factor and a resistance factor, with the actions and
resistances being increased and decreased accordingly. The practical significance of
the behaviour at the serviceability state (which had been forced somewhat into the
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background by the ultimate load verification approach) was rediscovered, given a dif-
ferentiated formulation and by calling it the “limit state of serviceability” placed on
the same level as the established consideration of the limit state of structural safety.
This development was concluded around 1990 and, following further refinements over
the next 10 years, culminated in the design concept presented in this chapter.

The procedure for dimensioning structures as outlined here, which is common these
days, will not be referred to further in the following chapters. The focus will be on the
structural behaviour of structures subjected to mechanical and significant physical ac-
tions at the serviceability and ultimate limit states. It is easy to incorporate appropriate
models in the design concept presented here for practical applications, and such
models will still retain their usefulness even in any future adaptations of this design
concept.

The design concept described here is primarily suitable for the definitive structural
calculations during detail design. Simplifications are justified for the tender design,
and principally the preliminary design. A method for the conceptual design and the
rough checking of concrete structures, used successfully by the author over many
years, is briefly described here as an example of such a simplification.

The method basically returns to the concept of permissible stresses and can be referred
to as dimensioning based on representative stresses. All verifications are carried out
according to (4.5) at the serviceability level using conventional modelling by setting
gF = 1 in (4.3)1 and including an additional factor of 1.4 in the denominator of the first
expression in brackets on the right-hand side of (4.3)2, which corresponds to a mean gF

for limit state 2 according to Tab. 4.1. For reinforcing steel, this leads to a limit stress
of 0.62 fsk, where fsk denotes the characteristic value of the yield strength of the
reinforcing steel. For prestressing steel, the limit stress is 0.62 fp0.1k, where
fp0.1k = characteristic value of yield strength of prestressing steel. For the compressive
stresses in the concrete, bond stresses and tensile or shear stresses, the result is limit
values of about 5 fctm, 0.65 fctm and 0.17 fctm, where fctm = mean concrete tensile
strength. In the case of second-order effects in compressive members, the curvatures
are to be increased by a factor of 1.4.

In contrast to the concept of permissible stresses, which is based rigorously on elastic
theory, dimensioning based on representative stresses is much less restrictive and
makes full use of the accomplishments of plastic methods of calculation. These
methods result in simplified calculations for the stress resultants, which can largely
be confined to considering the equilibrium, and also in simplified cross-sectional con-
siderations, e. g. assuming a rectangular distribution of the concrete compressive stress
over 85 % of the depth of the bending compression zone.

Dimensioning based on representative stresses presumes that ductile structural behav-
iour is assured. This requirement can be achieved by choosing suitable construction
materials, including a minimum amount of reinforcement and through careful detail-
ing. Using this as a starting point, the method outlined here enables the user to design
or check structural members quickly and sufficiently accurately for conceptual design
purposes, freed from unnecessary analytical ballast.

4.8 Recommendations for the structural calculations

Producing clearly organised structural calculations that are easy for others to follow is
an important engineering activity. The following recommendations should be applied
appropriately depending on the scope of the project and its status (preliminary/tender/
detail design).

Tab. 4.2 shows one possible way of organising the structural calculations and contains
remarks regarding individual sections.
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374.8 Recommendations for the structural calculations

Tab. 4.2 One possible way of organising the structural calculations

Content Commentary

Title page
Contents

Contents

1 Basic information
1.1 Documents List of all relevant construction works documents

Reports e. g. description of construction works, previous technical reports
Drawings
Preliminary calculations e. g. preliminary structural analysis
Service criteria agreement
Basis of design
Surveys e. g. geotechnical report
Standards
Regulations e. g. official directives
Publications full details (author, title, publisher, location, year, page Nos.)
Computer programs name, version

1.2 Geometry Description of geometry of structural system
Overview three-dimensional structural system with principal dimensions, construction states
Notation system of coordinates, sign conventions, structural member designations
Cross-sections numbering, cross-sectional values
Prestressing cable geometry and numbering

1.3 Construction materials Material designations and summary of characteristic values
Concrete
Reinforcing steel
Prestressing steel
Structural steel
Timber
Connectors
Masonry

1.4 Subsoil Implementation of soil survey data
Subsoil model
Subsoil parameters
Permissible stresses e. g. ground bearing pressures
Permissible deformations e. g. settlement, wall displacements

1.5 Actions Summary of load models, characteristic values and factors
Dead loads
Self-weight of non-structural
elements
Prestressing
Subsoil dead loads, earth pressure, hydrostatic pressure, soil-structure interaction
Snow
Wind
Temperature
Shrinkage
Creep
Imposed loads dynamic effects
Impact
Fire
Earthquake earthquake zone, construction works and subsoil classes



Write on only one side of each sheet of the structural calculations; add the date and the
initials of the author to each sheet. Number the sheets consecutively section by section;
sheets added at a later date with supplementary data or modifications should be given
the number of the page being supplemented/modified plus a letter, e. g. 2.3.17 B.

Give equations in algebraic form when they appear for the first time. Add a cross-
reference in the case of equations that are not generally in use.

Describe the calculation procedure, at least in abbreviated form, and mention import-
ant considerations (e. g. concerning modelling) and consequences.

Adding cross-references makes it a lot easier to follow the structural calculations. In
doing so, specify the significance and source of variables that are being used again.

Highlight results so that they are clearly identifiable as such at first glance. Always
include units of measurement with the results and round them off to two or three sig-
nificant places. (Do not make them appear more accurate than they really are!)

4.9 Recommendations for the technical report

The technical report should include the essentials of a project described as simply and
briefly as possible. Tab. 4.3 shows one possible way of organising the report and in-
cludes non-exhaustive lists of remarks and keywords regarding the individual sec-
tions. As with the structural calculations (section 4.8), the following recommendations
should be applied accordingly depending on the scope and status of the project.
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Tab. 4.2 One possible way of organising the structural calculations (Continued)

Content Commentary

2 Structural analysis and dimensioning Separate presentation of individual parts of the structure (e. g. superstructure, substructure), also
construction states and temporary structures

2.1 Structural models Description of structural systems considered and assumptions made
Structural systems hinges, degrees of fixity
Prerequisites behaviour of construction materials and subsoil, effective widths

2.2 Design situations Description of physical circumstances and conditions considered
Relevant hazard scenarios leading hazard, accompanying situations
Relevant service situations design working life
Governing limit states structural safety, serviceability
Load cases physically compatible application of actions occurring simultaneously

2.3 Action effects Determining the structural behaviour
Support force variables checking equilibrium
Stress resultants graphic presentations, envelopes
Stresses e. g. boundary forces, stress differences, principal stresses
Displacements e. g. deflections, displacements at supports
Deformations

2.4 Verifications Confirmation that design criteria have been fulfilled
Design values partial and conversion factors
Structural safety overall stability, ultimate resistance, fatigue resistance
Serviceability functionality, comfort, appearance

2.5 Detailing Construction details, sketches to scale

3 Appendix (computer calculations)
3.1 General Scope, analytical models, overview
3.2 Inputs
3.3 Outputs Preferably graphic presentations

Structural analysis treatment of the individual parts of the structure (structural members), preferably in
Verifications direction of flow of forces

3.4 File CD (incl. overview) with detailed data
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Tab. 4.3 One possible way of organising a technical report

Content Commentary, keywords

Title page
Contents

Contents

1 Introduction
Brief Situation, scope of project, surroundings

Possibly a brief historical review
Preliminary work, status of project

Aims of project Highlight the most important requirements of the service criteria agreement (use, environment,
operation/maintenance, durability, economy, integration, composition)

2 Overall concept
Important boundary conditions Highlight the relevant design boundary conditions (see section 3.2)
Development of concept and reasoning Summary of the main steps in the draft design (examining alternatives, choice of concept,

durability, economy, integration and composition)

3 Description of construction works
Geometry Principal dimensions, alignment, surroundings
Construction materials Material selected for each structural member
Environment E. g. consideration of nature conservation stipulations, relationship with neighbouring con-

struction works, immissions during construction, energy balance
Structural composition Principles, individual structural members
Durability and maintenance Scheduled renewals, particular aspects of maintenance
Special aspects E. g. supplementary soil surveys, preliminary testing

4 Structural calculations As a rule, this section is first added for the tender design. For the preliminary design, it is
generally sufficient to include rough structural calculations.

Overview Structural systems, principal assumptions
Most important results E. g. settlement, deflections, stresses

Graphic or tabular presentation

5 Construction work
Concept Construction programme, construction concept
Construction site infrastructure Access, space requirements
Excavations and foundations Securing excavations, piles, pilecaps, etc.
Superstructure E. g. abutments, piers, bridge superstructure or walls, columns, suspended floors
Deconstruction Possible deconstruction of existing construction works or individual superseded structural

members

6 Costs
Quantities Removal of topsoil, excavation, demolition, deconstruction

Fill, topsoil, concrete, reinforcing steel, prestressing steel, structural steel, timber, masonry,
floor finishes
Round off quantities sensibly
Cover uncertainties by adding a “contingencies” item

Cost of construction Preliminary design:
estimate (accuracy e 20 %) based on preliminary quantities or experience
Tender design:
estimate (accuracy e 10 %) based on quantities and unit prices

Cost of maintenance and operation

7 Summary Structural concept, integration and composition, economy, design, foundations, construction
work, costs



In the “Description of construction works”, it is expedient to include a land register
map (if available) that shows a plan plus longitudinal and transverse sections of the
construction works and specifies the most important dimensions of the structure.
Alternatively, or as a supplement to the land register map, a general arrangement draw-
ing can be used which shows the construction works and the relevant surroundings. To
ensure clarity and legibility, it is worthwhile including excerpts from the general ar-
rangement drawing in the technical report, e. g. typical cross-sections or schematic
views of the layout of the prestressing tendons. The same applies to describing con-
struction procedures in the “Construction work” section. Finally, conceptual design
sketches, perspective views, photomontages and, in particular, photos of models
can be skilfully used to improve the quality of a technical report.

4.10 Summary

1. Dimensioning is only one of a number of different measures for assuring struc-
tural safety and serviceability.

2. Dimensioning is carried out on the basis of considering limit states by specifying
the load cases associated with particular design situations and supplying appro-
priate verifications. In addition, detailing based on structural and construction
technology considerations enables the construction details to be determined
and coordinated.

3. The structural behaviour in the design situations to be considered is investigated
by means of the methods of structural analysis. The focus here is the transition
from the true structure to the structural model, which links actions and action
effects and takes into account geometrical properties as well as the properties
of the construction materials and the subsoil.

4. The art of handling structural analysis problems manifests itself in skilful model-
ling, using the simplest approach possible, which leads to meaningful results just
adequate for the respective problem.

5. Verification of structural safety and serviceability is generally carried out on the
basis of design values.

6. A particular verification may not be needed if it can be established that it is not
critical. In addition, a particular verification may not be necessary if it can be
shown that the corresponding requirements are of only minor significance or
can be achieved with structural or construction technology measures.

7. The dimensioning concept common these days, based on a design level between
the serviceability and ultimate levels, is primarily suited to definitive structural
calculations. Simplifications are possible and advisable for the conceptual design
and for quick structural checks, e. g. in the sense of dimensioning based on rep-
resentative stresses.

8. The principles and the results of the structural analysis and the dimensioning must
be included in the structural calculations and the technical report. Recommenda-
tions for the organisation and contents of structural calculations and technical
reports can be found in sections 4.8 and 4.9.

9. It is essential to check the plausibility of the results of the structural analysis and
the dimensioning in every case. Equilibrium checks, examining simplified struc-
tural systems and comparisons with known solutions to similar problems are all
excellent ways of carrying out plausibility checks.
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4.11 Exercises

4.1 Consider the “Buoyancy, BL” hazard scenario given in example 3.2. Discuss the
effect of the proposed opening adjacent to the ramp taking into account the
groundwater levels given in Fig. 3.5.

4.2 Consider the “Punching, suspended floors” hazard scenario during construction
given in example 3.2. Discuss the effect of the proposed measures, especially
propping.

4.3 Describe the design situation on which the punching verification for the final
condition (normal use) is based and identify the associated load case together
with leading and accompanying actions according to (4.6). How should the im-
posed load be applied in order to achieve the most unfavourable action effects?

4.4 Consider the design situation associated with the “Impact, fork-lift” hazard scen-
ario for internal columns on the ground floor and discuss the corresponding load
case according to (4.7).

4.5 Discuss the requirement that the edges of the suspended floors may deflect no
more than 15mm with the help of (4.8) to (4.11).
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5 STATIC RELATIONSHIPS

5.1 Force systems and equilibrium

5.1.1 Terminology

Forces are perceived through their effects. They correspond to physical interactions
that cause or modify states of deformation or motion in material systems. The effect of
a force depends on its point of application, its magnitude and its direction. Therefore,
according to Fig. 5.1(a), a force can be represented as a point-based vector F with
point of application A, magnitude F and line of action f.

The line of action f and an arbitrary reference point O define one plane. If we imagine
a body connected to this one plane, then it is clear that F would cause a rotation of the
body about the axis n perpendicular to the plane and passing through O. The tendency
to rotate is proportional to the magnitude F and the distance a of force F from O. The
position vector r of the point of application A of F expresses the tendency to rotate
with the moment

M w rqF (5:1)

correctly in terms of magnitude and direction; jMj = Fa applies and the vectors M, r
and F constitute a right-hand screw, see Fig. 5.1(b). As can be seen, the moment M
remains unaltered if force F is translated along its line of action f.

Every force F has a corresponding reaction –F with the same line of action. Accord-
ing to this so-called reaction principle, a force without its reaction cannot exist.

Remote forces (e. g. gravity) exhibit points of application different to those of their
reactions; the interaction between two bodies with mass generally takes place without
contact. But in the case of contact forces (e. g. support forces), the points of applica-
tion of forces and reactions are geometrically identical (although not materially iden-
tical); the interaction between support and supported body comes about through con-
tact – if the contact is eliminated, so the contact force disappears as well.

The inertial forces that must be considered in dynamics (see section 8.3.4) do not have
any reactions. They do not correspond to any physical interactions, instead are math-
ematical auxiliary variables.

Contact forces are generally in the form of surface forces (surface loads) distributed
over a finite area. The contact force related to the unit of surface area, the force per unit
area

t w
dF

dA
(5:2)

is also known as a stress vector, see Fig. 5.2(a) and section 5.2.1.

Similarly, remote forces distributed over a finite three-dimensional space are called
body forces (body loads) with a force per unit volume of

qw
dF

dV
(5:3)

see Fig. 5.2(b).
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If, ultimately, a body such as a beam or cable is idealised as one-dimensional and if
distributed forces act on this in the form of line forces (line loads), we get a force per
unit length

qw
dF

ds
(5:4)

see Fig. 5.2(c).

In the SI or MKS systems, the unit used for specifying the magnitude of a force is the
newton [1N = 1mkgs–2] or [kN] or [MN]. Correspondingly, the unit used for mo-
ments is [Nm] or [kNm] or [MNm]. To distinguish between forces and moments,
we indicate the latter with double arrows, see Fig. 5.1(a). The units for forces per
unit length, area and volume are therefore [Nm–1], [Nm–2 = Pa] and [Nm–3].

5.1.2 Force systems

We shall now consider force systems (groups of forces) whose material points of ap-
plication lie within the arbitrary limits of a body or system. A body isolated from a
body or system (or part thereof) by means of an imaginary cut is known as a free
body (FB). By introducing all the forces that act on the free body, we obtain a
free-body diagram (FBD).

The resultant force of a force system is obtained by adding together the vectors acting
on the free body:

Rw

X
FB

F (5:5)

Likewise, the resultant couple of a force system with respect to an arbitrary reference
point O is

MO w

X
FB

rqF (5:6)

see Fig. 5.3 and (5.1).

If instead of O we select a different reference point Ol, then according to Fig. 5.3, with
rl = r – rL and considering (5.5) and (5.6), it follows that

MOl w

X
FB

rlq Fw

X
FB

rqFs rLq
X
FB

FwMO s rLqR (5:7)

The pair of vectors {R, MO} or {R, MOl
} is called the force-couple system of the force

system at O or Ol.

Two force systems are equivalent when their force-couple systems are identical with
respect to an arbitrary reference point. According to (5.7), the equivalence of two force
systems need only be verified for one reference point; the identity of the resultant
couple is then given for all points.
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5.1.3 Equilibrium

A force system is in equilibrium when its force-couple system sums to zero:

Rw 0 , MO w 0 (5:8)

The equilibrium conditions (5.8) result in six scalar equations in the case of force sys-
tems in three dimensions, i. e. three force-balance equations and three moment-bal-
ance equations. In the case of coplanar force systems, this number is reduced to three,
i. e. two force-balance equations in the plane of the force system and one moment-bal-
ance equation perpendicular to that plane.

If (5.8) applies, then according to (5.7), MOl
= 0. Consequently, the force-balance

equations can be replaced by moment-balance equations about a second reference
point. Generally, in the three-dimensional case, moment-balance equations can be for-
mulated about six non-collinear axes and in the coplanar case about three points not
lying in a straight line. In practice, this is often easier than setting up the force-balance
equations. Depending on the particular problem, in the coplanar case only one, and in
the three-dimensional case only one or two, force-balance equations are replaced by
moment-balance equations, as is explained further in chapter 10.

Applying (5.8) to differential structural elements results in differential equations for
the equilibrium, as dealt with in section 5.3.

When defining free bodies and applying the equilibrium conditions to those bodies, we
generally use the so-called free-body principle: if we remove arbitrary parts from a
compatibly deformed body or system in equilibrium by way of imaginary cuts,
each one of those parts is in equilibrium and compatibly deformed.

Forces acting on arbitrary free bodies are known as internal or external forces depend-
ing on whether the material point of application of the reaction to a force lies inside or
outside the free body.

According to the reaction principle, the internal forces form an equilibrium system
(i. e. a force system in equilibrium), and so the external forces must themselves be
in equilibrium if the free body is in equilibrium in its entirety. This assertion is known
as the fundamental theorem of statics.

If the equilibrium conditions – at best following a suitable breakdown of the system –
are sufficient for determining the unknowns in a problem, we speak of a statically
determinate system, otherwise a statically indeterminate system.

5.1.4 Overall stability

Structures must be stable, i. e. they must not fail in their entirety (e. g. due to buoyancy,
sliding or overturning). Their rigid body equilibrium, or rather their overall stability,
must be assured (see section 4.4, limit state type 1).

Example 5.1 Cantilever retaining wall

The cantilever retaining wall shown in Fig. 5.4(a) is to be investigated for overturning about its toe O.
To do this, we consider the cantilever retaining wall as a free body isolated from its surroundings
according to Fig. 5.4(b) and add all the forces acting on it in order to create a free body diagram.
Those forces are the dead loads of the base (G1) (related to the unit length perpendicular to the yz

plane) and the vertical stem (G2), the surcharges due to the earth above the cantilevering parts of
the base (G3 and G4), the active and passive earth pressures (Ea and Ep) plus a contact force A acting
on the underside of the base. For simplicity, hydrostatic pressures are neglected. Further, the calcula-
tion with the earth surcharges G3 and G4 represents a considerable idealisation. Actually, in the event
of an overturning failure, a wedge-shaped mass of soil would form in the ground behind the wall. And
this would be linked with the mobilisation of further forces that are neglected here; a similar consid-
eration applies to the soil in front of the wall.
The contact force A can easily be determined with (5.8) according to magnitude, direction and point of
application, e. g. by setting up the two force-balance equations in the y and z directions and the mo-
ment-balance equation about O. Alternatively, A can also be determined graphically. Fig. 5.4(c) shows
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the associated addition of the force vectors in the so-called force polygon; for equilibrium, the force
polygon must be closed, which determines the magnitude and direction of A. The point of application
of A follows from the funicular polygon according to Fig. 5.4(d). This is done by successively form-
ing the interim resultants (shown as dotted lines in the force polygon) of forces Ea and G4 etc., draw-
ing their lines of action starting from point A, the intersection of Ea and G4, and extending this to
intersect with the next force G1 at B etc. This approach enables us to establish point E, the intersection
of the lines of action CE and DE for (Ea,G4,G1,G2) or (Ep,G3), and hence determine the line of
action of A.
For overall stability, A must act on the base, i. e. 0 J a J b, see Fig. 5.4(d). For the limit case a = 0
(or a = b), the bearing pressure would be infinitely large, which is of course impossible because the
strength of the subsoil is finite. Fig. 5.4(d) shows one practical possibility and Fig. 5.4(e) shows a
statically equivalent linear bearing pressure distribution with a maximum value of 2Az/(3a) at O.
As can be seen, 3a I b, i. e. in the range – 3a i y j –b the foundation experiences partial uplift

with the contact force tending towards zero.
It is not possible to reach any conclusion about the distribution of the horizontal component Ay of A at
the underside of the base solely on the basis of static considerations. For simplicity, a distribution
proportional to Az is assumed, which in this particular case means a triangular distribution.
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Example 5.2 Support envelope

The upturned right-angled element supported on a horizontal surface shown in Fig. 5.5(a) and (b) is
loaded at Al by a horizontal force Q. In Fig. 5.5(b) we must distinguish between the area of con-

tact ABCDEF and the support envelope ABCEF. The latter is the smallest convex envelope enclos-
ing the former.
The overall stability of the right-angled element can be checked with the help of a moment-balance
equation about axis CE. The overturning moment Qh due to Q acting about CE may not exceed the
resisting moment G0 a0 + (G1 + G2)a1 due to the dead load components G0(AD1DD2), G1(D1BCD)
and G2(DEFD2), otherwise the element will overturn.
Fig. 5.5(c) and (d) show the alternative graphical examination with the help of the force and funicular
polygons. For overall stability, the point of application J of the contact force A must lie within the
support envelope.
The contact force A is assumed to be distributed equally over the end zones of the two legs of the
element. In the limit case, the force is concentrated at points C and E, which means that the local
bearing pressure is then infinitely large.

5.1.5 Supports

Supports correspond to the locally inhibited displacement and rotation capabilities
(degrees of freedom) of structures. They can be classified according to the inhibited
(restrained) displacement and rotation capabilities or the passive degrees of freedom,
i. e. according to whether the displacements u, v, w and the rotations fx, fy , fz in the
x, y, z directions are possible or prevented, see Fig. 5.6. The number of passive
(restrained) degrees of freedom (or the number of components in the support
force-couple system) is known as the determinacy of the support.

475.1 Force systems and equilibrium

h

Q

Q

A

G2+G1

G0

C B AD

G0

G2+G1

G2

F

E

D

D

D
A

B

C

QG0

2

G1

G0

Q

AH

G2+G1

A

(a) (c)

(b) (d)

a
a

1

0

C B AD

I

J

1

Fig. 5.5 Upturned right-angled element on horizontal surface:

(a) elevation, (b) plan, (c) force polygon, (d) funicular polygon

y z
x u ϕx

w

ϕz

v

ϕy

Fig. 5.6 Displacements and rotations



Fig. 5.7 shows a number of different types of support. If the concrete hinge shown in
Fig. 5.7(a) is in the form of a linear support (long in the y direction), it inhibits dis-
placements u, v, w and rotations fx, fz; in the form of a discrete support (short in the
y direction), both fy and also fx and fz are practically not inhibited at all. It is notable
that with respect to the forces, the support acts bilaterally in all three directions, i. e.
positive and negative forces can occur in the body of the bearing sliced through at the
horizontal joint, especially in the z direction, too, because of the reinforcement inter-
secting the horizontal joint. The steel linear rocker bearing shown in Fig. 5.7(b) acts
bilaterally with respect to u and unilaterally with respect to w – the support would lift
up in the z direction when the force tends towards zero; with respect to v, it works
bilaterally up to a certain amount, either via friction or with lugs at the sides (after
overcoming the play between lug and body of bearing); rotation fy is practically un-
restrained, and rotations fx, fz are inhibited. In the case of the steel roller bearing
shown in Fig. 5.7(c), u and fy are not inhibited and the support acts unilaterally
with respect to w; guide rails at the side inhibit displacement v and rotation fz;
rotation fx is inhibited because of the long roller in the y direction. The laminated
elastomeric bearing shown in Fig. 5.7(d) functions unilaterally with respect to w
and, depending on the particular type, enables displacements u, v as well as
rotations fy , fx. The same is true for the elastomer pot sliding bearing shown in
Fig. 5.7(e).

A closer look at Fig. 5.7 shows that, depending on the particular design, the displace-
ment and rotation capabilities of supports always lie within certain limits and are never
enabled or prevented in absolute terms. Likewise, the components of the support
force-couple system associated with the inhibited displacement and rotation capabil-
ities are restricted to certain limit values. In practice, it is certainly necessary to con-
sider these limits carefully every time.

In theory of structures, we assume the appropriate idealisations shown in Fig. 5.8 for
the coplanar case. Fig. 5.8(a) shows a unilaterally or bilaterally functioning sliding
support (hinged support capable of displacement) that only inhibits w and whose sup-
port force-couple system is limited to the force component in the z direction. In the
case of the hinged support shown in Fig. 5.8(b), u is also inhibited and the correspond-
ing force component in the x direction is added to the support force-couple system.
Considering the fixed support shown in Fig. 5.8(c), fy is finally inhibited as well;
the support force-couple system also exhibits a moment about the y axis. Extending
these considerations to the general three-dimensional case is easily possible with the
help of Fig. 5.6.

Static equivalents to the types of support shown in Fig. 5.8 can be realised according to
Fig. 5.9 with pin-jointed members. These are straight, weightless bars connected con-
centrically on both sides with frictionless hinges. With such assumptions, only forces
can be transferred from the bars, whose lines of action coincide with the axes of the
bars. So a statically equivalent substitute for a sliding support, as shown in Fig. 5.9(a),
could be a pin-ended strut; the force component in the x direction caused by the in-
clination of the pin-ended strut as a result of a displacement u is negligible in com-
parison to the force component in the z direction, assuming infinitesimally small dis-
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placements (first-order theory, see section 6.1). The support force component possible
in the x direction with a hinged support requires a corresponding second pin-jointed
member, as shown in Fig. 5.9(b). Ultimately, a third pin-jointed member is required to
achieve fixity, as shown in Fig. 5.9(c); here, the first two pin-jointed members exhibit
different lines of action and the axis of the third may not pass through the intersection
of the first two, otherwise the support would not provide fixity, instead function like a
hinged support at this point.

For the general three-dimensional case, six pin-jointed members are necessary for a
braced support. With the force-couple system {R, MO}, the coordinates rij of one point
on the axis of the pin-jointed member i and the direction cosine cij of the six pin-
jointed members and the forces in those members Ni, then according to (5.5) and
(5.6) the following applies:

c1x c2x . . . c6x

c1y c2y . . . c6y

c1z c2z . . . c6z

r1yc1z s r1zc1y r2yc2z s r2zc2y . . . r6yc6z s r6zc6y

r1zc1x s r1xc1z r2zc2x s r2xc2z . . . r6zc6x s r6xc6z

r1xc1y s r1yc1x r2xc2y s r2yc2x . . . r6xc6y s r6yc6x

2
666666664

3
777777775

N1

N2

N3

N4

N5

N6

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

w

Rx

Ry

Rz

MOx

MOy

MOz

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

(5:9)

In order that (5.9) can have a solution N for any force-couple system, the matrix on the
left must be invertible, i. e. its determinant may not be zero.

Let us select the origin of coordinates O for the coplanar case (three bars in the
xz plane) with Rx, Rz, MOy to be the intersection of bars 1 and 2 (r1 = r2 = 0) and con-
sider the point of pin-jointed member axis 3 on the z axis (r3x = 0, r3z 0 0). In this
case, removing the second, fourth and sixth rows as well as the fourth, fifth and sixth
columns from the matrix in (5.9) gives us the following matrix:

c1x c2x c3x

c1z c2z c3z

0 0 r3zc3x

2
4

3
5 (5:10)

and hence

det w r3zc3x c1xc2z s c1zc2xð Þ00 (5:11)

must apply. Without restricting the universal applicability, it is possible to place the
x axis in the direction of bar axis 1, i. e. c1x = 1, c1z = 0. Consequently, c3x 0 0,
c2z 0 0 must be true, i. e. bar axis 3 may not pass through O and bars 1 and 2 may
not be collinear. The above requirements are therefore confirmed.

It is often not possible to idealise supports as fully restrained, as has been assumed up
to now; instead, it is necessary to consider their flexibility. To this end, in accordance
with Fig. 5.10, we use appropriate translational and rotational springs and in the
simplest case presume a linear relationship between the components of the support
force-couple system and the corresponding displacements and rotations:

Ax ws kxuA , Az ws kzwA , MA ws kyfyA (5:12)

where kx, kz and ky denote the stiffnesses of the translational and rotational springs.
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(b) hinged support, (c) fixed support.



5.1.6 Hinges

Hinges (or connections) correspond to local displacement and rotation capabilities
within structures. Fig. 5.11 shows theory of structures hinge idealisations for the co-
planar case. We speak of expansion, shear and flexural hinges depending on which
component of the hinge forces is zero. As with supports, the determinacy of a hinge
defines the number of components in the hinge forces. Hinges with one degree of de-
terminacy can be combined from the basic types shown in Fig. 5.11, and the general-
isation for hinges functioning in three dimensions is readily possible.

Flexural hinges can be formed not only as full hinges, as shown in Fig. 5.12(a), but
also as semi-hinges, see Fig. 5.12(b). In doing so, a second bar is connected to an
unweakened continuous first bar with an articulated joint.

In compression elements such as arches and columns, hinges can be formed in a simi-
lar manner to supports, e. g. as concrete hinges. In tension elements or connections
subjected to shear only, simple pinned and bolted connections with adequate play in
the holes can be considered. Fig. 5.13 shows a few examples of hinges selected from
the huge variety of potential forms.

The connection between two beams with dapped ends shown in Fig. 5.13(a) is widely
used with precast concrete components, for example; the connection can function not
only as a flexural hinge, but also as an expansion hinge depending on the type of bear-
ing (hinged or sliding) between the two beams. The shear connection between a sec-
ondary beam and a primary beam in structural steelwork shown in Fig. 5.13(b) is
achieved with cleats and bolts; in this detail the secondary beam is connected via
its web only, not via its flanges. Fig. 5.13(c) shows one possible form for the ridge
joint in a timber roof structure.

As with the supports (Fig. 5.7), a closer look at Fig. 5.13 reveals that ideal hinge con-
ditions cannot be realised in practice. Displacement capabilities are always either en-
abled or inhibited between certain limits; further, the wanted components of the hinge
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forces are, on the one hand, accompanied by unwanted components and, on the other
hand, contained within certain limits. The aim is to use skilful detailing to try to reduce
the unwanted components to a negligible level. In any case, it is important to consider
carefully how the form of the construction itself limits the forces and deformations,
and their consequences.

As with supports, hinges always correspond to a weakening of the construction. Struc-
turally, their design can be more or less awkward, they can prove to be expensive, may
require maintenance or might be problematic in terms of their durability. Therefore,
the positioning of supports and hinges must always be well thought out and the
necessary precautions must be taken when considering the structural concept in order
to achieve trouble-free functioning over the design working life.

5.1.7 Stress resultants

5.1.7.1 Framed structures

If we cut a linear-type beam into two parts I and II with a plane cut perpendicular to its
axis according to Fig. 5.14, then the resultant force R and the resultant couple M of the
internal forces must be introduced at the cut face of part I, related to the centroid O as a
reference point on the cut face. At the cut face of part II, the force-couple sys-
tem {– R, – M} acts according to the reaction principle. According to (5.8), (5.5)
and (5.6), for equilibrium of part II

sRS

P
II

Fw 0 , sM S

P
II

rqFw 0

hence

Rw

P
II

F , M w

P
II

rqF (5:13)

i. e. the force-couple system {R, M} is obtained by reducing the forces acting on
part II to reference point O.

If we introduce a system of Cartesian coordinates with the x axis in the direction of the
member axis, then the components of the resultant force R are the normal force N in
the x direction and the shear forces Vy and Vz in the y and z directions. The corres-
ponding components of the resultant couple M are the torque T and the bending
moments My and Mz.

Normal and shear forces plus torques and bending moments are known as stress re-
sultants. They are positive when they act in the positive x, y or z direction on the posi-
tive side of the cut (normal = positive x axis), or when they act in the negative x, y or
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z direction on the negative side of the cut (normal = negative x axis). Fig. 5.15 uses
the example of an beam to show the stress resultants with their corresponding dis-
placements u, v, w and rotations fx , fy , fz. The stress resultants and the associated
deformation variables are so-called state variables. Their distribution along the axis of
the member is described by way of so-called state diagrams, see chapters 11 and 15.

The bar axis, i. e. the line connecting the centroids of the cross-sectional areas, is gen-
erally in single or double curvature, and the geometry of the cross-section generally
varies along the bar axis. However, the direction of the axis and the geometry of the
cross-section are often constant, at least over certain sections, or can be approximated
in this way with good accuracy. In order to justify being idealised as a bar, it is as-
sumed that the dimensions of the cross-section (b and h in Fig. 5.15) are small in com-
parison with the dimensions along the bar axis.

5.1.7.2 Plate and shell structures

In plate and shell structures, the bar axis is replaced by the middle surface or middle
plane acting as the reference surface. The dimension of the structure h perpendicular
to the reference surface at every point is presumed to be small in comparison with the
dimensions in the reference surface.

Fig. 5.16 includes a local system of Cartesian coordinates x, y, z tangential or perpen-
dicular to the reference surface. The stress resultants at the side faces of an (infinitesi-
mally small) structural element with length 1 in the x and y directions are the mem-
brane forces

nx w
Ðh=2

sh=2

sx dz , ny w
Ðh=2

sh=2

sy dz , nxy w nyx w
Ðh=2

sh=2

txy dz (5:14)

the shear forces

vx w
Ðh=2

sh=2

tzx dz , vy w
Ðh=2

sh=2

tzy dz (5:15)

and the bending and twisting moments

mx w
Ðh=2

sh=2

sxz dz , my w
Ðh=2

sh=2

syz dz , mxy wmyx w
Ðh=2

sh=2

txyz dz (5:16)

(all related to the unit length). The normal and shear stresses sx, sy , txy = tyx in the
plane of the element as well as the shear stresses tzx , tzy perpendicular to the plane
of the element, which are introduced in section 5.2, are used here. The units of the
membrane and shear forces (related to the unit length) and the bending and twisting
moments are [N/m] and [Nm/m = N] or [kN/m] and [kNm/m = kN]. Incidentally, it
is worth noting that at the side faces of the element in Fig. 5.16 there are no moments
about the z axis (because of the infinitesimally small size of the element).

A plate is a form of plane structure that carries in-plane loads only, where a coplanar
stress state constant over h is assumed (tzx = tzy = 0). Accordingly, the result is mem-
brane forces nx, ny , nxy = nyxonly.

A slab is a form of plane structure that carries loads perpendicular to its
plane and is primarily or exclusively subjected to bending and twisting
moments mx, my , mxy = myx plus shear forces vx, vy .

A folded plate structure is a structure in three dimensions made up of plates structur-
ally connected along their longitudinal sides and further braced by the inclusion of end
plates. The global or local structural behaviour of a folded plate is dominated by mem-
brane or bending effects.
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A shell is a form of structure in single or double curvature which as a rule is subjected
to general loads (perpendicular to and parallel with the middle surface) and stress
resultants (membrane and shear forces plus bending and twisting moments). An ideal-
isation as a membrane shell or membrane with dominant membrane forces and
negligible shear forces as well as bending and twisting moments is often justified.
Further, shells can always be approximated by using suitable folded plates.

5.2 Stresses

5.2.1 Terminology

Fig. 5.17(a) reiterates the terms introduced in section 5.1.1: force per unit area and
stress vector t, see (5.2). We shall consider an infinitesimally small surface elem-
ent dA with an external unit normal vector n which has been separated from a
body by an arbitrary cut. The force-couple system of the internal forces acting on
the surface element is reduced at the passage to the limit dA p 0 to the stress result-
ant dF = tdA with a generally finite force per unit area t = dF/dA; the moment per
unit area dM/dA is zero because when dA p 0, not only dF, but also the lever
arm of the corresponding couple dM is zero.

The stress vector t is resolved according to Fig. 5.17(b) into the normal stress

sw t 7 n (5:17)

in the n direction and the shear stress perpendicular to this

tw
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t 7 t s s2

p
(5:18)

The associated vectors are sn and t – sn.

5.2.2 Uniaxial stress state

The prismatic bar shown in Fig. 5.18(a) and (b), with cross-sectional area A, is sub-
jected to a constant normal force N in the y direction, which corresponds to a uniform
tensile stress s1 = N/A = const over A.

Fig. 5.18(c) shows a free body cut out of the bar with thickness 1 in the z direction.
The free body is defined by cuts parallel to the xz, yz and tz planes, with the cut at an
angle of f to the y axis having a length 1 in the t direction. The force s1sinf acts in
the negative y direction at the cut face with length sinf perpendicular to the y axis,
whereas the cut face perpendicular to the x axis is not subjected to any forces.
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For equilibrium, the cut face perpendicular to the n axis requires a force s1sinf op-
posite to the first force acting in the positive y direction. Resolving this vector into its
components in the n and t directions according to (5.17) and (5.18) supplies the stress
components

sn w s1 sin2f , ttn w s1 sinf cosf (5:19)

Here, the normal stress sn is given the index n corresponding to its direction. In the
case of the shear stress ttn , the first index t designates its direction and the second
index n the direction of the normal to the element on which it acts.

The equations in (5.19) can be interpreted geometrically using the MOHR’s stress
circle given in Fig. 5.18(d). The surface element with the normal direction n in
Fig. 5.18(c) corresponds to the stress point N in Fig. 5.18(d). This results from draw-
ing a line parallel to the surface element (the t direction) which passes through the
origin O of the system of coordinates s, t and continuing the line so that it intersects
the circle with its centre on the positive s axis and diameter s1 which touches the
t axis.

Fig. 5.18(d) shows a general case with 0 J f J p/2. For f = 0, i. e. a cut perpen-
dicular to the x axis, N = X coincides with the origin O of the system of coordinates;
sn = ttn = 0 applies for such a cut and the cut face is not subjected to any stress. For
f = p/2, i. e. a cut perpendicular to the y axis, the result is point N = Y at pos-
ition sn = sy = s1, ttn = txy = 0; a pure normal stress s1 in the y direction is the result,
as assumed.

Point O a X in Fig. 5.18(d) plays the role of the pole in MOHR’s stress circle. Lines
parallel with the surface elements and passing through the pole intersect with the
MOHR’s stress circle at the associated stress points.

MOHR’s sign convention for the stress components can be seen in Fig. 5.18(d):
normal stresses s are classed as positive when they are tensile. Shear stresses t are
positive when they rotate clockwise about points within the free body.

5.2.3 Coplanar stress states

The elemental prism with side length 1 shown in Fig. 5.19(a) in the xyz system of
coordinates is free from stresses on the cut faces perpendicular to the z axis. Following
on from the thinking of Fig. 5.18, the stress components sx, tyx and sy , txy have to be
introduced at the cut surfaces perpendicular to the x and y axes. For equilibrium of
moments about the line parallel with the z axis and passing through the centre of
the element, where the normal stresses intersect, then

txy w tyx (5:20)

If we consider, similar to Fig. 5.18(c), a wedge-shaped element defined by the angle f

according to Fig. 5.19(b), then equilibrium of forces in the n and t directions results in
the following when considering (5.20):

sn w sx cos2fS sy sin2fS 2txy sinf cosf

ttn w (sy s sx) sinf cosfS txy( cos2fs sin2f)

Similarly, from Fig. 5.19(c) we get

st w sx sin2fS sy cos2fs 2txy sinf cosf

tnt w (sy s sx) sinf cosfS txy( cos2fs sin2f)

and hence, in summary, the stress transformation relationships

sn

st

ttn

8<
:

9=
;w

cos2f sin2f 2 sinf cosf
sin2f cos2f s2 sinf cosf

s sinf cosf sinf cosf cos2fs sin2f

2
4

3
5 sx

sy

txy

8<
:

9=
; (5:21)

and

ttn w tnt (5:22)
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If we wish to find out the directions t and n, for which the shear stresses are zero,
ttn = 0, eq. (5.21) initially gives us angle f1 with

tan(2f1)w
2txy

sx s sy
(5:23)

Substituting angle f1 back into the equations for sn and st results in the principal
stresses s1 and s2 with

s1,2 w
sx S sy

2
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sx s sy

2

� �2

S t2
xy

s
(5:24)

and the principal directions 1 and 2 defined by f1 and f1 + p/2 according to (5.23).

Eq. (5.21), (5.23) and (5.24) can be interpreted geometrically with the help of a
MOHR’s stress circle similar to Fig. 5.18(d), see Fig. 5.20. The two terms on the right
in (5.24) correspond to the abscissa of the centre and the radius of the MOHR’s stress
circle. The principal stresses s1 and s2 are extremal; they represent the upper and
lower bounds for all possible normal stresses. The construction of the stress points N
etc. in the st plane with the help of the pole is carried out as described in section 5.2.2,
i. e. by drawing a line parallel with the respective surface element which passes
through the pole and intersects with the MOHR’s stress circle, see Fig. 5.20(a) und
(c). MOHR’s sign convention for stress components, given in Fig. 5.18(d), still
applies, see Fig. 5.20(b).
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Incidentally, it can be seen that the variables

sn S st w sx S sy w s1 S s2 w sI (5:25)

and

t2
xy s sxsy w t2

xy S
sx s sy

2

� �2

s

sx S sy

2

� �2

ws s1s2 w sII (5:26)

remain unaffected by the rotation of the system of coordinates, i. e. are invariant.

According to appendix A6, the stress components sx, sy, txy = tyx can be grouped
together in the (planar) stress tensor

sw

sx txy

tyx sy

� �
(5:27)

The two columns of the matrix on the right in (5.27) contain the stress components at
the surface elements with the normals x and y given in Fig. 5.19(a). Here, similarly to
the sign convention for stress resultants (see Fig. 5.14), we use the tensorial sign
convention, which states that stress components are positive when they act on surface
elements with positive (negative) external normals in the positive (negative) direction
of an axis.

According to (A6.7), the stress vector t at a surface element defined by the unit normal
vector n = (cosf, sinf) has the components sxcosf + txysinf and tyxcosf + sysinf

in the x and y directions; eq. (5.17) and (5.18) are used, taking account of (5.20),
to return to sn and ttn according to (5.21).

According to (A6.20), the variables sI and sII according to (5.25) and (5.26) corres-
pond to the basic invariants of the stress tensor. The first of these is the trace and the
second the negative determinant of the matrix in (5.27).

Example 5.3 Steel plate

The stress state sx = 160N/mm2, sy = 0, txy = 60N/mm2 prevails locally in a steel plate, see
Fig. 5.21(a). Eq. (5.23) supplies tanf1 = 1/3, and from (5.24) it follows that s1 = 180N/mm2,
s2 = – 20N/mm2. Fig. 5.21(b) shows the corresponding MOHR’s stress circle, and the principal
stresses and their directions are shown in Fig. 5.21(c).
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5.2.4 Three-dimensional stress states

The volume element shown in Fig. 5.22 is subjected to a force per unit volume of
q = (qx, qy , qz). The stress components sx etc. act on the side faces with external nor-
mals in the negative directions of the axes; similarly to (5.27), these components are
grouped together in columns in the three-dimensional stress tensor

sw

sx txy txz

tyx sy tyz

tzx tzy sz

2
4

3
5 (5:28)

The differentials (@sx /@x)dx etc. must be considered at the surface elements with
external normals in the positive direction of the axes.

For equilibrium of forces in the three axis directions

@sx

@x
S

@txy

@y
S

@txz

@z
S qx

	 

dx dy dzw 0

@tyx

@x
S

@sy

@y
S

@tyz

@z
S qy

	 

dx dy dzw 0

@tzx

@x
S

@tzy

@y
S

@sz

@z
S qz

	 

dx dy dzw 0

Obviously, the three expressions in brackets must be zero. Using the index notation
given in section A6.2 results in the following shortened form

sij, j S qi w 0 (5:29)

for the three equilibrium conditions of the continuum. Here, the indexes i and j denote
the axis directions x, y and z; the doubled (dummy) index j stands for a summation via
the values x, y, z, and the comma before the second index j stands for a partial differ-
entiation with respect to the corresponding coordinates.

The first index i of a stress component sij generally denotes its direction and the sec-
ond index j the direction of the normal to the element on which it acts. As a result, with
the normal stress components, except when using the index notation, one of the iden-
tical indexes continues to be suppressed because a mix-up is ruled out, i. e. we write sx

instead of sxx etc.
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Fig. 5.22 Stress components and force per unit volume q on a volume element



For equilibrium of moments about the straight lines parallel with the axes and passing
through the centre of the element

sij w sji (5:30)

i. e. the stress tensor is symmetric; this result is known as the theorem of associated
shear stresses. Note that the contribution of the differentials (@txy /@y)dy etc. to the
respective moments is small of a higher order compared with that of txy etc. It can
be ignored in the passage to the limit.

The three partial differential equations (5.29) are supplemented by static boundary
conditions resulting from the load on the surface of the body being investigated. If
n is the local unit normal vector and t the given force per unit area, then t = s x n or

ti w sijnj (5:31)

see (A6.7).

Eq. (5.31) can be illustrated by Fig. 5.23 for any points (on the surface or within a
body). Let us consider the equilibrium of forces for the tetrahedron OABC, whose
surface ABC with the unit normal vector n has a surface area of 1. The surfaces
OBC, OAC, OAB then have the areas nx, ny , nz, which are equal to the components
of n. For the components of the stress vector t belonging to n, equilibrium of forces in
the three axis directions then results in

tx w sxnx S txyny S txznz w sxjnj

ty w tyxnx S syny S tyznz w syjnj

tz w tzxnx S tzyny S sznz w szjnj

i. e. (5.31).

If one stress field satisfies the equilibrium conditions (5.29) and the boundary condi-
tions (5.31), it is regarded as statically admissible.

If we wish to know (according to section A6.4) the principal directions n for which
t = sn applies, i. e. there are no shear stresses, we get the following characteristic
equation

s3
s sIs2

s sIIss sIII w 0 (5:32)
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with the basic invariants

sI w sx S sy S sz w s1 S s2 S s3

sII w t2
yz S t2

zx S t2
xy s sysz s szsx s sxsy ws s2s3 s s3s1 s s1s2

sIII w 2tyztzxtxy s sxt2
yz s syt2

zx s szt2
xy S sxsysz w s1s2s3 (5:33)

where s1, s2 and s3 denote the principal stresses belonging to the principal directions,
see (A6.20). The principal stresses are obtained by solving the characteristic equa-
tion (5.32), and their directions follow from (A6.21).

Example 5.4 Stress tensor

The principal stresses are given: s1 = 4N/mm2, s2 = 2N/mm2, s3 = 1N/mm2; the directions of
those stresses in the xyz system are given by the unit vectors collected in the columns of the trans-
formation matrix

cw
1

65

60 0 s 25
20 39 48
15 s 52 36

2
4

3
5

see (A5.17) and (A6.1). The task is to determine the stress tensor in the xyz system.
The stress vectors on the principal axes system associated with the x, y, z directions follow from the
rows of the transformation matrix by multiplying each element by the associated principal stress; e. g.
for the x direction, the result is the vector (240/65, 0, – 25/65)N/mm2. According to (A5.18), the
stress vectors in the xyz system are obtained from the products of the transformation matrix and these
vectors, and hence the stress tensor follows row by row:

3.56 0.85 0.64
0.85 1.64 s 0.27
0.64 s 0.27 1.80

2
4

3
5 N=mm2

As is easily confirmed by (5.33), the basic invariants sI = 7N/mm2, sII = –14(N/mm2)2,
sIII = 8 (N/mm2)3 are obtained for this tensor. As supposed, (5.32) provides us with the principal
stresses s1 = 4N/mm2, s2 = 2N/mm2, s3 = 1N/mm2, and (A6.21) supplies the principal directions
collected in the given transformation matrix c.

The geometric interpretation of uniaxial and coplanar stress states with MOHR’s stress
circles described in sections 5.2.2 and 5.2.3 can be expanded to three-dimensional
stress states according to Fig. 5.24(a). To do this, we select the z axis according to
Fig. 5.24(b) in the direction of the principal stress s3 and divide the stress tensor
into a coplanar part and a hydrostatic part:

sx txy 0
tyx sy 0
0 0 s3

2
4

3
5
w

sxs s3 txy 0
tyx sys s3 0
0 0 0

2
4

3
5
S

s3 0 0
0 s3 0
0 0 s3

2
4

3
5 (5:34)

With respect to the coplanar part, in Fig. 5.24(a) this division corresponds to a transla-
tion of the t axis by s3 to the right to position tl. Surface elements N parallel with the
z axis with a normal direction f according to Fig. 5.24(b) correspond to stress points N
in Fig. 5.24(a), which can be obtained on the circle defined by the principal values s1

and s2 in the usual way via its pole. If we rotate the surface element through an angle c

about the t axis, then we obtain the normal stress sncos2c at the inclined element S as
a result of sn plus the shear stress snsinccosc perpendicular to the t axis and, further,
as a result of ttn , the shear stress ttncosc parallel with the t axis, i. e. in total

sw sn cos2c , tw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

n sin2cS t2
tn

q
cosc (5:35)

As can be seen, (5.35) describes the circle 3SN centred on the s axis, tangential to the
tl axis and passing through N. The stress point S with coordinates s and t is obtained
via the auxiliary circle centred on the s axis, tangential to the tl axis and passing
through the point (sn , 0). This is done by determining point T via c, as indicated
in Fig. 5.24(a), and drawing the vertical line TS through T to intersect with circle 3N
at S.
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All of the stress points S lie in the crescent-shaped zone between the three MOHR’s
stress circles defined by the principal values s1, s2, s3 or the corresponding points 1,
2, 3 in Fig. 5.24(a). Superimposing the hydrostatic stress state sx = sy = sz = s3

finally brings axis tl back to position t.

It should also be noted that the maximum shear stress is equal to the radius of the
largest MOHR’s stress circle:

tmax w
1

2
s1 s s3j j , s1 j s2 j s3 (5:36)

Generally, we may resolve a stress tensor into a hydrostatic and a deviatoric compon-
ent, i. e.

sx txy txz

tyx sy tyz

tzx tzy s3

2
4

3
5
w

so 0 0
0 so 0
0 0 so

2
4

3
5
S

sx txy txz

tyx sy tyz

tzx tzy sz

2
4

3
5 (5:37)

where

so w
sI

3
(5:38)

denotes the so-called octahedral normal stress.

The basic invariants of the deviator

sij w sij s sodij (5:39)

where the KRONECKER symbol dij according to (A6.3) is used, are obtained simi-
larly to (5.33):

sI w 0

sII w
1

3
s2

x S s2
y S s2

z s sysz s szsx s sxsy

� �
S t2

yz S t2
zx S t2

xy w sII S
1

3
s2

I

sIII w sIII S
1

3
sIIsI s

1

27
s3

I

(5:40)

In the principal stress space s1, s2, s3, it is possible to represent any vector
s = (s1, s2, s3) as the sum of a vector so = so(1, 1, 1) lying on the hydrostatic
axis s1 = s2 = s3 and a vector s(s1, s2, s3) perpendicular to this lying in the deviatoric
plane sI = 0, see Fig. 5.25(a):

sw so S s (5:41)

Projecting s in the deviatoric plane gives us

OP1 w s1, s2, s3ð Þ 7 2,s1,s1ð Þ � 1ffiffiffi
6
p w 3s1

1ffiffiffi
6
p w

ffiffiffi
3

2

r
s1, ... (5:42)

60 5 STATIC RELATIONSHIPS

II FUNDAMENTALS

pole

(b)

t

n

x

z

y

ϕ

ψ

N

τ tn
2ψ

S

1
σ

3

T

X

Y

σn

τ

τ yx

ϕ

(a)

τ

3

NS

Fig. 5.24 Three-dimensional stress state: (a) MOHR’s stress circles, (b) axes, normal plane N and inclined plane S



see Fig. 5.25(b). Vector s has a magnitude of

sj jw
ffiffiffiffiffiffiffi
2sII

p
w

ffiffiffi
3
p

to (5:43)

where

to w

ffiffiffiffiffiffiffiffi
2

3
sII

r
(5:44)

denotes the so-called octahedral shear stress. As is readily apparent from (5.31),
(5.17), (5.38), (5.18) and (5.40), so and to correspond to the normal and shear stresses
on the surfaces of a regular octahedron drawn in the octants of the system of principal
axes.

We obtain

cosuw

s1ffiffiffi
2
p

to
w

ffiffiffi
2
p

2s1 s s2 s s3ð Þ
6to

(5:45)

for the angle u.

Specifying so, to and u determines the stress state s in the principal stress space un-
equivocally. Of the original six components of the symmetric stress tensor, the three
variables “lost” during the principal axis transformation describe the position of the
system of principal axes with respect to the original coordinates.

5.3 Differential structural elements

Only the differential elements of framed structures are considered below. Similar
considerations for plate and shell structures can be found in section 8.2 and chap-
ters 23 to 26.

5.3.1 Straight bars

5.3.1.1 Pure bending

The differential element of a straight bar with bar axis x shown in Fig. 5.26 has the
principal cross-section axes y and z (see section 13.2.1) and is merely loaded by a line
load with a force per unit length of qz = q in the z direction. Bearing these assumptions
in mind, of the six stress resultants shown in Fig. 5.15, only the shear force Vz = Vand
the bending moment My = M are relevant; all other stress resultants are zero or are
constant and do not need to be considered any further here. In such a case, where
the resultant moment vector coincides with a principal cross-section axis, we speak
of pure bending.
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For equilibrium of the free body shown in Fig. 5.26, qdx + dV = 0 and
– Vdx + dM = 0, i. e.

dV

dx
ws q ,

dM

dx
wV (5:46)

and hence

d2M

dx2 S qw 0 (5:47)

5.3.1.2 Skew bending

Skew bending is present when the resultant moment vector at one section of a bar does
not coincide with a principal axis of the cross-section, i. e. in the notation of Fig. 5.26,
has components My and Mz, which stem from line loads qz and qy . Instead of (5.46)
and (5.47), the following applies with the corresponding shear forces Vz and Vy :

dVz

dx
ws qz ,

dMy

dx
wVz ;

dVy

dx
ws qy ,

dMz

dx
wsVy (5:48)

and hence

d2My

dx2 S qz w 0 ;
d2Mz

dx2 s qy w 0 (5:49)

The reason for the minus sign in (5.48)4 is that both the couple Vy dx and also the dif-
ferential dMz act in the positive z direction.

5.3.1.3 General stress resultants

Normally, it is necessary to consider line loads in the x direction (qx) as well as those in
the z and y directions, plus line load moments (mx, my , mz) about the three axes. Simi-
lar considerations to those given above lead to the result summarised in (8.26).

5.3.2 Bars in single curvature

5.3.2.1 Loads in the plane of curvature

Fig. 5.27(a) shows a point on an axis of a bar in single curvature whose position is
given by the arc length s related to a certain origin. We shall introduce the axes tan-
gential t or normal n to the bar at this point. With a radius of curvature r = r(s) in-
clined at an angle f to the vertical, then ds = rdf.
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The free body diagram in Fig. 5.27(b) enables us to find the equilibrium conditions

dN sV dfS qt dsw 0 , dV SN dfS qn dsw 0 , dM sV dsw 0

and therefore, if differentiation with respect to s is designated with a superscript dash
( l ), then

Nls

V

r
S qt w 0 , VlS

N

r
S qn w 0 , MlsV w 0 (5:50)

For a given load qt , qn , the bar axis can be selected in such a way that the bending
moment M and the shear force V both disappear, i. e. only normal forces N occur.
A bar axis determined in this way is called a thrust line. It corresponds to the funicular
polygon used in Fig. 5.4(d) and Fig. 5.5(d). With M = V = 0, eq. (5.50) can be used to
obtain the differential equation of the thrust line

(r qn)lw qt (5:51)

from which it is possible to determine r(s) for a given qt and qn .

If qt = 0 and qn = const, then we obtain r = const directly from (5.51), and (5.50)2

supplies the so-called hoop stress formula

N ws qnrw const (5:52)

see (18.99)1.

Example 5.5 Hoop stress formula

The hoop stress formula can be used for many different applications in construction. For example,
let us consider one ring of an empty, cylindrical tank for an offshore drilling rig at a water depth
of 150m, see Fig. 5.28(a). The hydrostatic pressure acting on the ring from outside amounts to about
1.5N/mm2 = 1.5MN/m2. With a cylinder radius of r = 12m, it follows from (5.52) that the normal
force (compressive force) amounts to 1.5 ·12 = 18MN per metre height of ring. Assuming
the concrete wall of the cylinder is 0.8m thick, this results in a mean compressive stress of
18/0.8 = 22.5N/mm2.
As a second example we could consider a cylindrical containment structure, topped by a hemispher-
ical dome, for a nuclear power station. In the event of an incident this structure is subjected to an
overpressure of 0.5N/mm2, see Fig. 5.28(b). With a cylinder radius of r = 20m, according to (5.52),
normal forces (tensile forces) amounting to 0.5 ·20 = 10MN per metre height of ring ensue. The
cylinder is precompressed in order to prevent cracking, or rather decompression, of the concrete
wall of the cylinder. To do this, tendons made from high-strength steel, arranged in a ring, are pre-
stressed. The anchorages for the tendons are located in buttresses on the outside of the concrete
structure, which then enable the cylinder to be precompressed.

Example 5.6 Thrust line

An arch is subjected to a line load qz = const according to Fig. 5.29(a). The task is to find the asso-
ciated thrust line z(x). With dx = dscosf = rcosfdf, resolving the force qzdx into its components in
the n and t directions results in

qn w
qzdx cosf

ds
w qz cos2f , qt w

qzdx sinf

ds
w qz sinf cosf (5:53)

Using (5.51), we first obtain

dr

ds
qn S r

dqn

ds
w qt

and by substituting (5.53) and simplifying we get the differential equation

dr

r
w 3 tanf df (5:54)

with the solution

r cos3fw const (5:55)

As cosf = dx/ds = dx/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(dx)2

S (dz)2
p

= [1 + (dz/dx)2] –1/2, the following therefore applies:

rw r0 1S
dz

dx

	 
2
" # 3=2

(5:56)

where r0 is a constant.
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According to the theory of plane curves, the following applies for the radius of curvature:

rw

1S
dz

dx

	 
2
" # 3=2

d2z

dx2

(5:57)

and the comparison with (5.56) shows that d2z/dx2 = r0
–1 = const. The function z(x) is therefore a

quadratic parabola with the following equation:

zw
x2

2r0
(5:58)

if we place the origin of the xz system of coordinates at the vertex of the parabola.
The result (5.58) can be obtained much more easily by considering the free body diagram shown in
Fig. 5.29(b). As the arch is loaded in the z direction only, the horizontal component H of the normal
force (compressive force) in the arch is constant. The vertical components of the normal force at
the ends of the element are Hzl and H(zl + zLdx), where a superscript dash means differentiation
with respect to x. For equilibrium of the forces in the vertical direction, qzdx – HzLdx = 0, i. e.
zL = qz/H = const, and therefore we get

zw
qzx2

2H
(5:59)

if, again, the origin of the xz system of coordinates is placed at the vertex of the parabola.
A comparison of (5.58) and (5.59) reveals that H = r0qz. We also get this result when we apply (5.50)2

to the vertex of the parabola, where qn = qz , and because zl = 0, then N = –H and r = r0, too, see
(5.56). As z(x) should be a thrust line, Vl is zero, and we get H = r0qz again.
Fig. 5.29(c) shows half of a parabolic arch with span l and rise f. The parabolic form is given by
z = 4fx2

/l2, and a comparison with (5.59) results in

H w

qzl 2

8f
(5:60)

This result is also easily obtained from a moment-balance equation applied to the free body diagram
shown in Fig. 5.29(c).
The line of action of the normal force at the springing (point A, x = l/2, z = f ) intersects the x axis at
the point x = l/4 (point B). If the load qz is not uniformly distributed but rather applied as a (statically
equivalent) point load amounting to qzl/2 at B, then instead of the parabola OA, the result would be
the polygonal thrust line OBA, which is made up of the end tangents of the parabola at O and A.

Example 5.7 Three-hinged arch

The three-hinged arch AlOA shown in Fig. 5.30(a), with the form z = 4fx2
/l2, is loaded with a uni-

formly distributed permanent load g and a uniformly distributed imposed load q on one half of the
arch. According to example 5.6, the permanent load causes purely normal forces (compressive forces)
with a constant horizontal component H = gl2

/(8f ), see (5.60).
With an asymmetric imposed load, a rearrangement of the load is carried out by dividing it into a
symmetric part and an antisymmetric part according to Fig. 5.30(b). The symmetric part acts like g

and causes additional normal forces with horizontal component ql2
/(16 f ). The antisymmetric part

causes opposing vertical forces of ql/8 at the springings according to Fig. 5.30(c); the antisymmetric
distributed forces result in an anticlockwise moment of (q/2) · (l/2)2 = ql2

/8, which is kept in equilib-
rium by the clockwise couple of the springing forces ql/8 with the lever arm l. According to sec-
tion 5.1.7, this results in the following bending moments at an arbitrary section x in arch OA:

M ws

ql

8

l

2
s x

	 

S

q

2

l

2
s x

	 
2

� 1

2
w s

qx
l

2
s x

	 

4

0J xJ
l

2

	 

with the minimum Mmin = –ql2

/64 at point x = l/4. Considering arch OAl similarly leads to

M w

ql

8

l

2
S x

	 

s

q

2

l

2
S x

	 
2

� 1

2
w s

qx
l

2
S x

	 

4

s

l

2
J x J 0

	 

with the maximum Mmax = ql2

/64 at point x = – l/4, see Fig. 5.30(d).
Carrying the asymmetric imposed load q can be illustrated in another way, see Fig. 5.31. As arch OA
is not loaded and has a hinge at both ends, the line of action of the force it carries must pass through O
and A; arch OA functions like a pin-jointed member coinciding with the chord of the arch. The ver-
tical load ql/2 can be replaced by a statically equivalent point load at x = – l/4, and the intersection of
the line of action of this force with chord OA supplies point B. Consequently, the line of action AlB
of the support reaction at Al is also found and we get the support force components shown in
Fig. 5.31. As the load in zone – l/2 J x J 0 is uniformly distributed and not concentrated at
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x = – l/4, the thrust line in this zone is not line AlBO, but rather parabolic; the relationship
z = 2fx(l + 4x)/l2 applies here. The deviation of the arch form z = 4fx2

/l2 from the thrust line,
both in this zone and also along OA (where the thrust line coincides with chord OA), illustrates
very vividly the occurrence of the bending moments shown in Fig. 5.30(d). At every point on this
arch, the bending moment is equal to the product of the normal force and the distance of the axis
of the arch from the thrust line.

In practice, arch structures are designed to match the thrust line for permanent actions
as closely as possible in order to minimise the bending moments. However, as a result
of variable actions, certain bending moments (and hence the associated shear forces)
must always be accepted. Such bending moments can either be accommodated by the
arch itself (stiff arch) or partly or totally assigned to a stiffening member (deck-stiff-
ened polygonal arch).

5.3.2.2 Load perpendicular to plane of curvature

The beam element shown in Fig. 5.32, with radius of curvature r and
length ds = rdf, is loaded by the line load q and the line load moment m. Forces
in the plane of curvature and moments perpendicular to the plane of curvature are
irrelevant, i. e. we can limit our investigation to considering shear force V, bending
moment M and torque T.

For equilibrium of forces perpendicular to the plane of curvature and equilibrium of
moments about the n and t axes

q dsS dV w 0 , dM S T dfsV dsw 0 , dT sM dfSm dsw 0
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which results in the following simultaneous differential equations

s qwVl , MlS

T

r
wV , Tlw

M

r
sm (5:61)

where a superscript dash ( l ) means differentiation with respect to s.

Generally, the radius of curvature r(s) is variable. However, assuming an average,
constant radius of curvature (at least span by span) mostly results in a good approxi-
mation and hence allows the beam to be treated as a circular arc with r = r = const.
Linking the differential equations (5.61) then gives

MLS

M

r2 w

m

r
s q (5:62)

Example 5.8 Beam as circular arc

The beam shown in Fig. 5.33(a) is supported by a transverse beam at A and discretely at B. The trans-
verse beam enables shear forces VA as well as torques TA to be carried, but on the other hand MA = 0.
And at B only shear forces VB can be carried, MB = TB = 0. The measures required to support the
beam in such a way that it is braced in three dimensions will not be discussed here. For example,
a point support with three degrees of determinacy and a sliding support with one degree of determin-
acy at A plus a sliding support with two degrees of determinacy at B (preventing displacement in the
radial direction) would result in a statically determinate support situation.
If the beam is loaded over its (developed) length l = rf0 with a uniformly distributed line load
q = const, m = 0, integrating (5.62), taking into account the static boundary conditions mentioned,
results in

M w qr2 sinf
1s cosf0

sinf0
S cosfs 1

	 

(5:63)

and (5.61)3, considering T(f0) = 0, results in

T w qr2 sinfs sinf0 S
1s cosf0

sinf0

cosf0 s cosfð ÞSf0 sf

� �
(5:64)

and from (5.61)2 it follows that

V w qr cosf0

1s cosf0

sinf0
s sinf0 Sf0 sf

	 

(5:65)

675.3 Differential structural elements
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Fig. 5.33 Simply supported beam as circular arc with torsion-resistant support at one end and carrying a load q = const:

(a) system and notation, (b) stress resultants



The diagrams of the stress resultants according to (5.63) to (5.65) are shown in Fig. 5.33(b) for the
case of f0 = l/r = 0.2. As can be seen, these stress resultants are very well approximated by the stress
resultants M, V and T determined on a developed straight beam of span l for q and M/r. This can be
easily explained by the development of the TAYLOR series for the expressions on the right in (5.63)
to (5.65). If we consider only the first term or the first two terms of the series in each case, we get

Vzqr f0=2sfð Þ , Mzqr2f f0 sfð Þ=2 , Tzqr2
sf3

0 S 3f0f2
s 2f3

� �
=12 (5:66)

which with x = rf and l = rf0 corresponds exactly with the stress resultants of the straight beam:

V w q l=2s xð Þ , M w qx ls xð Þ=2 , T w q s l 3
S 3lx2

s 2x3ð Þ= 12rð Þ (5:67)

5.4 Summary

1. Forces are perceived through their effects on material systems, can be represented
as vectors and always occur together with their reactions (except inertial forces,
which are mathematical auxiliary variables). Depending on the point of applica-
tion of the reactions, we distinguish between remote and contact forces as well as
internal and external forces.

2. Reducing a force system to one reference point produces the force-couple system
(the resultant force and the resultant couple) related to the reference point. The
force system is in equilibrium when the force-couple system equals zero.

3. Any free body isolated from a system, together with all the forces acting on it,
constitutes a free body diagram. According to the free body principle, any free
body removed from a compatibly deformed body or system in equilibrium by
way of imaginary cuts is itself in equilibrium and compatibly deformed; the ex-
ternal forces are in equilibrium in themselves because the internal forces consti-
tute a group in equilibrium (fundamental theorem of statics).

4. A system is statically determinate when the equilibrium conditions – if necessary
after resolving the system appropriately – are adequate for determining the un-
knowns. Otherwise it is statically indeterminate.

5. Structures must not fail in their entirety (as rigid bodies). Their overall stability
must be assured.

6. Force and funicular polygons are excellent graphic engineering tools for under-
standing equilibrium conditions.

7. Supports and hinges correspond to the locally inhibited or released degrees of
freedom of structures. Their arrangement should be well thought out as part of
the structural concept. The limit values of the associated force and deformation
variables must be carefully considered in every case.

8. The stress resultants in framed structures (normal and shear forces plus torques
and bending moments) are obtained by reducing the forces acting on the section to
the centroid of the cut face under consideration. In plate and shell structures, the
stress resultants related to points on the middle surface are generally made up of
membrane and shear forces as well as bending and twisting moments.

9. The stress state at one point in a continuum is described by a symmetric second-
order tensor and can be represented with MOHR’s stress circles in the plane of
stress s, t (normal and shear stresses). Alternatively, the stress state can be
described through its principal axes and principal values (the principal stresses).
Resolving into hydrostatic and deviatoric components is often helpful.

10. Applying the equilibrium approach to differential structural elements results in
differential equations for the equilibrium in the respective model space – gener-
ally three-dimensional, see (5.29), two-dimensional in the case of plate and shell
structures (plates, slabs, folded plates, shells) and one-dimensional in the case
of framed structures. In this respect, this chapter confines itself to straight and
single-curvature bars.

11. In order to minimise the bending moments in an arch structure, it should be
designed so that its axis matches the thrust line for permanent actions as closely
as possible.
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12. Beams with a radius of curvature r loaded perpendicular to the plane of curvature
can be approximated by considering similar straight beams with the same (de-
veloped) span and by introducing line load moments M/r.

5.5 Exercises

5.1 The masonry wall shown in section in Fig. 5.34(a) has a thickness b = 1m and
is subjected to a mean body load of gm = 24kN/m3. The active earth pressure
varies linearly over h and at the base of the wall amounts to eh = geh/3, where
ge = body load of soil = 20kN/m3. Assume a linear distribution for the ground
bearing pressure and calculate the permissible height h plus the associated
ground bearing pressure distribution (assuming no partial uplift at the base).
How does the permissible height change when partial uplift is present and the
bearing pressure is max. 200kN/m2?

5.2 Draw the force and funicular polygons for the two situations in exercise 5.1.
Divide the height h into four equal parts and indicate the associated masonry
loads and earth pressures.

5.3 A steel plate, see Fig. 5.34(b), is formed by two parts welded together along
x = y and exhibits stresses of
sx = – 30N/mm2, sy = 90N/mm2 and txy = – 45N/mm2. Determine the stress
components along the weld seam.

5.4 A timber member is made up of two parts joined together via a glued finger
joint, as shown in Fig. 5.34(c). With a mean tensile stress of s = 10N/mm2

in the timber member, what is the maximum permissible opening angle 2a if
neither the tensile stresses nor the shear stresses in the glued joint are to exceed
1N/mm2?
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5.5 Using the stress tensor

sw

2 6 s 4
6 s 2 2

s 4 2 5

2
4

3
5 N=mm2

determine the corresponding principal stresses and their directions and illustrate
the stress state according to Fig. 5.24 and Fig. 5.25.

5.6 Determine the height z in Fig. 5.34(d) such that the shape of the frame corres-
ponds to the thrust line for the given loads. What is the magnitude of the force in
the tie connecting the two supports?

5.7 Determine the stress resultants for the quarter-circle beam shown in Fig. 5.34(e).
As a comparison, consider a similar straight beam with a (developed) span of
l = rp/2 and a line load moment of M/r.
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6 KINEMATIC RELATIONSHIPS

6.1 Terminology

The points P and P in Fig. 6.1 designate the positions of a material point of a system in
the undeformed and deformed states. The difference

uw rs r (6:1)

between the corresponding position vectors is known as the displacement vector for P.
Generally, u depends on P or r, i. e. we have to consider the displacement field u(r),
which we presume is continuous and differentiable. As a rule, this field is described by
the position functions u(x, y, z), v(x, y, z), w(x, y, z) for the three Cartesian displace-
ment components. The designations ux, uy, uz are often used instead of u, v, w.

The displacement state of a system described by the displacement field can always be
divided into rigid body motion and deformations independent of that motion. When
dealing with structures in the service situation, it is generally the aim to rule out the
former, or limit it to small (local) rigid body deformation components such as bar
rotations, by choosing a suitable system (appropriate supports in particular), and to
keep the latter reasonably small, bearing in mind functionality. However, for specific
conditions during construction, e. g. transverse launching, incremental launching or
rotation of beams, raising or lowering suspended floors and roofs as well as rotating
arches into position, (global) rigid body motion that can be carried out in a controlled
way is not only desirable, but intrinsic to the concept.

The rigid body motion is fully described by the translation uO of a reference point O
and the rotation v, see Fig. 6.2. The translation u of an arbitrary point P with the pos-
ition vector r related to O is given by

uw uO Svq r (6:2)

The pair of vectors {uO,v} is called the translation-rotation system at O.

The simplest way of understanding rigid body motion is as a wrench deformation
about the wrench axis s parallel with v, see Fig. 6.2. The wrench axis intersects
the plane passing through O orthogonal to v at point S with the position vector

sw
vq uO

v2
(6:3)

All the points on the wrench axis exhibit the same translation-rotation system
{v (v x uO)/v2, v}, which is called a wrench.

The coplanar state of deformation is first discussed below, followed by the general
spatial state of deformation. In doing so, small deformations are always presumed,
i. e. the derivatives ui, j of the displacement components ui with respect to the coord-
inates xj (the elements of the displacement gradient introduced in section 6.3) should
be infinitesimally small compared to 1.

If both the derivatives ui, j and also the displacement component ui itself are small
(compared with the dimensions of the relevant part of the structure, e. g. deflection
II span), then we speak of first-order theory. In this case the equilibrium conditions
may be formulated for the undeformed (rigid) system. Furthermore, presuming linear
elastic material behaviour according to section 7.2 results in linear statics; all state
variables may then be superimposed according to the superposition law.
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In the case of stability problems (chapter 22) and similar issues, it is no longer possible
to consider all displacement components as small, and the equilibrium conditions must
be formulated for the deformed system (second-order theory). The superposition law
no longer applies to such problems with geometric non-linearity; similarly, the super-
position law does not apply to problems with material non-linearity (e. g. the elastic-
plastic and rigid-plastic systems dealt with in chapters 20 and 21).

6.2 Coplanar deformation

If we consider a plane displacement field with the displacement components u(x,y),
v(x,y) and w = 0, then the result for a differential element in the xy plane is the situa-
tion depicted in Fig. 6.3.

The elongations or normal strains related to the original lengths dx and dy in the x and
y directions are

ex w
@u

@x
, ey w

@v

@y
(6:4)

The angle between dx and dy, originally a right-angle, is reduced by the shear strain

gxy w
@u

@y
S

@v

@x
(6:5)

and there is also a rotation about the z axis

vz w
1

2

@v

@x
s

@u

@y

	 

(6:6)

in addition to the displacement u = (u,v) of the element. Summing up, the deform-
ation state is described by the translation u, the rotation vz according to (6.6) and
a change in volume and form (dilatation and distortion) characterised by the kinematic
relations (6.4) and (6.5).

According to (A6.1) and (A6.4), the relationship between the original coordin-
ates x = (x,y) and the x = (n, t) coordinates rotated through the angle f about the
z axis is described by

xw c 7 x , xw cT 7 x , cw
cosf s sinf
sinf cosf

� �
(6:7)

Similarly, the following applies for the displacements u = (u,v) and u = (n, t):

uw cT 7 u (6:8)

and according to (6.7)1, the elements of the rotation matrix c correspond to the deriva-
tives

cij w
@xi

@xj
(6:9)

Thus, from the relations analogous with (6.4) and (6.5)

en w
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S
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(6:10)

the transformation relationship analogous with (5.21)

en
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follows by applying the chain rule.

The normal strains ex, ey and the halved shear strains gxy/2 = gyx/2 can therefore be
grouped together in the (planar) strain tensor similarly to the stress tensor (5.27)

ew
ex

1
2gxy

1
2gyx ey

� �
(6:12)
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Its principal values, the principal strains
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occur in the f1 and f1 + p/2 directions with

tan (2f1)w
gxy

ex s ey
(6:14)

and the variables

en S et w ex S ey w e1 S e2 w eI (6:15)

and
1

4
g2

nt s enet w
1

4
g2

xy s exey ws e1e2 w eII (6:16)

are invariant.

Coplanar strain states can be interpreted geometrically with the help of MOHR’s cir-
cles in a similar way to Fig. 5.20, see Fig. 6.4.

Example 6.1 Measuring grid

The measuring bolts A, B, C and D are arranged on a 200mm square grid in the undeformed state on
the side face of a test specimen according to Fig. 6.5(a). Measurements of the distances AB,
CD, AC, BD and BC with the help of instruments to measure the permanent strain in the deformed
state reveal elongations of 1, 1.2, 0.2, 0.4 and 0.566mm. What elongation does distance AD undergo
and what are the principal strains and their directions?
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The measurements of the distances AB, CD and AC, BD result in the average strains

ex w
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and the result for diagonal BC is

eBC w et w
0.566ffiffiffi
2
p
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w 2 ‰

From (6.15) it follows that eAD = en = ex + ez – et = 5‰, and from (6.11)3, with f = p/4, the shear
strain is gtn = – 4 ‰. MOHR’s circle can therefore be drawn as shown in Fig. 6.5(b). Eq. (6.16) sup-
plies gyx = 3 ‰, and from (6.13) and (6.14) it follows that e1 = 6 ‰, e2 = 1 ‰ and f1 = 18.4h.
In the diagonal direction AD, the measurement should be en = 5 ‰. But actually, owing to unavoid-
able measuring errors, the result would almost certainly deviate slightly from this. The redundant
measurement AD plays the role of a restraint and enables an error to be compensated for, i. e. enables
the measurements to be improved.
In surveying, errors are compensated for by requiring that the sum of the squares of the improvements
multiplied by the weighting of the individual measurements should be a minimum. If we regard the
measuring grid as a statically indeterminate, linear elastic truss with bar stiffnesses of ki = (EA/l )i

according to (8.5), then this complies with the requirement that the energy stored elastically in the
n bars of the truss

Pi w

Xn

iw1

EA

l

	 

i

(dli)
2

2

should be a minimum, where dli = improvement to the ith measurement, see (8.73) and (8.74); it can
be seen that the external potential Pe is zero for the purely restraint condition of this example. The
stiffnesses of the truss members correspond to the weighting of the measurements, and the (minimal)
sum of the weighted squares of the improvements corresponds to the (minimal) internal potential Pi.
Compensating for surveying errors in a grid of linear measurements is carried out in a similar way to
the treatment of a truss with enforced deformations in theory of structures.

6.3 Three-dimensional deformation state

Referring to Fig. 6.1, let us consider a point Pl at an infinitesimally small distance dr
from P in the undeformed state. As deformation takes place, so the two points are dis-
placed to the positions P and Pl at a distance of

drw r, i dxi (6:17)

Substituting (6.1), it follows that
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where the ellipsis indicates the cyclic alternation of the indexes. The derivatives ui, j ,
presumed to be infinitesimally small, form the displacement gradient

ui, j w

@ux

@x

@ux

@y

@ux

@z
@uy

@x

@uy

@y

@uy

@z
@uz

@x

@uz

@y

@uz

@z

2
6666664

3
7777775

(6:19)

The normal and shear strains that occur can be read off from the infinitesimally small
cube shown in Fig. 6.6. In a first approximation, the new side length dx is dx (1 +
@ux/@x), and, consequently, the normal strain ex = (dx – dx)/dx is @ux/@x. Likewise,
for the shear strain gxy (= decrease in the initially 90h angle between dx and dy), the
expression is @uy/@x + @ux/@y.

The displacement gradient (6.19) can be divided into a symmetric part and an antisym-
metric part according to (A6.9):

ui, j w u i, jð ÞS u i, j½ � (6:20)
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Here, the symmetric part
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with the normal strains and (halved) shear strains given by the kinematic relations
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denotes the (spatial) strain tensor. And according to (A6.27), the antisymmetric part
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corresponds to the dual vector
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whose components
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describe a rigid body rotation of the region around P. Eq. (6.25)3 is identical with (6.6).

Summing up, the spatial deformation state in the vicinity of a point P is described by
the translation u, the rotation v and the strain state e.

The strain tensor (6.21) has the following basic invariants
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and the principal strains and their directions follow from the characteristic equation

e3
s eIe2

s eIIes eIII w 0 (6:27)

or (A6.21).
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Using the octahedral normal strain
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the strain tensor can be divided into a hydrostatic part and a deviatoric part, similarly to
(5.37):
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The hydrostatic part describes purely a change in volume (dilatation) without a change
in form, and the deviatoric part purely a change in form (distortion) without a change
in volume. The basic invariants of the deviator

eij w eij s eodij (6:30)

are similar to (5.40)
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Using the octahedral shear strain go , where
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and the angle u, where
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(6:33)

enables a presentation with hydrostatic axis and deviatoric plane similar to Fig. 5.25 in
the principal strain space e1, e2, e3 , see (5.44) and (5.45).

The kinematic relations (6.22) are supplemented by kinematic boundary conditions,
which result in prescribed boundary displacements r at the edge of the structure. The
displacement u of a point on the edge of the structure must match the corresponding
boundary displacement, i. e. r = u, or, when using (A6.3)

ri w dijuj (6:34)

A displacement field that satisfies the kinematic relations (6.22) and the kinematic
boundary conditions (6.34) is regarded as kinematically admissible.

6.4 Summary

1. The displacement state of a system can be divided into rigid body motion and
deformations independent of that motion. Apart from specific conditions during
construction, for structures it is generally the aim to rule out the former or limit it
to small (local) rigid body deformation components such as bar rotations, and to
keep the latter reasonably small.

2. Rigid body motion is fully described by the translation of a reference point and
the rotation of the body. The simplest way of understanding this is as a wrench
deformation about the wrench axis.

3. Where the elements of the displacement gradient are infinitesimally small and the
displacements are negligible in comparison with the dimensions of the relevant
part of the structure, then the equilibrium conditions may be formulated for the
undeformed system according to first-order theory; if, in addition, linear elastic
material behaviour is assumed, then the superposition law applies (linear statics).
If individual displacement components can no longer be considered as small, then
the equilibrium must be investigated according to second-order theory for the de-
formed system.

4. The general spatial state of deformation in the vicinity of a point is described by its
translation, the rotation given by the antisymmetric part of the displacement gra-
dient and the strain state given by the symmetric part of the displacement gradient.
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5. All the considerations relevant for the stress tensor (MOHR’s circles, basic invari-
ants, principal axes and values, division into hydrostatic and deviatoric parts, etc.)
can be readily transferred to the strain tensor.

6. The octahedral normal strain corresponds to purely a change in volume (dilata-
tion) and the octahedral shear strain purely a change in form (distortion).

6.5 Exercises

6.1 A beam in the form of a helix (x = acosf, y = asinf, z = bf) is constructed
using incremental launching by successively adding segments of length s and
sliding the beam forward by an amount s. Show that the end cross-sections
of a segment related to the bar axis are rotated through sb/(a2 + b2) with respect
to each other.

6.2 The sides of an equilateral triangle ABC (considered anticlockwise) undergo
normal strains eAB = 2.44 ‰, eBC = 0.36 ‰, eAC = – 0.40 ‰. Determine the
principal strains and their directions.

6.3 Can the theory of structures analogy regarding compensating errors in surveying,
which was discussed in connection with example 6.1, also be used for angular
measurements in triangulated grids? Assume a triangular mesh and use the sine
law of trigonometry.

6.4 Show that the ratio go/gmax, where gmax = Max (je2 – e3j,je3 – e1j,je1 – e2j), is
limited by the values

ffiffiffiffiffiffiffiffi
2=3

p
and

ffiffiffiffiffiffiffiffi
8=9

p
.

6.5 Use the identity cos(3u) = 4cos3u – 3cosu to show that

cos(3u)w
3
ffiffiffi
3
p

2
� eIII

e
3=2
II

6.6 Determine the rotation v, strains e (including principal values and directions),
gmax, octahedral normal strain eo and octahedral shear strain go belonging to
the displacement gradient

ui, j w

0.1 0.2 s 0.4
s 0.2 0.25 0.15
s 0.4 0.3 0.3

2
4

3
5 � 10s3

776.5 Exercises



7 CONSTITUTIVE RELATIONSHIPS

7.1 Terminology

The aim of this chapter is to bring together the stress and strain variables introduced in
chapters 5 and 6 by way of constitutive relationships, or rather, constitutive equations,
which are obtained through idealisation based on the results of experiments. This
chapter will address those deformations that are dependent on loads, but also the de-
formations not dependent on loads (e. g. due to shrinkage, swelling or thermal actions)
as well as the fatigue of materials caused by repetitive loadings.

Fig. 7.1(a) shows a uniaxial tensile test on a bar-type element and Fig. 7.1(b) shows a
typical stress-strain diagram for an air-hardened steel; a steadily increasing load
results in the line OABCD. The material behaves elastically between O and A, and
the line returns to O upon removing the load. The segment AB is a so-called yield
plateau, which corresponds to dislocations within the crystal lattice of the material;
removing the load at this stage would result in a line parallel with OA, and a certain
plastic strain would remain for s = 0. The segment BC with s increasing further rep-
resents a strain hardening of the material; removing the load (and applying it again)
at this stage would again result in a line roughly parallel with OA. The decrease in the
load after reaching the maximum load in the test (indicated by point C) up to fracture
at point D leads to an apparent decrease in the stress because the force applied is re-
lated to the original cross-sectional area (A = 1); in fact, there is a local decrease in the
cross-section (necking) and the stress at the point of fracture continues to increase.

The transition from elastic to plastic behaviour is not as distinct as point A in Fig.
7.1(b) might lead us to believe, even with air-hardened steels. In reality, the stress-
strain diagram starts to deviate from the linear progression at the limit of proportion-
ality, which is reached just before the yield limit fy (point A). Cold-formed steels do
not exhibit a yield plateau at all and instead of the yield limit fy we use the yield
point f0.2 (also f0.1), i. e. the point at which a permanent (plastic) strain of 0.2 %
(0.1 %) or 2 ‰ (1 ‰) occurs.

By way of a comparison, Fig. 7.2 shows typical stress-strain diagrams for various con-
cretes (normal-, high-strength), reinforcing steels (air-hardened, cold-formed) and pre-
stressing steels (bars, wires, strands) used in concrete structures. The prestressing
steels exhibit strengths that are two to three times greater than those of the reinforcing
steels and at the same time elongations at rupture that are two to three times smaller.
The strengths and elongations at rupture of the concretes are much smaller than those
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Fig. 7.1 Uniaxial tensile test: (a) bar element, (b) stress-strain diagram
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of the reinforcing steels. Normal-strength concretes subjected to compression exhibit a
distinctly non-linear behaviour that decreases with increasing strength. Subjected to
tension, all concretes exhibit an approximately linear behaviour that concludes
with a brittle failure, similar to glass. The tensile strength of concrete is only about
one-tenth of its compressive strength, and is subject to a relatively large scatter.

Fig. 7.3 shows a number of important idealisations of stress-strain relationships for
materials. The (hyper)elastic behaviour shown in Fig. 7.3(a) is characterised by a dis-
tinct, reversible s-e relationship; applying and relieving the load follow the same (non-
linear) path, all the energy stored in the material during deformation is released again
upon reversing the deformation. Fig. 7.3(b) illustrates (hyper)elastic-plastic behav-
iour – a type of behaviour that is not reversible; the loading and unloading paths
are different, plastic strains remain and part of the energy required for the deformation
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is dissipated, i. e. converted into heat. Fig. 7.3(c) shows the linear elastic - perfectly
plastic idealisation very often assumed in construction applications; the initial elastic
portion characterised by the modulus of elasticity E is followed by a yield plateau de-
termined by fy, and relieving the load takes place purely elastically, parallel with the
initial loading; the strain that remains once the load has been fully relieved (s = 0)
corresponds to the plastic portion er, but the strain reversed upon relieving the load
corresponds to the elastic portion ee of the total strain e = ee + er, see (20.17). The
linear elastic - linearly hardening plastic behaviour shown in Fig. 7.3(d) does not
exhibit a yield plateau, but rather a further rise in the s-e line characterised by the
modulus of strain hardening Ev; otherwise, the behaviour is identical with the linear
elastic - perfectly plastic model. Finally, Fig. 7.3(e) shows the rigid - perfectly plas-
tic idealisation, which is a further development of the linear elastic - perfectly plastic
behaviour in which the modulus of elasticity exceeds all limits, E p T.

7.2 Linear elastic behaviour

In this section we shall confine ourselves to isotropic behaviour, i. e. behaviour not
dependent on the choice of the system of coordinates; we shall also presume a linear
relationship between stresses and strains. Assuming isotropic behaviour means that
the principal axes of the stresses and strains coincide.

If we make the x axis a bar axis in Fig. 7.1(a), then according to the information in
section 7.1, ex = sx /E. In line with our premise, there will normally be strains trans-
verse to the bar axis which are likewise proportional to sx; assuming isotropic behav-
iour means that ey = ez = –nex, where n = POISSON’s ratio. If sx is joined by sy and
sz as well, then the generalisation of these considerations results in the following
strains

ex w
1

E
sx s n sy S sz

� � �
, ey w

1

E
sy s n sz S sxð Þ
 �

ez w
1

E
sz s n sx S sy

� � �
(7:1)

Fig. 7.4(a) examines a state of pure shear txz = tzx = t. According to Fig. 7.4(b), the
principal stresses corresponding to this state are s1 = –s2 = t at 45h to the x and
z axes, as is easily confirmed by the free bodies shown in Fig. 7.4(c) and Fig.
7.4(d), or the MOHR’s circle of Fig. 7.4(e). Fig. 7.4(f) shows the associated deforma-
tion. The diagonals of the element shown in Fig. 7.4(a) are stretched or shortened by
the amount e1 = –e2 = (s1 – ns2)/E = t (1 + n)/E according to (7.1), and the initially
90h angle between the x and z axes is reduced by – 2e2 = 2t (1 + n)/E. This means
that the shear strain is gxz = txz/G, where

Gw

E

2(1S n)
(7:2)
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is the shear modulus. Generally, as well as (7.1), we have

gxy w
txy

G
, gxz w

txz

G
, gyz w

tyz

G
(7:3)

The six equations of (7.1) and (7.3) are known as the generalised HOOKE’s law.

Summing the expressions of (7.1) and applying (5.33)1, (5.38) and (6.26)1 results in

eI w
so

K
(7:4)

where

K w

E

3(1s 2n)
(7:5)

is the bulk modulus. On the other hand, applying (5.37), (5.38), (6.28), (6.29), (7.1)
and (7.3), it becomes clear that there is a relationship

sij w 2Geij (7:6)

between the elements of the stress deviator and those of the strain deviator.

The bulk modulus K describes the change in volume, and the shear modulus G the
change in form. The factor 2G = E/(1 + n) in (7.6) corresponds to the ratio of the
diameters in the associated MOHR’s stress and strain circles.

The outcome for the specific strain energy (8.67) is

pi w
3K

2

ffiffiffi
3
p

eo

� �2

SG

ffiffiffi
3
p

go

2

	 
2

(7:7)

and for the specific complementary energy (8.69)

p*
i w

1

6K

ffiffiffi
3
p

so

� �2

S

1

4G

ffiffiffi
3
p

to

� �2
(7:8)

Eq. (7.7) and (7.8) describe rotational ellipsoids in the principal strain and principal
stress space respectively, with the hydrostatic axis as the axis of rotation. The expres-
sions jeoj =

ffiffiffi
3
p

eo and e = je j =
ffiffiffi
3
p

go/2 or jsoj =
ffiffiffi
3
p

so and s = js j =
ffiffiffi
3
p

to correspond
to the magnitudes of the hydrostatic and deviatoric components of the strain and stress
vectors e and s, see (6.28) and (6.32) or (5.38) and (5.43). Deriving (7.7) or (7.8) with
respect to these expressions and making use of (7.4) and (7.6) confirms (8.68) and
(8.70). The functions pi = const and pi

* = const correspond to potential surfaces
whose gradients at arbitrary strain or stress points are the associated stress or strain
vectors, see Fig. 7.5.
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The linear elastic, isotropic behaviour is fully characterised by two material constants;
K and G can be used as an alternative to E and n. The use of the LAMÉ constants m

and l represents yet another alternative, see (8.53).

From (7.4) and (7.5) it follows that using n = 0.5, the material is incompressible; the
change in volume tends to zero irrespective of so. Values of n exceeding 0.5 are ob-
viously impossible because otherwise the result for a positive so value would be a
negative eI (or eo) value, n J 0.5. Applying the same reasoning, according to (7.2)
and (7.3), n j –1 is essential because otherwise a positive t value would result in
a negative g value. In practice, n varies between 0 and 0.5 depending on the material.
The value of n is about 0.3 for the majority of metals, about 0.4 for most polymers and
can be approximated with n = 0.2 for concrete, see appendix A3.

7.3 Perfectly plastic behaviour

7.3.1 Uniaxial stress state

The perfectly plastic behaviour shown in Fig. 7.3(c) and (e) is characterised by the fact
that plastic deformations can occur where s = fy, whereas, at best, elastic changes in
deformation are possible where s I fy . The magnitudes of the plastic deformations at
the yield limit fy remain indefinite; the only thing that is clear is that they cannot de-
crease. Obviously, it is not possible to make any assertion about the total plastic
strains, only about possible plastic strain increments e

.
. It is true that e

.
j 0 where

s = fy and e
.

= 0 where s I fy ; stresses s i fy are impossible.

We often speak of plastic strain rates instead of plastic strain increments and therefore
we use a superscript dot ( _ ) to indicate these, as is usual when differentiating with
respect to time t. It should be pointed out that a true differentiation with respect
to time is not the case here; the velocity is irrelevant, i. e. t could be multiplied
by any positive factor. To keep the notation tidy, the superscript dot will be used
in the following, but always referring to the strain increments (e. ), displacement incre-
ments (u

.
) and incremental dissipation energy (D

.
).

Fig. 7.6 summarises the considerations so far, to which a yield limit for compression
(fyc) will be added to the one for tension (fyt). Using the yield functions

Yt w ss fyt , Yc ws ss fyc (7:9)

it is true that where k j 0

_ew k
dYt

ds
for Yt w 0 , _ew 0 for Yt I 0 (7:10)

and

_ew k
dYc

ds
for Yc w 0 , _ew 0 for Yc I 0 (7:11)
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Stress states with Yt i 0 or Yc i 0 are not permissible; possible stress states are con-
fined to the zone between the two yield limits.

7.3.2 Three-dimensional stress states

A yield surface defined by the yield condition Y(sij) = 0 is assumed in the following in
the six-dimensional stress space according to Fig. 7.7(a); this yield surface contains
the origin O and should be non-concave; in the planar case the yield surface is reduced
to a yield locus. The function Y is normalised in such a way that Y I 0 for points
within the yield surface (in the so-called non-plastic domain). Points outside the yield
surface (Y i 0) are not permissible.

The flow rule

_ew k grad Y (Y w 0 , kj 0) , _ew 0 (Y I 0) (7:12)

is postulated in the following, i. e. plastic strain increments, which correspond to
orthogonal vectors outward from the yield surface, can occur for stress points on
the yield surface, whereas no plastic strain increments are possible for any point within
the yield surface. Accordingly, the yield function Y plays the role of a plastic potential
and (7.12) is called an associated flow rule.

Applications in soil and rock mechanics often make use of non-associated flow rules
in which the plastic potential is different from the yield function. Such cases are not
considered further here.

Eq. (7.12)1 must be generalised when yield surfaces are made up of several segments
described by various yield conditions Yi = 0:

_ew
P

i
ki grad Yi (Yi w 0, ki j 0) (7:13)

Fig. 7.7(b) shows characteristic points with different conditions on the yield surface.
At B, the yield surface is strictly convex and smooth, and therefore regular. At C, it is
singular, i. e. strictly convex, but not smooth. And at point E on segment AD it is also
singular, i. e. smooth, but only weakly convex. In all cases, the specific incremental
dissipation energy

_Dw s 7 _ew _D( _e)j 0 (7:14)

is a single-valued function of e
.
. Further, when c i 0

_D(c _e)w c _D( _e) (7:15)

i. e. D
.

is a homogeneous function of degree one in the e
.
.

Generally, a function f (r) is homogeneous of degree n when f (cr) = cn f (r). According
to EULER’s homogenous function theorem, r x grad f = n f (r). Where n = 1, f = D

.

and r = e
.
, it follows that

_e 7 grad _Dw
_D (7:16)
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and the comparison with (7.14)1 supplies

sw grad _D (7:17)

Eq. (7.12)1 and (7.17) are similar to (8.70) and (8.68). The plastic potential plays
the same role in plastic theory as the specific complementary energy plays in elastic
theory, and the specific incremental dissipation energy corresponds to the specific
deformation energy.

Fig. 7.7(a) also shows that the relationship

ss s*ð Þ 7 _ew _D _eð Þs s* 7 _ej 0 (7:18)

applies for any stress states s on the yield surface and s* in the non-plastic domain.
This relationship is known as the principle of the maximum (incremental specific) dis-
sipation energy because s*

x e
.

can be interpreted as a fictitious specific dissipation
energy. Instead of the convexity of the yield surface and the orthogonality of the plas-
tic strain increments, the validity of (7.18) is often presumed in order to infer convex-
ity of the yield surface and orthogonality of the strain increments.

Stress states s at the yield surface and associated incremental strain states e
. according

to Fig. 7.7(a) are referred to as compatible. For B in Fig. 7.7(b), the regular case, there
is a one-to-one correspondence between s and e

.
. For C, the singular case, only the

allocation of s to e
.

is unambiguous and, vice versa, in the case of E merely the alloca-
tion of e

.
to s.

The term supporting plane is often useful. This plane is a plane orthogonal to e
. at the

end-point of the vector s compatible with this, see Fig. 7.7(a). As can be seen, the
supporting planes envelop the non-plastic domain. The distance of a supporting plane
from the origin is D

.
/je. j.

These observations are confined to a perfectly plastic behaviour of the material. A
fixed function Y determines the yield surface. On the other hand, in a material with
strain hardening, both the position of the non-plastic domain in the stress space as
well as its form and extent generally vary. Such circumstances will not be discussed
any further here.

The theory of plastic potential presented here for a three-dimensional element is
discussed further in chapters 20 and 21 using generalised force and deformation
variables. The theory remains valid for generalised variables if it is assumed to be
correct for all the elements of a system.

7.3.3 Yield conditions

Only isotropic materials will be considered below. Corresponding yield conditions
can be presented as a function of the basic invariants of the stress tensor, i. e.

Y sI, sII, sIIIð Þw 0 (7:19)

The principal axes of the stresses and the strain increments coincide because isotropy
is presumed.

7.3.3.1 VON MISES and TRESCA yield conditions

When a material is incompressible, e
.

I = 0, and the resulting yield surfaces are cylin-
ders

Y sII, sIIIð Þw 0 (7:20)

parallel with the hydrostatic axis, see (5.40). Examples of this are the VON MISES
yield condition

Y w sII s
f 2
y

3
w 0 (7:21)

or the TRESCA yield condition

Y w 4s3
II s 27s2

III s 9f 2
y s2

II S 6f 4
y sII s f 6

y w 0 (7:22)
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which can also be written in the form

Y wMax s2 s s3j j, s3 s s1j j, s1 s s2j jð Þs fy w 0 (7:23)

or, even simpler, as

Y w t max s
fy
2
w 0 (7:24)

where, as before, fy denotes the uniaxial yield limit.

According to (7.21) and (5.43), in the principal stress space the VON MISES yield
condition corresponds to a cylinder of radius

ffiffiffiffiffiffiffiffi
2=3

p
fy about the hydrostatic axis,

see Fig. 7.8(a). The TRESCA yield condition (assuming the same uniaxial yield
limit fy) corresponds to a regular hexagonal prism inscribed within the VON MISES
cylinder. Fig. 7.8(b) shows the intersection between the cylinder/prism and the devi-
atoric plane, and Fig. 7.8(c) shows the yield loci in the coplanar stress state (s3 = 0).
The result for the VON MISES ellipse circumscribing the TRESCA hexagon
ABCDEF is

Y w s2
1 s s1s2 S s2

2 s f 2
y w 0 (s3 w 0) (7:25)

Finally, Fig. 7.8(d) shows the TRESCA yield condition in the stress plane s,t ; the
diameters of the MOHR’s stress circles cannot exceed fy but any points on the s axis
may serve as the centres of the circles.

7.3.3.2 PRAGER and DRUCKER yield conditions

The simplest generalisation of (7.21) for a compressible material can be seen in the
PRAGER yield condition

Y w sII s
f 2
y

3
1s

sI

k

	 

w 0 kj ji fy

� �
(7:26)

shown in Fig. 7.9, with the yield limits fy/(1 + fy/k) or – fy/(1 + fy/k) in uniaxial
tension or compression respectively.

86 7 CONSTITUTIVE RELATIONSHIPS

II FUNDAMENTALS

fy

fy

fy fy

E F

D

C B

A 1σ

2σ

1σ

3σ

2σ

oσ
(a)

(c)

3σ

2σ1σ

D

C
A

F

E

B

fy /

(b)

(d)

τ

σ

2

fy /2

2
3

fy

2
fy

2
3

fy

VON MISES TRESCA

Fig. 7.8 VON MISES and TRESCA yield conditions: (a) principal stress space, (b) deviatoric plane, (c) coplanar stress state,

(d) TRESCA yield condition in the stress plane

1σ

3σ

2σ

oσ

Fig. 7.9 PRAGER yield condition



The similar generalisation

Y w t max s
fy
2

1s
sI

k

� �
w 0 kj ji fy

� �
(7:27)

of (7.24) was formulated by DRUCKER. The yield limits in uniaxial tension or com-
pression are the same as for the PRAGER yield condition.

In the principal stress space, (7.26) corresponds to a regular cone and (7.27) to the
inscribed regular hexagonal pyramid. The intersections of these surfaces with the
deviatoric plane are identical to the yield conditions of VON MISES and TRESCA,
see Fig. 7.8(b).

7.3.3.3 COULOMB yield condition

The COULOMB yield condition widely used in soil mechanics

Y w tj jS s tanfs cw 0 (7:28)

becomes

Y w si 1S sinfð Þs sk 1s sinfð Þs 2c cosfw 0 si j sj j sk

� �
(7:29)

when formulated for the principal stresses because the radius (si – sk)/2 of the gov-
erning MOHR’s circle is equal to [ccotf – (si + sk)/2]sinf, where c is the cohesion
and f the angle of internal friction. For uniaxial stresses, according to Fig. 7.10(a), the
yield limits are

fc w
2c cosf

1s sinf
w 2c tan

p

4
S

f

2

� �
, ft w

2c cosf

1S sinf
w 2c tan

p

4
s

f

2

� �
(7:30)

According to (7.29), the mean principal stress sj has no effect on the plastic deform-
ation. Consequently, applying the flow rule (7.12)1 gives us the relationship e

.
j = 0, i. e.

a coplanar strain state is present; where f i 0 and k is positive, there is a dilatation
according to e

.
I = e

.
i + e

.
j + e

.
k = 2ksinf. In Fig. 7.10(b), s3 is the mean principal stress.

The yield condition (7.29) is given by two planes perpendicular to the s1s2 plane or
parallel with the s3 axis, with traces GAF and GCD.

For a coplanar stress state where s3 = 0, the resulting yield locus is the irregular hexa-
gon ABCDEF in Fig. 7.10(b); e

.
3 = 0 applies along AF and CD. Similarly to these two

lines, there are also boundary lines CB and EF (where e
.

1 = 0) which ensue due to the
intersection of plane s3 = 0 with the two side planes of the COULOMB yield surface
perpendicular to the s2s3 plane in the principal stress space. Likewise, the boundary
lines AB und ED (where e

.
2 = 0) ensue from the intersection of plane s3 = 0 with the

two side planes of the COULOMB yield surface perpendicular to the s1s3 plane. As
can be seen, with coplanar stress states at the corners of the non-plastic domain, the
result according to the generalised flow rule (7.13) is normally a three-dimensional
strain state. Further, for stress states along DE and EF, the e

.
3 component orthogonal

to the stress plane is positive, and the same component along AB and BC is negative.

In the deviatoric plane, the COULOMB yield surface according to Fig. 7.10(c) mani-
fests itself as an irregular hexagon ABCDEF. The distances OA and OB are equal to
2ccosf

ffiffiffi
6
p

/(3 + sinf) and 2ccosf
ffiffiffi
6
p

/(3 – sinf). When f = 0, the COULOMB yield
condition is reduced to that of TRESCA, and the irregular hexagon ABCDEF be-
comes the trace AGCHEI of the regular hexagonal TRESCA prism. And vice versa,
the hexagon ABCDEF becomes the equilateral triangle AJCKEL in the theoretical
limiting case f = p/2.

The COULOMB yield condition in the principal stress space of Fig. 7.10(d) corres-
ponds to an irregular hexagonal pyramid with pairs of side planes parallel with
the axes. By displacing the vectors e

.
orthogonal to the yield surface to the apex of

pyramid G, we see that the scalar product of the specific incremental dissipation
energy defined by (7.14)1 for the general case (i. e. for side planes and edges as
well as for the apex of the pyramid) can be described by

877.3 Perfectly plastic behaviour



_Dw c cotf _eI (7:31)

Therefore, owing to (7.29) and (7.12)1, e
.

I = 2k sinf and g
.

max = e
.

i – e
.

k = 2k, and there-
fore

_Dw c cosf _gmax (7:32)

applies for the side planes, where g
.

max is the diameter of the MOHR’s circle for strain
increments.

7.3.3.4 Modified COULOMB yield condition

The COULOMB yield condition is often modified by the condition

sJ fct (7:33)

(based on RANKINE) where fct I 2ccosf/(1 + sinf) because otherwise the values
for uniaxial tensile strength would be too large compared with those for uniaxial com-
pressive strength. For example, assuming tanf = 3/4 for concrete is sensible, but
inserting that into (7.30) results in the generally unrealistic ratio ft /fc = 1/4; indeed,
ft /fc z 1/10, and the tensile strength is often completely neglected, i. e. fct = 0.
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Compared with Fig. 7.10(a) and (b), (7.33) leads to the modifications shown in
Fig. 7.11. The circle BAC completing the yield limit in Fig. 7.11(a) has the diameter
fc – 2sinf fct/(1 – sinf), which corresponds to points A and C in Fig. 7.11(b). Ac-
cording to the generalised flow rule (7.13), these two points can be allocated to the
COULOMB yield loci AHC with apexes H between points B and G and fictitious
angles of internal friction a where p/2 j a j f. The associated specific incremental
dissipation energy is calculated similarly to (7.32):

_Dw

fc 1s sinað Þ
2

S

fct sinas sinfð Þ
1s sinf

� �
_gmax

p

2
jajf

	 

(7:34)

When a = p/2, the result is D
.

= fctg
.

max, and when a = f, eq. (7.34) is reduced to
(7.32) because of (7.30)1.

7.3.3.5 MOHR’s envelopes

The COULOMB yield condition (7.28) can be generalised according to MOHR as
follows:

Y w tj js f (s)w 0 (7:35)

see Fig. 7.12(a). In doing so, the function f should become zero for a certain, non-
negative value s. Further, the first and second derivative of f should not be positive,
and f for s p –T should tend towards a finite limit value, i. e. should switch to a
TRESCA yield condition.

As indicated in Fig. 7.12(a), any point B on the envelope can be assigned to a circum-
scribed COULOMB yield condition with a fictitious angle of internal friction a and a
fictitious cohesion c. The distance of the associated straight line DB from the origin O
is ccosa. If we consider a kinematic discontinuity such that a relative displacement of
1 occurs at an angle a to a certain surface, then in a thin zone of thickness d the mean
normal strain increment is e

.
= sina/d along the discontinuity surface. Further, the

mean shear strain increment perpendicular to and parallel with the discontinuity sur-
face is g

.
= cosa/d, whereas no normal strain increments occur parallel with the

discontinuity surface. This strain state corresponds to a mean maximum shear strain
increment g

.
max of 1/d, and according to (7.32), it follows that D

.
= ccosa /d. Integrat-

ing over the thickness d supplies the incremental dissipation work
_Dw c cosa (7:36)

related to a unit surface area of the discontinuity and valid for a unit displacement,
which in Fig. 7.12(a) is equal to the distance of the straight line DB from the origin O.
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As the thickness d disappears from the equation, in contrast to Fig. 7.10(a), where the
vector g

.
max and the components e

.
and g

.
are given at point E, the unit displacement

vector at an angle a to the t axis can be given directly at point B in Fig. 7.12(a).
Applying (7.14)1 allows (7.32) and (7.36) to be confirmed geometrically.

Neglecting the tensile strength fct according to Fig. 7.11(b) results in the square yield
locus ODEF in the coplanar stress state, which can also be described by

s fc J sJ 0 (7:37)

Owing to the square form of the non-plastic domain, (7.37) is normally called the
square yield condition. In the stress plane, (7.37) can be drawn as a circle OAB ac-
cording to Fig. 7.12(b), and applying (7.36) supplies

_Dw

fc 1s sinað Þ
2

(7:38)

Apart from g
.

max, this expression corresponds to the value given by (7.34) for fct = 0.
However, in contrast to (7.34), a in (7.38) is not confined to the interval
p/2 j a j f, instead can assume all values between –p/2 and p/2.

Incidentally, it should be noted that the above requirements placed on MOHR’s en-
velopes are only partly fulfilled for (7.37). But as in this case we are dealing with
a coplanar stress state and not a coplanar strain state, this is unimportant. The import-
ant thing is that (7.38) can be obtained geometrically in a similar way to (7.36).

7.4 Time-dependent behaviour

Many construction materials, especially concrete and timber, experience deformations
that change over time. We distinguish here between load-dependent creep deform-
ations and load-independent shrinkage, swelling and thermal deformations. Creep
and shrinkage processes are discussed below using concrete as an example.

7.4.1 Shrinkage

Shrinkage describes a decrease in the volume of the concrete caused by drying pro-
cesses, and also through hydration of the cement in the case of low water/cement
ratios (as are used, for example, in the production of high-strength concretes). The
shrinkage strain can be estimated as follows:

es(t)w es,Tb(t s ts) (7:39)

The final shrinkage strain es,T, which lies between about – 0.2 and – 0.7 ‰, primarily
depends on the concrete mix and the ambient humidity; considerable differences can
occur depending on weather conditions and curing measures – suitable curing can re-
duce the shrinkage strain. The b(t – ts) factor for taking into account the onset of
shrinkage has a value of 0 for the age t = ts when shrinkage begins and a value of
1 for t p T; relatively thin components with a small volume in relation to their sur-
face area shrink considerably faster than thicker components.
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We generally assume that the loss in volume due to shrinkage is isotropic, i. e.
e1 = e2 = e3 = es(t).

7.4.2 Creep and relaxation

Creep is a change in the strain state that varies over time as a result of persistent load-
ing. Relaxation is the inverse process which involves a time-dependent change in the
stress state as a result of a specified persistent deformation.

If we confine ourselves to the typical stresses at the serviceability state, whose mag-
nitude does not exceed about 40 % of the uniaxial concrete compressive strength, and
if we exclude a strain reversal, then, assuming constant humidity and temperature, a
good approximation is to idealise the concrete as an ageing, linear viscoelastic
material. Creep strains are proportional to the applied stress and can be superposed
linearly over time. For the uniaxial case, the load-dependent strains are given by

es(t)w
Ðt
0

J(t, t)ds(t) (7:40)

where the creep function

J(t,t)w
1Sf (t, t)

E(t)
(7:41)

denotes the strain at time t as a result of a unit stress applied at time t, see Fig. 7.13(a).
The creep coefficient f(t,t) corresponds to the ratio of the creep strain at time t (with a
constant stress) to the initial elastic strain at time t; it can be estimated as follows

f (t, t)wf
T

b(t s t) (7:42)

The final creep coefficient f
T
, which is in the order of magnitude of about 2 to 3,

depends, in particular, on the age of the concrete at the onset of the action, the concrete
mix, the relative thickness of the component, the ambient humidity and the tempera-
ture. The b(t – t) factor for taking into account the duration of the load has a value of 0
for t = t and a value of 1 for t p T; as with shrinkage, relatively thin components
creep at a faster rate than thicker components, but the difference is not so pronounced.

Instead of (7.40), it is possible to use the equivalent equation

s(t)w
Ðt
0

R(t, t) des(t) (7:43)

where the relaxation function R(t,t) designates the strain at time t due to a load-
dependent unit strain applied at time t, see Fig. 7.13(b).

The relationship between the functions J and R is obtained, for example, by consider-
ing the strain history es = 0 for t I t0, and es = 1 for t j t0, which, according to
the definition, results in s(t) = R(t, t0). Eq. (7.40) supplies a linear inhomogeneous
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VOLTERRA integral equation for the numerical calculation of the relaxation func-
tion R for a known creep function J:

1w J(t, t0)E(t0)S

ðt
t0

J(t, t)
@R(t, t0)

@t
dt (7:44)

And vice versa, considering the strain history s = 0 for t I t0, and s = 1 for t j t0,
which, according to the definition, results in es(t) = J(t, t0), we obtain

1w
R(t, t0)

E(t0)
S

ðt
t0

R(t, t)
@J(t, t0)

@t
dt (7:45)

from (7.43), which is the inverse relation to (7.44). If we assume that the load-depend-
ent strain follows from the equation

es w c1 S c2f(t, t0) (7:46)

for t j t0, and that the stress is zero (s = 0) for 0 I t I t0, where c1 and c2 are
arbitrary constants, then s(t) varies linearly with R(t, t0). Taking Ds = s(t) –s(t0)
and Des = es(t) –es(t0), the incremental elastic stress-strain relationship is

Ds(t)wEa(t, t0) Des(t)s
s(t0) f(t, t0)

E(t0)

� �
(7:47)

where

Ea(t, t0)w
E(t0)

1S x(t, t0) f(t, t0)
(7:48)

denotes the age-adjusted effective elastic modulus with the ageing coefficient

xw 1s
R(t, t0)

E(t0)

� �
s1

s

1

f(t, t0)
(7:49)

Using f(t, t0) = E(t0) J(t, t0) – 1, (7.48) and (7.49) initially result in Ea = [E(t0) –
R(t, t0)]/f(t, t0). If we enter this expression into (7.47) and use (7.46) and
s(t0) = c1E(t0), then

s(t)w s(t0)S E(t0)sR(t, t0)½ �(c2 s c1) (7:50)

for t j t0, i. e. the asserted linear variation of s(t) with R(t, t0). If we use (7.50)
together with (7.46), it follows from (7.40) that

c1 S c2 E(t0) J(t, t0)s 1½ �w J(t, t0) s(t0)s (c2 s c1)

ðt
t0

J(t, t)
@R(t, t0)

@t
dt

and by rearranging it follows that

(c2 s c1) 1sE(t0) J(t, t0)s

ðt
t0

J(t, t)
@R(t, t0)

@t
dt

2
4

3
5
w 0 (7:51)

As the expression in the square brackets on the left in (7.51) disappears according to
(7.44), the equations (7.47) to (7.49) apply for any value of c1 and c2.

Using typical assumptions for J and R (or f and E ) generally results in ageing co-
efficients x in the order of magnitude of about 0.7 to 1; as an average we may assume
x = 0.85.

The assumption (7.46) corresponds to linear combinations of the cases s(t) = const
and es(t) = const shown in normalised form in Fig. 7.13. The majority of strain his-
tories can therefore be at least approximated with this. In the light of the inherent un-
certainties in the assumptions for J and R (or f and E ), using (7.48) leads to a practical,
simple method [2], [37].
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Example 7.1 Time-independent restraint

A prismatic, initially stress-free homogeneous bar undergoes the subsequent restraint es(0) at time
t0 = 0 corresponding to s(0) = E(0)es(0). Eq. (7.47), using Des(t) = 0 and (7.48), supplies

Ds(t) 1S x(t) f (t)½ �
E(0)

S

s(0) f (t)

E(0)
w 0

and therefore

s(t)ws(0)SDs(t)ws(0) 1s
f (t)

1S x(t) f (t)

� �
The creep considerably reduces the time-independent restraint.

Example 7.2 Time-dependent restraint

The time-independent restraint examined in example 7.1 can be caused, for example, by a single
support displacement. A time-dependent restraint affecting the system which is initially free from
stress and strain is considered below. This restraint is caused by a gradual support displacement,
e. g. settlement, and it is assumed that this exhibits an identical chronological progression to that
of the creep, i. e. Des(t) = es(t) = es,T f(t)/f

T
. Using (7.47) and (7.48), it follows that

s(t)wDs(t)w
es,TE(0)f (t)

f
T

1S x(t) f (t)½ �
The creep gives rise to a much lower value for the time-dependent restraint than is the case with purely
elastic behaviour.

Example 7.3 Prestressing

If a prestressing force (compressive force) P, which is assumed to be constant, acts on the bar with
cross-sectional area A used in examples 7.1 and 7.2, then on the one hand, with t = 0 we get a
time-independent restraint es(0) = –P/(EA), and on the other, a time-dependent restraint where
es,T = f

T
es(0) = f

T
s(0)/E(0).

By combining the solutions for s(t) from the two examples above, it follows that

s(t)ws(0) 1s
f (t)

1S x(t) f (t)

� �
S s(0)

f (t)

1S x(t) f (t)
ws(0)

As assumed, the sum of the two components remains constant, s(0) = –P/A = const.

Example 7.4 Loss of prestress

In reality, owing to the shortening of the bar caused by creep, the concrete bar (with cross-sectional
area Ac and modulus of elasticity Ec(0) = Ec) considered below experiences a loss of prestress DP in
the tendon (with cross-sectional area Ap and modulus of elasticity Ep) embedded in and rigidly
bonded to the concrete. Added to this is the influence of the shrinkage es(t) = ecs(t).
The prestressing force P0 at time t = 0 causes a normal strain ep0 = P0/(Ep Ap) in the tendon and a
normal strain ec0 = –P0/(Ec Ac) in the concrete, see Fig. 7.14.
The difference in the strains ep0 –ec0 subsequently remains constant because of the rigid bond, i. e. we
get the compatibility condition

ep(t)s ec(t)w ep0 s ec0 w
P0(1S rn)

EpAp
w const

where r = Ap/Ac denotes the geometric reinforcement ratio and n = Ep/Ec is the modular ratio

between the material of the tendon and the concrete.
The following applies at time t

ec(t)w ec0[1Sf (t)]S
DP

EcAc
1S x(t) f (t)½ �S ecs(t) , ep(t)w

P0 sDP

EpAp

Substituting this in the above compatibility condition results in

DP(t)

P0
w

nr f (t)S
ecs(t)

ec0

� �
1S nr 1S x(t) f (t)½ �

It can be seen that both ecs(t) and ec0 are negative, i. e. the loss of prestress increases as a consequence
of the shrinkage.
Using r = 0.5 %, n = 6, f(T) = 2, ecs = – 0.4 ‰, ec0 = – 0.2 ‰ and x(T) = 0.85, the ratio is
DP(T)/P0 = 11.1 %, for example.
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The deliberations up to now were confined to uniaxial stress and strain states. If we
presume isotropic behaviour with a constant POISSON’s ratio n, then it is possible to
deal with general three-dimensional stress and strain states according to (7.48), (7.2)
and (7.5), e. g. using the age-adjusted effective shear and bulk moduli

Ga(t, t0)w
G(t0)

1S x(t, t0) f (t, t0)
, Ka(t, t0)w

K(t0)

1S x(t, t0) f (t, t0)
(7:52)

7.5 Thermal deformations

If we confine ourselves to thermally homogeneous and isotropic materials and pre-
sume proportionality between changes in temperature and the associated deforma-
tions, then

ewaT T (7:53)

where aT denotes the coefficient of thermal expansion and T the change in tempera-
ture (rise = positive) related to a certain initial temperature. Appendix A3 gives typ-
ical values for aT.

According to (7.53), thermal actions lead solely to changes in volume without changes
in form, i. e. e1 = e2 = e3 = aTT.

In bar cross-sections, general temperature distributions normally lead to residual
stresses (see section 13.2.5), and in statically indeterminate systems thermal actions
generally cause restraints (see section 16.3.3).

Changes to the mechanical and thermal properties of a structure (especially losses of
strength and stiffness), in some instances very distinctive, can be expected at elevated
temperatures, e. g. as caused by a fire. The deformations and restraints due to fires can
reach considerable proportions.

7.6 Fatigue

7.6.1 General

It is normally necessary to investigate the fatigue behaviour of structures subjected to
road, rail or crane loads, or vibrations. The frequent repetition of loads can cause cu-
mulative and irreversible changes to the microstructure of a material, which corres-
ponds to increasing deterioration and, ultimately, to fracture, similar to applying a
single, steadily increasing (static) load to a brittle material up to failure. The fatigue
resistance is regarded as the acceptable stress difference as a function of the number of
load cycles and depending on the respective construction details.

Most of the knowledge we have about fatigue behaviour comes from tests on uni-
axially loaded specimens that are generally subjected to a stress history of
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sw sm S

Ds

2
sin(vt) (7:54)

(where sm = mean stress, Ds = stress difference, v = angular frequency, t = time)
carried out until failure occurs at a number of load cycles Nu. We speak of a single-
stage loading; with a fluctuating loading, either sm i Ds/2 or –sm i Ds/2 applies
(special case: repeated loading, |sm| = Ds/2), and with a reversed loading,
–Ds/2 I sm I Ds/2 (special case: fully reversed, sm = 0). In the case of a multi-
stage loading, either the load is increased step by step, or the specimen is subjected
to alternating high and low stresses. And finally, a fatigue loading is understood to be
the load that occurs stochastically on a construction works.

7.6.2 S-N curves

Plotting the number of load cycles to failure Nu reached in fatigue tests with different
stress differences Ds using a double logarithmic scale produces so-called S-N curves
(W�HLER diagrams) , as shown in Fig. 7.15(a). The results of such tests normally
exhibit considerable scatter; the number of load cycles to failure Nu can deviate by a
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factor of 10 or more with identical stress differences Ds. S-N curves are generally
evaluated by fitting straight lines having a certain probability of not being exceeded.

The so-called finite fatigue life range in the S-N curve is divided into the low-cycle
fatigue range (about 102

I Nu I 105) and the high-cycle fatigue range as shown in
Fig. 7.15(b). The endurance limit is understood to be the stress difference that can be
repeated an infinite number of times without causing failure.

The S-N curve is normalised for dimensioning purposes, something like that illus-
trated in Fig. 7.15(c). The fatigue resistance DsC is the stress difference at 2 ·106

load cycles depending on the construction detail or the notch category. The value m
describing the slope of the fatigue resistance curve is, for example, m = 3 for structural
steel, m = 4 for reinforcing and prestressing steel. Generally, the nominal endurance
limit is assumed to be 5 ·106 load cycles, which with m = 3 or 4 leads to a DsD value of
0.737DsC or 0.795DsC. When N i 5 ·106 load cycles, the fatigue resistance curve
continues with a slope of 1 : (2m – 1) up to Nu = 108, which with m = 3 or 4 corres-
ponds to fatigue resistance thresholds of DsL = 0.405DsC or 0.518DsC .

7.6.3 Damage accumulation under fatigue loads

To reach a conclusion about the deterioration caused by arbitrary fatigue loads we con-
sider a specimen with a cross-sectional area A subjected to a constant normal force
difference Ds0A. The deterioration D occurring after N load cycles is such that
only a cross-sectional area of A(1 – D) is still effective. The effective stress difference
is then

Dsw

Ds0

1sD
(7:55)

Assuming that the increase in D with N is proportional to Dsm, i. e.
dD

dN
w c Dsm (7:56)

where c = const, then using (7.55) results in

dD

dN
w

c Dsm
0

(1sD)m

from which it follows that

s

(1sD)mS1

mS 1
wNcDsm

0 S const

and as D(0) = 0 and D(Nu) = 1, then

Nu w
1

c(mS 1)Dsm
0

(7:57)

and

Dw 1s 1s
N

Nu

	 
 1
mS1

(7:58)

see Fig. 7.16.

Fig. 7.16(a) shows that (7.57) corresponds to a straight S-N line with slope 1 :m, and
Fig. 7.16(b) shows the D-(N/Nu) relationship (7.58). If m is constant for all values of
Ds0, the result is a single D-(N/Nu) curve, and therefore the deterioration values for all
values of Ds0i can be superposed. Where Ni = number of load cycles causing Ds0i ,
and Nui = number of load cycles to failure as a result of Ds0i, then the following
applies upon reaching the fatigue failure:X Ni

Nui
w 1 (7:59)
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Example 7.5 Fatigue of reinforcing steel

Fatigue tests on a reinforcing steel reveal that 1.6 ·106 load cycles at Ds = 150N/mm2 lead to failure,
whereas at Ds = 300N/mm2 the failure occurs earlier, at 105 load cycles. (a) How many load
cycles at Ds = 200N/mm2 would lead to failure? (b) First of all, 106 load cycles are applied at
Ds = 150N/mm2; how many load cycles at Ds = 200N/mm2 would then lead to failure?
Where log10300 = 2.477, log10150 = 2.176, log10105 = 5 and log10(1.6 ·106) = 6.204, we initially ob-
tain

mw

6.204s 5

2.477s 2.176
w 4

see Fig. 7.17.
(a) From (7.57) it follows that

Nu(Dsw 200 N=mm2)w 1.6 � 106 � 150

200

	 
4

w 506 250

(b) According to (7.59),

106

1.6 � 106 S

N200

506 250
w 1

and therefore N200 = 189 844. We also notice that according to (7.58), the initial 106 load cycles at
Ds = 150N/mm2 cause a deterioration D of 17.8 %, but already utilise 62.5 % of N/Nu.
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Using the damage accumulation hypothesis (7.59) named after PALMGREN and
MINER presumes that we know the stress differences Ds0i and the associated numbers
of load cycles Ni in addition to the fatigue resistance DsC and the slope 1 :m of the
fatigue resistance curve. It is often sufficient to use simplified methods to verify fa-
tigue resistance which show that the ensuing stress differences lie below the endurance
limit.

Compared with the stress difference Ds, the mean stress sm according to (7.54) mostly
has only a minor influence on the fatigue strength. The dependence of the fatigue re-
sistance on the mean stress (for a certain number of load cycles) can be presented as
shown in Fig. 7.18; this dependence should be considered in the flexural compression
zones of concrete structures, for instance.

7.7 Summary

1. Constitutive equations are obtained through idealisation based on experimental
observations. Load-independent deformations (e. g. due to shrinkage, swelling
or thermal actions) must be considered as well as load-dependent deformations.

2. Isotropic linear elastic behaviour can be described by means of two material con-
stants. We normally use the modulus of elasticity and POISSON’s ratio. The shear
and bulk moduli or the LAMÉ constants can be used as alternatives.

3. The description of perfectly plastic behaviour is based on defining, or assuming, a
yield condition, which describes a non-concave (at least weakly convex) non-
plastic domain in the stress space.

4. According to the associated flow rule, the plastic strain increments are propor-
tional to the gradient of the yield function. And vice versa, the stresses at the yield
surface are equal to the gradient of the dissipation function.

5. The principle of maximum dissipation energy can be postulated as an alternative
to presuming a convex yield surface and orthogonal plastic strain increments.

6. The yield conditions of isotropic materials can be presented as a function of the
basic invariants of the stress tensor. For incompressible behaviour, the yield sur-
faces in the principal stress space are cylinders parallel with the hydrostatic axis,
e. g. after VON MISES or TRESCA. For compressible behaviour, conical or pyr-
amidal yield surfaces or corresponding generalisations are the result; for appli-
cations involving concrete, soil and rock, the COULOMB yield condition is the
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favourite in this respect (possibly modified based on RANKINE), but its
generalisation according to MOHR also plays a role in isolated cases.

7. The swelling or shrinkage of the material is normally treated as an increase or
decrease in volume over time determined by various influences.

8. Creep and relaxation are two related processes which, for practical construction
applications, can be described by a creep or relaxation function according to the
theory of ageing linear viscoelastic materials; alternatively, the creep coefficient
and the modulus of elasticity (as functions of time) can be used as basic variables.
Any stress-strain histories can be approximated with good accuracy using the
method of the age-modified effective elastic modulus.

9. When it comes to thermal deformations, construction materials are generally re-
garded as thermally homogeneous and isotropic, with deformations proportional
to the change in temperature. In a similar way to shrinkage or swelling, the result
is a change in volume only. However, residual stresses generally ensue in bar
cross-sections and restraints in statically indeterminate systems.

10. At elevated temperatures, e. g. due to a fire, it is essential to take into account the
changes to the material properties compared with their properties in the normal
service situations of the construction works.

11. Fatigue behaviour must be investigated in structures that are subjected to repeated
loading.

12. The fatigue resistance depends on the number of load cycles and the respective
construction details.

13. The influence of fatigue loads can be taken into account via the damage accumu-
lation hypothesis (7.59).

14. It is often sufficient to apply simplified methods to verify fatigue resistance which
show that the ensuing stress differences lie below the endurance limit.

7.8 Exercises

7.1 Assuming a linear elastic behaviour (E = 210kN/mm2, n = 0.3), determine the
strains associated with the coplanar stress state of exercise 5.3.

7.2 Using the same assumption as in exercise 7.1, determine the stresses associated
with the strains of exercise 6.2. How do these stresses change when we consider
a coplanar strain state instead of a coplanar stress state? Compare (8.35) and
(8.37).

7.3 Show that in an oedometer test with ex = ey = 0, the relationship sz = Eez(1 – n)/
(1 – n – 2n2) applies when we assume a linear elastic behaviour.

7.4 If a point load Q is applied to a homogeneous, isotropic and incompressible
linear elastic half-space (E = const, n =1/2), see Fig. 7.19(a), then according
to BOUSSINESQ, the only principal stresses not equal to zero are the compres-
sive stresses

sr ws

3Qz

2pr3

radial to the load Q. Show that the resultant of these stresses (integral over the
hemispherical surface with radius r) is in equilibrium with Q.

7.5 Verify (7.7) and (7.8).
7.6 Verify (7.22).
7.7 A stress state is given by the tensor

1.000 s 0.2041 s 0.3536
s 0.2041 0.7500 s 0.1443
s 0.3536 s 0.1443 1.2500

2
4

3
5 � fy

Determine the principal stresses and their directions, and check whether the
TRESCA yield condition has been infringed.
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7.8 Draw a sketch similar to Fig. 7.8(c) using the Cartesian system of coordin-
ates sx,sy ,txy .

7.9 Verify (7.29) and (7.30), and show that the angle OGA in Fig. 7.10(b) is equal to
arc tan (sinf).

7.10 Six triaxial compression tests on cylindrical soil samples according to Fig.
7.19(b) resulted in the failure stress combinations given in Tab. 7.1.
A hydrostatic stress state was initially applied in all tests. The lateral stresses
s1 = s2 were subsequently kept constant, whereas the axial pressure –s3 was
increased until failure. Based on the test data, use a regression line to determine
the parameters c and f according to the COULOMB yield condition. Discuss the
result with the help of the parameters p = –(s1 + s3)/2, q = (s1 – s3)/2 used in
soil mechanics.

7.11 Verify the expressions for OA and OB given in connection with Fig. 7.10(c).
7.12 Verify (7.34).
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Tab. 7.1 Failure values from triaxial compression tests

Test 1 2 3 4 5 6

– s1 [kN/m2] 26 33 40 62 78 101

– s3 [kN/m2] 61 83 101 148 197 252



8 ENERGY METHODS

8.1 Introductory example

8.1.1 Statically determinate system

8.1.1.1 Statics and kinematics

The plane truss shown in Fig. 8.1(a) consists of six straight bars joined together and to
wall 13 concentrically via five friction-free hinged joints. The idealisation assumes
that the bars are weightless and that loads are applied at the joints only. Such properties
are characteristic of an ideal truss.

Each joint has two degrees of freedom in the direction of the global axis system X1, X2.
The support conditions at 1 and 3 mean that the passive degrees of freedom V1, V2 and
V5, V6 are omitted, see Fig. 8.1(b). The active degrees of freedom V3, V4, V7, V8, V9

and V10 are combined in one column vector V. The corresponding bar extensions vi are
found from

v1
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v5

v6

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

w

1 0 0 0 0 0
0 0

ffiffiffi
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ffiffiffi
2
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s

ffiffiffi
2
p

=2 s

ffiffiffi
2
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=2 0 0
ffiffiffi
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ffiffiffi
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2
6666664

3
7777775

V3
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V7
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8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

or in concise form

vw a 7 V (8:1)

where the deformation variables v, V can be assumed to be infinitesimally small ac-
cording to first-order theory.

Fig. 8.1(c) shows the loads Qj corresponding to the active degrees of freedom Vj ,
which are numbered consecutively and combined in one column vector Q. The figure
also shows the forces in the bars si corresponding to the bar extensions vi , which as
tensile forces are regarded as positive. For equilibrium of the three unsupported joints,
considered individually as free bodies,

Q3

Q4

Q7

Q8

Q9
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>>>>>>:

9>>>>>>=
>>>>>>;
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8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

or in concise form

Qw aT7 s (8:2)

The columns of the kinematic transformation matrix a contain the bar extensions vi as
a result of unit displacements Vj = 1 on the otherwise undeformed system. Starting
with a kinematically determinate basic system with all joints restrained
(V1 = V2 = ... = Vn = 0), we obtain a column by column by imposing Vj = 1. It is
important to note that the degree of static indeterminacy of the system is irrelevant.
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The equilibrium matrix above, which turns out to be aT, is obtained row by row
through joint equilibrium conditions in the direction of Qj . In this case (which is a
statically determinate, stable system), the equilibrium matrix is square and invertible,
i. e. has an inverse matrix and therefore
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>>>>>>;
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or in concise form

sw b 7 Q (8:3)

Similarly to (8.2), bT provides the transition from v to V
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or in concise form

V w bT7 v (8:4)

The transpose bT of the static transformation matrix b, which is equal to the inverse
matrix of a (bT = a–1) for the statically determinate system, is obtained column by
column by imposing vi = 1, similarly to a by imposing Vj = 1.
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8.1.1.2 Linear elasticity

Bar forces and bar extensions are combined with each other through the linear elastic
relationships

si w
EA

l

	 

i

vi w kivi , vi w
l

EA

	 

i

si w f isi

which can be expressed in the form

sw k 7 v , vw f 7 s (8:5)

when the stiffnesses ki = (EA/l )i or the flexibilities fi = (l/EA)i are arranged as elem-
ents of corresponding diagonal matrices k or f. Combining equations (8.2), (8.5)1 and
(8.1) results in

Qw aT7 k 7 a 7 V wK 7 V (8:6)

and combining equations (8.4), (8.5)2 and (8.3) results in

V w bT7 f 7 b 7 QwF 7 Q (8:7)

where K = aT
x k x a designates the global stiffness matrix congruent to k, and

F = bT
x f x b the global flexibility matrix congruent to f.

8.1.2 Statically indeterminate system

Adding a seventh bar as shown in Fig. 8.1(d) turns the system into one with one degree
of static indeterminacy. Eq. (8.1) is still valid, but a is now a (7q6) matrix:
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Eq. (8.2) also continues to apply, but as aT is not square, there is no inverse matrix;
there is a row deficit of one for determining the seven forces in the bars:
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According to the force method, a constraint is now released, e. g. by cutting through
bar 7, which turns the system into a statically determinate basic system. We introduce
a statically indeterminate force variable (redundant variable) X at this point in order
to eliminate the incompatibility caused by Q and thus ensure compatibility. The known
matrix b for the basic system is expanded by one row for s7 and by one column for X,
i. e.
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or in concise form

sw b0 7 QS b1 7 X (8:8)
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where matrix b1 and vector X represent the general case with several redundant vari-
ables Xk. The compatibility condition for the severed bar 7 (no incompatibility) is
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or in concise form

bT
1
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which again represents the general case. Using (8.5)2 and (8.8), we therefore obtain

bT
1

7 vw bT
1

7 f 7 sw bT
1

7 f 7 b0 7 QS bT
1

7 f 7 b1 7 X w 0

from which it follows that

X ws Fs1
11

7 F10 7 Q (F10 w bT
1

7 f 7 b0 , F11 w bT
1

7 f 7 b1) (8:10)

Subsituting (8.10) into (8.8) and comparing with (8.3) results in

bw b0 s b1 7 Fs1
11

7 F10 (8:11)

and therefore from (8.4), (8.5)2 and (8.8), taking into account the definition of F10 and
the symmetry of F11, we get

V wF 7 Q , FwF00 sFT
10

7 Fs1
11

7 F10 (F00 w bT
0

7 f 7 b0) (8:12)

Summing up, the force method requires the matrices b0, b1 and f to be set up for the
given loads Q. The displacements V follow from (8.12)1 with the global flexibility
matrix F defined in (8.12)2 and the expressions for F00, F10 and F11 given in
(8.12) and (8.10).

According to the displacement method (deformation method), we proceed as for static-
ally determinate systems when dealing with statically indeterminate systems. Setting
up the matrices a and k and subsequently inverting (8.6) results in V = K –1

x Q, and
(8.1) and (8.5)1 supply the internal deformation and force variables v and s.

8.1.3 Work equation

Comparing (8.1), (8.2) or (8.3), (8.4) with (A5.18), (A5.21) shows that the kinematic
variables v, V and the static variables s, Q undergo a contragredient transformation;
sT

x n = QT
x V applies, i. e.

QT7 V s sT7 vw 0 (8:13)

This relationship is valid for any system irrespective of the material behaviour.
Furthermore, different static and kinematic states Q1, s1 or V2, v2 may be involved.
All that is required for these is that they are in equilibrium in themselves in accordance
with (8.2) or (8.3), or are compatible according to (8.1) or (8.4):

QT
1

7 V2 s sT
1

7 v2 w 0 (8:14)

The two terms in (8.14) correspond to the deformation work of the external and
internal force variables of state 1 done on the corresponding deformation variables
of state 2:

W wWe SWi w 0 , We wQT
1

7 V2 , Wi ws sT
1

7 v2 (8:15)

According to the so-called work equation (8.14) or (8.15), the force variables of a state
of equilibrium on the whole do no work on the deformation variables of a compatible
deformation state.
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8.1.4 Commentary

Combining (8.2) and (8.3) or (8.4) and (8.1) shows that the following identity applies:

aT7 bw bT7 aw I (8:16)

Owing to the congruence transformation with the (mqn) matrix a and the symmetric
(mqm) matrix k (kT = k), the global stiffness matrix K = aT

x k x a defined by (8.6)2 is
square of order n and symmetric (KT = aT

x kT
x a = aT

x k x a = K ). Likewise, owing to
the congruence transformation with the (mqn) matrix b and the symmetric
(mqm) matrix f (f T = f ), the global flexibility matrix F = bT

x f x b defined by (8.7)2

is square of order n and symmetric (F T = bT
x f T

x b = bT
x f x b = F ).

If we consider only active degrees of freedom and associated external deformation and
force variables in V and Q, then K and F are invertible (detK 0 0 and detF 0 0) and
positive definite (V T

x K x V i 0 and QT
x F x Q i 0). It is also possible to include the

passive degrees of freedom in V, in which case K is singular (det K = 0) and positive
semi-definite (V T

x K x V = 0); the nullity d of K corresponds here to the number of
possible rigid body deformations of the system released from its support conditions.
Contrasting with this, rigid body deformations must always be ruled out when deter-
mining b and F because otherwise equilibrium would be impossible.

The scalar product V T
x Q = QT

x V in (8.13) is equal to the quadratic forms V T
x K x V

or QT
x F x Q in the case of linear elastic behaviour according to (8.6) or (8.7). These

expressions correspond to the doubled active work of the external force variables
(loads) Q done on the external deformation variables (displacements) V they cause.

8.2 Variables and operators

8.2.1 Introduction

The example examined in section 8.1 introduced a number of basic concepts that will
be referred to again in various ways in the next sections. It was possible to describe
fully the structural behaviour of the system with just a few work-associated force and
deformation variables, i. e. the internal variables si , vi and the external variables
Qi, Vi at the discrete joints. Fig. 8.2 provides an overview of these variables and
the transformations between them. The top part of the figure corresponds to the purely
static considerations, the bottom part the purely kinematic (force or displacement
method). This scheme forms the basis for the so-called discontinua (discretised struc-
tural models), see sections 9.3 and 17.1 to 17.3, also chapter 19.

The variables for continua and the operators that link them are discussed below with
reference to the static, kinematic and constitutive relationships discussed in chapters 5
to 7. In doing so we make use of various results that will not be discussed in detail until
chapters 13, 23 and 24. Fig. 8.3 shows a scheme similar to that of Fig. 8.2 which re-
lates to a model space with volume V and surface area S according to Fig. 8.4.

The external force variables – i. e. forces whose reactions, according to the reaction
principle, are applied outside V (see sections 5.1.1 and 5.1.3) – are divided into
loads q (related to V) and the boundary stresses t specified on St (related to S). These
are in equilibrium with the internal force variables, the stresses s:

qwDs 7 s , twT 7 s (8:17)
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The static operator Ds and the boundary stress operator T are matrices formed by
differential operators and numbers.

The external deformation variables corresponding to q and t are the displacements u
and the boundary displacements r specified on Sr. The displacements are compatible
with the internal deformation variables, the strains e and with the boundary displace-
ments:

ewDk 7 u , rwR 7 u (8:18)

The kinematic operator Dk and the boundary displacement operator R, like Ds and T,
are matrices formed by differential operators and numbers.

Stresses and strains are combined by the constitutive equations, in the case of linear
elastic behaviour by

sw s0 SE 7 (es e0) (8:19)

where E is the (symmetric) elasticity matrix and s0 and e0 are the initial stresses and
initial strains.

The work equation (8.14) or (8.15) becomes

W w

Ð
qT

1
7 u2 dV S

Ð
tT
1

7 r2 dSs
Ð

sT
1

7 e2 dV w 0 (8:20)

The generally three-dimensional model space becomes two-dimensional for plate and
shell structures and one-dimensional for framed structures (see section 5.1.7). In these
cases, V corresponds to the middle surface of plate and shell structures or the bar axis
of framed structures, and S the edge of the structure or end-points of the structure. The
reduction in the number of dimensions is compensated for by adapting the force vari-
ables appropriately. Body loads become surface or line loads, boundary stresses be-
come length-related or effective boundary forces, and stresses become length-related
or effective internal forces. It should also be remembered that moments can occur as
force variables in addition to forces; the work-associated displacement and strain vari-
ables are then rotations and curvatures as well as twists.

Owing to the reduction in the number of dimensions for V and the need to take mo-
ments into account, the elasticity matrix E normally also contains parameters
dependent on the cross-section as well as those dependent on the material.

It is often possible to assume that certain strain components are negligible, i. e. we
consider the structural behaviour to be rigid when subjected to corresponding stress
components of any magnitude; for example, we speak of bars that are inextensible or
are rigid in shear (= have infinite shear stiffness) when the deformations correspond-
ing to the normal or shear force can be neglected. And vice versa, it is also possible to
assume that certain stress components are negligible; we then speak of a flexible be-
haviour in this context, e. g. a flexible cable that is unable to accommodate any bend-
ing moments. In both cases, the corresponding rows and columns disappear from the
elasticity matrix. The stiff behaviour lying between the limit cases of infinitely large
and negligibly small stiffness corresponds to the standard case and normally does not
require any special consideration unless we want to emphasize that, for example, in
bars or slabs with finite shear stiffness (= flexible in shear), an idealisation with infinite
shear stiffness (the normal case) is not being assumed.
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In contrast to resistant, the designation flexible is also used in the context of perfectly
plastic behaviour to indicate that certain stress components or internal force variables
are neglected. For example, we speak of torsionless or torsion-resistant behaviour
depending on whether torques are ignored or included.

8.2.2 Plane framed structures

8.2.2.1 Bars with finite shear stiffness

Fig. 8.5(a) shows a differential element of a framed structure lying in the xz plane.
Equilibrium of forces in the x and z directions plus equilibrium of moments about
the y axis results in

qw
qx

qz

my

8<
:

9=
;w

s dx 0 0
0 s dx 0
0 1 s dx

2
4

3
5 N

V
M

8<
:

9=
;wDs 7 s (8:21)

where dx = d/dx. On the internal forces side, the line loads qx, qz and the line load
moment my (all related to a unit length of the bar) correspond to the normal force N,
the shear force V and the bending moment My = M. In the case of the moment equi-
librium condition, the contribution of dV disappears because it is small of a higher
order compared with the other values.

Fig. 8.5(b) shows the kinematic relationships corresponding to Fig. 8.5(a). Every point
on the bar axis x experiences a displacement u in the x direction and a displacement w
in the z direction. The associated cross-section originally perpendicular to the bar axis
is rotated through an angle f about the y axis and the element of length dx = rdf

undergoes – besides a normal strain and a curvature – a mean shear strain g combined
with a corresponding change to the initially 90h angle between bar axis and cross-
sectional areas. Assuming infinitesimally small deformations, the normal strain
on the bar axis is e = dxu, the shear strain is g = f + dxw and the curvature is
x = 1/r = dxf (where r = radius of curvature), i. e.
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As can be seen, apart from the sign of the (odd) differential operators dx, Dk is equal to
the transpose of Ds in (8.21).

The linear elastic constitutive equations (see sections 13.2.1 and 13.3.1) are
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where E is the modulus of elasticity, G = E/[2(1 + n)] the shear modulus (where
n = POISSON’s ratio), A the cross-sectional area, Av = an A the shear area (where
an = area shear factor) and I = Iy , the moment of inertia related to the principal
axis of the cross-section y.

Using the variables s and u introduced above, the boundary stress and boundary
displacement operators T and R given in (8.17)2 and (8.18)2 are found to be identity
matrices I.
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8.2.2.2 Bars rigid in shear

The theory of bars with finite shear stiffness dealt with up to now is named after
TIMOSHENKO. The shear strains g are often neglected according to a hypothesis
formulated by Jacob BERNOULLI, i. e. we use the theory of bars that are rigid in
shear. As g = f + dxw = 0, f depends on w. Instead of (8.22) we get
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One consequence of the g = 0 hypothesis is that my disappears from (8.21);
V = dxM + my applies and (8.21) becomes
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Again, apart from the sign of dx, Dk is equal to the transpose of Ds; V and f remain as
possible boundary specifications, T and R become (3q2) matrices, and the corres-
ponding terms dxM or –dxw appear:
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Finally, E in (8.23) is reduced by the row for V and the column for g.

8.2.2.3 Signs of elements of Ds and Dk

If we switch from the differential equation e = dxu in (8.24) to finite differences, then
the function values ui at the equidistant points x = iD (i = 0, 1, ... , n) result in the
approximations ei = (ui – ui–1)/D, from the first differences, or in concise form
De = a x u, where the coefficients –1 and 1 occur along the diagonals in the
[nq(n+1)] matrix a, see (8.1). On the other hand, joint equilibrium results in
Dqx,i = –(Ni – Ni–1), or in concise form Dqx = aT

x N, where the coefficients 1 and
–1 occur along the diagonals in the [(n+1)qn] matrix aT, see (8.2):
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. .

. .
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w

s 1
1 s 1
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. .

. .
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1

2
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777777775

This is the reason for the negative sign in the differential equation qx = –dxN in (8.25).

Similarly, instead of x = –dx
2w in (8.24), we get the approximations

x i = (–wi–1 + 2wi – wi+1)/D
2 from the second differences, or in concise form

D2x = a x w, with the coefficients –1, 2 and –1 along the diagonals of the matrix a.
On the other hand, joint equilibrium results in qziD = (Mi – Mi–1)/D – (Mi+1 – Mi)/D,
or in concise form D2qz = aT

x M = a x M:

aw aT
w
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. .

2
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This is the reason why the same (negative) sign occurs in the differential equa-
tion qz = –dx

2M in (8.25) as in the corresponding differential equation x = –dx
2w

in (8.24).

It appears that Dk = Ds
T (Dk = –Ds

T) generally applies for even (odd) differential
operators as elements of Dk and Ds.
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8.2.3 Spatial framed structures

Fig. 8.6 summarises the variables that occur with spatial framed structures (see also
Fig. 5.15). The following variables occur in addition to those for plane framed struc-
tures: line loads qy and line load moments mx, mz; shear forces Vy , torques T and
bending moments Mz; shear strains gy (= gyx), twists £ and curvatures x z; displace-
ments v and rotations fx , fz. The non-indexed variables M, x , f and V, g (= gzx)
for plane framed structures are given the index y or z.

In generalising (8.21), considering equilibrium at the bar element results in
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and taking into account gy = –fz + dxv , gz = fy + dxw instead of (8.22) results in
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Again, apart from the sign of dx, Dk is equal to the transpose of Ds. Finally, instead of
(8.23), the following applies:
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where Ix is the torsion constant. Again, the variables s and u introduced here mean
that T und R become identity matrices I.

For bars in three dimensions rigid in shear, where gy = –fz + dxv = 0 and
gz = fy + dxw = 0 as well as mz = –Vy – dx Mz = 0 and my = Vz – dx My = 0, the gen-
eralisation of (8.24) results in
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and the generalisation of (8.25) results in
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Once again, apart from the sign of dx, Dk is equal to the transpose of Ds. Vy , Vz and
fy, fz remain as possible boundary specifications; T and R become (6q4) matrices,
and the corresponding terms –dx Mz, dx My or –dxw, dxv appear. Finally, E is obtained
from (8.28) by deleting the rows for Vy , Vz and the columns for gy , gz.
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8.2.4 Coplanar stress states

The plate element shown in Fig. 8.7(a) is assumed to be subjected to a constant
coplanar stress state (sz = tzy = tzx = 0) over the depth h in the z direction, see sec-
tions 5.1.7.2 and 5.2.3. The remaining stress components sx, sy and txy = tyx corres-
pond to the in-plane forces (membrane forces) nx = hsx , ny = hsy , nxy = nyx = htxy

according to (5.14). Equilibrium of forces in the x and y directions calls for

nij, j S qi w 0 (8:31)

or rather

qw
qx

qy

� �
w

s @x 0 s @y

0 s @y s @x

� � nx

ny

nxy

8<
:

9=
;wDs 7 s (8:32)

From Fig. 8.7(b) it can be seen that with the displacement components u, v, the normal
strains ex, ey and the shear strain gxy are given by
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where Dk is the negative transpose of Ds, see (6.4) and (6.5).

As sz = tzy = tzx = 0, inverting the general linear elastic relationship
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according to (7.1) and (7.3), taking into account integration over h, results in
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We also get ez = –v(nx + ny)/(Eh), which generally corresponds to a certain variation
in the depth of the plate and hence, strictly speaking, certain shear strains gyz, gzx and
the associated stresses tyz, tzx , i. e. the stress state is only approximately planar. How-
ever, such effects may be neglected in plates that are thin in relation to their dimen-
sions in the planar directions.
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Fig. 8.7 Differential plate element: (a) statics, (b) kinematics



At an edge inclined at an angle of a to the y axis, edge forces occur with the compon-
ents nxcosa + nxysina and nyxcosa + nysina in the x and y directions, where a is
regarded as positive for rotation about the positive z axis. The edge force components
normal and tangential to the edge are equal to nxcos2a + nysin2a + 2nxysinacosa and
(ny – nx)sinacosa + nxy(cos2a – sin2a), see (5.21).

8.2.5 Coplanar strain state

When ez = 0, eq. (8.34) initially results in sz = v(sx + sy) and therefore
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Considering gxy = txy/G and inverting results in
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8.2.6 Slabs

The differential slab element shown in Fig. 8.8(a) is loaded by the surface load q per-
pendicular to its plane, i. e. in the z direction The depth of the slab h is presumed to be
small in comparison with the dimensions in the plane of the slab, meaning that, as an
approximation, we can assume a coplanar stress state varying (linearly) over h. In
addition, all deformations are assumed to be infinitesimally small, which means
that the equilibrium conditions according to first-order theory may be formulated
on the undeformed system.

The shear forces related to the length vx, vy according to (5.15) are regarded as positive
if they act in the positive (negative) z direction on the positive (negative) side of the
section, i. e. correspond to positive shear stresses tzx or tzy according to section 5.2.4.
The bending moments mx, my and the twisting moments mxy = myx according to (5.16),
also related to the length, are positive when they correspond to positive (negative)
stresses sx, sy , txy = tyx in the lower (upper) half of the slab.

Equilibrium of forces in the z direction and equilibrium of moments about the y and
x axes for the element in Fig. 8.8(a) calls for

qS vi, i w 0 , smij, j S vi w 0 (8:38)

or
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when, as usual, we ignore variables that are small of a higher order and when the sym-
metry of the moment tensor is exploited (mxy = myx).

Fig. 8.8(b) indicates the deflection w of a point P in the middle plane of a slab for a
section y = const. A point Pz linked with point P at a distance of z is displaced
– owing to the inclination w,x of the middle surface of the slab – by an amount zw,x

in the negative x direction when normals to the middle surface of the slab remain
straight and orthogonal to the middle surface during the deformation. If a mean shear
strain gx = gzx corresponding to the shear force vx is taken into consideration, the
cross-section rotates through an angle fx = gx – w,x (given by the slope of the
straight line PlPzl) about the y axis. In total, point Pz undergoes a displacement
u(z) = z(gx – w,x) in the x direction and a similar displacement v(z) = z(gy – w,y)
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in the y direction. The corresponding strains ex = u,x , ey = v,y , gxy = u,y + v,x are pro-
portional to z and depend on the derivatives of fx and fy:

ex w z fx, x w z xx , ey w z fy, y w z xy

gxy w z(fx, y Sfy, x)w z 2xxy (8:40)

Using the curvatures xx, xy , the doubled twist 2xxy and the mean shear strains gx, gy

as variables corresponding to the generalised stresses in (8.39), we get
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The factor of 2 that appears in conjunction with xxy can be easily verified with the help
of Fig. 8.8(c). The twists xxy = xyx correspond to rotations xxy dy, xyx dx related to the
lengths of an infinitesimal element at which the moments mxydx, myxdy together do the
elementary deformation work 2mxy xxy dxdy. In the upper drawing, the twisting mo-
ments are replaced by statically equivalent corner forces 2mxy in accordance with
the observations in section 24.1.2.5; as expected, the only one of the four forces whose
point of application is displaced also does the aforementioned elementary deformation
work on the displacement xxy dxdy.

Using
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and (8.40) and (8.35), with h = 1 in the latter, we get the following linear elastic con-
stitutive equation
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for the slab moments. By considering
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and applying (8.34), the above relationships are completed for the slab shear forces by
the corresponding equations
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If we consider an area shear factor of 5/6 according to section 13.3.1, the factors of 6
in the elasticity matrix Ev are replaced by 5.

At the edges of the slab, it is possible to specify the deflection w and the rotations f

parallel with and perpendicular to the edge. On the static side, these variables corres-
pond to the shear force and the bending and twisting moments parallel with and
perpendicular to the edge of the slab.

Neglecting the shear strains gx, gy means that the rotations fx, fy – as independent
external deformation variables – can be omitted; fx = –w,x, fy = –w,y applies and
(8.41) can be simplified to
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and instead of (8.39) we get
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Eq. (8.43) together with (8.46) and (8.47) forms the core of the theory of slabs rigid in
shear, which is named after KIRCHHOFF. The relation q = Ds

x Em
x Dk

x u resulting
from these relationships gives rise to the fourth-order partial differential equation
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the solutions to which can be adapted to two boundary conditions per edge. In the case
of free and simply supported edges, this results in a problem that is overcome by com-
bining the shear forces and the derivatives of the twisting moments parallel with the
edge to form edge shear forces. As is shown in section 24.1.2.4, such edges corres-
pond to static discontinuity lines along which shear forces are carried that are equal to
the difference between the twisting moments on both sides.

8.2.7 Three-dimensional continua

Chapters 5 to 7 discuss in detail the equilibrium conditions (5.29)

sij, j S qi w 0 (8:49)

the static boundary conditions (5.31)

ti w sijnj (8:50)

the kinematic relations (6.21)1 or (6.22)

eij w u(i, j) (8:51)
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the kinematic boundary conditions (6.34)

ri w dijuj (8:52)

and the linear elastic constitutive relationship (7.1), (7.3) or
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We shall confine ourselves here to using matrix notation to describe the relation-
ships (8.49)
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and (8.51)
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Eq. (8.54) has already been presented in matrix form in (8.34).

8.2.8 Commentary

If we use (8.17)1 to write the integrand in the first term on the right in (8.20) in the
form q1

T
x u2 = u2

T
x q1 = u2

T
x Ds

x s1 and take into account the relationship (8.18)1 for e2

in the third term, we then get
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The operators Ds and Dk have elements in the form of numbers and differential
operators, and, as shown in section 8.2.2, Dk = Ds

T (Dk = –Ds
T ) applies for even

(odd) differential operators. It is easy to prove that the two operators Ds and Dk are
adjoint in framed structures. Corresponding expressions of the type u2s1 – s1u2,
u2s1l – s1u2l , u2s1L – s1u2L occur in the volume integral from (8.57) degenerated
to a line integral ( l= d/dx); of these, the first disappears and the second and third
can be integrated through integration by parts. As an example, applying (8.24) and
(8.25) results in
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Either GAUSS’ theorem (A6.30) or GREEN’s second identity (A6.34) can be used in
a similar way to verify the adjointness of Ds and Dk for plate and shell structures and
three-dimensional continua. The adjointness of the static and kinematic operators for
continua corresponds to the identity relationship (8.16) between the static and kine-
matic transformation matrices for discontinua.
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8.3 The principle of virtual work

8.3.1 Virtual force and deformation variables

Starting with the real deformation state u, e, r, let us consider the neighbouring states

uw uS du , ew eS de , rw rS dr (8:58)

according to (A7.4), which should be characterised by the fact that the kinematic
relationships and boundary conditions

ewDk 7 u in V , rw rw r0 on Sr (8:59)

are fulfilled, see(8.18). Such states are known as kinematically admissible.

Further, starting from the real force state q, s, t, let us consider the neighbouring states

sw sS ds , tw t S dt (8:60)

that satisfy the equilibrium conditions and the static boundary conditions

qwDs 7 s in V , t w tw t0 on St (8:61)

see (8.17). Such states are known as statically admissible.

8.3.2 The principle of virtual deformations

If we combine the real force state 1 and the virtual deformation state 2 in the work
equation (8.20), the result is

dW w

Ð
V

qT7 du dV S

Ð
St

tT
0

7 dr dSs
Ð
V

sT7 de dV w 0 (8:62)

Using (8.57) and (8.59), the third integral in (8.62) can be rearranged as follows:

s

Ð
V

sT7 de dV ws

Ð
V

sT7 Dk 7 du dV ws

Ð
V

duT7 Ds 7 s dV s

Ð
S

tT7 dr dS

Therefore,

dW w

Ð
V

duT7 (qsDs 7 s) dV s

Ð
St

drT7 (t s t0) dSw 0 (8:63)

According to the fundamental lemma of calculus of variations, the expressions in
brackets in the integrands of (8.63) disappear, i. e. we get (8.61) as the equivalent con-
ditions for the variational problem (8.62). The principle of virtual deformations is a
global (weak) formulation of the equilibrium conditions and the static boundary con-
ditions or, in other words, the equilibrium.

8.3.3 The principle of virtual forces

By combining the virtual force state 1 with the real deformation state 2 in (8.20), we
get

dW w

Ð
Sr

dtT7 r0 dSs
Ð
V

dsT7 e dV w 0 (8:64)

The equilibrium condition 0 = Ds
x ds can be considered as an auxiliary condition

with the LAGRANGE multiplier uT:

dW w

Ð
V

uT7 Ds 7 ds dV s

Ð
V

dsT7 e dV S

Ð
Sr

dtT 7 r0 dSw 0 (8:65)

Taking into account (8.57), the first integral in (8.65) can be rearranged:Ð
uT7 Ds 7 ds dV ws

Ð
dsT7 Dk 7 u dV s

Ð
dtT7 r dS

Therefore,

dW w

Ð
V

dsT7 (Dk 7 us e) dV s

Ð
Sr

dtT7 (rs r0) dSw 0 (8:66)

According to the fundamental lemma of calculus of variations, the expressions in the
brackets in the integrands of (8.66) disappear. We get (8.59) as the equivalent condi-
tions for the variational problem (8.65). The principle of virtual forces, assuming
infinitesimally small deformations, is a global (weak) formulation of the kinematic
relationships and the kinematic boundary conditions or, in other words, the compati-
bility.
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8.3.4 Commentary

The principle of virtual deformations and the principle of virtual forces are valid for
any system irrespective of the material behaviour. It should be pointed out that (8.62)
and (8.65) do not describe complete variations, but rather merely partial variations,
either for the kinematic or the static variables.

In contrast to the principle of virtual forces, the principle of virtual deformations still
applies to geometric non-linear problems (second-order theory). According to the
principle of virtual forces (8.65), deformation variables occur directly, but according
to the principle of virtual deformations (8.62), only in the form of their variations. The
consequence of geometric non-linear effects according to the principle of virtual
forces is therefore one order higher than according to the principle of virtual deforma-
tions.

According to the principle of virtual deformations, a force state is then, and only then,
in equilibrium, when the total virtual deformation work for each permissible virtual
deformation state (compatible with the constraints) disappears. In this form, the prin-
ciple of virtual work, together with the free-body principle (section 5.1.3) and the re-
action principle (section 5.1.1), forms the basis for the whole of statics. In dynamics,
the principle of virtual work has to be formulated including the inertial forces of
D’ALEMBERT: any arbitrary body moves in such a way that at any point in time,
the internal, external and inertial forces are in equilibrium.

Example 8.1 Determining internal force variables

We can use the principle of virtual deformations to determine internal force variables (stresses or
stress resultants) in statically determinate systems. For instance, if we want to find out the bar force s5

in the system shown in Fig. 8.1(a), we consider bar 5 to be cut through at one point and assign the
relative displacement dv5 to the sides of the cut. The rest of the system, in the form of a parallelo-
gram 1452, is thus a rigid body rotating through an angle dv5/l about joint 1, and displacements
ensue in the direction of the active degrees of freedom V3 to V10, which apart from factor dv5 corres-
pond to the coefficients in the fifth column of the matrix bT leading to relationship (8.4). Eq. (8.62)
becomes

dW w sQ4 SQ7 sQ8 SQ9 s 2Q10 s s5ð Þdv5 w 0

Owing to the fundamental lemma of calculus of variations, the expression in brackets must disappear
and that therefore determines s5, see also Fig. 10.9.
Instead of cutting through bar 5, we can subject the bar to an arbitrary virtual strain de(x) = dul(x) in
which the x axis moves from joint 3 to joint 4. Taking into account the boundary condition u3 = 0,
the third integral in (8.62) results in the value – s5du4. As expected, du4 takes on the role of the relative
displacement dv5, but otherwise there is no difference between this and the first procedure. Actually,
the first procedure is a special case of the second with an infinitely large virtual strain at the point at
which the bar is cut.

Example 8.2 Determining external deformation variables

We can use the principle of virtual forces to determine external deformation variables (displacements
or rotations) provided the stresses or stress resultants are known. For instance, if we want to find out
the deflection V8 at joint 4 of the system shown in Fig. 8.1(a), we can apply a virtual load dQ8 at the
point and in the direction of this deflection, which according to matrix b which leads to (8.3) gen-
erates bar forces s2 =

ffiffiffi
2
p

dQ8, s5 = –dQ8. If we presume flexibilities f2 =
ffiffiffi
2
p

f5 according to (8.5) and
temporarily treat V8 as a specified edge displacement r0 in the first integral of (8.64) (and conse-
quently Q8 as a reaction force), then this relationship – taking into account the second and fifth
rows of matrix b – results in

dQ8V8 w

ffiffiffiffi
2
p

dQ8

ffiffiffi
2
p

f 5(
ffiffiffi
2
p

Q4 S

ffiffiffi
2
p

Q8 S

ffiffiffi
2
p

Q10)sdQ8 f 5(sQ4 SQ7 sQ8 SQ9 s 2Q10)

and therefore

V8 w f 5 (2
ffiffiffi
2
p

S 1)(Q4 SQ8)s (Q7 SQ9)S 2(
ffiffiffi
2
p

S 1) Q10

h i
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Example 8.3 Geometric and material non-linearity

Two identical bars, idealised as weightless and with constant axial stiffness EA, are connected con-
centrically with each other (B) and to rigid abutments (A, C) via frictionless joints as shown in Fig.
8.9(a). The length of the initially stress-free bars is l/2, i. e. the initial position of joint B is B0 on the
level of AC. A load Q applied at B causes the deflection w as well as normal forces N and correspond-
ing strains e in both bars. The strain is

ew

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1S

2w

l

	 
2
s

s 1z
2w2

l 2

when higher terms in the TAYLOR series are neglected. A virtual additional deflection dw causes an
additional strain de = 2D/l. By taking into account N = EAe and the relationship between D and dw
shown in Fig. 8.9(b), then applying the principle of virtual deformations (8.62) results in

dW wQ dwsN l dewQ dwsEA
2w2

l 2
2

2w

l
dww 0

and therefore

Qw

8EAw3

l 3

see Fig. 8.9(c).
The linear elastic system behaves with geometric non-linearity. This example shows that it is also
possible to use the principle of virtual deformations in such situations.
It is easy to provide an exact solution in this case. If we call angle B0CB a = arc tan(2w/l ), then
e = (seca – 1) and

Qw 2N sinaw 2EA( tanas sina)zEA a3

if only the first two terms are considered in the TAYLOR series for tana and sina. Compared with the
exact solution, the approximation 8EA(w/l )3 for 2w/l = 0.1 results in a discrepancy of 0.7 %.
If the stress Ee reaches the yield limit fy and if the material behaves perfectly plastically upon further
deformation, the bar forces are N = Afy , and the following applies:

Qw 2Af y sinaz 4Af y

w

l 1S 2
w2

l 2

	 

The system displays geometric and material non-linearity. The onset of yield is given by

wyzl

ffiffiffiffiffiffi
f y

2E

r
, Qy z 2Af y

ffiffiffiffiffiffiffi
2f y

E

r
see Fig. 8.9(c).
It is also possible to apply the principle of virtual deformations in the phase of plastic behaviour:

dW wQ dwsNldewQdwsAf y2Dw Qs

4Af yw

l(1S e)

� �
dww 0

Once again, we arrive at the aforementioned expression for Q, and Nlde = 2Afy D corresponds to the
energy dissipated during the plastic deformation.
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8.4 Elastic systems

8.4.1 Hyperelastic materials

The stress field s = s(e) is conservative in the case of hyperelastic material behaviour.
The specific deformation work (related to the volume) of the internal forces (stresses)

s

Ðe2

e1

sT7 de

for a certain deformation process depends on the end-points e1, e2 only, not the path
between those points. The integrand sT

x de therefore corresponds to the total differen-
tial of a potential function

pi w
Ð

sT7 de (8:67)

the so-called specific strain energy, and s is equal to the gradient of this function:

sw grad pi (8:68)

The term pi represents a positive definite function of the strains e. The energy input pi

for a certain deformation process is stored and fully retrieved mechanically when
subsequently relieving the load, i. e. no energy is dissipated. Fig. 8.10(a) shows a
corresponding stress-strain relationship (one-to-one correspondence) for the uniaxial
behaviour.

As a complement to pi , it is possible to define the specific complementary energy

p*
i w sT7 espi w

Ð
eT7 ds (8:69)

with the gradient

ew grad p*
i (8:70)

see Fig. 8.10(b). In contrast to pi , pi
* is purely a mathematical auxiliary variable.

Whereas pi remains positive definite for any initial strains e0, pi
* can become negative

depending on the initial strain, see Fig. 8.10(c).

Differentiating the relationships (8.68) and (8.70) results in the reciprocal relation-
ships

@ sjk

@ elm
w

@2pi

@ ejk @ elm
w

@ slm

@ ejk
(8:71)

and

@ ejk

@ slm
w

@2 p*
i

@ sjk @ slm
w

@ elm

@ sjk
(8:72)

i. e. the fields s(e) and e(s) are irrotational.

The relationships (8.68) and (8.70) correspond to local formulations of the theorems
of CASTIGLIANO and ENGESSER, (8.72) corresponds to the local form of
MAXWELL’s generalised theorem, and (8.71) to a dual proposition of this.
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8.4.2 Conservative systems

8.4.2.1 Total potential

If in addition to the internal forces, the external forces are conservative, too, there is
a total potential

Pw

Ð
V

pi dV s

Ð
V

qT7 u dV s

Ð
S

tT7 r dSwPi SPe (8:73)

whose first variation according to the principle of virtual deformations (8.62) must be
equal to zero

dPw

Ð
V

dpi dV s

Ð
V

qT7 du dV s

Ð
St

tT
0

7 dr dSw 0 (8:74)

We can see that the integral over Sr is omitted because the boundary displacements r
on Sr are not varied.

The higher variations of Pe disappear compared with the first variation dPe because
we assume small deformations. Using a TAYLOR series, the variation of P at the
stationary value Pstat results in

PwPstat S
1

2
d2Pi S . . . jPstat (8:75)

because Pi is positive definite. The total potential, with the stationary value, therefore
assumes a minimum.

This result can be summarised as the theorem of least total potential: of all the kine-
matically admissible deformation states of a conservative system, the one that occurs
is the one in which the total potential P is a minimum.

Example 8.4 Tie

The normal force - normal strain curve shown in Fig. 8.11(c) applies to every cross-section of the
tie OA shown in Fig. 8.11(a). The total potential

Pw

Ðl
0

pi dx s
Ðl
0

qu dxsQAuA

has the (negligible) first variation

dPw

Ðl
0

dpi dx s
Ðl
0

q du dx sQAduA w 0

Taking into account dpi = Nde = Nd(ul) = N (du)l allows us to integrate the first integral by parts
and we get

dPws

Ðl
0

du (NlS q) dx SN du
���l
0
sQAduA w 0
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Owing to the (essential) kinematic boundary condition du(0) = 0, in accordance with the fundamental
lemma of calculus of variations, the equilibrium condition Nl + q = 0 and the (natural) static bound-
ary condition N(l ) = QA remain in the end. Integrating q, starting from A, results in the normal
force N, which means that the strain diagram e is also known from the N-e relationship; integrating
e, starting from O, then results in the displacement diagram u, see Fig. 8.11(b).
Where QA = 0, q = const and N = EAe, the result is, for example

Pw

ðl
0

EA
e2

2
dx s

Ðl
0

qu dx w
EA

2

ðl
0

(ul)2 dxs q
Ðl
0

u dx

and therefore

dPwEA
Ðl
0

ul dul dxs q
Ðl
0

du dx wEA uldu
���l
0
sEA

Ðl
0

uLdu dxs q
Ðl
0

du dx w 0

Consequently, according to the fundamental lemma of calculus of variations, EAuL + q = 0, and
owing to du(0) = 0 also ul(l ) = 0, i. e. ultimately,

ew ulw
q

EA
(ls x) , uw

qx(2ls x)

2EA

We get

Pw

q2

2EA

ðl
0

[(ls x)2
s x(2ls x)] dx ws

q2l 3

6EA

for the stationary value. Examining the second variation of P results in

d2PwsEA
Ðl
0

(duL duS uL d2u) dxs q
Ðl
0

d2u dxwsEA dul du
���l
0
SEA

Ðl
0

(dul)2dxs
Ðl
0

d2u(EAuLS q) dx

As the first and third terms disappear and the second is positive, d2P i 0, and the stationary value
corresponds to a minimum.
The integrand EA(dul)2 = EA(de)2, apart from the factor 1/2, corresponds to the third term d2pi/2 of
the TAYLOR series for the specific strain energy, see (8.75). Fig. 8.12 illustrates this situation for
positive and negative de values assuming a general hyperelastic material behaviour.

8.4.2.2 Complementary total potential

Conservative external forces involve a complementary total potential

P*
w

Ð
V

p*
i dV s

Ð
Sr

rT
0

7 t dSwP*
i S P*

e (8:76)

and according to the principle of virtual forces (8.64), the first variation of that poten-
tial must equal zero:

dP*
w

Ð
V

dp*
i dV s

Ð
Sr

rT
0

7 dt dSw 0 (8:77)

The loads q and the boundary stresses t on St do not vary, and so the corresponding
integrals can be omitted. Furthermore, the integral extending over Sr , the potential of
the applied boundary displacements, is often omitted as well; this is the case when
r0 a 0, i. e. when the system is rigidly constrained. Eq. (8.77) is then reduced to
the condition dPi

* = 0.
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In a similar way to (8.75), it can be shown that Pi
* with the stationary value given by

(8.77) assumes a minimum and the result can be summarised as the theorem of least
complementary total potential: of all the statically admissible force states in a con-
servative system, the one that occurs is the one in which the complementary total
potential P* is a minimum.

Example 8.5 Beam with one degree of static indeterminacy

The beam AB shown in Fig. 8.13(a) is subjected to a line load q uniformly distributed over its
length l. With, for example, two moment equilibrium conditions about A and B, the upper free
body diagram in Fig. 8.13(b) results in the support reactions

Aw

ql

2
s

X

l
, Bw

ql

2
S

X

l

dependent on the unknown fixity moment X. And the lower free body diagram results in the bending
moment M

M w

q

2
x(ls x)SX 1s

x

l

	 

at point x. If we assume a linear elastic behaviour rigid in shear according to section 8.2.2 with
EI = const, then only the bending moments need to be considered in the specific complementary
energy pi

*, see Fig. 8.13(c):

p*
i w

M2

2EI

Noting that dM = dX(1 – x/l ), eq. (8.77) results in

dP*
w

ðl
0

dM2

2EI
dx w

ðl
0

MdM

EI
dx w

ðl
0

dX

EIl

qx(ls x)2

2
S

X(ls x)2

l

� �
dxw 0

from which it follows that X = –ql2
/8 and therefore A = 5ql/8, B = 3ql/8. Fig. 8.13(d) shows the

corresponding bending moments M and shear forces V = M l.
Subjecting the system to a displacement rB at support B as shown in Fig. 8.13(e) is associated with a
certain support reaction B and a corresponding moment M = B(x – l ) according to Fig. 8.13(f).
Eq. (8.77) then results in

dP*
w

ðl
0

dM2

2EI
dxs rB dBw

ðl
0

MdM

EI
dxs rB dBw

ðl
0

BdB(x s l )2

EI
dx s rB dBw 0

from which it follows that B = 3EIrB /l
3.
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Fig. 8.13(e) and (f) correspond to a zero-load so-called restraint state of the system with one degree of
static indeterminacy. The stress resultants V = B and M = B(x – l ) due to the restraint are directly
proportional to the applied boundary displacement rB and the bending stiffness EI. Generally, in a
system with n degrees of static indeterminacy, we can distinguish between n independent restraint
states, the effects of which (stress resultants and deformations) are superimposed on those caused
by the loads. Actions that cause restraints vary from case to case; for example, changes in temperature
and humidity as well as material-dependent long-term deformations may need to be considered, see
sections 4.2.1, 7.4 and 7.5.

8.4.2.3 CASTIGLIANO’s theorem

The following discussion will be confined to systems subjected to displacements (or
rotations) uk in given directions at n points. The notation for the corresponding forces
(or moments) is Qk. The strains, and hence also the internal potential Pi , depend on uk

via the kinematic relationships. Eq. (8.73) becomes

PwPi(uk)sQkuk (8:78)

and (8.74) results in

dPw

@Pi

@uk
duk sQkduk w

@Pi

@uk
sQk

	 

duk w 0 (8:79)

In accordance with the fundamental lemma of calculus of variations, the expression in
brackets must disappear, i. e.

Qk w
@Pi

@uk
(8:80)

is CASTIGLIANO’s theorem: the partial differentiation of the internal potential with
respect to a displacement variable uk results in the corresponding force variable Qk.

Example 8.6 Geometric non-linearity

The geometric non-linear problem in example 8.3 with the normal strain e = 2w2
/l2 has an internal

potential of

Pi w l EA
e2

2
wEA

2w4

l 3

Applying (8.80) results directly in

Qw

8EAw3

l 3

Example 8.7 Cantilever beam

Fig. 8.14(a) shows the cantilever beam, rigid in shear and with constant bending stiffness EI, exam-
ined in example A7.2. Assuming w = c1j

2 + c2j
3 for the deflection w(j = x/l ), see (A7.52), and

w(l ) = w0, –wl(l ) = f0 , we first get c1 = 3w0 + f0l, c2 = – 2w0 – f0l and

wLw (6w0 S 2f0l )s 6j(2w0 Sf0l )½ � 1

l 2

Using the internal potential

Pi w

ðl
0

(wL)2

2
EI dx

and applying (8.80), it follows that

Q0

M0

� �
w

2EI

l 3

6 3l
3l 2l 2

� �
w0

f0

� �
The columns in the above stiffness matrix correspond to the boundary force variables entered in
Fig. 8.14(b) and (c) for the unit displacements w0 = 1 and f0 = 1.
Inverting the stiffness matrix gives us the flexibility relationship

w0

f0

� �
w

l 3

2EI

2

3
s

1

l

s

1

l

2

l 2

2
64

3
75 Q0

M0

� �

which is also easy to obtain from elementary observations according to Fig. 8.14(d) and (e). The
boundary deformation variables in the figures due to unit loads Q0 = 1 and M0 = 1 correspond to
the columns of the flexibility matrix.
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Superposing the cases considered in Fig. 8.14(d) and example A7.1 results in the beam with one
degree of static indeterminacy of example 8.5. In order to eliminate the deflection ql4

/(8EI ) accord-
ing to (A7.45) at the unsupported end of the cantilever (j = 1), we need the support force

Bw

3EI

l 3
� ql 4

8EI
w

3ql

8

see Fig. 8.13(d).

8.4.2.4 ENGESSER’s theorem

We shall now consider systems that are subjected to forces (or moments) Qk in given
directions at n points in addition to the loads q0 in Vand the boundary stresses t0 on St .
The notation for corresponding displacements (or rotations) is uk. The stresses, and
hence the complementary internal potential Pi

* as well, depend on Qk via the equilib-
rium conditions. Eq. (8.76) becomes

P*
wP*

i (Qk)sQkuk (8:81)
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and (8.77) results in

dP*
w

@P*
i

@Qk

dQk s uk dQk w
@P*

i

@Qk
s uk

	 

dQk w 0 (8:82)

from which, according to the fundamental lemma of calculus of variations, it follows
that

uk w
@P*

i

@Qk

(8:83)

i. e. ENGESSER’s theorem: the partial differentiation of the complementary internal
potential with respect to a force variable Qk results in the corresponding displacement
variable uk.

Example 8.8 Cantilever beam

The cantilever beam examined in example 8.7 is subjected to an additional line load q uniformly
distributed over its length l (as in example A7.1). In order to determine the boundary deformation
variables w0 and f0, we use

M wM0 sQ0(ls x)s
q

2
(ls x)2

to formulate the complementary internal potential

P*
i w

ðl
0

M2

2EI
dx

and apply (8.83):

@P*
i

@Q0
w

1

EI

ðl
0

M0 sQ0(ls x)s
q

2
(ls x)2

� �
(xs l ) dxw

1

EI
s

M0l 2

2
S

Q0l 3

3
S

ql 4

8

� �
ww0

@P*
i

@M0
w

1

EI

ðl
0

M0 sQ0(ls x)s
q

2
(ls x)2

� �
dxw

1

EI
M0ls

Q0l 2

2
s

ql 3

6

� �
wf0

Example 8.9 Calibration ring

Fig. 8.15(a) shows a circular calibration ring that can be used for checking the accuracy of testing
machines, for example. The ring with radius r has a constant bending stiffness EI and is subjected
to two diametrically opposed loads Q.
For reasons of symmetry, it is sufficient to consider just one quarter AB of the ring, see Fig. 8.15(b).
No shear force can act at B, and hence no normal force at A, and the normal force at B is a compressive
force of magnitude Q/2. The bending moment at any point is

M wMB S

Qr

2
(1s cosa)

where positive moments on the inside of the ring cause tensile stresses. Using

P*
i w 4

ðp=2

0

M2

2EI
r da

then (8.83) requires @Pi
*
/@MB = 0; the rotation corresponding to MB must disappear. Therefore,

it follows that

MB w
Qr

2

2

p
s 1

	 

and thus

M w

Qr

p
s

Qr

2
cosa

Applying (8.83) again results in the mutual approximation of points A:

4Qr3

EI

ðp=2

0

1

p
s

cosa

2

	 
2

daw

Qr3

4pEI
(p2

s 8)
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Fig. 8.15 Calibration ring: (a) elevation,

(b) free body diagram



8.4.2.5 MAXWELL’s generalised theorem

The partial differentiation of (8.83) with respect to a generalised force Ql different
from Qk results in MAXWELL’s generalised theorem

@2P*
i

@Qk@Ql
w

@uk

@Ql
w

@ul

@Qk

(8:84)

see (8.72); the field u(Q) is irrotational.

The partial differentiation of (8.80) with respect to a generalised displacement ul dif-
ferent from uk results in the dual relation of (8.84)

@2Pi

@uk@ul
w

@Qk

@ul
w

@Ql

@uk
(8:85)

see (8.71); the field Q(u) is irrotational.

8.4.3 Linear elastic systems

When all the parts of the system are linear elastic and the deformations remain infini-
tesimally small, then various force and deformation states may be superposed because
all the relationships describing the structural behaviour are linear, see section 6.1. This
leads to significant simplifications when dealing with theory of structures issues.

8.4.3.1 MAXWELL’s theorem

Every generalised displacement variable can be expressed as the sum of the effects of
the generalised forces, i. e.

uj w f jkQk or uw f 7 Q (8:86)

and, vice versa, every generalised force variable can be expressed as the sum of the
effects of the generalised displacements, i. e.

Qj w kjkuk or Qw k 7 u (8:87)

The stiffness matrix k and the flexibility matrix f are inverse, k x f = f x k = I.

According to ENGESSER’s theorem (8.83), uj = @Pi
*
/@Qj , and according to (8.86),

@uj /@Qk = fjk = @2Pi
*
/(@Qj@Qk). Owing to the interchangeability of the partial differ-

entiations, MAXWELL’s theorem applies:

f jk w f kj w
@2P*

i

@Qj@Qk

(8:88)

The flexibility matrix f is symmetrical, and its coefficients result from the second
derivatives of the complementary internal potential.

Similarly, applying CASTIGLIANO’s theorem (8.80) and (8.87), we arrive at the dual
proposition

kjk w kkj w
@2Pi

@uj@uk
(8:89)

The stiffness matrix k is symmetrical, and its coefficients result from the second
derivatives of the internal potential.

Fig. 8.16 illustrates MAXWELL’s theorem regarding the reciprocity of the displace-
ments and the dual proposition regarding the reciprocity of the force variables for a
system with two unit forces or displacements applied in given directions at points j
and k.
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Example 8.10 Simply supported beam

Determine the flexibility matrix f and the stiffness matrix k for the simply supported beam, rigid in
shear and with constant bending stiffness EI, shown in Fig. 8.17.
The bending moment M for each section due to the unit loads can be determined from the moment
diagrams shown in Fig. 8.17(a):

M w

x

2
Qj S

x

4
Qk (0J xJ l=2)

M w

ls x

2
Qj S

x

4
Qk (l=2J x J 3l=4)

M w

ls x

2
Qj S

3(ls x)

4
Qk (3l=4J xJ l )

The quadratic form

P*
i w

ðl
0

M2

2EI
dxw

l 3

1536EI
(16Q2

j S 22QjQk S 9Q2
k )

follows for the complementary internal potential. Applying (8.88) results in

f w
l 3

768EI

16 11
11 9

� �
see Fig. 8.17(b). Inverting f results in

kw
768EI

23l 3

9 s 11
s 11 16

� �
see Fig. 8.17(c), and from (8.89) we get the quadratic form for the internal potential

Pi w

ðl
0

x2

2
EI dxw

384EI

23l 3
(9w2

j s 22wjwk S 16w2
k )
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Fig. 8.16 MAXWELL’s theorem: (a) reciprocity of displacements, (b) reciprocity of forces
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Fig. 8.17 Simply supported beam with two point loads: (a) system and moments due to unit loads,

(b) flexibility coefficients, (c) stiffness coefficients



According to Fig. 8.18, the two quadratic forms can be represented as ellipses in the Qj, Qk or
wj, wk planes The complementary internal potential is then as follows:

P*
i w

l 3

1536EI
(c*

1Q2
1 S c*

2Q2
2)

with the eigenvalues

c*
1,2 w

16S 9

2
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16s 9

2

	 
2

S 112

s
w

24.043
0.957

� �

and the directions of the principal axes follow from

tan (2a)w
2 � 11

16s 9
i: e: aw 36.175h

Similarly, it follows that

Pi w
384EI

23l 3
(c1w2

1 S c2w2
2)

where

c1,2 w
9S 16

2
E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9s 16

2

	 
2

S 112

s
w

0.957
24.043

� �

and

tan (2a)w
s 2 � 11

9s 16
i: e: aw 36.175h

As can be seen, the eigenvalues c1
*, c2

* and c1, c2 are proportional to the inverses of the semi-axis
squares Q1

2, Q2
2 and w1

2, w2
2, see (A5.40).

Fig. 8.18 illustrates the theorems of ENGESSER and CASTIGLIANO, according to which the dis-
placements u (w in the example) and the loads Q are the gradients of the potential functions Pi

* and
Pi. The corresponding points in the two figures have been given the same letters A to H. Points A and
G correspond to the upper figure in Fig. 8.17(b), points B and H the lower figure. Likewise, points F
and D correspond to the upper figure in Fig. 8.17(c), points C and E the lower figure.
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Fig. 8.18 Potential surfaces and gradients: (a) ENGESSER’s theorem and flexibility coefficients,

(b) CASTIGLIANO’s theorem and stiffness coefficients



8.4.3.2 BETTI’s theorem

Starting with the work equation (8.20), we can interchange the roles of equilibrium
state 1 and compatible deformation state 2:Ð

qT
1

7 u2 dV S

Ð
tT
1

7 r2 dSs
Ð

sT
1

7 e2 dV w 0Ð
qT

2
7 u1 dV S

Ð
tT
2

7 r1 dSs
Ð

sT
2

7 e1 dV w 0

Applying the symmetrical (ET = E ) and positive definite (eT
x E x e i 0) elasticity

matrix E according to (8.19), the third integrals in the two relationships above are
identical:Ð

sT
1

7 e2 dV w

Ð
eT

2
7 E 7 e1 dV w

Ð
eT

1
7 E 7 e2 dV w

Ð
sT

2
7 e1 dV

and therefore BETTI’s theoremÐ
qT

1
7 u2 dV S

Ð
tT
1

7 r2 dSw
Ð

qT
2

7 u1 dV S

Ð
tT
2

7 r1 dS (8:90)

applies. According to this theorem, the external deformation work of an equilibrium
state 1 done on the (compatible) deformations of an equilibrium state 2 is equal to the
external deformation work of state 2 done on the deformations of state 1.

If we use (8.17) to (8.19) to replace the loads q in (8.90) by Ds
x E x Dk

x u = D0
x u, then

after rearranging it follows thatÐ
uT

1
7 D0 7 u2 s uT

2
7 D0 7 u1

� �
dV w

Ð
tT
1

7 r2 s tT
2

7 r1

� �
dS (8:91)

an assertion similar to (8.57), according to which the fundamental operator
D0 = Ds

x E x Dk is self-adjoint.

Example 8.11 Simply supported beam

If we first apply Qj to the beam examined in example 8.10 (Fig. 8.17), the result is the deflections fjj Qj

and fkj Qj at j and k; in doing so, the force Qj does the active work Qj fjj Qj /2 during its displacement.
If, while still applying Qj, we subsequently apply force Qk , then the result is the additional displace-
ments fjk Qk and fkk Qk at j and k; in this case the force Qj does the passive work Qj fjk Qk, and the
force Qk does the active work Qk fkk Qk /2 during its displacement.
Reversing the order of the loading results in the sequence of work values Qk fkk Qk /2, Qk fkj Qj,
Qj fjj Qj /2. As the system is conservative and the first and last terms result in the same sum, the
two passive work values must be equal, i. e.

Qj f jkQk wQk f kjQj

If we impose a deflection wj on the system while restraining k, this requires the forces kjj wj and kkj wj

at j and k; the work wj kjj wj /2 is done during this. Subsequently imposing wk while maintaining wj

requires the forces kjk wk and kkk wk at j and k; in doing so, the force kkj wj at k does the work wk kkj wj,
and the additional force for generating wk contributes the work wk kkk wk /2. As before, reversing the
order of the loading results in

wkkkjwj wwjkjkwk

8.5 Approximation methods

8.5.1 Introduction

Section 8.3 showed us that the principle of virtual deformations and the principle of
virtual forces correspond to a global formulation of the equilibrium and the compati-
bility respectively, and section 8.4 provided the derivation of the theorems of least
total potential and complementary total potential for conservative systems based on
those principles. These two theorems are particularly suitable for devising approxi-
mate solutions for cases in which an exact answer to the static and kinematic relation-
ships proves to be difficult or even impossible. The equilibrium conditions and the
static boundary conditions, or the compatibility conditions and the kinematic bound-
ary conditions, are therefore satisfied only approximately, i. e. infringed locally to a
greater or lesser extent.
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8.5.2 The RITZ method

The variational problem (8.74) can be overcome by applying

uw
Pn
iw1

civi (8:92)

as described in section A7.9, where the approximating functions vi must fulfil the es-
sential boundary conditions for u. The variational problem is turned into an ordinary
extremal problem. The n unknown coefficients ci follow from the linear equations

@P

@ci
w 0 (iw 1, 2, ..., n) (8:93)

By way of explanation, a number of simple examples are considered below which
permit a direct comparison between the approximate and exact solutions. It is obvious
that the real benefit of the RITZ method only really pays off in more complex cases
when exact solutions cannot be found or found only with great difficulty.

Example 8.12 Tie

Fig. 8.19(a) shows the tie already examined in example 8.4, where q = const, EA = const and the total
potential is

Pw

ðl
0

EA(ul)2

2
s qu

� �
dx

As the highest derivative of the required function u has the order one in the integrand, the sole es-
sential boundary condition results in a requirement for u at point x = 0: u(0) = 0. In the variational
problem dP = 0, functions with continuous derivatives up to order two are permitted for comparison.
Approximating functions vi = x i fulfil the essential boundary condition and it should be expected
that when n = 2, the exact solution is reached according to (8.92).
Putting n = 1, i. e. working with the function u = c1 x , then (8.93) results in

dP

dc1
w

Ðl
0

(EAc1 s qx) dx w 0

and therefore c1 = ql/(2EA), see Fig. 8.19(b). Comparing this with the exact solution reveals consen-
sus for u(l ); on the other hand, using EAul only results in the mean value ql/2 of the exact linear
progression of N.
When n = 2, the result is

Pw

ðl
0

EA

2
[(c1 S 2c2x)2

s q(c1xS c2x2)] dx

and (8.93) results in c1 = ql/(EA), c2 = –q/(2EA), see Fig. 8.19(c). We get the exact progression for
both u and N = EAul.
Putting n = 2 in the stationary case, we get the effective minimum P2 = –q2l3

/(6EA) for P. On the
other hand, with n = 1, the answer is
P1 = –q2l3

/(8EA) i P2.
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Fig. 8.19 Tie: (a) system, loads and approximating function, (b) n = 1, (c) n = 2, exact solution



Example 8.13 Cantilever beam

Fig. 8.20(a) shows the cantilever beam examined in example A7.1, with length l, EI = const,
q = const and rigid in shear. Owing to the occurrence of the second derivative wL of the required
deflection function w(x) in the integrand of the elastic potential (A7.43), it is necessary to consider
the essential boundary conditions for w and wl, i. e. w(0) = wl(0) = 0, and also to allow functions
with continuous derivatives up to order four for comparison. (A7.44) fulfils these conditions and
it is to be expected that an exact solution is reached when n = 4.
Fig. 8.20(b), (c) and (d) show the approximate solutions for n = 2 and n = 3 plus the exact solution for
n = 4, see (A7.45). Fig. 8.20(b) and (c) illustrate, on the one hand, the improvement to the approxi-
mations when changing from n = 2 to n = 3, and, on the other, how the influence of the higher-order
derivatives worsens the result – in contrast to the smoothing effect of integration, differentiation has a
coarsening effect.

Example 8.14 Ideal cantilever column

We shall again use (A7.44) with n = 4 for the inextensible, weightless ideal column (q = 0) shown in
Fig. 8.21(a). From Fig. 8.21(b) we get the relationship (du + dx)2 + (dw)2 = (dx)2 and therefore
ul = –wl2

/2, i. e.

Pe ws

ðl
0

Qwl2

2
dx , Pw

ðl
0

EIwL2

2
s

Qwl2

2

	 

dx
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Fig. 8.20 Cantilever beam rigid in shear: (a) system, loads and approximating function, (b) n = 2, (c) n = 3,
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Substituting (A7.44) and applying (8.93) with EI = const and k = Ql2
/(EI ) results in

4s
4

3
k 6s

3

2
k 8s

8

5
k

6s
3

2
k 12s

9

5
k 18s 2k

8s
8

5
k 18s 2k

144

5
s

16

7
k

2
6666664

3
7777775

c2

c3l
c4l 2

8<
:

9=
;w

0
0
0

8<
:

9=
;

Setting the determinant to zero leads to the characteristic polynomial

s k3
S 135 k2

s 2880 kS 6300w 0

with the eigenvalues

k1 w 2.4677 , k2 w 23.391 , k3 w 109.141

where the sole interesting minimum value k1 here lies only 0.014 % above the exact value
p2
/4 = 2.4674 known for this problem.

Putting n = 3 eliminates the third row and the third column from the above matrix. The characteristic
polynomial

k2
s

104

3
kS 80w 0

leads to the eigenvalues

k1 w 2.4860 , k2 w 32.18

where k1 lies 0.75 % above the exact value p2
/4.

When n = 2, only the first element of the matrix remains and we get k1 = 3, i. e. a value 21.6 % above
p2
/4.

The smallest eigenvalue always lies above the exact value p2
/4, i. e. we approach the buckling load

from above. It can be seen that we quickly achieve very good approximations with higher-value func-
tions.

Example 8.15 Cantilever beam column

Combining the problems of the previous two examples, see Fig. 8.21(a), results in a beam column

with the total potential

Pw

ðl
0

EIwL2

2
s

Qwl2

2
s qw

	 

dx (8:94)

To solve this, we first set up the function

ww c(6j2
s 4j3

S j4)

proportional to the deflection function (A7.45), where j = x/l. And by applying (8.93) we get

c
24EI

l 3 s

60Q

7l

	 

w ql

When Q = 0, this leads to the exact solution (A7.45), and when q = 0, we get the approximation
2.8EI/l2 for the buckling load, i. e. a value that is 13.5 % too high.
The relatively poor approximation for the buckling load can be explained by the fact that the deflec-
tion curve (A7.45) of the transversely loaded cantilever deviates considerably from the buckled shape.
If we insert the eigenvalue k1 determined in example 8.14 into the matrix, it is possible to determine
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Fig. 8.21 Cantilever beam column subjected to transverse load: (a) notation, (b) kinematics of a differential

element, (c) top deflection for uniform transverse load q



the coefficients c2, c3, c4 apart from a common constant factor. We get c3l = – 0.06824c2,
c4l

2 = – 0.13645c2 and therefore the form

ww c(3.772j2
s 0.257j3

s 0.515j4)

comparable with the above approximation, which with j = 1 also results in w = 3c.
The exact solution to the bifurcation problem examined in example 8.14 leads to the buckled shape

ww c 1s cos
pj

2

	 
� �
which with a TAYLOR series and normalising to w(1) = 3c can be approximated in the form

ww c 3.777j2
s 0.777j4� �

The factor of 3.777 for j2 is practically the same as the value of 3.772 found according to exam-
ple 8.14.
In contrast to the bifurcation problem of example 8.14, using the general approximation (A7.44) for
the second-order problem examined in the previous example does not result in a homogeneous, but
rather an inhomogeneous, set of linear equations for determining the coefficients c2, c3, c4 :

4s
4

3
k 6s

3

2
k 8s

8

5
k

6s
3

2
k 12s

9

5
k 18s 2k

8s
8

5
k 18s 2k

144

5
s

16

7
k

2
6666664

3
7777775

c2

c3l
c4l 2

8<
:

9=
;w

ql 2

EI

1

3
1

4
1

5

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

This set of equations can be solved for any normal force level k/k1 I 1, and it is possible to compare,
for example, the top deflection w(l ) = wl with the value wlq = ql 4

/(8EI ) which ensues for Q = 0, see
Fig. 8.21(c). When k = k1/2, we therefore get c2 = 0.4054ql2

/(EI ), c3 = – 0.1849ql/(EI ),
c4 = 0.0242q/(EI ) and wl = 1.957wlq ; when k = 3k1/4, then c2 = 0.7084ql2

/(EI ),
c3 = – 0.2097ql/(EI ), c4 = – 0.0151q/(EI ) and wl = 3.869wlq .
Applying q moves the point in Fig. 8.21(c) from O to A. With a constant q and a steadily increasing Q,
the point subsequently travels along curve AB. The slope of the initial tangent AD to curve AB is
approximately 1, see Fig. 22.4(c). As can be seen, wl is approximately two or four times wlq

when k is equal to a half or three quarters of k1. The bifurcation load given in the figure by the asymp-
tote CDE (k = k1) cannot be reached; the deformations exceed all limits as Q rises further.

8.5.3 The GALERKIN method

If we replace u in (8.92) by w and apply (8.93) to (8.94), the outcome is n equationsÐl
0

(EIwLviLsQwlvils qvi) dx w 0 (8:95)

Double integration by parts of the term with EI and simple integration by parts of the
term with Q, taking into account M = –EIwL and V = Ml, results inÐl

0

[(EIwL)LSQwLs q] vi dx sMvil

���l
0
S (V sQwl)vi

���l
0
w 0 (8:96)

The expression V – Qwl denotes the shear force related to sections perpendicular to
the undeformed bar axis; V is related to sections perpendicular to the deformed bar
axis. When vi satisfies all boundary conditions, i. e. the natural (static) as well as
the essential (kinematic) boundary conditions, the two boundary terms disappear
from (8.96) and n equationsÐl

0

[(EIwL)LSQwLs q] vi dx w 0 (8:97)

remain.

According to (8.97), in general, the differential equation

(EIwL)LSQwLs qw 0 (8:98)

is not satisfied exactly, but merely approximately in an integral sense. The approxi-
mating functions vi play the role of weightings; the weighted means of the differential
expressions in the square brackets in (8.97) disappear.
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The equations (8.97) correspond to the ordinary GALERKIN method. The approxi-
mating functions must satisfy all boundary conditions. In the case of complex bound-
ary conditions, we may use the generalised GALERKIN method. We use approximat-
ing functions that satisfy as many as possible, but not all, boundary conditions and
take into account the corresponding boundary terms that do not disappear, see
(8.96). This again provides us with a set of algebraic linear equations for determining
the unknown coefficients ci .

The methods of RITZ and GALERKIN are closely related. In fact, the former is a
special case of the latter.

Example 8.16 Simply supported beam column

Fig. 8.22(a) shows a simply supported beam column with constant bending stiffness EI subjected to a
uniform transverse load q. The approximation

ww c sin
px

l

	 

is set up to satisfy all boundary conditions: w(0) = w(l ) = wL(0) = wL(l ) = 0. Eq. (8.97) results inðl
0

EIc
p

l

	 
4

sin
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l

	 

sQc
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2

sin
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l

	 

s q

" #
sin

px

l

	 

dx w 0

and therefore

EIc
p

l

	 
4 l

2
sQc

p

l

	 
2 l

2
s q

2

p
lw 0

or

ww

4ql 2

p3
p2EI

l 2 sQ

� � sin
px

l

	 

w

1

1s
Ql 2

p2EI

� 4ql 4

p5EI
sin

px

l

	 


We get the exact solution to the bifurcation problem (q = 0) with the buckling load p2EI/l2. Turning
to the pure transverse bending problem (Q = 0), the maximum deflection at x = l/2 is 4ql4

/(p5EI )
instead of 5ql 4

/(384EI ), i. e. a value that is 0.4 % too high.
The comparison with a cantilever beam of only half the length in Fig. 8.22(b) shows that the solution
to the bifurcation problem can be applied directly; a cantilever beam has the same buckling load as a
beam twice as long and simply supported at both ends. However, we can see from Fig. 8.22(c) that the
solution for the general second-order problem with axial and transverse loads cannot be used because
of the different bending moment diagrams M.
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Fig. 8.22 Simply supported beam column: (a) system, (b) comparison with cantilever beam - bifurcation

problem, (c) comparison with cantilever beam - transverse load



8.6 Summary

1. The introductory example using an ideal truss (Fig. 8.1) results in a basic scheme
(Fig. 8.2 and Fig. 19.5) for discontinua. The structural behaviour is described by a
finite number of work-associated force and deformation variables, i. e. the
stresses s, the strains v, the loads Q and the displacements V. The kinematic trans-
formation matrix a describes the transition from V to v, its transpose aT the tran-
sition from s to Q. And vice versa, the static transformation matrix b describes the
transition from Q to s and its transpose bT the transition from v to V.

2. Irrespective of the material behaviour and the system, the force variables of an
equilibrium state 1 on the whole do no work on the deformation variables of a
compatible deformation state 2 (work equation Q1

T
x V2 – s1

T
x v2 = 0).

3. Statically indeterminate linear elastic systems can be analysed using the force
method or the displacement method. The displacement method (chapter 17) re-
quires the matrix a and the (diagonal) stiffness matrix k to be set up. The force
method (chapter 16) requires the setting-up of matrices b0 and b1 for the influence
of the loads, or rather the statically indeterminate force variables, for the statically
determinate basic system as well as the (diagonal) flexibility matrix f.

4. A scheme (Fig. 8.3) similar to Fig. 8.2 results for continua (chapter 18) with a
three-, two- or one-dimensional model space, Fig. 8.4. For the adjoint operators
linking the static and kinematic variables, Dk = Ds

T (Dk = –Ds
T) for even (odd)

differential operators as elements.
5. In preparation for chapters 13, 23 and 24, static, kinematic and (linear elastic)

constitutive relationships are specified for planar and spatial framed structures
with bars having finite or infinite shear stiffness, also for the coplanar stress state
and the coplanar strain state as well as for slabs having finite or infinite shear
stiffness, and three-dimensional continua.

6. The principle of virtual work, the fundamental principle of equilibrium, applies to
any system irrespective of the material behaviour. It can be expressed as the prin-
ciple of virtual deformations and as the principle of virtual forces. The principle of
virtual deformations corresponds to a global formulation of the equilibrium, and
the principle of virtual forces corresponds to a global formulation of the compati-
bility. In contrast to the principle of virtual forces, the principle of virtual deform-
ations remains valid even for geometric non-linearity.

7. For conservative systems, the principle of virtual deformations results in the
theorem of least total potential, and the principle of virtual forces results in
the theorem of least complementary total potential. If we confine ourselves to
a finite number of displacement or force variables in given directions, then we
arrive at the theorems of CASTIGLIANO and ENGESSER, and through partial
differentiation at MAXWELL’s generalised theorem.

8. The various force and deformation states may be superposed for linear elastic sys-
tems with infinitesimally small deformations (first-order theory). The stiffness
and flexibility matrices are symmetrical and their coefficients result from the sec-
ond derivatives of the internal potential or the complementary internal potential.
In addition, BETTI’s theorem applies, which says that the external deformation
work of an equilibrium state 1 done on the deformations of an equilibrium state 2
is equal to the external deformation work of state 2 done on the deformations of
state 1.

9. Based on the theorems of least total potential and complementary total potential, it
is possible to devise approximate solutions according to the methods of RITZ and
GALERKIN using suitable approximating functions; such approximate solutions
convert the associated variational problems into ordinary extremal problems.
When using the RITZ method, a special case of the GALERKIN method, the ap-
proximating functions only have to satisfy the kinematic boundary conditions.
However, when using the ordinary GALERKIN method, all the boundary condi-
tions, i. e. including the static boundary conditions, must be fulfilled.
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10. When using the generalised GALERKIN method, we use approximating func-
tions that satisfy as many as possible, but not all, boundary conditions and
take into account the corresponding boundary terms in the set of linear equations
that ensues for the coefficients of the approximating functions. The differential
equations corresponding to the variational problem are not solved exactly, but
rather only in the weighted mean (with the approximating functions as weight-
ings).

8.7 Exercises

8.1 The two bars of the system shown in Fig. 8.23 are rigid. Determine the relation-
ship between Q and V according to the force method and the displacement
method. To do this, use eq. (8.1) and (8.5) to (8.12). The internal force and de-
formation variables are the moments and the associated rotations at 1 and 2.

8.2 Verify the expressions for the boundary force components of plates given at the
end of section 8.2.4 and show that combining (8.32), (8.33) and (8.35) leads to

DDuws

1

Eh
(1s n2)qx, xx S 2(1S n)qx,yy s (1S n)2qy, xy

 �
(8:99)

8.3 Verify the differential equation (8.48) for KIRCHHOFF slabs.
8.4 Based on section 8.2.8, verify the adjointness of the operators Ds and Dk in

(8.32) and (8.33) for plates.
8.5 A semicircular cantilever beam is loaded at its unsupported end by a force Q

acting perpendicular to the plane of the circle. Use the principle of virtual de-
formations to determine the diagrams of the stress resultants.

8.6 Use the principle of virtual forces to calculate the displacements and rotations at
the unsupported end of the cantilever beam of exercise 8.5. Assume constant
flexural, torsional and shear stiffnesses along the bar axis.

8.7 A straight cantilever beam of length l is loaded at its unsupported end (x = l ) by
a force Q0 acting perpendicular to the bar axis. Present the total potential (8.73)
graphically as a function of the deflection w0 at the position and in the direction
of Q0. Use the approximations w/w0 = j2, j3 and 3j2

/2 – j3
/2 and only take

into account deformations due to bending (EI = const, j = x/l ). Discuss the
result and compare it with examples A7.2 and 8.7.

8.8 Work out a presentation similar to Fig. 8.18 for example 8.7.
8.9 Using a similar approach to exercise 8.7, examine a simply supported beam

(length l, EI = const, j = x/l ) subjected to a uniform load q = const with the
approximations w = wm · 4j(1 – j) or w = wm · sin(pj). Discuss the result using
the exact deflection function w = ql 4(j4 – 2j3 +j)/(24EI ).

8.10 Examine example 8.15 under the assumption of a bending stiffness in the upper
half of the bar (l/2 J x J l ) which is reduced to EI/2. What changes are there to
k1, wlq and Fig. 8.21(c)?

1358.7 Exercises
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9 STRUCTURAL ELEMENTS AND TOPOLOGY

9.1 General

This chapter deals exclusively with framed structures. Such structures are made up of
bar elements that have joints at their ends connecting them to other bars or to supports.
A bar is an idealised, linear structural component consisting of a bar axis and the bar
cross-sections orthogonal to that axis; further, the dimensions of the bar cross-section
are small in comparison with its span. The bar axis may be straight, or may be curved
in one plane or in space, and the principal axes of the cross-sections (see sec-
tion 13.2.1), element for element, may have a constant direction or may be twisted.
In addition, the dimensions of the cross-sections and hence the bar stiffnesses, element
for element, may be constant or variable.

The static and kinematic variables for the general case of spatial framed structures
were introduced in section 8.2.3, after plane framed structures had been dealt with
in section 8.2.2. Cases with general stress resultants in the bar elements and straight
bar axes are known as beams or columns, and those with curved bar axes are known as
arches or curved beams, see section 5.3.2. Where the bar elements are straight and
connected concentrically to other elements via frictionless hinges and the loads are
applied at the joints only, then we are dealing with an ideal (plane or spatial) truss
(see section 8.1), in which the only stress resultants in the bars are normal forces.
In a similar fashion, owing to their low bending stiffness, cables, with a curving
axis, are practically only subjected to normal forces (tensile forces), apart from local
effects, see section 18.8.

Combining beams, columns and arches produces frameworks, which must be clearly
distinguished from trusses. Hybrid systems are often employed. Such systems consist
of a combination of framework and truss or cable elements and, if need be, other types
of element.

The reader should refer to sections 5.1.5 and 5.1.6 for information about supports and
hinges.

9.2 Modelling of structures

Continuing on from the general information regarding modelling of structures given in
section 4.3, we shall now begin by considering the bridge structure shown in the upper
drawing of Fig. 9.1. The main span, with its raking piers, is connected to a continuous
frame structure spanning over the slender foreshore piers to the abutments. The bridge
beams and piers are primarily subjected to bending in the vertical plane. In addition,
there are certain stress resultants due to horizontal actions such as wind and earthquake
transverse to the bridge elevation plus torsional stress resultants caused by eccentric
traffic loads.

The lower drawing of Fig. 9.1 shows the basis of one possible idealisation of the
bridge structure, i. e. as a (plane) framed structure; this is the so-called structural sys-
tem. The structural system describes the topology of the structure, in other words, the
arrangement of the loadbearing elements (supports, columns, beams) and the way in
which they work together. The raking piers supporting the main span, which taper
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towards the base, are considered to have hinged joints at their foundations and to be
fixed at the bridge beams. The foreshore piers are idealised as fixed at both ends (i. e.
at bridge beams and foundations) and sliding bearings are assumed at the abutments.

The structural system contains neither information about the dimensions of the struc-
ture nor details of the construction materials or subsoil conditions. Such information,
together with the structural system, forms part of the more comprehensive structural
model, which in the following will also be referred to as a static system. We shall use
diagrams and tables to achieve a precise mathematical definition of the static system
(see Fig. 9.4 and Tab. 9.1).

Structures are assemblies in three dimensions which, however, can often be broken
down into plane subsystems. For example, the single-storey shed structure shown
in Fig. 9.2 can be broken down into the two lattice girders and the wind bracing
in the roof and wall plates. Only in the case of true spatial structures, e. g. cable
nets or shells in double curvature, is such a breakdown impossible.

Fig. 9.3 shows various examples of plane framed structures. The cantilever beam of
Fig. 9.3(a) and the simply supported beam in Fig. 9.3(b) are basic types which can
be combined in diverse ways and extended by introducing or releasing constraints.
The simply supported beam with an overhang at one end shown in Fig. 9.3(c)
has a propped beam in the second span connected to the first beam via a hinge.
Fig. 9.3(d) shows a similar arrangement for a three-span beam, in this case with a sus-
pended beam in the middle span. Hinged girders, as shown in Fig. 9.3(c) and (d), are
sometimes called GERBER beams.
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Fig. 9.2 Lattice girders and wind bracing



The three-hinged arch of Fig. 9.3(e) is illustrated carrying a force F with the help of
the force and funicular polygons introduced in section 5.1.4. As arc BG is not loaded,
the line of action of the support force B coincides with chord BG, which also deter-
mines A. The two-hinged arch with a tie (tied arch) shown in Fig. 9.3(f) essentially
functions like a simply supported beam, at least externally. The same is true for the
LANGER beam (arch-hanger-girder system) of Fig. 9.3(g), which is strengthened by a
bar polygon and suspenders.

In the strutted beam of Fig. 9.3(h), the beam is propped and horizontally stabilised by
two raking pin-ended struts connected to the beam via hinges. In the system shown in
Fig. 9.3(i), the polygonal arch is stiffened by the deck beam so that it can accommo-
date asymmetric loads; see the remarks at the conclusion of example 5.7.

Fig. 9.3(j) and (k) correspond respectively to the two-hinged frame and multi-storey
frame commonly used for buildings; these frames consist of columns (legs) and beams
(frame beams).

Fig. 9.3(l) shows a simply supported beam in the form of a WARREN truss, and
Fig. 9.3(m) in the form of a K-truss; the latter functions in a similar way to the
wind bracing in Fig. 9.2.

In the self-anchored suspension bridge shown in Fig. 9.3(n), the horizontal compon-
ent of the tension in the cable is brought into equilibrium by the compressive forces in
the deck beam after completing the bridge. The bridge must be built on scaffolding – a
disadvantage that is overcome in the externally anchored suspension bridge (genuine
suspension bridge) of Fig. 9.3(o); here, the deck beam is built cantilevering out in both
directions from the middle, or rather from the pylons, and successively connected via
the suspenders to the main cables, which are spun in advance and are continuous over
the pylons. Finally, Fig. 9.3(p) shows a cable-stayed bridge with a harp-type arrange-
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Fig. 9.3 Examples of plane framed structures: (a) cantilever beam, (b) simply supported beam, (c) hinged girder, (d) hinged girder with suspended beam,

(e) three-hinged arch, (f) two-hinged arch with tie, (g) LANGER beam, (h) strutted beam, (i) deck-stiffened polygonal arch, (j) two-hinged frame, (k) multi-storey frame,

(l) WARREN truss (m) K-truss, (n) self-anchored suspension bridge, (o) externally anchored suspension bridge, (p) cable-stayed bridge



ment of the cable stays, which are connected to the deck beam and the pylons via semi-
hinges. As with the self-anchored suspension bridge, compressive forces ensue in the
deck beam due to the horizontal component of the tensile forces in the cables, but the
system can be built without scaffolding by using the free cantilevering method, which
involves successively cantilevering out from and guying back to the pylons.

9.3 Discretised structural models

9.3.1 Description of the static system

Fig. 9.4(a) shows the diagram of the static system for a plane system consisting of five
joints and four bar elements. The diagram includes the global coordinates X, Z, the
designations of all joints and bars (consecutive numbering, bar numbers in circles), the
dimensioning of all joints, support and hinge (none in this case) symbols, all the loads
(M2, F3 and q3 in this example) and the orientation of the local coordinates x, z of all
bar elements (indicated by the dotted line on the positive z side), see Fig. 9.4(b).

The support force variables Cij do not need to be included in the diagram of the static
system if it has been agreed that positive support force variables are forces and mo-
ments acting in the positive global axis direction (j = X, Y, Z) on the system released
from the supports i; in the case of sliding bearings inclined with respect to the global
axes, one of the support force components must be considered as independent and the
other as dependent (geometrically determinate). Including the support force variables
in the diagram of the system would also be inadmissible because that (without remov-
ing the supports) would not result in a true free body diagram.

The diagram of the static system could be completed by adding the stiffnesses of all
bar elements according to (8.23) or (8.28). This is possible in simple cases, but gen-
erally the diagram then seems to be overloaded, and it is more expedient to provide this
data in a table of the static system, see Tab. 9.1.

As can be seen, Tab. 9.1 provides all the information contained in Fig. 9.4(a) plus the
bar stiffnesses. Making these stiffnesses functions of x, as is the case with haunched
beams, for example, with their varying cross-sectional geometry, would allow them to
be described as varying bar loads q, for example, by specifying the boundary values. If
existing constraints were to be released in the system of Fig. 9.4(a), e. g. by intro-
ducing a flexural hinge to the left of joint 3 (i. e. at the right-hand end of bar 2),
then this would have to be taken into account by including a corresponding auxiliary
condition in Tab. 9.1; the hinge creates an additional degree of freedom, the corres-
ponding moment becomes zero.
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Dividing the system into joints and bar elements is completely arbitrary. Each of the
four bars shown in Fig. 9.4(a) could be further subdivided by introducing further
joints; the ensuing new bar elements would then be explicitly defined by the choice
of joint.

9.3.2 Joint equilibrium

Applying the equilibrium conditions enables three of the six bar end forces to be elimin-
ated for each bar element, as shown in Fig. 9.4(b); Nr , Ml and Mr are chosen as in-
dependent bar end forces. In the general spatial case according to (8.28) with 12 bar
end forces, it is expedient to choose the six variables Nr , Tr , Myl , Myr , Mzl , Mzr as in-
dependent bar end forces. The corresponding transformation of the complete bar end
forces into independent bar end forces comes about without any further work by gen-
eralising the relationship given in Fig. 9.4(b).

The internal force variables Nr , Ml , Mr are supplemented by external force variables
(forces and moments) at the joints, the so-called joint loads Qi . These are introduced
as positive in the direction of the positive global coordinates.

In the case of the bar element shown in Fig. 9.5(a), the local coordinates x, z coincide
with the global coordinates X, Z. If we consider the two joints and the bar element
between them separately as free bodies, see Fig. 9.5(b), then by considering the trans-
formation given in Fig. 9.4(b), we get the joint equilibrium conditions
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Each joint load Qi corresponds to a degree of freedom or an external deformation vari-
able (displacement or rotation) Vi , see section 8.1.1. In order to restrain the bar elem-
ent of Fig. 9.5(a), which is free to move in any direction, we need to introduce at
least three constraints, i. e. three degrees of freedom must become passive. This con-
verts the corresponding external force variables Qi into support force variables Ci .
For example, in the case of Fig. 9.5(c), these are the variables C1, C2, C3 correspond-
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Tab. 9.1 Table of the static system – data of joints and bars

Joint X Z QX QZ MY

1 0 0 C1X C1Z C1Y

2 6 0 M2

3 10 0 F3

4 14 – 3

5 10 5 C5X C5Z

m m kN kN kNm

Bar l r l EA GAv EI qx qz

1 1 2 6 EA1 GAv1 EI1

2 2 3 4 EA2 GAv2 EI2

3 3 4 5 EA3 GAv3 EI3 – 0.6 q3 0.8 q3

4 3 5 5 EA4 GAv4 EI4

m MN MN MNm2 kN/m kN/m



ing to the fixity of the cantilever beam at the left-hand end of the bar. If we rearrange
the joint equilibrium conditions (9.1) as follows

Q
0

� �
w

g 0
gsC I

� �
7

s
C

� �
(9:2)

the result is the relationship given below the figure in Fig. 9.5(c), where the vec-
tors Q, s and C contain the internal and external force variables or the support force
variables, and g and gsC denote corresponding equilibrium matrices. Inverting g gives
us s: Nr = Q4, Ml = –Q5l + Q6 and Mr = Q6; substituting in (9.2) gives us C:
C1 = –Q4, C2 = –Q5, C3 = Q5l – Q6.

Similarly, the simply supported beam shown in Fig. 9.5(d) has the relationship (9.2)
given below the figure. By inverting g, it follows that Nr = Q4, Ml = –Q3, Mr = Q6

and, furthermore, that C1 = –Q4, –C2 = (Q3 + Q6)/l = C5.

The matrices g and gsC are singular for the case shown in Fig. 9.5(e), their determin-
ants are zero and it is not possible to solve the set of equations. As we can see from the
diagram of the static system, the reason for this is that the bar can rotate freely as a
rigid body about the left-hand support within the limits of infinitesimal deformation
variables (first-order theory). A similar case has already been dealt with in example 8.3
(Fig. 8.9); significant loads can only be carried in conjunction with large deformations.

9.3.3 Static determinacy

In order that the independent bar end forces s can be determined from the joint loads Q
according to (9.2), the equilibrium matrix g must be square and invertible. This is the
case, for example, in Fig. 9.5(c) and (d); both systems are statically determinate.
Although g in Fig. 9.5(e) is square, it is also singular; the system is kinematically
unstable.

Applying (9.2) to the system shown in Fig. 9.4(a) results in a vector s with 4 ·3 = 12
elements. However, owing to the three constraints at joint 1 and the two constraints at
joint 5, vector Q has merely 5 ·3 – 3 – 2 = 10 elements, i. e. matrix g is rectangular,
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with a row deficit of n = 2, see (9.10); the system is statically indeterminate to the
second degree.

Generally, the degree of static indeterminacy of a plane frame structure follows from
the counting scheme

nw 3sS cs 3k s g (9:3)

where s, c, k and g stand for the number of bars, support force variables, joints (in-
cluding support joints) and auxiliary conditions (hinge conditions) respectively. Simi-
larly, for spatial framed structures

nw 6sS cs 6k s g (9:4)

while for plane trusses

nw sS cs 2k (9:5)

and for spatial trusses

nw sS cs 3k (9:6)

We assume frictionless hinged joints in trusses and therefore the rotational degrees of
freedom are irrelevant; two (plane case) or three (spatial case) degrees of freedom
remain per joint.

Systems where n = 0 are statically determinate, systems where n i 0 are statically
indeterminate. Systems with n I 0 are kinematically unstable and generally unusable.
A kinematically unstable case, such as the one shown in Fig. 9.5(e), where n j 0 but
the matrix g is singular, is known as an exceptional case of statics.

In the example shown in Fig. 9.3(c), s = 2, c = 4, k = 3, g = 1, and therefore accord-
ing to (9.3), n = 0. Similarly, in Fig. 9.3(d), s = 3, c = 5, k = 4, g = 2, and therefore
n = 0. The two hinged beams are statically determinate.

Turning to the three-hinged arch shown in Fig. 9.3(e), s = 2, c = 4, k = 3, g = 1, and
therefore according to (9.3), n = 0. For Fig. 9.3(f), s = 2, c = 3, k = 2, g = 2, i. e.
n = 1. Although the two-hinged tied arch is externally statically determinate (it func-
tions externally like a simply supported beam); internally, however, it is statically
indeterminate (to the first degree).

In the case of the strutted beam of Fig. 9.3(h), s = 5, c = 6, k = 6, g = 2, and therefore
n = 1. The stiffened polygonal arch shown in Fig. 9.3(i) has s = 20, c = 6, k = 16,
g = 18, and therefore n = 0; we note that the six hinges in the arch have a double
action, i. e. act for both the arch and the vertical bars. For the case of the two-hinged
frame in Fig. 9.3(j), s = 3, c = 4, k = 4, g = 0, and therefore n = 1, and for the multi-
storey frame in Fig. 9.3(k), s = 12, c = 6, k = 10, g = 0, i. e. n = 12 according to (9.3);
it has three degrees of static indeterminacy externally, nine degrees internally.

The truss shown in Fig. 9.3(l) has s = 11, c = 3, k = 7, and therefore n = 0 according
to (9.5). Similarly, for Fig. 9.3(m), s = 37, c = 3, k = 20, and therefore n = 0.

Instead of determining the degree of static indeterminacy with the help of the counting
scheme, it is possible to start with a system similar to the static system being inves-
tigated, generally a statically determinate basic system (or a system with a known
degree of static indeterminacy) and to count the additional constraints. For example,
the arch in Fig. 9.3(f) would work on its own as a (statically determinate) simply sup-
ported beam, and the tie connected via hinges at both ends corresponds to one add-
itional constraint, i. e. n = 1. In a similar way, the multi-storey frame of Fig. 9.3(k)
could, for example, be converted into a basic system consisting of two (statically de-
terminate) cantilever beams by introducing hinges with three degrees of freedom into
the four horizontal frame beams, i. e. n = 4·3 = 12; we can achieve the same result by
introducing three flexural hinges at each of the four storeys, i. e. by considering a stack
of four (statically determinate) three-hinged frames.
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9.3.4 Kinematic derivation of the equilibrium matrix

Fig. 9.6(a), like Fig. 9.4(b), includes the bar end forces, and the transformations of the
complete to the independent bar end forces have been considered.

Fig. 9.6(b) shows the bar element in its undeformed and deformed states. Joints l, r
undergo the displacements ul, wl and ur , wr respectively in the x and z directions, and
the ends of the bars rotate through l + c and r – c respectively about the y axis. Here,
c = (wr – wl)/l designates the bar rotation, and l and r the bar end rotations related
to the chord of the deformed bar.

According to (8.15), the deformation work Wi done by the internal force variables on
the corresponding deformation variables is

Wi wsNr(ur s ul)sMl(lSc)sMr(rsc)s
Mr sMl

l
(wr swl)

wsNrDsMllsMrr (9:7)

where D = ur – ul designates the bar extension. The internal deformation variables vi

corresponding to the independent bar end forces si are therefore the bar extension and
the two bar end rotations.

Instead of sign convention I (Fig. 9.6) used up until now, we shall now introduce sign
convention II as illustrated in Fig. 9.7, according to which all bar end variables in the
positive local system of coordinates are regarded as positive.

Nr continues to be positive when it acts in the direction of the positive x axis; however,
Ml and Mr as well as l and r are all regarded as positive when rotating anticlockwise
(about the positive y axis). Instead of (9.7), we get

Wi wsNr(ur s ul)sMl(lsc)sMr(rsc)s
Ml SMr

l
(wr swl)

wsNrDsMllsMrr (9:8)

We shall now return to the structural system of Fig. 9.4(a) and introduce all the pos-
sible joint loads Qj according to Fig. 9.8(a) and the external deformation variables Vj

corresponding to those according to Fig. 9.8(b).
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If we apply successive unit deformation states to a kinematically determinate basic
system (i. e. to the static system without any degree of freedom, Vj a 0) as shown
in Fig. 9.8(c), then we get the internal deformation variables of the four bars through
the column-by-column setup of the kinematic transformation matrix a according to
(8.1):

D1

l1

r1

D2

l2

r2

D3

l3

r3

D4

l4

r4

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

w

1 0 0 0 0 0 0 0 0 0
0 1=6 0 0 0 0 0 0 0 0
0 1=6 1 0 0 0 0 0 0 0
s 1 0 0 1 0 0 0 0 0 0

0 s 1=4 1 0 1=4 0 0 0 0 0
0 s 1=4 0 0 1=4 1 0 0 0 0
0 0 0 s 4=5 3=5 0 4=5 s 3=5 0 0
0 0 0 s 3=25 s 4=25 1 3=25 4=25 0 0
0 0 0 s 3=25 s 4=25 0 3=25 4=25 1 0
0 0 0 0 s 1 0 0 0 0 0
0 0 0 1=5 0 1 0 0 0 0
0 0 0 1=5 0 0 0 0 0 1

2
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3
7777777777777777775
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V6

V7

V8

V9

V10

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

(9:9)

and using (8.14), then (8.2) follows, i. e.
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Q10

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

w

1 0 0 s 1 0 0 0 0 0 0 0 0
0 1=6 1=6 0 s 1=4 s 1=4 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 s 4=5 s 3=25 s 3=25 0 1=5 1=5
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0 0 0 0 0 1 0 1 0 0 1 0
0 0 0 0 0 0 4=5 3=25 3=25 0 0 0
0 0 0 0 0 0 s 3=5 4=25 4=25 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
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Ml1

Mr1

Nr2

Ml2

Mr2

Nr3

Ml3

Mr3

Nr4

Ml4

Mr4

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

(9:10)

A comparison of (8.2) and (9.2) shows that

gw aT (9:11)

generally applies, i. e. the equilibrium matrix g can be derived from exclusively kine-
matic considerations.

Matrix a in (9.9) can be obtained through exclusively kinematic considerations be-
cause all (ten) degrees of freedom of the system were introduced as variables Vj ;
the problem is therefore kinematically determinate. Kinematically indeterminate sys-
tems are expressly excluded because all the independent degrees of freedom and the
joint loads corresponding to those are used every time.

According to (8.3), the reciprocal transformation s = b x Q is allocated to the equilib-
rium condition Q = g x s according to (8.2) and (9.11) with the static transformation
matrix b. In the general case with n degrees of static indeterminacy, b has a column
deficit of n. For statically determinate systems (n = 0), b is square and follows from
the inversion of g = aT; in this case, g = b–1 can also be obtained directly from exclu-
sively static considerations instead of via a. Generally, according to (8.16) und (9.11),
the relationship g x b = I applies, also b x g = I for statically determinate systems.
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9.4 Summary

1. Framed structures are composed of bars, connections (hinges) and supports. The
properties of the bar are related to the (straight or curved) bar axis and the bar
cross-sections orthogonal to that axis.

2. Depending on the stress resultants in the bar, we distinguish between frameworks
(general stress resultants), trusses (normal forces) and hybrid systems (combined
framework and truss structures, possibly using additional loadbearing elements
such as cables).

3. The structural system describes the arrangement of the loadbearing components
(supports, columns, beams) and the way in which they work together; it describes
the structural topology.

4. The structural model, or static system, contains, in addition, precise details of the
dimensions of the structure as well as details of the construction materials and
subsoil properties. The model is presented in the form of diagrams and tables
of the static system.

5. Structures are always three-dimensional assemblies which, however, can often be
completely or at least partly broken down into plane subsystems.

6. Discretised structural models are especially suitable for dealing with the structural
analysis. All the relevant data can therefore be related either to the (arbitrarily
selected) joints or the bars between those joints.

7. Joint loads, bar end forces and support force variables are linked with each other
in accordance with (9.2) via an equilibrium matrix. When this matrix is square and
invertible, the system is statically determinate. Matrices with a row deficit indi-
cate static indeterminacy, and singular matrices and those with a column deficit
indicate kinematic instability.

8. We can use the counting schemes (9.3) to (9.6) to assess the degree of static in-
determinacy of plane and spatial frameworks and trusses. Alternatively, we can
start with a statically determinate basic system (or a system with known static
indeterminacy) similar to the system being investigated and count the additional
constraints.

9. The equilibrium matrix g = aT can be obtained through the column-by-column
setup of the kinematic transformation matrix a and subsequent transposition.
The bar extensions D and the bar end rotations l and r are the internal de-
formation variables v = a x V corresponding to the independent bar end forces
s = b x Q.

10. Generally, g x b = I applies for the static transformation matrix b, also b = g–1 for
statically determinate systems.

9.5 Exercises

9.1 Determine the degree of static indeterminacy of each of the systems shown in
Fig. 9.9 and describe these as briefly and precisely as possible using the termin-
ology of the theory of structures.

9.2 Determine the equilibrium matrix for the system of Fig. 9.9(a) in a similar way to
(9.10).
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10 DETERMINING THE FORCES

10.1 General

We shall only investigate statically determinate framed structures in this chapter. For
such structures, as explained in section 9.3.3, we only need the equilibrium conditions
in order to determine all the stress resultants and support force variables. This chapter
therefore makes use of the concept of the free body diagram introduced in sec-
tion 5.1.2, the equilibrium conditions (5.8) and the principle of virtual deformations
discussed in section 8.3.2.

Depending on the formulation of the equilibrium conditions, we distinguish between
the following methods for determining the forces:

– Graphical statics, based on the graphic presentation of the force vectors by means
of funicular and force polygons according to section 5.1.4

– Applying the equilibrium conditions (5.8) to skilfully selected free bodies
– Systematic application of the equilibrium conditions (5.8) to the joints considered

as free bodies
– Applying the principle of virtual deformations (kinematic method).

We were first introduced to the principle of the method of graphical statics – which is
illustrated here briefly again with the help of Fig. 10.1 – through the examples shown
in Figs. 5.4, 5.5, 5.31 and 9.3(e). Graphical statics has in the meantime been super-
seded by more powerful methods and so it is not intended to discuss this method in
detail here. However, owing to their unsurpassed clarity, elements of graphical statics
will be referred to from time to time in the following chapters. Graphical tools are
particularly suitable for checking the equilibrium of individual system components
removed from any system through skilful sectioning. They also permit the flow of
the forces to be illustrated and form an indispensable basis for the creative act of con-
ceiving a structural design, see section 3.2.

Fig. 10.1(b) shows the positions and directions of support forces A and B which are
required to guarantee equilibrium. Component AX acts in the positive X direction,
whereas components AZ and B act in the negative Z direction. In the following, as
agreed in section 9.3.1, the positive support force variables will always be forces
and moments acting on the system released from its supports in the positive global
axis direction. According to (5.8), components AZ and B introduced in the positive
Z direction are found to be negative in this example, which means that the two vertical
support forces actually act on the beam in the negative Z direction.

Sign convention I, already discussed with the help of Fig. 9.6(a), is used for the stress
resultants of plane frameworks, see Fig. 10.2. According to this, a stress resultant
(N, V, M ) is then regarded as positive when it acts on the positive (negative) side
of a bar element in the positive (negative) direction of the system of coordinates.
The orientation of the local axes x, y, z is indicated by a dotted line on the positive
z side.
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10.2 Investigating selected free bodies

As an introductory example, we shall consider the cantilever beam shown in Fig.
10.3(a), which carries a point load Q at x = a acting at an angle a to the x axis. Ap-
plying (5.8) to Fig. 10.3(b) results in

AX SQ cosaw 0 , AZ SQ sinaw 0 , MA s a Q sinaw 0 (10:1)

and similarly, considering the upper free body diagram in Fig. 10.3(c), we get

sN SQ cosaw 0 , sV SQ sinaw 0 , sM s (as x)Q sinaw 0 (10:2)

from which it follows that

N wsAX wQ cosa , V wsAZ wQ sina , M wsMA 1s
x

a

	 

ws (as x)Q sina

(10:3)

see Fig. 10.3(d). The lower free body diagram in Fig. 10.3(c) can be used to check the
equilibrium. Using (10.3)1, (10.3)2 and (10.3)3 as well as (10.1)3, it is possible to con-
firm that the relationships AX + N = 0, AZ + V = 0 and MA + M – xV = 0 are fulfilled.

Looking at the three-hinged arch shown in Fig. 10.4(a), which carries a uniformly dis-
tributed line load q and is released from its supports A and B, it is easy to apply
moment-balance equations about B or A to find that AZ = BZ = –ql/2. Equilibrium
of forces in the X direction calls for AX = – BX, but the magnitudes of these two
forces cannot be determined from the free body diagram of Fig. 10.4(a). If we cut
through the system at hinge G, see Fig. 10.4(b), we get the moment-balance equation
ql2

/8 + AX f + AZ l/2 = 0 about G. From this it follows that, using AZ determined be-
forehand, the horizontal force is AX = ql2

/(8f ), see (5.60). The hinge force compon-
ents result from the equilibrium of forces in the X and Z directions: GX = –AX, GZ = 0.
We can also see that owing to the symmetry of the system and the load, it would have
been sufficient to consider Fig. 10.4(b) in order to determine the support and hinge
force variables. Indeed, symmetry calls for GZ = 0, and therefore Fig. 10.4(b) contains
only three unknown force variables, which can be determined directly with the help of
the equilibrium conditions.

Likewise, for the hinged girder shown in Fig. 10.5(a), cutting through the system at
hinge G according to Fig. 10.5(b) is the right approach. In addition to the hinge force,
only vertical force Q and vertical support force C act on propped beam GC, and so the
horizontal component of the hinge force does not apply, i. e. GX = 0, GZ = G. Apply-
ing the same approach to subsystem ABG results in AX = 0, AZ = A. Moment-balance
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equations about G and C for subsystem GC result in C = –Qd/(d + e) and G = Qe/
(d + e). Moment-balance equations about B and A for subsystem ABG then result in
A = [Qec/(d + e) – qa(a/2 + b)]/(a + b) and B = –[qa2

/2 + Qe(a + b + c)/(d + e)]/(a + b).

The procedure for determining the force variables of statically determinate framed
structures, as illustrated in Fig. 10.3 to Fig. 10.5 can be summarised as follows:

1. Release the system from its supports and introduce the corresponding support
force variables in the direction of the positive global coordinates.

2. Set up and resolve the equilibrium conditions for the released system.
3. If necessary, cut through the system at the hinges and apply the hinge force vari-

ables to the subsystems.
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4. Set up and resolve the equilibrium conditions for the subsystems.
5. Determine the stress resultants N, V, M by considering free bodies according to

Fig. 10.3(c) and applying the appropriate equilibrium conditions.
6. Draw the diagrams of the stress resultants according to Fig. 10.3(d) with the

positive ordinates in the direction of the positive z axis.

As the example of Fig. 10.4(b) shows, it is often possible to make considerable sim-
plifications when dealing with symmetrical systems and loads. Furthermore, the ex-
amples of Fig. 10.4 and Fig. 10.5 show that it is often advantageous to replace the
force-balance equations by moment-balance equations about suitable reference points,
see section 5.1.3; the force-balance equations can then be used for checking the equi-
librium afterwards.

Example 10.1 Plane truss

Let us return to the plane truss of Fig. 8.1, see Fig. 10.6(a). There are two or three unknown bar forces
(normal forces) Ni in the free bodies shown in Fig. 10.6(b) to (d). In accordance with Fig. 10.2, these
forces are introduced as positive variables, i. e. as tensile forces, on either side of the section.
A moment-balance equation about joint 4 in Fig. 10.6(b) results in N4 l /

ffiffiffi
2
p

– Q10 l = 0, and the mo-
ment-balance equation about joint 2 gives us –N6 l + Q9 l – Q10 l = 0. This therefore confirms the
coefficients in the fourth and sixth rows of the matrix b leading to (8.3).
The moment-balance equation about joint 4 in Fig. 10.6(c) results in N1 l – Q3 l – Q10 l = 0, and the
force-balance equation in the Z direction is N3 + Q4 + Q10 = 0, which confirms the coefficients in the
first and third rows of matrix b.
In Fig. 10.6(d), the force-balance equation in the Z direction calls for –N2 /

ffiffiffi
2
p

+ Q4 + Q8 + Q10 = 0,
and the moment-balance equation about joint 1 leads to –N5 l – Q4 l + Q7 l – Q8 l + Q9 l –
2Q10 l = 0. Therefore, the coefficients in the second and fifth rows of matrix b are confirmed as well.
In section 8.1, the static transformation matrix b was established as the inverse matrix b = g–1 of the
equilibrium matrix g = aT according to (8.11), where g was obtained row by row from joint equilib-
rium conditions in the direction of Qj. The opposite is the case here, with b being determined row by
row from skilfully formulated equilibrium conditions in which there is only one unknown bar force Ni

in each case.
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Example 10.2 Plane frame

Consider the plane frame shown in Fig. 10.7(a); the free body diagram of Fig. 10.7(b) first of all
gives us the support force variables C1X, C1Z and C4Z. The force-balance equation in the X direc-
tion calls for C1X + 50kN = 0, i. e. C1X = – 50kN. The moment-balance equation about
joint 4 is C1Z·10m – 50kN·4m + 350kN·7m + 100kNm = 0, from which it follows that
C1Z = – 235kN. The force-balance equation C1Z + C4Z + 350kN + 150kN = 0 in the Z direction
therefore results in C4Z = – 265kN.
Considering bar 1 as a free body according to Fig. 10.7(c), it follows first of all that the moment-
balance equation M2 – 50kN·4m – 235kN·3m = 0 about joint 2 results in the moment
M2 = 905kNm. The moment-balance equation 905kNm –V1 ·5m = 0 about joint 1 then results in
the shear force V1 = 181kN. Finally, we get the normal force N1 by projecting the support forces C1X

and C1Z onto the bar axis: N1 = 50kN· (3/5) – 235kN· (4/5) = –158kN. The bending moment M

increases linearly from 0 to 905kNm between joints 1 and 2.
The compressive force N3 = – 265 kN carried by bar 3 is reduced to 115kN at joint 3 by the vertical
load of 150kN applied there. The remaining force of 115kN is carried by bar 2 as a shear
force V2 = –115kN, see Fig. 10.7(c). The moment-balance equation for bar 2 about joint 2 is
– 905kNm + 115kN·7m + 100kNm = 0, and is actually fulfilled. Between joints 2 and 3, the mo-
ment M varies linearly between 905kNm and 100kNm.
The diagrams of the stress resultants N, V, M are shown in Fig. 10.7(d).
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10.3 Joint equilibrium

A first method for determining the force variables of statically determinate framed
structures was discussed in section 10.2. That method is based on considering skil-
fully chosen free bodies, can be easily adapted to diverse problems and is suitable
for hand calculations. In this chapter, we start from (9.2) and determine the internal
force variables s and the support force variables C with b = g–1 according to

sw b 7 Q , C ws gsC 7 b 7 Q (10:4)

This leads to a standardised method which, however, quickly results in large sets of
equations and requires the use of a computer.

Example 10.3 Plane truss

Let us consider the plane truss of Fig. 8.1 once again. The joint loads of Fig. 10.6(a) corresponding to
the six active degrees of freedom of Fig. 8.1(b) are given. The support force variables we are looking
for, C1, C2, C5, correspond to the passive degrees of freedom V1, V2, V5 in Fig. 8.1(b); the support
force variable C6 corresponding to the passive degree of freedom V6 disappears because of the hinges
at both ends of bar 5 and can be ignored.
Considering the matrix g = aT leading to (8.2), eq. (9.2) results in
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where the empty spaces in the matrix are filled with zeros. The bar forces N1 to N6 follow from the
matrix b = g–1 according to (10.4)1, which leads to (8.3) and is verified in example 10.1. According
to (10.4)2, the support force variables are
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(10:6)

where the empty spaces in the matrix are again filled with zeros.

Example 10.4 Plane frame

Let us return to example 10.2 (Fig. 10.7). However, this time, in a similar way to Fig. 9.8, we shall
introduce all the active degrees of freedom and the corresponding joint loads (see Fig. 10.8), and
determine the equilibrium matrix g = aT using kinematics, as described in section 9.3.4. Similarly
to (9.9), we get
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(10:7)
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and therefore (9.2) is
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(10:8)

Inverting the matrix g = aT at upper left in (10.8) results in b = g–1, and therefore, according to
(10.4)1,
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Finally, we get
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for the support force variables according to (10.4)2.
The empty spaces in the matrices of relationships (10.7) to (10.10) are filled with zeros. In addition, it
is important to remember that bar extensions and displacements are entered into the calculation in m,
but forces in kN and moments in kNm.
As can be easily checked by substituting Q4 = 50kN, Q5 = 350kN, Q8 = 150kN and Q9 = 100kNm
in (10.9) and (10.10), we get the support force variables and stress resultants given in Fig. 10.7(c)
and (d).
The static transformation matrix b in (10.9) contains an abundance of information. The rows describe
how the various loads Qj influence a certain stress resultant. And vice versa, the columns describe the
stress resultants as a result of a load Qj = 1 in each case. There is much more information here than in
the solution of example 10.2. However, much more work is required.
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10.4 The kinematic method

Using the principle of virtual deformations to calculate internal force variables in
statically determinate systems was introduced in example 8.1. In that example, we cal-
culated force s5 in bar 5 of the truss shown in Fig. 8.1(a) by introducing an imaginary
cut through this bar at one point and applying the infinitesimally small relative dis-
placement dv5 to the sides of the cut, see Fig. 10.9.

As the relative displacement is infinitesimally small, joints 2, 4 and 5 do not move in
an arc, but rather at 90h to the straight lines joining them, with the instantaneous centre
of rotation of the planar movement of the subsystem 1452 at joint 1. So we consider
merely the start of the movement and represent this (to an exaggerated scale) as shown
in the diagram on the left of Fig. 10.9.

The two drawings in Fig. 10.9 make it easy to understand the relationship

dW w (sQ4 SQ7 sQ8 SQ9 s 2Q10 s s5) dv5 w 0

set up in example 8.1. Force Q3 does no work because its point of application is dis-
placed perpendicular to its direction. The displacements of the points of application of
forces Q4 to Q10 are clear from the drawing on the left in Fig. 10.9 and are taken into
account in terms of sign and factor in the above expression in brackets. Bar force
s5 = N5 is shown with two arrows in the drawing on the right in Fig. 10.9 (as tensile
force positive) because it acts on both sides of the cut. With a virtual deformation, the
left side of the cut does not undergo any movement, whereas the right side is displaced
upwards and to the right by dv5; the right-hand tensile force s5 contributes the
amount – s5 dv5 to dW in this case.

Example 10.5 Three-hinged arch

In order to be able to calculate the support force BX for the three-hinged arch shown in Fig. 10.4(a), we
release the corresponding constraint, i. e. we introduce a sliding support at B, see Fig. 10.10. This
turns the system into a mechanism with instantaneous centre of rotation A for arc AG and instanta-
neous centre of rotation C for arc GB. With a virtual rotation df about C, the outcome is, on the one
hand, that B undergoes a virtual displacement of 2 f df in the X direction and, on the other, that the
arch experiences a virtual settlement dw in the Z direction with a triangular distribution over l and a
maximum value of df l/2 at G.
Applying the principle of virtual deformations results in

dW w (BX � 2f S ql � l=4) dfw 0

and therefore BX = –ql2
/(8f ), see (5.60).
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Example 10.6 Plane frame

In this next example we shall calculate the member end moment Ml2 for the frame examined in ex-
ample 10.4, see Fig. 10.11. First of all, we introduce a flexural hinge immediately to the right of
joint 2 with a reciprocal virtual rotation of the bar ends amounting to df. This corresponds to a virtual
rotation of bar 1 amounting to 0.7df about its instantaneous centre of rotation 1, whereas subsys-
tem 234 rotates by 0.3df about the instantaneous centre of rotation 5.
Applying the principle of virtual deformations results in

dW w (Ml2 s 0.7 Q3 S 2.8 Q4 S 2.1 Q5 s 0.7 Q6 S 2.8 Q7 S 0.3 Q9 S 4 Q10 S 0.3 Q12) dfw 0

which confirms the coefficients in the fifth row of the matrix on the right in (10.9).
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Summing up, the kinematic method for calculating force variables in statically deter-
minate framed structures can be characterised by the following steps:

1. Release the corresponding constraint and by doing that convert the statically de-
terminate system into a mechanism (with one degree of kinematic instability).

2. Introduce the released force variables.
3. Apply the principle of virtual deformations to the mechanism and calculate the

force variable required from the expression dW = 0.

10.5 Summary

1. Although the methods of graphical statics have been superseded by more power-
ful methods, their unsurpassed clarity makes them still extremely valuable. They
are particularly suitable for checking equilibrium, permit the flow of the forces to
be illustrated and form an indispensable basis for the conceptual design of struc-
tures.

2. Considering skilfully selected free bodies and applying the equilibrium condi-
tions (5.8) allows to determine individual force variables for any specific prob-
lems, mostly with the help of simple hand calculations.

3. Setting up the joint equilibrium conditions systematically leads to a standardised
method that provides ample information but quickly requires the use of a com-
puter. The internal and support force variables follow from (10.4), with the static
transformation matrix b being very conveniently obtained from the kinematic
transformation matrix a by inverting the equilibrium matrix g = aT.

4. The rows of the static transformation matrix b describe how a certain stress
resultant is influenced by the various loads. And vice versa, the columns of
the matrix describe the stress resultants due to individual unit load states.

5. Individual force variables of statically determinate systems can be determined by
releasing the corresponding constraints, introducing the released force variable
and applying the principle of virtual deformations to the system with one degree
of kinematic instability.

10.6 Exercises

10.1 A point load with components QX and QZ in the X and Z directions respectively
is applied to joint 2 of the system shown in Fig. 9.9(b). Determine the corres-
ponding force in bar 24 purely graphically and by applying the principle of vir-
tual deformations (kinematic method).

10.2 Set up the relationships (10.4) for the system of Fig. 9.9(b), see example 11.4.
10.3 Consider the system shown in Fig. 9.9(c). Show how the forces in the bars con-

nected to both bases can be determined purely graphically for any point load
applied to the system.

10.4 The system shown in Fig. 9.9(d) consists of a number of equally long bars
(length l ) and is loaded by vertical loads applied to the joints of the bottom
chord. Discuss the application of the kinematic method for determining the sup-
port force at the right-hand end and the forces in the diagonal struts at the inter-
mediate support.

10.5 Each of the 11 joints in the bottom chord of the system shown in Fig. 9.9(d) is
loaded by a vertical point load Q. Consider the bottom chord joints as free bodies
and draw a free body diagram for each one.
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11 STRESS RESULTANTS AND
STATE DIAGRAMS

11.1 General

Stress resultants, which are generally components of the resultant force and the result-
ant couple of the internal forces in plane sections normal to the bar axis, were intro-
duced in section 5.1.7, see Fig. 5.14. Together with the associated deformation vari-
ables (displacements and rotations according to Fig. 5.15), the stress resultants con-
stitute the so-called state variables, whose progression along the bar axis is described
with the help of state diagrams. In such diagrams, positive (negative) state variables
are generally drawn to scale in the direction of the positive (negative) z axis. The
ensuing drawings are known as diagrams of stress resultants.

The reader has already encountered examples of diagrams of stress resultants, e. g. in
Figs. 5.30 and 5.34, in Figs. 8.11, 8.13, 8.14, 8.17, 8.19, 8.20 and 8.22, and also in
Figs. 10.3 and 10.7.

The differential relationships (8.21) and (8.26) between the stress resultants and the
line loads and line load moments apply to the straight bar elements of plane or spatial
framed structures respectively. These relationships can generally be applied to limit
the calculation of the stress resultants to a few typical cross-sections and deduce
the progression of the stress resultants between those cross-sections in a simple way.

According to (8.21),

qx ws

dN

dx
, qz ws

dV

dx
, V w

dM

dx
(11:1)

applies for a plane framed structure where my = 0, the commonest case in practice.
Accordingly, setting qx , qz, V to zero corresponds to setting N, V, M to extreme values;
and in areas where qx, qz, V disappear or are constant or vary linearly, N, V, M are
constant or vary linearly or to the power of two. Further, for positive V, M increases
as x increases, whereas for positive qx and qz, N and V decrease as x increases. Point
loads Qx, Qz or point load moments My cause corresponding abrupt changes in N, V,
M; the result is a kink in the M diagram at the point of application of a point load Qz.
All these readily identifiable relationships are shown in Fig. 11.1.

If we use x1 and x2 to designate two points on a straight segment of bar where the
moment is zero (e. g. flexural hinges), then according to (11.1)3,Ðx2

x1

V dx w 0 (11:2)

provided no point load moments My occur between x1 and x2. This is useful when
checking the shear force diagrams, for instance.

Pin-jointed bars not loaded transverse to the bar axis (see section 5.1.5 for definition)
are obviously subjected to normal forces N only, V = M = 0.

A symmetrical three-hinged arch subjected to an asymmetric imposed load was inves-
tigated in example 5.7 (Fig. 5.30). The load was rearranged to divide it into symmetric
and antisymmetric parts. Whereas the symmetric part caused normal forces with a
symmetric distribution, the antisymmetric part gave rise to asymmetrically distributed
bending moments and normal forces (with zeros on the axis of symmetry x = 0)
plus symmetrically distributed shear forces. These findings can be generalised. In a
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symmetric system, symmetric (antisymmetric) load components cause symmetric
(antisymmetric) progressions of N and M as well as antisymmetric (symmetric) pro-
gressions of V, and the antisymmetric stress resultants become zero on the axis of
symmetry.

11.2 Hinged frameworks

This section deals with systems such as the hinged girders (GERBER beams) of
Figs. 9.3(c) and (d) and 10.5, hinged arches and frames such as those shown in
Figs. 5.30, 5.31, 9.3(e), 10.4 and 10.10, and stiffened beams with intermediate hinges,
similar to the structures depicted in Figs. 9.3(g), (i), (n) and (o). Such systems are stat-
ically determinate and therefore adapt without restraint to any support displacements
and can also be erected without restraint. In addition, they are often employed as
statically determinate basic systems when applying the force method to statically
indeterminate systems (chapter 16).
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11.2.1 Hinged girders

According to (9.3), a beam continuous over m spans becomes statically determinate
when we introduce m–1 flexural hinges. For example, s = 3, c = 5, k = 4, g = 2, and
therefore n = 0, for the system shown in Fig. 11.2(a) with its central cantilever
beam EF (overhang at both ends) and propped beams AE, FD on either side. The sys-
tem shown in Fig. 11.2(b), with the cantilever beam ABE (overhang at one end), the
coupling beam EF and the propped beam FD, results in the same outcome when we
apply the counting scheme (9.3): n = 3 ·3 + 5 – 3 ·4 – 2 = 0.

The flexural hinges must be introduced in such a way that they do not cause a chain of
hinges. Therefore, interior spans may have no more than two hinges, end spans no
more than one. In addition, with a suspended beam, there should be neither propped
beams in the adjacent end spans nor suspended beams in the adjacent interior spans;
Fig. 11.2(c) and (d) illustrate the mechanisms otherwise possible – both systems are
kinematically unstable and their equilibrium matrices according to (9.2) are singular.

The three global equilibrium conditions and m–1 moment-balance equations (auxil-
iary conditions) about the intermediate hinges can be set up in order to determine the
m+2 support forces. Once the corresponding sets of linear equations have been re-
solved, the diagrams of the stress resultants can be drawn simply by considering
the individual parts of the system as free bodies and applying the equilibrium condi-
tions according to section 10.2.

Alternatively, the system can be divided into its constituent parts at the outset by in-
troducing cuts through the intermediate hinges. Starting with the suspended and
propped beams, the system is then analysed successively by applying the equilibrium
conditions.

Both procedures will be explained by means of the following example.
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Example 11.1 Hinged girder

The system shown in Fig. 11.3(a) has the free body shown in Fig. 11.3(b) with equilibrium and aux-
iliary conditions that result in the following set of linear equations:

0 0 0 0 0 s 1
s 1 s 1 s 1 s 1 s 1 0
0 5 11 17 22 0
0 0 0 1 6 0
0 0 0 5 10 0
s 4 0 0 0 0 0

2
6666664

3
7777775

A
B
C
D
E
K

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

S

10
50

s 680
s 80
s 200

20

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

w

0
0
0
0
0
0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

from which it follows that {A, B, C, D, E, K} = {5, 7.5, 7.5, 20, 10, 10}. Therefore, it is easy to draw
the diagrams of the stress resultants as shown in Fig. 11.3(c), taking into account the relationships
discussed in section 11.1.
Fig. 11.3(d) shows the system divided into its constituent parts at the intermediate hinges. Equilibrium
results directly in A = F = 5, G = H = 10, I = J for the subsystems AF and GH. Equilibrium of sub-
systems FG and HE then calls for B = 7.5, C = 7.5, J = K and D = 20, E = 10, I = 10, from which it
follows that, in the end, I = J = K = 10. The diagrams of the stress resultants then ensue as before,
see Fig. 11.3(c).
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11.2.2 Hinged arches and frames

Three-hinged arches have already been examined in section 5.3.2 and example 10.5.
Fig. 11.4(a) shows a general case in which the abutments A and B, known as the
springings, are at different levels. Besides the springing hinges, there is a third hinge
at the crown C of the arch. The rise f is the vertical distance of the crown hinge above
a line joining the springings.

Where the subsoil is unsuitable for accommodating horizontal loads, a tie connecting
the springings can be included, as shown in Fig. 11.4(b). The tie is usually suspended
from the arch via regularly spaced hangers. In the case of a bridge structure, the deck
beam serves as a tie. Externally, the system of Fig. 11.4(b) acts like a simply supported
beam.

Fig. 11.4(c) shows a three-hinged arch with a propped deck. The deck DE is a static-
ally determinate hinged framework, the loads of which are transferred via vertical
props to the arch ACB.

Frames are cranked bar systems that have either rigid or hinged corners. Frames are
generally statically indeterminate. We shall only examine statically determinate
hinged frames here.

Fig. 11.4(d) shows a three-hinged frame with frame legs AD, BE, frame beams DC,
EC, base hinges A, B and ridge hinge C. Similarly to Fig. 11.4(b), a tie connecting
the bases of the frame legs can be included in a three-hinged frame as well, see
Fig. 11.4(e). Fig. 11.4(f) shows a three-span hinged frame that consists of two
three-hinged frames DEF, GHI either side of a central three-hinged frame ACB; it
is also possible to design multi-span hinged arch structures in a similar way. Generally,
setting up series of statically determinate subsystems, side by side or on top of each
other, results in multi-span hinged arches or frames.

The four support forces of three-hinged arches and frames are obtained from three
equilibrium conditions and the auxiliary condition such that the bending moment
at the third hinge must be equal to zero. Afterwards, the stress resultants required
can be calculated by considering corresponding free bodies in accordance with the
principles of section 10.2. When dealing with arch structures, it is expedient to

16311.2 Hinged frameworks

D E

A B

C

A B

C

A
B

C
f

(a)

(b)

(c)

A B

C

C

D E

C

D A

E F

B G

I H

(d)

(e)

(f)

A B

Fig. 11.4 Hinged arches and frames: (a) three-hinged arch, (b) three-hinged arch with tie, (c) three-hinged

arch with propped deck, (d) three-hinged frame, (e) three-hinged frame with tie, (f) multi-span hinged frame



determine the stress resultants in the direction of the global coordinates first and then
convert these to the local coordinates.

Hangers and props transfer normal forces only. These forces result from the support
forces of the simply supported beams making up the associated transversely loaded
ties or deck beams. In multi-span hinged arches and frames, all the stress resultants
are calculated by considering the individual subsystems in succession, in a similar
way to a hinged girder.

Example 11.2 Three-hinged frame with tie

Externally, the three-hinged frame ABCD with tie EFD shown in Fig. 11.5(a) functions like a simply
supported beam. Equilibrium of moments about A initially results in a vertical support force of 100kN
at D. The force-balance equations then result in corresponding support forces at A of 54kN in the
horizontal direction and 86kN in the vertical direction.
The normal force NDE in the tie can be obtained using the kinematic method according to section 10.4,
for example. If we make an imaginary cut through the tie and apply a horizontal displacement du to
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the right at point E, then subsystem BCD undergoes a horizontal translation of 2du, and at the point of
the cut through the tie, the two sides of the cut undergo a relative displacement of du. According to the
principle of virtual deformations,

dW w (2 � 9 m � 6 kN=msNDE) duw 0

and therefore NDE = 108kN. We get the same result with a moment-balance equation about B for
subsystem AEB: NDE ·4m – 54kN·8m = 0.
Considering the simply supported beam DE, applying the moment-balance equation about E for the
transverse load at F results in a support force of 18kN·6m /15.75m = 6.86kN at D and therefore a
bending moment of 6.86kN·9.75m = 66.86kNm at F.
The compressive force amounting to 86kN in frame leg AE is reduced to 74.86kN in frame leg EB
because of the shear force of 18kN – 6.86kN = 11.14kN at E. The shear force in frame leg AB
changes from 54kN to – 54kN at E, and a bending moment of 54kN · 4m = 216kNm occurs at E.
Resolving the forces at B and D results in normal and shear forces of – 78.64kN and 48.33kN and
–127.52kN and 63.87kN respectively. Considering subsystems BC and CD also leads to normal
forces of –14.02kN and –106.75kN at C and, owing to the 90h crank in the bar axis, to corresponding
shear forces of –106.75kN and 14.02kN. Finally, we get a value of – 379.71kNm for the bending
moment at C.
The point of zero shear in frame beam BC lies at a distance of

48.33

48.33S 106.75

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
122

S 52
p

mw 4.05 m

from B, and the associated maximum bending moment amounts to 48.33 kN·4.05 m / 2 = 97.9kNm. As
a check, we get the following corner moment at C:

97.9 kNms 106.75 kN � (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
122

S 52
p

s 4.05) m=2ws 379.7 kNm

The diagrams of the stress resultants are shown in Fig. 11.5(b) to Fig. 11.5(d).

11.2.3 Stiffened beams with intermediate hinges

Fig. 11.6 shows various stiffening arrangements for beams achieved with bar poly-
gons and vertical bars (posts and hangers) connected via hinges. If we presume
that the joints of the bar polygon are not loaded (all loads are applied to the
beam), then the horizontal component H of the forces in the bar polygon must be con-
stant. This observation means that it is expedient to divide the systems by cutting
through the intermediate hinges and setting up the six equilibrium conditions for
the two subsystems in order to calculate the three support forces of the beam and
H as well as the two hinge force components. All the forces in the vertical bars
and the stress resultants in the beam then result from simple equilibrium consider-
ations.

In the LANGER beam (arch-hanger-girder system) of Fig. 11.6(a), the bar polygon
above the beam is in compression and connected to the beam via hangers. Fig.
11.6(b) shows the inversion of this system, with the bar polygon below the beam
in tension and connected to the beam via struts.

The bar polygon of the deck-stiffened polygonal arch of Fig. 11.6(c) transfers its loads
directly to the springings D and E. The system is closely related to the LANGER beam
of Fig. 11.6(a). Instead of being loaded via hangers from below, the bar polygon in
compression is loaded via struts from above.

Fig. 11.6(d) shows the bending moment diagram due to a point load Q applied to the
deck-stiffened polygonal arch of Fig. 11.6(c). The bending moment for the unstiffened
beam without intermediate hinge would be M0(x). Stiffening results in a reduction
affine to the shape of the bar polygon such that M becomes zero at the point of the
intermediate hinge C, see Fig. 5.31 and the associated discussion. If in the example
of Fig. 5.31 the arch itself has to accommodate the bending moments, then this func-
tion is assigned to the beam according to Fig. 11.6(c); it stiffens the bar polygon, which
is why the system is called a deck-stiffened polygonal arch.

16511.2 Hinged frameworks



The middle span DEF of the suspension bridge shown in Fig. 11.6(e) corresponds to
an inversion of the deck-stiffened polygonal arch of Fig. 11.6(c). The bar polygon KL
in tension continues over the hinged pylons CK, GL to the anchorages J, M and is
used to suspend the side spans AB, HI.

The stiffened beams with intermediate hinges shown here have little significance in
practice these days. Compared with the corresponding statically indeterminate sys-
tems without intermediate hinges, the intermediate hinges reduce both the stiffness
and the strength, require maintenance and are uneconomic. However, discussing
such statically determinate systems was necessary here in order to generate an under-
standing of the structural behaviour of the corresponding statically indeterminate sys-
tems; in these systems, H is not calculated from a hinge condition but rather from a
deformation condition.

11.3 Trusses

11.3.1 Prerequisites and structural topology

The prerequisites for ideal trusses introduced by CULMANN (straight bars connected
at the joints concentrically via frictionless hinges and loaded only at the joints) are
only fulfilled approximately by trusses in practice. At the joints, the bars are generally
connected rigidly together via gusset plates, see Fig. 11.7(a). In addition, eccentricities
at the connections, both intended and unintended, can occur, also curvature of the bars,
and the bars are loaded in bending by their self-weight at least and often also by ex-
ternal transverse loads. Apart from the intended transverse loads, which are considered
in the dimensioning, the stresses caused by the various aforementioned effects can be
regarded as secondary stresses and therefore ignored, provided it is not necessary
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to verify the fatigue resistance; with adequate deformation capacity and no stability
problems, such stresses have no influence on the limit load, see chapter 21.

In the two-dimensional case, any joint load Q, see Fig. 11.7(b), can be resolved into
two bar forces with non-concurrent axes. Assuming the basic triangular truss element
as shown in Fig. 11.7(c), we can therefore create a statically determinate plane frame
when each new joint is connected via two new bars not in a straight line (i. e. with a
bipod), see Fig. 11.7(d). According to (9.5), s + c = 2k applies.

In the three-dimensional case, instead of Fig. 11.7(b), we get a tripod made up of three
bars not lying in one plane. Instead of the triangle of bars of Fig. 11.7(c), a tetrahedron
of bars plays the role of the basic truss element. The result is a statically determinate
space frame in which each new joint is connected via three new bars not lying in one
plane (i. e. with a tripod). According to (9.6), s + c = 3k applies.

The bars of a truss are divided into chords and web members. Referring to Fig. 11.7(e),
the former includes the bottom chord AB and the top chord DC, and the latter
includes the posts AD, BC and the truss diagonal DB.

To distinguish between ties and struts, the bar forces are indicated with arrows accord-
ing to Fig. 11.7(f) and (g), which show how the forces act on the joints.

Fig. 11.8 provides an overview of various feasible truss types. Fig. 11.8(a) to Fig.
11.8(c) illustrate trusses with a simple triangulated frame. Trusses with a complex
frame are shown in Fig. 11.8(d) to Fig. 11.8(f), whereas Fig. 11.8(g) is an example
of a truss with a secondary frame.

Fig. 11.9 shows various forms of trussed girder used in bridges and buildings. Bow-
string (PARKER), inverted bowstring and PAULI trusses are matched to the bending
moment diagram in such a way that the result is approximately constant forces in the
chords. In the PAULI truss (fish-belly truss), the forces in the web members are espe-
cially small. In the SCHWEDLER truss, the top chord is cranked in the centre in such a
way that the diagonals are loaded in tension only, even when subjected to a travelling
load. The POLONCEAU truss is actually a three-hinged frame with a tie. It is possible
to construct further combined forms of trussed girders from those illustrated in Fig.
11.9, e. g. hinged girders, hinged frames, stiffened beams, and also space trusses,
see Fig. 9.2.
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The hexagonal SCHWEDLER dome shown in Fig. 11.10 consists of meridional ribs
(rafters), horizontal rings and diagonals, which stiffen the individual trapezoidal
panels. There is often a ring joining the bases as well, which means that one support
force component per base joint can be omitted while maintaining the static determin-
acy; each second base joint could be supported in the vertical direction only, for
instance. SCHWEDLER domes are often also built with diagonals in both directions
(X-bracing), which turns them into statically indeterminate space trusses.
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Fig. 11.10 SCHWEDLER dome



11.3.2 Methods of calculation

Basically, all the methods discussed in chapter 10 can be used for determining the bar
forces of statically determinate trusses. The method whereby the joint equilibrium is
systematically considered can be applied to any truss. For simple plane trusses, one
graphical method, the CREMONA diagram, still plays a certain role. If we only re-
quire individual bar forces, considering selected free bodies or the kinematic method
are quicker ways of achieving results than applying joint equilibrium conditions. The
method of sections developed by August RITTER, which can be applied to any truss,
is essentially based on moment-balance conditions about skilfully selected points or
axes. The graphical method for simple plane trusses corresponding to this method and
developed by CULMANN is of historical interest only.

11.3.3 Joint equilibrium

11.3.3.1 Considering individual joints in succession

Once we have determined the support forces, we can examine the equilibrium joint by
joint. Where only two unknown bar forces occur, these are easy to calculate.

Example 11.3 Plane truss

The plane truss shown in Fig. 11.11(a) consists of k = 6joints and s = 9bars. With c = 3 support
forces at 1 and 6, according to (9.5), n = 0. The load of 9kN at 2 leads to vertical support forces
of 6kN at 1 and 3kN at 6, as can be easily seen by way of the moment-balance conditions about
6 and 1 respectively. As there are no loads in the X direction, the corresponding support force at
1 is zero.
Equilibrium at joint 1 calls for forces of 10kN (compression) and 8kN (tension) in bars 1 and 2 re-
spectively. The two remaining unknown bar forces 3 and 4 at joint 2 are therefore 3kN (compression)
and 8kN (compression) respectively. Similarly, at joint 3 we get bar forces 5 (5kN, tension) and 6
(4kN, tension) and at joint 4 we get bar forces 7 (zero) and 8 (5 kN, compression). The force-balance
condition in the X direction at joint 5 results in a tensile force of 4kN in bar 9. The force-balance
condition in the Z direction at joint 5, and the two equilibrium conditions at joint 6 are satisfied
and can be regarded as a check.
Fig. 11.11(b) shows the free body diagrams for the six joints, and Fig. 11.11(c) summarises the results
when using the notation according to Fig. 11.7(f) and (g).
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11.3.3.2 Complex trusses

Complex trusses in which, unlike simple trusses, not every new joint is connected
by two bars not in a straight line or three bars not lying in one plane, can sometimes
be converted to simple trusses by way of bar substitution.

For example, the complex truss shown in Fig. 11.12(a) is converted to a simple truss
by removing bars i , j and introducing bars i, j, see Fig. 11.12(b). The forces Ni, Nj in
the bars removed follow from the condition that the bar forces si , sj of the new bars
must be equal to zero. If we designate the bar forces si, sj as a result of external loads as
well as Ni = 1 and Nj = 1 with si0, sii, sij and sj0, sji , sjj respectively, then

si w si0 SNisii SNisij w 0

sj w sj0 SNjsji SNisjj w 0

applies, or generalised

s0f gS s½ � Nf gw 0f g (11:3)

which allows Ni, Nj to be calculated.
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11.3.3.3 General procedure

The general procedure according to (9.2) or (10.4) was explained in example 10.3 by
means of the truss shown in Fig. 8.1. The procedure will be used again below for the
system examined in example 11.3.

Example 11.4 Plane truss

Consider the system shown in Fig. 11.11(a). According to (8.1), we first get the bar extensions Di as a
result of the joint displacements uj, wj :

D1

D2

D3

D4

D5

D6

D7

D8

D9

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

w

0.8 s 0.6
1

s 1 1
s 1 1

s 0.8 0.6 0.8 s 0.6
s 1 1

s 1 1
s 0.8 s 0.6 0.8

s 1 1

2
6666666666664

3
7777777777775

u2

w2

u3

w3

u4

w4

u5

w5

u6

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

The empty spaces in matrix a are filled with zeros in the above equation. We get the value 0.864 0 0
for deta, i. e. a is invertible. According to (9.11), transposing a results in the equilibrium matrix
g = aT, and inverting g results in the static transformation matrix b = g –1 for this statically determin-
ate system, and therefore according to (10.4)1, we get the bar forces

N1

N2

N3

N4

N5

N6

N7

N8

N9

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

w

1

36

15 s 40 0 s 40 15 s 20 0 s 20 0
24 32 36 32 24 16 36 16 36
s 9 s 12 0 24 s 9 12 0 12 0
s 24 s 32 0 s 32 12 s 16 0 s 16 0

15 20 0 20 15 s 20 0 s 20 0
12 16 0 16 12 32 36 32 36
0 0 0 0 0 0 0 36 0

s 15 s 20 0 s 20 s 15 s 40 0 s 40 0
12 16 0 16 12 32 0 32 36

2
6666666666664

3
7777777777775

0
9
0
0
0
0
0
0
0

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

w

s 10
8
s 3
s 8
5
4
0
s 5
4

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

in kN. Using matrix gsC according to (9.2), we get the support forces

C1X

C1Z

C6Z

8<
:

9=
;w

s 0.8 s 1 0 0 0 0 0 0 0
0.6 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0.6 0

2
4

3
5

s 10
8

s 3
s 8

5
4
0

s 5
4

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

w

0
s 6
s 3

8<
:

9=
;

in kN according to (10.4)2.

11.3.4 CREMONA diagram

When dealing with simple plane trusses, there are no more than two unknown bar
forces per joint. It is generally necessary to calculate the support forces and, possibly,
the hinge forces beforehand in such systems in order to be able to begin at one joint
with just two unknown bar forces. Afterwards, it is possible to draw the appropriate
force polygons for each joint in succession and hence determine the unknown bar
forces.

Instead of drawing each bar force twice with individual force polygons, all the force
polygons can be combined into a single diagram, the CREMONA diagram. Doing this
means that the forces acting on each joint are considered in turn by proceeding around
the joint in a direction that is maintained for the entire truss. The support forces and
loads acting externally on the plane system are arranged in the same rotational order
and form a closed force polygon according to the fundamental theorem of statics.
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As each bar force has two directions in the CREMONA diagram, depending on which
of the two corresponding joints it acts on, the directions of the forces are specified
either with a sign (+ tension, – compression) on the CREMONA diagram or with
arrows according to Fig. 11.7(f) and (g) on the funicular polygon. As the three equilib-
rium conditions of the plane are initially used for determining the support forces, the
final force polygons in the CREMONA diagram allow the equilibrium to be checked.
Finally, we realise that bar forces whose bar axes form a triangle in the funicular poly-
gon intersect at one point in the CREMONA diagram; force polygon and funicular
polygon are in this sense reciprocal.

Example 11.5 Plane truss

Fig. 11.13 shows the CREMONA diagram for Fig. 11.11(c). Anticlockwise was chosen as the uniform
direction for considering each joint. The bar numbers are taken from Fig. 11.11(a). The scale for the
forces is specified by the load of 9kN and the support forces of 6kN and 3kN.

11.3.5 RITTER method of sections

Simple trusses can often be divided into subsystems such that only three unknown bar
forces are affected. A moment-balance equation about the intersection of the bar axes
of two of these forces then results in the third bar force. If two bar axes are approxi-
mately or truly parallel, their intersection lies well beyond the system or at infinity
respectively; in such cases, the moment-balance equation must be replaced by a
force-balance equation.

The RITTER method of sections presumes – like the method of CREMONA – that the
support forces are determined beforehand. In contrast to the latter method, the method
of sections can be applied to spatial trusses as well, although then the moment equi-
librium about appropriate axes has to be formulated.

Example 11.6 Plane truss

Fig. 11.14 illustrates the RITTER method of sections for calculating bar forces 4, 5, 6 of the truss
shown in Fig. 11.11(a). With a support force of 6kN at joint 1, we get the vertical force-balance equa-
tion – 6kN + 9kN – 0.6N5 = 0 and the moment-balance equations – 6kN·4m – N4 ·3m = 0 and
– 6kN·8m + 9kN·4m + N6 ·3m = 0 about points 3 and 4 respectively, from which it follows that

N4, N5, N6f gw s 8, 5, 4f g kN:
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As can be seen, these bar forces can also be easily obtained from the stress resultants of an equivalent
beam with the same span, load and support conditions, see Fig. 11.15. The force in the top chord N4 is
obtained by dividing the moment M = 24kNm at the associated reference point 3 by the lever arm of
3m. Likewise, the force in the bottom chord N6 is obtained by dividing the moment M = 12kNm at
reference point 4 by the lever arm of 3m. Finally, the vertical component of diagonal force N5 must be
equal to the amount of the associated shear force V = – 3kN.

11.3.6 The kinematic method

To conclude, the kinematic method already explained for a truss using the example of
Fig. 10.9 will be illustrated with a further example.

In order to determine the force O in the top chord of the truss shown in Fig. 11.16, we
remove the corresponding bar and introduce force O as a compressive force acting on
the adjacent joints. The mechanism that ensues as a result of removing the top chord
bar is described by a virtual rotation v about the right-hand support and an opposite
rotation of 3.5v about the left-hand support. The corresponding virtual displacement
components of the two joints at which the forces O act with components 5O /

ffiffiffiffiffi
26
p

and
O /

ffiffiffiffiffi
26
p

are shown in Fig. 11.16. The point of application of force Q undergoes a vir-
tual deflection of 9v.
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Applying the principle of virtual deformations results in

dW wQ � 9vSO (s 5 , 1) � (12.25 , 7)S (5 ,s 1) � (s 4.4 , 11.5)½ �v=
ffiffiffiffiffi
26
p

w 0

and therefore O = 9·
ffiffiffiffiffi
26
p

Q /87.75 = 0.523Q. If O had been introduced as a tensile
force, the result would have been a negative sign, and the force in the top chord would
have been identified as a compressive force.

11.4 Summary

1. Diagrams of stress resultants describe the progression of stress resultants along
the bar axis. It is usually sufficient to limit the calculation of the stress resultants
to a few typical cross-sections and deduce the progression of the stress resultants
between those cross-sections in a simple way.

2. Pin-jointed members are subjected to normal forces only.
3. In symmetrical systems, symmetric (antisymmetric) load components cause sym-

metric (antisymmetric) progressions of N and M as well as antisymmetric (sym-
metric) progressions of V. Stress resultants with an antisymmetric progression dis-
appear at the axis of symmetry.

4. Statically determinate hinged frameworks such as hinged girders, arches and
frames, also stiffened beams with intermediate hinges, adapt to any support dis-
placements without restraint and can be erected without restraints.

5. The equilibrium of hinged girders can be analysed either by setting up the global
equilibrium conditions and the moment-balance equations (auxiliary conditions)
about the intermediate hinges or by dividing the system at the intermediate hinges
and considering the individual subsystems (starting from suspended and propped
beams).

6. Hinged arches and frames can be treated in a similar way to hinged girders. In the
case of arch structures, it is expedient to calculate the stress resultants in the dir-
ection of the global coordinates first and then convert these to local coordinates.

7. Stiffened beams with intermediate hinges have little significance in practice these
days. However, they help us to understand the structural behaviour of the corres-
ponding statically indeterminate systems.

8. Deviations from the conditions of ideal trusses (bent bars, rigid connections be-
tween bars, eccentric connections) lead to secondary stresses that can generally be
ignored for the dimensioning. By contrast, intended transverse loads on the bars
of trusses must be considered in the dimensioning.

9. Simple plane (spatial) trusses are created by connecting each new joint by two
bars not lying in a straight line (three bars not lying in one plane). Complex
trusses that do not comply with this requirement can sometimes be converted
to simple trusses by way of bar substitution; the forces in the bars removed
for the substitution procedure are then calculated from (11.3).

10. All the methods discussed in chapter 10 can be used to calculate the bar forces of
statically determinate trusses. The method of systematically considering the joint
equilibrium can be applied to any truss; the corresponding method according to
CREMONA for simple plane trusses still plays a certain role these days. If we are
only interested in individual bar forces, applying the kinematic method or the
RITTER method of sections is advantageous.
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11.5 Exercises

11.1 Fixed support 1 of the system shown in Fig. 9.9(a) is replaced by a hinge and
hinged support 4 replaced by a support sliding in the X direction. Uniformly dis-
tributed loads of 100kN and 60kN act on bars 123 and 34 respectively in the
Z direction; in addition, a uniformly distributed load of 15kN acts on bar 123
in the X direction. Determine the corresponding diagrams of stress resultants.

11.2 The system of Fig. 9.9(c) is loaded over its entire width of 12 ·4.8 = 57.6m by a
uniformly distributed vertical load of 720kN. Substitute this load by statically
equivalent loads of 60kN at each of the 11 inner joints of the top chord plus
30kN at each of the end joints. Determine all the bar forces.

11.3 Solve exercise 11.2 for an asymmetric load of 1 ·12kN, 5 ·24kN, 0,
5 · (– 24kN), 1 · (–12kN).

11.4 Solve exercises 11.2 and 11.3 for a modified system in which the 8m high ver-
tical columns are connected at the top by a 48m long tie and the inclined member
connected to the right-hand base is omitted. Discuss the effects of these modi-
fications to the system.

11.5 Use Fig. 11.8 to discuss how the type of truss affects how a constant (positive or
negative) shear force is carried in a parallel-chord truss.

11.6 Compare the structural behaviour of the systems in Fig. 11.9(a) and (e) subjected
to a uniformly distributed load and a travelling point load applied to the bottom
chord. Sum up the products of the bar lengths and the magnitude of the bar forces
critical for the dimensioning. Select the depth of the beam to be equal to one-
eighth of the span.

11.7 Compare the systems of Fig. 11.9(e) and (i) in a similar way to exercise 11.6.
11.8 On what does the crank in the top chord of the system in Fig. 11.9(j) depend and

how should it be formed? Compare the structural behaviour with that of the
system in Fig. 11.9(e) in a similar way to exercise 11.6.
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12 INFLUENCE LINES

12.1 General

In contrast to diagrams of stress resultants, which apply to one particular load case,
influence lines show how a moving (free) load affects certain state variables. Moving
loads occur in conjunction with, for example, bridges, crane tracks and buildings, see
section 4.2.1.

The simply supported beam AB shown in Fig. 12.1(a) with cantilever BC at one end is
loaded momentarily by load Qm at m. The moment-balance equation about A in the
free body diagram of Fig. 12.1(b) results in the support force

Bw

Qmxm

l
wQmhBm (0J xm J lS a)

where hBm = xm/l is the influence ordinate for B at m. The first index B denotes the
position and nature of the state variable being considered, the second index m refers to
the cause of the load. Fig. 12.1(c) shows the function hBm(xm) as an influence line for
support force B starting from a reference axis parallel with the loaded chord ABC.
With a load train according to Fig. 12.1(d), B is found using the superposition law
as the sum of all the individual loads Qm :

Bw

P
m

QmhBm

As we can see, hBm corresponds to the progression of B as a result of Qm = 1. This
finding is easy to generalise. For the general case, an influence line him describes
how an individual force variable of magnitude 1 acting in a specified direction at
any point m influences a certain state variable si at point i.
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Basically, influence lines can be assigned to individual force variables acting in any
direction. However, influence lines are mostly confined to vertical point forces in
order to be able to investigate the effects of imposed loads caused by traffic.

Influence lines are evaluated according to

si w
P
m

Qmhim (12:1)

for point loads, and according to

si w
Ð

q(x) hi(x) dx (12:2)

for line loads.

Influence lines help to identify worst load positions in particular, i. e. load positions
that allow certain state variables to reach extreme values.

Also often interesting in addition to influence lines for force variables are the influ-
ence lines for deformation variables. By applying MAXWELL’s theorem (8.88), the
relationship (8.86), which is similar to (12.1), can be expressed as

ui w
P
m

Qm � fmi (12:3)

by replacing the indexes j, k used there by the indexes i, m used here. In this case fmi is
the (generalised) displacement at the position and in the direction of Qm as a result of
the force variable Qi = 1 corresponding to ui , see Fig. 8.16(a). Influence lines for de-
formation variables are therefore displacement curves that ensue when a correspond-
ing unit force variable is applied at the position and in the direction of the deformation
variable of interest.

12.2 Determining influence lines by means of equilibrium conditions

The shear force and bending moment influence lines for reference point i are to be
determined for the simply supported beam shown in Fig. 12.2(a). To do this, we
make use of the influence lines for the support forces A and B shown together in
Fig. 12.2(b), which are produced in a similar way to Fig. 12.1(c). When load Qm = 1
is to the left of reference point i (xm J xi), the free body diagram on the right in the
upper part of Fig. 12.2(c) results in Vim = –Bm and Mim = Bmb. When load Qm = 1 is to
the right of reference point i (xm j xi), the free body diagram on the left in the lower
part of Fig. 12.2(c) results in Vim = Am and Mim = Am a. It is therefore possible to draw
the influence lines hVi and hMi shown in Fig. 12.2(d) by referring to Fig. 12.2(b). At
point i, hVi undergoes an abrupt change of magnitude 1 and hMi has a kink of magni-
tude 1.
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Loads that are not introduced directly but rather indirectly via transverse and longi-
tudinal beams, as shown in Fig. 12.3, require the influence lines for the direct load
transfer to be determined first. Owing to the assumption that the longitudinal beams
are statically determinate, the influence ordinates at the locations of the transverse
beams are then connected by straight lines that are continued as far as the ends of
the longitudinal beams. As can be seen, depending on the configuration of the second-
ary structure, the influence ordinates of the primary structure can increase or decrease,
see Fig. 12.3(a) and (b).

12.3 Kinematic determination of influence lines

The findings of section 12.2, i. e. that segments of influence lines are straight and ex-
hibit discontinuities (abrupt changes or kinks) of magnitude 1 at the reference points,
lead to an elegant option for determining the influence lines: the kinematic method
named after LAND. If we release the constraint corresponding to force variable si

at reference point i and apply the virtual deformation –1 (i. e. opposite to the positive
force variable si ) to the ensuing mechanism at i, then according to the principle of
virtual deformations, we get

dW wQm � dum s si � 1w 0 (12:4)

where dum is the virtual displacement or rotation that occurs at the position and in the
direction of load Qm as a consequence of the mechanism. Comparing this with (12.1)
shows that him = dum, i. e. the influence line results as a virtual displacement figure of
the loaded chord in the direction of load Qm due to the mechanism that ensues when
the deformation variable corresponding to si is set to –1.

Eq. (12.4) only contains the two work components due to Qm and si . This is because
Qm is the only load occurring and the internal force variables, except si , do not exhibit
any corresponding deformations (the system components remain rigid in the mechan-
ism).

Fig. 12.4 shows virtual deformations of –1 corresponding to the individual force vari-
ables (support forces, normal forces, shear forces and bending moments).

The kinematic method for determining influence lines also applies to statically inde-
terminate systems. Releasing the constraint corresponding to the force variable si does
not produce a mechanism, but rather reduces the degree of static indeterminacy n by 1.
The virtual deformation of –1 opposite to the positive force variable si cannot be
applied without introducing restraints. Instead, it must be imposed on the statically
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indeterminate system with n–1 degree(s) of static indeterminacy. The individual
system components do not remain rigid, but are deformed. Nevertheless, (12.4) re-
mains valid because according to the reduction theorem, the stress resultants of the
restraint do not perform any virtual work on the whole, see section 14.3. In contrast
to the influence lines with their straight segments for statically determinate systems,
statically indeterminate systems produce curved influence lines; however, the discon-
tinuities of magnitude 1 at the reference points remain.

Example 12.1 Hinged girder

The task is to determine the influence lines hMi and hVi for reference point i in the hinged girder of
Fig. 12.5(a).
Introducing a flexural hinge at i with a virtual rotation of –1 leads directly to the upper virtual dis-
placement figure of Fig. 12.5(b), which corresponds to hMi . The resulting lower influence line hVi in
Fig. 12.5(b) has the abrupt change of –1 between the left-hand support and the intermediate support as
for hVi in Fig. 12.2(d); the continuation into the right-hand span with the kink at the hinge easily fol-
lows from the mechanism considered.

Example 12.2 Three-hinged arch

Fig. 12.6 illustrates how to determine the influence lines of a three-hinged arch according to the kine-
matic method.
Releasing the constraint for Av according to Fig. 12.6(b) leads to a first geometric position for the
instantaneous centre of rotation (pole) 1 of plate I; this must lie on the horizontal line passing through
A. A second geometric position is given by the straight line passing through B and the hinge at the
crown. The line that can be determined in this way for hAv with the abrupt change of –1 at A is only
valid between A and the crown hinge; between this point and B, hAv approaches zero linearly because
plate II rotates about its instantaneous centre of rotation 2 a B.
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Similar considerations for Bv lead to the kinematic diagram shown in Fig. 12.6(c) with the instantan-
eous centres of rotation 1 a A and 2 for plates I and II respectively. The resulting straight line hBv

between 2 and B with the abrupt change of –1 at B is only valid between B and the hinge at the crown;
between this point and A, the influence line hBv approaches zero linearly because of the rotation of
plate I about 1 a A.
In order to determine the influence line for Ah, the corresponding constraint is released according to
Fig. 12.6(d). The instantaneous centre of rotation 1 of plate I results from the intersection between the
vertical line passing through A and the straight line passing through the crown hinge and B. The dis-
placement –1 at A corresponds to a rotation of plate I about 1 amounting to 1/h. Therefore, hAh has
been found.
To determine hNi , the arch is forced apart at i according to Fig. 12.6(e) by the amount –1 in the direc-
tion of Ni . The reciprocal translation of plates I and II corresponds to a rotation about a relative
pole (1, 2) at a distance of infinity in the direction perpendicular to Ni . Pole 2 of plate II therefore
lies, on the one hand, on a line parallel with this direction passing through 1 (the pole of plate I) and,
on the other, on the straight line passing through the crown hinge, i. e. the relative pole (2, 3), and
3 a B (the pole of plate III). In the vertical direction, a displacement sinai , which occurs at hNi be-
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tween the two parallel straight lines for plates I and II, corresponds to the displacement –1. Therefore,
hNi has been determined completely.
A relative displacement of –1 perpendicular to the arch axis at i is assumed for plates I and II when
determining hVi in Fig. 12.6(f). Pole 2 of plate II is determined by the direction to the corresponding
relative pole (1, 2) passing through 1 and the straight line passing through (2, 3) and 3. As the dis-
placement –1 has the component cosai in the vertical direction, the result is a corresponding abrupt
change to hVi at i, and the influence line is therefore determined completely.
In the influence line case hMi shown in Fig. 12.6(g), i plays the role of the relative pole (1, 2). Pole 2
comes about in a similar way to that shown in Fig. 12.6(e) and (f). With the kink –1 at i, hMi is there-
fore determined completely.

Example 12.3 Plane truss

We require the influence line for the bottom chord force U of the truss of Fig. 12.7(a). The moving
load travels along the bottom chord.
Removing the bottom chord bar results in the two plates I and II, which can rotate about 1 and 2
respectively. Applying a relative displacement of –1 to the points of application of the two forces U

results in a reciprocal rotation of the two plates of 1/r about the relative pole (1, 2). The influence line
for U can therefore be drawn, provided we also consider that, as shown in the lower drawing of Fig.
12.3(a), the ordinates at the ends of the two bars can be joined by a straight line owing to the indirect
load transfer via the joints of the truss.
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12.4 Summary

1. Influence lines him show how a point force variable Qm = 1 acting in a specified
direction at any point m influences a certain state variable si at point i.

2. Influence lines are mostly confined to vertical point forces for examining the
effects of imposed (traffic) loads.

3. Influence lines are particularly helpful for identifying worst load positions.
4. Influence lines are evaluated according to (12.1) and (12.2).
5. Influence lines can either be determined by applying equilibrium conditions or by

using LAND’s kinematic method, which is particularly convenient.
6. The segments of the influence lines of statically determinate systems are straight.
7. In the kinematic method, influence lines are virtual displacement figures of the

loaded chord in the direction of load Qm for the mechanism that ensues when
the deformation variable corresponding to si is set to –1.

8. The kinematic method for determining influence lines remains valid for systems
statically indeterminate to the nth degree. However, the influence lines are curved
because the deformation variables of –1 corresponding to si must each be imposed
on a statically indeterminate system with n–1 degree(s) of static indeterminacy.

9. In addition to influence lines for force variables, influence lines for deformation
variables are often interesting, too. They are displacement curves that ensue when
a corresponding unit force variable is applied at the position and in the direction of
the deformation variable of interest.

12.5 Exercises

12.1 Determine the influence lines for the support forces and the bending moments at
B and C in the system of Fig. 11.3(a).

12.2 Determine the influence line for the shear force to the left of support C in the
system of Fig. 11.3(a).

12.3 Determine the influence lines for the bottom chord forces on both sides of the
intermediate support of the system shown in Fig. 9.9(d).

12.4 Determine the influence line for the top chord force in the middle of the right-
hand span of the system shown in Fig. 9.9(d).
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13 ELEMENTARY DEFORMATIONS

13.1 General

The linear elastic constitutive equations for plane and spatial framed structures were
introduced with eq. (8.23) and (8.28) without a detailed explanation. Fig. 13.1 illus-
trates the relationships between stress resultants (see section 5.1.7) and corresponding
deformation variables (see sections 8.2.2 and 8.2.3). The relationship between the
normal force N and the strain e on the bar axis x is expressed by the axial stiffness EA,
the relationship between the shear force V and the mean shear strain g by the shear
stiffness GAv . Likewise, the bending stiffness EI and the torsional stiffness GIx ex-
press the relationship between bending moment M and curvature x , and between
torque T and twist £ respectively. In order to present the relationships with the proper
dimensions, the reference length used in the M-x and T-£ diagrams is the depth of the
section h.

The equations for bending, normal forces, shear forces and torsion will be examined
separately on the following pages. It will generally be assumed that the idealisation
as a bar (see section 5.1.7) and the treatment according to first-order theory (see
section 6.1) are justified and that the materials exhibit linear elastic and isotropic
behaviour (see section 7.2). Both homogeneous and composite cross-sections will
be considered for bending and normal forces; thermal deformations and the effect
of bar curvature will also be addressed.

13.2 Bending and normal force

13.2.1 Stresses and strains

The cantilever beam shown in Fig. 13.2 has a normal stress component sz that is in the
same order of magnitude as the stress at the extreme fibre q; actually, sz = q applies
for z = h/2 and sz = 0 for z = –h/2. On the other hand, at the cross-section at the point
of fixity x = 0, shear stresses tzx in the order of magnitude qbl/(bh) = ql/h correspond
to the shear force

Vz w
Ð

tzx dA (13:1)

18513.2 Bending and normal force

N
TVy x

z

zM

VzyM
y

EA

N

1

ε χ

1/

M

EI h

hG

T

1/h

γ

1

V

GA

/

h

v

,ε
,

,γz

,χz

,χy

,γy

Ix /

h

Fig. 13.1 Linear elastic constitutive equations for bars

Theory of Structures. First Edition. Peter Marti
c 2013 Ernst & Sohn GmbH & Co. KG. Published 2013 by Ernst & Sohn GmbH & Co. KG.



and normal stresses sx in the order of magnitude of qbl2
/(bh2) = q(l/h)2 correspond to

the bending moment

My w
Ð

z sx dA (13:2)

As l/h is large (as supposed), the normal stresses sx exceed the shear stresses tzx (and
with general loading the shear stresses tyx , too) by one order of magnitude, and the
normal stresses sz (and with general loading the normal stresses sy and the shear
stresses tyz, too) by no less than two orders of magnitude. Therefore, in a first approxi-
mation, the stress state may be regarded as uniaxial (only sx is not equal to zero).

As compared with sx, shear stresses tyx and tzx can be ignored, then according to (7.3),
the shear strains gyx and gzx disappear as well. This means that the bar cross-sections
are approximately plane and remain perpendicular to the deformed bar axis. Con-
sidering two infinitesimally close bar cross-sections leads to the conclusion that the
strains ex are distributed linearly over the bar cross-section, i. e.

ex w eS xyzs xzy (13:3)

Using the following relationship from (7.1)

sx wE ex (13:4)

and

N w

Ð
sx dA , My w

Ð
z sx dA , Mz ws

Ð
y sx dA (13:5)

it follows that

N
My

Mz

8<
:

9=
;wE

Ð
dA

Ð
z dA s

Ð
y dAÐ

z dA
Ð

z2dA s

Ð
yz dA

s

Ð
y dA s

Ð
yz dA

Ð
y2dA

2
4

3
5 e

xy

xz

8<
:

9=
; (13:6)

We choose the axes of the cross-section y, z to be the principal axes in such a way thatÐ
y dAw

Ð
z dAw

Ð
yz dAw 0 (13:7)

Eq. (13.6) then simplifies to

N wEA e , My wEIyxy , Mz wEIzxz (13:8)

where

Aw

Ð
dA , Iy w

Ð
z2dA , Iz w

Ð
y2dA (13:9)

The equations (13.5) and (13.3) are illustrated in Fig. 13.3(a) and (b) respectively. The
integrals Sz =

R
ydA, Sy =

R
zdA in (13.6) are called first moments of area, the inte-

grals Iz =
R

y2 dA, Iy =
R

z2 dA moments of inertia (second moments of area) and the
integral Cyz = –

R
yzdA is the product of inertia (composite moment of area).

186 13 ELEMENTARY DEFORMATIONS

III LINEAR ANALYSIS OF FRAMED STRUCTURES

x

z

qb

l 2b/ 2b/

y

z

y
x

qb

2h/
2h/

qb l
+

qb l

−
2

−

yM

zV

2

Fig. 13.2 Cantilever beam with suspended load



The fundamental assumption (13.3) of Jacob BERNOULLI, i. e. that cross-sections
remain plane, is retained, for example, when dealing with reinforced concrete
cross-sections, also in non-linear stress-strain relationships sx = sx(ex). For given de-
formation variables e, xy , xz, we get the stress resultants N, My , Mz according to
(13.5) by integrating once. And vice versa, calculating the deformation variables as-
sociated with a set of stress resultants is generally an iterative procedure; starting with
an estimated set of deformation variables, it is possible to determine the associated
stress resultants and improve the result through successive corrections until the desired
accuracy is achieved.

13.2.2 Principal axes

Assuming arbitrary initial coordinates h, z according to Fig. 13.4(a), then

y
z

� �
w

cosf sinf

s sinf cosf

� �
hs hC

zs zC

� �
(13:10)

applies. Eq. (13.7)1 and (13.7)2 call for

cosf sinf

s sinf cosf

� � Ð
h dAs hCAÐ
z dAs zCA

� �
w

0
0

� �
from which we get the coordinates of the centroid C of the cross-section as follows:

hC w

Ð
h dA

A
, zC w

Ð
z dA

A
(13:11)

Using the axes hl, zl parallel with h, z and passing through C, then

Cyz ws

Ð
yz dAws

Ð
(hl cosfS zl sinf)(s hl sinfS zl cosf) dA

w sinf cosf
Ð

(hl2 s zl2) dAs ( cos2fs sin2f)
Ð

hlzl dA

w

1

2
sin(2f)(Izl s Ihl)S cos(2f)Chlzl w 0 (13:12)

applies, from which it follows that

tan (2f)w
2Chlzl

Ihl s Izl
(13:13)

We use the variables

Ihl w

Ð
zl2dA , Izl w

Ð
hl2dA , Chlzl ws

Ð
hlzl dA (13:14)

in this case.
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The transformation equation (13.12)4 for the products of inertia can be supplemented
by similar equations for the moments of inertia according to (13.9)2 and (13.9)3:

Iy

Iz

Cyz

8<
:

9=
;w

cos2f sin2f 2 sinf cosf
sin2f cos2f s 2 sinf cosf

s sinf cosf sinf cosf cos2fs sin2f

2
4

3
5 Ihl

Izl

Chlzl

8<
:

9=
; (13:15)

Eq. (13.15) and (13.13) are similar to (5.21) and (5.23). In a similar way to Fig. 5.20,
it is therefore possible to present the transformation of second moments of area with
the help of MOHR’s circles for second moments of area, see Fig. 13.4(b).

When the bending moment vector lies on a principal axis (Mz = 0 or My = 0), we speak
of pure bending, but in the general case (Mz 0 0 and My 0 0) skew bending. In the
latter case, the deflection gives rise to so-called secondary torsion because of the rela-
tive displacement of the shear forces in neighbouring cross-sections; this torsion may
need to be considered in slender beams.

Example 13.1 Unequal leg angle

The task is to determine the geometrical properties and the principal axes of the unequal leg angle
shown in Fig. 13.5(a).
First of all, we find the cross-sectional area: A = (35 + 60) ·5 = 475mm2. Eq. (13.11) supplies the
coordinates of the centroid:

hC w

20 � 4 � 5S 2.5 � 55 � 5
475

w 9.87 mm , zC w

s 2.5 � 35 � 5s 30 � 60 � 5
475

ws 19.87 mm

From (13.14) we get

Ihl w
35 � 53

12
S (19.87s 2.5)2 � 35 � 5S

5 � 603

12
S (30s 19.87)2 � 5 � 60w 173 950 mm4

Izl w
5 � 403

12
S (20s 9.87)2 � 5 � 40S

55 � 53

12
S (9.87s 2.5)2 � 55 � 5w 62 700 mm4

Chlzl ws (22.5s 9.87)(19.87s 2.5) � 35 � 5s (9.87s 2.5)(30s 19.87) � 5 � 60ws 60 789 mm4

and therefore using (13.13), we get tanf = – 0.440. Fig. 13.5(b) shows the corresponding MOHR’s
circle with the principal values

Iy, z w
173 950S 62 700

2
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
173 950s 62 700

2

	 
2

S 60 7892

s
w

200 723 mm4

35 927 mm4

� �
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13.2.3 Stress calculation

Combining (13.4) with (13.3) and (13.8) results in

sx w
N

A
S

My

Iy
zs

Mz

Iz
y (13:16)

Instead of working with N, My , Mz, it is possible (see Fig. 13.6) to apply the normal
force N at point A with the coordinates

yA w
sMz

N
, zA w

My

N
(13:17)

which is statically equivalent. Eq. (13.16) then becomes

sx w
N

A
1S

z zA

i2y
S

y yA

i2z

 !
(13:18)

where the variables

iy w

ffiffiffiffi
Iy

A

r
, iz w

ffiffiffiffi
Iz

A

r
(13:19)

denote the radii of gyration.

According to (13.18), the condition sx = 0 results in the straight-line equation
y yA

i 2
z

S

z zA

i 2
y

S 1w 0 (13:20)

for the neutral axis n-n. If we develop this along the smallest convex envelope of the
cross-section, as shown in Fig. 13.6, the coordinates of the intersections P and Q with
the principal axes y, z result in the associated coordinates

yA w

s i 2
z

yP
, zA w

s i 2
y

zQ
(13:21)

of the point of application A of normal force N. All points A determined in this way
define the extent of the so-called kern of the cross-section. If N is applied within the
kern, then sx has the same sign (tension or compression) over the entire cross-section.
The concept of the kern is particularly useful for cross-sections made from materials
that have little tensile strength (concrete, masonry) and also for foundations (partial
uplift, see example 5.1).
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Example 13.2 Rectangular cross-section – kern

The rectangular cross-section shown in Fig. 13.7 has the properties A = bh, Iy = bh3
/12, Iz = hb3

/12,
and therefore according to (13.19), iy

2 = h2
/12, iz

2 = b2
/12.

Where yP = – (b + htana)/2 and zQ = –(h + bcota)/2, it follows from (13.21) that

yA w

b2

6(bS h tan a)
, zA w

h2

6(hS b tan a)

When a = 0, this gives us the coordinates of point A1 :

yA1 w b=6 , zA1 w 0

and when a = p/2, those of point A2 :

yA2 w 0 , zA2 w h=6

When 0 I a I p/2, a can be omitted from the equations for yP and zQ:

(2yP S b)(2zQ S h)w bh

and therefore, using (13.21), we get the equation

yAb

2i 2
z
S

zAh

2i 2
y
w 1

for the straight line joining points A1 und A2. As we can see, the corners of a cross-section correspond
to a straight boundary to the kern. And vice versa, the straight edges of a cross-section correspond
to the corners of the kern.

13.2.4 Composite cross-sections

So far, we have presumed homogeneous material properties and a constant modulus of
elasticity over the bar cross-section. When it comes to composite cross-sections made
from various materials, such as the examples shown in Fig. 13.8, equations (13.6) to
(13.9) must be generalised.

Eq. (13.3) to (13.5) remain valid, but the modulus of elasticity depends on the fibres:

E wE(y, z)wE0n(y, z) (13:22)

The reference value E0 for the modulus of elasticity is generally taken to be the
modulus of elasticity of the dominant material, i. e. that of the structural steel Ea in
the case of steel-concrete composite construction, or that of the concrete Ec in re-
inforced concrete beams, for example. The modular ratio n = E/E0 enables any fibres
to be considered corresponding to their stiffness. This is achieved by replacing their
cross-sectional area dA by ndA. Instead of (13.6), we therefore get

N
My

Mz

8<
:

9=
;wE0

Ð
n dA

Ð
zn dA s

Ð
yn dAÐ

zn dA
Ð

z2n dA s

Ð
yzn dA

s

Ð
yn dA s

Ð
yzn dA

Ð
y2n dA

2
4

3
5 e

xy

xz

8<
:

9=
; (13:23)

Condition (13.7) for the principal axes y, z then becomesÐ
yn dAw

Ð
zn dAw

Ð
yzn dAw 0 (13:24)

and instead of (13.8) we get

N wE0Ai � e , My wE0Iyi � xy , Mz wE0Izi � xz (13:25)
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with the transformed section properties

Ai w
Ð

n dA , Iyi w
Ð

z2n dA , Izi w
Ð

y2n dA (13:26)

The coordinates of the centroid of the transformed section are obtained from (13.11)
by replacing dA by ndA and A by Ai . The directions of the principal axes are given by
(13.13), with dA being replaced by ndA in (13.14).

Example 13.3 Reinforced concrete slab – bending

Fig. 13.9(a) shows part of a 240mm deep reinforced concrete slab that is reinforced in the x direction
with steel reinforcing bars near the soffit at a regular spacing of 150mm. The reinforcing bars are
16mm in diameter and are positioned with a concrete cover of 20mm to the soffit of the slab. We
shall assume a modulus of elasticity Ec = 30kN/mm2 for the concrete and Es = 205kN/mm2 for
the steel reinforcement. Accordingly, the modular ratio of the reinforcing steel to the concrete is
n = 205/30 = 6.83.
The transformed cross-sectional area (per m slab width) according to (13.26)1 is Ai

I =
240 ·1000 + (1000/150) · (162 ·p/4) · (6.83 – 1) = 247819mm2

/m, i. e. about 3.3 % more than
that of the cross-sectional area of the concrete alone, Ac = 240000mm2

/m. The expression in brackets
(6.83 – 1) takes into account the stiffness of the reinforcement beyond that of the concrete, which is
already included in the product 240 ·1000.
Eq. (13.11)2, taking into account n, supplies the coordinates of the centroid
zC = [120 ·240000 + (240 – 20 – 16/2) ·7819] /247819 = 122.9mm. Eq. (13.26)2 therefore
results in Iyi

I = 2403 ·1000/12 + (122.9 – 120)2 ·240000+ (240 – 20 – 16/2 – 122.9)2 ·7819
= 1216.1 ·106 mm4

/m; this value is about 5.6 % higher than the value Iyc = 1152 ·106 mm4
/m of

the concrete cross-section on its own.
In practice, the stiffening effect of the reinforcing steel in the uncracked state (I) can usually be
ignored, i. e. as a rule we assume, for simplicity, the concrete’s cross-sectional properties instead
of the transformed section properties. However, the decrease in stiffness in the cracked state (II),
caused by the cracking of the concrete, must always be considered.
If we assume that the concrete in the cracked state (II) carries only compressive stresses (modular
ratio of concrete fibres in tension zone n = 0), then the situation illustrated in Fig. 13.9(b) ensues
when the slab is subjected to a pure bending moment about the y axis. The y axis now coincides
with the neutral axis at a distance c from the top edge of the cross-section. As the first moment
of area about the neutral axis must be equal to 0, the following applies for a rectangular cross-section:

bc2

2
w (d s c)nAs

from which it follows that

cw d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(rn)2

S 2rn

q
s rn

	 

where r = As /(bd), As denotes the cross-sectional area of the reinforcement over the width b of the
cross-section (b = 1m and As = 1340mm2 in this example), d stands for the effective depth (distance
of extreme fibre in compression from centroid of reinforcement, d = 212 mm in this example) and r

represents the geometric reinforcement ratio (r = 0.63 % in this example). In this case, c = 53.8mm,
and (13.26)2 results in Iyi

II = (53.8)3 ·1000/12 + (53.8/2)2 ·53800 + (212 – 53.8)2 · (1000/150)
· (162 ·p/4) · (205/30) = 281.1 ·106 mm4

/m; this value is only 24.4 % of Iyc or 23.1 % of Iyi
I, i. e.

cracking causes the bending stiffness to drop to less than one-quarter of the stiffness in the uncracked
state (I).
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13.2.5 Thermal deformations

A temperature gradient T = T(y, z), related to a certain basic value, e. g. the ambient
temperature or an initial temperature, prevails over a bar cross-section. Using the coef-
ficient of thermal expansion aT = aT (y, z), the result is an unhindered elongation of
the fibres of

exT waT T (13:27)

according to (7.53). However, the concept of cross-sections remaining plane calls for
(13.3) and therefore according to (13.4) and (13.22), the outcome is generally residual
stresses of

sxr wE(ex s exT )wE0n(eS xyzs xzysaT T) (13:28)

The variables e, xy, x z follow from the condition that the stress resultants (13.5) van-
ish; applying (13.26), it follows that

ew

Ð
aT Tn dA

Ai
, xy w

Ð
aT Tzn dA

Iyi
, xz ws

Ð
aT Tyn dA

Izi
(13:29)

We can deal with the effects of the shrinkage or swelling of materials in a similar way
to thermal deformations. To do this, we only have to replace aTT by the respective
load-independent strain in (13.28) and (13.29).

Example 13.4 Reinforced concrete slab – shrinkage

The concrete of the reinforced concrete slab of example 13.3 experiences the final shrinkage strain
ecs(T) = – 0.4 ‰, see (7.39) and example 7.4. As the reinforcement resists the shrinkage deformation,
the slab develops a downward curvature. And as the concrete not only shrinks over time but also
creeps, for simplicity we use an effective modulus of elasticity of the concrete Ec = 10kN/mm2 in
our calculations. Therefore, using n = 20.5, we get new values of Ai

I = 266138mm2
/m,

z C = 129.0 mm and Iyi
I = 1351.5 ·106 mm4

/m instead of the values given in example 13.3.
Eq. (13.29)1 results in e = – 0.4 ‰·(240000 – 1340) /266138 = – 0.359‰, and from (13.29)2 we
get xy = –0.4 ‰·[(120 – 129)·240000 – (212 – 129)·1340] / 1351.5·106 = 0.675mrad/m. Fig. 13.10
shows the corresponding distributions of strain and residual stress. In the reinforcing steel, the result
is a compressive stress of – 62N/mm2. The tensile stress of 1.16N/mm2 in the concrete at the under-
side of the slab is, for common concrete strengths, well below the tensile strength of the concrete.
Cracking of the concrete due to shrinkage is therefore unlikely in such conditions. If the amount
of reinforcement in the concrete were to be increased, however, cracking as a result of shrinkage alone
would have to be taken into account for a slab reinforced on one face only.
The neutral axis of the residual stresses in the concrete lies 67.8mm below the top surface of the slab.
It is easy to verify this result by considering the concrete cross-section on its own (with the principal
axis y positioned in the centre of the slab). The compressive stresses in the reinforcing steel and the
absence of tensile stresses in the concrete at the position of the reinforcement on the whole correspond
to a compressive force at a distance of zA = 92mm from the middle plane. This force must be com-
pensated for by a tensile force equal in magnitude and acting at the same depth on the concrete cross-
section alone because it is on the whole a residual stress state. Using iy

2 = (240mm)2
/12, eq. (13.20)

gives us a position of z = – 2402
/(12 ·92) = – 52.2mm for the neutral axis, i. e. the neutral axis is ac-

tually 120 – 52.2 = 67.8mm below the top surface of the slab.
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13.2.6 Planar bending of curved bars

We shall now consider a bar curved and loaded in one plane as in section 5.3.2. Fig.
13.11 shows a differential bar element with the centroid axis sC (radius of curv-
ature rC) at the level of the centroid of the cross-section C and the axis s0 (radius
of curvature r0) at the level of the neutral axis for a pure bending moment My = M.
The bar cross-section with depth h is symmetrical with respect to the plane of curv-
ature and has a width b(z) at the position z measured from s0. The material is assumed
to be homogenous, isotropic and linear elastic, with a modulus of elasticity E.

We also continue to assume that cross-sections remain plane. Therefore,

es(r0 s z) dfwDdsS z Ddf (13:30)

applies, i. e. the strains es and hence – owing to (13.4) – the stresses ss = Ees do not
exhibit a linear, but rather a hyperbolic distribution over the depth of the cross-sec-
tion h.

For the case of pure bending (N = 0), Dds disappears and according to (13.4), (13.5)1

and (13.5)2 as well as (13.30),

N wE � Ddf

df

ð
z

r0 s z
dAw 0 , M wE � Ddf

df

ð
z2

r0 s z
dA (13:31)

Substituting r = r0 – z, then (13.31)1 results in

r0

ð
dA

r
s

Ð
dAw 0

and therefore

r0 w
Að
dA

r

(13:32)

Considering the integral in (13.31)2, using (13.32) and
R

rdA = rCA gives usð
z2

r0 s z
dAw

ð
(r0 s r)2

r
dAw r2

0

A

r0
s 2r0AS rCAw (rC s r0)A

This therefore results in

ss(M)w
E z Ddf

(r0 s z) df
w

Mz

A(rC s r0)(r0 s z)

and taking into account a normal force N (related to C), then

ss w
N

A
S

MC z

A(rC s r0)(r0 s z)
(13:33)

with the bending moment MC related to C.
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For rectangular cross-sections where rC i h, eq. (13.33) supplies results that deviate
by less than 1% from those of an elastic plate calculation. On the other hand, where
rC i 10h, the difference with respect to a calculation for the straight bar is practically
negligible.

13.2.7 Practical advice

In practice, various cross-section programs and design tables are available which sim-
plify the task of calculating stresses and deformations. In particular, design tables have
been developed for structural steelwork and timber which specify the most important
cross-sectional values for frequently used sections. Similar design tables for reinforced
and prestressed concrete – for the cracked state (II) as in example 13.3, neglecting the
tensile strength of the concrete – can also prove useful.

13.3 Shear forces

13.3.1 Approximation for prismatic bars subjected to pure bending

The prismatic bar shown in Fig. 13.12(a) is subjected to pure bending about the y axis.
The width of the cross-section in the y direction is designated b = b(z), and it is as-
sumed that the shear stresses txz(zs) at section zs are uniformly distributed over the
width of the section b(zs). Equilibrium of forces in the x direction for the free body
shown in Fig. 13.12(b) calls for

s txz(zs) � b(zs) dxS
Ðzu

zs

dsx(z) � b(z) dzw 0 (13:34)

As N = Mz = 0, eq. (13.16) results in sx = My z/Iy , and as Iy = const, eq. (5.46)2, with
M = My and V = Vz, then provides

dsx

dx
w

Vz � z
Iy

(13:35)

Using the shortened form

S(zs)w
Ðzu

zs

z � b(z) dz (13:36)

for the first moment of area of the portion of the cross-section cut off at zs, combining
(13.34) and (13.35) results in

txz w
VzS

b Iy
(13:37)

where txz, b and S depend on zs as discussed above.
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Example 13.5 Rectangular cross-section – shear stress distribution

Consider the rectangular cross-section shown in Fig. 13.13, with A = bh, Iy = bh3
/12 and

S = b(h2
/4 – z2)/2. Taking into account (5.30), eq. (13.37) results in the parabolic shear stress

distribution

tzx w
Vz

bh
� 3
2
� 1s

4z2

h2

	 

over the depth of the cross-section h. The maximum shear stress tmax exceeds the mean shear
stress Vz/A by 50 %.

According to (7.3)2 and (8.67), the shear stresses txz resulting from (13.37) correspond
to the specific deformation energy

pi w
t2

xz

2G
w

V2
z S2

2Gb2I2
y

(13:38)

Integrating over a bar element results in the internal potential component

Pi(Vz)w
Ð
x

Ð
A

pi dA dxw

ð
x

V2
z

2GAv
dx (13:39)

according to (8.73), where the shortened form

Av w

ð
S2

b2I2
y

dA

" #
s1

wavA (13:40)

was used for the shear area, see (8.23).

The area shear factor av , for example, for the rectangular cross-section examined in
example 13.5, where

ð
S2

b2I2
y

dAw

ðh=2

s h=2

b2(h2=4s z2)2

b2(bh3=12)2 b dzw
6

5bh

and A = bh, turns out to be a value of av = 5/6. Appendix A4 contains the values for
other cross-sections.

Compared with the extent to which the normal stresses sx contribute to the internal
potential Pi , the contribution of the shear stresses txz is normally small and is there-
fore often ignored, i. e. the designer settles for a theory of bars rigid in shear according
to section 8.2.2 or 8.2.3. In a similar way to (13.39), the contribution of the normal
stresses sx or the bending moments My to Pi is

Pi(My)w

ð
x

ð
A

s2
x

2E
dA dx w

ð
x

ð
A

M2
y z2

2EI2
y

dA dx w

ð
x

M2
y

2EIy
dx (13:41)

Considering the example of the simply supported beam of Fig. 13.14(a) subjected to a
uniformly distributed line load q, then Vz = q(l – 2x)/2 and My = qx(l – x)/2 applies.
Taking into account (7.2), (13.19)1 and (13.40)2, using (13.39) and (13.41) results in
the relationship

Pi(Vz)

Pi(My)
w

20(1S n)

av
� iy

l

	 
2

(13:42)
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If the beam is fixed at both ends, see Fig. 13.14(b), a fixed-end moment X is super-
imposed on the moment My of the simply supported beam. Similarly to example 8.5,
the fixed-end moment can be determined with the theorem of least complementary
total potential: X = –ql2

/12. Using the modified My, the factor in (13.42), which
depends on static system and load, is 120 instead of 20; for a rectangular cross-section
with l = 20h, iy

2 = h2
/12, av = 5/6 and n = 0.2, the result is therefore

Pi (Vz) = 0.036 Pi (My), for example.

13.3.2 Approximate coplanar stress state

According to the elastic beam theory discussed in section 13.2.1, the stresses sz and
txz are negligible in comparison with sx. The beam with a narrow rectangular cross-
section loaded along its top edge, see Fig. 13.15, is considered below on the basis of
section 8.2.4. For txz, we shall assume a parabolic distribution over the depth of the
cross-section h as determined in example 13.5, i. e.

txz w tzx w
Vz

2Iy

h2

4
s z2

	 

(13:43)

Applying the equilibrium condition (8.31) and taking into account qz = 0, we get the
equation @sz /@z = –@tzx /@x and therefore, owing to (5.46)1 and sz(h/2) = 0 as well
as Iy = bh3

/12, we get

sz w q s

1

2
S

3z

2h
s

2z3

h3

	 

(13:44)

If the load q were to be applied to the bottom instead of the top edge, the term 1/2 in
the brackets on the right of (13.44) would be positive instead of negative.

Replacing the y coordinate by the z coordinate and the displacement v by w in (8.33)
and carrying out double differentiation of the strain components results in the relation-
ship

@2ex

@z2 S

@2ez

@x2 w

@2gxz

@x @z
(13:45)

Applying (5.46)1, (7.3)2 and (13.43), we get

@2gxz

@x @z
w

qbz

GIy

for the expression on the right in (13.45). Using n = 0 for POISSON’s ratio, according
to (7.1), ex = sx /E and ez = sz /E applies, and according to (7.2), G = E/2. If we also
assume that @2q/@x2 = 0, eq. (13.45) is reduced to

@2sx

@z2 w

2qbz

Iy

from which it follows that

sx w
My z

Iy
SDsx , Dsx w

q

5h3
(20z3

s 3zh2) (13:46)

The additional stresses Dsx form a residual stress state, and the following applies:Ðh=2

s h=2

Dsxb dx w
Ðh=2

s h=2

zDsxb dx w 0

The equations (13.46), (13.44) and (13.43) describe an approximate coplanar stress
state with which the stress relationships can be approximated apart from local zones
such as beam ends and force transfer points.

196 13 ELEMENTARY DEFORMATIONS

III LINEAR ANALYSIS OF FRAMED STRUCTURES



13.3.3 Thin-wall cross-sections

From the derivation of (13.37), it follows that the shear stress distribution in thin-wall
sections, e. g. those common in structural steelwork, can normally be determined in a
similar way, provided the sections are perpendicular to the parts of the cross-section.
Fig. 13.16 shows an section in which the sections transverse to the flanges and the
web lead to shear stresses tyx and tzx respectively as a result of shear force Vz. The first
moment of area S is related to the sectioned parts, where the y axis is the reference
axis.

We also notice that the shear stresses tzx determined with (13.37) are practically ir-
relevant for the flange of the section shown in Fig. 13.16. They are purely fictitious
variables that result from the simplified assumption of a shear stress distribution that is
constant over the width of the section.

Example 13.6 Wide-flange beam

The HEB 300 wide-flange beam shown in Fig. 13.17 is subjected to a shear force Vz = 200kN. The
task is to determine the shear stress distribution.
First of all, we get A = 2·19 ·300 + 11 ·262 + (4 – p) · 272 = 14908mm2 for the cross-sectional
area and Iy = (3004 – 289·2623)/12 + 4·(274

/12 + 272 ·117.52 – p · 274
/16 –p · 272 ·115.462

/4) =
251.36 ·106 mm4 for the moment of inertia.
The first moments of area for sections 1 to 3 are

S1 w 140.5 � 19 � 117.5w 313 666 mm3

S2 w 140.5 � 19 � 300S 2 � (272 � 117.5sp � 272 � 115.46=4)w 839 952 mm3

S3 w S2 S 52 � 104 � 11w 899 440 mm3

and from those we get the shear stresses

tyx1 w
200 000 � 313 666

19 � 251.36 � 106 w 13.1 N=mm2

tzx2 w
200 000 � 839 952

11 � 251.36 � 106 w 60.8 N=mm2

tzx3 w
200 000 � 899 440

11 � 251.36 � 106 w 65.1 N=mm2

Dividing the shear force by the area of the web (extending as far as the centre of each flange), we get
a good approximate value for the shear stress in the web

tzxz
200 000

281 � 11
w 64.7 N=mm2
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In asymmetric cross-sections, e. g. unequal leg angles, it is often better to work with
axes parallel with the parts of the cross-section instead of with the principal axes. For
example, considering the angle shown in Fig. 13.18 subjected to Vzl, we get

tw
Vzl(IzlShl SChlzlSzl)

t(IhlIzl sC2
hlzl)

(13:47)

This equation results when the y, z coordinates are replaced by hl, zl in (13.6), and –
applying (13.14) and (13.4) – the stresses sx as a result of Mhl , Mzl are calculated
according to (13.3):

sx wMhl

IzlzlSChlzlhl

IhlIzl sC2
hlzl

sMzl

IhlhlSChlzlzl

IhlIzl sC2
hlzl

(13:48)

As Vzl = dMhl/dx, eq. (13.47) follows from (13.34), as (13.37) did before.

Example 13.7 Unequal leg angle

The unequal leg angle already examined in example 13.1 is subjected to a shear force Vzl = 15 kN.
The task is to determine the shear stress distribution with the simplification that the thickness of the
leg is negligible in comparison with the length of the leg, i. e. the calculation is based on an section
reduced to the axes of the legs, see Fig. 13.19(a).
Using a leg thickness of 1, we first get A = 37.5 + 57.5 = 95 mm, and therefore (13.11) gives us the
centroid coordinates hC = (37.5)2

/(2 ·95) = 7.40mm and zC = – (57.5)2
/(2 ·95) = 17.40 mm.

Eq. (13.14) results in Ihl = 37.5 ·17.402 + (57.5)3
/12 + 57.5 · (57.5/2 – 17.40)2 = 34603mm3,

Izl = 57.5 ·7.402 + (37.5)3
/12 + 37.5 · (37.5/2 – 7.40)2 = 12 374mm3 and Chlzl = – 37.5 · (37.5/2

– 7.40) ·17.40 – 57.5 · (57.5/2 –17.40) ·7.40 = –12235mm3.
By applying (13.13), it follows that tanf = – 0.443, and (13.15) results in Iy = 40018mm3,
Iz = 6959mm3.
Fig. 13.19(b) shows the position of the neutral axis and the normal stresses sx as a result of Mhl. The
neutral axis passes through the centroid C and the outermost third point of the leg along the h axis.
Fig. 13.19(c) shows the corresponding shear stress distribution as a result of Vzl according to (13.47).
The positive and negative shear stresses thlx in the leg along the h axis cancel each other out,
–10.3 ·25 ·2/3 + (30.9 + 10.3) ·25/3 – 10.3 · (25 – 12.5 ·2 /3) = 0, and the shear stresses tzlx in
the leg along the z axis correspond to Vzl in total:

[71.6(32.78 � 2=3S 24.72)s (71.6s 30.9) � 24.72=3] � 5w 15 kN
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The effective leg thickness t = 5 mm is used again when calculating the shear stresses at the corner of
the cross-section according to (13.47):

tw
15 000 � [12 374 � (57.5=2s 17.4) � 57.5s 12 235 � 7.4 � 57.5]

5 � (34 603 � 12 374s 12 2352)
w 30.9 N=mm2

Owing to the parabolic distribution of thlx, the extreme negative shear stress at the outermost third
point of the leg along the h axis is one-third of the shear stress at the corner of the cross-section, i. e.
10.3N/mm2. On the other hand, the magnitude of the maximum positive shear stress in the leg along
the z axis follows from knowing the shear stress at the corner of the cross-section and the position of
the neutral axis:

30.9 � [1s (24.72=32.78)2]s1
w 71.6 N=mm2

If instead of Vzl, we were to apply a shear force Vhl, the neutral axis would pass through C and the
outermost third point of the leg along the z axis. The distribution of the shear stress would then be
similar to that given above. Superposing cases Vzl or Mhl and Vhl or Mzl therefore allows any case of
skew bending to be dealt with.

13.3.4 Shear centre

The shear stresses tyx in the singly symmetric cross-section shown in Fig. 13.20
correspond to the resulting flange forces Vf , which with a lever arm d form a couple
dVf . On the other hand, the shear stresses tzx correspond to a resulting web force
Vw = Vz. Moment equilibrium about the x axis calls for Vz to be applied at the shear
centre M at a distance of

aw
d Vf

Vw
(13:49)

from the web resultant Vw .
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The stress distribution assumed in beam theory is only possible when the shear force
acts at the shear centre, i. e. the shear centre M and not the centroid C of a cross-sec-
tion is the force application point for bending without rotation. On the other hand, M is
also the fulcrum for rotation without bending, see section 13.4.4.

For general cross-sections, M can be obtained from the intersection of the lines of ac-
tion of the resultants of the shear stresses for bending about the two principal axes y
and z. With singly symmetric cross-sections, it is sufficient to consider bending about
the axis of symmetry, as shown above.

Where a cross-section consists of a number of straight legs which, like with an angle,
all meet at one point, then the shear centre is at this point. There is no warping in such
cross-sections; they are said to be free from warping, see Fig. 13.21.

13.4 Torsion

13.4.1 Circular cross-sections

It is possible to solve a pure torsion problem exactly in the case of circular and annular
cross-sections made from homogeneous and isotropic linear elastic materials with
(at least segment by segment) constant radii and torques. With the specific rotation
or twist £ = dfx/dx according to (8.27) and tfx = Ggfx according to (7.3), the follow-
ing applies:

gfx w r
dfx

dx
w r4w

tfx

G
(13:50)

see Fig. 13.22. It therefore follows that

T w

Ð
A

tfxr 2dr dfwG2p4
Ðre

ri

r 3dr wGIp4 (13:51)

with the polar moment of inertia

Ip w
p

2
(r 4

e s r 4
i ) (13:52)

Further, from (13.50)3 and (13.51)3 it follows that

tfx w
Tr

Ip
(13:53)

The similarity with how the bending moments contribute to sx in (13.16) is obvious
here.

The polar moment of inertia is only equal to the torsion constant Ix in the case of cir-
cular and annular cross-sections, see (8.28). Values of Ix for other cross-sections can be
found in sections 13.4.2 and 13.4.3 as well as appendix A4.

If T, G or re, ri change abruptly, the result is concentrations of stress at the points of
abrupt change which have to be investigated separately. The above equations can be
used to obtain approximate answers when variations in the torques, material properties
and cross-section radii are only small in comparison with the length of the bar.
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13.4.2 General cross-sections

Fig. 13.23(a) shows the cross-section through a solid prismatic bar that is subjected to
a pure torque T. We shall continue to assume that the cross-section rotates through
an angle of fx about the x axis, but also allows a displacement or a warping u(y, z)
independent of x in the x direction. The displacements v, w in cross-sectional plane
y, z are

vws z fx , ww y fx (13:54)

Using £ = dfx/dx, the kinematic relations (6.22) result in

ex w ey w ez w gyz w gzy w 0 , gxy w gyx w
@u

@y
s z 4 , gxz w gzx w

@u

@z
S y 4

(13:55)

and therefore, according to (7.3), the following applies to the only two stress compo-
nents not equal to zero:

txy wG
@u

@y
s z 4

� �
, txz wG

@u

@z
S y 4

� �
(13:56)

Differentiating the first (second) of these relationships with respect to z (y) and sub-
tracting results in the compatibility condition

@txy

@z
s

@txz

@y
ws 2G4 (13:57)

On the edge of the cross-section, the shear stress vector consisting of the tyx, tzx com-
ponents must be parallel with the edge. With the ny , nz components of the unit vec-
tor n perpendicular to the edge, the following applies:

txyny S txznz w 0 (13:58)

From the equilibrium conditions (5.29), it follows that

@txy

@y
S

@txz

@z
w 0 ,

@txy

@x
w

@txz

@x
w 0 (13:59)

Combining (13.59)2 and (13.59)3 with (13.57), it must be that £ = const.

Introducing the stress function F(y, z) with

txy w
@F

@z
, s txz w

@F

@y
(13:60)

means that (13.59)1 is satisfied, and (13.57) gives us POISSON’s differential equation

DFw

@2F

@y2 S

@2F

@z2 ws 2G4w const (13:61)

Finally, by substituting (13.60) in the boundary condition (13.58), we realise that the
gradient vector rF of the stress function is proportional to the vector perpendicular to
the edge n. Therefore, F remains constant along the perimeter and we can set the
constant to zero without compromising the generality, see Fig. 13.23(b).
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If, for a given cross-sectional form, we find a solution to differential equation (13.61)
which satisfies the boundary condition F = 0, the shear stress components txy , txz

follow from (13.60) and the warping function u follows from (13.56). According
to Fig. 13.23(c), the torque is

T w

Ð
(tzxys tyxz) dAws

ð
@F

@y
yS

@F

@z
z

� �
dA

where dA = dydz. Integrating by parts and considering the condition F = 0 at the edge
of the cross-section gives us

ð
@F

@y
y dAw

ðZ2

Z1

ðy2(z)

y1(z)

@F

@y
y dy

0
B@

1
CAdzws

ÐZ2

Z1

(
Ðy2(z)

y1(z)

F dyÞdzws

Ð
F dA

and

ð
@F

@z
z dAw

ðY2

Y1

ðz2(y)

z1(y)

@F

@z
z dz

0
B@

1
CAdyws

ÐY2

Y1

(
Ðz2(y)

z1(y)

F dzÞdyws

Ð
F dA

and therefore

T w 2
Ð

F dA (13:62)

According to (13.62), the torque is equal to double the volume that ensues when
we apply the stress function F as a curved surface over the cross-section, see
Fig. 13.23(b). The contour lines F = const of the F surface parallel with the plane
of the cross-section are tangential to the shear stress vector t at every point y, z be-
cause according to (13.60), the scalar product of t and the gradient vector rF orthog-
onal to the contour lines disappears.

Every (closed) contour line F = const corresponds to a circumferential shear flow.
The way of carrying torques shown here is therefore called pure torsion (in order
to distinguish it from the warping torsion discussed in section 13.4.4). Where the con-
tour lines are closer together, e. g. at re-entrant corners of the cross-section, the shear
stresses due to pure torsion take on high values corresponding to the large gradient of
F, see (13.60).

Example 13.8 Elliptical bar

The function

Fw c 1s
y2

a2 s

z2

b2

� �
satisfies the boundary condition F = 0 for the elliptical cross-section shown in Fig. 13.24(a), with
semi-axes a and b. The constant c results from substituting in (13.61):

cw
G4a2b2

a2
S b2

and (13.60) gives us the shear stress components

txy ws

2G4a2z

a2
S b2

, txz w
2G4b2y

a2
S b2

Eq. (13.56) results in

@u

@y
w4z

b2
s a2

a2
S b2

,
@u

@z
w4y

b2
s a2

a2
S b2

and therefore

uw
b2

s a2

a2
S b2

4yz

The warping surface is a hyperbolic paraboloid, see Fig. 13.24(b). When b = a, i. e. the cross-section
is circular, the warping is equal to zero.
Using (13.9), eq. (13.62) initially results in

T w

2G4a2b2

a2
S b2

As

Iz

a2 s

Iy

b2

� �

202 13 ELEMENTARY DEFORMATIONS

III LINEAR ANALYSIS OF FRAMED STRUCTURES



and therefore as A = pab, Iy = pab3
/4, Iz = pba3

/4, then

T wGIx4 , Ix w
p a3b3

a2
S b2

As we can see, the torsion constant Ix for a 0 b is smaller than the polar moment of inertia Ip = Iy + Iz

because (a2 – b2)2
i 0.

Differential equation (13.61) is similar to the differential equation

Duw
@2u

@y2 S

@2u

@z2 ws

p

n
w const (13:63)

for a membrane with a constant tensile force per unit length n subjected to a small
overpressure p, where u is the (small) displacement of the membrane perpendicular
to the yz plane. Replacing N by n and –qn by p in the hoop stress formula (5.52)
and considering the two directions y and z, we first get

n

ry
S

n

rz
w p

The curvatures xy = 1/ry and x z = 1/rz are found in a similar way to (8.46):

xy ws

@2u

@y2
, xz ws

@2u

@z2

from which (13.63) follows.

The torsion problem can therefore be handled according to PRANDTL’s membrane
analogy (soap film analogy) by considering a membrane that spans across an opening
matching the cross-section of the bar in torsion.

Example 13.9 Narrow rectangular cross-section

The narrow rectangular cross-section shown in Fig. 13.25 has a width a that far exceeds its thick-
ness b (a ii b). The membrane analogy shows that apart from small areas at both ends of the
cross-section, we can expect a curvature purely in the z direction.
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The function

uw
p

2n

b2

4
s z2

	 

satisfies (13.63). Double the volume spanned by the membrane amounts to

2
Ð

u dAw

pb2

4n
� 2
3
� abw

pab3

6n

and according to (13.62), this is proportional to T. The membrane slope, which according to (13.60)1

is proportional to tyx , is

@u

@z
ws

pz

n

and therefore it follows that

tyx ws

pz

n
� 6nT

pab3 ws

6Tz

ab3

Further, Du = –p/n is proportional to – 2G£ according to (13.61), and from that we get

4w

p

2Gn
� 6nT

pab3 w

3T

Gab3

and thus a torsion constant of

Ix w
ab3

3

Where a thin-wall cross-section is made up of several narrow rectangles, its torsional
stiffness can obviously be approximated with good accuracy by adding together the
torsional stiffnesses of the individual cross-sections, i. e.

GIx w

X
i

Giaib3
i

3
(ai � bi) (13:64)

13.4.3 Thin-wall hollow cross-sections

Simply-connected cross-sections with a single boundary curve have been dealt with in
section 13.4.2. It was found that the stress function F along the boundary curve has to
be constant and the constant was set to zero.

In the case of a multiply-connected cross-section, i. e. one with one or more openings,
if on the outer edge F = 0, then various constants F1, F2, etc. result at the edges of the
openings. The F surface then contains horizontal segments at the corresponding levels
in the opening areas.

The situation shown in Fig. 13.26(a) results with a thin-wall hollow cross-section. The
shear stresses t as a result of a torque may be assumed to be distributed uniformly over
the thickness of the wall t and in the direction of the centre-line of the wall (indicated
by the chain-dot line). Instead of (13.60), we get t = F1/t, or

Sw t t w const (13:65)
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where S = F1, the shear flow. Using the surface A0 enclosed by the centre-line of the
wall of the cross-section, (13.62) results in BREDT’s 1st equation:

T w 2A0S (13:66)

This result is also obtained from the integral

T w

Þ
rS dsw 2A0S

over the closed path along the perimeter of A0 according to Fig. 13.26(b).

The rotation fx gives us the displacement v = rfx at s in the s direction. Together with
the displacement u in the x direction, using (6.22) and considering dfx /dx = £, we
get the shear strain

gxs w
@u

@s
S r4

The contribution of the first term disappears in the integralÞ
gxs dsw

þ
@u

@s
S r4

	 

dsw 2A04 (13:67)

Putting gxs = txs /G according to (7.3) and txs = T/(2A0t) according to (13.65) and
(13.66), the result is therefore

T wGIx4 , Ix w
4A2

0þ
ds

t

(13:68)

Eq. (13.68)2 is known as BREDT’s 2nd equation.

Example 13.10 Reinforced concrete box girder

The task is to determine the torsion constant and the warping function u(y, z) for the reinforced
concrete box girder shown in Fig. 13.27.
Putting A0 = 4.8 ·2.1 = 10.08m2, then according to Fig. 13.27(b), eq. (13.68)2 results in

Ix w
4 � 10.082

2 � 4.8

0.3
S

2.1

0.4

	 

w 9.563 m4

Using (13.56)1, with y = 2.4m, z = 1.05m and tf = 0.3m, then initially

tyx

G
ws

Ix4

2A0tf
ws 1.581 m � 4

and consequently the following for the bottom flange of the box girder:

@u

@y
w (s 1.581 mS 1.05 m) � 4ws 0.531 m � 4

Using u(0,1.05) = 0 therefore results in a warping of – 0.531 ·2.4 = –1.275m2 ·£ at cross-section
corner (2.4, 1.05).
Similarly, (13.56)2, with tw = 0.4m, initially results in

tzx

G
w

Ix4

2A0tw
w 1.186 m � 4

and consequently the following for the left-hand web of the box girder

@u

@x
w (1.186 ms 2.4 m) � 4ws 1.214 m � 4

which with u(2.4, 0) = 0 again leads to a warping of –1.214 ·1.05 = –1.275m2 ·£ at the corner of the
cross-section.
Fig. 13.27(c) illustrates the warping function. We simply change the sign in the above calculations in
order to obtain the figures for the top flange and the right-hand web.
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Example 13.11 Twin-cell box girder

The box girder of example 13.10 is strengthened on one side with a further cell, see Fig. 13.28(a).
How does this affect the torsion constant?
Different shear flows S1 = F1 and S2 = F2 ensue in the two cells. This gives rise to a shear flow
S1 – S2 in the central web, in the direction shown in Fig. 13.28(b). Formulating (13.67) for each
of the two cells results in

S1
2 � 4.8

0.3
S

2.1

0.4

	 

S S1 s S2ð Þ 2.1

0.4
w 2G � 4.8 m � 2.1 m � 4

S2
2 � 2.8

0.3
S

2.1

0.4

	 

s S1 s S2ð Þ 2.1

0.4
w 2G � 2.8 m � 2.1 m � 4

from which it follows that S1 = 0.536m2G£, S2 = 0.500m2G£. Consequently,

T w 2(0.536 � 4.8 � 2.1S 0.500 � 2.8 � 2.1) m4G4wGIx4

i. e. Ix = 16.684m4. This value is only 0.16 % larger than the torsion constant

Ix w
4 � 7.6 � 2.1ð Þ2

2 � 7.6

0.3
S

2.1

0.4

	 

w 16.658 m4

of a box girder widened by a similar amount but without a central web.
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To conclude this section on thin-wall hollow cross-sections, we need to look at a
special instance that is particularly interesting in terms of construction technology.
Triangular cross-sections, as shown in Fig. 13.29, are stable forms in themselves;
they require no transverse bracing, plates or frames in order to maintain their
cross-sectional form.

The in-plane forces Vi must be proportional to the lengths of the sides ai so that
equilibrium of forces prevails in the section, i. e.

Vi w Sai (13:69)

where S = const = shear flow. With distances bi to the fulcrum D and a rotation fx,
the plates displace by bi fx. This leads to shear strains gi = bi dfx /dx which must
be equal to ti /G = S/(tiG). Therefore, it follows that

biti w const (13:70)

and hence the position of D is found.

The resulting torque is

T w

P3
iw1

biVi w
P3
iw1

biaititi w4G
P3
iw1

aib2
i ti wGIx4 (13:71)

For a triangular cross-section made up of three identical plates, where ai = a = const
and ti = t = const, the result is, for example, bi = b = a

ffiffiffi
3
p

/6 and Ix = a3t/4.

13.4.4 Warping torsion

13.4.4.1 Rotation of an beam

If an section is rotated by an amount fx as shown in Fig. 13.30(a), its two flanges
are displaced by v = efx d/2 in the y direction, which causes flange bending
moments Mf = –EIf d2v/dx2 (about the z axis) and corresponding flange shear
forces Vf = dMf /dx (in the y direction). A very good approximation is to take the
bending stiffness of the flange EIf to be equal to half the bending stiffness EIz of
the section. Therefore,

Vf ws

EIzd

4
� d3fx

dx3

and the warping torsional moment

Tw ws

EIzd2

4
� d3f

dx3 wsEIv
d3f

dx3
(13:72)

corresponds to the couple Vf d. In addition, the pure torsional moment

Ts wGIx
dfx

dx
(13:73)

acts with the pure torsional stiffness GIx determined according to (13.64). Where
T = Tw + Ts and mx = –dT/dx, according to (8.30), the outcome is the differential
equation

GIx �
d2fx

dx2 sEIv �
d4fx

dx4 Smx w 0 (13:74)

with the general solution

fx w c1 S c2x S c3 cosh (lx)S c4 sinh (lx)Sfpart (13:75)

where

l2
w

GIx

EIv
(13:76)

It should be noted that the stress distributions (apart from T ) shown in Fig. 13.30(b)
correspond to a residual stress state; N = My = Mz = Vy = Vz = 0 applies.
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Example 13.12 Twisted beam – concentrated load

An beam of length l is loaded at its centre by a couple Qd, see Fig. 13.31. The support at each end of
the beam corresponds to a fork support, i. e. the flanges are restrained in the y direction, but the cross-
section can warp without restraint in the x direction.
For reasons of symmetry, we can confine our investigation to one half of the beam (0 J x J l/2). Neither
rotations nor flange bending moments can occur at the end of the beam, i. e. fx = d2fx /dx2 = 0 applies
when x = l/2. At point x = 0, symmetry demands that dfx /dx = 0, and T = Tw + Ts = –Qd/2 applies
for every point x, where Tw and Ts are in accord with (13.72) and (13.74) respectively. These conditions
lead to c2 = –Qd/(2GIx), c1 = –c2l/2, c3 = (c2/l) tanh(ll/2), c4 = –c2/l and

Tw ws

Qd

2
�

cosh l
l

2
s x

	 
� �

cosh l
l

2

	 

see Fig. 13.31. In the middle of the beam, T is fully resisted by Tw, and depending on the magnitude of
l, a certain pure torsional moment Ts develops between here and the end of the beam.
If we ignore, for example, the roundings at the web-flange transitions of the rolled HEB 300 section
examined in example 13.6 (Fig. 13.17), which are the outcome of the manufacturing process and
reduce the shear stresses due to pure torsion, then the result is Iz = 85.529 ·106 mm4, and using
(13.64), then Ix = 1.488 ·106 mm4. Where n = 0.3 and d = 281mm and we consider (7.2), then
(13.76) results in l2 = 0.3390m–2. With a beam length l = 3m, we thus get a warping torsion com-
ponent of Tw/T = 1/cosh(ll/2) = 71.1 % at the end of the beam; with l = 6m this is still 33.8 %.
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Example 13.13 Twisted beam – distributed load

If instead of a couple in the middle of the beam we apply a line load moment mx uniformly distributed
over the length of the beam of example 13.12 (see Fig. 13.32), the only condition that changes is
Tw + Ts = –xmx . We get

fx w
mx

GIx
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s 1

	 

� ls2
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l 2
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13.4.4.2 Bending and rotation of sections

The section already examined in section 13.3.4 will be analysed in more depth
below.

Under bending My about the y axis, the section shown in simplified form in
Fig. 13.33(a) exhibits the distribution of normal stresses sx shown in Fig. 13.33(b),
provided the associated shear force Vz passes through the shear centre M. At cross-
section corner 2 the first moment of area S = bcd/2, i. e. the maximum shear stress
occurring in the flange is tyx,max = Vzbd/(2Iy) according to (13.37).

Consequently, Vf = Vz b2cd/(4Iy), and (13.49) results in

aw
b2c d2

4Iy
(13:77)

where Iy = d3e/12 + bcd 2
/2.

When a section is subjected to a pure torque T, its flanges experience shear
forces Vf = T/d and associated bending moments Mf (about the z axis). If we imagine
the section separated along edges 2 and 3, Mf in the flanges at 1 and 2 as well as 3 and
4 give rise to longitudinal stresses sx = E6Mf/(b

2c).

In order to attain compatibility between the unstressed web and the two flanges, edge
forces eF acting on the web are introduced at 2 and 3, which act in the opposite
direction on the adjoining flange. This results in the boundary stresses
sx2w = –sx3w = 6F/(de) in the web and boundary stresses sx2f = –sx3f = – 4F/(bc)
and sx1f = –sx4f = 2F/(bc) in the flanges. Compatibility at 2 or 3 requires
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and therefore

F w

3Mf de

3b2cS 2bde

The boundary stresses are
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With a flange curvature of
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the result is
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and therefore owing to Vf = dMf /dx and Tw = Vf d,
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which is similar to (13.72).

The displacements v, w of the flange and the web in the y or z direction result from the
rotation fx about the shear centre M at a distance a from the web on the y axis:
v = edfx /2, w = –afx. However, these displacements are also proportional to the
corresponding curvatures; we get

v

w
w
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b
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de
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ws

d

2a

for corner 2 of the cross-section, which confirms (13.77). The shear centre M is there-
fore not only the point of application of the shear force for bending without rotation,
but also the fulcrum for rotation without bending. This reciprocity can be easily veri-
fied with MAXWELL’s theorem (8.88) by applying a unit shear force through the
shear centre or a unit torque; the associated rotation or the associated displacement
of the shear centre are identical and both disappear.

The normal and shear stresses caused by Tw are shown in Fig. 13.33(c). Again,
N = My = Mz = Vy = Vz = 0. We should also note that the zero points of the stresses sx

(and hence the maxima of stresses tyx, too) in both flanges are at the same distance a
from the web as the shear centre M.

13.4.4.3 General thin-wall cross-sections

Fig. 13.34(a) shows a general thin-wall cross-section with centroid C, principal axes
y, z and shear centre M. The position along the centre-line of the cross-section and the
thickness of the cross-section are denoted with s and t(s) respectively. The following
applies for the distances r and r0 from the centroid or the shear centre respectively to
the tangent to the centre-line of the cross-section at s:

r0 w rS yM sinaS zM cosa (13:79)

The shear strain gxs = @u/@s + r£ was used in deriving equation (13.67) for thin-wall
hollow cross-sections. Here, r is replaced by r0, and it is assumed that gxs is equal to
zero, i. e.

duws

r0 dfx

dx
dsws r04 ds
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see Fig. 13.34(b). Therefore,

uws4
Ðs
0

r0 dsS f (x) (13:80)

applies. Using (13.79), dy = dscosa and dz = –dssina, we obtain the expression
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for the integral in (13.80), the warping with respect to M, i. e. with the warping
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with respect to C
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The normal strains
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where here and from now on a superscript dash ( l ) indicates differentiation with
respect to x.

The unknowns f, yM, zM follow from the residual stress condition N = My = Mz = 0:
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Owing to

Aw
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0

t ds

the first of these equations together with (13.84) leads to
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where vn designates the unit warping with respect to M. Owing toÐb
0
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the second and third equations are simplified to
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The warping shear stresses txs = tsx correspond to the warping stresses sx according
to (13.85). Equilibrium of forces in the x direction for the free body shown in Fig.
13.34(c) calls for

txs � t(s) dsS
Ðs
0

dsxt dsw 0

Using (13.85) and the shortened form

Sv(s)w
Ðs
0

vnt ds (13:87)

this leads to

txs ws

E Sv(s)

t(s)
4L (13:88)

The warping torsional moment

Tw wsE4L
Ðb
0

r0Sv ds

results from the shear flow tsx t = –ESv£L. According to (13.81) and (13.85),
r0 = –dvn /ds. Further, according to (13.87), dSv /ds = vn t. Integration by parts of
the equation for Tw thus results in

Tw wE4L vnSv

���b
0
s

Ðb
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v2
nt ds

	 

The first term in the brackets disappears because Sv(0) = Sv(b) = 0. What remains is

Tw wsE4L
Ðb
0

v2
nt dswsEIv4L (13:89)

where Iv is the warping constant.

By introducing the bimoment

Mv wEIv4l (13:90)

eq. (13.89) then results in

Tw wsMvl (13:91)

and using (13.85) and (13.88), we get the equations

sw w

Mvvn

Iv
, tw w

TwSv

t Iv
(13:92)

which are similar to (13.16) and (13.37).
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Example 13.14 Reinforced concrete beam

The reinforced concrete beam shown in section in Fig. 13.35(a) has a span of l = 30m and
like the beam examined in example 13.13 is subjected to a constant line load moment
mx = 4.8m·20kN/m = 96 kNm/m. The lower ends of web plates 1 and 3 are restrained in the z dir-
ection at the ends of the beam. We shall not look at the loads and support force variables in the x and
y directions here, nor the static indeterminacy as a result of the redundant fourth support in the z dir-
ection. Furthermore, we shall work with the concrete cross-sectional values only and assume that
E = 30kN/mm2 and n = 0.2, i. e. G = 12.5kN/mm2, see (7.2).
Fig. 13.35(b) shows the position of centroid C and shear centre M with a = 0.9 m according to
(13.77). Instead of continuing directly with (13.78) and the corresponding equations for the boundary
stresses in the plates etc. for sections, we shall in this case use the equations derived above for gen-
eral thin-wall cross-sections.
Eq. (13.82) initially results in the v distribution shown in Fig. 13.35(c). Eq. (13.86)2 gives us
Ivy = 16.5888m5, and using Iz = 11.0592m4, it follows from (13.86)1 that zM = –1.5m, which means
that v0 is determined according to (13.83). Eq. (13.85) provides vn and thus Sv is given according to
(13.87). Finally, we apply (13.89) to obtain the warping constant Iv = 6.9673m6; eq. (13.78) can be
used to reach the same figure.
Fig. 13.35(e) shows the diagrams of the functions fx , T = Ts + Tw and Mv for the beam half of
Fig. 13.35(d), which result from example 13.13. Apart from the variables E, G, Iv , l and mx already
given, we also use Ix = (2 ·2.4 + 4.8)(0.3)3

/3 = 0.0864m4 according to (13.64) here. Eq. (13.76)
leads to l–1 = 13.912m. We get
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for the rotation at x = 0 and
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for the warping torsional moment at x = l/2. Finally, the result for the bimoment at mid-span is
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Using the values given here, we apply (13.92) to obtain the warping stresses at mid-span, see Fig.
13.35(f), and the warping shear stresses at the end of the beam x = l /2, see Fig. 13.35(g). The rota-
tion fx(0) results in deflections of plates 2 and 3 at mid-span amounting to E3.3 ·2.4 = E7.9mm.
Fig. 13.35(h) shows free body diagrams for the beam half resolved into its individual plates. Accord-
ing to example 13.9, boundary shear stresses at the inner edge of the cross-section (z = b/2) amount-
ing to

3 � 0.382

(2.4S 4.8S 2.4) � 0.32 w 1.326 N=mm2

and hence according to (5.16)3 twisting moments of

1326 � (0.3)2

6
w 19.9 kNm=m

which, as discussed in section 8.26, Fig. 8.8(c), can be replaced by statically equivalent corner forces
of 2 ·19.9 = 39.8kN, correspond to the pure torsional moment Ts = –1440 + 1058 = – 382kNm at the
end of the beam.
From Tw we get shear forces in plates 1 and 3 amounting to 1058/4.8 = 220.4kN at the end of the
beam. The positive and negative shear flows in slab 2 cancel each other out, see Fig. 13.35(g).
The warping stresses illustrated in Fig. 13.35(f) lead to tensile and compressive forces at x = 0
amounting to 2.25 ·0.3 ·0.9 /2 = 0.304MN and 3.75 ·0.3 ·1.5 /2 = 0.844MN in webs 1 and 3 as
well as 2.25 ·0.3 ·2.4/2 = 0.810MN in slab 2.
Longitudinal shear forces s(x), shear forces q(x) and transverse bending moments r(x) are transferred
between the webs and the slab.
The longitudinal shear forces s progress proportional to Tw , i. e. proportional to sinh(lx). Their
integral between x = 0 and x = 15m is 540kN. This, together with forces of 304kN or 844kN, leads
to equilibrium of forces in the x direction in webs 1 and 3. In slab 2, we also get equilibrium of mo-
ments about the z axis together with the forces of 810kN plus equilibrium of forces in the x direction.
The shear forces q progress proportional to Twl, i. e. proportional to cosh(lx). Their integral is
220.4 kN and their centroid of forces occurs at x = 8.15m. This leads to equilibrium of forces in
the z direction in webs 1 and 3 as well as equilibrium of moments about the y axis.
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The transverse bending moments r add up to 2.4 ·39.8 = 95.5kNm, i. e. webs 1 and 3 are in equilib-
rium with respect to moments about the x axis. In slab 2, the transverse bending moments r corres-
pond to shear forces vy = r/(2.4m) and moments my = vy ·y, see Fig. 13.35(i); this slab loadbearing
effect leads to part (39.8kN in total) of the line loads of 15 ·20 = 300kN applied to both edges of the
slab being placed directly in equilibrium.
The transverse end frame is stressed according to Fig. 13.35(j). Corner moments amounting to
2.4 ·39.8 = 95.5kNm ensue. Fig. 13.36 shows one possible constructional configuration for the trans-
verse end frame.

Up until now we have only considered non-branched cross-sectional forms. If branch-
ings are present, e. g. due to cantilevers, flanges or other attached cross-sectional parts,
the considerations hitherto can be easily generalised, see Fig. 13.37. In the example,
the section on the left is modified by cantilevering slabs to form the section on the
right. Both centroid C and shear centre M shift somewhat closer to the web. The
v diagram of the section is drawn in a similar way to the section by continuing
the drawing at the branching points accordingly for the cantilevers. The diagrams for
v0, vn and Sv can then be drawn without difficulty. The Sv diagram shows us the mag-
nitudes and directions of the shear flows that guarantee Vy = Vz = 0.

21513.4 Torsion

0.3
0.3

1.95

1.95 1.95 0.30.3

B

B

A

A

0.30.3

B B−A A−

0.6

Fig. 13.36 Transverse end frame (dimensions in m)



13.5 Summary

1. The relationships between the stress resultants and the corresponding deformation
variables of framed structures, already introduced in chapter 8, have been ex-
plored in detail. In doing so, it was assumed that the material behaviour is linear
elastic and isotropic, and that first-order theory applies.

2. As an approximation, a uniaxial stress state plus bar cross-sections that remain
plane and perpendicular to the deformed bar axis may be assumed for bars sub-
jected to bending and normal force.

3. A cross-section generally has two principal axes at right-angles to each other
which pass through the centroid of the section and have associated maximum
or minimum moments of inertia. In the case of pure bending, the bending moment
vector lies on a principal axis and the bar bends perpendicular to the direction of
the bending moment vector. In the case of skew bending, the bending moment
vector does not lie on a principal axis and the bar does not bend perpendicular
to the direction of the bending moment vector. The principal moments of inertia
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coincide for regular polygonal and circular cross-sections and every axis passing
through the centroid is a principal axis.

4. The transformation of moments and products of inertia can be displayed graphic-
ally with the help of MOHR’s circles in a similar way to stress and strain trans-
formations.

5. When calculating the stresses for bending and normal forces, it is often expedient
to assume an eccentric normal force statically equivalent to the stress resultants. If
this force acts within the kern of the cross-section, the neutral axis of the normal
stresses lies outside the cross-section, otherwise the neutral axis intersects the
cross-section.

6. We use transformed section properties when composite cross-sections are in-
volved, which means the area elements are multiplied by the associated modular
ratios n (stiffnesses related to the basic material).

7. Deformations caused by temperature, shrinkage and swelling can be dealt with
in a consistent way by considering the respective load-independent strains. In
general, residual stress states over the cross-section are the result.

8. A number of computer programs and design tables are available for calculating
the stresses and deformations of bar cross-sections subjected to bending and nor-
mal forces.

9. We can use (13.37) to approximate the shear stress distribution caused by shear
forces in prismatic bars subjected to pure bending. The area shear factor av = Av /A
must be taken into account when calculating the shear stiffness GAv (see appen-
dix A4).

10. It is also possible to use (13.37) for calculating shear stresses due to shear forces
in thin-wall sections provided the corresponding sections are perpendicular to the
segments of the cross-section. In the case of asymmetric cross-sections, it is often
better to work with axes parallel with the segments of the cross-section instead of
the principal axes, and to use (13.47).

11. The normal stress distribution and deformation assumed for normal bending
theory can only occur when the resulting shear force passes through the shear
centre M of the cross-section. This is not only the point of application of the shear
force for bending without rotation, but also the fulcrum for rotation without bend-
ing. The shear centre M can generally be obtained from the intersection of the
resultants of the shear stresses for bending about the two principal axes.

12. The combined effect of pure torsion and warping torsion according to (13.74)
must normally be considered when investigating torsion problems.

13. Pure torsion can generally be dealt with by using (13.61), with the associated
shear stresses being obtained from (13.60). The stress function F can be dis-
played graphically with the help of the membrane analogy. This is done by con-
sidering an opening corresponding to the perimeter of the bar section with a mem-
brane spanned across the opening with a small overpressure.

14. Eq. (13.64) results in a good approximation of the pure torsional stiffness of
cross-sections that are made up of several narrow rectangles. BREDT’s 2nd equa-
tion (13.68)2 plays a similar role for thin-wall hollow cross-sections.

15. Box girders made up of three plates are stable in themselves. Their torsional stiff-
ness is obtained from (13.71).

16. The rotation of sections leads to flange bending moments and corresponding
flange shear forces which correspond to a warping torsional moment. The rotation
of sections leads to similar, easily acquired relationships, although owing to the
rotation about the shear centre lying outside the web, the web is bent as well as the
two flanges. For general thin-wall cross-sections, we determine the shear centre
(13.86) first of all, starting with the centroid and the principal axes and by intro-
ducing the warping (13.82), and then use (13.83) to obtain the unit warping
(13.85) and the corresponding first (13.87) and second (13.89) moments. The
warping stresses sw and the warping shear stresses tw then result – according
to (13.92) – in a similar way to normal bending problems.
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13.6 Exercises

13.1 Determine the centroid, principal axes y, z, principal moments of inertia Iy , Iz

and kern of the cross-section shown in Fig. 13.38(a) (dimensions in mm).
13.2 The section shown in Fig. 13.38(b) (dimensions in mm) is used as a cantilever

beam and loaded by the transverse force shown (components in kN). Determine
the centroid, principal axes, principal moments of inertia and shear centre of the
cross-section. Also determine the neutral axis for the normal stresses and the
shear stress distribution over the cross-section.

13.3 Using a yield limit of fy = 235N/mm2, calculate the bending moment Mh

that leads to the onset of yielding of the idealised cross-section shown in
Fig. 13.38(c), which initially has no residual stresses.

13.4 Fig. 13.38(d) shows an section (dimensions in mm) which initially has no re-
sidual stresses and is loaded by N = – 2MN, V = 0.75MN and M = 0.75MNm.
Calculate the stresses at A, B and C, and illustrate the corresponding stress states
using MOHR’s circles (Iy = 1327 ·106 mm4). When N, V and M are increased
beyond the given values in proportion to each other, where is the yield limit
reached and with which stress resultant (N, V, M )? Presume the VON MISES
yield condition according to Fig. 7.8(c), with fy = 235N/mm2

13.5 A 4m long steel beam (E = 210kN/mm2, n = 0.3) with the square hollow cross-
section shown in Fig. 13.38(e) (dimensions in mm) is subjected to a line load
moment mx = 40kNm/m constant over the length of the beam. Determine the
rotation fx(x). The transfer of the torques at the ends of the beam is via thin
transverse end plates and does not need to be investigated further.
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13.6 The bottom flange of the section shown in Fig. 13.38(e) is sawn through in the
y = 0 plane. Determine the shear centre as well as the values of vn , Sv , Iv and Ix.

13.7 Solve exercise 13.5 using the section of exercise 13.6. The transfer of the
torques at the ends of the beam is similar to example 13.14 (via transverse
end plates) and does not need to be investigated further.

13.8 The square frame ABCD in the XY plane shown in Fig. 13.38(f) is loaded
by opposing forces of 240kN applied at the corners and perpendicular to the
plane of the frame. The frame is made up of four identical square hollow
sections with a wall thickness of 6mm and external dimensions of 106mm
(E = 210kN/mm2, n = 0.3), which are welded together at the corners. Deter-
mine the positions, directions and magnitudes of the maximum principal
stresses.

13.9 Show that the stress function
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fulfils the boundary condition F = 0 for a rectangular cross-section (side
lengths a and b in y and z directions, a j b) and leads to
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Determine an expression for the warping u as well.
13.10 Show that the (unrestrained) warping of the rectangular hollow section of

Fig. 13.38(g) is given by

uw
Tyz

2Gab

1

ad
s

1

bc

	 

for pairs of identical sidewalls, and thus verify Fig. 13.27(c).
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14 SINGLE DEFORMATIONS

14.1 General

General work-associated force and deformation variables were first discussed in sec-
tion 8.2.1. In this chapter, the aim is to determine single external deformation variables
u, r according to Fig. 8.3 and 8.4, especially displacements and rotations due to loads,
thermal actions and other load-independent causes. In doing so, it will be assumed that
first-order theory applies, see section 6.1.

The principle of virtual forces for determining external deformation variables for
known stress resultants was used in example 8.2. This procedure is generalised and
systematised below with the development and application of the work theorem.

Examples 8.8 and 8.9 were used to explain the application of ENGESSER’s theorem
for calculating external deformation variables. However, compared with the principle
of virtual forces, the range of applications for ENGESSER’s theorem is very limited.
Actually, the latter is based on considering the active work of the force variables, the
former, however, on the passive work of virtual force variables. Using ENGESSER’s
theorem, it is only possible to determine displacements or rotations acting in the same
direction at the positions of single forces or single moments. If no force variable is
present at a point of interest, a fictitious auxiliary force variable must be introduced
which is set to zero after performing the differentiation (8.83) – a quite laborious pro-
cess that is little suited to practical building applications. And the method cannot be
used at all for thermal actions, shrinkage processes and other load-independent causes
of deformations. For these reasons, the application of ENGESSER’s theorem will not
be pursued further.

The calculation of single deformations is vital in practical building situations, espe-
cially when considering serviceability limit states according to section 4.4, verifying
serviceability according to (4.8), calculating prior deformations such as beam camber
or presets for bearings and generally checking conditions during construction. Another
important area of application is the so-called observation method, one possible
method during the design, execution and use of structures when the basic design
information is not sufficiently reliable, e. g. regarding the behaviour of the subsoil.
In such cases, certain accepted risks are defined, the (deformation) behaviour is pre-
dicted and corresponding limit values plus all the associated monitoring and safety
measures are specified. Finally, understanding the deformation behaviour for dealing
with statically indeterminate systems is crucial; the equilibrium conditions must be
supplemented by deformation conditions when analysing such systems.
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14.2 The work theorem

14.2.1 Introductory example

The simply supported beam shown in Fig. 14.1(a) is loaded by the uniformly distrib-
uted line load q = const. Neither the beam’s bending stiffness EI nor its shear stiff-
ness GAv are dependent on x. We require the deflection at mid-span wm .

According to (8.23), the shear forces V = –qx and the bending moments M = q(l2 – 4x2)/8
correspond to shear strains g = V/(GAv) and curvatures x = M/(EI ) respectively. To-
gether with the deflections w, these strain variables characterise the deformation state
(compatibility set of deformation variables) present in this situation.

In order to calculate wm by applying (8.64), we now introduce the virtual force state
(equilibrium set of force variables) illustrated in Fig. 14.1(b), with the single force
Q1 = 1 at the position and in the direction of wm . Using the corresponding stress re-
sultants V1 and M1, (8.64) is therefore

1 � wm s

ðl=2

s l=2

V1
V

GAv
SM1

M

EI

	 

dx w 0 (14:1)

Owing to the symmetry with respect to x = 0, this leads to
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4
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� ql 2

8EI
1s
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l 2

	 
� �
dxw
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S

5ql 4

384EI
(14:2)

Taking into account (7.2), (13.19)1 and (13.40)2 results in

wmV

wmM
w

96(1S n)i 2

5avl 2
(14:3)

for the ratio between the two terms wmV and wmM on the right in (14.2). Eq. (14.3) is a
similar expression to (13.42). Taking a rather stocky rectangular cross-section with
l = 8h, av = 5/6 and n = 0.2, the result is wmV /wmM = 3.6 %, for example. As a
rule, the amounts that the shear forces contribute to the deflections can obviously
be ignored when compared with the contributions of the bending moments.

Eq. (14.1) assumes non-yielding supports. If, for example, one of the two supports
in Fig. 14.1(a) were to be a translational spring according to Fig. 5.10(a), with
a spring stiffness kz, the deflection at this position in the deformation state would
be wA = ql/(2kz), see (5.12)2. The support force acting in the opposite direction
at this position in the force state, a value of 1/2, would do the passive work
(–1/2) ·wA on wA, and wm would be increased by wA/2 = ql/(4kz) compared with
(14.2). Similarly, rotational springs or applied (imposed) support displacements or
rotations can be taken into account by including the corresponding types of displace-
ment.
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14.2.2 General formulation

Let us consider an arbitrary, compatible state of deformation for a spatial framed struc-
ture, which we shall denote with the index j. In order to calculate the single deform-
ation dij occurring at a certain position and in a certain direction i due to this deform-
ation state, we shall introduce a force state, which we shall designate with the index i
and which is characterised by a single force variable of magnitude 1 at the position and
in the direction of dij . Apart from the loads and the elastic deformations caused by such
loads, we shall also consider thermal actions and support displacements. Using (8.28)
and (7.53), eq. (8.64) results in

1 � dij S
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ð
Ni

Nj
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SVyi

Vyj

GAvy
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�
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h

	 

SMzi
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EIz
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DTy

b

	 
�
dx

(14:4)

where Ci is a support force variable for the force state i, cj is the corresponding (spring
elastic or imposed) support displacement variable for the deformation state j. T is the
uniform temperature change and DTz or DTy is the temperature difference over the
depth of the cross-section h or the width of the cross-section b respectively (varying
linearly with z or y respectively).

Shrinkage or swelling deformations can be dealt with by adding suitable terms to
(14.4) in a similar way to thermal deformations. Creep deformations can be taken
into account by increasing the terms for Nj, Mxj , Myj , Mzj by the factor (1 + f),
with the creep coefficient f according to (7.42).

When applying (14.4) in practical situations, some of the terms can be omitted in most
cases, and others may often be neglected for an approximate result. The sum on the left
in (14.4) is to be applied over all the support force variables concerned and the integral
on the right in (14.4) over the entire system or subsystem being examined.

The stress resultants corresponding to the force state i are often indicated with a
horizontal line over the variable (e. g. M), which renders the index i superfluous.
This form of notation is used in examples 22.6 and 22.9 and also in Fig. 22.30.

14.2.3 Calculating the passive work integrals

The integrands on the right in (14.4) are each products of two functions which essen-
tially progress arbitrarily and can also exhibit discontinuities. An analytic integration
is only possible in exceptional cases. Integration tables, e. g. Fig. 14.2, are extremely
useful for bar stiffnesses constant segment by segment. The values in the tables cor-
respond to certain integrals (over length l ) of the products of the functions shown;
note that all parabolas are quadratic parabolas with the vertex in the middle or at
one end of distance l.

Numerical integration methods can generally be used, e. g. the trapezoidal rule (n odd
or even)Ð

l

y dx w
D

2
(y0 S 2y1 S ...S 2yns 1 S yn) (14:5)

or SIMPSON’s rule (n even)Ð
l

y dx w
D

3
(y0 S 4y1 S 2y2 S 4y3 S 2y4 S ...S 4yns 1 S yn) (14:6)

where D = l/n.

22314.2 The work theorem



Eq. (14.5) and (14.6) can be derived using theory of structures methods provided – in
line with Fig. 14.3 – we interpret the given function y(x) at the equidistant support
points m with their support values ym as a line load and replace it by the statically
equivalent joint forces Km .

The moment equilibrium conditions about m or m–1 result in the joint forces

Kr
ms1 w

D

6
(2yms1 S ym) , Kl

m w

D

6
(yms1 S 2ym)
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equivalent to the trapezium area (m–1, m, B, A) and, similarly, moment equilibrium
conditions about m+1 or m result in the joint forces

Kr
m w

D

6
(2ym S ymS1) , Kl

mS1 w
D

6
(ym S 2ymS1)

equivalent to the trapezium area (m, m + 1, C, B). Generally, the result for internal
points is

Km w

D

6
(yms1 S 4ym S ymS1) (14:7)

and for start and end points

K0 w
D

6
(2y0 S y1) , Kn w

D

6
(yns1 S 2yn) (14:8)

Summating the joint forces K0 to Kn according to (14.7) and (14.8) leads to (14.5).

If the shape of the function between the support points is approximated as a quadratic
parabola, then according to Fig. 14.3, the following applies:

4f w ym s

yms1 S ymS1

2
The two small segments in Fig. 14.3 between the parabola and the trapezium have the
area

2

3
f Dw

D

12
(s yms1 S 2ym s ymS1)

Adding this expression to (14.7) leads to the parabolic rule

Km w

D

12
(yms1 S 10ym S ymS1) (14:9)

and adding the corresponding half expressions to (14.8) results in the associated equa-
tions for the start and end points:

K0 w
D

24
(7y0 S 6y1 s y2) , Kn w

D

24
(s yns2 S 6yns1 S 7yn) (14:10)

When m = 1 and n = 2, adding together the expressions on the right in (14.9) and
(14.10) gives us

D

3
(y0 S 4y1 S y2)

If the distance 2D considered up to now is extended by further such distances, the
result is (14.6).

Example 14.1 SIMPSON’s rule

When n = 2, the integral

Ðp=2
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0
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can be approximated according to SIMPSON’s rule (14.6) with
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i. e. a value that is 4.7 % too high. Putting n = 4 gives us the approximation
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i. e. a value that deviates by only 0.23 % from the exact value of 1/2.
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14.2.4 Systematic procedure

The following steps are necessary if we are to apply the work theorem (14.4):

1. Determine the stress resultants (Nj , Vyj , Vzj , Mxj , Myj , Mzj), the support displace-
ments (cj) and the thermal deformations (aTT, aTDTz/h, aTDTy/b) of the deform-
ation state j.

2. Choose a suitable force state i, characterised by a single force variable with mag-
nitude 1 applied at the position and in the direction of the deformation variable dij

required.
3. Determine the stress resultants (Ni, Vyi, Vzi, Mxi, Myi , Mzi) and the support force

variables (Ci) of the force state i.
4. Set up and evaluate the work theorem (14.4) with the help of integration tables

(e. g. Fig. 14.2) or numerical integration (e. g. SIMPSON’s rule).

Clearly, potential simplifications as a result of terms that can be omitted or neglected
should always be carried out at the start, in step 1. The force state i to be selected in
step 2 is suitable when it leads to the simplest calculation for dij; in particular, it is
important to avoid the occurrence of support displacement variables cj corresponding
to the support force variables Ci which do not disappear or are unknown.

14.3 Applications

Example 14.2 Beam with one degree of static indeterminacy

Fig. 14.4(a) shows the beam with one degree of static indeterminacy already examined in example 8.5
(Fig. 8.13), which is subjected to a line load q uniformly distributed over length l. The deflection at
mid-span wm will be determined below. The only stress resultants are bending moments My = M and
shear forces Vz = V. We shall neglect shear force deformations and so the only term that remains on
the right in (14.4) is the one containing the bending moments My .
Fig. 14.4(b) shows a first force state with the force Q1 = 1 at the position and in the direction of wm . In
the deformation state, displacement variables equal to zero correspond to the moment – l /2 and the
vertical force of magnitude 1 occurring due to the fixity; there is neither a rotation nor a vertical dis-
placement at A in Fig. 14.4(a). By resolving M into trapezoidal (negative) and parabolic (positive)
components over length l /2, using (14.4) and the integration table of Fig. 14.2 results in
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The force state illustrated in Fig. 14.4(c) is also expedient. In a similar way to the above, we get

1 � wm w

ðl
0

M12
M

EI
dxw

l

4
� l

EI
� 5

12

ql 2

8
s

1

4
� ql 2

8

	 

w

ql 4

192EI

On the other hand, the force state shown in Fig. 14.4(d) is unhelpful. In order to be able to use this
state, the rotation in the deformation state of Fig. 14.4(a) corresponding to the fixity moment – l /2 at
B would have to be known. The reader may like to show that this rotation is equal to ql3

/(48EI ).
Eq. (14.4) is therefore
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from which it again follows that wm = ql 4
/(192EI ).

The remarkable thing in this example is that the deformation state refers to a statically indeterminate
system, whereas all three of the force states considered assume statically determinate systems. If we
were to introduce a sliding support at B in Fig. 14.4(b) and fixity at A in Fig. 14.4(c), the result would
be the same system with one degree of static indeterminacy as that shown in Fig. 14.4(a). Restraint
moments X(1 – x/l ) according to Fig. 8.13(b) would be superimposed on the moments M11 and M12

(with positive or negative X ); where M = –ql2
/8 + 5qlx/8 – qx2

/2, it is easy to see that their con-
tribution to the passive work integral becomes zero:
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Calculating wm with the help of the work theorem therefore remains unchanged; the restraint moment
has no influence on wm , i. e. it is possible to assume any statically determinate system when choosing
the force state.

The disappearance of the passive work contribution of a restraint state can generally be
obtained directly from the work equation (8.15) or (8.20) without further calculation.
As the restraint state is free from loads, We equals zero and therefore Wi disappears on
its own. When calculating single deformations in statically indeterminate systems with
the help of the work theorem (14.4), we can therefore assume a force state i for any
statically determinate basic system. This result is known as the reduction theorem.

Example 14.3 Hinged girder

The task is to calculate the rotation fG at hinge G for the hinged girder shown in Fig. 14.5(a), rigid in
shear and with constant bending stiffness EI.
The only stress resultant relevant is the bending moment My = M. Using the force state illustrated in
Fig. 14.5(b), we get the corresponding bending moment diagram M1, and the support displacement
variables cj of the deformation state corresponding to the support force variables Ci of the force state
disappear. Using Fig. 14.2, eq. (14.4) therefore results in
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Example 14.4 Cantilever beam

The cranked cantilever beam shown in Fig. 14.6(a) is subjected to a temperature difference
DT = Tu – To = 2Tu along AB. The average temperature change disappears, T = (Tu + To)/2 = 0.
The task is to calculate the deflection wC at C.
Using the force state illustrated in Fig. 14.6(b), eq. (14.4) then results in

1 � wC w

ð
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Example 14.5 Cranked cantilever beam

The task is to calculate the rotation fB about the bar axis AB at B for the cranked cantilever beam
shown in Fig. 14.7(a). The torsional stiffness GIx of bar AB is constant.
Using the stress resultants of the deformation state of Fig. 14.7(b) and the force state of Fig. 14.7(c),
eq. (14.4) then results in

1 � fB w 1 � Qa

GIx
� l , fB w

Qal

GIx
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Example 14.6 Plane truss

The temperature of bar DE in the statically determinate truss of Fig. 14.8(a) is raised by an amount T.
The task is to calculate the associated deflection wB.
Using one of the methods of calculation outlined in section 11.3, we can obtain a compressive force of
magnitude 1 in bar DE for the force state of Fig. 14.8(b). Eq. (14.4) therefore results in

1 � wB ws 1 � aT T � 2l , wB ws 2aT T l

Example 14.7 Rectangular cross-section – area shear factor

The task is to use the work theorem to calculate the area shear factor av for the rectangular cross-
section of example 13.5.
Fig. 14.9(a) shows the section through the bar and Fig. 14.9(b) illustrates the deformation state. We
shall consider a bar element of length dx which undergoes a mean shear strain g according to (8.23).
Using (7.3)2, the shear strains gzx result from the distribution of the shear stresses tzx determined in
example 13.5:

gzx w
tzx

G
w

Vz

Gbh

3

2
s

6z2

h2

	 

Selecting the force state illustrated in Fig. 14.9(c) gives us the similar shear stress distribution

t1 w
1

bh

3

2
s

6z2

h2

	 

and (14.4) results in

1 � g dx w
Ðh=2

s h=2

t1 � g b dx dzw

ðh=2

s h=2

Vz

G(bh)2

3

2
s

6z2

h2

	 
2

b dx dzw
Vz

Gbh
dx � 6

5

from which it follows that

gw
Vz

G � 5

6
bh

	 

w

Vz

GAv

i. e. as A = bh and Av = av A, then av = 5/6, see section 13.3.1 and appendix A4.
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Example 14.8 Thin-wall hollow cross-section

The task is to use the work theorem to derive BREDT’s 2nd equation (13.68)2 for thin-wall hollow
cross-sections.
Let us consider a bar segment of length dx with the cross-section shown in Fig. 14.10. According
to (13.65), (13.66) and (7.3), the deformation state is characterised by the shear strains
gsx = g = T/(2A0Gt). Eq. (13.65) and (13.66) result in the shear stresses t1 = 1/(2A0t) for the force
state with a torque T1 = 1. Consequently, according to (14.4), with the rotational increment dfx

over element length dx, the following applies:

1 � dfx w
Þ

t1 � g dx � t dsw
T dx

Þ
(ds=t)

4A2
0G

w

T dx

GIx

from which, with £ = dfx /dx, the relationship (13.68)2 follows.

Calculating single deformations using the work theorem is referred to again in differ-
ent ways in the following chapters. Further examples are therefore unnecessary at this
point.

14.4 MAXWELL’s theorem

MAXWELL’s theorem (8.88) regarding the reciprocity of displacements or the sym-
metry of the flexibility matrix for linear elastic systems was derived in section 8.4.3
and illustrated in Fig. 8.16(a). Fig. 14.11 contains a similar illustration for a simply
supported beam; the notation of the work theorem (14.4) is used here. In Fig.
14.11(a), dji is the displacement occurring at the position and in the direction of
Qj = 1 as a result of Qi = 1. And vice versa, dij in Fig. 14.11(b) is the displacement
occurring at the position and in the direction of Qi = 1 as a result of Qj = 1. Obviously,
the interchangeability of deformation and force states according to (14.4) means that

dij w dji (14:11)

Fig. 14.12 is another illustration of MAXWELL’s theorem; here, however, there is a
rotation at point j and, accordingly, a moment Mj = 1 is considered as a force variable.
The rotation dji in Fig. 14.12(a) is negative and has the dimension 1/N because Qi is
dimensionless. And vice versa, the displacement dij in Fig. 14.12(b) has the dimension
m/(Nm) = 1/N because Mj is dimensionless, and dij is negative as well.
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14.5 Summary

1. External deformation variables can be calculated using the principle of virtual
forces or ENGESSER’s theorem. Compared with the principle of virtual forces,
however, the range of applications for ENGESSER’s theorem is very limited. In
practice, therefore, the work theorem, which is based on the principle of virtual
forces, is used almost exclusively.

2. The work theorem in its general formulation (14.4) permits the calculation of
single deformations in any linear elastic framed structure according to first-order
theory, taking into account loads, restraints and thermal, shrinkage, swelling or
creep deformations. When we use the work theorem, it is usually possible to
omit some of the terms given in (14.4), and others may often be neglected
when an approximation is adequate.

3. In straightforward cases, the passive work integrals in the work theorem can be
integrated analytically or with the help of integration tables, e. g. Fig. 14.2.
Numerical integration methods should generally be used, e. g. SIMPSON’s rule.

4. Restraint states in conjunction with compatible states of deformation result in zero
passive work. Therefore, when calculating single deformations in statically inde-
terminate systems with the work theorem, the force state for any statically deter-
minate basic system can be assumed (reduction theorem).

5. MAXWELL’s theorem (dij = dji) follows from the work theorem (14.4) because
of the interchangeability of deformation and force states.

14.6 Exercises

14.1 Consider the quarter-circle beam examined in exercise 5.7 and calculate the ro-
tations about the radial axis at the torsional fixity and about the bar axis at the
opposite end of the beam. Presume constant bending stiffness EI and torsional
stiffness GIx, and ignore the shear force deformations.

14.2 Calculate the displacement of sliding support 3 due to QX in the system of
exercise 10.1. Presume a constant axial stiffness EA for all bars.

14.3 Calculate the horizontal displacement of sliding support 4 for the system of
exercise 11.1. Only take into account bending deformations and assume
EI = 400MNm2 = const.

14.4 Bar 123 of the system of exercise 14.3 experiences a temperature difference
DTz/h = 20hC/m. Calculate the corresponding rotation at hinge 1 and the dis-
placement of sliding support 4 assuming a coefficient of thermal expansion
aT = 10–5

/hC.
14.5 Select appropriate steel sections for the bar forces calculated in exercise 11.2 and

calculate the corresponding vertical displacement of the ridge hinge.
14.6 Calculate the relative displacement of the tops of the 8m high vertical columns

associated with the task of exercise 14.5.
14.7 Calculate the deflection of point D in exercise 13.8 when points A, B and C are

restrained in the XY plane.
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15 DEFORMATION DIAGRAMS

15.1 General

Every point on a bar axis generally undergoes certain displacements as a consequence
of loads or restraints. The bar axis moves to a new, deformed position. Deformation
diagrams describe the shape of the function of the displacement components along the
bar axis (related to local coordinates). Deformation diagrams for the displacement
components perpendicular to the bar axis are commonly called deflection curves.

Deformation diagrams can be approximated point by point with the help of the work
theorem (section 14.2). But to determine the exact shape, it is necessary to integrate
the corresponding differential equations that link the given loads with the deform-
ations required. To do this, it is possible to rely on the analogy of the relationships,
which are obtained from the link between the kinematic relations (8.27) and the con-
stitutive equations (8.28), with the differential equations (8.26) for the equilibrium,
and to apply normal theory of structures methods (MOHR’s analogy).

15.2 Differential equations for straight bar elements

15.2.1 In-plane loading

The relationship (5.57) for the radius of curvature r of a planar curve was used in
example 5.6 without any further explanation. In preparation for the following obser-
vations, we shall consider an element of length

dsw r da (15:1)

of a bar axis deformed in the xz plane with the radius of curvature r, see Fig. 15.1(a).
There is a deflection w = w(x) in the z direction and so

tanawwl , tan(as da)wwlSwLdx

applies, where a superscript dash ( l ) denotes differentiation with respect to x. There-
fore,

tan(da)w
swLdx

1Swl(wlSwLdx)

from which, with the passage to the limit dx p 0, we get

da

dx
w

swL

1S (wl)2 (15:2)

Using

dsw dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1S (wl)2

q
(15:3)

eq. (15.1) and (15.2) give us the relationship for the curvature

xy w xw
1

r
w

swL

[1S (wl)2]3=2
(15:4)

which is similar to (5.57), and because wl II 1 may be approximated by

xwswL (15:5)

see (8.24) and (8.29).
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A negative (positive) second derivative wL corresponds to a local downward (upward)
convex deflection curve and hence a positive (negative) bending moment My = M.
Fig. 15.1(b) shows a (positively) curved bar element of length 1 caused by a bending
moment M, plus the associated variation of the normal strains ex over the depth of the
element, see (13.3).
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Assuming that my = 0, combining (8.21) or (8.25), (8.22) or (8.24) and (8.23) results
in

(EA ul)lws qx , (EIwL)Lw qz (15:6)

These relationships are valid for all static systems made up of straight bar elements,
see chapter 9. The structural topography is taken into account here by way of bound-
ary and continuity conditions at the ends of the elements (i. e. the joints of the struc-
tural model); one or two conditions have to be specified for u or w respectively for
each end of the bar, see Fig. 15.2. We can see that

N wEA ul , M wsEIwL , V ws (EIwL)l (15:7)

A square bracket indicates an abrupt change in the corresponding function, e. g.
u] = ur – ul .

15.2.2 General loading

In the case of general loading, we add the index y to I in (15.6)2 (Iy). In addition to
(15.6), combining (8.26) to (8.28) gives us the two similar differential equations

(GIx4)lwsmx , (EIzvL)Lw qy (15:8)

where mz = 0 is presumed. The integration methods outlined in section 15.3 for planar
problems can be transferred to the situation of spatial problems without any difficulty,
at least for straight bar elements.

15.2.3 The effect of shear forces

Eliminating f from (8.22) gives us

wLws xS gl

i. e. considering (8.23),

wLws

M

EI
S

V

GAv

	 

l

(15:9)

where according to (8.21),

MLws qz smyl , V wMlSmy (15:10)

Compared with (15.7)2, wL is increased by [V/(GAv)]l according to (15.9). Owing to
the equilibrium conditions (15.10), eq. (15.9) is generally integrated only numerically
instead of analytically.

15.2.4 Creep, shrinkage and thermal deformations

Creep deformations can be considered in simplified form according to (7.48) by re-
placing the modulus of elasticity E by

Ea w
E

1Sf
(15:11)

with the creep coefficient f.

Shrinkage and thermal deformations can be considered as initial strains in accordance
with (8.19). Taking the corresponding axial strains es or eT and the curvatures xs or xT,
we get

N wEaA(uls es s eT ) , M wEaI(swLs xs s xT ) (15:12)

instead of (15.7)1 and (15.7)2.

15.2.5 Curved bar axes

Bars with curved axes (possibly curved in three dimensions and possibly with twisted
principal axes) are generally approximated by polygons made up of straight bar elem-
ents. Consequently, the decoupled differential equations (15.6) and (15.8) apply to
each bar element, and the coupling of the state variables (stress resultants, displace-
ments and rotations) at the ends of the element must be taken into account.
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Otherwise, the result is sets of simultaneous differential equations that normally can
only be solved numerically.

15.3 Integration methods

15.3.1 Analytical integration

In the following we shall confine ourselves to stiffnesses that are constant for each bar.

Example 15.1 Simply supported beam

According to (15.6)2, the differential equation

EIwLLw q (15:13)

applies to the simply supported beam shown in Fig. 15.3, which is subjected to a uniformly distributed
line load qz = q = const and has EIy = EI = const. This has the general solution

wwwpart S c1x3
S c2x2

S c3xS c4 (15:14)

The particular solution

wpart w
qx4

24EI

satisfies (15.13). The boundary conditions

w(0)wwL(0)ww(l )wwL(l )w 0

according to Fig. 15.2 lead to

c1 ws

ql

12EI
, c2 w 0 , c3 w

ql 3

24EI
, c4 w 0

and thus to

ww

q

24EI
(x4

s 2lx3
S l 3x)

where

w max ww
l

2

	 

w

5ql 4

384EI

Example 15.2 Beam fixed at both ends

If the ends of the beam are fixed instead of simply supported as shown in example 15.1, and if the
origin of the system of coordinates is placed in the centre of the beam, see Fig. 15.4, then the particular
solution

wpart w
qx4

24EI

continues to apply, and owing to the symmetry of system and load, c1 = c3 = 0.
The boundary conditions

w
l

2

	 

wwl

l

2

	 

w 0

according to Fig. 15.2 lead to

c2 ws

ql 2

48EI
, c4 w

ql 4

384EI

and therefore

ww

q

384EI
(16x4

s 8l 2x2
S l 4)

where

w max ww 0ð Þw
ql 4

384EI

Using (15.7)2, it also follows that

M w

ql 2

24
1s

12x2

l 2

	 

As can be seen, in principle there is no difference between the way we treat this system with three
degrees of static indeterminacy and the statically determinate system of example 15.1.
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Example 15.3 Beam with one degree of static indeterminacy

The beam with one degree of static indeterminacy shown in Fig. 15.5(a) is loaded by a point load Q

only. Eq. (15.14) has to be formulated separately for each of the two parts of the beam to the left and
right of the point of load application. As q = 0, then wpart = 0, and consequently

ww c1x3
S c2x2

S c3xS c4 (s aJ xJ 0)

ww c5x3
S c6x2

S c7xS c8 (0J xJ ls a)

In order to determine the eight coefficients c1 to c8, we have the boundary conditions

w s að Þwwl s að Þww(ls a)wwL(ls a)w 0

and the continuity conditions

EI � wlll(0)]wQ , wL(0)]wwl(0)]ww(0)]w 0

according to Fig. 15.2. We get

c1 ws

Q

12EI
(2s 3a2

Sa3) , c5 w
Qa2

12EI
(3sa)

c2 ws

Qla2

4EI
(3s 4aSa2) w c6

c3 w
Ql 2a2

4EI
(2s 6aS 5a2

sa3)w c7

c4 w
Ql 3a3

12EI
(4s 9aS 6a2

sa3)w c8

where a = a/l.

For example, with a = 1/2, the result is

c1 ws

11Q

96EI
, c2 w c6 ws

5Q

64EI
, c3 w c7 w

Ql 2

128EI
, c4 w c8 w

7Ql 3

768EI
, c5 w

5Q

96EI

Fig. 15.5(b) shows the corresponding state variables.
In the event of discontinuities in EI, we could proceed in a similar way, i. e. by integrating (15.6)2 at
intervals and taking into account the corresponding boundary and continuity conditions.

23715.3 Integration methods

a

Q

= α l l a−

Q

/l 2 /l 2

16
Q5

−

−
+

16
Q11

+
−16

Q3
−

l

32
Q5 l

Q7 l
EI768

3

V

M

w

V

M

w

w=  − EI

w=  − EI

+
−

+

−

(a) (b)

x
z

Fig. 15.5 Beam with one degree of static indeterminacy subjected to a point load Q: (a) general case,

(b) a = 1/2



15.3.2 MOHR’s analogy

The differential equations (8.25)

Nlws qx , MLws qz (15:15)

and the differential equations

ulw
N

EA
, wLws

M

EI
(15:16)

resulting from combining (8.23) and (8.24) have similar forms. Deformation vari-
ables u and w can thus be calculated from –N/(EA) or M/(EI ) with the same theory
of structures methods as for calculating stress resultants N and M from line loads qx

and qz. To do this, the real system is transformed into a conjugate system loaded by the
conjugate loads

q*
x ws

N

EA
, q*

z w
M

EI
(15:17)

The conjugate stress resultants N *, V * and M * resulting from this are equal to the
deformation variables u, wl = – f and w.

At the transition from the real to the conjugate system, it is important to consider the
rules for the transformation of the boundary and continuity conditions summarised
in Fig. 15.6. The notation of Fig. 5.10 and (5.12) applies here for the supports
with translational and rotational springs.
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Example 15.4 Beam with spring restraint

The beam with length l shown in Fig. 15.7(a) is restrained by a spring at its left-hand end A and
subjected to a line load qx = const. Using the notation of Fig. 5.10 and equation (5.12), the support
force is Ax = –qxl and the normal force N decreases linearly from qxl to zero between A and B.
In the conjugate system, Fig. 15.7(b), a force of magnitude qxl/kx has to be imposed in the negative
x direction at A according to Fig. 15.6 and the sliding support at B must be replaced by a hinged
support. In addition, the (triangularly distributed) load qx

* must be applied according to (15.17)1.
We therefore get the shape for N * = u shown in the bottom part of Fig. 15.7(b).

Example 15.5 Cantilever beam

Fig. 15.8(a) shows a cantilever beam of length l loaded by a point load Q at its unsupported end plus
the associated bending moment diagram.
In the conjugate system, Fig. 15.8(b), the roles of the fixed and free ends are reversed, see Fig. 15.6.
According to (15.17)2, the load qz

* (triangularly distributed, acting in the negative z direction) gives
rise to the bending moment diagram M* = w shown in the bottom part of Fig. 15.8(b).
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Example 15.6 Beam with one degree of static indeterminacy

Fig. 15.9(a) again shows the beam with one degree of static indeterminacy already dealt with in ex-
ample 8.5 (Fig. 8.13) and in example 14.2 (Fig. 14.4) subjected to a load qz = q = const, plus the
associated bending moment distribution

M w

ql 2

8
s 1S 5

x

l
s 4

x2

l 2

	 

The conjugate system, Fig. 15.9(b), has a free end at A and a hinged support at B according to
Fig. 15.6, i. e. is kinematically unstable.
However, the conjugate load qz

* forms an equilibrium system together with the conjugate support
force B*. Double integration of qz

* between the limits 0 and x leads to

M*
w

ql 4

48EI
3

x2

l 2 s 5
x3

l 3 S 2
x4

l 4

	 

ww

where wmax = ql4
/(184.6EI ) at position x = 0.5785l. Further, we can confirm the value wm = ql 4

/

(192EI ) found in example 14.2 for x = l/2.

Example 15.7 Hinged girder

The hinged girder shown in Fig. 15.10(a) has support forces of 360, 1430 and 1180kN at points 1, 7
and 13 respectively, see Fig. 15.10(b). With a spacing of D = 6 m, according to (14.7) and (14.8),
we first get the joint forces K and from them the shear forces V and finally the moments M by using
the support forces, see Fig. 15.10(b) and Tab. 15.1.
For the conjugate system, Fig. 15.10(c), we use (14.9) and (14.10) to get the joint forces K * as a result
of qz

* according to (15.17)2, see Fig. 15.10(d) and Tab. 15.1. In order to be able to take into account
the (small) influence of the shear force on the deformations, the differences Dg between the mean
shear strains g = V/(GAv) to the left and right of each joint are added to these joint forces according
to (15.9). Using the final joint forces K *, we get the variables V * and M * = w by taking into account
the conjugate support forces.
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Tab. 15.1 Calculations for the hinged girder of Fig. 15.10.

i K V M qz
* K *(qz

*) V/(GAv Dg K * V * M * = w

(360) (13.80)

1 90 0 0 0.95 – 0.27 0.68 0

270 0.27 13.12

2 180 1620 0.810 4.59 0.18 4.77 78.7

90 0.09 8.35

3 180 2160 1.080 6.21 0.18 6.39 128.8

– 90 – 0.09 1.96

4 180 1620 0.810 4.59 0.18 4.77 140.6

– 270 – 0.27 – 2.81

5 180 0 0 0.95 – 0.61 – 0.04 0.29 123.8

– 450 – 0.23 – 12.36

6 180 – 2700 – 0.675 – 4.19 0.09 – 4.10 49.6

– 630 – 0.32 – 8.27

7 180 – 6480 – 1.620 – 3.85 – 3.86 – 0.63 – 8.34 0

620 0.31 0.07

8 180 – 2760 – 0.690 – 4.28 0.09 – 4.19 0.4

440 0.22 4.26

9 180 – 120 – 0.03 /– 0.06 – 0.68 0.74 – 0.04 0.01 26.0

260 0.26 4.24

10 180 1440 0.720 4.05 0.18 4.23 51.4

80 0.08 0.01

11 480 1920 0.960 2.78 1.82 0.48 5.07 51.5

– 400 – 0.40 – 5.06

12 180 – 480 – 0.240 – 1.71 0.18 – 1.53 21.2

– 580 – 0.58 – 3.53

13 180 – 3960 – 1.980 – 4.07 – 4.55 – 1.00 – 9.61 0

420 0.42 6.08

14 180 – 1440 – 0.720 – 4.59 0.18 – 4.41 36.5

240 0.24 10.49

15 240 0 0 0.24 – 0.35 99.5

(0) (10.84)

kN kN kNm mrad/m ‰ ‰ ‰ ‰ ‰ mm



15.4 Summary

1. Deformation diagrams describe the shape of the function of the displacement
components along the bar axis related to local coordinates.

2. Deformation diagrams can be approximated by calculating single deformations
with the help of the work theorem.

3. The exact shapes of the deformation diagrams for straight bar elements result
from the integration of differential equations (15.6) and (15.8) while taking
into account the boundary and continuity conditions summarised in Fig. 15.2.

4. The influence of shear force deformations can be taken into account by increasing
the second derivatives of the deflections according to (15.9) by the derivatives of
the mean shear strains.

5. Shrinkage and thermal deformations can be considered as initial strains, creep
deformations by using a modulus of elasticity modified according to (15.11).

6. In contrast to straight bar elements, coupled sets of differential equations ensue
when curved bar axes are involved. Instead of having to solve these, it is best to
approximate the bar axis with straight elements; in doing so, the coupling of the
state variables at the ends of the elements must be taken into account.

7. Instead of integrating the differential equations for the deformation diagrams
analytically, MOHR’s analogy allows normal theory of structures integration
methods to be used. To do this, we use the transformation rules summarised in
Fig. 15.6 to change from the real to the conjugate system, which is subjected
to the conjugate loads (15.17). The associated conjugate stress resultants N *,
V * and M * are equal to the deformation variables u, wl and w required.

15.5 Exercises

15.1 Determine the deflection curve of the system examined in exercises 11.1 and
14.3.

15.2 Solve exercise 15.1 taking into account normal force deformations (EA =
1600MN) and shear force deformations (GAv = 100MN).

15.3 Determine the deflection curve of the bottom chord of the system examined in
exercise 10.5. Assume a constant axial stiffness EA for all bars.

15.4 Solve exercise 15.3 ignoring the deformations of the truss diagonals.
15.5 Solve exercise 15.3 assuming that the bar cross-sections A are adapted in such a

way that the magnitudes of the stresses and strains in all bars are the same as in
the bar with the highest normal force. Stability problems are ruled out.
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16 THE FORCE METHOD

16.1 General

Examples 6.1, 8.5, 8.9, 14.2, 15.2 and 15.3 have already provided the reader with
insights into the structural behaviour of statically indeterminate systems. Distinguish-
ing between statically determinate and indeterminate systems was first looked at in
section 5.1.3. The counting schemes for determining the degree n of static indetermi-
nacy were formulated in section 9.3.3. Section 8.1.2 explained the basic idea of the
force method, how the column deficit in the static transformation matrix b could be
overcome by introducing a statically determinate basic system and a corresponding
number of redundant variables X so that the solution to a statically indeterminate prob-
lem could be achieved via the compatibility conditions. Lastly, examples 6.1 and 8.5
introduced the concept of zero-load, so-called restraint, states, and section 14.3 made
use of the work equation (8.15) to show that restraint states do not make any contri-
bution to passive work. Consequently, with respect to the force state, an arbitrary stat-
ically determinate basic system can be assumed when applying the work the-
orem (14.4) to statically indeterminate systems (reduction theorem).

In this chapter we shall first discuss the structural behaviour of statically indeterminate
systems by means of a simple example. Apart from elastic behaviour, the plastic be-
haviour dealt with in more detail in chapters 20 and 21 will also be looked at. After
that, the force method will be developed in general in its classic form and illustrated by
way of various practical examples. A presentation of the force method in matrix form
follows in chapter 19.

16.2 Structural behaviour of statically indeterminate systems

16.2.1 Overview

Fig. 16.1(a) shows the plane frame already examined in examples 10.2 and 10.4. The
load is confined to the point load Q5 = Q, and in terms of deformations, we shall con-
fine ourselves to calculating the variable V5 = V that corresponds to Q, see Fig. 10.8.
Apart from the statically determinate system, statically indeterminate systems with
one and two degrees of static indeterminacy will be analysed by introducing a hinge
and fixity respectively at joint 4. The linear elastic-perfectly plastic moment-curvature
diagram shown in Fig. 16.1(b) describes the behaviour of the bars. For simplicity,
deformations as a consequence of shear and normal forces plus the interactions of
these stress resultants with the bending moments are ignored.

The load-deflection diagrams of Fig. 16.1(c) summarise the structural behaviour of the
three systems for a monotonic load increase. The plastic phase AB with (uncon-
strained) additional deformation V follows the elastic increase OA of the statically de-
terminate system due to the formation of a plastic hinge at joint 2 for a load Q remain-
ing at the limit load 0.476My/m. In the system with one degree of static indeterminacy
(hinged support at joint 4), a first plastic hinge forms at joint 3 (elastic-plastic
phase CD) after the elastic phase OC and subsequently a second plastic hinge at
joint 2, which leads to the plastic phase DE for the limit load 0.952My/m. In the sys-
tem with two degrees of static indeterminacy (fixity at joint 4), the successive forma-
tion of plastic hinges at joints 4, 3 and 2 after the elastic phase OF results in the two
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elastic-plastic phases FG and GH as well as the plastic phase HI for the limit
load 1.286My/m.

The degree of static indeterminacy is reduced by one with the formation of each new
plastic hinge. The final plastic hinge that forms (that at joint 2 in all three systems
here) transforms the formerly statically determinate system into a mechanism.

In order to distinguish between plastic hinges and real (frictionless) hinges, the latter
will continue to be indicated by a small circle, the former, however, by a circle around
a dot.

As we can see, as the degree of static indeterminacy increases, there is not only an
increase in the limit load and the ultimate resistance, but also an increase in the stiff-
ness of the system being examined. In addition, with static indeterminacy, the decrease
in stiffness associated with the successive formation of plastic hinges warns of the
impending failure, i. e. that the limit load will be reached, or rather, that a mechanism
will be formed.

It was assumed that the two statically indeterminate systems here are initially free from
restraints (i. e. for Q = 0). If that were not the case, the result would be shorter or
longer elastic and other elastic-plastic phases. However, the limit loads, i. e. the levels
of the plastic phases in Fig. 16.1(c), are not affected by this.

Finally, it should be noted that the straight lines OA, CD and GH in Fig. 16.1(c) are
parallel; likewise, the straight lines OC and FG.

16.2.2 Statically determinate system

The stress resultants of the statically determinate system are represented by the third
column of the matrix on the right in (10.9). Fig. 16.2(a) shows the corresponding
moment diagram with a moment of Q · 2.1m at joint 2. Should this moment reach
the value My, the resistance of the system is exhausted, i. e. the limit load
My/(2.1m) = 0.476My/m corresponding to line AB in Fig. 16.1(c) has been reached.
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The distribution of the curvatures x upon reaching the limit load is affine with the
moment diagram Fig. 16.2(a), which results in the value xy at joint 2. The work
theorem (14.4) will be applied to calculate the associated deflection V. A moment dia-
gram affine with Fig. 16.2(a) and with a value of 2.1m at joint 2 corresponds to the
force state with the point load of magnitude 1 at the position and in the direction of V.
Consequently, with the help of Fig. 14.2, the result is

V w

1

3
� 2.1 m � xy � (5 mS 7 m)w 8.4 m2xy

see point A in Fig. 16.1(c).

16.2.3 System with one degree of static indeterminacy

With a hinged support at joint 4, both V11 and degree of freedom V10 are passive ac-
cording to Fig. 10.8(a). If we release this constraint by changing from the system
shown in Fig. 16.1(a) to the statically determinate basic system examined in sec-
tion 16.2.2 and introduce the redundant variable X1 at the position of the released
constraint, then according to the work theorem (14.4), combining the moment dia-
grams shown in Fig. 16.2(a) and (b) with EI = My/xy results in the displacement

d10 w
1

3
� 4 m � 2.1 m � Q � 5 m � xy=My S

1

2
� 4 m � 2.1 m � Q � 7 m � xy=My w 43.4 m3Q xy=My

as a consequence of Q at the position and in the direction of X1. On the other hand, a
unit force variable X1 = 1 causes the displacement

d11 w (4 m)2 � 1

3
� 5 mS 7 mS

1

3
� 4 m

	 

� xy=My w 160 m3xy=My

in the same direction. Effectively, V10 must disappear, i. e. the following compatibility
condition applies:

d1 w d10 SX1d11 w 0 (16:1)

from which we get X1 = – 0.27125 Q.
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The final moments are then obtained according to Fig. 16.2(d) from the superposition

M wM0 SX1M1 (16:2)

of the moment components illustrated in Fig. 16.2(a) und (b).

If the moment at joint 3 reaches the value –My , a first plastic hinge forms at this pos-
ition; the associated load amounts to My/(1.085m) = 0.922My/m, corresponding to
point C in Fig. 16.1(c). According to the work theorem, the deflection at the onset
of yield results from combining the moment diagrams of Fig. 16.2(a) with Q = 1
and Fig. 16.2(d):

V w

1

3
� 2.1 m � 1.015

1.085
xy � 5 mS

1

6
� 2.1 m � 2 � 1.015

1.085
s 1

	 

xy � 7 mw 5.408 m2xy

During the elastic-plastic phase that follows the elastic phase OC in Fig. 16.1(c), the
moment at joint 3 according to Fig. 16.1(b) remains at the value –My . The system has
become statically determinate, and thanks to the plastic rotation at joint 3, load Q can
continue to increase until the moment at joint 2 reaches the value My and a second
plastic hinge forms at this position.

Fig. 16.3 illustrates the static and kinematic relationships corresponding to
reaching the limit load at point D in Fig. 16.1(c). The limit load amounts to 20My/

(21m) = 0.952My/m, and the associated deflection is found by applying the work the-
orem:

V w

1

3
� 2.1 m � xy � 5 mS

1

6
� 2.1 m � xy � 7 mw 5.95 m2xy

As expected, lines CD and OA in Fig. 16.1(c) are parallel:

(0.952s 0.922)=(5.95s 5.408)z 0.476=8.4

The formation of the plastic hinge at joint 3 causes frame beam 2 to lose its fixity at
column 3, and for loads that exceed the load at the onset of yield, the statically inde-
terminate system behaves in the same way as the statically determinate basic system
with column 3 not restrained horizontally at its base (joint 4).

The plastic rotation at joint 3 upon reaching the limit load can be determined accord-
ing to Fig. 16.4 by applying the work theorem:

u3p w
1

3
� 0.3 � 5 mS

1

6
� (2 � 0.3S 1) � 7 m

� �
� 1s

1.015

1.085

	 

xy w 0.1527 m xy
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Fig. 16.3(d) shows the mechanism with a virtual deflection of 1 at the point of
application of load Q, which leads to a horizontal displacement of the frame beam
corresponding to 4/3 and to plastic rotations of 1/(3m) + 1/(7m) = 10/(21m) at
each of the two plastic hinges at joints 2 and 3. According to the work equation (8.15),
the work We = Q · 1 done by load Q is equal to the dissipation work D =
–Wi = 2My · 10/(21m) = 0.952My/m at the two plastic hinges. The three elastically
deformed bars do not deform any further upon reaching the limit load; they can be
treated like rigid bars when considering the mechanism and are therefore shown as
straight lines in Fig. 16.3(d).

16.2.4 System with two degrees of static indeterminacy

With fixity at joint 4, V11 as well as the two degrees of freedom V10 and V12 are passive
according to Fig. 10.8(a). If we introduce a second redundant variable X2 as shown
in Fig. 16.1(a), we get the moment diagram of Fig. 16.2(c), and applying the work
theorem gives us the values

d20 w
1

3
� 0.3 � 5 mS

1

6
� (2 � 0.3S 1) � 7 m

� �
� 2.1 m � Q � xy=My w 4.97 m2 Q xy=My

d12 w d21 w
1

3
� 0.3 � 5 mS

1

2
� (0.3S 1) � 7 mS

1

2
� 4 m

� �
� 4 m � xy=My w 28.2 m2xy=My

d22 w
1

3
� (0.3)2 � 5 mS

1

6
� (0.3 � 1.6S 1 � 2.3) � 7 mS 1 � 4 m

� �
xy=My w 7.393 m xy=My

Together with the values d10 and d11 calculated in section 16.2.3, the result is the
compatibility conditions

d1 w d10 SX1d11 SX2d12 w 0 , d2 w d20 SX1d21 SX2d22 w 0 (16:3)

i. e.

d1

d2

� �
w

160 m2 28.2 m
28.2 m 7.393

� �
X1

X2

� �
S

43.4 m2 � Q
4.97 m � Q

� �
w

0
0

� �
from which we get

X1 ws 0.46613 Q , X2 w 1.10572 m Q

Fig. 16.2(e) shows the final moments resulting from the superposition

M wM0 SX1M1 SX2M2 (16:4)

Should the moment X2 reach the value My at joint 4, see Fig. 16.5(a), a first
plastic hinge forms at this position; the associated load amounts to My/

(1.10 572m) = 0.904My/m, corresponding to point F in Fig. 16.1(c). According to
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the work theorem, the deflection at the onset of yield is given by combining the mo-
ment diagrams of Fig. 16.2(a) with Q = 1 and Fig. 16.2(e):

V w

1

3
� 0.567 � 5 mS

1

6
� (2 � 0.567s 0.759) � 7 m

� �
�
2.1 m xy

1.106
w 2.628 m2xy

After the elastic phase OF shown in Fig. 16.1(c), then X2 = My during the first elastic-
plastic phase FG. The system has only one degree of static indeterminacy and behaves
like the system examined in section 16.2.3 for loads that exceed the load at onset of
yield. Fig. 16.5(b) illustrates the relationships that prevail at the end of this phase,
i. e. point G in Fig. 16.1(c). We get a value of 1.194My/m for the load Q, and the de-
flection V amounts to 4.324m2xy .

During the second elastic-plastic phase GH in Fig. 16.1(c), the system is statically
determinate owing to the two plastic hinges at joints 3 and 4, and behaves like the
system examined in section 16.2.2 when additional loads are applied. Fig. 16.5(c) il-
lustrates the conclusion of this phase, i. e. the relationships that prevail upon reaching
the limit load. The limit load amounts to 27My/(21m) = 1.286My/m, and the deflec-
tion upon reaching the limit load has the same value V = 5.95m2xy as that in the sys-
tem with one degree of static indeterminacy.

16.2.5 In-depth analysis of system with one degree of static indeterminacy

16.2.5.1 Choice of basic system

So far, the system with one degree of static indeterminacy (hinged support at joint 4)
was transformed into a statically determinate basic system by introducing a sliding
support or shear hinge at this position. The choice is arbitrary – introducing a sliding
support at joint 1 or a flexural hinge somewhere in the frame, for example, would have
been equally good. The only condition is that the system does not become unstable.

Taking the case shown in Fig. 16.6(a) with a flexural joint in column 34, the M0 dia-
gram is identical with Fig. 16.2(b), and the M1 diagram only differs from Fig. 16.2(b)
by the factor 1/a. If a tends towards zero, the system becomes unusable.

Fig. 16.6(b) illustrates the similar case with a flexural hinge in column 12
(4m j b i 0), and Fig. 16.6(c) shows a general case with a flexural hinge in frame
beam 23. Fig. 16.6(d) to (f) show systems with a sliding support at joint 1 which are
similar to the three systems with flexural hinges; if a tends towards p/2, the system of
Fig. 16.6(f) becomes unusable.
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In order to distinguish between Fig. 16.2 and the variables associated with Fig. 16.6, a
superscript asterisk (* ) will be used below. Generally, the moments M1

* in Fig. 16.6
result from M1 in Fig. 16.2(b) by multiplying by a factor k1, and the moments M0

* in
Fig. 16.6 follow from M0 in Fig. 16.2(a) by adding a term k0M1. Consequently, we get

d*
10 w (d10 S k0d11)k1 , d*

11 w d11k2
1 (16:5)

i. e. according to (16.1),

X*
1 ws

d*
10

d*
11

w

X1 s k0

k1
(16:6)

and according to (16.2),

M*
wM*

0 SX*
1M*

1 wM0 S k0M1 S
X1 s k0

k1
� M1k1 wM0 SX1M1 wM (16:7)

The choice of the basic system has no influence on the resulting force and deformation
variables.

16.2.5.2 Yield limits – load and restraint

In the system considered here, plastic hinges can only form at joints 2 and 3 with
the given load because constant flexural resistances are assumed. Further,
–My J M2,3 J My applies, see Fig. 16.7 with yield limit ABCD.

The solution to the one degree of static indeterminacy problem developed in sec-
tion 16.2.3 for the system initially free from restraint corresponds to points on the
straight lines OME or OF with the ratio M3/M2 = –1.085/1.015 = – 31/29 for the mo-
ments at the corners of the frame. Points K and L correspond to, for example, the basic
systems and M0 diagrams shown in Fig. 16.6(a) and (b) respectively, and the lines KM
and LM parallel with the diagonal AC correspond to the associated second term on the
right in (16.2).

As we can see, specifying the two moments M2 and M3 is sufficient for the complete
description of the potential stress states in the system under consideration, i. e. every
point on the M2M3 plane describes a certain stress state. Zero-load, pure restraint states
correspond to moments M2 = M3, i. e. points on the straight line OGA or OIC.
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Applying a monotonic load to the initially restraint-free system causes the stress point
in Fig. 16.7 to travel from O along the Q axis to point E, which corresponds to point C
in Fig. 16.1(c). Afterwards, the stress point travels along the yield limit M3 = –My to
point D, where M2 = My and hence the (positive) limit load characterised by plat-
eau DE in Fig. 16.1(c) is reached. Subsequently relieving the load completely (purely
elastically) causes the stress point to travel parallel with the Q axis along DG to
point G on the P axis; the coordinates of G describe the restraint state remaining after
relieving the load.

Subsequently loading in the opposite direction results in the stress path GH, where H
indicates the formation of a (positive) plastic hinge at joint 3. During the following
elastic-plastic phase, the stress point travels along HFB to the (negative) limit load
point B, where –M2 = M3 = My , and fully relieving the load from this state causes
the stress point to move along BI to point I on the P axis, a state that is opposite
to the previous restraint state G.

Any loading-restraint histories in the skewed QP system of coordinates can be de-
scribed in a similar way. Generally, an infinite number of stress points on lines parallel
with the P axis, e. g. LMK, within the yield limits correspond to a certain level of
loading Q. Apart from points D and B, for which the limit load is reached, the stress
state therefore depends on the loading-restraint history.

In principle, the considerations made with the help of Fig. 16.7 can be readily trans-
ferred to multi-parameter loads (m load parameters Qi) and systems with multiple de-
grees of indeterminacy (n restraint parameters Pj). The individual yield limits corres-
pond to hyperplanes in the (m+n)-dimensional space of Qi, Pj which enclose the
non-plastic domain of the elastic-plastic system. The n-fold projection of this domain
into the m-dimensional subspace of Qi results in the yield limit or the non-plastic
domain of the rigid-plastic system. For example, projecting points B and D parallel
with the P axis onto the Q axis in Fig. 16.7 results in the non-plastic domain BlDl

of the rigid-plastic frame 1234 shown in Fig. 16.8. At the same time, the limit
load 20My/(21m) shown in Fig. 16.8 results in the Q axis scaling required in Fig.
16.7.

16.2.6 In-depth analysis of system with two degrees of static indeterminacy

Fig. 16.9 contains a diagram similar to Fig. 16.7 for the system with two degrees of
static indeterminacy (fixed column base at joint 4). The non-plastic domain of the
elastic-plastic system is a cube with sides of length 2My. Points G, H and I in Fig.
16.9 correspond to Fig. 16.5(a), (b) and (c) or points F and G as well as line HI in
Fig. 16.1(c). With a monotonic load increase, the stress point in Fig. 16.9 travels along
line OGHI to point I, where the limit load 9My /(7m) is reached.

Pure restraint states correspond to points on plane ABCDEF with the equation
M2 – M3 + 0.7M4 = 0. This plane is defined by vectors OA and OB (axes P1, P2),
which are proportional to the unit force variable states shown in Fig. 16.2(b) and (c).
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In the event of the load being completely relieved, the stress point travels back from I
parallel with the Q axis until it reaches plane ABCDEF at point J with the coordinates
(0.271,– 0.025,– 0.422)My.

16.3 Classic presentation of the force method

16.3.1 General procedure

The procedure explained in sections 16.2.3 and 16.2.4 with the help of statically
indeterminate systems with one and two degrees of indeterminacy can be generalised
as follows:

1. Determine the degree n of static indeterminacy.
2. Select a stable, statically determinate basic system by releasing n constraints and

introducing corresponding redundant variables Xi .
3. Determine the support force variables and stress resultants C0, S0 and Ci , Si for the

basic system as a result of loads or as a result of unit force variables Xi = 1.
4. Determine the deformations (incompatibilities) di0 or dij at the position and in the

direction of Xi as a result of the external actions (loads and imposed deformations)
or as a result of the unit force variables Xj = 1.

5. Set up and solve the following compatibility conditions:

di w di0 S
Pn
jw1

dijXj w 0 (iw 1, 2, ... , n) (16:8)

6. Determine the support force variables and stress resultants for the statically inde-
terminate system by superposing the corresponding variables on the basic system:

C wC0 S
Pn
iw1

CiXi , Sw S0 S
Pn
iw1

SiXi (16:9)
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16.3.2 Commentary

The methods discussed in section 9.3.3 are available for determining the degree n of
static indeterminacy.

As outlined in section 16.2.5, apart from the requirement regarding kinematic stabil-
ity, the choice of basic system is unimportant. Fig. 16.10 illustrates this requirement by
way of systems with two degrees of static indeterminacy.

In order to achieve a set of equations (16.8) with minimal susceptibility to errors, the
structural behaviour of the basic system should differ as little as possible from that of
the statically indeterminate system. For example, for the system shown in Fig. 16.11,
that is the case for the basic system of Fig. 16.11(c), but not for the basic system of Fig.
16.11(b). According to Fig. 16.11(b), neither of the components di0 and dij in (16.8) is
equal to zero, whereas according to Fig. 16.11(c), both d30 and d13 = d31 are equal to
zero. When superposing M according to (16.9)2, small differences result in large fig-
ures as shown at the bottom of Fig. 16.11(b); the associated set of equations (16.8) is
ill-conditioned, i. e. even just small errors in di0 can lead to large errors in Xj . By con-
trast, the set of equations (16.8) belonging to Fig. 16.11(c) is well conditioned; the
scopes of the redundant variables are limited, and therefore the elements not lying
on the main diagonals of the flexibility matrix d with the coefficients dij are only small
or disappear completely, like d13 = d31.

Instead of a statically determinate basic system, in some instances it can be worthwhile
using a statically indeterminate basic system. Fig. 16.12 illustrates such a case. We get
the expressions Ql3

/(192EI ) or ql4
/(384EI ) respectively for the deflection at mid-span

of a beam of length l with infinite shear stiffness fixed at both ends and subjected to a
central point load Q or a uniformly distributed line load q, where the bending stiff-
ness EI is constant over the length of the beam. The statically indeterminate system
with seven degrees of static indeterminacy shown in Fig. 16.12(a) can therefore be
dealt with according to Fig. 16.12(b) by introducing a single redundant variable.
The following applies:

d10 w
ql 4

1

384EI1
, d11 w

l 3
1

192EI1
S

l 3
2

192EI2
S

h

EA

from which X1 follows from (16.1).

We shall refer to chapters 10 and 11 to calculate the support force variables and stress
resultants using the statically determinate basic system, and the deformation variables
di0 and dij will be calculated with the help of the work theorem (14.4). The coefficients
di0 combined in a column vector d0 are known as a load vector.
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The flexibility matrix d with the coefficients dij is square (nqn), and symmetrical ac-
cording to MAXWELL’s theorem (8.88), and its main diagonal elements are positive:

dii w

ð
Mi

Mi

EI
dxS ...w

ð
(Mi)

2

EI
dx S ...i 0 (16:10)

Here, the ellipses ( ... ) stand for the contributions of the other stress resultants accord-
ing to the work theorem (14.4), which are often neglected. Further, owing to the linear
independency of the compatibility conditions (16.8), d is invertible (det d 0 0) and
positive definite (X T

x d x X i 0).
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According to ENGESSER’s theorem (8.83), the deformation variables dj = @Pi
*
/@Xj

corresponding to the redundant variables Xj must be equal to zero, i. e. using the com-
plementary internal potential

P*
i w

ð
M2

2EI
S ...

	 

dx w

ð
1

EI
� M2

0

2
SM0

Pn
jw1

MjXj S
(M1X1)2

2
SM1X1

Pn
kw2

MkXk S ...

" #
S ...

( )
dx

resulting from the application of (16.9)2, it follows that

@P*
i

@Xj
w

ð
1

EI
(M0Mj S

Pn
kw1

MjMkXk)S ...

" #
dxw dj0 S

Pn
kw1

djkXk w 0

The compatibility conditions (16.8) thus correspond to maximum or minimum con-
ditions of the function Pi

*(X); taking into account (16.10), we see that the effective
(elastic, compatible) redundant variables X make the complementary internal poten-
tial Pi

* a minimum.

The compatibility conditions (16.8) allow a further interpretation already known be-
cause of the reduction theorem mentioned in section 14.3. The unit force variable
states are orthogonal to the effective (elastic, compatible) stress state, i. e. the internal
displacement works

Wii w

ð
Mi

M

EI
dx S ...w

ð
Mi

M0 S
Pn
jw1

MjXj

EI
dx S ...w di0 S

Pn
jw1

dijXj

that they do on the deformations of the effective stress state are equal to zero because
Wei = 0 on its own. In addition to allowing the equilibrium to be easily checked (for the
whole system or subsystems), these orthogonality conditions also permit an effective
check of the results of calculations for statically indeterminate systems.

16.3.3 Deformations

16.3.3.1 Reduction theorem

If we initially confine ourselves to bending moment contributions My = M when using
the work theorem (14.4), then the theorem is reduced to

dij w

ð
Mi

Mj

EI
dx (16:11)

where the integral has to be applied over the entire statically indeterminate system or
subsystem and the bending moments Mi and Mj according to (16.9)2 are made up of
components of generally dissimilar basic systems:

Mi wMi0 S
Pn
kw1

MikXk , Mj wMj0 S
Pn
kw1

MjkXk (16:12)

Owing to the fact that the unit force variable states Mik are orthogonal to the elastic,
compatible stress state Mj , or Mjk is orthogonal to Mi, as discussed in section 16.3.2,
eq. (16.11) leads to the reduction theorem

dij w

ð
Mi0

Mj

EI
dx w

ð
Mi

Mj0

EI
dx (16:13)

In order to calculate dij, one of the two force states may be determined using any static-
ally determinate basic system.

Example 16.1 Plane frame

The deflection V of the system with one degree of static indeterminacy due to load Q = 0.922My /m
was found to be 5.408 m2xy in section 16.2.3. In that section, Fig. 16.2(a) with Q = 1 played the role
of Mi0 in (16.13) and Fig. 16.2(d) that of Mj.
Applying Fig. 16.6(b) instead of Fig. 16.2(a) results in

V w

1

6
� 2.1 m � 2 � 1s

1.015

1.085

	 

� xy � 7 mS

1

3
� 2.1 m � xy � 4 mw 5.408 m2xy

i. e. as expected, the same answer.

25716.3 Classic presentation of the force method



16.3.3.2 Thermal actions

Next, we shall investigate the effect of thermal actions and in doing so confine our-
selves to uniform temperature changes T. Eq. (14.4) becomes

dij w

ð
Ni

Nj

EA
SaT T

	 

dx w

Ð
NiaT T dx (16:14)

because Nj is a pure restraint state orthogonal to Ni . We can see that Ni in (16.14) refers
to the statically indeterminate system.

Example 16.2 Bar fixed at both ends

The bar of length l shown in Fig. 16.13, which is fixed at both ends and has a constant axial stiff-
ness EA = const and aT = const, is subjected to a rise in temperature T = const along CD. The task is
to calculate the displacement uB of point B.
If point D can be displaced in the x direction, then uD0 = aTT l/3. A redundant variable Nj = 1 applied
at D results in uD1 = l/(EA), and from the compatibility condition uD = uD0 + Nj uD1 = 0 it follows
that Nj = – EAaTT/3. The expression in brackets in the integrand on the right in (16.14) corresponds
to the normal strain ex = du/dx constant over each segment, which when considering the boundary
conditions uA = uD = 0 results in a linear progression of u for each segment with uB = –aTT l/9.
Instead of determining the displacement u via Nj und ex , the value of uB can be obtained directly via
(16.14)2 from the force state Ni (for the statically indeterminate system) corresponding to a single
force of magnitude 1 at B: uB = (–1/3)aTT l/3 = –aTT l/9.

16.3.3.3 Support displacements

To conclude this section, the influence of support displacements cj will be investigated
according to (14.4). The corresponding variables Nj etc. on the right in (14.4) may
relate to the basic system according to (16.13), i. e. we may use Nj0 etc. in the calcula-
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tions. However, all these variables disappear in the statically determinate basic system;
support displacements take place without restraint. Therefore,

dij ws

P
Cicj (16:15)

applies, where Ci relates to the statically indeterminate system.

Example 16.3 Beam with one degree of static indeterminacy

Support C of the beam in Fig. 16.14(a), rigid in shear and with constant bending stiffness EI = const,
is displaced downwards by an amount c. The task is to calculate the deflection wB of point B.
We get d10 = 5l3

/(48EI ) and d11 = l3
/(3EI ) for the force state shown in Fig. 16.14(b), from which,

according to (16.1), it follows that X1 = C = – 5/16. Eq. (16.15) therefore results in wB = 5c/16.
As a check, we consider the cantilever beam examined in example 15.4 subjected to a point load Q at
its unsupported end which causes a deflection of Ql3

/(3EI ) at this position. Putting this value equal to
c results in a curvature qz

* = – 3c/l2 at the unsupported end of the conjugate beam and therefore a
moment MB

* = wB = 5c/16 at point B, see Fig. 16.14(c) and Fig. 15.8.

16.3.3.4 Deformation diagrams

Deformation diagrams for statically indeterminate systems can be calculated in exactly
the same way as for statically determinate cases: either point by point with the help of
the work or reduction theorems, or as a whole by considering the exact shape of the
function between individual joints. All the procedures outlined in chapter 15 can be
applied similarly.

16.3.4 Influence lines

16.3.4.1 Influence lines for deformation variables

The relationship (12.3) applies irrespective of the degree n of static indeterminacy.
The influence line of a deformation variable for a system with n degrees of static in-
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determinacy is a deformation diagram that ensues when a corresponding unit force
variable is applied to the system with n degrees of static indeterminacy at the position
and in the direction of the deformation variable of interest.

Example 16.4 Continuous beam

In order to determine the influence line hf2 for the rotationf2 at joint 2 of the system statically in-
determinate to the second degree shown in Fig. 16.15(a), which is rigid in shear and has a constant
bending stiffness EI, we introduce flexural hinges and corresponding redundant variables X1 and X2 at
joints 1 and 2, see Fig. 16.15(b).
The moment of magnitude 1 at the position and in the direction of f2 can be applied to either bar 12 or
bar 23 of the basic system, or to both bars proportionately. Considering the moments M0, M1 and M2

due to the unit force variables, which are entered in Fig. 16.15(b), then according to (16.8), we get the
following set of equations:

1=6
1=3

� �
S

1=3 1=6
1=6 3=5

� �
X1

X2

� �
w

0
0

� �
where the factor l/(EI ) has been omitted from both terms on the left of the equation.
With the solution X1 = – 8/31, X2 = –15/31, the result according to (16.9)2 gives us the M diagram
shown in Fig. 16.15(c). The curvature

M

EI
wswLw

s 8S 24x=l

31EI

of bar 12 is subjected to double integration, taking into account the boundary conditions
w(0) = wl(0) = 0, to give us its deflection

ww

4x2(1s x=l )

31EI
(0J xJ l )

which is equal to the influence line between points 1 and 2 which we require, see Fig. 16.15(d).
Similarly, the following applies between points 2 and 3:

swLw
15(xs 1.8 l )

31EI � 0.8 l

from which, by considering w(l ) = w(1.8l ) = 0, we get the deflection

ww s 0.1008
x3

l 3 S 0.5444
x2

l 2 s 0.9153
x

l
S 0.4718

	 

l 2

EI
(lJ xJ 1.8l )

The unit of measurement for the “deflections” calculated here is [m2
/(kNm2)] = [1/kN]. As expected,

multiplying a coefficient of influence by a load [kN] results in a dimensionless value [kN/kN] = [-] or
a rotation in rad or mrad.
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16.3.4.2 Influence lines for force variables

We shall make use of the system known from example 16.4 (see Fig. 16.16) in order to
discuss influence lines for force variables. It was emphasized in section 12.3 that the
kinematic method of determining influence lines retains its validity for statically in-
determinate systems. However, the virtual deformation variable –1 must be imposed
on the system with n–1 degrees of static indeterminacy, which means the individual
system components are deformed. Bearing this in mind, the influence lines for the
redundant variables X1, X2 and the moment M4 shown in Fig. 16.16(d) to (f) can
be immediately understood as deflection curves with a “kink –1” at the respective
reference point. Generally, freehand sketching of such influence lines does not present
any particular difficulties, and with a little practice they can be used not only qualita-
tively, e. g. for determining critical load positions, but also quantitatively, for estimat-
ing force variables.

The influence line of moment M40 shown in Fig. 16.16(c) for the statically determinate
basic system of Fig. 16.16(b) ensues as a result of imposing a virtual rotation of –1 on
the mechanism created by introducing a flexural hinge at point 4. This results in
(positive) rotations of 1/2 at the position of the redundant variables X1, X2, which
are precisely equal to the moments M41 and M42 entered in Fig. 16.16(b), i. e. the
moments occurring at point 4 as a result of X1 = 1 and X2 = 1 respectively.

Generally, the relationship

vj w Sij (16:16)

applies for the deformation variable vj at the position and in the direction of a redun-
dant variable Xj according to the influence line for a force variable Si in the basic sys-
tem, where Sij denotes the force variable Si occurring in the basic system as a result of
Xj = 1.
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In order to verify (16.16), we combine the force state constituted by Xj = 1 with the
virtual deformation state given by the influence line for Si in the basic system. Accord-
ing to the work equation (8.14) or (8.15), only Xj and Sij do work, i. e.

(Xj w 1) � vj S Sij � (s 1)w 0

which verifies (16.16).

Eliminating the deformation variables vj occurring on the influence line hSi0 for Si in
the basic system obviously requires the superposition of corresponding variables

vj � hXj
w Sij � hXj

where hXj designates the influence line for Xj in the statically indeterminate system,
i. e.

hSi
w hSi0

S

Pn
jw1

Sij � hXj
(16:17)

Owing to the discontinuities –1 occurring in hXj at positions j, the incompatibilities vj

in hSi0 are actually made to disappear:

vj S Sij � (s 1)w vj S vj � (s 1)w 0

The influence lines hXj for the redundant variables in the statically indeterminate sys-
tem are obtained by imposing a (single) deformation variable dj0 = 1. According to
(16.8), the following generally applies:

X ws ds1 7 d0 (16:18)

The redundant variables ensuing as a result of dj0 = 1 are therefore specified by the
jth column of the negative inverse of the flexibility matrix d.

The matrix d already given in example 16.4 and its negative inverse are as follows:

dw

l

EI

1=3 1=6
1=6 3=5

� �
, s ds1

w

EI

31l
s 108 30

30 s 60

� �
The moment diagrams shown in Fig. 16.16(d) and (e) are determined by the two
columns of –d–1. Dividing by EI results in the corresponding curvatures, and double
integration leads to hX1 and hX2. Ultimately, (16.17) results in the influence line hM4

shown in Fig. 16.16(f).

Summing up, influence lines hSi for force variables Si for statically indeterminate sys-
tems according to (16.17) can be obtained by superposing the corresponding influence
lines hSi0 for the statically determinate basic system and the weighted influence
lines hXj for the redundant variables Xj for the statically indeterminate system. The
latter appear as deformation lines by applying the redundant variables specified in
the corresponding column of –d–1, and their weighting factors Sij are equal to the force
variables Si for the basic system as a result of Xj = 1.

16.4 Applications

Example 16.5 Beam fixed at both ends

Fig. 16.17(a) shows once again the beam fixed at both ends which was examined in example 15.2,
rigid in shear and with a constant bending stiffness EI. No loads or restraints in the x direction are to
be considered and so we can confine ourselves to investigating the two redundant variables X1 and X2

of the basic system shown in Fig. 16.17(b).
According to (16.11), the unit force variable states shown in Fig. 16.17(b) result in the flexibility
matrix

dw

l

EI

1=3 1=6
1=6 1=3

� �
with the negative inverse

sds1
w

EI

l
s 4 2

2 s 4

� �
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Using the M0 diagram shown in Fig. 16.17(c), the load vector for the uniformly distributed line load q

already considered in example 15.2 is

d0 w
ql 3

EI

1=24
1=24

� �
and therefore the solution to the compatibility conditions (16.8) leads to the redundant variables

X w ql 2 s 1=12
s 1=12

� �
Consequently, the result is the M diagram shown at the bottom of Fig. 16.17(c) and already known
from Fig. 15.4.
We shall now consider a rotation of magnitude 1 at fixed end 2, as shown in Fig. 16.17(d). Using

d0 w
0
s 1

� �
and solving (16.8) results in

X w

EI

l
s 2

4

� �
So we get the linear shape to the bending moment (restraint moment) diagram shown in Fig. 16.17(d)
(lower diagram), which corresponds to a constant shear force V = 6EI/l2.

Example 16.6 Continuous beam of infinite length

The continuous beam shown in Fig. 16.18(a) has an infinite number of spans of length l, a constant
bending stiffness EI and is rigid in shear. Subjected to uniformly distributed permanent loads g, the
result according to example 16.5 is the bending moment diagram in Fig. 16.18(a) (lower diagram).
The positive moments due to imposed loads q become a maximum when every second span is loaded,
see Fig. 16.18(b). This is easy to see when we draw an influence line for the bending moment in the
middle of a span, for instance. As is known from the rearrangement of the load in example 5.7, load q

can be divided into a symmetric, uniformly distributed load q1 = q/2 and an antisymmetric load
q2 = eq/2. Moment M(q1) results in a similar way to M(g), and M(q2) is statically determinate.
Altogether, the result for M(q) is maximum values of ql2

/12 in the loaded spans and minimum vales
of –ql2

/24 in the unloaded spans.
Fig. 16.18(c) shows the imposed load required to produce maximum support forces and moments
(at A). We again use the procedure for rearranging the loads and introduce a flexural hinge at A
for M(q2). According to the reduction theorem, the rotation fA0 as a consequence of q2 results
from the introduction of the force state shown in Fig. 16.18(d). Applying Fig. 14.2, we get

fA0 ws

1

3
� 1 � ql 2

16
� l

EI
ws

ql 3

48EI
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A moment X1 = 1 introduced at A causes moments of k, –k2, k3, ... at B, C, D, ... because owing to the
infinite number of identical spans, there must be the same ratio –k between the end moments in every
span, see Fig. 16.18(e).
In order to determine the factor k, we calculate fB according to the reduction theorem by considering,
on the one hand, a simply supported beam AB with a moment of magnitude 1 applied at B and, on the
other, a similar simply supported beam BC. Using Fig. 14.2, it follows that

fB w

l

6EI
(s 1S 2k)w

l

6EI
(s 2k S k2)

from which it follows that k = 2 –k w 2s
ffiffiffi
3
p

.
Using the force state shown in Fig. 16.18(d) again, we get

fA1 w
l

6EI
(2s 2S

ffiffiffi
3
p

)w

ffiffiffi
3
p

l

6EI

which according to (16.1) can be used to obtain

X1 ws

sfA0

fA1
w

ffiffiffi
3
p

ql 2

24

The moments M(q) resulting from the superposition of M(q1), M(q2) and X1M1 according to (16.2) are
shown in the lower diagram of Fig. 16.18(e).
Fig. 16.19 summarises the various possible moment diagrams in one span for a numerical example
(l = 6m, g = 8kN/m, q = 5kN/m). The dotted lines in Fig. 16.19(c) and (d) indicate the moments
when the span adjacent to the one being considered is loaded with the imposed load q. We can also see
that the moment M = 22.2kNm at mid-span in Fig. 16.19(d) does not correspond to the maximum
positive moment, which is 22.5kNm and occurs 211mm from the middle of the span.
Fig. 16.20 shows all the moments for a half span. The envelopes enclosing all these lines for both
positive and negative moments are called moment envelopes. For the positive moments, the envelope
is made up of the solid line in Fig. 16.19(c) and the solid line on the right in Fig. 16.19(d); for the
negative moments it is made up of the solid and dotted lines on the left in Fig. 16.19(d) plus the dotted
line in Fig. 16.19(c). Quite remarkable is the fact that negative moments can occur over almost one-
third of the span on either side of the support. To cope with such moments, a reinforced concrete
beam, for example, will require reinforcement in the top face because the tensile strength of concrete
is negligible.
Fig. 16.21 shows the maximum span and support moments (M + and M –) caused by various load
cases. Here, points A to D correspond to the solid lines in Fig. 16.19(a) to (d). The combination
of the maximum positive and negative moments of 27.0 and – 44.5 kNm corresponds to point E
in Fig. 16.21. It is quite obvious that a safe design is one in which the resistance of all the cross-sec-
tions of the beam is designed for these moments. Actually, however, the resistance along the beam
may be graduated to suit the envelopes, e. g. in a reinforced concrete beam by successively curtailing
the amount of bottom reinforcement near mid-span or the top reinforcement near the supports.
All the moments drawn in Fig. 16.20 were calculated assuming an initially restraint-free system. A
constant (positive or negative) restraint moment would cause an upward or downward displacement
of the x axis in Fig. 16.20, and a displacement of the design point E in Fig. 16.21 along the straight
line EF (M + – M – = 71.5kNm) downward to the right or upward to the left. Such a superposition of
a restraint state (identical for all load cases and including load factors gF according to section 4.6.2)
corresponds to a procedure according to the shakedown theorem discussed in sections 20.2.1.4 and
21.5.
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Superposing a specific optimum restraint state for each load case causes a movement along straight
line BCG (M + – M – = 58.5kNm) in Fig. 16.21. In contrast to dimensioning according to the shake-
down theorem, in which following an initial plastification, a purely elastic behaviour of a linear elas-
tic - perfectly plastic system is guaranteed, such dimensioning can exhaust the deformation capacity

of the system through alternating or progressive plastification. The risk of such a failure depends on
the loading history, and it is up to the engineer to decide whether to compare the plastic deformation

demand with the plastic deformation capacity and weigh up the situation. In principle, there is no
objection to performing the dimensioning based on a rigid - perfectly plastic idealisation of the sys-
tem, provided the necessary deformation capacity is guaranteed. Depending on the circumstances,
considerably smaller resistances will have to be provided compared with dimensioning according
to the shakedown theorem (line BCG instead of EF in Fig. 16.21), which results in much more eco-
nomic solutions.
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Example 16.7 Continuous beam – support settlement

Support B of the system shown in Fig. 16.22(a) undergoes a settlement dB. The basic system shown in
Fig. 16.22(b) results in the load vector

d0 w
s l2=l1 s 1

1

� �
dB=l2

and therefore X1 and X2 can be readily determined according to (16.8).
Fig. 16.22(c) shows an alternative basic system. In this case the compatibility conditions are

d1

d2

� �
w

d11 d12

d21 d22

� �
X1

X2

� �
w

sdB

0

� �
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Example 16.8 Arch fixed at both ends

The arch shown in Fig. 16.23(a) is subjected to an antisymmetric load eq/2; it is assumed to be
inextensible and rigid in shear, and is in the form of a quadratic parabola. The bending stiffness
is EI = EIS/cosf, where EIS designates the bending stiffness at the crown. Using the basic system
and the redundant variables according to Fig. 16.23(b) results in the moment diagrams shown in
Fig. 16.23(c). Considering dx = dscosf, the elements of the load vector and the flexibility matrix
are given by

di0 w

ð
Mi

M0

EI
dsw

1

EIS

ð
MiM0 dx , dik w

ð
Mi

Mk

EI
dsw

1

EIS

ð
MiMk dx

Therefore, the compatibility conditions (16.8) are
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d3

8<
:
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;w

ql 3

384EIS

1
s 1

0

8<
:

9=
;S

l

EIS

1=3 1=6 s f =3
1=6 1=3 s f =3
s f =3 s f =3 8f 2=15

2
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3
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X3
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:

9=
;w

0
0
0

8<
:

9=
;

from which it follows that

X w

ql 2

64

1
s 1
0

8<
:

9=
;

Fig. 16.23(d) shows the ensuing bending moment and shear force diagrams, where V refers to vertical
sections and not sections perpendicular to the bar axis. The maximum bending moments at the points
of fixity are e ql2

/64, those in the span are e 9ql2
/1024, and occur at a distance of 3l/16 on either

side of the crown. Obviously, the flow of forces illustrated in Fig. 16.23(e) corresponds to that of the
equivalent beam with one degree of static indeterminacy, see Fig. 16.23(f) and example 8.5.
Let us consider the arch with f = 40m, l = 200m as a practical example, see Fig. 16.24(a),
which is loaded with uniformly distributed permanent loads g = 1MN/m and an asymmetric
imposed load q = 0.1MN/m. The 8m wide solid cross-section of the arch is 3m deep at the
springings and 2.76m deep at the crown. Subjected to the uniformly distributed loads g + q/2,
the beam with three degrees of static indeterminacy and fixed at both ends behaves in the same
way as the statically determinate three-hinged arch of example 5.6. That gives rise to purely normal
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forces (compressive forces) with a constant horizontal component H = (g + q/2)l2
/(8f ) = 1.05 ·2002

/

(8 ·40) = 131.25MN. The antisymmetric imposed load eq/2 causes fixity moments amounting to
ql2

/64 = 0.1 ·2002
/64 = 62.5MNm. The vertical support forces are (g + q/2)l/2 e 5ql/32 =

1.05 ·100 e 5 ·0.1 ·200/32 = 108.125 and 101.875MN, see Fig. 16.24(b). Fig. 16.24(c) shows the
stress resultants converted to sections perpendicular to the axis of the arch at the two springings
and the normal stress distributions resulting from bending and normal force according to (13.16).

Example 16.9 Beam on skew supports

Fig. 16.25(a) shows a beam of length l “skewed to the left”, rigid in shear and with constant bending
stiffness EI and constant torsional stiffness GK. The beam is supported on rigid transverse beams at A
and B and loaded with q = const. The expression “skewed to the left” (or “skewed to the right”) refers
to the change in the direction of the beam axis from the normal to the transverse beam axis at the end.
The basic system shown in Fig. 16.25(b) plus the resulting state diagrams of Fig. 16.25(c) result in

d10 w
ql 3

24EI
( cosbS sinb cota) , d11 w

l cos2b

3EI
( tan2b cot2aS tanb cotaS 1)S

l sin2b

GIx

and therefore X1 = –d10 /d11 according to (16.1). As we can see, the skew to the left (0 I a, b I p/2)
leads to a negative X1 value and therefore also negative torques T = X1sinb. The result for a skew
support to the right (p/2 I a, b I p) is positive X1 and T values.
Let us consider the case of a = b = p/4 as a practical example, see Fig. 16.26. We get

X1 w
s

ffiffiffi
2
p

ql 2

12 1S
EI

GIx

	 

and support forces

A1,2 wB2,1 w
ql

4
E

ql 2

24a 1S
EI

GIx

	 

Presuming l = 8a and 3EI = 5GIx results in A1 = B2 = ql/8, A2 = B1 = 3ql/8 and T = –ql2

/32.
The skew supports function like fixity at the ends of the beam. Supports A2 and B1 close to the
load experience larger support forces than the supports A1 and B2 remote from the load.
Bridges are often executed in the form of skew slabs. Such structures can be approximated with the
bar models shown here. It is clear that such slabs “span across the obtuse corners”. Fig. 16.27 illus-
trates this for the case of a slab skewed to the left. With an extreme skew, the acute-angled corners can
experience uplift and may need to be held down.
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Example 16.10 Beam as circular arc

Fig. 16.28 shows a curved beam statically indeterminate to the second degree plus its basic system and
redundant variables. For the basic states shown in Fig. 16.28(b) equilibrium requires
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2
6666664

3
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and therefore

M0 w
Qr sinf1

sinf0

sin (f0 sf)sQr sin (f1 sf) , T0 w
Qr sinf1

sinf0

1s cos (f0 sf)½ �sQr 1s cos (f1 sf)½ � (fIf1)

M0 w
Qr sinf1

sinf0

sin (f0 sf) , T0 w
Qr sinf1

sinf0

1s cos (f0 sf)½ � (fif1)
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M1 ws cotf0 sin (f0 sf)S cos (f0 sf) , T1 ws cotf0 1s cos (f0 sf)½ �S sin (f0 sf)

and

M2 w 0 , T2 w 1

For small values of f0, the calculation may be carried out on the developed beam of length l = rf0 as
an approximation (as in example 5.8). Where x = rf and x1 = rf1 , we get the following:

M0 wQx 1s
x1

l

	 

, T0 w

ðl
x

M0

r
dx (xI x1)

M0 wQx1 1s
x

l

	 

, T0 w

ðl
x

M0

r
dx (xi x1)

instead of the above relationships, and

M1 w
x

l
, T1 w

l 2
s x2

2rl
M2 w 0 , T2 w 1

Fig. 16.28(c) shows these relationships for the case f1 = f0/2.
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Example 16.11 Considering subsystems

It is often worthwhile splitting complex systems into subsystems; considering the effects of the parts
of the system that have been separated by way of translational and rotational springs according to
Fig. 5.10 und (5.12). For example, the central beam of the system shown in Fig. 16.29(a) can be con-
sidered separately according to Fig. 16.29(b). The beam of length l has a constant bending stiffness EI

and is idealised as rigid in shear. Using the uniformly distributed load q, we first find

d10 w d20 w
ql 3

24EI

as in example 16.5.
In order to determine the stiffnesses kyl and kyr of the rotational springs, or rather their inverses 1/kyl

and 1/kyr (their flexibilities), we apply moments of magnitude 1 to the separated parts of the system
according to Fig. 16.29(c) and (d). According to (5.12)3, the resulting rotations fl and fr are at the
same time the flexibilities required. The flexibilities of bars 1 and 2 are obtained in a similar way to
the diagonal elements of matrix d in example 16.5, i. e.

fl w
M1l1
3EI1

w

M2l2
3EI2

and as M1 + M2 = 1, it follows that

fl w
1

kyl
w

1
3EI1

l1
S

3EI2

l2

Bar 4 corresponds to a yielding support for bar 3 with a translational spring stiffness of 48EI4 /l4
3.

The moment of magnitude 1 causes a load 1/l3 acting on bar 4 and consequently a deflection of
l4

3
/(48EI4l3). The corresponding rotation l4

3
/(48EI4l3

2) is added to the flexibility l3 /(3EI3) of
bar 3, i. e.

fr w
1

kyr
w

l3
3EI3

S

l 3
4

48l 2
3 EI4
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The flexibilities of the rotational springs add up to the diagonal elements of the flexibility matrix d for
the subsystem of Fig. 16.29(b), i. e.

dw

l

3EI
S

1

kyl

l

6EI
l

6EI

l

3EI
S

1

kyr

2
664

3
775

and therefore X1, X2 can be calculated from the solution to the set of equations (16.8).

16.5 Summary

1. When the load on a statically indeterminate, linear elastic - perfectly plastic sys-
tem increases monotonically, plastic hinges form successively until the limit load
is reached. The degree of static indeterminacy is reduced by one with each new
plastic hinge, and the stiffness of the system decreases. The final plastic hinge
converts the formerly statically determinate system into a mechanism.

2. The structural behaviour of an elastic-plastic system generally depends on the
loading-restraint history. Only the limit loads and the associated mechanisms
are not dependent on this; and here it is presumed that the plastic deformation
capacity is sufficient to form the mechanisms and no stability problems occur.

3. A system with n degrees of static indeterminacy has n restraint states (i. e. zero-
load stress states) associated with it which are independent of each other. When
using the force method, these restraint states correspond to the redundant vari-
ables Xi (i = 1, 2, ... , n).
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4. The force method can be used to investigate linear elastic framed structures with n
degrees of static indeterminacy. The general algorithm of the force method is
given in section 16.3.1.

5. Any basic system may be chosen when applying the force method, provided the
requirement for kinematic stability is satisfied. However, the designer is recom-
mended to select a basic system whose structural behaviour differs as little as pos-
sible from that of the statically indeterminate system.

6. The flexibility matrix d is square, symmetric, invertible and positive definite.
7. The compatibility conditions (16.8) correspond to minimum conditions for the

complementary internal potential Pi
*. The elastic, compatible redundant vari-

ables X make Pi
* a minimum.

8. The unit force variable states (restraint states) associated with the redundant vari-
ables X are orthogonal to the elastic, compatible stress state.

9. The coefficients dij of the flexibility matrix d may be calculated with one of the
two force variable states occurring according to the work theorem (14.4) using
any statically determinate basic system (reduction theorem).

10. Deformation diagrams for statically indeterminate systems can be determined in a
similar way to those for statically determinate systems (chapter 15).

11. The influence line of a deformation variable is the deformation diagram of the
system that ensues when a corresponding unit force variable is applied at the
position and in the direction of the deformation variable of interest.

12. The influence line of a force variable Si is the deformation diagram that ensues
when a virtual deformation –1 is imposed on the system at the position and in the
direction of the force variable of interest. Quantitatively, we get the influence
lines for force variables for statically indeterminate systems through the super-
position of the corresponding influence lines for the statically determinate basic
systems and the weighted influence lines for the redundant variables Xj; the
weighting factors Sij of the latter are equal to the force variables Si for the basic
system as a result of Xj = 1.

13. When dealing with symmetrical statically indeterminate systems, rearranging the
loads (dividing loads into symmetric and antisymmetric components) can often
lead to considerable simplifications.

14. The envelopes, i. e. the lines enclosing the stress resultant diagrams of all load
cases, are critical for the dimensioning. According to the shakedown theorem,
any restraint state may be superposed on the elastic, compatible stress states; a
linear elastic - perfectly plastic system then behaves purely elastically apart
from any initial plastification. If on the other hand, a separate, optimally chosen
restraint state is superposed for each load case, there is a risk of exhausting the
deformation capacity as a result of alternating or progressive plastification of
individual parts of the system. Although this approach can often achieve consid-
erable savings in the dimensioning, the plastic deformation demand should, how-
ever, always be compared with the plastic deformation capacity and assessed ac-
cordingly.

15. A skew support acts like a fixed support at the end of a beam. The support forces
become concentrated in the obtuse angles at the ends of the beam. With a large
skew, the acute angles can lift and may need to be held down.

16. It is often worthwhile dividing complex systems into subsystems. The contribu-
tions of the separated parts of the system can be taken into account in such situa-
tions by way of equivalent translational and rotational springs.
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16.6 Exercises

16.1 Rework exercise 11.1 presuming the system shown in Fig. 9.9(a), i. e. with fix-
ity at 1 and a hinge at 4. Assume a constant bending stiffness EI, and neglect
the deformations as a result of shear and normal forces.

16.2 The underslung beam 1234 shown in Fig. 9.9(e) has a constant bending stiff-
ness EI. Shear deformations and deformations due to normal forces in
beam 1234 and in struts 25 and 36 can be ignored. The tie 1564 has a constant
axial stiffness EA and is prestressed to P0 in segment 56. Calculate the forces in
the struts for b = a/4 and P0 = 0 when vertical point loads G are applied at 2
and 3. How large must P0 be in order that joints 2 and 3 do not exhibit any
deflection when subjected to G? What are the stress resultants in the system
prestressed and loaded in this way when an additional point load Q = G/2
is applied at 2?

16.3 The system shown in Fig. 9.9(f) consists of two identical bars (l = 2.5m,
EI = 38.35MNm2) welded together at joint 2. Bar 12 experiences a tempera-
ture difference DTz/h = – 69hC/m. Presuming aT = 10–5

/hC, determine the re-
sulting restraint state (bending moments and shear forces) and the rotation fX

at support 4.
16.4 Fig. 16.30(a) shows a continuous beam with constant bending stiffness EI.

Show that the support forces are given by

Aw

3gl

8
SQ 1s

5a

4
S

a3

4

	 


Bw

5gl

4
SQ

3a

2
s

a3

2

	 


C w

3gl

8
SQ s

a

4
S

a3

4

	 

and the moment envelopes by

M max w gl 2 3j

8
s

j2

2

 !
SQl js

5j2

4
S

j4

4

 !

M min w gl 2 3j

8
s

j2

2

 !
s

Qlj

6
ffiffiffi
3
p (0J jJ 1)

16.5 Fig. 16.30(b) shows a continuous beam with constant bending stiffness EI.
Determine the stress resultants due to q1 and q2.

16.6 Calculate the bending moment at 2 and the displacement at 3 as a function of k
for the system shown in Fig. 16.30(c). Discuss the special cases k p T, k = 1
and k p 0.

16.7 Solve exercise 16.6 for the case of settlement D of support 3.
16.8 Calculate the displacement of the point of load application 3 in Fig. 16.30(d).
16.9 Compare the structural behaviour of the two systems shown in Fig. 16.30(e).

Bars 12 and 34 lying in the XY plane are fixed at 1 and 4 respectively and con-
nected by bar 23 at right-angles. Line load q = const acts in the Z direction. All
the bars have a constant bending stiffness EI and a constant torsional stiffness
GIx = 3EI/5.

16.10 Mast 245 in Fig. 16.30(f) has a thin-wall hollow cross-section (EI =
51.79MNm2 ), and the two guy cables 14 and 34 (EA = 29.25MN) are pre-
stressed to 50 kN. Work out an expression for the horizontal displacement
of the top of the mast 5 due to Q. Compare the result with the behaviour of
the unguyed mast.
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16.11 A semicircular curved beam (radius r, bending stiffness EIy = const, torsional
stiffness GIx = const) is fixed at both ends and loaded at mid-span by a point
load Q acting perpendicular to the plane of the circle. Draw the diagrams of the
stress resultants and determine the deflection and rotation of the beam at mid-
span.

16.12 The base 1 of the system shown in Fig. 16.30(g) can be moved horizontally by
a hydraulic cylinder. The load Q should not experience any deflection when
moving from 2 to 3. How should point 1 be moved and what is the magnitude
of the force needed to do this?

16.13 How should the hydraulic cylinder of the system in exercise 16.12 be con-
trolled if the deflection curve at the position of Q must be horizontal?

27516.6 Exercises
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Fig. 16.30 Diagrams of static systems for section 16.6



17 THE DISPLACEMENT METHOD

17.1 Independent bar end variables

17.1.1 General

The basic idea of the displacement method has already been explained in sec-
tion 8.1.2. Using the example of an ideal truss, it was possible to obtain the global
stiffness matrix K = aT

x k x a by setting up the kinematic transformation matrix a
and the diagonal matrix k for the bar stiffnesses ki = (EA/l )i . Inverting K resulted
in the external deformation variables V = K –1

x Q corresponding with the loads Q,
and hence the internal deformation variables v = a x V plus the corresponding internal
force variables s = k x v.

These deliberations will be transferred to general plane frameworks in the following
with the help of the discretised structural model first seen in section 9.3. In doing
so, the corresponding independent bar end variables se = {Nr , Ml , Mr}

T and
ve = {D , l , r}T according to (9.7) will be used for each bar element e.

17.1.2 Member stiffness relationship

The beam of example 16.5, fixed at both ends, rigid in shear and with a constant
bending stiffness EI, has this flexibility matrix d

dw

l

3EI

l

6EI
l

6EI

l

3EI

2
664

3
775

By adding relationship (13.8)1 and assuming constant axial stiffness EA, we therefore
get the relationship similar to (8.5)2

D
l
r

8<
:

9=
;w

l

EA
0 0

0
l

3EI

l

6EI

0
l

6EI

l

3EI

2
6666664

3
7777775

Nr

Ml

Mr

8<
:

9=
; (17:1)

and inversion gives us the relationship similar to (8.5)1

Nr

Ml

Mr

8<
:

9=
;w

EI

l

A=I 0 0
0 4 s 2
0 s 2 4

2
4

3
5 D

l
r

8<
:

9=
; (17:2)

The member stiffness matrix ke on the right in (17.2) is square, symmetrical, invertible
and positive definite. If we use sign convention II defined in Fig. 9.7 instead of sign
convention I defined in Fig. 9.6, then the following applies:

se w

Nr

Ml

Mr

8<
:

9=
;w

EI

l

A=I 0 0
0 4 2
0 2 4

2
4

3
5 D

l
r

8<
:

9=
;w ke 7 ve (17:3)

If we abandon the idea of rigidity in shear, i. e. we work with a finite shear stiffness
GAv according to (8.23), then the member flexibility matrix fe = ke

–1 has to take into
account additional terms e1/(GAvl ). Instead of (17.1) we get
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and using the shortened form

bw

12EI

GAvl 2
(17:5)

and inverting and changing to sign convention II results in
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9=
;w

EI

l

A

I
0 0

0
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With the member stiffness matrices ke of all the elements of a structure arranged on the
main diagonals of a hypermatrix k, and the correspondingly structured columns s and
v for all bar end variables se and ve, the following relationship, similar to (8.5)1, applies

sw k 7 v (17:7)

The reduced stiffness matrix k is, like its submatrices ke, square, symmetric, invertible
and positive definite.

Where bars that are rigid in shear have cross-sectional properties that vary along the
bar axis, e. g. haunched beams, the member flexibility matrix fe in (17.1) has to be
replaced by

f e w

ðl
0

dx

EA
0 0

0

ðl
0

(ls x)2

EI l 2
dx

ðl
0

x(ls x)

EI l 2
dx

0

ðl
0

x(ls x)

EI l 2
dx

ðl
0

x2

EI l 2
dx

2
66666666666664

3
77777777777775

(17:8)

according to (14.4), where inversion results in ke = fe
–1. As an approximation, the cal-

culation can be performed with cross-sectional properties that are constant segment by
segment, which presumes a suitably fine subdivision of the structure into individual
bar elements.

17.1.3 Actions on bars

In order to take into account actions on individual bars, these are considered to be fully
fixed at the joints at both ends and the reactions to the fixed-end forces entered at the
appropriate points in the load vector Q. Fig. 17.1 contains the complete fixed-end
forces for a series of load cases; further cases can be obtained by specialisation or
superposition.

Using independent bar end variables means that only the variables Nr , Ml and Mr in
Fig. 17.1 are relevant; using complete bar end variables according to section 17.2
means that Nl , Vl and Vr are relevant, too.
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Fig. 17.1 Fixed-end forces due to actions on bars (sign convention II)



17.1.4 Algorithm for the displacement method

Based on the observations of sections 8.1.2, 9.3.4 and 10.3 as well as those of this
chapter, it is possible to summarise the general approach of the displacement method
as follows:

1. Determine the reduced stiffness matrix k and the load vector Q.
2. Set up the kinematic transformation matrix a for the kinematically determinate

basic system.
3. Calculate the global stiffness matrix

K w aT7 k 7 a (17:9)

4. Invert K and calculate the degrees of freedom at the joints

V wKs1 7 Q (17:10)

5. Calculate the bar end forces

sw k 7 vS s0 (17:11)

from the internal deformation variables

vw a 7 V (17:12)

taking into account the fixed-end forces s0.

6. Calculate the support force variables C by considering equilibrium at the joints.

Example 17.1 Cantilever beam rigid in shear

The cantilever beam with constant bending stiffness EI shown in Fig. 17.2(a) is loaded over its
length l by a uniformly distributed line load q. A single bar element with the variables

vw
l
r

� �
, sw

Ml

Mr

� �
is adequate for modelling the beam. As there are no loads in the x direction, Nr , D and the correspond-
ing degree of freedom V4 at joint 2 may be eliminated; only the active degrees of freedom shown in
Fig. 17.2(b) remain:

V w

V5

V6

� �
Eq. (17.3) supplies the reduced stiffness matrix

kw
EI

l

4 2
2 4

� �
and Fig. 17.1 gives us the fixed-end forces

s0 w
Ml0

Mr0

� �
w

ql 2

12
1

s 1

� �
along with shear forces of –ql/2 at the ends of the bar, from which we get the load vector

Qw

Q5

Q6

� �
w

ql=2
ql 2=12

� �
From Fig. 17.2(c), it follows that

aw
1=l 0
1=l 1

� �
and hence according to (17.9),

K w

EI

l
12=l 2 6=l

6=l 4

� �
Inverting K results in

Ks1
w

l

EI
l 2=3 s l=2
s l=2 1

� �
from which, by using (17.10), we get

V w

ql 3

EI

l=8
s 1=6

� �
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and by using (17.12), we get

vw
ql 3

EI

1=8
s 1=24

� �
Applying (17.11) in the end results in

sw
ql 2=2

0

� �
and equilibrium at joint 1 calls for

C w

s ql
ql 2=2

� �
Fig. 17.2(d) shows the fixed-end forces imposed at the ends of the bar and their reactions imposed at
the joints. Fig. 17.2(e) illustrates the relationships for V and v, and the resulting bending moment dia-
gram is shown in Fig. 17.2(f).

17.2 Complete bar end variables

17.2.1 General

Applying the independent bar end variables used in section 17.1 keeps the matrices as
small as possible. However, the complete bar end forces, like the stress resultant dia-
grams and the support force variables, must be calculated in a further step by consider-
ing the equilibrium. In order to overcome this disadvantage, we introduce the complete
bar end variables

se w
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9>>>>>>=
>>>>>>;

, ve w
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ur

wr

fr

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(17:13)

according to Fig. 17.3. These and the independent bar end variables se = {Nr , Ml, Mr}
T

and ve = {D , l , r}T used previously are linked by the relationships
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se w eT
e

7 se , ve w ee 7 ve (17:14)

with the transformation matrix

ee w

s 1 0 0 1 0 0
0 s 1=l 1 0 1=l 0
0 s 1=l 0 0 1=l 1

2
4

3
5 (17:15)

Relationship (17.14)1 has already been illustrated in Fig. 9.4(b) with the help of sign
convention I.

17.2.2 Member stiffness relationship

Combining (17.3) and (17.14) results in

se w eT
e

7 ke 7 ee 7 ve w ke 7 ve (17:16)

where

ke w
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(17:17)

The complete member stiffness matrix ke is square and symmetrical, and its main di-
agonal elements are positive. However, ke is singular (det ke = 0); the nullity is equal
to half the number of variables in se or ve. The fourth or fifth row results from the first
or second row respectively by multiplying by –1, and the sixth row is reached by sub-
tracting the third row from the fifth row. Further, the following applies:

Qw vT
e

7 ke 7 ve j 0 (17:18)

see (A5.25), i. e. ke is positive semi-definite.

The elements of the individual columns in ke correspond to the bar end forces that
result when the bar end deformation variables vei = 1 are imposed successively on
the bar element.

In a similar way to (17.6), using (17.5) for bars with finite shear stiffness, we get

ke w

EA

l
0 0 s

EA

l
0 0

0
12EI

l 3(1S b)
s

6EI

l 2(1S b)
0 s

12EI

l 3(1S b)
s

6EI

l 2(1S b)

0 s

6EI

l 2(1S b)

EI(4S b)

l(1S b)
0

6EI

l 2(1S b)

EI(2s b)

l(1S b)

s

EA

l
0 0

EA

l
0 0

0 s

12EI

l 3(1S b)

6EI

l 2(1S b)
0

12EI

l 3(1S b)

6EI

l 2(1S b)

0 s

6EI

l 2(1S b)

EI(2s b)

l(1S b)
0

6EI

l 2(1S b)

EI(4S b)

l(1S b)

2
666666666666666666664

3
777777777777777777775

(17:19)
instead of (17.17).
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17.2.3 Actions on bars

In a similar way to (17.11), generalising (17.16) means that the following applies:

se w ke 7 ve S se0 (17:20)

where se0 stands for the complete fixed-end forces of the element, see Fig. 17.1.

17.2.4 Support force variables

Taking into account both the active degrees of freedom V and the passive degrees of
freedom VC due to the support conditions, we get

vw a 7 V S aC 7 VC (17:21)

instead of (8.1), where a and aC are obtained in the usual way column by column by
imposing the individual degrees of freedom on the kinematically determinate basic
system. Combining all the relationships (17.20) leads to

sw k 7 vS s0 (17:22)

and therefore

Q
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� �
w

K KT
C

KC KCC

� �
7

V
VC

� �
S

aT 7 s0

aT
C

7 s0

� �
(17:23)

instead of (8.2), where Q and C denote the loads and support force variables corres-
ponding to V and VC respectively, and the variables

K w aT7 k 7 a , KC w aT
C

7 k 7 a , KCC w aT
C

7 k 7 aC (17:24)

have been introduced.

With a rigid support, VC a 0, and therefore according to (17.23), the following
applies:

V wKs1 7 (Qs aT 7 s0) , C wKC 7 V S aT
C

7 s0 (17:25)

If support displacements VC0 have been specified, then the following applies:

V wK s1 7 (QsKT
C

7 VC0 s aT 7 s0) , C wKC 7 V SKCC 7 VC0 S aT
C

7 s0

(17:26)

Example 17.2 Cantilever beam rigid in shear

The variables corresponding to degrees of freedom V1 and V4 according to Fig. 17.4 can be eliminated
in all relationships for the cantilever beam examined in example 17.1. Using the active degrees of
freedom V5, V6 and the passive degrees of freedom V2, V3, eq. (17.21) is then
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Eq. (17.17) results in
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and (17.24) therefore gives us
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according to Fig. 17.1 and

FwK s1
w

l

EI
l 2=3 s l=2
s l=2 1

� �
as well as Q a 0, eq. (17.25)1 then results in

V w
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and therefore (17.25)2 results in

C w
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w ql
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� �
The matrices K, KC and KCC calculated above are identical with the (2q2) submatrices at bottom
right, top right and top left in the (4q4) matrix k. It would have been possible to determine these
directly from k without carrying out the transformations (17.24). Actually, we get an identity matrix I
for the kinematic transformation matrix describing the transition from the external to the internal de-
formation variables when the external deformation variables are not rearranged into the active and
passive degrees of freedom V and VC right at the start, but rather arranged in one column
according to their numbering. The rearrangement in this case causes the first two rows and columns
of k to be exchanged with the last two.

17.3 The direct stiffness method

17.3.1 Incidence transformation

By using the complete bar end variables (17.13)2 for the two-element frame shown in
Fig. 17.5, eq. (8.1) is then
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where v1l = {u1l, w1l , f1l}
T, ... and V1 = {V1, V2, V3}

T, ... . The kinematic transform-
ation matrix a on the right in (17.27) turns out to be a pure incidence matrix that only
contains the elements 0 and 1.

Using

ke w
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kerl kerr

� �
according to (17.17) or (17.19), we get
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Accordingly, the global stiffness matrix K can be obtained directly through superpos-
ition of the member stiffness matrices by entering the member stiffness values at the
corresponding global positions. We can use the same procedure to set up the global
load vector Q.

17.3.2 Rotational transformation

According to Fig. 17.6, the following transformation relationships between the local
and global bar end variables are valid:

se w ce 7 seg , ve w ce 7 veg (17:29)

and

seg w cT
e

7 se , veg w cT
e

7 ve (17:30)

where

ce w
c 0
0 c

� �
(17:31)

using the orthogonal rotation matrix

cw
cosa s sina 0
sina cosa 0

0 0 1

2
4

3
5 (17:32)

see (A5.14).

Instead of (17.20), in terms of global variables we get

seg w keg 7 veg S se0g (17:33)

where

keg w cT
e

7 ke 7 ce , se0g w cT
e

7 se0 (17:34)

In the case of spatial bar elements where se = {Nl , Vyl , Vzl , Mxl, Myl, Mzl; Nr , Vyr , Vzr ,
Mxr , Myr , Mzr}

T and ve = {uxl , uyl, uzl, fxl, fyl, fzl; uxr, uyr , uzr , fxr , fyr , fzr}
T,

eq. (17.29) and (17.30) continue to apply. However,

ce w

c 0 0 0
0 c 0 0
0 0 c 0
0 0 0 c

2
664

3
775 (17:35)

where the matrix

cw
cos(x, X) cos(x, Y) cos(x, Z)
cos(y, X) cos(y, Y) cos(y, Z)
cos(z, X) cos(z, Y) cos(z, Z)

2
4

3
5 (17:36)

of the direction cosine, i. e. the cosine of the angle between the local and global axes,
has to be used.
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17.3.3 Algorithm for the direct stiffness method

17.3.3.1 Basic concepts

Combining the relationships (17.33) for all elements results in

sg w

.

.
seg

.

.

.

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

w

.
.

keg

.
.

.

2
6666664

3
7777775

7

.

.
veg

.

.

.

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

S

.

.
se0g

.

.

.

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

w kg 7 vg S s0g (17:37)

where kg = global stiffness matrix for all elements and s0g = vector for global fixed-
end forces. Further, if we arrange the matrices ce according to (17.31) or (17.35) along
the main diagonals of a square hypermatrix

cw

.
.

ce

.
.

.

2
6666664

3
7777775

(17:38)

then instead of (17.29) and (17.30), we get

sw c 7 sg , vw c 7 vg (17:39)

or rather

sg w cT7 s , vg w cT 7 v (17:40)

Combining (17.40)2 and (8.1) leads to

vg w cT7 a 7 V w ag 7 V (17:41)

and combining (8.2) and (17.39)1 results in

Qw aT7 c 7 sg w aT
g

7 sg (17:42)

Substituting (17.37) in (17.42) and taking into account (17.41) results in

Qw aT
g

7 kg 7 ag 7 V S aT
g

7 s0g wK 7 V SQ0 (17:43)

According to (17.41), the kinematic transformation matrix ag links the degrees of free-
dom Vat the joints defined in terms of global coordinates with the bar end deformation
variables vg transformed into global coordinates. This is a pure incidence matrix that
only contains the elements 0 and 1. The global stiffness matrix K can therefore be
determined by the superposition of the values of the globally based member stiffness
matrices keg described in section 17.3.1. Likewise, the component Q0 of the global
load vector Q resulting from the bar loads is obtained by superposing the correspond-
ing values of the globally based fixed-end force vectors s0g .
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Fig. 17.6 Local and global bar end variables



17.3.3.2 Application

Structural analyses based on the direct stiffness method can be divided into the input,
computation and output phases.

The input phase involves systematically ascertaining all the relevant joint- and mem-
ber-related data in a similar way to Tab. 9.1, i. e.

– the joint and member types (nature and number of degrees of freedom)
– the member-joint relationships (bar elements with end joints, and in spatial

systems reference joints for orientating the principal axes of the cross-section)
– the support conditions (passive degrees of freedom and, if applicable, given

support displacements)
– the joint coordinates
– the member stiffness data
– the actions, i. e. loads on joints and members (bar loads).

The lengths and direction cosines of the individual bar elements can be determined
geometrically using the joint coordinates, and the allocation of the degrees of freedom
for members and joints follows from the member-joint relationships (incidence matrix
ag).

The computation phase involves

– forming the matrices ce for all members and therefore determining the
corresponding global variables keg and se0g from the local variables ke and se0

according to (17.34)
– setting up the global stiffness matrix K and the bar load component Q0 according

to (17.43) and rearranging according to (17.23)
– determining the degrees of freedom V as well as the support force variables

according to (17.25) and (17.26) respectively
– selecting the global bar end variables veg from V to calculate the local bar end

forces se using (17.29)2 and (17.20).

The results are further processed in a suitable way (e. g. by determining state variables
between the joints, calculating envelopes, etc.) and presented (numerically or graphic-
ally) during the output phase.

Example 17.3 Plane frame

The plane frame shown in Fig. 17.7(a) consists of two reinforced concrete slabs 0.2m deep in the
z direction and 1m wide in the y direction. For simplicity, the calculation is performed with the
cross-sectional values of the concrete only: Ec = E = 30kN/mm2. The result for the bending stiffness
is EI = 30 ·103 · (0.2)3

/12 = 20 MNm2. The axial stiffness is EA = 30 ·103 ·0.2 = 6000 MN, and
using nc = n = 0.2 and av = 5/6 (see appendix A4) and taking into account (7.2), the shear stiffness
is GAv = {30 ·103

/[2(1 + 0.2)]} ·0.2 ·5/6 = 2083.3MN.
Of the degrees of freedom shown in Fig. 17.7(a), those at joint 2 (V4, V5 and V6) are active. The other
degrees of freedom are passive because of the fixity at joints 1 and 3.
The action in this case is a uniformly distributed line load q = 10kN/m in the Z direction applied to
bar 2.
We shall ignore shear deformations at first, i. e. we shall calculate according to (17.5) using b = 0, and
that means with l1 = 4m and l2 = 6m according to (17.17), we get the following complete member
stiffness matrices:

k1 w

1500 0 0 s 1500 0 0
0 3.75 s 7.5 m 0 s 3.75 s 7.5 m
0 s 7.5 m 20 m2 0 7.5 m 10 m2

s 1500 0 0 1500 0 0
0 s 3.75 7.5 m 0 3.75 7.5 m
0 s 7.5 m 10 m2 0 7.5 m 20 m2

2
6666664

3
7777775

MN

m
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and

k2 w

1000 0 0 s 1000 0 0
0 1.111 s 3.333 m 0 s 1.111 s 3.333 m
0 s 3.333 m 13.333 m2 0 3.333 m 6.667 m2

s 1000 0 0 1000 0 0
0 s 1.111 3.333 m 0 1.111 3.333 m
0 s 3.333 m 6.667 m2 0 3.333 m 13.333 m2

2
6666664

3
7777775

MN

m

288 17 THE DISPLACEMENT METHOD

III LINEAR ANALYSIS OF FRAMED STRUCTURES

2.4 6

1

3.2
X

Z

q

2 3

= 10 kN/m

EI = 20 MNm2

V5

1

V6

V4
V8

3

V9

V7

V2

V3

V1

( )

( )
( )

( )

( )
( )

60

28.688

33

27
28.688

36

9

60
28.434

33.083

26.917
28.434

36.227

8.659

60

36.22033.085

26.915
28.408

28.408

8.600

28.688−

−

38
.81

3

−

−

[kN]N

6.7
5

−

3.3

[kN]V

−

+

28.434−

−

38
.59

4

−

−

[kN]N

28.408−

−

38
.57

7

−

−

[kN]N

33−

27−

3.308

6.5
97

−

−

+

26.917−

33.083−

[kN]V

3.308

6.5
77

−

−

+

26.915−

33.085−

[kN]V

[kNm]M

−

− 18

9

+
−−

− 36

18.45

[kNm]M

−

− 17.729

8.659

+
−−

− 36.227

18.497

[kNm]M

−

− 17.709

8.600

+
−−

− 36.220

18.511

1

2

(a)

(b) (c) (d)

2

Fig. 17.7 Plane frame: (a) diagram of static system and degrees of freedom (dimensions in m), (b) diagrams of

free bodies and stress resultants for inextensible bars rigid in shear (forces in kN, moments in kNm),

(c) EA = 6000 MN, (d) EA = 6000 MN, GAv = 2083.3 MN



Using the rotation matrix

cw
0.6 s 0.8 0
0.8 0.6 0
0 0 1

2
4

3
5

according to (17.32), eq. (17.34)1 results in the following for bar 1:

k1g w

542.4 s 718.2 s 6 m s 542.4 718.2 s 6 m
s 718.2 961.35 s 4.5 m 718.2 s 961.35 s 4.5 m
s 6 m s 4.5 m 20 m2 6 m 4.5 m 10 m2

s 542.4 718.2 6 m 542.4 s 718.2 6 m
718.2 s 961.35 4.5 m s 718.2 961.35 4.5 m
s 6 m s 4.5 m 10 m2 6 m 4.5 m 20 m2

2
6666664

3
7777775

MN

m

Furthermore, k2g = k2.
Using

s20 w s20g w

0
s 30
30 m

0
s 30
s 30 m

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

kN

according to Fig. 17.1 and Q a 0, eq. (17.43) then results in

542.4 s 718.2 s 6 m s 542.4 718.2 s 6 m 0 0 0
s 718.2 961.35 s 4.5 m 718.2 s 961.35 s 4.5 m 0 0 0
s 6 m s 4.5 m 20 m2 6 m 4.5 m 10 m2 0 0 0
s 542.4 718.2 6 m 1542.4 s 718.2 6 m s 1000 0 0

718.2 s 961.35 4.5 m s 718.2 962.461 1.167 m 0 s 1.111 s 3.333 m
s 6 m s 4.5 m 10 m2 6 m 1.167 m 33.333 m2 0 3.333 m 6.667 m2

0 0 0 s 1000 0 0 1000 0 0
0 0 0 0 s 1.111 3.333 m 0 1.111 3.333 m
0 0 0 0 s 3.333 m 6.667 m2 0 3.333 m 13.333 m2

2
6666666666664

3
7777777777775

0
0
0

V4

V5

V6

0
0
0

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

w

0
0
0
0

30
s 30 m

0
30

30 m

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

mm

from which, making use of (17.25), the result is

V4 w 28.434 mm , V5 w 53.487 mm , V6 ws 906.990 mrad

C1 w 28.434 kN , C2 ws 26.917 kN , C3 ws 8.659 kNm

C7 ws 28.434 kN , C8 ws 33.083 kN , C9 ws 36.227 kNm

Applying (17.29)2 and (17.20) ultimately leads to

s1 w

38.594 kN
6.597 kN

s 8.659 kNm
s 38.594 kN
s 6.597 kN

s 17.729 kNm

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

, s2 w

28.434 kN
s 26.917 kN
17.729 kNm
s 28.434 kN
s 33.083 kN
s 36.227 kNm

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

with which the diagrams of stress resultants shown in Fig. 17.7(c) are determined.
If we assume that both bars are inextensible, then V4 = V5 = 0, and we get

V6 w
s 30 m �mm

33.333 m2 ws 0.9 mrad

Fig. 17.7(b) shows the corresponding support force variables and stress resultants. Compared with the
system with finite axial stiffness, Fig. 17.7(c), the normal forces (compressive forces) are slightly
larger, and bar 1 is subjected to slightly greater bending; and vice versa, the finite axial stiffness leads
to the fixity at joint 3 having a somewhat greater effect compared with the inextensible system.
Applying (17.5), the finite shear stiffness GAv = 2083.3 MN gives us the factors

b1 w
12 � 20

2083.3 � 42 w 0.0072 , b2 w
12 � 20

2083.3 � 62 w 0.0032

and therefore according to (17.19),

k1 w

1500 0 0 s 1500 0 0
0 3.723193 s 7.446386 m 0 s 3.723193 s 7.446386 m
0 s 7.446386 m 19.892772 m2 0 7.446386 m 9.892772 m2

s 1500 0 0 1500 0 0
0 s 3.723193 7.446386 m 0 3.723193 7.446386 m
0 s 7.446386 m 9.892772 m2 0 7.446386 m 19.892772 m2

2
6666664

3
7777775

MN

m
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and

k2 w

1000 0 0 s 1000 0 0
0 1.107567 s 3.322701 m 0 s 1.107567 s 3.322701 m
0 s 3.322701 m 13.301435 m2 0 3.322701 m 6.634769 m2

s 1000 0 0 1000 0 0
0 s 1.107567 3.322701 m 0 1.107567 3.322701 m
0 s 3.322701 m 6.634769 m2 0 3.322701 m 13.301435 m2

2
6666664

3
7777775

MN

m

Applying (17.34)1 results in

k1g w

542.382843 s 718.212867 s 5.957109 m s 542.382843 718.212867 s 5.957109 m
s 718.212867 961.340350 s 4.467832 m 718.212867 s 961.340350 s 4.467832 m
s 5.957109 m s 4.467832 m 19.892772 m2 5.957109 m 4.467832 m 9.892772 m2

s 542.382843 718.212867 5.957109 m 542.382843 s 718.212867 5.957109 m
718.212867 s 961.340350 4.467832 m s 718.212867 961.340350 4.467832 m
s 5.957109 m s 4.467832 m 9.892772 m2 5.957109 m 4.467832 m 19.892772 m2

2
6666664

3
7777775

MN

m

and k2g = k2.
The set of equations

1542.382843 s 718.212867 5.957109 m
s 718.212867 962.447917 1.145131 m

5.957109 m 1.145131 m 33.194207 m2

2
4

3
5 V4

V5

V6

8<
:

9=
;w

0
30

s 30 m

8<
:

9=
; mm

resulting from the superposition of the (3q3) submatrices bottom right in k1g and top left in k2g sup-
plies the active degrees of freedom

V4 w 28.408 mm , V5 w 53.453 mm , V6 w � 910.715 mrad

in a similar way to the above, and applying (17.25)2 gives us the following support force variables:

C1 w 28.408 kN , C2 ws 26.915 kN , C3 ws 8.600 kNm

C7 ws 28.408 kN , C8 ws 33.085 kN , C9 ws 36.220 kNm

Fig. 17.7(d) shows the associated diagrams of the stress resultants. Compared with the system rigid in
shear with finite axial stiffness, Fig. 17.7(c), bar 1 is marginally relieved, the compressive force in
bar 2 is somewhat lower and the values of the negative moments in bar 2 decrease slightly at the
expense of the positive moment. On the whole, the influence of the shear stiffness in this slender
system is very small, as expected.

17.4 The slope-deflection method

17.4.1 General

As the direct stiffness method, explained in section 17.3, and the computer programs
based on it have become more popular, so the slope-deflection method, which was
developed for the manual calculation of plane frame systems, has essentially lost
the significance it once had for practical applications. However, in teaching, the
slope-deflection method is still very helpful because of its clarity. It opens up an alter-
native approach to understanding the structural behaviour of statically indeterminate
framed structures and is particularly suitable for imparting that feel for statics so
indispensable for engineers.

In the slope-deflection method, bars are assumed to be inextensible and rigid in shear.
The member flexibility matrix (17.8) is therefore singular and can only be inverted for
the bending components. After calculating the bending moments, the normal forces
must be calculated from the joint equilibrium conditions.

The primary unknowns used in the slope-deflection method are the joint rotations f

and the bar rotations c. Sign convention II, described in section 9.3.4, is generally
used here, i. e. moments acting in the anticlockwise direction, or rather about the posi-
tive y axis, and the corresponding rotations are positive. According to Fig. 17.8, the
following therefore applies:

lwfl sc , rwfr sc (17:44)

In non-sway systems (systems with a braced network of joints), the only unknowns are
the joint rotations, which are calculated from the equilibrium conditions of the mo-
ments at the joints. In sway systems (systems with an unbraced network of joints),
the unknown joint rotations are supplemented by bar rotations; in this case, applying
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the principle of virtual deformations allows us to set up a number of displacement
equilibrium conditions corresponding to the number of bar rotations to supplement
the moment equilibrium conditions at the joints.

In principle, an unknown joint rotation has to be introduced at each joint, and springs
and hinges must be considered as part of the bar, see Fig. 17.9(a). At the ends of the
system, the joint rotations are equal to zero or are given; for example, in the system
shown in Fig. 17.9(b), only f2 and f3 are not known.

The number of linear, independent bar rotations can be calculated from the fact that we
introduce fictitious flexural hinges at all joints and count the restraining forces re-
quired to stabilise the system. Fig. 17.10(a) explains this procedure for a multi-storey
frame that has three degrees of static indeterminacy both internally and externally. The
mechanism created by introducing seven flexural hinges is, for example, stabilised by
a restraining force at each of joints 4, 5 and 6, as shown; c12, c23 and c25 could be
chosen as independent bar rotations, for example, to which we add five further un-
known joint rotations at joints 2 to 6. The inclined leg frame with five degrees of static
indeterminacy shown in Fig. 17.10(b) requires only one restraining force to stabilise
the mechanism that ensues after introducing the four flexural hinges at joints 2, 3, 5
and 6. The relationships between the bar rotations are c12 = c43 = c52 ·c/a,
c23 = –c52 ·c/(b/2) and c63 = c52. The unknown independent bar rotation c52 is
joined by the two unknown joint rotations f2 and f3.

29117.4 The slope-deflection method
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Fig. 17.9 Joint rotation: (a) individual joints, (b) example – f2 and f3 unknown
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Fig. 17.10 Bar rotation: (a) multi-storey frame, (b) inclined leg frame



17.4.2 Basic states and member end moments

17.4.2.1 Standard bar

We shall first consider a standard bar of length l fixed at the adjacent joints i and k, see
Fig. 17.11. The external load q causes fixed-end moments Mik

0 and Mki
0. The mo-

ments Mik = sik and Mki = tki correspond to the unit joint rotation fi = 1, and similarly,
the moments Mki = ski and Mik = tik correspond to fk = 1. The values sik and ski are
called near-end bar stiffnesses, and tki = tik is the far-end bar stiffness. According
to (17.44), a unit bar rotation cik = 1 has the same effect on the end tangent angles l

and r as simultaneous joint rotations fi = fk = –1, and accordingly, the member end
moments are Mik = –(sik + tik) and Mki = –(ski + tki).

We shall use the force method to calculate the fixed-end moments and the near- and
far-end bar stiffnesses. Releasing the fixity and introducing the redundant variables
Mik and Mki (anticlockwise = positive) creates the simply supported beam correspond-
ing to the fixed-end bar as a basic system and gives us the joint rotations

fi0 ws

ðl
0

M(q)

EI
1s

x

l

	 

dx , fk0 w

ðl
0

M(q)

EI
� x

l
dx (17:45)

as a result of external load q and

fii w

ðl
0

(ls x)2

EI l 2 dx , fik wfki ws

ðl
0

x(ls x)

EI l 2 dx , fkk w

ðl
0

x2

EI l 2 dx (17:46)

as a result of unit force variables Mik = 1 or Mki = 1, see (17.8).

The set of equations

fi wfi0 SfiiMik SfikMki

fk wfk0 SfkiMik SfkkMki

(17:47)

with fi = fk = 0 gives us the fixed-end moments

M0
ik w

fikfk0 sfkkfi0

fiifkk sf2
ik

, M0
ki w

fkifi0 sfiifk0

fiifkk sf2
ik

(17:48)

Using fi = 1 and fk = fi0 = fk0 = 0, we get

sik w
fkk

fiifkk sf2
ik

, tki w
sfki

fiifkk sf2
ik

(17:49)

and with fk = 1 and fi = fi0 = fk0 = 0

ski w
fii

fiifkk sf2
ik

, tik w
sfik

fiifkk sf2
ik

(17:50)

Superposition of all contributions results in the total member end moments

Mik wM0
ik S sikfi S tikfk s (sik S tik) cik

Mki wM0
ki S tkifi S skifk s (ski S tki) cik

(17:51)

For bars with a constant bending stiffness EI, (17.46) results in

fii wfkk w
l

3EI
, fik wfki ws

l

6EI
and therefore

sik w ski w
4EI

l
, tik w tki w

2EI

l
(17:52)

follows from (17.49) and (17.50), see (17.3).
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17.4.2.2 Special cases

If bar end k is fixed elastically as shown in Fig. 17.12(a), the amount 1/kyk due to
Mki = 1 is added to the expression fkk in (17.46)3, and instead of (17.49) and
(17.50), we get

sik w
fkk S 1=kyk

fii(fkk S 1=kyk)sf2
ik

, tik w tki w
sfik

fii(fkk S 1=kyk)sf2
ik

ski w
fii

fii(fkk S 1=kyk)sf2
ik

(17:53)

With a constant bending stiffness EI, these expressions are reduced to

sik w
4EI

l
� 3EI S kykl

4EI S kykl
, tik w tki w

2EI

l
� kykl

4EI S kykl
, ski w

4EI

l
� kykl

4EI S kykl

(17:54)

If the bar has a hinge at end k, see Fig. 17.12(b), then kyk = 0 and

sik w
1

fii

, tik w tki w ski w 0 (17:55)

i. e. with constant EI

sik w
3EI

l
, tik w tki w ski w 0 (17:56)

If the bar is given an intermediate hinge, see Fig. 17.12(c), the result is

sik w
3EI

li[1S (lk=li)
3]

, tik w tki w
3EI lilk
l 3

i S l 3
k

, ski w
3EI

lk[1S (li=lk)3]
(17:57)

for a constant EI. When lk = 0 and li = l, this leads back to (17.56), and when
li = 2lk = 2l/3 or lk = 2li = 2l/3, we get (17.52) again.

17.4.3 Equilibrium conditions

17.4.3.1 Joint equilibrium

According to Fig. 17.13, it is possible to formulate a moment-balance equation

Mi s
Pn
kw1

Mik w 0 (17:58)

at any joint with an unknown joint rotation f, where Mi is an external moment applied
at the joint.

17.4.3.2 Displacement equilibrium

A displacement equilibrium condition is obtained for each degree of displacement
freedom c by applying the principle of virtual deformations. To do this, we introduce
flexural hinges at the ends of the bars until the system becomes a sway system with
zero rotation at the joints.

We get the dependent rotations v12 = v21 = –va/b and v25 = v52 = vh1/h2 for the
example shown in Fig. 17.14(a) with the independent rotation v = v14 according
to Fig. 17.14(b); moreover, v23 = 0. The principle of virtual deformations results in

qbv12b=2SM14v14 SM12v12 SM21v21 SM25v25 SM52v52 w 0

and therefore

M14 s (M12 SM21)a=bS (M25 SM52)h1=h2 w qab=2
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17.4.4 Applications

Example 17.4 Non-sway frame

Only the joint rotation f2 is unknown in the non-sway frame shown in Fig. 17.15(a). Putting
M23

0 = ql2
/8, s21 = s24 = 4EI/l and s23 = 3EI/l as well as M2 = 0, then eq. (17.58) and the application

of (17.51) results in

ql 2

8
S 11

EI

l
f2 w 0

i. e.

f2 ws

ql 3

88EI
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Substituting this value in (17.51) and considering t12 = t42 = 2EI/l as well as t32 = 0 results in

M12 ws 2 ql 2=88 , M21 wM24 ws 4 ql 2=88 , M23 w 8 ql 2=88 , M32 w 0 , M42 ws 2 ql 2=88,

see Fig. 17.15(b). Equilibrium of the free bodies shown in Fig. 17.15(c) calls for

V12 wV21 ws (M12 SM21)=lw 6 ql=88 ,

V32 w qlSV23 w 36 ql=88 ,

V23 wsM23=ls ql=2ws 52 ql=88

V24 wV42 ws (M24 SM42) � 2=lw 12 ql=88

and

N21 wV24 w 12 ql=88 , N24 wsV21 SV23 ws 58 ql=88

We can see here that N23 must be equal to zero. Sign convention I is employed in Fig. 17.15(b), as is
usual for diagrams of stress resultants.

Example 17.5 Grandstand frame

The load on the grandstand frame shown in Fig. 17.16(a) can be replaced by the equivalent loads at
joint 3 according to Fig. 17.16(b). The joint rotations f2 and f3 as well as the bar rotation c12 are
unknown. The bar rotations c23 and c34 result from the displacement diagram Fig. 17.16(a):

c23 wc12 � 0.2=2w 0.1 � c12 , c34 wc23 � 2.4=0.6w 0.4 � c12

The member end moments are

M12

M21

M23

M32

M34

M43

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

w

t12 s (s12 S t12)
s21 s (s21 S t21)
s23 t23 s 0.1(s23 S t23)
t32 s32 s 0.1(s32 S t32)

s34 s 0.4(s34 S t34)
t43 s 0.4(s43 S t43)

2
6666664

3
7777775

f2

f3

c12

8<
:

9=
;

and when assuming a constant bending stiffness EI, the values are

s12 w s21 w 20 EI=l , t12 w t21 w 10 EI=l ; s23 w s32 w 3.71 EI=l , t23 w t32 w 1.86 EI=l

s34 w s43 w 6.15 EI=l , t34 w t43 w 3.08 EI=l
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Moment equilibrium at joints 2 and 3 calls for

s (s21 S s23) � f2 s t23 � f3 S (s21 S t21 S 0.1 s23 S 0.1 t23) � c12 w 0

s t32 � f2 s (s32 S s34) � f3 S (0.1 s32 S 0.1 t32 S 0.4 s34 S 0.4 t34) � c12 S ql 2=2w 0

and the principle of virtual deformations, with v = c12, results in

(M12 SM21) � vS (M23 SM32) � 0.1vS (M34 SM43) � 0.4vs ql � 0.25l � 0.4vw 0

We therefore get the set of equations

s 23.71 s 1.86 30.56
s 1.86 s 9.86 4.25
30.56 4.25 s 63.06

2
4

3
5 f2

f3

c12

8<
:

9=
;w

0
s 0.5
0.1

8<
:

9=
; ql 3

EI

with the solution

f2

f3

c12

8<
:

9=
;w

s 0.0043
0.0514

s 0.0002

8<
:

9=
; ql 3

EI

Substituting back into the relationships for the member end moments results in the values given in
Fig. 17.16(c).

Example 17.6 Multi-storey sway frame

Fig. 17.17(a) shows a multi-storey sway frame in which the joint rotations f2, f3, f4 and f5 as well as
the bar rotations c12 = c56 and c23 = c45 are unknown. Formulating the moment equilibrium con-
ditions for joints 2, 3, 4 and 5 and applying the principle of virtual deformations to the mechanisms
characterised by v = c12 or v = c23 while taking into account (17.52) and the fixed-end moments
shown in Fig. 17.17(b) results in the set of equations

28 2 0 8 s 12 s 6
2 12 4 0 0 s 6
0 4 12 2 0 s 6
8 0 2 28 s 12 s 6

s 12 0 0 s 12 48 0
s 6 s 6 s 6 s 6 0 24

2
6666664

3
7777775

f2

f3

f4

f5

c12

c23

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

w

s 1
s 1

0
0
0
6

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

MQl

4EI

with the solution

f2

f3

f4

f5

c12

c23

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

w

5.192
5.577

34.423
14.808
5.000

77.500

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

MQl

103EI

Substituting back into the relationships (not illustrated here) for the member end moments results in
the values given in Fig. 17.17(c).
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Fig. 17.17 Multi-storey frame: (a) diagram of static system, (b) fixed-end moments; (c) bending moment

diagram



Example 17.7 Multi-storey non-sway frame

Fig. 17.18 shows a multi-storey non-sway frame. Owing to the symmetry of the system and the
loading, the only unknowns are the joint rotations f2 = –f5 and f3 = –f4. With a fixed-end
moment M34

0 = 30 ·122
/12 = 360kNm, then according to (17.51) and (17.52), the member end

moments are

M32 wf3 � EI=(4 m)Sf2 � EI=(8 m) , M34 w 360 kNmSf3 � 4EI=(12 m)S (sf3) � 2EI=(12 m)

and

M21 wf2 � EI=(4 m) , M25 wf2 � 4EI=(12 m)S (sf2) � 2EI=(12 m) , M23 wf2 � EI=(4 m)Sf3 � EI=(8 m)

Accordingly, moment equilibrium at joints 3 and 2 calls for

3 10
16 3

� �
f2

f3

� �
w

s 8640
0

� �
kNm2

EI

from which it follows that

f2

f3

� �
w

171.656
s 915.497

� �
kNm2

EI

Substituting back into the relationships for the member end moments results in the values given in Fig.
17.18(b), and therefore we get

V12 ws (21.5S 42.9)=4ws 16.1 kN , V23 w (71.5S 207.4)=4w 69.7 kN

and

N25 w 16.1S 69.7w 85.8 kN , N34 ws 69.7 kN

see Fig. 17.18(c) and Fig. 17.18(d).
Fig. 17.19(a) shows the resultant thrust line for this problem, see section 5.3.2.1. Points A and C at
the ends of column 12 exhibit eccentricities of 21.5/180 = 0.119m and 42.9/180 = 0.238m
respectively. Point D at the level of frame beam 25 has an eccentricity of 71.5/180 = 0.397m
with respect to the column axis. The points of contraflexure in column 23 and frame beam 34 corres-
pond to points E and F at distances of 4 ·207.4/(207.4 + 71.5) = 207.4/69.7 = 2.975m and
6 · (1 –

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
332.6=540

p
) = 1.291m respectively from joint 3. The thrust line has an eccentricity

of 332.6/69.7 = 4.772m in the middle of frame beam 34 (point G). An eccentricity of
28.6/85.8 = 0.333m of the tensile force of 85.8kN corresponds to the moment of – 28.6kNm in
frame beam 25; the eccentric tensile force intersects straight line DE at point H, and the extension
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of straight line ABC also passes through this point. The final result is thrust line ABCHEFG with
straight segments ABCH and HE as well as parabolic segment EFG. The kink at H corresponds
to the transfer of the eccentric tensile force in frame beam 25.
Fig. 17.19(b) shows a free body diagram for the region around joint 2. It is assumed that the columns
and the frame beam have flanges at a spacing of 500 and 800mm respectively to which the bending
moments and normal forces are allocated – the webs between the flanges carry shear forces only.
The moment acting at the top edge of the joint region amounts to 71.5 – 69.7 ·0.4 = 43.6kNm,
and that produces flange forces of 180/2 e 43.6/0.5 = 177.2 and 2.8 kN. The moment acting
at the bottom edge is 42.9 – 16.1 ·0.4 = 36.5kNm, which leads to flange forces of 180/2 e 36.5/
0.5 = 162.9 and 17.1kN. In the frame beam, the resulting flange forces are 85.8/2 e 28.6/
0.8 = 78.7 and 7.1kN. There is a state of pure shear with membrane forces amounting to (16.1 –
7.1)/0.5 z (17.1 – 2.8)/0.8 z (78.7 – 69.7)/0.5 z (177.2 – 162.9)/0.8 z 17.9kN/m in the web
region of the joint.
This example is a good illustration of how the results of the structural analysis have to be further
processed for the dimensioning, e. g. for structural steelwork or reinforced concrete, in order to
specify or check the dimensions of the individual structural members. In the example, a joint region
0.5m wide and 0.8m deep corresponds to joint 2 (just a point in the structural analysis). The member
end moments calculated in the structural analysis do not occur in reality; they are purely auxiliary
variables that are employed to calculate the forces at the boundaries of the joint region. Within
the joint region, the one-dimensional modelling as a framed structure fails; two-dimensional
(three-dimensional) modelling is necessary in the case of a plane (spatial) frame.

17.4.5 Restraints

17.4.5.1 Non-sway systems

Restraints in non-sway systems can be treated by introducing fixed-end moments that
occur at the fixed joints as a result of the restraint.
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Example 17.8 Non-sway frame – settlement of supports

Column 24 of the frame shown in Fig. 17.20(a) settles by the amount c4. With joint 2 fixed, this leads
to the fixed-end moments

M0
12 wM0

21 w
6EIc4

l 2
, M0

23 ws

3EIc4

(3l=4)2 ws

16EIc4

3l 2

in the displaced state. The member end moments

M21 wM0
21 S

4EI

l
f2 , M23 wM0

23 S
3EI

3l=4
f2 , M24 w

4EI=2

l=2
f2

are in equilibrium with each other, and therefore

f2 w
(s 6S 16=3)EIc4=l 2

12EI=l
ws

c4

18l

and

M12 w 6s
2

18

	 

EIc4

l 2
, M21 w 6s

4

18

	 

EIc4

l 2
, M23 w s

16

3
s

4

18

	 

EIc4

l 2
, M24 w 2M42 ws

4

18

EIc4

l 2

see Fig. 17.20(b).
Alternatively, we can consider the system in its non-displaced state with fixed-end moments equal
to zero and imposed bar rotations of

c12 ws c4=l , c23 w 4c4=(3l )

The member end moments

M21 w
4EI

l
f2 S

c4

l
� 6EI

l
, M23 w

3EI

3l=4
f2 s

4c4

3l
� 3EI

3l=4
, M24 w

4EI=2

l=2
f2

agree with the values calculated above and the answer is the same.

Example 17.9 Non-sway frame – uniform rise in temperature

The frame considered in example 17.8 is subjected to a uniform rise in temperature T, which leads to
elongations of bars 12 and 24 amounting to aTT l and aTT l/2 respectively, see (14.4). The ensuing
displacements of joint 2 shown in Fig. 17.21(a) correspond to the fixed-end moments

M0
12 wM0

21 ws

6EIaT Tl=2

l 2
, M0

23 w
3EIaT Tl=2

(3l=4)2 , M0
24 wM0

42 w
6(EI=2)aT Tl

(l=2)2

The moment-balance equation

s 3S
8

3
S 12

	 

EIaT T

l
S 3 � 4EI

l
� f2 w 0
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Fig. 17.20 Non-sway frame: (a) diagram of static system, (b) bending moments due to settlement c4



for joint 2 leads to f2 = – 35aTT/36, and hence to the member end moments

M12 w s 3s
35

18

	 

EIaT T

l
, M21 w s 3s

35

9

	 

EIaT T

l
, M23 w

8

3
s

35

9

	 

EIaT T

l
, M24 w 12s

35

9

	 

EIaT T

l
, M42 w 12s

35

18

	 

EIaT T

l

see Fig. 17.21(b).
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Example 17.10 Non-sway frame – temperature difference

Bar 23 of the frame examined in examples 17.8 and 17.9 is subjected to a linearly distributed
temperature difference DT over its depth h, see Fig. 17.22(a), which would cause an unrestricted
curvature aTDT/h, see (14.4). If bar 23 were to be connected via a hinge at joint 2, a rotation of
(aTDT/h) · l23/2 would occur at that point. As s23 = 3EI/l23, we require a fixed-end moment of
3EIaTDT/(2h) at joint 2 in order to prevent this rotation, see Fig. 17.22(b). The moment-balance
equation

s 3EIaT DT=(2h)s 3 � (4EI=l ) � f2 w 0

for joint 2 leads to f2 = –(aTDT/h) · l/8, and hence to the restraint moments given in Fig. 17.22(c).

17.4.5.2 Sway systems

In sway systems we assume a system displaced in some arbitrary way according to the
restraint and calculate the fixed-end moments for fixed joints. Different bar rotations
result depending on the displacement initially selected.

Example 17.11 Sway frame – uniform rise in temperature

The frame shown in Fig. 17.23(a) is subjected to a uniform rise in temperature T that causes elonga-
tions aTT in all three bars. The initial displacement assumed in Fig. 17.23(a) results in the fixed-end
moments given in Fig. 17.23(b). The joint rotations f2 and f3 as well as the bar rotation c12

(c34 = 3c12 /4, c23 = 0) follow from two joint and one displacement equilibrium condition in the
usual way:

10.667 2 s 10
2 9 s 5.625

s 10 s 5.625 28.4375

2
4

3
5 f2

f3

c12

8<
:

9=
;w

1.2
s 8.175
14.0625

8<
:

9=
;

This set of equations gives rise to

f2,f3,c12f gw 0.861535 ,s 0.686204 , 0.661730f gaT T

and hence the member end moments are

M12 , M21 wsM23 , M32 wsM34 , M43f gw s 3.746 ,s 0.874 ,s 2.222 , 3.937f gaT TEI

l

see Fig. 17.23(c).
If we had initially chosen the displacement figure shown in Fig. 17.23(d), we would have arrived at
the fixed-end moments shown in Fig. 17.23(e) and the following set of equations:

10.667 2 s 10
2 9 s 5.625

s 10 s 5.625 28.4375

2
4

3
5 f2

f3

c12

8<
:

9=
;w

17.867
1.2

s 33.333

8<
:

9=
;

The only difference between the solution resulting from this set of equations and the previous one
is c12 ; the new value is –1.004936aTT. Both solutions result in the displacements shown in
Fig.17.23(f).
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17.4.6 Influence lines

The kinematic method for determining influence lines after LAND was introduced in
section 12.3. Its application to statically indeterminate systems with the help of the
force method was explained in section 16.3.4. According to the slope-deflection
method, the moments are calculated directly as a result of the virtual deformation vari-
able –1, and the associated deflections calculated from this using one of the methods
outlined in chapter 15.

Fig. 17.24(a) illustrates the calculation of the fixed-end moments for a standard bar of
length l with constant bending stiffness EI as a result of a virtual rotation –1 at j.
Employing sign convention II, the following applies:

di0 w js 1 , dk0 w j

and

dii w dkk w
l

3EI
, dik w dki ws

l

6EI
The compatibility conditions

di

dk

� �
w

dii dik

dki dkk

� �
M0

ik

M0
ki

( )
S

di0

dk0

� �
w

0

0

� �

result in

M0
ik w

EI

l
(4s 6j) , M0

ki w
EI

l
(2s 6j) (17:59)

Compare these with the variables Ml and Mr in the appropriate line in Fig. 17.1.

The example examined in Fig. 16.16 is considered again in Fig. 17.24(b). First of
all, (17.59), with j = 0.5, results in the fixed-end moments M12

0 = –M21
0 = EI/l. Put-

ting s21 = 4EI/l and s23 = 3EI/(0.8l ) = 3.75EI/l, the moment-balance equation
(s21 + s23)f2 +M21

0 = 0 at joint 2 gives us the rotation f2 = 4/31 and hence the bend-
ing moments M shown in the figure. Ultimately, the curvatures M/(EI ) allow the de-
flections to be determined, which are equal to the influence ordinates hM4 we require.
Any of the methods described in chapter 15 may be used for this, especially MOHR’s
analogy, or the influence line can be determined point for point with the help of the
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work theorem (section 14.2), possibly using the reduction theorem. In order to illus-
trate the latter procedure, we shall calculate the influence ordinate hM4 at point 4 as an
example by introducing a cantilever beam fixed at 1. The cantilever is loaded by a
point load of magnitude 1 at its unsupported end 4. Using the integration table of
Fig. 14.2 gives us the deflection

1

6
� 0.5 l � 2 � 39S

39S 15

2

	 

� EI

31 l
� 0.5 l

EI
w

35 l

248

see Fig. 17.24(b).

Example 17.12 Three-span frame

The task is to calculate the influence line hV23 for the shear force V23 to the right of joint 2 of the frame
shown in Fig. 17.25. The fixed-end moments M23

0 = M32
0 = – 6EI/l2 correspond to the virtual de-

formation –1 (vertical displacement of magnitude 1 in bar 23 at edge of joint 2), see (17.17). Using

s21 w s34 w 3 EI=l , s23 w s32 w 2t23 w 2t32 w 4 EI=l , s25 w 2t52 wEI=l ,

the moment-balance equations for joints 2 and 3 result in

8 2
2 7

� �
f2

f3

� �
w

6
6

� �
1

l

and from that we get the joint rotations

f2

f3

� �
w

15
18

� �
1

26l

and the member end moments

M21 , M23 , M32 , M34 , M25 , M52f gw 45 ,s 60 ,s 54 , 54 , 15 , 7.5f g EI

26 l 2

In the end, the shape of the bending moment M or curvature M/(EI ) diagram can be used to deter-
mine the associated deflections, i. e. the influence line hV23 , see Fig. 17.25.
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17.4.7 CROSS method of moment distribution

17.4.7.1 General

The CROSS method of moment distribution solves the joint equilibrium conditions for
a non-sway system iteratively. The advantage of this moment distribution method is
that it is not necessary to determine joint rotation explicitly; the iteration is carried out
directly for the joint moments, which leads to a very straightforward procedure.

A separate moment distribution has to be carried out for each load case and so the
CROSS method is unsuitable when many load cases have to be considered. On the
other hand, it is suitable for estimating the critical stress resultants from a few load
cases during the conceptual design stage.

The CROSS method of moment distribution can be used for sway systems as well. To
do that, we first distribute the moments on the non-sway (restrained) system and de-
termine the corresponding restraining forces. In a second step, the restraining forces
are cancelled out by imposing suitable displacement states (a unit displacement state
for each restraining force) and by superposing the corresponding restraining forces.

The CROSS method of moment distribution is closely related to other iteration
methods, e. g. that of KANI. Essentially, these methods correspond to an iteration
technique introduced by GAUSS and SEIDEL for solving sets of linear equations.

17.4.7.2 Non-sway systems

The first step is to calculate the fixed-end moments Mik
0 for the kinematically deter-

minate basic system (all joints fixed, see section 9.3.4). After that, one joint is released
and moment equilibrium at this joint achieved in accordance with the stiffnesses of the
adjoining bars; the moments corresponding to the joint rotation carried over to the
neighbouring joints are considered as surcharges on the moments already existing
there. The joint moments are therefore successively improved. The iteration procedure
is halted when the corrective moments are sufficiently small; at this point small mo-
ment values are no longer carried over to the neighbouring joints, but each joint must
be balanced in itself.

As fk = cik = 0, the equilibrium condition (17.58) in conjunction with (17.51)1 leads
to

fi w
Mi se M0

ik

e sik
ws

M0
i

e sik
(17:60)

(where Mi
0 = out-of-balance moment) and hence to

Mik wM0
ik s

sik

e sik
M0

i wM0
ik s kikM0

i

Mki wM0
ki s

tki

sik
kikM0

i wM0
ki s mikkikM0

i

(17:61)

The ratios

kik w
sik

e sik
, mik w

tki

sik
(17:62)

are called moment distribution and moment carry-over factors.

The practical calculation is carried out in the following steps with the help of a table:

1. Clarify the sway condition of the system, introduce restraining forces if necessary.
2. Calculate moment distribution and carry-over factors as well as out-of-balance

moments.
3. Release the joint with the maximum out-of-balance moment and apply (17.61).
4. Repeat step 3 until the iteration can be halted.
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Example 17.13 Continuous beam

According to the findings of section 17.4.1, only the joint rotations f2 and f3 are unknown
in the continuous beam of Fig. 17.26(a). Fig. 17.26(b) shows the fixed-end moments
(M23

0 = – M32
0 = 7.5 ·42

/12 = 10kNm, M34
0 = – 7.5 ·1.332

/4 = – 3.33kNm) corresponding to the
applied load. Using {s21, s23 = s32, s34} = {0.8,1.0,0.75}EI/m, the result according to (17.62)1 is
the moment distribution factors kik shown in Fig. 17.26(c), and {t12,t23 = t32,t34 = t43} =
{0.4,0.5,0}EI/m gives us the moment carry-over factors mik .
Moment distribution begins by releasing joint 3 and distributing the out-of-balance moment
M3

0 = –13.3kNm; the line beneath the figures 7.6 kNm = –k32M3
0 and 5.7kNm = –k34M3

0 means
that moment equilibrium has been reached at joint 3, i. e. M32 = (–10.0 + 7.6)kNm = – 2.4kNm
= –M34 = (3.3 – 5.7)kNm.
The proportion m23 · 7.6kNm = 3.8kNm of the correction of 7.6kNm at M32 is carried over to joint 2,
where it increases the out-of-balance moment M2

0 from 10.0 to 13.8kNm. Moment distribution at
joint 2 brings about corrections to M21 and M23 of – 6.1 and – 7.7kNm respectively, and the moments
of – 3.0 and 3.8kNm carried over to joints 1 and 3 respectively.
After this step-by-step description, the four further iteration steps of Fig. 17.26(c) need no further
explanation. The moments Mik added together in each column are finally entered on the bending
moment diagram, see Fig. 17.26(d).

306 17 THE DISPLACEMENT METHOD

III LINEAR ANALYSIS OF FRAMED STRUCTURES

0.56

0.5

10.0
3.8
7.7
1.1
0.6
0.1
0.1
6.6 4.1

0.2
0.3
2.2
3.8
7.6

10.0 3.3
5.7

1.6

0.1

4.1

0.5

6.13.0

0.2

3.2

0.50.5

0.44 0.57 0.43

μ

κ

6.6

ik

ikM

ik

Mik

0

7.5 kN/m

1 2 3 4

6.7

[kNm]

10

M

−
−

4.00 4.00 1.335.00

EI EIEI

10

5 3.3

−

−

−

−

−

−
−

−

−

−

−

−

−

−

6.7

[kNm]

6.6

M

− −
4.1−

15
3.2

0

(a)

(b)

(c)

(d)

−

−

− − −

++

+
+

−

Fig. 17.26 Continuous beam: (a) diagram of static system, (b) fixed-end moments, (c) moment distribution

table, (d) bending moment diagram



17.4.7.3 Sway systems

The sway frame shown in Fig. 17.27(a) is first considered as a non-sway system by
introducing a horizontal restraining force F0 at joint 3. Fig. 17.27(b) to (e) illustrate
the moment distribution and the resulting moments.

In order to determine the restraining force, the displaced state shown in Fig. 17.27(f) is
considered with c12 = – 2c23 = c34 = c and zero joint rotations. Applying the prin-
ciple of virtual deformations results in

c � [s 102s 205s (205s 231)=2S 231S 115] kNmS 600 kN � 3 m � (sc=2)SF0 � 4 m � cw 0

and consequently F0 = 212kN.

Fig. 17.27(g) shows the fixed-end moments as a result of c = 1, and Fig. 17.27(h)
shows the corresponding moment distribution. Applying the principle of virtual de-
formations once more results in

c � [s 1.058s 0.915s (0.915S 0.968)=2s 0.968s 1.234] EI=mSF1 � 4 m � cw 0

and consequently a restraining force of F1 = 1.2791EI/m2.

The condition

F0 S k F1 w 0

leads to the proportionality factor

k ws

212 kNm2

1.2791 EI
ws 165.74 kNm � m

EI
with which the moments calculated in Fig. 17.27(h) are multiplied and superposed on
those of Fig. 17.27(e). Fig. 17.27(i) shows the outcome of this superposition. Com-
pared with the non-sway system, Fig. 17.27(e), the values of the moments at joints 3
and 4 are significantly larger and those at joints 1 and 2 significantly smaller.
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17.5 Summary

1. The basic idea of the displacement method introduced in section 8.1.2 is trans-
ferred to general plane frameworks by applying the discretised structural model
introduced in section 9.3. Sign convention II is used throughout in this method.

2. The member stiffness matrices ke linking the independent bar end vari-
ables Nr, Ml, Mr and D, l, r as well as the reduced stiffness matrices k formu-
lated from all these matrices are square, symmetrical, invertible and positive
definite.

3. Actions on the individual bars are taken into account in accordance with Fig. 17.1
by way of fixed-end forces at the joints.

4. The heart of the displacement method is the formulation of the kinematic trans-
formation matrix a for the kinematically determinate basic system as well as the
calculation of the global stiffness matrix K according to (17.9) plus its inversion
and further usage according to (17.10) to (17.12).

5. All matrices remain as small as possible when using independent bar end vari-
ables. However, the complete bar end variables and the support force variables
must be calculated by considering the equilibrium subsequently. This disadvan-
tage is avoided when using complete bar end variables. The complete member
stiffness matrices ke are, however, singular and positive semi-definite.

6. The support force variables can be calculated directly by taking into account all
degrees of freedom and by rearranging accordingly in line with (17.25) or (17.26).

7. According to the direct stiffness method, the global stiffness matrix K can be cal-
culated by superposing the values of the member stiffness matrices keg related via
a rotational transformation to the global system of coordinates; the corresponding
kinematic transformation matrix ag is a pure incidence matrix. Likewise, the
component Q0 of the global load vector Q corresponding to the bar loads is found
by superposing the fixed-end force variables s0g related to the global system of
coordinates.

8. The slope-deflection method is a variation on the general displacement method
which was developed for the manual calculation of plane frame systems. Bars
are assumed to be inextensible and rigid in shear. The bar end moments are
expressed according to (17.51) depending on the external load or restraint as
well as the unknown joint and bar rotations f and c respectively, and f and
c are determined via joint and displacement equilibrium conditions.

9. Restraints are taken into account in the slope-deflection method via fixed-end
moments that occur at fixed joints as a result of the restraint. In doing this, we
can assume any initial displacement figure when dealing with sway systems.

10. When determining influence lines according to the slope-deflection method, the
moments as a result of a virtual deformation variable –1 are determined directly
and the deflections associated with those calculated with the help of one of the
methods described in chapter 15.

11. The CROSS method of moment distribution, which is based on the slope-deflec-
tion method, solves the joint equilibrium conditions of a non-sway system
iteratively. To do this, the negative out-of-balance moment is distributed to the
adjoining bars at each joint in turn and carried over to the neighbouring joints.
The iteration is halted as soon as the corrective moments are sufficiently small.

12. When using the CROSS method to solve sway systems, we eliminate the restrain-
ing forces required for the non-sway system by considering suitable unit displace-
ment states and superposing the corresponding restraining forces.
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17.6 Exercises

17.1 Set up the global stiffness matrix for the system shown in Fig. 9.9(a). Use the
cross-sectional values given in example 13.6 plus E = 210kN/mm2 and n = 0.3.

17.2 Examine the system shown in Fig. 9.9(g) using the slope-deflection method.
Presume constant bending stiffnesses EIb (beam 1234) and EIc (columns 25
and 36) with the ratio EIb/EIc = 10. Determine the stress resultants due to a uni-
formly distributed load on end span 12 or interior span 23.

17.3 Investigate how a settlement c5 influences the system examined in exercise 17.2.
17.4 The base 1 of the system shown in Fig. 17.28(a) experiences a settlement c1 and

a rotation f1 = c1/(4l ). Calculate the corresponding restraint stress resultants
and the deflection curve.

17.5 The bending stiffness of column 24 in Fig. 17.28(b) is three times smaller than
that of frame beam 12 and column 23. Calculate the stress resultants due to the
given load.

17.6 Calculate the stress resultants for the system shown in Fig. 17.28(c) subjected to
the actions q and Q = ql.

17.7 Solve exercise 17.6 assuming a rigid connection between frame beam 123 and
column 35.

17.8 Discuss the flow of the forces in joint region 3 of the system shown in Fig.
17.18(a) in a similar way to Fig. 17.19(b).
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18 CONTINUOUS MODELS

18.1 General

Many problems in everyday construction practice can be analysed with the help of
idealisation as one-dimensional continua according to section 8.2.1 (Introduction),
8.2.2 (Plane framed structures) and 8.2.3 (Spatial framed structures). Combining
the equilibrium conditions (8.21) or (8.26) with the kinematic relations (8.22) or
(8.27) plus the linear elastic constitutive equations (8.23) or (8.28) produces ordinary
differential equations for the displacement variables relevant to the particular problem.
Those variables in turn lead to the internal deformation and force variables we wish to
find depending on the position on the bar axis.

This chapter looks at such problems. We have to find the diverse relationships and
analogies between the different problems. Such relationships and analogies are suit-
able for improving our understanding of the structural behaviour of different types of
construction.

To help the reader, each main section in this chapter has its own summary (instead of
just one summary at the end as in the other chapters).

18.2 Bar extension

18.2.1 Practical examples

Fig. 18.1 shows a few typical practical examples of the analytical model dealt with
below. The internal and external deformation and force variables are confined to
the bar extension e, the normal force N and the displacement u plus the line load q
in the direction of the bar x. The applications range from columns (a) to piles with
end bearing and skin friction (b) to the idealisation of beam flanges (c) or shell
edge beams (d) in the form of stringers. Other examples concern the friction losses
that occur with prestressing tendons (e) and similar phenomena in prestressed raft
foundations (f) and rails subjected to thermal restraints (g). It is also possible to treat
bond problems in concrete construction, e. g. pull-out of reinforcing steel (h), the an-
chorage of pretensioned steel in concrete (i), the tension-stiffening action of the con-
crete between adjacent cracks, which relieves the reinforcing steel (j), and the com-
posite action of reinforcing laminates bonded to existing concrete beams (k). Further,
joints between bars achieved with adhesives, rivets, dowels, keys and other connectors
can be dealt with in a similar way.
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18.2.2 Analytical model

Using the abbreviated forms l = d/dx and qx = q, the relationships (8.21) and (8.22)
are reduced to

qwsNl , ew ul (18:1)

for the case of a pure bar extension, see Fig. 18.2. By adding the initial normal
strains e0, e. g. due to shrinkage or swelling (see section 7.4) or as a result of thermal
actions (see section 7.5), the relationship (13.8)1 is generalised to

ew
N

EA
S e0 (18:2)

and combining (18.1) and (18.2) results in

qS [(uls e0)EA]lw 0 (18:3)

When e0 = 0 and EA = const, (18.3) can be simplified to

qwsEA uL (18:4)

The appropriate boundary conditions according to Fig. 18.3 should be taken into ac-
count when integrating (18.3) or (18.4). A spring restraint (a) with the translational
spring stiffness k [kN/m] means that N = –ku applies, see (5.12)1. At a free end
(b), N = 0, which corresponds to k = 0. At a fixed end (c), u = 0, which corresponds
to k p T. In addition, all continuity conditions according to Fig. 18.4 have to be taken
into account, e. g. abrupt changes in q or EA, singularities in q and at intermediate
supports.
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Fig. 18.1 Bar extension – examples: (a) column, (b) pile, (c) beam flange (stringer), (d) shell edge beam,

(e) loss of prestress due to friction, (f) friction on prestressed raft foundation, (g) rail subjected to thermal

restraint, (h) pull-out test, (i) anchorage of pretensioned reinforcement in concrete, (j) tension stiffening in

cracked reinforced concrete, (k) reinforced concrete beam strengthened with bonded laminate
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Example 18.1 Bar restrained at both ends

The bar of length l shown in Fig. 18.5 is restrained at both ends and loaded by the line load

qw q0 cos
px

l

	 

It is assumed that e0 = 0 and EA = const. Integrating (18.4) twice results in

EAuw
q0l 2

p2
cos

px

l

	 

S c1x S c2

for this load. The integration constants c1 and c2 follow from the boundary conditions
u(0) = u(l ) = 0:

c1 w
2q0l

p2
, c2 ws

q0l 2

p2

and the following applies:

uw
q0l 2

p2EA
cos

px

l

	 

S

2x

l
s 1

� �
, N w

q0l

p

2

p
s sin

px

l

	 
� �
The point of zero N at x = (l/p) arc sin (2/p) z 0.22 l corresponds to the maximum displacement u.

Example 18.2 Bar with spring restraint at one end

The bar shown in Fig. 18.6, otherwise the same bar as that used for example 18.1, is restrained by a
spring at its right-hand end (k = EA/l ) and loaded by a single force F in the middle. As q = 0, it
follows from (18.4) that

I: EAuw c1x S c2 , II: EAuw c3xS c4

for bar segments I and II, where NI = c1 and NII = c3. The boundary and continuity conditions result
in

uI(0)w 0 : c2 w 0
uI(l=2)w uII(l=2) : c1 � l=2S c2 w c3 � l=2S c4

NI(l=2)wNII(l=2)SF : c1 w c3 SF
NII(l )ws kuII(l ) : c3 ws (1=l ) � (c3lS c4)

8>><
>>:

9>>=
>>; p

c1 w 3F=4
c2 w 0
c3 wsF=4
c4 wFl=2

8>><
>>:

9>>=
>>;

and therefore we get the diagrams for N and u shown in Fig. 18.6.
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Fig. 18.3 Boundary conditions: (a) spring restraint, (b) free end, (c) fixed end
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18.2.3 Residual stresses

Let us consider a cross-section made up of two materials (e. g. concrete and reinforcing
steel) according to Fig. 18.7. The parts of the cross-section have axial stiffnesses E1A1

and E2A2 and coefficients of thermal expansion aT1 and aT2. Applying (7.53), a
change in temperature T results in the initial normal strains

e01 waT1T , e02 waT2T

and therefore (18.2) – with e1 = e2 (cross-sections remain plane) and N1 + N2 = 0 (no
external loads) – results in the relationships

N1 wsN2 w
E1A1E2A2(aT2 saT1)T

E1A1 SE2A2
, e1 w e2 w

(aT1E1A1 SaT2E2A2)T

E1A1 SE2A2

(18:5)

Normally, changes in temperature occur simultaneously with shrinkage or swelling
processes, and external loads have to be considered as well. Including the correspond-
ing initial normal strains e0 means it is possible to deal with any problem with the help
of (18.1) and (18.2).

Example 18.3 Reinforced concrete column – change in temperature

Let us consider a reinforced concrete column with a relatively high geometric reinforcement ratio of
A2 /(A1 + A2) = 8 % as well as E1 = 33.6kN/mm2, aT1 = 6 ·10– 6

/hC, E2 = 205kN/mm2,
aT2 = 10 ·10– 6

/hC and T = 30hC. Eq. (18.5) then gives us

sc w
N1

A1
w 1.4 N=mm2 , ss w

N2

A2
ws 16.1 N=mm2 , ew 0.222 ‰

The tensile stress in the concrete sc is only about half of the (albeit highly scattered) tensile strength of
the concrete and so cracking of the concrete is unlikely.

Example 18.4 Reinforced concrete column – shrinkage

The task is to calculate the shrinkage strain ecs of the column examined in example 18.3, which causes
a tensile stress of fctm = 2.9N/mm2 (fctm = assumed mean concrete tensile strength). To do this, we
replace aT1T by ecs and put aT2 = 0 and N1 = A1 fctm in (18.5)1. From the corresponding relationship

ecs ws

fctm(E1A1 SE2A2)

E1E2A2

we get ecs = – 0.25 ‰, i. e. a shrinkage strain that can certainly occur, see section 7.4.1. Accordingly,
heavily reinforced members can suffer from shrinkage cracks even when deformation is not inhibited.
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18.2.4 Restraints

18.2.4.1 Homogeneous bar between rigid abutments subjected to change in

temperature

The bar shown in Fig. 18.8 is restrained at both ends and subjected to an arbitrary
change in temperature T = T(x). The axial stiffness EA and the coefficient of thermal
expansion aT are both presumed to be constant. Putting e0 = aTT and q = 0, and taking
into account the boundary conditions u(0) = u(l ) = 0, eq. (18.1) and (18.2) result in

N ws

EAaT

l

Ðl
0

T dx , uwaT

Ðx
0

T dx s
x

l

ðl
0

T dx

0
@

1
A (18:6)

18.2.4.2 Homogeneous rail subjected to constant change in temperature

A homogeneous rail of length 2l (axial stiffness EA, coefficient of thermal expan-
sion aT) is subjected to a change in temperature T = const. The displacements u
between the rail and the ground underneath cause forces q = –ku, see Fig. 18.9.
Eq. (18.4) results in the homogeneous differential equation

EAuLs kuw 0 (18:7)

with the solution

uw c1evx
S c2esvx v2

w

k

EA

	 

(18:8)

and (18.2) results in

N wEA(ulsaT T)wEA(c1vevx
s c2vesvx

saT T)

With the boundary conditions u(0) = 0 and N(l ) = 0, it follows that

c1 ws c2 w
aT T

2v cosh(vl )

which gives us

N wEAaT T
cosh(vx)

cosh(vl )
s 1

� �
, uw

aT T sinh(vx)

v � cosh(vl )
(18:9)

When l p T, the stress N/A in the rail tends to –EaTT, i. e. with, for example,
E = 205kN/mm2, aT = 10·10– 6

/hC and T = 40hC, it tends to – 82N/mm2.

18.2.4.3 Inhibited shrinkage of a reinforced concrete member

A reinforced concrete member of length l is restrained by a spring at one end as shown
in Fig. 18.10 (spring stiffness k). The axial stiffnesses of the concrete (EcAc) and the
reinforcing steel (EsAs) are presumed to be constant, and the shrinkage strain of the
concrete is assumed to have a value ecs = const. Eq. (18.2) gives us the normal force
components

Nc wEcAc(es ecs) , Ns wEsAse

in the concrete and the reinforcing steel. As q = 0, it follows from (18.1)1 that
N = Nc + Ns is constant, and therefore both e = (N + EcAcecs)/(EcAc + EsAs) as
well as Nc and Ns are constant, too. Taking into account the boundary condition
u(0) = 0, eq. (18.1)2 results in the relationship u = ex, and taking the boundary con-
dition Nc + Ns + kel = 0 at point x = l results in

ew
ecs

1S
EsAs S kl

EcAc

(18:10)

When k = 0, this relationship is reduced to (18.5)2 if we put aT2 = 0 and replace E1A1

by EcAc, E2A2 by EsAs and aT1T by ecs in that equation.
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The stress in the concrete is

sc w
Nc

Ac
w

sEcecs

1S
EcAc

EsAs S kl

which for k = 0 is reduced to the relationship for ecs derived in example 18.4 when sc

is replaced by fctm, EcAc by E1A1 and EsAs by E2A2.

18.2.5 Bond

18.2.5.1 Pull-out test

A cylindrical bar with diameter Ø, modulus of elasticity E and length l is pulled out of
a solid body (idealised as rigid) as shown in Fig. 18.11(a). The relative displace-
ments u between the points on the surface of the bar and the points of contact with
the solid body correspond to bond forces tbØp per unit length, i. e. a line load
q = –tbØp acts on the bar. With A = Ø2p/4, eq. (18.4) therefore gives us the dif-
ferential equation

uLs
4tb

E �
w 0 (18:11)

Provided the dependence of tb on u is known, (18.11) can be solved. Numerical inte-
gration methods must generally be used.

The three special cases of the bilinear bond shear stress-slip relationship

tb w k1 S k2u (18:12)

shown in Fig. 18.11(b) are discussed below, see Fig. 18.11(c). Using the correspond-
ing analytical solutions (see Fig. 18.12), it is possible to approximate the behaviour for
general tb-u relationships.
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When k1 = 0, k2 i 0, then (18.11) becomes similar to (18.7) and leads to

uw c1evx
S c2esvx v2

w

4k2

E �

	 

and

N w k2�p � vs1(c1evx
s c2esvx)

Applying the boundary conditions N(– l ) = 0 and N(0) = F, it follows that

c1 w c2e2vl , c2(e2vl
s 1)k2�pvs1

wF

and therefore

N w

F(e2vlevx
s esvx)

e2vl
s 1

, uw
Fv(e2vlevx

S esvx)

k2�p(e2vl
s 1)

(18:13)

The case of k1 i 0, k2 = 0 leads to the general solution

uw
2k1

E�
x2

S c1x S c2

and

N w�pk1x S c1E�2p=4

Putting the origin of the x axis at the point at which N = u = 0, we get c1 = c2 = 0 and
therefore

N w k1�px , uw
2k1

E�
x2 (18:14)

and from N(a) = F it follows that

aw
F

k1�p
(18:15)

When k1 i 0, k2 I 0, we get

uw c1 sin(vx)S c2 cos(vx)s
k1

k2
v2

ws

4k2

E�

	 

and

N w

E�2pv

4
[c1 cos(vx)s c2 sin(vx)]

Putting the origin of the x axis at the point where N = u = 0, we get c1 = 0 and
c2 = k1/k2. From N(a) = F, it follows that

sin(va)ws

4k2F

k1Ev�2p
(18:16)

and the following applies:

N wF � sin(vx)

sin(va)
, uws

k1

k2
[1s cos(vx)] (18:17)

Example 18.5 Pulling out a reinforcing bar

With Ø = 20mm, l = 1000mm and E = 205kN/mm2, the results for the case of k1 = 0, k2 =
100N/mm3 are the values v–1 = 101.2mm and e2vl = 379.6 ·106

ii 1. Assuming a stress of
N/(Ø2p/4) = 500N/mm2 at the end being pulled (x = 0), eq. (18.13) results in a slip of
u(0) = 0.25mm, see Fig. 18.13(a). However, the corresponding bond shear stress tb(0) =
k2 ·u(0) z 25N/mm2 is very large and may well be impossible to accommodate; the validity of
the solution would then be infringed.
When k1 = 5N/mm2, k2 = 0, eq. (18.15) results in a value of a = 500mm (assuming the aforemen-
tioned stress of 500N/mm2 at the pulled end), and (18.14)2 results in u(a) = 0.61mm.
If in the end we assume k1 = 5N/mm2, k2 = – 2.5N/mm3, it follows that v–1 = 640.3mm, and (18.16)
and (18.17) result in a = 573.8mm and u(a) = 0.75mm. Fig. 18.13(b) shows the corresponding
tb-u diagram.
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18.2.5.2 Anchorage of pretensioned steel in concrete

During the transfer procedure, the prestressing steel pretensioned in a prestressing bed
has to be released from its anchorage with the bed and re-anchored in the ends of the
concrete member. During this process, the prestressing steel slips into the concrete a
little. Eq. (18.11) and (18.12) can be used to deal with this phenomenon. The simplest
approach, and usually adequate in practice, is to apply the case of k1 i 0, k2 = 0.

If we place the origin of the x axis at the point where u = 0, and assume N = P
(P = prestressing force), then according to (18.14) and (18.15),

N wPS k1�px , uw
2k1x2

E�
(s aJ xJ 0) (18:18)

and

aw
P

k1�p
(18:19)

see Fig. 18.14.

It is often necessary to cut through prestressing tendons for a change of use or the
deconstruction of prestressed concrete structures. The relationships that occur can
be dealt with in a similar way.

18.2.5.3 Reinforced concrete tie

Let us consider a reinforced concrete tie with a cross-section according to Fig. 18.7.
We shall replace indexes 1 and 2 by c (concrete) and s (reinforcing steel) and introduce
the shortened forms r = As/(Ac + As) for the geometric reinforcement ratio and
n = Es/Ec for the modular ratio of the reinforcing steel (see section 13.2.4). Fig.
18.15(a) shows the diagrams for the normal forces Nc and Ns in the concrete and
reinforcing steel respectively between two adjacent cracks separated by a distance
s. In this case it is assumed that a constant bond shear stress tb = k1 acts at the surface
of the reinforcing bar with diameter Ø. We often assume that k1 is proportional to the
concrete tensile strength fct , e. g. k1 = 2fct.
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A further crack could appear in the middle of the crack element of length s as soon as
the tensile force Nc = Øpk1s/2 reaches the value Ac fct (Øpk1smax/2 = Ac fct). This con-
sideration, and putting As = Ø2p/4, leads to the maximum or minimum crack spacing
for the final crack pattern:

s max w
(1s r)�fct

2rk1
w 2s min , s min J sJ s max (18:20)

The tensile force N =Nc + Ns as the concrete cracks is (Ac + Asn)fct . Upon cracking,
the steel stress ssr at the crack changes abruptly from the value n fct to

ssr0 w
(Ac SAsn)fct

As
w

fct(1s rS rn)

r
(18:21)

The contribution of the concrete’s tensile strength between the cracks reduces the
mean normal strain at a maximum crack spacing s = smax by

�pk1s max=2

AsEs
� 1
2
w 2

fct(1s r)

4rEs
w 2De (18:22)

and by De for s = smin, see Fig. 18.15(b). We can see that
ssr0

Es
w

fct(1s rS rn)

rEs
w

fct(1s r)

rEs
S

fct

Ec
w 4DeS

fct

Ec

After the concrete has cracked, the point in Fig. 18.15(b) for a monotonic load increase
(ssr i ssr0) moves parallel with the characteristic line for the bare steel. The parallel
displacement has a value between De and 2De depending on the crack spacing. Com-
pared with the behaviour of the bare steel, the contribution of the concrete’s tensile
strength between the cracks corresponds to a tension stiffening.

The crack width w results from the difference between the mean normal strains esm

and ecm of the reinforcing steel and the concrete respectively:

ww s(esm s ecm) , esm w

ssr

Es
s 2De

s

s max
, ecm w

fct

2Ec
� s

s max

i. e. for ssr j ssr0, the following applies:

ww

s

Es
ssr s

ssr0s

2s max

	 

(18:23)

18.2.5.4 Bar splices

Two bars are joined together over a length l according to Fig. 18.16(a). It is pre-
sumed here that the bond force per unit length N1l = –N2l is proportional to the
slip d = u1 – u2 :

N1lwsN2lw kd

Equilibrium requires that N1 + N2 = F. According to (18.1)1 and (18.2),

N1 wE1A1u1l , N2 wE2A2u2l

and therefore the following differential equation – similar to (18.7) – applies:

dLs
1

E1A1
S

1

E2A2

	 

kdw 0 (18:24)

with the solution

dw c1evx
S c2esvx v2

w

k(E1A1 SE2A2)

E1A1E2A2

	 

(18:25)

The boundary conditions N1(0) = 0 and N2(0) = F lead to dl(0) = –F/(E2A2), and
N1(l ) = F as well as N2(l ) = 0 result in dl(l ) = F/(E1A1). Applying (18.25) results
in the set of equations

v sv
vevl

svesvl

� �
c1

c2

� �
w

sF=(E2A2)
F=(E1A1)

� �
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with the solution

c1 w
F(E1A1esvl

SE2A2)

vE1A1E2A2(evl
s esvl)

, c2 w
F(E1A1evl

SE2A2)

vE1A1E2A2(evl
s esvl)

(18:26)

The normal forces are then

N1 w
FE1A1

E1A1 SE2A2
1S

E2A2

E1A1
� e

vx
s esvx

evl
s esvl s

ev(lsx)
s esv(lsx)

evl
s esvl

� �

N2 w
FE2A2

E1A1 SE2A2
1s

evx
s esvx

evl
s esvl S

E1A1

E2A2
� e

v(lsx)
s esv(lsx)

evl
s esvl

� � (18:27)

For the case of E2A2 p T, eq. (18.27) results in

N1 w
F sinh(vx)

sinh(vl )
(18:28)

This equation is identical with (18.13)1 if we consider that there the origin of the x axis
lies at the pulled end of the bar. Multiplying the numerators and denominators of the
expression on the right in (18.13)1 by e–vl results in

N w

F(evlevx
s esvlesvx)

evl
s esvl w

F sinh[v(x S l )]

sinh(vl )

The expression x+ l according to (18.13)1 corresponds to the x used in (18.27), see Fig.
18.16(b).

Using the coordinates x = x – l/2 for the special case of E1A1 = E2A2, as shown in
Fig. 18.16(b), then (18.27) results in

N1,2 w
F

2
1e

sinh(vx)

sinh(vl=2)

� �
(18:29)

18.2.6 Summary

1. Extension problems in elastic bars lead to the differential equations (18.3) and
(18.4). These must be integrated taking into account the respective boundary
and continuity conditions.

2. Bars with an inhomogeneous cross-section develop residual stresses even when
deformation is not inhibited. Restraints ensue when the deformation is inhibited.

3. Numerical methods for solving the basic differential equation (18.11) must be
used for general bond shear stress-slip relationships. Linear elastic, perfectly
plastic and linear softening tb-u relationships can be dealt with analytically
and lead to hyperbolic, parabolic and harmonic functions u(x).

4. Anchorage problems and issues concerning crack spacings, crack widths, tension
stiffening, etc. in reinforced and prestressed concrete construction can be dealt
with easily by using perfectly plastic tb-u relationships, which result in a good
approximation.

5. It is expedient to introduce the slip d = u1 – u2 as the primary unknown for bar
splices. If the bond forces are assumed to be proportional to d, the result is hyper-
bolic functions for the d(x) function and its derivatives.
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18.3 Beams in shear

18.3.1 Practical examples

The deformations of beams as a result of bending moments and shear forces can have
different orders of magnitude. The shear deformations can often be neglected when
compared with the bending deformations, especially in the case of slender beams
with solid cross-sections. In such instances, the bars may be idealised as being rigid
in shear, as shown in sections 8.2.2 and 8.2.3 and explained in more detail in sec-
tion 13.3.1. However in the case of stocky beams, resolved cross-sections, frames
and sandwich forms of construction, the shear deformations can be significant,
may even dominate.

Fig. 18.17 shows a number of typical practical examples of the analytical model
described below. The internal and external deformation and force variables of this
model are limited to the shear strain g, the shear force V, the deflection w and the
line load q in the z direction. The applications range from multi-storey frames (a)
to VIERENDEEL girders (b) and trussed girders (c) to sandwich panels (d) and
the behaviour of hollow slabs (e) in the transverse direction (y direction).

18.3.2 Analytical model

When qz = q, then (8.21) and (8.22) for a beam in shear only (see Fig. 18.18) are
reduced to

qwsVl , gwwlSf (18:30)

where because x = fl = 0, the rotation f about the y axis is constant (equal to zero in
many cases). Using

V wGAvg (18:31)

according to (8.23) and (13.39), eq. (18.30) then leads to the differential equation

qwsGAvwL (18:32)

which is similar to (18.4).

18.3.3 Multi-storey frame

Fig. 18.19(a) shows a four-storey frame supported as a simply supported beam plus its
deformed shape as a result of a horizontal force applied to the top of the frame. The
frame beams are initially assumed to be rigid (EIb p T). Fig. 18.19(b) shows the cor-
responding free body diagram, moment diagram and deflection curve for a single
column of height h. With a constant bending stiffness for the column EIc, applying
the work theorem (14.4) results in a storey drift amounting to D = Vc h3

/(12EIc),
see (17.17), and from that, with g = D/h, V = 2Vc and (18.31), we get the expression

GAv w
24EIc

h2
(18:33)
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Assuming a finite stiffness for the frame beams EIb = const, the frame joints rotate by
f = –Vc hb/(12EIb) about the y axis, see Fig. 18.19(c), and D is increased by the
amount –f ·h. We thus get

GAv w
24

h
h

EIc
S

b

EIb

	 
 (18:34)

instead of (18.33).

Example 18.6 Multi-storey frame

Fig. 18.20 shows the behaviour of a multi-storey frame subjected to a constant line load q = q0 or a
point load H. The diagrams for q, V and w illustrate the application of (18.30)1 and (18.32) and are
easily understood without further explanation.
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18.3.4 VIERENDEEL girder

VIERENDEEL girders can be dealt with in the same way as multi-storey frames. For
example, each half of the beam shown in Fig. 18.21(a) is identical to the system
examined in Fig. 18.20 subjected to q = q0.

If GAv exhibits an abrupt change, as shown in Fig. 18.21(b), then g exhibits a kink at
the position of the abrupt change, and the integration of g results in a deflection of
–q0l

2
/(8GAv) at support B, which is eliminated by a rotation f = –q0l/(8GAv) about

A, see (18.30)2. As x = fl = 0, all cross-sections rotate through the same angle, as
indicated in the bottommost diagram of Fig. 18.21(b).

Example 18.7 Externally statically indeterminate VIERENDEEL girder

The rotation f occurring in the system of Fig. 18.21(b) is prevented by fixity at A, see Fig. 18.22(a). The
positive moment MA about the positive y axis causes the deformations in the system released from sup-
port B as shown in Fig. 18.22(b). The compatibility condition –q0l

2
/(8GAv) + 3MA/(2GAv) = 0 results

in MA = q0l
2
/12, and thus the deformations shown in Fig. 18.22(c). The point of zero shear in the

system with one degree of external static indeterminacy occurs at x = 7l/12, and the deflection
curve w has a kink at x = l/2.
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18.3.5 Sandwich panels

The sandwich panel shown in Fig. 18.23 consists of two thin, stiff outer faces (thick-
ness t, modulus of elasticity E ) either side of a soft core (thickness h – 2t, shear
modulus G); t II h and G II E apply. The outer faces carry the normal stresses s

as a result of the bending moment m per unit length [kNm/m]. The bending stiffness
per unit length is approximately

EiwEt(hs t)2=2 (18:35)

The shear stresses t as a result of the shear force v [kN/m] are constant over the depth
of the core and decrease linearly to zero in the outer faces. The shear stiffness per unit
length is approximately

Gav wG(hs t) (18:36)
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Example 18.8 Plastic panel with bonded sheet steel outer faces

The plastic panel with bonded sheet steel outer faces shown in Fig. 18.24 (h = 11mm, t = 1mm,
G = 0.5 kN/mm2, E = 205kN/mm2) spans a distance of l = 160mm in the x direction as a simply
supported beam. The panel width b in the y direction is 100mm. The longitudinal edges of the rect-
angular panel are unsupported. The panel carries a uniformly distributed load of 10kN, which cor-
responds to q = 625kN/m2.
The normal stresses in the outer faces due to the bending moment mx = ql2

/8 at mid-span (x = 0)
amount to

sw

ql 2

8(hs t)t
w 200 N=mm2

and the shear stresses in the core at the supports (x = e80mm) are equal to

tw
ql

2(hs t)
w 5 N=mm2

which corresponds to shear strains in the core of g = t/G = 1 %.
The deflection at mid-span is

wm w

ql 2

8Gav
S

5ql 4

384Ei
w

0.625 � 1602

8 � 500 � 10
S

5 � 0.625 � 1604 � 2
384 � 205000 � 102 w 0.4S 0.52w 0.92 mm

Some 43 % of wm is due to the shear deformations.
In order to investigate the influence of fixity at x = – 80mm, we shall consider the system shown in
Fig. 18.25(a), with

wB w

ql 4

8Ei
S

ql 2

2Gav

and the system of Fig. 18.25(b), with

wB w

Bl 3

3Ei
S

Bl

Gav

from which it follows that

Bw ql
3S

12Ei

Gavl 2

8S
24Ei

Gavl 2

(18:37)

Assuming a rigid behaviour in shear (E/G p 0), eq. (18.37) gives us the value B = 3ql/8 already
known from example 8.5. Substituting the values of the previous example, we get B = 0.3992ql.
The fixed-end moment is reduced by 19.4 %, from ql2

/8 to 0.1008ql2, i. e. compared with a rigid
behaviour in shear, the fixity effect is lower.
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Fig. 18.25 Influence of edge fixity: (a) and (b) individual effects, (c) ensuing stress resultants



18.3.6 Summary

1. The differential equation (18.32) for a beam in shear is similar to the differential
equation (18.4) for a bar extension problem. A solution to one problem can be
transferred directly to the other.

2. The shear stiffness of a multi-storey frame can be estimated with (18.34).
3. VIERENDEEL girders can be treated in the same way as multi-storey frames.
4. The bending and shear stiffnesses of sandwich panels can be assessed using

(18.35) and (18.36). Provided the panels are not too slender, the order of magni-
tude of the shear deformations is similar to that of the bending deformations. This
also has an influence on the support force variables in the case of statically in-
determinate systems.

18.4 Beams in bending

18.4.1 General

Bending problems are extremely important in structural design. We usually assume a
rigid behaviour in shear according to sections 8.2.2 or 8.2.3. Behaviour commensurate
with a finite shear stiffness is assumed below. The deliberations regarding the influ-
ence of restraints discussed in section 18.2.4 are broadened from bar extensions to the
general case of extension and bending.

Many practical problems can be treated using the model of beams on elastic founda-
tion. Fig. 18.26 shows a number of typical examples, which range from railway tracks
(a) to laterally supported piles (b), pontoons, docks, pipes or tunnel segments floating
on water (c) and grillages (d) to pressurised pipes with stiffening rings (e) and tanks or
silos whose expansion at the top or bottom is inhibited (f).
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(a) (b) (c)

(d) (e) (f )

Fig. 18.26 Beams on elastic foundation: (a) railway track, (b) laterally supported piles, (c) pontoons, etc.

floating on water, (d) grillages, (e) pressurised pipes with stiffening rings, (f) tanks, silos, etc.



18.4.2 Analytical model

Fig. 18.27, with qz = q and my = m, summarises the relevant variables that occur in
(8.21) to (8.23). The following relationships apply:

qwsVl , mwV sMl ; gwwlSf , xwfl

V wGAvg , M wEIx (18:38)

Considering a beam in pure shear (EI p T), eq. (18.38) is reduced to (18.32).

On the other hand, we get

M wsEIwL (18:39)

for a beam in bending only (GAv p T), see (15.7)1. If EI = const and m = 0, then

qwEIwLL (18:40)

applies, and when V = 0, the result is

mwsEIfL (18:41)

In the case of beams in shear and bending with GAv = const and EI = const, the result
is

qwsGAv(wlSf)l , mwGAv(wlSf)sEIfL (18:42)

According to Fig. 18.28, the static or kinematic continuity conditions

VI wVII SQ , MI wMII SR ; wI wwII , fI wfII (18:43)

apply for points within the beam, and the boundary conditions given in Fig. 18.29
must be considered for points at the end of the beam, see Fig. 15.2.

Example 18.9 Simply supported beam – sinusoidal line load

Fig. 18.30 shows a simply supported beam (EI = const, GAv = const) subjected to a line load
q = q0sin(npx/l ). According to (18.38) and taking into account the boundary conditions
M = w = 0 at x = 0 and x = l, this causes the following variables:

V w

q0l

np
cos

npx

l

	 

, M w

q0l 2

n2p2
sin

npx

l

	 

, ww

q0l 2

n2p2GAv
S

q0l 4

n4p4EI

	 

sin

npx

l

	 

The ratio of the shear to bending deformation components in w amounts to (np/l )2 · (EI/GAv), i. e.
the influence of the shear deformations increases while the bending stiffness EI remains constant
and the wavelength 2l/n and shear stiffness GAv decrease.
The sinusoidal load q, for example, can be part of a FOURIER series for approximating any line load,
see (18.55).
The statement regarding the ratio of shear to bending deformations applies in general. Similar rela-
tionships have already been found in example 18.8.

18.4.3 Restraints

Initial normal strains e0 (constant over the cross-section) as a result of thermal or
shrinkage actions were presumed in section 18.2.4. This restrictive assumption is
now abandoned, but we shall still assume that x z = 0. Putting xy = x , we can use
(13.3) and (13.4) to get

ex w eS xzw
sx

E
S e0 (18:44)

which is similar to (18.2), although e now designates the normal strain on the bar axis.

32718.4 Beams in bending

V +

q x

xx

V
z

w

M d+ M

dV

M m xd

ϕ ϕ d+ ϕ

dw d x/

d

d

Fig. 18.27 Undeformed and deformed states of a

differential bar element

MII

VII

MI

VI

Ι ΙΙ

R

Q

Fig. 18.28 Points within the beam

ϕw = = 0 Mw = = 0 MV = = 0 ϕV = = 0 V = kz w M = k y ϕ

Fig. 18.29 Boundary conditions

x

l

q

w

M

V

+

+ +

+

−

−

+ +
− −

GAvEI,

Fig. 18.30 Simply supported beam subjected to

sinusoidal line load



Residual stresses generally ensue even in the case of uninhibited deformation, see sec-
tion 13.2.5. We shall not explore this aspect further here, but rather confine ourselves
to restraints as a result of inhibited deformation.

Example 18.10 Bar fixed at both ends – linear temperature gradient

The homogeneous bar (E = const, aT = const) shown in Fig. 18.31(a) is fixed at both ends and has a
length l and depth h. It is subjected to a temperature gradient presumed to be linear over x and z:

T(x,z)w T0 S
DT0

h
� z

� �
x

l

The solution for the bar extension problem is given by (18.6), see Fig. 18.31(b). The result is a com-
pressive force amounting to EAaTT0/2 and a displacement u varying in a parabolic form and having a
maximum value of aTT0l/8 at x = l/2.
We shall solve the bending problem with the help of the force method, see Fig. 18.31(c). Using

d10 ws

aT DT0l

2h
, d20 w

aT DT0l 2

6h
; d11 w

l

EI
, d12 ws

l 2

2EI
, d22 w

l 3

3EI
S

l

GAv

we get the set of equations

1 s

l

2

s

l

2

l 2

3
S

EI

GAv

2
64

3
75 X1

X2

� �
w

1

2

s

l

6

8><
>:

9>=
>;

aT DT0EI

h

with the solution

X1 w
aT DT0EI

h
� GAvl 2

S 6EI

GAvl 2
S 12EI

, X2 w
aT DT0EI

h
� GAvl

GAvl 2
S 12EI

and the corresponding restraint stress resultants

V ws

aT DT0EI

lh

1S
12EI

GAvl 2

, M ws

aT DT0EI

h

x

l
S

6EI

GAvl 2

� �

1S
12EI

GAvl 2

Fig. 18.31(d) shows the diagrams for M and V for the case of GAv p T. In this case, the curvatures
M/EI are opposed to those of the thermal action, i. e. the bar remains straight, w a 0.
With finite shear stiffness GAv , eq. (18.38) gives us the deflection

ww

V

GAv
� x � 1s

x

l

� �
� 3S

GAvl 2

6EI
1S

x

l

� �� �
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Fig. 18.31 Restraint due to temperature varying linearly with x and z : (a) system and notation,
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18.4.4 Elastic foundation

18.4.4.1 Differential equation and foundation modulus

We often make use of a proposal by WINKLER when dimensioning foundations and
dealing with similar problems, i. e. a bearing pressure

pw kw (18:45)

proportional to the deflection w, where k [MN/m2] is the foundation modulus, see
Fig. 18.32(a). Taking the beam width b and the modulus of subgrade reaction c
[MN/m3], then k z bc applies. Depending on the compactness of the soil, the mod-
ulus of subgrade reaction can lie between about 10 and 100MN/m3 for sands, or 100
and 300MN/m3 for gravels. In the case of bodies floating on a fluid, e. g. a covering of
ice floating on water, according to ARCHIMEDES’ work on hydrostatic buoyancy,
the modulus of subgrade reaction corresponds to the specific weight of the fluid,
so about 10kN/m3 for water.

Ignoring shear deformations (GAv p T) and assuming constant bending stiffness EI,
we get

EIwLLS kww q (18:46)

instead of (18.40).

The beam would be rigid for the limiting case of EI p T, and therefore w – and ac-
cording to (18.45) with constant k, then p as well – could at best vary linearly with x.
We thus arrive at the trapezoidal stress distribution method already used in
Fig. 5.4(e), according to which the bearing pressures are calculated from the equilib-
rium conditions. If, as in Fig. 18.32(b), we use R to designate the resultant of the line
loads q acting on a bar of length l, and e to designate its eccentricity with respect to the
middle of the bar, then the following applies:

Rw (p1 S p2)l=2 , ew
(p1 s p2)l

6(p1 S p2)
(18:47)

18.4.4.2 Solution to the homogeneous differential equation

Using the shortened form
k

EI
w 4 b4 (18:48)

and q = 0, then (18.46) becomes

wLLS 4 b4ww 0

The general solution to this differential equation is

ww ebx[c1 cos(bx)S c2 sin(bx)]S esbx[c3 cos(bx)S c4 sin(bx)] (18:49)

The function w and its derivatives have the character of damped vibrations. Setting

ww c0esbx sin(bx)

we get the derivative

wlws b
ffiffiffi
2
p

c0esbx sin(bx sp=4)

i. e. the amplitude is multiplied by –b
ffiffiffi
2
p

and the phase angle reduced by p/4. This
finding also applies to all other derivatives, i. e.

wLw b22c0esbx sin(bx sp=2) , wlllws b32
ffiffiffi
2
p

c0esbx sin(bxs 3p=4) , etc:

Putting c0 = – 2b2R/k results in M(0) = –EIwL(0) = –R. We have therefore obviously
found the solution for a beam infinitely long on either side of a moment 2R applied at
the middle of the beam. If x j 0, then

wws

2b2R

k
esbx sin(bx)

M wResbx sin(bx sp=2)

, wlw
2
ffiffiffi
2
p

b3R

k
esbx sin(bx sp=4)

, V ws

ffiffiffi
2
p

bResbx sin(bx s 3p=4)

(18:50)
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Similarly, setting

wlw c0esbx sin(bx)

with c0 = – 2b2Q/k leads to the solution for a beam infinitely long on either side of a
point load 2Q applied at the middle of the beam. If x j 0, then

ww

ffiffiffi
2
p

bQ

k
esbx sin(bxSp=4)

M ws

Qffiffiffi
2
p

b
esbx sin(bx sp=4)

, wlws

2b2Q

k
esbx sin(bx)

, V wQesbx sin(bx sp=2)
(18:51)

Using

wLw c0esbx sin(bx)

with c0 = 4b3Q/k, we get the solution for a beam infinitely long on one side which is
loaded at end x = 0 by a point load Q:

ww

2bQ

k
esbx sin(bxSp=2)

M ws

Q

b
esbx sin(bx)

, wlws

2
ffiffiffi
2
p

b2Q

k
esbx sin(bx Sp=4)

, V wQ
ffiffiffi
2
p

esbx sin(bx sp=4)
(18:52)

Finally,

wlllw c0esbx sin(bx)

with c0 = 8b5R/k leads to the solution for a beam infinitely long on one side which is
subjected to a moment R at x = 0:

ww

2
ffiffiffi
2
p

b2R

k
esbx sin(bx S 3p=4)

M ws

ffiffiffi
2
p

Resbx sin(bx Sp=4)

, wlws

4b3R

k
esbx sin(bx Sp=2)

, V w 2bResbx sin(bx)

(18:53)

The relationships (18.50) to (18.53) are illustrated in Fig. 18.33 (basic cases 2R, 2Q,
Q and R). The length

lw
2p

b
(18:54)

is called the natural wavelength. The zero points in the functions shown in Fig. 18.33
are each offset by l/8 according to the reduction in the phase angle of p/4 per
derivative.

18.4.4.3 Particular solutions to the differential equation

If the line load can be expressed as a third-order polynomial

qw a0 S a1xS a2x2
S a3x3

then q/k is a particular solution to (18.46).

When q = q1sin(px/l ), we get the following particular solution

ww

q1

p4EI

l 4 S k

� sin
px

l

	 


Any line loads can be presented by means of a FOURIER series

qw
XT
nw1

qn sin
npx

l

	 


and we get

ww

XT
nw1

qn

n4p4EI

l 4 S k

� sin
npx

l

	 


e. g. for q = q0 = const:

qw
XT

nw1,3, ...

4q0

np
� sin

npx

l

	 

, ww

XT
nw1,3, ...

4q0

np
n4p4EI

l 4 S k

	 
 � sin
npx

l

	 


(18:55)



18.4.4.4 Practical application

Many practical problems can be solved through the superposition of known particular
solutions and the basic cases of Fig. 18.33.

For example, considering the case shown in Fig. 18.34(a), the particular solution q0/k
combined with the basic case Q gives us the answer we are looking for; in doing so,
w(0) must disappear, i. e. q0 /k = – 2Qb/k:

ww

q0

k
1s esbx sin(bx Sp=2)
h i

Similarly, particular solution q0/k combined with basic case 2Q supplies the solution
to the example shown in Fig. 18.34(b):

ww

q0

k
1s

ffiffiffi
2
p

esbx sin(bx Sp=4)
h i

Turning to Fig. 18.34(c), we consider the two halves of the beam with the particular
solutions w = 0 or q0/k for negative or positive x and superpose the positive or nega-
tive basic case Q and q0/(2k) = 2Qb/k. When x i 0, this results in

ww

q0

k
1s

1

2
esbx sin(bxSp=2)

� �
The case shown in Fig. 18.34(d) can be solved with the help of the example of Fig.
18.34(c) by determining the stress resultants M(a) and V(a) for that case and eliminat-
ing them by superposing the corresponding variables R and Q. This procedure can also
be used for beams of finite length.

18.4.5 Summary

1. Bending problems generally lead to the set of equations (18.38) for the deflec-
tion w(x) and rotation of the cross-section f(x). Four boundary or continuity con-
ditions have to be formulated per beam segment in order to solve such problems.

2. Residual stresses (in the case of uninhibited deformation) and restraints (in the
case of inhibited deformation) can be determined on the basis of (18.44).

3. Many practical problems can be likened to the beam (bending stiffness EI in
MNm2) on an elastic foundation (foundation modulus k in MN/m2). The solution
to the corresponding inhomogeneous fourth-order differential equation (18.46)
can often be found by combining simple particular solutions and the four basic
cases for the solution to the homogeneous differential equation (Fig. 18.33).
The solutions w(x) to the homogeneous differential equation have the character
of damped vibrations; deriving once involves multiplying the amplitude by
–[k/(EI )]1/4 and reducing the phase angle by p/4.
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18.5 Combined shear and bending response

18.5.1 General

Frameworks in buildings are mostly combined with elements stiff in flexure such as
stair shafts, lift shafts or walls, see Fig. 18.35(a). Horizontal forces, e. g. due to wind
or seismic effects, are then carried by combined shear and bending response, see
Fig. 18.35(b).

Connecting systems in shear and bending with horizontal stiffening beams, called out-
riggers, e. g. on plant floors, can bring about a considerable stiffening of the whole
system, see Fig. 18.35(c).

When walls are resolved into truss-type constructions, it is generally necessary to
consider the shear deformations as well as the bending deformations, also the axial
stiffnesses of the columns in the case of very tall frames.

Walls broken up by door and window openings, Fig. 18.36(a), as well as walls con-
nected via joints, Fig. 18.36(b), function in a similar way to dowelled beams; the shear
wall coupling beams between the openings and the coupling joints correspond to the
dowels of a dowelled beam. When the shear wall coupling beams are stiff, and espe-
cially in the case of coupling joints, it is generally necessary to take the axial stiff-
nesses of the walls into account as well.
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(c)(b)(a)

Fig. 18.35 Building structures: (a) typical plan form, (b) systems in shear and bending, (c) systems with

outriggers

(b)(a)

Fig. 18.36 Shear wall connection: (a) wall with openings, (b) coupling joint



The analytical models and solutions presented below are suitable for ascertaining the
fundamental structural behaviour and for the rough calculations necessary during the
conceptual design or when checking structures. It is expedient to employ computer
programs for the structural analysis during the tender and detail design phases. The
methods presented here are suitable for checking such calculations.

18.5.2 Shear wall - frame systems

18.5.2.1 Basis concepts

Let us consider the coupled shear wall - frame system of Fig. 18.37, with EI = const
and GAv = const. Applying (18.32) and (18.40), we get the differential equation

EIwLLsGAvwLw q (18:56)

which is similar to (13.74) and has the solution

ww c1 S c2x S c3 cosh(lx)S c4 sinh(lx)Swpart l2
w

GAv

EI

	 

(18:57)

see (13.75) and (13.76). A uniformly distributed load q = q0 = const or a triangular
load q = q1x/l result in the following particular solutions

wpart ws

q0x2

2GAv
, wpart ws

q1x3

6GAvl
(18:58)

The integration constants in (18.57) follow from the boundary conditions
w(0) = wl(0) = wL(l) = 0 plus GAvwl(l) – EIwlll(l) = 0. A concentrated force is trans-
ferred between the shear wall and the frame at the top of the system (x = l ).

18.5.2.2 Systems without outriggers

The result for a uniformly distributed load q = q0 is

ww

q0l 2

GAv

x

l
s

x2

2l 2 S

cosh(lx)S ll sinh[l(ls x)]s 1s ll sinh(ll )

(ll )2 cosh(ll )

� �
(18:59)

We get the known solutions

GAvww q0(lx s x2=2) , EIww q0(x4=24s lx3=6S l 2x2=4) (18:60)

for the limiting cases EI p 0 or GAv p 0, see Fig. 18.20(b) and (A7.45).

The result for a triangular load q = q1x/l is

ww

q1l 2

GAv
k

x

l
s

x3

3l 3 S

2 cosh(lx)S kll sinh[l(ls x)]s 2s kll sinh(ll )

(ll )2 cosh(ll )

� �
kw 1s

2

l2l 2

	 

(18:61)

We get

GAvww q1[lx=2s x3=(6l )] , EIww

q1

120l
(x5

s 10l 2x3
S 20l 3x2) (18:62)

for the limiting cases EI p 0 or GAv p 0.
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Example 18.11 High-rise building

A system with l = 90m, GAv = 2593MN and EI = 2.4 ·106 MNm2 is loaded by a uniformly dis-
tributed load q0 = 90kN/m and a triangular load q1 = 180kN/m. Fig. 18.38 illustrates the corres-
ponding structural behaviour, in which the stress resultants of the shear wall system subjected to
the uniformly distributed load are given by

qb w q0 �
cosh(lx)S ll sinh[l(ls x)]

cosh(ll )
, Vb w

q0

l
�s sinh(lx)S ll cosh[l(ls x)]

cosh(ll )

Mb w
q0

l2 � 1s
cosh(lx)S ll sinh[l(ls x)]

cosh(ll )

� �
(18:63)

and those for the triangular load by

qb w q1 �
2 cosh(lx)S kll sinh[l(ls x)]

2 cosh(ll )
, Vb w

q1

2l
� 2

ll
s

2 sinh(lx)s kll cosh[l(ls x)]

cosh(ll )

� �

Mb w
q1

2l2 �
2x

l
s

2 cosh(lx)S kll sinh[l(ls x)]

cosh(ll )

� �
(18:64)

According to (18.39) and (18.40), eq. (18.63) and (18.64) follow from the second to fourth deriva-
tives of functions (18.59) and (18.61). The stress resultants for the frame system are given by

qs w qs qb , Vs wV sVb , qs wM sMb (18:65)

where

V w q0(ls x) , M ws q0(ls x)2=2 (18:66)

or rather

V w q1
(l 2

s x2)

2l
, M ws

q1(2l 3
s 3l 2xS x3)

6l
(18:67)

Subjected to the uniformly distributed load q0, the combined system undergoes a deflection at the top
amounting to 74.8mm, see Fig. 18.38(a) and Tab. 18.1. At the top, the frame system exerts a restrain-
ing force of 1.885MN on the shear wall system. In addition, above the point of inflection of the
deflection curve (x = 38.6m), the frame system contributes to resisting q0; in the lower part of the
system it places a load on the shear wall system. The deflections at the top of the building clearly
reveal the effectiveness of the combined system; according to (18.60), the value is 140.6mm for
the frame system, and 307.5mm for the wall system, which compares with the value of 74.8mm
for the combined system.
Considering the triangular load, the situation is similar in principle, see Fig. 18.38(b) and Tab. 18.2.
According to (18.62), the result is deflections at the top of 187.4 and 451.1mm for the frame and wall
systems respectively, whereas the combined system undergoes a deflection at the top of 107.9mm.
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Tab. 18.1 System without outriggers subjected to uniformly distributed load

X qb Vb Mb w

90 90.0 – 1885 0 74.8

80 74.2 – 1071 14.6 67.5

70 66.4 – 374 21.8 59.5

60 65.9 282 22.3 50.6

50 72.6 968 16.1 40.9

40 87.2 1761 2.6 30.5

30 111.4 2745 – 19.8 20.0

20 147.6 4028 – 53.3 10.4

10 200.0 5751 – 101.8 3.0

0 274.1 8100 – 170.4 0

M kN/m kN MNm mm
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Fig. 18.38 Structural behaviour of a 90 m tall high-rise building system: (a) uniformly distributed load,

(b) triangular load



18.5.2.3 Systems with outriggers

If the bending deformations of an outrigger situated at the top of a system are – like the
column extensions – ignored, then (18.57) continues to apply. However, the inexten-
sible columns together with the outrigger prevent rotation at the top, i. e. wl(l ) = 0,
and therefore as GAvwl(l ) = EIwlll(l ), then wlll(l ) = 0, too. When q = q0, we get
the relationships

ww

q0l 2

GAv

x

l
s

x2

2l 2 S

cosh[l(ls x)]s cosh(ll )

ll sinh(ll )

� �

qb w q0 �
ll cosh[l(ls x)]

sinh(ll )

Vb w q0l � sinh[l(ls x)]

sinh(ll )

Mb w q0l 2 � 1

2(ll )2 s

cosh[l(ls x)]

ll sinh(ll )

� �
(18:68)

instead of (18.59) and (18.63).

Example 18.12 High-rise building with outrigger

Fig. 18.39 and Tab. 18.3 illustrate the behaviour of the system examined in example 18.11 when an
outrigger is positioned at the top of the system. Compared with Fig. 18.38(a), the deflection at the top
is reduced by 27 % to 54.9mm. The point of inflection of the deflection curve shifts from x = 38.6m
to x = 57.6m. The upper part of the frame system contributes more to resisting q. There is no shear
force between the frame and shear wall systems at the top. The fixity of the shear wall system at the
top is relatively low. In the lower part of the wall, Mb and Vb are slightly larger than in the system
without outrigger.
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Tab. 18.2 System without outriggers subjected to triangular load

X qb Vb Mb w

90 180.0 – 2949 0 107.9

80 137.0 – 1378 21.3 96.3

70 109.0 – 159 28.7 83.9

60 92.8 841 25.2 70.4

50 86.7 1731 12.3 55.8

40 90.2 2608 – 9.4 40.8

30 103.4 3567 – 40.2 26.2

20 127.9 4713 – 81.4 13.2

10 166.3 6171 – 135.5 3.8

0 222.9 8100 – 206.3 0

M kN/m kN MNm mm



18.5.3 Shear wall connection

18.5.3.1 Basis concepts

Wall 1 (width a1, bending stiffness EI1) and wall 2 (width a2, bending stiffness EI2)
in Fig. 18.40 are connected with shear wall coupling beams (length b, bending stiff-
ness EI ) at the spacing of the storeys h and exhibit the same deflections w and rota-
tions f, i. e. w1 = w2 = w and f1 = f 2 = f = –wl. A point of inflection in the deflec-
tion curve ensues in the middle of the shear wall coupling beam, and the ends of the
beam undergo a relative displacement D = awl, where a = b + (a1 + a2)/2 = spacing
of wall axes. The associated shear forces of 12EID/b3 result in a shear flow
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Fig. 18.39 System with outrigger subjected to uniformly distributed load

Tab. 18.3 System with outrigger subjected to uniformly distributed load

x qb Vb Mb w

90 27.7 0 16.0 54.9

80 29.2 282 14.6 53.7

70 33.9 595 10.3 50.2

60 42.3 973 2.5 44.5

50 55.3 1457 – 9.6 37.0

40 74.4 2099 – 27.2 28.2

30 101.5 2971 – 52.3 18.8

20 139.7 4167 – 87.7 9.9

10 193.2 5816 – 137.1 2.9

0 267.7 8100 – 206.1 0

m kN/m kN MNm mm
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and this corresponds to a shear force

Vs w asw ksa2wl (18:70)

in the beam in shear of width a. In a similar way to (18.56),

(EI1 SEI2)wLLs ksa2wLw q (18:71)

therefore applies, where the terms qb = (EI1 + EI2)wLL and qs = –ksa
2wL denote the

bending and shear components of q respectively.

The axial stiffnesses of the walls must be taken into account when considering stiff
shear wall coupling beams and, in particular, coupling joints (ks = Gt/b, where
b = joint thickness and t = joint width perpendicular to plane of wall). Then
D = awl – u1 + u2 applies instead of D = awl, where u1 and u2 denote the wall dis-
placements in a certain cross-section in the in x direction. Using

fs w
u2 s u1

a
(18:72)

we get

Vs w ksa2(wlSfs) , (EI1 SEI2)wLLs ksa2(wLSfsl)w q (18:73)

instead of (18.70)2 and (18.71). The derivatives N1l = –N2l = –Vs/a correspond to
the normal forces N1 = EA1u1l and N2 = EA2u2l; therefore, using N1l = EA1u1L and
N2l = EA2u2L and (18.72), the following applies:

fsLw
Vs

EIs
EIs w

a2

1

EA1
S

1

EA2

0
BB@

1
CCA (18:74)

thus (18.73) becomes

EIsfsLw ksa2(wlSfs) (18:75)

Finding the third derivative of this relationship and considering (18.74) leads to

wLLw
Vslll

ksa2 s

Vsl

EIs
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and hence, by considering (18.73),

VsLls (lm)2Vslw ql2 l2
w

ksa2

EI1 SEI2
, m2

w 1S
EI1 SEI2

EIs

	 

(18:76)

18.5.3.2 Neglecting the wall extensions

Eq. (18.71) is similar to (18.56), and the corresponding solutions, with adjusted co-
efficients, can be applied directly. For example, (18.59) can be used to find the deflec-
tion w due to a uniformly distributed load q = q0 by replacing GAv by ksa

2 and putting
l2 = ksa

2
/(EI1 + EI2); the shear flow s is then

sw ksawlw
q0l

a
1s

x

l
S

sinh(lx)s ll cosh[l(ls x)]

ll cosh(ll )

� �
(18:77)

and the relationships (18.63) apply for Mb, Vb and qb .

Example 18.13 Shear wall

The shear wall shown in Fig. 18.41 (l = 25h = 90m, E = 30kN/mm2, a = 10m, I = 0.3 ·13
/12

= 0.025m4, b = 4m, I1 = I2 = 0.3 ·63
/12 = 5.4m4) is loaded by the uniformly distributed

load q0 = 40kN/m. Using

ks w
12 � 30 � 103 � 0.025

43 � 3.6
w 39.0625 MN=m2 , lw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
39.0625 � 102

2 � 30 � 103 � 5.4

r
w 0.1098 ms1

the procedure described above results in the values listed in Tab. 18.4.
The point of inflection of the deflection curve w is located at x = 20.867m; at this point, the maximum
shear flow is smax = 240.1 kN/m, and Mb = 0 applies. A maximum shear force of
smax ·h = 240.1 ·3.6 = 864.5kN in the shear wall coupling beam between the 5th and 6th storeys cor-
responds to the maximum shear flow.
The system essentially responds like a beam in shear. The shear flows s add up over l to form
the normal forces eksa ·w(l ) = e13.253MN in walls 1 and 2 at the base of the wall x = 0.
Moment equilibrium at the base of the wall is satisfied: – 29.469MNm –
10m·13.253MN = –162MNm = –q0l

2
/2.
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Fig. 18.41 A 25-storey shear wall with openings (dimensions in m, q0 = 40 kN/m)



18.5.3.3 Considering the wall extensions

We shall confine ourselves to the case of a uniformly distributed load q = q0, for
which (18.76) has the general solution

Vs w c1 sinh(lmx)S c2 cosh(lmx)S c3 s
q0x

m2
(18:78)

At the base of the wall (x = 0), wl = fs = 0, and therefore according to (18.73)1 :
Vs(0) = 0. At the top of the wall, (x = l ), Mb = N1 = N2 = 0, and therefore
wL = u1l = u2l = 0, i. e. according to (18.72) and (18.73)1 : Vsl(l ) = 0. Finally, as
V = Vs + Vb = Vs – (EI1 + EI2)wlll and V(l ) = 0 for x = l: Vs = (EI1 + EI2)wlll,
i. e. taking into account (18.73)1 and (18.74): VsL(l ) = (lm)2·Vs(l ). These boundary
conditions result in

Vs w
q0l

m2
1s

x

l
S

sinh(lmx)s lml cosh[lm(ls x)]

lml cosh(lml )

� �
(18:79)1

and from that as V = q0(l – x) and Mbl = V – Vs, taking into account the boundary
condition Mb(l ) = 0, we get

Mb w
q0l 2

m2
(m2

s 1)
x

l
s

x2

2l 2 s

1

2

	 

S

1

(lml )2 s

cosh(lmx)S lml sinh[lm(ls x)]

(lml )2 cosh(lml )

� �
(18:79)2

Finally, as Mb = –(EI1 + EI2)wL, taking into account the boundary conditions
w(0) = wl(0) = 0 it follows that

ww

q0l 2

m2ksa2
(m2

s 1)(ll )2 x2

4l 2 s

x3

6l 3 S

x4

24l 4

	 

S

1

m2
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l
s

x2

2l 2

	 

S

cosh(lmx)S lml sinh[lm(ls x)]s 1s lml sinh(lml )

l2m4l 2 cosh(lml )

� �
(18:79)3

Putting m = 1, the equations (18.79) are reduced to (18.77), (18.63)3 and (18.59) when
Vs = sa is taken into account and ksa

2 is replaced by GAv .

Example 18.14 Shear wall – influence of wall extensions

Consider the shear wall of example 18.13; eq. (18.79) with

EIs w
a2EA1EA2

EA1 SEA2
w

a2EA1

2
w

102 � 30 � 103 � 6 � 0.3

2
w 2.7 � 106 MNm2

and

m2
w 1S

2EI1

EIs
w 1S

2 � 30 � 103 � 5.4

2.7 � 106 w 1.12

results in the values given in Tab. 18.5.
Compared with Tab. 18.4, the wall extensions have a significant influence here. The deflection at the
top increases four-fold, the point of inflection of the deflection curve is much higher, and the bending
response in the lower part of the wall is much greater.
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Tab. 18.4 Values of the functions for the shear wall of Fig. 18.41

x w s Mb

90 33.9 36.4 0

72 31.5 76.9 2.846

54 26.5 143.7 3.167

36 18.3 209.2 2.680

18 7.7 238.1 – 1.226

0 0 0 – 29.469

m mm kN/m MNm



The inclusion of an outrigger keeps the cross-sections at the top of the wall in one
plane, i. e. D(l ) = 0. Consequently, the second boundary condition Vsl(l ) = 0 derived
above for the system without outriggers is replaced by Vs(l ) = 0, and the third bound-
ary condition is simplified to VsL(l ) = 0. It can be shown that each third term in the
curly brackets on the right in the equations (18.79) can be replaced by the following
expressions:

s

sinh[lm(ls x)]

sinh(lml )
, s

cosh[lm(ls x)]

lml sinh(lml )
,

cosh[lm(ls x)]s cosh(lml )

lm3l sinh(lml )

(18:80)

The stiffening effect of the outrigger is essentially confined to the upper part of the
wall, but remains comparatively small, which is easy to show with the help of ex-
ample 18.14, for instance.

18.5.4 Dowelled beams

Dowelled beams can be dealt with in a similar way to shear walls connected via
coupling joints. The dowelled timber beam shown in Fig. 18.42(a), with the cross-sec-
tion shown in Fig. 18.42(b), is in the form of a simply supported beam with a span of
l = 8m loaded at mid-span by a point load of 20kN. If the two identical single beams
were not dowelled together, there would be boundary stresses amounting to

1

2
� 20 � 103 � 8000

4
� 6

180 � 2402 w 11.57 N=mm2

at mid-span, and the deflection at mid-span, assuming a modulus of elasticity of
10kN/mm2, would be

20 � 103 � (8000)3 � 12

48 � 104 � 2 � 180 � 2403 w 51.44 mm

It is assumed that the two single beams are connected together with dowels every 1m.
The stiffness of the dowels is 50kN/mm. Therefore, when assuming continuous
dowelling, ks = 50 000/1000 = 50N/mm2. Putting a = 240 mm, then according to
(18.76),

lw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
50 � 2402 � 12

2 � 104 � 180 � 2403

r
w

5

6
ms1

and with

EIs w
1

2
� 2402 � 104 � 180 � 240w 12.4416 � 1012 Nmm2

and

EIb wEI1 SEI2 w 2EI w 2 � 104 � 180 � 2403

12
w 4.1472 � 1012 Nmm2
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Tab. 18.5 Values of the functions for the shear wall of Fig. 18.41 taking into account the wall extensions

x w s = Vs /a Mb

90 135.8 30.7 0

72 105.1 68.0 1.618

54 73.0 128.4 – 0.225

36 41.3 188.0 – 4.030

18 13.9 217.5 – 11.880

0 0 0 – 42.373

m mm kN/m MNm



the result is

m2
w

4

3
At point x = 0, Mb = N1 = N2 = 0 and therefore Vsl(0) = 0. At x = l/2, wl = fs = 0
applies and therefore Vs(l/2) = 0. When q0 = 0, eq. (18.78) then gives us

Vs w c[ cosh(lmx)s cosh(lml=2)]

As Vs = V – Vb = V + EIbwlll, and taking into account (18.73)1 and (18.74), the
constant c is

cws

V

m2 cosh(lml=2)

i. e.

Vs w
V
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1s

cosh(lmx)

cosh(lml=2)

� �
and consequently, considering the fact that Ms(0) = 0,

Ms w
V

m2
x s

sinh(lmx)

lm cosh(lml=2)

� �
, Mb wM sMs wsEIbwL

Taking into account wl(l/2) = 0 and w(0) = 0, in the end we get
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Fig. 18.42 Dowelled timber beam: (a) diagram of static system (forces in kN, dimensions in m), (b) cross-

section, (c) stress resultants, (d) deflections, (e) stress distribution [N/mm2] at mid-span without and with
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The corresponding values s = Vs/a, Ms and w are specified in Tab. 18.6 for a number
of values of x, see also Fig. 18.42(c) and (d). The shear flows s add up from the end of
the beam to mid-span to form normal forces –N1 = N2 = Ms(l/2)/a = 92.55kN. When
Mb(l/2) = 17.79kNm, the boundary stresses in beam 2 at mid-span are 92 550/
(180 ·240) e1/2 ·17.79 ·106 ·6/(180 ·2402) = 7.3 and – 3.0N/mm2, see Fig. 18.42(e).

As we can see, the dowelling reduces the boundary stresses at mid-span by
(11.6 – 7.3)/11.6 = 37 %, the deflections by (51.4 – 18.6)/51.4 = 64 %.

18.5.5 Summary

1. The structural behaviour of shear wall-frame systems is described by the differ-
ential equation (18.56) with the general solution (18.57). The solutions given for
uniformly distributed and triangular loads enable general trapezoidal loads to be
dealt with through superposition.

2. Outriggers can be used to achieve an effective stiffening of shear wall frame sys-
tems. The shear force at the top between the frame and shear wall systems, which
characterises systems without outriggers, is eliminated in this case.

3. The influence of the wall extensions is generally considerable in the case of shear
walls connected via coupling beams or coupling joints. By contrast, the stiffening
influence of additional outriggers is generally small.

4. Dowelled beams can be dealt with in a similar way to shear walls connected via
coupling joints.

5. The analytical models and solutions presented here are suitable for assessing the
fundamental structural behaviour and for the rough calculations necessary during
the conceptual design or when checking structures. In addition, they enable
suitably refined computer analyses to be checked for plausibility.
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Tab. 18.6 Values of the functions for the dowelled beam of Fig. 18.42

x s = Vs /a Ms w

0 29.92 0 0

1 29.25 7.13 6.58

2 26.59 13.89 12.46

3 19.28 19.53 16.84

4 0 22.21 18.64

m kN/m kNm mm



18.6 Arches

18.6.1 General

People have been building masonry arches for millennia. And over the last 200 years
or so, arches of iron, steel and concrete have been erected as well, which has enabled
the spans to be increased from a few dozen to several hundred metres.

It is primarily the form of an arch that gives it its load-carrying capacity and enables to
resist large loads or forces. Fig. 18.43 shows three typical examples.

Arches are generally loaded by compressive forces in the direction of the bar. For
general load cases, the arch axis deviates to some extent from the thrust line (sec-
tion 5.3.2) and therefore it is always necessary to take a certain amount of bending
into account. It is for this reason, and to rule out the risk of buckling, that arches
require adequate bending stiffness, or must be stiffened in some other way.

Various aspects of arch structures have already been discussed with the help of ex-
amples 5.6, 5.7, 10.5, 12.2 and 16.8.

18.6.2 Analytical model

We shall confine ourselves to vertical loads (qx = 0, qz = q) and consider an arch
(bending stiffness EIa) connected via inextensible pin-ended struts to a beam in bend-
ing (bending stiffness EIb) as shown in Fig. 18.44(a). The beam in bending and the
arch are presumed to be rigid in shear (GAv p T), and the arch has a shallow curv-
ature, i. e. ds z dx or (zl)2

/2 II 1, see Fig. 18.44(b).

Equilibrium at the deformed arch element in Fig. 18.44(b) calls for

H w const , VlS qw 0 , sH(zSw)lSMlsV w 0 (18:81)

where, as usual, l = d/dx. Using (18.39) and putting EIa + EIb = EI = const, we get
the following differential equation:

EIwLLSH(zSw)Lw q (18:82)

Assuming that the arch is inextensible (EA p T), we can read off the relation
du = –dw · zl from Fig. 18.44(b), i. e. ul = –wlzl. Accordingly, with a finite axial stiff-
ness the result is

ulwswlzls
H

EA
(18:83)
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(a) (b)

(c)

Fig. 18.43 Arches: (a) bridge, (b) dam, (c) retaining wall, weir



18.6.3 Applications

Eq. (18.82) is fulfilled for the two-hinged arch shown in Fig. 18.45(a) with the para-
bolic form z = – 4fx(l – x)/l 2, where w a 0 and H = ql2

/(8f ) and load q = const, see
(5.59) and (5.60). The arch axis coincides with the thrust line.

As (18.83) shows, this solution with mutually braced supports is only valid when the
arch is inextensible. With a finite axial stiffness, the distance between the two supports
would have to be shortened by Hl/(EA) = ql3

/(8fEA) in order for the solution to
remain true.

According to (18.83), the following applies for mutually braced supports:

Hl

EA
ws

Ðl
0

wlzldx

Integration by parts and taking into account z(0) = z(l ) = 0 and wL = –M/(EI ) results
in the following relationship:

Hl

EA
ws wlz

���l
0
S

Ðl
0

wLzdx ws

ðl
0

Mz

EI
dx

i. e. when M = Hz + M0ðl
0

M0z

EI
dx SH

l

EA
S

ðl
0

z2

EI
dx

0
@

1
A

w 0 (18:84)

Relationship (18.84) corresponds to the compatibility condition

d1 w d10 SHd11 w 0

where

d10 w

ðl
0

M0z

EI
dsz

ðl
0

M0z

EI
dx ws

ql 3f

15EI
, d11 w

ðl
0

z2

EI
dsS

ðl
0

cos2f

EA
dsz

ðl
0

z2

EI
dx S

l

EA
w

8f 2l

15EI
S

l

EA

according to the force method, see Fig. 18.45(b). We get the following for H

H ws

d10

d11
w

ql 2

8f

1S
15i 2

8f 2

(18:85)

where i2 = I/A, see (13.19). Normally, i II f, which means that, as a result of assum-
ing a finite axial stiffness, H is reduced by only a small amount compared with the
inextensible system.

346 18 CONTINUOUS MODELS

III LINEAR ANALYSIS OF FRAMED STRUCTURES

q

xx

z

,u

, w

z

xd

z− 1
sd

u
w

wd

ud

xdq

M

H V

M Md+

H

V Vd+

EIb

EIa

EA 8

(a) (b)
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If we swap the roles of wl and zl in the integration by parts leading to (18.84), the
result when taking into account w(0) = w(l ) = 0 and zL = 8f /l2 is

Hl

EA
ws zlw

���l
0
S

Ðl
0

zLwdxw
8f

l 2

Ðl
0

wdx

i. e. for EA p TÐl
0

wdxw 0 (18:86)

The deflections of the inextensible arch disappear on average; settlement at one point
is compensated for by heaving at another point.

Let us return to the problem of Fig. 18.45 and place the origin of coordinates at the
crown of the arch, as shown in Fig. 5.30(a). Putting z = 4fx2

/l2, eq. (18.82) – taking
into account the symmetry condition wl(0) = 0 and the boundary conditions
w(l/2) = wL(l/2) = 0 – gives us the deflection

ww f
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8fH
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l 2 s 1S
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Hl 2

4EI

	 

(18:87)

and the condition

Ðl=2

0

uldx w 0

used with (18.83) leads to the conditional equation

H wEA
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2 ql 2

8fH
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k2

w

Hl 2

4EI

	 

(18:88)

for the thrust H in the arch.

Example 18.15 Two-hinged arch – uniformly distributed load

Applying (18.88) to the two-hinged arch of Fig. 18.46, with l = 200m, f = 40m, EA = 720GN,
EI = 540GNm2 and q = 1MN/m, results in the values k = 1.521410 and H = 124.9932MN. Sub-
stituting in (18.87) results in a settlement of w(0) = 34mm at the crown. Eq. (18.87) gives us

M wsEIwLw
8EIf

l 2

ql 2

8fH
s 1

	 

cos(2kx=l )

cosk
s 1

� �
for the bending moments, with a value of M(0) = 4.526MNm at the crown.
Assuming that the arch is inextensible, we get a thrust in the arch of H = ql2

/(8f ) = 125MN. On the
other hand, the approximation (18.85), where i2 = EI/EA = 0.75m2, results in a value of
H = 124.8902MN. Although the approximation for H is very good, if this value were to be used
to determine k and entered into (18.87), the result would be large errors. The reason for this becomes
clear when we develop the last factor on the right in (18.88) into a TAYLOR series. We get the ex-
pression

2

15
k2

S

17

315
k4

S

62

2835
k6

S ...

and can see that (18.88) gives us the approximation (18.85) when only the first term in this series is
considered.
The dimensions of the two-hinged arch investigated here are identical with those of example 16.8, so
it is possible to compare the results directly.

The inextensible two-hinged arch shown in Fig. 18.47(a), with the form z = – 4fx(l – x)/l2,
is loaded by the uniformly distributed load q0 and also the asymmetric load
q = q1 · sin(2px/l ). The uniformly distributed load causes a thrust in the arch
H = q0/zL = q0l

2
/(8f ), and (18.82) is reduced to

EIwLLSHwLw q1 � sin
2px

l

	 


34718.6 Arches

(a)

f

l

q

ϕ
s
x

z, w

H

f−

q /l 82
M0

M1= z

1−
N1= − ϕcos

(b)

−

−

+

Fig. 18.45 Two-hinged arch: (a) diagram of static

system, (b) basic system and basic states accord-

ing to the force method

40

1 MN/m

z

34
w

M

x

100100

4.5

[MNm]

[mm]

Fig. 18.46 Two-hinged arch subjected to uniformly

distributed load (dimensions in m)



Setting w = c · sin(2px/l ), which satisfies the boundary conditions w(0) =
wL(0) = w(l ) = wL(l ) = 0, results in the following deflections
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q1l 4

16p4EI
sin

2px

l

	 


1s
Hl 2

4p2EI

(18:89)

and bending moments

M wsEIwLw

q1l 2

4p2
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1s
Hl 2

4p2EI

(18:90)

We should also note that because of (18.83) andÐl
0

wlzl dxw 0

the thrust H in the arch is not affected by the asymmetric load. This assumption
implied above is therefore confirmed.

The equations (18.89) and (18.90) show that the deflections and the bending moments
obtained without considering H have to be multiplied by the amplification factor

mw

1

1sa
aw

H

HE
, HE w

p2EI

l 2
E

	 

(18:91)

already known from the expression for w in example 8.16, although in this case
lE = l/2, see (22.12).

Example 18.16 Two-hinged arch – sinusoidal load

Let us consider the case examined in example 18.15. Here, putting H = 125MN in (18.91) gives us
the value m = 1.3064. Therefore, (18.89) and (18.90), with q1 = 50kN/m, result in a maximum
deflection wmax = w(l/4) =124.2mm and a maximum bending moment Mmax = M(l/4) = 66.2MNm.
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Turning to Fig. 18.47(b) and the case of an asymmetric load eq1 constant segment by
segment, (18.82) is reduced to

EIwLLSHwLws q1 (x j 0)

Taking into account the boundary conditions w(0) = wL(0) = w(l/2) = wL(l/2) = 0,
the result is
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Hl 2
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(18:92)

For negative values of x, the function w and its even derivatives must be continued
antisymmetrically, the odd ones symmetrically.

As

Ðl=2

s l=2

wlzl dxw 0

H does not change as a result of the asymmetric load. However, the points on the arch
between the supports undergo displacements u in the x direction. In particular, the
crown of the arch is displaced by

u(0)w
Ð0

s l=2

wlzl dxw
2 f lq1

H

tan(k=2)s (k=2)

k3 s

1

24

� �
(18:93)

to the right. Using the coordinates of Fig. 18.47(b) we get the expression

u(0)w
2 f l 3q1

4p5EI sp3Hl 2
(18:94)

for the case shown in Fig. 18.47(a).

Example 18.17 Two-hinged arch – constant load segment by segment

If we replace the sinusoidal load of example 18.16 by the circumscribed rectangular load distribution,
where q1 = 50kN/m, eq. (18.92) gives us a maximum deflection wmax = w(– l/4) = –w(l/4)
= 157.6mm and the second derivative gives us a maximum bending moment Mmax = M(– l/4)
= –M(l/4) = 82.2MNm. Compared with the corresponding values

5q1l 4

6144EI
w

5 � 0.05 � 2004

6144 � 540000
w 0.1206 m ,

q1l 2

32
w

0.05 � 2002

32
w 62.5 MNm

without the influence of H, this corresponds to amplification factors of 1.3075 and 1.3153. As w and
M are only approximately sinusoidal functions, the result is small deviations from the value
m = 1.3064 calculated in example 18.16. As we can see, the use of (18.91) would lead to excellent
approximations.
The displacement at the crown according to (18.93) is 80.6 mm. Using (18.94), the result for the
inscribed sinusoidal load according to example 18.16 is 63.2mm.

Shallow arches are very sensitive to horizontal relative displacements of their abut-
ments. For example, increasing the span l by D for an arch with the form
z = – f sin(px/l ) and assuming a deflection w = c sin(px/l ), eq. (18.83) gives us the
approximation

Dw

p2c f

2l
At x = l/2, we get the maximum curvature

x max wswL(l=2)w
p2c

l 2 w

2D

f l

which, for example, for a rectangular cross-section with depth h and modulus of elas-
ticity E leads to boundary stresses amounting to

x max �
h

2
� E w

DhE

f l
(18:95)
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Example 18.18 Displacement of the abutments to a concrete arch

A concrete arch (E = 30kN/mm2, span l = 100m, rise f = 10m, depth h = 1.5m) with hinged sup-
ports at the abutments undergoes a relative displacement of the abutments amounting to D = 60mm
and hence a settlement at the crown of 2 ·100 ·0.06/(p2 ·10) = 0.1216m. According to (18.95), the
corresponding boundary stresses at the crown of the arch are about

60 � 1.5 � 30

10 � 100
w 2.7 N=mm2

The dependence on time (see example 7.2), which should generally be considered with such restraint
problems, has been ignored here for simplicity.

18.6.4 Summary

1. It is primarily the form of an arch that gives it its load-carrying capacity. Besides
the dominant compressive normal force, the associated bending moment must
always be considered.

2. In structural systems comprising an arch and (deck) beams, the necessary bending
stiffness can, in principle, be apportioned to the arch and the beams as required.

3. The deflections of an inextensible arch disappear on average; settlement at one
point is compensated for by heaving at another point.

4. How the thrust in the arch influences the deflections and the stress resultants can
be ascertained by way of amplification factors in a similar way to columns.

5. Apart from deflections, it is also necessary to consider horizontal displacements
for arches, especially with asymmetric loads.

6. Arches are sensitive to displacements of their abutments.

18.7 Annular structures

18.7.1 General

Cylindrical shells are used in many practical applications, e. g. pipes, tunnels, silos,
chimneys, reservoirs, see Fig. 18.48. The main aspects of their structural behaviour
can be ascertained by considering them as thin-wall rings (the basic concepts have
already been laid down in sections 5.3.2 and 13.2.6). In this section we shall confine
ourselves to circular rings rigid in shear (radius of curvature r = r = const, GAv p T)
and use polar coordinates with the apex angle u = s/r as independent variable.
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Fig. 18.48 Annular structures: (a) pipes, tunnels, (b) silos, chimneys, (c) reservoirs



18.7.2 Analytical model

Using the notation given in Fig. 18.49(a), we get the equilibrium conditions

dN SVduS qtrduw 0 , sNduS dV S qrrduw 0 , dM sVrduw 0

for the free body diagram of Fig. 18.49(b). Eliminating V from these relationships
leads to
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wDs 7 s (18:96)

where du = d/du, see (8.21).

On the other hand, using the displacement components v, w and the rotation f defined
in Fig. 18.49(c), the following applies:

erduw dvSwdu , fw

v

r
s

dw

rdu
, xw

df

rdu
where e = extension of bar axis and x = curvature. The second of these three relation-
ships already allows for the fact that the shear strain g is equal to zero, see (8.22).
Eliminating f results in
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The even and odd differential operators, as elements of Ds and Dk , are Dk = Ds
T and

Dk = –Ds
T respectively, see section 8.2.2.3.

The relationship between the internal force and deformation variables is
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see (8.23).

The –EI/r terms in the elasticity matrix E result from the hyperbolic distribution of
the strains over the depth of the cross-section h, see (13.30):
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Fig. 18.49 Circular ring: (a) notation, (b) free body diagram, (c) displacement variables



Thus, for a rectangular cross-section of width b, the result for x = 0 is the bending
moment
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and for e = 0 the normal force
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18.7.3 Applications

18.7.3.1 Radial uniformly distributed load

The case qr = q0 = const, qt a 0 has already been examined for the static situation in
example 5.5. Using (18.96) to (18.98) results in

N w q0r , M ws q0i2 ; ew
w

r
w

q0r

EA
, xw 0 ; vw 0 , ww

q0r2

EA
(18:99)

where i2 = I/A. Eq. (18.99)1 corresponds to the hoop stress formula, see (5.52).

The boundary bending stresses eM/W, where W = bh2
/6 = Ah/6, behave in propor-

tion to i2
/(hr) Z h/r with regard to the average stresses N/A, i. e. are relatively small

for thin rings (h II r).

18.7.3.2 Harmonic radial load qr = qncos(nu), n j 2

With this type of load (see Fig. 18.50), the external forces are in equilibrium in them-
selves, as for a radial uniformly distributed load. Eq. (18.96) leads to the differential
equation NL + N = rqr (where l = d/du), which is satisfied by the particular solution

Nn w
rqn cos(nu)

1s n2

The coefficients c1 and c2 for the general solution c1cosu + c2sinu of the homoge-
neous part of the differential equation must disappear because cosu and sinu each
have only one axis of symmetry, but qr,on the other hand, at least two. Further, as
qr has at least two axes of antisymmetry, using (18.96) it must be that Mn = – rNn;
eq. (18.98) therefore results in the relationships e = 0 and M = EIx , and (18.97) in
the end results in vl = –w and x r2 = –w – wL. In total, the result is

N w

rqn cos(nu)

1s n2
, M ws rN ; ew 0 , xw

M

EI

vws

r 4qn sin(nu)

n(n2
s 1)2EI

, ww

r 4qn cos(nu)

(n2
s 1)2EI

(18:100)

Superposing a radial uniformly distributed load qr = q0 = const and the case
qr = q2cos(2u), e. g. with q2 = q0/3, is one way of dealing with, for example, a
pipe laid in the ground (q0 I 0).
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Fig. 18.50 Harmonic radial load



18.7.3.3 Radial load q1cosu

Such a load (see Fig. 18.51) has a vertical resultant

Rw 2
Ðp
0

rq1 cos2u duwprq1

which, for example, can be brought into equilibrium by applying an appropriate sup-
port force at the crown. The FOURIER series
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for the support force together with q1cosu results in
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2
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According to (18.100)2, the second term on the right in this equation leads to
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(18:101)1

Applying (18.99)1 and (18.100)1, the following applies:
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and from (18.100)6 it follows that
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18.7.3.4 Opposing point loads

This case has already been examined in example 8.9 but with different notation, see
Fig. 18.52. In a similar way to the series development of R as a result of q1cosu, the
following applies:
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18.7.4 Edge disturbances in cylindrical shells

The expansion of pipes, silos or tanks is often inhibited, e. g. by stiffening rings or the
ground, or the roof in the case of a reservoir. This has already been pointed out in sec-
tion 18.4.1. Such problems bring us back to the theory of the beam on elastic foundation.

Let us consider the cylindrical shell of Fig. 18.53 (radius r, wall thickness h).
Unrestricted deformation as a consequence of the internal pressure q0 [kN/m2] accord-
ing to (18.99) causes membrane forces n = q0r [kN/m] and radial displacements
w = q0r

2
/(Eh) in the radial direction at a certain point x. On the other hand, each strip

of the shell with unit width acts as a beam in bending in the x direction with stiffness
D = Eh3

/[12(1 – n2)] according to (8.48). The load qr = q is therefore carried by a
bending component DwLL according to (18.40) and a membrane force component
Ehw/r2, i. e.

DwLLS
Eh

r2
ww q (18:103)

The differential equation (18.103) is similar to (18.46). Using

4b4
w

Eh

Dr2 w

12(1s n2)

r2h2

enables all the considerations of section 18.4.4 to be adopted.
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Example 18.19 Stiffened pipe subjected to internal pressure

The case of a pipe stiffened with rigid stiffening rings and subjected to an internal pressure q0 leads
back to the basic case 2Q according to Fig. 18.33. The minimum moment [kNm/m] in the shell occurs
beneath the stiffening ring and is equal to

mws

q0

2b2 ws

q0rhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12(1s n2)

p
The corresponding boundary stresses are

6 mj j
h2 w q0

r

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

(1s n2)

r
and the stiffening ring has to accommodate a hoop tension of 2q0r/b.

18.7.5 Summary

1. The structural behaviour of circular rings is described generally by the relation-
ships (18.96) to (18.98).

2. The important limiting case of a radial uniformly distributed load leads to (18.99).
3. It is often easier to calculate the stress resultants and deformations of annular

structures with the help of FOURIER series than by solving the differential equa-
tions directly.

4. Edge disturbance problems in cylindrical shells can be dealt with by using the
theory of the beam on elastic foundation.

18.8 Cables

18.8.1 General

Cables (the general term for wire ropes) are used for diverse applications in bridges,
roofs, guyed towers, aerial ropeways, overhead lines, etc., see Fig. 18.54.

A spiral cable is made up of one or more layers of wires wound around a core wire.
Such cables consist of round wires (open cables), or a combination of round and
wedge-shaped wires (semi-locked cables), or round and Z-shaped wires (fully locked
cables). Parallel-wire cables are made up of bundles of round wires in a parallel
arrangement. A strand is a spiral cable with just one layer; a stranded cable is a cable
made up of several such strands.

Owing to the make-up of their cross-sections, the stress-strain behaviour of cables is
not linear. Upon being loaded for the first time, a strain hardening takes place as the
voids close; the axial stiffness increases and a certain elongation remains, the cable
stretch, which is only established completely after a number of loading cycles (the
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Fig. 18.54 Typical applications for cables: (a) suspension bridge, (b) cable-stayed bridge, (c) suspended roof,

(d) guyed tower, (e) aerial ropeway



number depends on the cable configuration). Accordingly, the modulus of a cable is
generally specified as the secant modulus between two stress values after a certain
number of loading cycles. For steel cables this figure is about 100kN/mm2 for round
stranded cables, 150 and 170kN/mm2 for open and fully locked spiral cables respect-
ively, and 190 and 200kN/mm2 for parallel-strand and parallel-wire bundles respect-
ively.

18.8.2 Analytical model

When dealing with cables, it is not primarily their strength that concerns us, but rather
their stiffness, or rather their deformations. The equilibrium conditions must be for-
mulated for the deformed system. We must therefore depart from the realm of linear
statics. However, cable problems are related to other problems in this chapter and so
will be investigated here and not in part IVof this book (Non-linear analysis of framed
structures).

18.8.2.1 Vertical loads

Let us consider a flexible cable spanning between points O and A as shown in
Fig. 18.55(a) The cable has a constant axial stiffness (EI p 0, EA = const), an initial
length L, and carries a vertical line load q.

From Fig. 18.55(b) it follows that with
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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S dz2
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w dx
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and the equilibrium conditions
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and the cable force is
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The length of the cable in the deformed state is given by the cable equation
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which apart from the elastic strains S/(EA) generally also includes thermal deform-
ations and a prestress s0 of the cable in the calculation.

The following applies for the second term on the right in (18.106):ðl
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where V designates the shear force occurring in a simply supported beam of length l as
a result of q, see Fig. 18.56. Applying the associated moments M, it follows that

zw
M

H
S x tana , zlw

V

H
S tana , zLws

q

H
(18:108)

Numerical values for the horizontal tension H and the cable curve z(x) can be calcu-
lated iteratively from (18.106) and (18.108)1. Starting with an estimate for H, it is
possible to determine z and zl according to (18.108), and we can use (18.107) to check
whether condition (18.106) has been satisfied. If the result does not achieve the re-
quired accuracy, we repeat the calculation with a better initial estimate for H.

The initial length L is often not given, instead, for example, has to be determined in
such a way that a certain cable sag (maximum sag with respect to the chord of the
cable) is not exceeded for given actions. These problems, too, can be solved iteratively
on the basis of equations (18.106) and (18.108). In doing so, we vary L and s0 until the
required cable sag has been reached.

18.8.2.2 Vertical and horizontal loads

The two cable force components V and H vary for combined vertical and horizontal
loads. Eq. (18.105)1 and (18.106) continue to apply, but the following is new

H wsV S Ss cosa , V wV S Ss sina (18:109)

where Ss = force in direction of cable chord, see Fig. 18.57. Instead of (18.108)1, the
following applies:

M SM s Ss(z cosas x sina)w 0 (18:110)

The iteration begins with an initial value for Ss, and we use (18.110) to get the asso-
ciated cable curve. Therefore, we can use (18.105)1 and (18.109) to check that the
cable equation (18.106) has been satisfied. By correcting Ss and repeating the calcula-
tion until we stop the iteration, we get the final value of Ss. Applying (18.109) gives us
the cable force components H and V, (18.110) gives us the cable curve and (18.105)1

the cable force diagram.
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18.8.3 Inextensible cables

It is often sufficient to consider inextensible cables that are tensioned in their chord
direction by a force Ss = H/cosa. Subjected to vertical loads, such cables take on the
form described by (18.108)1. The cable equation (18.106) is unnecessary.

Fig. 18.58 shows three simple examples. The cable sags given in the figure correspond
to the maximum moments M of q0l

2
/8, 9q0l

2
/128 and Qa(1 – a/l ).

Subjected to its self-weight, the cable takes on the form of a catenary. When gs

designates the unit weight of the cable, then

qw
gs A ds

dx
w gs A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1S zl2

p
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and we get the coordinates

zw a cosh
l

2a

	 

s cosh

x

a

	 
� �
aw

H

gsA

	 

entered in Fig. 18.59.

With a relatively small sag, the catenary deviates only marginally from a quadratic
parabola. Putting q0 = gs A and f = l/8 results in, for example, according to Fig.
18.58(a), a horizontal tension H = gs Al. This horizontal tension, with the catenary
(a = l ), results in a cable sag of

l [ cosh(1=2)s 1]w 0.1276 lz l=8

In an aerial ropeway system, the track cable often passes around a pulley at one end
and is loaded with a weight G, see Fig. 18.60. Taking a cable force S = G and a ver-
tical component V = –q0l/2 at the pulley, the result according to (18.105)1 is

H w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

s (q0l=2)2
q

and therefore

f w
q0l 2

8G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1s

q0l

2G

	 
2
s

In the case of taut cables with f II l, a valid approximation is H z S z G = const.

18.8.4 Extensible cables

Generally, L i l/cosa applies for the initial lengths of cables and their axial stiffness
is finite. The cable equation (18.106) must be used to analyse their structural behav-
iour.

18.8.4.1 Uniformly distributed load

The integrals in (18.106) can be expressed analytically for vertical loads q constant
segment by segment. For example, the cable equation for a horizontal cable subjected
to a uniformly distributed load q = q0 is

l

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1S b2

q
S

ln bS

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1S b2

q	 

b

2
664

3
775w L 1SaT T s

s0

E

	 

S

q0l 2

2EAb
1S

b2

3

 !

(18:111)

where b = 4f /l and f is the cable sag. The cable curve is a quadratic parabola and the
horizontal tension is given by H = q0l2

/(8f ).

It is often convenient to express the term on the left in (18.111) with the power series

l 1S
b2

6
s

b4

40
S

b6

112
s

5b8

1152
S ...

 !
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Example 18.20 Single strand – uniformly distributed load

A single strand (A = 100mm2, E = 195kN/mm2, L = 40.5 m) spans horizontally over a distance
l = 40m and is loaded by the uniformly distributed load q0 = 1.5kN/m. Eq. (18.111) results in
f = 3.255m and therefore we get H = 92.2kN.

Example 18.21 Single strand – thermal action

The task is to calculate the initial length L of the single strand (aT = 10– 5
/hC) considered in ex-

ample 18.20 such that when subjected to a load q0 = 1kN/m and T = 40hC, a cable sag of
f = 3m is achieved. We can use (18.111) to find L = 40.435m.

Example 18.22 Single strand – prestress

The single strand of example 18.20 should exhibit a cable sag of f = 1 m when subjected to a
load q0 = 0.2kN/m. Taking b = 0.1 and L = l, it is possible to achieve this by using (18.111)
when the strand is prestressed to s0 = 76.8N/mm2 (i. e. a force of 7.68kN):

40.0666w 40 � 1s
76.8

195000

	 

S

0.2 � 402 1S
0.01

3

	 

2 � 195 � 100 � 0.1

Subjected to q0, a horizontal tension H = 40kN is established.

18.8.4.2 Constant loads on both halves of the span

Fig. 18.61(a) shows a cable carrying loads of q1 and kq1 on the two halves of its span
(0 I k J 1). For this case we get the cable equationX4

iw1

ai

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1S b2

i

q
S
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ln bi S

ffiffiffiffiffiffiffiffiffiffiffiffiffi
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� �
w L 1SaT T s

s0

E

	 

S

Hl

EA
S

q2
1l 3

192EAH
(5S 6kS 5k2)

(18:112)

which is similar to (18.111), where

a1 w (3S k)l=16 , a2 w (1s k)l=16 , a3 w (3S 1=k)l=16 , a4 w (1s 1=k)l=16

b1 w (3S k)
q1l

8H
, b2 w (1s k)

q1l

8H
, b3 w (1S 3k)

q1l

8H
, b4 w (1s k)

q1l

8H
The cable sag

f w
(3S k)2q1l 2

128H
occurs at a distance of l(1 – k)/8 from the middle of the cable.

Owing to the greater load on the left half of the span, the points on the cable between
the ends of the cable shift to the left. This can be prevented, for example, by providing
a guy cable DBE, see Fig. 18.61(b), which is connected to the middle of cable ABC at
point B and prestressed with a certain force P0. With respect to the asymmetric load,
point B functions like a fixed point. Differential forces eDP build up in the guy cable
and a kink forms in the cable curve at B.
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Example 18.22 Single strand – constant loads on both halves of the span

The single strand examined in example 18.20 is loaded by q1 = 2kN/m and kq1 = 1kN/m on the two
halves of its span. Eq. (18.112) results in a horizontal tension of H = 93.2kN, and therefore the
resulting cable sag is f = 3.286m at a distance of 2.5m from the middle of the cable.
Compared with example 18.20 with the same (albeit uniformly distributed) total load of 60kN,
the result is slightly higher values for f and H.

18.8.5 Axial stiffness of laterally loaded cables

If the cable shown in Fig. 18.62, which carries no lateral load (q0 = 0), is subjected to
an increase in horizontal tension H amounting to dH, the sliding support B is dis-
placed by dHl/(EA) to the right. Loading the cable with the uniformly distributed
load q0 causes a cable sag of f = q0l

2
/(8H), see Fig. 18.58(a). The support displace-

ment now established for an increment dH can be estimated with the help of the cable
equation (18.111). If in the power series of the expression on the left in this equation
we confine ourselves to the first two terms and neglect the term b2

/3 in the brackets in
the second term on the right, which is generally small compared with 1, then differ-
entiating with respect to H for the resulting expressions results in the displacement

dH
l

EA
S

q2
0l 3

12H3

	 

Accordingly, compared with the value EA without the effect of the lateral loading, the
axial stiffness is reduced to the value

EA

1S
q2

0l 2EA

12H3

(18:113)1

In the case of a cable at an angle a to the horizontal with total weight G, eq. (18.113)1

must be replaced by
EA

1S
G2 cos2aEA

12S3
s

(18:113)2

where Ss = force in direction of cable chord.

The relationship (18.113)1 can also be obtained through an energy approach. The
cable sag changes as a result of dH by an amount df = –q0l

2dH/(8H2), i. e. the loadsq0

are raised on average by 2/3 of the amount of this value because of the parabolic cable
curve, and the potential energy is increased by

q0l � 2
3
� q0l 2dH

8H2 w

q2
0l 3dH

12H2

By contrast, the energy stored elastically in the cable is increased by

H � dH l

EA
The sum of these two terms is equal to the work done by forc H on the displacement of
support B, which brings us back to (18.113)1 again.

18.8.6 Summary

1. This section is limited to flexible cables with a constant axial stiffness lying in one
plane.

2. The cable curve is generally calculated iteratively from the cable equation
(18.106) and – for vertical, or rather general loads – from the moment-balance
equations (18.108)1 or (18.110).

3. It is often sufficient to consider an inextensible cable. The cable curve then results
from the pure equilibrium conditions.

4. The integral expressions in the cable equation (18.106) can be specified analytic-
ally for vertical loads constant segment by segment.
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5. The cable equations for horizontal cables subjected to uniformly distributed loads
or loads constant over half the span are (18.111) or (18.112) respectively.

6. A lateral load reduces the axial stiffness of a cable. This is particularly the case
with long cables and cables that are not pulled especially taut, see (18.113).

18.9 Combined cable-type and bending response

18.9.1 Analytical model

In a similar way to the differential equation (18.82) for an arch, combining (18.39) and
(18.104)3 gives us the differential equation

EIwLLs (H SDH)(zSw)Lw gS q (18:114)

where z is the cable curve and H the horizontal tension due to permanent loads g, and
w and DH, on the other hand, the deflections and the change in the horizontal tension
respectively as a result of the variable loads q. If we assume that the permanent loads
are carried solely by a cable-type response, i. e. g = –HzL, we get the differential equa-
tion

EIwLLs (H SDH)wLw qs g
DH

H
(18:115)

which is similar to (18.56) and has the general solution

ww c1 S c2x S c3 cosh(lx)S c4 sinh(lx)Swpart l2
w

H SDH

EI

	 

(18:116)1

or

wwC1 SC2xSC3elx
SC4eslx

Swpart l2
w

H SDH

EI

	 

(18:116)2

In order to determine DH, we consider (18.83) again (not forgetting to change the sign
of H, or rather DH) and stipulateÐl

0

wlzl dxw
DHl

EA

Integration by parts when considering w(0) = w(l ) = 0 and zL = – 8f /l2 results in

Ðl
0

wlzl dxww zl
���l
0
s

Ðl
0

w zL dx w
8f

l 2

ðl
0

w dx

and therefore

DH w

8f EA

l 3

ðl
0

w dx (18:117)

see (18.86). The assumption zL = – 8f /l2 corresponds to a parabolic cable curve with a
cable sag f when subjected to g = const.

The values of w and DH can be determined with (18.115) and (18.117). We generally
proceed iteratively by estimating DH first of all and then improving it with the solution
to (18.115) and the help of (18.117).

Differential equation (18.115) covers the entire spectrum from a bending response
only (l = 0) to beam in bending with tensile force and bending-resistant ties right
up to a cable-type response (l p T).
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18.9.2 Bending-resistant ties

18.9.2.1 Cable with wheel load

Using (18.116)2 for the case shown in Fig. 18.63, with DH = 0 and the conditions

w(l=2)w 0 , wl(0)w 0 , sEIwL(l=2)w 0 , sEIwLl(0)wsQ=2

results in the relationships

ww

Ql

4H
1s

2x

l

	 

s

Q(eslx
s esll � elx)

2Hl(1S esll)
, M w

Q(eslx
s esll � elx)

2l(1S esll)
l2

w

H

EI

	 

(18:118)

The first term on the right in (18.118)1 describes the deflection of the cable without
bending stiffness. The second term is approximated very well with –Qe–lx

/(2Hl). The
maximum bending moment at x = 0 according to (18.118)2 is approximated very well
by Q/(2l). The radius of curvature of the cable at x = 0 is roughly

Rw

2lEI

Q
w

2H

lQ
(18:119)

We shall assume that the diameter of the wheel is D I 2R.

Example 18.24 Cable with wheel load

A cable with a circular solid section (diameter d = 30mm, l = 120m, E = 200kN/mm2 ) is tensioned
with H = 300kN and loaded with Q = 10kN. Putting I = d 4p/64 = 39761mm4 results in
l–1 = 162.81mm and therefore (18.119) gives us R = 9.77m, and (18.118) the values
w(0) = 997mm and M(0) = 814Nm. The normal stresses of 300000/(302 ·p/4) = 424N/mm2 as a
result of H are joined by extreme fibre stresses of (814000/39761) ·15 = 307N/mm2 due to bending
under the wheel load Q.

18.9.2.2 Bending of stay cables

A stay cable at an angle a to the horizontal has the inclined length b and is loaded by
the normal force N, see Fig. 18.64(a). The anchorage at A (rotated through f0 with
respect to the chord x) acts as a fixed support. The self-weight g [kN/m] of the cable
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corresponds to line loads gc = gcosa transverse to the direction of the cable, which
can lead to considerable bending stresses in the region of the anchorage.

Taking the boundary conditions w(0) = 0, wl(0) = f0, wl(b/2) = 0 and wlll(b/2) = 0,
eq. (18.116)1 gives us

ww

gcx(bs x)
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S
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l
s
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2Nl

	 

� sinh(lx)s
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(18:120)

and therefore

M wsEIwLw
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sinh(lb=2)
(18:121)

The first term on the right in (18.121) can be neglected with respect to the second
because lb/2 ii 1. With a cable of diameter d (A = d2p/4, I = d 4p/64), the extreme
fibre bending stresses at x = 0 are therefore
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where s = N/A.

It is expedient to select the prior rotation f0 in such a way that the bending stresses due
to permanent actions G disappear, i. e. f0 = gcb/(2AsG), where sG = normal stress in
cable due to G. Variable actions Q together with G lead to normal stresses sG+Q and
therefore to bending stress differences of

Dsb w
gcb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EsGSQ

p
A

1

sG
s

1

sGSQ

	 

(18:123)

Example 18.25 Stresses in stay cable

Taking a stay cable with b = 200m, gc /A = 90kN/m3, E = 200kN/mm2, sG = 540N/mm2 and
sG+Q = 720kN/mm2, the result with a prior rotation of f0 = 90 ·200/(2 ·540) = 16.7mrad when using
(18.123) is Dsb = 100N/mm2. The stress difference sG+Q – sG = 180N/mm2 is increased by Dsb to
280N/mm2.

Apart from the variation in the normal force N, the effects of wind on the cable plus
rotations of the beam to which the cable is connected at A lead to bending stresses in
the cable. Such effects can be taken into account by way of an additional rotation in the
expression between the absolute value signs in (18.122). On the whole, the stress dif-
ferences that occur can have a considerable fatigue effect. To reduce this effect, it is
possible to arrange an elastic support for the cable at a distance a = approx. 10d to
20d from the anchorage, for instance, see Fig. 18.64(b). The stiffness k of the trans-
lational spring in such an arrangement should lie in the region of about Ed/1000 to
Ed /10000.

18.9.3 Suspended roofs and stress ribbons

18.9.3.1 Uniformly distributed load

Applying (18.116)1 to the case shown in Fig. 18.65, with the continuity and boundary
conditions wl(0) = wlll(0) = w(l/2) = wL(l/2) = 0, results in the following deflection:

ww

qs g
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H
2(H SDH)

� l 2
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(18:124)

and from (18.117) it follows that

DH w

qs g
DH

H
2(H SDH)

� 16 f EA � 1

12
s
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(ll )2 S

2 tanh(ll=2)

(ll )3
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(18:125)

36318.9 Combined cable-type and bending response



Example 18.26 Suspended roof – uniformly distributed load

A 200mm deep concrete roof (g = 5kN/m, EA = 6GN and EI = 20MNm2 per metre width of roof)
spans a distance of l = 100 m as a suspended roof with a sag of f = 10m. The horizontal tension as a
result of g amounts to H = 5·1002

/(8 ·10) = 625kN per metre width of roof.
With q = 2kN/m, eq. (18.125) results in DH = 249.3kN and l = 0.209 082m–1. Eq. (18.124) leads
to a deflection at mid-span of w(0) = 7.8mm.
If for simplicity we were to take DH = (q/g) ·H = 250kN, then the result according to (18.124) would
be w a 0. The combination with (18.117) is more interesting. Assuming a parabolic deflection curve,
then

DH w

8 f EA

l 3
� 2
3

w(0) � l

applies and therefore we get

w(0)w
3DHl 2

16 f EA
w

3 � 0.25 � 1002

16 � 10 � 6 � 103 w 0.0078 m

18.9.3.2 Asymmetric imposed load

The expressions
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(18:126)

for the case shown in Fig. 18.66, with the boundary conditions

w1(s l=2)ww1L(s l=2)ww2(l=2)ww2L(l=2)w 0

and the continuity conditions

w1(0)ww2(0) , w1l(0)ww2l(0) , w1L(0)ww2L(0) , w1Ll(0)ww2Ll(0)

lead to

c1 w

qs g
DH

H

	 

l 2

8
s

2

l2

	 

s

l 2

8
g

DH

H

2(H SDH)
, c2 w c6 w

s ql

8(H SDH)

c3 w

q[ cosh(ll=2)S 1]s 2g
DH

H
2(H SDH)l2 cosh(ll=2)

, c4 w c8 w
q[ cosh(ll=2)s 1]

2(H SDH)l2 sinh(ll=2)

c5 w

qs 2g
DH

H

	 

l 2

8
S

2

l2 g
DH

H

2(H SDH)
, c7 w

s q[ cosh(ll=2)s 1]s 2g
DH

H
2(H SDH)l2 cosh(ll=2)

and (18.117) gives us
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Example 18.27 Suspended roof – asymmetric imposed load

Loading the suspended roof shown in example 18.26 with q = 2kN/m on one side only and using
(18.127) results in DH = 124.7kN and l = 0.193 610m–1. Applying (18.126) results in the deflection
and bending moment diagrams shown in Fig. 18.67(a).
If we were to use the approximation DH = (q/g) ·H/2 = 125 kN, then the result of (18.115) would be
an asymmetric parabolic diagram for w with maximum/minimum values of

e

ql 2

64(H SDH)
we

2 � 1002

64 � (625S 125)
we 0.4167 m

and (18.127) would result in DH = 0. The radius of curvature 1/x of 252
/(2 ·0.4167) = 750m would

then correspond to constant moments of EIx = 20 000/750 = 26.7 kNm/m, see Fig. 18.67(b).
According to the approximate solution, the bending moments due to an asymmetric imposed load
already analysed in example 5.7 (maximum/minimum values of ql2

/64 at the quarter-points of
the span l ) are resisted by a corresponding deformation of the roof entirely by way of a cable-
type response. The constant moments are a side-effect; they infringe the static boundary and continu-
ity conditions, but agree well with the maximum/minimum values of the moments according to the
exact solution.

Example 18.28 Stress ribbon – asymmetric imposed load

The approximate solution discussed in example 18.27 is less accurate for shallow stress ribbons. To
illustrate this fact, let us consider the 300mm thick stress ribbon of Fig. 18.68 (g = 7.5kN/m,
EA = 9GN, EI = 67.5MNm2 per metre width of ribbon), which spans a distance of l = 50 m with
a sag of f = 0.75m and has to carry an asymmetric load q = 4kN/m. The horizontal tension as a result
of g amounts to H = 7.5 ·502

/(8 ·0.75) = 3125kN per metre width of ribbon.
The approximation DH = (4/7.5) ·3125/2 = 833.3kN results in deflections at the quarter-points
amounting to e4 ·502

/[64(3125 + 833.3)] = e39.5mm. The corresponding moments are
e67 500 ·2 ·0.0395/(12.5)2 = e34.1kNm/m.
Eq. (18.127) results in DH = 607.2 kN and l = 0.235 142m–1. The w and M diagrams resulting from
(18.126) are shown in Fig. 18.68.
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18.9.3.3 Central point load

Eq. (18.116)1 with the particular solution

wpart w
DHgx2

2H(H SDH)
(18:128)

applies for the case of a central point load Q as shown in Fig. 18.69(a). Using the
boundary and continuity conditions

w(l=2)wwL(l=2)wwl(0)w 0 , sEIwLl(0)wsQ=2
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we get the constants

c1 w

Ql

4
s g

DH

H

l 2

8
s

1

l2

	 

2(H SDH)

, c2 w
sQ

2(H SDH)

c3 ws

Q

2l
sinh(ll=2)S

g

l2

DH

H
(H SDH) cosh(ll=2)

, c4 w
Q

2l(H SDH)

and from (18.117) it follows that

DH w

16 f EA

(H SDH)
� Q

l

1

16
s

1

2(ll )2 S

1

2(ll)2 cosh(ll=2)

� �
s g

DH

H

1

24
s

1

2(ll )2 S

tanh(ll=2)

(ll)3

� �� �
(18:129)

Example 18.29 Suspended roof – central point load

Applying (18.129) to the suspended roof of example 18.26, with H = 625kN and a central point
load Q = 50kN per metre width of roof, results in DH = 94.3kN and l = 0.1668m–1. The deflections
and associated bending moments calculated with (18.116)1 and (18.128) are shown in Fig. 18.69(b).
The peak moment occurring beneath Q has a parabolic rounding when Q is introduced distributed
over a finite width.
According to the FOURIER series development for the expression on the left in (18.111), a relative
displacement of the two ends of the cable amounting to about 16fd/(3l ) corresponds to a virtual in-
crease d in the sag f for an unstressed cable. According to the principle of virtual deformations, the
following applies for the individual actions g and Q:

gl � 2d

3
sH � 16 f d

3l
w 0 , Q � dsDH � 16 f d

3l
w 0

and therefore we get the approximation

DHzH � 3Q

2gl
w

3Ql

16f
w

3 � 50 � 100

16 � 10
w 93.75 kN

18.9.3.4 Thermal action and prestress

We can see from the series development for the expression on the left in (18.111) that
the cable sag as a result of thermal action and prestress changes approximately by the
amount

dfz
3l 2

16f
aT T s

s0

E

� �
(18:130)

Example 18.30 Stress ribbon – thermal action

The stress ribbon examined in example 18.28 reacts very sensitively to changes in temperature.
Putting l = 50m, f = 0.75m, aT = 10–5

/hC and T = 20hC, then (18.130) results in df = 125mm.
In the suspended roof of example 18.26 (l = 100m, f = 10m), the same thermal action would cause
a change in the cable sag of only 37.5mm.
The prestress as well as the creep and shrinkage of the concrete reduce the sag of the stress ribbon
according to (18.130). The corresponding deformations must be considered carefully for the construc-
tion stage in order to achieve the desired final situation. If this stress ribbon were to be built on false-
work, this would need to have, for example, a sag at mid-span amounting to about 1m (assuming a
strain of 0.4‰) in order to achieve the desired value of f = 0.75m in the final condition.
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18.9.4 Suspension bridges

We should generally assume the cable equation (18.106) and also (18.114) for suspen-
sion bridges. The horizontal tension in the central span differs from that in the side
spans depending on the stiffness of the pylons. In addition, the flexibility of the abut-
ments must be considered. Using the notation of Fig. 18.70 and

uA w

DH1

kA
, uB w

DH2 sDH1

kB
, uC w

DH3 sDH2

kC
, uD ws

DH3

kD

(18:131)

plus the changes Dli in the span lengths determined according to (18.106), the com-
patibility conditions are

Dl1 S uA s uB w 0 , Dl2 S uB s uC w 0 , Dl3 S uC s uD w 0 (18:132)

The calculation is carried out iteratively by successively improving DHi , preferably by
using existing spreadsheet programs or mathematics software.

Suspension bridges are normally built with vertical suspenders. Such bridges behave
in a similar way to suspended roofs when carrying an asymmetric imposed load. De-
flections and bending moments in the stiffening girder (deck beam) can be estimated
with the approximate method discussed in example 18.27.

Suspension cable and deck beam are often connected together at mid-span, which
achieves a similar stiffening effect to that of a guy cable, see Fig. 18.61(b).

Connecting the deck beam to the suspension cable via inclined suspenders, in a similar
way to a WARREN truss without posts or a BROWN truss, can bring about a consid-
erable stiffening effect. Provided no suspenders are relieved, the system functions like
a trussed girder. Apart from the danger of suspenders being relieved, which can be
dealt with by providing and prestressing an upward-curving guy cable if necessary,
it is primarily the fatigue effects in the suspenders that must be considered.

18.9.5 Summary

1. The structural behaviour of systems with combined cable-type and bending re-
sponse can generally be assessed with the differential equation (18.114) and
the cable equation (18.106). As in section 18.8 (Cables), the non-linear behaviour
means that the superposition law does not apply.

2. If permanent loads g are carried purely by cable action, (18.114) leads to the dif-
ferential equation (18.115) for the deflections w due to the variable loads q.
When g = const, the relationship (18.117) can be used instead of the cable equa-
tion (18.106).

3. Wheel loads Q on horizontal cables with a circular cross-section and a horizontal
tension H = As give rise to extreme fibre bending stresses amounting to
(Q/A)

ffiffiffiffiffiffiffiffiffi
E=s

p
.

4. Considerable bending stresses can build up around the anchorages of stay cables.
Providing an elastic support to the cable can reduce these stresses and hence im-
prove the structural safety with respect to fatigue.

5. Closed solutions are given for various load cases on suspended roofs and stress
ribbons.
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6. The flexibilities of the abutments and the pylons influence the horizontal tension
in the spans of a suspension bridge. Connecting suspension cables and deck
beams at mid-span and providing inclined suspenders can make suspension
bridge systems much stiffer; however, the fatigue effects associated with such
a design must be given special attention.

18.10 Exercises

18.1 Two outer timber members (120q200mm) are connected via 16 split-ring tim-
ber connectors Ø65mm and 8 bolts Ø12mm to a central timber member
(180q200mm) as shown in Fig. 18.71(a). Each connector has a stiffness of
12kN/mm, and the modulus of elasticity of the timber is 11kN/mm2. Assume
a continuous connection over a length l = 600mm and determine the diagrams
for the normal forces plus the displacements assuming a maximum slip of 1mm.

18.2 Discuss the influence of lengthening the row of connectors in exercise 18.1
(l = n · 150mm) assuming all other factors remain unchanged.

18.3 Examine the behaviour of the system of Fig. 18.20(a) subjected to a trapezoidal
distributed line load q.

18.4 A circular cast-in-place concrete pile (Ø = 1m, Ec = 32kN/mm2) is loaded at
the top by shear forces and moments as shown in Fig. 18.26(b). Using Fig.
18.33, calculate the corresponding translational and rotational spring stiffnesses
at the level of the top of the pile. Vary the foundation modulus between 10 and
400MN/m2, and draw the diagrams for w, wl, M and V along the axis of the pile.

18.5 Verify (18.80) and apply these expressions to example 18.14.
18.6 The arch of example 18.15 assumes a solid rectangular concrete cross-section

(width b = 8m, depth h = 3m, E = 30kN/mm2, gc = 25kN/m3). Replace this
cross-section by a resolved cross-section (e. g. hollow cross-section), take into
account the saving in weight in q and H and repeat the considerations of ex-
ample 18.17. Draw the stress profiles at the quarter-points of the span.

18.7 Replace the hinges at the springings in example 18.16 by fixed supports and dis-
cuss how this change to the structural system affects the structural response.

18.8 The pressurised steel water pipe (E = 210kN/mm2, n = 0.3) shown in Fig.
18.71(b) is made from 8m long segments, riveted together via splices. Assuming
a pressure head of 160m, calculate the radial displacements and the bending mo-
ments along the axis of the pipe. What are the maximum stresses as a result of
membrane and bending behaviour?
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18.9 An aerial ropeway according to Fig. 18.71(c) rises a vertical distance of 400m
and bridges a horizontal distance of 1000m. The track cable (cross-sectional
area A = 2100mm2, self-weight g = 0.162kN/m, E = 165kN/mm2) is ten-
sioned in the lower station with a counterweight G = 1.1MN. Calculate the
maximum sag of the track cable due to self-weight and the weight of the
cabin F = 200kN. How is the counterweight displaced as the cabin travels?
If displacement of the counterweight is prevented, what are the maximum
sag values and the stress differences in the track cable during movement of
the cabin?

18.10 Verify (18.111) and (18.112).
18.11 Select a suitable prestress for example 18.27 according to Fig. 18.61 and dis-

cuss its effect.
18.12 Use an existing example to select approximate dimensions for a suspension

bridge and discuss the effect of inclined instead of vertical suspenders for
an asymmetric imposed load. Ensure an adequate distance between suspension
cable and deck beam at mid-span, compare the structural behaviour and discuss
the consequences for the execution.
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19 DISCRETISED MODELS

19.1 General

A basic scheme for discretised structural models (section 9.3) was introduced in
Fig. 8.2. That scheme summarises the internal and external force and deformation
variables plus the relationships between them.

The emphasis in the lower part of that figure, which corresponds to the displacement
method, is that statically indeterminate and statically determinate systems are both
dealt with in the same way. The kinematic transformation matrix a and the stiffness
matrix k for all bar elements gives us the global stiffness matrix K = aT

x k x a. And
therefore we get the displacements V = K –1

x Q corresponding to the loads Q plus
the internal deformation and force variables v = a x V and s = k x v.

This procedure was generalised in sections 17.1 to 17.3 by considering actions on bars
(Fig. 17.1) and by using complete bar end variables and global coordinates. The ac-
tions on bars not contained in (8.6) cause the additional term Q0 on the right in (17.43).
This and the global stiffness matrix K can be determined from the superposition of
the fixed-end force vectors, or rather member stiffness matrices, related to the global
coordinates.

According to the force method corresponding to the upper part of Fig. 8.2, statically
determinate and statically indeterminate systems are approached in different ways.
Determining the forces for statically determinate systems has been explained in sec-
tions 9.3 and 10.3. On the one hand, g = aT applies for the equilibrium matrix g
occurring in (9.2) with Q = g x s, i. e. it can be obtained from the kinematic transform-
ation matrix a through transposition; on the other hand, g is the inverse of the static
transformation matrix b: b = g–1.

In systems with n degrees of static indeterminacy, g is not square, but rather rectan-
gular, with a row deficit of n according to (9.3) or (9.4). Although g x b = I still applies,
g cannot be inverted, and b has a column deficit of n. In order to eliminate this deficit,
n constraints are released at the joints, which therefore introduces corresponding add-
itional degrees of freedom Vi and corresponding external joint force variables Xi . The
relationships (8.8) to (8.12) then allow the problems without actions on bars to be
solved.

The classic approach to the force method was developed and illustrated in chapter 16.
In the following, the force method will be generalised and supplemented in a similar
way to the presentation of the displacement method in sections 17.1 to 17.3. In add-
ition, chapter 17 will be rounded off with an introduction to the finite element method.
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19.2 The force method

19.2.1 Complete and global bar end forces

If we use complete bar end forces according to (17.13)1 and Fig. 17.3 plus the asso-
ciated sign convention II, we get

Q
C

� �
w

g
gsC

� �
7 sf g (19:1)

instead of (9.2), where g and gsC are pure incidence matrices containing the elements 0
and 1 only. We get

Q3

Q4

Q6

C1

C2

C5

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

w

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0

2
6666664

3
7777775

Nl

Vl

Ml

Nr

Vr

Mr

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

for the case illustrated in Fig. 9.5(d), for example. The complete bar end forces are
related to the independent bar end forces according to (17.14)1, i. e.

sw eT7 s (19:2)
and therefore (9.2) becomes

Qw g 7 s (gw g 7 eT) , C ws gsC 7 s (gsC ws gsC 7 eT) (19:3)

The bars are generally skewed with respect to the global coordinates. Therefore, we
initially use complete, global bar end forces sg in the joint equilibrium conditions. In
a first step according to (17.39)1, we transform these into complete, local bar end
forces s, which is followed by the transformation (19.2) into independent bar end
forces s.

19.2.2 Member flexibility relation

According to (9.8), the internal deformation variables associated with the independent
bar end forces Nr , Ml , Mr are the bar extension D and the bar end rotations l and r.
Eq. (17.14)2 shows that the complete kinematic bar end variables ve include an add-
itional rigid body deformation compared with the independent variables ve, i. e. the
latter follow from the former by eliminating this rigid body deformation.

There is a relationship between the variables ve and the independent bar end forces se

which is the inverse of (17.3):

ve w f e7 se (19:4)

see (17.1) or (17.4) and (17.8). We normally get the coefficients of the member flex-
ibility matrix fe from the work theorem (14.4), i. e.

f eij w

ðl
0

NiNj

EA
S

ViVj

GAv
S

MiMj

EI

	 

dx (19:5)1

for planar and

f eij w

ðl
0

NiNj

EA
S

VyiVyj

GAvy
S

VziVzj

GAvz
S

TiTj

GIx
S

MyiMyj

EIy
S

MziMzj

EIz

	 

dx (19:5)2

for spatial systems, see (16.11). From this derivation it follows that fe is square, sym-
metric, invertible and positive definite.

By arranging all the fe values on the main diagonals of a hypermatrix f, the flexibility
matrix for all members, with the appropriately configured columns v and s for all bar
end variables ve and se, we get the relationship

vw f 7 s (19:6)

which is similar to (8.5)2, see (17.7).



37319.2 The force method

Nl Vl Vr

ql β γ
1( β− γ )2

lq

Q β
(1 )Q l

2
+

Q Qa

−

EI β

EA

EAα TT

α = a / l
β = b / l
γ = c / l

q

a b

c/2 c/2

q1 q2

l

a b

q

q

l /2 l /2

parabolic

q

l /2 l /2

sinusoidal

a b

Q

a b

Q

a b

M

a b

a b

1

a b

1

h

Δ T

T

1

− − −

(1+ )β

ql α γ

Q α

l

EA Δ − EI λ

ql βγ −

8 )l +( q1 7q2

l (1+β)(7−3βq )

α β β

(1 )Ml
2

− β3

EI α Δ T
h

T
2

EI α Δ T
h

T
2

EI ρ

7 )l +( q1 8q2

l (1+α)(7−3αq )

(1 )Q l
2

+α β α

EI α

6
l (2q1 q2+ )

6
l ( 2q1 q2+ )

6
/4

6
lq (1+ )α

6

lq
3

lq
3

lq
π

lq
π

l
M

l
M

1( α−γ )2ql α γ −
6

/4

360

3 3

360

360 360

3 32 2

lq
30

3 lq
30

3

lq 3 lq 3

π3 π3

6 6

6
(1 )Ml

2
− α3
6

−

− l
EI

l
EI

l l

Fig. 19.1 Additional joint loads and bar end deformation variables due to actions on bars (sign convention II)



19.2.3 Actions on bars

Actions on bars cause additional terms for the joint loads and bar end deformation
variables. These can be determined by calculating the support force variables for a
fictitious simply supported beam of length l or by applying the work theorem (14.4).
Fig. 19.1 contains such variables for coplanar bars with constant axial and bending
stiffnesses for a number of load cases, see Fig. 17.1.

The variables –Nl , –Vl , –Vr given in Fig. 19.1 must be considered in the joint load
vector Q. The additional bar end deformation variables D, l, r lead to corresponding
additions to (19.4) and (19.6), i. e.

ve w f e 7 se S ve0 , vw f 7 sS v0 (19:7)

see (17.11) or (17.20) and (17.22).

The calculation using the discretised structural model supplies the state variables at the
joints and ends of the bars. In the subsequent calculation of the state variables between
the nodes, the force and deformation variables for the fictitious simply supported beam
must be superposed on the corresponding variables for the system loaded by joint
loads only.

19.2.4 Algorithm for the force method

Eq. (8.4) and (19.7)2, taking into account (8.8) and the submatrices

F00 w bT
0

7 f 7 b0 , F10 w bT
1

7 f 7 b0 , F11 w bT
1

7 f 7 b1

already defined in (8.10) und (8.12), result in the following relationship for the global
flexibility matrix for the statically determinate basic system:

V

0

� �
w

F00 FT
10

F10 F11

� �
7

Q

X

� �
S

bT
0

7 v0

bT
1

7 v0

( )
(19:8)

from which it follows that

X wsFs1
11

7 (F10 7 QS bT
1

7 v0) (19:9)

Substituting in (8.8) results in

sw b 7 Qs k1 7 v0 (bw b0 s b1 7 Fs1
11

7 F10 , k1 w b1 7 Fs1
11

7 bT
1 ) (19:10)

and substituting in the upper part of (19.8) we get

V wF 7 QSV0 (FwF00 sFT
10

7 Fs1
11

7 F10 , V0 w bT 7 v0) (19:11)

see (17.43).

Example 19.1 Plane frame

Fig. 19.2 shows the basic system selected for the plane frame (Fig. 17.7) examined in example 17.3,
together with the redundant variables X1, X2, X3. The loads applied at joint 2, Q1, Q2, Q3, are also
shown. The units MN and m are used for force and length respectively in the following calculations.
The independent bar end variables are used directly.
The following applies for the flexibility matrix for all members using sign convention II according to
(17.1):
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and it is possible to set up relationship (8.8) on the basis of simple equilibrium considerations:
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These variables enable us to obtain
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according to (19.8), if for the time being we work without actions on bars.
Inverting F11 results in

Fs1
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With a uniformly distributed load q = 0.01MN/m applied to bar 2 as shown in Fig. 17.7(a), then
according to Fig. 19.1 we get

v0 w

D1

l1

r1

D2

l2

r2

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

w

0
0
0
0

s 0.0045
0.0045

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

and, in addition, –V2l = 0.03MN has to be considered in Q2. Eq. (19.10) and (19.11) then result in

N1r

M1l

M1r

N2r

M2l

M2r

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

w sw b 7 Qs k1 7 v0 w

s 0.0373
0.0003
0.0002

s 0.0223
s 0.0002
s 0.0002

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

s

0.0013
0.0090
0.0180
0.0062

s 0.0180
0.0360

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

w

s 0.0386
s 0.0087
s 0.0178
s 0.0285

0.0178
s 0.0362

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

or rather

V1

V2

V3

8<
:

9=
;wV wF 7 QSV0 w

0.0223
0.0478

s 0.0057

8<
:

9=
; � 10s3

S

0.0063
0.0054

s 0.9014

8<
:

9=
; � 10s3

w

0.0286
0.0532

s 0.9071

8<
:

9=
; � 10s3

The global stiffness matrix K for this problem is equal to the central (3q3) submatrix of the
(9q9) matrix given in example 17.3. The global flexibility matrix F given above is the inverse of
this matrix K, a fact that is easily checked.
The bar end force and displacement variables calculated above agree with the values given in
Fig. 17.7(c) and example 17.3 apart from small rounding-off errors, which have been left in to illus-
trate the effect of the accuracy of the calculation.



19.2.5 Comparison with the classic force method

According to the classic force method summarised in section 16.3.1, only one load
case Q* is considered each time, i. e. one very specific combination of the joint
loads Qi generally possible.

Comparing (16.9)2 with (8.8) reveals that merely the product b0
x Q is ascertained with

S0, b0 is not calculated. On the other hand, the coefficients Si correspond to the
matrix b1.

Comparing the compatibility conditions (16.8) and (8.9) reveals that matrix dij is
equal to F11 = b1

T
x f x b1, and that vector di0 corresponds to the expression

b1
T

x f x b0
x Q + b1

T
x v0 when the general formulation in the lower part of (19.8) is

used with the bar end deformation variables v0 resulting from the actions on bars.

As b0 is not calculated when employing the classic approach, both the global flexibil-
ity matrix F and the static transformation matrix b occurring in (19.10) and (19.11)
remain unknown. So although far fewer calculations are required, the results are
much more limited – support force variables and stress resultants only according to
(16.9). Extra work is required to determine the influence lines and deformation vari-
ables.

19.2.6 Practical application

According to (19.10) and (19.11), the columns j of the static transformation matrix b
and the global flexibility matrix F contain the state variables si and Vi respectively due
to the joint load Qj = 1. And vice versa, the rows i of these matrices reveal how all
joint loads Qj have an influence on a certain variable si or Vi . Accordingly, the two
matrices contain a wealth of information relevant to the state diagrams and influence
lines. This fact has already been pointed out in conjunction with (10.9).

State diagrams for stress resultants can be obtained from the columns of matrix b by
considering the rules outlined in chapter 11. And vice versa, the coefficients of one
row in b correspond to individual points on the associated influence lines for the
forces. These influence lines are curved for statically indeterminate systems (see sec-
tions 12.3, 16.3.4 and 17.4.6) and so the general recommendation is to choose a joint
spacing that is so close that a linear approximation between the joints is sufficiently
accurate.

Similar remarks apply to the calculation of state diagrams and influence lines for
deformation variables from the columns and rows respectively of matrix F.

19.2.7 Reduced degrees of freedom

To reduce the amount of calculation work, internal degrees of freedom are often sup-
pressed, e. g. by assuming inextensible bars. This means that the member flexibility
matrices fe, as given in section 17.4.1, are singular and can be inverted for the bending
components only. The normal forces must be determined from equilibrium conditions
after calculating the bending moments.

The singularity of the member flexibility matrices fe would be carried over into
the flexibility matrix f of all bars and into the global flexibility matrix F and render
a solution impossible. To prevent this, certain external degrees of freedom and joint
loads must be suppressed or combined.

For example, in the frame (see Fig. 17.27) shown in Fig. 19.3(a), assuming inexten-
sible bars (D1 = D2 = D3 = 0) eliminates degree of freedom V5 and combines degrees
of freedom V1, V2 und V4 :

V2 w
3

4
V1 , V4 wV1
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Consequently, joint loads Q1, Q2 and Q4 are combined to form a total ac-
tion Q1 + 3Q2/4 + Q4, and since V5 a 0, joint load Q5 is not included in the flexibil-
ity calculation because it does no work.

The joint equilibrium conditions

Q1

Q2

Q3

Q4

Q5

Q6

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

w

3=5 4=25 4=25 s 1
s 4=5 3=25 3=25 s 1=6 s 1=6

1 1
1 1=4 1=4

1=6 1=6 s 1
1 1

2
6666664

3
7777775

N1r

M1l

M1r

N2r

M2l

M2r

N3r

M3l

M3r

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

(19:12)

are therefore rearranged:

Q1 S
3

4
Q2 SQ4

Q3

Q6

Q2

Q4

Q5

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

w

1=4 1=4 s 1=8 s 1=8 1=4 1=4
1 1

1 1
3=25 3=25 s 1=6 s 1=6 s 4=5

1=4 1=4 1
1=6 1=6 1 s 1

2
6666664

3
7777775

M1l

M1r

M2l

M2r

M3l

M3r

N1r

N2r

N3r

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

(19:13)

Empty places in matrices (19.12) and (19.13) are filled with zeros.

The (3q6) matrix grr at top left in (19.13) links the joint loads Qr corresponding to the
reduced external degrees of freedom Vr = {V1, V3, V6}

T with the bar end moments sr

corresponding to the reduced internal degrees of freedom vr = {l1, r1, l2, r2, l3, r3}
T.

The coefficients in the first row of this matrix correspond to the displacement equilib-
rium condition introduced in section 17.4.3, those of the second and third rows cor-
respond to the joint moment equilibrium condition (17.58). Generally, the following
applies:

Qr w grr 7 sr (19:14)

The (3q6) matrix gur at bottom left and the (3q3) matrix guu at bottom right in
(19.13) link the remaining joint loads Qu with sr or the bar end normal forces su cor-
responding to the suppressed internal degrees of freedom vu = {D1, D2, D3}

T = 0:

Qu w gur 7 sr S guu 7 su (19:15)
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Fig. 19.3 Plane frame: (a) diagram of static system (dimensions in m), (b) basic system, redundant variables

and reduced degrees of freedom



Further calculation leads to

sr w brr 7 Qr , Vr wFrr 7 Qr (Frr w bT
rr

7 f rr 7 brr) (19:16)

and

su w bur 7 Qr S buu 7 Qu (bur ws gs1
uu

7 gur 7 brr , buu w gs1
uu ) (19:17)

Using the basic system and the redundant variables according to Fig. 19.3(b) plus

f rr w
m

6EI

10 s 5 0 0 0 0
s 5 10 0 0 0 0

0 0 12 s 6 0 0
0 0 s 6 12 0 0
0 0 0 0 8 s 4
0 0 0 0 s 4 8

2
6666664

3
7777775

(19:18)

initially gives us

M1l

M1r

M2l

M2r

M3l

M3r

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

w

1

3

0 0 0 s 3 0 0
0 3 0 0 3 0
0 0 0 0 s 3 0

s 8 m 2 2 s 2 3 2
8 m s 2 1 2 s 3 s 2
0 0 0 0 0 3

2
6666664

3
7777775

Q1 S
3

4
Q2 SQ4

Q3

Q6

X1

X2

X3

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

(19:19)

for this example, and therefore according to (19.8),

V1

V3

V6

0
0
0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

w

m

54EI

1280 m2
s 320 m s 128 m 320 m s 624 m s 416 m

s 320 m 170 32 s 35 246 104
s 128 m 32 56 s 32 84 20

320 m s 35 s 32 170 s 111 s 104
s 624 m 246 84 s 111 486 192
s 416 m 104 20 s 104 192 200

2
6666664

3
7777775

Q1 S
3
4Q2 SQ4

Q3

Q6

X1

X2

X3

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(19:20)

from which it follows that

Fs1
11 w

0.467503 0.017294 0.226499
0.017294 0.179637 s 0.163459
0.226499 s 0.163459 0.544700

2
4

3
5EI

m
(19:21)

and therefore

brr w

0.8257 m 0.2120 s 0.1662
0.7141 m 0.5077 s 0.2086

s 0.7141 m 0.4923 0.2086
s 0.7588 m 0.2106 0.4717

0.7588 m s 0.2106 0.5283
0.9651 m s 0.1576 0.1868

2
6666664

3
7777775

, Frr w

3.1242 m3
s 0.2789 m2

s 0.4129 m2

s 0.2789 m2 0.7392 m s 0.1060 m
s 0.4129 m2

s 0.1060 m 0.6831 m

2
4

3
5 1

EI

(19:22)

Eq. (19.17) thus results in

N1r

N2r

N3r

8<
:

9=
;w

0.5379 s 0.0385 � 1

m
s 0.1980 � 1

m

s 0.4310 0.0921 � 1

m
s 0.1788 � 1

m

s 0.2455 0.1172 � 1

m
0.1134 � 1

m

2
6666664

3
7777775

Q1 S
3

4
Q2 SQ4

Q3

Q6

8><
>:

9>=
>;S

s

5

4
0 0

0 1 0
0 0 s 1

2
64

3
75 Q2

Q4

Q5

8<
:

9=
;
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or rather, rearranged with respect to joint loads,

N1r

N2r

N3r

8<
:

9=
;w

0.5379 s 0.8466 s 0.0385 � 1

m
0.5379 0 s 0.1980 � 1

m

s 0.4310 s 0.3233 0.0921 � 1

m
0.5690 0 s 0.1788 � 1

m

s 0.2455 s 0.1841 0.1172 � 1

m
s 0.2455 s 1 0.1134 � 1

m

2
6666664

3
7777775

Q1

Q2

Q3

Q4

Q5

Q6

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

(19:23)

19.2.8 Supplementary remarks

Fig. 16.9 illustrated the static structural behaviour of an elastic-plastic frame with two
degrees of static indeterminacy (n = 2) subjected to a single joint load (m = l). Spe-
cifying the three moments M2, M3, M4, or rather a corresponding vector s, in the
(m+n)-dimensional space, enabled the stress state to be described completely. Alter-
natively, the stress state can be also described in the system with the axes Q, P1, P2.
The transformation between the two systems is described by the relationship (8.8)
fundamental to the force method.

Pure restraint states without any loads are characterised in Fig. 16.9 by points on the
plane ABCDEF defined by the axes P1, P2 (or X1, X2). Obviously, the choice of the
redundant variables is completely arbitrary, and we can generally assume any com-
bination of n linear restraint states that are independent of each other. Further, the
fact that the straight lines OG and JI are parallel shows that nothing has essentially
changed with respect to the calculation of the elastic system when the zero-load sys-
tem already exhibits a restraint state; such a state is simply superposed on the elastic,
load-dependent stress state.

Choosing suitable redundant variables enables matrix F11 to be diagonalised. This
leads to the specific eigenvalue problem

F11 7 X w lX (19:24)

see section A5.5. The eigenvalues li follow from the characteristic equation

det (F11 s lI)w 0 (19:25)

The directions of the associated eigenvectors Xi can be determined, but not their
values; the vectors define the principal axes of the restraints in the n-dimensional
subspace of the (m+n)-dimensional space of the internal static variables s. The
n(n+1)/2 data of the symmetrical (nqn) matrix F11 is transferred to the n eigenvalues
and n(n–1)/2 data of the modal matrix Xo for the orthonormalised eigenvectors.

The global flexibility matrix F can be diagonalised in exactly the same way, too. In
this case, the m columns of the resulting modal matrix describe load groups that are
orthogonal to each other. The original static system is replaced by an equivalent sys-
tem with m individual springs.

Example 19.2 Orthogonalised restraint states

Applying (19.25) to the (3q3) matrix F11 at bottom right in the matrix on the right in (19.20) gives us
the characteristic equation

l3
s 15.851

m

EI
l2

S 52.75
m

EI

	 
2

ls 44.259
m

EI

	 
3

w 0

with the eigenvalues

l1 w 1.316880
m

EI
, l2 w 2.884888

m

EI
, l3 w 11.650084

m

EI
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as roots. The associated orthonormalised eigenvectors Xoi are summarised in the columns of the
modal matrix

Xo w

s 0.592931 0.745323 s 0.304839
0.202091 0.504177 0.839622

s 0.779482 s 0.436232 0.449565

2
4

3
5

Fig. 19.4 shows the corresponding moment diagrams orthogonal to each other together with the non-
orthogonal initial restraint states.

To conclude this section, Fig. 19.5 shows a modified form of the scheme known from
Fig. 8.2. Static, kinematic and constitutive relationships are arranged along the axes S,
K, W. The lower (right-hand) part of the figure corresponds to the force method, the
upper (left-hand) part the displacement method.
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Fig. 19.4 Orthogonal unit states: (a) initial restraint states, (b) orthogonalised restraint states

a Vv =

b vV= T
v V

s

f sv =k vs =
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Fig. 19.5 Static and kinematic variables and their relationships



19.3 Introduction to the finite element method

19.3.1 Basic concepts

According to (8.63), the principle of virtual deformations (8.62) corresponds to a
global (weak) or averaged formulation of the equilibrium:

dW w

Ð
V

duT7 q dV S

Ð
St

drT7 t0 dSs
Ð
V

deT 7 s dV w 0 (19:26)

Here, the virtual deformation variables must satisfy the compatibility condi-
tions (8.18) in V or on Sr :

dewDk 7 du , drwR 7 du (19:27)

The fundamental thinking behind the finite element method (FEM) is to divide the
model space V into a finite number of discrete elements and to approximate the dis-
placements ue occurring within the elements in a similar way to the RITZ method
(section 8.5.2) depending on the degrees of freedom at the joints ve:

ue wVe 7 ve (19:28)

Matrix Ve contains the shape functions, or RITZ functions, and the degrees of freedom
at the joints play the role of the RITZ coefficients ci in (8.92).

19.3.2 Element matrices

From (19.28) we get the variation

due wVe 7 dve (19:29)

and thus, by substituting in (19.27),

dee wDk 7 Ve 7 dve wHe 7 dve , dre wR 7 Ve 7 dve (19:30)

where He stands for the strain interpolation matrix. Using

se wE 7 (ee s ee0)wE 7 He 7 ve sE 7 ee0 (19:31)

according to (8.19) and (19.30)1, then applying (19.26) to the element leads to

dW e w dvT
e

7 (
Ð
V

VT
e

7 q dV S

Ð
St

VT
e

7 RT 7 t0 dSs
Ð
V

HT
e

7 E 7 He dV 7 ve S
Ð
V

HT
e

7 E 7 ee0 dV)w 0

(19:32)

The expression in brackets in this relationship, which must disappear because of the
randomness of dve, represents the joint force vector s corresponding to dve. Using

se w
Ð
St

VT
e

7 RT 7 t0 dS , ke w
Ð
V

HT
e

7 E 7 He dV , se0 ws

Ð
V

(VT
e

7 qSHT
e

7 E 7 ee0) dV

(19:33)

the following relationship applies:

se w ke 7 ve S se0 (19:34)

see (17.20).

19.3.3 Bar element rigid in shear

In the following, a bar element rigid in shear is investigated in the form of independent
bar end variables (Fig. 19.6) and complete bar end variables (Fig. 19.7). The element
index e is suppressed, as is the superscript horizontal line ( ) introduced in sec-
tion 17.2 for indicating complete bar end variables; this corresponds to the standard
presentation used in the finite element method and does not need to be specially in-
dicated.

In the form of independent variables, Fig. 19.6, the following RITZ formulation

uw

u
w

� �
wV 7 vw

j 0 0
0 (s jS 2j2

s j3)l (j2
s j3)l

� � D
l
r

8<
:

9=
; (19:35)
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according to (19.28) corresponds to the exact solutions to the homogeneous differen-
tial equations EAuL = 0 and EIwLL = 0. With Dk according to (8.24), eq. (19.30)1

results in

H w

dx 0
0 s d2

x

� �
j 0 0
0 (s jS 2j2

s j3)l (j2
s j3)l

� �
w

1 0 0
0 s 4S 6j s 2S 6j

� �
� 1

l

(19:36)

see Fig. 19.6(b), and using

Ew

EA 0
0 EI

� �
according to (8.23), we get

HT 7 E 7 H w

A=I 0 0
0 (4s 6j)2 (4s 6j)(2s 6j)
0 (2s 6j)(4s 6j) (2s 6j)2

2
4

3
5EI

l 2 (19:37)

for the integrand in (19.33)2. By performing the integration (e. g. with help of the
integration table of Fig. 14.2), we get the stiffness matrix given in (17.3).

Uniformly distributed line loads qx and qz result in the integrand

VT 7 qw
j 0
0 (s jS 2j2

s j3)l
0 (j2

s j3)l

2
4

3
5 qx

qz

� �
w

qxj
qzl(s jS 2j2

s j3)

qzl(j
2
s j3)

8<
:

9=
;

in (19.33)3, and therefore we get the fixed-end forces

s0 w

s qxl=2

qzl
2=12

s qzl
2=12

8><
>:

9>=
>; (19:38)

see example 17.1.
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Fig. 19.6 Bar element rigid in shear (independent bar end variables): (a) notation, (b) shape functions for

displacements and strains



The formulation similar to (19.35)

uw

u
w

� �
wV 7 vw

1s j 0 0 j 0 0
0 1s 3j2

S 2j3 (s jS 2j2
s j3)l 0 3j2

s 2j3 (j2
s j3)l

� �
ul

wl

fl

ur

wr

fr

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(19:39)

in the form of complete bar end variables leads to

ew
e
x

� �
wH 7 vw

s 1 0 0 1 0 0
0 (6s 12j)=l s 4S 6j 0 (s 6S 12j)=l s 2S 6j

� �
ul

wl

fl

ur

wr

fr

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(19:40)

see Fig. 19.7(b). The integrand HT
x E x H of the element stiffness matrix (19.33)2 is

then

A=I 0 0 sA=I 0 0
0 (6s 12j)2=l 2

s (6s 12j)(4s 6j)=l 0 s (6s 12j)2=l 2
s (6s 12j)(42s 6j)=l

0 s (4s 6j)(6s 12j)=l (4s 6j)2 0 (4s 6j)(6s 12j)=l (4s 6j)(2s 6j)
sA=I 0 0 A=I 0 0

0 s (6s 12j)2=l 2 (6s 12j)(4s 6j)=l 0 (6s 12j)2=l 2 (6s 12j)(2s 6j)=l
0 s (2s 6j)(6s 12j)=l (2s 6j)(4s 6j) 0 (2s 6j)(6s 12j)=l (2s 6j)2

2
6666664

3
7777775

EI

l 2

(19:41)

and performing the integration results in (17.17).
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With uniformly distributed line loads qx and qz, eq. (19.33)3 results in the fixed-end
forces

s0 ws

Ð
x

V 7 q dx w

s qxl=2
s qzl=2
qzl

2=12
s qxl=2
s qzl=2

s qzl
2=12

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(19:42)

The shape functions in (19.35) and (19.39) correspond to the influence functions for
the bar end forces of the prismatic bar fixed at both ends. Thus, for prismatic bars
subjected to the action of arbitrary bar loads q, eq. (19.33)3 provides us with the stat-
ically equivalent joint forces and hence the exact joint displacements within the scope
of the assumptions made.

Example 19.3 Beam with one degree of static indeterminacy

Let us consider the beam of example 15.6 once again, see Fig. 19.8(a). Using the notation selected
here, the deflection function given in example 15.6 is

ww

q

24EI
(24x2l 2

s 10x3lS x4)

and from that we get the rotations of the cross-section

fws

dw

dx
w

q

12EI
(s 24xl 2

S 15x2ls 2x3)

The four bar elements are identical and have the following element stiffness matrices:

kw
EI

l

12=l 2
s 6=l s 12=l 2

s 6=l
s 6=l 4 6=l 2

s 12=l 2 6=l 12=l 2 6=l
s 6=l 2 6=l 4

2
664

3
775

The first and fourth rows and columns in (17.17) are omitted because there are no loads in the x dir-
ection and no normal forces occur. Fig. 19.8(b) shows the corresponding, reduced degrees of freedom,
of which V1, V2 and V9 are passive.
According to the direct stiffness method, it is now possible to specify the global stiffness matrix:

K w

EI

l

24=l 2 0 s 12=l 2
s 6=l 0 0 0

0 8 6=l 2 0 0 0
s 12=l 2 6=l 24=l 2 0 s 12=l 2

s 6=l 0
s 6=l 2 0 8 6=l 2 0

0 0 s 12=l 2 6=l 24=l 2 0 s 6=l
0 0 s 6=l 2 0 8 2
0 0 0 0 s 6=l 2 4

2
666666664

3
777777775

We can see that this matrix contains only the rows and columns corresponding to the active degrees of
freedom. Inversion leads to the global flexibility matrix

Fw

l

768EI

135l 2
s 153l 200l 2 12l 133l 2 111l 144l

s 153l 327 s 312l 12 s 219l s 177 s 240
200l 2

s 312l 448l 2
s 96l 344l 2 264l 384l

12l 12 s 96l 240 s 156l s 84 s 192
133l 2

s 219l 344l 2
s 156l 351l 2 189l 432l

111l s 177 264l s 84 189l 279 144
144l s 240 384l s 192 432l 144 768

2
666666664

3
777777775

Using the load vector

Qw ql 1 , 0 , 1 , 0 , 1 , 0 , l=12f gT

results in the external deformation variables

V w

w2

f2

w3

f3

w4

f4

f5

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

wF 7 Qw

ql 3

24EI

15l
s 22
32l
s 8
27l
18
32

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

which agree with the initially analytically specified values for w and f at the quarter-points and the
simply supported end of the beam, see Fig. 19.8(c).
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Finally, (19.34) can be used to obtain the bending moments and shear forces shown in Fig. 19.8(d) and
(e). The solid line in each diagram corresponds to the linear connection between the k x v values at the
joints. The difference between this and the exact solution, which is indicated by the dotted line, is
given by the fixed-end forces s0, see (19.42).

19.3.4 Shape functions

The main feature of the kinematic approach to the finite element method is that shape
functions are introduced within the individual elements according to (19.28). The
components of the displacement vector u are therefore presented as functions of
the unknown joint displacement parameters v. A coefficient Vij in matrix V specifies
the value of displacement component ui due to vj = 1. Simple polynomial functions
are mostly used for this.

The parametric displacement field formed with the shape functions Vij should be con-
tinuous at the joints. This means that the parameters v must agree with the joint values
for the displacements u. Obviously, the shape functions play the role of interpolating
functions for the components of the displacement vector u.

The finite element method generally supplies approximate solutions that should con-
verge to the exact solution as the element mesh is increasingly refined. To guarantee
this, certain convergence requirements must be satisfied:

1. If the joint displacements v correspond to a rigid body deformation, then the
strains e = H x v within the element must disappear, e a 0.

2. If the joint displacements v correspond to a state of constant strains, then the
strains must take on this value throughout the element, e a const.

3. If n stands for the highest order of the derivatives occurring in the kinematic
operator Dk , then the shape functions must satisfy the boundary conditions for
u and its derivatives up to the order n–1 at the boundary of the element
(essential boundary conditions, see section A7.2).
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No exceptions are permitted to requirements 1 and 2, which concern the completeness
of the formulation. Requirement 3 is not a problem for bar elements because the joints
at the ends of each bar are the only boundary points of the element; however, in the
case of two- and three-dimensional elements, this requirement regarding the conform-
ity of the formulation can lead to difficulties and is not absolutely necessary in every
case.

Formulations (19.35) and (19.39) satisfy all convergence requirements, a fact that is
easily checked. In addition, all equilibrium conditions are fulfilled exactly (and not
just approximately) for the case of prismatic bars (the only exception within the scope
of the finite element method).

19.3.5 Commentary

The observations of sections 19.3.1, 19.3.2 and 19.3.4 generally apply to the kine-
matic approach to the finite element method. The treatment of bars rigid in shear
in section 19.3.3 corresponds to one simple illustration of this method adapted to
this introduction to FEM.

Most of the structural analysis programs that utilise the finite element method work
according to the direct stiffness method described in section 17.3. The reader should
refer to appropriate specialist publications for further information.

19.4 Summary

1. In contrast to the classic presentation of the force method (chapter 16), the matrix
approach according to section 19.2 supplies both the global flexibility matrix F
and the static transformation matrix b. Although much more calculation work is
necessary, the results are, however, much more general.

2. The columns j of matrices b and F contain the state variables si and Vi due to unit
load Qj = 1. However, the rows i of these matrices reveal how all Qj values
influence a certain state variable si or Vi.

3. The calculations are often carried out with a reduced number of degrees of free-
dom, e. g. owing to the assumption of inextensible bars. In doing so, certain
external degrees of freedom are suppressed or combined.

4. In the (m+n)-dimensional space of the internal static variables s, the m load
and the n restraint states can be specified as required apart from the requirement
regarding linear independence. In particular, it may be worthwhile considering
orthogonal load or restraint states.

5. The heart of the kinematic approach to the finite element method is that shape
functions are used to form a parametric displacement field within the individual
finite elements. The joint displacement parameters v agree with the joint values
for displacement u, and the shape functions play the role of interpolating func-
tions for the components of u.

6. To guarantee the convergence of the solution, the shape functions must be com-
plete and generally also conformal.

7. The element stiffness matrices are generally calculated with (19.33)2, and the
global stiffness matrix K is obtained by applying the direct stiffness method
(section 17.3).
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19.5 Exercises

19.1 Work through the frame with two degrees of static indeterminacy examined in
section 16.2.4 in a similar way to example 19.1. Use the algorithm from section
19.2.4 (EI = 46.875MNm2, EA = 9000MN, GAv p T) and compare the results
with those of section 16.2.4.

19.2 Starting with (8.14) and using (8.8) and (8.9), prove the reduction theorem for-
mulated in section 14.3 in the form Vi = b0i

T
x v. To this end, consider the deform-

ation state V, v of the statically indeterminate system as well as the force state in
which the load vector Q contains only Qi = 1.

19.3 Solve exercise 19.1 assuming inextensible bars (reduced degrees of freedom).
19.4 Determine the orthogonalised restraint states associated with exercise 19.3 in a

similar way to example 19.2 and discuss the result.
19.5 Check some of the coefficients of the global flexibility matrix given in ex-

ample 19.3. To do this, determine the bending moments occurring in the static-
ally indeterminate system as a result of a unit force or a unit moment applied at
any arbitrary point (see example 15.3) and apply the reduction theorem.

19.6 Determine the global stiffness matrix for the frame examined in exercise 19.3.
Invert this and verify the results given in section 16.2.4.
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20 ELASTIC-PLASTIC SYSTEMS

20.1 General

The linear elastic - perfectly plastic material behaviour for uniaxial loading, charac-
terised by the two parameters E (modulus of elasticity) and fy (yield limit) was intro-
duced in section 7.1, see Fig. 7.3(c). A similar linear elastic - perfectly plastic
moment-curvature diagram for analysing the structural behaviour of a frame with
two degrees of static indeterminacy was presumed for Fig. 16.1(b) in section 16.2,
but without any further explanation. The terms “plastic hinge”, “limit load” and
“mechanism” were used, but not investigated in depth. The analysis led to the depic-
tion of the stress state in a system as a point in the (m+n)-dimensional space of the
m load parameters Qi and the n restraint parameters Pj (Fig. 16.7 and 16.9). The in-
dividual yield limits corresponded to hyperplanes that limit the non-plastic domain of
the elastic-plastic system in the (m+n)-dimensional space, and the n-fold projection
into the m-dimensional space of Qi resulted in the non-plastic domain of the rigid-
plastic system.

These deliberations will now be investigated in further detail with the help of a truss
with one degree of static indeterminacy and a number of beam bending problems. One
aim of this is to ease the transition to the rigid - perfectly plastic systems discussed in
chapter 21, a form of structural behaviour that is not immediately accessible. The
other aim is to demonstrate how deformations can be estimated in order to check
the applicability of plastic methods of calculation in particular (first-order theory, ade-
quate plastic deformation capacity).

20.2 Truss with one degree of static indeterminacy

20.2.1 Single-parameter loading

20.2.1.1 Monotonic loading

The three bars of the ideal truss shown in Fig. 20.1(a) are prismatic and homogeneous;
they have a cross-sectional area A and are made from a material that behaves accord-
ing to the linear elastic - perfectly plastic stress-strain diagram shown in Fig. 20.1(b).
The load Q increases monotonically from zero to the limit load Qu . The task is to find
the associated vertical displacement V4 = V at joint 4, which corresponds to Q. To do
this, it is first assumed that the system is initially free from restraints, i. e. we presume
that the bar forces Ni of the unloaded system disappear: Ni(Q = 0) a 0 (virgin sys-
tem).

Equilibrium at joint 4, shown as a free body on the left of Fig. 20.1(c), calls for

(sN1 SN3)

ffiffiffi
2
p

2
w 0 , N2 S (N1 SN3)

ffiffiffi
2
p

2
sQw 0 (20:1)

According to the displacement diagram shown on the right of Fig. 20.1(c), the follow-
ing compatibility condition applies for elastic behaviour of the bars:

V w

N2l

EA
w

2N1l

EA
(20:2)
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Combining relationships (20.1) and (20.2) results in

N1 wN3 w
N2

2
w

Q

2S
ffiffiffi
2
p , V w

Ql

1S

ffiffiffi
2
p

2

� �
EA

(20:3)

for the elastic phase OA in Fig. 20.1(d). The onset of yield (N2 = Afy) is then char-
acterised by

Qy wAfy 1S

ffiffiffi
2
p

2

� �
, Vy w

fyl

E
(20:4)

During the elastic-plastic phase AB according to Fig. 20.1(d), N2 = Afy. The system
has become statically determinate. Eq. (20.2)1 no longer applies, but nevertheless,
V = 2N1l/(EA). Together with (20.1), we get

N1 wN3 w
QsAfyffiffiffi

2
p , N2 wAfy , V w

(QsAfy) l
ffiffiffi
2
p

EA
(20:5)

Point B (N1 = N3 = Afy) marks the end of the elastic-plastic phase and the point at
which the limit load is reached. Load and displacement here are

Qu wAfy(1S
ffiffiffi
2
p

) , Vu w
2fyl

E
(20:6)

During the plastic phase BC according to Fig. 20.1(d), N1 = N2 = N3 = Afy and
Q = Qu . There is no limit to how much V can increase beyond Vu; the system is
kinematically unstable to the first degree, i. e. it has become a mechanism.

The elastic-plastic phase AB in Fig. 20.1(d), in which only bar 2 yields, is also called
the phase of contained plastic deformation. Once the limit load Qu has been reached
at B, phase BC begins, the phase of uncontained plastic deformation.
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We also note that a geometric hardening takes place during the plastic phase because
of the increasing inclination a of bars 1 and 3, which is characterised by

QwAfy(1S 2 sina)wAfy 1S
2(lSV)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l 2
S (lSV)2

p
" #

(20:7)

Such second-order effects will not be considered below – we shall work according to
first-order theory, see section 6.1 and example 8.3.

Lines ODE and OFG in Fig. 20.1(d) illustrate the behaviour of the single bar 2 and the
pair of bars 1 and 3. Line OABC of the system made up of these individual systems
results from adding together the appropriate ordinates Q(V). The individual systems
correspond to two non-linear springs working in parallel. Lines AB and OF are par-
allel; during the elastic-plastic phase, only bars 1 and 3 contribute to the stiffness.

20.2.1.2 Arbitrary loading processes

Line OABC in Fig. 20.2(a) corresponds to line OABC in Fig. 20.1(d). If we relieve
the system starting at C, the point moves along CD, parallel with OA, to point D.

Fig. 20.2(b) illustrates how the bar forces change depending on Q. The lines OA or
OB in Fig. 20.2(b) correspond to the elastic phase OA in Fig. 20.2(a). The lines AC or
BC in Fig. 20.2(b) are allocated to the elastic-plastic phase AB in Fig. 20.2(a), and the
plastic phase BC in Fig. 20.2(a) corresponds to point C in Fig. 20.2(b). Upon relieving
the load starting at C, the point in Fig. 20.2(b) moves along CD or CE, parallel with
lines OA or OB. Points D and E characterise the restraint state

N1 wN3 ws

N2ffiffiffi
2
p wAfy 1s

ffiffiffi
2
p

2

� �
(20:8)

If after relieving the system completely the loading is continued in the opposite direc-
tion, the point in Fig. 20.2(b) moves along DF or EG, and the point in Fig. 20.2(a)
along DE. Point F in Fig. 20.2(b) is where bar 2 reaches the yield limit – fy; the
load associated with this is Q = Qu – 2Qy = –Afy = (1 –

ffiffiffi
2
p

)Qu . The lines FH or
GH in Fig. 20.2(b) correspond to the subsequent elastic-plastic phase EF in
Fig. 20.2(a). Once the yield limit – fy has been reached in bars 1 and 3, point H in
Fig. 20.2(b), the result is the plastic phase FHI with Q = –Qu in Fig. 20.2(a). Buckling
of the bars in compression is ruled out here.
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Upon reapplying the load, the point in Fig. 20.2(a) moves from I along line IJK, and in
Fig. 20.2(b) along HIKC or HJLC. The restraint state characterised by points I and J in
Fig. 20.2(b) is just the opposite of the restraint state D,E described by (20.8), i. e. a
tensile force of (

ffiffiffi
2
p

– 1)Afy prevails in bar 2, which is balanced by the compressive
forces of (1 –

ffiffiffi
2
p

/2)Afy in each of the bars 1 and 3.

If the system is relieved starting at point K in Fig. 20.2(a), the point returns to the
origin O. The remaining restraint state is once again described by points D and E
in Fig. 20.2(b) or by (20.8). In the event of a subsequent reloading, the points would
move purely elastically along OAK in Fig. 20.2(a) or DC and EC in Fig. 20.2(b). In
this case, the restraint state corresponds to a favourable prestressing of the system
which postpones the onset of yield until the limit load is reached.

The yield limit of the system previously plastically deformed in tension is reached at
point E in Fig. 20.2(a) with a compressive force Q amounting to (

ffiffiffi
2
p

– 1)Qu . If the
system had not been plastically deformed in tension first of all, the onset of yield
would have taken place at point G in Fig. 20.2(a), i. e. at a compressive force Q
amounting to Qu/

ffiffiffi
2
p

. The drop in the yield limit as a result of a prior plastic deforma-
tion in the opposite direction is named after BAUSCHINGER. The decrease in stiff-
ness linked with the BAUSCHINGER effect is mainly important in second-order prob-
lems.

20.2.1.3 Yield loci

The yield conditions

Nij jJAfy (iw 1 , 2 , 3) (20:9)

restrict the location of potential points in Fig. 20.3(a) to strip-like zones that intersect
to form the weakly convex square ABCD. According to the thinking so far, superpos-
ing a restraint state

PNr wP
s

ffiffiffi
2
p

=2
1

s

ffiffiffi
2
p

=2

8<
:

9=
;

and an elastically compatible loading stress state

QNe w
Q

2S
ffiffiffi
2
p

1
2
1

8<
:

9=
;

can represent any stress state

N wQNe SPNr (20:10)

where Ne and Nr denote the load-dependent elastic and zero-load or residual (i. e.
remaining after relieving the system completely) unit stress states respectively.

If instead of N2 and N1,3 we choose the load parameter Q and the restraint parameter P
as our coordinates, the square ABCD of Fig. 20.3(a) transforms into the parallelogram
ABCD of Fig. 20.3(b). Here, N2 and N1,3 form a skewed system of coordinates that is
orthogonal to the corresponding yield limits in tension (2+ and 1+,3+) or compression
(2– and 1–,3–).

Upon loading the initially restraint-free (virgin) system for the first time, the point in
Fig. 20.3(b) moves along OEA to point A, where the limit load Qu is reached. Sub-
sequently relieving the load takes place purely elastically, i. e. the point moves along
AF parallel with the Q axis. Loading in the opposite direction and reloading leads to
the form FGCHIEA etc. Applying this loading cycle several times carries with it the
risk of exhausting the deformation capacity as a result of the alternating plasticity of
bar 2 in compression or tension corresponding to lines GC and IEA. In more general
cases, progressive plastification of a sufficient number of areas of a system can lead to
its failure.
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20.2.1.4 Initial restraints and general loading histories

Presuming that a system is initially free from restraints, point O in Fig. 20.3(b), is a
– mostly implicit – assumption made during structural analysis, but is in no way triv-
ial. If, for example, during the erection of the truss bar 2 turned out to be too short, this
inaccurate fit could be corrected with a corresponding restraint, which would result in
an initial tensile force P in bar 2 and an initial compressive force of P/

ffiffiffi
2
p

in each of
the bars 1 and 3. Compared with the initially zero-restraint system, the elastic phase
would be shortened (e. g. HI instead of OE) but the limit load would remain unaffected
(point A).

Initial restraint states can also ensue as a result of thermal deformations as well as
settlement, slip at connections, shrinkage or swelling and similar effects. For
example, a temperature change T with a constant aT corresponds to the restraint
P = EAaTT/(1 +

ffiffiffi
2
p

). As we can see, with the help of Fig. 20.3(b), any restraint cycles
and hence general loading histories can basically be discussed in a similar way to the
loading cycles. However, in practice it is in most cases far harder to estimate the initial
restraint states (and possibly later restraint cycles) than the potential loading cycles.
The significance of Fig. 20.3(b) is therefore primarily qualitative. It shows that apart
from points A and C, where the limit load is reached, the stress state is dependent on
the loading history, but can only be determined roughly because it is difficult to quan-
tify the restraints. In particular, it is clear that the loading stress state occurring in the
virgin system cannot be guaranteed to be the priority case when compared with other
statically admissible force states. The statically admissible force states for a certain
loading differ only in terms of their restraint components. In Fig. 20.3(b) they corre-
spond to points on so-called equilibrium lines parallel with the P axis.

Obviously, the resistance of the system is not exhausted when it is possible to specify a
statically admissible force state in which the yield limit is not reached anywhere. In
Fig. 20.3(b), such a state of equilibrium corresponds to a point on the equilibrium line
belonging to the respective loading Q within the yield locus ABCD. This finding is
generalised in section 21.2 using the static or lower-bound theorem.

If, conversely, a kinematically admissible deformation state can be specified which
turns the system into a mechanism, the resistance must have been exhausted; this
is the case for points A and C in Fig. 20.3(b). This finding is generalised in sec-
tion 21.2 using the kinematic or upper-bound theorem.

Varying the loading Q between given limiting values and specifying a restraint state P
such that the ensuing limiting values for stress do not exceed the yield limit anywhere
causes the system to behave purely elastically, possibly following initial plastification.
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The system adapts to the given loading, it undergoes shakedown as we say, i. e. the risk
of failure due to alternating plasticity or progressive plastification is averted. For ex-
ample, if Q is varied between the limiting values corresponding to points A and G in
Fig. 20.3(b), the system experiences shakedown; the associated restraint state P cor-
responds to point F. We can generalise this result as the shakedown theorem: given
loading limit values lie within the adaptability of a system if a restraint state can
be specified in such a way that the resulting limiting values for stress do not exceed
the yield limit anywhere.

The limit load that can be contained by the upper- and lower-bound theorems relates to
the failure of a system subjected to a one-off loading. By comparison, the shakedown
theorem relates to a loading that can be accommodated elastically any number of
times; an incremental plastic failure may occur at the limit of adaptability, which
is characterised by the successive increase in plastic deformations as a result of the
cyclic loading. The relationship between the limit load and the shakedown load, which
cannot be greater than the limit load, is discussed further in section 21.5.

20.2.1.5 Complementary internal total potential

The theorem of least complementary (internal) total potential Pi
* was formulated in

section 8.4.2. According to the theorem, in a conservative system subjected to rigid
constraints r0 a 0, the real statically admissible stress state is the one for which Pi

* is
a minimum. And according to ENGESSER’s theorem, the partial derivative of Pi

*

with respect to a force variable Q supplies the corresponding deformation variable V.

Owing to the plastic deformability, the current system is not conservative. The expres-
sion

P*
i w
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j lj

2EA

therefore generally corresponds to a fictitious potential. Taking into account (20.9)
results in
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As the restraint state Nr does no work on the deformations of the elastically compa-
tible stress state Ne, the second term on the right in (20.11) disappears, and the out-
come is (exercise 20.1)
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According to (20.12), the equipotential lines Pi
* = const in the QP plane are ellipses,

and the terms on the right in (20.12) correspond to the triangular areas Pe
* and Pr

* in
the Q-V diagram, see Fig. 20.4(a) and (b).

Points O, E and A in Fig. 20.4(a) correspond to points O and A and line GH in Fig.
20.4(b) and, vice versa, point B in Fig. 20.4(b) corresponds to a point on line EA in
Fig. 20.4(a). With a monotonic rise in the load from O to B, the stress state changes in
such a way that Pi

* is minimised each time without the yield limit being exceeded
anywhere. The point in Fig. 20.4(a) moves from O to E and then along EA – points
below this line would correspond to larger Pi

* values. Differentiating Pe
* with respect

to Q results in the elastic deformation
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dP*

e

dQ
w

2Ql

(2S
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)EA
(20:13)

see (20.3)4, and taking into account the relationship
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394 20 ELASTIC-PLASTIC SYSTEMS

IV NON-LINEAR ANALYSIS OF FRAMED STRUCTURES



for the yield limit IEA in Fig. 20.4(a) results in
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If point B coincides with A or G in Fig. 20.4(b), eq. (20.15) gives us the values 0 or
(2 –

ffiffiffi
2
p

)lfy /E, and between these the result is a linear variation with Q. Clearly, these
values correspond precisely to the respective plastic deformation, i. e. the deformation
remaining after relieving the load completely:

Vr w
dP*

r

dQ
(20:16)

The following generally applies for the elastic-plastic deformation:

V wVe SVr (20:17)

Apart from Pe
* and Pr

* (triangles OEF and ABE), Fig. 20.4(b) also identifies the in-
ternal potential Pi (triangle CDB) belonging to B and the corresponding dissipation
energy D (OABC). As the load is relieved (BC), the energy Pi stored elastically is
retrieved. By contrast, D is dissipated during phase AB (contained plastic deform-
ation), i. e. is converted into heat. We can read off the relationship

QVr wDSP*
r w

ÐC
O

Q dVr S
ÐE
A

Vr dQ (20:18)

for parallelogram OCBE and, similarly,

QVe wPi SP*
e (20:19)

applies.

20.2.2 Dual-parameter loading and generalisation

Applying an arbitrary loading Q to joint 4 in Fig. 20.5(a), with vertical and horizontal
components Q1 and Q2, results in
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2
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=2

8<
:
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; (20:20)

instead of (20.10). The yield conditions (20.9) in conjunction with (20.20) result in
areas in space Q1,Q2,P which are bounded by parallel planes and whose intersection
forms the parallelepiped of Fig. 20.6. Fig. 20.5(b) shows, on the one hand, the inter-
section IJKLMN of the parallelepiped with plane P = 0 and, on the other, the projec-
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tion ABCDEF of the parallelepiped onto this plane. Parallelogram AGDH in plane
Q2 = 0 in Fig. 20.6 corresponds to parallelogram ADCB in Fig. 20.3(b).

The intersection IJKLMN of the parallelepiped with plane P = 0 corresponds to the
yield locus, or rather the non-plastic domain, of the initially restraint-free elastic-plas-
tic system. The side faces ABGF and HCDE of the parallelepiped (N2 = e Afy) give
rise to lines of intersection NI and KL, faces ABCH and DEFG (N1 = e Afy) to lines
of intersection IJ and LM, and faces AHEF and BCDG (N3 = e Afy) to lines of inter-
section MN and JK.

The projection of the parallelepiped onto plane P = 0 corresponds to the yield locus,
or rather the non-plastic domain, of the rigid-plastic system. Hexagon ABCDEF in
Fig. 20.5(b) is identical with AlBlClDlElFl in Fig. 20.6. At the limit load, two
bars yield in tension or compression, and the third bar remains elastic. In Fig.
20.5(b), the bars that remain elastic are indicated by double lines, the ones yielding
in tension or compression by a single solid or dotted line respectively. The bars that
remain elastic do not undergo any additional deformations due to the mechanisms that
become established at the limit load. They behave like rigid bars, and the displacement
increments _V for joint 4 must be orthogonal to these bars. As we can see, the vectors _V
for yield locus ABCDEF are orthogonal, outward vectors, see (7.12). At the corners of
the yield locus, _V generally lies between the orthogonal vectors of the adjoining sides
of the yield locus, see (7.13).

Let us consider an arbitrary vector Q with an end-point at the yield limit of the rigid-
plastic system and the displacement increment _V compatible with this plus an arbitrary
vector Q* with an end-point within the yield limit. In this situation

(QsQ*) 7 _V j 0 (20:21)

applies, see (7.18). The principle of maximum dissipation energy discussed in sec-
tion 7.3.2 applies not only in the space of the stresses s but also in the space of
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the loads Q. Convex yield surfaces ensue within this space, and the outward orthogo-
nal vectors _V describe the associated mechanisms for points on the yield surface.

During the phase of contained plastic deformation, the non-plastic domain of the elas-
tic-plastic system changes successively with the loading. This corresponds to intersec-
tions P = const of the parallelepiped shown in Fig. 20.6. For example, the transform-
ation of the plastic zone from hexagon IJKLMN to triangle ACE in Fig. 20.5(b) cor-
responds to the transition from point E to point A in Fig. 20.3(b). By contrast, the
triangular non-plastic domain BDF in Fig. 20.5(b) corresponds to the opposite
limiting case, i. e. point C in Fig. 20.3(b).

Axes N1, N2, N3 forming a skewed system of coordinates orthogonal to the side faces
of the parallelepiped could be introduced in Fig. 20.6 in a similar way to Fig. 20.3(b).
On the other hand, the yield conditions (20.9) in the Cartesian space with the coord-
inates N1, N2, N3 as a non-plastic domain result in a cube, and the axes Q1, Q2, P form
a skewed system of coordinates within this, similar to axes Q, P1, P2 in Fig. 16.9. The
normal forcesNi are – like the moments Mi in Fig. 16.9 – generalised stresses s,
i. e. internal force variables that correspond to the external force variables Q. The
corresponding internal deformation variables, which correspond to the external de-
formation variables _V, are generalised deformation increments _v, i. e. bar extension
increments in the case of Ni and rotation increments in the case of Mi. Obviously, the
relationship

(ss s*) 7 _vj 0 (20:22)

which is similar to (20.21), applies for vectors s with an end-point on the yield surface,
the deformation increments _v corresponding to that and arbitrary vectors s* with an
end-point within the yield surface; i. e. the principle of maximum dissipation also
applies in the space of the generalised stresses.

We also note that for a mechanism to form, a sufficient expansion of the yielding areas
of the system is necessary. According to Fig. 20.6, this is the case for the edges AB,
BC, CD, DE, EF and FA of the parallelepiped where the yield surfaces of two bars
coincide each time, and which are mapped during the projection onto plane P = 0
in Fig. 20.5(b). According to Fig. 16.9, this is the case for point I (where the yield
surfaces M2 = –M3 = M4 = My meet), which is projected onto the Q axis parallel
with plane P1P2 .
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20.3 Beams in bending

20.3.1 Moment-curvature diagrams

20.3.1.1 Rectangular cross-section

The rectangular cross-section shown in Fig. 20.7(a) is subjected to a bending moment
M about the y axis. All the fibres of the cross-section exhibit a linear elastic - perfectly
plastic behaviour according to the stress-strain diagram shown in Fig. 20.1(b) and it
is assumed that all cross-sections remain plane according to (13.3), i. e. e = zx , see
Fig. 20.7(b).

The elastic behaviour is characterised by s = Ee and M = EIx , with I = bh3
/12, see

(13.8)2 and (13.9)2. With a monotonic rise in M, this phase is concluded by the onset of
yield, where

xy w
2fy
Eh

, My w
bh2fy

6
wWfy (20:23)

and W = bh2
/6 = I/(h/2) is the elastic section modulus of the cross-section, see Fig.

20.7(c).

The following applies in the subsequent elastic-plastic phase:
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where 1/2 j z i 0, i. e. when using (20.23)
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So when x p T, the resistance of the cross-section

Mu w
bh2fy

4
w Z fy w f My (20:26)

is reached; Z is the plastic section modulus of the cross-section and the quotient
f = Z/W = 1.5 is called the shape factor of the cross-section.

Fully relieving the elastic-plastic cross-section subjected to M according to (20.24)2

leaves behind the extreme fibre stresses at top and bottom

E sr1 we fy s
M
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� �
we fy 2z2

s

1

2

� �
(20:27)

as well as the stresses

e sr2 we fy s 2z
M

W

� �
we fy(1s 3zS 4z3) (20:28)

at the extreme fibres z = ezh of the elastic core of the cross-section, see Fig. 20.7(d).
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Fig. 20.8 summarises the moment-curvature behaviour of the cross-section. The elas-
tic-plastic phase ABC follows the elastic phase OA. Upon relieving the load, e. g.
starting at B (x = 3xy, M = 13My/9), a curvature of 14xy/9 remains, corresponding
to point G. With z = 1/6, eq. (20.27) and (20.28) give us the values sr1 = 4fy/9
and sr2 = 14fy/27, which characterise the residual stress state.

Continuing the loading in the opposite direction starting from point G in Fig. 20.8
brings us to point H (x = xy , M = – 5My/9), the onset of yield for the extreme fibres
at top and bottom in tension and compression. Comparing this with the onset of yield
at D (M = –My) in the virgin system, we notice once again the BAUSCHINGER effect
discussed in section 20.2.1.

20.3.1.2 General cross-sections and stress resultants

As described in section 13.2.1, the planar distribution (13.3) of the strains ex allows us
to determine the stress resultants belonging to a set of deformation variables e, xy , x z

for cross-sections of any shape and composition from the stress-strain relation-
ships sx = sx(ex) of the individual fibres by means of integration. However, calculat-
ing the deformation variables e, xy , x z belonging to a set of stress resultants N, My , Mz

generally calls for an iterative procedure. Such an approach enables us, for example, to
work out a set of My-xy diagrams point by point for various normal forces N = const
for a column cross-section where Mz = 0.

Profiled beam sections have much smaller shape factors f than beams with a solid
cross-section, e. g. f for HEA-type beams varies between about 1.10 and 1.15. In prac-
tice, therefore, we often neglect the small difference between Mu and My in deform-
ation calculations and work with a linear elastic - perfectly plastic moment-curvature
diagram, see Fig. 16.1(b). By assuming a shape factor of 1, the expansion of the plas-
tified zones is neglected, which results in ideal plastic hinges in the most heavily
stressed sections. This means the stiffness is somewhat overestimated. But as the strain
hardening is also ignored, this effect is practically compensated for.

20.3.2 Simply supported beams

20.3.2.1 Simply supported beam with central point load

The simply supported beam with a rectangular cross-section shown in Fig. 20.9(a) is
loaded at mid-span by a monotonically increasing point load Q. The task is to find the
associated deflection wm at mid-span. We shall assume that the beam is initially free
from residual stresses, i. e. we shall work with the moment-curvature diagram OABC
according to Fig. 20.8.
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Fig. 20.9(b) illustrates the bending moments M and the associated curvatures x . When
loaded with

Qy w
4My

l
(20:29)

the onset of yield is established at mid-span. The associated deflection at mid-span is

wy w
xyl

2

12
w

Qyl 3

48EI
(20:30)

When Q i Qy, the onset of yield takes place at the edges of the cross-section at a
distance of

aw
l Qy

2Q
(20:31)

from the support. The shading in Fig. 20.9(a) indicates the plastified zones that form in
the region of the load. The following applies in the remaining elastic zone 0 J x I a:

xwswLw xy x=a

and therefore
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In the partially plastified zone a J x J l/2, as M = My x/a and (20.25), then
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Using the boundary condition w(0) = 0, the symmetry condition wl(l/2) = 0 and the
fact that w and wl must be continuous for x = a, we get
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and hence (exercise 20.4), taking into account (20.29), (20.30) and (20.31),
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In Fig. 20.9(c), eq. (20.32) describes the arc AB. Upon reaching the limit load
Qu = 1.5Qy = fQy, the final deflection at mid-span for point B is wm = 20wy/9,
although the curvature x at x = l/2 when subjected to Qu is infinitely large. The ex-
treme fibres are plastified over a length of l – 2a = l/3 upon reaching the limit
load Qu.

A bilinear moment-curvature diagram (shape factor = 1) would give the approxima-
tion OADBC in Fig. 20.9(c). If the elastic deformations were to be ignored, the result
would be the rigid - perfectly plastic behaviour OEDBC. In both cases, the plastic
deformation would be confined to the cross-section beneath the load Q, i. e. an ideal
plastic hinge would form at this point.

20.3.2.2 Simply supported beam with uniformly distributed load

Loading the simply supported beam, which is initially free from residual stresses, with
a monotonically increasing uniformly distributed load q instead of a central point
load Q results in the onset of yield at mid-span at a load of qy = 8My/l

2. The limit
load is qu = 12My/l

2 = f qy when the moment-curvature diagram of Fig. 20.8 is
used. In contrast to the case with the central point load, the limit load is, theoretically,
not reached at a finite, but rather at an infinite mid-span deflection when, as before,
second-order effects are ignored (exercise 20.5). However, owing to the strain hard-
ening of the material which normally takes place and the influence of second-order
effects, this cannot happen in reality.

The ratio between limit load and load at onset of yield is known as the plastic reserve.
In statically determinate systems this is obviously equal to the shape factor of the
cross-section in which the plastic hinge needed to create the mechanism is formed.

20.3.2.3 Fixed beam with uniformly distributed load

The beam with a rectangular cross-section shown in Fig. 20.10(a) initially has no
residual stresses and no restraints. Therefore,

qy w
12My

l 2
, wy w

qyl 4

384EI
w

xyl
2

32
(20:33)

applies for the onset of yield at the fixed supports, see example 15.2.

Subjected to a limit load qu , a mechanism becomes established with plastic hinges at
the fixed supports and mid-span. The following applies:

qu w
16Mu

l 2 w

16 f My

l 2 w 2qy (20:34)

i. e. there is a plastic reserve of qu/qy = 4f/3 = 2.

The dotted lines in Fig. 20.10(b) indicate the bending moments and curvatures for the
onset of yield at the fixed supports. Point A corresponds to this state in the load-
deflection diagram of Fig. 20.10(c). In order to approximate the load-deflection
line between this point and the limit load level CD, we assume a simplified bilinear
moment-curvature diagram (shape factor = 1). The “onset of yield” at the fixed sup-
ports therefore shifts from point A to point B, i. e. ideal plastic hinges appear there for
a load of 3qy/2. The system then behaves like a simply supported beam until the limit
load is reached. We get the following deflection for point C:
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2
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384EI
w 4wy (20:35)

and the associated rotation of the plastic hinges at the fixed supports is
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Using the non-linear moment-curvature diagram OABC or ODEF in Fig. 20.8 enables
the problem to be solved numerically; it should be remembered that the deflection
curve must exhibit horizontal tangents at the fixed supports and at mid-span.
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Tab. 20.1 lists the results of a corresponding calculation, which are drawn in Fig.
20.10(c) (arc AD). There is a redistribution of the internal forces beyond point A
in Fig. 20.10(c). This is characterised by the fact that the span moments (x = 0) in-
crease successively to a greater extent than according to the elastic solution, whereas
the fixed-end moments (x = e l/2) increase successively to a lesser extent. As in the
case of the simply supported beam subjected to a uniformly distributed load, the limit
load is, theoretically, only reached with an infinitely large deflection at mid-span. It is
remarkable that arc AD in Fig. 20.10(c) lies above straight-line BC – with the equa-
tion wm = (5q/qy – 6)wy – in the range of about q = 1.6qy to q = 1.7qy . In addition,
we note that individual cross-sections in the region of the fixed supports are relieved
elastically in a certain load range as the load increases; however, this effect has only a
very small influence on the development of the deflection curve.
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Tab. 20.1 Results of calculations corresponding to arc AD in Fig. 20.10(c)

q M(x = 0) M(x = e l/2) wm

1.0 0.5000 – 1.0000 1.000

1.1 0.5502 – 1.0998 1.101

1.2 0.6015 – 1.1985 1.206

1.3 0.6555 – 1.2945 1.321

1.4 0.7149 – 1.3851 1.457

1.5 0.7862 – 1.4638 1.639

1.6 0.9007 – 1.4993 1.993

1.7 1.0501 – 1.4999 2.496

1.8 1.2000 – 1.4999.. 3.085

1.9 1.3500 – 1.4999.. 4.034

1.99 1.4850 – 1.4999.. 7.363

2.0 1.5000 – 1.5000 T

qy My My wy



20.3.3 Continuous beams

The continuous beam shown in Fig. 20.11(a) has two equal spans l, a constant bending
stiffness EI, constant bending resistances eMu and line loads q1 and q2 constant
within each span. We can derive the support forces and bending moments for the elas-
tic, initially restraint-free system shown in Fig. 20.11(b) from example 8.5, and
Fig. 20.11(c) is characteristic of a general restraint state for the system with one degree
of static indeterminacy. Fig. 20.11(d) shows the linear elastic - perfectly plastic mo-
ment-curvature diagram on which the analysis is based.

For reasons of symmetry, it is sufficient to consider one quadrant in the interaction
diagram of Fig. 20.11(e). Line DEC represents the yield limit, or rather the non-plastic
domain, of the elastic, initially restraint-free system; MB = –(q1 + q2)l

2
/16 = –Mu

applies along line DE, and C2
/(2q2) = Mu along EC, where C = (7q2 – q1)l/16.

Line AEBC corresponds to the yield limit, or rather the non-plastic domain, of the
rigid - perfectly plastic system, and the intervening space between this and line
DEC indicates the plastic reserve in the system, see section 20.3.5. Along line AEB,
one plastic hinge forms at intermediate support B and another in span BC:

Ps (q1 S q2)l 2=16wsMu ; C2=(2q2)wMu , C wP=lS (7q2 s q1)l=16

Eliminating P removes q1 from the calculation and we get

q2 w
2Mu

l 2(
ffiffiffi
2
p

s 1)2
(20:37)
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Along line BC, a negative plastic hinge forms in span AB and a positive plastic hinge
in span BC:

A2=(2q1)wsMu , AwP=lS (7q1 s q2)l=16 ; C2=(2q2)wMu , C wP=lS (7q2 s q1)l=16

Eliminating P results inffiffiffiffiffiffiffiffiffi
2Mu

p ffiffiffiffiffiffiffiffiffiffi
s q1
p

S

ffiffiffiffiffi
q2
p� �

S (q1 s q2)l=2w 0 (20:38)

At B and C in Fig. 20.11(e), the tangents to arc BC described by (20.38) are horizontal
and at an angle of p/4 with respect to axes q1 and q2 respectively.

Fig. 20.12 shows the loads, moments and restraint states corresponding to points A
and B in Fig. 20.11(e).

20.3.4 Frames

Fig. 20.13(a) shows once again the frame with two degrees of static indeterminacy
investigated in section 16.2. This is to be analysed in a similar way to section 20.2.1.5
with reference to the complementary internal total potential.

Fig. 20.13(b) corresponds to Fig. 16.2(e) and shows the elastic moment distribution of
the initially restraint-free system. The associated potential is

P*
e w

ð
M2

e

2EI
dx w 1.453

Q2m3

EI
(20:39)

This is represented by triangular areas in Fig. 20.13(d) bounded at the sides by legs
OFK and OL and at the top by Q = const. For example, when Q = QH = Qu , the out-
come is triangle OKL.

According to section 16.2.4, plastic hinges form successively at joints 4, 3 and 2 as a
result of a monotonic loading on the system. Points F, G and H in Fig. 20.13(d), or
Fig. 16.1(c), correspond to these states. Fig. 20.13(c) illustrates the bending moments
that ensue in the system with one degree of static indeterminacy as a result of imposing
P1 at joint 4, and in the statically determinate system by imposing P2 at joint 3. The
associated potentials amount to

P*
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2EI
dx w 1.212
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, P*
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(20:40)
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The complementary internal total potential generally amounts to

P*
i wP*

e S
Pk
jw1

P*
rj (k J n) (20:41)

where n is the degree of static indeterminacy and the summation includes all the k po-
tential components involved depending on Q. The relationships (20.17) and (20.13)1

for V and Ve respectively continue to apply, and (20.16) is used to determine Vr in the
sense of (20.41). For example, when Q = QH = Qu = 1.286My /m, we get

V=(xym
2)w 2 � 1.453 � 1.286S 2 � 1.212 � (s 0.422) � (s 1.106)S 2 � 5 � 0.100 � (0.759S 0.295 � 1.106)w 5.95

where P1 = (–1.106 ·1.286 + 1)My = – 0.422My and P2 = (0.759 ·1.286 + 0.295 ·0.422
– 1)My = 0.100My , and the chain rule is used to take into account the derivatives with
respect to Q. Note that the designations of the restraint states deviate from those of
Fig. 16.9. After relieving the load at point H in Fig. 20.13(d), the restraint state
M2 = – 0.405 · (– 0.422My) + 0.100My = 0.271My , M3 = 0.295 · (– 0.422My) + 0.100My

= – 0.025My , M4 = – 0.422My remains, i. e. the result is the values corresponding to
point J in Fig. 16.9.

20.3.5 Commentary

In statically determinate systems like the one examined in section 20.3.2.2, the plastic
reserve is equal to the shape factor f of the cross-section in which the plastic hinge
occurs. By comparison, in statically indeterminate systems there is usually an add-
itional plastic reserve in the system. For example, this reserve is 4/3 for the beam
with fixed ends carrying a uniformly distributed load examined in section 20.3.2.3.
Generally, the plastic reserve is represented by the intervening space between the
non-plastic domains of the virgin elastic-plastic and the rigid-plastic systems.

The plastified regions of the beam can extend over considerable lengths in cross-sec-
tions with large shape factors, especially with low shear forces. For example, the ex-
treme fibres of the simply supported beam with rectangular cross-section and central
point load examined in section 20.3.2.1 are plastified over a length of l/3 upon reach-
ing the limit load; this length increases to l/

ffiffiffi
3
p

with a uniformly distributed load and
otherwise identical conditions (section 20.3.2.2). In such cases the concept of an ideal
plastic hinge confined to one cross-section (shape factor = 1) supplies only a rough
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approximation of the actual behaviour. However, the behaviour is also influenced by
the strain hardening of the material and second-order effects, and assuming plastic
hinges leads to an easily managed, practical approach that supplies an approximation
that is mostly adequate for deformation calculations.

It is usually necessary to consider the interaction of the bending moments with the
other stress resultants (normal force, shear force and torque). This aspect is investi-
gated further in section 21.4.

In steel structures, for example, plastic deformations are often already found in the
serviceability state. Apart from the aforementioned restraints, such deformations are
often caused by peak stresses (e. g. at the tips of notches, around holes or at points of
load transfer) and fabrication-related residual stresses (e. g. as a result of cold-forming
or uneven cooling after rolling or welding).

20.4 Summary

1. Subjected to a monotonic loading, an elastic-plastic system exhibits elastic-plastic
behaviour (contained plastic deformation) with a successive decrease in stiffness
after the elastic phase until a mechanism is established (uncontained plastic
deformation) at the limit load.

2. Upon relieving the load, an elastic-plastic system behaves purely elastically pro-
vided no yield limit has been reached. In statically indeterminate systems, a
restraint state generally remains after relieving the load fully.

3. Plastic deformation generally changes the restraint state.
4. In principle, a system can be prestressed for certain types of loading in such a way

that it behaves purely elastically.
5. In the case of an opposite prior plastic deformation, the onset of yield is generally

established at a lower load than that of the virgin system (BAUSCHINGER ef-
fect).

6. With m load parameters, the stress state of a system with n degrees of static in-
determinacy can be depicted by superposing m elastically compatible loading
stress states and n restraint states.

7. Inaccurate fits during erection, thermal deformations, settlement, slip at connec-
tions, shrinkage, swelling and similar effects generally result in initial restraint
stresses in real systems which, however, are difficult to assess accurately.
Although the initial restraints have an influence on the structural behaviour up
to the limit load, they do not affect the limit load itself provided no second-order
effects occur and the plastic deformation capacity of the system is adequate for the
redistribution of the internal forces which is necessary.

8. The deformations of elastic-plastic systems can be split into elastic and plastic
components according to (20.17). These components follow from the correspond-
ing components of the complementary internal total potential (20.41) in line with
ENGESSER’s theorem according to (20.13)1 and (20.16).

9. The principle of maximum dissipation is transferred from the space of the local
stresses s to the spaces of the loads Q and the generalised stresses s. Convex
yield surfaces result in these spaces and the outward orthogonal vectors _V and
_v describe the associated mechanisms, or rather the corresponding generalised de-
formations increments, for points on the yield surface.

10. In statically determinate systems, the plastic reserve is equal to the shape factor of
the cross-section in which the plastic hinge occurs. In statically indeterminate sys-
tems there is usually an additional plastic reserve in the system.

11. Owing to the assumption that the bar cross-sections remain plane and perpen-
dicular to the bar axis, it is possible to determine the deformation variables e,
xy, x z belonging to a set of stress resultants N, My , Mz for cross-sections of
any shape and composition. Based on this, non-linear deformation calculations
can be performed for any systems, any loads.
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12. A bilinear linear elastic - perfectly plastic idealisation of the moment-curvature
behaviour (shape factor = 1) usually leads to sufficiently accurate results for
bars with low shape factors, e. g. profiled beam sections. In this situation the plas-
tic deformations are concentrated at ideal plastic hinges in individual cross-sec-
tions, and the associated plastic rotations can be calculated by applying the work
theorem, for instance.

20.5 Exercises

20.1 Verify (20.12).
20.2 The three pin-jointed bars of the system shown in Fig. 20.14(a) have a cross-

sectional area A and are made from a material that behaves according to Fig.
20.1(b). Beam 246 is rigid. Discuss the structural behaviour for the case of
Q4 = 2Q6 in a similar way to Fig. 20.2 and Fig. 20.3.

20.3 Draw a Q4 -Q6 interaction diagram which is similar to Fig. 20.5(b) for the task
of exercise 20.2 and discuss the behaviour, also in the space of the generalised
stresses (i. e. the normal forces in the pin-jointed members).

20.4 Verify (20.32).
20.5 Develop an expression similar to (20.32) for the simply supported beam with

rectangular cross-section and monotonically increasing uniformly distributed
load examined in section 20.3.2.2.

20.6 Draw the Q-V diagram for the beam shown in Fig. 20.14(b) subjected to a
monotonically increasing load Q. The system is initially free from restraint
and the beam cross-sections behave according to the moment-curvature dia-
gram shown in Fig. 20.11(d). Calculate the plastic hinge rotations occurring
in the elastic-plastic phase and discuss the behaviour in a similar way to
Fig. 20.4(b) and Fig. 20.13(d).

20.7 Discuss the structural behaviour of the continuous beam of Fig. 20.14(c) in a
similar way to exercise 20.6. Show that upon onset of yield

Qy w
8Mu

l
� 3S 2a

3S 4a
, Vy w

Mul 2

24EI
� 3S 8a

3S 4a

and that upon reaching the limit load

Qu w
8Mu

l
, Vu w

Mul 2

24EI
� (1S 4a)

In particular, consider the limiting cases a p 0 and a p T.

20.8 Discuss the structural behaviour of the frame shown in Fig. 20.14(d) for the
case of Q1 = Q2 in a similar way to exercise 20.6.

20.9 Assuming Fig. 20.11(d), determine a yield surface similar to Fig. 20.6 for the
system shown in Fig. 20.14(e); see also example 21.2.

20.10 With the help of Fig. 20.5 and Fig. 20.6, discuss for which value of Q0 the
system can just shake down when subjected to loads 0 J Q1 J Q0,
0 J jQ2j J Q0/2, and determine the associated restraint state.

20.11 Show that the system examined in exercise 20.9, with a restraint mo-
ment –Mu/19 at the intermediate support, can undergo shakedown when Q1

and Q2 vary between 0 and 96Mu/(19l ). Interpret the result with the help
of the answer worked out in exercise 20.9 and discuss the difference between
shakedown load and limit load.

20.12 Show that a beam of span l fixed at both ends, whose cross-sections behave
according to Fig. 20.11(d), can accommodate – purely elastically – a point
load of 432Mu/(59l ) travelling backwards and forwards any number of times
between the ends of the beam. To do this, use the influence functions for the
fixed-end moments in (19.39).
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20.13 Two identical bars in a vertical plane, rigid in shear and with length l, form a
bipod standing on a horizontal plane. The bars are joined together rigidly at the
top at a right-angle and fixed at their bases. Discuss the behaviour of the bipod
subjected to a monotonically increasing horizontal force applied at the top and
acting in the plane of the bipod. Assume pure stringer cross-sections (cross-sec-
tional area of each A/2 at spacing h) and a linear elastic - perfectly plastic
behaviour (modulus of elasticity E, yield limit fy). What conclusions can be
drawn with respect to the secondary stresses in trusses mentioned in sec-
tion 11.3.1?

408 20 ELASTIC-PLASTIC SYSTEMS

IV NON-LINEAR ANALYSIS OF FRAMED STRUCTURES

1

3

5

1

2

3 ll

l

2 4 6

Q4 w4,
Q6 w6,

2

1
Q

V

2 3

l

Q

V
lα l /2 l /2 lα

ll

l

Q2

Q1

l /2 l /2l /2 l /2

Q1 Q2

(a) (b) (d)

(e)(c)

2 3 4

1 5

ll

Fig. 20.14 Diagrams of static systems for section 20.5



21 LIMIT ANALYSIS

21.1 General

Limit analysis methods are used to calculate the limit loads of rigid - perfectly plastic
systems. They are based on the upper- and lower-bound theorems, which in turn are
based on the principle of virtual work and the principle of maximum dissipation and,
for a single-parameter loading, permit the limit load to be contained from above or
below. Limit analysis enables the structural safety to be assessed when dimensioning
or checking structures (see chapter 4). The application of limit analysis to framed
structures is presented in this chapter, and extended to cover plate and shell structures
in chapters 23 to 26.

According to the classic concept of dimensioning based on permissible stresses, dis-
cussed in section 4.7, a certain safety margin with respect to the onset of yield was
desirable at every point in a structure. The structural members were therefore dimen-
sioned for the stress resultants obtained from a linear elastic analysis of the system that
was assumed (mostly implicitly) to be initially free from residual stresses and re-
straints. Based on the observations of chapter 20, such a procedure is inherently ques-
tionable – the aforementioned assumption is in no way fulfilled; partial plastification is
usually already present in the serviceability state and the structural behaviour upon
collapse of a structure is not ascertained directly.

An elastic-plastic analysis should generally be carried out in order to ascertain the
structural behaviour of a system as accurately as possible; second-order effects
plus the way circumstances change over time may need to be considered, too. How-
ever, such an analysis, as shown in chapter 20, can become very involved, even for
simple systems. The non-plastic domain of an elastic-plastic system changes succes-
sively with the loading process and this must be investigated step by step. In addition,
this type of analysis presumes knowledge of the initial stress and deformation states.
But the necessary variables can only be estimated approximately at best. For these
reasons, the use of elastic-plastic analyses is severely restricted in practice.

By assuming rigid - perfectly plastic instead of elastic-plastic behaviour, we can work
with a fixed non-plastic domain that can be investigated from inside or outside using
the static and kinematic methods of limit analysis. The limit loads corresponding to the
boundaries of the non-plastic domain and the associated mechanisms are not depend-
ent on the initial stress or deformation states nor the subsequent loading-restraint
history. In this approach it is presumed that first-order theory can be applied and
the plastic deformation capacity is sufficiently large, which may have to be checked
with the help of an elastic-plastic analysis.
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21.2 Upper- and lower-bound theorems

21.2.1 Basic concepts

The theory of plastic potential for a volume element was presented in section 7.3.2. In
chapter 20 it became apparent that the principle of maximum dissipation energy,
which characterises this theory, is transferred from the space of the local stresses s

to the space of the loads Q and the space of the generalised stresses s, see (7.18),
(20.21) and (20.22). Convex (or at least not concave, i. e. weakly convex) yield
surfaces ensue in these spaces. Further, for points on the yield surface, the outward
orthogonal vectors correspond to the generalised displacement increments _V or the
generalised deformation increments _v.

The following proofs of the upper- and lower-bound theorems are based on the prin-
ciple of virtual work, which is expressed here in the following form:

Q1 7 _V2 s s1 7 _v2 w 0 (21:1)

according to (8.14). The static variables Q1, s1 form a force state in equilibrium, and
the kinematic variables _V2, _v2 form a compatible deformation state. The two states
need not be related to each other.

The two states in (21.1) are compatible when they are linked with each other via the
flow rule

_v2 w k grad Y(s1) (Y w 0 , kj 0)

_v2 w 0 (Y I 0) (21:2)

see (7.12). According to (21.2), we can distinguish between three regions of the struc-
ture: in region I, the stress state is at the yield limit, and plastic deformations occur
(k i 0); in region II, the stress state is also at the yield limit, but there are no plastic
deformations (k = 0), i. e. the region remains rigid; region III is also rigid and the
stress state lies below the yield limit here (Y I 0).

The limit load luQ for a certain direction Q in the space of the loads, the associated
stress state s and the deformation state _v, _V compatible with this are considered below.
We shall also look at a statically admissible stress state ss according to (8.61), which is
in equilibrium with the load lsQ, and a kinematically admissible deformation
state _vk, _Vk according to (8.59).

21.2.2 Lower-bound theorem

Every loading for which it is possible to specify a statically admissible stress state that
does not infringe the yield condition is not greater than the limit load.

To prove this theorem we shall use the variables _v, _V associated with the limit load as
our deformation state in (21.1) as well as, on the one hand, the variables s, luQ com-
patible with this and, on the other, the variables ss, lsQ as our force state:

luQ 7 _V s s 7 _vw 0 , lsQ 7 _V s ss 7 _vw 0

This results in the following:

(lu s ls) Q 7 _V w (ss ss) 7 _v (21:3)

As the scalar product Q x _V is positive and the expression on the right in (21.3) is
– according to (20.22) – not negative, the result is, as asserted,

ls J lu (21:4)
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21.2.3 Upper-bound theorem

Every loading that results from equating the work of the external forces for a kinemat-
ically admissible deformation state with the associated dissipation work is not less
than the limit load.

In order to prove this theorem, we shall formulate (21.1) using the force state luQ, s
associated with the limit load and the kinematically admissible deformation
state _vk, _Vk :

luQ 7 _Vk s s 7 _vk w 0

According to (7.14), the dissipation work is a single-valued function of the general-
ised deformation increments _vk, i. e.

_Dw
_D( _vk)

and according to (20.22), then
_D( _vk)j s 7 _vk

i. e.

luQ 7 _Vk J _D( _vk) (21:5)

or, as asserted,

lu J

_D( _vk)

Q 7 _Vk
w lk (21:6)

21.2.4 Compatibility theorem

A load is a limit load when a statically admissible stress state that does not infringe the
yield condition and a compatible kinematically admissible state of deformation can be
specified for that load.

The force and deformation states linked by this theorem constitute a complete solution
to the respective problem.

It is worth noting that the calculation according to (21.6) does not need to be per-
formed; instead, it is only necessary to verify the compatibility of the two states ac-
cording to (21.2).

21.2.5 Consequences of the upper- and lower-bound theorems

The lower-bound theorem expresses the ability of a system to adapt to a given loading
provided this is somehow possible. By contrast, the upper-bound theorem states that a
system cannot withstand a loading when a collapse mechanism exists.

The upper- and lower-bound theorems can be formulated as follows for general (multi-
parameter) loadings:

– Collapse cannot occur when – for any possible loading – it is possible to specify
statically admissible stress states that do not infringe the yield conditions at any
point.

– Collapse must occur when a kinematically admissible collapse mechanism exists
for some loading.

Relationships (21.4) and (21.6) lead to the following bounds:

ls J lu J lk (21:7)

for the limit load factor lu. The static method described in section 21.3 is used to
make the static load factor ls as large as possible. And vice versa, the kinematic
method is used to find a kinematic load factor lk that is as small as possible.
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The upper- and lower-bound theorems also lead to other consequences often useful in
practical situations:

– Adding (subtracting) weightless material cannot decrease (increase) the limit load.
– Raising (lowering) the yield limit of the material in any region of a system cannot

decrease (increase) its limit load.
– The limit load that can be calculated with a yield surface circumscribing

(inscribing) the effective yield surface forms an upper (lower) bound to the
effective limit load.

In order to reach a decision regarding the uniqueness of complete solutions, we shall
consider two complete solutions belonging to a certain limit load which are charac-
terised by s1, _v1, _V1 and s2, _v2, _V2. Applying the principle of virtual work to the dif-
ferential stress state s1 – s2 while using the deformation state _v1 – _v2, _V1 – _V2 shows
that the following must be true for every point in the system:

(s1 s s2) 7 ( _v1 s _v2)w 0 (21:8)

This is because s1 – s2 represents a restraint state, and according to (20.22), neither
(s1 – s2) x _v1 nor (s2 – s1) x _v2 can be negative. From this, we can derive the following:

– In regions that remain rigid for both solutions ( _v1 = _v2 = 0), it is possible to have
different statically admissible stress states that do not infringe the yield condition
(s1 0 s2).

– In regions in which plastic deformations occur with one solution at least ( _v1 0 0
or _v2 0 0), the end-points of the vectors s1 and s2 plus the entire straight line
connecting them belong to the yield surface Y(s) = 0. When strongly convex yield
surfaces are present, the stress state in such regions is therefore unique (s1 = s2).

21.3 Static and kinematic methods

21.3.1 General

Limit analysis is based on defining bounds (21.7) for the limit load.

In the static method, possible equilibrium states are investigated irrespective of kine-
matic considerations. The method supplies assertions regarding the ultimate resist-
ances required at every point in a system and is therefore particularly suitable for
dimensioning. The flow of the forces can be followed right down to the details,
and appropriate detailing is thus possible.

In the kinematic method, possible mechanisms are investigated irrespective of consid-
erations regarding the flow of the forces. The difference between this and the static
method is that the ultimate resistances are considered at the points of plastic deform-
ation only. Therefore, in terms of dimensioning, the kinematic method does not supply
any information that can be regarded as equivalent to that provided by the static
method. However, applying the kinematic method generally involves less effort.
The kinematic method is therefore primarily suited to checking existing or conceptual
designs, but in simple cases it can be useful for dimensioning purposes, too. Ultim-
ately, applying the kinematic method systematically, which is then also correspond-
ingly involved, we get a procedure that can rank alongside the static method in every
respect.

The skill in applying the two methods lies in using them in such a way that they com-
plement each other and lead to a reasonable solution to the respective problem with the
minimum effort.
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21.3.2 Simply supported beams

21.3.2.1 Simply supported beam with overhang at one end

The beam shown in Fig. 21.1(a) carries a uniformly distributed load q1 between the
supports and another load q2 on the cantilever. These loads can vary between the limit
values q1min and q1max, or q2min and q2max. Determining the bending moments drawn in
Fig. 21.1(b) presents no difficulties in this statically determinate case and appropriate
dimensioning could be carried out without any further problems.

Fig. 21.1(c) shows four possible mechanisms each with one plastic hinge. Mechan-
ism 3 represents the limiting case between mechanisms 2 (h = 1) and 4 (z = 1).
The work equations to be set up according to the upper-bound theorem are

q1l1
2

s

q2l 2
2

2l1(1s j)
wMu1

1

jl1
S

1

l1(1s j)

	 


s

q1l1
2

S

q2l 2
2

2l1(1s h)
wMu2

1

hl1
S

1

l1(1s h)

	 

q2l2

2
wMu3 �

1

l2
q2zl2

2
wMu4 �

1

zl2

(21:9)

We can see that the absolute magnitudes of the deformations (which are assumed to be
infinitesimal) play no role. Only the relative deformations of the individual parts of the
system are relevant.

The bending moment envelopes shown in Fig. 21.1(b) can be determined by varying
the parameters j, h, z and substituting the corresponding maximum/minimum values
of q1 and q2 in (21.9):

Mu1 w q1 maxl 2
1 j(1s j)=2s q2 minl 2

2 j=2 , Mu2 w q1 minl 2
1 h(1s h)=2S q2 maxl 2

2 h=2 , Mu4 w q2 maxl 2
2 z2=2

(21:10)

The systematic application of the kinematic method therefore supplies the same result
as the static procedure, which would be much simpler in this case.
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21.3.2.2 Beam with one degree of static indeterminacy

The beam shown in Fig. 21.2(a) has constant bending resistances eMu and is loaded
at its third-points by monotonically increasing loads Q. The task is to find the limit
load Qu.

Fig. 21.2(b) shows three possible mechanisms and illustrates the plasticity check using
free body and moment diagrams. The work equation for the first mechanism is
Q · 1 = Mu · (3/l + 6/l). Therefore, according to the upper-bound theorem, we get
the condition Qu J 9Mu/l for the limit load. The loads and moments known at joints
2 and 3 enable us to determine the free body diagram and the associated moments
shown in the figure. We can see that the yield condition between joints 1 and 2 is in-
fringed. In this area, the beam would have to be strengthened for the moments shaded
in grey in order to be able to carry the loads of 9Mu/l. The plasticity check is not sat-
isfied and therefore Qu I 9Mu/l.

The work equation for the second mechanism is Q · 3/2 = Mu · [3/l + 9/(2l )], from
which it follows that Qu J 5Mu/l. The loads and moments known at joints 1 and 2
enable us to determine the free body diagram and the associated moments shown
in the figure. The yield condition is infringed for the positive moments in the area
l/3 I x I 3l/4. The plasticity check is not satisfied and therefore Qu I 5Mu/l.

The work equation for the third mechanism is Q · 3/2 = Mu · [3/(2l) + 9/(2l )], from
which it follows that Qu J 4Mu/l. The plasticity check is satisfied and therefore
Qu = 4Mu/l.

The static method allows the limit load to be determined according to Fig. 21.2(c) in
a very simple way. With a simple support at joint 1, the moment diagram would be
ABCD. If we now add a closing line DE to the moment diagram in such a way
that the moments at 1 and 3 amount to Mu, then Mu + Mu/3 = Ql/3, i. e. Qu j

4Mu/l. The third mechanism in Fig. 21.2(b) is compatible with this stress state; the
plastic hinges at joints 1 and 3 agree with the moments and produce a mechanism.
Consequently, we have found the complete solution to the problem, and the limit
load is Qu = 4Mu/l.
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21.3.3 Continuous beams

We normally use a linear elastic analysis to find the bending moments of continuous
beams. Certain restraint moments can then be superimposed for each individual load
case (or for all load cases together) during the dimensioning, which is equivalent to
shifting the closing line of the bending moment diagrams. This is illustrated in Fig.
21.3 for end and interior spans. We get the final moments M from the moments M0

initially calculated by superimposing the restraint moments DM varying linearly be-
tween the supports.

Fig. 21.3 also shows various potential mechanisms that can be analysed in a similar
way to Fig. 21.1(c). Apart from the “usual” mechanisms 1 with plastic hinges at the
intermediate supports and around mid-span, it is mechanisms 2 to 4 with plastic
hinges near the points of contraflexure that need to be considered, especially with con-
crete structures. Working with reinforced concrete allows us to adjust the bending re-
sistance to match bending moments practically at will. So there is often only little
longitudinal reinforcement around the points of contraflexure, and there is a risk
that this reinforcement is curtailed too soon. The influence of the shear force aggra-
vates this effect because additional longitudinal reinforcement is needed to withstand
the shear, see (23.36), for example.

On the whole, the restraint moments DM do no work on the mechanisms. The restraint
state corresponds to a load-free state of equilibrium. As the work of the external forces
is equal to zero, the work of the internal forces must also be zero for every virtual
deformation state. Therefore, as already noted in chapter 20, the limit loads – assum-
ing adequate plastic deformation capacity plus the applicability of first-order theory –
are not dependent on restraints.

41521.3 Static and kinematic methods

M0

MM M+ Δ= 0

closing line

MM M+ Δ= 0
M0

1

2

3

4

(a) (b)

1

2

3

Fig. 21.3 Continuous beam: (a) end span, (b) interior span



In a system with n degrees of static indeterminacy, the limit load is reached, at the
latest, when n+1 plastic hinges have formed. Partial mechanisms with fewer than
n+1 plastic hinges govern in most instances. This is obvious in the case of continuous
beams with three or more spans (n j 2), see Fig. 21.3.

We can arrive at quite different answers to our dimensioning depending on whether
redistribution of moments is carried out for each individual load case or for all load
cases together. This matter has already been mentioned in example 16.6, and will be
addressed again in sections 21.5 and 21.7.3.

21.3.4 Plane frames

21.3.4.1 Introductory example

The frame with three degrees of static indeterminacy shown in Fig. 21.4(a) is loaded
by the monotonically increasing loads Q1 = 3Q and Q2 = Q. The bending resistances
of columns 12 and 56 are eMu, and the bending resistance of frame beam 2345 is
e2Mu . The task is to find the limit load Qu.

Owing to the linear progression of the moments segment by segment and the constant
bending resistances, plastic hinges can only form at points 1 to 6. Fig. 21.4(b) shows a
beam mechanism, a sway mechanism and a combined mechanism plus all the plasti-
city checks in a similar way to Fig. 21.2(b). The work equations for the three mechan-
isms and the resulting upper bounds for Qu are
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In the beam and sway mechanisms, the yield condition is infringed in column 12 and
frame beam 2345 respectively. On the other hand, the plasticity check for the com-
bined mechanism is satisfied, and the limit load is Qu = 0.7Mu/l.

The combined mechanism is a linear combination of the beam and sway mechanisms.
The corresponding combination factors are 5/8 and 1. Finally, it should be mentioned
that the plastic hinges at points 2 and 5 occur at the tops of the columns (bending re-
sistance Mu) and not in the frame beam (2Mu).

21.3.4.2 Elementary, combined and partial mechanisms

When the bending moments remain linear segment by segment and the bending resist-
ances are constant for each segment, then plastic hinges can form at the points of fixity,
at the points of load application, at corners and at changes of cross-section. If k denotes
the number of these joints, then for a system with n degrees of static indeterminacy we
can formulate

mw k s n (21:11)

linear, independent equilibrium conditions for the k unknown moments or generalised
stresses. These can be obtained as work equations from m elementary mechanisms.
According to (8.2), the following applies:

Qw aT7 s (21:12)

where aij designates the rotation increment at point i as a result of the jth elementary
mechanism (V

.
k = 1 for k = j and V

.
k = 0 for k 0 j), and the vectors Q and s include the

m generalised loads and the k generalised stresses.

For the frame of Fig. 21.4(a), k = 6 and n = 3, i. e. m = 3 according to (21.11). The
beam mechanism shown in Fig. 21.4(b), a similar beam mechanism with a settlement
of 1 at joint 4 and the sway mechanism, also shown in Fig. 21.4(b), can be identified as
elementary mechanisms. According to (8.1), we get the relationship

_vw a 7 _V (21:13)

for the generalised deformation increments _v and the generalised displacement in-
crements _V, i. e.
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Turning to the combined mechanism of Fig. 21.4(b), then V
.
1 = 5/8, V

.
2 = 0, V

.
3 = 1,

and consequently, according to (21.13), _u1 = –1/(2l ), _u2 = 0, _u3 = 5/(6l ), _u4 = 0,
_u5 = – 5/(6l ), _u6 = 1/(2l ).

Elementary mechanisms can also include joint mechanisms as well as beam and sway
mechanisms. Fig. 21.5 shows an example where k = 9, n = 4 and therefore m = 5.
Three beam, one sway and one joint mechanism can be identified here as elementary
mechanisms. The joint mechanism can occur, for instance, in conjunction with the
sway mechanism if the bending resistance of the column at 5 is greater than the
sum of the bending resistances of the frame beams at 4 and 6; the plastic hinge at
the top of the column (5) in the sway mechanism is closed, and therefore we get plastic
hinges at the junctions with the frame beams (4 and 6).

Fig. 21.4(b) and Fig. 21.5 show that, as with continuous beams, frames also often have
partial mechanisms in which fewer than n+1 plastic hinges occur. With p plastic
hinges, the distribution of the moments at the limit load still has (n+1–p) degrees
of static indeterminacy. Fig. 21.6 illustrates this for a frame with a constant bending
resistance eMu , k = 5 and n = 3. With the given loading, the result is the beam
mechanism shown (p = 3), and the distribution of the moments in frame beam 234
is known. However, any statically admissible continuation of the moments into
columns 12 and 45 is possible provided this does not infringe the yield condition
jMj J Mu . Equilibrium at the structural members illustrated as free bodies calls for

M1 S 3lV2 SMu w 0 , V2 SV4 w 0 , M5 s lV4 SMu w 0

and therefore the following relationship applies for the moments at the bases of the
columns:

M1 s 3M5 w 2Mu

Permissible points along straight line AB result in the M1-M5 interaction diagram, and
corresponding progressions between the limiting cases A and B are possible in the
bending moment diagram. All these bending moments are compatible with the
beam mechanism. Further statements regarding the column moments could only be
made with the help of an elastic-plastic analysis. As described in section 21.4.3,
additional conditions result (e. g. in reinforced concrete frames) if in addition to
the bending moments the normal forces are considered as generalised stresses, too.

Sometimes, apparently hyperstatic mechanisms with p i n+1 hinges occur. Fig.
21.7(a) shows a frame with constant bending resistance eMu, k = 7 and n = 3.
The symmetric mechanism of Fig. 21.7(b) with p = 5 plastic hinges is compatible
with the bending moment diagram of Fig. 21.7(c) and results in the limit load
Qu = 2Mu/l. However, this bending moment diagram is also compatible with the
mechanism with p = 4 plastic hinges shown in Fig. 21.7(d). Small imperfections
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are always present and so the asymmetric mechanism is to be expected in reality or
during a test. The symmetric mechanism corresponds to a theoretical limit case, i. e.
the combination of the two asymmetric mechanisms possible. These can occur in any
(non-negative) linear combination. Incidentally, Fig. 21.7(e) shows the thrust line cor-
responding to the structural response of the frame.
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21.3.4.3 Method of inequalities

The elementary mechanisms for the frame shown in Fig. 21.8, with constant bending
resistance eMu , are two beam mechanisms and one sway mechanism. According to
(21.12), we therefore get

Q2
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Q2=2

8<
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9=
;w

1

l

4 s 2 0 0 0
0 s 2 4 s 2 0
0 1 0 s 1 1

2
4

3
5

M1

M2

M3

M4

M5

8>>>><
>>>>:

9>>>>=
>>>>;

By solving these relationships for M1, M3 and M5 in conjunction with the yield con-
ditions

Mij jJMu (21:14)

we get the relations

s 4Mu J Q2l S 2M2 J 4Mu

s 4Mu JQ1l S 2M2 S 2M4 J 4Mu

s 2Mu J Q2l s 2M2 S 2M4 J 2Mu

(21:15)

with the unknown frame corner moments M2 and M4. Moment M4 can be eliminated
from (21.15)2 and (21.15)3 together with (21.14). We get
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Together with (21.14) and (21.15)1, eliminating M2 results in
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from which it follows that

s 8Mu=lJ Q1 J 8Mu=l

s 6Mu=lJ Q2 J 6Mu=l

s 10Mu=lJs Q1 S Q2 J 10Mu=l

s 10Mu=lJ Q1 S Q2 J 10Mu=l

s 18Mu=lJ Q1 S Q2 J 18Mu=l

s 10Mu=lJ Q1 S Q2 J 10Mu=l

s 14Mu=lJ Q1 S Q2 J 14Mu=l

s 4Mu=lJ Q2 J 4Mu=l

s 14Mu=lJ Q1 s 3 Q2 J 14Mu=l

(21:16)
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The relationships (21.16) define parallel strips in the Q1Q2 plane whose intersection
forms the yield locus shown in Fig. 21.8. Regimes AB, EF correspond to (21.16)8, i. e.
a pure sway mechanism. On the other hand, regimes CD, GH correspond to (21.16)1,
i. e. a pure beam mechanism. Combined mechanisms corresponding to regimes BC,
FG and DE, HA result from (21.16)4 and (21.16)9. The other relations of (21.16)
are not critical.

21.3.5 Plane frames subjected to transverse loads

21.3.5.1 Torsionless cranked beam

The cranked beam in the XY plane shown in Fig. 21.9(a) is loaded in the Z direction at
joint 2 by a monotonically increasing point load Q. Beams 12 and 23 with constant
bending resistance eMu are torsionless, i. e. their torsional resistance Tu is zero. The
resulting collapse mechanism is a rotation of both beams about axis 13, as shown in
Fig. 21.9(b). The bending moments vary linearly between 0 at the point of load
application 2 and –Mu at the points of fixity 1 and 3. The limit load is Qu = 2Mu/l.
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If we shift load Q to point 4 in the middle of beam 12, the result is that shown in Fig.
21.10. The limit load amounts to Qu = 4Mu/l, and the mechanism remains the same as
that shown in Fig. 21.9(b).

21.3.5.2 Torsion-resistant cranked beam

Rotation increments amounting to 1/l about the bar axis, also transverse to the bar
axis, occur at the points of fixity of the mechanism of Fig. 21.9(b). They cause cor-
responding torques in torsion-resistant beams. To investigate this, we assume – based
on section 21.4.4 – that the interaction between torques and bending moments is
described by an elliptical yield locus with the equation

M

Mu

� �2

S

T

Tu

� �2

w 1 (21:17)

where Mu and Tu designate the pure bending and torsional resistances, see Fig.
21.11(a).

According to the flow rule (21.2), we get
_ux

_uy
w

T M2
u

M T2
u

(21:18)

for the relationship between the rotation increments, where x and y denote the local
axes corresponding to the torques and bending moments, and T and M satisfy the re-
lationship (21.17). When j _uxj = j _uyj, the result is jT j = jMj · (Tu/Mu)

2, and substituting
back into (21.17) results in
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about axis 31 therefore leads to a limit load of

Qu w

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

u S T2
u

q
l

(21:19)

for the problem of Fig. 21.9(a), see Fig. 21.11(b). When Tu = 0, eq. (21.19) leads back
to the value Qu = 2Mu/l given above, and when Tu = Mu, then Qu = 2

ffiffiffi
2
p

Mu/l, i. e. the
limit load is increased by 41.4 % compared with the torsionless beam.
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In order to find a solution to the problem of Fig. 21.10(a), too, while taking into
account the torsional resistance, we shall restrict ourselves to the case of Tu = Mu ,
i. e. a circular yield locus. According to (21.18), the rotation increment vectors _u there-
fore have the same direction as the moment vectors M, which have a value of Mu , see
Fig. 21.12(a).

Assuming plastic hinges at points of fixity 1 and 3, we first realise that the correspond-
ing moment vectors with a value of Mu must form the same angle a with axes X and Y
in order to guarantee equilibrium of moments about axis 13. The moment vectors form
an isosceles triangle, and the following applies:

Qu w 4
ffiffiffi
2
p Mu

l

� �
sin

p

4
Sa

� �
(21:20)

see Fig. 21.12(b).

The rotation increments _u1 and _u3 are related to each other because they must lead to
the same settlement at point 4:

_u3l � cosas

sina

2

� �
w

_u1 �
l cosa

2
(21:21)

A further plastic hinge develops at point 4. The mutual rotation of beam segments 14
and 324 at this hinge is described by the differential vector _u4 of vectors _u1 and _u3, see
Fig. 21.12(c). The torque in beam 142 is constant and so according to the circular yield
locus of Fig. 21.12(a), the positive bending moment at plastic hinge 4 must have the
same magnitude as the negative bending moment at plastic hinge 1. Consequently, _u4

also forms an angle a with the X axis, and the following applies:
_u3

cosa
w 2 _u1 sina (21:22)

which together with (21.21) leads to

tanaw

1

3
Substituting in (21.20) results in

Qu w
16Muffiffiffiffiffi

10
p

l
(21:23)

Compared with the torsionless cranked beam of Fig. 21.10, the limit load is increased
by 26.5 %, but once again a quarter of the load is transferred to fixed support 3.
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As can be easily recognised, the yield condition is just satisfied at points 1, 3 and 4
only, and not infringed at any other point. The stress state shown in Fig. 21.12(b) is
compatible with the mechanism characterised by Fig. 21.12(c), i. e. the problem is
solved completely.

21.3.5.3 Torsionless grillage

The grillage shown in Fig. 21.13(a) consists of eight identical firmly interconnected
beams that can accommodate positive and negative bending moments up to a value of
Mu or Mul. A monotonically increasing point load Q is applied at each of the 16 inter-
sections. For reasons of symmetry, we can confine our analysis to half an interior beam
(123) and half an exterior beam (2l45), or rather one-eighth of the system.

Fig. 21.13(b) illustrates one possible mechanism. The associated work equation is

Q � 4 � 1S 8 � 1
3
S 4 � 1

9

� �
w 8(Mu SMul)

1

3l
S

1

9l

� �
from which it follows that Qu J (Mu + Mul)/(2l ) according to the upper-bound the-
orem. The stress state shown in Fig. 21.13(c) is valid for interior and exterior beams
and is compatible with the assumed mechanism. Consequently, the limit load amounts
to

Qu w
Mu SMul

2l
(21:24)

This approach corresponds to the analysis of a uniformly loaded square slab according
to the (simple) strip method, see section 24.4.3. Using the bending resistances related
to the unit length mu = Mu/(2l ) and mul = Mul/(2l ), the total load applied to the slab is
16(mu + mul).
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21.3.5.4 Torsion-resistant grillage

In the following it will be assumed that the yield locus of Fig. 21.12(a) and the
mechanism of Fig. 21.13(b) apply to the beams of the system shown in Fig.
21.13(a). Plastic flexural hinges, where _uy = 1/(3l ), _ux = 0, develop at points 1 and
3. A flexural-torsional hinge, where _uy = 1/(9l ), _ux = 2/(9l ), develops at 2l, and
one with _uy = _ux = 1/(9l ) at 5. Therefore, the work equation is

Q � 4 � 1S 8 � 1
3
S 4 � 1

9

� �
w 8Mu 2 � 1

3l
S

1

9l
(
ffiffiffi
5
p

S

ffiffiffi
2
p

)

	 

from which, according to the upper-bound theorem, it follows that Qu J 1.206Mu/l.

Fig. 21.14 shows a distribution of stress resultants compatible with the assumed
mechanism. The yield condition is satisfied at points 1, 3, 2l and 5, and not infringed
at any other point. Consequently, the limit load amounts to Qu = 1.206Mu/l. Com-
pared with the torsionless grillage where Mu = Mul, the limit load is increased by
20.6 %.
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21.3.5.5 More complex systems

The static analysis of more complex systems is usually very involved. On the other
hand, applying the kinematic method enables good upper-bound values for the limit
loads of grillages to be obtained relatively easily every time. In a similar way to the
application of the yield line method for slabs (see section 24.5), we assume that the
mechanism here is in the form of a deflected surface. The rotation increments at the
plastic hinges are therefore easy to calculate and the work equation can be formulated.

21.4 Plastic strength of materials

21.4.1 General

Up until now we have mostly confined ourselves to simple cross-sections in pure
bending. The procedure for calculating the deformation behaviour of general cross-
sections subjected to any stress resultants caused by bending moments and normal
forces was briefly explained in section 20.3.1. The following descriptions are con-
cerned with the resistances and plastic deformations of bars subjected to combined
stress resultants. This is intended to supplement chapter 13 in the meaning of a plastic
strength of materials.

21.4.2 Skew bending

21.4.2.1 Rectangular cross-sections

Assuming equal yield limits in tension and compression (fyt = fyc = fy, see Fig. 7.6),
the neutral axis n - n inclined at an angle a to the y axis must pass through the cen-
troid of the cross-section, see Fig. 21.15(a). When tana J h/b, we get

My wMyu s
b3fy tan2a

12
, Mz w

b3fy tan2a

6
(21:25)

where Myu designates the bending resistance bh2fy/4 for pure bending about the y axis
as given by (20.26)1. Eq. (21.25) results in arc AB in the interaction diagram of
Fig. 21.15(b). At point B, My = Wy fy and Mz = Wz fy , where Wy = bh2

/6 and
Wz = hb2

/6, see (20.23)2.

After eliminating a, eq. (21.25) results in

My

Myu
S

3

4

Mz

Mzu

� �2

w 1 Mz=My

�� ��
J h=b

� �
(21:26)1

and swapping the indexes results in the similar expression

Mz

Mzu
S

3

4

My

Myu

� �2

w 1 Mz=My

�� ��
j h=b

� �
(21:26)2
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for arc BC in Fig. 21.15(b), where

Myu w b h2fy=4 , Mzu w h b2fy=4 (21:27)

The parabolas AB and CB given by (21.26) can be approximated with the circum-
scribing ellipse described by the equation

My

Myu

� �2

S

Mz

Mzu

� �2

w 1 (21:28)

In doing this, we overestimate the resistance at point B by 6 %. On the other hand, the
bilinear approximation ABC results in an approximation that is on the safe side. A
straight line AC provides an even rougher approximation – on the safe side, however.

Dimensioning based on permissible stresses restricts the allowable moments to a
smaller region affine with triangle ODE, depending on the factor of safety used.
Therefore, in a case of distinctly skew bending, the result is a clear overdesign com-
pared with dimensioning according to plastic theory, i. e. uneconomic design.

Applying the flow rule (21.2) to (21.26) shows that vectors M and _x in Fig. 21.15(b)
are collinear (a = b) for pure bending only (points A and C), but with square cross-
sections (h = b) they are collinear for the case of My = Mz as well (point B,
a = b = p/4).

21.4.2.2 General cross-sections

As with the rectangular cross-section, the neutral axis does not generally coincide with
the axis of the bending moment (a 0 b). According to our assumptions, the normal
force disappears and fyt = fyc = fy , so the axis still halves the cross-sectional area. How-
ever, it does not pass through a fixed point, but rather shifts according to the loading.

Assuming an arbitrary yz system of coordinates in the plane of the cross-section
results in a skew-symmetric interaction diagram for the My , Mz components of the
bending moment; every point in the interaction diagram corresponds to a diametrically
opposed point with opposite stresses. The result is generally two directions, the prin-
cipal plastic directions, for which a = b or _x Z M. These are not normally orthog-
onal, nor do they coincide with the principal elastic directions.

Example 21.1 Unequal leg angle

The angle shown in Fig. 21.16, with constant thickness t, has the moments

My w
a2

4
s acs c2

� �
t fy , Mz w

b2

4
S bcs c2

� �
t fy (21:29)

where c is the parameter defining the position of the neutral axis, |c| J b/2 and t II b I a.
Eq. (21.29) results in arc AB in Fig. 21.16(b). For point A, where c = –b/2, the result is
My = (a2 + 2ab – b2)t fy/4 and Mz = –b2t fy/2. For point B, where c = b/2, the result is
My = (a2 – 2ab – b2)t fy/4 and Mz = b2t fy/2.
The skew-symmetric supplement to the interaction diagram leads to arc AlBl. The neutral axis lies in
the long leg of the section for points on straight lines ABl and AlB. The neutral axis passes through
the point y = 0, z = (b – a)/2 for point A, and the angle formed by the neutral axis and the y axis can
take on any value between arc tan [(a –b)/(2b)] and –p/2.
The “strong” axis OA in Fig. 21.16(b) corresponds to the first principal plastic direction. The second
principal plastic direction is obtained from the condition (b/2 – c)/(a/2 + c) = My/Mz with the mo-
ment components according to (21.29). This leads to a cubic equation for c which has a real root. For
example, the result for the case of b/a = 2/3 shown in the figure is the value c = 0.2598b, which
corresponds to the “weak” axis OC.
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21.4.3 Bending and normal force

21.4.3.1 Rectangular cross-section

Fig. 21.17(a) is obtained from Fig. 21.15(a) through parallel translation of the neutral
axis upwards by the amount c. The compression zone decreases in favour of the ten-
sion zone and a normal force N = 2cbfy develops. An amount c2bfy is deducted from
My in (21.25)1; eq. (21.25)2 is not altered. When Nu = bhfy , the result is therefore

My

Myu
S

3

4

Mz

Mzu

� �2

S

N

Nu

� �2

w 1 (21:30)1

and by swapping the indexes we get

Mz

Mzu
S

3

4

My

Myu

� �2

S

N

Nu

� �2

w 1 (21:30)2

for the position of the neutral axis shown in Fig. 21.17(b).
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The following applies for the situation shown in Fig. 21.17(c):

N w (bhs ad)f y , My w adf y

h

2
s

d

3

� �
, Mz w adf y

b

2
s

a

3

� �
from which, by eliminating parameters a and d and introducing reference values
Nu , Myu , Mzu , it follows that

My

Myu
s 2 1s

N
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� �	 

Mz

Mzu
s 2 1s

N

Nu

� �	 

s

16

9
1s

N

Nu

� �3

w 0 (21:30)3

The equations (21.30) describe the yield surface in the first octant. As this surface is
symmetrical with respect to axes N, My , Mz, this is adequate.

21.4.3.2 Reinforced concrete

Fig. 21.18(a) shows a composite cross-section made up of concrete (cross-sectional
area Ac = bh) and reinforcing steel (cross-sectional area As = rAc). The reinforcement
is located symmetrically at the top and bottom faces of the cross-section. The concrete
cover to the reinforcement is neglected.

The reinforcement is presumed to be perfectly plastic with yield limits e fy in tension
and compression. It is assumed that the concrete behaves according to Fig. 7.6, where
fyt = 0 and fyc = fc, i. e. its tensile strength is neglected and it is treated as a perfectly
plastic material from the point of view of compressive stresses. In order to take into
account the difference between this and the true behaviour of the concrete (see
Fig. 7.2), the “yield limit” fc is taken to be equal to, for example, 60 % of the uniaxial
compressive strength; fc is often referred to as the effective strength.
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Fig. 21.18(b) illustrates the strain increments

_ex w _eS _x z (21:31)

with the generalised deformation increments e
.

and _x , see (13.3), and Fig. 21.18(c)
shows the corresponding stress distribution in the concrete. The neutral axis
(e
.

x = 0) is located at a distance of h/2 + N/(bfc) from the y axis because the compres-
sive stresses in the concrete fc are distributed over a depth of –N/(bfc). With the stress
resultant N and its lever arm h/2 + N/(2bfc), the moment about the y axis equals
–N[h/2 + N/(2bfc)]. Apart from the sign of M, the same expression applies for a
negative _x . The following generally applies:

Yc w Mj jSN
h

2
S

N

2bf c

� �
w 0 (N J 0) (21:32)

The yield function Yc describes the yield locus made up of two parabolas forming the
boundaries to the non-plastic domain of the concrete, see Fig. 21.18(d).

In a similar way to Fig. 21.18(d), we get the yield locus Ys = 0 shown in Fig. 21.18(e)
for the reinforcement.

The linear combination of the stress states sc and ss possible for the concrete and
the reinforcement results in the yield locus Y = 0 for the reinforced concrete shown
in Fig. 21.18(f). This yield locus can be thought of – for example, with a fixed yield
locus for the reinforcement – as the yield locus of the concrete undergoing a pure trans-
lation such that its origin includes all positions on the yield locus of the reinforcement.
The envelope enclosing all translated positions of the yield locus of the concrete is
then the yield locus of the reinforced concrete cross-section we require.

Fig. 21.19(a) illustrates the effect of asymmetric reinforcement (Asl = As/2). The yield
locus is constructed in a similar way to that of Fig. 21.18(f).

In contrast to Fig. 21.18(f), a concrete cover c to the reinforcement has been assumed
in Fig. 21.19(b). The two parabolic boundaries to the non-plastic domain of the con-
crete are therefore each divided into three in the yield locus for the reinforced concrete.

It is possible to generalise the findings for the rectangular cross-section for any cross-
sections without any inherent difficulties. The principle behind such considerations
was described in sections 13.2.1 and 20.3.1. Many cross-section design programs
are now available to ease the practical calculation work. Most of these use the
stress-strain diagrams and place limits on the strains. Compared with a rigid - per-
fectly plastic approach, the deviations are normally relatively small. However, limiting
the strains can lead to partially concave interaction diagrams.

Considering M-N interaction diagrams generally leads to an iterative procedure when
analysing frameworks. Starting with estimates of the bending resistances, working ac-
cording to section 21.3.4 for a certain load case results in the mechanism associated
with that case plus the normal forces present at the plastic hinges. Applying the inter-
action diagrams of the hinge cross-sections improves the bending resistances, and the
calculation can be repeated until sufficient accuracy has been achieved. It is also ne-
cessary to check whether a mechanism other than the one assumed is critical, and then
adapt the calculation if necessary.

The normal forces at the plastic hinges can remain indeterminate in partial mechan-
isms such as the one shown in Fig. 21.6. In the example, the compressive force in
frame beam 234 can take on values between 0 and 2Mu/(3l ). A more accurate analysis
reveals that the neutral axes at points 2, 3, 4 lie at different levels because of the thin
concrete compression zones, which causes an elongation of the frame beam and re-
quires a further plastic hinge at the base 1 of the long column. As a result of this find-
ing, the iterative calculation can be carried out as explained above using the bending
resistances that are dependent on the normal forces.
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21.4.3.3 Masonry

As an approximation, masonry can be treated like plain (i. e. unreinforced) concrete.
The compressive stresses in the masonry are in most instances so much lower than its
compressive strength (e. g. 10 % or less) that the approximation of Fig. 21.20(a) can be
used instead of the yield locus of Fig. 21.18(d), i. e.

Yc w Mj jS
Nh

2
w 0 (N J 0) (21:33)

If we wish to consider the finite compressive strength of the masonry, then h can be
reduced to, for example, 90 % of the effective depth of the cross-section. We calculate,
so to speak, with what is outwardly a “shaved” cross-section.

A consequence of the assumptions made is that a masonry structure cannot fail if it
is possible to specify a thrust line for a given load which lies entirely within the
masonry. Fig. 21.20(b) illustrates this for an arch loaded by the point load Q. The
mechanism shown, with hinges at A, B, C and D, can occur if the thrust line ABD
touches the intrados at C.
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It is best to use a graphic approach for the practical analysis of masonry structures.
This involves first establishing a thrust line for the permanent actions, which should
deviate as little as possible from the system axis of the structure. Based on this, it is
possible to determine the extent to which the thrust line deviates sideways as a result of
variable actions. The risk of collapse can then be estimated.

21.4.4 Bending and torsion

According to the VON MISES yield condition, see Fig. 7.8(c), the shear stresses tfx

in the thin-wall circular hollow section of Fig. 21.21(a) cannot exceed the value
ty = fy/

ffiffiffi
3
p

. According to (13.66), this results in a torsional resistance of

Tu w
2pffiffiffi

3
p r2t fy (21:34)1

where t is the wall thickness and r is the radius to the centre of the wall of the cross-
section. On the other hand, we get the following for the bending resistance:

Mu w 4
Ðp=2

0

t fyr2 sinf dfw 4r2t fy (21:34)2

In the case of combined bending and torsion, the normal stresses sx and the shear
stresses tfx according to (7.21) and (5.40)2 satisfy the condition

s2
x S 3t2

fx w f 2
y (21:35)

Using M = 4r2tsx , T = 2pr2ttfx and (21.34), we therefore get the interaction relation-
ship

M

Mu

� �2

S

T

Tu

� �2

w 1 (21:36)

see (21.17).

Eq. (21.36) also applies for the rectangular hollow section shown in Fig. 21.21(b),
where

Mu w
a

b
S

1

2

� �
b2t fy , Tu w

2affiffiffi
3
p

b
b2t fy (21:37)

If we use the TRESCA instead of the VON MISES yield condition, then the factor offfiffiffi
3
p

in (21.34)1 and (21.37)2 must be replaced by 2 (ty = fy/2), and the factor of 3 in
(21.35) must be replaced by 4.
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According to (21.34) and (21.37), Mu z Tu . Therefore, for simplicity, we often work
with Mu = Tu, see Fig. 21.11(a) and Fig. 21.12(a).

We get, on the one hand,

Mu w
4r3

0f y

3
(21:38)1

for the circular solid section shown in Fig. 21.22(a), and, on the other, using
tfx = ty = const, we get the torsional resistance

Tu w
Ðr0

0

2pr2tydr w
2p

3
r3

0ty (21:38)2

Compared with this, the onset of yield at the edge of the cross-section according to
(13.52) results in a torque of

Ty w
p

2
r3

0ty (21:39)

i. e. the shape factor of the cross-section is f = Tu/Ty = 4/3.

The membrane analogy in the case of elastic behaviour (see section 13.4.2) has to
be replaced by the sand hill analogy in the case of plastic behaviour, as shown in
Fig. 21.22(a). Twice the volume covered by a membrane inclined at an angle ty at
the edge of the cross-section amounts to

2
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A volume in the form of a circular cone corresponds to the plastic behaviour. The
generator of the cone, like with a pile of sand, exhibits a constant slope of ty . Twice
the volume of the cone amounts to (2p/3)r0

3ty = Tu.

Considering a rectangular cross-section, see Fig. 21.22(b), we get, on the one hand,

Mu w
ab2f y

4
(21:40)1

and, on the other, the sand hill analogy gives us the torsional resistance
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(aj b) (21:40)2

For the onset of yield in the middle of the long sides of the cross-section (y = 0,
z = eb/2), a very good approximation is
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2b
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see exercise 13.9. The shape factor f = Tu/Ty for a square cross-section (a = b) is
1.594, and 1.5 for very wide cross-sections (a ii b).

Eq. (21.36) applies for the interaction between bending and torsion in solid cross-
sections, too.

21.4.5 Bending and shear force

Combinations of large bending moments and large shear forces can occur at fixed sup-
ports, the intermediate supports of continuous beams, frame corners and similar situ-
ations. It is advisable to introduce the shear span

cw
M0

V0

����
���� (21:42)

to enable uniform treatment of such cases. The shear span is the length of a fictitious
cantilever that is loaded at its unsupported end by a point load that, at the section being
examined, causes the same ratio between bending moment and shear force as the ef-
fective loading on the actual system, see Fig. 21.23; c is equal to the distance from the
section being examined to the intersection of the tangent to the M line at the section
being examined and the base line of the moment diagram.

In contrast to the cases of bending plus normal force and bending plus torsion, the case
of bending plus shear force does not give rise to a true interaction between the stress
resultants M0 and V0. In fact, these are linked via the shear span c. Just considering the
cross-section alone is insufficient, i. e. the stress state at the section being examined
and in the vicinity of that section must always be analysed as a whole. However, such
an analysis is quite complicated and will not be explored any further here.

In order to estimate to what extent the shear forces influence the bending resistances of
thin-wall sections, the stress distribution shown in Fig. 21.24(a) gives us the relation-
ship

M w a b tf fy S
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wtw fy

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1s
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s

(bw w bs tf , Vu w bwtw fy=
ffiffiffi
3
p

)

(21:43)1

see Fig. 21.24(b). If we use the TRESCA instead of the VON MISES yield condition,
the factor of

ffiffiffi
3
p

in the expression for Vu has to be replaced by 2. Point B in Fig.
21.24(b) generally lies on ellipse AC, and the decrease in the bending resistance is
relatively small. Regime CD can become critical with very short shear spans and
thin webs.
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If a normal force N has to be considered as well as the shear force V, then the root
expression in the second term on the right in (21.43)1 has to be replaced by

1s
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1s

V
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s (Nwu w bwtw fy) (21:43)2

21.5 Shakedown and limit loads

The shakedown theorem was introduced in section 20.2.1. This theorem permits
statements to be made about actions (loads and restraints) that can be accommodated
elastically any number of times. The difference between dimensioning using elastic-
plastic and rigid-plastic approaches has already been pointed out in example 16.6 (Fig.
16.21): in elastic-plastic dimensioning based on the shakedown theorem, a common
restraint state is superposed on the stress resultants determined elastically for all load
cases, whereas in rigid-plastic dimensioning based on the static method of limit ana-
lysis, a specific restraint state can be used for each load case.

Let sei,max and sei,min denote the limit values of the elastically compatible stress resul-
tants at point i, and sui and suil the magnitudes of the corresponding positive and nega-
tive resistances. The necessary and sufficient conditions for avoiding collapse as a
result of progressive plastification are then

sui j sei, max S sri , sei, min S sri js suil (21:44)

where sri is the restraint at point i, which is superposed on the elastically compatible
stress state. In order to avoid collapse as a result of alternating plasticity, we require

sei, max s sei, min J syi S syil (21:45)

where syi and syil stand for the values of the yield limits of the virgin system at point i
with positive and negative stress resultants. Note that the variables sei,max and sei,min

also contain restraint components as well as load components for general loading-
restraint cycles.

The relationship between shakedown load and limit load is discussed further in the
following and commented on with respect to the practical analysis and dimensioning
of structures. A brief outline of a computational method for the elastic-plastic dimen-
sioning of structures for minimum weight is given in section 21.7.3.
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Example 21.2 Two-span beam – repeated variable actions

Fig. 21.25(a) shows by way of parallelogram EFGH the intersection of the yield surface obtained in
exercise 20.9 with the plane Q1 = 5.4Mu/l. Fig. 21.25(b) shows the bending moments for the two-
span beam being examined as a result of four different loadings Q2 when Q1 = 5.4Mu/l = const.
In the load range –1/3 J Q2 /Q1 J 1, the resulting limit load for the system being considered
is Q1 = 6Mu/l. Similarly, for the load range –1/3 J Q1/Q2 J 1, the limit load is Q2 = 6Mu/l. If
Q1 and Q2 can vary between 0 and the maximum value Qs, we get the shakedown load
Qs = 96Mu/(19l ), see exercise 20.11.
Applying a monotonically increasing load Q1 to the initially restraint-free system establishes the onset
of yield at point 1 (M1 = Mu) when Q1 = 64Mu/(13l ); we get M3 = – 6Mu/13 for the associated mo-
ment at intermediate support 3. Increasing the load further to Q1 = 5.4Mu/l results in moment dia-
gram A in Fig. 21.25(b). Relieving the load completely at this stage would leave a moment
M3 = P = – 0.7Mu + (5.4Mu/l ) · (3l/32) = – 31Mu/160 at the intermediate support, corresponding
to point A in Fig. 21.25(a).
Increasing Q2 starting from 0 while Q1 at 5.4Mu/l = const causes the point in Fig. 21.25(a) to trace the
path AB until the moment M3 = – 0.7Mu + (3.2Mu/l ) · (3l/32) = –Mu is reached at Q2 = 3.2Mu/l. At
the same time, the moment at point 1 is reduced to M1 = Mu – (3.2Mu/l ) · (3l/64) = 0.85Mu. Increas-
ing Q2 further, up to 5.4Mu/l, and subsequently relieving completely as far as Q2 = 0 results in the
path BCDA shown in Fig. 21.25(a). Segment BC corresponds to a negative plastic rotation at inter-
mediate support 3, and segment DA corresponds to a positive plastic rotation at point 1. If the loading
cycle is repeated several times, the plastic rotations at points 1 and 3 increase successively and there is
a risk of exhausting the plastic deformation capacity.
According to the work theorem (14.4), the plastic rotation at point 3 amounts to
0.55Mu · 1 · (1/4) · l/(EI ) = 11Mul/(80EI ) per cycle. We get a corresponding value of 11Mul/(40EI )
at point 1. The curvature Mu/(EI ) at the onset of yield is inversely proportional to the depth of
the cross-section h. For a curvature of, for example, 1/(250h), where l = 20h, the plastic rotation
increment is 22mrad per cycle at point 1 and 11mrad at point 3.
Restraint cycles can increase, or rather accelerate, progressive plastification. For example, a tempera-
ture difference DT over the depth of the cross-section h, constant over the full length of the beam,
causes a restraint state characterised by P = – 3EIDTaT/(2h). Putting DT = e 20hC, aT = 10– 5

/hC
and EI = 250Muh results in P = E0.075Mu, for instance. We get the path AIJBCKLDA in Fig.
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21.25(a) when DT = +20hC or DT = – 20hC occurs at positions A or C and is kept constant during the
subsequent variation in Q2. The values of the plastic rotation increments at points 3 and 1 therefore
increase from 11 to 15 and from 22 to 30mrad per cycle respectively.
If Q1 and Q2 can vary between 0 and the same maximum value Qs, eq. (21.44), taking into account
DT = e 20hC, provides us with the conditions

13

64
QslS 0.0375Mu S

DP

2
wMu ,

6

32
QslS 0.075Mu sDPwMu

for the moments at points 1 and 3. Consequently, Qs = 24Mu/(5l ), i. e. a shakedown load reduced by
5 % compared with 96Mu/(19l ). The variable DP = –Mu/40 corresponds to the restraint state super-
posed on the elastic stresses due to load and thermal actions. The shakedown load Qs = 4.8Mu/l that
comes about as a result of taking into account the loading and restraint cycles is equal to 80 % of the
limit load Qu = 6Mu/l in this case.

The plastic deformations of a structure generally remain relatively small during a
single loading-restraint cycle. The plastic deformation is restricted by the parts of
the system that remain elastic. The incremental growth in plastic deformations during
repeated cycles can certainly become substantial, but does lead to advance warning of
collapse. In fact, a typical structure that has collapsed due to progressive plastification
as a result of repeated variable actions is unknown in practice.

In practical dimensioning assignments, we generally confine ourselves – according to
section 4.5 – to considering single load cases characterised by a leading action (e. g.
wind forces) and one or more variable accompanying actions (e. g. imposed loads in
buildings). Verification of structural safety is then carried out according to (4.5) and
(4.6), like with a one-off static overload, with the reduced probability of the simul-
taneous occurrence of the most unfavourable values of several independent actions
being taken into account by way of corresponding reduction factors. This procedure
implies that collapse due to progressive plastification is also ruled out.

Knowledge regarding the various actions on structures varies greatly and is sometimes
associated with major uncertainties. The scientific basis for assessing the practical sig-
nificance of shakedown load calculations is therefore weak compared with limit load
calculations. The conventional approach to dimensioning structures, based on the
static method of limit analysis, does not seem to lead to any problems in normal cases.
But for abnormal cases, e. g. large cyclic restraints as a result of thermal actions, the
information given here enables additional checks to be carried out.

21.6 Dimensioning for minimum weight

21.6.1 General

Up until now it has been assumed that we know the geometry of and the loading on a
system plus the ratios of the resistances of all the bars. Limit analysis was able to de-
termine the ratio of limit load to reference resistance, or at least to define it within
limits.

The resistances of all the bars have to be specified with dimensioning according to
plastic theory. The customary practical approach is to estimate a possible first distri-
bution of the resistances and then to try to improve this iteratively with respect to
certain criteria with the help of appropriate modifications.

Many factors have an influence on the economy of a structure, as discussed in sec-
tion 3.2. Apart from the qualities and quantities of the materials used, constructional
restrictions such as maximum and minimum dimensions, fabrication, transport and
erection conditions, etc. all play a key role. In the light of this, it is clear that dimen-
sioning for minimum weight, as explained below, can only represent a reference value
for designing structures. It in no way corresponds to “optimum design” – which owing
to the complexity of the objective function and the secondary conditions is essentially
an illusion – but does provide designers with valuable information regarding the

43721.6 Dimensioning for minimum weight



efficiency that can be achieved plus the consequences of their decisions during the
conceptual design of a structure.

21.6.2 Linear objective function

The cross-sectional area A and the plastic section modulus Z of geometrically similar
sections are proportional to the second or third power of the depth of the cross-
section h. Therefore, with the same specific weight and yield limit, the dead load g
of a bar per unit length is proportional to Mu

2/3, and the following applies for the
dead load G of the total design:

GZ

Pl

iw1
liM

2=3
ui (21:46)

where li denotes the total length of all sections with resistance Mui .

The linearisation

gw c1 S c2Mu , Gw c1
Pl

iw1
li S c2

Pl

iw1
liMui (21:47)

is possible for a certain range of sections. With a given system geometry, the first term
on the right in (21.47)2 is constant, and G together with the sum in the second term is a
minimum. Generally, therefore, the objective function

C w

Pl

iw1
liMui p Min! (21:48)

is assumed, a linear function of the l resistances Mui relevant in the design.

21.6.3 FOULKES mechanisms

Sections with bending resistances of eMb or eMc are to be used for the beam and the
two columns of the frame depicted in Fig. 21.26(a), which is statically indeterminate to
the second degree. The problem corresponds to that of Fig. 21.8, where
Q1 = 2Q2 = 2Q. But as the bending resistance can now change abruptly at the corner
of the frame, two joints must be introduced at each corner (2, 3 and 5, 6). Including the
points of load application (1, 4) and fixity (7) means k = 7, and when n = 2, then the
result according to (21.11) is m = 5. We can identify the elementary mechanisms as
two beam mechanisms, one sway mechanism and two joint mechanisms. Fig. 21.26(b)
shows the two beam mechanisms, the sway mechanism and the two combined
mechanisms, with the plastic hinges at the frame corners able to form in the columns
or the frame beam in each case. The corresponding work equations are:

a ... 2Qw 8Mb=l

c ... Qw 6Mc=l

e ... Qw 4Mb=lS 2Mc=l

g ... 3Qw 8Mb=lS 2Mc=l

i ... Qw Mb=lS 3Mc=l

b ... 2Qw 4Mb=lS 4Mc=l

d ... Qw 2Mb=lS 4Mc=l

f ... Qw 6Mc=l

h ... 3Qw 4Mb=lS 6Mc=l

j ... Qw 4Mc=l

These are shown as straight lines in Fig. 21.26(c). The permissible region for Mb, Mc in
this FOULKES diagram is bounded by the polygonal line ABCDE (which is convex
with respect to the origin); Fig. 21.26(d) shows that the plasticity check is satisfied for
points B, C and D.

The objective function (21.48) for the frame of Fig. 21.26(a) is C = lMb + 2lMc . Fig.
21.26(c) shows that, within the permissible region, this function is a minimum for
point D (Mb = 0.375Ql, Mc = 0.25Ql ). Taking the stress state for point D shown
in Fig. 21.26(d), any non-negative linear combinations of mechanisms h and j accord-
ing to Fig. 21.26(b) are compatible. A mechanism with two degrees of freedom, such
that the straight line of the mechanism coincides with the straight line C = const, is
only possible for solution point D, but not for the other two corners B and C in the
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permissible region. Let V
.
h and V

.
j denote the corresponding generalised displacement

increments. The work equation for this mechanism is then

3Q _Vh SQ _Vj w
Mb

l
� 4 _Vh S

Mc

l
(6 _Vh S 4 _Vj)

where

4 _Vh

6 _Vh S 4 _Vj
w

1

2
w

lb
lc

(lb w l, lc w 2l )

i. e. V
.
h = 2V

.
j. The sums of the magnitudes of the rotation increments occurring in the

frame beam and in the columns are

_ub w
4 _Vh

l
, _uc w

6 _Vh S 4 _Vj

l
And we can see that _ub/lb = _uc/lc .

The following generally applies for a FOULKES mechanism:
_ui

li
w const (iw 1, 2, ... , l ) (21:49)
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i. e. the values of the mean curvature increments in the individual parts of the system
are constant. With l bending resistances Mui determining the design, the work equa-
tions of the individual mechanisms correspond to hyperplanes in the l-dimensional
space, which limit the permissible region (convex with respect to the origin). A hyper-
plane that touches the permissible region at the solution point corresponds to the ob-
jective function (21.48). The mechanism compatible with the stress state at the solu-
tion point generally turns out to be a non-negative linear combination of l mechan-
isms, and the constraints (21.49) apply for the corresponding FOULKES mechanism.

Summing up, dimensioning for minimum weight is achieved when it is possible to
specify a FOULKES mechanism and a statically admissible stress state compatible
with that mechanism. This is the case for point D in Fig. 21.26(c). Although a
FOULKES mechanism exists for point F, there is no statically admissible stress state
compatible with this; the dead load of the system must therefore lie below the min-
imum weight. And although collapse mechanisms and statically admissible stress
states compatible with those mechanisms can be specified for all the points on the
boundary of the permissible region, e. g. point C, apart from solution point D, there
is no FOULKES mechanism present; thus, the dead load of the system cannot lie be-
low the minimum weight. Finally, it should be noted that there are also points outside
the permissible region for which it is not possible to specify a FOULKES mechanism,
e. g. point G in Fig. 21.26(c).

21.6.4 Commentary

Several load cases normally have to be considered. The permissible region in the
FOULKES diagram is then obtained by combining the permissible regions of all
load cases. Dimensioning points in the common range of the permissible regions
of the individual load cases are permitted.

Generally, secondary conditions restrict the choice of resistances. On the one hand,
certain minimum resistances are necessary; these can result from, for example, min-
imum thicknesses, constructional conditions or stability aspects. On the other hand,
maximum resistances will have to be considered as well for aesthetic and construc-
tional reasons. Further, relative restrictions often have to be considered, e. g. it could
be that one particular resistance may not be larger than another particular resistance.
All such secondary conditions lead to corresponding constraints in the FOULKES dia-
gram. In this situation it can turn out that the minimum resistances called for already
correspond to one point within the permissible region of the FOULKES diagram; the
solution to the problem of dimensioning for minimum weight is then unimportant. On
the other hand, choosing maximum resistances that are unreasonably small can make it
impossible to solve this problem. It is not possible to save very much if the prescribed
minimum resistances are only marginally smaller than the resistances representing the
dimensioning for minimum weight. And vice versa, very uneconomic solutions can
result when the prescribed maximum resistances are small compared with the resist-
ances representing the dimensioning for minimum weight.

In larger systems it is worthwhile adjusting the resistances along the bar axes to suit the
stress resultants present. This can be done by varying the depth of the beam (haunches)
and by varying the plate thicknesses of steel beams or curtailing the reinforcement in
reinforced concrete beams. From (21.49) it follows that at the limiting case li p 0, the
corresponding FOULKES mechanisms must be characterised by deflection curves
that are curved between the points of inflection and exhibit a constant radius. Accord-
ingly, in the case of a beam fixed at both ends, see Fig. 21.27(a), the point of inflection
must be at the quarter-points of the span irrespective of the loading; starting with the
moment diagram of the associated simply supported beam, the closing line for the
statically indeterminate system can be fitted to suit. Fig. 21.27(b) illustrates the similar
procedure for a beam fixed at one end and simply supported at the other. The positions
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of the points of inflection of the deflection curve for continuous beams and frames are
best calculated iteratively.

The assertion that the collapse mechanisms – when the resistance has been perfectly
matched to the stress resultant – are characterised by deflection curves in the form of
circular arcs with a constant radius for each segment can be verified as follows. The
mechanism is described by the deflection increment w

.
(s) and the curvature in-

crement _x(s), where either _x = _x0 or _x = – _x0 ( _x0 = const). According to (21.1),
with the loads q(s) and the perfectly matched moments M(s) in equilibrium with those
loads, thenÐ

q _w dsw
Ð

M _x dsw _x0

Ð
Mj j dsw _x0C0 (21:50)

Eq. (21.50)2 results because M and _x are compatible according to (21.2), and (21.50)3

draws on (21.48); C0 denotes the minimum of the objective function C. If we consider
an arbitrary statically admissible stress state Ms(s), which is in equilibrium with q(s),
then according to (21.1),Ð

q _w dsw
Ð

Ms _x ds

and the comparison with (21.50) results in

C0 w

ð
Ms

_x

_x0

dsJ
Ð

Msj j dswC (21:51)

i. e. C0 is actually the minimum of C. Note that Ms is generally not compatible with _x,
from which the relation (21.51)2 follows taking into account _x / _x0 = e1.

Section 21.6.3 presumes that a continuous range of sections, or rather cross-section
resistances, is available. However, rolled sections, for example, are produced in certain
discrete steps. And even reinforced concrete cross-sections are subjected to similar
restrictions owing to the discrete diameters of reinforcing bars with constant bar spac-
ings for each area. When applying FOULKES mechanisms, it is practical to choose
possible combinations of resistances within the permissible region which come as
close as possible to the theoretical minimum. Alternatively, the minimum that can
be achieved in practice could be found simply by trial and error.

Choosing a “more realistic” objective function – corresponding to the expression on
the right in (21.46), for instance – instead of the linear objective function (21.48)
usually results in only a small or indeed no change to the minimum weight of a design.

21.7 Numerical methods

21.7.1 The force method

Let us consider a system with n degrees of static indeterminacy and k joints accord-
ing to section 21.3.4. The k generalised deformation increments v

.
i correspond to the

k generalised stresses _si; the former are linked with the m = k – n generalised dis-
placement increments V

.
j via (21.13). And vice versa, the m generalised loads Qj
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are linked to the k generalised stresses si via (21.12). Splitting si into m statically de-
terminate variables s0i and n redundant variables Xi results in

_v0

_v1

� 
w

a0

a1

	 

_V

� �
, Qf gw aT

0 aT
1

� � s0

X

� 
(21:52)

where v
.
0i and v

.
1i denote the kinematic variables corresponding to s0i and Xi.

Multiplying (21.52)2 by (a0
T)–1 first and considering the identity

aT
0

� �
s1

7 aT
1 w a1 7 as1

0

� �T

leads to

s0

X

� 
w

aT
0

� �
s1

s a1 7 as1
0

� �T

0 I

	 

Q
X

� 
(21:53)

see (8.8). Eq. (21.52)1 results in a0
–1

x _v0 = _V and therefore _v1 = a1
x a0

–1
x _v0, i. e.

s a1 7 as1
0 I

� � _v0

_v1

� 
w 0f g (21:54)

see (8.9).

Example 21.3 Plane frame

Let us return to the problem of Fig. 21.8. We shall call V
.
1 and V

.
2 the displacement increments of the

two beam mechanisms at points 1 and 3, and V
.
3 the incremental displacement of frame beam 234 in

the sway mechanism. Using the notation of Fig. 21.8, the generalised loads corresponding with this
are Q2, Q1 and Q2/2.

Eq. (21.52)1 is then
_u1
_u2
_u3
_u4
_u5

8>>>><
>>>>:

9>>>>=
>>>>;

w

1

l

4 0 0
s 2 s 2 1
0 4 0
0 s 2 s 1
0 0 1

2
66664

3
77775

_V1
_V2
_V3

8<
:

9=
;

where the rotation increments _ui correspond to the moments Mi . Relationship (21.52)2 has already
been set up as the basis of the relations (21.15).
If we change over to a statically determinate three-hinged frame as our basic system by introducing
hinges at joints 4 and 5, then (21.53) results in

M1

M2

M3

M4

M5

8>>>><
>>>>:

9>>>>=
>>>>;

w

l=4 0 l=2 1=2 s 1=2
0 0 l 1 s 1
0 l=4 l=2 1 s 1=2
0 0 0 1 0
0 0 0 0 1

2
66664

3
77775

Q2

Q1

Q2=2
M4

M5

8>>>><
>>>>:

9>>>>=
>>>>;

From (21.54) it follows that

1=2 1 1 1 0
s 1=2 s 1 s 1=2 0 1

	 
 _u1
_u2
_u3
_u4
_u5

8>>>><
>>>>:

9>>>>=
>>>>;

w

0
0

� 

The two rows of the matrix describe the moments for the basic system as a result of M4 = 1 or M5 = 1.

21.7.2 Limit load program

According to the lower-bound theorem, the intensity of the loading l for a propor-
tional loading lQ/jQj taking into account the equilibrium conditions (21.53) and
the yield conditions

sMuilJMi JMui (iw 1, 2, ... , k) (21:55)

must be a maximum. We therefore get the linear program

l w l p Max!
x wMu s b1 7 X s lM0

xlwMulS b1 7 X S lM0

(21:56)
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with the non-negative control variables

xi wMui sMi , xilwMuilSMi (21:57)

plus the (kqn) matrix

b1 w
s (a1 7 as1

0 )T

I

	 

(21:58)

and the vector

M0 w
(aT

0 )s17 Q= Qj j
0

� 
(21:59)

for the stress variables in the basic system as a result of Q/jQj.

Example 21.4 Plane frame – static program

Putting Q1 = 2Q2 in example 21.3, then (21.58) and (21.59) result in

b1 w

1=2 s 1=2
1 s 1
1 s 1=2
1 0
0 1

2
66664

3
77775 , M0 w

lffiffiffi
5
p

1=2
1=2
3=4

0
0

8>>>><
>>>>:

9>>>>=
>>>>;

When Mui = Muil = Mu (i =1, 2, ... , 5), the result according to (21.56) is the linear program

l
x1

x2

x3

x4

x5

x1l

x2l

x3l

x4l

x5l

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

w

0 0 0
ffiffiffi
5
p

=l
1 s 1=2 1=2 s 1=2
1 s 1 1 s 1=2
1 s 1 1=2 s 3=4
1 s 1 0 0
1 0 s 1 0
1 1=2 s 1=2 1=2
1 1 s 1 1=2
1 1 s 1=2 3=4
1 1 0 0
1 0 1 0

2
66666666666666664

3
77777777777777775

Mu

M4

M5

ll=
ffiffiffi
5
p

8>><
>>:

9>>=
>>; , l p Max!

with the solution

sM4 wM5 wMu , lw
10

ffiffiffi
5
p

Mu

3l

The control variables x3, x4l and x5 disappear, which means that corresponding plastic hinges occur at
the associated points, see Fig. 21.8 (regime BC). We get the values Mu/3 and 4Mu/3 for x1 and x2, i. e.
M1 = 2Mu/3 and M2 = –Mu/3 according to (21.57)1.

In line with the duality theorem of linear programming, the coefficient matrix of the
dual program is equal to the negative transpose of the matrix of the original program,
and the objective function is minimised instead of maximised, but has the same opti-
mum value as that of the original program. We therefore get – first of all purely for-
mally – the dual program with respect to (21.56)

lw MT
u

7 _uS Ml

T
u

7 _ul p Min!

0w bT
1

7 _us bT
1

7 _ul

0w s 1SMT
0

7 _us MT
0

7 _ul

(21:60)

where _ui and _uil denote the values of the rotation increments at the positive and
negative plastic hinges.

Eq. (21.60)3 follows from (21.1) with Q1 = Q/jQj, s1 = M0 and V
.
2 = 1, _v2 = _u or _ul.

Eq. (21.60)2 guarantees the compatibility, see (21.54), and (21.60)1 – owing to the
normalising contained in (21.60)3 – corresponds to equating the work of the external
forces with the dissipation work, i. e. (21.60) implements the upper-bound theorem.
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Example 21.5 Plane frame – kinematic program

The kinematic program

l
0
0
0

8>><
>>:

9>>=
>>;w

0 Mu Mu Mu Mu Mu Mu Mu Mu Mu Mu

0 1=2 1 1 1 0 s 1=2 s 1 s 1 s 1 0
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=l 1=2 1=2 3=4 0 0 s 1=2 s 1=2 s 3=4 0 0

2
664

3
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1
_u1
_u2
_u3
_u4
_u5
_u1l

_u2l

_u3l

_u4l

_u5l

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:
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, l p Min!

with the solution

_u3 w
_u4lw 2 _u5 w

4
ffiffiffi
5
p

3l
, lw

10
ffiffiffi
5
p

Mu

3l

corresponds to the static program discussed in example 21.4. All other rotation increments are equal
to zero. The generalised deformations are compatible with the generalised stresses determined in ex-
ample 21.4 and together with them constitute the complete solution to the problem.

21.7.3 Optimum design

Despite the remarks of section 21.6.1, the term “optimum design” has been selected
here because it has become established in the literature.

21.7.3.1 Rigid-plastic optimisation

When dimensioning for a certain load case characterised by the vector Q, then l = jQj
is known, and the resistances combined in the vectors Mu , Mul have to be determined
in such a way that the objective function C is a minimum when generalising (21.48):

C w cT 7 Mu S clT 7 Mul p Min! (21:61)

The relationships (21.56)2 and (21.56)3 continue to be valid and therefore we get the
linear program

C w cT 7 Mu S clT 7 Mul p Min!

xws Qj jM0 S I 7 Mu s b1 7 X

xlw Qj jM0 S I 7 MulS b1 7 X

(21:62)

and the dual program

C w Qj jMT
0

7 _us Qj jMT
0

7 _ul p Max!

yw c s I 7 _u

ylw cl s I 7 _ul

0w bT
1

7 _u s bT
1

7 _ul

(21:63)

Eq. (21.63)4, like (21.60)2, guarantees the compatibility. Using the non-negative con-
trol variables yi and yil, the constraints (21.63)2 and (21.63)3 require that the rotation
increment _ui or _uil should not exceed the limit values ci and cil; at the solution point,
these constraints – apart from an unimportant factor – correspond to the condi-
tions (21.49) for a FOULKES mechanism. According to (21.1), the objective func-
tion C is equal to the work done by the external forces in the mechanism described
by _u, _ul because s1 = jQjM0 is in equilibrium with Q1 = Q.

The optimum stress state must be determined for each load case if several load cases
have to be considered, and combining all these states determines the resistances re-
quired for a minimum value of C. The linear program matrix increases in proportion
to the square of the number of load cases, and the number of essential computational
operations increases roughly by the power of five.
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Generally, the dimensioning of a system is defined by l I 2k relevant resistances. The
columns in the linear program matrix (21.62) are reduced accordingly and the coeffi-
cients added.

Secondary conditions of the type

di w di0 S
Pl

jw1
dij Muj j 0 (iw 1, 2, ... , t) (21:64)

lead to a corresponding enlargement of the linear program matrix.

Example 21.6 Plane frame – minimum weight

Eq. (21.62) results in the linear program

C
x1

x2

x3

x4

x5

x6

x7

x1l

x2l

x3l

x4l

x5l

x6l

x7l

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

w
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0 1 0 s 1 0
0 0 1 s 1 0
0 0 1 0 s 1

1=2 0 1 1=2 s 1=2
1=2 0 1 1 s 1
1=2 1 0 1 s 1
3=4 1 0 1 s 1=2
0 1 0 1 0
0 0 1 1 0
0 0 1 0 1

2
6666666666666666666666664

3
7777777777777777777777775

Ql
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M4

M5

8>>>><
>>>>:

9>>>>=
>>>>;

, C p Min!

for the frame (Fig. 21.26) examined in section 21.6.3, with the solution

C w

7Ql

8
, Mb w

3Ql

8
, Mc w

Ql

4
, M4 ws

Ql

4
, M5 w

Ql

4

The control variables x1, x4, x7 and x6l disappear, which means that the corresponding yield limits are
reached at these points. All the other control variables are positive, and bending moment diagram D in
Fig. 21.26(d) is confirmed.

21.7.3.2 Elastic-plastic optimisation

If we work with the limit values Mi max and Mi min for the stress resultants determined
elastically from a number of load cases, then we get

C w cT 7 Mu S clT 7 Mul p Min!

xwsM max S I 7 Mu s b1 7 X

xlw M min S I 7 MulS b1 7 X

(21:65)

instead of (21.62). The relationships (21.65)2 and (21.65)3 correspond to (21.44).
Compared with rigid-plastic optimisation, there is a considerable reduction in the
linear program matrix when several load cases are considered. Secondary conditions
can be taken into account in a similar way to rigid-plastic optimisation. Putting X = 0
in (21.65) corresponds to a purely elastic, generally non-optimised dimensioning – a
procedure that is widespread in practice but mostly applied without taking proper
notice.

21.7.3.3 Elastic optimisation

The stress states for each load case can be chosen as required for rigid-plastic optimis-
ation (21.62); they depend only on the n redundant variables Xi. In contrast to this,
there is only one elastically compatible solution for each load case; the redundant vari-
ables X are not independent variables, but rather are dependent on the stiffness relation-
ships of the entire structure, see (8.10). Mathematically, the result is generally a complex
variational problem. Upon discretisation, the k elements of the diagonal flexibility
matrix f become independent variables of the problem; however, the fundamental dif-
ficulties resulting from the non-linearity of the relationships (8.10) still remain.
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21.8 Summary

1. The limit loads of rigid - perfectly plastic systems can be contained by the lower-
bound (static) and upper-bound (kinematic) theorems.

2. The upper- and lower-bound theorems are based on the principle of virtual work
and the principle of maximum dissipation.

3. A limit load problem is completely solved when it is possible to specify a static-
ally admissible stress state that does not infringe the yield conditions at any point
and a compatible kinematically admissible deformation state. The associated
loading is equal to the limit load.

4. The static method of limit analysis based on the lower-bound theorem is espe-
cially suitable for dimensioning. Contrasting with this, the kinematic method
based on the upper-bound theorem is primarily suited to checking existing or con-
ceptual designs.

5. In a system with n degrees of static indeterminacy, the limit load is reached at the
latest when n+1 plastic hinges have formed. Partial mechanisms with fewer than
n+1 plastic hinges often govern.

6. With a bending moment diagram linear segment by segment and bending resist-
ances constant for each segment, plastic hinges can occur at points of fixity, points
of load application, corners and changes of cross-section. With k such points, we
can distinguish between k–n elementary mechanisms (beam, sway and joint
mechanisms) in a system with n degrees of static indeterminacy.

7. The consideration of elementary mechanisms and combined mechanisms accord-
ing to the kinematic method can be supplemented by the plasticity check in order
to assess whether a complete solution or merely an upper bound to the limit load
has been obtained.

8. It is generally necessary to consider the interaction of the stress resultants (bend-
ing moments, torques and normal forces) occurring at the plastic hinge sections.
As a rule, this leads to an iterative procedure starting with estimates of the resist-
ances and positions of the plastic hinges which are successively improved.

9. There is no real interaction between the stress resultants in the case of bending and
shear. The stress state at the cross-section examined and in its immediate vicinity
may need to be analysed as a whole.

10. When employing elastic-plastic dimensioning based on the shakedown theorem,
one restraint state is superposed on the stress resultants determined elastically for
all load cases. However, in the case of rigid-plastic dimensioning, a specific
restraint state is used for each load case.

11. In practice, shakedown load calculations play a subsidiary role compared with
limit load calculations. They enable supplementary checks to be carried out in
situations with general loading-restraint cycles.

12. Dimensioning for minimum weight supplies valuable information about the
potential efficiency and is therefore a helpful tool for the conception and design
of structures. As an approximation, the sum of the products of the lengths and the
bending resistances of the individual parts of a system can be used as an objective
function that is to be minimised. The average curvature increments corresponding
to the associated mechanism in all parts of the system have the same value in the
optimum solution for a certain load case.

13. The limit load can be calculated statically or kinematically by way of the dual
linear programs (21.56) and (21.60).

14. A rigid-plastic optimisation of the weight of the structure leads to the linear pro-
grams (21.62) and (21.63).

15. Using an elastic-plastic optimisation of the weight of the structure according to
(21.65) corresponding to the shakedown theorem results in a considerable reduc-
tion in the linear program matrix compared with the rigid-plastic optimisation for
several load cases.
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21.9 Exercises

21.1 The frame shown in Fig. 21.28(a) can have different support conditions at A
and B. Verify the limit loads given in the table. Draw the corresponding mo-
ment diagrams and mechanisms, also the force and funicular polygons for the
respective loads and support force variables.

21.2 The frame shown in Fig. 21.28(b) has constant bending resistances of eMu .
Develop an interaction diagram similar to Fig. 21.8.

21.3 Replace Q1 in exercise 21.2 by a uniformly distributed load q on frame
beam 234 and solve the exercise again.

21.4 Fig. 21.12(a) describes the bending and torsional resistances of the two bars of
the system shown in Fig. 21.28(c). Calculate the limit load Qu.

21.5 How does the limit load for the system of exercise 21.4 change when Q is
applied midway between 1 and 2 instead of at 2?

21.6 Using the same assumptions as for exercise 21.4, determine the limit loads qu

for the systems shown in Fig. 16.30(e).
21.7 The grillage shown in Fig. 9.9(h) consists of eight torsionless beams with a

constant bending resistance eMu . The load is made up of four identical point
loads Q applied to the four joints in the middle. Determine the limit load.

21.8 How does the limit load of exercise 21.7 change when the group of loads is
applied in one of the four corner areas of the grillage instead of in the middle?

21.9 Shift the group of loads in exercise 21.8 by 2m in the X or Y direction to one of
the four perimeter areas of the grillage and determine the limit load again.

21.10 Discuss the influence of a torsional resistance according to Fig. 21.12(a) for
exercise 21.7. What changes when the beams are fixed at the edge as well?

21.11 A compressive force Q is applied to the middle of one leg of the equal angle
shown in section in Fig. 21.28(d) (dimensions in mm). The cross-section of
the angle initially free from residual stresses remains unchanged and there
are no stability problems. Calculate the load Qy at the onset of yield, the limit
load Qu and the associated stress distributions. Perform the calculation using
a yield limit of fy = 235N/mm2, and treat the legs as single lines
(12mm II 200mm).
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22 STABILITY

22.1 General

We looked at problems regarding the overall stability of structures (limit state of struc-
tural safety type 1) in sections 4.4 and 4.6.3. To illustrate this, section 5.1.4 included
two examples dealing with overall stability, and section 5.1.5 specified the conditions
for braced systems in two or three dimensions. Such rigid body equilibrium problems
are not the concern of this chapter.

Instead, this chapter investigates framed structure problems in which the equilibrium
conditions have to be formulated for the deformed system according to second-order
theory, see section 6.1. As described in section 8.3.4, we can use the principle of
virtual deformations for this, which in contrast to the principle of virtual forces is
also valid for geometric non-linear problems.

Sections 8.5.2 and 8.5.3 included examples of elastic ideal columns and columns sub-
jected to transverse loads to illustrate the methods of RITZ and GALERKIN. The dif-
ferential equation (18.82) for the equilibrium of deformed arches subjected to vertical
loads was set up in section 18.6, and this was followed by a similar differential equa-
tion for combined cable-type and bending response in section 18.9. That work will be
explored in more detail here.

Elastic and elastic-plastic buckling plus the flexural-torsional and lateral buckling of
bars are the topics of this chapter. The buckling of plates and shells will be dealt with
in sections 24.7.1 and 26.8.

22.2 Elastic buckling

22.2.1 Column deflection curve

22.2.1.1 Differential equation and boundary conditions

Fig. 22.1 shows a differential column element that bends in the xz plane. The column
is initially straight (w0 a 0) and is loaded by line loads (qx, qz) in the longitudinal and
transverse directions. The stress resultants, besides the moment M about the y axis, are
the forces C and Vo acting in the x and z directions. Equilibrium calls for

Clw qx , Volws qz , MlwVo SCwl (22:1)

where the superscript dash ( l ) represents differentiation with respect to x. Using
(15.7)2 or (18.39), it follows that

(EIwL)LS (Cwl)lw qz (22:2)

where C has to be calculated from (22.1)1. If bearing pressures and inertial forces have
to be considered, too, then

(EIwL)LS (Cwl)lS kwS rA €ww qz (22:3)

applies, where k = foundation modulus according to (18.45), r = density, A = cross-
sectional area and €w = acceleration in the z direction.
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Using the notation chosen here, (8.94) gives us the following total potential

Pw

ðl
0

EIwL2

2
s

Cwl2

2
s qzw

� �
dx (22:4)

the first variation of which is zero according to the theorem of least total potential:

dPw

Ðl
0

(EIwLdwLsCwldwls qzdw) dx

wEIwLdwl
���l
0
s

Ðl
0

(EIwL)ldwldx sCwldw
���l
0
S

Ðl
0

(Cwl)ldw dxs
Ðl
0

qzdw dx

wEIwLdwl
���l
0
s (EIwL)ldw

���l
0
S

Ðl
0

(EIwL)Ldw dx sCwldw
���l
0
S

Ðl
0

(Cwl)ldw dxs
Ðl
0

qzdw dx

w

Ðl
0

[(EIwL)LS (Cwl)ls qz]dw dxS [EIwLdwlsCwldws (EIwL)ldw]
���l
0
w 0

(22:5)

In accordance with the fundamental lemma of calculus of variations, the expression in
square brackets in the integrand of the first term on the right in (22.5)4 disappears,
which takes us back to (22.2). On the other hand, EIwLdwl = –Mdwl and
Cwldw + (EIwL)ldw = –Vo dw, which means that because the second term on the right
in (22.5)4 has to disappear, then

sMdwl
���l
0
SVodw

���l
0
w 0 (22:6)

The work-related derivation supplies not only differential equation (22.2), but also the
boundary conditions (22.6). Fig. 22.2 shows that one of the factors in the two terms on
the left in (22.6) disappears in every case.

Abandoning the assumption of inextensibility used hitherto results in the strain
e = ul + wl

2
/2 for the bar axis, see Fig. 8.21(b), and therefore (15.7)1 gives us

C = –N = –EA(ul +wl

2
/2). Together with (22.1)1 and (22.2), the result is the simul-

taneous differential equations

s [EA(ulSwl2=2)]lw qx , (EIwL)Ls [EA(ulSwl2=2)wl]lw qz (22:7)
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22.2.1.2 Methods of solution

Only in certain cases is it possible to obtain an analytical solution to the inhomoge-
neous fourth-order differential equation with variable coefficients (22.2). Generally,
approximation methods such as those of RITZ and GALERKIN must be used, or
the differential equation is replaced by a difference equation by assuming that EI
and C are constant segment for segment.

Where EI = const and C = const, then the general solution to the homogeneous dif-
ferential equation is

ww c1 cos(kx)S c2 sin(kx)S c3x S c4 k2
w

C

EI

� �
(22:8)

In addition to this we have a particular solution to the inhomogeneous differential
equation (22.2) dependent on qz.

If the normal force in the bar is not a compressive force but rather a tensile force
T = –C, then (22.2) results in a differential equation similar to (18.56) and (13.74).

We should also note that structural analyses according to second-order theory gener-
ally require an iterative procedure. In the first step we can use the forces C in the in-
dividual bars of the system which are obtained according to first-order theory. De-
formations of the system modify these forces to some extent, a fact that has to be taken
into account in the subsequent second-order theory calculations. In most instances,
one further calculation step according to second-order theory is sufficient for practical
building applications. Normally, the compressive forces C lie well below the asso-
ciated bifurcation loads and the influence of second-order theory on deformations
and stresses is generally in the order of magnitude of 15 %.

Example 22.1 Beam column

For reasons of symmetry it is sufficient to consider just the bottom half (0 J x J l/2) of the column
shown in Fig. 22.3(a), with EI = const, C = Q1 = const and M = –EIwL = Cw+ Q2 x/2. The result is
the differential equation

wLS
Cw

EI
ws

Q2x

2EI

with the general solution

ww c1 cos(kx)S c2 sin(kx)s
Q2x

2C
k2

w

C

EI

� �
The boundary condition w(0) = 0 results in c1 = 0, and the symmetry condition wl(l/2) = 0 gives us
c2 = Q2 /[2Ckcos(kl/2)], i. e.

ww

Q2

2Ck

sin(kx)

cos(kl=2)
s kx
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The deflection at point x = l/2 is

w(l=2)ww max w
Q2l 3

48EI
� 3[ tan(kl=2)s kl=2]

(kl=2)3 z

Q2l 3

48EI
� 1S

k2l 2

10
S

17k4l 4

1680
S ...

� �
and the bending moment at this point is

M(l=2)wM max w
Q2l

4
� tan(kl=2)

kl=2
z

Q2l

4
� 1S

k2l 2

12
S

k4l 4

120
S ...

� �
When k p p/l, i. e. Q1 p p2EI/l2, both wmax and Mmax approach infinity, see Fig. 22.3(b) and
Tab. 22.1.

22.2.1.3 The influence of an initial deformation

If we have to consider an initial deformation w0 according to Fig. 22.1, then wl in
(22.1)3 and (22.2) must be replaced by (w0 + w)l, i. e. (22.2) becomes

(EIwL)LS [C(w0 Sw)l]lw qz (22:9)

When EI = const and C = const, the result is then

EIwLLSCwLw qz sCw0L (22:10)

i. e. via –Cw0L, the initial deformation has an effect similar to that of the transverse
load qz.

The column with constant bending stiffness EI shown in Fig. 22.4 has the initial shape

w0 ww0m sin
px

l

� �
Together with the deflection w(x), the bending moments are

M wsEIwLwQ(w0 Sw)

i. e. we get the differential equation

EIwLSQ(w0 Sw)w 0

Assuming w = wmsin(px/l ) leads to –EIwmp2
/l2 + Q(w0m + wm) = 0. By introducing

the EULER buckling load (bifurcation load)

QE w
p2EI

l 2
(22:11)

and rearranging, we get

w0m Swm w

w0m

1s
Q

QE
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Tab. 22.1 Results of calculations according to Fig. 22.3(b)

Q1 wmax Mmax

0 1 1

1/8 1.1410 1.1173

1/4 1.3289 1.2732

3/8 1.5919 1.4910

1/2 1.9863 1.8168

5/8 2.6435 2.3589

3/4 3.9578 3.4413

7/8 7.9001 6.6854

1 p T p T

p2EI

l 2

Q2l 3

48EI

Q2l

4



and therefore, owing to the affinity relationship w/w0 = wm/w0m, the general solution
is

w0 Sw

w0
w

1

1sa
w m aw

Q

QE

� �
(22:12)

The deflections w0 at any point x as a result of Q are multiplied by the amplification
factor m.

Fig. 22.4(b) shows the function w0 + w plotted against Q. The relationship between Q
and w0 + w is a one-to-one correspondence; QE is reached asymptotically at wm p T.
The bar behaves more and more imperfectly as w0m increases. Line OAB is the result
for a perfect bar where w0 a 0. This situation is practically impossible and not desir-
able either because there would be no advance warning of buckling.

Fig. 22.4(c) shows the normalised diagram according to (22.12)2. Owing to the affinity
of the deflection curves, the amplification factor m can be applied to the deflections
and, in particular, the bending moments M, too. It follows from examples 8.15 and
22.1 (Tab. 22.1) that this is approximately the case for non-affine deflection curves
as well.

The use of the amplification factor m presumes that the EULER buckling load QE is
known. This is obtained from the solution to the bifurcation problem for the ideal sys-
tem corresponding to the imperfect system without initial deformation and without
transverse loading.

22.2.2 Bifurcation problems

When qz = 0, w0 = 0, EI = const and C = const, the possible solutions to (22.2)
– apart from the trivial solution w a 0 – are those described by (22.8). The boundary
conditions of a problem lead to four homogeneous linear equations for coefficients c1

to c4. For example, the case of Fig. 22.4 leads to the following set of equations:

w(0)
wL(0)
w(l )
wL(l )

8>><
>>:

9>>=
>>;w

1 0 0 1
s k2 0 0 0

cos(kl ) sin(kl ) l 1
s k2 cos(kl ) s k2 sin(kl ) 0 0

2
664

3
775

c1

c2

c3

c4

8>><
>>:

9>>=
>>;w

0
0
0
0

8>><
>>:

9>>=
>>;

From the first and second equations it follows that c1 = c4 = 0, and from the fourth
equation we therefore get the relationship –c2k

2sin(kl ) = 0, which is satisfied when
c2 = 0, k = 0 or kl = np (n = 1, 2, ...); in each of these cases, c3 must be equal to
zero because of the third equation. The case of c2 = 0 corresponds to the trivial solu-
tion w a 0, and k = 0 means that C = 0. The buckling modes and buckling loads
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ww c2 sin
npx

l

� �
, C w n2 p2EI

l 2
(22:13)

correspond to the case of kl = np, see Fig. 22.5.

Subjected to a monotonically increasing compressive force C, the point in Fig. 22.5
moves along line OA. The “equilibrium bifurcates” at A. On the one hand, the point
can continue along line AB, which means that c2 remains indeterminate and the
column buckles at C = CE = p2EI/l2 in the shape of a half sine wave. On the other
hand, the point can continue along AC, whereupon the column can buckle at a higher
buckling mode (n i 1). The column would have to be laterally supported at the points
of inflection of the higher buckling modes in order for these modes to occur.

The distance l/n in (22.13) between the adjacent points of inflection of a buckling
mode is known as the buckling length. According to (22.13)2, the buckling load is
inversely proportional to the square of the buckling length.

ThesystemisstableforpointsontheC axisinFig.22.5belowA.BelowCE = p2EI/l2, the
system is neutral, and w remains indeterminate. And when C i p2EI/l 2, the system is
unstable.

22.2.3 Approximation methods

22.2.3.1 RAYLEIGH quotient

In the case of the bifurcation problem for a bar without transverse load (qz = 0), w
remains indeterminate for C = const. The following must be true according to the
theorem of least total potential and (22.4):

Pw

ðl
0

EIwL2

2
dx sC

ðl
0

wl2

2
dx p Min!

A permissible function w satisfying the essential (kinematic) boundary conditions of a
problem must remain permissible when it is multiplied by a constant, and so it is
equally valid to demand that the RAYLEIGH quotient

R(w)w

Ðl
0

EIwL2 dx

Ðl
0

wl2 dx

(22:14)

is a minimum. The minimum value of R corresponds to the buckling load CE.
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Example 22.2 Cantilever column

If we assume the following for the ideal column examined in example 8.14:

ww 6j2
s 4j3

S j4 (jw x=l )

corresponding to the deflection curve (A7.45) for a cantilever rigid in shear where qz = const, then
(22.14) results in

Rw

EI

l 2
�

Ð1
0

[12(1s j)2]2dj

Ð1
0

[4j(3s 3jS j2)]2dj

w 2.8
EI

l 2

Compared with the exact value CE = p2EI/(2l )2 = 2.4674EI/l2, this result is relatively poor. But this
can be explained by the different bending moment diagrams for the buckling problem and the beam
column shown in Fig. 8.22(c).
Assuming

ww 20j2
s 10j3

S j5

corresponding to a line load qz proportional to j, we get

Rw

EI

l 2
�

Ð1
0

[20(2s 3jS j3)]2dj

Ð1
0

[5j(8s 6jS j3)]2dj

w 2.6954
EI

l 2

i. e. a better value, but one that is still 9.2 % higher than the exact value.
By assuming w = j2 + cj3, we get the RAYLEIGH quotient

Rw

EI

l 2
� 60(1S 3cS 3c2)

20S 45cS 27c2

depending on the parameter c, which has the minimum value 2.4860EI/l2 when c = – 0.3018. This is
confirmed by the calculation carried out according to the RITZ method in example 8.14 with n = 3.

22.2.3.2 RITZ method

The RITZ method explained in sections 8.5.2 and A7.9 is illustrated here with a
further example.

Example 22.3 Ideal column

In order to calculate the bifurcation load for the case shown in Fig. 22.4(a), we shall follow (8.92) and
assume

ww c1j(1s j)S c2j2(1s j)2 (jw x=l )

Putting k = Ql2
/(EI ), we get

4s
k

3
s

k

15

s

k

15

4

5
s

2k

105

2
64

3
75 c1

c2

� 
w

0
0

� 

similar to example 8.14. The characteristic polynomial k2 – 180k + 1680 = 0 leads to the eigen-
values

k1 w 9.8751 , k2 w 170.1249

and k1 lies only 0.056 % above the exact value p2.

22.2.3.3 GALERKIN method

The GALERKIN method explained in section 8.5.3 is illustrated here with a further
example.

Deflection curves according to first-order theory, with EI = const and certain loadings
(e. g. constant or linearly varying line loads, or point loads) plus buckling mode shapes
and vibration mode shapes with EI = const are particularly suitable as approximating
functions for the GALERKIN method.
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Example 22.4 Beam column

We assume the following for example 8.16:

ww c(js 2j3
S j4) (jw x=l )

which corresponds to the deflection curve of a simply supported beam subjected to qz = const. This
assumption satisfies all boundary conditions, i. e. the kinematic (essential) and the static (natural):
w(0) = w(l ) = 0 and wL(0) = wL(l ) = 0. We therefore have the conditions for applying the ordinary
GALERKIN method. Eq. (8.97) results inð1
0

EI
24c

l 4 sQ
c

l 2
� 12j(1s j)s qz

	 

c(js 2j3

S j4)l djw 0

from which it follows that

cw
7qzl 4

168EI s 17Ql 2

For the pure transverse bending problem (Q = 0), we get the exact solution with the deflection
5qzl

4
/(384EI ) at x = l/2. For the bifurcation problem (qz = 0), we get the approximation

168EI/(17l2) = 9.8824EI/l2, which lies 0.13 % above the exact buckling load p2EI/l2.

22.2.3.4 Successive approximation of the column deflection curve

The deformations w1 according to first-order theory in conjunction with the compres-
sive forces C result in bending moments Cw1 and hence additional curvatures
Cw1/(EI ), which correspond to additional deformations w21. The latter for their
part cause further curvatures Cw21/(EI ), and corresponding further deformations w22,
and so on. Such a situation generally results in a very rapidly decreasing series w2i ,
the sum of which is equal to the deformations w2 according to second-order theory.
By taking into account initial deformations w0, we get the total deformation

www0 Sw1 Sw2 (22:15)

In the case of bifurcation problems, we can start by estimating the deflection curve w21

and arrive at w22 etc. by using

w2iS1Lws

Cw2i

EI
(22:16)

Integrating twice to get to w2i+1 is best carried out according to MOHR’s analogy (sec-
tion 15.3.2). Putting w2i+1 equal to w2i at any point x results in an approximate value
for the buckling load CE, which can be greater or less than the actual CE value. In
contrast to this, estimates based on the RAYLEIGH, RITZ and GALERKIN methods
do not lead to values less than CE.

The approximation method named after ENGESSER and VIANELLO will be de-
scribed below with the help of a number of examples of bifurcation and second-order
problems.

Example 22.5 Ideal column

Let us consider the column shown in Fig. 22.4(a), with w0 a 0, EI = const and C = Q = const, and
assume that w21 = 4fj(1 – j), where j = x/l and f = deflection at point x = l/2. Considering the
boundary conditions, then (22.16), with i = 1, results in

w22 w
Ql 2f (js 2j3

S j4)

3EI

The quotient

w21

w22
w

12EI(1s j)

Ql 2(1s 2j2
S j3)

is a maximum for j = 0 and a minimum for j = 1/2, i. e. 12EI/(Ql2) and 9.6EI/(Ql2); taking the mean
of all j values results in a figure of 10EI/(Ql2). Putting w21 = w22 results in corresponding
approximate values of 12, 9.6 and 10 for QEl2

/(EI ) = p2
z 9.87.
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Applying (22.16) to w22 (i = 2) results in

w23 w
Q2l 4f (3js 5j3

S 3j5
s j6)

90(EI)2

and equating w22 and w23 at points j = 0 and j = 1/2 results in approximate values of 10 and
600/61 = 9.836 for QEl2

/(EI ); taking the mean of all j values results in the excellent approximate
value 9.882.
As we can see, the method of ENGESSER and VIANELLO can be employed to estimate the buckling
load with any degree of accuracy. Just the first step alone provides a usable approximation in most
cases.
When we use the value Q = 9.6EI/l2 in the expression for w22, then

w22 w f (3.2j� 6.4j3
S 3.2j4)

And therefore it follows that

w23 w
8Ql 2f (3j� 5j3

S 3j5 � j6)

75EI

or when using the value Q = 600EI/(61l2), then

w23 w f (3.1475js 5.2459j3
S 3.1475j5

s 1.0492j6)

This function is already a very good approximation of the exact buckled shape

w23 w f sin(pj)w f (3.1416js 5.1677j3
S 2.5502j5

s ...)

Example 22.6 Ideal column with one degree of static indeterminacy

Fig. 22.6 shows an estimate of the buckled shape w21 on the left and the bending moment diagram M

on the right; these moments are the result of a virtual unit load applied at joint 5 of the statically
indeterminate system. Applying SIMPSON’s rule (14.6) and the reduction theorem (section 14.3) re-
sults in a deflection of 144.6Ql2

/(2916EI ) according to the calculation carried out in Tab. 22.2.
Equating this expression with the deflection of 1 assumed at joint 5 results in the approximation
QE z 20.17EI/l2.
In order to check the quality of the approximation, in accordance with (22.8) and using x = l – x

we shall assume w = c2sin(kx) + c3x, which satisfies the boundary conditions w = 0 and wL = 0 at
joint 7. Taking the boundary conditions w = 0 and wl = 0 at joint 1 results in the condition
kl = tan(kl ), i. e. kl = 4.4934 and therefore QE = k2EI z 20.19EI/l2.

45722.2 Elastic buckling

Tab. 22.2 Calculations for Fig. 22.6

Joint Qw21

EI
M Factor Product Total

7 0 0 1 0

6 0.85 14 4 47.6

5 1.00 28 2 56

4 0.70 15 4 42 144.6

3 0.30 2 2 1.2

2 0.05 – 11 4 – 2.2

1 0 – 24 1 0

Q

EI

l

162

l

18
Ql 2

2916EI

Ql 2

2916EI

Q

= l
6

Δ

Δ

Δ

Δ

Δ

Δ

0

0.85

1.00

0.70

0.30

0.05

0w
EI

x

7

6

5

4

3

2

1

x

−

+
14

12−
M l

81

Fig. 22.6 Estimated buckled shape and virtual force

state



Example 22.7 Column with abrupt change in stiffness

The column shown in Fig. 22.7 has an abrupt change of stiffness at the point at which load Q is
applied. The bending moments are

M wQws

QwQx

l
(0J x J 0.6l ) , M wQwQ 1s

x

l

� �
(0.6lJ xJ l )

Tab. 22.3 contains corresponding calculations for the successive approximation of the buckled shape.
We select the parabola w21 = 4x(l – x)/l2 as our starting function and use the parabolic rule (14.9),
(14.10) with D = l/10.
Comparing w22 and w21 at point x = l/2 results in QE z 1200EI/(37.7640l2) = 31.78EI/l2, and
comparing w23 and w22 results in QE z 1200EI/(37.4411l2) = 32.05EI/l2.

Example 22.8 Load applied to top of cantilever column

The vertical cantilever shown in Fig. 22.8, with l = 4 m and EI = 60MNm2 = const, is loaded at the
top by Q1 = 700kN and Q2 = 120kN. According to first-order theory, Q2 causes a deflection f1 of
Q2l

3
/(3EI ) = 42.67mm at the top of the column. If the deflection curve is approximated by a para-

bola, Q1 causes an additional deflection of

f21 w
5Q1f1l 2

12EI
w 3.32 mm

and

f22 w
5Q1f21l 2

12EI
w 0.26 mm

and

f23 w
5Q1f22l 2

12EI
w 0.02 mm

In total, according to (22.15), we get a deflection at the top of 46.27mm and a fixed-end moment at the
base of the column amounting to 120 ·4 + 700 ·0.04 627 = 512.4kNm.
With a buckling length of 2l = 8 m, the buckling load is QE = p2 ·60/82 = 9.253MN. According
to (22.12)2 , putting a = 0.7/9.253 = 0.0757 results in the amplification factor m = 1.0818 and hence
a deflection at the top of 42.67 ·1.0818 = 46.26 mm, for instance, plus a fixed-end moment at the base
of the column amounting to about 480 ·1.0818 = 519.3 kNm.
The quality of the two approximate solutions (according to ENGESSER-VIANELLO on the one
hand and by applying the amplification factor on the other) can be checked with the help of the exact
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Fig. 22.7 Column with abrupt change in stiffness at

point of load application
Tab. 22.3 Calculations for Fig. 22.7(b)

x w21 M Ki1 Vi1 Mi1 w22 M Ki2 Vi2 Mi2 w23

1.0 0 0 0.192 – 12.1152 0 0 0 0.1916 – 12.0416 0 0

0.9 0.36 0,096 1.152 – 11.9232 11.9232 0.3157 0.0958 1.1495 – 11.8500 11.8498 0.3165

0.8 0.64 0.192 2.304 – 10.7712 22.6944 0.6010 0.1916 2.2992 – 10.7005 22.5503 0.6023

0.7 0.84 0.288 3.456 – 8.4672 31.1616 0.8252 0.2874 3.4488 – 8.4013 30.9516 0.8267

0.6 0.96 0.384 2.112 – 5.0112 36.1728 0.9579 0.3832 2.1076 – 4.9525 35.9041 0.9589

1.308 1.3079

0.5 1.00 0.520 3.080 – 1.5912 37.7640 1.0 0.5211 3.0858 – 1.5370 37.4411 1.0

0.4 0.96 0.576 3.416 1.4888 36.2752 0.9606 0.5774 3.4192 1.5488 35.8923 0.9586

0.3 0.84 0.552 3.272 4.9048 31.3704 0.8307 0.5433 3.2165 4.9680 30.9243 0.8259

0.2 0.64 0,448 2.648 8.1768 23.1936 0.6142 0.4226 2.5005 8.1845 22.7398 0.6073

0.1 0.36 0.264 1.544 10.8248 12.3688 0.3275 0.2317 1.3698 10.6850 12.0548 0.3220

0 0 0 0,284 12.3688 0 0 0 0.2419 12.0548 0 0

l - Q QD

12EI

QD

12EI
QD2

12EI

- Q QD

12EI

QD

12EI
QD2

12EI

-



solution to differential equation (22.2) worked out in example 22.1. In fact, the vertical cantilever
considered here corresponds to one half of the column shown in Fig. 22.3(a), where l/2 has to be
replaced by l and Q2 by 2Q2. Therefore, referring to Fig. 22.8, we get

w max ww(l)w
Q2

Q1

tan(kl )

k
s l

	 

, M max w M(0)j jwQ2

tan(kl )

k
k2

w

Q1

EI

� �
i. e.

w max w
120

700
�

tan 4 �
ffiffiffiffiffiffi
0.7

60

r !
ffiffiffiffiffiffi
0.7

60

r s 4

2
66664

3
77775w 46.11 mm , M max w 120 �

tan 4 �
ffiffiffiffiffiffi
0.7

60

r !
ffiffiffiffiffiffi
0.7

60

r w 512.3 kNm

Example 22.9 Statically determinate frame

According to first-order theory, we get the forces and moments given in Fig. 22.9(b) for the statically
determinate frame of Fig. 22.9(a), and according to the work theorem, using M according to Fig.
22.9(c) results in the following frame beam displacement:

f1 w
1000 � 10 � 10

3 � 200
S

[1000(2 � 10S 5)S 6500(2 � 5S 10)] � 10

6 � 3000
S

6500 � 5 � 10

3 � 3000
w 325 mm

The vertical component of the pin-ended strut force is therefore increased to

(100 � 10S 1200 � 10.325)=20w 669.5 kN

The bending moment in the middle of the frame beam is therefore now 6695kNm and that at the
corner of the frame is 1390kNm.
If we continue to work with the approximation of bending moments linear over each segment, then
the additional second-order moments cause a further displacement of the frame beam amounting to

f21 w
390 � 10 � 10

3 � 200
S

390 � 10 � 20

3 � 3000
w 73.67 mm

and, accordingly, the bending moment at the corner of the frame is increased by
1200 · 0.07 367 = 88.4 kNm. Further iteration leads to a power series that adds up to

f2 w f21 S f22 S f23 S ...w
f21

1s
88.4

390

w 95.26 mm

or rather

f w f1 S f2 w
f1

1s
88.4

390

w 420.26 mm

and the moment at the corner is

1000S
390

1s
88.4

390

w 1504.3 kNm

Fig. 22.9(d) shows the forces and moments resulting from second-order theory.
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Fig. 22.8 Vertical cantilever loaded at the top



22.2.4 Further considerations

22.2.4.1 Variable-direction forces

The problem shown in Fig. 22.10(a) can be reduced to example 22.8. The rigid
column 12 is loaded via the rigid pin-ended strut 23 that is connected via a hinge.
In addition to the vertical force Q1, the column is also subjected to a horizontal
force Q2 = Q1wmax /h applied at the top. Substituting this expression into the relation-
ship for wmax derived in example 22.8 results in the equation

tan(kl )w kl 1S
h

l

� �
k2

w

Q1

EI

� �
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(b) forces and moments according to first-order

theory, (c) virtual force state, (d) forces and

moments according to second-order theory
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illustrated in Fig. 22.10(b). For small values of h/l, the bifurcation load is very much
lower than the buckling load QE = p2EI/(2l )2 for a column unsupported at its upper
end. In practice, this can lead to extremely dangerous situations if, in scaffolding, for
example, short elements are added to vertical members as extensions or to suit the
geometry.

The problem discussed here belongs to a class of problems with variable-direction
but nevertheless guided forces. Such problems are conservative, see section 8.4.2,
and the customary methods of elastic stability theory can be applied.

22.2.4.2 The effect of shear deformations

When building with steel and lightweight metals, built-up columns are often used in
order to save materials and minimise the dead load as well as the area of the structure
exposed to the wind. The effect of shear deformations can be considerable for such
structural members. And in the case of built-up columns in timber construction,
the flexibility of the connections (e. g. split-ring, shear-plate, toothed-plate connectors,
nails, etc.) must be considered as well.

Eq. (15.9) and (15.10)2, with EI = const, GAv = const and my = 0, initially result in

wLws

M

EI
S

ML

GAv

and (22.1)2 and (22.2)3, with qz = 0 and C = const, result in the relationship
ML = CwL. Substituting in the relationship for wL and differentiating twice results in

EI 1s
C

GAv

� �
wLLSCwLw 0 (22:17)

When we assume w = csin(px/l ) for a bar with hinged supports at both ends, we can
see that, for example, the bifurcation load CE = p2EI/l 2 of the bar rigid in shear, taking
into account the shear deformations, is reduced to CE /[1 + CE /(GAv)].

Although the horizontal members of the built-up column shown in Fig. 22.11(a) halve
the buckling length of each vertical member, they contribute nothing to the shear stiff-
ness. The flexibility 1/(GAv) is equal to the shear strain g = D/h as a result of the shear
force V = 1. This causes a compressive force amounting to 1/sina in the diagonals
with length d = b/sina, which are shortened by the amount d/(EAdsina) = Dsina.
Putting b/h = tana, this results in

1

GAv
w

d3

EAdb2h
(22:18)1

In the built-up column with X-bracing, see Fig. 22.11(b), there are two diagonals
available for resisting V = 1, and therefore

1

GAv
w

d3

2EAdb2h
(22:18)2

The built-up column of Fig. 22.11(c) has parallel diagonals and V = 1 causes add-
itional deformation in the horizontal members amounting to b/(EAh), i. e.

1

GAv
w

d3

EAdb2h
S

b

EAhh
(22:18)3

and the situation for the K-truss of Fig. 22.11(d) is similar:

1

GAv
w

d3

2EAdb2h
S

b

4EAhh
(22:18)4

Lastly, according to (18.34), the following applies for the built-up column with rigid
joints shown in Fig. 22.11(e):

1

GAv
w

h2

24EIc
S

bh

12EIb
(22:19)

It should be noted here that the stiffness of the frame beam in Fig. 18.19 was given as
2EIb .

46122.2 Elastic buckling



22.2.4.3 Snap-through

Shallow arches and inclined leg frames, like those systems shown in Fig. 22.12(a) and
Fig. 22.12(b), can snap through because of the axial compressive strain and the lateral
flexibility at the abutments. At the snap-through load, the system is suddenly dis-
placed into a new, stable equilibrium position. In contrast to bifurcation problems,
the equilibrium position upon reaching the snap-through load is not neutral, but rather
divergent.

A simple model of such structural behaviour is investigated in Fig. 22.12(c). The
normal force N = –Q/(2sina) due to load Q causes a strain e = –Q/(2EAsina)
in the struts, and therefore we get a displacement of the support amounting to
l{cos [1 – Q/(2EAsina)] – cosa0}, where a0 designates the inclination of the strut
in the unloaded state. The horizontal component Qcota/2 of the strut force corres-
ponds, on the one hand, to a displacement Qcota/(2k) of the spring elastic abutment.
This leads to the equation

sinas cosa0 tanaw

Q

2kl
1S

kl

EA

� �
(22:20)

for the odd function Q(a). Differentiating the expression on the left in (22.20) with
respect to a shows that Q is a maximum for

aw arc cos
ffiffiffiffiffiffiffiffiffiffiffiffiffi
cosa0

3
p

(22:21)
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Example 22.10 Elastically supported inclined leg frame

We get the values given in Tab. 22.4 for the system shown in Fig. 22.13(a), with sina0 = 0.1,
l = 10m, EA = 3000MN and k = 100 MN/m. Here, H = Qcota/2 is the horizontal thrust,
w = 1m + Ql/(2EA) – lsina is equal to the deflection at the point of load application and H(a) is
an even function.
In Fig. 22.13(b), the point traces the path OAEF for a monotonic loading provided vibrations about
the equilibrium position E after snap-through are ignored. Path ABCDE can be achieved in a dis-
placement-controlled test.
Fig. 22.13(c) illustrates the change in the horizontal thrust depending on the deflection. Its maximum
value (a = 0, point B) is l(1 – cosa0)/[1/k + l/(EA)] = 3759kN.

46322.2 Elastic buckling

Tab. 22.4 Calculations for Fig. 22.13(b) and Fig. 22.13(c)

a Q H w Remarks

0.1002 0 0 0 initial position (O)

0.0850 179 1052 151

0.0700 270 1923 301

0.0579 290 2504 422 snap-through (A)

0.0400 253 3160 601

0.0200 144 3609 800

0 0 3759 1000 maximum horizontal thrust (B)

– 0.1002 0 0 2000 (D)

– 0.1100 171 – 774 2098

– 0.1200 394 – 1634 2200

rad kN kN mm

O 1 20.5 1.5
0

200

400
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Fig. 22.13 Elastically supported inclined leg frame: (a) diagram of static system, (b) load-deflection diagram,

(c) horizontal thrust-deflection diagram



22.2.4.4 Natural vibrations

Putting k = 0, qz = 0, EI = const and C = const simplifies (22.3) to

EIwLLSCwLS rA €ww 0 (22:22)

Separating the variables according to

www(x) � sin(vt) (22:23)

transforms (22.22) into

EIwLLSCwLs rAv2ww 0 (22:24)

where v is the angular frequency of a harmonic natural vibration. Using j = x/l, eq.
(22.24) has the general solution

ww c1 cosh (l1j)S c2 sinh (l1j)S c3 cos(l2j)S c4 sin(l2j) (22:25)

with the eigenvalues l1 and l2 given by

l2
1,2 w l 2

E

C

2EI
S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C

2EI

� �2

S

rAv2

EI

s0
@

1
A (22:26)

In the case of a bar with hinged supports at x = 0 and x = l, w and wL must disappear
for j = 0 and j = 1, i. e.

1 0 1 0

(l1=l )2 0 s (l2=l )2 0

cosh l1 sinh l1 cosl2 sinl2

(l1=l )2 � cosh l1 (l1=l )2 � sinh l1 s (l2=l )2 � cosl2 s (l2=l )2 � sinl2

2
6664

3
7775

c1

c2

c3

c4

8>>><
>>>:

9>>>=
>>>;w

0

0

0

0

8>>><
>>>:

9>>>=
>>>;

Setting the determinant to zero results in the eigenvalue equation

sinh l1 � sinl2 w 0 (22:27)

with the general solution l2 = np, i. e. using (22.26),

n2p2

l 2

� �2

w

rAv2

EI
S

n2p2

l 2
� C

EI
(22:28)

where n is a whole number. When v = 0, we get the buckling loads

Cn w n2 p2EI

l 2
(22:29)

and when C = 0, we get the fundamental angular frequencies

vn w n2 p2

l 2

ffiffiffiffiffiffi
EI

rA

r
(22:30)

Eq. (22.28) therefore becomes the interaction relationship

C

Cn
S

v

vn

� �2

w 1 (22:31)

see Fig. 22.14(a).

According to (22.31), buckling corresponds to an infinitely slow vibration (v p 0).
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Fig. 22.14 Natural vibrations: (a) how the natural angular frequency v depends on compressive force C,

(b) CE determined experimentally by measuring the natural angular frequency and extrapolating



In principle, if n = 1, then C1 = CE can be determined experimentally according to
Fig. 22.14(b) through extrapolation by measuring the natural frequencies for at least
two values C I CE. And vice versa: if the buckling load and fundamental angular
frequency are known, it is possible, in principle, to deduce the loading by measuring
the frequency.

Provided the eigenmodes of the buckling and vibration problems are not affine, the
sum on the left in (22.31) is not less than 1.

22.2.5 Slope-deflection method

The slope-deflection method described in section 17.4 is generalised in the following
by including second-order deformations. In doing so, it is presumed that bending stiff-
nesses EI and compressive forces C remain constant for each bar. The fundamental
relationships (17.51) for the member end moments continue to apply, as do the rela-
tionships (17.49) and (17.50) for the near- and far-end bar stiffnesses as well as the
relationships (17.48) for the fixed-end moments. However, the rotations fii = fkk

and fik = fki as well as fi0 and fk0 have to be calculated taking into account
C = const.

Using (22.2) and (22.8) with j = x/l and the axial force parameter

lw klw l

ffiffiffiffiffi
C

EI

r
(22:32)

results in the following:
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(22:33)

for a simply supported beam with the load cases shown in Fig. 22.15.

Where M = –1 and a = 0, eq. (22.33)6 results in

fii wswl(0)w
1s l cotl

Cl
, fki wswl(l )w

1s l= sinl

Cl
(22:34)

when using (22.32), and therefore using (17.49) and (17.50) instead of (17.52) results
in

sik w ski w
EI

l
� l( sinls l cosl)

2(1s cosl)s l sinl
w

EI

l
� s(l)

tki w tik w
EI

l
� l(ls sinl)

2(1s cosl)s l sinl
w

EI

l
� t(l) (22:35)

for a standard bar. When l = 0, the factors s and t in the products on the right in
(22.35) take on the values 4 and 2 respectively.

Eq. (17.55) continues to apply for a bar with a hinged connection at one end.
Eq. (17.56)1 must be replaced by

rik w
EI

l
� l2

1s l cotl
w

EI

l
� r(l) (22:36)
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The relationships (22.33) can be applied to determine the fixed-end moments accord-
ing to (17.48). For example, (22.33)1 initially gives us
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for a beam fixed at both ends and subjected to a uniformly distributed load q0, i. e.
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and therefore
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2l2 (22:37)

In a similar way to (22.33), the following applies for cantilever beams with the load
cases shown in Fig. 22.15:
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(22:38)

This means that rotations, bending moments and shear forces can be calculated as
required by differentiation.

With tensile instead of compressive normal forces in the bars, all the relationships
given here can still be used provided l is replaced by i ·l and the relations
(il)2 = –l2, cos(il) = coshl and sin(il) = i sinhl are taken into account. The (stiffen-
ing) effect of tensile forces is often neglected for simplicity.
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Fig. 22.15 Load cases for simply supported and cantilever beams



Example 22.11 Two-hinged frame

If the two-hinged frame shown in Fig. 22.16(a) is braced, it buckles symmetrically according to
Fig. 22.16(b). When f2 = –f3, the moment equilibrium condition for joint 2 is

M21 SM23 w
EIc

h
� r21 S

EIb

l
� (4s 2)

	 

� f2 w 0

i. e. we get the following equation

l2
w 2(l cot ls 1)

EIbh

EIcl
lw h

ffiffiffiffiffiffiffi
Q

EIc

r� �
for the bifurcation load. We can see that no normal forces occur in frame beam 23, i. e. s23 = 2t23 = 4.
If the frame beam is very stiff in relation to the columns, then l = tanl = 4.4934, see example 22.6;
the columns are fixed at the rigid frame beam and exhibit a buckling length of hp/l z 0.7h. How-
ever, with a frame beam that is very flexible compared with the columns, then the latter act as if
they are hinged at both ends and thus have a buckling length of h; l = p then applies
A sway system deforms antisymmetrically as shown in Fig. 22.16(c), where f2 = f3 and c12 = c34.
The moment equilibrium condition for joint 2 is

M21 SM23 w
EIc

h
� r21 S

EIb

l
� (4S 2)

	 

� f2 s

EIc

h
� r21 � c12 w 0

and equilibrium of moments at column 12, considered as a free body, calls for

M21 SQh � c12 w
EIc

h
� r21 � f2 S Qhs

EIc

h
� r21

	 

� c12 w 0

The resulting homogeneous set of equations is

r21 S 6
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EIcl
s r21

r21
Qh2

EIc
s r21

2
664

3
775 f2

c12

� 
w

0
0
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Setting the determinant to zero results in the equation

l � tan lw 6 � EIbh

EIcl

for the bifurcation load.
If the frame beam is very stiff in relation to the columns, then l tends to p/2 and the result is a buckl-
ing length hp/l equal to 2h. But where the frame beam is very flexible compared with the columns,
the buckling length of the latter tends to infinity, and the system is unusable.
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Example 22.12 Non-sway frame

Let us consider the non-sway frame of Fig. 22.17. When f2 = –f3, the moment equilibrium condition
is

M21 SM23 w
EIc

h
� s21 S

EIb

l
� (s23 s t23)

	 

� f2 SM0

23 w 0

The compressive forces C = Q + ql/2 in the columns need to be taken into account. The ensuing
compressive force in frame beam 23 is –f2(s21 + t12)EIc/h

2

Initially ignoring the compressive force in the frame beam means that s23 = 2t23 = 4 and M23
0 = ql2

/12,
and so it is possible to determine an initial value for f2. We consider how the compressive force in the
frame beam influences s23, t23 and M23

0 in a second step. The result is an improved value for f2, and
the accuracy of the calculation can be improved in further iteration steps if required.

Example 22.13 Sway frame

Equilibrium of moments at joint 2 of the sway frame shown in Fig. 22.18 calls for
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h
� s24 S

EIb

l
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� f2 s

EIc

h
� (s24 S t24) � c24 w 0

where r21 = r23 = 3. The compressive force C = Q1 in column 24 has to be taken into account. Equi-
librium of the horizontal forces at joint 2 requires Q2 – Q1c24 – (M24 + M42)/h = 0, i. e.

(s24 S t24) � f2 S (l2
s 2s24 s 2t24) � c24 w
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EIc

The resulting set of equations is
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and when Q2 = 0 we get the condition

l2 s24 S 6
EIbh
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� �
w s24 S t24ð Þ s24 s t24 S 12

EIbh

EIcl

� �
for the bifurcation load.

Example 22.14 Elastically restrained vertical cantilever

The bar rotation c12 is unknown in the elastically restrained vertical cantilever of Fig. 22.19. Equilib-
rium of moments about the base of the column considered as a free body calls for

M12 SQ1c12lsM sQ2lsc12l 2k w 0

where

M12 wM0
12 s s12c12

with s12 according to (22.36). Eq. (22.33)5, with a = 1, gives us the rotation
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EIl2 1s
l
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� �
and therefore, using (22.36), the fixed-end moment
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Substituting into the moment equilibrium condition results in
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We get the condition

kl 3

EI
( sinls l cosl)S l3 coslw 0 lw l

ffiffiffiffiffiffi
Q1

EI

r !

for the bifurcation problem (Q2 = M = 0).
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22.2.6 Stiffness matrices

22.2.6.1 Non-linear member matrices

The member stiffness matrix (17.17) – taking into account (22.35) and (22.32) – is
generalised as follows:
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l
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(22:39)

The last two columns of this matrix are illustrated in Fig. 22.20.

If we consider the first three terms in the TAYLOR series for sinl and cosl, then
(22.35) leads to the approximation
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(22:40)

Substituting these expressions into (22.39) and deducting the expression on the
right in (17.17) – abbreviated to ke

I – results in the approximation
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if l2
/15 is ignored in comparison with 1 in the denominator of the differential expres-

sions.
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22.2.6.2 Geometric stiffness matrix

The geometric stiffness matrix kg on the right in (22.41) can be obtained in a similar
way to ke

I. According to (22.4), the variable –C is analogous with EI and wl analo-
gous with wL in the expression for the total potential P. Accordingly, the coefficients

kgij wsC
Ðl
0

V2ilV2jldx (22:42)

can be determined in a similar way to (19.33)2 from the products of the derivatives of
the cubic shape functions V2i included for w in (19.39), i. e.

kg55 wsC
Ðl
0

[6j(1s j)=l]2 dx wsC � 6

5l

kg56 wsC
Ðl
0

[6j(1s j)(2js 3j2)=l] dx wsC � 1

10

kg63 wsC
Ðl
0

(s 1S 4js 3j2)(2js 3j2) dx w C � l

30

kg66 wsC
Ðl
0

(2js 3j2)2 dx wsC � 2l

15

see (22.41). Fig. 22.21 illustrates the equilibrium corresponding to the four columns of
kg not equal to zero.

Often, kg is simplified further by considering kg22 = –kg25 = –kg52 = kg55 = –C/l as the
only coefficients not equal to zero. This corresponds to assuming that both ends of
each bar have hinged connections, or rather linear instead of cubic shape func-
tions V2i .
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22.2.6.3 Commentary

The geometric stiffness matrices kg are handled in the same way as stiffness matrices
ke

I according to first-order theory when setting up the global stiffness matrix K in
accordance with section 17.3. The non-linear relationship between the loads Q and
the associated displacements V is approximated with K as a secant stiffness matrix,
see Fig. 22.22(a).

The compressive forces C are specified in the case of bifurcation problems apart from
a constant factor. The factor is obtained from the solution to the associated linear
eigenvalue problem by setting the determinant of the stiffness matrix to zero.

When analysing very flexible systems, e. g. cable-net structures, it may be necessary to
perform calculations according to third-order theory taking into account large deform-
ations. As a rule, this is carried out in several load steps by means of an incremental,
iterative method. In this process, the global tangential stiffness matrix is updated each
time with respect to the last deformation state, i. e. the elastic and non-linear geometric
stiffness matrices are set up anew for the respective geometry. The iteration of the
equilibrium necessary for each load step is carried out according to the NEWTON-
RAPHSON method. In the standard method, Fig. 22.22(b), the tangential stiffness
matrix is updated for every iteration step, whereas the modified method, Fig.
22.22(c), is based on a constant stiffness within one load step.

22.3 Elastic-plastic buckling

22.3.1 Concentrically loaded columns

22.3.1.1 Buckling stress curves

The column shown in Fig. 22.23(a) exhibits an initial deflection w0 at x = l/2. Using
the amplification factor m according to (22.12) for a compressive force C results in
extreme fibre stresses at x = l/2 amounting to
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(22:43)

Equating this value to fy and carrying out a little computation results in
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Fig. 22.22 Method of solving non-linear load-deformation problems: (a) total step with secant stiffness

matrix, (b) NEWTON-RAPHSON method with updated tangential stiffness matrix, (c) modified method with

constant stiffness within one load step



where i =
ffiffiffiffiffiffiffiffi
I=A

p
is the radius of gyration according to (13.19) and l is the buckling

slenderness ratio related to the yield slenderness ratio lE =p
ffiffiffiffiffiffiffiffiffi
E=fy

p
.

In the load-deflection diagram, Fig. 22.23(b), the result for an increasing compressive
force C is the line FBCG according to (22.12), with Q replaced by C, see Fig. 22.4(b).
Restricting the boundary stresses to fy corresponds to line ABD with the equation

C

A
S

C(w0 Sw)

W
w fy (22:45)

In the interaction diagram, Fig. 22.23(c), this relationship corresponds to the straight
line ABD.

The yield limit ECD in Fig. 22.23(c) describes the resistance of the most highly
stressed cross-section at x = l/2; the yield limit is, for example, given by (21.30)1,
where My = M, Mz = 0, Myu = Zfy and Nu = Afy . We get the corresponding line ECD
in Fig. 22.23(b). The amplification factor m can no longer be used in the elastic-plastic
zone between lines ABD and ECD. The actual load-deflection line must lie below
arc BC because of the reduced stiffness due to the partial plastic deformation. This
aspect will be investigated further in section 22.3.3.
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When w0 = 0, eq. (22.44) gives us the EULER buckling stress curve C/(Afy) =1/l2

shown by the dotted line in Fig. 22.24. The buckling stress curves for imperfect
columns lie below this hyperbola. The figure also shows the limiting cases for stand-
ard curves for steel sections (hot-rolled hollow sections and rolled sections with thick
flanges), including the associated assumptions for w0.

22.3.1.2 The influence of residual stresses

The model column shown in Fig. 22.25(a) consists of two flanges at a spacing h. The
flange thickness t is small in comparison with the flange width b and the web is
ignored. Consequently, Iy = bth2

/2 and Iz = b3t/6.

For simplicity, a linear distribution of residual stresses is assumed in the flanges, see
Fig. 22.25(b). The outer parts of the section, which cool more rapidly after rolling or
welding, experience compressive residual stresses, but the inner parts, which cool at a
slower rate, tensile residual stresses. Factor a is about 0.4 to 0.5.

An elastic-plastic stress distribution according to Fig. 22.25(c) is established for
l I 1/

ffiffiffiffiffiffiffiffiffiffiffi
1sa
p

at the buckling load. The elastic core is reduced to width bb. The
mean compressive stress is (1 – ab)fy , and the second moments of area Iy and Iz

are reduced to bIy and b3Iz . Therefore, the result is a buckling stress

C

Afy
w 1sabw
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l
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1ffiffiffiffiffiffiffiffiffiffiffi
1sa
p , 0J bJ 1

� �
(22:46)

related to the yield limit fy, where the exponent k takes on a value of 1 for buckling
about the “strong” (y) axis, but a value of 3 for buckling about the “weak” (z) axis.
Eliminating parameter b results in the buckling stress curves between points A
and C shown in Fig. 22.25(d). EULER buckling stress curve (B)CD applies for
l i 1/

ffiffiffiffiffiffiffiffiffiffiffi
1sa
p

provided initial deformations are neglected.

22.3.1.3 Application of buckling stress curves

The combined effects of initial deformations and residual stresses are approximated in
the standard curves for steel sections drawn in Fig. 22.24. In order to apply the buckl-
ing stress curves, it is necessary to estimate the relevant conditions and also make an
estimate of the buckling length l depending on the boundary conditions of a given
problem.
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22.3.2 Eccentrically loaded columns

22.3.2.1 General procedure

Generally, the relationship between the bending moments M and the curv-
atures x = –wL is not linear and depends on the normal force N. Fig. 22.26 illustrates
this fact for the example of a typical reinforced concrete cross-section, (see the re-
marks in sections 13.2.1 and 20.3.1.2).

The relationships (22.1) continue to apply. The approximate relationship between
internal force components C, Vo (related to the x or z direction) and internal force
components N, V (related to the deformed bar axis) is

N
V

� 
w

s 1 wl
wl 1

	 

C
Vo

� 
(22:47)

We therefore get the set of equations

Clws qx , Volws qz , N wsC SVowl , VolwML(N,swL)s (Cwl)l

(22:48)

which can be solved numerically for a given problem – taking into account the cor-
responding boundary conditions – through discretisation and by applying an incre-
mental, iterative procedure (as described in section 22.2.6.3). The basis for the solu-
tion lies in knowledge of the non-linear moment-curvature diagrams M(N, –wL) for all
cross-sections, or rather bar elements.

22.3.2.2 Column deflection curves

Fig. 22.27 shows a group of column deflection curves for C = const. To draw these,
we assume an initial eccentricity e0 and then, using M0 = Ce0, calculate the associated
curvature x0 from the non-linear moment-curvature diagram presumed to be valid
over the entire length of the bar. From this, taking a step of D, we get the rota-
tion e1l = –x0D and the eccentricity e1 = e0 – x0D

2
/2 at point 1. Putting M1 = Ce1,

we can then use the moment-curvature diagram to find x1, and we get e2l =
e1l – x1D and e2 = e1 + e1lD – x1D

2
/2. Repeating this procedure with the help of

the recurrence relations

eilw eis1ls xis1D , ei w eis1 S eis1lDs xis1D2=2 (22:49)

and calculating the curvatures x i via Mi = Cei from the moment-curvature diagram
finally leads to en z 0, which defines one curve of the group.

Applying the column deflection curves determined in this way requires picking out the
curve that fits with the respective boundary conditions of a problem, as is illustrated in
Fig. 22.28.
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22.3.2.3 Approximation methods

One practical approximation method involves using the secant stiffness Mm/xm

resulting from the moment-curvature diagram for the stress resultants Nm = –C and
Mm = Cem for the most highly stressed (critical) cross-section together with the am-
plification factor m. According to Fig. 22.29(a), the following applies:

em w e0 S e1 S e2 (22:50)

where e0 and e1 represent the eccentricity due to geometric imperfections and the
eccentricity due to actions calculated using first-order theory respectively. The eccen-
tricity e2 according to second-order theory is calculated from the buckling length l and
the curvature xm as a result of Nm and Mm as follows:

e2 w
xml 2

c
(22:51)

The c factor is generally

cwap2
S (1sa)

Pn
iw1

M1i

Pn
iw1

M1i

ci

aw

C

CE
, CE w

p2Mm

xml 2

� �
(22:52)

where the sums must be applied over all n components to the first-order moments M1

(including component Ce0 due to imperfections). The individual ci factors are calcu-
lated using the work theorem according to Fig. 22.30 depending on the loading

ci w
xmil

2

e1i
w

M1ixml 2=MmÐl
0

xiM dx

(22:53)
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We start from

Mm wCe2 S
Pn
iw1

M1i , e2 w

Pn
iw1

e1i

1sa
(22:54)

in order to prove (22.52). Substituting (22.54)2 in (22.51) and taking into account
(22.53), (22.54)1 plus

(1sa)Ce2 wC
Pn
iw1

e1i wC
Xn

iw1

M1ixml 2

ciMm
w

C

CE
� p2 �

Xn

iw1

M1i

ci

results in, as asserted,

cw
xml 2

e2
w

(1sa) Ce2 S
Pn
iw1

M1i

 !

Pn
iw1

M1i

ci

wap2
S (1sa)

Pn
iw1

M1i

Pn
iw1

M1i

ci

(22:55)
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Example 22.14 Vertical cantilever

The vertical cantilever shown in Fig. 22.31 has a buckling length of l = 8m and a geometrical im-
perfection e0 = 14mm. Subjected to a compressive force C = 2000 kN, its bending resistance is
305kNm, and the associated strain distribution according to Fig. 22.26(a) results in a curvature of
12.4mrad/m.
With a secant stiffness of 305/12.4 = 24.6MNm2, we initially get CE = p2 ·24.6/82 = 3793kN
and a = 2000/3793 = 0.5273, and from that, using M11 = 2000 ·0.014 = 28kNm, M12 = 32 ·4
= 128kNm, c1 = p2 and c2 = 12, according to (22.52) we get

cw 0.5273 � p2
S 0.4727

28S 128
28

p2 S

128

12

w 10.665

Eq. (22.51) results in e2 = 12.4 ·82
/10.665 = 74.4 mm. Putting e1 = M12/C = 64mm and e0 =

14 mm, the eccentricity at the critical cross-section at the base of the column according to (22.50)
is therefore em = 14 + 64 + 74.4 = 152.4 mm. The moment at the base of the column is
2000 ·0.1524 = 304.8kNm, i. e. the bending resistance of 305kNm is just adequate.

In the approximation method, the secant stiffness at the critical cross-section is used
over the entire length of the column as an approximation in order to calculate the de-
formations. This approach underestimates the stiffness and the ensuing stress result-
ants are on the safe side.

The eccentricities must be reduced according to Fig. 22.29(b) if the critical cross-sec-
tion is not at the position of the maximum values of e0 and e2. It can be assumed that
the progression of e2 over the length of the column is similar to the buckled shape.

If applicable, the effects of shrinkage and creep must be taken into account when cal-
culating xm from the strain distribution according to Fig. 22.26(a).

22.3.3 Limit loads of frames according to second-order theory

22.3.3.1 General

The treatment of general geometric and material non-linear problems while taking into
account geometric imperfections and restraints is very involved. Incremental, iterative
methods of solution, as described in section 22.2.6.3, will normally be required.

One appropriate way of checking such calculations and providing rough treatments is
to analyse the statically determinate deformed system immediately prior to reaching
the limit load. The difference between this and calculating the limit load according to
first-order theory is that it is necessary to know which plastic hinge forms last. Another
difficulty is that the maximum load, taking into account the deformations, can even
occur before the conclusion of the plastic hinge formation according to first-order
theory.

This method is explained below with the help of a simple example.
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22.3.3.2 Limit load according to first-order theory

The task is to calculate the limit load of the plane frame shown in Fig. 22.32(a), which
is statically indeterminate to the third degree. Using the yield limit fy = 355N/mm2

and the plastic section moduli Zb = 8.32 ·106 mm3 and Zc = 4.82 ·106 mm3, the frame
beam and the two columns have bending resistances of Mub = Zb fy = 2953.6kNm and
Muc = Zc fy = 1711.1kNm. The mechanism of Fig. 22.32(b) supplies the work equa-
tion

Q � 1S 3 � 3
4

� �
w (1711.1 kNm � 4S 2953.6 kNm � 2)=(6 m)w 2125.3 kN

from which it follows that Q = 653.9kN. The free body diagram, Fig. 22.32(c), and
the bending moment diagram, Fig. 22.32(d), show that the plasticity check is satisfied,
i. e. the limit load according to first-order theory is Qu

I = 653.9kN.

22.3.3.3 Limit load according to second-order theory – approximation via

mechanism

By assuming that the plastic hinge at 1 forms last, the displacement of the frame beam
upon reaching the limit load – with E = 210kN/mm2 and Ic =1.072 ·109 mm4 –
according to the work theorem is

1

6
� 6 m � (2 � 1711 kNmS 1210 kNm) � 6 m=(210 � 1.072 � 109 kNmm2)w 123.4 mm

The influence of the inclination of the columns can be approximated by including an
additional horizontal force of 3 ·653.9kN·123.4mm/6000mm = 40.3kN in the above
work equation:

QII
u � 1S 3 � 3

4

� �
S 40.3 kN � 1z 2125.3 kN

which results in Qu
II
z 641.5kN.

It is not necessary to carry out a full elastic-plastic analysis in order to check our as-
sumption that the plastic hinge at 1 forms last; it is sufficient to calculate the displace-
ments of the frame beam one by one assuming that one of the other plastic hinges

478 22 STABILITY

IV NON-LINEAR ANALYSIS OF FRAMED STRUCTURES

3Q

Q 2 3 4

1 5

6 m

9 m

HEB 700

HEB 500 /1 6 m

3Q

Q

( )

/3 4 653.9

1961.8

83.5

925.2

1711.1
570.4

1036.6

1711.1

[ kN ,kNm ]

(a) (b) (c)

(d)

1711

1711−1210−

1711−

2954

2
3

4

1 5

3Q

Q

12ψ−

23ψ− 34ψ

45ψ−

II

II

u

u

(e)

641.8

1925.3

92.2

889.2

1711.1
549.6

1036.1

1711.1

[ kN ,kNm ]

(f )

1

[ kNm ]

−

−−
−+

+

Fig. 22.32 Plane frame: (a) static system, (b) mechanism, (c) free body diagram for Qu
I, (d) bending moments

for Qu
I, (e) statically determinate system immediately prior to reaching Qu

II, (f) free body diagram for Qu
II



forms last. All of these displacements are smaller than the value of 123.4mm calcu-
lated above and so it is clear that the plastic hinge at 1 is the last one to form.

22.3.3.4 Limit load according to second-order theory – slope-deflection method

The slope-deflection method explained in section 22.2.5 will be used to ascertain the
structural behaviour of the statically determinate system immediately prior to the
formation of the plastic hinge at 1 more accurately. We shall continue to use the
full plastic bending resistances, i. e. we shall neglect the interaction with the normal
and shear forces according to (21.43).

Fig. 22.32(e) shows the statically determinate deformed system immediately prior to
reaching Qu

II. The unknowns are Qu
II, the joint rotation f2 and the two bar rota-

tions c12 = c45 and c23 = –c34. In order to determine these four unknowns, we
have at our disposal the moment equilibrium conditions at joints 1 and 2 as well
as the equilibrium conditions for the horizontal and vertical forces applied to the frame
beam, or rather at joint 3:

t12f2 s (s12 S t12)c12 wMuc

(s21 S r23)f2 s (s21 S t21)c12 s r23c23 SMubt23=s23 w 0

s (s21 S t12)f2=l12 S 2(s21 S t12)c12=l12 s (C12 SC45)c12 s 2Muc=l45 SQII
u w 0

s r23f2=l23 S r23c23=l23 s (C23 SC34)c23 sMub(s23 S t23)=(s23l23)s (Mub SMuc)=l34 S 3QII
u w 0

Using the basic values given in Tab. 22.5, we get the set of equations

75.22 s 224.55 0 0
508.48 s 224.55 s 359.15 0
s 37.43 72.89 0 1
s 79.81 0 79.81 3

2
664

3
775

f2

c12

c23

QII
u

8>><
>>:

9>>=
>>;w

1.7111
s 1.4784

0.5704
2.0215

8>><
>>:

9>>=
>>;

with the solution

f2 ws 37.20 mrad , c12 ws 20.08 mrad , c23 ws 35.99 mrad , QII
u w 641.8 kN

The corresponding free body diagram is shown in Fig. 22.32(f) – compare this with
Fig. 22.32(c). The displacement of the frame beam upon reaching the limit load is
20.08 ·6 = 120.5 mm, and therefore we get

C45 w 641.8 � [6S (4.5S 0.1205) � 3]s 2 � 1711.1f g=9w 1036.1 kN

and

C34 w (2 � 1711.1s 1036.1 � 0.1205)=6w 549.6 kN

The compressive forces C given in Tab. 22.5 are based on calculations according to
first-order theory. The next step could be to repeat the calculation according to second-
order theory using the improved compressive forces C12 = 889kN etc. and thus im-
prove the accuracy. This avenue will not be pursued here any further.

Up until now we have ignored the influence of the normal and shear forces, but this is
not inconsiderable. To the right of joint 3, with bw = 636mm, tw = 17mm,
V z 1037kN, –N z 550kN and fy = 355N/mm2, the bending resistance is reduced
by 85.1kNm according to (21.43), i. e. it is reduced by 2.9 % to
0.971Mub = 2868.5kNm. Similarly, at the ends of column 45, with bw = 444mm,
tw = 14.5mm, V z 550 kN, – N z 1037kN, we get a decrease of 80.5kNm, i. e.
the bending resistance is reduced by 4.7 % to 0.953Muc = 1630.6kNm. Repeating
the calculation with lower bending resistances will not be carried out here.

The negative influence of the normal and shear forces is balanced by the positive
influence of the finite dimensions of nodal zones 2 and 4. The maximum bending
resistances are not required at the theoretical joints, but rather at the boundaries of
the nodal zones, where somewhat lower moments occur. The flow of the forces in
the nodal zones can be investigated as shown in example 17.7 (Fig. 17.19).
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22.4 Flexural-torsional buckling and lateral buckling

22.4.1 Basic concepts

Let us consider a prismatic, linear elastic bar with any cross-section subjected to an
eccentric compressive force C, see Fig. 22.33(a), where C is the centroid, M is the
shear centre, x is the bar axis and y, z are the principal axes of the cross-section.
We shall assume that deformations do not alter the form of the cross-section.

The shear centre M undergoes the displacements v, w in the directions of the initial
axes y0, z0, and the cross-section rotates by an amount fx about the axis through
the shear centre. The displacement components of the centroid C are therefore
v + zMfx and w – yMfx, see Fig. 22.33(b), where the eccentric compressive force
is related to the origin of the system of coordinates y0, z0.

In Fig. 22.33(c) the eccentric compressive force is related to the system of coordin-
ates y, z at any point on the deformed bar axis x. Owing to the inclination of the bar
axis, the resulting shear forces in the y and z directions are Cvl and Cwl respectively.
The bending moments about the principal axes of the cross-section (ignoring small
variables) are

My wC(s zA Sws yMfx S yAfx) , Mz wC(yA s vs zMfx S zAfx) (22:56)

Stresses s distributed over the cross-section and parallel with the x0 axis correspond to
the compressive force C. Owing to the relative rotation dfx of infinitesimally remote
neighbouring cross-sections, the inclination of the fibres amounts to rfxl at a dis-
tance r from the shear centre, as is shown in Fig. 22.33(c) for a point P on the
cross-section in the plane of the cross-section and perpendicular to the plane. Accord-
ingly, besides an elementary normal force, there is also an elementary shear force
–srfxldA (perpendicular to radius r) acting in the plane of the cross-section on a sur-
face element dA connected with point P; the shear force causes an elementary torque
of –sr2fxldA about the shear centre. In addition to this torque component, there are
two other components we must consider:

C(yAwls zAvl)

because of the inclination of the bar axis, and

C(vlzM swlyM)

because the shear forces Cvl and Cwl are shifted from the centroid to the shear centre.
In total, the result is

T wC[vl(zM s zA)swl(yM s yA)]s
Ð
A

sr2fxldA (22:57)
where

r2
w (ys yM)2

S (zs zM)2 (22:58)

and according to (13.18),

s sw

C

A
1S

z zA

i2y
S

y yA

i2z

 !
(22:59)
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Tab. 22.5 Basic values for using the slope-deflection method

Bar l EI C l s t r s t r

12 6 225.1 0.925 0.3846 3.9802 2.0050 149.33 75.22

23 4.5 539.5 0.570 0.1463 3.9971 2.0007 2.9957 479.21 239.86 359.15

34 4.5 539.5 0.570 0.1463 3.9971 2.0007 479.21 239.86

45 6 225.1 1.037 0.4072 3.9778 2.0056 149.24 75.24

m MNm2 MN - - - - MNm MNm MNm



Taking into account (13.7) and (13.9), eq. (22.57) therefore gives us

T wC vl(zM s zA)swl(yM s yA)Sfxl(r
2
0 S szzA S syyA)

� �
(22:60)

with the shortened forms

r2
0 w y2

M S z2
M S i2y S i2z , sz w

Ð
A

z3dAS

Ð
A

y2z dA

Iy
s 2zM , sy w

Ð
A

y3dAS

Ð
A

yz2dA

Iz
s 2yM

(22:61)

Combining (22.56) with (13.8) as well as (8.29) and (22.60) with (13.72) and (13.73)
results in the set of differential equations

EIzvLSC vSfx(zM s zA)½ �wCyA

EIywLSC wsfx(yM s yA)½ �wCzA

EIvfxLlsfxl GIx sC(r2
0 S szzA S syyA)

� �
SCvl(zM s zA)sCwl(yM s yA)w 0

(22:62)
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22.4.2 Concentric loading

Putting yA = zA = 0 simplifies (22.62) to the form

vLS
C

EIz
(vSfxzM)w 0 , wLS

C

EIy
(wsfxyM)w 0 , fxLlsfxl

GIx sCr2
0

EIv
S

C

EIv
(zMvls yMwl)w 0

(22:63)

22.4.2.1 yM = zM = 0

Centroids and shear centres coincide in doubly symmetric or cruciform sections, and
in polar symmetric Z sections, too. As yM = zM = 0, eq. (22.63) results in the inde-
pendent differential equations

vLS
C

EIz
vw 0 , wLS

C

EIy
ww 0 , fxLlsfxl

GIx sCr2
0

EIv
w 0 (22:64)

for flexural buckling about the z or y axis and torsional buckling about the x axis.

By assuming

vw v0 sin
npx

l

� �
, www0 sin

npx

l

� �
, fx wfx0 sin

npx

l

� �
for a simply supported bar of length l with disappearing values for v, vL, w, wL, fx and
fxL for x = 0 and x = l, and with n = 1 from (22.64), we get the bifurcation loads

Cv w
p2EIz

l 2
, Cw w

p2EIy

l 2
, Cf w

1

r2
0

GIx S
p2EIv

l 2

� �
(22:65)

where r0
2 = iy

2 + iz
2.

The lowest value obtained from (22.65) is the critical one. Flexural buckling is always
critical for sections. Torsional buckling can be critical for angle and cruciform sec-
tions with Iv = 0 for small values of l.

22.4.2.2 yM 0 0 and zM 0 0

By assuming v = v0sin(px/l ), w = w0sin(px/l ) and fx = fx0sin(px/l ) and using
(22.65), then (22.63) results in the set of homogeneous linear equations

C sCv 0 CzM

0 C sCw sCyM

CzM sCyM r2
0(C sCf)

2
4

3
5 v0

w0

fx0

8<
:

9=
;w

0
0
0

8<
:

9=
; (22:66)

for a bar simply supported at both ends. The determinant of this matrix

DetwC3(r2
0 s y2

M s z2
M)sC2 r2

0(Cv SCw SCf)s y2
MCv s z2

MCw

� �
S Cr2

0(CvCw SCwCf SCfCv)s r2
0CvCwCf

(22:67)

must be equal to zero for a non-trivial solution.

If we assume that Cv I Cw I Cf, then (22.67) results in the value of the function Det
being negative at positions 0, Cw , Cf, and positive at position Cv; C1 I Cv applies for
the critical, lowest zero point, see Fig. 22.34. The determinant can be examined in
a similar way for other sequences of flexural and torsional buckling loads, and the
eigenvalues Ci can be determined numerically in every case.

We can see from the first two equations (22.66) that the outcome is fixed relation-
ships v0 /fx0 = v/fx = –zM /(1 – C/Cv) and w0 /fx0 = w/fx = yM /(1 – C/Cv), i. e.
the bar buckles in a very particular way.
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22.4.2.3 yM = 0

Fig. 22.35 shows two examples of singly symmetric sections with yM = 0. In such
cases C1 = Cw irrespective of the flexural-torsional buckling loads C2 and C3 deter-
mined by Cv and Cf. Eq. (22.67) simplifies to

Detw r2
0(C sCv)(C sCf)sC2z2

M (22:68)

and from Det = 0 we get

C2,3 w

Cv SCfE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Cv SCf)2

s 4CvCf 1s (zM=r0)2
� �q

2 1s (zM=r0)2
� � (22:69)

The smaller of the two values C1 and C2 governs.

22.4.3 Eccentric loading in the strong plane

22.4.3.1 General

If Iy ii Iz and yA = 0, then (22.62) simplifies to

vLS
C

EIz
[vSfx(zM s zA)]w 0

fxLlsfxl
GIx

EIv
s

C(r2
0 S szzA)

EIv

� �
S

Cvl(zM s zA)

EIv
w 0

(22.70)

Displacement w is small in comparison with the deformations due to v und fx , and
therefore (22.62)2 can be ignored.

Fig. 22.36(a) illustrates a general case and Fig. 22.36(b) three special cases:
yM = zM = 0, r0

2 = iy
2 + iz

2 and sz = 0 apply for the symmetrical section; yM = 0,
r0

2 = zM
2 + iy

2 + iz
2 and sz 0 0 apply for the section; zM = 0, r0

2 = yM
2 + iy

2 + iz
2

and sz = 0 apply for the channel section.

Sinusoidal formulations for v and fx lead to

C sCv C(zM s zA)

C(zM s zA) r2
0 C 1S

szzA

r2
0

� �
sCf

� �2
4

3
5 v0

fx0

	 

w

0
0

	 

(22:71)

for a bar simply supported at both ends, where

Detw r2
0(C sCv) C 1S

szzA

r2
0

� �
sCf

� �
sC2(zM s zA)2 (22:72)

Apart from the case of two positive roots to the characteristic equation Det = 0,
as shown in Fig. 22.36(c), it is also possible to have the situation with one
positive and one negative root, as shown in Fig. 22.36(d). The relationship
v/fx = –(zM – zA)/(1 – C/Cv) reveals how the bar deflects sideways in the event of
flexural-torsional buckling; e. g. the cross-section of Fig. 22.36(d) rotates about a
fulcrum beneath the beam as a result of the eccentric tensile force –C2.
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22.4.3.2 Special case zA = zM

Applying C at the shear centre results in the greatest possible bifurcation load
compared with all possible loading positions, i. e. either Cv or Cf /(1 +szzA /r0

2),
see Fig. 22.36(c).

22.4.3.3 Lateral buckling

If we allow the compressive force C to tend to zero for a constant moment
My = M = CzA, then (22.72) results in the quadratic equation

M2
SMCvsz s r2

0CvCf w 0

with the solutions

M1,2 w
1

2
sCvsze
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v s2
z S 4r2

0CvCf

q� �
(22:73)

The result is positive and negative critical moments with different values when sz 0 0.
And when sz = 0, the result – making use of (22.65)1 and (22.65)3 – is the overturning
moments
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(22:74)

Using (13.9)2, (13.9)3, (13.64) and (13.72) for the model cross-section of an section
shown in Fig. 22.25(a) results in
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and therefore according to (13.16), (22.74) and (7.2),
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By ignoring the first compared with the second term in the second root, the result is the
approximation

scr z
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p iz

l
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(22:76)
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which shows that the lateral buckling of a beam essentially corresponds to the lateral
buckling of its compression flange, see Fig. 22.24 and (22.44).

22.4.3.4 Special case yM = zM = sz = 0

In the case of doubly symmetric cross-sections, e. g. sections, using M = CzA from
(22.72) with Det = 0 results in the relationship

M2
w r2

0(C sCv)(C sCf)

which in conjunction with (22.74)1 leads to the interaction relationship

M

Mcr
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w 1s
C

Cv
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C
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(22:77)

between the bending moments M and the compressive forces C, as shown in
Fig. 22.37. When we consider cross-sections with a very large torsional stiffness,
e. g. hollow sections, then Cf ii Cv, and therefore the interaction relationship is para-
bolic. With a smaller torsional stiffness it can be the case, for instance, that Cf = Cv ,
which corresponds to a linear interaction relationship.

22.4.4 General loading

22.4.4.1 Basic concepts

Besides the eccentric compressive force C, which is still presumed to be constant over
the length of the bar, it is also generally necessary to consider eccentric line loads qy

und qz , see Fig. 22.38; the corresponding bending moments are designated with
Myq, Mzq. Eq. (22.62) is generalised as follows:

EIzvLLSCvLSC(zM s zA)fxLS (Myqfx)LsMzqLw 0

EIywLLSCwLsC(yM s yA)fxLSMyqLS (Mzqfx)Lw 0

EIvfxLLs GIx sC(r2
0 S szzA S syyA)

� �
fxLs sz(Myqfxl)lS sy(Mzqfxl)l

S Myq SC(zM s zA)
� �

vLS Mzq sC(yM s yA)
� �

wL

S qy(ez S eyfx)s qz(ey s ezfx)w 0

(22:78)

Moments Myq and Mzq result in the additional terms Mzq – Myqfx and –Myq – Mzqfx

on the right-hand sides of (22.62)1 and (22.62)2; differentiating twice thus results in
(22.78)1 and (22.78)2. Similarly to szCzAfxl and syCyAfxl, we get the terms – szMyqfxl

and syMzqfxl contributing to T in (22.60) and (22.62)3 ; differentiating once results in
the third and fourth terms on the left in (22.78)3. The curvature of the bar corresponds
to a contribution of – (MyqvL+MzqwL) to mx according to (13.74), and considering
Fig. 22.38 results in the other contribution –qy(ez + eyfx) + qz(ey – ezfx) to mx; there-
fore, (22.78)3 is fully explained as well.

22.4.4.2 Commentary

It is often necessary to consider the interaction of various structural members. For
example, the roof covering generally guarantees a certain amount of support for
the roof structure. This can be modelled as an elastic support with translational and
rotational springs. Appropriate additional terms are necessary in (22.78).

The axis of twist is often not free, but rather constrained by some constructional
means, e. g. some form of hinge. The kinematic constraint leads to a corresponding
simplification of the set of differential equations (22.78); for example, v can be elimin-
ated.

Solving general flexural-torsional and lateral buckling problems is difficult. Analyt-
ical solutions are successful in special cases only. Numerical approximation methods
should normally be employed, see section 22.2.3.
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Example 22.15 Lateral buckling of an section

Fork supports at the ends of the doubly symmetric section shown in Fig. 22.39 (yM = zM = sz = 0)
prevent the beam from rotating (see example 13.12). The point load Q at mid-span causes pure bend-
ing about the y axis, where

Myq w
Qx

2
(0J xJ l=2)

Eq. (22.78)1 and (22.78)2 simplify to

EIzvLSMyqfx w 0 , EIvfxLLsGIxfxLSMyqvLw 0

from which it follows that

EIvfxLLsGIxfxLs
M2
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EIz
fx w 0 (22:79)

Setting
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satisfies the boundary conditions fx(0) = fxL(0) = fx(l ) = fxL(l ) = 0, and therefore using the
GALERKIN method and omitting the non-essential factor 2c2, we get the condition
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for the bifurcation load, or rather the overturning moment. Using
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see (22.74). The factor 4.291 lies about 1.3 % above the known exact value of 4.234.

Example 22.16 Lateral buckling – shifting the point of load application

It was assumed in example 22.15 that Q is applied at the level of the bar axis. However, if the point
of load application is above or below this, the result is a destabilising or stabilising influence. This
effect increases as the pure torsional stiffness GIx decreases in relation to the warping torsion stiff-
ness EIv /l2 related to the square of the span l.
Lateral buckling increases the internal potential by

DPi w
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2
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vL2 dxS
GIx

2
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2

ðl
0
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The third term on the right in this relationship follows from integrating over the whole system with
pi = sw

2
/(2E ) according to (13.92), (13.90) and (13.89) as well as £ = fxl. According to Fig. 22.40,

the point of application of Q rises with lateral buckling by the amount
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and therefore the external potential, taking into account fx = – 2EIzvL/(Qx), increases by
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Assuming fx = c sin(px/l ), this leads to the quadratic equation
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for Qcr. Applying (13.72)2 results in
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where d = spacing of flanges.
Tab. 22.6 specifies the relationships Qcr(a)/Qcr(a = 0) for a number of values of b depending on
whether Q is applied to the top flange (a = –1), at the centroid (a = 0) or to the bottom flange (a = 1).
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Fig. 22.40 Shifting the point of load application of Fig. 22.39: (a) plan, (b) rotation fx0 = fx(l/2)

Tab. 22.6 Relative overturning loads according to (22.81) depending on the position of the point of load

application (a) and the stiffness ratio (b)

b (a = – 1) (a = 0) (a = 1)

0 0.589 1 1.697

5 0.646 1 1.548

10 0.683 1 1.464

20 0.731 1 1.368

40 0.784 1 1.276

80 0.833 1 1.200

160 0.875 1 1.142

320 0.909 1 1.100



22.5 Summary

1. This chapter deals with problems in framed structures in which the equilibrium
conditions have to be formulated for the deformed system according to second-
order theory.

2. Elastic deflection curves for inextensible columns are described by the differential
equation (22.2) or (22.9) with the boundary conditions (22.6). Analytical solu-
tions are confined to special cases.

3. An initial deformation in a column has an effect similar to that of a transverse
load.

4. The second-order influences on the deformations and stress resultants of columns
can be approximated by multiplying the values calculated according to first-order
theory by the amplification factor (22.12). This procedure supplies exact results
for the case of deflection curves affine with first- and second-order theory.

5. The application of the amplification factor presumes that the theoretical bifurca-
tion load is known. The latter can be calculated with the help of the RAYLEIGH
quotient (22.14), with the RITZ or GALERKIN methods, or with the method
of successive approximation of the column deflection curve according to
ENGESSER-VIANELLO; in contrast to the other methods, the ENGESSER-
VIANELLO method can also supply approximate values that lie below the theor-
etically exact bifurcation load.

6. Structural analyses according to second-order theory generally require an iterative
procedure. The normal forces initially estimated or calculated according to first-
order theory for the individual columns of a system are improved in one or more
steps by taking into account the deformation influences.

7. Problems with variable-direction, but nevertheless guided, forces are conserva-
tive and can be handled according to the customary methods of elastic stability
theory. One particularly dangerous example of this type of problem relevant in
practical construction situations ensues from connecting columns to short pin-
jointed members (Fig. 22.10).

8. The influence of shear deformations can be considerable in the case of built-up
columns. In addition, the flexibility of the connectors must be considered in built-
up timber columns.

9. Shallow arches and inclined leg frames can experience snap-through. The equilib-
rium position upon reaching the snap-through load – in contrast to that upon
reaching a bifurcation load – is not neutral, but rather divergent.

10. There is a linear relationship (22.31) between the compressive forces related to
the bifurcation loads and the squares of the basic frequency-related frequencies of
the bending vibrations of elastic columns.

11. The slope-deflection method can be applied in a similar way to first-order theory
when dealing with second-order problems. The effect of the deformation is in-
cluded in the near- and far-end bar stiffnesses by way of the axial force param-
eter (22.32). The stiffening influence of tensile forces is often neglected, but can
be dealt with easily by changing from harmonic to hyperbolic functions.

12. The non-linear member stiffness matrix (22.39) according to second-order theory
can be presented as the sum of the linear member stiffness matrix (17.17) accord-
ing to first-order theory and the geometric stiffness matrix (22.41).

13. An analysis according to third-order theory may be necessary in the case of very
flexible systems. Such an analysis is generally performed with an incremental,
iterative procedure in which several load steps are employed to update the global
tangential stiffness matrix related to the last deformation state by iterating the
equilibrium.

14. Buckling stress curves plotted against the relative slenderness can be used to
ascertain how geometric imperfections and residual stresses influence the buckl-
ing of concentrically loaded columns (Fig. 22.24).
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15. With known non-linear moment-curvature diagrams, the deflection curves of
eccentrically loaded columns can generally be determined through discretisation
and by employing an incremental, iterative procedure. As an approximation, the
secant stiffness in the most highly stressed cross-section can be used in conjunc-
tion with the amplification factor.

16. The limit loads of frames can be analysed according to second-order theory by
considering the statically determinate deformed system immediately prior to
the development of the final plastic hinge.

17. Flexural-torsional and lateral buckling problems of elastic bars are generally
described by way of the differential equations (22.62) and (22.78). These are
normally solved with the help of numerical approximation methods.

22.6 Exercises

22.1 Replace the point load Q2 in example 22.1 by a uniformly distributed trans-
verse load q. Conduct a similar discussion and compare the result with ex-
ample 8.16.

22.2 Confirm the expressionffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7.834EI

Arg
3

s

for the critical length of a prismatic vertical cantilever that buckles under its
self-weight (EI = bending stiffness, A = cross-sectional area, r = density of
column material, g = acceleration due to gravity = 9.81m/s2). Compare the
corresponding critical lengths of columns made from steel (r = 7850kg/m3,
E = 210kN/mm2) and timber (r = 500kg/m3, E = 10kN/mm2) with solid
or hollow circular cross-sections.

22.3 Develop an expression for the bifurcation load of the system shown in Fig.
22.41(a). Discuss the limiting cases ky = 0 or ky p T and kz = 0 or kz p T

and EI p T.
22.4 Show that the buckling load of a prismatic column with hinged supports at both

ends (bending stiffness EI = const, length l ) is 18.67EI/l2 for an axial force
acting at half height. Solve this task exactly first of all and then using the
ENGESSER-VIANELLO method.

22.5 Calculate the bifurcation load of the system shown in Fig. 22.41(b)
(E = 210kN/mm2, IAB = 21.86 ·106 mm4, IBC = 14.99 ·106 mm4) by means
of the method according to ENGESSER-VIANELLO.

22.6 Discuss the behaviour of the system shown in Fig. 22.41(c) in a similar way to
example 22.10. The two pin-jointed members of length l are initially inclined
at an angle a0 to the horizontal and may be regarded as rigid (EA p T).

22.7 Add an equation to (22.33) for the case of a temperature gradient DT over the
depth of the beam h (coefficient of thermal expansion aT).

22.8 Add an equation to each of the equations (22.38)4 and (22.38)6 for the case
a = 1 assuming an elastic fixed support to the cantilever (rotational spring stiff-
ness ky).

22.9 Calculate the bifurcation load of the system shown in Fig. 22.41(d) as a func-
tion of parameter a.

22.10 Examine the buckling in the plane of the equilateral frame shown in Fig.
22.41(e). The stiffening influence of the tensile force in bar 12 may be neg-
lected.

22.11 Rework exercise 22.5 using the slope-deflection method.
22.12 Select a suitable column for the problem of Fig. 22.41(f) and discuss its behav-

iour with the help of the slope-deflection method.
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22.13 The intermediate supports in the system of Fig. 22.41(f) are elastically sup-
ported (translational spring stiffnesses kz2 and kz3), but the column is fully fixed
at its base 1. Set up the set of equations for the unknown deformations accord-
ing to the slope-deflection method.

22.14 Discuss the behaviour of the system shown in Fig. 22.41(g). First of all,
cables 14 and 34 are prestressed to the tensile force T0. Afterwards, Q is
increased monotonically. The normal force deformations of bar 24 may
be neglected. Select suitable cross-sections for the case of Q = 1MN,
l = 10m, a = 0.6, b = 30h, specify a suitable prestress and analyse the struc-
tural behaviour for an increasing value of Q.

22.15 Calculate the limit load according to second-order theory for the frame shown
in Fig. 22.41(h). Column 12 has a bending stiffness of 52.9MNm2 and a bend-
ing resistance of 663kNm; the respective values for frame beam 23 are
359.1MNm2 and 2279kNm.

22.16 Replace the pin-ended strut 34 in exercise 22.15 by a sliding support and work
through the problem again.

22.17 Develop an equation similar to (22.80) for the overturning moment of a simply
supported beam subjected to a uniformly distributed load. Compare the result-
ing numerical factor with the known exact value of 3.538.
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23 PLATES

23.1 General

Plates (= in-plane-loaded elements) are very important in construction – as loadbear-
ing walls and as parts of built-up sections (box girders, plate girders, folded plates).
Furthermore, the structural response of slabs (= out-of-plane-loaded elements) can be
reduced to the structural response of plates by applying sandwich models.

The equilibrium conditions (8.32) and the kinematic relations (8.33) for plates were
set up in section 8.2.4. The result for homogenous and isotropic, linear elastic plates
was (8.35). In addition, the yield loci according to VON MISES and TRESCA for
the coplanar stress state were shown in Fig. 7.8(c) (see also exercise 7.8), and the
COULOMB yield condition, the modified COULOMB yield condition and the
square yield condition for the coplanar stress state were discussed with the help of
Figs. 7.10(b), 7.11(b) and 7.12(b).

Linear elastic analyses of plate problems essentially make use of the finite element
method. Analytical solutions, briefly explained in section 23.2, are still important
for a basic understanding of the structural behaviour of plates. Moreover, such solu-
tions supply valuable reference figures and render possible quick estimates of the
stress resultants for practical situations, e. g. at points of load application or at geo-
metric discontinuities such as corners and openings.

Modelling plates as linear elastic elements is applicable to only a limited extent in
structural design. Plates made from reinforced concrete in particular exhibit a dis-
tinctly non-linear behaviour owing to the cracking of the concrete and the yielding
of the reinforcement. Section 23.3 describes appropriate yield conditions for plate ele-
ments and sections 23.4 and 23.5 discuss the application of the static and kinematic
methods of limit analysis to reinforced concrete plates and related problems in geo-
technical engineering.

23.2 Elastic plates

23.2.1 Stress function

Differentiating the relationships (8.33) twice gives us the compatibility condition
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(23:1)

Using (8.34) and integrating the stresses over the thickness of the plate h leads to
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Differentiating (8.32)1 and (8.32)2 with respect to x or y and adding the two expres-
sions results in

s

@qx

@x
S

@qy

@y

� �
s

@2nx

@x2 s

@2ny

@y2 w 2
@2nxy

@x@y

49123.2 Elastic plates

Theory of Structures. First Edition. Peter Marti
c 2013 Ernst & Sohn GmbH & Co. KG. Published 2013 by Ernst & Sohn GmbH & Co. KG.



and substituting in the previous relationship gives us

D(nx S ny)ws (1S n)
@qx

@x
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@qy

@y

� �
(23:2)

see also (24.28).

If we assume that the loads have a potential Pe, i. e.

qx ws

@Pe

@x
, qy ws

@Pe

@y

the equilibrium conditions (8.32) then become
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Introducing the AIRY stress function F, where

@2F

@y2 w nx sPe ,
@2F

@x2 w ny sPe ,
@2F

@x@y
ws nxy (23:3)

satisfies the equilibrium conditions, and substituting (23.3) in (23.2) results in

DDF ws (1s n)DPe (23:4)

If qy corresponds to the dead load rgh (r = density, g = acceleration due to gravity),
then Pe = –rghy, and the right-hand side of (23.4) equals zero. Generally, the bipo-
tential equation

DDF w 0 (23:5)

applies for q = const. Eq. (23.5) is satisfied by polynomials up to the third degree for x
and y and x3y and xy3 with any coefficients. For higher-degree polynomials, the co-
efficients must comply with certain conditions in order to satisfy (23.5). Further solu-
tions can be obtained, for example, by using FOURIER series with the following types
of function:
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Example 23.1 Cantilever beam

If we use the stress function

F wAxySBxy3

for the plate shown in Fig. 23.1(a), then (23.3) results in

nx w 6Bxy , ny w 0 , nxy w nyx wsAs 3By2

The boundary conditions nxy = 0 for y = eb/2 call for A = – 3Bb2
/4, and the following applies for

the shear force:
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Bb3

2

Consequently,

nx ws

Qxy

b3=12
, ny w 0 , nxy ws

3Q

2b
1s

4y2

b2

� �
The stresses distributed uniformly over the thickness of the plate h – Fig. 23.1(b) – agree with those of
beam theory, see (13.16) and example 13.5. However, nyx must exhibit a parabolic distribution over
depth b at the ends of the plate x = 0 and x = a.
Substituting the stress components in (8.35) and inverting – together with (8.33) and I = hb3

/12 –
results in

@u

@x
ws

Qxy

EI
,

@v

@y
w

nQxy

EI
,

@u

@y
S

@v

@x
ws

3Q(1S n)

Ebh
1s

4y2

b2

� �
The integration of these differential equations, taking into account the boundary conditions
u(a, 0) = v(a, 0) = 0 and u(a, eb/2) = 0, results in the displacements

uw
Q(a2

s x2)y

2EI
S

(2S n)Q(4y3
s b2y)

24EI

vw
Q(2a3

s 3a2x S x3)

6EI
S

(4S 5n)Q(as x)b2

24EI
S

nQxy2

2EI
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Fig. 23.1(c) shows the displacements u at the “fixed support cross-section” x = a. Actually, u and v

should be equal to zero at all points of the fixed support cross-section. However, this cannot be
achieved with the very simple formulation for F.
The first term on the right in the expression for v corresponds to the bending deformation of a canti-
lever beam, see exercise 8.7. We get the expression (0.5 + 0.625n)(b/a)2 for the ratio of the deflec-
tions as a result of shear and bending deformations at the free end of the cantilever x = 0; compared
with this, beam theory, with Av = 5hb/6, results in the expression (0.6 + 0.6n)(b/a)2.

23.2.2 Polar coordinates

23.2.2.1 General relationships

Using the polar coordinates

r w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

S y2
p

, fw arc tan(y=x) (23:7)

according to Fig. 23.2 means that

@r

@x
w cosf ,

@r

@y
w sinf ,

@f

@x
ws

sinf

r
,

@f

@y
w

cosf

r

applies, and thus for any functions f(x,y) = f(rcosf,rsinf)

@f

@x
w

@f

@r
� @r

@x
S

@f

@f
� @f

@x
w

@f

@r
� cosfs

@f

@f
� sinf

r

@f

@y
w

@f

@r
� @r

@y
S

@f

@f
� @f

@y
w

@f

@r
� sinfS

@f

@f
� cosf

r

Differentiating once more results in

@2f

@x2

@2f

@y2

s

@2f

@x@y

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

w

cos2f sin2f 2 sinf cosf
sin2f cos2f s 2 sinf cosf

s sinf cosf sinf cosf cos2fs sin2f

2
4

3
5

@2f

@r2

1

r
� @f

@r
S

1

r2
� @

2f

@f2

s

@

@r

1

r
� @f

@f

� �

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

(23:8)

Inverting and rearranging (5.21) gives us, on the one hand (where n p r, t p f),

sy

sx

txy

8<
:

9=
;w

cos2f sin2f 2 sinf cosf
sin2f cos2f s 2 sinf cosf

s sinf cosf sinf cosf cos2fs sin2f

2
4

3
5 sf

sr

trf

8<
:

9=
;

and the comparison with (23.3) shows that f can be interpreted as a stress function:

sr w
1

r
� @f

@r
S

1

r2
� @

2f

@f2
, sf w

@2f

@r2
, trf ws

@

@r

1

r
� @f

@f

� �
(23:9)
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From the first two rows of (23.8) it follows that the LAPLACE operator is

Dw

@2

@x2 S

@2

@y2 w

@2

@r2 S

1

r
� @
@r

S

1

r2
� @

2

@f2
(23:10)

According to (23.2), the relationship D(sx + sy) = 0 applies for disappearing loads,
and therefore because of sx + sy = sr + sf and (23.9) as well as (23.10), in a similar
way to (23.5),

DDf w 0 (23:11)

We can read off the equilibrium conditions

qw
qr

qf

� 
w

s @r s 1=r 1=r s @f=r
0 s @f=r s @r s 2=r

	 
 sr

sf

trf

8<
:

9=
;wDs 7 s (23:12)

from Fig. 23.3(a). When qr = qf = 0, these relationships are satisfied by (23.9). Using
Fig. 23.3(b), the kinematic relations are

ew

er

ef

grf

8<
:

9=
;w

@r 0
1=r @f=r
@f=r @r s 1=r

2
4

3
5 u

v

� 
wDk 7 u (23:13)

and according to (8.35),

sw

sr

sf

trf

8<
:

9=
;w

E

1s n2

1 n 0
n 1 0

0 0
1s n

2

2
64

3
75 er

ef

grf

8<
:

9=
;wE 7 e (23:14)

23.2.2.2 Rotational symmetry

If the stress function f depends exclusively on r, then it follows that where
D = d2

/dr2 + (d/dr)/r according to (23.10), we get the differential equation

f LLS 2f Ll=r s f L=r2
S f l=r3

w 0 (lw d=dr) (23:15)

from (23.11), with the general solution

f w c1 S c2r2
S c3 lnr S c4r2 lnr (23:16)

which, applying (23.9), leads to the principal stresses

sr w 2c2 S
c3

r2 S c4(1S 2 lnr) , sf w 2c2 s
c3

r2 S c4(3S 2 lnr) (23:17)

Substituting (23.17) into (23.14) and subsequently inverting, then substituting in
(23.13) and integrating, while considering grf = 0, results in

uw [2(1s n)r(c2 S c4 lnr)s (1S n)(c3=r S c4r)]=E S c5 sinfS c6 cosf

vw 4c4rf=E S c5 cosfs c6 sinfS c7r
(23:18)
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Example 23.2 Cylindrical pipe

Let us consider the cylindrical pipe shown in Fig. 23.4. As v(r, 0) = v(r, 2p), eq. (23.18)2 initially
gives us c4 = 0 and therefore (23.17)1 results in

2c2 S
c3

r2
i

ws qi , 2c2 S
c3

r2
e
ws qe

i. e.

c2 w
qir2

i s qer2
e

2(r2
e s r2

i )
, c3 w

qe s qi

r2
e s r2

i

r2
e r2

i

Substituting in (23.17) results in

sr,f w

qir2
i s qer2

e

r2
e s r2

i

e

qe s qi

r2
e s r2

i

� r
2
e r2

i

r2

As sr + sf is constant over the entire pipe cross-section, the result is a uniform strain of
(2n/E )(qere

2 – qiri
2)/(re

2 – ri
2) in the axial direction, i. e. pipe cross-sections remain plane.

In the case of qe = 0, the result is

sr,f w

qir2
i

r2
e s r2

i

1E
r2

e

r2

� �
where sr is a compressive stress and sf a tensile stress; sf takes on a maximum for r = ri, i. e.
qi(re

2 + ri
2)/(re

2 – ri
2), see (5.52) and (18.99)1.

When qe = 0 and re p T, the result is the limiting case of a perforated plate with the stresses
sf = –sr = qiri

2
/r2. Superimposing a homogeneous tensile stress state sr = sf = qi = s on these

stresses results in sr = s(1 – ri
2
/r2) and sf = s(1 + ri

2
/r2). Further, sr = 0 and sf = 2s applies at

the edge of the hole r = ri, i. e. for sf , the result is a stress concentration factor sf,max /s = 2.

Example 23.3 Beam in the form of a circular arc

The following conditions apply for the curved beam shown in Fig. 23.5:

sr(ri)wsr(re)w 0 ,
Ðre

ri

sfb dr w 0 ,
Ðre

ri

sfbr dr wM

Using (23.17), these conditions result in three linear equations for c2, c3 and c4. Substituting back into
(23.17) results in the stresses

sr w

4M r2
e ln

r

re
s r2

i ln
r

ri
S

r2
e r2

i

r2
ln

re

ri

� �

b (r2
e s r2

i )2
s 4r2

e r2
i ln

re

ri

� �2
" # , sf w

4M r2
e s r2

i S r2
e ln

r

re
s r2

i ln
r

ri
s

r2
e r2

i

r2
ln

re

ri

� �

b (r2
e s r2

i )2
s 4r2

e r2
i ln

re

ri

� �2
" #

A bending moment M causing tensile stresses in the outer fibres and compressive stresses sf in the
inner fibres, as shown in Fig. 23.5, gives rise to transverse compressive stresses sr . In the opposite
situation, the resulting transverse tensile stresses sr can lead to cracks in concrete beams, fissures in
timber beams. Bolts or transverse reinforcement must then be provided in order to prevent failure.
Where u = v = dv/dr = 0 is required for r = (re + ri)/2 and f = 0, then (23.18) results in

(1s n)(re S ri) c2 S c4 ln
re S ri

2

� �
s (1S n)

2c3

re S ri
S c4

re S ri

2

� �	 

=E S c6 w 0 , c5 S c7

re S ri

2
w 0 , c7 w 0

from which it follows that c5 = c7 = 0 and

vw
4c4rf

E
s c6 sinf

It becomes clear from the last relationship that cross-sections remain plane.
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23.2.3 Approximating functions for displacement components

Combining (8.23), (8.33) and (8.35) shows that both DDu = 0 and DDv = 0 are valid
when q = const (exercise 8.2). Accordingly, as an alternative to using stress functions,
elastic plate problems can be solved in a similar way by using displacement compon-
ents. As for the stress functions, third-degree polynomials for x and y, including x3y
and xy3, and functions of the type (23.6) are suitable as approximating functions.

23.3 Reinforced concrete plate elements

23.3.1 Orthogonal reinforcement

23.3.1.1 Yield conditions and stress states

Fig. 23.6(a) shows a concrete element of thickness h reinforced in the x and z direc-
tions. The reinforcement is idealised as infinitely finely distributed (continuously dis-
tributed), rigid - perfectly plastic fibres rigidly bonded to the concrete The yield locus
resulting from the cross-sectional areas asx , asz related to the unit length and the cor-
responding yield limits fyx, fyz for tension and fyxl, fyzl for compression is the one
shown in Fig. 23.6(b). We shall presume the “square yield condition” (7.37) for
the concrete, which was introduced in section 7.3.3.5. Using (5.24), the result in
the space nx, nz, nxz is the elliptical cone surfaces shown in Fig. 23.6(c), which
have the following equations:

Yc w n2
xz s nxnz w 0 , Yclw n2

xz s (hfc S nx)(hfc S nz)w 0 (23:19)

Similarly to the construction of Fig. 21.18(f), combining Fig. 23.6(b) and Fig. 23.6(c)
leads to the yield surface shown in Fig. 23.6(d) for the reinforced concrete element.
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According to Fig. 23.6(e), this is divided into seven regimes that satisfy the condi-
tions:

Y1 w n2
xz s (asx fyx s nx)(asz fyz s nz) w 0

Y2 w n2
xz s (hfc s asz fyz S nz)(asz fyz s nz) w 0

Y3 w n2
xz s (asx fyx s nx)(hfc s asx fyx S nx) w 0

Y4 w n2
xz s (hfc=2)2

w 0

Y5 w n2
xz S (asx fyxlS nx)(hfc S asx fyxlS nx) w 0

Y6 w n2
xz S (hfc S asz fyzlS nz)(asz fyzlS nz) w 0

Y7 w n2
xz s (hfc S asx fyxlS nx)(hfc S asz fyzlS nz)w 0

(23:20)

In regime 1, the reinforcement in both directions yields in tension, ssx = fyx and
ssz = fyz , whereas 0 j sc3 j – fc applies for the principal compressive stress in the
concrete. In regime 2, the z reinforcement yields in tension, ssz = fyz , and sc3 = – fc

applies for the concrete, – fyxl J ssx J fyx for the x reinforcement. Regime 3 is char-
acterised in a similar way by ssx = fyx , sc3 = – fc, – fyzl J ssz J fyz . In regime 5,
ssx = – fyxl, sc3 = – fc, – fyzl J ssz J fyz . Similarly, in regime 6, ssz = – fyzl,
sc3 = – fc, – fyxl J ssx J fyx. In regime 4, sc3 = – fc, – fyxl J ssx J fyx and
– fyzl J ssz J fyz . Finally, in regime 7, sc3 = – fc, 0 j sc1 j – fc, ssx = – fyxl and
ssz = – fyzl. In regimes 1 to 6, sc1 = 0, i. e. a uniaxial compressive stress state prevails
in the concrete.

23.3.1.2 Strain increments and principal direction of compression

According to the flow rule (7.13), the (generalised) deformation increments _v =
{e

.
x, e

.
z, g

.
xz}

T corresponding to the generalised stresses s = {nx, nz, nxz}
T according

to (20.22) give rise to external orthogonal vectors of the yield surfaces (23.20).
Applying (6.14), we get

cot(2a)w
_ez s _ex

_gxz

for the angle a between the x axis and the principal compression direction 3 shown in
Fig. 23.6(a). Using

cotaw

cosa

sina
w

cos2as sin2aS 1

2 sina cosa
w cot(2a)S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2(2a)S sin2(2a)

sin2(2a)

s
w cot(2a)S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cot2(2a)S 1

p
it follows that

cotaw

_ez s _ex

_gxz
S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ez s _ex

_gxz

� �2

S 1

s
(23:21)

which leads to the expressions for the seven regimes:

Y1: cot2aw (asx fyx s nx)=(asz fyz s nz)

Y2: cot2aw (hfc s asz fyz S nz)=(asz fyz s nz)

Y3: cot2aw (asx fyx s nx)=(hfc s asx fyx S nx)

Y4: cot2aw 1

Y5: cot2aws (asx fyxlS nx)=(hfc S asx fyxlS nx)

Y6: cot2aws (hfc S asz fyzlS nz)=(asz fyzlS nz)

Y7: cot2aw (hfc S asx fyxlS nx)=(hfc S asz fyzlS nz)

(23:22)
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23.3.1.3 Regime 1

According to (7.12), eq. (23.20)1, with k j 0, results in

_ex w k(asz fyz s nz) , _ez w k(asx fyx s nx) , _gxz w k2nxz

and therefore by back-substitution into (23.20)1 we get

_ex _ez w
_gxz

2

� �2

which with (6.13) leads to

_e1 w _ex S _ez j 0 , _e3 w 0 (23:23)

and also confirms (23.22)1. Eq. (23.23)2 means that the concrete remains rigid, i. e. is
not crushed. Fig. 23.7(a) illustrates the corresponding kinematic relationships. When
e
.

x i 0 and e
.

z i 0, the reinforcement in both directions yields in tension, and e
.

1 i 0
means that collapse cracks form in the concrete parallel with the principal compres-
sion direction 3. This corresponds to the case a = p/2 in Fig. 7.12(b), and (7.38)
shows that – because we presume fct = 0 – no energy is dissipated in the concrete.

Fig. 23.7(b) illustrates the static relationships corresponding with Fig. 23.7(a), where

nx w hsc3 cos2aS asx fyx , nz w hsc3 sin2aS asz fyz , nxz ws hsc3 sina cosa

(23:24)

The condition sc3 j – fc leads to the limit of validity

asx fyx S asz fyz s nx s nz J hfc (23:25)

Eq. (23.24), using the parameter k = |cota|, gives us the relationships

asx fyx j nx S k nxzj j , asz fyz j nz S
1

k
nxzj j (23:26)

for the dimensioning. In practice, k = 1 is often used, which corresponds to assuming
a = ep/4.

Example 23.4 Uniaxial tension

A 200mm thick concrete plate is reinforced on both sides with Ø18mm bars at a spacing of 150mm in
the x direction and with Ø12mm bars at a spacing of 200mm in the z direction. We shall assume
fyx = fyz = 500N/mm2 and fc = 15N/mm2. The task is to calculate the ultimate resistance for a uni-
axial tension n1 applied at any angle f to the x axis, see Fig. 23.8(a).
Using (5.19), the following applies:

nx w n1 cos2f , nz w n1 sin2f , nxz w n1 sinf cosf

The resistances of the reinforcing bars are

asx fyx w
92 � p � 500

150
� 2w 1696.5 kN=m , asz fyz w

62 � p � 500

200
� 2w 565.5 kN=mw asx fyx=3

Eq. (23.20)1 results in

(asx fyx s n1 cos2f)(asx fyx=3s n1 sin2f)w n2
1 sin2f cos2f
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from which it follows that

n1 w
asx fyx

3 sin2fS cos2f

see Fig. 23.8(b). Therefore, (23.22)1 leads to

cotaw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
asx fyx s

asx fyx cos2f

3 sin2fS cos2f

asx fyx

3
s

asx fyx sin2f

3 sin2fS cos2f

vuuuuuut w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 sin2fS cos2fs cos2f

sin2fS

cos2f

3
s sin2f

vuuut w 3 tanf

see Fig. 23.8(c). As nx + nz = n1 j asz fyz, then (23.25) is satisfied, asx fyx I hfc = 3000kN/m, i. e.
regime 1 is actually applicable.
For the limiting cases of f = 0 and f = 90h, the direction of the collapse cracks is orthogonal to the
principal tension direction, a + f = 90h. For intermediate values, then a + f I 90h, i. e. the collapse
cracks rotate from the direction perpendicular to the principal tension direction to the direction of the
stronger reinforcement in the x direction. When f = 30h, then, for example, a = 30h applies; com-
pared with the initial direction of the cracks, which are approximately perpendicular to the principal
tension direction, a redistribution of 30h can be expected by the time the ultimate resistance is reached.

23.3.1.4 Regime 2

According to (7.12), eq. (23.20)2 results in

_ex w 0 , _ez w k(hfc s 2asz fyz S 2nz) , _gxz w k2nxz

The associated MOHR’s circle for the strain increments shown in Fig. 23.9(a) reveals
that the principal directions 1 and 3 bisect the angles p – 2a and 2a between slip
lines I and II. The slip lines are inextensible, e

.
I = e

.
II = 0.
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The significance of the slip lines can be seen in the collapse mechanism shown in Fig.
23.9(c). According to (7.38), the unit displacement vector at an angle p/2 – 2a to
the element of length 1 in the II direction results in dissipation work amounting to
hfc[1 – cos(2a)]/2 in the concrete. Added to this is an amount asz fyzcos(2a) for the
yielding reinforcement in the z direction. The dissipation work is opposed by the
work nz cos(2a) + nzx sin(2a) of the external forces, i. e.

nz cos(2a)S nzx sin(2a)w
hfc
2

[1s cos(2a)]S asz fyz cos(2a)

or rather

nzx w (asz fyz s nz) cot(2a)S
hfc
2

tana (23:27)

Differentiating this expression with respect to tana and equating to zero leads to
(23.22)2, and back-substituting into (23.27) results in (23.20)2. The uniaxial compres-
sive stress state at the yield limit of the concrete shown in Fig. 23.9(b) is therefore
compatible with collapse mechanisms characterised by a displacement orthogonal
to the first slip line along the second slip line.

Yield regime 2 applies, in particular, in beams with thin webs heavily reinforced or
prestressed in the x direction. A web crushing failure can occur in such cases.
Such a failure is characterised by yielding of the shear links (often called stirrups)
in the z direction and crushing of the web concrete (which is compressed at an angle a

to the x direction) along slip lines at an angle 2a to the x axis.

23.3.1.5 Regime 4

Regime 2 is transformed to regime 4 at the limiting case a p p/4. According to
Fig. 23.9(c), the result is a pure slip parallel with the z axis. Eq. (23.27) is simplified
to nzx = hfc/2, see (23.20)4.

23.3.2 General reinforcement

The effect of reinforcement inclined at an angle bi to the x axis can be ascertained
through equivalent mean stresses

nxs w asissi cos2bi , nzs w asissi sin2bi , nxzs w asissi sinbi cosbi (23:28)

which are limited by

s fyilJ ssi J fyi (23:29)

see Fig. 23.10. Each reinforcement direction corresponds to a vector in the
nx, nz, nxz space. Combining two reinforcement directions results in a parallelogram,
and combining three non-collinear reinforcement directions results in a parallelepiped.
The yield surface of a concrete plate element reinforced in this way can be obtained in
a similar way to Fig. 23.6(d).
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23.4 Static method

23.4.1 General

This section deals with the application of the static method (chapter 21.3.1) to re-
inforced concrete plates. Related problems in geotechnical engineering, which gener-
ally correspond to a coplanar strain state and can be dealt with in a similar way, are also
mentioned.

Linear elastic analyses have very limited applicability for reinforced concrete plates
because of the cracking of the concrete and the yielding of the reinforcement. Such
analyses permit the structural behaviour in the uncracked state to be ascertained,
also an estimate of the position and direction of the first cracks and the associated
loads. They also supply a statically admissible stress state which, in conjunction
with (23.26), for example, can form the starting point for dimensioning. This ap-
proach, popular in practice, essentially corresponds to applying the static method.
However, the practical application is often fraught with considerable difficulties.
Stress concentrations can demand reinforcement layouts that are impractical, maybe
even impossible. On the other hand, the minimum reinforcement distributed over the
plate, which is required anyway, is frequently exploited to only a moderate degree,
which compromises the economy.

In order to overcome these problems and enable a consistent procedure based on the
lower-bound theorem, alternative methods must be found for achieving statically ad-
missible stress states. From observations of the crack patterns and deformations of
reinforced concrete plates and beams, it is possible to visualise and follow the internal
forces rigorously with the help of truss models. Expanding the truss bars and joints to
finite plate areas enables us to reach discontinuous stress fields. Finally, stringer-
panel models with an orthogonal mesh of tension and compression members plus
intermediate panels in shear is another practical way of idealising plates with orthog-
onal reinforcement.

23.4.2 Truss models

23.4.2.1 Introductory example

Fig. 23.11(a) shows one half of a simply supported plate subjected to a uniformly
distributed load applied along CD. Only a bending moment acts at section BC. As
illustrated, the moment can be replaced by the couple formed by the resulting tensile
and compressive forces in the cracked bottom part and compressed upper part of the
plate. It is assumed below that these forces can be transferred within the plate in the
same way as a parallel-chord truss.

In the model shown on the left of Fig. 23.11(b), tension chord AB and compression
chord CD are connected together via strut AD. A point load equivalent to the uni-
formly distributed load of Fig. 23.11(a) acts at joint D. The tensile force at B is trans-
ferred by the tension chord to support joint A and must be anchored there. On the right
of Fig. 23.11(b), the strut is replaced by the fan ACD centred on A. In the fan, radial
compressive stresses – the magnitude of which is inversely proportional to the distance
from A – act in the direction of A. Owing to the uniformly distributed vertical load and
the successively increasing inclination of the fan forces, the horizontal forces along
DC transferred to the compression chord vary linearly, which leads to a parabolic
variation in the force in the compression chord. Area ABC between the tension chord
and the fan remains stress-free.

In Fig. 23.11(c), the uniformly distributed load in the left-hand diagram is replaced by
two statically equivalent point loads at D and E carried via the polygonal strut CDEA.
The figure on the right shows the polygonal strut replaced by the continuous parabolic
arc CA. A homogeneous uniaxial compressive stress state in the vertical direction pre-
vails in area ACD, as shown, and area ABC remains stress-free. The lateral extent of
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the parabolic arc is ignored and so the compressive stresses in the arc are infinitely
large.

The effect of including vertical shear links is examined in Fig. 23.11(d). On the left,
the load is replaced by two statically equivalent point loads, as in Fig. 23.11(c). The
vertical force transferred via strut EB to joint B is suspended from joint F by tie BF
and transferred from there, together with the second point load, via strut FA to sup-
port A. At B the tensile force in the bottom chord is reduced by the horizontal com-
ponent of the force in strut BE. Accordingly, at support A it is no longer necessary to
anchor the full tensile force occurring at C, which means the reinforcement in the ten-
sion chord can be curtailed. The two struts AF and BE in the left half of the figure
correspond to the fan AEF and the parallelogram-shaped panel ABDE shown on
the right of the figure. A homogeneous uniaxial compressive stress state in the con-
crete prevails in panel ABDE, and uniformly distributed vertical shear link forces in
area ABEF. The force in the compression chord exhibits a parabolic variation along
FE and a linear variation along ED. Likewise, the variation in the tension chord force
along AB is linear. The stresses in area BCD remain equal to zero.
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23.4.2.2 Commentary

The introductory example reveals clearly different fundamental structural responses:
strut action, fan action and arch action. It also illustrates the effect of regularly
spaced shear links. On the whole, it shows how truss models can be employed plaus-
ibly to find internal force states that are in equilibrium with given external forces.

However, the introductory example also throws up various questions that need to be
investigated. The first problem area concerns the infinitely large compressive stresses
that theoretically occur at the origin of the fan in Fig. 23.11(b) and (d) as well as the
arch in Fig. 23.11(c). The second question concerns the effect of distributed horizontal
reinforcement. Thirdly, in the light of the varying chord forces, the assumption of par-
allel chords requires further discussion. And finally, a general discussion is necessary
regarding how the ideal truss joints can be replaced by finite nodal zones – in which
statically admissible stress states occur that do not infringe the yield conditions – when
presuming finite material stiffnesses. All these questions are looked at in sec-
tion 23.4.3.

Another question that often causes irritation can be illustrated, for example, by the left
part of Fig. 23.11(b). The figure corresponds to a funicular polygon of the forces. In
order to achieve a stably supported truss that is stable in itself, a hinged support at A
plus a strut BD must be introduced, for example, and the other half of the system
modified accordingly. Strut BD and its symmetrical counterpart would then be iden-
tified as zero-force members for the given loading, and the horizontal component of
the support force at A would also be zero because of the absence of horizontal loads.
As we can see, strictly speaking, the term truss model only applies when Fig. 23.11(b)
is modified in this way. Notwithstanding, we shall continue to use this term for figures
that – like Fig. 23.11(b) – are reduced to the essentials.

23.4.2.3 Practical application of truss models

An iterative procedure is generally necessary when developing truss models. Trial and
error leads to an initial truss geometry that is then successively improved. In doing so,
it is important to check that the plate areas corresponding to the compression members
in the truss, taking into account the effective compressive stress of the concrete, fit into
the given geometry of the structural member and that the forces corresponding to the
tension members in the truss can be accommodated and properly transferred by the
reinforcement.

It is often advantageous to consider only the effect of the (concentrated) main re-
inforcement in the first step. The effect of distributed (minimum) reinforcement
can then be taken into account in a fine-tuning, second step.

The development of truss models is a skill that needs to be practised. Helpful here is
the fact that certain basic themes often recur, see Fig. 23.12. Further examples are
shown in Fig. 23.13.

Fig. 23.14 shows a truss model with tana = 3/4 and nx = nz = 0 which corresponds to
Fig. 23.6(a). Equilibrium at the perimeter joints (assuming yielding reinforcement)
calls for

(nzx=4) � 4=3w asx fyx=4 , (nxz=3) � 3=4w asz fyz=3

which confirms both (23.20)1 and (23.22)1. Additional forces nx and nz would have to
be accommodated by additional reinforcement and transferred through the element.
The truss model illustrates in a very graphic way how yield regime 1 functions in plate
elements with orthogonal reinforcement. The further relationships (23.20) and (23.22)
can be verified by employing similar approaches.
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At positions of force transfer, a good recommendation is to consider the stresses
occurring according to the elastic strength of materials at a spacing equal to about
the width of the plate and develop a truss model based on that. For example, the con-
centrated force applied to the top edge of the plate in Fig. 23.15 spreads out while
activating the distributed horizontal reinforcement in the upper part of the plate GDEF
in such a way that it is distributed uniformly in the middle part of the plate HCDG; it is
then transferred to the supports at A and B through the activation of the distributed
horizontal reinforcement in the bottom part of the plate ABCH. Fig. 23.16 shows a
similar problem with a force that is applied eccentrically, e. g. as a result of anchoring
a prestressing tendon.

23.4.3 Discontinuous stress fields

23.4.3.1 Stress discontinuity lines

For reasons of equilibrium, the normal and shear stresses at every line element with
direction t must be continuous:

sI
n w sII

n , tI
tn w tII

tn (23:30)

see Fig. 23.17, whereas the normal stress components parallel with t may be discon-
tinuous:

sI
t w sII

t or sI
t0sII

t (23:31)

Once (23.31)2 is satisfied, we speak of a stress discontinuity line. The poles of the
MOHR’s circles for stress states I and II on both sides of a stress discontinuity line
lie together with the common stress point N on a line parallel with t.

Example 23.5 Vertical embankment

Fig. 23.18 shows a vertical embankment of height h. It is presumed that the material is homogeneous,
satisfies the COULOMB yield condition and exhibits a body load q. The yield condition for f i 0
along line z = h is just satisfied by the stress state shown in the figure and not infringed at any other
point. Using (7.30)1, it follows that according to (21.4),

hj
2c

q
tan

p

4
S

f

2

� �
w

2c cosf

q(1s sinf)
(23:32)

When f = 0, the (TRESCA) yield condition in the range x j 0, z j h is satisfied and not infringed
at any other point; h j 2c/q applies.
When z i h, the z axis plays the role of a stress discontinuity line; sz increases abruptly by the
amount qh.
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23.4.3.2 Overlapping stress fields

With two overlapping stress fields, the associated stress vectors for surface elements in
the same direction are added together as vectors. Fig. 23.19 shows a corresponding
diagram with MOHR’s circles for elements with normal direction x. The hydrostatic
pressures p1 and p2 are added together algebraically, the deviatoric components s1 and
s2 vectorially.

Example 23.6 Strip foundation on TRESCA half-space

Fig. 23.20 shows the overlap between two stress fields 5 inclined at p/3 to the horizontal, a vertical
stress field 6 and a horizontal stress field 7, all of which are loaded uniaxially by compressive
stresses with a magnitude of 2c. Principal compressive stresses with a magnitude of – 3c and –c in-
clined at p/6 and p/3 to the horizontal ensue in the overlap area 3 of fields 5 and 7. A hydrostatic
compressive stress state with a magnitude of 2c ensues in the overlap area 4 of fields 6 and 7. Prin-
cipal compressive stresses of – 4c and – 2c inclined at p/3 and p/6 to the horizontal ensue in area 2,
horizontal and vertical principal compressive stresses of – 3c and – 5c in area 1. All partial stress states
comply with the TRESCA yield condition. Consequently, the uniform bearing pressure applied by a
strip foundation to a weightless half-space of TRESCA material upon reaching the limit load cannot
be less than 5c. In reality, we have the exact solution (2 + p)c for this problem named after
PRANDTL, see example 23.10.
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23.4.3.3 Nodal zones

By choosing the stresses –sA, –sB and –sC in the truss diagonals, the resulting widths
of those diagonals are tA = –A/(hsA), tB = –B/(hsB), tC = –C/(hsC) for forces A, B
and C in equilibrium according to Fig. 23.21(a) and Fig. 23.21(b), where h = plate
thickness. The intersections A, B, C, of the boundary lines of the truss diagonals de-
fine a triangular nodal zone, see Fig. 23.21(b). The MOHR’s circles with their poles a,
b and c corresponding to the three diagonals are shown in Fig. 23.21(c). The lines
parallel with the boundary lines of the joint passing through poles a, b, c intersect
with the corresponding circles at points A, B and C. Two of these three points define
the MOHR’s circle for the stresses in the nodal zone, which is centred on the s axis.
The third point must likewise lie on this circle with the principal stresses s1 and s2.
Another control mechanism is that straight lines Aa, Bb, Cc must intersect at pole d of
this circle.

If we choose sA = sB = sC = s0, then the MOHR’s circles for the three truss diagonals
coincide, and the MOHR’s circle for the nodal zone degenerates to the point
s1 = s2 = s0 on the s axis. The boundaries of the joint are orthogonal to the directions
of the diagonals and a (biaxial) hydrostatic stress state ensues in the nodal zone, see
Fig. 23.22(a).

When one of the three forces acting on the nodal zone is a tensile force, the situation
that ensues is, for example, that shown in Fig. 23.22(b). In the left part of the figure it is
assumed that C is anchored to a rigid plate beneath the joint and acts on the joint via
this and a short uniaxial compression field. An anchorage for C in the form of uni-
formly distributed bond forces along the line of intersection of the two struts is pre-
sumed in the right part of the figure.

Fig. 23.22(c) shows analogous stress fields for the case of two tensile forces acting
on the nodal zone. Forces A and B are transferred along AO and BO via uniformly
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distributed bond forces in the right part of the figure. A uniaxial compressive stress
state parallel with AB is established in area OAB, see Fig. 23.22(d).

Anchoring ties via end plates as presumed on the left of Fig. 23.22(b) and Fig. 23.22(c)
is rarely possible in practice. Fig. 23.23(a) shows a similar detail for the support joint
of a plate. Fig. 23.23(b) shows an equivalent solution suitable for reinforced concrete
which has four horizontal U-bars and two heavy-duty vertical dowel bars in the cor-
ners. The effect of this reinforcement can be analysed using the truss models drawn in
Fig. 23.23(c). The horizontal compressive stresses in the concrete arising behind the
nodal zone are transferred locally to the bends of the U-bars via arch or shell action in
the concrete as well as via the dowel action of the vertical bars. This means that the
middle part of each U-bar running orthogonal to the plane of the plate is stressed in
tension. Activating the concrete in the concrete cover to the U-bars on both sides
causes tensile stresses in the concrete orthogonal to the plane of the plate between
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the individual longitudinal legs of the U-bars, which could lead to spalling of the con-
crete cover.

23.4.3.4 Homogeneous partial stress fields

The reinforcement in concrete plates is generally in the form of a distributed minimum
reinforcement and concentrations of additional reinforcing bars. The minimum re-
inforcement limits cracking (see Fig. 18.15 and associated discussion) and guarantees
adequate deformation capacity. In most cases it also makes a significant contribution
to the ultimate resistance. Discontinuous stress fields can be used to describe very
graphically how it does this.

Fig. 23.24(a) shows one half of a plate with span a which is loaded along its top edge
by a load Q uniformly distributed over the width 2c. There is indirect support along
edge AJGF, i. e. the plate is connected to a second plate here which transfers the load
further. The plate with depth b and thickness h is reinforced horizontally and verti-
cally with finely distributed reinforcement having a geometric reinforcement ratio
r = as/h = const. The yield limit of the reinforcement is fy , the effective compressive
strength of the concrete fc. Compressive stresses in the reinforcement are neglected.

The stress distribution given in the figure ensues at section BCD. There is no normal
force present and so the expression for the depth of the zone in flexural compression is
b/[fc/(rfy) + 1], and equilibrium of moments results in

Qw

2b2h fc

(as c)
fc

r fy
S 1

� � (23:33)

It is easy to draw the discontinuous stress field if we assume a truss model with strut IJ
and tie JK. Point K lies in the middle of distance BC, and point I halves distance CE.
A biaxial compressive stress state – given by the stresses indicated at the top and to the
side – prevails in area 1 (CDE). In area 2 (CEG), whose boundary EG is parallel with
IJ, the outcome is a uniaxial compressive stress state parallel with that boundary. A
uniaxial, horizontal tensile stress state prevails in area 4 (ABC), and a biaxial tensile-
compressive stress state is the result in area 3 (ACG) between areas 2 and 4. The
MOHR’s circles and their poles corresponding to the four partial stress fields are easily
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constructed from the known boundary stresses and the known stress discontinuity
lines (exercise 23.15). The stress in area 5 (EFG) is zero.

In Fig. 23.24(b), the indirect support is replaced by a direct support of width d. In a
similar way to (23.33), we get

Qw

2b2h fc

(as cs d)
fc

r fy
S 1

� � (23:34)

In the truss model, the support force is directed vertically upwards towards joint J,
where it is balanced by the forces from strut IJ and tie KJ. Boundary FH to area 2
is parallel with IJ. The partial stress fields 1 to 4 are similar to those in Fig.
23.24(a). There is also the vertical, uniaxially compressed area 5 (ABH). The stress
in area 6 (FGH) is zero.

23.4.3.5 Supplementary remarks

Any loadings can be dealt with according to Fig. 23.25 by first replacing them by their
resultant Q and carrying this with an equivalent diagonal ACDE. In the subsequent
fanning-out of the truss diagonal, it is only the form of the boundary of joint AC
that changes; points A and C are not displaced. It is presumed here that a coplanar
hydrostatic compressive stress state according to Fig. 23.22(a) prevails in the nodal
zone.

A further development of the stress field shown on the right of Fig. 23.11(d) is shown
in Fig. 23.26. Nodal zone ABEF has finite dimensions and compression zone LMNJK
varies in depth. Bond forces are transferred to the longitudinal reinforcement along
GH, and shear link forces are activated in area GHNM. The loading on area LM is
carried directly via fan AFML. Fan FGNM carries the shear link forces and the loads
applied over area MN. The parallel concrete compressive stress field ABDE in
Fig. 23.11(d) becomes area GHJN, which carries the loads over area NJ and transfers
these to the bottom ends of the shear links. The lines of action of the individual stress
resultants are indicated by chain-dot lines.

Complete stress fields such as those of Fig. 23.26 are rarely required. It is mostly suf-
ficient to examine just a few important details in depth with the help of the methods
explained here.
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Suitable “suspension reinforcement” should be provided in a beam or plate carrying
suspended loads. Such reinforcement enables the load to be carried either concentrated
on the opposite edge or distributed over the depth of the structural member.

23.4.4 Stringer-panel model

One notion that is often helpful is to model a reinforced concrete plate replaced by an
orthogonal network of stringers and shear-resistant infill panels. External forces can
be applied either concentrated at the joints of the network or distributed along the
stringers.

We shall consider a 250mm thick plate subjected to a shear flow of 750kN/m in order
to explain this model. The plate serves as the bottom plate of a hollow box girder with
side webs at a spacing of 2m. There is a square access opening measuring 0.7q0.7m
in the centre of the plate. Fig. 23.27 shows a corresponding stringer-panel model with
four transverse stringers (1 to 4) at a spacing of 800mm and two longitudinal stringers
(B, C) which are 800mm apart and 600mm from the side webs (A, D).

Assuming symmetrical behaviour, the shear flows in the four panels adjoining the
opening are statically determinate, and therefore we can also calculate the shear flows
in the four panels in the corners of the model plus the forces in the stringers as well.
The maximum shear flow of 1250kN/m occurs in the two panels between the opening
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and the web, and the maximum forces of e500kN in the longitudinal stringers occur
at the corners of the opening.

The relationships (23.26) can be used to dimension the panels. If the stringer forces
cannot be accommodated locally by concentrations of reinforcement or compression
zones, then they must be transferred to the panels at the side, which must then be able
to handle such forces. This approach requires additional transverse reinforcement, for
which it is expedient to employ truss models for the dimensioning, in a similar way to
the bursting reinforcement required at the anchorages of prestressing tendons.

As with the development of truss models and discontinuous stress fields within the
scope of the equilibrium conditions, there is plenty of leeway when developing
stringer-panel models. With more and more practice, this freedom can be utilised
better and better, and the outcome is an individual procedure that enables the flow
of the forces – on both a large and a small scale – in a structure to be ascertained
with an accuracy that is adequate for the respective purpose.

23.5 Kinematic method

23.5.1 Applications in reinforced concrete

23.5.1.1 Overview

Fig. 23.28(a) illustrates the typical collapse mechanism of an under-reinforced beam
subjected to bending moments and shear forces. Theoretically, a collapse crack opens
up (see regime 1 discussion in section 23.3.1), which is intersected by yielding longi-
tudinal reinforcing bars and shear links.

When the longitudinal reinforcement is strong enough, it does not yield, and a web
crushing failure according to Fig. 23.28(b) can occur (regime 2 in section 23.3.1.3).
The failure is characterised by yielding of the shear links and crushing of the web con-
crete in a parallelogram-shaped region; in this situation, the lines parallel with the in-
clined boundary lines within the area are active slip lines II according to Fig. 23.9(c).

Similar translation mechanisms with a discrete slip line are possible in corbels, for
example, see Fig. 23.28(c). The result for pure strut action is generally rotation
mechanisms with hyperbolic slip lines, see Fig. 23.28(d).

In the case of continuous beams and statically indeterminate frames, the areas in which
plastic deformations occur (region I according to section 21.2.1), must be sufficiently
extended in order that collapse mechanisms can actually become established. It is pos-
sible to use Fig. 21.3 as a guide here and replace the plastic hinges that occur by dis-
continuities of the type shown in Fig. 23.28, see Fig. 23.29. In doing so, it is important

512 23 PLATES

V PLATES AND SHELLS

(a)

(b)

(c) (d)

Fig. 23.28 Applying the kinematic method to plates: (a) flexural-shear failure, (b) web crushing failure,

(c) corbel failure, (d) hyperbolic slip line corresponding to pure strut action



to realise that, for example, a rotation mechanism with a slip line according to
Fig. 23.29(c) in an end span of a continuous beam is already enough to cause collapse.
Likewise, a translation mechanism with two slip lines according to Fig. 23.29(f) can
lead to failure of an interior span in a continuous beam.

23.5.1.2 Flexural failure

Simple flexural failure mechanisms are often compatible with discontinuous stress
fields, see (21.2) and section 21.2.4. For example, the stress field shown in Fig.
23.24(a) is compatible with a collapse mechanism that exhibits a collapse crack
that starts at C and has an open end at B, and in which the concrete is crushed along
CD. The two halves of the plate rotate with respect to each other about point C;
a = p/2 and a = –p/2 apply along BC and CD according to Fig. 7.12(b). Points C,
D and E in the stress field shown in Fig. 23.24(b) play the roles of B, C and D in
Fig. 23.24(a).
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A collapse mechanism compatible with the stress field of Fig. 23.25 is one in which
there is a collapse crack along AE and a crushing zone along AC.

The collapse mechanisms compatible with Fig. 23.26 are those with centre of rota-
tion J and crushing zone JK and one or more collapse cracks in area IJH running
towards J.

We can see that the crushing of the concrete compression zones considered here is only
possible in a coplanar stress state. The strain increments perpendicular to the plane of
the plate are uninhibited in this case, see the remark following (7.38).

23.5.1.3 Flexural-shear failure

Fig. 23.30 shows an element of a beam with parallel chords AB and CD at a spacing d;
N, Vand M are the stress resultants in cross-section AD at the open end A of a collapse
crack and As denotes the cross-sectional area of the reinforcement in the tension chord
at point A. There is also reinforcement distributed uniformly over the plate in the x and
z directions, the cross-sectional areas of which related to the unit width are asx and asz

respectively. All the reinforcement has a yield limit fy .

A unit rotation about C gives us the work equation

M SN
d

2
SVd cotawAs fy d S asx fy

d2

2
S asz fy

(d cota)2

2
or rather

M

d
S

N

2
sAs fy s asx fy

d

2
wsV cotaS asz fy

d

2
cot2a

Differentiating the expression on the right with respect to cota and equating to zero
results in

V w asz fyd cota (23:35)

and therefore
M

d
S

1

2
(N s asx fyd)S

V cota

2
wAs fy (23:36)

applies.

Example 23.7 Curtailed reinforcement in tension chord

The tension chord reinforcement in the beam shown in Fig. 23.31, with d = 1.11m, is curtailed from
eight to four Ø30mm bars at A. The Ø10mm two-leg shear links at a spacing of 200mm provide
asz = 52 ·p · 2/0.2 = 785mm2

/m. The structural longitudinal reinforcement distributed over the depth
of the beam is neglected, asx = 0. The task is to check the admissibility of curtailing As for the given
forces and assuming fy = 435N/mm2.
We introduce a collapse crack AC with centre of rotation C and assume that the first and last shear
links in the critical zone are located at sections AD and BC, but do not intersect the collapse crack and
thus remain rigid. We therefore get the expressions

_W w 655 � (1.5S n � 0.2)s 87 � 1.5 � (0.75S n � 0.2)s 13.5 � (n � 0.2)2=2

_Dw 4 � 152 � p � 435 � 1.11S (ns 1) � 2 � 52 � p � 435 � n � 0.2=2

for the work of the external forces, or rather the dissipation work. When n = 8, we get the minimum
ratio D

.
/W

.
= 1747.9kNm/1706.5kNm = 1.024 i 1. So the curtailment is permissible, albeit only

just.
Assuming continuously dristibuted instead of individual shear links, then (23.35) results in
cota = (655 – 87 ·1.5)/(785 ·435 · 1.11) = 1.383. The left side of (23.36) then equals
[655 ·1.5 – 87 · (1.5)2

/2]/1.11 + (655 – 87 ·1.5) ·1.383/2 = 1159.7kN, which is 1.061 times smaller
than the resistance As fy = 4·152 ·p ·435 = 1229.9kN.
This example shows that it is not safe to assume continuously distributed reinforcement. Taking into
account reinforcing bars at discrete spacings leads to lower limit loads. This effect can be considerable
if the spacing of the bars is large compared with the depth of the beam and must be taken into account.
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23.5.1.4 Web crushing failure

The parallel-chord beam shown in Fig. 23.32 (chord spacing d, web thickness h) is
reinforced with vertical shear links at a spacing s, each of which has a cross-sectional
area Asz and a yield limit fy . The effective concrete compressive strength is fc. As in
Fig. 23.31, discrete slip lines between the ends of the shear links are considered in such
a way that the first and last shear links are not activated.

If a translation mechanism is assumed, then the following applies for the work of the
external forces:

_W wV S

Ðns

0

qinfdx (23:37)

and using (7.38), the result for the dissipation work is

_Dw (ns 1)Asz fy S
fch

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

S (ns)2
q

s ns

� �
(23:38)

Varying n allows us to determine the most critical (smallest) ratio D
.
/W

.
from (23.37)

and (23.38).

Assuming continuously distributed shear links with asz fyz = Asz fy/s, it follows from
(23.20)2 and (23.22)2 (assuming nz = 0 and V = dnxz) that

V w hdfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Asz fy
shfc

1s
Asz fy
shfc

� �s
, cotaw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
shfc
Asz fy

s 1

s
(23:39)
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Differentiating the expression on the right in (23.38) with respect to n and equating to
zero results in

Asz fy S
fch

2

ns2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

S (ns)2
p s s

 !
w 0

i. e.
nsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2
S (ns)2

p w 1s 2
Asz fy
shfc

Using (23.39)2, we therefore get
nsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2
S (ns)2

p w cos(2a)

i. e. the inclination of the slip line with respect to the x axis is twice as large as the
inclination a of the principal compressive stresses in the concrete, which amount
to fc. When considering the limiting case s p 0 and neglecting qinf, then (23.37)
and (23.38) therefore lead to (23.39) – see the discussion regarding regime 2 in sec-
tion 23.3.1.4.

Example 23.8 Web crushing failure

A beam with d = 2m, h = 0.3 m and fc = 12N/mm2 is reinforced with Ø14mm two-leg shear links at
a spacing s = 250mm (fy = 435N/mm2). Putting Asz = 2·72 ·p = 308mm2, eq. (23.39) gives us
V = 2562kN and a = 22.7h. However, putting qinf = 0, we get, the minimum value V = 2429kN
for n = 8 by equating (23.37) and (23.38), i. e. compared with assuming continuously distributed
shear links, a resistance that is 5.2 % lower.

23.5.1.5 Rotation mechanism with hyperbolic slip line

The rectangular area ABCD in Fig. 23.33 – like in a prism compression test – is
loaded by homogeneous compressive stresses of magnitude fc. The task is to find
the most general rotation mechanism with a discontinuity line between points A
and C. To do this we shall assume a system of Cartesian coordinates parallel with
the principal directions 1, 3 of the stress state with centre of rotation O and consider
any random point P on the discontinuity line with the coordinates x and z. The prin-
cipal directions 1 and 3 bisect the angles between slip lines I and II at P and therefore
the differential equation

dx

s dz
w

x

z

applies, which has the solution

xzw const (23:40)

i. e. slip line AC is a hyperbola. As xA = xD, zA= zB, xC = xB , zC = zD and xAzA = xCzC,
then xDzB = xBzD or xB/zB = xD/zD, i. e. the centre of rotation O lies on the continu-
ation of diagonal BD.

The rotation mechanism becomes a translation mechanism with the straight discon-
tinuity line AC if O migrates to infinity. If, on the other hand, O coincides with D,
a collapse crack opens along DC, and the concrete is crushed along DA; the hyperbola
degenerates to the right-angle ADC.
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Example 23.9 Dissipation at hyperbolic slip line

Fig. 23.34 corresponds to the rotation mechanism illustrated in Fig. 23.29(c), which has a hyperbolic
slip line CD in the end span AB of a continuous beam whose web has a cross-sectional area dh. The
task is to find an expression for the energy D

.
c dissipated in the concrete for a unit rotation about O.

The following applies for the end C of the slip line:

jC w xC cosaS d sina , hC w xC sinas d cosa

As jh = const, jD = xDcosa and hD = xDsina, we obtain

x2
D w x2

C s d2
s 2xCd cot(2a)

which means that strut CFDE is known with respect to C and a. Instead of using (7.38) to determine
D
.

c by integrating along CD, it is easier to calculate the work (with the same magnitude) of the com-
pressive stresses (which are uniformly distributed over DE and amount to fc) at the mean displace-
ment (hD + hC)/2:

_Dc w (hD shC) fch(hD S hC)=2w (h2
D sh2

C) fch=2w
fcdh

2
(xC tanas d)

23.5.2 Applications in geotechnical engineering

23.5.2.1 Overview

Methods for dealing with geotechnical engineering problems have been developed and
used since the second half of the 18th century. However, the theory behind those
methods did not become fully available until the formulation of the upper- and
lower-bound theorems of plastic theory around the middle of the 20th century.
Most of the methods involve applications of the kinematic method and corresponding
approximation methods. Fig. 23.35 provides an overview.

Fig. 23.35(a) shows the COULOMB. yield condition in the stress plane, see
Fig. 7.10(a). Fig. 23.35(b) specifies orders of magnitude for cohesion c and angle
of internal friction f for soil, rock, concrete and steel. As the reader can see, the
COULOMB yield condition (possibly modified by limiting or neglecting the tensile
strength) allows diverse construction materials and subsoil types to be handled in the
same way

Fig. 23.35(c) and (d) illustrate the slip line fields and collapse mechanisms associated
with problems of active and passive earth pressure. The slip lines intersect at angles of
p/2 e f and do not undergo any change in length upon failure. At failure, a relative
displacement of the bodies separated by the slip line takes place along a slip line acting
as a kinematic discontinuity line. As the relative displacement is inclined at an angle f

to the slip line, there is a dilatation for f i 0. The obtuse (acute) angles formed by the
slip lines are decreased (increased) in corresponding homogeneous deformation states,
which again causes a dilatation for f i 0.
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If we apply a mechanism analogous with Fig. 23.35(c) to the problem of the unsup-
ported height of a vertical embankment shown in Fig. 23.35(e), we get the following
bound (exercise 23.19):

hJ
4c cosf

q(1s sinf)
(23:41)

where q is the body load of the soil, which is assumed to be constant, see (23.32).
Potential rotational slip failures generally require an analysis of mechanisms with
slip lines in the form of logarithmic spirals according to Fig. 23.35(f). However,
for simplicity, and because of the inhomogeneity of the subsoil, appropriate approxi-
mation methods are used in most situations.

Finally, Fig. 23.35(g) illustrates the problem of the load-carrying capacity of a strip
foundation on a TRESCA half-space (f = 0). Using the mechanism shown in the
figure and additional considerations, it is possible to show that the limit load amounts
to (p + 2)c, see example 23.10.
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It is obvious from Fig. 23.35 that in geotechnical engineering, in contrast to reinforced
concrete construction, the kinematic method of plastic theory or corresponding ap-
proximation methods are the most popular approaches. However, static methods
are becoming ever more important as construction in built-up areas becomes increas-
ingly complex. Following the flow of the forces, i. e. ascertaining the equilibrium on
the small scale, is the aspect that characterises the static method, and this method
occurs more and more alongside investigating the equilibrium on the large scale which
is possible with the kinematic method. The need for an in-depth examination of local
force variables results from the growing use of all kinds of reinforcement, anchorages
and injection methods. In a similar way to reinforced concrete construction, this leads
to composite forms of construction, and the properties of the subsoil and the construc-
tion materials are exploited in a very specific way.

The application of plastic theory to reinforced concrete benefited enormously from
corresponding earlier developments in geotechnical engineering. It seems possible
that now some developments in concrete construction could be transferred to geotech-
nical applications, with similar benefits.

23.5.2.2 Logarithmic spirals as slip lines

Consider the differential element of a slip line in COULOMB material shown in Fig.
23.36, where dr = rdu tanf. Integrating results in

r w r0eu tanf (23:42)

i. e. the equation for a logarithmic spiral. Using (7.36) with a = f and 0 J u J b and
a unit rotation about the fulcrum O results in the incremental dissipation work

_Dw

Ðb
0

c cosf � r rdu

cosf
w

Ðb
0

cr2duw

cr2
0

2 tanf
(e2b tanf

s 1) (23:43)

In TRESCA material (f = 0) the logarithmic spiral (23.42) degenerates to the circle
r = r0 = const, and we get the expression D

.
= cr0

2b instead of (23.43).

Example 23.10 Strip foundation on TRESCA half-space

The problem shown in Fig. 23.37 has already been investigated statically in example 23.6 (Fig.
23.20). In the following, the lower bound 5c for the bearing pressure q beneath the strip foundation
derived in that example is supplemented by corresponding upper bounds.
For the mechanism of Fig. 23.37(a) it is assumed that BBlA (a rigid body) is displaced vertically
downwards by the amount 1. The rigid bodies ABC, ABlCl and BCD, BlClDl to the sides are
thus displaced by 1 or

ffiffiffi
2
p

as indicated by the arrows. Relative displacements of
ffiffiffi
2
p

ensue along
AB, ABl and CD, ClDl, and relative displacements of 1 along AC, ACl and BC, BlCl. The work
equation is

qb � 1w 2 � (b=2) � c � (2 �
ffiffiffi
2
p
�
ffiffiffi
2
p

S 2 � 1 � 1)w 6bc

from which it follows that the upper bound for q is 6c.
A slip line AC in the form of a circular arc with centre at O is assumed in the mechanism of Fig.
23.37(b). A rotation of 1 about O gives us the work equation

qb2

2
� 1w c

b2

sin2b
2b

Differentiating this relationship for q with respect to b and equating to zero, we find that the minimum
point of q is given by tanb = 2b, from which it follows that b = 66.782h and q J 5.52c.
In the mechanism of Fig. 23.37(c), rigid body BBlA is displaced by 1 vertically downwards, and the
rigid bodies BCD, BlClDl to the sides are displaced by 1/

ffiffiffi
2
p

in the direction of the arrows. Quadrant
ABC rotates, on the one hand, by an amount 1/b about B in the anticlockwise direction; on the other,
it undergoes a shear deformation that is characterised by the fact that boundaries AB and CB rotate
clockwise by the amount 1/b about the displaced points A and C respectively. Opposite displace-
ments ensue for area ABlCl. There are no relative displacements along BC and BlCl.
In quadrant ABC, the radii r originating from B and the concentric circles orthogonal to these do not
experience any strains (e

.
r = e

.
f = 0); they form the slip line field. We use (23.13) to obtain the shear

strain increment g
.

rf = 1/(
ffiffiffi
2
p

r) from the displacement r/b – 1/
ffiffiffi
2
p

in the tangential direction and con-
sequently the incremental dissipation work
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_DABC w

ðb=
ffiffi
2
p

0

ðp=2

0

cffiffiffi
2
p

r
r dfdr w

cbp

4

by applying (7.32) in area ABC. The corresponding expressions for slip lines AC, AB and CD are

_DAC w c � 1ffiffiffi
2
p � bffiffiffi

2
p � p

2
w

cbp

4
, _DAB w

_DCD w c � 1ffiffiffi
2
p � bffiffiffi

2
p w

cb

2

In total, the result is

_Dw 2 � 2 � cb

2
S 2 � cbp

4

� �
w cb(2Sp)

and by equating this with the external work qb we get

qJ c(2Sp)

according to the upper-bound theorem.
The stress state compatible with the deformation state in ABC described here is given by
sr = sf = – c(1 + 2f) and trf = c, with f being measured from BC. A compressive stress state
with horizontal and vertical principal stresses of pc and (2 + p)c respectively prevails in area ABBl.
Outside of BC und BlCl, the result is horizontal compressive stresses of 2c. The continuation of the
stress state beneath quadrants AC and ACl can be achieved without infringing the TRESCA yield
condition, but will not be pursued further here [4]. As we have a statically admissible stress state
and a state of deformation compatible with this, we are dealing with a complete solution, and the
following applies:

qw c(2Sp)

23.6 Summary

1. Following a brief look at the theory of elastic plates, this chapter is devoted to
applying limit analysis to reinforced concrete plates and related problems in geo-
technical engineering.

2. For constant loads, the AIRY stress function defined in (23.3) generally satisfies
the bipotential equation (23.5).

3. A formulation with polar coordinates using the stress components (23.9) and
the LAPLACE operator (23.10) is often worthwhile. In the case of rotationally
symmetric problems, the bipotential equation (23.11) is simplified to the homo-
geneous ordinary fourth-order different differential equation (23.15) with the
general solution (23.16).

4. In order to solve elastic plate problems, an alternative approach is to assume ap-
proximations for the displacement components instead of using stress functions.
With constant loads, the result is analogous homogeneous bipotential equations,
as for the stress functions.
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5. The ultimate resistance of reinforced concrete plate elements with orthogonal re-
inforcement can be described by the yield conditions (23.20). In doing so, it is
presumed that the square yield condition (7.37) is valid for the concrete in the
coplanar stress state, and that the reinforcement consists of finely distributed,
rigid - perfectly plastic fibres rigidly bonded to the concrete.

6. When both layers of reinforcement yield in tension (regime 1), collapse cracks
open up parallel with the principal compression direction in the concrete. The di-
mensioning of the reinforcement can be carried out by presuming (23.25) based
on the relationships (23.26).

7. If only one of the two layers of reinforcement yields in tension (regime 2), the
concrete is crushed along a slip line. The principal compression direction in
the concrete then bisects the angle between the slip line and the direction of
the reinforcement that is not yielding.

8. The considerations for orthogonal reinforcement layouts can be transferred to
skew and multi-layer reinforcement layouts without any fundamental difficulties.

9. Truss models, discontinuous stress fields and stringer-panel models enable a con-
sistent treatment of (cracked) reinforced concrete plates on the basis of the lower-
bound theorem.

10. An iterative procedure is generally necessary when developing truss models. Any
distributed forces can be replaced by statically equivalent forces. The plate areas
corresponding to the truss members and joints must fit into the given geometry
and the forces to be carried by the reinforcing bars must be transferred correctly.

11. The normal stress components parallel with a stress discontinuity line may change
abruptly. The poles of the MOHR’s circles for the stress states on either side lie
together with the common stress point on a straight line parallel with the discon-
tinuity line.

12. When stress fields overlap, the stress vectors for surface elements in the same
direction must be added vectorially.

13. The intersections of the boundary lines of three struts in equilibrium with each
other define a triangular nodal zone. The stress state in the nodal zone results
from the stress discontinuities at its boundaries.

14. If the same compressive stress prevails in all struts, then each adjoins the nodal
zone at a right-angle and there is a (biaxial) hydrostatic stress state in the zone.

15. Discontinuous stress fields made up of homogeneous partial stress fields are
especially suitable for considering the resistance of the (generally uniformly dis-
tributed) minimum reinforcement.

16. It is often helpful to use the notion of an orthogonal network of stringers with
shear-resistant infill panels as a model. External forces can thus be applied as
point loads at the joints of this network or as loads distributed along the stringers.

17. Flexural and flexural-shear failure mechanisms are characterised by collapse
cracks that open up orthogonal to their direction. Reinforcement crossing the
collapse cracks yields in tension.

18. In web crushing failures, the concrete is crushed along a slip line or in an area
with parallel slip lines. The reinforcement orthogonal to the relative displacement
vector at the slip line remains rigid.

19. Collapse cracks and slip lines generally begin and end at the ends of the discretely
spaced reinforcing bars. The outermost reinforcing bars are not activated in this
situation and compared with the assumption of continuously distributed re-
inforcement, there is a certain reduction in the ultimate resistance.

20. When there is a strut-type uniaxial compressive stress state at the yield limit, a
rotation mechanism is compatible with a hyperbolic slip line in the most general
case. The origin of the system of coordinates – in which hyperbola equa-
tion (23.40) applies – parallel with the boundaries of the strut lies on a continu-
ation of the strut diagonal in the opposite direction to the slip line.
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21. The COULOMB yield condition (possibly modified by limiting or neglecting the
tensile strength) permits a uniform treatment of diverse problems in structures and
geotechnics.

22. Assuming the COULOMB yield condition, the slip lines intersect at angles of
p/2 e f, e. g. in the form of radii and logarithmic spirals. The logarithmic spirals
become circles at the TRESCA limiting case f = 0.

23.7 Exercises

23.1 Show that the relationship

DDF ws

1s 2n

1s n
DPe

similar to (23.4) applies for the coplanar strain state (see section 8.2.5).
23.2 Show that the functions f1 + x f2, f1 + y f2 and f1 + (x2 + y2)f2 are bipotential

functions, i. e. satisfy (23.5) when f1 and f2 are potential functions, i. e. satisfy
Df1 = 0 and Df2 = 0.

23.3 Show that (23.6) is a stress function, i. e. satisfies (23.5).
23.4 The dam shown in Fig. 23.38(a) is subjected to dead load (density rc) and

hydrostatic pressure (density of water = rw). Show that the stress components

sx ws rcg(x s ya=b)S rwg(x s 2ya=b)(a=b)2 , sy ws rwgx , txy ws rwgy(a=b)2

satisfy the equilibrium conditions within the dam and the static boundary con-
ditions along the water side OA and the air side OB. Discuss the stress distribu-
tion at the underside of the dam AB. What would happen if hydrostatic pressure
were to act at the underside of the dam AB and how can this be avoided?

23.5 The area 0 J x J a, 0 J y J b has the stress components

sx w s0(3bs 6y)(as x)2=b3 , sy w s0(3y2bs 2y3
s b3)=b3 , txy w s0 � 6(bs y)y(as x)=b3

Discuss the internal equilibrium and the static boundary conditions at the bound-
ary of the area. Determine the principal stress trajectories.
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23.6 Treat the stress state

sx w t0(3ys b)(as x)2=(ab2) , sy ws t0y2(bs y)=(ab2) , txy w t0y(3ys 2b)(as x)=(ab2)

in a similar way to exercise 23.5.
23.7 a) Show that the stress function

f w t r2
i s

r2

2
s

r4
i

2r2

� �
cos(2f)

describes the stress state in an infinitely large plate that is subjected to a state of
pure shear sx = –sy = t and has a circular hole of radius ri in its centre. Verify
the stress concentration factor sf,max /t = 4 at the edge of the hole.
b) Combine the stress state from part a) with the stress state discussed at the end
of example 23.2 in such a way that a uniaxial stress state ensues, and show that
the corresponding stress concentration factor is 3.

23.8 Compare the solution developed in example 23.3 for the case of re = 2ri with
(13.33).

23.9 a) Show that the stress function f = –qrsinf · (f/p) describes the case of a line
load q acting on a half-space as shown in Fig. 23.38(b), and compare the stress
state with that of exercise 7.4.
b) Show that the stress state from part a) is valid according to Fig. 23.38(c) for
forces q in any direction when f is measured from the direction of the force.
c) Show that superposing two stress states according to part a) and a homoge-
neous stress state as shown in Fig. 23.38(d) describes the stress state in a
cylindrical specimen of diameter d which is loaded by two diametrically op-
posed line loads q (split-cylinder test). Verify that a constant transverse tensile
stress of 2q/(pd ) ensues in the plane of the load.

23.10 Develop an expression similar to (23.20)2 for the pure shear resistance
(nx = nz = 0) of a reinforced concrete plate element that has reinforcement in-
clined at an angle b to the x axis, and whose reinforcement in the x direction is
so strong that it does not yield (e

.
x = 0). Compare the result for the case b = 45h

with the case of vertical shear links (b = 90h).
23.11 Replace the fan area AEF in Fig. 23.11(d) by an arc and discuss the associated

flow of the forces in comparison with Fig. 23.11(d).
23.12 Use Fig. 23.14 to expand the considerations to yield regime 2.
23.13 Examine the stress discontinuity lines occurring in Fig. 23.20 with the help of

the corresponding MOHR’s circles and their poles.
23.14 Discuss the force transfer via bond forces according to the figures on the right

of Fig. 23.22(b) or Fig. 23.22(c). In a similar way to Fig. 23.23(b), assume that
the forces C or A and B are carried by a finite number of bars and discuss the
effect of including confining reinforcement in the form of bars transverse to the
plane of the plate.

23.15 Draw the MOHR’s circles belonging to the partial stress fields of Fig. 23.24.
23.16 Develop stringer-panel models for a number of the problems shown in the

lower half of Fig. 23.12 and Fig. 23.13.
23.17 Develop a discontinuous stress field for the problem of Fig. 23.27.
23.18 The same assumptions apply to the corbel of thickness 1 shown in Fig. 23.38(e)

as for Fig. 23.24. Develop a stress field made up of homogeneous partial stress
fields and discuss the collapse mechanism compatible with this. Ignore the
compressive stresses in the reinforcement and show that the limit load is
r fysin2a/(cos2a + r fy/fc).

23.19 Verify (23.41).
23.20 Show that by assuming a logarithmic spiral as a slip line, the factor of 4 occur-

ring in (23.41) can be reduced to 3.83. Note that the centre of rotation is de-
termined by two parameters.
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23.21 Replace the right-angles at A and C in Fig. 23.37(c) by p/2 – f and p/2 + f

and quadrant AC by the corresponding logarithmic spirals. Show that the
relationship

qw c cotf ep tanf tan2 p

4
S

f

2

� �
s 1

	 

applies for a weightless COLOUMB material and that it is simplified to
q = c(2 + p) for the limiting case f = 0.
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24 SLABS

24.1 Basic concepts

24.1.1 General

The stress resultants connected with plate and shell structures were introduced in sec-
tion 5.1.7, see Fig. 5.16, as well as relationships (5.14), (5.15) and (5.16). Bending
moments, twisting moments and shear forces are our prime concern when looking
at slabs (= out-of-plane-loaded elements). Membrane forces are relevant, for example,
when slabs function as parts of folded plate structures, also in inhomogeneous cross-
sections such as reinforced concrete slabs whose deformations in the plane of the slab
are inhibited. In addition, membrane forces generally have to be considered when the
deflections of a slab in relation to its thickness can no longer be regarded as small
(second-order problems).

The basic static, kinematic and constitutive relationships for homogeneous, linear
elastic slabs with small deflections were presented in section 8.2.6. In doing so, a
distinction was made between slabs rigid in shear and slabs with finite shear stiffness,
in a similar way to framed structures (sections 8.2.2 and 8.2.3).

The first pages of this chapter are devoted to a detailed examination of the static and
kinematic relationships (sections 24.1.2 and 24.1.3); second-order effects are also
taken into account in this discussion. Section 24.2 contains an outline of the theory
of linear elastic slabs rigid in shear with small deflections. Sections 24.3 to 24.5
are concerned with the application of limit analysis to slabs, with the emphasis
here on reinforced concrete slabs. Sections 24.6 and 24.7 explain the influence of
shear and membrane forces.

24.1.2 Static relationships

24.1.2.1 Equilibrium conditions

According to Fig. 8.8(a) and eq. (8.38), using Cartesian coordinates results in the
relationships

vx, x S vy,y S qw 0 , vx wmx, x Smxy,y , vy wmyx, x Smy,y (24:1)

and combining these results in

mx, xx S 2mxy, xy Smy,yy S qw 0 (24:2)

see (8.47).

We get similar results when using cylindrical coordinates (Fig. 24.1):

(rvr),r S vf,f S qr w 0 , rvr w (rmr),r smf Smrf,f , rvf w 2mrf S rmrf,r Smf,f

(24:3)

and combining these results in

r � (rmr),rr Smf,ff s r � mf,r S 2(rmrf),rf S qr2
w 0 (24:4)

In cases where loading and supports are rotationally symmetric, then mrf and vf dis-
appear, and mr, mf and vr only depend on r. From (24.4) it follows that

(rmr),r smf S

Ðr
0

qrdr w 0 (24:5)
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24.1.2.2 Stress transformation

We can read off

vw
vn

vt

� 
w

cosf sinf

s sinf cosf

	 

vx

vy

� 
w cT 7 v (24:6)

from Fig. 24.2. Where mij = mji , it also follows that

mn

mt

mnt

8<
:

9=
;w

cos2f sin2f sin(2f)
sin2f cos2f s sin(2f)

s sinf cosf sinf cosf cos(2f)

2
4

3
5 mx

my

mxy

8<
:

9=
; (24:7)1

or rather

mw cT 7 m 7 c (24:7)2

where

cw
cosf s sinf
sinf cosf

	 

denotes the rotation matrix introduced in (A6.1), see (6.7)3.

According to (24.6) and (24.7), the shear force components constitute a vector v and
the moment components a symmetric tensor

mw

mx mxy

myx my

	 

(24:8)

Eq. (24.7)1 and (24.8) are similar to (5.21) and (5.27). If we replace s and t in
Fig. 5.20 by mn and mtn, then the MOHR’s circle approach can be used in a similar
way. The principal moments and their directions are

m1,2 w
mx Smy

2
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mx smy

2

� �2

Sm2
xy

s
, tan(2f1)w

2mxy

mx smy
(24:9)

and these variables

mI wm1 Sm2 wmx Smy wmn Smt , mII wsm1m2 wm2
xy smxmy (24:10)
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are invariant.

24.1.2.3 Shear flow

The magnitude and direction of the shear force vector v is given by

vj jw v0 w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

x S v2
y

q
w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

n S v2
t

q
, tanf0 w

vy

vx
(24:11)

see Fig. 24.3(a); v0 is known as the principal shear force, and vn = 0 in the direc-
tion f0 + p/2. The principal directions of the shear forces and the moments coincide
in special cases only; generally, f0 0 f1.

Eq. (24.1)1 can be expressed in the form

div vS qw 0 (24:12)

Let us consider a point P according to Fig. 24.3(b) and a simply-connected slab area S
bounded by the (arbitrary) closed curve C which passes through P. In this case, accord-
ing to GAUSS’ theorem (A6.30),Þ

C

v 7 n dt w
Ð
S

div v dS (24:13)

the relationshipÞ
C

vndt S
Ð
S

q dSw 0 (24:14)

applies, where n is the outward unit normal vector and vn = v x n is equal to the flow of
the shear force, or rather the shear flow at any point along C.

Eq. (24.14) corresponds to an integral formulation of the equilibrium of the forces in
the z direction.

24.1.2.4 Static discontinuity lines

Fig. 24.4 shows – in a similar way to Fig. 23.17 – a differential element of the separ-
ating line between slab areas I and II, e. g. at an abrupt change in the thickness of the
slab or at the edge of a slab. Equilibrium demands

mI
n wmII

n , Vt wmII
tn smI

tn , vI
n SmI

tn,t w vII
n SmII

tn,t (24:15)

where Vt is a shear force [kN] transferred along the discontinuity line. The bending
moment mt can exhibit an abrupt change in value at the discontinuity line. Further,
vn and mtn may also be discontinuous, but must comply with constraint (24.15)3.
We can see that the relationship Vt,t = mtn,t

II – mtn,t
I, which follows from (24.15)2,

has been incorporated in (24.15)3.
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24.1.2.5 Static boundary conditions

Any shear forces vn , bending moments mn and twisting moments mtn can be trans-
ferred at a fixed slab edge, see Fig. 24.5(a).

Simply supported and free slab edges are static discontinuity lines. The bending
moment mn at a simply supported edge, Fig. 24.5(b), must be equal to zero, and
the support force [kN/m] considered to be positive in the positive z direction accord-
ing to section 9.3.1 is equal to the edge shear force vn + mtn,t, see (24.15)3. And both
the bending moment mn and the edge shear force vn + mtn,t must disappear at a free
edge, Fig. 24.5(c).

According to (24.15)2, the fact that mtn
II = 0 means that a shear force

Vt = –mtn
I = –mtn is transferred along simply supported and free slab edges. Corner

forces amounting to – 2mnt in the positive z direction, or rather 2mnt in the negative
z direction, ensue at right-angled slab corners because mtn = mnt , see Fig. 24.6.

We can also see that special measures may need to be taken in order to deal with corner
forces (e. g. anchorages in the z direction). Unsecured corners can experience uplift,
and therefore it is not possible to use moment fields, which exhibit negative twisting
moments mnt at the corners.

Example 24.1 Square slab supported at the corners

The formulation

mx wm0 1s
4x2

l 2

� �
, my wm0 1s

4y2

l 2

� �
, mxy wm0

4xy

l 2

for the square slab shown in Fig. 24.7(a) leads – according to (24.1)2 and (24.1)3 – to

vx ws

4m0x

l 2
, vy ws

4m0y

l 2

and therefore according to (24.1)1, to q = 8m0 /l
2 = const.

Eq. (24.9)1 results in

m1 wm0 , m2 wm0 1s
4x2

l 2 s

4y2

l 2

� �
and using (24.9)2 gives us tanf1 = x/y. The principal moment trajectories shown in Fig. 24.7(b) are
hyperbolas (x2 – y2 = const and xy = const).
Eq. (24.11)1 results in v0 = 4m0r/l

2, where r = (x2 + y2)1/2, and (24.11)2 results in tanf0 = y/x. The
shear force vectors are radial and directed away from the origin, and v0 = const along concentric
circles, see Fig. 24.7(c).
At the edge of the slab x = l/2, both mx and the edge shear force vx + myx,y = mx,x + 2myx,y disappear,
i. e. the edge is free. A corner force amounting to 2m0 in the negative z direction acts on the slab at
corner x = y = l/2.
Fig. 24.7(d) summarises the result. The assumed moments correspond to a square slab supported at
the corners subjected to a uniformly distributed load of 8m0. If we reverse the sign of mxy , then we get
the solution for a square slab simply supported on all sides and subjected to a uniformly distributed
load of 24m0, which is in equilibrium with edge shear forces of – 8m0 /l and corner forces of 2m0

acting in the positive z direction (exercise 24.1).
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Example 24.2 Square slab supported in the centre

Let us use the following formulation for octant OAB (0 J y J x J l/2) of the square slab shown in
Fig. 24.8 [17]:

mx w 0 , my wm0
y2

x2 s 1

� �
, mxy wm0

y

x
s

4xy

l 2

� �
which according to (24.1) leads to

vx w
m0

x
1s

4x2

l 2

� �
, vy w vx �

y

x
, qw 8

m0

l 2 w const

Eq. (24.11)2 shows that the shear force vectors are radial and directed towards the origin O. The edge
is free because mx = 0 and vx + myx,y = 2myx,y = 0 along AB (x = l/2). At B (x = y = l/2), mxy = 0 and
therefore there is no corner force.
As the slab is symmetrical, the stress states in the other octants are easily worked out. The principal
moments lie between m0 (at O) and –m0 (along the x and y axes), see exercise 24.3. The shear forces
are infinitely large at the point support at the centre O.

Example 24.3 Rectangular slab supported at the corners

The rectangular slab shown in Fig. 24.9 is supported at corners A, B, C, D and loaded in the centre O
by a point load Q. Introducing uniaxial moment fields my = (Q/4)tana in areas OAB, OCD, but
mx = (Q/4)cota in areas OAD, OBC, leads to the relationships illustrated by the two MOHR’s circles.
For reasons of symmetry, we can confine our examination to areas OAB (= I) and OAD (= II).
First of all, mn = (Q/4)sinacosa along OA. Further, mtn

I = – (Q/4)sin2a and mtn
II = (Q/4)cos2a.

Therefore, according to (24.15)2, a shear force Vt = Q/4 is transferred along OA. In accordance
with (24.1), vx = vy = q = 0 applies over the whole slab, and as the moment fields are parallel
with edges AB, AD, these are free.
Summing up, the slab diagonals function as static discontinuity lines. One-quarter of load Q is carried
along each of these to the corners of the slab. Points NI and NII on the MOHR’s circles illustrate the
corresponding abrupt change in the twisting moment, which amounts to (Q/4)(cos2a + sin2a) = Q/4.
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In order that the diagonals do function as described, it is important to form these appropriately, e. g. in
a reinforced concrete slab. Fig. 24.10 shows a truss model for diagonal OA in Fig. 24.9. The load
component Q/4 is transferred from O to A via diagonal struts and vertical ties. As indicated, equilib-
rium of the horizontal forces at the joints of the truss is guaranteed by the flexural tension and com-
pression forces. The reinforcement for the vertical ties can be achieved with shear rails, for instance,
and the flexural tension reinforcement must be fully anchored at the joints of the truss.

24.1.2.6 Influence of membrane forces

By introducing membrane forces nx , ny , nxy = nyx as shown in Fig. 24.11 and specify-
ing that qx = qy = 0, then according to (8.32),

nx, x S nxy,y w 0 , nyx, x S ny,y w 0 (24:16)

applies. Projecting the forces nx and their increments onto the z axis results in

(nx S nx, xdx)(w, x Sw, xxdx)s nxw, x½ �dyw (nxw, xx S nx, xw, x)dxdy

if we ignore small terms of higher order. Similarly, the projection of ny results in the
expression

(nyw,yy S ny,yw,y)dydx

and by projecting nxy and nyx we get

(nxyw, xy S nxy,yw, x)dydx

or rather

(nyxw,yx S nyx, xw,y)dxdy

On the whole, the influence of the membrane forces, taking into account (24.16),
increases the loading in the z direction from qz = q to

qS nxw, xx S nyw,yy S 2nxyw, xy (24:17)

If qx and qy are not equal to zero, then applying (8.32) results in the similar expression

qz S nxw, xx S nyw,yy S 2nxyw, xy s qxw, x s qyw,y (24:18)
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24.1.3 Kinematic relationships

24.1.3.1 Deflection, curvature and twist

Let us consider an arbitrary point on the middle plane of a slab that undergoes a
deflection w = w(x,y), see Fig. 24.12(a). The slopes of the deformed middle surface
of the slab in the x and y directions amount to w,x and w,y respectively. The slope in any
direction n is

dw

dn
w

@w

@x
� dx

dn
S

@w

@y
� dy

dn
ww, x cosfSw,y sinf

and for the direction t perpendicular to that we get

dw

dt
w

@w

@x
� dx

dt
S

@w

@y
� dy

dt
wsw, x sinfSw,y cosf

These transformations are similar to (24.6). The maximum slope

(w,n) max w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

, x Sw2
,y

q
occurs in the direction f = arc tan(w,y/w,x) and the slope of the slab perpendicular to
that disappears, see (24.11). The slab slopes w,i correspond to a vector field gradw.
Apart from its sign, the associated vector gradient w,ij is equal to the curvature tensor
considered below.

We can use

@

@n
w

@

@x
cosfS

@

@y
sinf

to get the following expression for the curvature xn = –w,nn :

xn ws

@

@x
cosfS

@

@y
sinf

� �
@w

@x
cosfS

@w

@y
sinf

� �
ws

@2w

@x2
cos2fs

@2w

@y2
sin2fs 2

@2w

@x@y
sinf cosf

w xx cos2fS xy sin2fS 2xxy sinf cosf

where xx, xy and xxy are the variables defined in (8.46). Similarly, using

@

@t
ws

@

@x
sinfS

@

@y
cosf

results in the relationship

xt wsw,tt w xx sin2fS xy cos2fs 2xxy sinf cosf

and also

xnt wsw,nt ws xx sinf cosfS xy sinf cosfS xxy( cos2fs sin2f)
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These transformations are similar to (24.7). Accordingly, the curvatures and twists
form the symmetric tensor –w,ij , or rather

xw
xx xxy

xyx xy

	 

w

sw, xx sw, xy

sw,yx sw,yy

	 

(24:19)

with the principal values x1, x2 and the principal direction f1 :

x1,2 w
xx S xy

2
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xx s xy

2

� �2

S x2
xy

r
, tan(2f1)w

2xxy

xx s xy

(24:20)

The variables

xI w x1 S x2 w xx S xy wsDw , xII ws x1x2 w x2
xy s xxxy (24:21)

are invariant, and it is possible to use the MOHR’s circle as shown in Fig. 24.12(b).

The xI/2 value is equal to the mean curvature. If xI equals zero at all points on a sur-
face, the surface is a minimal surface.

The expression x1x2 = –xII denotes the GAUSSian curvature or the total curvature at
the point on the deformed middle surface of the slab under consideration. When xII is
negative, the point is elliptical, and when xII i 0, it is hyperbolic (e. g. a point on a
saddle surface), and when xII = 0, the corresponding point is parabolic. If all points on
a surface are parabolic, it is developable on a flat plane (e. g. a cylindrical or conical
surface).

Ruled surfaces can be generated by moving straight lines in space. Not all ruled
surfaces are developable. For example, although hyperboloids of one sheet and hyper-
bolic paraboloids are ruled surfaces, they are not developable.

Note that according to GAUSS’ theorem (A6.30), the following applies for a slab
fixed at edge C:Ð

S

w,iidSw
Ð
S

DwdSw
Þ
C

w,ndt w 0

because w,n = 0 along C. This means that xI = –Dw, or rather the mean curvature xI/2
for a fixed slab is equal to zero on average.

The variable xII , or rather the total curvature, also disappears on average in the case
of slabs fixed at the edge and slabs with polygonal forms, where either w or w,n is zero
at their edges. In fact,

xII w
1

2
w2

,ij sw, jjw,ii

� �
w

1

2
w,ijw, j sw, jjw,i

� �
,i

and therefore according to GAUSS’ theorem (A6.30),Ð
S

xIIdSw
1

2

þ
C

@2w

@n@t
� @w

@t
s

@2w

@2t
� @w

@n

� �
dt

The integrand for a fixed edge (w,n = 0) as well as for straight edges that are either
simply supported (w,t = w,tt = 0), or have w,n = 0 and hence also w,nt = 0, disappears
in the curvilinear integral; the latter case (w,nt = 0) occurs, for instance, in one bay of a
uniformly loaded, infinitely large flat slab with identical bays, e. g. along the support
axes x = ea/2 or y = eb/2 in Fig. 24.20(a).
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24.1.3.2 Strains in the middle plane of a slab

Where membrane forces have to be considered, then the corresponding terms due to
the deflection w have to be added to the strain components

ex w u, x , ey w v,y , gxy w u,y S v, x

given by (6.4) and (6.5) in a similar way to (22.7). We get

ds2
w dx2(1S u, x)2

S dx2w2
, x

from Fig. 24.13(a), i. e.

ex w
ds

dx
s 1 z u, x S

1

2
w2

, x (24:22)1

and similarly,

ey z v,y S
1

2
w2

,y (24:22)2

Points A, B in Fig. 24.13(b) are displaced to positions Al, Bl. Right-angle A1O1B1

decreases because of slopes w,x and w,y . Angle BlB1B2 is equal to w,x. Using
length w,ydy of distance B1Bl results in the expression w,x ·w,y dy for distance B2Bl,
and hence the product w,x ·wy for the differential angle B2O1Bl, i. e. using (6.5),

gxy z u,y S v, x Sw, x � w,y (24:22)3

Adding together the second derivatives of the expressions (24.22) and applying
(24.21)2 results in

ex, yy S ey, xx s gxy, xy w
@2w

@x@y

� �2

s

@2w

@x2
� @

2w

@y2 w xII (24:23)

instead of the compatibility condition (23.1).

24.2 Linear elastic slabs rigid in shear with small deflections

24.2.1 Fundamental relationships

24.2.1.1 Stress resultants

Using (8.43) and (8.46) as well as the definition for slab stiffness D in (8.48), we get
the moments

mx wsD(w, xx S nw,yy) , my wsD(w,yy S nw, xx) , mxy wmyx ws (1s n)Dw, xy

(24:24)

And applying (24.1)2 and (24.1)3, we therefore obtain the shear forces

vx wsD(Dw), x , vy wsD(Dw),y (24:25)

We also note here that the invariants (24.10) and (24.21) are linked with each other via

mI wD(1S n)xI , mII wD2 (1s n)2xII s nx2
I

� �
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24.2.1.2 Shear force potential

From (24.25) it follows that vx,y = vy,x, i. e. the shear force field v is irrotational,
curlv a 0. Therefore, the expression – DDw corresponds to a shear force poten-
tial Fv (v = gradFv), and the comparison with (24.24)1 and (24.24)2 as well as
(24.21)1 reveals that

Fv wsDDww

mx Smy

1S n
w

mI

1S n
wDxI (24:26)

We get

div vw
DmI

1S n
(24:27)

for the expression div v = div grad Fv = DFv = –qz in (24.12). This relationship is
similar to the one for elastic plates (23.2), which can be expressed in the form

div qws

DnI

1S n
(24:28)

where q = {qx ,qy}
T.

Irrotationality of the shear force field is a consequence of presuming the slab to be
linear elastic and rigid in shear. Generally, the shear force gradient vi, j is not symmet-
rical, and

vw grad Fv S grad Fr S rot c (24:29)

applies, where Fv satisfies the POISSON differential equation

DFv ws qz (24:30)

On the other hand, the potential Fr, which like the vector potential c = (0,0,c)
describes a restraint state, satisfies the LAPLACE differential equation

DFr w 0 (24:31)

The potential Fv is either equal to the elastic shear force potential (24.26) or may be
made up of this plus a superposed potential that corresponds to a restraint state, i. e.
satisfies (24.31).

Section 24.6.1 shows that the relationship Dc = 10c/h2 applies for linear elastic
slabs with a thickness h and finite shear stiffness, see (24.112).

24.2.1.3 Boundary conditions

The two kinematic boundary conditions

ww 0 , w,n w 0 (24:32)

apply at a fixed edge with normal n. Along a straight fixed edge w,nt and therefore mnt

disappear; further, w,t = 0 and mt = nmn .

The following must be satisfied at a simply supported edge:

ww 0 , mn w 0 (24:33)

As explained in section 24.1.2, the shear forces vn and the derivatives mtn,t of the
twisting moments are added together to form the edge shear forces
vn + mtn,t = mn,n + 2mtn,t. Along a straight edge w,tt = 0 applies, and therefore as
mn = –D(w,nn + nwtt) = 0, then w,nn = 0 or Dw = 0 and mt = –D(w,tt + nw,nn) = 0 as
well.

The following applies at a free edge:

mn w 0 , vn Smtn,t w 0 (24:34)
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24.2.1.4 Cylindrical coordinates

Making use of (23.8) results in the curvatures

xr wsw,rr , xf ws

w,ff

r2 s

w,r

r
(24:35)

and the twist

xrf ws

w,f

r

� �
,r
w

w,f

r2 s

w,rf

r
(24:36)

The following applies in the rotationally symmetric case (where l = d/dr):

xr wswL , xf ws

wl

r
, xrf w 0 (24:37)

Using (23.10), we get

DDww

@2

@r2 S

1

r
� @
@r

S

1

r2
� @

2

@f2

� �
@2w

@r2 S

1

r
� @w

@r
S

1

r2
� @

2w

@f2

� �
w

q

D
(24:38)

instead of (8.48), and (24.24) – applying (24.35) and (24.36) – becomes

mr wsD w,rr S n
w,r

r
S

w,ff

r2

� �	 

, mf wsD

w,r

r
S

w,ff

r2 S nw,rr

� �
, mrf ws (1s n)D

w,rf

r
s

w,f

r2

� �
(24:39)

and instead of (24.25), the result is

vr wsD(Dw),r , vf ws

D(Dw),f

r
(24:40)

As w,r = 0, w,rf = 0 and w,ff = 0 along a fixed edge in the form of a circular arc, then
mrf = 0 and mf = nmr along that edge.

In the rotationally symmetric case (where l = d/dr), then

mr wsD wLS n
wl

r

� �
, mf wsD

wl

r
S nwL

� �
, mrf w 0 (24:41)

and

vr wsD wLlS
wL

r
s

wl

r2

� �
wsD

1

r
rwlð Þl

	 

l

, vf w 0 (24:42)

apply, and instead of (24.38), the result of using (24.3)1 and (24.42) is the simply
integrable differential equation

1

r
r

1

r
rwlð Þl

	 

l

� 
l

w

q

D
(24:43)

24.2.2 Methods of solution

The slab equation (24.43) for rotationally symmetric problems can be solved directly
(section 24.2.3). For example, FOURIER series approaches are suitable for rectangu-
lar slabs (section 24.2.4) and flat slabs (section 24.2.5); many of the design tables for
slabs with different boundary conditions and loading arrangements are based on such
an approach. Energy methods (section 24.2.6) render possible approximate solutions
to the slab equation (8.48) or (24.38).

These days, the finite element method (FEM) is the most popular approach in practice.
FEM can be employed to solve slabs with any boundary conditions, any loading
arrangements.

However, many of the solutions explained in the literature for relatively simple bound-
ary conditions and loading arrangements are still extremely valuable when it comes to
estimating the orders of magnitude of moments, shear forces and deflections. Indeed,
such solutions are excellent choices when applying the plausibility check (which is
always necessary) to results obtained from, for example, the finite element method.
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24.2.3 Rotationally symmetric problems

24.2.3.1 Uniform loading

The general solution to the inhomogeneous differential equation (24.43) with
q = const is

ww

qr4

64D
S c1 S c2r2

S c3 ln r S c4r2 ln r (24:44)

For reasons of symmetry, the slope wl in the centre of the slab r = 0 must disappear,
and the curvature xr = –wL must be finite. From this it follows that c3 = c4 = 0.

Considering a circular slab of radius r0 and fixed at its outer edge, see Fig. 24.14(a),
the boundary conditions w(r0) = wl(r0) = 0 result in

c1 w
qr4

0

64D
, c2 ws

qr2
0

32D
and therefore by employing the shortened form r = r/r0 we get

ww

qr4
0

64D
(1s r2)2 , mr w

qr2
0

16
1S ns r2(3S n)½ � , mf w

qr2
0

16
1S ns r2(1S 3n)½ �

(24:45)

If the outer edge is simply supported, see Fig. 24.14(b), then w(r0) = mr(r0) = 0 results
in

c1 w
qr4

0

64D
� 5S n

1S n
, c2 ws

qr2
0

32D
� 3S n

1S n

and therefore

ww

qr4
0

64D
(1s r2)

5S n

1S n
s r2

� �
, mr w

qr2
0

16
(3S n)(1s r2) , mf w

qr2
0

16
3S ns r2(1S 3n)½ �

(24:46)

Comparing the deflection qr0
4
/(64D) in the centre of the fixed slab with the deflec-

tion ql 4
/(384EI ) at mid-span of a beam fixed at both ends (see example 15.2) and

putting l = 2r0 and EI = D, then the result is a ratio of 3/8.

The moments according to (24.45) and (24.46) differ by the constant amount qr0
2
/8.
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The easiest way to obtain the shear forces vr = –qr/2 is to use (24.14) and consider the
circle C with radius r, i. e. vr2pr + qr2p = 0. They can also be calculated using
(24.29) with Fv = (mr + mf)/(1 + n), i. e. vr = Fvl = –qr/2.

24.2.3.2 Annular slabs

Three further boundary conditions w(r0) = mr(r0) = 0 and vr(r1) = 0 apply for the case
shown in Fig. 24.15(a), which is an annular slab simply supported at its outer edge and
loaded on its inner edge by a line load moment mr(r1) = m = const. When q = 0, the
latter of these three conditions in conjunction with (24.44) and (24.42)1 leads to c4 = 0,
and together with the other conditions the result is

ww

mr2
1

D(1s r2
1)

ln r

1s n
s

1s r2

2(1S n)

	 

(24:47)

The case shown in Fig. 24.15(b) has a shear force vr = –Q/(2pr). Using this and the
boundary conditions w(r0) = mr(r0) = mr(r1) = 0, we can use (24.44) to obtain

ww

Qr2
0

8pD
r2 ln rS

3S n

2(1S n)
(1s r2)s

r2
1 ln r1

1s r2
1

1s r2
s

2(1S n)

1s n
ln r

	 
� 
(24:48)

The third term in the curly brackets on the right in (24.48) disappears when r1 = 0. We
therefore arrive at the expression

Qr2
0(3S n)

16p(1S n)D

for the deflection w(0) of a simply supported circular slab subjected to a central point
load Q. The deflection at the centre is larger by a factor of 4(3 + n)/(5 + n) when com-
pared with that calculated using (24.46)1 for the case of a load of the same magnitude
but uniformly distributed, e. g. when n = 0.2, the factor is 32/13 z 2.46.

The case shown in Fig. 24.15(c) can be solved through the superposition of (24.47)
and (24.48) in such a way that wl(r1) = 0. We get

mwmr(r1)w
Q[(1s n)(1s r2

1)s 2(1S n) ln r1]

4p[(1s n)r2
1 S 1S n]

(24:49)

for the fixed-end moment. Substituting this expression in (24.47) and superposition
with (24.48) gives us the deflection w.

In the case of Fig. 24.15(d), we superpose (24.46)1, (24.47) with
m = –qr0

2(3 + n)(1 – r1
2)/16 and (24.48) with Q = –qr1/2.

Cases with other boundary conditions can be solved in a similar way, see exer-
cises 24.8 and 24.9.

24.2.3.3 Concentric loading

Fig. 24.16(a) shows a circular slab simply supported at its outer edge and carrying a
uniformly distributed load Q applied via a concentric annulus of radius r1. The super-
position of (24.48) and (24.47) gives us the solution in the region r1 J r J r0 in such
a way that wl(r1) is continuous. According to (24.44), w = c1 + c2r

2 applies in the
region 0 J r J r1; therefore, wl = 2c2r and wL = 2c2. The result of (24.41) is
mr = mf = – 2c2(1 + n)D = m, and thus

wl(r1)ws

mr1

(1S n)D

applies. By equating this expression with the sum of the derivatives of (24.47) and
(24.48) at point r1, it follows that

mw

Q

8p
[(1s n)(1s r2

1)s 2(1S n) ln r1]
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Substituting in (24.47) and adding (24.48) results in

ww

Qr2
0

8pD
(1s r2) 1S

(1s n)(1s r2
1)

2(1S n)

	 

S (r2

1 S r2) ln r

� 
(r1 J r J r0)

(24:50)1

The outcome for the inner part of the slab is

ww

Qr2
0

8pD
(1s r2

1)
3S ns (1s n)r2

2(1S n)
S (r2

1 S r2) ln r1

	 

(0J r J r1) (24:50)2

Considering the limiting case of a central point load, then (24.50)1 with r1 p 0 results
in

ww

Qr2
0

8pD

3S n

2(1S n)
(1s r2)S r2 ln r

	 

(24:51)

and (24.41) results in

mr ws

Q

4p
(1S n) ln r , mf w

Q

4p
[1s ns (1S n) ln r] (24:52)

When r p 0, the moments (24.52) tend to infinity, but on the other hand, w(0) = wmax

remains finite:

w max w
Qr2

0(3S n)

16p(1S n)D
(24:53)

Fixing the outer edge of the slab according to Fig. 24.16(b) means that the solution is
obtained from (24.50) by superposing the case of a slab loaded on its outer edge by
line load moments mr(r0) = m in such a way that wl(r0) disappears. It follows from
(24.50)1 that

wl(r0)ws

Qr0(1s r2
1)

4p(1S n)D

and similarly to the expression derived above for the rotation due to m, we get

wl(r0)ws

mr0

(1S n)D

The sum of these two expressions must be equal to zero, and therefore

mws

Q(1s r2
1)

4p
This moment at the edge causes the deflections

ww

mr2
0(1s r2)

2(1S n)D
(24:53)

which together with (24.50) leads to

ww

Qr2
0

8pD
(1s r2)

1S r2
1

2
S (r2

1 S r2) ln r

	 

(r1 J r J r0)
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Qr2
0

8pD
(1S r2)

1s r2
1

2
S (r2

1 S r2) ln r1

	 

(0J r J r1)

(24:54)

Eq. (24.54)1 for r1 p 0 results in

ww

Qr2
0

8pD

1s r2

2
S r2 ln r

� �
(24:55)

for the limiting case of a central point load, and (24.41) results in

mr ws

Q

4p
[1S (1S n) ln r] , mf ws

Q

4p
[nS (1S n) ln r] (24:56)

These moments and the values of (24.52) differ by the amount of Q/(4p). The deflec-
tion

w max w
Qr2

0

16pD
(24:57)

at the centre of the slab is (3 + n)/(1 + n) times smaller than that at the edge of a
simply supported slab, see (24.53).
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With a uniform loading on the central area of the slab 0 J r J r1, as shown in
Fig. 24.16(c), the solution can be obtained by superposing individual annular
loads qdr according to Fig. 24.16(a). Applying (24.50)1 and integrating from 0 to
r1, with the total load Q = qpr1

2, results in the deflections

ww

Qr2
0

16pD

3S n

1S n
(1s r2)S 2r2 ln rS r2

1 ln rs
1s n

2(1S n)
(1s r2)

	 
� 
(r1 J r J r0)

(24:58)

in the unloaded outer part of the slab. The deflection in the centre of the slab is
obtained from (24.50)2 plus a corresponding integration:

w max w
Qr2

0

16pD

3S n

1S n
S r2

1 ln r1 s
7S 3n

4(1S n)
r2

1

	 

(24:59)

The maximum bending moment occurs in the centre of the slab and amounts to

m max w
Q

4p
1s

(1s n)r2
1

4
s (1S n) ln r1

	 

(24:60)

24.2.4 Rectangular slabs

24.2.4.1 Sinusoidal loading

Eq. (8.48) for the problem illustrated in Fig. 24.17 is

DDww
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and therefore
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� �2 (24:61)

Eq. (24.24) provides the moments
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(24:62)

and (24.25) the shear forces
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The edge shear forces are
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(24:64)1
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and the corner forces acting at the corners of the slab are
2q0(1s n)

p2ab
1

a2 S

1

b2

� �2 (24:64)2

in the positive z direction.

For a square slab with a = b = l, the maximum values

w max w
q0l 4

4p4D
, m max w

q0l 2(1S n)

4p2
(24:65)

occur in the centre of the slab.

24.2.4.2 General loading

In a similar way to (24.61), the loading

qw q0 sin
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(m, nw 1, 2, 3, ...)

results in
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A general loading q(x,y) can be represented by a double FOURIER series:

q(x, y)w
XT
mw1

XT
nw1

amn sin
mpx

a

� �
sin

npy

b

� �

When determining the coefficients amn, we first realise thatðb
0

q sin
nlpy

b

� �
dyw

b

2

XT
mw1

amnl sin
mpx

a

� �

because the integralðb
0

sin
npy

b

� �
sin

nlpy

b

� �
dy

disappears provided n 0 nl, and is equal to b/2 if n = nl. Moreover,ða
0

ðb
0

q sin
mlpx

a

� �
sin

nlpy

b

� �
dy dx w

ab

4
amlnl

and therefore

amn w
4

ab

ða
0

ðb
0

q sin
mpx

a

� �
sin

npy

b

� �
dy dx (24:66)

and
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Using (24.66) for a uniformly distributed loading q = const results in

amn w
16q

p2mn
(m, nw 1, 3, ...)
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and hence according to (24.67),
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16q
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Note that the coefficients amn disappear for even values of m and n.

Turning to the deflection w, it is sufficient to terminate the series (24.68) after just one
or a few terms. On the other hand, higher terms in the series must also be considered
for the moments and shear forces obtained according to (24.24) or (24.25) from the
second or third derivatives of w in order to achieve adequate accuracy. For example,
considering a square slab where a = b = l, then we get
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According to the exact solution, the values of the three numerical coefficients are (in
order) 0.00406, 0.0368 and 0.338.

24.2.4.3 Superposition of load and restraint states

The convergence of the series obtained from (24.68) through differentiation is not par-
ticularly good. We get a better solution from the superposition

www1 Sw2 (24:69)

of the deflections of a loading stress state 1 and those of a restraint state 2.

We use the notation of Fig. 24.18 and set

w1 w
q

24D
(x4

s 2ax3
S a3x) (24:70)

for a strip of slab in the x direction loaded by the constant uniformly distributed
load q, see example 15.1. This formulation satisfies (8.48) and the boundary condi-
tions along x = 0 and x = a.

The restraint state deflections

w2 w

XT
mw1,3, ...

Ym sin
mpx

a

� �
(24:71)

with the Ym functions dependent on y only must satisfy

DDw2 w 0 (24:72)

on the one hand and, on the other, enable the boundary conditions (24.33), i. e. w = 0
and w,yy = 0 along y = eb/2, to be satisfied as well. Using (24.72) together with
(24.71), it follows thatXT

mw1,3, ...

YmLLs 2
m2p2

a2
YmLS

m4p4

a4
Ym

� �
sin

mpx

a

� �
w 0

54124.2 Linear elastic slabs rigid in shear with small deflections

x

y

z

a

b

b /2

/2

q

x
z

Fig. 24.18 Simply supported rectangular slab sub-
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This relationship can only be satisfied when the first factor after the summation sym-
bol disappears. This leads to the general solution

Ym w

qa4

D
Am cosh

mpy

a

� �
SBm

mpy

a
sinh

mpy

a

� �
SCm sinh

mpy

a

� �
SDm

mpy

a
cosh

mpy

a

� �	 

(24:73)

Owing to the symmetry with respect to the x axis, the odd functions are dropped, i. e.
Cm = Dm = 0.

Eq. (24.70) can be developed into the series

w1 w
4qa4

p5D

XT
mw1,3, ...

sin
mpx

a

� �
m5

Consequently, (24.69) is

ww

qa4

D

XT
mw1,3, ...

4

p5m5 SAm cosh
mpy

a

� �
SBm

mpy

a
sinh

mpy

a

� �	 

sin

mpx

a

� �

and (24.33), where am = mpb/(2a), calls for
4

p5m5 SAm cosham SBmam sinham w 0

Am S 2Bmð Þ cosham SBmam sinham w 0

from which it follows that

Am ws

2am tanham S 4

p5m5 cosham
, Bm w

2

p5m5 cosham

Substituting in the expression for w results in

ww

4qa4

p5D
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mw1,3, ...

1

m5
1s

am tanham S 2

2 cosham
cosh

mpy

a

� �
S

amy

b cosham
sinh

mpy

a

� �	 

sin

mpx

a
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(24:74)

If we consider only the first term in the series (24.74) when dealing with a square slab
(a = b = l ), the result is w(l/2,0) = wmax z 0.00411ql4

/D, i. e. compared with the
exact value of 0.00406ql4

/D, this is an excellent approximation.

24.2.4.4 Continuous slabs

Continuous slabs with rectangular bays and linear supports in the form of walls or
beams can be analysed approximately by examining the individual bays such that a
continuous edge is treated like a fixed one. We can thus make use of the solutions
given in design tables for the cases shown in Fig. 24.19.

The resulting fixed-end moments for the continuous edges are generally different, and
it might be possible to compensate for this by applying a correct moment distribution.
For simplicity, we often take the average of the fixed-end moments, mostly without
fully analysing the consequences for the span moments. Usable approximations can be
obtained when the spans and stiffnesses of adjacent bays are roughly the same and the
loads are not too different. However, calculations based on the finite element method
are generally to be preferred. FEM allows us to consider, in particular, fixed supports
at walls and columns as well as the beam stiffnesses, and leads to a complete stress
state which is in itself consistent.
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24.2.5 Flat slabs

24.2.5.1 Slabs with point supports on a rectangular grid

Let us use (24.69) with

w1 w
qb4(1s 4y2=b2)2

384D
(24:75)

for the case of an infinitely large slab with regularly spaced columns which carries a
uniformly distributed load q, as shown in Fig. 24.20(a). This deflection function cor-
responds to a strip of slab fixed at both ends according to example 15.2 and satisfies
the boundary conditions w,x = 0 and vx = –D(Dw),x = 0 along x = ea/2.

Considering w2, the formulation

w2 wA0 S

XT
mw2,4, ...

Ym cos
mpx

a

� �	 


similar to (24.71), which satisfies the boundary conditions mentioned along x = ea/2,
and taking into account (24.72) plus symmetry with respect to the x axis leads to

w2 wA0 S

XT
mw2,4, ...

Am cosh
mpy

a

� �
SBm

mpy

a
sinh

mpy

a

� �	 

cos

mpx

a

� �
(24:76)

The boundary condition w,y = 0 along y = b/2 results in

Bm ws

Am tanham

am S tanham
am w

mpb

2a

� �
The shear force vy along y = b/2 must disappear for 0 J x J a/2 – c and take on the
value –qab/(4c) over the infinitesimal width c. As shown in Fig. 24.20(b), we can
specify the FOURIER series

vy

���
ywb=2

ws

qb

2
S qb cos

2px

a

� �
s cos

4px

a

� �
S cos

6px

a

� �
s ...

	 

for this. However, the boundary condition w,y = 0 means that vy = –Dw,yyy applies
along y = b/2, and therefore, considering (24.75),

sDw2,yyy

���
ywb=2

ws qb
XT

mw2,4, ...

(s 1)m=2 cos
mpx

a

� �

Using (24.76), this leads to

Dm3p3

a3
(Am S 3Bm) sinham SBmam cosham½ �w qb(s 1)m=2 am w

mpb

2a

� �
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and together with the relationship between Am and Bm derived above, in turn to

Am ws

qa3b(s 1)m=2

2m3p3D
� am S tanham

sinham tanham
, Bm w

qa3b(s 1)m=2

2m3p3D
� 1

sinham

The condition w = 0 for x = a/2, y = b/2 means that (24.69), (24.75) and (24.76) give
us

A0 w
qa3b

2p3D

XT
mw2,4, ...

am S tanham sam tanh2am

m3 tanh2am

The final result for the deflection w is
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(24:77)

With a square grid (a = b), the deflection at mid-span (x = y = 0) is 0.00581qb4
/D,

but still 0.00337qb4
/D for a = 2b/3, and we get a value of 0.00292qb4

/D for
a = b/2. Putting n = 0.2 results in bending moments mx = my = 0.0331qb2 at mid-
span for the case a = b according to (24.24); we get mx = 0.0131qb2 and
my = 0.0387qb2 for a = 2b/3, and mx = 0.0092qb2 and my = 0.0411qb2 for a = b/2.
The value w2 disappears for the case a/b p 0, and the result is the mid-span values
qb4

/(384D) = 0.00260qb4
/D, my = qb2

/24 = 0.0417qb2 known from example 15.2
as well as mx = nmy = 0.0083qb2. Further, we get the moments mx = – 0.0185qb2,
my = 0.0512qb2 at point x = a/2, y = 0 for the case a = b.

24.2.5.2 Singularity of the moments over the columns

The (negative) moments tend to infinity over the point supports. If we assume that the
column reactions are transferred uniformly distributed as line loads over a circle with
radius c, then it is possible to estimate the minimum moments for the case a = b based
on (24.54)2 and (24.45)2 or (24.45)3. We replace one bay by a circular slab with ra-
dius r0 = a/

ffiffiffi
p
p

, which has the same area and is fixed at its edge, and allow the vertical
load q to act from above and the opposing equal annular load from below. Putting
r1 = c/r0, the resulting moment in the centre of the slab over the support is

Q

4p
(1S n) ln r1 S

1

2
s

r2
1

2
S

1

4

� �
z

Q(1S n)

4p
ln r1 S

3

4

� �
(24:78)

For example: putting n = 0.2 and r1 = 0.05 results in a value of – 0.214Q, and with
r1 = 0.1 the outcome is – 0.148Q, and when r1 = 0.025 we get – 0.281Q. With cus-
tomary dimensions, the minimum moments lie between about –Q/6 and –Q/4. But the
distribution of the moment in the region of the column is more important than the re-
spective peak value. The peak values do not have to be covered in flat slabs of re-
inforced concrete. Instead, it is sufficient to accommodate the average moment
over a width defined by the width of the column and strips of slab on both sides
with a width equal to about twice the thickness of the slab; averaging over one-fifth
of the span is carried out in the equivalent frames method, see Fig. 24.22(b).

24.2.5.3 Placing the imposed load in the most unfavourable position

As with continuous beams, the imposed loads on flat slabs should always be placed
in the most unfavourable position. For example, the strip-type loading according to
Fig. 24.21(a) for the case a = b leads to maximum deflections and moments mx in the
middle of bay A amounting to (0.00581 + 5/384) ·qb4

/(2D) = 0.00942qb4
/D and
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(0.0331 + 1/8) ·qb2
/2 = 0.0791qb2 assuming hinged connections at the point supports.

And the moments mx at point x = 0, y = b/2 are (0.0512 + 1/8) ·qb2
/2 = 0.0881qb2.

The chessboard-type loading arrangement shown in Fig. 24.21(b) results in deflections
of (0.00581 + 0.00406) ·qb4

/(2D) = 0.00494qb4
/D at A when we apply (24.68). The

moments mx = my at A are (0.0331 + 0.0369 ·1.2) ·qb2
/2 = 0.0387qb2 when n = 0.2.

24.2.5.4 Equivalent frames method

Fig. 24.22(a) illustrates an approximation method frequently used in practice. It in-
volves making cuts halfway between adjacent rows of columns to form equivalent
frames in the x and y directions. The frames are analysed for permanent and variable
actions in the most unfavourable positions. This produces envelopes for the bending
moments which have typical values of Mx

–, Mx
+ or My

–, My
+ over the columns and in

the spans. Afterwards, these moments are apportioned to the column strips
(width = 40 % of frame width) and the intervening middle strips transverse to the
frame direction, as shown in Fig. 24.22(b).
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The equivalent frames method represents a highly graphic approach that can be ap-
plied to a huge variety of column and load configurations. It is easy to take into ac-
count fixed-end moments at the columns due to bending and, if necessary, fixed-end
moments due to torsion in downstand beams etc. The method supplies a global equi-
librium state. The apportionment of the moments in the transverse direction is carried
out based on elastic slab theory. Local equilibrium is not investigated further and so
there is no statically admissible stress state (which is required when applying the
lower-bound theorem of limit analysis in a strict sense).

The average moment of 2.1My
–
/a which has to be accommodated in the column strip

over the column over a width of one-fifth of span a, see Fig. 24.22(b), corresponds to
a value of – 2.1qab2

/(12a) = – 0.175qb2 in the case of an infinitely large flat slab
subjected to a uniform loading q and supported by columns on a square grid
(a = b). Similarly, the value 0.833My

+
/a at mid-span corresponds to a value of

0.833qab2
/(24a) = 0.0347qb2, and the value for 1.25My

+
/a in the column strip is

0.0521qb2; by way of comparison, we get practically identical values of 0.0331qb2

and 0.0512qb2 when using (24.77). However, the value of 0.5My
–
/a = – 0.0417qb2

at the column section of the middle strip deviates quite considerably from the
value – 0.0185qb2 in the middle of the middle strip on the column axis obtained
from (24.77); it should be remembered here that the latter value is the lowest negative
moment along the column axis, but the value of – 0.0417qb2 is the average negative
moment in the middle strip along the column axis.

24.2.6 Energy methods

We can use (8.46) and (8.47) to obtain the specific strain energy

pi w
1

2
(mxx x Smyxy S 2mxyx xy)

according to (8.67), and applying (24.21) and (24.24) results in

pi wD
x2

I

2
S (1s n)xII

	 

Using the specific external potential –qw therefore results in the total potential

Pw

ð
A

D
x2

I

2
S (1s n)xII

	 

s qw

� 
dA (24:79)

according to (8.73), which according to the theorem of least total potential is a min-
imum for the true deformation state.

The RITZ and GALERKIN methods can be used as described in section 8.5. It should
be noted that concerning the integral on the right in (24.79), the relationshipÐ

A

xIIdAw 0 (24:80)

applies for fixed slabs according to section 24.1.3; this relationship – as shown in
section 24.1.3 – is also valid for slabs with straight boundaries and the boundary con-
dition w = 0 or w,n = 0 (n = edge normal) as well as generally for slabs with a com-
bination of the three aforementioned boundary conditions.
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Example 24.4 Simply supported square slab

Setting

www0 sin
px

l

� �
sin

py

l

� �
for a simply supported square slab (side length l, D = const) uniformly loaded with q, where

xx ww0
p2

l 2
sin

px

l

� �
sin

py

l

� �
w xy w xI=2

and taking into account (24.80) according to (24.79) results in

Pw

Dw2
0p4

2l 2 s

4ql 2w0

p2

Differentiating with respect to w0 and equating to zero then results in

w0 w
4ql 4

p6D
w 0.00416

ql 4

D

i. e. the first term in the series discussed following (24.68).

Example 24.5 Fixed square slab

Let us fix the edges of the square plate of example 24.4 and shift the origin of the system of coord-
inates from the corner of the slab to its centre (notation as given in exercise 24.5). Setting

www0(1s j2)2(1sh2)2 (jw 2x=l , hw 2y=l )

based on example 15.2, we get

xx w
16w0

l 2
(3j2

s 1)(1sh2)2 , xy w
16w0

l 2
(3h2

s 1)(1s j2)2

and (24.79) – taking into account (24.80) – then results in

Pw

128Dw2
0

l 2
2 � 4

5
� 128

315
S 2 � 32

105

� �2
" #

s

8

15

� �2

ql 2w0

Differentiating with respect to w0 and equating to zero then gives us

w0 w
49ql 4

36864D
w 0.001329

ql 4

D

Putting n = 0.2 gives us a bending moment

mx wmy w
49ql 2

1920
w 0.0255 ql 2

in the centre of the slab (j = h = 0), and the fixed-end moment in the middle of the edge of the slab
(j = 1, h = 0) is then

mx ws

49ql 2

1152
ws 0.0425 ql 2

24.3 Yield conditions

24.3.1 VON MISES and TRESCA yield conditions

24.3.1.1 General

Let us consider homogeneous slabs of depth h which satisfy the condition (7.21) or
(7.24). Using the generalised deformation increments _v = _x = { _xx , _xy, 2 _xxy}

T accord-
ing to (8.46), we can use (8.40) – with z instead of z – to obtain the strain
increments e

.
= {e

.
x, e

.
y , g

.
xy}

T = z _x , i. e. the vectors e
.

are in the same direction for
all points on one side of the middle plane of the slab, and their sign changes when
we change sides.

We shall assume a coplanar stress state s = {sx, sy , txy}
T for all values of z and require

that the membrane forces (5.14) disappear, i. e. only bending and twisting mo-
ments (5.16) occur.

The VON MISES yield condition (7.25) in the coplanar stress state can be expressed
in the form

Y w s2
x s sxsy S s2

y S 3t2
xy s f 2

y w 0
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(exercise 7.8) and corresponds to a (strictly convex) ellipsoid in the space sx, sy, txy .
Each _x is assigned a vector s for z i 0 and –s for z I 0 in a one-to-one corres-
pondence. The membrane forces therefore disappear automatically, and using the
reference value

mu w
h2fy

4
(24:81)

according to (20.26), the plastic moment related to the unit width b = 1, we get the
yield condition

Y wm2
x smxmy Sm2

y S 3m2
xy sm2

u w 0 (24:82)

for the generalised stresses s = {mx, my , mxy}
T.

The TRESCA yield condition in the coplanar stress state can be expressed in the form

Max s1j j, s2j j, s1 s s2j jð Þs fy w 0

see Fig. 7.8(c). The yield locus exhibits weak convexity and that means there is no
unique distribution of the local stresses s. However, owing to the fact that the
membrane forces must be equal to zero, the result is a condition similar to the
VON MISES yield condition:

Max m1j j, m2j j, m1 sm2j jð Þsmu w 0

or rather

Y1 wm2
xy s (mu smx)(mu smy)w 0

Y2 w 4m2
xy S (mx smy)2

sm2
u w 0

Y3 wm2
xy s (mu Smx)(mu Smy)w 0

(24:83)

see exercise 7.8. The conditions (24.83)1 and (24.83)3 correspond to elliptical cones in
the space mx ,my,mxy, but (24.83)2 corresponds to an elliptical cylinder. Fig. 24.23 il-
lustrates (24.83) confined to positive twisting moments mxy . Eq. (24.83)1 and (24.83)3

are similar to (23.20)1 and (23.20)7.

The ellipsoid (24.82) circumscribes the TRESCA yield surface consisting of the
three regimes (24.83). The two conditions coincide when mx + my = emu and
mx = my, mxy = 0. When my = mu/

ffiffiffi
3
p

and mxy = 0, we get mxmax = 2mu/
ffiffiffi
3
p

, and there-
fore the ellipsoid of VON MISES can be circumscribed by a TRESCA yield surface
with a plastic moment increased by 2/

ffiffiffi
3
p

– 1 = 15.4 %. This means that the limit loads
calculated according to the VON MISES yield condition cannot lie more than 15.4 %
higher than the corresponding limit loads calculated on the basis of the TRESCA yield
condition for the same plastic moment.
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24.3.1.2 Rotationally symmetric TRESCA slabs

Rotational symmetry means that mrf = 0 applies. The moments mr and mf are prin-
cipal moments and limited by the yield locus shown in Fig. 24.24. According to
(24.37), the principal curvature increments are

_xr ws _wL , _xf ws

_wl

r
(lw d=dr) (24:84)

Using this it is possible to specify the deflection increments w
.

for the individual
regimes in general form, and applying (24.5) plus the shortened forms

mw

Ðr
0

qr dr

mu
, rw

r

r0
(24:85)

gives us general expressions for the moments as well, see Tab. 24.1.

The outcome for regimes A, D and B, E is yield lines with an abrupt change in w
.
l.

Contrasting with this, w
.
l must be continuous for regimes C, F, i. e. smooth transitions

from the linear profiles of the deflection increments of regimes BC, EF to the loga-
rithmic profiles of regimes CD, FA.

Example 24.6 Simply supported circular slab

Fig. 24.25 shows a circular slab uniformly loaded in the centre and simply supported at the edge.
At the centre r = 0, it must be the case that mr = mf = mu at the limit load; at the edge r = r0,
then mr = 0 applies, and at r = r1, then mr must be continuous. Assuming regime BC, we read off
mf = mu = const from Tab. 24.1, and

mr wmu S
C1

r
s

qr2

6
(0J r J r1)

mr wmu S
C2

r
s

qr2
1

2
(r1 J r J r0)

As mr(0) = mu, it follows that C1 = 0, the continuity condition for mr at point r = r1 gives us
C2 = qr1

3
/3 and the boundary condition mr(r0) = 0 leads to

qr2
1pw

2pmu

1s
2r1

3

The given moments are compatible with the deflection increments w
.

= w
.
0(1 – r), i. e. the problem is

solved completely. The limiting cases of r1 = 0 and r1 = 1 give rise to limit loads of 2pmu and 6pmu.
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Tab. 24.1 General relationships for rotationally symmetric TRESCA slabs

Regime _xr _xf w
.

mr /mu mf /mu

A, D j 0, J 0 w
.
l] 0 0 e 1 0

AB, DE J 0, J 0 0 const e 1 m e 1

B, E j 0, J 0 j 0, J 0 w
.
l] 0 0 e 1 e 1

BC, EF 0 j 0, J 0 a1r + b1 e 1 + c1/r – (1/r)
R

mdr e 1

C, F j 0, J 0 w
.
l] = 0 0 e 1

CD, FA – _xf – _xr a2lnr + b2 e lnr + c2 –
R

(m/r)dr e lnr + c2 e 1 –
R

(m/r)dr
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Fig. 24.24 Yield locus for rotationally symmetric

TRESCA slabs

CL

r1

r ρr0=

r0

q

w

mϕ

mr

w0

mu

mu

+

+

Fig. 24.25 TRESCA circular slab uniformly loaded in

the centre and simply supported at the edge



Example 24.7 Fixed circular slab

Fig. 24.26 shows a uniformly loaded circular slab fixed at its edge. We shall assume regime BC for
region 0 J r J r1, but regime CD for region r1 J r J r0, i. e.

mr wmu s
qr2

6
(0J r J r1)

mr wmu ln rSC2 s
qr2

4
(r1 J r J r0)

It follows from mr(r1) = 0 that qr1
2 = 6mu, and applying mr(r0) = –mu gives us C2 = –mu + qr0

2
/4.

Finally, the continuity condition for mr at point r = r1 results in the relationship

ln r1 s 1S
3

2

1

r2
1
s 1

� �
w 0

i. e. r1 z 0.73 and qr0
2p = 35.37mu.

The resulting moments and deflection increments are

mr wmu 1s
r2

r2
1

� �
, mf wmu , _ww _w0 1s

r=r1

1s ln r1

� �
(0J r J r1)

mr wmu s 1S ln rS
3

2
� 1s r2

r2
1

� �
, mf wmu Smr , _ww _w0

ln r

ln r1 s 1
(r1 J r J r0)

At the fixed support there is a yield line with a rotation increment amounting to 0.76w
.
0 /r0.

The comparison with (24.45)2 reveals that the moment mr at the fixed support for a loading of
qr0

2p = 16pmu/3 reaches the value –my = –h2fy/6 according to (20.23)2 upon onset of yield in
the outermost fibres of the slab, i. e. presuming a system initially free from residual stresses, the onset
of yield is established for a load equal to 47.4 % of the limit load.

24.3.1.3 Commentary

Any rotationally symmetric problems concerning TRESCA slabs can be dealt with in a
similar way to examples 24.6 and 24.7. Complete solutions can certainly be provided
(exercise 24.17).

The limit load for a point load applied to simply supported or fixed TRESCA slabs
with any form is 2pmu [27]. The limit load for simply supported TRESCA slabs with
any form and subjected to a uniformly distributed loading is at least 6pmu [30].

In contrast to TRESCA slabs, slabs that satisfy the VON MISES yield condition give
rise to non-linear differential equations that generally have to be solved numerically.
Further, compared with TRESCA slabs, there are significant differences in the col-
lapse mechanisms [27]. However, the limit loads cannot be more than 15.4 % higher
for the same plastic moment mu , as already mentioned above.

24.3.2 Reinforced concrete slabs

24.3.2.1 Normal moment yield condition

Fig. 24.27(a) illustrates the stress distribution as a result of the plastic moments
mxu , myu in a slab reinforced in the x and y directions. The cross-sectional areas of
the reinforcement related to the unit width are designated with ax, ay (bottom re-
inforcement) and axl, ayl (top reinforcement). The yield limit for the reinforcement
in tension and compression is presumed to be fy . The square yield condition ODEF
will be assumed for the coplanar stress state according to Fig. 7.11(b).

The depths of the compression zones cx , cy follow from the condition that the mem-
brane forces nx , ny disappear. The two layers of top reinforcement yield in compres-
sion when they lie within the compression zone, see Fig. 24.27(a). The compression
zone can lie within the concrete cover if this is very deep and the bottom reinforce-
ment is relatively light; the top reinforcement then yields in tension according to the
rigid - perfectly plastic idealisation. The top reinforcement remains rigid if it coin-
cides exactly with the neutral axis, i. e. its stresses can lie anywhere between the limit
values fy and – fy . We should also note that, strictly speaking, when the reinforcement
lies within the compression zone, a stress of – fy + fc should be assumed instead of – fy

(or a force of axlfc or aylfc deducted) because there is no concrete available at this par-
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ticular location in the cross-section. The influence on the plastic moment is marginal
and so this effect is usually neglected.

Superposing the two stress states of Fig. 24.27(a) results in a statically admissible
stress state. The values that apply at any section according to Fig. 24.27(b) are
nn = ntn = 0, mn = mxucos2f + myusin2f and mtn = (myu – mxu)sinfcosf. The depths
of the compression zones cx and cy are generally different and so no compatible yield
line mechanism can be associated with the stress state. Therefore, the following ap-
plies for the plastic moment in the n direction according to the lower-bound theorem:

mnu jmxu cos2fSmyu sin2f (24:86)

When cx = cy, then the equal sign is valid in (24.86), and even for the general case of
cx 0 cy, the right-hand side of (24.86) results in a very good approximation for mnu.

We shall omit the inequality sign in (24.86) in the following and supplement the
relationship with a similar relationship for the magnitudes of the negative plastic
moments, i. e.

mnu wmxu cos2fSmyu sin2f , mnulwmxul cos2fSmyul sin2f (24:87)

The moments mn according to (24.7)1 must lie between the corresponding resistances
for all directions n. This leads to the normal moment yield condition

smnulJmn Jmnu (24:88)

see Fig. 24.28(a).
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Considering the yield line direction fu, then mn = mnu applies on the one hand and
dmn/df = dmnu/df on the other, i. e.

(mxu smx) cos2fu S (myu smy) sin2fu s 2mxy sinfu cosfu w 0

s (mxu smx) S (myu smy) s 2mxy cot(2fu) w 0

where the second equation has been divided by sin(2fu). Dividing the first equation by
sin2fu or cos2fu and subtracting or adding the second equation results in

mxu wmx Smxy tanfu , myu wmy Smxy cotfu (24:89)1

Similarly, we get

mxulwsmx smxy tanful , myulwsmy smxy cotful (24:89)2

Eliminating fu or ful results in the yield conditions

Y wm2
xy s (mxu smx)(myu smy)w 0 , Ylwm2

xy s (mxulSmx)(myulSmy)w 0

(24:90)

(and note that the expressions in brackets may not be negative). The following applies
for the yield line directions:

tanfu w
mxu smx

mxy
w

mxy

myu smy
w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mxu smx

myu smy

r
, tanfulws

mxulSmx

mxy
ws

mxy

myulSmy
w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mxulSmx

myulSmy

s

(24:91)

We can see that the yield line direction does not generally coincide with a principal
moment direction, i. e. as a rule fu 0 f1, see (24.8).

The yield conditions (24.90) are similar to (23.20)1. Putting k = jtanfuj and
kl = jtanfulj results in the relationships

mxu j mx S k mxy

�� ��
mxuljsmx S kl mxy

�� ��
, myu j my S

1

k
mxy

�� ��
, myuljsmy S

1

kl
mxy

�� �� (24:92)

for the dimensioning, which are similar to (23.26). The parameters k and kl are often
taken to be equal to 1 in practice.

In the space mx, my , mxy , the yield conditions (24.90) correspond to the two elliptical
cone surfaces shown in Fig. 24.28(b). According to the flow rule (7.12) or (21.2)1, the
following applies for points on the cone surface (24.90)1 apart from the apex of the
cone and the ellipse at the intersection of the two cones:

_x x w k(myu smy) , _xy w k(mxu smx) , 2 _x xy w k � 2mxy (kj 0)

and similarly for the cone surface (24.90)2 :

_x x ws k(myulSmy) , _xy ws k(mxulSmx) , 2 _x xy w k � 2mxy (kj 0)

Taking into account (24.90) and (24.21)2, it follows that

_x2
xy s _x x _xy ws _x1 _x2 w _xII w 0

see (23.23)1, i. e. we get developable surfaces for the deflection increments w
.
; the

corresponding points on the slab are parabolic.

According to (7.13), the following applies for points on the ellipse at the intersection
of the two cone surfaces:

_x x w k1(myu smy)s k2(myulSmy)

_xy w k1(mxu smx)s k2(mxulSmx) (k1 j 0, k2 j 0)

_x xy w (k1 S k2)mxy

and therefore _xII j 0. Stress states with points on the ellipse at the intersection there-
fore correspond – in terms of the deflection increments w

.
– to parabolic or hyperbolic

points with negligible or negative total curvature.

Finally, the apexes of the cones correspond to parabolic or elliptical points with negli-
gible or positive total curvature, i. e. _xII J 0 and either _xx j 0 or _xx J 0.
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Example 24.8 Reinforced concrete slab – dimensioning for bending

The task is to determine the bending resistances required in the x and y directions for the moments
mx = 30kNm/m, my = 0, mxy = 20kNm/m given in Fig. 24.29(a).
According to (24.92), the result is the areas bounded by hyperbolas shown in Fig. 24.29(b). Permis-
sible dimensioning points mxu , myu or mxul, myul lie within the shaded areas.
The hyperbolas in the displaced system of coordinates mxu – mx , myu – my or mxul + mx, myul + my

shown in Fig. 24.29(b) correspond to the intersections of the two elliptical cones of Fig. 24.28(b)
with the plane mxy = const.

24.3.2.2 Theory of thin plastic slabs

The middle plane of a reinforced concrete slab generally experiences strain increments
which we shall designate e

.
xm , e

.
ym, g

.
xym. These are added to the variables _xx , _xy , 2 _xxy in

the form of generalised deformation increments, and

_ex w _exm S _x xz , _ey w _eym S _xyz , _gxy w _gxym S 2 _x xyz (24:93)

applies, see Fig. 24.30. The relationships (24.93) correspond to kinematic constraints
that constitute the theory of thin plastic slabs (rigid in shear). The principal values

_e1,2 w
_ex S _ey

2
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ex s _ey

2

� �
S

_g2
xy

4

s

of the strain increments generally exhibit a hyperbolic variation over the slab depth h,
and the principal directions vary according to

tan(2f1)w
_gxy

_ex s _ey

see (6.13) and (6.14).

The condition

_eII ws _ex _ey S

_g2
xy

4
ws _e1 _e2 w 0

for equating e
.

1 and e
.

2 to zero results in the quadratic equation

z2 _xII s z( _exm _xy S _eym _x x s _gxym _x xy)S _eIIm w 0

from which we generally get a maximum of two levels z1 and z2 within the slab
depth h. If we assume the square yield condition according to Fig. 24.31 for the con-
crete, see Fig. 7.11(b), then it is possible to distinguish various zones over the depth of
the slab which correspond to regimes O, A and B. For example, in the case shown in
Fig. 24.30, e

.
1 and e

.
2 bottommost in the slab are both positive (regime O) and top-

most both negative (regime B), whereas in between e
.

1 is positive and e
.

2 is negative
(regime A).
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Calculating the stresses nx, ... , mx, ... belonging to a set of generalised deformation in-
crements e

.
xm , ... , _xx, ... does not present any particular difficulties. With the given

yield conditions for all layers in a slab, it is possible to calculate the specific dissipa-
tion energy D

.
= D

.
(e
.

xm , ... , _xx, ... ) on the basis of (24.93), and the associated general-
ised stresses follow according to (7.17), i. e.

nx w
@ _D

@ _exm
, ... , mx w

@ _D

@ _xx

The reverse of this problem, i. e. calculating the generalised deformation increments
belonging to a set of generalised stresses, generally calls for an iterative numerical
procedure; please refer to the comments at the end of section 13.2.1. For example,
the yield surface in the space mx, my , mxy can be determined point for point by varying
the variables e

.
xm , e

.
ym , g

.
xym for each assumed set _xx , _xy , 2 _xxy until nx = ny = nxy = 0.

Analytical solutions are also possible in some circumstances.

Example 24.9 Slab element subjected to pure twist

The slab element shown in Fig. 24.32 is reinforced symmetrically about the middle plane. The re-
inforcement cross-sections in the four layers are identical (ax = ay = axl = ayl) and the yield limit
for the reinforcement is fy. The square yield condition, see Fig. 24.31, is presumed for the concrete.
For reasons of symmetry, a pure twist stress resultant (mxy = myx i 0, mx = my = 0) has
_xx = _xy = g

.
xym = 0 and e

.
x = e

.
y = const. The principal values e

.
1 and e

.
2 vary linearly with z on both

sides of the middle plane, and e
.

2 is zero at the points z = e z0 = e
.

x/ _xxy . The value of f1 is constant
(p/4 or 3p/4) on both sides of the middle plane; an abrupt change in f1 ensues at the middle plane.
Regime O applies for the concrete in the inner area 0 J jz j I z0, and regime A in the outer areas
z0 J jz j J h/2. Taking the corresponding stresses – scx = –scy = jtcxy j = fc/2 in the concrete in the
outer areas, then

nx w ny w 2 s

fc
2

h

2
s z0

� �
S ax fy

	 

w 0 , mxy w

fc
2

h

2
s z0

� �
h

2
S z0

� �
applies, i. e. using the mechanical reinforcement ratio v = ax fy/(hfc), then z0 = h(1/2 – 2v), and the
result for the twisting resistance mxyu is

mxyu w fch2v(1s 2v)
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This relationship applies for v J 1/4. If v i 1/4, then mxyu = fch2
/8 and e

.
x = 0, i. e. the reinforce-

ment does not yield, and as z0 = 0, there is no inner area in which the concrete is stress-free
(regime O).
Provided the entire reinforcement is placed in the inner area, i. e. for the case that the effective depth of
the (outer) reinforcement in the x direction does not exceed the value h/2 + z0 = h(1 – 2v), then
(24.90) also results in a twisting resistance of fch2v(1 – 2v). This is the case for small reinforcement
ratios, but not for moderate and heavy reinforcement. As v increases, so the twisting resistance
becomes increasingly overestimated by the normal moment yield condition (24.90).

24.3.2.3 Sandwich model

One model [18] that is suitable for dimensioning reinforced concrete slabs subjected to
general stress resultants results from splitting a slab into two outer faces reinforced in
the x and y directions and an intermediate core, see Fig. 24.33(a). The shear forces are
assigned to the core, membrane forces as well as bending and twisting moments as-
signed to the outer faces. The thicknesses of the outer faces depend on the average
effective depths dm and dml of the reinforcement ax, ay and axl, ayl, i. e. are equal
to 2(h – dm) and 2dml, where h = slab depth. Thus, the thickness of the core is
dv = dm – dml. We shall presume that the core is reinforced in the z direction according
to a geometric reinforcement ratio rz.

The principal shear force v0 according to (24.11)1 is carried as shown in Fig. 24.33(b)
via a compressive stress field in the concrete core inclined at an angle a to the
xy plane. In a similar way to (23.26)2 or (23.35), the reinforcement required in the
z direction is

rz fy j
v0 tana

dv
(24:94)
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The tensile forces v0cota/2 required to compensate for the compressive force v0cota
in the f0 direction – taking into account (24.11) – lead to additional membrane forces

nxv w
v0

2
cota cos2f0 w

v2
x cota

2v0
, nyv w

v0

2
cota sin2f0 w

v2
y cota

2v0
, nxyv w

v0

2
cota sinf0 cosf0 w

vxvy cota

2v0

in the outer faces of the sandwich.

Compression stress fields in the concrete at angles of b and bl to the x axis are
assumed in the outer faces of the sandwich. Putting k = jcotbj and kl = jcotblj and
using (23.26) results in the requirements

ax fy j
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(24:95)

The bending and twisting moments here are related to the x, y axes that lie in the mid-
dle plane of the core.

Eq. (24.94) and (24.95) can be used for sizing the reinforcement for given stress
resultants. The choice of a, k and kl is left to the designer, who is recommended
to remain within the following limits: 0.5 J tana J 1, 0.5 J k J 2,
0.5 J kl J 2. Similarly to (23.25), checking the concrete compressive stresses in
the outer faces of the sandwich calls for

nxy

2
S

mxy

dv
S

vxvy cota

2v0

����
���� � k S

1

k

� �
J 2(hs dm)fc

nxy

2
s

mxy

dv
S

vxvy cota

2v0

����
���� � klS

1

kl

� �
J 2dmlfc

(24:96)

24.3.2.4 Commentary

This presentation of yield conditions for reinforced concrete slabs is confined to elem-
ents with orthogonal reinforcement. However, as with reinforced concrete plates (sec-
tion 23.3.2), the observations can be extended to skew reinforcement.

Compared with (24.93), assuming yield lines corresponds to a more severe kinematic
constraint. Therefore, apart from special cases, which can be attributed to omitting the
inequality sign in (24.86), the normal moment yield condition cannot supply any re-
sistances that lie below those calculated in accordance with the theory of thin plastic
slabs.

The bending resistance mnu at a yield line in the t direction is generally determined in
such a way that nn = 0. As a rule, this leads to a membrane shear force ntn and to a
twisting moment mtn. Like the shear forces, these stress resultants are not generalised
stresses; their associated strain increments disappear, and so they do not contribute to
dissipation.

Assuming nn = 0 at a yield line presumes that the associated extension of the middle
plane of the slab is not inhibited. Depending on the boundary conditions of a problem,
it may be that this assumption cannot be fulfilled, and the result is corresponding mem-
brane effects.

In contrast to the normal moment yield condition and the theory of thin plastic slabs,
the sandwich model is not based on a kinematic constraint, but rather on a pure static
treatment. No kinematic variables can be directly assigned to the static variables and
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so the sandwich model is a dimensioning procedure and not really a way of assessing
yield conditions for slab elements. Furthermore, it should be noted that, on the one
hand, the simplified assumption regarding the depth of the outer faces of the sandwich
infringes the moment equilibrium conditions to a certain extent because the position of
the reinforcement effectively deviates slightly from the middle of the face; on the other
hand, the available resistance of the concrete is in most cases not fully exploited. In
addition, allocating all the membrane forces to the outer faces of the sandwich can
prove to be a disadvantage. The influence of all these shortcomings is quickly assessed
in each individual case thanks to the simplicity of this type of model, and the designer
can decide whether a more detailed treatment according to the theory of plastic slabs is
preferable.

24.4 Static method

24.4.1 Rotationally symmetric problems

24.4.1.1 “Isotropic” reinforcement

When mxu = myu = mu, mxul = myul = lmu , then according to (24.87), mnu = mu or
mnul = lmu for all directions n. Comparing (24.9) with (24.91) reveals that in such
cases taking into account (24.90) means f1 = fu or f1 = ful, i. e. the yield line direc-
tion coincides with a principal moment direction. Such slabs are referred to as having
“isotropic” reinforcement or, more correctly, as slabs with an isotropic bending resist-
ance.

Referring to the yield locus shown in Fig. 24.34(a), we get the relationships shown in
Tab. 24.2 (which is similar to Tab. 24.1). In contrast to the TRESCA yield condition,
yield lines can ensue for the stress states at all corners of the yield locus.
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Example 24.10 Fixed circular slab

Assuming regime AB for the slab shown in Fig. 24.34(b), as in example 24.6, then mf = mu = const
and

mr wmu S
C1

r
s

qr2

6
(0J r J r1)

mr wmu S
C2

r
s

qr2
1

2
(r1 J r J r0)

It follows from mr(0) = mu that C1 = 0, the continuity condition for mr at the point r = r1 requires
C2 = qr1

3
/3, and the condition mr(r0) = –lmu results in the limit load

qr2
1pw

2pmu(1S l)

1s
2r1

3
A yield line (regime B) becomes established at the edge of the slab and a collapse mechanism
(regime AB) in the form of a circular cone is set up within the slab.
When l = 0, the solution is identical with that of example 24.6.
Putting r1 = 1 results in the same moment distribution as for a simply supported square plate sub-
jected to a uniformity distributed load q (side length l = 2r0, m0 p mu, corners restrained), see
exercise 24.1 and (24.7)1 with tanf = y/x, r2 = x2 + y2 : mr/mu = 1 – (r/r0)

2, mf = mu, mrf = 0.
This formulation is not only suitable for square slabs; it also generally applies to slabs in the
form of regular polygons that are simply supported and carry uniformly distributed loads. With n cor-
ners, the total load applied to the slab upon reaching the limit load is 6nmutan(p/n). When n p T, we
get the limiting case of a circular slab with a limit load of 6pmu. Top reinforcement is required outside
the slab’s inscribed circle. The moment field is compatible with a mechanism in which (positive) yield
lines run from the centre of the slab to its corners.

Example 24.11 Annular slab fixed at its inner edge and loaded on its outer edge by mu

As an approximation, the annular slab shown in Fig. 24.34(c) can be considered as representing the
interior bays of the area r0

2p of uniformly loaded flat slabs [17]. By assuming regimes CD and DA
in the regions r1 J r J r2 and r2 J r J r0, we get

mr ws lmu S
C1

r
s

qr2

6
S

qr2
0

2
(r1 J r J r2)

mf wmu S
qr2

2
s

qr2
0

2
(r2 J r J r0)

From mr(r1) = –lmu it follows that
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Owing to the fact that mf(r2) = –lmu, it is also the case that
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r
and the limit load is

q(r2
0 s r2
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2pmu(1S l)(1s r2
1)

1s r2
2
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Tab. 24.2 General relationships for rotationally symmetric slabs with “isotropic” reinforcement

Regime _xr _xf w
.

mr /mu mf /mu

DA, BC j 0, J 0 0 const 1 , – l m + 1 , m – l

C j 0, J 0 j 0, J 0 w
.
l] 0 0 1 , – l 1 , – l

AB, CD 0 j 0, J 0 ar + b 1 + c/r – (1/r)
R

mdr , – l + c/r – (1/r)
R

mdr 1 , – l

C J 0, j 0 j 0, J 0 w
.
l] 0 0 – l , 1 1 , – l



24.4.1.2 Variable bending resistances

In many large circular slabs, only the central area contains orthogonal reinforcement,
and the outer areas are reinforced with radial and curved bars, see Fig. 24.35(a). The
bar diameter remains constant but the spacing of the radial bars increases with the
radius r and so the corresponding bending resistance mru is approximately propor-
tional to 1/r. In order that the spacing of the radial bars does not become too large
near the outer edge of the slab, intermediate bars may be required. In such a case,
mru is approximately proportional to 1/r for each particular area; mru(r) then pro-
gresses in sawtooth fashion.

In order to discuss the effect of the variable bending resistance mru(r), we shall make
use of the relationship (24.5), which will be written in the form

mf w

d

dr
(rmr)S

Ðr
0

qr dr (24:97)

If we substitute the resistance mru(r) for mr in this relationship, then the result for any
loading q(r) is the required resistance mfu(r). The spacing of the curved reinforcing
bars can be easily varied and so it is not difficult to adapt mfu to suit the static require-
ments.

Eq. (24.97) leads to another interesting finding. The total mass of the (bottom) re-
inforcement in a circular slab simply supported at its outer edge r = r0 and subjected
to any loading q(r) j 0 is proportional to the “moment volume”

M w 2p
Ðr0

0

(mru Smfu)r dr

provided we assume the same yield limits, densities and lever arms for all the re-
inforcing bars. If we presume that the bending resistances for a certain load case
are just reached for all values of r, then we can replace mru and mfu by mr and mf,
and use (24.97). Making use of (24.85)1 results in

M w 2p

ðr0

0

rmr S r � d

dr
(rmr)Smumr

	 

dr w 2p r2mr

���r0

0
Smu

Ðr0

0

mrdr

��

The first term in brackets on the right disappears because one of its factors is zero at
each limit of integration. Consequently, we are left with the following:

M w 2p
Ðr0

0

r
Ðr
0

qrdrdr (24:98)
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According to this, all the reinforcement in a circular slab simply supported at its outer
edge with ideally curtailed reinforcement is dependent on the respective load case only
and not on the apportionment of the bending resistances chosen in the radial and cir-
cular directions.

When q = const, then (24.98) results in, for example, M = pqr0
4
/4. The limiting case

of r1 = 1 in example 24.10 leads to the bending moment diagrams shown in Fig.
24.35(b) with the integral

M w 2p � qr2
0

6

ðr0

0

r 1s
r

r0

� �2

S 1

" #
dr w

pqr2
0

3
� r2

0 s
r2

0

4

� �
w

pqr4
0

4

We get the same integral for the potential extreme bending moment diagrams

mr w
q

6

r3
0

r
s r2

� �
, mfa0

shown in Fig. 24.35(c) according to (24.97), or rather

mra0 , mfw
qr2

2
and likewise for the elastic moment distribution (24.46)2 and (24.46)3, see exer-
cise 24.19.

The case shown on the left of Fig. 24.35(c) is impossible because mr for r p 0 tends to
infinity. On the other hand, any deflection profiles w

.
(r) in which the relationship

d _w/dr J 0 is satisfied for all values of r are compatible with the bending moment dia-
gram shown on the right of Fig. 24.35(c) because mr = mru = 0, e. g. w

.
= w

.
0(1 – r2),

which leads to _xr = _xf = – 2w
.
0/r0

2.

24.4.1.3 Commentary

As with rotationally symmetric TRESCA slabs, complete solutions can be worked out
for any rotationally symmetric problems connected with reinforced concrete slabs.

When we specify mr or mf on the basis of an existing resistance, for example, it fol-
lows that mf or mr can be obtained from (24.97) for a given loading q(r).

Eq. (24.98) is only valid for a circular slab simply supported at its outer edge and
having non-negative moments. In the case of a slab uniformly loaded and fixed at
its outer edge, the result with mr = –qr2

/6 and mf = 0, for example, is the minimum
reinforcement (exercise 24.20).

24.4.2 Moment fields for rectangular slabs

The examples 24.1, 24.2 and 24.3 were used to show how a skilfully chosen moment
field for a given problem can satisfy the equilibrium condition (24.2) on the one hand,
and the static boundary conditions on the other. This procedure is examined in more
depth with the help of exercises 24.1, 24.2 and 24.5.

Polynomial formulations are generally suitable for the moments. The equilibrium con-
ditions, the static boundary conditions and, where applicable, symmetry conditions
provide certain relationships between the coefficients of the polynomial terms. The
remaining free coefficients can be specified, for example, by considering the most
rational arrangement of the reinforcement.

Further examples are given below.
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Example 24.12 Simply supported rectangular slab

The slab shown in Fig. 24.36 is simply supported on all sides and carries a uniformly distributed load.
Employing the shortened forms j = 2x/a, h = 2y/b, we use the moment field

mx wmu(1s j2) , my wmu(1sh2) , mxy wsmujh

Eq. (24.2) results in

qabw 8
b

a
S

a

b
S 1

� �
mu

and (24.9)1 gives us

m1 wmu , m2 wmu(1s j2
s h2)

The moment field corresponds to a generalisation of that of exercise 24.1. The constant principal
moment m1 can be accommodated by an isotropic bending resistance mu constant over the entire
slab. Outside the inscribing ellipse to the slab, m2 is negative. At the corners of the slab,
m2 = – mu, and corner forces with a magnitude of 2mu build up and act on the slab in the positive
z direction. Theoretically, the top reinforcement can be confined to the corner regions (j2 + h2

j 1).

Example 24.13 Square slab simply supported along two adjacent edges

The moment field

mx w
3

2
muj(1s j) , my w

3

2
muh(1sh) , mxy ws

3

4
mu(jShs jh)

for the square slab [22] shown in Fig. 24.37 – using (24.1)2 and (24.1)3 – leads to

vx w
3mu

4l
(1s 3j) , vy w

3mu

4l
(1s 3h)

and using (24.2) leads to

ql 2
w

9mu

2
According to (24.11), the principal shear forces are directed away from point D (j = h = 1/3) – as
indicated by the arrows in Fig. 24.37. The bending moments and edge shear forces disappear along
OA and OC, i. e. these edges are free (unsupported). The bending moments disappear along AB and
BC, and the result is constant edge shear forces amounting to – 3mu/(2l ). Corner forces of 3mu/2 act
on the slab in the negative z direction at corners A and C, and at corner B there is an equally large
corner force in the positive z direction.
Assuming an isotropic bending resistance mxu = myu = mu, then (24.90)1 gives us

Y wm2
u

9

16
(jShs jh)2

s 1s
3

2
jS

3

2
j2

� �
1s

3

2
hS

3

2
h2

� �	 


wsm2
u 1s

3

4
(jSh)

	 
2

S

3

8
j2 1s

3

2
h

� �2

S

3

8
h2 1s

3

2
j

� �2
( )

The yield condition Y = 0 is only satisfied for point E (j = h = 2/3); Y I 0 at all other points on the
slab, i. e. the available resistance is not fully utilised.
The maximum negative moment occurs at point B, where m1 = –m2 = 3mu/4 applies.

Example 24.14 Simply supported regular polygonal slabs

Fig. 24.38 shows two alternative stress states for simply supported regular polygonal slabs with
n sides and subjected to a central point load Q. For reasons of symmetry, it is sufficient to consider
just one triangular segment OAB with the apex angle p/n.
Fig. 24.38(a) assumes – like example 24.3 – uniaxial moment fields parallel with the edge.
The line OB separating areas I and II is a static discontinuity line along which a shear force of
musin(2p/n) is transferred. Consequently, we get

Qw nmu sin
2p

n

� �
The slab only has to be supported at its corners, the edges can be free. The MOHR’s circle on the right
of Fig. 24.38(a) contains points O and P, which are the poles of areas I and II. Mechanisms in which
the static discontinuity lines are also (positive) yield lines are compatible with the stress state con-
sidered here. When n p T, we get the limit load 2pmu known from example 24.10 (r1 = 0, l = 0),
when n = 12, we get 6mu, and when n = 6, 4 and 3, the results are 5.196mu, 4mu and 2.598mu re-
spectively.
The moments

mx w 0 , my wmu 1s
y2

x2

� �
, mxy wsmu

y

x
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correspond to

mf wm1 wmu , mr wm2 wsmu tan2f

according to Fig. 24.38(b). Eq. (24.2) provides q = 0 and we can use (24.1)2 and (24.1)3 to get
vx = –mu/x = vyx/y, i. e. using (24.11)2, tanf0 = y/x. We get edge shear forces vx + myx,y of
– 2mu/a along AB, and a corner force of 2mutan(p/n) (acting on the slab in the positive z direction)
develops at corner B. Accordingly, a force

Qw 2nmu tan
p

n

� �
acts in the centre of the slab which is carried away radially towards the edges. The principal shear
force (24.11)1 amounts to v0 = mur/x

2. There are mechanisms compatible with the stress state con-
sidered in which (positive) yield lines run from the centre of the slab to all its corners. When n p T,
we again get the limit load Qu = 2pmu, when n = 12, the result is 6.431mu, and when n = 6, 4 and 3,
the results are 6.928mu, 8mu and 10.3923mu respectively.
The difference between the limit loads of the two alternative stress states is based on the fact that
according to Fig. 24.38(a), only positive bending resistances are required, whereas according to
Fig. 24.38(b), besides the yield lines for mf = mu, ever larger negative moments have to be accom-
modated in the radial direction as n decreases. In the limiting case n = 3, the result for f = p/3
according to Fig. 24.38(b) is mr = – 3mu, and when n = 4 and f = p/4, then mr = – mu applies.
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Example 24.15 Cantilever slab with point load on edge

Fig. 24.39(a) shows a cantilever slab of width a which is infinitely long in the y direction and loaded
on its edge at A by the point load Q. Assuming mf = – mr = mu for area OAB and mx = my = 0,
mxy = mu for area ABCD, then (24.3)2 gives us the shear force vr = – 2mu/r in OAB, and according
to (24.15)2, the shear force Vy = –mu is carried away along AD. Consequently, the result, considering
the symmetry about the x axis, is

Qw 2
2mu

r
� r p

4
Smu

� �
w (2Sp)mu

Fig. 24.39(b) shows a short cantilever slab with a j p/4. In this case we shall assume mx = – mu,
my = mucot2f, mxy = 0 for area OAB, whereas area ABC is assumed to be free from stresses. There-
fore, a twisting moment with a magnitude of mucota acts along AB, and according to (24.15)2, a
corresponding shear force is carried away along this line. According to (24.1), the result for area OAB
is vx = vy = 0. Therefore, considering the symmetry about the x axis, the result is

Qw 2mu cota

Area ABC is assumed to be stress-free in the long cantilever slab of Fig. 24.39(c), where a J p/4. A
state of pure twist m1 = –m2 = mu with respect to axes 1 and 2 perpendicular to or parallel with AD is
presumed in area ABD. According to Fig. 24.39(a), we assume mf = – mr = mu for area OAD. A
shear force – mu acts along discontinuity line AB and a force of 2mu(p/4 – a) is carried away in
the radial direction in area OAD. In total, considering the symmetry about the x axis, the result is

Qw (2Sps 4a)mu (0JaJp=4)

The limiting cases a = 0 and a = p/4 have the values (2 + p)mu and 2mu, i. e. the same values as
those obtained with the solutions already discussed for the infinitely long or short slab.
By assuming an isotropic bending resistance emu, the solutions for the infinitely long and the short
cantilever slabs (a = 0 or p/4 J a J p/2) are complete, i. e. there are collapse mechanisms compat-
ible with the stress states considered, see example 24.20. On the other hand, the solution for the long
cantilever slab (0 I a I p/4) only corresponds to a lower bound of the limit load.

24.4.3 Strip method

24.4.3.1 Introductory example

In order to introduce the strip method [11], we shall consider the square plate shown
in Fig. 24.40(a) subjected to a uniformly distributed load q. We shall replace the slab
by adjacent strips of slab with a width of 1 in the x and y directions acting as simply
supported beams and assign a line load of q/2 to each strip. Taking a span l, this leads
to maximum moments of (q/2) · l2

/8 =ql2
/16 at mid-span.
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Generally, applying (24.2) allows us to assume a load apportionment of

qw qx S qy S qxy qx ws

@2mx

@x2
, qy ws

@2my

@y2
, qxy ws 2

@2mxy

@x@y

� �
(24:99)

and specifying mxy a 0 allows us to confine our examination to the bending moments
mx und my.

Fig. 24.40(b) shows the slab divided into inner strips of width l/2 and outer strips of
width l/4, which results in the inner area I plus four perimeter areas II and four corner
areas III. We shall assume qx = qy = q/2 for the inner and corner areas, whereas the
load in the perimeter areas is transferred directly to the associated edge (qx = q or
qy = q). Sections A-A and B-B illustrate the corresponding moments resulting in
the perimeter and inner strips.

As in (24.98), it is interesting to compare the “moment volumes”

M w

Ðl=2

sl=2

Ðl=2

sl=2

(mx Smy) dx dy

of the two bending moment diagrams. We get M = 2 · (ql2
/16) · (2/3) · l2 = ql4

/12 for
Fig. 24.40(a), and M = 2· (ql2

/64) · (1 + 2/3)/2 · l2 + ql4
/24 = 13ql4

/192 for Fig.
24.40(b), i. e. a value that is about 19 % less.

The moment field of exercise 24.1 corresponds to the load apportionment
qx = qy = qxy = q/3 according to (24.99). Eq. (24.90)1 shows that to accommodate
this, constant bottom reinforcement with a bending resistance of mxu = myu = ql2

/24
is required over the entire slab, which itself leads to a “moment volume” of ql4

/12.
In addition, according to (24.90)2, there is also top reinforcement in the corner areas
outside the slab’s inscribed circle. Compared with the mass of the (ideally curtailed)
reinforcement according to the simplest possible approach of Fig. 24.40(a), the more
complicated approach of exercise 24.1 results in more reinforcement. The comparison
with Fig. 24.40(b) shows the strip method to be even more favourable.
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24.4.3.2 Rectangular slabs

Fig. 24.41(a) illustrates one possible load apportionment for simply supported rect-
angular slabs (a i b) carrying uniformly distributed loads. Area I has qy = q, but per-
imeter areas II have qx = q, and the corner areas III have qx = qy = q/2.

If two neighbouring edges are fixed as shown in Fig. 24.41(b), then the boundaries to
the areas are shifted by choosing parameter a in such a way that the magnitude of the
fixed-end moments is about 1.5 to 2.5 times greater than that of the maximum positive
moments. This leads to a values between 0.35 and 0.39.

Fig. 24.42 shows one possible way of dealing with a rectangular slab which is sub-
jected to a uniformly distributed load and has one free and three simply supported
edges. A so-called strong band is introduced in area II over a width bb. Applying
the load apportionment qx = (1 – g)q, qy = gq in area I results in the strong band
carrying the load qs in addition to the uniformly distributed load q. Fig. 24.42 shows
the corresponding bending moment diagrams.
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24.4.3.3 Concentrated forces

The strip method is not directly suited to dealing with concentrated loads or reactions.
Such forces can be balanced by uniformly distributed forces, e. g. by means of the load
distribution elements shown in Fig. 24.43. The uniformly distributed forces are then
applied in the reverse sense to strips of width 2a or a.

We get the moments

mx w 0 , my wm 1s
h2

j2

� �
, mxy wm jhs

h

j

� �
(24:100)

for the element shown on the left in Fig. 24.43 with a central point force 8m based on
example 24.2 for area OAB.

If we cut the element along the x axis, superposing my = – m results in

mx w 0 , my wsm
h2

j2 , mxy wm jhs

h

j

� �
(24:101)

for area OAB and

mx wm 1s
j2

h2

 !
, my wsm , mxy wm jhs

j

h

� �
(24:102)

for area OBC. These moments correspond to the element shown in the middle of
Fig. 24.43, which is acted on by a force 4m on its edge (exercise 24.22). The edge
moment my = – m along y = a must be considered in the continuation of the moment
field in the adjoining strip of width 2a.

Based on example 24.1, we get the moments

mx wmj(js 2) , my wmh(hs 2) , mxy wm(jS hs jhs 1) (24:103)

for the element shown on the right in Fig. 24.43. The edge moments mx = – m along
x = a as well as my = – m along y = a must be considered in the continuation of the
moment field in the adjoining strips of width a.

Fig. 24.44 shows an example of applying load distribution elements in conjunction
with strips in the x and y directions. Slab ABCD carries a uniformly distributed
load, has a fixed support along AB and point supports at corners C and D. The corner
areas CHLG and DJKI correspond to the element shown on the right of Fig. 24.43.
They carry the actual loads on those areas plus the loads transferred from area IKLH
via strip DJGC. The perimeter strips GLFB and KJAE, likewise the intermediate
strip LKEF, also transfer the loads applied to them to the fixed support. The arrows
indicate the directions of the flow of the forces, and the moments mx or my are given
for three sections.

The generalisation of the strip method by incorporating load distribution elements to
deal with concentrated forces is known as the advanced strip method. As long as we
can manage without load distribution elements, we are working with the simple strip
method.
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24.4.3.4 Commentary

Strong bands are not only useful modelling notions in the case of unsupported slab
edges (Fig. 24.42), but also at openings and re-entrant corners, for example, see
Fig. 24.45. They can be used to convert complex geometric problems into a series
of simpler geometric problems.

Assuming strips with varying widths can be worthwhile in the case of skew slabs, see
Fig. 24.46 and Fig. 16.27.

In the case of the load distribution elements shown on the left and right of Fig. 24.43,
the principal moments lie between –m and m. However, the load distribution element
shown in the middle of Fig. 24.43 results in a maximum moment of m(1 +

ffiffiffi
5
p

)/2
(exercise 24.22).

24.5 Kinematic method

24.5.1 Introductory example

The yield line method for reinforced concrete slabs is discussed in this section [12].
This method involves introducing yield lines into slabs of any geometry to divide them
into rigid parts in such a way that a mechanism is formed. We shall presume (24.87) for
the bending resistances at the yield lines, and therefore upper bounds for the limit load
can be determined according to (21.6).

The slab shown in Fig. 24.47, which has a fixed support along AB and point supports
at C and D, will serve as our introductory example. Slab areas ABJHI, CKHJ and
DIHK rotate about the axes EF, FG and GE respectively. For reasons of compatibility,
the continuations of the positive yield lines HI, HJ and HK must pass through the
intersections E, F and G of the axes of rotation of the slab areas joined by the yield
lines. A negative yield line results along the fixed support AB.

The yield line mechanism shown in Fig. 24.47 contains four free parameters, e. g.
distances EA and BF plus the coordinates of point H. Defining EA and BF allows
us to define the axes of rotation and point G, and choosing the position of H fixes
the yield lines. Selecting a deflection of 1 at point H defines the rotations of the three
parts of the slab, and the relative rotations along the yield lines result from the
(vectorial) difference between the rotations of the adjoining parts of the slab. The
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calculation according to (21.6) can thus be performed and the limit load minimised
with respect to the free parameters.

Unlike with framed structures, the high degree of static indeterminacy of the slab sec-
tions, which are presumed to be rigid, means it is not possible to carry out a plasticity
check.

24.5.2 Calculating the dissipation work

24.5.2.1 Discrete yield lines

Fig. 24.48(a) shows a differential element of a yield line in the t direction. Using the
relative rotation _vn and the bending resistance mnu according to (24.87)1, we get the
elementary dissipation work for that element:

d _Dwmnu _vndt w (mxu cos2fSmyu sin2f)vndt

The rotation components _vx = _vncosf, _vy = _vnsinf and dy = dtcosf, dx = dt sinf

allow us to write

d _Dwmxu _vxdySmyu _vydx (24:104)

i. e. dD
.

can be calculated directly from the bending resistances and rotations in the
directions of the reinforcement.

24.5.2.2 Fan mechanisms

Fig. 24.48(b) shows a differential element of a circular fan mechanism with radius r0.
The deflection w

.
= 1 of the centre of the slab corresponds to a slope w

.
,r = –1/r0 and

therefore a curvature increment _xf = 1/(rr0) according to (24.35)2. We thus get the
elementary dissipation work

d _Dwmfudr _xfrdfw

mfu

r0
dr df (24:105)

When we consider a fan with an apex angle b and mfu = const, integrating (24.105)
results in the expression D

.
= mfub. If in addition a bending resistance mrul = const is

activated at the outer edge r = r0, the result is
_Dw b(mfu Smrul) (24:106)
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24.5.3 Applications

Example 24.16 Fixed rectangular slab

The yield line mechanism shown in Fig. 24.49 contains the free parameter c. Assuming isotropic
bending resistances mu and –lmu, the result for a uniformly distributed loading q is the work equation

qb
a

2
s

c

3

� �
wmu(1S l) 4

a

b
S 2

b

c

� �
Differentiating the corresponding expression for q with respect to c, equating to zero and using
b = b/a J 1 results in

cw
b

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3Sb2

q
sb

� �
According to the upper-bound theorem, the limit load qu is therefore

qu J
24(1S l)mu

b2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3Sb2

q
s b

� �2

If the slab is not fixed at the edge, but rather simply supported, we lose the l term in the work equation
and in the expression for qu.
Together with the relationship derived in example 24.12, we get the bounds

8(1SbS b2)J
qub2

mu
J

24ffiffiffiffiffiffiffiffiffiffiffiffiffi
3S b2

q
sb

� �2

for simply supported rectangular slabs. The agreement is excellent. When b = 1 and b = 0, the upper
and lower bounds coincide, and in between they deviate from each other by no more than about 1.5 %.
The reader should note that the lower bound presumes l = 1 according to example 24.12.

Example 24.17 Square slab simply supported along two adjacent edges

We get the work equation

qla

3
S

ql(ls a)

2
wmu

l

a
S

a

l

� �
for the problem of example 24.13 with the mechanism shown in Fig. 24.50. The derivative with re-
spect to a of the corresponding expression for q is equated to zero and results in the quadratic equation

3a2
S 2als 3l 2

w 0

which has the solution

aw

ffiffiffiffiffi
10
p

s 1

3
l

and therefore

qul 2
J 5.55 mu

The lower bound of 9mu/2 for qul2 determined in example 24.13 amounts to 81 % of the upper bound
calculated here.
Introducing a second yield line BDl, which is symmetrical with respect to yield line BD when
mirrored in axis OB, does not change the upper bound value of 5.55mu for qul2.
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Example 24.18 Fixed square slab

Fig. 24.51 shows a square slab fixed on all sides and subjected to a uniformly distributed load. For
reasons of symmetry, it is sufficient to consider just one octant. With circular fans having an apex
angle of 2a between the centre of the slab and its corners, the work equation for a deflection of 1
at the centre of the slab is

ql 2

3
tan

p

4
sa

� �
S

a

cos2
p

4
sa

� �
2
64

3
75w 8mu(1S l) tan

p

4
sa

� �
Sa

	 


Minimising the expression for q with respect to a results in a = 14.3h and

qul 2
J 21.75(1S l)mu

The lower bound of 37.96mu (l = 1) examined in exercise 24.5 amounts to 87 % of the upper bound
calculated here. A complete solution is known for this problem [7]; qul2 = 42.85mu applies.

Example 24.19 Slab strip subjected to a central point load

For a deflection of 1 due to the point load Q in the centre of the slab strip illustrated in Fig. 24.52,
the work equation is

Qwmu(1S li) 4aSmu(1S le) 4 cota

When li = le = 0 or 1, we get the minimum value for Q when a = p/2, i. e. 2pmu or 4pmu. When
le = 0, we get the minimum value for Q when

cotaw

ffiffiffiffi
li

p
and the following applies:

Qu J 4mu

ffiffiffiffi
li

p
S (1S li)arc tan

1ffiffiffiffi
li

p
� �	 


Example 24.20 Cantilever slab with point load on edge

In a similar way to example 24.19, the work equation for the problem shown in Fig. 24.53 is

Qwmu(1S l) 2aS 2lmu cota

and minimising Q with respect to a results in tan2a = l.
When l = 1, we get a = p/4 and therefore the limit load Qu = (2 + p)mu known from ex-
ample 24.15.
We should also note that the short cantilever slabs with a central point load dealt with in ex-
ample 24.15 can fail with a yield line along the fixed support. Such a mechanism is compatible
with Fig. 24.39(b) and therefore the limit load is Qu = 2mucota.
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Example 24.21 Flat slab

The mechanism shown in Fig. 24.54 corresponds to the problem already investigated in ex-
ample 24.11, but with the round columns replaced by square ones. The work equation is

q absa2a2
s 4

aga2

2
s

g2a2p

3

� �
w 4mu(1S l)

p

2
S

aa

ga

� �
Putting b = b/a and minimising q results in the cubic equation
p

3
g3

S 2pag2
S 4a2gsa(bsa2)w 0

for the free parameter g, and we get the condition

qua2

mu(1S l)
J

2 pS

2a

g

� �

bsa2
s 2ags

p

3
g2

for the limit load qu.
Tab. 24.3 contains the corresponding values g and qu for b = 1 and some values of a.

24.5.3.1 Commentary

The concept of yield lines was first introduced for rotationally symmetric TRESCA
slabs (Tab. 24.1, regimes A, D, B, E). Complete solutions to such problems are al-
ways possible. It is easy to specify the mechanisms compatible with the respective
moment fields, and the calculation according to (21.6) is superfluous. The same is
true for rotationally symmetric problems with reinforced concrete slabs.

The moment fields discussed in examples 24.1, 24.2 and 24.3 are compatible with
yield lines along the x and y axes. Mechanisms compatible with the moment fields
considered have already been pointed out in example 24.14. The same applies to
the short and infinitely long cantilever slabs of example 24.15 (compare with ex-
ample 24.20). All these examples correspond to complete solutions.

Putting l = 0 means that example 24.18 provides the upper bound 21.75mu for the
limit load qul

2 for a uniformly loaded, simply supported square slab that has only bot-
tom reinforcement with an isotropic bending resistance mu. On the other hand, the
strip method according to Fig. 24.40(a) provides the lower bound 16mu . Compared
with that, including top reinforcement in the corners of slabs and securing the corners
against uplift results in a limit load of qul

2 = 24mu according to exercise 24.1.

In practice, the reinforcement is generally curtailed in each segment in order to avoid
uneconomic reinforcement layouts. The curtailment process must ensure, on the one
hand, that the required bending resistances are provided, e. g. according to (24.92),
and, on the other, that the requirements regarding adequate minimum reinforcement
are taken into account in order to avoid sudden brittle fractures and to guarantee good
crack distribution. The bending resistances along the individual yield lines are there-
fore not normally constant, which somewhat complicates the process of setting up the
work equation, but does not lead to any fundamental problems.
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column of a uniformly loaded flat slab supported on
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Optimising a mechanism with respect to its free parameters can be carried out analyt-
ically or numerically, as demonstrated in the examples. Small deviations from the
optimum parameter combination have only a minor influence on the corresponding
upper bounds to the limit load. In most cases the optimum range is quite easy to
find by way of trial and error.

Instead of making a great effort trying to optimise a particular mechanism, the designer
is recommended to search for alternative, possibly more risky, mechanisms. With flat
slabs, for example, simple line mechanisms with negative yield lines tangential to the
edges of neighbouring columns and positive yield lines in the intervening span may
lead to lower upper bounds for the limit load than the mechanism shown in Fig. 24.54
(example 24.21) because of the curtailment of the reinforcement.

24.6 The influence of shear forces

24.6.1 Elastic slabs

The theory of linear elastic slabs with infinite shear stiffness and small deflections,
which was presented in section 24.2, reduces the number of boundary conditions
from three to two, as described in section 8.2.6. This greatly simplifies the analysis
of the stresses. Some fine-tuning is sometimes necessary, e. g. in order to ascertain
the relationships at the edges of slabs or around holes whose diameter is small com-
pared with the thickness of the slab.

We shall presume a parabolic distribution of the shear stresses tzx and tzy over the slab
depth h and take into account an area shear factor av = 5/6 in (8.45). Taking the
boundary conditions sz(h/2) = 0, sz(–h/2) = –q, eq. (5.29) or (8.49) – with i = z –
because of the parabolic variation in the shear stresses gives us the cubic variation

sz w q s

1

2
S

3z

2h
s

2z3

h3

� �
of the normal stresses in the z direction, see Fig. 24.55. According to (8.34), these
stresses correspond to restraint stresses Dsx and Dsy. Putting EDex = Dsx

– n(Dsy + sz) = 0 and EDey = Dsy – n(Dsx + sz) = 0 results in Dsx = Dsy =
szn/(1 – n), and therefore we get the moments

Dmx wDmy w
Ðh=2

s h=2

Dsxz dzw
nqh2

10(1s n)

Eq. (8.41) gives us

xx wfx, x w gx, x sw, xx , xy wfy,y w gy,y sw,yy , 2xxy ws 2w, xy S gx,y S gy, x

and (8.45) – taking into account av = 5/6 – results in

gx w 2.4(1S n)
vx

Eh
, gy w 2.4(1S n)

vy

Eh
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Therefore, eq. (8.43), taking into account (24.1)1 and the definition of the slab stiff-
ness D in (8.48) and incorporating Dmx = Dmy , results in the moments

mx wsD(w, xx S n w,yy)S
h2

5
vx, x s

nqh2

10(1s n)

my wsD(w,yy S n w, xx)S
h2

5
vy,y s

nqh2

10(1s n)

mxy ws (1s n)D w, xy S
h2

10
(vx,y S vy, x)

(24:107)

Substituting in (24.1)2 and (24.1)3 and taking into account (24.1)1 gives us the shear
forces

vx wsD(Dw), x S
h2

10
Dvx s

q, x

1s n

� �

vy wsD(Dw),y S
h2

10
Dvy s

q,y

1s n

� � (24:108)

When h p 0, eq. (24.107) and (24.108) simplify to (24.24) and (24.25).

Eq. (24.108), together with (24.1)1, leads to

DDDww qs
(2s n)h2

10(1s n)
Dq (24:109)

see (8.48). This relationship is satisfied by

www1 Sw2 (24:110)

where w1 designates a particular solution to the inhomogeneous differential equa-
tion (24.109), but w2 the general solution to the homogeneous bipotential equation
DDw = 0. According to (24.29), we can set

vx w vx1 sD(Dw2), x Sc,y , vy w vy1 sD(Dw2),y sc, x (24:111)

where v1 satisfies the relationships

vx1 wsD(Dw1), x S
h2

10
Dvx1 s

q, x

1s n

� �
, vy1 wsD(Dw1),y S

h2

10
Dvy1 s

q,y

1s n

� �
Comparing (24.111) and (24.108) reveals that

cs

h2

10
Dc

� �
,y
ws cs

h2

10
Dc

� �
, x

w 0

i. e. the expression in brackets is constant. The constant can be equated to zero, and
therefore

Dcw

10c

h2
(24:112)

Eq. (24.109) und (24.112) are fourth-order and second-order differential equations
respectively which enable us to satisfy three boundary conditions. The deflection w
and the rotations fn and ft or the shear force vn as well as the bending moment mn

and the twisting moment mtn can be specified with the coordinates n and t perpen-
dicular to and parallel with the edge. The following applies for a simply supported
edge: w = mn = mtn = 0, and there are no concentrated corner forces.

Example 24.22 Semi-infinite rectangular slab subjected to edge loads

The slab shown in Fig. 24.56 is loaded along edge x = 0 by

mx wm0 sin
npy

a

� �
, myx w t0 cos

npy

a

� �
, vx w v0 sin

npy

a

� �
(nw 1, 2, ...)

As q = 0, then w1 = 0 and we can use the formulation

w2Dw AS

npx

a
B

� �
esnpx=a sin

npy

a

� �
for w2, which satisfies the conditions DDw2 = 0 and w = 0 for x p T. The formulation
c = f(x) · cos(npy/a) in conjunction with (24.112) leads to

cwCeskx cos
npy

a

� �
k2

w

np

a

� �2

S

10

h2

" #
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Putting vx1 = vy1 = 0 and using (24.111) gives us

vx ws 2B
np

a

� �3

esnpx=a
SC

np

a
eskx

" #
� sin

npy

a

� �

vy w 2B
np

a

� �3

esnpx=a
SCkeskx

" #
� cos

npy

a

� �

and therefore

vx

���
xw0

ws 2B
np

a

� �3

SC
np

a

" #
� sin

npy

a

� �

Applying (24.107) results in the two further relationships

mx

���
xw0

w sA(1s n)S 2B 1S
n2p2h2

5a2

� �
SC

kah2

5np

	 

n2p2

a2
sin

npy

a

� �

myx

���
xw0

w A(1s n)sB 1s nS
2n2p2h2

5a2

� �
sC

a2

n2p2 S

h2

5

� �	 

n2p2

a2
cos

npy

a

� �
and therefore we can determine the constants A, B, C depending on m0, t0, v0.

24.6.2 Rotationally symmetric VON MISES slabs

Assuming sz = 0 means that the VON MISES yield condition (7.21) takes on the form

s2
r s srsf S s2

f S 3t2
w f 2

y

where t = tzr. Applying (7.12) results in

_er w k(2sr s sf) , _ef w k(2sf s sr) , _gzr w _gw 6kt

and therefore using e
.

r = _xrz and e
.

f = _xf z

sr w
2(2aS b)z fyffiffiffi

3
p

A
, sf w

2(2bSa)z fyffiffiffi
3
p

A
, tw

fyffiffiffi
3
p

A

where

aw

_xr

_g
, bw

_xf

_g
, A2

w 1S 4z2(a2
SabS b2)w 1S 4z2B2

We therefore get the stress resultants

mr w
Ðh=2

s h=2

srz dzw
(2aS b) fy

4
ffiffiffi
3
p

B2
h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1S h2B2

p
s

1

B
Arsh(hB)

	 


mf w

Ðh=2

s h=2

sfz dzw
(2bSa) fy

4
ffiffiffi
3
p

B2
h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1S h2B2

p
s

1

B
Arsh(hB)

	 


vr w
Ðh=2

s h=2

t dzw
fyffiffiffi
3
p

B
Arsh(hB)

depending on the parameters a and b. Putting vu = fyh/
ffiffiffi
3
p

and mu = fyh2
/4 results in

the relationships

vr w vu
ln bS

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1S b2
p� �
b

, m2
r smrmf Sm2

f wm2
u

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1S b2
p

s vr=vu

b

 !2

which are only dependent on the parameter b = hB. This describes the yield surface in
the space mr , mf,vr , which exhibits elliptical contour lines vr = const. When b p T,
then vr = 0 and mr

2 – mrmf + mf
2 = mu

2, and when b p 0, the result is vr = vu and
mr = mf = 0.

In order to apply the yield surface, a suitable linearisation is recommended, e. g.
according to [27]. In a similar way to beams (section 21.4.5), the shear forces only
have a significant influence on the limit load in the case of very stocky slabs or
high shear forces.
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24.6.3 Reinforced concrete slabs

According to the sandwich model presented in section 24.3.2, the core is responsible
for the nominal shear stresses v0 /dv resulting from the principal shear force v0. These
stresses are normally low apart from in the vicinity of concentrated forces. The com-
pression field shown in Fig. 24.33(b) can be replaced by the notion of a state of pure
shear with principal compressive and tensile stresses amounting to v0 /dv at an angle of
45h to the plane of the slab. In this approach, v0 /dv should be limited to a carefully
chosen fraction of the mean tensile strength of the concrete fctm, e. g. about 0.17fctm

at the serviceability level, see section 4.7. The reinforcement in the z direction may
be omitted in such cases, and no additional reinforcement is required in the x and
y directions in order to cope with v0.

High shear stresses generally occur at points of force application or transfer, especially
around columns supporting flat slabs, and there is a risk of a brittle punching failure.
This risk can be dealt with by choosing suitable dimensions (slab depth and column
diameter), providing column heads and punching reinforcement, and including pre-
stressing tendons over the columns. Three-dimensional truss models are recom-
mended for investigating the flow of the forces.

The risk of brittle shear failure in slabs reinforced only in their plane rises as the depth
of the slab increases. This scale effect, which can be explained with the help of fracture
mechanics, limits the actually considerable deformation capacity of reinforced con-
crete slabs quite significantly. Therefore, in a similar way to beams, a minimum
amount of reinforcement transverse to the plane of the slab should normally be pro-
vided, particularly in deep slabs. Such reinforcement improves the deformation cap-
acity significantly, is practical because it can be used to support the top reinforcement
and in conjunction with appropriate curtailing of the bending reinforcement on the
whole leads to economic solutions.

24.7 Membrane action

24.7.1 Elastic slabs

24.7.1.1 Slab equation taking into account membrane forces – buckling

Taking into account (24.17) or (24.18), the slab equation (8.48) becomes

DDDww qS nxw, xx S nyw,yy S 2nxyw, xy (24:113)1

or rather

DDDww qz S nxw, xx S nyw,yy S 2nxyw, xy s qxw, x s qyw,y (24:113)2

Example 24.23 Buckling of simply supported rectangular slabs

According to (24.66), the load q = const applied to the rectangular slab of Fig. 24.57 can be expressed
as a FOURIER series

16q

p2

XT
mw1,3, ...

XT
nw1,3, ...

sin
mpx

a

� �
sin

npy

b

� �
mn

Eq. (24.113)1 results in

DDws

nx

D
w, xx w

16q

p2D

XT
mw1,3, ...

XT
nw1,3, ...

sin
mpx

a

� �
sin

npy

b

� �
mn

and similarly to (24.68), we get

ww

16q

p6D

XT
mw1,3, ...

XT
nw1,3, ...

sin
mpx

a

� �
sin

npy

b

� �

mn
m2

a2 S

n2

b2

� �2

S

m2nx

p2Da2

" #
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When nx is positive (tension), w is decreased somewhat compared with (24.68) because of the
term m2nx/(p

2Da2), and when nx is negative (compression), it is increased. Provided n = 1 and

s nx w
p2D

b2

mb

a
S

a

mb

� �2

then w can tend to infinity for q = 0, i. e. the slab buckles. Putting a = mb gives us the minimum
buckling load of –nx = 4p2D/b2.

24.7.1.2 Initial deformation

When a slab with an initial deflection w0 (presumed to be small) is loaded by q,
it undergoes additional deflections w1. Eq. (24.113)1 is generalised to

DDDw1 w qS nx(w0 Sw1), xx S ny(w0 Sw1),yy S 2nxy(w0 Sw1), xy (24:114)

i. e. the initial deformation corresponds to an additional load of

nxw0, xx S nyw0,yy S 2nxyw0, xy

Example 24.24 Rectangular slab with initial deformation

Presuming the initial deformation

w0 w c sin
px

a

� �
sin

py

b

� �
for the slab examined in example 24.23, then (24.114) results in

DDDw1 w nx w1, xx s
cp2

a2
sin

px

a

� �
sin

py

b

� �	 

Setting

w1 wA sin
px

a

� �
sin

py

b

� �
leads to

Aw

s cnx

p2D

a2
1S

a2

b2

� �2

S nx

and therefore to

www0 Sw1 w
w0

1sa

where

aw

s nx

p2D

a2
1S

a2

b2

� �2

see (22.12).

24.7.1.3 Large deflections

Expressing the membrane forces in (24.113)1 by means of (23.3) (Pe = 0), then the
resulting equilibrium condition is

DDDww qSF,yyw, xx SF, xxw,yy s 2F, xyw, xy (24:115)1

and taking into account (24.23), we get the compatibility condition

DDF wEhxII (24:115)2

instead of (23.5). When h p 0, then D = 0, and (24.115) describes the deflection of a
flexible membrane.

The examination of elastic slabs with large deflections leads to the solution of the non-
linear differential equations (24.115) named after VON KÁRMÁN. A direct solution
is not generally possible, and the designer will have to resort to approximations based
on energy methods. The specific strain energy

pi w
Eh

1s n2

e2
I

2
S (1s n)eII
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corresponds to the strains (24.22) in the middle plane of the slab, and that energy is
added to the specific strain energy due to bending which was introduced in sec-
tion 24.2.6. Accordingly, (24.79) is supplemented as follows:

Pw

ð
A

Eh

1s n2

e2
I

2
S (1s n)eII

	 

SD

x2
I

2
S (1s n)xII

	 

s qw

� 
dA (24:116)

Example 24.25 Square membrane

We set

uw c sin
px

a

� �
cos

py

2a

� �
, vw c sin

py

a

� �
cos

px

2a

� �
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for the square membrane (D = 0) shown in Fig. 24.58, which is subjected to q = const. This displace-
ment field satisfies the boundary conditions u = v = w = 0. Using
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and (6.15) plus (6.16), then (24.116) results in
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It follows from @P/@c = 0 that for n = 0.3

cw 0.1384
w2
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a

and putting dP/dw0 = 0, we get

w0 w 0.598 a

ffiffiffiffiffiffi
qa

Eh
3

r
The strains are ex = ey = pc/a = 0.435(w0 /a)2 in the centre of the slab x = y = 0 and therefore the
stresses are sx = sy = Eex/(1 – n) = 0.621E(w0 /a)2.
The linear elastic membrane exhibits a geometric non-linear behaviour similar to the system of
example 8.3. The loading increases by the cube of the deflection and the stresses are proportional
to the square of the deflection.

24.7.2 Perfectly plastic slab strip

The slab strip of width 1 shown in Fig. 24.59(a) is fixed at both ends; it is presumed
that the strip exhibits a perfectly plastic behaviour with yield limits e fy in tension and
compression. The normal force n and the bending moment m are treated as general-
ised stresses in the meaning of (20.22).
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With yield lines at the fixed supports and below the line load q at mid-span, putting
mu = fyh2

/4 results in the limit load qu = 8mu/l for w = 0. A tensile membrane action
occurs when w i 0. The axes of rotation at the plastic hinges are displaced from the
middle plane, but must lie on a horizontal plane for reasons of symmetry. Applying
the principle of virtual deformations to the deformed system for a virtual additional
deflection d at the point of load application results in

qds
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hSw

2

� �2fy
2
S

hsw

2

� �2fy
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" #
� 4w 0

and therefore

q
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(wJ h) (24:117)1

When w i h, the result is a pure tensile membrane action with q = fyh · (2w/l ) ·2, i. e.
q

qu
w 2

w

h
(wi h) (24:117)2

We get the line ACD in the load-deflection diagram of Fig. 24.59(b).

Eq. (24.117) can also be derived via the yield condition

m
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w 1 mu w
fyh2

4
, nu w fyh
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shown in Fig. 24.60 and the associated flow rule. The deflection d causes the curv-
ature increment _x = 2d/l plus the strain increment e

.
= (2d/l ) ·w/2 = dw/l in the

middle plane. Using the ratio e
.
/ _x = w/2 means that m and n are known according

to (7.17), and q follows from the equilibrium condition
ql

4
s 2mswnw 0

24.7.3 Reinforced concrete slabs

Let us consider a reinforced concrete slab of depth h which has bottom reinforcement
only, see Fig. 24.61(a). The cover to the reinforcement is neglected, as shown in
Fig. 21.19(a). Using the effective concrete compressive strength fc and the mechanical
reinforcement ratio v plus the generalised deformation increments e

.
and _x and taking

into account zh = e
.
/ _x results in the incremental dissipation energy
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and therefore according to (7.17),
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Eliminating z results in the interaction relationship
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for arc AB in Fig. 24.61(b).

The square slab shown in Fig. 24.61(c) is subjected to a uniformly distributed load q
and its lateral displacement at the edge is uninhibited. We shall assume a pyramid-
shaped mechanism with yield lines along the diagonals. The level hh of the instant-
aneous centre of rotation M of each of the four triangular slab areas joined by the yield
lines depends on the deflection w of the centre of the slab, see Fig. 24.61(d). The
principle of virtual deformations results in the following equation for an additional
deflection d at the centre of the slab:
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Parameter h is obtained by differentiating the integral and equating to zero and is then
h = 1 – v – w/(2h). The condition hh + w J h means that the solution is only valid
for w J 2vh. Substituting h back into the expression for q and using the limit load
qu = 24mu/l

2 known from exercise 24.1 and example 24.10 results in the relationship
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12v(2sv)h2
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When w i 2vh, a tensile membrane action develops in the middle part
(1 – h)lh/(2w) = x0 J x J l/2. Only in the part 0 J x J x0 do we get a contribu-
tion to D

.
as a result of m:
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Differentiating this expression with respect to (1 – h) and equating to zero results
in h = 1 – (2vw/h)1/2 and therefore
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Restraining the slab along the edges in its plane at the level of the reinforcement means
that h a 0. For w = 0, a mechanism is only possible if the stress state corresponds to
point B in Fig. 24.61(b), i. e. e

.
= 0, _x i 0. The loading required for this amounts to

qu/[v(2 – v)]. Substituting h = 0 in all the above relationships results in
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The lateral restraint calls for large compressive membrane forces which can lead to
damage to the concrete at the edge of the slab. According to Fig. 24.62, this can
be taken into account by including the additional dissipation energy
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l
� hhfc

2
w 8dh2fc � h2= 2

where h is again free. Using the relationships that led to (24.118)1, we get
h = (1 – v)/2 – w/(4h), and the requirement hh + w J h is satisfied by
w J 2(1 + v)h/3. We get
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Similarly, for a large w – via

_Dw 8dh2fc v
2w

h
SvhS

h2

2
S

(1s h)3h

6w

	 

and dD

.
/dh = 0 – we get the relationship

hw 1S
w

h
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2w

h
S

w2

h2 S

2vw

h

r
and therefore

q

qu
w

1S
w

h

� �2

s

w2

3h2 Sv 2S 3
w

h

� �
s

2

3

ffiffiffiffi
w

h

r
2S 2vS

w

h

� �3=2

v(2sv)
wi

2(1Sv)h

3

	 

(24:120)2

Fig. 24.63 illustrates the relationships (24.118) to (24.120) for v = 0.2. Uninhibited
lateral movement results in a stable tensile membrane effect according to (24.118).
With restraint, according to (24.119)1, large values of q/qu and large compressive
membrane action occur for small deflections w, especially for small reinforcement
ratios v; following an initial elastic rise, we get a snap-through to the branch described
by (24.119)2 in the load-deflection diagram. Taking into account the crushing in the
support zone, according to (24.120), the compressive membrane action is reduced
when compared with that of (24.119).
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The structural behaviour of reinforced concrete slabs is already quite complex because
of the material non-linearity due to the cracking of the concrete and the yielding of the
reinforcement. Including the (geometric non-linear) membrane action leads to further
complications, as the example discussed here indicates. However, the example also
reveals the considerable reserves of loadbearing capacity that ensue in some circum-
stances and which are not utilised in normal dimensioning situations, but can prove
useful when checking existing structures.

24.8 Summary

1. The moment and shear force components – constituting a symmetric tensor and a
vector respectively – are the most important stress resultants for slabs.

2. The differential relationship (24.1)1 or (24.12) for the equilibrium of forces per-
pendicular to the plane of the slab corresponds to the integral formulation (24.14).
According to this, the total load applied to a simply-connected slab area and the
sum of the shear flows at the boundary of the area are in equilibrium.

3. The variables mt , vn and mtn can be discontinuous at a static discontinuity line in
the t direction. An abrupt change in the twisting moment mtn corresponds to a
shear force Vt transferred along the discontinuity line.

4. Simply supported and free (unsupported) slab edges are static discontinuity lines.
At a free edge, mn and the edge shear force vn + mtn,t disappear. At a simply sup-
ported edge, mn = 0. Corner forces amounting to – 2mnt ensue at right-angled slab
corners.

5. Membrane forces, in conjunction with the curvatures and twists of a slab, lead to
an additional loading according to (24.17).

6. The curvatures and twists –w,ij corresponding to the deflection w form a sym-
metric tensor.

7. The integral of the mean curvature is zero in a slab that is fixed at the edge. The
integral of the GAUSSian curvature is zero in slabs fixed at the edge and also in
polygonal slabs in which, at the edges, either the deflection w or the slope w,n of
the deflected surface perpendicular to the edge is equal to zero.

8. The kinematic relations (6.4), (6.5) and the compatibility condition (23.1) for
plates should be replaced by (24.22) or (24.23) in the case of additional slab
action.

9. The inhomogeneous bipotential equations (8.48) or (24.38) describe the behav-
iour of linear elastic slabs with infinite shear stiffness and small deflections. The
simply integrable ordinary differential equation (24.43) applies in the case of
rotational symmetry.

10. Eq. (24.29) generally applies for the shear forces. Presuming a linear elastic
behaviour and infinite shear stiffness, the shear force field is irrotational and
specified by the shear force potential (24.26).

11. The slab equation (24.43) for rotationally symmetric problems can be solved
directly. FOURIER series approaches and the energy methods of RITZ and
GALERKIN are suitable for more general problems. With this as our basis, it
is possible to deal with a whole variety of problems with relatively simple bound-
ary conditions and loading arrangements, some of which are presented here. Such
solutions enable the relevant force and deformation variables to be quickly esti-
mated for a particular problem. In particular, they enable the designer to check
results obtained with, for example, the finite element method. FEM, which
enables any boundary conditions and loading arrangements to be considered,
is widely used in practice, but is not investigated any further here.

12. The VON MISES and TRESCA yield conditions for the coplanar stress state are
transferred directly to the space mx, my , mxy according to (24.82) and (24.83). The
limit loads of VON MISES slabs cannot lie more than 15.4 % higher than those of
the corresponding TRESCA slabs for the same plastic moment.
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13. Complete solutions are always possible for rotationally symmetric problems of
TRESCA slabs. Non-linear differential equations result for VON MISES slabs
and the collapse mechanisms are substantially different to those of TRESCA
slabs.

14. The normal moment yield condition (24.90) is generally used for reinforced con-
crete slabs and leads to the dimensioning relationships (24.92). Regular points on
the yield surface, see Fig. 24.28(b), correspond to developable areas in the col-
lapse mechanism, but points on the ellipse at the intersection or at the apexes of
the two cones correspond to areas with negative or positive GAUSSian curvature.

15. According to the theory of thin plastic slabs, the strain increments of the middle
plane are added to the curvature and twist increments as generalised deformation
increments. The principal strain increments generally vary hyperbolically over the
depth of the slab and can have a maximum of two zero points.

16. The normal moment yield condition contains a more severe kinematic constraint
than the theory of thin plastic slabs. The twisting resistance at higher reinforce-
ment ratios can be considerably overestimated according to the normal moment
yield condition.

17. For general stress resultants due to moments, shear forces and membrane forces,
the sandwich model, see Fig. 24.33, leads to relationships (24.94) and (24.95) for
sizing the reinforcement.

18. Complete solutions can be worked out for any rotationally symmetric problems
connected with reinforced concrete slabs. When dimensioning for a certain load
case, it is possible to specify the bending resistances in the radial and circular
directions (which generally vary with the radius) on the basis of the equilibrium
condition (24.97).

19. Moment fields can be used to work out lower-bound solutions according to the
static method of limit analysis by considering the equilibrium conditions, the
static boundary conditions and, if applicable, symmetry conditions. One variation
of this method that is particularly useful in practice is the simple strip method in
which only the bending moments are considered in groups of criss-crossing strips
of slab, if necessary in the form of strong bands. The strip method can be ex-
panded to deal with concentrated forces by introducing load distribution elem-
ents.

20. The application of the kinematic method by means of yield line mechanisms gen-
erally leads to an optimisation of a number of free parameters that describe the
respective mechanism. This is relatively simple, like setting up the work equation,
even in the event of complex slab geometries and a complicated distribution of the
resistance. In contrast to framed structures, a plasticity check is impossible and
so special care must be exercised when searching for alternative, possibly more
critical, mechanisms.

21. The behaviour of linear elastic slabs with finite shear stiffness can be ascertained
with the two differential equations (24.109) and (24.112). Compliance with three
boundary conditions is thus assured. In contrast to linear elastic slabs with infinite
shear stiffness, the shear force field is not irrotational.

22. The nominal shear stresses in reinforced concrete slabs without reinforcement
transverse to the plane of the slab should be limited to a carefully chosen fraction
of the concrete’s tensile strength. Owing to the risk of punching, special measures
are necessary in the vicinity of force application and transfer points.

23. The slab equation (24.113), generalised by including membrane forces, enables
the designer to investigate the buckling of slabs. How membrane forces affect the
deflection of slabs with prior deformation can be ascertained via amplification
factors in a similar way to bars in compression.

24. Examining elastic slabs with large deflections leads to the solution of the
VON KÁRMÁN differential equations (24.115). Energy methods should gener-
ally be used in this situation.
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25. In certain circumstances, membrane forces in slabs lead to reserves of loadbearing
capacity that are considerable when compared with determining the limit load
according to first-order theory. Such reserves are not normally utilised in dimen-
sioning practice, but can prove helpful when investigating existing structures.
However, the discussion surrounding the effective stiffnesses and the boundary
conditions with respect to displacements in the plane of the slab must be ap-
proached with great care.

24.9 Exercises

24.1 Reverse the sign of mxy in the moment field of example 24.1 and carry out a
similar discussion, see also example 24.10.

24.2 Discuss the following moment fields in a similar way to exercise 24.1:
a) mx = 0 , my =m0(1 – 4y2

/l2) , mxy = m0 ·4xy/l2

b) mx = m0(1/2 – 2x2
/l2) , my =m0(1/2 – 2y2

/l2) , mxy = m0 ·4xy/l2

c) mx = 0 , my =m0(1 – y2
/x2) , mxy = –m0 ·y/x

d) mx = m0[4x2
/(3l2) – 1/3] , my =m0[2y2

/(3x2) + 4y2
/(3l2) – 1] , mxy = m0[2y/(3x) – 8xy/(3l2)]

The moment fields defined in c) and d) for 0 J y J x J l/2 have to be sup-
plemented in the other octants in accordance with the symmetry.

24.3 Calculate the principal moments and principal moment trajectories for ex-
ample 24.2.

24.4 Show that the shear force field v in example 24.2 follows from

Fv ws 2m0(x2
S y2)=l 2 , Fr w 0 , cwm0y=x

according to (24.29).
24.5 Discuss the moment field

mx wm0(1s j2as j4bS j2h2) , my wm0(1s h2as h4bS j2h2) , mxy wm0[s jhaS jh(j2
S h2)g]

where
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for the square slab fixed on all sides and subjected to a uniformly distributed
load as shown in Fig. 24.64(a). Show that the associated shear force field v is
irrotational (c = 0) and that the potentials occurring in (24.29) are given by

Fv ws

12S
ffiffiffi
5
p
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(j2

S h2)m0 , Fr w
2
ffiffiffi
5
p

s 15

36
(j4

S h4
s 6j2h2)m0

24.6 Swap the boundary conditions in Fig. 24.15(a) and solve the corresponding
problem of an annular slab simply supported at the inner edge and loaded
on the outer edge by a constant line load moment.

24.7 Verify (24.48).
24.8 Swap the boundary conditions in Fig. 24.15(d) and solve the corresponding

problem.
24.9 Replace the simple supports in Fig. 24.15(d) and exercise 24.8 by fixed sup-

ports and solve the corresponding problems.
24.10 Verify (24.58), (24.59) and (24.60).
24.11 Compare the moments, shear forces, edge shear forces and corner forces asso-

ciated with the elastic solution (24.68) for the case of a = b = l with those of
exercise 24.1 for the same load.

24.12 A square slab (a = b = l, slab stiffness D) is loaded uniformly with q and sup-
ported at its edges by four identical, torsionless simply supported beams
(span l, bending stiffness EI = Dl/2). Show that the twisting moments mxy par-
allel with the edges of the slab disappear everywhere in the slab and compare
the force and deformation variables with those of exercise 24.11.
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24.13 A rectangular slab with side lengths a and b in the x and y directions is
simply supported along x = 0 and x = a, and free along y = eb/2. A line
load q = q0sin(px/a) is applied along the slab edge y = b/2. Use (24.71)
with (24.73) as well as m = 1 and discuss the behaviour of the slab for
a ii b, a = b and a II b.

24.14 Verify (24.78) and present the deflection w plus the associated stress result-
ants mr, mf, vr for the case of a = b, n = 0.2, r1 = 0.05 as functions of r. Com-
pare the results at sections x = y and x = a/2 according to Fig. 24.20 with those
obtained using (24.77).

24.15 Replace the deflection field in example 24.5 by

ww (1s j2)2(1s h2)2[c1 S c2(j2
S h2)S c3j2h2]

Apply the theorem of least total potential and calculate the coefficients c1, c2

and c3. Compare the deflections, moments and shear forces with those obtained
in example 24.5. In doing so, consider sections h = 0 and j = h at least.

24.16 Verify the figures given in Tab. 24.1.
24.17 Subject some of the TRESCA annular slabs shown in Fig. 24.64(b) to a treat-

ment similar to that of examples 24.6 and 24.7. Consider concentric annular
loads and uniformly distributed loads.

24.18 Example 24.9 is modified in such a way that ax = axl j ay = ayl. Show that
when vx = ax fy/(hfc), vy = ay fy/(hfc), the lower bound for the twisting resist-
ance mxyu is

fch2 ffiffiffiffiffiffiffiffiffiffiffi
vxvy
p

(1svx svy)

where vy J vx J (1 – vy)/3. In doing so, consider uniaxial concrete compres-
sive stress fields (regime A according to Fig. 24.31) with thickness h(vx + vy)
top and bottom in the slab at angles of

e arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffi
vy=vx

q
to the x axis.
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24.19 Compare the bending moment diagrams for the case of r1 = 1 in ex-
ample 24.10 with (24.46)2 and (24.46)3. Calculate M according to (24.98)
from the elastic moments and from the moment diagrams given in Fig.
24.35(c).

24.20 Use (24.97) to discuss the theoretical reinforcement required for a circular slab
fixed at its outer edge r = r0 and loaded by q = const. In what way does the
optimum theoretical solution change when minimum reinforcement in the cir-
cular direction with a resistance mfu = m0 = const is specified in the bottom of
the slab in order to limit cracking? How would you curtail the top radial re-
inforcement and how does that affect the effective reinforcement?

24.21 As an alternative to Fig. 24.40(b), investigate the load apportionment shown in
Fig. 24.64(c) according to the simple strip method and calculate the associated
“moment volume”. Compare the resulting reinforcement layout with that ac-
cording to Fig. 24.40(b) and discuss the practicability of the solutions.

24.22 Discuss the moment field described by (24.101) and (24.102). Show that the
maximum moment amounts to m(1 +

ffiffiffi
5
p

)/2 and that the principal shear forces
are radial to the origin of coordinates.

24.23 Replace the free slab edge BC in Fig. 24.44 by a simple support and work out
an appropriate way to carry a uniformly distributed load using the advanced
strip method.

24.24 The slab shown in Fig. 24.64(d) has a point support at the centre O in addition
to being simply supported along the edges. Develop a suitable load-carrying
system for a uniformly distributed load and draw the corresponding moment
diagrams.

24.25 Apply the advanced strip method to the flat slab problem of Fig. 24.20. Choose
a width of 2a/5 or 2b/5 for the column strips and compare the bending resist-
ances required at mid-span and on the column axes with those resulting from
the application of the equivalent frames method (Fig. 24.22).

24.26 Vary the boundary conditions for the slab shown in Fig. 24.47 (fixed, simply
supported or free edges plus corner columns) and discuss the corresponding
yield line mechanisms (axes of rotation, free parameters).

24.27 Show that my disappears for y = 0 and y = a in example 24.22 and discuss the
distribution of mxy along these edges.

24.28 Draw the yield surface discussed in section 24.6.2 and compare the stress
distributions over the depth of the slab h for the cases a = b = 1/h,
a = – b =

ffiffiffi
3
p

/h and a =
ffiffiffi
3
p

/h, b = 0.
24.29 Use (24.36) and (24.37) to express (24.115) in cylindrical coordinates.
24.30 Verify the expression for the total potential P in example 24.25.
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25 FOLDED PLATES

25.1 General

Folded plates consist of thin slabs positioned at various angles which are connected
together such that they can transfer forces across their lines of intersection, their edges.
The slabs provide mutual support for each other along those edges. The forces occur-
ring at the slab edges are transferred via membrane forces, i. e. the slabs are activated
as plates. The structural response of a folded plate structure is therefore characterised
by the interplay between the “stiff” plate action in the plane of its elements and the
“flexible” slab action transverse to that plane. The support provided to the slabs meet-
ing at an edge is either practically rigid or flexible depending on the slenderness ratios
and boundary conditions of the plates.

Folded plates can be constructed in a huge diversity of forms and therefore offer cor-
responding architectural design options. Fig. 25.1 illustrates a number of typical ex-
amples. Fig. 25.1(a) shows a barrel vault in which the membrane forces at the ends of
the five longitudinal plates are transferred to the two end plates in the planes of the
columns; the end plates can be solid or resolved into trusses or frames. Fig. 25.1(b) and
Fig. 25.1 (c) show sawtooth roofs made up of rectangular or triangular plates, and
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Fig. 25.1 Folded plates: (a) barrel vault, (b) to (d) sawtooth roofs, (e) frame-type folded plate, (f) cooling

tower, (g) northlight roof, (h) box girder, (i) service core
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Fig. 25.1(d) shows an annular area roofed over with trapezoidal elements in sawtooth
form. Sawtooth roofs and folded plates with a trapezoidal cross-section can be ex-
tended to form frames according to Fig. 25.1(e), e. g. by means of appropriate
folded-plate columns. Fig. 25.1(f) shows a folded plate made up of trapezoidal elem-
ents which behaves similarly to a truncated cone shell, and Fig. 25.1(g) shows a north-
light roof which can be analysed as a folded plate or as a cylindrical shell. Finally, all
types of profiled beams such as the box girders used for bridges, Fig. 25.1(h), and the
service cores of buildings, Fig. 25.1(i), function as folded plates in principle.

The structural analysis of folded plates is mainly based on the finite element method.
Methods of calculation used in the past can still provide valuable insights into the
structural behaviour of folded plates, but are actually largely outdated. The aim of
the following – primarily qualitative – observations is to highlight important aspects
of the structural behaviour of folded plate structures, mainly with respect to their con-
ceptual design.

25.2 Prismatic folded plates

25.2.1 Sawtooth roofs

Fig. 25.2(a) shows a section through an unbraced sawtooth roof with a single fold. The
loading q creates transverse bending moments m with a minimum value of –qb2

/2 at
the ridge plus line loads of qb/sina in each of the plates inclined at an angle a to the
horizontal. In a single fold subjected to q = const, supported at the ends of its plates as
a simply supported beam of span l, bending moments amounting to ql2b/(8sina)
develop at mid-span and shear forces of qlb/(2sina) at the supports. Equilibrium
between the inclined shear forces at the supports and the vertical support forces of
qlb/2 at each end requires horizontal opposing forces of qlb/(2tana) at the bottom
ends of the plates. These can be assigned to a tie beam joining the supports or resisted
by a transverse end frame. Solid end plates can be provided as an alternative.

The large transverse bending leads to considerable inward bending of the two free
edges in the case of the unbraced single fold. Including struts or transverse frames
according to Fig. 25.2(b) can help to alleviate this problem considerably. If the mutual
support to the free edges is regarded as rigid, the moment at the ridge is four times
smaller.

For reasons of symmetry, neither the ridges nor the valleys can be displaced laterally in
the case of the inner folds shown in Fig. 25.2(c). The transverse bending moments at
the ridge amount to –qb2

/12, i. e. one-sixth of the value of the unbraced single fold.
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Sawtooth roofs are advantageous in terms of their statics and are easy to understand.
The deliberations of Fig. 25.2 illustrate the principal aspects of the structural behav-
iour in the longitudinal and transverse directions quite clearly. In particular, it is pos-
sible to see the effects and the benefits of suitable bracing to the edge folds, which
behave in a similar way to single folds. The reader will also notice secondary effects,
e. g. the local bending moments and shear forces that occur for reasons of compatibil-
ity in the plates in the longitudinal direction at the transition to the end plates (or trans-
verse end frames). These moments and forces do not need to be taken into account in
the calculations, but do need to be taken into account in the detailing (e. g. by includ-
ing minimum reinforcement to limit cracking).

25.2.2 Barrel vaults

25.2.2.1 Membrane theory

Let us consider a barrel-vault roof made up of n rectangular plates, see Fig. 25.3(a).
The two free edges are designated with 0 and 2n, the n–1 edges i with the intermedi-
ate even numbers, and the plates i–1 etc. with the corresponding odd numbers. The
loading on the individual plates is assumed to be constant in the longitudinal direction
and the plates are assumed to be connected together by some form of hinge. The plates
therefore act as simply supported beams in the transverse direction. The edge loads qi

simply result from the corresponding support forces and can be divided into the in-
plane load components si–1,i and si+1,i according to the plate angles ai–1 etc. Adding
the components together at both edges results in the in-plane loads si–1 etc.

Fig. 25.3(b) shows free body diagrams for the plates i–1 and i+1 with widths ai–1 or
ai+1 which are joined together at edge i. The two plates are cut through in the middle of
the span l. The unknown edge shear forces Ti–2, Ti and Ti+2 act along the sides of the
plates. The stress resultants ensuing at mid-span are given in the figure, where Mi–1 and
Mi+1 are the bending moments in the simply supported beam due to the in-plane
loads si–1 or si+1. According to (13.16), the longitudinal stress for plate thicknesses
hi–1 and hi+1, cross-sectional areas Ai–1 = ai–1hi–1, Ai+1 = ai+1hi+1 and section moduli
Wi–1 = ai–1

2hi–1/6, Wi+1 = ai+1
2hi+1/6 is

s

Mis1

Wis1
S 4

Ti

Ais1
S 2

Tis2

Ais1
w

MiS1

WiS1
s 4

Ti

AiS1
s 2

TiS2

AiS1

at mid-span of edge i, i. e.

2
Tis2

Ais1
S 4Ti

1

Ais1
S

1

AiS1

� �
S 2

TiS2

AiS1
w

Mis1

Wis1
S

MiS1

WiS1
(25:1)

applies for the three adjacent edge shear forces Ti-2, Ti and Ti+2. Eq. (25.1) results in a
set of linear equations for the n–1 unknown edge shear forces Ti.
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Example 25.1 Barrel vault – membrane theory

Fig. 25.4(a) shows the section through a folded plate structure with span l = 20m and constant plate
thickness h = 160mm. The action considered in this example is a dead load of 4kN/m2.
According to Fig. 25.4(b), the resulting edge loads are q2 = q8 = 10/2 + 6 = 11kN/m and
q4 = q6 = 12/2 + 10/2 = 11kN/m. We therefore get the in-plane loads s1 = 11kN/m,
s3 = 11 ·5/3 = 18.33kN/m and s5 = 0 given in Fig. 25.4(c), which cause the moments
M1 = 11 ·202

/8 = 550kNm, M3 = 18.33 ·202
/8 = 916.67kNm and M5 = 0 at mid-span.

Putting A1 = 0.24m2, A3 = 0.4m2, A5 = 0.48m2 and W1 = 0.06m3, W3 = 0.167m3, eq. (25.1), taking
into account T4 = –T6, results in the set of equations

26.667 5
5 14.167

	 

T2

T4

� 
w

14.667
5.5

� 
MN

with the solution T2 = 511kN, T4 = 208kN. Consequently, we get the longitudinal stresses

s0 w
0.55

0.06
s 2 � 0.511

0.24
w 4.91 N=mm2

s2 ws

0.55

0.06
S 4 � 0.511

0.24
ws 0.65 N=mm2

s4 ws

0.917

0.167
S 4 � 0.208

0.4
S 2 � 0.511

0.4
ws 0.87 N=mm2

at mid-span as given in the left part of Fig. 25.4(d). As we can see, these stresses are not distributed
linearly over the depth of the cross-section (3 m).
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The difference in the stresses s2 – s4 = 0.22N/mm2 corresponds to a curvature of plate 3 amounting
to 0.22/(30 ·2.5) = 0.0029mrad/m at mid-span for a modulus of elasticity E = 30 kN/mm2. Owing to
the parabolic form of the bending moment diagram, the work equation (section 14.2) or MOHR’s
analogy (section 15.3.2) results in a mid-span deflection of 0.0029 ·202

/9.6 = 0.12mm in the plane
of the plate. For reasons of symmetry, plate 5 can only be displaced vertically and so the deflection of
edge 4 (or 6) amounts to 0.12 ·5/3 = 0.2 mm, see Fig. 25.4(e).
Similarly, the difference in the stresses s0 – s2 = 5.56N/mm2 results in a curvature of plate 1
amounting to 5.56/(30 ·1.5) = 0.124mrad/m at mid-span and therefore a deflection of
0.124 ·202

/9.6 = 5.15mm. Compatibility of the displacements at edge 2 (or 8) requires that this
is displaced inwards by (5.15 – 0.2) ·3/4 = 3.71mm, see Fig. 25.4(e).
As we can see, at edges 4 and 6 we get relative rotations of the plates which are assumed to have
hinged connections along those edges. The cross-sectional form is not retained. The left half of
Fig. 25.4(f) illustrates the transverse bending moments, which according to our assumptions are equal
to zero at the edges and cause additional relative rotations.
If we assume that the cross-sectional form is retained, then according to beam theory, the stresses and
displacements at mid-span are those shown on the right in Fig. 25.4(d) and Fig. 25.4(e). The beam
with a cross-sectional area of 1.76m2 and a principal moment of inertia IY = 1.517m4 undergoes a
deflection at mid-span amounting to 5 ·0.044 ·204

/(384 ·30 ·1.517) = 2.01mm when subjected to a
constant line load of 44 kN/m. The bending moment of 0.044 ·202

/8 = 2.2MNm at mid-span leads
to stresses of 2.2 ·2.045/1.517 = 2.97N/mm2 at the bottom edge of the cross-section; the other values
given on the right of Fig. 25.4(d) follow from the linear variation of sx with Z. The analysis of a
symmetrical strip of slab continuous over rigid supports in the transverse direction (statically inde-
terminate to the first degree) results in a value of – 79/28kNm/m = – 2.82kNm/m for the transverse
bending moments at edge 4 (or 6), as shown on the right of Fig. 25.4(f).

25.2.2.2 Bending theory

According to membrane theory, relative rotations of the adjoining plates ensue at
hinge-type edges due to the deformation of the cross-section and the manner in which
the load is carried via transverse bending of the slab. For example, according to
Fig. 25.4(e), we get a rotation amounting to 3.71/1.5 = 2.473mrad at mid-span of
plates 3 and 7; this rotation gradually decreases to zero at the supports, affine with
the deflection curve. In addition, for a slab stiffness of 30kN/mm2 · (0.16m)3

/12
= 10.24MNm (n = 0), the transverse bending moments shown in Fig. 25.4(f) result
in a mutual rotation of (2.5 ·2.5 + 4.5 ·3)/(3 ·10.24) = 0.643mrad according to the
work theorem; this rotation is constant over the length of the folded plate within
the scope of our assumptions.

No relative rotations can develop along the edges in reality. It is possible to comply
with this requirement by introducing statically indeterminate edge moments.

In the following, we shall confine ourselves to a sinusoidal loading in the longitudinal
direction. In such a situation, both the bending moments and the deflections of the
individual plates have a sinusoidal form, and the variation in the statically indetermin-
ate edge moments is also sinusoidal. Contrasting with that, the shear forces and edge
shear forces exhibit a cosinusoidal form.

Example 25.2 Barrel vault – bending theory

Let us replace the uniformly distributed load of 4kN/m2 in example 25.1 by the first term of
the FOURIER series, i. e. (4kN/m2) · (4/p)·sin(px/l ). The corresponding edge loads of
44kN/(pm) at mid-span lead to in-plane loads of 14.006 or 23.343kN/m in plates 1 and 3, see
Fig. 25.5(a). The associated bending moments are M1 = 14.006 ·202

/p2 = 567.6 kNm and
M3 = 23.343 ·202

/p2 = 946.0kNm.
Eq. (25.1) provides us with the set of equations

26.667 5
5 14.167

	 

T2

T4

� 
w

15.1367
5.6763

� 
MN

with the solution T2 = 527.4kN, T4 = 214.5 kN. In a similar way to example 25.1, we therefore get
the longitudinal stresses s0 = 5.07N/mm2, s2 = – 0.67N/mm2, s4 = – 0.89N/mm2 given on the left
of Fig. 25.5(e). This leads to curvatures of (5.07 + 0.67)/(30 ·1.5) = 0.127mrad/m and (0.89 –
0.67)/(30 ·2.5) = 0.003mrad/m at mid-span of plates 1 and 3, and therefore to corresponding deflec-
tions of 0.127 ·202

/p2 = 5.17mm and 0.003 ·202
/p2 = 0.12mm, as shown on the left of Fig. 25.5(b).
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The resulting value for the rotation of plates 3 and 7 is 2.481mrad. In addition, we get rotations of
(4.5 ·3 ·4/p)/(3 ·10.24) = 0.560mrad and (2.5 ·2.5 ·4/p)/(3 ·10.24) = 0.259mrad, as shown in Fig.
25.5(b), as a result of the load transfer in the transverse direction.
The figure on the left of Fig. 25.5(c) shows the variation in the transverse bending moments as a
result of a moment of 1 at edges 4 and 6. The corresponding in-plane loads are given on the right
of the figure. These lead to the moments M1 = (1/2) ·202

/p2 = 20.264kNm/kN and M3 = (– 5/6)
·202

/p2 = – 33.774kNm/kN. Eq. (25.1) provides us with the set of equations

26.667 5
5 14.167

	 

T2

T4

� 
w

135.095
s 202.642

� 
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with the solution T2 = 8.297kN/kN, T4 = –17.233 kN/kN, and from that we get the variables
s0 = 0.269(N/mm2 )/kN, s2 = – 0.199(N/mm2 )/kN and s4 = 0.072(N/mm2 )/kN describing a
residual stresses state. The curvatures (0.269 + 0.199)/(30 ·1.5) = 0.0104 mrad/kN and
–(0.072 + 0.199)/(30 ·2.5) = – 0.0036 mrad/kN correspond to deflections of 0.0104 ·202

/p2

= 0.422mm/kN and – 0.0036 ·202
/p2 = – 0.147mm/kN for plates 1 and 3, as shown on the left of

Fig. 25.5(d). Plates 3 and 7 rotate through 0.333mrad/kN. Added to this are the rotations
3/(2 ·10.24) = 0.146mrad/kN and 2.5/(3 ·10.24) = 0.081mrad/kN due to transverse bending of
the slab, as shown on the right of Fig. 25.5(d).
According to (16.1), the statically indeterminate edge moment is

s

2.481S 0.560S 0.259

0.333S 0.146S 0.081
ws 5.88 kNm=m

We use superposition to get the longitudinal stress distribution at mid-span shown on the right of Fig.
25.5(e):
s0 w 5.07s 5.88 � 0.269w 3.48 N=mm2

s2 ws 0.67S 5.88 � 0.199w 0.50 N=mm2

s4 ws 0.89s 5.88 � 0.072ws 1.32 N=mm2

Beam theory would result in a moment of 0.044 · (4/p) · 202
/p2 = 2.27MNm plus edge stresses of

2.27 ·2.045/1.517 = 3.06N/mm2 at the bottom edge of the cross-section and – 3.06 ·0.955/2.045
= –1.43N/mm2 at the level of plate 5. Comparing these values and those on the left of Fig.
25.5(e) reveals that the stresses according to bending theory lie between the results according to
beam theory and those of membrane theory.
Fig. 25.5(f) illustrates the resulting displacements. Edge 4 undergoes a deflection of
0.20 + 5.88 ·0.244 = 1.64mm. Edge 2 deflects by 5.17 – 5.88 ·0.422 = 2.69mm and experiences
a horizontal inward deflection of 3.72 – 5.88 ·0.499 = 0.79mm. The resulting rotation at edge 4
is – 0.560 + 5.88 ·0.146 = 0.30mrad clockwise, and at edge 2 that amounts to 2.481 –
5.88 ·0.333 – 0.259 + 5.88 ·0.081 = 0.74mrad. Taking into account the transverse bending moments
shown in Fig. 25.5(g), the resulting deflection at the centre of plate 5 is 1.52mm.
Beam theory would result in a mid-span deflection of 0.044 · (4/p) ·204

/(p4 · 1.517 ·30) = 2.02mm,
and the transverse bending moment at edge 4 would be – (79/28) · (4/p) = – 3.59kNm/m. The deflec-
tions for plates 1 and 5 are somewhat larger and smaller respectively according to bending theory;
however, the resulting deformation of the cross-section according to bending theory is associated
with much larger negative transverse bending moments.

25.2.3 Commentary

According to bending theory, a barrel vault made up of n plates generally has n– 3
redundant edge moments. As a result of the symmetry of both system and loading,
this number can be further reduced as shown in example 25.2. It is easy to extend
the procedure described with the help of example 25.2 (with the edge moments cal-
culated according to the force method) to cover any barrel-vault roof. Higher terms of
the FOURIER series can be considered for the loading if required.

As with membrane theory, bending theory also ignores the bending moments mx and
the twisting moments mxy , where x = coordinate in the longitudinal direction and
y = coordinate perpendicular to that in the respective plate plane. Apart from the bend-
ing moments my and the shear forces vy , the other stress resultants that occur are the
membrane forces nx and nxy and, as a secondary variable, ny as well. The dimensioning
for these stress resultants for folded plates of reinforced concrete can be carried out on
the basis of section 24.3.2 (theory of thin plastic slabs or sandwich model).

The shallower the inclinations of the plates, the larger are the deflections of the free
edges of barrel vaults and hence the associated transverse bending moments. Trans-
verse stiffening in the form of transverse ribs or spreader bars may be necessary.

Deviation forces can be generated with the help of curved prestressing tendons to
counteract the in-plane loads in the individual plates. Tensile membrane forces in
the plates can therefore be reduced or avoided completely. However, the influence
on the transverse bending is not so pronounced. In particular, the entire cantilever
slab action remains in the perimeter plates because it is not possible to generate devia-
tion forces perpendicular to the plane of the plate.
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25.3 Non-prismatic folded plates

The huge variety of architectural design options for folded plates becomes really evi-
dent in non-prismatic structures. Simple models made of stiff paper or cardboard are
helpful conceptual design aids when trying to assess the structural behaviour and the
aesthetic effects. In most instances, the exploitation of the available symmetries and
the skilful choice of free bodies enable crucial assertions regarding the structural re-
sponse to be made just on the basis of relatively simple observations. Rough estimates
at least of the principal force and deformation variables can therefore be made, and
options for improving the design identified. The subsequent in-depth structural ana-
lysis, which is usually carried out with the help of the finite element method, should
then essentially lead to the confirmation and refinement of the rough initial results.

25.4 Summary

1. The structural behaviour of folded plates is characterised by the interplay of slab
and plate action. The edges act as (elastic) supports for the slabs that meet there.

2. Folded plates enable the realisation of a huge diversity of forms and correspond-
ing architectural design options.

3. Simple paper or cardboard models are extremely helpful aids when trying to
ascertain the structural behaviour of folded plates, assess their aesthetic effects
and identify potential design improvements.

4. The examination of skilfully selected free bodies and the exploitation of available
symmetries enable the principal force variables and their corresponding deforma-
tions to be estimated, at least roughly, even for complex cases.

5. The in-depth structural analysis of folded-plate structures is generally based on
the finite element method.

6. Membrane theory together with eq. (25.1) permits an initial approximation of the
force and deformation states of prismatic folded plates. According to bending
theory, the introduction of statically redundant edge moments improves the re-
sults considerably. The longitudinal stresses are not usually distributed linearly
over the cross-section because of the deformation of the folded plate cross-
section.

7. The force and deformation states that become established according to beam
theory – while presuming that the cross-sectional form is retained – can only
occur approximately in slender folded plates with sufficient transverse bracing
or lateral restraint.

8. The membrane forces occurring at the ends of folded plates must be resisted and
transferred by solid or resolved end plates or sufficiently stiff transverse end
frames.

25.5 Exercises

25.1 Use a conventional finite element program to analyse the barrel vault examined
in examples 25.1 and 25.2. Compare the results of the calculations.

25.2 Investigate various options for extending sawtooth roofs or folded plates with a
trapezoidal cross-section to form frames according to Fig. 25.1(e). Produce
appropriate models and discuss the structural response (frame beam, frame cor-
ner and columns). Pay particular attention to the design of the columns, and
discuss possibilities for including windows between the columns. Where should
prestressing tendons be located and what advantages would they bring?

25.3 Discuss the principal flow of forces in the structure of Fig. 25.1(f) under the
action of its self-weight. What types of constructional strengthening would be
appropriate?
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26 SHELLS

26.1 General

The term shell was introduced at the end of section 5.1.7 and the differential equa-
tion (5.51) for the thrust line was derived in section 5.3.2. The equation corresponds
to a pure normal force action of bars curved in one plane and loaded in that plane. The
hoop stress formula (5.52) for circular arcs with constant radial and negligible tangen-
tial loading resulted from this and was applied to two cylindrical shells in example 5.5.
Annular structures rigid in shear were investigated in section 18.7. This work showed
that edge disturbance problems in cylindrical shells can be simplified to the theory of
beams in bending on an elastic foundation.

If the axes x and y at one point on the middle surface of a shell, as shown in Fig. 26.1,
are tangential to the lines of principal curvature, then where h = shell thickness and rx

and ry = principal radii of curvature, the resulting stresses are
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s h=2

txyz 1s
z

rx

� �
dz

myx w

ðh=2

s h=2

tyxz 1s
z

ry

� �
dz

(26:1)

As generally rx 0 ry , then nxy 0 nyx and mxy 0 myx, although txy = tyx. However, the
variables z/rx and z/ry for thin shells are very small, and (26.1) is simplified to the
relationships (5.14) to (5.16).

The discussion below will be confined to thin shells rigid in shear. Taking this as our
assumption, lines normal to the middle surface of the shell remain straight and per-
pendicular to the deformed middle surface; the shear forces vx and vy do not qualify
as generalised stresses. We shall also assume linear elastic behaviour and so the
relationships (8.35) and (8.43) apply for the membrane forces nx, ny , nxy = nyx as
well as the bending and twisting moments mx, my , mxy = myx.
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The bending deformations can be ignored in many cases. The only unknowns that
remain are the three membrane forces, which can be obtained from the equilibrium
conditions when the loading on the shell is known, i. e. the problem is statically de-
terminate.

The stress state described by membrane theory can only occur when the shell is sup-
ported at its edges in a manner compatible with a membrane. This is not usually fully
possible, and the result is edge disturbances associated with bending deformations
plus corresponding moments and shear forces. Similar incompatibilities can also occur
within a shell, i. e. at abrupt changes in the loading intensity or the curvature or thick-
ness of the shell. Furthermore, loads applied in concentrated form generally lead to
bending deformations, and at flat points a shell can only act as a slab. Finally, bending
will also have to be considered when the membrane deformation, although uninhib-
ited, is so large that the curvatures can no longer be neglected. In all these cases, mem-
brane theory must be replaced or supplemented by the more general bending theory.

The shells can be characterised with the GAUSSian curvature (total curvature)

K w

1

r1r2
(26:2)

where r1, r2 = principal radii of curvature, see section 24.1.3. Elliptical surfaces with
K i 0 (e. g. dome-type shells) are very stiff when supported in a manner compatible
with membranes. Hyperbolic surfaces with K I 0 (saddle forms) are less stiff and
require some form of stiffening at the edges for stability. Parabolic surfaces in single
curvature with K = 0 (cylindrical and conical forms) are developable and require
frames or end plates to maintain their form, see section 25.2.

As with folded plates, the finite element method is mainly used for the structural ana-
lysis of shells these days. However, analytical solutions are still indispensable for
acquiring a fundamental understanding of the structural behaviour of shells. A brief
insight is provided below.

26.2 Membrane theory for surfaces of revolution

26.2.1 Symmetrical loading

26.2.1.1 Static relationships

Surfaces of revolution are created by rotating a planar curve, the meridian, about an
axis lying in the meridian plane. A shell element is bounded by two parallels of
latitude (x direction) and two adjacent meridians (y direction), see Fig. 26.2. The
positions of the parallels of latitude and the meridians are measured with the angles
f and u. The meridian plane (yz) and the plane perpendicular to this and to the shell
element (xz) are the principal planes of curvature with the principal radii of curvature
r1 and r2. The radius of the parallel of latitude is r0. The dimensions of the sides of the
shell element are r0du = r2sinfdu and r1df, and therefore the area of the element is
r1r2sinfdfdu.

Only load components qy , qz in the meridian plane occur with symmetrical loading,
and these are only dependent on f. Moreover, nfu = nuf must be equal to zero. The
(principal) membrane forces nf, nu are likewise only dependent on f.

Equilibrium in the z direction calls for
nf

r1
S

nu

r2
S qz w 0 (26:3)
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A second equilibrium equation results from considering the free body above the
parallel of latitude with radius r0 = r2sinf at point f according to Fig. 26.3. Taking
the resultant load R in the direction of the axis of rotation means that

2pr0nf sinfSRw 0

or rather

nf ws

R

2pr2 sin2f
(26:4)

In contrast to an arch, which can be shaped according to the thrust line for one load
case only, a shell forms a thrust surface for every loading. According to (26.3), the
hoop forces nu are established in such a way that they are in equilibrium, with qz and
the meridian forces nf calculated with (26.4).

Example 26.1 Spherical shells

The spherical shell shown in Fig. 26.4(a), with r1 = r2 = a and h = const, has a body load g = const,
i. e. qy = hgsinf, qz = hgcosf. The surface of the sphere above parallel of latitude f is 2pa2(1 – cosf),
and therefore R = 2pa2hg(1 – cosf). Eq. (26.4) and (26.3) result in

nf ws

ahg

1S cosf
, nu ws ahg cosfs

1

1S cosf

� �
Compression (nf = –ahg/2 or –ahg for f = 0 or p/2) always prevails along the meridians. Mem-
brane force nu increases from the value –ahg/2 at the crown (f = 0) as f increases and becomes
positive when f i 51.8h, i. e. we get tensile stresses.
Mounting the shell according to Fig. 26.4(b) on a supporting ring with axial stiffness EA generally
results in a compatibility problem between the deformations of the supporting ring and those of the
shell. The horizontal component of nf(f1) must be resisted by the supporting ring. According to the
hoop stress formula (5.52), the tensile force in the supporting ring is

T w a sinf1 �
ahg

1S cosf1

cosf1 w a2hg cotf1(1s cosf1)
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which would correspond to a strain of T/(EA). On the other hand, (8.35) results in the uninhibited
perimeter strain

eu(f1)w
nu(f1)s nnf(f1)

Eh
w

ag

E

1S n

1S cosf1
s cosf1

� �
in the shell, which generally differs from T/(EA). By applying a prestressing force P, it is possible to
generate a strain of –P/(EA) in the supporting ring and thus according to

sPST

EA
w eu(f1)

achieve at least approximate compatibility (exercise 26.1).
Including an opening with a perimeter ring according to Fig. 26.4(c) at the crown means that the line
load q0 results in a compressive force in this upper ring amounting to C = q0acosf0, and with

Rw 2pa sinf0q0 S 2pa2hg( cosf0 s cosf)

then (26.4) and (26.3) give us the membrane forces

nf ws

ahg( cosf0 s cosf)S q0 sinf0

sin2f
, nu ws nf s ahg cosf

Example 26.2 Spherical tanks

The tank shown in Fig. 26.4(d) is filled with a fluid that creates a distributed load of

qz ws p0 s ga(1s cosf)

The pressure p0 alone causes nf = nu = p0a/2 according to (26.3) and is not considered any further
here. The result for the component of qz that exhibits a linear variation over the height is

nf w

ga2

6
� 1S cosfs 2 cos2f

1S cosf
, nu w

ga2

6
� 5s cosfs 4 cos2f

1S cosf
(fIf1)

and

nf w

ga2

6
� 5s 5 cosfS 2 cos2f

1s cosf
, nu w

ga2

6
� 1s 7 cosfS 4 cos2f

1s cosf
(fif1)

We get tensile membrane forces only for f1 J 2p/3, i. e. there is no risk of buckling. Both nf and nu

exhibit an abrupt change at point f1 of the supporting ring; compatibility between the shell parts
above and below the supporting ring must be achieved through local bending.
When only partly filled, there is a further edge disturbance problem because of the discontinuous
loading.
Tangential support can improve the situation, as indicated in Fig. 26.4(e) (exercise 26.2).

Example 26.3 Conical shell

Let us consider the conical shell shown in Fig. 26.5(a), where r1 p T, r2 = r0 /cosa and R = Q.
Putting f = p/2 – a, then (26.4) results in

nf ws

Q

2pr0 cosa

and (26.3) gives us nu = 0 because qz = 0.
Considering the shell under the action of its self-weight gh = const and assuming, similarly to
Fig. 26.4(a), a form of support suitable for a membrane, then the result when qz = ghsina and
R = pr0

2hg/sina at the level of the parallel of latitude with radius r0 is

nf ws

r0hg

sin(2a)
, nu ws r0hg tana

i. e. the stresses increase in proportion to the distance from the apex of the cone.
The tank shown in Fig. 26.5(b) is fully filled with a fluid (body load g). Using (26.3) and (26.4) and
taking into account f = p/2 + a, r0 = (b – z)tana, r2 = r0 /cosa, r1 p T, qz = –gz and

Rwspr2
0g[zS (bs z)=3]

results in the membrane forces

nf w

g(bS 2z)(bs z) tana

6 cosa
, nu w

gz(bs z) tana

cosa

The membrane forces vary parabolically over the height of the tank and reach maximum values at
z = b/4 and z = b/2.
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26.2.1.2 Deformations

Referring to the notation introduced in Fig. 26.2, we get the displacements shown
in Fig. 26.6 for the meridian plane. The consequence of w is that an element of
length r1df is shortened by wdf. In addition, there is an increase in length of
(dv/df)df, and therefore we get

ef w

1

r1
� dv

df
s

w

r1
(26:5)

The radius r0 = r2sinf of the parallel of latitude increases by vcosf – wsinf, i. e.

eu w
v cosfsw sinf

r0
w

v

r2
cotfs

w

r2
(26:6)

Eliminating w from (26.5) and (26.6) results in
dv

df
s v cotfw r1ef s r2eu

and putting

ef w

nf s nnu

Eh
, eu w

nu s nnf

Eh
according to (8.35), we then get

dv

df
s v cotfw

nf(r1 S nr2)s nu(r2 S nr1)

Eh
w f (f) (26:7)

The membrane forces nf(f) and nu(f) can be determined from (26.3) and (26.4) in
every case. The function f(f) on the right-hand side of (26.7) is thus known, and
(26.7) can be integrated:

vw sinf

ð
f (f)

sinf
dfSC

	 

(26:8)

The integration constant C follows from the support conditions, and w follows from
(26.6).

Example 26.4 Spherical shell – dead load

The result for the spherical shell of example 26.1, with r1 = r2 = a and subjected to a dead load gh, is

f (f)w
a2g(1S n)

E
cosfs

2

1S cosf

� �
and (26.8) results in

vw
a2g(1S n)

E
sinf ln (1S cosf)s

sinf

1S cosf

	 

SC sinf

Constant C follows from the condition v(f1) = 0, see Fig. 26.4(a), and therefore the deformations are
known.
As already discussed in example 26.1, eu(f1) is known at the support and therefore it is easy to obtain
w(f1) = –a ·eu(f1) from (26.6).
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26.2.2 Asymmetric loading

26.2.2.1 General relationships

Generally, the membrane forces nf, nu do not correspond to principal stresses, instead
are accompanied by shear forces nfu = nuf . Equilibrium in the x and y directions for
the element shown in Fig. 26.7 calls for

@nu

@u
du r1dfS

@(nufr0)

@f
dfduS nfur1df du cosfS qxr1df r0duw 0

@(nfr0)

@f
df duS

@nfu

@u
du r1dfs nur1df du cosfS qyr1df r0duw 0

or rather

@nu

@u
S

1

r1
� @(nufr0)

@f
S nfu cosfS qxr0 w 0

@nfu

@u
S

1

r1
� @(nfr0)

@f
s nu cosfS qyr0 w 0

(26:9)

Relationship (26.3) still applies.

According to (8.35), the following applies:

ef w

nf s nnu

Eh
, eu w

nu s nnf

Eh
, gfu w

2(1S n)nfu

Eh
(26:10)

and (26.5) and (26.6) are generalised as follows:

ef w

1

r1
� @v

@f
s

w

r1
, eu w

1

r0
� @u

@u
S

v cotf

r2
s

w

r2
, gfu w

1

r1
� @u

@f
S

1

r0
� @v

@u

(26:11)

26.2.2.2 Wind pressure

Assuming

qx w qy w 0 , qz w p sinf cosu

then (26.9), taking into account (26.3) and r0 = r2sinf, results in the differential equa-
tions

@nfu

@f
S

1

r0
� dr0

df
S

r1

r2
� cotf

� �
nfu s

1

sinf
� @nf

@u
ws pr1 sinu

@nf

@f
S

1

r0
� dr0

df
S cotf

� �
nf S

r1

r0
� @nfu

@u
ws pr1 cosf cosu

(26:12)

for determining nf and nfu = nuf .

Example 26.5 Spherical shell – wind pressure

Taking a spherical shell with r1 = r2 = a, the two equations (26.12), with

nf w f (f) � cosf cosu , nfu w f (f) � sinu

lead to the linear differential equation

df

df
S 3f cotfws pa

with the general solution

f ws

pa

3
� cos3fs 3 cosfSC

sin3f

In order to determine the integration constant C, we shall consider a hemisphere where nf a 0 and
nfu = –paCsinu/3 at its base (f = p/2). Equilibrium of forces in the direction of the diameter u = 0
at the base calls for

Ð2p

0

nfu sinu a duS

Ð2p

0

Ðp=2

0

(p sinf cosu) sinf a2 sinf cosu df duw 0
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i. e.

s

pa2C

3
� pS pa2 � 2

3
� pw 0

or rather C = 2. Taking (26.3) into account, the resulting membrane forces are therefore

nf ws

pa cosu(2 cosfs 3 cos2fS cos4f)

3 sin3f

nu w
pa cosu(2 cosfs 3 sin2fs 2 cos4f)

3 sin3f

nfu ws

pa sinu(2s 3 cosfS cos3f)

3 sin3f

Example 26.6 Conical shell – wind pressure

The conical shell shown in Fig. 26.8 is connected to a column at its apex; r1 p T, r0 = ysina and
r2 = ytana. Putting dy = r1df, then (26.12)1 gives us the differential equation

@nfu

@y
S

2nfu

y
ws p sinu

with the general solution

nfu ws

1

y2

py3

3
SC

� �
sinu

Integration constant C follows from the condition nfu = 0 at the free edge y = l and is therefore –pl3
/3,

which means that

nfu w
p(l 3

s y3)

3y2
sinu

Eq. (26.12)2 results in

@nf

@y
S

nf

y
S

1

y sina
� @nfu

@u
ws p sina cosu

and therefore, taking into account the expression for nfu, we get the relationship

@nf

@y
S

nf

y
ws p

l 3
s y3

3y3 sina
S sina

� �
cosu

which is integrated to give us

nf w

p cosu

sina

l 3
s y3

3y2 s

l 2
s y2

2y
cos2a

� �
Finally, (26.3) results in

nu ws py sina cosu

At the apex of the cone, nf and nfu become infinitely large. In order to eliminate this singularity,
the shell must be supported by a ring with a finite radius r0 = ysina.

26.3 Membrane theory for cylindrical shells

26.3.1 General relationships

Let us consider a cylinder with any cross-section parallel with the x axis. Fig. 26.9
shows an infinitesimal element of surface area dx · rdf bounded by two generators
(parallel with the x axis) and two profile lines (in the yz plane). Equilibrium demands

@nx

@x
dx � rdf S

@nxf

@f
df � dx S qx � dx � rdfw 0

@nfx

@x
dx � rdfS

@nf

@f
df � dx S qy � dx � rdfw 0

nfdx � dfS qz � dx � rdfw 0

or

@nx

@x
S

1

r
� @nxf

@f
ws qx ,

@nfx

@x
S

1

r
� @nf

@f
ws qy , nf ws qzr (26:13)

60126.3 Membrane theory for cylindrical shells

y

y−l

r2

ϕ

α
r0

Fig. 26.8 Conical shell



The relationships (26.13) can be solved in succession. Eq. (26.13)3 supplies nf and
therefore we can use (26.13)2 to give us the shear force nfx = nxf. Substituting in
(26.13)1 finally gives us nx.

In a similar way to (26.10) and (26.11), we can find

ex w
@u

@x
w

nx s nnf

Eh
, ef w

1

r
� @v

@f
s

w

r
w

nf s nnx

Eh
, gxf w

1

r
� @u

@f
S

@v

@x
w

2(1S n)nxf

Eh

(26:14)

Again, the relationships (26.14) can be solved one after the other by simple integra-
tion. Eq. (26.14)1 provides u and therefore we can use (26.14)3 to get the displace-
ment v and, finally, w from (26.14)2.

26.3.2 Pipes and barrel vaults

26.3.2.1 Cylindrical pipe filled with a fluid

The pressure on the wall of the pipe shown in Fig. 26.10 (radius a, wall thickness h)
amounts to qz = – p0 + gacosf. When qx = qy = 0, eq. (26.13) gives us the membrane
forces

nf w p0as ga2 cosf , nxf ws gax sinf , nx ws g(l 2=8s x2=2) cosf

(26:15)

The integration constants were chosen here in such a way that there is no torque acting
on the pipe (no constant component in nxf, see section 13.4.3) and so that the normal
stresses are equal to zero at the ends of the pipe, nx(e l/2) = 0.

The membrane forces nxf and nx are proportional to the shear force V = – pa2gx, or
rather the moment M = pa2g(l2

/8 – x2
/2) for the simply supported beam of span l

subjected to the uniformly distributed load pa2g. Using I = pa3h and S = a2hsinf

allows us to determine nfx = tfxh and nx = sxh as well via (13.37) or (13.16).
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We can use (26.14)1 and (26.15), taking into account u(x = 0) = 0, to get

Ehuws np0axS gx na2
s

l 2

8
S

x2

6

� �
cosf (26:16)1

Therefore, (26.14)3, taking into account v(x = e l/2) = 0, gives us

Ehvw
ga

8
(l 2

s 4x2) 2S nS
5l 2

s 4x2

48a2

� �
sinf (26:16)2

and (26.14)2 results in

Ehwws p0a2
S ga3 cosfS

ga

8
(l 2

s 4x2) 2S
5l 2

s 4x2

48a2

� �
cosf (26:16)3

The following relationship applies for the simply supported beam subjected to the
uniformly distributed load pa2g according to example 15.1 with bending stiffness
EI = pa3hE:

ww

g(l 2
s 4x2)(5l 2

s 4x2)

384Eha
The comparison with (26.16)2 reveals that this expression agrees with v(f = ep/2)
when the pipe is very slender (l/a p T).

The first two terms on the right in (26.16)3 describe a dilatation, or rather a deform-
ation of the cross-section at the ends of the pipe x = e l/2. The stiffening rings
required there prevent these deformations and edge disturbances in the form of bend-
ing moments and shear forces occur.

26.3.2.2 Barrel vault subjected to dead load

Using (26.13) with

qx w 0 , qy w q sinf , qz w q cosf

for the barrel vault shown in Fig. 26.11 results in the membrane forces

nf ws qa cosf , nxf ws 2qx sinf , nx ws

q(l 2
s 4x2)

4a
cosf (26:17)

Perimeter members are necessary along the free edges f = ep/2 in order to resist the
edge shears E2qx that occur there, see Fig. 18.1(d). The edge member forcesÐx

s l=2

nxfdx w q(l 2
s 4x2)=4

are in equilibrium with the longitudinal compressive forces

Ðp=2

0

nxa dfws q(l 2
s 4x2)=4

in the two halves of the roof, and together they correspond to the moment

M ws

Ðp=2

sp=2

nxa cosf a dfwpaq
l 2
s 4x2

8
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due to the line load paq on the simply supported beam. Likewise, the membrane
forces nxf correspond to the shear force

V w

Ðp=2

sp=2

nfx sinf a dfwspaqx

on the simply supported beam.

Similarly to (26.16), we get the displacements

Ehuw
qx

a
na2

s

l 2

4
S

x2

3

� �
cosf

Ehvw
q

8
(l 2

s 4x2) 4S 3nS
5l 2

s 4x2

24a2

� �
sinf

Ehww qa2 cosfS

q

8
(l 2

s 4x2) 4S nS
5l 2

s 4x2

24a2

� �
cosf

(26:18)

associated with (26.17).

26.3.3 Polygonal domes

Fig. 26.12(a) shows a dome in the form of cylindrical shell elements with generators
parallel with the edges erected over a regular polygon with n corners. For reasons of
symmetry, it is sufficient to consider just half OA1B1 of one sector when the loading
exhibits the same symmetry as the structure. The ridge-type lines of intersection OB1

between neighbouring sectors act as arch-type ribs. A perimeter beam is provided
at the base A1B1 which functions in a similar way to the supporting ring shown in
Fig. 26.4(b). There could be an opening with a (polygonal) ring in the centre of
the dome similar to that of Fig. 26.4(c).

Using the surface load components qz and qy and noting that, for reasons of symmetry,
nfx has to disappear along OA, eq. (26.13) readily results in

nf ws qzr , nxf ws x qy S
1

r
� @nf

@f

� �
(26:19)

The force in the rib S is inclined at an angle c to the horizontal plane xy0, where

tancw tanf � cos
p

n

� �
(26:20)

see Fig. 26.12(b). Designating the resultant of the loads above section ABAl in the
z0 direction with R in a similar way to Fig. 26.3 means that the following equilibrium
condition applies:

R

n
S S sincS 2xfnf sinfw 0 (26:21)
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The membrane forces nx(f) required along OA in Fig. 26.12(b) can be determined via
the equilibrium condition of the forces acting in direction OlB on the free body illus-
trated in Fig. 26.12(c):

s 2rdf sin
p

n

� �
� nx(f)S d(S cosc)S 2

@(nfxf cosf)

@f
df cos

p

n

� �
S

@ x2
f

@nxf

@x

� �
@f

df sin
p

n

� �
w 0

or rather

nx(f)w

d(S cosc)

df

2r sin
p

n

� �
S

cot
p

n

� �
r

� @(nfxf cosf)

@f
S

1

2r
�
@ x2

f

@nxf

@x

� �
@f

Putting dxf = rdfcosftan(p/n) and using (26.20) plus (26.21) finally gives us

nx(f)ws

d(R cotf)

df

nr sin
2p

n

� �
s

tan
p

n

� �
r

� @(nfxf cosf)

@f
S xf cosf tan
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n

� �
� @nxf

@x
S

x2
f

2r
� @

2nxf

@f@x

(26:22)

We have to add the result of (26.13)1 and (26.19)2 (where qx = 0) to this value thus:

nx w nx(f)S
x2

2r
�
d qy S

1

r
� @nf

@f

� �
df

(26:23)

Example 26.7 Dome with circular cylindrical sectors – self-weight

Let us consider a dome made up of circular cylindrical sectors (radius a, shell thickness h, body
load g) subjected to its self-weight. Using

qy w gh sinf , qz w gh cosf

then (26.19) gives us

nf ws ahg cosf , nxf ws 2hxg sinf

With xf = asinftan(p/n), then

Rw 2nahg
Ðf
0

xfdfw 2nga2h tan
p

n

� �
� (1s cosf)

and (26.22) results in

nx(f)w ahg (1s 6 sin2f) cosf tan2 p

n

� �
S

sin2fs cosf

(1S cosf) cos2
p

n

� �
2
664

3
775

Eq. (26.23) gives us

nx w ahg
x2

a2
cosfS (1s 6 sin2f) cosf tan2 p

n

� �
S

sin2fs cosf

(1S cosf) cos2
p

n

� �
2
664

3
775

and (26.21) results in the rib force

Sws 2a2hg(1s cosf)( sin2fs cosf)

tan
p

n

� �
sinc

When n p T, then nx tends to the expression ahg(sin2f – cosf)/(1 + cosf) obtained in example 26.1
for nu, and nxf disappears. In addition, nf + S/(2xf) tends to the expression –ahg/(1 + cosf) deter-
mined in example 26.1 for nf .
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26.4 Membrane forces in shells of any form

26.4.1 Equilibrium conditions

Membrane theory for two special and frequently used types of shell – surfaces of
revolution and cylindrical shells – was described in sections 26.2 and 26.3. The equi-
librium conditions for shells of any form will now be developed in this section. The
geometry of such shells is described by the function z(x,y) with tana = @z/@x and
tanb = @z/@y, see Fig. 26.13.

The membrane forces nx, ny , nxy at the shell element and their projections nx, ny, nxy

onto the xy plane are related by

nx �
dy

cosb
� cosaw nxdy , ny �

dx

cosa
� cosbw nydx , nxy �

dx

cosa
� cosaw nxydx , nyx �

dy

cosb
� cosbw nyxdy

or rather

nx w nx
cosb

cosa
, ny w ny

cosa

cosb
, nxy w nyx w nxy w nyx (26:24)

With the surface area

dAw dxdy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1S tan2aS tan2b

p
of the shell element, it is also the case that

qx

qx
w

qy

qy
w

qz

qz
w

dA

dxdy
w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1S tan2aS tan2b

p
(26:25)

Equilibrium of the forces in the x and y directions calls for

@nx

@x
dxdyS

@nxy

@y
dydx S qxdxdyw 0

@nyx

@x
dxdyS

@ny

@y
dydx S qydxdyw 0

or rather

@nx

@x
S
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@y
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S qy w 0 (26:26)

The result in the z direction is
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or when using (26.26), then

nx
@2z

@x2 S 2nxy
@2z

@x@y
S ny

@2z

@y2 ws qz S qx

@z

@x
S qy

@z
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(26:27)

Introducing the stress function F where

nx w
@2F

@y2 s

Ð
qxdx , ny w

@2F

@x2 s

Ð
qydy , nxy ws

@2F

@x@y
(26:28)

enables both equations (26.26) to be satisfied, and (26.27) becomes
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(26:29)

26.4.2 Elliptical problems

As an example of an elliptical problem (positive GAUSSian curvature of the shell
middle surface), we shall investigate the elliptical paraboloid shown in Fig. 26.14.
This paraboloid has the equation

zw fa
x

a

� �2

S fb
y

b

� �2

(26:30)

for its middle surface. Eq. (26.29) supplies the differential equation

fb
b2
� @

2F

@x2 S

fa
a2
� @

2F

@y2 ws

q

2
(26:31)

for the load case qx = qy = 0, qz = q = const. The boundary conditions nx = 0 along
x = ea and ny = 0 along y = eb apply when we assume vertical supports to the
edges, i. e. according to (26.28)1 and (26.28)2, the variation of F along the edges is
at most linear in y or x. However, linear terms in x and y have no influence on the
membrane forces and so F can be set to zero along the entire edge.

Eq. (26.31) and the boundary condition F = 0 along y = eb are satisfied by

F w

qa2

4fa
(b2

s y2)S
XT

nw1,3, ...

An cosh
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� �
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w

4a2fb
fa

� �

The first term on the right in this expression can be developed into the following
FOURIER series:

8qa2b2

p3fa
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nw1,3, ...

1

n
(s 1)(ns1)=2 � cos

npy

2b

� �

The boundary condition F = 0 for x = ea thus gives us the condition
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p3n3fa
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SAn cosh
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w 0
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and therefore

F w
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4fa
b2

s y2
S

32b2
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cosh
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� �
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2
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We can find the membrane forces nx, ny, nxy via (26.28) and (26.24) (exercise 26.4).

Eq. (26.30) describes a translation surface. The two terms on the right correspond to
planar curves f(x) and g(y). The surface z(x,y) is obtained by translating one of the
curves along one of the other curves. The boundary lines of a differential element
therefore form a parallelogram, and the edge shear forces nxy or nyx are parallel,
@2z/(@x@y) = 0, i. e. they do not contribute to equilibrium in the z direction, which
is indicated by the fact that the second term of (26.29) is absent from the left side
of (26.31). As nx = ny = 0 at the corners of the shell, nxy theoretically tends to infinity
at these points; in fact, this singularity results in considerable shear forces and corres-
ponding moments at the corners.

26.4.3 Hyperbolic problems

26.4.3.1 Basic form

The surface shown in Fig. 26.15(a) has the equation

zw f
xy

ab
(26:33)

Its generators are straight lines parallel with the edges and its twist is equal to
@2z/(@x@y) = f/(ab). For the load case qx = qy = 0, qz = q = const, (26.27) – in con-
junction with (26.24)3 – results in

nxy ws

qab

2f
(26:34)

Eq. (26.28)3 supplies the stress function

F w

qabxy

2f
S f1(x)S f2(y)
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with two arbitrary functions f1 and f2. We can use (26.28)1 and (26.28)2 as well as
(26.24)1 and (26.24)2 to arrive at

nx w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2b2

S y2f 2

a2b2
S x2f 2

s
� d

2f2
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, ny w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2b2

S x2f 2

a2b2
S y2f 2

s
� d

2f1
dx2

(26:35)

According to (26.34), nxy is constant over the entire shell, and according to (26.35), nx

and ny are constant along the generators. If we have nx or ny for one edge, the same
value must occur at the opposite edge.

26.4.3.2 Combined forms

Fig. 26.15(b) shows a roof structure made up of four shells of the type shown in
Fig. 26.15(a). Perimeter members must resist the shear forces nxy along the edges
according to (26.34). At a corner, the vertical components of the compressive forces
in the two perimeter members are added together according to

qab

2f

fffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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S f 2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2
S f 2

p
S
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S f 2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
S f 2

p !
w qab

to create vertical support forces. The corresponding horizontal components

qab

2f
� bffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2
S f 2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

S f 2
p

w

qab2

2f
,

qab

2f
� affiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
S f 2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

S f 2
p

w

qa2b

2f

must be resisted by the ties joining the supports. Compressive forces from zero to the
given values build up along the two gables from the edge to the centre of the roof;
appropriate strengthening must be provided for these as well.

If we reverse the sign of the function z(x,y), we then get the structure supported in the
middle of each side drawn in Fig. 26.15(c). Again, the free edges function as compres-
sion members, but tensile forces with a linear variation ensue in the folds along the
axes.

The form shown in Fig. 26.15(d) only requires two supports, which are connected by a
tie. Tensile forces with a linear variation build up in the gable fold perpendicular to the
tie, and the perimeter members experience compressive forces with a linear variation.

The structure shown in Fig. 26.15(e) – with just one support in the centre – has perim-
eter members in compression and folds in tension along the axes.

The loads of the perimeter members and the strengthening at the folds plus asym-
metric loads cannot be handled via shell membrane forces alone. The very simple
membrane stress state is only suitable for accommodating symmetric distributed
loads qz = q = const. All deviations from that lead to bending stress resultants.

26.4.3.3 Hyperbolic paraboloid with edges parallel with the bisectors of the

generators

The surface shown in Fig. 26.16 is described by

zw fa
x

a

� �2

s fb
y

b

� �2

(26:36)

Eq. (26.29) supplies the differential equation

2fb
b2
� @

2F

@x2 s

2fa
a2
� @

2F

@y2 w q (26:37)

for the load case qx = qy = 0, qz = q = const, with the particular solutions

Fx ws

qa2y2

4fa
, Fy w

qb2x2

4fb
(26:38)
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Fig. 26.17(a) illustrates the relationships between the second derivatives of z(x,y) by
means of a MOHR’s circle. The curvature is equal to zero in the characteristic direc-
tions I and II inclined at an angle of

aw arc tan
b

a

ffiffiffiffi
fa
fb

s !
(26:39)

to the principal direction x. The parallelogram-shaped network of characteristics
(c = arbitrary constant) described by y = c E xtana corresponds to the projection
of the (straight) generators of the shell surface onto the xy plane.

The shell element shown in Fig. 26.17(b) has been cut out parallel with the character-
istics and forms a rhombus with side length 1 in the projection onto the xy plane. The
loading qsin(2a) is resisted by the shear forces s at the inclined edges of the element;
the normal stresses in the characteristic directions do not contribute to equilibrium in
the z direction because they pass directly through the element. Therefore,

4s cos2a
fa
a2 S sin2a

fb
b2

� �
w q sin(2a)

applies, or, when using (26.39), then

sw
qab

4
ffiffiffiffiffiffiffiffi
fa fb
p (26:40)

Fig. 26.17(c) illustrates the corresponding basic stress state. Pure shear forces act on
the surface elements parallel with the characteristics. The projected membrane forces
nx = –qa2

/(4fa) and ny = qb2
/(4fb) are equal to half of the second derivatives of the

expressions of (26.38), which means that half the load (q/2) is carried via compressive
arch action in the x direction and half via tensile arch action in the y direction.

Any forces in the characteristic directions can be superposed on the basic stress state
without affecting equilibrium in the z direction. For example, the superposition of
compressive stresses amounting to q(a2

/fa + b2
/fb)/(8h) in the two characteristic dir-

ections (h = shell thickness) results in the stress state shown in Fig. 26.17(d), which
corresponds to a pure compressive arch action in the x direction. The superposition of
tensile stresses with an equal value changes the stress state from that shown in Fig.
26.17(c) to that shown in Fig. 26.17(e), which corresponds to pure tensile arch action
in the y direction. Generally, we get a linear combination of the two states of Fig.
26.17(d) and (e) such that the associated load components add up to q.

According to (26.39), the generator starting at a corner of a shell intersects the opposite
side of length 2a or 2b in Fig. 26.16, provided fa i fb or fb i fa. In Fig. 26.18(a) it is
assumed that fa i fb . The forces occurring at a point E on edge CD can be split into
components in the direction of the characteristics EF and EI, and eliminated through
superposition of the opposing forces. The incoming forces at F and I are superposed on
the forces already present there. Superposing forces in the direction FG or IJ means it
is possible to generate force resultants at F and I in the x or y direction as required. At
G and J, the designer is free to choose the forces in direction GH or JK, too. However,
the incoming forces at H and K cannot be influenced any further. In total, the transfer
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of the edge forces described here enables us to free edge CD and provide edges BC
and DA with just simple supports, whereas it is necessary to resist forces in the x and
y directions along AB.

As an example of an application, we shall consider shell ABCD shown in Fig.
26.18(b), where we will assume fa = 4fb , i. e. tana = 2b/a, see (26.39). If we assume
that the load qz = q = const is primarily carried in the x direction, then according to
(26.38)1 and (26.28), we get nx = –qa2

/(2fa) and ny = nxy = 0 first of all. In order to
free edge CD, in areas CDG and DCE we superpose two tensile stress fields inclined
at an angle a to the x axis with projected membrane forces of qa2

/(4facos2a), which
results in the stress state ny = qb2

/(2fb), nx = nxy = 0 in area CDH. We want to allow
only shear forces in the x direction at edges CG and DE and therefore in areas CGAE
und DEBG we superpose two compressive stress fields inclined at an angle a to
the x axis with projected membrane forces qa2

/(4facos2a). This results in the
stress state nx = –qa2

/(2fa), ny = 0, nxy = –qab/[2(fafb)
1/2] in area CGH, whereas

nx = –qa2
/fa, ny = –qb2

/(2fb), nxy = 0 applies in area EFGH. Symmetry allows us
to work out the stress state in the other areas with ease.

Referring to the example of Fig. 26.18(b), if we try to carry a load that is antisymmetric
with respect to the x axis (e. g. qz = q/2 for y i 0 and qz = –q/2 for y I 0) with the
help of membrane forces according to the above discussion, we will find out that this is
impossible. On the other hand, we can see that this is possible when we choose a ratio
of fa/fb = 1 instead of fa = 4fb . However, a shell modified in this way is not suitable for
carrying symmetric loads (qz = const) via membrane forces. Generally, symmetric
(antisymmetric) loads can theoretically be carried via pure membrane forces when
(fa/fb)

1/2 is equal to an even (odd) number; however, in that scenario, antisymmetric
(symmetric) loads cannot be carried via membrane forces.

The stress discontinuities connected with pure membrane force solutions, as shown in
Fig. 26.18(b), correspond to incompatibilities in the deformations, which must be
eliminated by way of local bending effects. This finding and the impossibility of
pure membrane stress states – depending on the rise ratio – for symmetric or antisym-
metric load cases shows that membrane theory can only serve as an approximation for
saddle-type paraboloids and generally has to be supplemented by bending theory.
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26.5 Bending theory for rotationally symmetric cylindrical shells

This section looks at rotationally symmetric cylindrical shells with radius a = const
whose thickness h can generally vary along the cylinder axis x and which are loaded
by compressive forces qz in the radial direction only. Fig. 26.19 shows a differential
shell element with the associated stress resultants. For reasons of symmetry, the shear
forces vf, the membrane forces nxf = nfx and the twisting moments mxf = mfx disap-
pear. The shear forces vx, the membrane forces nx and nf as well as the bending
moments mx and mf all depend on x only. The remaining non-trivial equilibrium con-
ditions are the force-balance equations in the x and z directions as well as the moment-
balance equation about the y axis, which result in

nx w const ,
dvx

dx
S

nf

a
S qz w 0 ,

dmx

dx
s vx w 0 (26:41)

According to (26.41)1, we get nx from the pure membrane stress state and do not need
to consider this any further here, i. e. we can set nx to zero. If necessary, it is also easy
to calculate nx for qx 0 0 as well using (26.13)1.

The two equations (26.41)2 and (26.41)3 are not sufficient for determining the un-
knowns mx, vx and nf. Taking into account nx = 0 and @v/@f = 0, eq. (26.14)1 and
(26.14)2 lead to

du

dx
w

nw

a
, nf ws

Ehw

a
(26:42)

Owing to the rotational symmetry, only single curvature xx = –d2w/dx2 can occur in
the x direction, and therefore according to (8.43) and (8.48),

mx wsD
d2w

dx2
, mf w nmx Dw

Eh3

12(1s n2)

	 

(26:43)

applies. Eliminating vx enables (26.41)2 and (26.41)3 – taking into account (26.42)2

and (26.43)1 – to supply the differential equation

d2

dx2
D

d2w

dx2

� �
S

Ehw

a2 w qz (26:44)

When h = const, this differential equation is simplified to

d4w

dx4 S 4b4ww

qz

D
b4

w

3(1s n2)

a2h2

	 

(26:45)

see (18.46) and (18.103). The general solution to (26.45) is made up of (18.49) and a
particular solution f (x).

Example 26.8 Pipe subjected to end loads

Let us consider the pipe shown in Fig. 26.20, where f (x) = 0 applies because qz = 0. Moreover, the
constants c1 and c2 in (18.49) must disappear because the forces v0 and moments m0 applied to the
end of the pipe must have limited effects. So

ww esbx[c3 cos(bx)S c4 sin(bx)]

The boundary conditions

mx(x w 0)wsD
d2w

dx2

����
xw0

wm0 , vx(xw 0)wsD
d3w

dx3

����
xw0

w v0

give rise to the constants

c3 ws

v0 S bm0

2b3D
, c4 w

m0

2b2D

The resulting relationships for the deflection and the slope of the deflection curve at the loaded end of
the pipe are

wjxw0 ws

v0 Sbm0

2b3D
,

dw

dx

����
xw0

w

v0 S 2bm0

2b2D
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Example 26.9 Cylindrical tank

The tank shown in Fig. 26.21 is free at the top and fixed at the bottom, and is loaded by the pressure

qz ws g(ls x)

of the fluid it contains. A suitable particular solution is the membrane solution

f (x)ws

g(ls x)a2

Eh

according to (18.99)6, which has the values

f
���
xw0

ws

ga2l

Eh
,

df

dx

���
xw0

w

ga2

Eh

that have to be eliminated by superposing end shear forces v0 and end moments m0 according to
example 26.8. From

s

v0 Sbm0

2b3D
s

ga2l

Eh
w 0 ,

v0 S 2bm0

2b2D
S

ga2

Eh
w 0

it follows that

v0 ws

(2bls 1)gahffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12(1s n2)

p , m0 w

1s
1

bl

� �
gahlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12(1s n2)
p

and hence w and all other interesting variables are known from example 26.8 (exercise 26.8).
The condition of a free top edge is satisfied only approximately by the approach given here, i. e. when
x = l, the result is generally small shear forces vx and moments mx . In order to satisfy the boundary
conditions vx(l ) = mx(l ) = 0 exactly, we have to use the full formulation of (18.49) (exercise 26.9).

Example 26.10 Pipe subjected to thermal action

A very long pipe free at its ends (radius a, wall thickness h, modulus of elasticity E, POISSON’s
ratio n, coefficient of thermal expansion aT ) is subjected to a linear variation in temperature differ-
ence DT over its wall thickness. The corresponding uninhibited curvatures aTDT/h are fully inhibited
outside the end regions, i. e. there are residual stress moments

mx wmf ws

Eh3

12(1s n)
� aT DT

h
ws

Eh2aT DT

12(1s n)

according to (8.43), with corresponding boundary stresses of eEaTDT/[2(1 – n)] at the outer and
inner edges (z = Eh/2).
In order to guarantee the condition of a free pipe end for x = 0, we superpose the moment

m0 w
Eh2aT DT

12(1s n)

according to example 26.8, which results in

mf

���
xw0

w nm0 w
nEh2aT DT

12(1s n)

and by considering (26.42)2 also gives us

nf

���
xw0

w

Eh

a
� m0

2b2D
w

EhaT DT

2
ffiffiffi
3
p �

ffiffiffiffiffiffiffiffiffiffiffi
1S n

1s n

r

The total result for x = 0 and z = –h/2 is the maximum stress

sf w

EaT DT

2
1S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1S n

3(1s n)

r� �
in the circumferential direction at the outer edge of the pipe. Putting n = 0.2 means that this stress
exceeds the value outside of the end regions by 36.6 %; accordingly, cracks in the x direction may be
expected, which propagate from the end of the pipe.
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26.6 Bending theory for shallow shells

26.6.1 Basic concepts

26.6.1.1 Shell geometry and variables

In the vicinity of the origin, the geometry of shells with any curvature can be approxi-
mated by the quadratic function

zw
x2

2
z, xx S xyz, xy S

y2

2
z,yy (26:46)

The curvatures z,xx = @2z /@x2 and z,yy = @2z /@y2 plus the twist z,xy = @2z /(@x@y)
form a symmetric tensor similar to (24.19). A MOHR’s circle can be used to describe
their transformation for a rotation of the system of coordinates.

The assumption of (26.46) is that the shell is shallow, i. e.

@z

@x

� �2

� 1 ,
@z

@y

� �2

� 1 (26:47)

Consequently, cosa p 1 and cosb p 1 apply for the angles in Fig. 26.13, and the
difference between the real and the projected variables according to (26.24) and
(26.25) no longer applies.

Based on Fig. 8.3, the behaviour of shallow shells is described by the variables

qw
qx

qy

qz

8<
:

9=
; , sw

nx

ny

nxy

mx

my

mxy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

, ew

ex

ey

gxy

xx

xy

2xxy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

, uw

u
v
w

8<
:

9=
;

see Fig. 26.22.

26.6.1.2 Kinematic relations

According to (26.5) and (26.6), we get strains in the middle surface amounting to
–w/r1 or –w/r2 in the principal directions of curvature 1 and 2 of a shell because
of the deflection w, where r1 and r2 are the principal radii of curvature. If axes x
and y coincide with 1 and 2, then according to (26.46), z,xx = 1/r1 and z,yy = 1/r2,
and therefore the contributions to ex or ey are –wz,xx and –wz,yy . But if x and y are
rotated with respect to 1 and 2, the contributions to ex, ey and gxy/2 are –wz,xx ,
–wz,yy and –wz,xy . Otherwise, (8.33) and (8.46) can be used. We get

ew

ex

ey

gxy

xx

xy

2xxy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

w

@x 0 s z, xx

0 @y s z,yy

@y @x s 2z, xy

0 0 s @xx

0 0 s @yy

0 0 s 2@xy

2
6666664

3
7777775

u
v
w

8<
:

9=
;wDk 7 u (26:48)
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26.6.1.3 Elasticity

Eq. (8.35) and (8.43) result in

sw

nx

ny

nxy

mx

my

mxy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

w

Eh

1s n2

1 n 0 0 0 0

n 1 0 0 0 0

0 0
1s n

2
0 0 0

0 0 0
h2

12

nh2

12
0

0 0 0
nh2

12

h2

12
0

0 0 0 0 0
h2(1s n)

24

2
6666666666666664

3
7777777777777775

ex

ey

gxy

xx

xy

2xxy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

wE 7 e

(26:49)

26.6.1.4 Equilibrium

Eq. (8.32) and (8.47), taking into account (26.27), result in

qw
qx

qy

qz

8<
:

9=
;w

s @x 0 s @y 0 0 0
0 s @y s @x 0 0 0

s z, xx s z,yy s 2z, xy s @xx s @yy s 2@xy

2
4

3
5

nx

ny

nxy

mx

my

mxy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

wDs 7 s

(26:50)

It should be noted here that the second and third terms on the right in (26.27) are
dropped because according to Fig. 26.22, qx and qy , in contrast to Fig. 26.13, lie in
the plane tangential to the middle surface of the shell.

26.6.2 Differential equation for deflection

Introducing the stress function F with

F,yy w nx S
Ð

qxdx , F, xx w ny S
Ð

qydy , F, xy ws nxy (26:51)

similarly to (26.28) means that the relationships for qx and qy in (26.50) are satisfied.
The relationship for qz, taking into account (8.48), results in

sGF SDDDww qz s z, xx

Ð
qxdx s z,yy

Ð
qydy (26:52)

where

Gw z, xx@yy s 2z, xy@xy S z,yy@xx (26:53)

designates the shell operator (PUCHER operator).

Eq. (26.52) contains – apart from the deflection w – the stress function F as a second
unknown. In order to eliminate this, we start from the expression on the left of (24.23).
Eq. (26.48) together with (26.53) results in

ex,yy S ey, xx s gxy, xy wsGw (26:54)

Using the following relationships from (26.49) or (8.34):

ex w (nx s nny)=(Eh) , ey w (ny s nnx)=(Eh) , gxy w 2(1S n)nxy=(Eh)

and taking into account (26.51) gives us

DDF SEhGww

Ð
qx,yydx S

Ð
qy, xxdys nqx, x s nqy,y (26:55)

Applying DD to (26.52) and applying G to (26.55) followed by addition results in

DDDDDwSEhGGwwDDqz sDD(z, xx

Ð
qxdx S z,yy

Ð
qydy)SG[

Ð
qx,yydx S

Ð
qy, xxdys n(qx, x S qy,y)]

(26:56)
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26.6.3 Circular cylindrical shells subjected to asymmetric loading

26.6.3.1 Differential equation

The cylindrical coordinates x, f = y/a, z and z,xx = z,xy = 0 as well as z,yy = 1/a intro-
duced in Fig. 26.19 mean that

Gw

@xx

a
, Dw @xx S

@ff

a2

applies, and (26.56) becomes

D @xx S
@ff

a2

� �4

wS

Eh

a2

@4w

@x4 w @xx S
@ff

a2

� �2

qz s @xx S
@ff

a2

� �2ð
qfdf

S

@xx

a

1

a2

ð
qx,ffdx S a

Ð
qf, xxdfs n qx, x S

qf,f

a

� �	 

(26:57)

Four boundary conditions per edge can be fitted to the solutions of the eighth-order
differential equation (26.57). The four displacement variables u, v, w, w,x and the five
force variables nx, nfx, vx , mx, mfx at a circular edge x = const can be considered for
this, but on the other hand, u, v, w, w,f /a and nx, nxf, vf, mf, mxf at a straight edge f

= const. As with slabs rigid in shear, the shear forces and the derivatives of the twisting
moments parallel with the edge are combined to form edge shear forces

vx S
mfx,f

a
, vf Smxf, x

in order to reduce the number of edge force variables from five to four.

26.6.3.2 General solution to the homogeneous differential equation

The general solution w(x,f) to the homogeneous differential equation

DD4wS

Eh

a2
w, xxxx w 0 (26:58)

describes the edge disturbances in the cylindrical shell. According to (26.48) and
(26.49), we get the moments

mx wsD w, xx S
nw,ff

a2

� �
, mf wsD nw, xx S

w,ff

a2

� �
, mxf wsD(1s n)

w, xf

a

(26:59)

from w, and according to (24.25), we get the shear forces

vx wsD(Dw), x , vf ws

D

a
(Dw),f (26:60)

From the equilibrium condition

vx, x S
vf,f

a
s

nf

a
w 0

in the z direction it follows that

nf wsDaDDw (26:61)1

and hence, with the corresponding conditions according to (26.50) in the f and x
directions, in turn

nxf wD
Ð

(DDw),fdx , nx ws

D

a

ð ð
(DDw),ffdx2 (26:61)2,3

Eq. (26.49) supplies

ex w
nx s nnf

Eh
, ef w

nf s nnx

Eh
and hence the result of (26.48) is

uws

h2

12(1s n2)

1

a

ð ð ð
(DDw),ffdx3

s na
Ð

DDw dx

	 


vws

h2

12(1s n2)
a2
Ð

DDw dfs n
Ð Ð

(DDw),f)dx2
� �

s

Ð
w df (26:62)
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26.6.3.3 Edge x = const

Load and displacement variables at circular edges x = const are developed into series
of the following type:P

n
f (x) cos(nf)

Applying the corresponding formulation

ww erx cos(nf)

and using (26.58) gives us the characteristic equation

r2
s

n2

a2

� �4

S

12(1s n2)

a2h2
r4
w 0

whose eight roots can be presented in the form

e

b

2
1Sað Þe i 1S

1

a

� �	 

, e

b

2
1sað Þe i 1s

1

a

� �	 

where

b4
w

3(1s n2)

(ah)2 , aw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n4

a4b4 S 1

s
S

2n2

a2b2

vuut ,
1

a
w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n4

a4b4 S 1

s
s

2n2

a2b2

vuut
(26:63)

Therefore, the general solution is

ww e(1Sa)bx=2 c1 cos 1S
1

a

� �
bx

2

	 

S c2 sin 1S

1

a

� �
bx

2

	 
� �

S es(1Sa)bx=2 c3 cos 1S
1

a

� �
bx

2

	 

S c4 sin 1S

1

a

� �
bx

2

	 
� 

S e(1sa)bx=2 c5 cos 1s
1

a

� �
bx

2

	 

S c6 sin 1s

1

a

� �
bx

2

	 
� 

S es(1sa)bx=2 c7 cos 1s
1

a

� �
bx

2

	 

S c8 sin 1s

1

a

� �
bx

2

	 
� �
� cos(nf)

(26:64)

onto which a particular solution to the inhomogeneous differential equation (26.57)
has to be superposed. The coefficients c1 to c8 follow from the boundary conditions
at two edges x = const.

Example 26.11 Chimney subjected to wind pressure

Let us consider a chimney (wall thickness h, radius a ii h, height l ii a, modulus of elasticity E,
POISSON’s ratio n = 0) fixed at its base (x = 0) which is subjected to a wind pressure

qz w q0 S q1 cosfS

PT
nw2

qn cos(nf)

constant over its height.
According to (26.45), the particular solution for the uniformly distributed load q0 is w = q0a

2
/(Eh),

see (18.99)6. Example 26.8 gives us the edge stress resultants

v0 w
q0

b
, m0 ws

q0

2b2

1

b2 w

ahffiffiffi
3
p

	 

from the boundary conditions w(0) = w,x(0) = 0, and the result for the displacement w is

ww

q0a2

Eh
1s esbx[ cos(bx)s sin(bx)]
� �

The membrane forces for the load component qz = q1cosf are obtained from (26.13) with qx = qy = 0
and taking into account the boundary conditions nxf(l ) = nx(l ) = 0:

nf ws aq1 cosf , nxf w q1 sinf(ls x) , nx w q1 cosf(ls x)2=(2a)

Eq. (26.14)1 and (26.14)3 with the boundary conditions u(0) = v(0) = 0 therefore result in

Ehuw q1 cosf
x

6a
(3l 2

s 3lxS x2) , Ehvw q1 sinf
x2

24a2
(6l 2

s 4lxS x2)S 2lxs x2
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Eq. (26.14)2 gives us

ww v cotfS

a2q1 cosf

Eh

The second term on the right in this relationship is negligible with respect to the first one. According
to w = vcotf, each ring of the chimney undergoes a rigid body displacement amounting to v/sinf in
the f = p direction.
The harmonic load components qz = qncos(nf) for n j 2 are in themselves in equilibrium, see
section 18.7.3. The particular solution of (26.57)

ww

qna4

Dn4
cos(nf)

corresponds to these. The difference between this and (18.100)6 is based on the fact that in contrast to
(26.50)2, the inclination of the shear forces was considered in the first of the three equilibrium con-
ditions leading to (18.96). According to (26.59)2 and (26.60)2, the moments mf = qn(a/n)2cos(nf)
and the shear forces vf = –qn(a/n)sin(nf) belong to the particular solution. The equilibrium condition
vf,f /a – nf /a + qncos(nf) = 0 results in nf = 0. Consequently, as ef = v,f /a – w/a = 0, we have
the displacement

vw
qna4

Dn5
sin(nf)

Compare this with (18.100)5 and note the reversed sign convention there for z, w and qr .
As l ii a, in order to satisfy the boundary conditions u(0) = v(0) = w(0) = w,x(0) = 0 it is sufficient
to consider the four terms with the coefficients c3 to c6 in (26.64). The coefficients c1, c2, c7, c8 con-
cern the edge disturbances at the top of the chimney (x = l ) and can be set to zero because the par-
ticular solution does not infringe the boundary conditions at that location. We also note that as a ii h,
the natural wavelength (18.54) of the functions connected with c3 and c4 is much smaller for the small
values of n (n = 2, 3) interesting in this situation than that of the functions connected with c5 and c6,
i. e. (a – 1)/(a + 1) II 1. Therefore, as an approximation, c3 = c4 = 0, and thus w(0) = w,x(0) = 0
gives us the approximation c5 z –qna

4
/(Dn4) z c6.

26.6.3.4 Edge f = const

Load and displacement variables at straight edges f = const are developed into series
of the following type:P

n
f (f) cos(npx=l )

Applying the corresponding formulation

ww erf cos
npx

l

� �
and using (26.58) gives us the characteristic equation
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� �4
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whose eight roots can be presented in the form

g e aie
i

2ai

� �
(iw 1, 2)

where

gw a

ffiffiffiffiffiffiffiffiffi
npb

l

r
, b4

w

3(1s n2)

(ah)2 ,
ffiffiffi
2
p

a1 w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1S 1S

np

bl

� �2
s

S 1S
np

bl

� �vuut
,

ffiffiffi
2
p

a2 w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1S 1s

np

bl

� �2
s

s 1s
np

bl

� �vuut
(26:65)

Therefore, the general solution is

ww ea1gf c1 cos
gf

2a1

� �
S c2 sin

gf

2a1

� �	 

S esa1gf c3 cos

gf

2a1

� �
S c4 sin

gf

2a1

� �	 
�

S ea2gf c5 cos
gf

2a2

� �
S c6 sin

gf

2a2

� �	 

S esa2gf c7 cos

gf

2a2

� �
S c8 sin

gf

2a2

� �	 

� cos

npx

l

� �
(26:66)

The application of (26.66) is similar to that of (26.64) and is not pursued any further
here.
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26.7 Bending theory for symmetrically loaded surfaces of revolution

26.7.1 Basic concepts

Fig. 26.23 shows the shell element of Fig. 26.2 once again, but now with the addition
of the (principal) moments mu, mf and the (principal) shear force vf. The principal
radii of curvature have the same designations as in Fig. 26.1 (rx and ry). The coord-
inates given in Fig. 26.23 mean that dx = rxdu and dy = rydf.

The potential edge disturbances according to section 26.2.1 are investigated below
based on section 26.6. Rotational symmetry means that qx = 0, u = 0 and @x = 0.
Moreover, the stress resultants nxy , mxy and the corresponding strains gxy, 2xxy can
be omitted. The remaining variables are

qw
qy

qz

� 
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8>><
>>:

9>>=
>>; , ew
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>>:

9>>=
>>; , uw

v
w

� 

and we can use (26.48), (26.49) and (26.50) to obtain
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>>:
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0 s

1
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1
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0 0
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2
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wDk 7 u (26:67)
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and

qw
qy

qz

� 
w

0 s dy 0 0

s

1
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s

1

ry
0 s d2

y

2
4

3
5

nu

nf

mu

mf

8>><
>>:

9>>=
>>;wDs 7 s (26:69)

26.7.2 Differential equation for deflection

It follows from (26.69)1 that

nf ws

Ð
qydy (26:70)

and therefore (26.69)2 is

s

nu

rx
s

d2mf

dy2 w qz s
1

ry

ð
qydy (26:71)

Eq. (26.68)1 and (26.68)2 result in

eu w (nu s nnf)=(Eh) , ef w (nf s nnu)=(Eh) (26:72)

Using (26.67)1, (26.72)1 and (26.70) therefore means that

nu ws

Ehw

rx
s n
Ð

qydy (26:73)

applies, and we use (26.67)3,4 and (26.68)3,4 to obtain

mf wsD
d2w

dy2 w

mu

n
Dw

Eh3

12(1s n2)

	 

(26:74)
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Substituting (26.73) and (26.74) in (26.71) leads to

D
d4w

dy4 S

Eh

r2
x

ww qz s
1

ry
S

n

rx

� �ð
qydy (26:75)

The reader should also note that (26.67)2, (26.72)2, (26.70) and (26.73) result in

vw
1

ry
S

n

rx

� �ð
w dys

1s n2

Eh

ð ð
qydy2 (26:76)

and

vf w

dmf

dy
wsD

d3w

dy3
(26:77)

26.7.3 Spherical shells

In the case of spherical shells, rx = ry = a = const. When D/(Eh) = h2
/[12(1 – n2)]

= const, the homogeneous part of (26.75), the only part of interest here, is simplified
to the differential equation

d4w

dy4 S 4b4ww 0 b4
w

3(1s n2)

a2h2

	 

with the general solution

ww eby[c1 cos(by)S c2 sin(by)]S esby[c3 cos(by)S c4 sin(by)]

see (18.49) and (26.45).

Half the natural wavelength

l

2
w

p

b
w

p
ffiffiffiffiffi
ah
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3(1s n2)4
p

according to (18.54) is normally small when compared with the arc length 2af1 be-
tween two diametrically opposed edge elements (f1 = apex angle of shell, see Fig.
26.24). Therefore, in the expression for w we can confine ourselves to the terms con-
taining c3 and c4. Consequently, apart from the direction of the shear force, we get a
problem similar to example 26.8 (Fig. 26.20) for the edge force variables v1 and m1

plus the associated deflections w1 and rotations r1 entered in the upper part of Fig.
26.24. It is easy to use the solution developed in example 26.8 to arrive at
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Using the variables f1, d1 entered in the lower part of Fig. 26.24 instead of v1, w1

results in
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instead of (26.78).

Example 26.12 Fixed spherical shell subjected to internal pressure

We can use (26.3), with r1 = r2 = a, to obtain the membrane forces nu = nf = pa/2 in a fixed spher-
ical shell (Fig. 26.25) subjected to a constant internal pressure qz = –p by taking into account the
symmetry at the crown (f = 0). According to (26.72), this leads to an isotropic normal strain of
pa(1 – n)/(2Eh). At the edge of the shell (supported appropriately for a membrane), we therefore
get an outward displacement of d1 = –pa2(1 – n)sinf1/(2Eh), but no rotation, i. e. r1 = 0. In order
to achieve d1 = 0, we need the edge force variables

f1 w
p(1s n)

2b sinf1

, m1 w
f1 sinf1

2b
w

p(1s n)

4b2

according to (26.80). Using these values and taking account of v1 = f1sinf1 plus (26.79), (26.73),
(26.74) and (26.77) enables the calculation of the stress resultants nu, mf and vf (exercise 26.12).

Example 26.13 Pressure vessel

The pressure vessel shown in Fig. 26.26 consists of the hemispherical shell AB mounted on top of the
cylindrical shell BC, see Fig. 5.28(b). Subjected to the internal pressure p = const, the membrane
forces in the dome part according to example 26.12 are nu = nf = pa/2, and the edge displacement
variables in the free shell at B are d1 = –pa2(1 – n)/(2Eh), and r1 = 0. According to the hoop stress
formula, we get a tensile force of pa in the circumferential direction in the cylinder; in the axial direc-
tion, the tensile forces of pa/2 coming from the dome part are transferred. The free cylindrical shell
therefore extends by (pa – npa/2)/(Eh) = pa(2 – n)/(2Eh) in the circumferential direction; the edge
displacement variables at B are d1 = –pa2(2 – n)/(2Eh) and r1 = 0.
According to (26.80) and example 26.8, putting f1 = p/2 results in the compatibility condition
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which has the solution

f1 ws

p

8b
, m1 w 0

Using these values enables us to draw the diagram of the stress resultants nu , mf and vf (Fig. 26.23) in
the spherical shell or the corresponding variables nf , mx und vx (Fig. 26.19) in the cylindrical shell
(exercise 26.13). In particular, applying (18.52) results in the maximum bending moment of

pesp=4

8
ffiffiffi
2
p

b2 z 0.0403 p=b2

at a distance of

l

8
w

p

4b
z 0.785=b

from the transition point B between the two shells.

26.7.4 Approximation for shells of any form

Contrasting with a spherical shell, rx in (26.75) generally varies with y. In a conical
shell, for example, rx decreases in proportion to the distance from the edge of the shell,
see example 26.3. The solution for spherical shells shown in section 26.7.3 can still
be used as an approximation by working with a mean value rx = a. Actually, the
edge disturbances according to Fig. 18.33 decrease substantially over a length of
l/2 = p/b, and rx varies only moderately within this length for customary shell geom-
etry.

26.8 Stability

26.8.1 General

The stability problems of framed structures addressed in chapter 22 could be treated as
one-dimensional problems. However, the buckling of slabs and shells must be treated
as a two-dimensional problem. Section 24.7.1 covering membrane action in elastic
slabs provided the reader with a first insight into this.

The bifurcation loads of perfect elastic slabs (or plates) and shells can be calculated in
a similar way to those of columns and frames by solving the associated linear eigen-
value problems. But there are also notable differences. Slabs (or plates) do not react
very sensitively to imperfections and as a rule possess significant post-critical reserves
due to the potential redistribution of the membrane forces. Shells, on the other hand,
are very sensitive to imperfections and exhibit post-critical softening behaviour. This
comes from the fact that many buckling modes are possible in shells with the same or
almost the same bifurcation load, and these modes interact.
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The bifurcation loads of shells have only limited significance in practical applications.
In most cases the buckling failure occurs at about 20 to 40 % of the critical load of the
perfect elastic shell. Attempts were made in the past to take this behaviour into account
by applying reduction factors obtained from tests.

The geometric non-linear analysis of slabs (or plates) and shells is generally quite
complicated and involved. Although powerful finite element programs are now avail-
able for such problems, using them properly calls for a great deal of specialist know-
ledge.

26.8.2 Bifurcation loads

26.8.2.1 Fundamental differential equation

Putting qx = qy = qz = 0 and using (26.56) while including the influence of the mem-
brane force according to (24.17) results in the relationship

DD4wSEhG2wsD2(nxw, xx S nyw,yy S 2nxyw, xy)w 0 (26:81)

This is the fundamental differential equation for investigating the local stability of
shells.

We assume below – as with Fig. 26.1 – that x and y are tangential to the principal lines
of curvature, i. e. z,xx = 1/rx, z,yy = 1/ry , z,xy = 0. Further, we set nxy to zero.

Setting

www0 sin(ax) sin(bx)

then eq. (26.81) gives us
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Here, we assume that the shell buckles over rectangular surfaces with side lengths of
p/a or p/b.

26.8.2.2 Uniaxially compressed slab

When 1/rx = 1/ry = 0 and ny = 0, then (26.82) results in
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a2 wsDb2 a

b
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This expression takes on a minimum value for a = b, i. e. 4Db2. Putting p/b = b, we
therefore get the buckling load

s nx w
4p2D

b2
(26:83)

see example 24.23.

26.8.2.3 Spherical shell subjected to constant external pressure

When rx = ry = a and nx = ny = –pa/2, then (26.82) results in
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This expression is a minimum for (a2+ b2)2 = Eh/(Da2) and therefore we get the
critical pressure
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(26:84)

The associated compressive stresses in the shell are
pa
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(26:85)
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Assuming a = b, half the buckling wavelength is equal to
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The ratio between the rise p2
/(8a2a) of the shell and length p/a is equal to

p/(8aa) z 0.3
ffiffiffiffiffiffiffiffi
h=a

p
, i. e. the assumption of a shallow shell is justified because

h II a.

26.8.2.4 Cylinder subjected to axial compression

We can use (26.82) to obtain
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for cylinders subjected to axial compression, where rx p T, ry i 0 and ny = 0.
Differentiating the expression on the left with respect to (a2 + b2)2 and equating to
zero leads to
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Buckling as a bar, i. e. global instability, governs for very long cylindrical shells. The
result for this, taking the buckling length l and I = pry

3h as well as A = 2pryh, is
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And vice versa, the buckling stress of a bar-type strip of slab amounting to
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can be critical for very short cylindrical shells.

26.8.2.5 Cylinder subjected to radial pressure

We can use (26.82) to obtain
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where rx p T, ry i 0, nx = 0 and ny = –pry . The radial pressure p is a minimum for
p/a = l, i. e. a half-wave always becomes established in the x direction. In the circum-
ferential direction, on the other hand, the result is 2pry/(2p/b) = bry = n (whole)
waves. Consequently,
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and the critical radial pressure follows from this by minimising with respect to n or n2

(exercise 26.16).

26.8.2.6 Cylinder subjected to axial compression and radial pressure

We can use (26.82) to obtain
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for cylinders subjected to axial compression and radial pressure, or rather, using the
ratio,
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26.8.3 Commentary

The softening behaviour of shells and their sensitivity to imperfections can be illus-
trated by the bar model [3] shown in Fig. 26.27(a). The rigid pin-ended strut AB of
length l is supported at B by the spring BC and loaded by the horizontal force C.
We assume

C tanaw c1ws c2w2 (c1 i 0, c2 i 0) (26:92)

for the spring response according to Fig. 26.27(b), where w = l(sina – sina0) is
measured from the (imperfect) position B0. Therefore, the result is
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(26:93)

Fig. 26.27(c) shows the load-rotation curves for a number of assumed values of a0.
The diagram illustrates the significant influence that imperfections have on the struc-
tural behaviour. The softening of the perfect system (a0 = 0) takes place approxi-
mately along the straight line AB. Compared with the maximum load c1l for the
perfect system, even very small imperfections result in a severe reduction in the
horizontal force C that can be accommodated. Compared with this, Fig. 22.4(b) –
drawn for imperfect bars – indicates a much more accommodating behaviour.
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The assumed spring response (26.92) can be explained using the bar model of Fig.
26.28. The deformed bar length is

L cosb

cos(bs d)
w Ls

QL

2 sin(bs d)EA
(26:94)

and according to the sine law,
w

sind
w
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2
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(26:95)

applies. Rearranging (26.94) results in

Qw 2EA tan(bs d)( cosb cosdS sinb sinds cosb)

Using the approximation cosd z 1 and (26.95) results in

Qw 2EA sinbs cosb
w

L
cos(bs d)

h i
sinb

w

L
z c1ws c2w2

As b II 1, then c1 z c2bL applies, and therefore the abscissa of point B in Fig.
26.27(c) amounts to aB z bL/l.

26.9 Summary

1. This chapter looks at thin shells with infinite shear stiffness and membrane forces
nx, ny , nxy = nyx plus bending and twisting moments mx, my , mxy = myx as general-
ised stresses.

2. The membrane forces can be calculated from the equilibrium conditions when the
loading is known.

3. Disturbances of the membrane stress state associated with bending deformations
and corresponding moments and shear forces generally result at the edges of the
shell, also in the case of discontinuities in the geometry or the loading within the
shell. Membrane theory must be supplemented by the bending theory of shells in
order to ascertain these disturbances.

4. GAUSSian curvature (26.2) is a key feature of shell geometry. Elliptical surfaces
are curved in all directions. There are two characteristic directions with negligible
curvature at every point on a hyperbolic surface. Parabolic surfaces are curved in
one direction only.

5. The membrane forces and deformations of symmetrically loaded surfaces of
revolution are easy to calculate. An asymmetric loading leads to relationships
that are somewhat more awkward to deal with.

6. Membrane theory for cylindrical shells leads to differential equations for the
membrane forces and displacements which can be solved in succession through
simple integration.

7. In terms of their membrane action, shells of any form can be dealt with by using
the stress function introduced in (26.28).

8. The membrane forces in hyperbolic paraboloids are, advantageously, related to
the (skew) network of characteristics.
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9. Bending theory for rotationally symmetric cylindrical shells leads to the ordinary
fourth-order differential equation (26.44) or (26.45). All the aids worked out in
section 18.4.4 for the similar problem of beams in bending on an elastic founda-
tion can be employed here.

10. The simultaneous differential equations (26.52) and (26.55) describe the struc-
tural behaviour of shallow elastic shells. Eliminating the stress function F or
the deflection w results in an eighth-order differential equation for w or F, whose
solutions can have four boundary conditions fitted to them.

11. The bending theory of symmetrically loaded surfaces of revolution leads to the
fourth-order ordinary differential equation (26.75) for the deflection. As an ap-
proximation, the solutions presented for spherical shells can also be used for other
shell forms in which the radius of curvature rx varies along the meridian.

12. Shells are generally very sensitive to imperfections and exhibit post-critical soft-
ening behaviour. Their local stability can be investigated with the help of the dif-
ferential equation (26.81). The corresponding bifurcation loads supply valuable
reference values but cannot be directly applied in practice.

26.10 Exercises

26.1 Consider a concrete shell with a supporting ring according to example 26.1
(h = 150mm, a = 40m, g = 25kN/m3, f1 = p/4, E = 30kN/mm2, n = 0.2,
A = 0.25m2 ). Discuss the resulting membrane forces and calculate the pre-
stressing force P required to achieve deformation compatibility at the edge
of the shell under its self-weight. What are the effects of the creep and shrink-
age of the concrete and the relaxation of the prestressing steel? How would you
coordinate and check the prestressing in the supporting ring and the lowering of
the centering for the shell?

26.2 Verify the expressions for the membrane forces given in example 26.2 and
draw a diagram of them for f1 = 2p/3. Discuss the improvement that can
be achieved by providing tangential support according to Fig. 26.4(e).

26.3 Discuss the membrane forces determined in example 26.5 and their principal
values for a hemispherical shell.

26.4 Calculate the membrane forces nx, ny, nxy from (26.32) and present these
graphically.

26.5 The form of a hyperbolic paraboloid shell is described by (26.36) with the
values a = b = 10m and fa = fb = 2m. The relationships jx + yj = a and
jx – yj = a apply for the edges of the shell. The corners x = ea are supported
in the z direction and connected by a prestressed tie in the x direction. The
corners y = eb are free. Discuss the behaviour of the shell when subjected
to qz = q = 4kN/m2. Assume h = 80mm for the shell thickness and
E = 30kN/mm2 for the modulus of elasticity.

26.6 Draw the projected membrane forces of Fig. 26.18(b) with the help of MOHR’s
circles and discuss the stress discontinuities that arise.

26.7 Investigate the example of Fig. 26.18(b) under the assumption that fa = 9fb/4.
26.8 Present the functions w(x), nf(x), mx(x) and vx(x) resulting from example 26.9

graphically for the case of l = 10m, a = 18m, h = 0.25m, E = 30kN/mm2,
n = 0.2, g = 9.81kN/m3. Compare w and nf with the corresponding values
obtained using the membrane solution.

26.9 Work through example 26.9 exactly, i. e. with the boundary conditions
vx(l ) = mx(l ) = 0. Compare the resulting functions with those of exercise 26.8.

26.10 Derive a differential equation similar to (26.56) for the stress function F by
eliminating w from (26.52) and (26.55).

26.11 Calculate the coefficients c3 to c6 in example 26.11 from the four boundary
conditions, compare the outcome with the approximation given in the example
and discuss the course of the membrane force nx(x = 0, f) for n = 1, 2.
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26.12 Calculate the course of the stress variables nu, mf and vf along a meridian for
example 26.12. As in exercise 26.1, use the variables h = 150mm, a = 40m,
f1 = p/4 and n = 0.2.

26.13 Discuss the edge disturbance as a result of p = 0.5N/mm2 at the transition from
the cylindrical shell to the spherical shell of Fig. 5.28(b). Assume h = 1m,
a = 20m and n = 0.2.

26.14 Consider the pressure vessel of example 26.13 but assume a shallow spherical
shell for the top part (f1 I p/2). Determine analytical expressions for the
stress resultants f1 and m1 at the transition depending on f1. Compare the
maximum bending moments for the case f1 = p/4 with those for f1 = p/2.

26.15 Use exercise 26.14 to discuss the effect of a stiffening ring at the transition
between the spherical and cylindrical shells.

26.16 Present the ratio pry/(Eh) according to (26.90) as a function of l/ry

(1 J l/ry J 100) in a double logarithmic diagram for n = 0.3 and ry =
200h, ry = 100h as well as ry = 50h.
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A1 DEFINITIONS

631A1 Definitions

acceptance The satisfactory handover of a structure or part thereof to the client.

accidental action An action with a low probability of occurrence, generally of short duration but with a significant effect.

accidental design situation A design situation that includes exceptional conditions for the structure.

accompanying action An action additional to the leading action.

action effects The responses of the structure to actions imposed on it (stresses, stress resultants, reactions, deformations,
displacements and other action effects specific to the type of construction).

actions Mechanical (loads, forces), other physical (temperature, humidity), chemical (salts, acids, alkalis, organic
compounds) and biological (bacteria, insects, fungi, algae) actions on the structure resulting from execution,
use and environmental influences.

analytical model The coupling of physical variables (e. g. force and deformation variables) via appropriate relationships
(e. g. equilibrium conditions, material laws and kinematic conditions).

basis of design Specialist description of the implementation of the service criteria agreement specific to the construction
works.

characteristic value As a rule, the statistically founded value of an action, a geometrical variable or a construction material or
subsoil property (mean value, upper or lower value), possibly also a nominal value or prudent estimate.

commissioning The beginning of the intended use.

composition The creation of an aesthetic manifestation by way of the spatial arrangement, shaping and choice of materials.

conceptual design All the activities and developments, plus their results, leading from the service criteria to the structural
concept.

condition assessment Summarising analysis and assessment of the information about the current condition and the development of
the condition to date linked with a prediction for the further development of the condition and its conse-
quences over the course of a specified residual period of use.

condition survey Acquisition of information about the current condition and the development of the condition to date with the
aim of detecting significant defects, deterioration and deterioration mechanisms.

conservation All the activities and measures required to safeguard the building stock and the material and non-material
values of construction works.

construction inspection plan A specification of the type, scope, execution and timing of construction inspections, including details of
quality requirements and permissible deviations plus the regulation of responsibilities and the flow of in-
formation.

construction inspections Checking the correct implementation of the project specifications during the execution.

construction material A material used for a structure or construction works.
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construction work The execution of building activities according to the contract.

construction works Output as a direct result of construction work, generally consisting of a structure and non-loadbearing
components.

construction works documents Documents specific to the construction works.

control measurement The metrological monitoring of selected parameters.

dead load A load due to the mass of the structure.

decommissioning The termination or interruption of the use.

deconstruction Systematic demolition or disassembly of construction works with sorting of components and construction
materials to ensure proper disposal.

defect The lack of a property that the structure should exhibit upon acceptance according to the contract.

deformation capacity Ability of a structure and the structural members to deform elastically, and generally also plastically, up until
failure.

design Conceptual design, structural analysis and dimensioning.

design alternatives Feasible variations for solving the problem underlying the conceptual design.

design boundary conditions Spatial, temporal, legal, financial, constructional, materials-related, practical construction and operational
stipulations for the design.

design criteria Relationships to be satisfied between the action effects of relevant load cases and associated ultimate
resistances or serviceability limits or between stabilising and destabilising action effects.

design situations The physical circumstances and conditions occurring within a certain period of time for which it is necessary
to verify that governing limit states are not exceeded.

design value A value used in a verification which is determined from a characteristic or other representative value or from a
function of design values in conjunction with partial and conversion factors, at best also a directly specified
value.

design working life The period of time intended for the use.

detail design Detailed planning to provide the documents for the execution.

detailing The specification and mutual agreement of the details of the construction works.

deterioration Possible impairment of the material substance of a structure following acceptance.

dimensioning Specifying the sizes, construction materials (including their properties) and detailing of a structure based on
constructional or practical execution considerations or analytical verification.

draft design The recognition, development and assessment of various design alternatives.

durability Compliance with the requirements regarding structural safety and serviceability within the scope of the
intended use and the foreseeable actions without unforeseen expenditure on maintenance and repairs.

economy Moderate use of financial and natural resources with respect to the total duration of the design, execution and
use.

effective depth The distance of the centroidal axis of the tension reinforcement from the edge of the compression zone of the
cross-section.
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endurance limit The fatigue resistance with respect to an unlimited number of stress cycles.

estimate An approximate calculation of the mean value of a variable.

examination A condition survey and assessment – including recommendations for remedial measures – performed for a
particular reason.

execution All the activities and measures necessary for the physical provision of the construction works, including the
preparations for such.

execution documents The contract document and other elements of the contract, construction programme, minutes of meetings and
records of construction inspections plus the site diary.

failure The exhaustion of the ultimate resistance through instability, breakage and fatigue or as a result of time-
dependent action effects.

fatigue resistance The ultimate resistance with respect to frequently repeated actions.

finite fatigue life Fatigue resistance with respect to a limited number of stress cycles.

fixed action An action with a specified distribution over the structure or structural member; its magnitude and direction
are uniquely determined by the value at one point.

free action An action whose distribution over the structure is not specified.

geometric variables The intended dimensions and unintended imperfections of a structure.

hazard A circumstance jeopardising the structural safety.

hazard scenario A critical situation characterised by a leading hazard and associated circumstances.

imposed load A load due to the use of the construction works.

inspection Establishing the condition by way of specific, generally visual and simple, examinations and an assessment
of the situation.

integration The incorporation of construction works into their surroundings in a manner compatible with the natural and
built environment.

leading action The principal action in a load case.

leading hazard The principal hazard in a hazard scenario.

limit state A condition that, once reached, still just complies with the requirements regarding structural safety or
serviceability.

load case A physically compatible arrangement of simultaneous actions considered for a certain verification.

maintenance Preserving the serviceability by way of simple and regular measures.

maintenance plan Maintenance instructions specific to the construction works.

material Metallic, non-metallic-inorganic or organic substance with properties that can be exploited for technical
applications.

method of construction The way(s) in which the construction work is performed.
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modification Intervention in the construction works for the purpose of adapting them to suit new requirements.

monitoring Establishing and assessing the condition with recommendations for the next step(s).

monitoring plan Monitoring instructions specific to the construction works.

nominal value A value not based on statistics, instead fixed or based on, for example, experience or physical conditions.

observation Checking the serviceability by means of simple and regular inspections.

observation method In the event of basic design information of insufficient reliability, one possible method during the design,
execution and use of a structure for forecasting the behaviour and specifying appropriate limit values. The
method is associated with certain accepted risks and includes affiliated monitoring and safety measures.

operation instructions Directives describing the use and operation of the technical installation(s) and intended for the owner(s) and
the operator(s).

overall stability A stable equilibrium situation for the entire structure as a rigid body.

permanent action An action that, during a reference period, is approximately constant or changes monotonically, moving
towards a limit value.

persistent design situation A design situation that governs during a period of the same order as the design working life.

planning of remedial measures Systematic preparation of the next operational and constructional steps based on the decision of the owner(s).

preliminary design Drawing up the service criteria agreement and the structural concept, including an estimate of the costs,
a general construction programme and a technical report.

preparation for construction Tendering, bidding, checking of bids, concluding the contract and organising the construction work.

protection and welfare measures Precautions taken during execution to protect persons and their health as well as property.

prudent estimate Compared with the estimate, this is a value provided with an allowance adequate for the necessary reliability.

recommendation for remedial measures Proposals resulting from the condition assessment for which the owner(s) must make a decision regarding the
next step(s).

record of construction A compilation of the construction works documents kept as a log of the execution.

reliability A measure of the compliance with the requirements regarding structural safety and serviceability, usually
expressed as a probability.

repair Restoring the structural safety and serviceability for a specified length of time.

report on remedial measures A document describing upkeep measures, including details of objectives, participants, methods, products,
tests, results and costs.

representative value The value of an action used for a verification (characteristic value, for variable actions possibly also rare,
frequent or quasi permanent value).

resistance Ability of a structure and the structural members to withstand actions during execution and use.

robustness Ability of a structure and the structural members to limit deterioration or a failure that is disproportionate to
its cause.
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self-weight of non-structural elements Loads applied by non-loadbearing components (e. g. roofing materials, floor coverings, subfloors, non-
loadbearing partitions, claddings, linings, balustrades, safety barriers, spandrel panels, closures, façade
components, suspended ceilings, insulation, seals) or permanent fixtures (e. g. lifts, escalators, HVAC
systems, electrical installations, empty pipes, cable ducts) and, for example, earth fill or track ballast.

service criteria Requirements for the properties and behaviour of the construction works resulting from the intended use.

service criteria agreement Description of the usage and protection objectives of the owner(s) as well as the fundamental conditions,
requirements and regulations covering the design, execution and use of the construction works.

service instructions Directives for the use of the construction works intended for the owner(s) and operator(s).

service situations Physical circumstances and conditions during the design working life.

serviceability Ability of a structure and the structural members to be able to guarantee the functionality and appearance of
the construction works, plus the comfort of the persons using said works, according to the serviceability
limits.

serviceability limit A specified limit for serviceability.

serviceability limit state The condition upon reaching a boundary of serviceability.

structural analysis Determining the action effects, possibly graduated, for the entire structure, individual structural members and
local effects with the help of a structural model and various analytical models.

structural calculations Presentation of the structural analysis and dimensioning.

structural concept The basic idea of the structure which governs the project.

structural member A physically distinguishable part of a structure or construction works.

structural model The result of defining and idealising the structural system.

structural safety Ability of a structure and the structural members to guarantee the overall stability and an adequate ultimate
resistance for the assumed actions (including fatigue resistance) in accordance with a specified, necessary
reliability.

structural system Arrangement of the structural members plus the nature of their interaction.

structure All the structural members and the subsoil necessary for maintaining the equilibrium and form of the
construction works.

subsoil Ground in the form of loose soil or solid rock in the region of a construction project or foundation.

supplementary safety measures Requirements regarded as necessary for the specific construction works in the event of concessions regarding
the structural safety in accordance with the standards.

technical report Explanation and summary of the design work.

tender design Further processing of the preliminary design in order to create the basis for the building approval procedure,
the planning permission or the tender.

tender documents The text of the intended contract document, specific provisions, specification or description of the works,
drawings and general provisions.

transient design situation Design situation that governs during a significantly shorter period of time than the design working life.
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type of construction The nature of the building work, determined by the main construction materials used, e. g. concrete, steel,
steel-concrete composite, timber, masonry.

ultimate limit state The condition upon reaching the boundary of structural safety.

ultimate resistance The limit of resistance.

urgent safety measures Directives prompted by observation or examination which are to be carried out immediately in order to
protect persons, the environment and the construction works.

use The utilisation of the construction works described in the service criteria agreement and the basis of design.

variable action An action that is not permanently applied or not constant or does not change monotonically during a
reference period.

verification Confirmation of compliance with a design criterion.
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Latin upper-case letters

A accidental action, area, cross-sectional area, force, constant
A force vector
B force, constant
B force vector
C centroid
C serviceability limit, support force variable, product of inertia, objective function, compressive force, edge, constant
C vector of support force variables
D dissipation function, deterioration, slab stiffness, diameter
D differential operator
E action effect, earth pressure, modulus of elasticity
E elasticity matrix
F action, force, stress function, LAGRANGE function
F force vector, global flexibility matrix
G permanent action, dead load, imposed load, shear modulus, hinge force, function
H horizontal force, LAGRANGE function
H strain interpolation matrix
I moment of inertia, functional
I unit matrix
J creep function
K bulk modulus, joint force, total curvature
K total stiffness matrix
L initial length
M shear centre, instantaneous centre of rotation
M (bending) moment, “moment volume”
M moment vector, vector of bending moments
N normal force, number of load cycles
N vector of normal forces
O origin of coordinates
P prestressing force, restraint parameter, bilinear form
Q variable action, single force, load parameter, quadratic form
Q load vector
R ultimate resistance, relaxation function, resultant force, moment, RAYLEIGH quotient
R resultant force vector, boundary displacement operator
S surface, first moment of area, shear flow, stress resultant, cable force, force in rib
S rib force vector
T torque, change in temperature, edge shear force, tensile force
T boundary stress operator
V volume, shear force, degree of freedom
V displacement vector
W work, elastic section modulus
X property of construction material or subsoil, global coordinate, redundant variable
X vector of redundant variables, modal matrix
Y yield function, global coordinate, function
Z global coordinate, plastic section modulus
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Latin lower-case letters

a geometrical property, distance, cross-sectional area per unit length
a kinematic transformation matrix, matrix
b width, length, distance, parameter
b static transformation matrix, matrix, vector
c cohesion, direction cosine, constant, coefficient, number of support force variables, length, support displacement variable,

modulus of subgrade reaction, shear span
c transformation matrix, matrix
d differential
d length, effective depth, diameter, nullity
e base of natural logarithms
e earth pressure, deviatoric strain component, length, thickness, eccentricity
e strain deviator, transformation matrix, base vector
f strength, rise, function, flexibility, shape factor, deflection, force per unit length
f flexibility matrix
g acceleration due to gravity
g number of hinge conditions, permanent load, function
g equilibrium matrix
h height, depth, thickness, function
i imaginary unit
i radius of gyration, index
j quantity, number of floor/storey, index
k coefficient, stiffness, constant, number of joints, foundation modulus, index
k stiffness matrix
l span, length
m moment per unit length, position of free load, number
m moment tensor
n membrane force, coordinate, number, modular ratio, degree of static indeterminacy
n unit normal vector
p –(s1 + s3)/2, compression, force on foundation, number of plastic hinges
q force per unit volume/area/length, response factor, (s1 – s3)/2, shear force, imposed load, edge load
q force per unit volume/area/length, load vector
r coordinate, radius, boundary displacement, transverse bending moment, near-end bar stiffness, rank, root
r position vector, boundary displacement
s distance, deviator component, arc length, internal force variable, number of bars, longitudinal shear force, near-end bar

stiffness, crack spacing, spacing, in-plane load
s stress deviator, position vector of wrench axis, vector of internal force variables, joint force vector
t coordinate, time, wall thickness, far-end bar stiffness, twisting moment
t force per unit area, stress vector, boundary stress vector, transformation matrix
u displacement in x direction, displacement, function
u displacement vector, vector
v displacement in y direction, shear force per unit length, internal deformation variable
v vector of internal deformation variables, shear force vector, vector
w displacement in z direction, deflection, crack width
w vector
x coordinate, control variable
x position vector, vector of control variables, vector
y coordinate, control variable, function
y vector of control variables, image vector, vector
z coordinate, height above ground
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Greek upper-case letters

G shell operator (PUCHER operator)
D difference, distance, LAPLACE operator, bar elongation, relative displacement
L diagonal matrix of eigenvalues
P potential energy, product
S sum
F stress function
V shape function
V matrix of shape functions

Greek lower-case letters

a coefficient, constant, angle, ratio
b coefficient, constant, angle, ratio
g body load, coefficient, shear strain, ratio
g strain vector
d KRONECKER symbol, deformation variable, slip, variational symbol
d flexibility matrix, vector of deformation variables
e normal strain, strain, parameter
e strain tensor, strain vector, permutation tensor
z coordinate, distance
h conversion factor, function, coordinate, influence ordinate
u angle, rotation
£ twist
k constant, moment distribution factor
l LAMÉ constant, bar end rotation, coefficient, natural wavelength, constant, eigenvalue, load factor, axial force parameter,

ratio, LAGRANGE multiplier
m coefficient of friction, LAMÉ constant (m = G), moment carry-over factor, constant, amplification factor, ratio
n POISSON’s ratio
j damping factor, coordinate
p specific potential, ratio of circumference to diameter
r radius, geometric reinforcement ratio, bar end rotation, density
s normal stress, stress component
s stress tensor, stress vector
t shear stress, time
f angle, angle of internal friction, rotation, creep coefficient, joint rotation, function
x ageing coefficient, curvature or twist
x curvature vector
c reduction coefficient, angle, bar rotation, stress function
c vector potential
v rotation, angular frequency, approximating function, warping, constant, mechanical reinforcement ratio
v rotation vector
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Subscripts

A force A
B force B
C centroid
C fatigue resistance
C with respect to C
D endurance limit
E buckling (EULER)
F load
G permanent action
L threshold
M shear centre
M resistance, bending moment
N normal force
P dynamic pressure, prestressing
Q variable action, with respect to Q
R resistance
S model uncertainty
T temperature
V shear force
a age-adjusted, structural steel, arch
b bond, bending, frame beam
c concrete, compression, column, perpendicular to cable chord
d design value, diagonal
e element
e element
e subsoil, outer, external, elastic
e elastic
f importance, action, flange
g gradient, global, geometrical
h with respect to h, horizontal
i inner, internal, transformed, index
j index
k characteristic value, kinematic, index
k kinematic
l with respect to l, left, index
m construction material/subsoil, mean value, position of free load, index
m bending
n normalised, n direction, index
o octahedral
o octahedral
o top, upper, orthogonal
o orthonormal
p prestressing steel, polar, plastic
q as a result of q
r roughness, residual, restraint, boundary displacement, right, crack, r direction
r reduced degrees of freedom, residual
s reinforcing steel, shrinkage, section, pure torsion, shear, s direction, direction of cable chord, static
s static, with respect to s
t tension, boundary stress, t direction
u failure, bottom, lower, limit load
u suppressed degrees of freedom
v strain hardening, shear force, flexural buckling
v shear force
w water, web, warping torsion, flexural buckling
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x x direction
y y direction, yielding
z z direction
cr critical
dst destabilising
inf lower value, bottom
max maximum value
min minimum value
nom nominal value
part particular
rep representative
stat stationary
stb stabilising
sup upper value, top
tot total
0 initial, reference value, rare, statically determinate
0 fundamental
1 frequent, leading action, principal value, statically indeterminate
2 quasi permanent, principal value
3 principal value
T final value
I 1st invariant, system component
II 2nd invariant, system component
III 3rd invariant
a index
b index
z z direction
h h direction
f torsional buckling
s load-dependent
v warping, index

Superscripts

A antisymmetric
S symmetric
T transposition
–1 inversion
l left
r right
0 fixity
I uncracked state, 1st order, system component
II cracked state, 2nd order, system component
v warping, index

* complementary, plastic, adjoint, single load case

l
effective, projected, compression, derivative with respect to x, r or s

· increment, derivative with respect to t
+ span, positive
– support, negative

force state, complete bar end variables, equivalent stress resultant in simple beam in x direction,
related stiffness/slenderness, transformed, projected
equivalent stress resultant in simple beam in z direction

~ similar matrix
^ congruent matrix
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Special characters

0 zero matrix
cond condition number
const constant
det determinant
sp trace

D

HAMILTON operator
@ partial differential
Ø diameter
I uncracked state, system component
II cracked state, system component
! factorial
j j amount
jj jj norm

Abbreviations

BL basement level
BS basic system
FB free body
FBD free-body diagram
FEM finite element method
GF ground floor
HVAC heating/ventilation/air conditioning
UF upper floor
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A5 MATRIX ALGEBRA

A5.1 Terminology

An (mqn) matrix (matrix of order mqn) is a system of mn numbers arranged in a
rectangular array of m rows and n columns:

aw

a11 a12 . . . a1n

a21 a22 . . . a2n

. .

. .

. .
am1 am2 amn

2
6666664

3
7777775w aij

� �
(A5:1)

The position of each element aij in the array is given by the row index i = 1, 2, ... , m
and the column index j = 1, 2, ... , n. It is possible to use symbols, functions and even
further matrices as the elements of a matrix, as well as numbers. When the elements are
themselves matrices, we speak of partitioned matrices and submatrices.

A matrix where m = 1 is known as a row vector or row, one where n = 1 as a column
vector or column. A matrix in which all the elements are equal to zero is called a zero
matrix and is given the symbol 0. A matrix where m = n is square – and of order m.
The sum of the main diagonal elements aii of a square matrix is known as a trace:

sp aw
Pm
iw1

aii (A5:2)

The determinant of a square matrix is the function

det aw

a11 a12 . . . a1m

a21 a22 . . . a2m

. .

. .

. .
am1 am2 . . . amm

�����������

�����������
w

P
(s 1)ka1aa2b � � � amv (A5:3)

In this function, a, b, ... , v are computed over all the m! possible permutations of the
numbers 1, 2, ... , m, and k denotes the number of inversions in each permutation. The
minor of element aij is the determinant that results from the given determinant by de-
leting the ith row and the jth column. The algebraic complement Aij of element aij is
its minor, which is given a positive (negative) sign when the sum i + j of the indices is
even (odd):

Aij w (s 1)iSj

a11 . . . a1, js1 a1, jS1 . . . a1m

. . . .

. . . .

. . . .
ais1,1 . . . ais1, js1 ais1, jS1 . . . ais1,m

aiS1,1 . . . aiS1, js1 aiS1, jS1 . . . aiS1,m

. . . .

. . . .

. . . .
am1 . . . am, js1 am, jS1 . . . amm

��������������������

��������������������

(A5:4)
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The value of a determinant does not change when the columns and rows are trans-
posed; therefore, all the properties formulated below for the rows also apply to the
columns. The sign of a determinant changes when two rows are switched and the
others retained; the determinant equals zero when one row is a linear combination
of other lines (i. e. is linearly dependent on these). A factor common to all the elements
of a row can be placed in front of the determinant. The value of the determinant re-
mains unchanged when adding a linear combination of rows to another row. A deter-
minant can be expanded with respect to the elements of an arbitrary row i:

det aw
Pm
jw1

aijAij (A5:5)

The sum of the products of the elements in a row i and the algebraic complements of
another row j is zero:Pm

kw1
aik Ajk w 0 (i0j) (A5:6)

A square matrix is known as invertible when deta 0 0 or singular when deta = 0. A
singular matrix with d J m linear-dependent rows or columns has the rank r = m – d,
where d denotes the nullity.

A square matrix where aij = aji is known as symmetric, one where aij = –aji antisym-
metric or skew-symmetric. Every square matrix can be decomposed into a symmetric
and an antisymmetric submatrix according to

aS
ij w

1

2
(aij S aji) , aA

ij w
1

2
(aij s aji) (A5:7)

Square matrices in which all the elements below (above) the main diagonal are equal
to zero are known as upper or right (lower or left) triangular matrices. The determin-
ant of such a matrix is equal to the product of the elements on the main diagonal (also
known as leading or principal diagonal).

A band matrix is a square matrix whose elements not equal to zero are grouped around
the main diagonal.

A diagonal matrix is a square matrix in which all the elements are zero apart from
those on the main diagonal. And when the elements on the main diagonal all have
the same value, we speak of a scalar matrix; if this value is 1, the matrix is an identity
matrix, which has the symbol I (also known as a unit matrix).

Rectangular matrices are known as row-regular (where m J n) or column-regular
(where n J m) provided their rows or columns respectively exhibit linear independ-
ence.

A5.2 Algorithms

The transposition of an (mqn) matrix a involves swapping (reflecting) all the rows
and columns to obtain the transposed (nqm) matrix aT. Obviously, (aT)T = a applies
for all matrices, aT = a for symmetric matrices and aT = –a for antisymmetric matri-
ces.

When adding (subtracting) two (nqm) matrices a and b, all the elements in the same
positions are added together (subtracted from each other):

cij w aij S bij (A5:8)

Two matrices a and b are identical when they have the same order mqn and all the
elements in the same positions are equal, i. e. aij = bij or a – b = 0.

Matrix addition is commutative and associative:

aS bw bS a , (aS b)S cw aS (bS c) (A5:9)
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When scaling a matrix a with a scalar l, all the elements of the matrix are multiplied
by l.

Multiplying an (mqn) matrix a by an (nqp) matrix b results in an (mqp) matrix c,
where the following applies for its elements:

cik w
Pn
jw1

aijbjk (A5:10)

Matrix multiplication is associative and distributive:

(a 7 b) 7 cw a 7 (b 7 c) , a 7 (bS c)w a 7 bS a 7 c (A5:11)

but generally not commutative (a x b 0 b x a). Moreover,

(a 7 b 7 ... 7 c)T
w cT 7 ... 7 bT 7 aT (A5:12)

also applies, and a = a x I = I x a as well for square matrices.

Real square matrices exhibiting the property

a 7 aT
w aT 7 a (A5:13)

are known as normal. And if the columns (and rows, too) form a system of orthogonal
unit vectors as well, i. e.

a 7 aT
w aT 7 aw I (A5:14)

then we speak of orthogonal matrices, where det a = e 1 and aT = a–1 apply. Where a
and b are two orthogonal matrices of the same order, then their products a x b and b x a
are also orthogonal.

Every invertible matrix a of order m has an invertible inverse a–1 of order m, where

a 7 a�1
w a�1 7 aw I (A5:15)

applies. The following applies for inverses:

det (a�1)w (det a)�1 , (aT)�1
w (a�1)T , (a 7 b 7 ... 7 c)�1

w c�1 7 ... 7 b�1 7 a�1

(A5:16)

A coordinate transformation for a change from one basis e to a new basis e is

ew t 7 e (A5:17)

where the columns of the (invertible) transformation matrix t contain the components
of the new basis vectors e in the old system e, and so the result is the transformation

xw t 7 x (A5:18)

for any vector x. Considering a linear mapping (linear transformation) of a vector x to
an image vector y

yw a 7 x (A5:19)

then

yw t�1 7 a 7 t 7 xw ã 7 x , ãw t�1 7 a 7 t (A5:20)

applies when y transforms in the same way (cogredient) as x (y = t x y). Matrices ã and
a are referred to as similar; det ã = det a applies.

Orthogonal transformations facilitated by orthogonal matrices are either – depending
on the value of the determinant – proper (det a = 1) or improper (det a = –1). The
associated mappings in the vector space correspond to a pure rotation or a rotation
with reflection.

If y is not transformed in the same way as x, but rather contragredient, i. e.

yw tT 7 y (A5:21)

then (A5.18) and (A5.19) are used to obtain

yw tT 7 a 7 t 7 xw â 7 x , âw tT 7 a 7 t (A5:22)

Matrices â and a are referred to as congruent. With a contragredient transformation,
the scalar product

xT7 yw xT7 tT7 yw xT7 y

remains invariant, even if the transformation matrix t is not square.
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The difference between similarity and congruence is irrelevant for an orthogonal trans-
formation where tT = t –1. The invariance of the scalar products xT

x x and xT
x y then

signifies invariance of lengths and angles with respect to a rotation.

A5.3 Linear equations

Various direct and iterative methods of solution exist for calculating the solution
vector x for sets of linear equations

a 7 xw b (A5:23)

with an (invertible) coefficient matrix a and a given vector b on the “right-hand side”.
The most important direct method of solution, the GAUSSian algorithm, involves
transforming matrix a into an upper triangular matrix by successively eliminating
the unknowns xi , with the unknowns being calculated ascending from xm to x1.

A5.4 Quadratic forms

A homogeneous second-degree polynomial in m variables x1, x2, ... , xm

Qw

Pm
iw1

xi

Pm
kw1

aikxk (A5:24)

is referred to as a quadratic form. Where aik = aki applies, then it follows that aT = a
and

Qw xT7 a 7 x (A5:25)

The symmetric matrix a is called a matrix of form Q, and Q itself is a scalar variable,
e. g. an energy expression.

Besides quadratic forms, there are also bilinear forms:

Pw yT7 a 7 x (A5:26)

which occur in two systems of variables x and y, where a can be a general (mqn) mat-
rix and P again denotes a scalar, i. e. instead of the expression on the right in (A5.26),
we can also use the following transposed expression:

Pw yT7 a 7 xw xT7 aT7 y (A5:27)

Taking into account @x/@xi = ei and the fact that aT = a means we can use (A5.25) to
obtain the derivative

@Q

@xi
w eT

i
7 a 7 xS xT7 a 7 ei w eT

i
7 a 7 xS eT

i
7 aT7 xw 2 eT

i
7 a 7 x (A5:28)

or in concise form

@Q

@x
w 2 a 7 x (A5:29)

Similarly, it follows that

@P

@x
w aT7 y ,

@P

@y
w a 7 x (A5:30)

If according to (A5.25) Q is positive for all values of x not equal to zero, then the form
is known as positive definite, and a is invertible. But if there are finite x values where
Q = 0 (Q i 0 for all other values of x), then the form is called positive semi-definite,
and a is singular.

In the vector space, Q = const represents a quadric surface. The following applies for
the differential of the function Q:

dQw

@Q

@x

� �T

7 dx (A5:31)

According to (A5.29), the first factor on the right in (A5.31) denotes the gradient
of the scalar function Q, and as dQ = 0, the gradient is perpendicular to the surface
Q = const, i. e. a x x is equal to the normal vector on the surface.
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In the three-dimensional space, a quadric surface has three principal axes perpendi-
cular to each other in such a way that the position vector x and the normal vector a x x
coincide at them and only at them, i. e.

a 7 xw l x (A5:32)

where l designates an as yet indeterminate scalar parameter.

A5.5 Eigenvalue problems

In the following we shall confine our deliberations to special eigenvalue problems of
the type (A5.32), which we will present in the form

(as l I) 7 xw 0 (A5:33)

where a is presumed to be square but otherwise arbitrary. The matrix on the left in
(A5.33) is called the characteristic matrix of matrix a. Eq. (A5.33) has non-trivial
solutions when the associated characteristic determinant disappears:

det (as l I)w 0 (A5:34)

This characteristic equation leads to an mth-order polynomial with respect to l, the
characteristic polynomial, which must disappear. The roots li of equation (A5.34) are
the eigenvalues, and the associated vectors xi are called eigenvectors, which are
determinate apart from their magnitude.

A matrix a only has at least one eigenvalue l = 0 when it is singular, det a = 0.
Matrix a has r eigenvalues 0 0, where r denotes the rank of a; the number of zero
eigenvalues for a agrees with the nullity d = m – r. Eigenvectors for various eigen-
values exhibit linear independence. A single eigenvalue has exactly one linear-inde-
pendent eigenvector, and a p-fold eigenvalue has at least one and no more than p
linear-independent eigenvectors. Moreover,

sp aw
Pm
iw1

li , det aw
Qm
iw1

li (A5:35)

applies. All eigenvalues are real for a symmetric a, and positive when a is positive
definite.

Combining the eigenvectors xi for a symmetric a column by column in the modal mat-
rix (eigenvalue matrix) X and arranging the eigenvalues li in the diagonal matrix of
eigenvalues L results in

a 7 X wX 7 L (A5:36)

instead of (A5.33), and assuming orthonormal eigenvectors (X T = X –1) results in

XT 7 a 7 X wL (A5:37)

This congruence transformation (or similarity transformation), which is known as a
principal component analysis, enables a to be transformed onto the diagonal matrix
of eigenvalues.

The RAYLEIGH quotient

R(x)w
xT 7 a 7 x

xT 7 x
(A5:38)

with an eigenvector xi results in the associated eigenvalue li, which is easily con-
firmed by (A5.32) after first multiplying by xi

T:

li wR(xi) (A5:39)

The function R(x) takes on its extreme values for the eigenvectors xi; in fact, the
derivative

@R

@x
w

2a 7 x

xT 7 x
s

xT 7 a 7 x � 2x

(xT 7 x)2 w

2[a 7 xsR(x) � x]

xT 7 x
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for

a 7 xwR(x) � xw l x

disappears, which corresponds precisely with the eigenvalue problem (A5.32) or
(A5.33).

Considering a quadratic form (A5.25), the principal component analysis x = X x y,
together with the modal matrix X, leads to

Qw yT 7 XT 7 a 7 X 7 yw yT 7 L 7 yw
Pm
iw1

liy2
i (A5:40)

see (A5.18) and (A5.37). Comparing (A5.40) with the canonical equation for quadric
surfaces reveals that the eigenvalues are proportional to the inverses of the squares of
the semi-axes.

A5.6 Matrix norms and condition numbers

Various matrix norms and condition numbers are in use for estimating eigenvalue
magnitudes and assessing relative errors in matrix operations. The symbol for norms
is a pair of parallel lines, i. e. ||x|| for the norm of a vector x and ||a|| for the norm of a
matrix a. Norms must generally be positive and may only be zero for x = 0 or a = 0.
Further, the norm of a scaled variable must be equal to the norm of the unscaled vari-
able multiplied by the magnitude of the scalar. Finally, it is essential that the triangle
inequality kx + yk J kxk + kyk or ka + bk J kak + kbk should apply, and for mat-
rix norms there is also a requirement that ka x bk J kak ·kbk.

Customary vector norms are the maximum norm, the sum norm and the EUCLIDean
norm:

xk kwMax xij j , xk kw
P

i
xij j , xk kw xj jw

ffiffiffiffiffiffiffiffiffiffiffi
xT 7 x
p

(A5:41)

Matrix norms include the total norm, row norm, column norm and EUCLIDean norm:

ak kwm �Max aij

�� �� , ak kw
i

Max
P

j
aij , ak kw

j
Max

P
i

aij , ak kw
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sp aT 7 a

p
(A5:42)

A matrix norm is considered compatible with a vector norm when the inequality

a 7 xk kJ ak k � xk k (A5:43)

applies for all matrices a and vectors x. Substituting (A5.32) in (A5.43) results in

lJ ak k (A5:44)

i. e. the magnitudes of the eigenvalues cannot lie outside some matrix norm.

If in a set of linear equations (A5.23) the magnitude of the determinant deta of mat-
rix a is very small, then small differences in large numbers occur during the elimin-
ation process, and the result is a loss of significant digits that can seriously distort the
result. We speak of an ill-conditioned matrix in such cases; small errors in the input
data are amplified in the result. The HADAMARD condition number

cond aJ
det aj j

Qm
iw1

ffiffiffiffiffiffiffiffiffiffiffiPm
jw1

a2
ij

s (A5:45)

should be used to assess the behaviour of a matrix in this respect. This condition num-
ber can lie between 1 (optimum condition) and 0 (instability). The expression in the
denominator of (A5.45) corresponds to the volume of the rectangular prism formed
from the magnitudes of the row vectors.
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A6 TENSOR CALCULUS

A6.1 Introduction

Many theory of structures relationships can be presented in a simple and graphic way
with the help of vector algebra without having to refer to a particular system of co-
ordinates. However, these methods reach their limits when other classes appear along-
side scalar and vector variables. A suitable system of coordinates then becomes essen-
tial. If we then try to express the relationships that occur in such a way that they are
valid in any system of coordinates (with straight or curved lines, right-angles or
oblique angles), we arrive at general tensor calculus. We shall confine ourselves
here to the essential minimum, i. e. right-handed systems of Cartesian coordinates
plus corresponding Cartesian tensors. In the general spatial case, we shall refer to
the xi = x1, x2, x3 coordinates (xi = x1, x2 in the planar case).

A6.2 Terminology

According to (A5.17), the columns of the transformation matrix t used for the transi-
tion from an old basis e to a new basis e contain the components of the new basis
vectors in the old system. These are equal to the cosines of the angles between the
xi and xjj directions and from now on are denoted with cij . Instead of (A5.18), in
symbol notation we therefore get

xw c 7 x

and in index notation (or coordinate notation)

xi w cijxj (A6:1)

when the EINSTEIN summation convention is agreed upon such that a Latin index
occurring twice in one expression means that the expression is summed over the
values 1, 2, 3 of this index. The index j occurring twice in (A6.1) is known as a
dummy, bound or summation index; it disappears when the summation implied by
the index has been performed.

Written out in full, expression (A6.1) encompasses three sums (two in the planar case)
each with three (two) terms. Similarly, omitting the summation symbols from (A5.2),
(A5.10) and (A5.24) results in the expressions aii , aij bjk and xi aik xk for the trace of a
matrix, the multiplication of two matrices and a quadratic form, for example.

Owing to the column-by-column structure with orthogonal unit vectors, the rotation
matrix cij in (A6.1) satisfies the requirement (A5.14), i. e.

cijcik w djk or cjicki w djk (A6:2)

where

djk w 1 for jw k

djk w 0 for j0 k
(A6:3)

denotes the KRONECKER symbol and corresponds to the identity matrix introduced
in section A5.1.
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Which Latin index is used for a dummy index is irrelevant when no other index is
repeated in the same expression. For example, (A6.1) can be written in the form

xi w cikxk

Multiplying this by cij and applying (A6.2) then leads to

xj w cijxi (A6:4)

or rather x = cT
x x.

A6.3 Vectors and tensors

A vector v is unequivocally defined by its components vi related to its basis e, or by its
magnitude

vj jw vw
ffiffiffiffiffiffiffi
vivi
p

and its direction (e. g. given by its azimuth and elevation related to the basis e). At the
transition to a new basis e, the components vi transform according to (A6.4), i. e.

vj w cijvi (A6:5)

and, vice versa,

vi w cijvj (A6:6)

applies in a similar way to (A6.1). The projection of v onto an arbitrary direction given
by a unit vector n results in v x n = vi ni = vcosa, where a denotes the angle included
by n and v; therefore, v assigns a scalar to every direction n.

Where a vector with the components tij belongs to every (positive) coordinate direc-
tion xj instead of a scalar vj , then these vectors allocate a vector with the components

ti w tijnj (A6:7)

to every direction n. Such an allocation characterises a tensor. The columns of mat-
rix tij are the values of the tensor for the coordinate directions. The transformation of ti

and nj in (A6.7) using (A6.5) and (A6.6) results in

tk w tklnl , tkl w cikcjltij (A6:8)

In a Cartesian system, a tensor is therefore defined by nine variables that transform
according to (A6.8)2 or rather t = cT

x t x c. Swapping indices k and l in (A6.8)2 results
in

tlk w cilcjktij w cjlciktji

i. e. tji is a tensor, too, which we call the tensor adjoint to tij .

Applying (A6.8)2 to the tensor defined by the KRONECKER symbol (A6.3) and
using (A6.2) results in

dkl w cikcjldij w cikcil w dkl

i. e. dij is a unit tensor in any system of coordinates and is isotropic.

A tensor is symmetric when tij = tji and antisymmetric when tji = – tij . Resolving a ten-
sor into one symmetric and one antisymmetric part is carried out in a similar way to
(A5.7):

t(ij) w tS
ij w

1
2(tij S tji) , t[ij] w tA

ij w
1
2(tij s tji) (A6:9)

Considering scalars, vectors and the aforementioned tensors as zeroth-, first- and sec-
ond-order tensors, it is possible to generalise the tensor definition according to (A6.8)
as follows: an nth-order tensor is determined by 3n components (2n in the planar case),
which transform according to

tpqr... w cipcjqckr ... tijk... (A6:10)
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The scaling and addition (subtraction) of tensors follows the algorithms for matrices
discussed in section A5.2. All of the products that can be formed from one component
from each of two tensors are known as tensor products – tensors whose order is equal
to the sum of the orders of the factors. For example, the product tijk = rij sk of a ten-
sor rij and a vector sk is a third-order tensor, and the dyadic product tij = ui vj of two
vectors is a second-order tensor. It should also be noted that the dyadic product is not
commutative; tji = vj ui is the tensor adjoint to tij .

Equating two indices of an nth-order tensor and performing the corresponding sum-
mation results in a tensor of the (n– 2)th order, which is the contraction of the initial
tensor according to the equated indices. For example, we thus get the tensor ’s trace tii

(a scalar) from the tensor tij . If a tensor product is contracted according to two indices
that do not belong to the same factor, we speak of an inner multiplication of the initial
tensors according to the equated indices. For example, the scalar product uivi of two
vectors is their inner multiplication. Both (A6.7) and the generalisation sj...n = tij...n ni

correspond to inner multiplications; we get tiptpj for the square of a tensor and tip tpq tqj

for its cube, etc.

The permutation of certain tensor indices leads to a tensor of the same order, which can
be called an isomer of the initial tensor. For example, the tensor tji adjoint to tij is its
only isomer. A tensor is symmetric (antisymmetric) with respect to two indices when
after swapping these indices it is equal (opposite and equal) to its isomer. Where s...i...j...

and t...i...j... are symmetric or antisymmetric with respect to i and j, then their product
contracted according to i and j disappears. For example, applying (A6.9) means that

sijtij w s(ij) S s[ij]

� �
t(ij) S t[ij]
� �

w s(ij)t(ij) S s[ij]t[ij] (A6:11)

applies to any second-order tensors.

The tensor character of a certain variable can be found using the quotient rule. The
quotient rule states that t...i...j...k... must be an nth-order tensor if we know that
t...i...j...k...sij...k is a tensor of the (n–m)th order, regardless of how the mth-order tensor
sij...k is selected.

With the components of three non-collinear vectors ui , vj, wk arranged in the columns
of a (3q3) matrix, then the magnitude of their determinant (A5.3) corresponds to the
volume of the parallelepiped defined by the three vectors. The sign of the determinant
is positive (negative) here when the three vectors form a right-handed (left-handed)
system. Introducing the variable eijk – which takes on the values 1 (–1) or 0 depending
on whether i, j, k are an even (odd) or no permutation of 1, 2, 3 – allows us to express
the determinant as eijk ui vj wk. Therefore, according to the quotient rule, eijk is a third-
order tensor, which is called a permutation tensor.

The equation

ti w eijktjk (A6:12)

allocates the dual vector ti with the components t23 – t32, ... to the tensor tjk; the vector
depends only on the tensor ’s antisymmetric part t[jk] . The dual vector for a symmetric
tensor disappears. Reversing the allocation (A6.12) results in

tjk w
1

2
eijkti (A6:13)

i. e. an antisymmetric second-order tensor is assigned to every vector.

The dual vector

wi w eijkujvk (A6:14)

(the vector product w = u q v) corresponds to the dyadic product ujvk of two vectors.
As ui uj (vivk) and eijk with respect to i and j (i and k) are symmetric and antisymmetric
respectively, then uiwi = viwi = 0, i. e. w is orthogonal to the plane defined by u and v.
Further, wiwi = eijkwi ujvk i 0 is equal to the volume of the prism defined by the three
vectors; u, v and w form a right-handed system, and the magnitude of w is equal to the
area of the parallelogram defined by u and v.
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Placing the origin of the system of coordinates at any reference point means that the
moment M = x q F of a force F with point of application x related to this point can
be expressed by

Mi w eijkxjFk (A6:15)

see (5.1). Similarly, the displacement u = v q x of a point x for rotation with the
rotation vector v about the origin of coordinates is

ui w eijkvjxk (A6:16)

see (6.2).

A6.4 Principal axes of symmetric second-order tensors

Starting with (A6.7), we call nj a principal direction of the symmetric tensor tij if the
vector tij nj allocated to this direction has the direction ni , i. e. can be expressed by tni ,
where t is a scalar. In a similar way to (A5.33), we obtain

(tij s tdij)nj w 0 (A6:17)

and we get the characteristic equation

det (tij s tdij)w 0 (A6:18)

as a condition for non-trivial solutions, which can also be written in the form

t3
s tIt2

s tIIt s tIII w 0 (A6:19)

with the basic invariants

tI w tii , tII w
1

2
(tijtji s tiitjj) , tIII w

1

6
eijkelmntiltjmtkn (A6:20)

where tI is equal to the sum of the diagonal elements, or rather the trace of the tensor, tII

is the negative sum of the minors of these elements, and tIII is the determinant of the
matrix tij .

The solutions t = ti to characteristic equation (A6.19) are the principal values, and the
corresponding principal directions, orthogonal to one another, follow from

ni1 w
s ci2ci3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2
i1c2

i2 S c2
i1c2

i3 S c2
i2c2

i3

p , ... ci1 w (t11 s ti)t23 s t12t13 , ...½ � (A6:21)

where the ellipsis indicates the cyclic alternation of the indexes.

Projecting the vector (A6.7) onto direction nj gives us the normal component tij nj ni

of the tensor for direction nj. If we require the directions nj for which the normal com-
ponent is stationary, then taking into account the secondary condition ni ni = 1,
the expression (tij – tdij)nj ni must take on a stationary value, where t denotes a
LAGRANGE multiplier. Setting the derivative of this expression to zero with respect
to nk results in

(tij s tdij)(djkni S njdik)w (tik s tdik)ni S (tkj s tdkj)nj w 0 (A6:22)

i. e. owing to the symmetry of tij, we arrive at (A6.17) again. Eq. (A6.22) makes use of
the fact that the derivative of ni (nj) with respect to nk is given by dik (djk). Summing up,
stationary values of the normal components of the tensor correspond to the principal
directions, and these components are given by the principal values t = ti .

A6.5 Tensor fields and integral theorems

If an nth-order tensor – whose 3n components are position functions tijk...(x1, x2, x3)
continuously changing with the position – is assigned to every point of a space,
we speak of a tensor field. of the nth order. In the following, all the derivatives of
these position functions which occur are assumed to be continuous with respect to
the coordinates, and the differential operators @/@xp , @2

/(@xp@xq) etc. are abbreviated
to @p , @pq etc. Alternatively, derivatives @ptijk... and @pqtijk... can be abbreviated with
tijk...,p or tijk...,pq, i. e. by adding the corresponding indices with preceding commas.
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The change to tijk... in the vicinity of a point xp0 results from a TAYLOR series
(xp – xp0)tijk...,p + ... and is an nth-order tensor, irrespective of how xp – xp0 is selected.
Therefore, according to the quotient rule, tijk...,p is a tensor of the (n+1)th order. The
operator @p thus behaves like a vector during the coordinate transformation, oper-
ator @pq like a second-order tensor, etc. In symbol notation, we use the “Nabla” vector
or the HAMILTON operator r for @p .

Tensor fields of the zeroth and first orders are known as scalar fields f and vector
fields vi respectively. These can be illustrated graphically by their level surfaces
f = const or field lines dxi/vi = const.

Applying operator @i to a scalar field f leads to the gradient

f,i wrfw grad f (A6:23)

Continuing by an amount ds in the direction of the unit vector ni causes f to change
by

dfw ni f,i dsw (n 7 grad f) ds (A6:24)

The gradient of f is orthogonal to the level surface of f at the point being considered
and its magnitude is equal to the maximum slope df/ds.

Applying operator @ j to a vector field vk leads to the vector gradient vk , j , a second-
order tensor. Continuing by an amount ds in the direction of the unit vector nj causes
vk to change by

dvk w nj vk, j dsw (n 7r) v dsw (n 7 grad) v ds (A6:25)

The trace of the vector gradient is the divergence

vi,i w div vwr 7 vw
@v1

@x1
S

@v2

@x2
S

@v3

@x3
(A6:26)

and the dual vector for the vector gradient is the curl

eijkvk, j w curl vwr q vw
@v3

@x2
s

@v2

@x3
, ...

� �
(A6:27)

Contraction of the operator @ij leads to the LAPLACE operator

@ii wDwr2
w

@2

@x2
1
S

@2

@x2
2
S

@2

@x2
3

(A6:28)

Using the variables introduced above, the following relationships apply:

curl grad fw 0 , div grad fwDf , div curl vw 0 , curl curl vw grad div vsD v

(A6:29)

GAUSS’ theoremÐ
tjkl...,i dV w

Ð
nitjkl... dS (A6:30)

applies to any tensors for a closed surface S with outward unit normal vector n, which
is the boundary of a volume V, with the special casesÐ

grad f dV w

Ð
n f dS ,

Ð
div v dV w

Ð
n 7 v dS ,

Ð
curl v dV w

Ð
n q v dS

(A6:31)

And the following applies for two scalar fields f1, f2:Ð
f1f2,ii dV w

Ð
[(f1f2,i),i sf1,if2,i] dV (A6:32)

Applying GAUSS’ theorem to the first term on the right results in GREEN’s first
identityÐ

f1f2,ii dV w

Ð
f1nif2,i dSs

Ð
f1,if2,i dV (A6:32)
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or ratherÐ
f1Df2 dV w

ð
f1

@f2

@n
dSs

Ð
grad f1

7 grad f2 dV (A6:33)

where @f2/@n equals the slope of f2 in the direction of the normal n. If we swap the
roles of f1 and f2 in (A6.32) or (A6.33) and subtract the result from the initial equa-
tion, then the outcome is GREEN’s second identityÐ

(f1f2,ii sf2f1,ii) dV w

Ð
(f1nif2,i sf2nif1,i) dS (A6:34)

or ratherÐ
(f1Df2 sf2Df1) dV w

ð
f1

@f2

@n
sf2

@f1

@n

� �
dS (A6:35)

660 A6 TENSOR CALCULUS

APPENDIX



A7 CALCULUS OF VARIATIONS

A7.1 Extreme values of continuous functions

According to WEIERSTRASS’ theorem, every continuous function f(xi) in a closed
domain of the variables xi has a maximum and a minimum within or on the boundary
of the domain. If f is differentiable in the domain considered and the extreme value is
assumed to be within the domain, then all the derivatives @f /@xi = f,i at the point con-
cerned must disappear, or rather the differential df = f,i dxi must be equal to zero. The
index notation introduced in section A6.2 and the abbreviated form for derivatives
used in section A6.5 are employed here. However, the condition df = f,i dxi = 0
only guarantees the stationary value of f and is not sufficient for a maximum or min-
imum, as the occurrence of points of inflection or saddle points shows.

Subjecting the variables xi to side conditions gj(xi) = 0 allows us to form the function

hw f S ljgj (A7:1)

with the LAGRANGE multipliers lj and requires h,i = 0, which together with the side
conditions gj = 0 permits xi and lj to be determined for stationary behaviour.

A7.2 Terminology

Calculus of variations is concerned with the search for the extreme values (or merely
stationary values) of functionals, i. e. variables

I w
Ð

F(xi, fj, fj,i, fj,ik, ...) dV (A7:2)

that depend on the progression of one or more arbitrary argument functions fj between
certain limits and their derivatives with respect to the variables xi . The integrand F in
(A7.2) is the LAGRANGE function.

Those argument functions that satisfy the requirement I = stat are known as extremals
of the functional. They must lie within the domain of admissible functions, i. e. satisfy
certain continuity and differentiability requirements as well as side and boundary con-
ditions. If I contains the nth derivative of an argument function, the admissible func-
tions lying in a sufficiently small neighbourhood of the extremals must satisfy all the
boundary conditions for the argument function and its derivatives up to the order n–1;
these are called the essential boundary conditions.

The fundamental problem of calculus of variations lies in determining the extremals
within the domain of admissible functions, i. e. those functions that make the func-
tional an extreme value compared with all argument functions belonging to a suffi-
ciently small neighbourhood.

Most direct methods for solving variational problems begin by solving the associated
ordinary extreme value problems. This initially involves determining n parameters so
that the passage to the limit n p T can be performed for the complete solution. The
RITZ method in particular should be mentioned in this context. This method is the one
most frequently used as a numerical approximation method for solving variational
problems.
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Indirect methods essentially simplify variational problems to associated differential
equation problems. The ensuing EULER-LAGRANGE equations are necessary,
but not sufficient, conditions for the presence of an extreme value. At points where
essential boundary conditions are lacking, we get natural boundary conditions as
well. EULER-LAGRANGE equations and natural boundary conditions together
form the equivalent conditions of the variational problem, which are automatically
satisfied by its extremals. The extremals themselves are calculated according to the
indirect method of calculus of variations by integrating the EULER-LAGRANGE
equations while taking into account side conditions where applicable plus the essential
and natural boundary conditions.

A7.3 The simplest problem of calculus of variations

The integral

I w
Ðx1

x0

F(x, y, yl) dx (A7:3)

dependent on x, y = f (x) and yl = dy/dx should take on an extreme value, where F can
be continuously differentiated twice with respect to x, y and yl, and x0, x1 as well as
y0 = y(x0), y1 = y(x1) are given values; in addition, the second derivative yL of the func-
tion y should be continuous. Introducing the function h(x) with the continuous second
derivative hL and h(x0) = h(x1) = 0 together with a parameter e results in the family of
functions

yw yS ehw yS dy (A7:4)

where y is the extremal required and dy its variation. For e = 0, the integral I(y), which
can be regarded as a function I(e), must take on an extreme value relative to all suffi-
ciently small, non-zero values of e, i. e. @I=@ew 0 for e = 0. Differentiating the ex-
pressionÐx1

x0

F(x, yS eh, ylS ehl) dx

with respect to e and equating to zero results inÐx1

x0

(FyhSFylhl) dx w 0 (A7:5)

where, for simplicity, we have taken Fy = @F/@y and Fyl = @F/@yl. Integration by
parts of the second term in the integrand of (A7.5), taking into account the boundary
conditions h(x0) = h(x1) = 0, results inðx1

x0

h Fy s
d

dx
Fyl

� �
dx w 0 (A7:6)

According to the fundamental lemma of calculus of variations, the identity f(x) a 0
applies for continuous functions f(x) when for all functions h(x) continuous with the
first two derivatives, which disappear for x0 and x1, the relationshipÐx1

x0

hf dx w 0 (A7:7)

holds true. Consequently, the expression in brackets in (A7.6) must disappear, i. e. the
EULER-LAGRANGE equation

Fy s
d

dx
Fyl w 0 (A7:8)
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applies, which takes on the form

Fy sFylylyLsFylyylsFylx w 0 (A7:9)

when written out in full. Two integration constants that can be fitted to the boundary
conditions occur in the general solution to this second-order differential equation. The
differential expression on the left in (A7.8) is known as a variational derivative; it
plays the same role as the differential quotient in ordinary extreme value problems.

We use (A7.4) to obtain the variation d(yl) = ehl of the derivative yl. According to
(A7.4), (dy)l = ehl also applies, and therefore

d(yl)w (dy)l (A7:10)

i. e. variation and differentiation are interchangeable in calculus of variations.

Considering the family of functions y(x, e) in the generalisation of (A7.4), the above
deliberations are still relevant if we take

h(x)w yejew0 (A7:11)

Accordingly, the variation of y from (A7.3) results in the first variation of the inte-
gral I

dI w d
Ðx1

x0

F dx w e
@

@e

ðx1

x0

F(e) dx

2
4

3
5

ew0

w

ðx1

x0

e
@F(e)

@e

	 

ew0

dx w
Ðx1

x0

dF dx (A7:12)

i. e. variation and integration are interchangeable in calculus of variations. In (A7.12),
dF is formed by the functions y and yl to be varied according to the same rules as the
differential dF with respect to y and yl:

dF wFy dySFyl dyl (A7:13)

Comparing (A7.5) with (A7.12) and (A7.13) reveals that the necessary condition for
the occurrence of an extreme value of a functional I is the disappearance of its first
variation, dI = 0.

A7.4 Second variation

The second variation of a function F(y, z) is formed from the first variation

dF wFy dySFz dz (A7:14)

in the same way as dF is formed from F, i. e.

d2F wFyy(dy)2
S 2FyzdydzSFzz(dz)2 (A7:15)

Developing F at point y + eh, z + ez into a TAYLOR series results in

F(e)wF(y,z)S (FyehSFzez)S
1

2!
[Fyy(eh)2

S 2Fyz(eh)(ez)SFzz(ez)2]S ...

wF S dF S

1

2!
d2F S ...

(A7:16)

The second variation of the functional (A7.3) is formed from (A7.12) by taking into
account (A7.13) in the same way, i. e.

d2I w
Ðx1

x0

[Fyy(dy)2
S 2Fyyl(dy)(dyl)SFylyl(dyl)2] dx (A7:17)

and developing I at point y + eh into a TAYLOR series results in

I(e)w I S dI S
1

2!
d2I S ... (A7:18)

Necessarily, dI = 0 applies at the point of an extreme value. The difference I – I is
then determined by d2I because the variations of I of higher order disappear owing
to the smallness of e compared with d2I. If d2I is positive (negative), I takes on a min-
imum (maximum).
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Further, exploiting the arbitrariness of h allows us to demonstrate that the
LEGENDRE condition Fylyl j 0 for a minimum (Fylyl J 0 for a maximum) persists
along the extremals [5].

A7.5 Several functions required

Where

I w
Ðx1

x0

F(x, y, z, ... ,yl, zl, ...) dx (A7:19)

should take on an extreme value, we form the families of functions y + e1h, z + e2z, ...
using the functions h(x), z(x), ... (disappearing at the boundary but otherwise random)
in a similar way to (A7.4), and require that the derivatives @I(ei)/@ej disappear for
ej = 0. In a similar way to (A7.8), we then get the differential equations

Fy s
d

dx
Fyl w 0 , Fz s

d

dx
Fzl w 0, ... (A7:20)

which take on the form

Fy sFylylyLsFylzlzLs ...sFylyylsFylzzls ...sFylx w 0,

Fz sFzlylyLsFzlzlzLs ...sFzlyylsFzlzzls ...sFzlx w 0,

...

(A7:21)

when written out in full.

A7.6 Higher-order derivatives

The integral

I w
Ðx1

x0

F(x, y, yl, yL, ... , y(n)) dx (A7:22)

should take on an extreme value.All functions with continuous derivatives up to the
order 2n are admissible for which, at the boundary, the values of the function and
the values of the derivatives up to the order n–1 are given (essential boundary con-
ditions, see section A7.2). We use the family of functions y + eh to obtain the first
variation

dI w e
Ðx1

x0

�
FyhSFylhlS ...SFy(n) h(n)

�
dx (A7:23)

Repeated integration by parts causes all the derivatives of h to disappear

dI w e

ðx1

x0

h Fy s
d

dx
Fyl S

d2

dx2
FyL s ...S (s 1)n dn

dxn
Fy(n)

	 

dx (A7:24)

and according to the fundamental lemma of calculus of variations, the EULER-
LAGRANGE equation

Fy s
d

dx
Fyl S

d2

dx2
FyL s ...S (s 1)n dn

dxn
Fy(n) w 0 (A7:24)

must apply for an extreme value.

We obtain corresponding sets of EULER-LAGRANGE equations when several func-
tions are to be determined in a variational problem with higher-order derivatives.

664 A7 CALCULUS OF VARIATIONS

APPENDIX



A7.7 Several independent variables

The variational problems considered hitherto for determining the extreme values of
simple integrals led to ordinary differential equations. Determining the extreme values
of mulitple integrals leads, similarly, to one or more partial differential equations.

For example, the double integral over a certain domain A with boundary C

I w
Ð
A

F(x, y, u, ux, uy) dx dy (A7:26)

is to be set to the extreme value using a function u (with continuous derivatives up to
the second order), where the boundary values of u are given. As given above, intro-
ducing a function h(x, y), disappearing at the boundary but otherwise random, leads,
together with parameter e, to

dI w e
@

@e

ð
A

F(uS eh) dx dy

2
4

3
5

ew0

w 0 (A7:27)

i. e.

dI w e
Ð
A

(FuhSFux hx SFuy hy) dx dyw 0 (A7:28)

According to GAUSS’ theorem (A6.30),Ð
A

(hxFux S
hyFuy

) dx dyw
Ð
C

h(Fux
dysFuy

dx)s

ð
A

h
@

@x
Fux S

@

@y
Fuy

� �
dx dy

(A7:29)

applies, and since h disappears at C, we obtain

dI w e

ð
A

h Fu s
@

@x
Fux s

@

@y
Fuy

� �
dx dy (A7:30)

instead of (A7.28). Further, according to the fundamental lemma of calculus of vari-
ations, the expression in brackets in the integrand of (A7.30) must disappear:

Fu s
@

@x
Fux s

@

@y
Fuy w

0 (A7:31)

which when written out in full is

Fu sFuxux
uxx s 2Fuxuy

uxy sFuyuy
uyy sFuxuux sFuyuuy sFuxx sFuyy w 0 (A7:32)

We get a set of such partial differential equations when several unknown functions
have to be determined. When higher-order derivatives up to order n occur, we get
a differential equation of the order 2n

Fu s
@

@x
Fux s

@

@y
Fuy S

@2

@x2
Fuxx S

2
@2

@x@y
Fuxy S

@2

@y2
Fuyy S

...S (s 1)n @
n

@yn
Fuyy...y w

0

(A7:33)

instead of (A7.31).

A7.8 Variational problems with side conditions

The argument functions of a variational problem are frequently subjected to side con-
ditions of another kind as well as the boundary conditions.

The isoperimetric problem represents the simplest of such tasks. In this, the inte-
gral (A7.3) should take on an extreme value, whereas the function y is subjected to
a side conditionÐx1

x0

G(x, y, yl) dx w const (A7:34)
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as well as the boundary conditions. To solve this problem, we form the LAGRANGE
function

H wF S lG (A7:35)

with the constant LAGRANGE multiplier l and thus obtain the EULER-
LAGRANGE equation

Hy s
d

dx
Hyl w 0 (A7:36)

If the integral

I w
Ðx1

x0

F(x, y, z, yl, zl) dx (A7:37)

subjected to the side condition

G(x, y, z)w 0 (A7:38)

is to take on an extreme value, then once again we set up the LAGRANGE
function (A7.35), where l is now a function l(x) of x. The EULER-LAGRANGE
equations

Hy s
d

dx
Hyl w 0 , Hz s

d

dz
Hzl w 0 (A7:39)

together with (A7.38) and the boundary conditions for y and z then enable us to de-
termine y, z and l.

In the same way, using a multiplier l(x) enables us to solve cases with more general
side conditions in the form

G(x, y, z, yl, zl)w 0 (A7:40)

as well and, similarly, we can also handle problems with higher-order derivatives, sev-
eral unknown functions, several side conditions and several independent variables.

A7.9 The RITZ method

It is often difficult, sometimes even impossible, to solve the EULER-LAGRANGE
equations, but this problem can always be overcome by employing the approximation
method devised by RITZ.

For example, in order to determine the function y in the integral (A7.22), we assume

yw
Pn
iw1

ci vi (A7:41)

where the approximating functions vi must satisfy the essential boundary conditions
for y. And since dI = 0, the n coefficients ci then follow from

@I

@c1
w

@I

@c2
w ...w

@I

@cn
w 0 (A7:42)

Example A7.1 Cantilever beam rigid in shear

A cantilever beam with infinite shear stiffness and length l is fixed at x = 0 and carries a line load q in
the z direction. Its bending stiffness and deflection are denoted with EI and w respectively. The total
potential

Pw

ðl
0

1

2
EIwL2 s qw

� �
dx (A7:43)

is a minimum for the real function w(x). The presence of wL in (A7.43) means that the essential
boundary conditions w = 0 and wl = 0 apply for x = 0, and these are satisfied by setting

ww

Pn
iw2

ci xi (A7:44)
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If EI and q are constant, then using @P/@ci = 0 with n = 2 gives us the value c2 = ql2
/(12EI ); putting

n = 3, the values are c2 = 5ql2
/(24EI ), c3 = – ql/(12EI ); and putting n = 4, then c2 = ql2

/(4EI ),
c3 = – ql/(6EI ), c4 = – q/(24EI ), corresponding to the exact solution

ww

ql 4(6j2
s 4j3

S j4)

24EI
jw

x

l

� �
(A7:45)

The values P2 = – q2l5
/(72EI ), P3 = – 7q2l5

/(288EI ) and P4 = – q2l5
/(40EI ) follow for the asso-

ciated approximations of the total potential, which demonstrates the successive approximation of the
exact value P = P4.

A7.10 Natural boundary conditions

Up until now we have always assumed that the argument functions to be determined
take on prescribed boundary values. However, there are often no conditions for the
boundary values. We then speak of free edges that can be dealt with by not setting
the variation of the functions at the boundary to zero right from the start.

In the simplest variational problem, we thus get the condition

dI w

ðx1

x0

Fy s
d

dx
Fyl

� �
dy dx SFyl dy

���x1

x0

w 0 (A7:46)

instead of (A7.6). Owing to the randomness of dy, eq. (A7.8) must be satisfied on the
one hand, and, on the other, the natural boundary condition Fyl = 0 must apply for
x = x0 and x = x1.

Correspondingly, for (A7.19) or (A7.26) we get, apart from the EULER-
LAGRANGE equations, the natural boundary conditions Fyl = 0 and Fzl = 0 for
x = x0 and x = x1 or

Fux
dysFuy

dx w 0

on the edge C.

Example A7.2 Cantilever beam – uniformly distributed load plus load at free end

If we apply a point load Q0 and a moment M0 to the free end of the cantilever beam of example A7.1
(see Fig. 8.14), then we obtain

Pw

ðl
0

1

2
EIwL2 s qw

� �
dxsQ0w

���xwl

SM0wl
���xwl

(A7:47)

instead of (A7.43), where w has to satisfy the essential boundary conditions w = 0 and wl = 0 for
x = 0. The condition

dPw

Ðl
0

(EIwLdwLs q dw) dxsQ0 dw
���xwl

SM0 dwl
���xwl

w 0 (A7:48)

can be rewritten in the form

dPws

Ðl
0

(MLS q) dw dx S (MlsQ0) dw
���xwl

s (M sM0) dwl
���xwl

w 0 (A7:49)

by using M = – EIwL and taking into account the boundary conditions dw = dwl = 0 for x = 0 with
double integration by parts, from which we get, on the one hand, the EULER-LAGRANGE equation

MLS qws (EIwL)LS qw 0 (A7:50)

and, on the other, the natural boundary conditions

Mlws (EIwL)lwQ0 , M wsEIwLwM0 (A7:51)

for x = l.
Where EI is constant and q = 0, then integrating (A7.50) and taking into account the (essential and
natural) boundary conditions results in

ww

Q0l 3 3 1s
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(A7:52)
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Basel, 1977, 445pp.
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AIRY, George Bidell, Sir (1801 – 1892) 492
ARCHIMEDES of Syracuse (c. 287 – c. 212 BC) 5, 329

BAUSCHINGER, Johann (1834 – 1893) 329
BERNOULLI, Daniel (1700 – 1782) 6
BERNOULLI, Jacob (1654 – 1705) 6, 108, 187
BERNOULLI, Johann (1667 – 1748) 6
BETTI, Enrico (1823 – 1892) 8, 128
BOŠCOVIĆ, Ruggiero Giuseppe (1711 – 1787) 5
BOUSSINESQ, Valentin Joseph (1842 – 1929) 99
BREDT, Rudolph (1842 – 1900) 205

CASTIGLIANO, Carlo Alberto (1847 – 1884) 8, 118, 122
CAUCHY, Augustin Louis (1789 – 1857) 8
CLAPEYRON, Benoı̂t Pierre Emile (1799 – 1864) 8
COULOMB, Charles Augustin de (1736 – 1806) 7, 87, 517
CREMONA, Antonio Luigi Gaudenzio Giuseppe

(1830 – 1903) 8, 169, 171
CROSS, Hardy (1885 – 1959) 305
CULMANN, Karl (1821 – 1881) 8, 166

D’ALEMBERT, Jean-Baptiste le Rond (1717 – 1783) 116
DA VINCI, Leonardo (1452 – 1519) 5
DE NEMORE, Jordanus (c. 1200) 5
DRUCKER, Daniel (1918 – 2001) 86

EINSTEIN, Albert (1879 – 1955) 655
ENGESSER, Friedrich (1848 – 1931) 8, 118, 124, 221, 257,

394, 456
EUCLID of Alexandria (c. 360 – c. 280 BC) 654
EULER, Leonhard (1707 – 1783) 6, 84, 452, 473, 662

FOULKES, John David Percy (1924 – 2002) 438
FOURIER, Jean Baptiste Joseph (1768 – 1830) 331, 353,

492, 535, 593

GALERKIN, Boris Grigorievic (1871 – 1945) 133, 455
GALILEO Galilei (1564 – 1642) 6
GAUSS, Carl Friedrich (1777 – 1855) 114, 305, 532, 596,

652, 659, 665
GERBER, Heinrich (1832 – 1912) 138, 160
GOODMAN, John (1862 – 1935) 98
GREEN, George (1793 – 1841) 114, 659, 660

HADAMARD, Jacques Salomon (1865 – 1963) 654
HAMILTON, William Rowan, Sir (1805 – 1865) 659
HOOKE, Robert (1635 – 1703) 6, 82

JACQUIER, François (1711 – 1788) 5

KANI, Gaspar (1910 – 1968) 305
KIRCHHOFF, Gustav Robert (1824 – 1887) 113
KOENEN, Mathias (1849 – 1924) 8
KRONECKER, Leopold (1823 – 1891) 60, 655

LAGRANGE, Joseph Louis, Comte de (1736 – 1813) 658,
661, 666

LAMÉ, Gabriel (1795 – 1870) 8, 83
LAND, Robert (1857 – 1899) 9, 179, 303
LANGER, Josef (born 1816) 139
LAPLACE, Pierre Simon de (1749 – 1827) 494, 534, 659
LE SEUR, Thomas (1703 – 1770) 5
LEGENDRE, Adrien Marie (1752 – 1833) 664
LEIBNIZ, Gottfried Wilhelm (1646 – 1716) 6
LÉVY, Maurice (1838 – 1910) 8

MAILLART, Robert (1872 – 1940) 1
MARIOTTE, Edmé (1620 – 1684) 6
MAXWELL, James Clerk (1831 – 1879) 8, 118, 125, 178,

230
MINER, Milton A. 98
MOHR, Otto Christian (1835 – 1918) 8, 54, 55, 59, 73, 89,

188, 233, 238, 526, 532
M�LLER-BRESLAU, Heinrich Franz Bernhard

(1851 – 1925) 9
MUSSCHENBROEK, Pieter van (1692 – 1761) 6

NAVIER, Claude Louis Marie Henri (1785 – 1836) 7
NEWTON, Isaac (1643 – 1727) 6, 471

OSTENFELD, Asger Skovgaard (1866 – 1931) 9

PALMGREN, Arvid G. (1890 – 1971) 98
PARENT, Antoine (1666 – 1716) 6
PAULI, Friedrich August von (1802 – 1883) 167
PERRONET, Jean Rodolphe (1708 – 1794) 7
POISSON, Siméon Denis (1781 – 1840) 8, 81, 201, 534
POLENI, Giovanni (1683 – 1761) 5
POLONCEAU, Jean Barthélémy Camille (1813 – 1859) 167
PRAGER, William (1903 – 1980) 86
PRANDTL, Ludwig (1875 – 1953) 203, 506
PRATT, Thomas Willis (born 1812) 167
PUCHER, Adolf (1902 - 1968) 616
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RANKINE, William John Macquorn (1820 – 1872) 88
RAPHSON, Joseph (c. 1648 – c. 1715) 471
RAYLEIGH, John William Strutt, Baron (1842 – 1919) 454,

653
RITTER, August (1826 – 1908) 169, 172
RITTER, Karl Wilhelm (1847 – 1906) 8
RITZ, Walter (1878 – 1909) 129, 381, 455, 661, 666

SAINT-VENANT, Adhémar Jean Claude Barré de
(1797 – 1886) 8

SCHWEDLER, Johann Wilhelm (1823 – 1894) 167, 168
SEIDEL, Philipp Ludwig (1821 – 1896) 305
SIMPSON, Thomas (1710 – 1761) 223
STEVIN, Simon (1548 – 1620) 5

TAYLOR, Brook (1685 – 1731) 659, 663
TIMOSHENKO, Stephen Prokofievich (1878 – 1972) 108

TRESCA, Henri (1814 – 1885) 85, 547
TRUDAINE, Daniel Charles (1703 – 1769) 7

VARIGNON, Pierre (1654 – 1722) 5
VAUBAN, Sébastien le Prêtre de (1633 – 1707) 7
VIANELLO, Luigi (1862 – 1907) 456
VIERENDEEL, Arthur (1852 – 1940) 323
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VON KÁRMÁN, Theodore (1891 – 1963) 576
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WEIERSTRASS, Karl Theodor Wilhelm
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WEYRAUCH, Johann Jacob (1845 – 1917) 8
WINKLER, Emil (1835 – 1888) 8, 329
W�HLER, August (1819 – 1914) 95
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SUBJECT INDEX

A

acceptance 12, 631
accidental action 30, 631
accidental design situation 12, 32, 631
accompanying action 32, 631
action effects 12, 29, 631
actions 12, 29, 631
actions on bars 278, 283, 374
active degrees of freedom 101
active work 105, 128
adaptability 394
addition 650
adjoint 114, 656
advanced strip method 566
age-adjusted effective bulk modulus 94
age-adjusted effective elastic modulus 92
age-adjusted effective shear modulus 94
ageing coefficient 92
air-hardened 79
algebraic complement 649
alternating plasticity 266, 392, 435
amplification factor 348, 453
analogies 2
analytical model 1, 12, 31, 631
anchorage of pretensioned steel 318
angle of internal friction 87
annular structure 350
antisymmetric 650
arch 137, 345
arch action 503
area of contact 47
area of section 645
area shear factor 107, 195, 645
argument function 661
associated flow rule 84
axial force parameter 465
axial stiffness 185, 360

B

band matrix 650
bar 52, 137
bar axis 52, 137
bar cross-section 137
bar element 137
bar element rigid in shear 381
bar end rotation 144
bar extension 144, 311
bar polygon 165
bar rotation 144, 290
bar splice 319
bar substitution 170
barrel vault 589, 603

base hinge 163
basic invariants 56, 59, 658
basic system 247, 254
basis 651
basis of design 12, 15, 631
BAUSCHINGER effect 392
beam 137
beam column 131
beam in bending 326
beam in shear 321
beam mechanism 416
beam on elastic foundation 326
bending moment 51, 52, 107, 111
bending stiffness 185
bending theory 591, 596
bending-resistant tie 362
BETTI’s theorem 128
bilinear form 652
bimoment 212
body force 43
body load 43
bond 311
bottom chord 167
bound index 655
boundary conditions 235
boundary displacement operator 106
boundary displacements 76, 106
boundary stress operator 106
boundary stresses 105
brittle 80
buckling 575
buckling length 454
buckling load 453, 464, 576
buckling modes 453
buckling stress curves 471, 473
bulk modulus 82

C

cable 137, 354
cable curve 356
cable equation 355
cable force 355
cable sag 356
cable stretch 354
cable-stayed bridge 139
cantilever beam 138, 161
CASTIGLIANO’s theorem 118, 122
catenary 357
centroid 187, 645
chain of hinges 161
change in form 72
change in temperature 94

change in volume 72
characteristic determinant 653
characteristic equation 58, 653
characteristic matrix 653
characteristic polynomial 653
characteristic value 30, 631
chord 167
coefficient of thermal expansion 94, 643
cogredient 651
cohesion 87
cold-formed 79
collapse crack 498
column 137, 649
column deflection curve 449
column strip 545
column vector 649
column-regular 650
combined mechanism 416
commissioning 12, 631
compatibility condition 104, 201, 247, 254,

491
compatibility theorem 411
compatible 85, 104, 410
complementary internal total potential 394
complementary total potential 120
complete bar end forces 141, 281
complete bar end variables 281
complete member stiffness matrix 282
complete solution 411
completeness 386
complex truss 170
composite cross-section 190
composition 12, 14, 631
compressible 86
compressive strength 643
computation phase 287
conceptual design 11, 12, 631
condition assessment 12, 631
condition number 654
condition survey 12, 631
conformity 386
congruence transformation 105
congruent matrices 651
conjugate load 238
conjugate stress resultant 238
conjugate system 238
conservation 11, 12, 631
conservative 118
conservative system 119
constitutive equations 79, 106
constitutive relationships 79
construction detail 94
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construction inspection plan 12, 631
construction inspections 12, 631
construction material 631
construction material properties 12, 31
construction work 12, 632
construction works 11, 12, 632
construction works documents 11, 12, 632
contact force 43
contained plastic deformation 390
continua 105
continuity conditions 235
continuous slab 542
contraction 657
contragredient 104, 651
control measurement 12, 632
control variable 443
convergence requirements 385
coordinate notation 655
coordinate transformation 651
coplanar deformation 72
coplanar strain state 111
coplanar stress state 54, 110
corner force 112, 528
COULOMB yield condition 87
counting scheme 143
coupling beam 161
coupling joint 333
crack spacing 319
crack width 319
creep 91
creep coefficient 91
creep deformations 90, 235
creep function 91
CREMONA diagram 171
CROSS method of moment distribution 305
cross-sectional area 107
cross-sections remain plane 187
crown 163
crown hinge 163
curl 659
curvature 107, 112, 233, 532
curvature tensor 531
curved beam 137, 193, 235
cylindrical shell 601

D

damage accumulation 96
damage accumulation hypothesis 98
dapped end 50
dead load 632
deck-stiffened polygonal arch 66, 139, 165
decommissioning 12, 632
deconstruction 11, 12, 632
defect 632
deflection 111, 531
deflection curve 233
deformation 71
deformation capacity 266, 632
deformation demand 266
deformation diagram 233, 259
deformation state 222
deformation work 104

degree of freedom 47, 141
degree of static indeterminacy 143
density 643
design 11, 12, 632
design alternatives 12, 632
design boundary conditions 12, 13, 632
design criteria 34, 632
design level 35
design situation 12, 29, 32, 632
design value 33, 632
design working life 12, 632
detail design 11, 632
detailing 12, 29, 632
deterioration 94, 632
determinacy 47, 50
determinant 649
developable 532
deviator 60
deviatoric component 60
deviatoric plane 60
diagonal matrix 650
diagonal matrix of eigenvalues 653
diagram of the static system 140
diagrams of stress resultants 159
dilatation 76
dimensioning 11, 12, 632
direct methods 661
direct stiffness method 284
direct support 510
discontinua 105
discontinuous stress field 501
discrete yield line 568
discretised structural model 140
displacement equilibrium 293
displacement field 71
displacement gradient 74
displacement method 104
displacement vector 71
displacement 106
dissipation 81
distortion 76
divergence 659
divergent 462
domain of admissible functions 661
dowelled beam 333, 342
draft design 12, 632
DRUCKER yield condition 86
dual methods 2
dual vector 657
duality theorem of linear programming 443
dummy index 655
durability 12, 14, 32, 632
dyadic product 657
dynamic action 30
dynamics 116

E

eccentrically loaded column 474
economy 12, 14, 632
edge 587
edge disturbance 353
edge force 111

edge load 589
edge shear force 113, 528, 589
effective depth 191, 632
effective strength 429
eigenvalue 653
eigenvector 653
EINSTEIN summation convention 655
elastic 79
elastic optimisation 445
elastic phase 390
elastic section modulus 398
elasticity matrix 106
elastic-plastic 409
elastic-plastic deformation 395
elastic-plastic optimisation 445
elastic-plastic phase 390
elementary mechanism 417
elliptical 532, 596
elongation at failure 643
end plate 587
endurance limit 96, 633
ENGESSER’s theorem 118, 124
envelopes 265
equations of motion 3
equilibrium conditions 45
equilibrium conditions of the continuum 57
equilibrium line 393
equilibrium matrix 142
equilibrium system 45
equivalent conditions of the variational

problem 662
equivalent force systems 44
equivalent frame 545
essential boundary conditions 661
estimate 633
EULER buckling load 454
EULER-LAGRANGE equations 662
examination 12, 633
exceptional case of statics 143
execution 11, 12, 633
execution documents 12, 633
expansion hinge 50
experimental statics 2
extensible cable 358
external deformation variables 1, 106, 141
external force 45
external force variables 1, 104, 105, 141
externally anchored suspension bridge 139
externally statically determinate 143
extremal 661

F

failure 633
fan action 503
fan mechanism 568
far-end bar stiffness 292
fatigue 94
fatigue behaviour 94
fatigue loading 95
fatigue loads 35, 96
fatigue resistance 12, 32, 94, 96, 633
field line 659
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final creep coefficient 91, 643
final shrinkage strain 90, 643
finite element method 3, 381
finite fatigue life 633
finite fatigue life range 96
finite shear stiffness 108
first moment of area 186
first variation 663
first-order theory 71
fixed action 30, 633
fixed support 48
fixed-end forces 278
fixed-end moment 292
flat slab 543
flexibility 103
flexibility matrix 255, 256
flexibility matrix for all members 372
flexible 106
flexural buckling 482
flexural failure 513
flexural hinge 50
flexural-shear failure 514
flexural-torsional buckling 480
flow rule 84
fluctuating loading 95
folded plate structure 52
force 43
force method 103, 372, 441
force per unit area 43, 53
force per unit length 44
force per unit volume 43
force polygon 46
force state 222
force system 44
force transfer 505
force-balance equations 45
force-couple system 44
fork support 208
FOULKES diagram 438
FOULKES mechanism 439
foundation modulus 329
fracture 94
frame 163
frame beam 163
frame leg 163
framed structure 31, 51, 137
framework 137
free action 30, 633
free body 44
free cantilevering 140
free edges 667
free from warping 200
free-body diagram 44
free-body principle 1, 45, 116
full hinge 50
functional 661
fundamental angular frequency 464
fundamental lemma of calculus of

variations 662
fundamental operator 128
fundamental theorem of statics 45
funicular polygon 46, 63

G

GALERKIN method 455
GAUSS’ theorem 659
GAUSSian algorithm 652
GAUSSian curvature 532
general loading histories 393
generalised deformation increments 397
generalised deformation variables 85
generalised force variables 85
generalised GALERKIN method 133
generalised HOOKE’s law 82
generalised stresses 397
geometric hardening 391
geometric non-linearity 72, 117
geometric reinforcement ratio 93, 191
geometric stiffness matrix 470
geometric variables 12, 31, 633
GERBER beam 138, 160
global bar end variables 285
global coordinates 140
global flexibility matrix 103
global stiffness matrix 103, 277
gradient 652, 659
graphical statics 2, 149
GREEN’s first identity 659
GREEN’s second identity 660
gusset plate 166

H

hanger 163
haunched beam 140
hazard 13, 633
hazard scenario 12, 13, 633
high-cycle fatigue range 96
hinge 50, 137
hinge forces 50
hinged arch 160
hinged frame 160, 163
hinged girder 138, 160
hinged support 48
homogeneous partial stress field 509
hoop stress formula 63
horizontal tension 356
hydrostatic axis 60
hydrostatic component 60
hyperbolic 532, 596
hyperelastic 80, 118

I

ideal column 130
ideal truss 101, 166
identity matrix 650
ill-conditioned 255, 654
imposed load 633
improper orthogonal transformation 651
in equilibrium 45, 104
incidence matrix 284
incidence transformation 284
incompatibility 103
incompressible 83, 85
incremental plastic failure 394
independent bar end forces 141

index notation 655
indirect methods 662
indirect support 509
inertial forces 3, 43, 116
inextensible 106
inextensible cable 357
influence line 177, 303
influence lines for deformation

variables 178, 259
influence lines for force variables 178, 261
influence ordinate 177
initial deformation 452
initial length 355
initial normal strain 312
initial restraints 393
initial strain 106
initial stress 106
inner multiplication 657
in-plane forces 110
in-plane load 589
input phase 287
inspection 12, 633
instantaneous centre of rotation 156
integration 12, 14, 633
integration table 223
internal deformation variables 1, 106
internal force 45
internal force variables 1, 104, 105, 141
internally statically indeterminate 143
interpolating function 385
invariant 56
inverse 651
invertible 650
isomer 657
isoperimetric problem 665
isotropic 81, 85, 94
isotropic reinforcement 557
iterative procedure 2

J

joint 137, 417
joint equilibrium 293
joint equilibrium conditions 141
joint loads 141
joint mechanism 418
joint rotation 290

K

kern 189
kinematic boundary conditions 76
kinematic discontinuity 89
kinematic method 411, 412, 512, 567
kinematic operator 106
kinematic relations 72, 75
kinematic transformation matrix 101
kinematically admissible 76, 115
kinematically determinate 146
kinematically determinate basic

system 101, 146
kinematically unstable 142
KRONECKER symbol 60, 655
K-truss 139
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L

LAGRANGE function 661
LAMÉ constants 83
LANGER beam 139
lateral buckling 480
lattice girder 138
leading action 32, 633
leading hazard 32, 633
level surface 659
limit analysis 409
limit load 245, 390
limit load according to second-order

theory 477
limit load program 442
limit of proportionality 79
limit state 12, 31, 633
line force 44
line load 44, 107
line load moment 62, 107
linear dependence 650
linear elastic 81
linear elastic system 125
linear mapping 651
linear statics 71
linear viscoelastic 91
linearly hardening plastic 81
load case 12, 29, 32, 633
load factor 33
load parameter 253
load train 177
load vector 255
loaded chord 177
loading processes 391
loading stress state 392
loads 105
local bar end variables 285
local coordinates 140
logarithmic spiral 519
low-cycle fatigue range 96
lower-bound theorem 393, 410

M

main cable 139
maintenance 12, 633
maintenance plan 12, 633
mass matrix 3
material 633
material non-linearity 72, 117
matrix 649
matrix norm 654
maximum 661
maximum shear stress 60
MAXWELL’s generalised theorem 118, 125
MAXWELL’s theorem 125, 230
mean curvature 532
mean shear strain 107, 112
mechanism 246, 390
member flexibility matrix 277
member flexibility relation 372
member stiffness matrix 277
membrane 53
membrane action 575

membrane analogy 203
membrane force 52, 530
membrane shell 53
membrane theory 589, 596
meridian 596
meridian plane 596
method of construction 12, 633
method of inequalities 420
methods of theory of structures 2
middle plane 52
middle plane of slab 531
middle strip 545
middle surface 52
middle surface of slab 531
minimal surface 532
minimum 661
minor 649
modal analysis 3
modal damping 3
modal matrix 653
model space 105
models of actions 30
modification 12, 634
modified COULOMB yield condition 88
modular ratio 93, 190
modulus of elasticity 81, 643
modulus of strain hardening 81
modulus of subgrade reaction 329
MOHR’s analogy 233, 238
MOHR’s circle for second moments of

area 188
MOHR’s envelopes 89
MOHR’s sign convention 54
MOHR’s strain circle 73
MOHR’s stress circle 54
moment 43
moment carry-over factor 305
moment distribution factor 305
moment of inertia 107, 186
moment-balance equations 45
moment-curvature diagram 398
monitoring 12, 634
monitoring plan 12, 634
multiplication 651
multiply-connected 204
multi-span hinged arch 163
multi-span hinged frame 163
multi-stage loading 95
multi-storey frame 139, 321

N

natural boundary conditions 662, 667
natural vibration 3, 464
natural wavelength 331
near-end bar stiffness 292
necking 79
neutral 454
neutral axis 189
newton 44
nodal zones 507
nominal value 634
non-associated flow rule 84

non-concave 84
non-linear member matrix 469
non-plastic domain 84, 253
non-sway system 290
normal component 658
normal force 51, 107
normal matrix 651
normal moment yield condition 551
normal strain 72, 107
normal stress 53
normal vector 652
nullity 650
number of load cycles 94
numerical methods 3

O

observation 12, 634
observation method 221, 634
octahedral normal strain 76
octahedral normal stress 60
octahedral shear strain 76
octahedral shear stress 61
onset of yield 390
operation instructions 12, 634
optimum design 444
order 649
ordinary GALERKIN method 133
orthogonal matrix 651
orthogonal transformation 651
orthogonality conditions 257
out-of-balance moment 305
output phase 187
outrigger 333
overall stability 12, 31, 449, 634
overlapping stress fields 506
overturning moment 484

P

parabolic 532, 596
parabolic rule 225
parallel-wire cable 354
partial factor 33
partial mechanism 418
partial uplift 46
partitioned matrix 649
passive degrees of freedom 101
passive work 128
perfectly plastic 81, 83
permanent action 30, 634
permissible stress 35, 409
permutation tensor 657
persistent design situation 12, 32, 634
pin-ended strut 139
pin-jointed member 48
pipe 602
plane displacement field 72
plane subsystem 138
planning of remedial measures 12, 634
plastic 79
plastic hinge 245, 399
plastic phase 390
plastic potential 84
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plastic reserve 401
plastic reserve in system 405
plastic section modulus 398
plastic strain increment 83
plastic strength of materials 426
plasticity check 414
plate 52
plate action 587
plate and shell structures 31, 52
POISSON’s differential equation 201
POISSON’s ratio 81, 643
polar moment of inertia 200
pole 54
polygonal domes 604
position vector 43
positive definite 652
positive semi-definite 652
post 167
potential function 118
PRAGER yield condition 86
preliminary design 11, 634
preparation for construction 12, 634
prestressing 392
primary beam 50
principal axes 186, 653
principal component analysis 653
principal directions 55, 58, 658
principal plastic directions 427
principal shear force 527
principal strains 73
principal stresses 55
principal value 658
principle of maximum dissipation

energy 85, 396, 410
principle of virtual deformations 115
principle of virtual forces 115
principle of virtual work 1, 116, 410
product of inertia 186
progressive plastification 266, 392, 435
prop 163
proper orthogonal transformation 651
propped beam 138, 161
protection and welfare measures 12, 634
prudent estimate 634
pull-out test 316
punching failure 575
pure bending 61, 188
pure torsion 202
pure torsional moment 207
pylon 139, 166

Q

quadratic form 652
quotient rule 657

R

radius of gyration 189
rank 650
RAYLEIGH quotient 454, 653
reaction 43
reaction principle 1, 43, 116
rearrangement of the load 65

recommendation for remedial
measures 12, 634

record of construction 12, 634
reduced degrees of freedom 376
reduced stiffness matrix 278
reduction theorem 227, 257
redundant variable 103, 247, 254
reinforced concrete plate element 496
reinforced concrete tie 318
relaxation 91
relaxation function 91
reliability 12, 14, 634
reliability theory 33
remote force 43
repair 12, 634
repeated loading 95
report on remedial measures 12, 634
representative stress 36
representative value 30, 634
residual stress 30, 94, 192, 314, 473
resistance 634
resistance factor 33
resistant 107
restraint 30, 74, 94, 298, 315, 327
restraint parameter 253
restraint state 122, 392
resultant couple 44
resultant force 44
reversed loading 95
rib 168
ridge hinge 163
rigid 106
rigid - perfectly plastic 81, 409
rigid body 31
rigid body deformations 105
rigid body equilibrium 45
rigid body motion 71
rigid in shear 106, 108, 113
rigid-plastic optimisation 444
ring 168
rise 65, 163
RITTER method of sections 172
RITZ method 129, 455, 666
robustness 12, 14, 634
rotation 71, 109
rotation matrix 655
rotation mechanism 516
rotational spring 49
rotational transformation 285
rotationally symmetric cylindrical shell 613
row 649
row deficit 103
row vector 649
row-regular 650
ruled surface 532

S

sand hill analogy 433
sandwich model 555
sandwich panel 324
sawtooth roof 588
scalar field 659

scalar matrix 650
scale effect 575
scaling 651
secant stiffness 475
secant stiffness matrix 471
second moments of area 645
second variation 663
secondary beam 50
secondary stresses 166
secondary torsion 188
second-order theory 72, 449
self-adjoint 128
self-anchored suspension bridge 139
self-weight of non-structural elements 635
semi-hinge 50
service criteria 12, 635
service criteria agreement 12, 14, 635
service instructions 12, 635
service situation 12, 13, 635
serviceability 12, 29, 635
serviceability limit 33, 635
serviceability limit state 32, 635
shakedown theorem 265, 394
shallow shell 615
shape factor 398
shape function 381, 385
shear area 107
shear centre 199, 645
shear flow 205, 527
shear force 51, 52, 107, 111
shear force potential 534
shear hinge 50
shear modulus 82, 643
shear span 434
shear stiffness 185
shear strain 72
shear stress 53
shear wall - frame system 334
shear wall connection 338
shear wall coupling beam 333
shell 53
shell operator 616
shells of any form 606, 623
shrinkage 90
shrinkage deformations 90, 235
shrinkage strain 90
sign convention I 144, 149
sign convention II 144
similar matrices 651
simple strip method 566
simple truss 170
simply supported beam 138
simply-connected 204
SIMPSON’s rule 223
single-stage loading 95
singular 650
skew bending 62, 188, 426
skew-symmetric 650
slab 52, 111
slab action 587
sliding support 48
slip line 499, 519
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slope-deflection method 290, 465
small deformations 71
S-N curve 95
snap-through load 462
solution vector 652
space truss 167
special eigenvalue problem 653
specific complementary energy 82, 118
specific incremental dissipation energy 84
specific strain energy 82, 118
spherical shell 621
spiral cable 354
springing 65, 163
springing hinge 163
square matrix 649
square yield condition 90
stable 45, 454
state diagrams 52, 159
state variables 52, 159
static action 30
static boundary conditions 58, 528
static discontinuity line 113, 527
static method 411, 412, 501, 557
static operator 106
static system 138
static transformation matrix 102
statically admissible 58, 115
statically determinate 45, 142
statically determinate basic system 103, 143
statically indeterminate 45, 143
statically indeterminate force variable 103
statics 116
stationary value 661
stay cable 362
stiff 106
stiff arch 66
stiffened beam with intermediate hinge 160
stiffness 103
stiffness of rotational spring 49
stiffness of translational spring 49
strain hardening 79
strain interpolation matrix 381
strain tensor 72, 75
strains 106
strains in middle plane of slab 533
strand 354
stranded cable 354
stress components 54
stress concentration factor 495
stress difference 94
stress discontinuity line 505
stress function 201, 492
stress resultants 51, 159
stress ribbon 363
stress tensor 56
stress transformation relationships 54
stress vector 43, 53
stresses 105
stress-strain diagram 79
stringer 311
stringer-panel model 501, 511
strip method 424, 563

structural analysis 11, 12, 29, 635
structural calculations 12, 29, 36, 635
structural concept 11, 12, 635
structural dynamics 3
structural engineering 1, 3
structural mechanics 1, 4
structural member 635
structural model 1, 12, 31, 138, 635
structural safety 12, 29, 635
structural system 137, 635
structure 11, 12, 635
strut 165
strut action 503
strutted beam 139
submatrix 649
subsoil 635
subsoil properties 12, 31
successive approximation of column

deflection curve 456
superposition law 2, 71, 125, 254
supplementary safety measures 12, 635
support 47, 137
support envelope 47
support force variables 140, 283
support force-couple system 47
supporting plane 85
surface force 43
surface load 43
surface of revolution 569, 620
suspended beam 138, 161
suspended roof 363
suspender 139
suspension bridge 166, 368
sway mechanism 416
sway system 290
swelling deformations 90
symbol notation 655
symmetric 650
system bounds 29

T

table of the static system 140
technical report 12, 29, 38, 635
tender design 11, 635
tender documents 12, 635
tensile strength 643
tension stiffening 319
tensor 656
tensor calculus 655
tensor field 658
tensor product 657
tensorial sign convention 56
theorem of associated shear stresses 58
theorem of least complementary total

potential 121
theorem of least total potential 119
theory of plastic potential 85, 410
theory of structures 1
theory of thin plastic slabs 553
thermal deformations 90, 94, 192, 235
thermally homogeneous 94
third-order theory 471

three-dimensional continua 113
three-dimensional deformation state 74
three-dimensional stress state 57
three-dimensional structure 31
three-hinged arch 139, 163
three-hinged frame 163
threshold 96
thrust line 63
thrust surface 597
tie 139, 163
top chord 167
torque 51, 109
torsion constant 109, 645
torsional buckling 482
torsional stiffness 185
torsionless 107, 421, 424
torsion-resistant 107, 422, 425
total curvature 532
total potential 119
trace 649
transfer 318
transformation matrix 651
transformed section properties 191
transient design situation 12, 32, 635
translation 71
translation surface 608
translational spring 49
translation-rotation system 71
transposition 650
trapezoidal rule 223
trapezoidal stress distribution method 329
TRESCA yield condition 85, 547
triangular cross-section 207
triangular matrix 650
truss 137, 166
truss diagonal 167
truss model 501, 503
truss types 167
twist 109, 112, 532
twisting moment 52, 111
two-hinged arch 139
two-hinged frame 139
type of construction 636

U

ultimate limit state 31, 636
ultimate resistance 12, 31, 636
ultimate resistance of subsoil 32
uncontained plastic deformation 390
uniaxial stress state 53
unit warping 212
unstable 454
upper-bound theorem 393, 411
urgent safety measures 12, 636
use 11, 12, 636

V

variable action 30, 636
variable-direction forces 460
variation 662
variational derivative 663
variational problems with side conditions 665

678 SUBJECT INDEX

APPENDIX



vector 656
vector algebra 655
vector field 659
vector gradient 659
vector product 657
verification 29, 33, 636
verification of serviceability 12, 35
verification of structural safety 12, 34
verification of ultimate load 35
VIERENDEEL girder 323
VON MISES yield condition 85, 547

W

warping 200, 211
warping constant 212, 645
warping shear stress 212

warping stress 212
warping torsion 207
warping torsional moment 207
WARREN truss 139
web crushing failure 500, 515
web member 167
well conditioned 255
wind bracing 138
work equation 104
work theorem 221
work-associated variables 1, 105
worst load position 178
wrench 71
wrench axis 71
wrench deformation 71

Y

yield condition 84
yield function 83
yield limit 79, 643
yield line 549
yield line method 567
yield locus 84, 392
yield plateau 79
yield point 79
yield slenderness ratio 472
yield surface 84
zero matrix 649

679SUBJECT INDEX


