1-1 What Is a Feedback Controller?
Consider the simple process shown in Fig. 1-1. The level in the tank is to
be maintained “near” a target value by manipulating the valve on the
inlet stream. Now;, place the “as-yet-undefined” controller in Fig. 1-2.
The controller must sense the level and decide how to adjust the
valve. Notice that for the controller to work properly

1. There must be a way of measuring the tank level (the “level
sensor”) and a way of transmitting the measured signal to the
controller.

2. Equally important there must be a way of transmitting the
controller decision or controller output to the valve.

3. At the valve there must be a way of converting the controller
output signal into a mechanical movement to either close or
open the valve (the “actuator”).
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An abstract generalization of the above example is shown in Fig. 1-3,
which is a schematic block diagram. The lower box represents the
process (the tank of liquid) The input to the process is U (the valve
position on the inlet pipe). The output is ¥ (the tank level), The process

5 (Set point)

1 LI (Controller vutput/
process inpuk}

| Controaller

[P rowcsy )
¥ [Process output) L (Process input)

D Disturbances)

Fiure 1-3  Block dimgram of a control system,



U (Controller output/
process input)

Y (Process output) LI (Process input)

D (Disturbances)

Fisume 1-4 Block diagram of & control system showing the error.

1-2 What Is a Feedforward Controller?

Before getting into a deep discussion of a feedforward controller,
let's develop a slightly modified version of our tank of liquid. Con-
sider Fig. 1-5, which shows a large tank, full of water, sitting on top
of a large hotel (use your imagination here, please). This tank is
filled in the same manner as the one in the previous figures. How-
ever, this tank supplies water to the sinks, toilets, and showers in
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Process Disturbances

Referring back to Fig 1-5, the tank on the hotel roof, let's spend some
time discussing the impact of the faucets, the toilet flushings, and the
drain valve on the tank level. First, consider the response of the tank
level to a step change in the drain valve position. That is, we sud-
denly crank the drain valve from its initial constant pesition lo a new,
say more open, position and hold it there indefinitely. Figure 1-8
shows the response This kind of a disturbance is considered detier-
wrinisfic because one would usually know the exact time and amount
of the valve adjustment.



1-5 Combining Feedforward and Feedback Controllers
Figure 1-11 shows how feedforward and feedback controllers can be
combined for our hotel example and Fig. 1-12 shows an abstraction of
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Fiouse 1-11 A leadforward feedback contraller,
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Fieuse 112 A feedforward,/feedback controlier block diagram.



1-7 An Example of Controlling a Noisy Industrial Process

To illustrate the impact of feedback control on noisy processes, con-
sider a molten glass delivery forehearth shown in Fig. 1-14. Since the
reader may not have a glass-manufacturing background, a little
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Fioune 1-14 A molten glass forehearth,

explanation of the process depicted in Fig. 1-14 is necessary. The fore-
hearth is a rectangular duct made of refractory material about 1 ft
wide, about 16 ft long, and about & in deep. Molten glass at a relatively
high temperature, here 1163°C, enters the forehearth from a so-called
refiner. The forehearth is designed to cool the glass down to a suitable
forming temperature, in this case 838°C. There is a gas combustion
zone above the glass where the energy loss from the glass is con-
trolled by maintaining the gas (nof the glass) temperatures at desired
values via controllers, the details of which we will gloss over for the
tirme being.
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Finally, if the main challenge is trying to maintain a process output
satisfactorily near a set point in the face of persistent stochastic dis-
turbances then the best approach probably should be the formation
of a problem-solving team to deal with both the process and the
environment.

What Is a Control Engineer?

So far we have implied that a control engineer designs control algo-
rithms. In fact, the title of control engineer can mean many things.
The following list, in no particular order, covers many of these
“things™:

1. Installer of control/instrumentation equipment (sometimes
called an “instrumentation engineer”): In my experience this
is the most prevalent description of a control engineer’s
activities, In this case, the actual design of the control
algorithm is usually quite straightforward, The engineer
usually purchases an off-the-shelf controller, installs it in an
instrumentation panel, probably of her design, and then
proceeds to make the controller work and get the process
under control. This often is not trivial. There may be control
input sensor problems. For example, the input signal may
come from a thermoeouple in an electrically heated bath of
some kind and there may be serious common and normal
mode voltages riding on the millivolt signal representing the
thermocouple value. There may be control output actuator
problems. There may be challenging process dynamics
problems, which require careful controller tuning. In many
ways, instrumentation engineering can be the mosl
challenging aspect of control engineering,
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located at various points in the block diagram that have similar short-
term trends due to these disturbances and malfunctions. A good proj-
ect manager can have both approaches active and complementary.

Time Domain Analysis

Mow that a module has been identified and the specifications gath-
ered, it is time to "look” at the process in the simplest most logical
way—in the time domain, This means collecting data on selected pro-
cess variables local fo the module and studying how they behave
alone and when compared to each other. Before starting to collect the
data the team should agree on the key process variables to collect and
on what frequency to sample them. This may require installing some

et camenrs and avren ingballing earme dabaoasmicitian saniamant



Froume 2-6  The diamond 1080 Map Icon.

team can basically obviate the need for the activities in the "control
development corner.”

However, should an algorithm be developed and installed, one
would move on to the top of the diamond and study the controlled
process in the time domain. Having done this, one could continue
around the diamond gaining insight and solving problems. For mne-
maonic purposes the diamond is symbolized in Fig. 2-6.

2-3

Dealing with Control Algorithms

Bundled with the Process
What if you are selling a product such as an optical amplifier and you
want to augment your product with a controller that will, say, main-
tain a desired optical output power? Now, you are bundling the pro-
cess to be controlled with the controller and forming a product that
contains two components. This is quite a different situation compared
to that covered in Sec, 2-2,

What Is the Problem?

The product now has two components that can have problems: the
process and the controller, If the product is constructed so that only
the final output, say the optical power in the case of an optical ampli-
fier, can be monitored then how do you diagnose problems? Is it the
process or is it the controller?

Separation and Success

The key to success lies in designing the product with ports that
will allow the problem solver to tap into internal signals, namely
the controller input and the controller output. With these sig-
nals available, the problem solver can isolate the controller from
the process.



Problem Solving with Bundling

The key te problem solving is havmga.ccm to both the so-called pro-
cess and the controller. If ports are in place then problem solving can
be divided immediately into verifying that the process and the con-
troller are performing properly. Without these ports problem solving
becomes a guessing game (see Fig. 2-8).

There are ancillary benefits to having the extra ports. During
product development, the ability to monitor the process and con-
troller separately can allow for parallel beneficial development (see
Fig. 2-9). If the learning about the process and controller are concur-
rent and interactive, their development can be also be interactive—
leading to a synergism and a better final product.
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Bundle process and Trv SMILH Failure
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Fioune 3-8 Bundiing process and control as part of a saleable producl—
testing the process and the algorithm separately.

Imtroduction teo Developing Control Algorithms

Fieume 2-8  The benefits of separation: miteraction, evolition, synergism, and
problem isolation.
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Feune 2-12  Interaction between the simulated process and the control
System.



3-1 The First-Order Process—an Introduction

Let’s go back to the tank of water introduced in Chap. 1 (Fig. 3-1). It
will be our prototypical first-order process. The dynamic analysis of
this tank often consists of studying the step response, which is shown
in Fig. 3-2. Here the process input U, the valve, is given a step at time
t =9, from an initial value of zero to unity. The process output Y, the
tank level, begins to rise and appears to line out at a value of 2.0, For
convenience, we have chosen the initial value of the valve and the
tank level to be zero. In general, these quantities could have almost
any initial value but this graph would still apply if the reader is will-
ing to allow us to subtract these nonzero initial values, that is, nor-
malizing the initial values of these quantities to zero.

To proceed we need some nomenclature. First, let the chenge in
the process input be signified as ALL The symbol A usually signifies a
change in the quantity following it (or upon which it operates). Sec-
ond, let the resulting change in the tank level be signified as AY.
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38 Chapter Three

— Walve

“4/_

qﬁ\ /_,_,—T."Il'lk Ii_“-'t"'l

A

¥

Fiours 3-1 A tank of liped (8 process).

= ¥ {Process oulpat)
14k « Ll {Process inpait)

T oand L

ik

0 w20 A 40 =r|J a0 70 B 90 100



3-2-2 Solution of the Continuous Time Domain Model

We will solve the model for the first-order process developed in
Sec. 3-2-1 for a variety of conditions. First, consider the case where the
process inpul, initially zero, is assigned the nonzero value of U_ al
time zero and held there for all time. The reader hopefully will recog-
nize that this situation is the same as giving the process a step change
in the process input at time zero. Hence, if the equation can be solved,
the step-change response will be obtained and we can compare the
results with the graph in Fig. 3-2.

For this case of a constant process input, Eq. (3-8) becomes

d
td—r +Y=gl (3-10)

There are many ways of solving this equation and a couple of
them are reviewed in App. E. The solution for the case of a constant

input is
Y= ':‘.urq_: +gi.lc[l -e"?] (3-11)

We will refer to this equation repeatedly in this book so the reader
should be comfortable with its development before proceeding.



3-2-3 The First-Order Model and Proportional Control
Although optional, it would be quite helpful if the reader is able to
follow the math in App. E used to arrive at the solution of the dif-
ferential equation for the first-order model. We will now take a little
side trip and see what can be learned from this model from the con-
trol point of view.

Let's tack a simple “proportional” controller onto our model
and see if we can control the process output to a desired set point.
Owur starting point is the first-order model for the process to be
controlled

fi—:r+?=gu (3-15)

Owur goal is to try to keep the process output ¥ “acceptably near”
the set point 5 by adjusting LI in some fashion. The simplest “fashion”
is to form an error

e=85-¥ [3-16)

Basic Concepts in Precess Analysis

and to manipulate U in proportion to the error, that is,
U=ke=k5=Y) (3-17)

where k is the proportional control gain.

Before proceeding, let’s think about Eq. (3-17) with reference to
the water tank. Assume that initially Y is equal to the set point 5 so
that ¢ is initially zero. Also, assume that the nominal initial values
have been subtracted from all of the quantities, so Y, 5, ¢, and LI are
initially zero. If 5 is stepped up, then ¢ would become nonzero and
positive. This would mean that L would increase, assuming that k is
positive. An increase in U means more flow into the tank and the
level ¥ should rise. Okay, at least the control algorithm has the correct
signs and moves the controller cutput in the right direction.

Schematically, this feedback control system can be presented as a
block diagram (Fig- 3-3). This is a classic schematic that will reappear
many times in many forms in the balance of this book. Note how the pro-
cess output Y is fed back and subtracted from the set point § producing the
error E which is fed to the controller which produces the process input LL

Combine Eqs. (3-15) and (3-17)

T%-ﬁ}’-gu

U=kl5-Y)

dy
— %Y G =
=t = gkiS - )
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Underdamping
Finally, consider the case when

(1+ gkP < drgl
50, (3-29)

I's {1+ gk}
ity

(Iote how the integral gain is greater than that for critical damping,.) The
argument inside the square root is now negative. But we kmnow that

J-1=j and J-4=2j
and because of the inequality in Eg. (3-29), the roots are

_——
-I; ‘:

k jJdtgl =(1+ gk
“;f}:"f'gzi*“l=utm (3-30)

where @< 0and B> 0 are real numbers. This means that the solution will
have exponential terms with imaginary arguments (see App. B) asin

gl op  gatgil

The ¢ term (with @ <0 ) means that the transient response will
die away, but what about the other factor? Euler's equation (see App. B)
can be useful here,

¢ = cos{Br)+ sin(Be)



3-3 The Laplace Transform

In the last section we had a liftle trouble with the second-order differen-

tial equation. In this section we introduce a tool, the Laplace transform,

which will remove some of the problems associated with differential

but with the cost of having to leamn a new concept. The theory

of the Laplace transform is dealt with in App. F so we will start with a

simple recipe for applying the tool to the first-order differential equation.
The first-order model in the time domain is

o +y=gu (3-31)

To move to the Laplace transform domain, the derivative operator is
simply replaced by s, the so-called Laplace transform operator, and wig-
gles are placed over the symbols ¥ and L since they are in a new domain

tr‘f"'-ri"=gﬂ (3-32)

Before dealing with Eq. (3-32) consider some Laplace transform
ransition rmiles in the box:

i:.ss
dt

Y(t) = Y(s)
U(t) = U(s)
c

C=—
5

l‘r’[u}du =3 %

lim,_, s¥(s) = Y(es)

58 Chapter Three

Most control books have extensive tables giving the transforms
for a wide variety of time functions. Note the following comments
about the contents of the box given in Sec. 3-3,

1. All initial values must be zero. (Later on, nonzero initial
conditions will be covered.

The differential operator d/dt is replaced with s

The integral operator Lr .. du is replaced with 1/s.

The quantity C is a constant.

The last equation in the box is really not a transform rule.
Rather it is the final value theorens and it shows how one can
find the final value in the time domain if one has the Laplace

transform. The basis for these riles and the final value
theorem are given in App. E

o A pa



3-3-1 The Transfer Function and Block Dlagram Algebra
The introduction of the transfer function G |[s:| in Eq. (3-33) is useful

because of the block diagram lnt-erpttmhﬂn (Fig. 3-9). The expression
in the box multiplies the input to the box to give the box’s output.

Alternatively, one can play some games with Eq.(3-33) and get

Tr=n+1
¥ 415t =gl J
fs]T':gL:!—'i."

= %[%J[ga -9)

The last line of Eq. (3-34) suggests that (1) there is some integra-
tion going on via the 1/s operator and (2) there is some negative feed-
back since ¥ is on the right-hand side of the equation with a minus
sign. That last line of Eq. (3-34) can be interpreted using block algebra
as showm in Fig. 3-10.

The reader should wade through Fig. 3-10 and deduce what each
box does. The process output Y is fed back to a summing junction

Ois)—= G{s) [——=Tis)

Fieues 3-89 The transfer function in block form.

O —{8 =0 < P 1 - ¥is)

ﬁ'ﬂ =+l mﬂ

t%+'1"=g-u

Fause 3-10 Block diagram showing integration and negative Teedback as
part of the process model.



3-3-2 Applying the New Tool to the First-Order Model
Returning to Eq. (3-33), assume that the time domain function LI(f) is
a step function having a constant value of U, Therefore, it will be
treated as & nonzero constant for £ 2 0. As with all of our variables,
LI(t) is assumed to be zero for f < 0. The Laplace transform for U_(see
App. F and/or the box given in Sec. 3-3) is

and Eqg. (3-33) becomes

j=_g Y (3-35)
Ta+] s

To invert this transform to get Y{f), Eq. (3-35) needs to be simpli-
fied to a point where we can recognize a familiar form and match it
up with a time domain function. Partial fractions can be used to split
Eq. (3-35) into two simpler terms, Referring to App. F the reader can
verify that the new expression for Y is

We already know the time domain functions for the Laplace trans-
forms, namely,



3-3-3 The Laplace Transform of Derivatives

According to the recipe, the derivative in Eq. (3-31) was replaced by the
operator 5. App. F shows that the basis for this comes directly from the
definition of the Laplace transform, which, for a quantity ¥{t), is

Ly} = [ deervi) (3-36)

Note that ¢ #Y(f) is integrated from ¢ =0 to ¢ = =. [t may seem
like a technicality but the integration starts at zero so the value of
the quantity ¥{¢) for ¢ < 0 s of no interest and is assumed to be zero,
If the quantity has a nonzero initial value, say Y, then strictly speak-
ing we have to look at it as

Yy =lim,_,, Y{f)=Y(0)

That is, Y, is the initial value of Y{t) when ¢ = 0 is approached from
the right or from positive values of f. So, effectively, a nonzero initial
value corresponds to a step change at ¢ = 0 from the Laplace trans-
form point of view. This subtlety comes into play when one evaluates
the Laplace transform of the derivative, as in

TR

The evaluation of this equation presents a bit of a challenge so |
put the gory details in App. F for the reader to check if she wishes.
However, after all the dust settles the result is

dY
L ‘E}‘ Y = Y(0*) (3-37)
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3-3-6 Zeros and Poles
This section will repeatedly refer to Eq. (3-40) which is

jo_ gkstgl S5
ref +(1+ gkls+ gl 5

Chapter Three

The numerator in Eq. (3-40), namely, gks+ g1, has one zero. That
is, the value =]/ k causes this term to be zero, so the zero of this
factor is =1 /k.

The denominator in Eg. (3-40), namely,

{rs® «(14gkls+gl) s

has the same form as the quadratic in Eq. (3-25) with one extra factor.
Therefore, the denominator in Eq. (3-40) has three zeros (values at
which a quantity equals zero). Conventionally, we say that Eq. (3-40)
has three poles (values at which the quantity becomes infinite) and
one zero (the value at which the gquantity becomes zero).

Partial Fractions and Poles

Applying the quadratic equation solver, the poles of Eq. (3-40) are
found to be

1+ gk)? - 4tgl
-L;fii‘ﬁ 51]: 2 and 00 (3-44)

Two of the roots in Eq. (3-44) are the same as those obtained in
Eq. (3-30). Assume for the time being, that the argument of the radical
in Eq. (3-#4) is positive so that the poles will all be zero or negative
real numbers.

To make the following partial fraction algebra a little easier I will
factor out t so that the coefficient of s* is unity and Eg. (3-40)
becomes

ks
o (ghseghs (ghs+gl)S, +s!]5

[’,+ 1+El: .L] - s,]{s-:,]:

(3-45)



4-1 Onward to the Frequency Domain

4-1-1 Sinusoldally Disturbing the First-Order Process

Instead of disturbing our tank of liquid with a step change in the
input flow rate, consider an input flow rate that varies as a sinusodid
about some nominal value as shown in Fig. 4-1. The figure suggests

[
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Put in a sinusoidal fow rate U of given amplitude and frequency
—what does the output flow rate ¥ do?

Faves 4-1 Frequency response of tank of liquid,

that if the input varies sinusoidally so will the level (and the cutput
flow rate, too). Assume that the input flow rate is described by

U(t) =L, + Ay sin(2x fi)



4-1-3 A Little Mathematical Support In the Laplace
Transform Domaln

From Chap. 3 and App. F, the transfer function for the process

described by Eq. (4-1) can be obtained directly from Eq. (3-33) by set-

ting g = 1.0, resulting in

?=n+ll'l=ﬂl'u

1 (4-6)
o=
Fore+1

MNow, another trick! Let s = j2nf and find the magnitude and the
phase of the result

1
G )= e Fe
_ 1 =tjdnf+1
T2 f+l -ti2mf+1
_=Tjlxf+1
C(r2x FF +1

S S )
(t2x P +1 (r2x P +1




As shown in App. B, the magnitude of a complex quantity is the
square root of the real and imaginary parts quanty

[G,mm[=mﬁ 7
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and the phase is the angle whose tangent is the ratio of the imaginary
to the real part

0= un--[ﬁ]pwwm f (48)

The last two equations burm out to be the same as Eq. (4-5). 50, we
see one more reason why the Laplace transform can be so useful:
there is an easy, straightforward path from the Laplace domain to the
frequency domain. All you have to do is accept the serendipitous
effect of replacing the Laplace operator by jw. There is one caveat.
The result of making the substitution gives the steady-sfofe sinusoidal
solution after the transients have died oul—remember, when you
feed a sinusold to a process, the process outpul requires some time to
evolve toward a sinusoidal function. Refer to App. B where the full
solution, including the transient part, is given.

4-1-4 A Little Graphical Support

How can this information be presented more compactly? Try plotting
the amplitude ratio and the phase lag versus the frequency. For this
example the result, called a Bode plot, would be as shown in Fig. 4-53,




Question 43  What would the slope at Large frequencies be if dB units were usad?

Answer  For large frequencies dB = 20log, () so the slope would be -20 dB
per decade change in frequency.

Third, when T = 1, the magnitude in dB is given by

e

=-20log,,+/2 =-3.0103 dB

G, )| = :ﬂ,]_;ﬁ =0.7071

Thus, the graph of |G|is approximately 0.7071 or 3 dB down when
7 = 1 This frequency, @, =1/7 or f =1/(2#7) is called the corner

The shape of the |G| curve can be approximated with two straight
lines—one is horizontal from small T to the point where a0 = 1.
The second has a slope of -1 and starts at Tw=1.

The phase in Eq. (4-8) shows a left-hand asymptote at 0° and a
right-hand asymptote at 20°. When 1o =1, the phase is 45°.

Figure 4-9 shows a Bode plot for the case of unity gain and a time
constant of 10.0. The magnitude is plotted against @ on a log-log
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42 How Can Sinuseids Help Us with Understanding
Feedback Control?

In the See 41, B mput Now rabe wis vased sinsoidally and the
ooatpuft fioswr rate was ohserved, This was an opereloop disturanor
with s conleol involved. Mow, let's dreg up the dosed:loop sche.
makic that we talked sbheeat in Chap, 3, Theer is ovw chasgge, howsever,
o e Girne being, the process oulpat will be the proosss outiet flow
rabe, %0 Exg (4-1) willh it unity gain describes the behavior of our pro-
oess, The process input will shll be the prosess input low raie

In Fig. 4-10 eeofe that e set point 1s vared sinusoldally and the
fredback loop is cut just before the pronsis cutpul is Sed back and
subtracted irom the set poant. We will focus on the output of Bhe cut
ling & & respors: 1o the sinussidally varving set-poictt input. The
gain ard phase of the outpul at e cut poied will be called te apen-
loop gain and phase. _
mwhhn?:qu Mmﬂfﬂﬂﬂmhm

baippens at where the prooess cukput i subtracted
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hard o aof Fag, 410 Here the subtraction i broken up oo a nega-
ticen followsed by an addison, Wiat happens fooa sinusaid (the process
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4-3 The First-Order Process with Feedback Control

in the Frequency Domain

Back in Sec. 3-2-3 the first-order process under feedback control
was studied. With proportional-only control, the differential equation
describing the controlled system was first order and suggested that the
response was bounded under all conditions. When integral control
was added the order of the describing differential equation jumped
to two but the response still appeared to be bounded although at high
integral control gains there could be underdamped behavior

Before we can use the results of this section for actual design we
need to discuss some process models that have more phase lag than
the simple first-order system, These models are not only more com-
plicated but they also are able to describe important characteristics of
real processes. But for the time being, we will stick with the first-
order process.

When the Laplace transform was applied to this first-order pro-
cess under PI (proportional-integral) control in Chap. 3, the behavior
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of the controlled system was shown to be described by the two trans-
fer functions, one for the process G and one for the controller G_. The
ﬂgcbtﬂcd:vdnpntntnfmrumferlumﬂmfnrmpmmnf the

process output just before the summing point in response to the set
point is as follows:

G.E (4-9)

Mote that £ = 5 because there is no feedback connection—yet.
Had there been feedback and had the loop actually been closed,
the algebra would have been carried out as follows:
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A New Domain and More Process Models

and a phase. The simplest way to get the overall magnitude and
phase is to look at each factor separately and convert it into a mag-
nitude and a phase. After this conversion, the magnitudes can be
multiplied and divided as necessary and the phases can be added or

subtracted as necessary:

G{jw)= G, (j)G,(jw)= g Ko+l

Tjo+l jo
_ 1."Eii:u:in:n:l’ +17 et
twp +1e® 167
- g'qiikﬂ}z -l'-F ;.I‘ﬁ‘dl'lm
)t +1
- e
6=8,-8,-%/2
8, =tan () (4-11)
T L
o, -0 (7]
ka) + 17 ke _ x
= —y H=hn"[T]—tan (rw) -5

The development of these equations used the simple algebra of com-

Question 44  Could you derive the appropriake equations for the magnitude and
angles for the case where [ =02

Answee With I = 0 and k = 1, Eq. (4-9) simplifies to the equation in Sec. 4-2 for
the first-order process without control. See Egs. (4-T) and [4-8]).

Quastion 45 Could you derive the appropriate equations for the magnifude and
angles for the case where k=07

Answer  Take the limit as k = 0 in Eq. (#11) and remember that the angle whose
tangent is zero is zero, The result will be



4-4 A Pure Dead-Time Process
Consider the process depicted in Fig. 4-22. Imagine many small buck-
ets nearly contiguous such that when the inlet flow rate is continuous
s0 is the outlet flow rate. With this in mind, Fig. 4-22 suggests that the
process output ¥ will be identical to the process input L except with
a shift in ime, namely,

Y(¥)=LI{¢ - D) (4-12)

where D is the dead time. If the conveyor belt speed is v and the dis-
tance between the filling and dumping points is L then the dead time
would be D =L/0.

Figure 4-23 shows the step response of a process having a dead
time of 8 ime units. The process gain is unity—whal goes in comes
out unattenuated and unamplified. The time constant is zero but
there is a dead time between the step in the input and the response of
the output.

S0 much for the time domain. What does the Bode plot for the
pure dead-time process look like? Figure 4-24 shows magnitude and
phase plotted for linear frequency and Fig. 4-25 shows the same
thing plotted with logarithmic frequency. Both figures support our
contention that the amplitude ratio of the output to the input is
unaffected by frequency. However, the phase lag of the output

Valve position (L)

I_EI)—

|

e

Conveyor belt of buckets

) ] L L e L

Figuet 4-22 A deadtime process. Imagine many small buckets together so
that the flow is effectively continuous,
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4-5 A First-Order with Dead-Time (FOWDT) Process
Consider Fig. 4-33 where the tank of liquid has been placed upsiream of
the pure dead-time process. The placement of the buckets-on-the-belt
ahead of the tank suggests a dead time in series with a first-order pro-
cess. Please do not be confused by the length of the pipe at the outlet of
the tank. Let's assume that it is actually relatively short and that the pipe
diameter is small so that the transit ime of the liquid spent in the pipe is
negligible compared to the time spent in the buckets on the belt.

Figure 4-34 shows the open-loop step-change response of the pro-
cess for the case of g =215, r=10, D = B. This is the first example pro-
cess in this chapter that has had a nonunity gain.

In the continuous time domain, this model would be described
by an extension of the first-order model:

f%}+ y=gU(t-D) (4-16)

In the Laplace domain, the open-loop transfer function is

G,(s)= r"”—Lt“ - (4-17)
After applying 5= jo, the magnitude and phase can be found as

follows:

o by

l6,|= Ju_fym (4-18)

8= ~tan™(w) - oD
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The magnitude is identical to that of the dead time-less first-order
model in Eq. (4-7) but the phase lag is increased by the contribution
of the dead time.

The Bode plot for the open-loop transfer function is given in Fig, 4-35,
Mote the circles that indicate unity magnitude and —180° phase.
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Fasee 4-35 Bode plot for FOWDT process (r=10. D=8, g=2.5).




4-5-1 The Concept of Minimum Phase

The FOWDT process is an example of a nonminimum phase model
(WNMP), which means there are other processes that have the same
magnitude but have less phase lag. The first-order process (without
dead time) is such a model. Figure 4-36 shows the open-loop Bode
plot of a FOWDT process along with that of the minimum phase (MF)
model, We will not use this concept but the manager may come across
it and needs to be aware of it.

4-5-2 Proportional-Only Control

If the proportional-only conirol gain k is unity then the Bode plot for the
open-loop transfer function would be identical to that in Fig. 4-35 and it
would appear that this system would be unstable because ata

of about 0.05 Hz the phase is ~180° and at that same frequency the ampli-
tude is a little over 2.0, Likewise at a frequency of about 0.2 Hz the ampli-
tude is about 1.0 while the phase is off-scale so it is at most —300°. This
suggests that stability might be obtained by applying a control gain less
than unity such that the overall gain is reduced below unity. To make it
just atable the overall gain should equal unity or

gk=1=2.5-k
k=04

To obtain a little gain margin let us reduce the proportional control
gain to 0.3 so that the overall gain is 0.75 instead of 2.5. Then the Bode

10
- 107, ..
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E
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~ 0 = Minimum phase -
E ~100 et L SR
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Frequency (Hz)
Fieume 4-38 Booe plot for FOWDT model and the MP model (g = 0.75).




4-5-3 Proportional-Integral Control of the FOWDT Process
Adding integral control causes the open-loop transfer function to
become

—ean_& M+l
G,Gr{s} - P

Applying 5= jw gives a relatively messy expression—but the
reader might try wading through the following algebra—it's worth it:

g kjw+l
rjw+l jo

GFGI:{.'H} = E_j.n

[ Wﬁ,*’“’ffﬂl

=[e'*""}[m§r""ﬂw] [“&]

Jawr 1 ciwog™ {7}
'FJM @ i (e
g JlkeP +1 -jabsjun {5 |t
=[Gle”
P o

i +1 @

8= —wD-tan™(1a) + hn'l[kfu]- 2
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4-7 Partial Summary and a Slight Modification

of the Rule of Thumb

Our approach has been to find a proportional control gain, called the
critical gain, that makes the open-loop amplitude ratio unity or the
open-loop phase lag 180°. In the former case we reduce the critical
proportional control gain to make the phase lag less than 180° by
about 45°. In the latter case we reduce the critical proportional control
gain by a factor of 0.5

Therefore, as a starting point we are trying the find the critical
values of @ and k, namely @ and k_ such that the open-loop gain has
a magnitude of unity and a phase of -180°. The App. B shows that the
complex number —1.0 has a magnitude of unity and a phase of ~180°,
s0 we are really trying to find values of @ and k_that satisfy the fol-
lowing equation:

Gl )G (jo )= Gja )=-1

ar

F{jm{ }|:-J"" =—1=lei= (4-25)

IGlj,)|=1

Bje,) =%

Since several of the closed-loop transfer functions have a denom-
inator of 1+G G, it follows that finding the poles of these transfer
functions is equivalent to solving Eq. (4-25).

If the proportional gain is set equal to k, the performance should
be on a cusp between instability and stability. That is, the process
with the controller should experience sustained oscillations.

The critical values for proportional-only control of the FOWDT
process would be the sclution of the following two equations that
come directly from Eq. (4-25)



5-1 Third-Order Process without Backflow

Figure 5-1 shows three independent tanks—independent in the sense
that each downstream tank does not influence its upstream neighbor.
Each tank in the series of three can be treated like the single tank we
treated earlier except that the outlet flow rate of the upstream tank
feeds into the next tank down the line. The single tank is described by

dlL L
M_.E-I-i_j:

or (5-1)
dL

IT—+L=RF T=pAR
at p
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U=k,

Ficurmg 5-1 Three indepandent tanks.



The equations describing their behavior can be derived from
Eq. (5-1) by inspection:

L.
.|1 i T} R_I- 1]
fo: ..‘-f_,_ X,
Ff’l:T*R—"E
- (5-2)
ax, X, X,
TRCR

As we will see later on, .1{ X..oand H are the sites of the system
and the last line in Eq (5-2) 5-w*5 that the process output ¥ is the third
element of the state.

The Laplace Transform Version
By inspection, the reader should be able to rewrite Eq. (5-2) in the
Laplace domain,

Matrices and Higher-Order Process Models
( Hki J(5)=U(s)
1) o 1
[Ms+ E]Jt![s}- Rixlm (5-3)
Ao —
¥(s)= Ryls)
These equations can be combined in the Laplace domain, eliminat-

ing the X,. First, rewrite Eq. (5-3) slightly, introducing three time
constants.

RpAs+ )X (s)=U() 1, =RpA,

(RypAs+ 1)K, (s) = %i,m T, = Rypd,

apAs DGO = 2506 5 = Riphy

Starting with the last equation, eliminate the three X, and develop
an expression for the process transfer function G.
Second, eliminate X, and X, to get X,:



The Matrix (State-Space) Version
Return to the time domain and rearrange Eq. (5-2) slightly

dr T, T (5-6)
R 1
dX, R, X, X,
dt R, t, 1,
Y:xa
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Magnitudes (dB)

Feure 5-3  Bode plot of three-tank process with no backfiow.
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(5-7)

In general, many linear models of processes can be written to fit
the general format of

ix =AX+BU
at (5-8)

Y=CX

Matrices and Higher-Order Process Models

For this particular process the vectors and matrices occurring in

Eq. (5-8) are

_rl 0 | R

! i

X, R, 1 1 r
X=X, A=s|=— -— 0 B=|"! U=F
X R, Ty 7, 0 !

'1 0o K11 0

Ryty Ty




ﬁcl:= v, U is V, and Vs

Y i-FF x: ﬂ.nLl .1“:1'

X

—

Fs

Ficure 5-4 Three independent tanks with different inputs and outputs.
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The matrices B and C change to accommodate the two-dimensional
process, input and output, which have become two-dimensional col-
umn vectors. The matrix A and the state X are the same.

i k"
1
e 0 0
X R:II 1 fl 0 %
X iz A R, 1, T, 0 B R, u [vz]
3 o0 —=
R; 1 1 T,
0 = __
\ R, 1,
Y=CX




5-2 Third-Order Process with Backflow
Figure 5-5 shows an interconnected three-tank system with forward
and backflow. If we treat each tank separately, the equations of Chap. 3
derived from mass balances can be applied immediately.

o %1 _u- le-uxi
oA, '%1 _ xlﬂle ~ xIR-:i

2 (5-11)
oA, dj[:_ _ xlg;xa _%
Y=X,

The variables X,, X,, and X, represent the levels in each of the
tanks. The net flow leaving the first tank is

I]—Xi
R,
130 Chapter Five
[nput flow rate
" Level measurement v
X ! X+ X3

—

Ficure 5-5 A three-tank system with backflow.



5-3 Control of Three-Tank System with No Backflow

These two example processes have a potential for control problems
because at high frequencies the phase lag approaches 270°. To make it
even more interesting, let's try integral-only contrel which we know
adds an immediate 90° of phase lag to whatever is being controlled.
With integral-only control the open-loop transfer function for the
three-tank process with no backflow becomes

1 1 I I
Gls) = Gmﬁm_fﬁlfsﬂrsﬂs Ce=3
R, 1 1 I
G{I } -rylw-l-'l fzjﬂ.l--l-'lf!}ﬂl'l'ljm
__ R 1 CH—

- J(T@) + 1e/® ,‘.I[fzm]’ +1ei% J{_:Imjl +1ei® g,*;.
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- 4
Rye 1% 1% 0 12 1 1

_ L]
:;{fiﬂﬂl +1 :F{rzm}z +1 ;F[r,mjz +1 @
Ry 00 g) I

,j{r,m} +1(nop +1f(rp +1 @

0 =tan”(rw) i=1,2,3 (5-14)



6. =tan™ [rrm} i=12,3 (5-14)

The Bode plot of the process with (I = 1) and without integral
control is shown in Fig. 5-8. Note how the addition of integral-only
control raises the amplitude curve and lowers the phase curve.

The critical points where the phase equals -180° or where the
amplitude or overall gain equals unity (or 0 dB) can be found graph-
ically from Fig. 5-8. This suggests that if | = 1 were to be used, insta-
bility would result. (Can you convince yourself of this?) To get the
magnitude plot down below unity, when the phase equals -180°,
requires that we lower I significantly. Figure 5-8 suggests that we
might want to lower the gain by at least as much as 50 dB or a factor
of 0.003. It is a bit difficult to estimate this using the graph.

03 102 10! 10°

Magnitudes
2o BhLouss

Frequency

Fiaumz 5-8 Bode plot for no backilow three-tank process with and without
integral control.



Alternatively, a two-dimensional valley-seeking algorithm can be
easily constructed to find the values of ] and @ that minimize the fol-

lowing quantity

R, )
:ﬁfam}‘ +1:|-i{11m)’ +1:;1n:1‘1|mr}2 +1 @

+[hn"{r,m] +tan™(r,@) + tan~' (r,w) + L

2 (5-15)
2 "]

which is equivalent to solving Eq. (4-25) in Chap. 4 which is repeated
here:

G;Umrpf(jmr}=qu¢}=-1

|G(je,)|ei® =-1=1¢"/
or

l6jw,)|=1  [6(je,)|-1=0

Hjw)=-x Kjo )+x=0

For this case, the quantity in Eq. (5-15) is minimized by I = 0.0089
and f= ©/2x=0.00929 Hz.
A Matlab script to carry out this minimization is



Closed-Loop Performance in the Frequency Domain
Figure 5-12 shows the Bode plot for the closed-loop system under
integral-only contrel (shown in Fig. 5-10). Here the magnitude and

phase of
i_ GrGr
§ 1+GG,
Matrices and Higher-Order Process Models
50
S,
g 0
g
EE‘- 50}
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5= 200}
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B
—400 i : i
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Frequency
Fisure 5-12 Bode plot of no backflow, integral-only control, three-tank,

closed-loop.



5-4 Critical Values and Finding the Poles

In Chap. 3, the poles of the appropriate transfer function for the con-
trolled system could be found by solving Eq. (3-50) or

GG, =-1 (5-16)

In these last couple of examples, we have shown that, after replac-
ing s with jw, Eq. (5-16) essentially becomes a complex equation

G (jw,)G,(jw,)=e" (5-17)
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where the dependence on the critical radian frequency @, is shown.
(Note that Eq. (5-17) is a consequence of the expression ¢/* = -1 that
we mentioned in App. B). Actually, Eq. (5-17) depends on both @w_and
the critical control gain k_ (if the control is proportional-only). If the
control is integral-only then the critical control gain would be I. Since
Eq. (5-17) is now a complex equation, there are real and imaginary
parts. Therefore, there are two equations in the two unknowns,
@, and k. This argument suggests that the pole-finding approach
and the Bode plot approach are basically the same.

5-5 Multitank Processes

Expand the concept presented in Fig. 5-1 to N tanks, each with no
backflow, and specify that all N tanks have the same volume and that
the interconnecting piping is the same. Therefore, all tanks will have
the same time constant, say 1.0 after scaling, and the same resistance
to flow. The ith tank will be described by

X.
[ — o=
T—‘I’ .'I’I - Ir-_l I- I.'----'-N

di



CHAPTER 6

An Underdamped
Process

6-1 The Dynamics of the Mass/Spring/Dashpot Process

All of the example processes mentioned so far have been “over-
damped” in that the open-loop step response does not generate over-
shoot or oscillations of any kind. The first-order process really has no
choice—its behavior is dictated by its gain and time constant. The
three tank third-order process has an inflection point in the step
response but it will never oscillate or “ring” when subjected to a step
change in the process input with no feedback control. These over-
damped processes are typical of most of the real-live industrial pro-
cesses that I faced for most of my career. However, near the end I got
involved in some new photonics processes that were underdamped
and posed many new challenges.

When we close the control loop on the overdamped processes we
could get underdamped and even unstable behavior when the feed-
back was aggressive but the processes by themselves could not exhibit
this kind of performance,

Not so with the so-called mass/spring/dashpot process shownin
Fig. 6-1. To derive an equation that describes its behavior one needs
to apply Newton's second law of motion:

d?
TF=mzg (61)
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Feuvre 6-1 Mass/spring/dashpot process.

in —B(dy/dx). The coefficient of friction is B. Finally, the third compo-
nent is the applied external force U, which is also the process input.
With this in mind, Eq. (6-1) becomes

dy __pdy
mﬁ‘—ﬂdf —ky+gU (6-2)

By convention, Eq. (6-2) is rewritten as

2
24 +2%w, L raly =gl
p B (6-3)
m.= E ;:T
km

where the damping factor { and the natural frequency a), appear as
functions of the mass, spring constant, and coefficient of friction. When
the damping factor { varies between 0 and 1 the behavior is under-
damped. When { = 1 the behavior is critically damped and when {>1
the behavior is overdamped. The natural frequency is effectively the
frequency of the “ringing” that the mass experiences after a distur-
bance. A higher natural frequency means a faster response and higher
frequency ringing. The natural frequency has units of radians/sec and
is related to f,, the frequency in cycles/sec, as follows:

@, =2xf,

Alternatively, Eq. (6-3) can be written as

2 d
rzczﬁ+21:§2§—f+y= gu
(6-4)

2m

== .;': B
B Zihﬂ
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6-2-1 Time Domain

As is our usual approach, we could attempt to solve Eq. (6-3) by try-
ing a solution for the homogeneous part of the form:

y, = Ce"

This would generate a quadratic equation for a, which would
lead to a homogeneous solution that had two exponential terms. For
the time being this approach will be sidestepped.

6-2-2 Laplace Domain Selution

Alternatively, let's go directly to the Laplace domain and take the
Laplace transform of Eq. (6-3), as in

s1(s)+ 2L s §(s)+ w? §is) = gl U(s)

) _ G ()= % go? (63)
l,}(_: T2, 0l G-p)E-p)
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The poles of the transfer function are located at the roots of the
quadratic in the denominator:

Pu Py =—Lm, to, T -1=atjb

If the damping factor {is less than unity, these poles become com-
plex conjugates and the solution will contain sinusoidal components
suggesting underdamped behavior, as in

r.{ﬂ "'l:llhr +C2IH = Ciek‘.i'.“ "'Czt[-"H

where Euler's formula ¢**#* = ¢*[cos(b) + fsin(b)] can be used to bring
in the sinuscids.
Figure 6-6 shows how the roots (or poles) move in the s-plane as
the damping factor changes from 0.1 to 1.1. For this case, the natural
uency was kept constant at 100 Hz. When { = 1.1, the poles are
both real but when {=0.1 both poles nearly lie on the imaginary axis.
When { = 1 the poles are the same and real.



6-2-3 Frequency Domain
Letting s = fo in Eg. (6-5), which gives

-E{jm] = gltl: b6
Ujw) (o) + 20, (jo)+a® (&6)

2
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6-2-4 State-Space Representation

Let's start with the time domain representation:

%ﬂ:ﬂ*%ﬂﬁﬁﬁﬂﬁu (&7

we construct two elements of the state as

152 Chapter Six
Substituting these in Eq. (6-7) generates two first-order equations
5,
%1+2§ﬁ.1'1 +wlx, = gl Ll
These two equations can be written in matrix form as follows:
i)t -agn ) ec)

J—T;A_‘r-l-ﬂu

d
- [.ia . ) (69)

h[s?#]
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6-4 Derivative Control (PID)

The proportional-integral-derivative (PID) control algorithm has an
additional term propertional to the derivative of the error:

i

U=k, e{l]+ :_[dm[uh DH“'{”’

Uis) = K_| #(s)+ ;E{s]+ Dﬁ{s]]

)
=K 1+£+DEJE{5}

Ll(s)
#s)

-

1
=¥ G = K[l+£+ﬂs]=x‘:ﬂ

We have ignored the initial value of U{t) and the presence of the
error term in the derivative—both problems will be dealt with in

An Underdamped Process

Chaps. % and 11. Furthermore, an overall control gain K_has been intro-
duced to be consistent with wide usage among control engineers.

Unlike the P1 control algorithm, PID has two zeros in the numera-
tor of G,

um_a _K. s+!+Ds‘=x (5—5,K5—5,)
e{} 5 « 5

=1 -Ji-llﬂ]'
=g

which can be complex conjugates if 401 > 1. Therefore, these poten-
tially complex zerces in &_might ameliorate the presence of the com-
plex poles in G ;

. 1 K s+ [+ Ds?
Feogl s+l ¢ 8

Tuning the PID algorithm for the dashpot process was done by
trial and error. We kept the proportional and integral gains of the
previous simulation for FI and started with a conservative value for
D and increased it until satisfactory contro] was obtained with D =4.0.
Figure 6-12 shows the poles of G, and the zeroes of G_ for the FID
controller and for the PI controller used in Sec. 6-3. Figure 6-13
shows the poles of closed-loop transfer function {Grﬂr }ﬂl*'ﬂ;ﬂ:]
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6-4-1 Complete Cancellation

Perhaps the reader is wondering: what would happen if the zeros of
the PID controller were chosen to exactly match those of the process?
That is, what if:

-H:w.l'l 407 ;1JI;I—

n-l [=o

2 2

This would cause the open-loop transfer function to become

i

1 s+l+De? K
o= =
o sl 2s+1 ¢ 8 8

and the closed-loop transfer function would be




6-4-2 Adding Sensor Noise

At this point, as a manager, you might be impressed to the point
where you would conclude that the addition of derivative was the
best thing since sliced bread (aside from the preceding comments
about the extreme response to set-point steps). However, when the
process output is noisy, troubles arise. For the purposes of this simu-
lation exercise, we will add just a little white sensor noise (to be
defined later) to the P1 and the PID simulations. Figures 6-18 and 6-19
show the impact of adding a small amount of sensor noise on the
process output signal for Pl and PID. The added noise is barely
discernible when Pl control is used but when the same amount of
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process noise is added to PID control there is quite a change in the
control cutput. The addition of the derivative component to the con-
trol algorithm still drives the process output to set point without
oscillation, but there is a tremendous price to pay in the activity of the
control output. Also, note the spike in the output at ¢ = 30 when the
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6-4-3 Fiitering the Derivative
The moral of this short story is to be careful about adding derivative
because it greatly amplifies noise and sudden steps. Adding a first-
order flter (with a time constant of 1.0) to the derivative partially
addresses the problem as shown in Fig. 6-21. The outrageous control
output activity has been ameliorated but there is still ringing.
Using the Laplace transform is the easiest way to present the fil-
tered derivative:
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Mote the presence of the lf{fn,5+1:|- factor in the derivative term.
For our simulation, the filter time constant Ty was chosen to be equal
te 1/@, = 1. Since this algorithm will most likely be implemented as
a digital filter, its detailed discussion will be deferred until the dis-
crete time domain is introduced in Chap. 9. However, why do you
suppose that modifying the derivative term by the factor:

1
s+l




6-5 Compensation before Control—The Transfer

Function Approach

Since the dashpot process has given us so much trouble, another
approach will be taken in this section. We are going to modify the
process by feeding the process variable and its first derivative back
with appropriate gains. The gains will be chosen to make the modi-
fied process behave in a way more conducive to control.

Without compensation, the dashpot Laplace transform from
Eq. (6-5) is

stils)+ 28w, 5 §(s) + o His) = gt Lifs) (6-9)

s“iﬂ"__rmc"

FilSw
Filter switch

Fiouns 8-23 Simulink block diagram for dashpot control.
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Figure 6-25 shows a modified block diagram where y and dy /dx are
fed back again, this time with gains K_ and K .. Note that no control is
being attempted yet. We are feeding signals back to create a new
muoedified process that will have more desirable properties. Everything
inside the dotted line box represents the structure of the original process.
All the lines and blocks outside the box represent the added compensa-
tion. The Laplace transform of the modified system is

2§ =Kygolll + K, gali+ K gols-alj-Ao§  (6-11)

The logic behind the struchure of this block diagram is the same as
that for the unmodified process shown in Fig. 6-24. Three gains,
K. K. and K, have been introduced.

The values for these gains will be chosen so that the modified
process looks like a desired process shown in Fig. 6-26. The Laplace
transform for the desired system is

s2§iis) = =2y & §(5) — il ils) + gpood Ui(s) (6-12)
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The values for these gains will be chosen so that the modified

process looks like a desired process shown in Fig. 6-26. The Laplace
transform for the desired system is
i) = =2y, 5 §(5) = wd #s) + gpood, U(s) (6-12)
U —={ Zpop® ) s j’}r L
=2t
—top?

5% = gpa 0 - 2{wp 5§ - wg'y
Fiawsn 8-286 The desired dashpot model.
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Fioune 6-27 Choose K, K. K, o make the compensated and desired
madels identical.

MNote that this desired process has the same structure as the origi-
nal process but the parameters, g,. ;. aruimuamyﬁtnbespuci-
fied. We will specify the values and then find the values of
K,. K., and K, that will make them happen (Fig. 6-27). As you
mjgh.texpect we would want the damping parameter {;, to be greater
than that of the original process so that there is less ringing. Likewise,
we might want to make the natural frequency oy, greater than w, so

that the response would be quicker. To make life simple, g, is chosen
e s v



#9 = Kyg0il +(K, 3} - )3 + (K, 305 - 240 Jof

. (6-13)
sii(s) = gpof U - ef, #(s) - 20 pep, 3 §(s)

Comparing the coefficients of U, §, and s§ gives the following
EXpressions.

Kygar = gyuy,
K, gu) -y = -,

K, gon—20o, =-20p0,
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wl‘l.idll:'a:t'lb!'&ﬂ-hrﬂifﬂrﬁr. K., and Ku.uin

¥

K,= TN (6-14)
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6-6 Compensation before Control—
The State-Space Approach

The state-space model for the dashpot process is

Zoj o A AT
dx = Ax+BU

dt
sk= A%+ BU (6-15)

(s o)

E’[s:*.f]
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U———-= B 5 c

}i:}&fa}ﬂ*ﬂmh x=(a)= (o)
Fieune 8-30 A state-space block diagram.




6-7 An Electrical Analog to the Mass /Dashpot /Spring

Process

Consider the RLC circuit in Fig. 6-32 where R refers to resistance of
the resistor, L the inductance of the coil, and C the capacitance of the
capacitor. The applied voltage is V and it will also be the process
input U, The voltage over the resistor is iR where i is the process out-
put Y. The voltage over the capacitor is

i(u)du

O
o ey, =

and the voltage over the inductor is

di
Lo

‘-—-



These three voltages have to add up to match the applied
voltage.

1% di
V=iR +E£:q;u;m'u+1.ﬁ (6-20)

Eq. (6-20) could be differentiated to get rid of the integral. Alter-
natively, the equation could be transformed to the Laplace domain
yielding

= -

- i
V=iR+—+Lsi
Cs

The output/input transfer function is

1

iy -1 Cs __ 1
vV ad = L.1_, LICs+RCs+1 , R__1
R+E+Ls s’+rs+E

This expression looks similar to Eq. (6-5), which is repeated
here as

i) _ g )= gw,

Uy P ralmsval

This suggests that
1 R
wie = A, oo

which further suggests

Therefore, the RLC process has the potential of behaving in an
underdamped manner similar to that of the mass/dashpot/spring
process. For example, with R, C, and L chosen such that ¢ < 1, the step
response will exhibit damped oscillations with a frequency of o,



7-1 The Tubular Energy Exchanger—Steady State

Consider Fig. 7-1 which shows a jacketed tube of length L. A liquid
flows through the inside tube. The jacket contains a fluid, say steam,
from which energy can be transferred to the liquid in the tube. To
describe how this process behaves in steady state, a simple energy
balance can be made, not over the whole tube but over a small but
finite section of the tube. Several assumptions (and idealizations)
must be made about this new process.

1. The steam temperature T, in the jacket is constant along the
whole length of the tube. The tube length is L. The steam
temperature can vary with time but not space.

2. The tube is cylindrical and has a cross-sectional area of
A =xD? / 4 where D is the diameter of the inner tube.

3. The liquid flows in the tube as a plug at a speed v. That is,
there is no radial variation in the liquid temperature. There is
axial temperature variation of the liquid due to the heating
effect of the steam in the jacket but there is no axial transfer of
energy by conduction within the fluid. This is equivalent to
saying the radial diffusion of energy is infinite compared to
axial diffusion. The temperature of the flowing liquid
therefore is a function of the axial displacement z, as in T{(z).

m
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4. There is a small disc placed at some arbitrary location z along
the tube that has cross-sectional area A and thickness Az. This
dise will be used to derive the model describing equation.

5 The liquid properties of density p, heat capacity C, thermal
conductivity k are constant (independent of position and of
temperature).

6. The flux of energy between the steam in the jacket and the
flowing liquid is characterized by an overall heat transfer
coefficient U.

A thermal energy balance over the disc of thickness Az at location
= will describe the steady-state behavior of the tube exchanger. The
result is given in Eq (7-1) which is boxed below. You might want to
skip to that location if derivations are not yvour bag. Otherwise, the
derivation proceeds as follows

Energy rate in at = due to convection: vApC T(z)
Energy rate out at =+Az due to convection: tApC T(z + Az)

Energy rate in from jacket: U(HD&.:}!T‘ _ T[%ﬂ'ﬂlﬂ

In this last term the energy rate is proportional to the difference
between the jacket temperature T_and the liquid temperature in the
middle of the disc, at the point

(z+z2+Az)/2

The energy balance then becomes

=vApC T(z+Az)

vApC,T(2)+U(r Dﬁ:][]’_ - T[H“T”“]

After a slight rearrangement and after dividing all terms by Az
one gets
pApC T(z+ Az)—vApC T(2)
Az

_ u;rDlT, - T[—: h :; ‘j‘:]




The thickness of the disc is decreased to differential or infinitesi-

mal size as in

vAPC,T(z+ Az)- vApC,T(2)

Ar—l} Az

=lim,,_,UxD

{ror(5)

From App. A one sees that the above equation contains the defini-
tion of the derivative of T with respect to z, as in

vApC, % =UrD(T, -T(2)] (7-1)

This ordinary differential equation describes the steady-state
behavior of the idealized jacketed tube energy exchanger. From Chap. 3
we already know how to solve this equation if we know an inlet tem-
perature, as in T(0) =T,

If Eq. (7-1) is rearranged slightly, the reader can see the similarity
to the equation for the liquid tank presented in Chap. 3.

vApC, dT
UaD) dz r=1

W T=T, 7-2)

vApC, _ vDpC,
T usD - 4

v

The reader has seen Eq. (7-2) before, at least structurally. By
inspection, the reader can arrive at a solution to Eq. (7-2) as

T(z)= Tuz-% + [1 - e_%]'!; 7-3)

The parameter y can be considered as a kind of “space constant,”
somewhat analogous to the time constant used in transient analysis.
In fact, ¥ is the tube length needed for T(z) to reach 63% of the jacket
temperature T,



7-2 The Tubular Energy Exchanger—Transient Behavior
The dynamic behavior can be described by a partial differential equa-
tion that also evolves from a thermal energy balance over a small disc
of length Az located somewhere in the interior of the tube and over a
moment in time of length Af. The balance proceeds as in Sec. 7-1 but
with one more term—the temporal accumulation of thermal energy
in the disc. The temperature now depends on both the axial distance z
and the time f, as in T(z,t). Furthermore, the jacket temperature T,
may now depend on time but, as specified above, it is not a function
of axial position. A second balance could be written for the steam in
the jacket; however, for the time being, the dynamics of the steam are

Distributed Processes

assumed to be much quicker than those of the liquid flowing through
the tube.

As with the steady-state derivation in Sec. 7-1, the reader can skip
to the result in Eq. (7-6) which is boxed. For the adventurous, the bal-
ance proceeds as follows.

Energy rate at z due to convection at time ¢ during the interval At:

vApC,T (z,£)At

Energy rate out at z+Az due to convection at time ¢ during the
interval As:

vAPC,T(z + Az, t)Al

Energy rate in from jacket at time ¢ during the interval At:

U{:DM}[I; - T(#,r]]m



Energy rate in from jacket at time # during the interval At:

U{:Dﬂz}[’]; - T(#,r]]m

Accumulation of energy in the disc between time t and time ¢ + At
in the volume AAz:

AAzpC,T [#r + :u] - AAzpC,T [% :)

Entering the various elements into the balance equation
In — out = accumulation
gives

Z+Z+ Az

t.lApCPT(z,ﬂ.ﬁt +U{JID&=][T, - T[T, t]]ﬂt - vApCPT{:-!-m,t}M

- Aazpcpr[#,: + m]- AAzpC,T [#,t)
Dividing by AtAz and doing a little rearranging gives

vApC, T(zt)-T(z+4z1) +U[:D][T, - T[# 1]]

Az

T(z+:2+ ﬁz,t+M]—T[z+Iz+&,t]

= Aj'.'ﬁ:‘r AL




If the space element Az and the time element At are both decreased
to an infinitesimally small size, then the following partial differential
equation results.

-vApC, %+U(rﬂ}[’l‘, ~T(z,1)]= ApC, % (7-4)

Dividing all terms by ApC, and remembering that A=xD%/4,
gives
or o _ 4U

+

3 V% = D, T 7-5)

The quantity DpC, / 4U has units of sec, so Eq. (7-5) could be
written as

T _ar 1

¥+vE-E[T; T{Z,f]] I:?'G}
Dpcr v

TTTar T

where 7; has units of time and is a time constant. Equation (7-6) is
a partial differential equation describing the time-space behavior
of the temperature in the tube. It is subject to initial conditions,
suchas T(z,0)=T,, 0<z <L, and a boundary condition on the inlet,
such as T(0,f)=T, t > 0. Since we have added the dependence on
time, this process model can be used in simulations to test control
algorithms.
As an aside, the quantity

ﬂq_uﬂ
a4 oz

is often called the total derivative or the convective derivative of tem-
perature and is sometimes given the symbol DT / Dt.



7-2-1 Transfer by Diffusion

The model in Eq. (7-6) describes the transfer of energy along the tube
by convection. Energy can also be transported axially by molecular
diffusion where the rate is proportional to the axial gradient of tem-
perature, as in —k(dT / dz) where k is the thermal conductivity. If one
modifies the above energy balance on an element of length Az by
adding the contribution of diffusion, the result is

T ar
R ni I, -TG ‘H"pcif 7-7)
P
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where the added mechanism of transport is described by the term
(k/pC, ) /(8°T / dz?). The presence of this term makes the solution
pmcedure significantly more difficult and we will not refer to Eq. (7-7)
until later in this chapter when lumping is discussed.

7-3

Solution of the Tubular Heat Exchanger Equation
There are a variety of approaches to solve Eq. (7-6) but we will pick the
one using the tools already developed in this book and the one that will
lend itself to using the frequency domain to gain insight. This means
transforming the time dependence out of Eq. (7-6) using the Laplace
transform. This will leave us with a first-order ordinary differential
equation in the spatial dimension z which we can solve using stand-
ard techniques. The details are given in App. F.

The result of applying the Laplace transform to Eq. (7-6) is

Sii=t

:rl[_‘f" T) (7-8)

sT+v
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7-3

Solution of the Tubular Heat Exchanger Equation
There are a variety of approaches to solve Eq. (7-6) but we will pick the
one using the tools already developed in this book and the one that will
lend itself to using the frequency domain to gain insight. This means
transforming the time dependence out of Eq. (7-6) using the Laplace
transform. This will leave us with a first-order ordinary differential
equation in the spatial dimension z which we can solve using stand-
ard techniques. The details are given in App. F.

The result of applying the Laplace transform to Eq. (7-6) is

=L1d - (7-8)

sf'+ud—r
£

You should convince yourself that Eq. (7-8) is indeed the result of
multiplying Eq. (7-6) by exp(—st) and integrating over [0,»] with
respect to time. In any case, after the dust has settled, Eq. (7-8) is a
first-order ordinary differential equation of the form

dT 1). T
v——-r[s-r—)?‘: — (7-9)
dz T Ty

where the Laplace variable s is just a parameter. Remember that T, is
the Laplace transform of the jacket temperature which we specified
could be a function of time but not of axial position, that is, T,or T, is
not a function of z.

Now, how do we solve Eq. (7-9)? We could apply the Laplace
transform again with a different variable, say p, instead of s and
remove the spatial dimension or we could solve the ordinary differ-
ential equation by trying a solution of the form Ce”. Both of these
approaches have been used elsewhere in this book. The details of the
solution are presented in App. F and the result is

1—e"=
r.rs+l

T(z,8)=Tye™ +T, (7-10)

where



7-3-1 inlet Temperature Transfer Function

Equation (7-10) contains two transfer functions of interest. The first
transfer function shows how the inlet temperature affects the outlet
temperature (at z=L):

T H el <L L
(L) _ 5o ok o
T(s) (7-11)

=g % rT:r

where t, =L /v is the average residence time or delay time for the
tube. Equatmn (7-11) ignores the impact of T, and shows that T(L,{)
lags T(0,) by t,and is attenuated by a constant factor of ¢ '/, This
makes physical sense based on the assumptions of plug flow for the
liquid. Thus, when T, is the input, Eq. (7-11) suggests that the
response of T(L,t)behaves as dead-time process with an attenua-
tion factor.

Question 7-1 What does a time plot of this response look like and is it physically
realistic?

Answer A sharp step in the inlet propagates through the reactor as a sharp step
in the liquid temperature. Thus plug flow is idealistic because there is bound
to be some axial mixing either from turbulence or diffusion. If Eq. (7-7) were
solved, the propagation would be more realistic with less sharpness. Later when
lumping is discussed this issue of idealistic sharpness will be revisited.

7-3-2 Steam Jacket Temperature Transfer Function

Equation (7-10) yields a second transfer function relating the steam
jacket temperature to the outlet temperature.
o
EI.,S} _ 1=¢ #n e {?-12}
T,(s) T,s+1

We will use this transfer function later on when assessing the fea-
sibility of controlling the outlet temperature by manipulating the
steam temperature. The denominator of Eq. (7-12) has appeared
before so we can expect Tr to act as a time constant in a way similar
to previous transient analyses.



7-4 Response of Tubular Heat Exchanger to Step

in Jacket Temperature
Let the jacket temperature be a step of size U_at time zero. Equation
{7-12) becomes
o
FLs)=lz¢ e T U, 7-13
TLs)= .5+1 s v-13)

Appendix F shows that the inversion of Eq. (7-13) gives
- o o).
T(L,t)=U, [1 -e ' ] -Ue ™ [1 —e T ]i‘.l{t —tp) (7-14)

Appendix F also explains the nature of the unit step function .

7-4-1 The Large-Diameter Case
Figure 7-3 shows the behavior of T(L,) for the case where U.=1,L=1,
7, =1, t,=1, and v=1. Note for t > t,, the outlet temperature is con-
stant at
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Fisure 7-4 Components of the outlet temperature for large-diameter tube.



7-5 Studying the Tubular Energy Exchanger

in the Frequency Domain
We wish to analyze the effect of a sinusoidal variation in the jacket
temperature on the liquid outlet temperature. Start with the transfer
function between the process output, which is the liquid temperature
as it emerges from the tube at z = L, and the process input/output
control which in this case is the jacket temperature, given in
Eq. (7-12). Make the usual substitution of s — jar

- -'En M
T(L,jo) 1—¢ e /o
T (jw) Tpjo+l

Appendix F shows that this transfer function can be reformed in
terms of magnitude and phase as

L _ ,2.
|f[L,jﬂl]- - 1- EE-TTCDEII:&HD] +e 1r1-
| f: (jw) (tw) +1

(7-15)

|"

f=tan!

1-¢ Ecm{mtu}

Figure 7-7 shows a Bode plot for this process model for the large-
diameter tube exchanger where L=1, Ty=1,andv=1.

First, note that the magnitude and phase curves start to decrease
near the corner frequency which is
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Second, note the “resonances” or “ripples.” The large-diameter
tube exchanger Bode plot is replotted in Fig. 7-8. There appears to be
a ripple that has peaks at multiples of 1 Hz. This makes sense because
the residence time t, is 1.0 sec.
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7-6 Control of the Tubular Energy Exchanger
The open loop step-change response and the Bode plot suggest that there
should not be too much trouble if feedback control is attempted. The
large-diameter tubular energy exchanger has some idiosyncrasies but
the total phase lag varies about 90° (why?—because, despite the dis-
tributed nature of the process, it is still basically first order).

This section starts by applying PI control to the large-diameter
tubular exchanger where L = 1, v = 1, 7, = 1. Since the process gain is
nominally unity, an initial proportional gain of unity was tried. This
was increased to 3.0 by trial and error simulation using a Simulink
model. Then the integral gain was increased slowly until a value of
2.0 was found to be satisfactory. Figure 7-11 shows the response to a
unit step in the set point at time zero.

Implicit in this control scheme is the presence of a slave loop that
will manipulate a valve so as to affect the steam jacket temperature
set point which is the control output of the master loop that we are

—Steam T
.. Outlet T
— Setpoint |

--------------------
= owomow

Fraure 711 Pl control of the large-diameter tubular heat exchanger.



7-7 Lumping the Tubular Energy Exchanger

7-7-1 Modeling an Individual Lump

Often, process analysts like to approximate distributed models,
described by partial differential equations, with lumped models,
described by ordinary differential equations. The tubular exchanger
could be approximated in this way. For example, consider Fig. 7-14
where the tubular exchanger is to be modeled by N tanks. The N-tank
model has the following characteristics:

T!: Ti ri TI
T, T T T T
Llf.. V, BAT, Ap—1wd V, AT, Ay —Lenl V, AT, Apb—rem o etV vAT, AN

Ficune 7-14 N-lump approximation to tubular exchanger.

Distributed Processes

1. Each tank is completely mixed in the sense that the exit
temperature is the same as the temperature throughout the
lump or tank. These lumps are often called continuous stirred
tanks (CSTs).

2. Each tank is jacketed and is exposed to the jacket temperature
T,. Although this need not be case in general, each tank sees
the same jacket temperature. That is, the jacket temperature
does not vary from tank to tank.

3. The temperature leaving the kth tank is the inlet temperature
for the k+1th tank.

4. Parameterwise, each tank is identical. This is not necessary
but it does make the mathematics more manageable.



7-7-2 Steady-State Solution
First, in steady state we would like the N-tank model to look some-
thing like the steady-state solution obtained in Sec. 7-1 which was

T@Z)=Tye ¥ + [1 - e'F]T,

The N-tank steady-state solution is quite simple since the deriva-
tive in Eq. (7-17) is zero, so

T,=8T +2gT,,

T,=8 T, +38T,
T,=8T,+8T,=8T,+8(sT, +gT)=2T,(1+g)+gT,
T,=8T,+8T,=8T +8(sT,+gT)=8T,(1+g +g))+gT,

Ty=8T,(1+g+g"+--+gN ")+ gNT, (7-19)

When a quantity like g; is less than unity, the sum of the geomet-
ric series, contained in the parentheses in Eq. (7-19), can be written
compactly as

1— N
i:, +gN'T, (7-20)

i

TH =E|1; 1-

Remember that
1. g, and g, depend on the area for energy transfer A of each
tank.

2 g +g=1.



3. N increases A, the energy transfer area for the kth tank
decreases so as to maintain the total energy transfer area
constant.

Therefore, Eq. (7-20) becomes
Ty =Togl +(1-gM)T, (7-21)
This is to be compared with Eq. (7-3)
L L
T(L)=Tye ¥ +[1 -e F]‘!’;

This suggests that if the tube length L is divided up so that each
tank has length L/ N =Az, then gV =el/¥ or g, =e /Ny =g-tiiv,
Thus, N —+, g —0, and g, — 1. This exercise suggests that the
lumping approach is approximately similar to the continuous
approach, at least in steady state.

7-7-3 Discretizing the Partial Differential Equation

An alternative approach to lumping returns to the partial differential
equation in Eq. (7-6) and replaces the partial derivative with respect
to axial distance z with a finite difference, as in

T=T, E:ﬂl (7-22)

If the reader makes the following substitutions

rD? _ xD? _DpC,
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Fieune 7-15 Response to steam temperature jacket T.—matching large
tubular reactor with lumped models, 1, = 1.0.



CHAPTER 8

Stochastic Process
Disturbances and

the Discrete Time
Domain

eveloping a successful control algorithm often requires proper
identification of the disturbances. In Chap. 1, unaufocorrelated
process disturbances (white noise) and autocorrelated process
disturbances were presented using the “large hotel water tank” example.
In this chapter these terms and concepts will be revisited with a lit-
tle more rigor using the autocorrelation, the line spectrum, the cumula-
tive line spectrum, and the expectation operator. The ability of a FI
controller to deal with different kinds of disturbances will be discussed.
Chapter 9 will revisit the discrete time domain and introduce the
Z-transform.

81

The Discrete Time Domain

In the previous chapters, for the most part, the time domain was consid-
ered as continuous. Differential equations were derived based on this
concept. Laplace transforms were used to solve these differential equa-
tions and also to provide a path to the frequency domain which was also
considered continuous. In this chapter the time domain will be discrete
in the sense that a data stream will now consist of a sequence of numbers
usually sampled at a constant interval of time, For example, a data stream
might consist of samples of a temperature T(t), as is

Tit,). Tk, - - ., Tiky)

or

TuToeon Ty



with the sample-instants in time being equally spaced, in the sense
that

t=t_,+h i=12,...

where h is the sampling interval, which will be assumed to be con-
stant unless otherwise stated. The sampling frequency is 1/h.
Instead of differential equations where the independent variable
is continuous time, there will be algebraic equations with the inde-
pendent variable being an index, such as i, to an instant of time. A
simple example of an indexed equation would be a running sum of a
data stream consisting of sampled values of the variable x, as in

S=S.+%x i=2,3,...,N
The average of the x;.x;, . . . data after N samples would be

- 1
X, =—5,

N

The sample average I, is an estimator of the population mean u,
which we will discuss in more detail later in this chapter.

82

White Noise and Sample Estimates
of Population Measures

Consider a data stream of infinite extent

Wy, Wy, .

from which N contiguous samples have been taken. Figure 8-1 shows
two views of the data stream. The infinite data stream represents a
population having certain population characteristics and the subset of
size N mentioned above is a sample of that population. The subset
has certain sample characteristics, which can be used as estimates of the
population characteristics, The data shown in Fig. 8-1 will soon be
shown to be samples of “white noise.” For now, we simply refer to it
as a stochastic sequence. The word “stochastic,” means “nondeter-
ministic” in that the value at time !, does not completely determine
the value at time ¢ ;. In the white noise stochastic sequence shown in
Fig. 8-1, the value at t, has no influence whatsoever on the value att,_,.
In other non-white stochastic sequences to be covered later in the
chapter, the value at ¢, still is nondeterministic but the value at ¢,

i+l
does have an influence. Mote that the two streams shown in

Fig. B-1 have different sample standard deviations.
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8-2-1 The Sample Average
The sample average of the finite subset of the infinite stream of data
is

N
gnw' Wyttt iy (8-1)
o= " = N

The average of many stochastic sequences used in this book will
be removed from the data stream. If that were the case here, the sub-
set would have a zero average. Equation (8-1) applies to any data
stream, white noise, or otherwise. As mentioned in Sec. 8-1, the sample
average is an estimate of the population mean g which we will dis-
cuss later on in this chapter.

8-2-2 The Sample Varlance
A measure of the strength of the variation of w,,w,, . .. about its
average (which may be zero if the average has been removed) is the
sample variance V, defined as

N
V,=%E{% — @) (82)



8-2-3 The Histogram

The values in the data stream shown in Fig. 8-1 seem to cluster about
the average of approximately zero. A picture of how these values are
distributed is given by the histogram in Fig. 8-2 where the range over
which the data stream varies is divided into 10 “bins” or cells and the
number occurring in each bin is plotted versus the center of each bin,
The histogram augments and extends the sample variance to give the
analyst a feel for how the elements of the data stream vary about the
average. In effect, the histogram is a sample estimate of the popula-
tion’s probability distribution In this case, the population probability
distribution is normal or Gaussian and is given by

|'|-J.I'I'I
'| -

H.‘l':l = ETER v =2

We will return to the probability distribution later on in this chapter.
Figure 83 shows the shape of two normal probability distributions,
Each has zero mean but one has a standard deviation of 1.0 while that
for other s 1.5. Note how thess curves qualitatively match that of the

C

Mumber ot bin samples

&

H B =1 ] ] (L5 ] 15
Bin centers




Feume 8-3 Two normal oF Gaussian probability distrbutions.

histogram in Fig. 8-2. The histogram gives no insight into how the ele-
menits are interrelated in time. To gain some insight in that area we
need other tools such as the autocorrelation and the line spectrum.

8-2-4 The Sample Autocorrelation
The white noise data stream in Fig. 81 is umsutocorrelated because
mdlumpk,ml,hhd:pﬂdmtnfeamwemuﬂunmpk.“ﬂt
is, w, is independent of w, for every k = i. This condition could also be
described using a lag index n, where samples w, and w,  are consid-
ered uncorrelated in the sense that an average of the products of w,
and w,,_ taken over a set of N samples would be so close to zero as to
be insignificant.

The sample estimate of the autocorrelation, r, (1), which uses the
lag index n as a parameter, is one way to characterize this condition
and is defined as follows:

M-n
O P e ®3)

The sample estimate of the autocorrelation is basically an average
of the product of the lagged products over the available data set for
all possible lags. As the lag size increases, the size of the data set avail-
able for the calculation in Eq. (8-3) becomes smaller and the eslimate
becomes less reliable.



CHAPTER 9

The Discrete Time
Domain and the
L-Transform

he discrete time domain is important because (1) most data col-

lected during a process analysis consists of samples at points in

time separated by a constant interval, (2) most custom control
algorithms are implemented digitally, and (3) concepts like white
noise and the delta function for pulses are physically realizable in
thiz domain. (Remember how the Dirac delta function in the continu-
ous time domain had no specific shape and had to be defined in
terms of an integral.) In the previous chapter stochastic processes
defined in the discrete time domain were introduced. Here, several
familiar continuous time model equations will be discretized and
the Z-transform will be introduced. Just as the Laplace transform
aided and abetted our attempts to solve problems and gain insight
in the continuous time domain, the Z-transform will be used in the
discrete time domain.

There are a couple of ways to introduce the Z-transform: (1) using
the backshift operator in 8 manner similar to using the Laplace opera-
tor 5 to replace derivatives, or (2) deriving the Z-transform from the
Laplace transform of a sampled time function. The latter approach is
quite elegant and more general but I think it is best placed in App. .
Therefore, in Secs. 9.1 and 9.2 the backshift operator approach will
naturally fall out of the discretization of the first-order model. With
the new tool in hand, several other models, algorithms, and filters
will be recast and studied in the Z-transform domain. As with the
Laplace transform, there will be a transition to the frequency domain
where more insight will be gained. The chapter closes with a discus-
sion of fitting discrete time domain data to models.

This will perhaps be the longest chapter in the book, s0 you might
want to break your reading plan into four parts. In the first part, you
will learn about the Z-transform. In the second part, you will see how
several unconventional control algorithms can be designed using

235



Discretizing the First-Order Model

This and the following three sections are busy. The first-order process
model is studied for a special case where the process input is a series
of steps. The describing equation will be modified slightly when time
is discretized. The result will be rewritten using the backshift opera-
tor which will lead to the Z-transform. This necessitates a discussion
of sampling and holding. The discretized unity-gain first-crder model
is then reinterpreted as a discrete time filter.

Back in Chap. 3 we presented the first-order model in the contin-
uous time domain via the differential equation

il
rolvy=gUlr) (8-1)

In the Laplace domain we wrote the transfer function between
process input and output as

HH—G,{JF = (%-2)
When Eq. (9-1) or (9-2) was solved for the case where the process
input U is a step change we obtained
r i
yit)=ye gl [l —ET] (9-3)

Before moving to the discrete time domain, let's apply Eq. (9-3) for
one time increment of size h over which LI{¥) is held constant at U

it h
wil)=wpe T+ gl [] -E'?] (9-4)

Equation (9-4) moves information at { =0, namely y,and Uy to t=h
to produce y{k). The information at ¢ = h can be moved to t =2h by
reapplying Eq. (9-4) suitably modified, as in

y(2h) = -,.u.}e"'; +gl, [1 - ;5] (9-5)



Mote that the value of LI(#) over the interval h £ < 2k is held con-
stant at U, which may be different from U,. We have effectively moved
to the discrete time domain by breaking the time variable up into sam-
ples spaced apart by h sec. This means that time is described by

b=t =hi  i=0,1,2,...
The process output becomes

yith=y, i=0,12,...
The process input becomes

Li{t) == U, i=0,1,2,...

With this in mind, Eqs. (9-4) or (9-5) can be written as

# &
!'i=l'f-:'!'_?"’3'ua-|[1‘f-_'] i=0,1,2,... (9-6)

a few moments thinking about Eq. (9-6). It is the same as
Eq. (9-4) except that it is applied over the time interval from f_, o £
during which UI__, is held constant. Figure 9-1 shows how a first-order
process with a time constant of 5.0 sec and a gain of 1.1 responds to a

1.6 T ¥ - r 4 H ! i
H ] e m

12f - 3o oo 1

0 10 20 30 40 50 & 70 8 90 10
Time
Fowes 81 Response of first-onder model 10 & serles of steps in the process input.




9-2 Moving to the Z-Domain via the Backshift Operator
The quantity y in Eq. (9-6) can be converted to its Z-transform coun-
terpart ¥(z) by introducing the backshift operator ™' defined as fol-
lows

yit—h)=z"y(r) (9-7)
where h is the sampling interval. [ have not added the “hat” to the
variable y(t) because Eq. (9-7) is in a kind of imbo between the time

and the z domains. It is perhaps better to proceed with the actual
definition of the Z-transform which is

i2)=ZlyH)l = 3 2 y(k) (9-8)
J={i

Mote that this is a weighted sum over all of the sampled values of
y(t) as compared to the Laplace transform which is a weighted inte-
gral over all the continuously variable values of y(t). In both cases,
values of y(t) are considered zero for t < 0.

If the variable y(t) is shifted in time one sample, Eq. (9-8)
would be

Ziyit- )= T y(k-1)
k=0
= i z'ﬁl"‘“w}
=1
= r1£ = Py(p) 9.9)

= :‘li = Fy(p)
)

=27 Z{wlt))
=z 1y(z)



The summation index in the third line of Eq. (9-9) is changed to
zero because, like the Laplace transform, y(t) is assumed to be zero
tor £ < 0. The manipulations in Eq. (9-9) should conwvince the reader
that =™ is a backshift operator.

With this in mind, Eq. (9-6) becomes

v, =yH¢'$ +gl.!,_1[l-¢'%] i=0,1,2,...
& b (3-10)
flz)=e g2+ g[l-uﬁ ]z"!.:!{:}

As with the Laplace transform, Eq. (9-10) is algebraic and can be

solved for § asin
1]
g[l -e-?]:"
iiz) = —~—L(z) (9-11)
1-¢ rz?
or
¥(z) = G{z)U(z) (9-12)

where G(z) is the transfer function in the Z-domain for the first-order
process model. For this multiplication in Eq. (9-12) to be valid, the
time domain variable LI{f) has to behave as in Fig. 9-1.



9-3

Sampling and Zero-Holding

In Eq. (9-10), U(t) is a series of steps, as if it were the output of a
digital /analog (D/ A) on a microprocessor. Allernatively, and more
elegantly, one can say that LI{t) has been put through a sampler and
a zero-order hold device which samples the value of LI(f) at time ¢, and
holds it for a period of h sec. The device releases it at time |, at
which time the device samples the new value of L(f) and holds it.
There is no zero-order hold device associated with y(t) so it is con-
sidered as a sequence of isolated sampled values that exist only at
time £, i=0, 1, 2, . . . . The sampled variable y(t) could also be con-
sidered as a train of spikes with the height of each spike equal to the
value of y(t,) as depicted in Fig. 9-2. Figure 9-3 shows how the zero-
order hold device is introduced. Note the samplers that act on LI{(t)
and on Y{#).
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Fisusg 9-3 The sampler Tero-hold device as part of the Z-transform transfer
function.

In App. |, the zero-order hold is studied in detail and it is shown
that the transfer function in Bq. (2-11) can be written as

g[l- :‘E]f‘
¥(z)= —Li(z)= Z{N, ()G (z) (9-13)

1-¢ 721

where

ne=2"" G-

P T s+l




Glz) =

_h
g[‘l-t r]r‘
L W A

1-¢ 2!

This transfer function can come from the discrete time domain

with a stepped process input augmented by the backshift operator or
from the Laplace transform domain where transfer functions in s are

converted to F-transforms in z.

If w(f) tums out to be the input to another stage as in Fig. 9-4, then
the Z-transform cannot be used without some consideration. Mote
that no sampler is applied to y(t) before it becomes an input to the box

represented by His).

Gis)

utt)—- device
Sampler

Wis) \

Fis)

Sampler

H(s)

Oiz) ———= ZIG{=)H(=)]

L = W)

Frewne 84 The zero-hold device as part of the Z4ransform,
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The correct expression to yield W(z) would be

Wiz) = Z[1,(s)Gls)H (s)| U(z)

(9-14)

However, if a sampling device were to be placed between stages Gis)

and His) then the expression for W(z) would be

W(z) = ZII,(s)G(s)) ZIH(N Z I ()}

= G(z) H(z)U(z)

(9-15)



To complete the concept of sampling and holding, consider the
case where there is a sampler applied to the input but there is no
hold as is shown in Fig. 9-5. Now the process is responding to a
train of spikes and the response in Fig. 9-6 is quite different from
that in Fig. 9-1. Note the first-order response to each of the U spikes
(or un-zero-held samples).

L
up) —7 19 g |y

Sampler

Fraure 9-5 Remowing the zero-hold device.
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9-4 Recognizing the First-Order Model as a Discrete

Time Filter
If in Eq. (9-6) we set the gain to unity, then

L A
_‘rr.=yl._le._r+ur._1[1—r "J i=0.1, 2, ...

can be written as

yj.#rf-]-'-buﬁ. ":“:Lz;-- .

q=g f=-l_nﬂ_a b=1-a

Equation (9-16) is the widely used unity-gain discrete first-order
filter with a time constant t (also sometimes called the “exponential

filter™).

For the special case where the input U is white noise, one can apply
the expected value operator o the square of Eq. (9-16) and obtain the

variance reducing property of the discrete first-order filter, as in
Ely'}=V, =El{ay, +bU_, P
= E|a?y? +2aby, U, +b'U2 |
=aiV, + bV,

- b2 (1-a)? _1-a

U Vi = A-a)l+a) Y l+ﬂv”



9-5 Descretizing the FOWDT Model
In Chap. 4, the FOWDT model was presented as

12 4 y=gUi(t-D) (5-18)
In the Laplace domain, the FOWDT model transfer function was
written as
o
ﬁ%}-ﬂ,{s}_rﬂﬁgﬁ (9-19)

In Chap. 4, we rushed to the frequency domain without solving
Eq. (9-18) for a constant process input. To obtain the solution in the
discrete time domain, adjust the indices of U, as in

W= fi-l'u_: t g[l-f-‘-:]ur-l."- i=0,12,...
[ [ E‘iﬂ}
Y(z)=e r2l¥(z)+ g[l -:'?]x"" Li(z)

where dead time is D'=mnh. For the time being, assume that the dead
time D can be exactly divided up into n increments, each of size h,
The transfer function between y and LI follows from Eq. (9-20):

¥(z) E[H 1’]1-H

I

—t = 21
R (9-21)

he the tis and
w m% process input is passed through a sampler a



9-10 Using the Z-Transform to Design Control Algorithms
To design a discrete time domain controller we start again with a
feedback control loop but we insert a sampler and a zero-order
hold as in Fig. 9-7. The block diagram algebra is similar to that for
the Laplace transform except that one has to ensure that the loca-
tion of the samplers and zero-order holds make sense. Here, the
controller error is formed, sampled, and fed to the controller
{which is probably implemented digitally) as a train of pulses. The

S(Setpoint) .

;érf FEmtmllnu-"Lrl*

Process =

¥ (Process output)

D disturbances

Faume 87 A feedback controller with a sampler and & ero-order hold.
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output of the controller, LI, is sampled, held and fed to the process
as a sequence of steps,

Y = Z|N,(5)G, (N 0(z)

E=5-Y (9-41)
¥ =ZIN, ()G, (sHG (2)(5-1)

. ZINEG, NG - .
V= T+ ZIM, ()G, (NG, @ HS

This lock messy, but the only difference between Eq. (9-41) and
Eq. (3-42) is the additional factor of the zero-order hold 1,{z) which
is dealt with in detail in App. I.

As in Sec. 9.9, the desired relationship between the process out-

put and the set point is specified as



This look messy, but the only difference between Eq. (9-41) and
Eq. (3-42) is the additional factor of the zero-order hold I1,(2) which
is dealt with in detail in App. 1.

As in Sec. 9.9, the desired relationship between the process out-
put and the set point is specified as

= ﬂz}

] =0

(9-42)

Equations (9-41) and (9-42) are combined as before giving the
expression for the controller

M,(2)G,(20G (3)
T+11,@G,@6,@ o

or

u Q=) 1
O e mEe, @ 68)

If we are dealing with first-order models, the desired response
would be characterized by the discrete first-order unity gain transfer
function

L)
{1 —e %
¥iz)=

i
L 5e)= i)

(9-44)
1-e Uzt

The Discrete Time Domain and the I-Transform

Continuing the first-order approach, the expression for II,,[:}GFE:}
would be obtained from Eg. (9-13):

LS
g[l —F "]z‘l
Y(z)=

——— L —{i(z) = ZIN, (G(N )
1-¢ ez

(9-45)

The only difference between Egs. (9-44) and (9-45) is the gain and
the subscript on the time constant.
The algebraic crank-turning yields

LA L]
[1_, h]1_z—1, 1'.]
6= . 946)
g[l—z_r}l—fl}




The Discrete Time Domain and the I-Transform

Continuing the first-order approach, the expression for I1,(z)G,_ (z)
would be obtained from Eq. (9-13): e

b
gll-e "]z“
Y(z)= - 1(z) = ZIM, (s)G{s) Ui (z) {9-45)
1—g "zl
The only difference between Egs. (9-44) and (9-45) is the gain and
the subscript on the time constant.
The algebraic crank-turning yields
LA L
[l-e "Il-z“e '*]
G (z)= : (9-46)
g{l—: "](l-z“‘]
The control algorithm is therefore
[ _
)
= _ _ BJ {1-1‘.2-'}
Uta)= _~] T 0758 (e
gll=e ™
where (9-47)

= 3 -t
A=e™ A=e%  B=1-A B,=1-4,

A little (actually, a lot of) algebraic manipulation of Eq. (9-47)

gives
- E - B -
()= LB+ L5 Bl (9-48)

The first term on the right-hand side of Eq. (9-48) is the propor-
tional component and the second term is the integral component with
an exira delay of one sample in the numerator. In practice, one would
remove the extra delay because, from a common sense point of view,
it adds nothing to the performance.



Therefore, converting to the discrete time domain we have a Fl

control algorithm:
—_ Bd EJ
AU, = FAE, +E,
= PAE, + IhE, (9-49)
U, =U,, +al,
with the following tuning rules.
el —
B l-g & 1B, 1-e™%
=i o
P B _f] I W g 2h (5-50)
gll-e*

Gueation 8-1  If the contral inferval b is decreased bo an infinitesimal value, will
the huning rules in Eq. (9-50) evalve into these of Eq, (9-36)7

Angwer Yes, they would and I will leave it to the reader as an exercise. Sorry,
unless you trust me you will have fo work it cut on your own,

As with the tuning rules given in Eq. (9-36), these in Eq. (9-50) are
practical. When the digitally implemented P1 controller has a control
or sampling interval that is quite small relative to the dominant pro-
cess time constant, these bwo sets of tuning rules are virtually identi-
cal and [ would recommend using the former.

9-11 Designing a Control Algorithm
for a Dead-Time Process

Before we get started, we have to understand that there really is no
panacea for controlling processes with a dead time. The controlla-
bility of a process with a dead time can never be as good as that for
a process without dead time, no matter how fancy the control algo-
rithm is. Consider the following sequence of events. A disturbance
causes the process output to deviate from the set point. You, acting
as the controller, immediately initiate a control move to address
the deviation. There will be no response to that control mowve until
the dead time has elapsed. During that dead-time period, more
nasty things can happen to the process output but you still haven't
seen the effect of your initial action. This situation often leads to
impatient and aggressive moves that cause more trouble than the
original disturbance.



9-13-3 A Double-Pass Fliter

As the reader can tell from the Bode plots, the first-order filter carries
out attenuation, which is usually a desirable thing. However, it also
adds phase lag to the output and this can sometimes be a problem
when the data is analyzed graphically. For example, you might want
to plot the raw data over the filtered data and you would probably

want the filtered and unfiltered streams to be in phase. To address
this problem, the filter is sometimes applied twice; once in the for-
ward direction and once in the backward direction, as in

¥, =ay,, +hU, i=1L2....N ¥, =L,
(9-64)

W,y = @, + i=N,N-1...,1 mwy=y,

i-1

In the forward (left to right) direction there is a phase lag intro-
duced but in the reverse direction (right to left) the additional phase
cancels the phase lag of the first pass.

In the Z-transform domain, Eq. (9-64) becomes

b
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of, after combining

bz P
(z! -a) {l-u:"}u
_ 5
Cl-az ' +z)+a’

This filter is now a second-order filter and in the denominator, the
term z7' +z, after the substitution z=¢® = cos({2) + jsin((1), is sim-
ply 2cos(Q). Therefore, in the frequency domain, the filter's transfer

function is real, as in
w(jel) _ b?
U(ja) ~ 1-2acos() + & (5-66)

and the phase is zero—meaning no lag. So, the filtered signal is com-
pletely in phase with the input signal.

916 and 9-17 compare the first-order filter (which would
have phase lag) and the double-pass filter. The first plot compares the
frequency domain magnitudes and the second compares how they
filter noisy data.
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Fiowns 318 Fwstorder versus double-pass filter, Bode plot.




9-13-4 High-Pass Filters
The differentiator filter in the Laplace domain would be simply s. Its
implementation is not obvious but you can probably conceive of a
way to hook up a capacitor and a resistor to do it. If not, don’t worry;
the digital approach is probably simpler and more direct.

In the discrete time domain, differentiation is approximated
by the difference filter, the simplest of which is the backward
differencer:

u,-u,
l".= h‘ i=1
y_1-z!
0k 0k
o _1 - 2cos(() ¥ 7’
u@)
]
f=tan [l-mﬂ]
JI0 Chapter Nine
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higher the frequency, a central difference is sometimes used.

LI =
V== (9-68)

which can be considered as the average of two backward differences,
as in,

1{1-z" +:"-='1 =‘l-:'1
2 h k 2k

The Bode plot for this difference operator is shown in Fig. 9-19.
MNote that both the backward and central differences have zero gain at
zero frequency but the central difference has zero gain at the folding

frequency, also.

The Discrete Time Domain and the I-Transform
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9-14 Frequency Domain Filtering

There are a plethora of sophisticated computer-alded design techniques
for moving average and autoregressive filters. A simple alternative uses
frequency domain filtering where the Fourier transform of the data is
multiplied by a magnitude factor which removes part of the spectrum,
The modified transform is inverted back to the time domain yielding the
filtered data. For example, should the analyst wish to remove a band of
frequencies from the data, he might apply the factor shown in Fig. 9-20
to the transformed data in the frequency domain. This factor suggests
that components in a signal having frequencies greater than about 0.21
Hz would be removed while those with frequencies less than 0.21 Hz
would be passed unattenuated. For the readers who have read App. C, it
might be worth noting that when multiplying in the frequency domain,
one convolves in the time domain. However, that is a detail that is a little
bit beyond the scope of this section.

Finally, note that the factor is symmetrical about the folding fre-
quency of 0.5 Hz. Figure 9-21 shows the factor (after scaling to make
it more presentable) and the spectrum of the signal to be filtered (bwo
sinusoids, one in the pass band and one not). Figure 9-22 shows the
result of applying the filter. One needs only the fast Fourier fransform
(and some code) to use this filtering method. The following is a crude
Matlab script that carries out frequency-domain filtering.
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Estimating the
State and Using It
for Control

n Chap. 5, matrices and the concept of the state were introduced.
Iln Chap. 6 an underdamped process was studied where the state

consisted of the position and speed (or derivative of the position)
of the mass in the mass/spring/dashpot process. We showed that
regular proportional-integral (PT) control, which uses only the position,
did not do a good job for this process. However, the proportional-
integral-derivative (PID) algorithm which uses the position and the
speed, that is, the state, performed significantly better. Another
method fed back the state to create a new process that had better
dynamic characteristics. It appears that an estimate of the state can
play a crucial part in the successful control of a :

This chapter will present a method that combines a model of the
actual process with process measurement(s) to produce an estimate
of the state. It will be applied to the control problem posed in Chap.
6. The method, called the Kalman filter, was developed in the late
1950s, To use the Kalman flter, one must find values of a vector called
the Kalman gain. Two ways to find this gain will be presented. The
first is based on choosing variances associated with the process model
and with the process noise. The second is based on placing the eigen-
values of the system.

The Kalman filter will also be applied to the three-tank problem
presented in Chap. 5. However, the variables to be controlled will be
extended to include all the three tank levels and the variables to be
manipulated will be extended to include all the input flow rates. The
resulting multidimensional control algorithm will contain integral
control and will be tuned by placing the eigenvalues of the con-
trolled system. For the sake of comparison, the same three-tank pro-
cess will be controlled by three separate PI controllers. Finally, the

state-space control approach will be applied to a lumped approxima-
tion of the tubular energy exchanger process presented in Chap. 7.



10-1 An Elementary Presentation of the Kalman Filter

The Kalman filter combines the predicted value of the state from a
model with suitably adjusted process measurements to provide an
estimate of the state. The first component of the Kalman filter is the

process model.

10-1-1 The Process Model
Consider the continuous time case where the process is described by

i
Ex- Ax+ BLU

Z=Hx (o5
where x is a (n, 1) vector, A is a (n, n) matrix, B is a (n, m) malrix,
U is a (m, 1) vector, and H is the (p, n) “measurement” matrix. The
quantity Z, a (p. 1) vector, is the measured quantity. If all the ele-
ments of the state are measurable, then p=# and the H matrix is
square. If some of the states are not measurable, then p<n. In the
case of the underdamped process, it might be the position that is
the only part of the state available for measurement and there-
fore, n=2,p=1.

The discrete time version of Eq. (10-1) is developed in App. H as

% = ®x;+TU,

0-2
£ =Hx, (10-2)

This discrete time model is augmented by two sources of noise, as
follows:

I,=%x +TL +w,

Z,=Hx 4, (o2

where w is sometimes called process noise and can represent the error
between the model and the actual process. The symbol v is sometimes
called measurement moise. Both of these stochastic processes are con-
sidered to be white, have zero mean, have a normal distribution, and
have covariances (with zero lag), symbolized by matrices Q and R,
respectively. The covariance matrix was introduced in Chap. 8. In the
gealar case we will use ﬂfr and of. The covariance mairix Q is a
measure of the model uncertainty and the covariance matrix R is a
measure of the measurement noise.



10-1-2 The Premeasurement and Postmeasurement
Equations

In many texts the derivation of the Kalman filter appears, im my
humble opinion, to be one of the most convoluted exercises in con-
trol engineering theory. 1 will not attempt to derive it here. If the
reader thinks, after the presentation in this section, that she needs
to delve into the derivation for a better understanding, 1 recom-
mend Applied Optimal Estimation, edited by Arthur Gelb. This book
was first published in 1974 and is still probably one of the most
readable books around. Do not attempt to read Rudolf Kalman's
original paper! As an interesting alternative, one might visit the
Internet and see what the Wikipedia has to say about the Kalman
filter.

There are two stages in the estimation: Before the measurement
and after the measurement. A quantity estimated before the measure-
ment is taken (using the model) will have (<) appended to its symbol.
Quantities estimated after the measurement is taken will have the (+)
appendage.

Before a measurement is taken at the kth sample time, the model
can be used to generate an estimate at time £, as in

X, =) =®X, (H+TU, (10-4)

Equation (10-4) gives the premeasurement state estimate fl',[-] at
time 1, based on knowledge of the process input U, _, and the post-
measurernent estimate of the state from time f,_, which is X,_,(+).
Using the model to predict a value at time ¢, based on information at
time ¢, _, is sometimes referred to one-step extrapolation. Mote that the
tilde symbolizes that the quantity is an estimate of the true value X,.

The postmeasurement estimate at time ¢, is calculated from

X (#)= K2, +(1- K,H)X, (<) {10-5)

where Z, s the measurement at time ¢, and K, is the (n, p) Kalman
gain wvector at time . Equation (10-3) suggests that the postmea-
surement is a weighted sum of the measurement Z, and the pre-
measurement model-based estimate X, (<). Equation (10-5) can also
be written as

X, (+)= X, (<)% K,[Z, - HX, ()] (10-6)

which shows that the postmeasurement estimate it{ﬂ is equal to
the premeasurement model-based estimate X, (-) plus a correction



10-1-3 The Scalar Case
Temporarily consider the scalar first-order case where n =1, p=1,
and m=1. In this case the state is one-dimensional and the measure-

ment of the state is available but may be noisy. The premeasurement
state estimate, via extrapolation, is

. L A
X -)=¢ *xb—l':*-"*.g[l —€ ’]um (10-7)

and the postmeasurement correction is
X (#) = X, (D) + K, [Z, - X,()) (10-8)

where all of the quantities are scalars. If the model is quite accurate,
and the measurement is noisy, then &_ =0 and ¢, would be rela-
tively large and you might expect that K, would be small. Con-
versely, if the model is only approximate but the measurement is
quite good, then o, =0 and o would be relatively large and you
would expect K, to be significant.



10-4 Using the Kalman Filter for Control
In Sec. 6-5 the state of the underdamped process was fed back to make
the compensated system behave differently, namely, without the rip-
ples. We then applied integral-only control to the compensated sys-
tem with reasonable success. The state was constructed from the
measured position and the estimated filtered derivative.

In this section, the Kalman filter will be used to estimate the two
components of the state, which will be fed back just as in Sec. 6-5. In
addition, the estimated position will be used in an integral-only con-
trol loop. Figure 10-6 shows a condensed version of a Matlab Simu-
link model of the controlled system. If you are not familiar with
Simulink, treat the figure as a block diagram. Box 1 contains the com-
pensation gain K, which is applied to the controller output. Box 2
contains the two compensation gains, which are applied to the state
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10-5 Feeding Back the State for Control
In previous cha one-dimensional proportional-only control was
m%mpﬂ:haﬂh%bnkhpmwﬂﬂemd:bm:ﬂrgﬂ
from the set point. In state-space one could apply this approach as
followe.

u}=K‘{5. _x*] ﬂm}

where K_is a feedback gain. The state X, can be available through
measurermnents or through estimation via the Kalman filter.
When these two equations are combined we get

X, =®X,  +TE(5 ,-X.)

=(®-TK)X,, +BKS,, (10-26)

302 cChapter Ten

which describes the dynamics of a closed-loop system. As with the
Kalman filter equations in Sec. 10-1-2, this is an indexed equation that
has a homogeneous and nonhomogeneous part. The homogeneous
part, namely,
X =(®-TK )X}, (10-27)
has a solution of the form
Xi=Car

which, when applied to Eq. (10-27), gives

CA¥ =(®-TK, )Ca (10-28)

Equation (10-28) can be rearranged to give
(@-TK,-ANC=0

where, for a solution to exist, A must satisfy the eigenvalue-yielding
equation of

[@-TK, -A1=0 (10-29)
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11-1 The Strange Motel Shower Stall Control Problem

You are on a business trip for vour company, visiting a far-flung plant
in the hinterlands. You check into the local motel /hotel and decide to
take a shower (Fig. 11-1).

Mot being familiar with the plumbing in this motel you have to
develop a strategy for adjusting the shower water temperature before
getting into the shower. I suggest that it would be something like that
shown in Fig. 11-2.

Let's try to quantify the algorithm outlined in Fig. 11-2. The stick
figure (you) is standing outside the stall and sampling the shower
head spray. Once you have turned the valve you might carry out the
following steps:

1. Sample the water temperature at time £, i = 1, with your finger

(the start of "digital” control). You will not have a numerical
value but we will still denote the temperature by T(f).

2. Adjust the valve to an amount that is proportional to the
perceived error E(f)

E(t)=5-T(t)

38 cChapter Eleven
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As with the temperature, you will not have a numerical value
for the error but you probably will have a feeling for the deviation
as to sign and approximate amount. The adjustment will be

ALt )= KE(t) = K[5-T()]
Ug) =L ) = AU(E)

where K is a proportionality constant that is a measure of
your patience and aggressiveness and ALl is the change in
the valve position. Note that the second equation simply says
that you added the increment (positive or negative) to the
previous valve position.

. Wait a peried of time h for the water temperature to respond
to your adjustment. This wait time will probably include any
dead time and at least one time constant. The time is now
t=t_ +h, i=2 Note that you have implicitly incremented
the time index 1.

4. Sample the water at time ¢, with your fingers and go to step 2.

You would continue this loop until the error is perceived to be



with the transport of the water through the piping, followed by a
first-order-like response. The wait time b is long enough for the expi-
ration of the dead time and 99% of the time constant response.
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If you used the same strategy but had less patience and felt more
aggressive, the results might be like those shown in Fig. 11-4.

In this case, you did not wait for the full response of the tempera-
ture and your adjustment sizes were greater for the same perceived
size of the error. As a result, there was overshoot, although the desired
temperature may have been arrived at earlier than with the more con-
servative strategy of Fig. 11-3.

The control strategy fits the closed-loop structure that we have
been using in the rest of the book as shown in Fig. 11-5.

S (Set point)
Error (sensed by your fingertips)
. (r- U (Controller output/
E| Controller | process input valve position)
- (You)
Process
Y (Process output| (Showerstall) | 17 (Process input)
Temperature)
D {Disturbances) ————

Faune 11-5 The Strange Motel shower stall control strategy, block disgram.



11-3-2 Proportional-Only Control

Figure 11-8 shows the effect of removing the integral control for the
same conditions as those in Fig, 11-7. Here the control output jumps
to 50 at ¢ = 3 and stays there until the process output starts to respond
at t=5. During this period there i no control output movement
because the error does not change. When the process responds, AE is
negative and the control output backs off and moves around by a
small amount until the error stops changing. Unfortunately, when the
process output and the error stop changing, the latter is not zero.
Since there i no integral component to continue to work an the con-
stant but nonzero errar, there will be an offset between the process
output and the set point.

11-3-3  Proportional-Integral-Derivative Control
Adding derivative to Eq, 11-4 gives

ALI(t) = IEQt)+ PAE{t)+ D, AJAE(E)]

u“‘r]= u"i-l:|+ Iﬁu{rll {I ]‘5]
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11-4 Cascade Control

Figure 11-13 shows the familiar water tank in a shightly different
configuration. The source of the process input is a secondary
tank that has an input flow rate of unknown origin. The valve is
adjusted to maintain the level in the primary tank. Mow, what
would happen if there were a significant disturbance in the sec-
ondary tank? This disturbance would first cavse the flow rate to
the primary tank to vary. This flow rate variation would cause the
primary tank level to deviate from set peint. The control leop would
then adjust the valve in an attempt to bring the level back to the
set point.

The process output, namely the primary tank level, experiences a
significant deviation in response to the upstream disturbance. For the
controlled system to react to the disturbance, an error has (and will)
show up in the primary tank process output. Figure 11-14 shows the
set point being stepped at time ¢ = 1. Later on, at tfime ¢ = 30 there is a
disturbance in the secondary tank and Fig. 11-14 shows the resulting
disturbance in the primary tank level,

This problem can be addressed if a second flow-control loop is
added, as shown in Fig. 11-15. In this case, the flow rate coming into
the primary tank is controlled to a flow-rate set point generated by
the level control loop Should there be a disturbance in the second-
ary tank, it will be sensed bv the flow-rate controller and quickly cor-
rected such that there may be little or no variation in the primary tank
level.
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tank is smaller than the primary with the same process gain but with
a time constant of 1.0 time units. The flow-controller dynamics are
even quicker with a gain of unily and a time constant of 0.5 time
units. As in Fig. 11-14, there is a disturbance in the secondary tank
level at time ¢ =30 . Figure 11-17, when compared to Fig. 11-14, shows
the improvement in performance by using cascade control.

The Matlab Simulink model used to generate the simulations in
Figs. 11-14 and 11-17 is given in Fig. 11-18.

Cascade control, sometimes with several levels of embedded
master /slave structure, is widely used in industry. It is especially
effective where a secondary loop is much faster than a primary loop.

In Chap. 1, Sec. 1-7, cascade control appeared in an example pro-
cess that tended to behave like a molten glass forehearth. The master
control loop reads the glass temperatures via a thermocouple and
sends a temperature set point to the combustion zone slave controller.
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11-5 Control of White Noise—Conventional Feedback
Control versus SPC

In the 19805 there was a great rush to a relatively old concept that was
relabeled slatistical process control (SI°C). Although statisticians will
go into cardiac arrest at this description, SPC is basically an alarm
system that detects non—white noise riding on the signal of a process
variable. Most SI'C syslems are based on the so-called WECO rules
that were published by Western Electric in 1956, These rules claim
that a process is “out of control” when one or more of the following
conditions are satisfied:

1. One sample of the process output has deviated from the
nominal value (probably a sel point) by three standard
devialions.

2. Two out of three samples have deviated from the nominal by
bwao standard deviations.

3. Three out of four samples have deviated from the nominal by
one standard deviation.

4. Eight samples in succession have occurred above or below
the median line.
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11-6

Control Choices
We have stopped the deluge of different control algorithms that you
or your control engineer can choose from. This does not imply that
there are not more—there definitely are—however, | think we have
covered the “big picture” of control algorithms.

The proportional-only control algonthm was presented first in
Chap. 3 and then again in this chapter. For industrial situations it
would probably not be your first choice. However, it occurs in many
places. For example, your automobile engine coolant flow is regu-
lated by a thermaostatic valve, When the engine is cold, the thermostat
closes the valve to restrict coolant flow and allow the engine to quickly
reach a satisfactory operating temperature. As the engine heats up,
the thermostat opens the valve and allows more coolant to circulate.
The movement of the valve is proportional to the temperature of the
coolant and there really is no set point as such. There also is no his-
tory of engine temperatures available to the thermostat so there is no
integral effect that might be able to slowly work the temperature back
tor the desired value,

Chapter Eleven

The proportional-integral control algorithm is the workhorse of
the process control industry. In my opinion, it should be the first
choice. Before some more sophisticated approach is taken it should
be conclusively shown why Pl is not acceptable.

The PI tuning rules were presented in Chap. 9

T 1
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11-7 Analysis and Design Tool Choices

We started with the simple first-order process model and used an
ordinary differential equation in the confinuous time domain bo
describe s behavior. As the models became more invelved, the
Laplace transform was used to move from the continuous time
domain to the s-domain where differential equations became alge-
braic equations and life was often simpler. Laplace transtorms were
used to generate transfer functions which in turn could be used in a
block diagram algebra that opened up many new methods of design
and analysis. The dynamics of process models were shown to be
characterized by the location of poles in the s-plane.

A simple substitution allowed us to move from the Laplace s-
domain to the frequency domain where we could use concepts like
phase lag, phase margin, and gain margin to develop insight into
dealing with dynamics, both open loop and closed loop, often with-
out having to solve differential or algebraic equations.

Matrices were shown to be a compact method of dealing with
higher dimensional problems. The slate-space approach brought us
back to the time domain but presented us with an enlarged kit of
tools. Eigenvalues of certain matrices were shown to be equivalent to
the poles of transfer functions.

The movement from the continuous time domain to the discrete ime
domain was facilitated by the Z-transform where another simple substi-
tution allowed us to move to the frequency domain to develop more
insight. The state-space approach was represented in this new domain.

Finally, the Kalman filter was introduced and shown to provide a
means of estimating the state from a noisy measurement if a process
model was available. Several control approaches using the Kalman
filter and the state-space concept were presented.
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