‘T'his book 1s organised in 15 chapters.

Chapter 1 begins with an introduction to signal processing, and
provides a brief review of signal processing methodologies and
applications. The basic operations of sampling and quantisation are
reviewed in this chapter.

Chapter 2 provides an introduction to noise and distortion. Several
different types of noise, including thermal noise, shot noise, acoustic noise,
electromagnetic noise and channel distortions, are considered. The chapter
concludes with an introduction to the modelling of noise processes.

Chapter 3 provides an introduction to the theory and applications of
probability models and stochastic signal processing. The chapter begins
with an introduction to random signals, stochastic processes, probabilistic
models and statistical measures. The concepts of stationary, non-stationary
and ergodic processes are introduced in this chapter, and some important
classes of random processes, such as Gaussian, mixture Gaussian, Markov
chains and Poisson processes, are considered. The effects of transformation
of a signal on its statistical distribution are considered.

Chapter 4 is on Bayesian estimation and classification. In this chapter
the estimation problem is formulated within the general framework of
Bayesian inference. The chapter includes Bayesian theory, classical
estimators, the estimate-maximise method. the Cramér—Rao bound on the
minimum-—variance estimate, Bayesian classification, and the modelling of
the space of a random signal. This chapter provides a number of examples

on Bayesian estimation of signals observed in noise.
L |



Chapter 5 considers hidden Markov models (HMMs) for non-
stationary signals. The chapter begins with an introduction to the modelling
of non-stationary signals and then concentrates on the theory and
applications of hidden Markov models. The hidden Markov model is
introduced as a Bayesian model, and methods of training HMMs and using
them for decoding and classification are considered. The chapter also
includes the application of HMMs in noise reduction.

Chapter 6 considers Wiener Filters. The least square error filter is
formulated first through minimisation of the expectation of the squared
error function over the space of the error signal. Then a block-signal
formulation of Wiener filters and a vector space interpretation of Wiener
filters are considered. The frequency response of the Wiener filter is
derived through minimisation of mean square error in the frequency
domain. Some applications of the Wiener filter are considered, and a case
study of the Wiener filter for removal of additive noise provides useful
insight into the operation of the filter.

Chapter 7 considers adaptive filters. The chapter begins with the state-
space equation for Kalman filters. The optimal filter coefficients are
derived using the principle of orthogonality of the innovation signal. The
recursive least squared (RLS) filter, which is an exact sample-adaptive
implementation of the Wiener filter, is derived in this chapter. Then the
steepest—descent search method for the optimal filter is introduced. The
chapter concludes with a study of the LMS adaptive filters.

Chapter 8 considers linear prediction and sub-band linear prediction
models. Forward prediction, backward prediction and lattice predictors are
studied. This chapter introduces a modified predictor for the modelling of
the short—term and the pitch period correlation structures. A maximum a
posteriori (MAP) estimate of a predictor model that includes the prior
probability density function of the predictor is introduced. This chapter
concludes with the application of linear prediction in signal restoration.

Chapter 9 considers frequency analysis and power spectrum estimation.
The chapter begins with an introduction to the Fourier transform, and the
role of the power spectrum in 1dentification of patterns and structures in a
signal orocess. The chaoter considers non—parametric spectral estimation.



Chapter 10 considers interpolation of a sequence of unknown samples.
This chapter begins with a study of the ideal interpolation of a band-limited
signal, a simple model for the effects of a number of missing samples, and
the factors that affect interpolation. Interpolators are divided into two
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categories: polynomial and statistical interpolators. A general form of
polynomial interpolation as well as its special forms (Lagrange, Newton,
Hermite and cubic spline interpolators) are considered. Statistical
interpolators in this chapter include maximum a posteriori interpolation,
least squared error interpolation based on an autoregressive model,
time—frequency interpolation, and interpolation through search of an
adaptive codebook for the best signal.

Chapter 11 considers spectral subtraction. A general form of spectral
subtraction is formulated and the processing distortions that result form
spectral subtraction are considered. The effects of processing-distortions on
the distribution of a signal are illustrated. The chapter considers methods
for removal of the distortions and also non-linear methods of spectral
subtraction. This chapter concludes with an implementation of spectral
subtraction for signal restoration.

Chapters 12 and 13 cover the modelling, detection and removal of
impulsive noise and transient noise pulses. In Chapter 12, impulsive noise
is modelled as a binary—state non-stationary process and several stochastic
models for impulsive noise are considered. For removal of impulsive noise,
median filters and a method bhased on a linear nrediction model of the sional



Chapter 11 considers spectral subtraction. A general form of spectral
subtraction is formulated and the processing distortions that result form
spectral subtraction are considered. The effects of processing-distortions on
the distribution of a signal are illustrated. The chapter considers methods
for removal of the distortions and also non-linear methods of spectral
subtraction. This chapter concludes with an implementation of spectral
subtraction for signal restoration.

Chapters 12 and 13 cover the modelling, detection and removal of
impulsive noise and transient noise pulses. In Chapter 12, impulsive noise
is modelled as a binary—state non-stationary process and several stochastic
models for impulsive noise are considered. For removal of impulsive noise,
median filters and a method based on a linear prediction model of the signal
process are considered. The materials in Chapter 13 closely follow Chapter
12. In Chapter 13, a template-based method, an HMM-based method and an
AR model-based method for removal of transient noise are considered.

Chapter 14 covers echo cancellation. The chapter begins with an
introduction to telephone line echoes, and considers line echo suppression
and adaptive line echo cancellation. Then the problem of acoustic echoes
and acoustic coupling between loudspeaker and microphone systems are
considered. The chapter concludes with a study of a sub-band echo
cancellation system

Chapter 15 is on blind deconvolution and channel equalisation. This
chapter begins with an introduction to channel distortion models and the
ideal channel equaliser. Then the Wiener equaliser, blind equalisation using
the channel input power spectrum, blind deconvolution based on linear
predictive models, Bayesian channel equalisation, and blind equalisation
for digital communication channels are considered. The chapter concludes
with equalisation of maximum phase channels using higher-order statistics.
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INTRODUCTION

1.1 Signals and Information

1.2 Signal Processing Methods

1.3 Applications of Digital Signal Processing
1.4 Sampling and Analog—to-Digital Conversion

ignal processing is concerned with the modelling, detection,

identification and utilisation of patterns and structures in a signal

process. Applications of signal processing methods include audio hi-
fi, digital TV and radio. cellular mobile phones, voice recognition, vision,
radar, sonar, geophysical exploration, medical electronics, and in general
any system that is concerned with the communication or processing of
information. Signal processing theory plays a central role in the
development of digital telecommunication and automation systems, and in
efficient and optimal transmission, reception and decoding of information.
Statistical signal processing theory provides the foundations for modelling
the distribution of random signals and the environments in which the signals
propagate. Statistical models are applied in signal processing, and in
decision-making systems, for extracting information from a signal that may
be noisy, distorted or incomplete. This chapter begins with a definition of
signals, and a brief introduction to various signal processing methodologies.
We consider several key applications of digital signal processing in adaptive
noise reduction, channel equalisation, pattern classification/recognition,
audio signal coding, signal detection, spatial processing for directional
reception of signals, Dolby noise reduction and radar. The chapter concludes
with an introduction to sampling and conversion of continuous-time signals
to digital signals.
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1.1 Signals and Information

A signal can be defined as the variation of a quantity by which information
is conveyed regarding the state, the characteristics, the composition, the
trajectory, the course of action or the intention of the signal source. A signal
is a means to convey information. The information conveyed in a signal may
be used by humans or machines for communication, forecasting, decision-
making, control, exploration etc. Figure 1.1 illustrates an information source
followed by a system for signalling the information, a communication
channel for propagation of the signal from the transmitter to the receiver,
and a signal processing unit at the receiver for extraction of the information
from the signal. In general. there 1s a mapping operation that maps the
information I(t) to the signal x(r) that carries the information, this mapping
function may be denoted as T1- ] and expressed as

x(O)=TI(1)] (1.1)
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function may be denoted as 7]-] and expressed as

x(0)=T(1)] (1.1)

For example, in human speech communication, the voice-generating
mechanism provides a means for the talker to map each word into a distinct
acoustic speech signal that can propagate to the listener. To communicate a
word . the talker generates an acoustic signal realisation of the word; this
acoustic signal x(t) may be contaminated by ambient noise and/or distorted
by a communication channel. or impaired by the speaking abnormalities of
the talker, and received as the noisy and distorted signal y(f). In addition to
conveying the spoken word, the acoustic speech signal has the capacity to
convey information on the speaking characteristic, accent and the emotional
state of the talker. The listener extracts these information by processing the
signal v(7).

In the past few decades, the theory and applications of digital signal
processing have evolved to play a central role in the development of modern
telecommunication and information technology systems.

Signal processing methods are central to efficient communication, and to
the development of intelligent man/machine interfaces in such areas as

MNoise
Information ¢ 2;:[ Signal &
source . . :
Information to | Signal ) Digital Signal | Informatiol
O signal mapping Channel e Processor [ %=

Flgure 1.1 lllustration of a communication and signal processing system.
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1.2 Signal Processing Methods

Signal processing methods have evolved in algorithmic complexity aiming
for optimal utilisation of the information in order to achieve the best
performance. In general the computational requirement of signal processing
methods increases, often exponentially, with the algorithmic complexity.
However, the implementation cost of advanced signal processing methods
has been offset and made affordable by the consistent trend in recent years
of a continuing increase in the performance, coupled with a simultaneous
decrease in the cost, of signal processing hardware.

Depending on the method used. digital signal processing algorithms can
be categorised into one or a combination of four broad categories. These are
non-parametric signal processing, model-based signal processing, Bayesian
statistical signal processing and neural networks. These methods are briefly
described in the following.

1.2.1 Non-parametric Signal Processing

Non-parametric methods, as the name implies, do not utilise a parametric
model of the signal generation or a model of the statistical distribution of the
signal. The signal is processed as a waveform or a sequence of digits.
Non-parametric methods are not specialised to any particular class of
signals, they are broadly applicable methods that can be applied to any
signal regardless of the characteristics or the source of the signal. The
drawback of these methods is that they do not utilise the distinct
characteristics of the signal process that may lead to substantial
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1.2.2 Model-Based Signal Processing

Model-based signal processing methods utilise a parametric model of the
signal generation process. The parametric model normally describes the
predictable structures and the expected patterns in the signal process, and
can be used to forecast the future values of a signal from its past trajectory.
Model-based methods normally outperform non-parametric methods, since
they utilise more information in the form of a model of the signal process.
However, they can be sensitive to the deviations of a signal from the class of
signals characterised by the model. The most widely used parametric model
15 the linear prediction model, described in Chapter 8. Linear prediction
models have facilitated the development of advanced signal processing
methods for a wide range of applications such as low-bit—rate speech coding
in cellular mobile telephony, digital video coding, high-resolution spectral
analysis, radar signal processing and speech recognition.

1.2.3 Bayesian Statistical Signal Processing

The fluctuations of a purely random signal, or the distribution of a class of
random signals in the signal space, cannot be modelled by a predictive
equation, but can be described in terms of the statistical average values, and
modelled by a probability distribution function in a multidimensional signal
space. For example, as described in Chapter 8, a linear prediction model
driven by a random signal can model the acoustic realisation of a spoken
word. However, the random input signal of the linear prediction model, or
the variations in the characteristics of different acoustic realisations of the
same word across the speaking population, can only be described in
statistical terms and in terms of probability functions. Bayesian inference
theory provides a generalised framework for statistical processing of random
signals, and for formulating and solving estimation and decision-making
problems. Chapter 4 describes the Bayesian inference methodology and the
estimation of random processes observed in noise.
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1.2.4 Neural Networks

MNeural networks are combinations of relatively simple non-linear adaptive
processing units, arranged to have a structural resemblance to the
transmission and processing of signals in biological neurons. In a neural
network several layers of parallel processing elements are interconnected
with a hierarchically structured connection network. The connection weights
are trained to perform a signal processing function such as prediction or
classification. Neural networks are particularly wseful in non-linear
partitioning of a signal space, in feature extraction and pattern recognition,
and 1n decision-making systems. In some hybnd pattern recognition systems
neural networks are used to complement Bayesian inference methods. Since
the main objective of this book is to provide a coherent presentation of the
theory and applications of statistical signal processing, neural networks are
not discussed 1n this book.

1.3 Applications of Digital Signal Processing

In recent years, the development and commercial availability of increasingly
powerful and affordable digital computers has been accompanied by the
development of advanced digital signal processing algorithms for a wide
variety of applications such as noise reduction, telecommunication, radar,
sonar, video and audio signal processing, pattern recognition, geophysics
explorations, data forecasting, and the processing of large databases for the
identification extraction and organisation of unknown underlying structures
and patterns. Figure 1.2 shows a broad categonsation of some DSP
applications. This section provides a review of several key applications of
digital signal processing methods.
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Figure 1.2 A classification of the applications of digital signal processing.

where x(m) and n(m) are the signal and the noise, and m is the discrete-
time index. In some situations, for example when using a mobile telephone
in a moving car, or when using a radio communication device in an aircraft
cockpit, it may be possible to measure and estimate the instantaneous
amplitude of the ambient noise using a directional microphone. The signal
xim) may then be recovered by subtraction of an estimate of the noise from
the noisy signal.

Figure 1.3 shows a two-input adaptive noise cancellation system for
enhancement of noisy speech. In this system a directional microphone takes

Moisy signal

-.\_‘ wim) = xim) +m{m)

Moise
& r(m+T)

Signal

M
l—-

Adaptation
algorithm

&
Moise estimate #{m)

Moise Estimation Filter

Figure 1.3 Configuration of a two-microphone adaptive noise canceller.
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1.3.3 Signal Classification and Pattern Recognition

Signal classification is used in detection, pattern recognition and decision-
making systems. For example, a simple binary-state classifier can act as the
detector of the presence, or the absence, of a known waveform in noise. In
signal classification, the aim is to design a minimum-error system for
labelling a signal with one of a number of likely classes of signal.

To design a classifier; a set of models are trained for the classes of
signals that are of interest in the application. The simplest form that the
models can assume i5 a bank, or code book, of waveforms, each
representing the prototype for one class of signals. A more complete model
for each class of signals takes the form of a probability distribution function.
In the classification phase, a signal is labelled with the nearest or the most
likely class. For example, in communication of a binary bit stream over a
band-pass channel, the binary phase—shift keying (BPSK) scheme signals
the bit “1" using the waveform A, singwt and the bit “0” using —A_sina_f.
At the receiver, the decoder has the task of classifying and labelling the
received noisy signal as a “17 or a “0". Figure 1.6 illustrates a correlation
receiver for a BPSK signalling scheme. The receiver has two correlators,
each programmed with one of the two symbols representing the binary

Deecision

Correlator for symbol "1 device

/\ Corel(1)
E—
Received noisy symbol “'/
Il.r/w‘n.l Corel
: (0)
W \/\ —

Correlator for symbol "0

-||||

"1 i Carel(1) 2 Careli()

" if Carel(1 ) < Careli ()

Figure 1.6 A block diagram illustration of the classifier in a binary phase-shift keying
demodulation.
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1.3.4 Linear Prediction Modelling of Speech

Linear predictive models are widely used in speech processing applications
such as low-bit—rate speech coding in cellular telephony, speech
enhancement and speech recognition. Speech is generated by inhaling air
into the lungs, and then exhaling it through the vibrating glottis cords and
the vocal tract. The random, noise-like, air flow from the lungs is spectrally
shaped and amplified by the vibrations of the glottal cords and the resonance
of the vocal tract. The effect of the vibrations of the glottal cords and the
vocal tract is to introduce a measure of correlation and predictability on the
random variations of the air from the lungs. Figure 1.8 illustrates a model
for speech production. The source models the lung and emits a random
excitation signal which is filtered, first by a pitch filter model of the glottal
cords and then by a model of the vocal tract.

The main source of correlation in speech is the vocal tract modelled by a
linear predictor. A linear predictor forecasts the amplitude of the signal at
time m, x(m), using a linear combination of P previous samples
[xCm =10 xlm— P)] as

P‘
M(m)=" agx(m—k) (1.3)
i

where X(m) is the prediction of the signal x(m), and the vector
a’ = dy.....ap] is the coefficients vector of a predictor of order P. The

Pitch period
Wisphieshh | Glottal (pitch) MMW Vocal tract "H)‘“N“
Random |— g model | ] f——-
source | Excitation Pz Hiz) Speech

Figure 1.8 Linear predictive model of speech.
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1.3.4 Linear Prediction Modelling of Speech

Linear predictive models are widely used in speech processing applications
such as low-bit—rate speech coding in cellular telephony, speech
enhancement and speech recognition. Speech is generated by inhaling air
into the lungs, and then exhaling it through the vibrating glottis cords and
the vocal tract. The random, noise-like, air flow from the lungs is spectrally
shaped and amplified by the vibrations of the glottal cords and the resonance
of the vocal tract. The effect of the vibrations of the glottal cords and the
vocal tract 15 to introduce a measure of correlation and predictability on the
random variations of the air from the lungs. Figure 1.8 illustrates a model
for speech production. The source models the lung and emits a random
excitation signal which is filtered, first by a pitch filter model of the glotial
cords and then by a model of the vocal tract.

The main source of correlation in speech is the vocal tract modelled by a
linear predictor. A linear predictor forecasts the amplitude of the signal at
time m, x(m), using a lincar combination of P previous samples
[x(m =1, x(m— P)] as

F‘
B(m)= a,xim—k) (1.3)
k=1

where X(m) is the prediction of the signal x(m), and the vector
a’ =[a,.....ap| 1s the coefficients vector of a predictor of order P. The

Pitch period

Ity | Glottal (pitch) M-Nlr“"p\‘ Vocal tract "'Fﬁ)"’\(“.\“
-

Random | — g model |  model
source | Excitation Pz Hiz) Speech

Figure 1.8 Linear predictive model of speech.
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Figure 1.11 |llustration of a transform-based coder.

(b) A relatively low—amplitude frequency would be masked in the near
vicinity of a large—amplitude frequency and can therefore be
coarsely encoded without any andible degradation.

(c) The frequency samples are orthogonal and can be coded
independently with different precisions.

The number of bits assigned to each frequency of a signal is a vanable
that reflects the contribution of that frequency to the reproduction of a
perceptually high quality signal. In an adaptive coder, the allocation of bits
to different frequencies 15 made to vary with the time vanations of the
power spectrum of the signal.

1.3.6 Detection of Signals In Noise

In the detection of signals in noise, the aim is to determine if the observation
consists of nowse alone, or if 1t contains a signal. The noisy observation
yim) can be modelled as

vim)=bim)xim) + nim) (1.6)

where xim) is the signal to be detected, n{m) is the noise and bim) is a
binary-valued state indicator sequence such that B(m)=1 indicates the
presence of the signal x(m) and b m) =0 indicates that the signal is absent.
If the signal x(m) has a known shape, then a correlator or a matched filter
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Figure 1.12 Configuration of a matched filter followed by a threshold comparator for
detection of signals in noise.

can be used to detect the signal as shown in Figure 1.12. The impulse
response fi{m) of the matched filter for detection of a signal x(m) 1s the
time-reversed version of x(im) given by

hm)=xiN =1 -m) D<m=N-1 (1.7}

where N 1s the length of x{m) . The output of the matched filter is given by

-l
z(m)=Y him—k)y(m) (1.8)
m={

The matched filter output 15 compared with a threshold and a binary
decision is made as
1 1f zim) = threshold

bim)= 1.9
(m) 0 otherwise (1.9)

where h(m) is an estimate of the binary state indicator sequence b{m), and
it may be erroneous in particular if the signal-to—noise ratio is low. Tablel. 1
lists four possible outcomes that together b(m) and its estimate b{m) can
assume. The choice of the threshold level affects the sensitivity of the

bim) bim) Detector decision
0 0 Signal absent  Correct
0 1 Signal absent  (Missed)
1 0 Signal present  (False alarm)
I I Signal present  Correct

Table 1.1 Four possible outcomes in a signal detection problem.



23

1.4 Sampling and Analog-to—Digital Conversion

A digital signal 15 a sequence of real-valued or complex—valued numbers,
representing the fluctuations of an information bearing quantity with time,
space or some other vanable. The basic elementary discrete-time signal 1s
the unit-sample signal &(m) defined as

| m=1
o = 1.19
() 0 me0 { |

where m 1s the discrete time index. A digital signal xim) can be expressed as
the sum of a number of amplitude-scaled and time-shifted unit samples as

xim) = inkﬁ{m—kj (1.20)

k=—e=

Figure 1.17 illustrates a discrete-time signal. Many random processes, such
as speech, music, radar and sonar generate signals that are continuous in

/D\ NN

Figure 1.17 A discrete-time signal and its envelope of variation with ime.
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xim) = S ak)(m—k) (1.20)

 —

Figure 1.17 illustrates a discrete-time signal. Many random processes, such
as speech, music, radar and sonar generate signals that are continuous in

\ A\,

Figure 1.17 A discrete-time signal and its envelope of variation with time.

22 Introduction
Analog inpat
Wi TPr v lnr) wm) Digital signal xim) xm) xle}
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S— < ] ADC pocessor — — |PF —

Figure 1.18 Configuration of a digital signal processing system.
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1.4.1 Time-Domain Sampling and Reconstruction of Analog
Signals

The conversion of an analog signal to a sequence of n-bit digits consists of
two basic steps of sampling and quantisation. The sampling process, when
performed with sufficiently high speed, can capture the fastest fluctuations
of the signal, and can be a loss-less operation in that the analog signal can be
recovered through interpolation of the sampled sequence as described in
Chapter 10, The quantisation of each sample into an n-bit digit, involves
some irrevocable error and possible loss of information. However, in
practice the quantisation error can be made negligible by using an
appropriately high number of bits as in a digital audio hi-fi. A sampled
signal can be modelled as the product of a continuous-time signal xif) and a
periodic impulse train p(f) as

Sampling and Analog—to—Digital Conversion 23

Xeampiea (1) =2(t) p(1)

= 1.21
= Y x()s(t-mT,) (120

M=—on

where T is the sampling interval and the sampling function p(1) is defined
as

plty= 3 &8(t—mT,) (1.22)

M=—0=

The spectrum P(f) of the sampling function p(r) is also a periodic impulse
train given by

P(f)= Y 8(f —kF,) (1.23)

f=—ca

where F =1/T, is the sampling frequency. Since multiplication of two time-

domain signals is equivalent to the convolution of their frequency spectra
we have
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Figure 1.19 Sample-and-Hold signal modelled as impulse-train sampling followed
by convolution with a rectangular pulse.
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1.4.2 Quantisation

For digital signal processing, continuous-amplitude samples from the
sample-and-hold are quantised and mapped into s-bit binary digits. For
quantisation to n bits, the amplitude range of the signal is divided into 2=
discrete levels, and each sample is quantised to the nearest quantisation
level, and then mapped to the binary code assigned to that level. Figure 1.21
illustrates the quantisation of a signal into 4 discrete levels. Quantisation 1s a
many-to-one mapping, in that all the values that fall within the continuum of
a quantisation band are mapped to the centre of the band. The mapping
between an analog sample x,(m) and its quantised value x{m) can be

expressed as
xim)=0lx, (m)] (1.25)

where (-] is the gquantising function.
The performance of a quantiser is measured by signal-to—guantisation
noise ratio SQNR per bit. The quantisation noise is defined as

e{m)=x(m)—x,(m) (1.26)

Now consider an n-bit quantiser with an amplitude range of =V volts. The
quantisation step size 15 A=2V/2% Assuming that the quantisation noise 1s a
zero-mean uniform process with an amplitude range of +A/2 we can express
the noise power as

O Continuous—amplitude samples

xmT) ® [Discrete—amplitude samples
+V .
} = L
| - +4
v /_‘/ﬂ ]"n, B—\ frE 10 .
: Z A A—
/ F ="
vy o o

Figure 1.21 Offset-binary scalar quantisation
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2.2 White Noise

White noise i1s defined as an uncorrelated noise process with equal power at
all frequencies (Figure 2.1). A noise that has the same power at all
frequencies in the range of = would necessarily need to have infinite
power, and is therefore only a theoretical concept. However a band-limited
noise process, with a flat spectrum covering the frequency range of a band-
limited communication system, is to all intents and purposes from the point
of view of the system a white noise process. For example, for an audio
system with a bandwidth of 10 kHz, any flat-spectrum audio noise with a
bandwidth greater than 10 kHz looks like a white noise.

— - - k) A

1

Li]

-1

-3 ) . =- 1 -

0 s 0 1% 0 0 3w |
m k f
(a) (b) (e
Figure 2.1 lllustration of (a) white noise, (b) its autocorrelation, and
(c) its power spectrum.
az Moize and Distortion

The autocomrelation function of a continuous-time zero-mean white noise
- - g - .
process with a variance of &~ is a delta function given by

iy (TI=EIN(ON(t +7)]=08(1) (2.1)

The power spectrum of a white noise, obtained by taking the Fourier
transform of Equation (2.1), is given by

Pun ()= [ryy e ™ dt =g (2.2)

—iz
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The autocorrelation function of a continuous-time zero-mean white noise
- - 3 . - .
process with a variance of ¢~ is a delta function given by

i (T)=E[N(ON(t +T)]=a25(1) 2.1

The power spectrum of a white noise, obtained by taking the Fourier
transform of Equation (2.1), is given by

P ()= [y (€25 dt =62 (2.2)

—in

Equation (2.2) shows that a white noise has a constant power spectrum.

A pure white noise is a theoretical concept, since it would need to have
infinite power to cover an infinite range of frequencies. Furthermore, a
discrete-time signal by necessity has to be band-limited, with its highest
frequency less than half the sampling rate. A more practical concept is band-
limited white noise, defined as a noise with a flat spectrum in a limited
bandwidth. The spectrum of band-limited white noise with a bandwidth of B
Hz is given by

a’, |IfI=B
0, otherwise

Py (f)= (2.3)

Thus the total power of a band-limited white noise process is 280 °. The
autocorrelation function of a discrete-time band-limited white noise process
is given by

sin(2nBT k
(T,k)=2Bo" Sin(2rBT,K)

2.4)
2nBT k

TN

where T, 1s the sampling period. For convenience of notation T, is usually
assumed to be umity. For the case when T,=1/2B, 1.e. when the sampling rate
is equal to the Nyquist rate, Equation (2.4) becomes

roy (T )=2Bg 2 %‘f"”ﬂggfa ) 2.5)

In Equation (2.5) the autocorrelation function is a delta function.
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2.3 Coloured Noise

Although the concept of white noise provides a reasonably realistic and
mathematically convenient and useful approximation to some predominant
noise processes encountered in telecommunication systems, many other
noise processes are non-white. The term coloured noise refers to any
broadband noise with a non-white spectrum. For example most audio-
frequency noise, such as the noise from moving cars, noise from computer
fans, electric drill noise and people talking in the background, has a non-
white predominantly low-frequency spectrum. Also, a white noise passing
through a channel 1s “coloured™ by the shape of the channel spectrum. Two
classic varieties of coloured noise are so-called pink noise and brown noise,
shown in Figures 2.2 and 2.3.

X -
=
-
= o
-3 —
ID |. Ll
Frequency /2
(a) ()
Figure 2.2 (a) A pink noise signal and (b) its magnitude spectrum.
& Xm) |
m
LM -
ra."wﬂ;' '.-'F" * E
n'. i: L Al e E"
T !Ir- :I|; F L =
h"li‘“lul,j'.l‘, ,.* 1.'. 1FI m —
y VY - I —
Frequency K
(a) (b}

Figure 2.3 (a) A brown noise signal and (b) its magnitude spectrum.

Read about other noises Page 55 to 61
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2.10.1 Additive White Gaussian Noise Model (AWGN)

In communication theory, it is often assumed that the noise is a stationary
additive white Gaussian (AWGN) process. Although for some problems this
15 2 valid assumption and leads to mathematically convenient and useful
solutions, in practice the noise is often time-varying, correlated and non-
Gaussian. This is particularly true for impulsive-type noise and for acoustic
noise, which are non-stationary and non-Gaussian and hence cannot be
modelled using the AWGN assumption. Non-stationary and non-Gaussian
noise processes can be modelled by a Markovian chain of stationary sub-
processes as described briefly in the next section and in detail in Chapter 5.

2.10.2 Hidden Markov Model for Noise

Most noise processes are non-stationary; that is the statistical parameters of
the noise, such as its mean, vanance and power spectrum, vary with time.
Nonstationary processes may be modelled using the hidden Markov models
(HMMs) described in detail in Chapter 5. An HMM is essentially a finite-
state Markov chain of stationary subprocesses. The implicit assumption in
using HMMs for noise is that the noise statistics can be modelled by a
Markovian chain of stationary subprocesses. Note that a stationary noise
process can be modelled by a single-state HMM. For a non-stationary noise,
a multistate HMM can model the time variations of the noise process with a
finite number of stationary states. For non-Gaussian noise, a mixture
Gaussian density model can be used to model the space of the noise within
each state. In general, the number of states per model and number of
mixtures per state required to accurately model a noise process depends on

Figure 2.10 (a) An impulsive noise sequence. (b) A binary-state model of impulsive
noise.
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Figure 3.1 lllustration of deterministic and stochastic signal models: (a) a
deterministic signal model, (b) a stochastic signal model.
ximl=axim—1)—x(im-2) (3.2)
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Figure 3.2 |llustration of three realisations in the space of a random noise Nim).

Read Probability Functions Page 70+71
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3.3.3 Non-Stationary Processes

A random process 1s non-stationary 1f its distnbutions or statistics vary with
time. Most stochastic processes such as wideo signals, audio signals,
financial data, meteorological data, biomedical signals, etc., are non-
stationary, because they are generated by systems whose environments and
parameters vary over time. For example, speech 1s a non-stationary process
generated by a time-varying articulatory system. The loudness and the
frequency composition of speech changes over time, and sometimes the
change can be quite abrupt. Time-varying processes may be modelled by a
combination of stationary random models as illustrated in Figure 3.5. In
Figure 3.5(a) a non-stationary process is modelled as the output of a time-
varying system whose parameters are controlled by a stationary process. In
Figure 3.5(b) a time-varying process 15 modelled by a chain of time-
invariant states, with each state having a different set of statistics or

Expected Values of a Random Process 57

State excitation

A 4

5
{ Stationary) M.l‘ﬂ'ur'.'d"
State model | poise
[T R ¥ -rllmwm-.
Time-varving
= ) S S3
Signal signal model i ——-— oy D N
excitation Hllhjij_,r) \‘-‘_H_

(a) (b)

Figure 3.5 Two models for non-stationary processss: (a) a stationary process
drives the parameters ofa mntinuaqsly tim_e-uarg,ring model; {I:u}l a finite-state



34

3.4.4 Power Spectral Density

The power spectral density (PSD) function, also called the power spectrum,
of a random process gives the spectrum of the distribution of the power
among the individual frequency contents of the process. The power
spectrum of a wide sense stationary process X(m) 1s defined, by the Wiener—
Khinchin theorem in Chapter 9, as the Fourier transform of the
autocorrelation function:

= 3 rulk)e-i2mm (343

MR=——n=

where r(m) and Pyy(f) are the autocorrelation and power spectrum of x(m)

respectively, and f is the frequency variable. For a real-valued stationary
process, the autocorrelation is symmetric, and the power spectrum may be
written as

Pix (f) = rec(0) + 3 2r e (m)cos( 27fim) (3.46)

m=I

The power spectral density 1s a real-valued non-negative function, expressed
in units of watts per hertz. From Equation (3.43), the autocorrelation
sequence of a random process may be obtained as the inverse Fourier
transform of the power spectrum as

2
Feclim) = j Pyx (f) gf2mm g (347

-1r2

Mote that the autocorrelation and the power spectrum represent the second
order statistics of a process in the ume and frequency domains respectively.
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3.4.9 Mean-Ergodic Processes

The time-averaged estimate of the mean of a signal x(m) obtained from N
samples is given by

fiy =lr Y x(m) (3.65)

A stationary process is said to be mean-ergodic if the ume-averaged value of
an infinitely long realisation of the process is the same as the ensemble-
mean taken across the space of the process. Therefore, for a mean-ergodic
process, we have

lim E[fiy |=py (3.66)
.I"ll—:l-lm-
lim var [y |=0 (3.67)
N —pem

where u, is the “true” ensemble average of the process. Condition (3.67) is
also referred to as mean-ergodicity in the mean square error (or minimum
vanance of error) sense. The ume-averaged estimate of the mean of a signal,
obtained from a random realisation of the process, 18 itself a random
vanable, with 1s own mean, variance and probability density function. If the
number of observation samples N 1s relatively large then, from the central
limit theorem the probability density function of the estimate fi, 1s

Gaussian. The expectation of (i, is given by

66 Probability Models

N1 N— N-1
Hi, l= 'Tl_ rl’m}]=% ME [.ﬂm‘.l]=# S U =p, (3.68)

m=il

Page 85 to 104, Read other processes.



36

3.5.6 Shot Noise

Shot noise happens when there 15 randomness in a directional flow of
particles: as in the flow of electrons from the cathode to the anode of a
cathode ray tube, the flow of photons in a laser beam, the flow and
recombination of electrons and holes in semiconductors, and the flow of
photoelectrons emitted in photodiodes. Shot noise has the form of a random
pulse sequence. The pulse sequence can be modelled as the response of a
linear filter excited by a Poisson-distributed binary impulse input sequence
(Figure 3.11). Consider a Poisson-distributed binary-valued impulse process
x(f). Divide the time axis into uniform short intervals of Af such that only
one occurrence of an impulse is possible within each time interval. Let
x(mAf) be “1” if an impulse is present in the interval mAf to (m+1)Af, and
0" otherwise. For x(mAr), we have

Elximat)] = 1x P(x(mAt) = 1) +0xP(x(mdt) = 0) = AAt (3.109)
and

76 Probability Models

N ,&mm-

Figure 3.11 Shot noize is modelled as the output of a filker excited with a process.

1 P(x(mit)=1)= Alr, M=
Elx(minxnit)] = 5
1% P{x(mAt) = 1)< P{xinAt) =)= (A1), m=n

(3.110)
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BAYESIAN ESTIMATION

4.1 Bayesian Estimation Theory: Basic Definitions

4.2 Bayesian Estimation

4.2 The Estimate—Maximise Method

4.4 Cramer-Rao Bound on the Minimum Estimator Variance
4.5 Design of Mixture Gaussian Models

4.6 Bayesian Classification

4.7 Modeling the Space of a Random Process

48 Summary

ayesian estimation is a framework for the formulation of statistical

inference problems. In the prediction or estimation of a random

process from a related observation signal, the Bayesian philosophy 1s
based on combining the evidence contained in the signal with pror
knowledge of the probability distribution of the process. Bayesian
methodology includes the classical estimators such as maximum a posterior
(MAP), maximum-likelihood (ML), minimum mean square error (MMSE)
and minimum mean absolute value of error (IMAVE) as special cases. The
hidden Markov model, widely used in statistical signal processing, is an
example of a Bayesian model. Bayesian inference 1s based on minimisation
of the so-called Bayes™ nsk function, which includes a posterior model of
the unknown parameters given the observation and a cost-of-error function.
This chapter begins with an introduction to the basic concepts of estimation
theory, and considers the statistical measures that are used to quantify the
performance of an estimator. We study Bayesian estimation methods and
consider the effect of using a prior model on the mean and the variance of an
estimate. The estimate-maximise (EM) method for the estimation of a set of
unknown parameters from an incomplete observation is studied, and applied
to the mixture Gaussian modelling of the space of a continuous random
variable. This chapter concludes with an introduction to the Bayesian
classification of discrete or fimte-state signals, and the K-means clustering
method.
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4.1 Bayesian Estimation Theory: Basic Definitions

Estimation theory is concerned with the determination of the best estimate
of an unknown parameter vector from an observation signal, or the recovery
of a clean signal degraded by noise and distortion. For example, given a
noisy sing wave, we may be interested in estimating its basic parameters
(1.e. amplitude, frequency and phase), or we may wish to recover the signal
itself. An estimator takes as the input a set of noisy or incomplete
observations, and, using a dynamic model (e.g. a linear predictive model)
and/or a probabilistic model (e.g. Gaussian model) of the process, estimates
the unknown parameters. The estimation accuracy depends on the available
information and on the efficiency of the estimator. In this chapter, the
Bayesian estimation of continuous-valued parameters 15 studied. The
modelling and classification of finite-state parameters 1s covered in the next
chapter.

Bayesian theory is a general inference framework. In the estimation or
prediction of the state of a process, the Bayesian method employs both the
evidence contained in the observation signal and the accumulated prior
probability of the process. Consider the estimation of the value of a random
parameter vector 8, given a related observation vector y. From Bayes' rule
the posterior probability density function (pdf) of the parameter vector 8
giveny, fgy(@1y), can be expressed as

(vl@)fg(8)
for @1y =1 Y19Je @
Sy (y)

where for a given observation, fi{y) 1s a constant and has only a normalising
effect. Thus there are two variable terms in Equation (4.1): one term
Tygl¥l@) is the likelihood that the observation signal y was generated by the

parameter vector 8 and the second term is the prior probability of the
parameter vector having a value of 8. The relative influence of the
likelihood pdf fyg(¥l8 and the prior pdf fal@) on the posterior pdf figyl 8ly)
depends on the shape of these function, i.e. on how relatively peaked each
pdf 1s. In general the more peaked a probability density function, the more 1t
will influence the outcome of the estimation process. Conversely, a uniform
pdf will have no influence.

The remainder of this chapter is concerned with different forms of Bayesian
estimation and its applications. First, in this section, some basic concepts of
estimation theory are introduced.
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4.1.1 Dynamic and Probability Models in Estimation

Optimal estimation algorithms utilise dynamic and statistical models of the
observation signals. A dynamic predictive model captures the correlation
structure of a signal, and models the dependence of the present and future
values of the signal on its past trajectory and the input stimulus. A statistical
probability model charactenises the random fluctuations of a signal in terms
of its statistics, such as the mean and the covanance, and most completely in
terms of a probability model. Conditional probability models, in addition to
modelling the random fluctuvations of a signal, can also model the
dependence of the signal on its past values or on some other related process.

As an illustration consider the estimation of a P-dimensional parameter
vector 8=[8,,8,. ..., 8] from a noisy observation vector y=[y(0), (1), ...,
VIN-1)] modelled as

y=hi@ x.e)+n (4.2

where, as illustrated in Figure 4.1, the function k(-) with a random input e,
output x, and parameter vector 8, is a predictive model of the signal x, and n
15 an additive random noise process. In Figure 4.1, the distnbutions of the
random noise i, the random input € and the parameter vector 8 are modelled
by probability density functions, fyin). fgle), and fg(8) respectively. The pdf
model most often used 15 the Gaussian model. Predictive and statistical
models of a process guide the estimator towards the set of values of the
unknown parameters that are most consistent with both the prior distribution
of the model parameters and the noisy observation. In general, the more
modelling information used in an estimation process, the better the results,
provided that the models are an accurate characterisation of the observation
and the parameter process.

Parameter process Noise process
fo @) film)

I »

— ¥ =t+n
Excitation process e Predictive model x N ) .
felel " hg(B.x. e 2\

Figure 4.1 A random process ¥ is described in terms of a predictive model A(-),
and statistical models fgl-), figl-) and fpd-).
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Figure 4.2 lllustration of three points in the parameter space of a Gaussian process
and the associated signal spaces, for simplicity the vanances are not shown in
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Figure 4.3 |llustration of signal restoration using a parametric model of the
signal process.
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-

Figure 4.6 Sketch of a two-dimensional signal and noise spaces, and the
likelihood and posterior spaces of a noisy observation y.
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4.2 Bayeslan Estimation

The Bayesian estimation of a parameter vector & is based on the
minimisation of a Bayesian risk function defined as an average cost-of-error
function:

R (@) = FIC(6,0)]
= [, [, C6.8)fyp (50) dy d6 (4.18)

- -‘-gLr I:"_"EEA’E1"I-JIL-EI1I" (6 |j'jf1-' fj':' dj e

where the cost-of-error function C(@,8) allows the appropriate weighting of

the various outcomes to achieve desirable objective or subjective properties.
The cost function can be chosen to associate a high cost with outcomes that
are undesirable or disastrous. For a given observation vector y, f{y) 15 a

constant and has no effect on the risk-minimisation process. Hence Equation
(4.18) may be written as a conditional risk function:

R(@1y)=[ COH)fay©ly)do (4.19)

The Bayesian estimate obtained as the minimum-risk parameter vector is
given by

6 puyesan = arg min® (6 | y) = arg min [ [,C68)for @ u:me] (4.20)
a 8

Using Bayes’ rule, Equation (4.20) can be written as

Bayesian = arg min [ [,C6.6)fve (y16)fe {E}dﬂ] 4.21)
;]
A @iy
C(6,0)
|
|
|
|
-
Opap 8

Figure 4.7 lllustration of the Bayesian cost function for the MAP estimate.

Page 121 to 128 Other estimation
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4.3 The Estimate—-Maximise (EM) Method

The EM algorithm 1s an iterative hkelihood maximisation method with
applications 1n blind deconvolution, model-based signal 1nterpolation,
spectral estimation from noisy observations, estimation of a set of model
parameters from a training data set, etc. The EM is a framework for solving
problems where it 1s difficult to obtain a direct ML estimate either because
the data is incomplete or because the problem 1s difficult.

To define the term incomplete data, consider a signal x from a random

process X with an unknown parameter vector @ and a pdf fy.glx:8). The
notation fy. g(x;8) expresses the dependence of the pdf of X on the value of

the unknown parameter 8. The signal x 1s the so-called complete data and
the ML estimate of the parameter vector ® may be obtained from fy. glx:8).
Now assume that the signal x goes through a many-to-one non-invertible
transformation (e.g. when a number of samples of the vector x are lost) and
15 observed as y. The observation y 1s the so-called incomplete data

Maximisation of the likelihood of the incomplete data, fy g(y:8), with

respect to the parameter vector @ is often a difficult task, whereas
maximisation of the hkelihood of the complete data fy.glx:8) 15 relatively

easy. Since the complete data 15 unavailable, the parameter estimate is
obtained through maximisation of the coaditional expectation of the log-
likelihood of the complete data defined as

Elln fy g (x:0)y]= J.fxrr.ﬁ (x|y:8)Infyg(x:0)dx (4.86)
X

In Equation (4.86). the computation of the term fy.glxly;8) requires an

estimate of the unknown parameter vector 8. For this reason, the expectation
of the likelihood function is maximised iteratively starting with an imtial

estimate of 8, and updating the estimate as described in the following.

“Complete data™ “Incomplete data™
. "
S]gnaw]_lﬂ_lmctss X Mon-invertable '
S ) -
transformation
parameter & fxﬂ"t'r;ﬂj fra(y.0)

Figure 4.14 lllustration of transformation of complete data to incomplete data.
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HIDDEN MARKOV MODELS

5.1 Statistical Models for Non-Stationary Processes

5.2 Hidden Markov Models

5.3 Training Hidden Markov Models

5.4 Decoding of Signals Using Hidden Markov Models

5.5 HMM-Based Estimation of Signals in Moise

5.6 Signal and Noise Model Combination and Decomposition
5.7 HMM-Based Wiener Filters

5.8 Summary

of non-stationary signal processes such as speech signals, image

sequences and tme-varying noise. An HMM models the time
varations (and/or the space variations) of the statistics of a random process
with a Markovian chain of state-dependent stationary subprocesses. An
HMM is essentially a Bayesian finite state process, with a Markovian prior
for modelling the transitions between the states, and a set of state probability
density functions for modelling the random variations of the signal process
within each state. This chapter begins with a bnef introduction to
continuous and fimite state non-stationary models, before concentrating on
the theory and applications of hidden Markov models. We study the vanous
HMM structures, the Baum—Welch method for the maximum-likelihood
training of the parameters of an HMM, and the vse of HMMs and the
Viterbi decoding algorithm for the classification and decoding of an
unlabelled observation signal sequence. Finally, applications of the HMMs
for the enhancement of noisy signals are considered.

l I idden Markov models (HMMs) are used for the statistical modelling
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Figure 5.1 lllustration of a two-layered model of a non-stationary process.

5.1 Statistical Models for Non-Stationary Processes

A non-stationary process can be defined as one whose statistical parameters
vary over time. Most “naturally generated” signals, such as audio signals,
image signals, biomedical signals and seismic signals, are non-stationary, in
that the parameters of the systems that generate the signals, and the
environments in which the signals propagate, change with time.

A non-stationary process can be modelled as a double-layered
stochastic process, with a hidden process that controls the tme vanations of
the statistics of an observable process, as illustrated in Figure 5.1. In
general, non-stationary processes can be classified into one of two broad
categories:

(a) Continuously variable state processes.
(b) Finite state processes.
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Statistical Models for Mon-Stationary Processes 145
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(b)
Figure 5.2 {a) A continuously variable state AR process. (b) A binary-state AR

process.

parameters of the non-stationary AR model. For this model, the observation
signal equation and the parameter state equation can be expressed as

xim) = almixim—1)+e(m) Ohbservation equation i5.1)
alm)=Balm —l}+&(m) Hidden state cquation (5.2)

where a(m) is the time-varying coefficient of the observable AR process and
B is the coefficient of the hidden state-control process.

A simple example of a finite state non-stationary model is the binary-
state autoregressive process illustrated in Figure 5.2(b), where at each time
instant a random switch selects one of the two AR models for connection to
the output terminal. For this model, the output signal x(m) can be expressed
as

x(m)=5(m)xy(m)+s(m)x, (m) (3.3)

where the binary switch s(m) selects the state of the process at time m, and
¥(m) denotes the Boolean complement of s(m).
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Figure 5.4 A three-state ergodic HMM strocture.
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5.2.3 Parameters of a Hidden Markov Model
A hidden Markov model has the following parameters:

Number of states N. This 1s vsually set to the total number of distinct, or
elementary, stochastic events in a signal process. For example, in
modelling a binary-state process such as impulsive noise, N is set to 2,
and 1n isolated-word speech modelling N 1s set between 5 to 10,

State transition-probability matrix A={a; ij=1, .. N}. This provides a
Markovian connection network between the states, and models the

variations in the duration of the signals associated with each state. For
a left-right HMM (see Figure 3.5}, a;=0 for i>j, and hence the

transition matrix A 1s upper-triangular.

State observation vectors { ;. . ... gy (=1, ..., N}. For each state a set

of M prototype vectors model the centroids of the signal space
associated with each state.

State observation vector probability model. This can be either a discrete
model composed of the M prototype vectors and their associated
probability mass function (pmf) P={P{-); i=1, ..., N,j=1,... M}, or it
may be a continuous (usually Gaussian) pdf model F={f(-): i=1, ...,
N, j=1, ... M}.

Initial state probability vector m=[m, m2, ..., mxl.
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A

Hy M,

Figure 5.7 A mixture Gaussian probability density function.

5.2.5 State Transition Probabilities

The first-order Markovian property of an HMM entails that the transition
probability to any state s{f) at time ¢ depends only on the state of the process
at time -1, s(t-1), and 1s independent of the previous states of the HMM.
This can be expressed as

Prob(s(ty = jls(t—1)=i s(t=2)=k,._s(t—N)y=I)

=Prob(s(t)= j|s(t - 1) =i)=a; (3.7)
/" Speech
'\_R_uu
Moisy speech Specch
Noisy speech Hh M= states Speech
o Model State —»|  Wiener [
O R N |
combination decomposition ——m|  filter |

/,i X — [} o

Figure 5.12 Outline configuration of HMM-based noisy speech recognition and

enhancement.
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5.6.2 Decomposition of State Sequences of Signal and Noise

The HMM-based state decomposition problem can be stated as follows:
given a noisy signal and the HMMs of the signal and the noise processes,
estimate the underlying states of the signal and the noise.

HMM state decomposition can be obtained using the following method:

(a) Given the noisy signal and a set of combined signal and noise
models, estimate the maximum-likelihood (ML) combined noisy

HMM for the noisy signal.
{b) Obtain the ML state sequence of from the ML combined model.

{c) Extract the signal and noise states from the ML state sequence of the
ML combined noisy signal model.

iy, Ay A3 By

§ 6 9

Speech model

Noisy speech model

Figure 5.13 Outline configuration of HMM-based noisy speech recognition and
enhancement. 5;is a combination of the state | of speech with the state J of noise.
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5.7 HMM-Based Wiener Filters

The least mean square error Wiener filter 15 derived in Chapter 6. For a
stationary signal x(m), observed in an additive noise n(m), the Wiener filter
equations in the time and the frequency domains are derived as :

Ly ={Rrx +Hﬂl‘! }_Irx.r {5.55)
and
, P.(f)
Wif)i= L (5.56)
d P};:ff]""ﬂrwf}r]'
HMI-Based Wiener Filters 173
Signal HMM MNoise HMM

¢

v

Noisy Signal ML Model Estimation and
O—» L
State Decomposition

PH[ _il'} H

H"i_,lrl:

Pye (1)
P (F14 Py ()

* Wiener Filler Sequence

Figure 5.14 llustrations of HMMs with state-dependent Wiener filters.
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WIENER FILTERS

6.1 Wiener Filters: Least Square Error Estimation

6.2 Block-Data Formulation of the Wisner Filtar

6.3 Interpretation of Wiener Filters as Projection in Vector Space
6.4 Analysis of the Least Mean Square Error Signal

6.5 Formulation of Wienar Filters in the Frequency Domain

6.6 Some Applications of Wiener Filters

6.7 The Choice of Wiener Filter Order

6.8 Summary

iener theory, formulated by Norbert Wiener, forms the

foundation of data-dependent linear least square error filters.

Wiener filters play a central role in a wide range of applications
such as linear prediction, echo cancellation, signal restoration, channel
equalisation and system identification. The coefficients of a Wiener filter
are calculated to minimise the average squared distance between the filter
output and a desired signal. In its basic form, the Wiener theory assumes
that the signals are stationary processes. However, if the filter coefficients
are periodically recalculated for every block of N signal samples then the
filter adapts itself to the average characteristics of the signals within the
blocks and becomes block-adaptive. A block-adaptive (or segment
adaptive) filter can be uvsed for signals such as speech and image that may
be considered almost stationary over a relatively small block of samples. In
this chapter, we study Wiener filter theory, and consider alternative
methods of formulation of the Wiener filter problem. We consider the
application of Wiener filters in channel equalisation, time-delay estimation
and additive noise reduction. A case study of the frequency response of a
Wiener filter, for additive noise reduction, provides useful insight into the
operation of the filter. We also deal with some implementation issues of
Wiener filters.
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6.1 Wiener Filters: Least Square Error Estimation

Wiener formulated the continuous-time, least mean square error, estimation
problem in his classic work on interpolation, extrapolation and smoothing
of ume series (Wiener 1949). The extension of the Wiener theory from
continuous time to discrete time 1s simple, and of more practical use for
implementation on digital signal processors. A Wiener filter can be an
infinite-duration impulse response (IIR) filter or a finite-duration impulse
response (FIR) filter. In general, the formulation of an IR Wiener filter
results in a set of non-linear equations, whereas the formulation of an FIR
Wiener filter results in a set of linear equations and has a closed-form
solution. In this chapter, we consider FIR Wiener filters, since they are
relatively simple to compute, inherently stable and more practical. The main
drawback of FIR filters compared with IIR filters is that they may need a
large number of coefficients to approximate a desired response.

Figure 6.1 illustrates a Wiener filter represented by the coefficient vector w.
The filter takes as the input a signal y(m), and produces an output signal
x(m), where x(m) is the least mean square error estimate of a desired or

target signal x(m). The filter input—output relation is given by

P
(m)= Zwk vim—-k)
k=0 (6.1)

=1.|,!TJ;|

where m is the discrete-time index, yT=[v(m), vim-1), ..., vim—P-1)] is the
filter input signal, and the parameter vector wTi=[w, w,, ..., wp_,] 1s the
Wiener filter coefficient vector. In Equation (6.1), the filtening operation is
expressed in two alternative and equivalent forms of a convolutional sum
and an inner vector product. The Wiener filter error signal, e(m) is defined
as the difference between the desired signal x(m) and the filter output signal
x(m):
e(m)=x(m)—x(m)

=x(m)-—w'y 6-2)

In Equation (6.2), for a given input signal wm) and a desired signal x(m),
the filter error e(m) depends on the filter coefficient vector w.
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FIR Wiener Filter
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xfm)

Figure 6.1 lllustration of a Wiener filter structure.

To explore the relation between the filter coefficient vector w and the
error signal e(m) we expand Equation (6.2) for N samples of the signals
x(m) and y(m):

e )

el

e(2) =

N -1}
!

i

Eali}]
Xila

iy

XN -1}

[ vio)
Vil)

- ¥y

VIN-1)

¥i-1)
yim)

vil

V(N -2)

¥(-2)
yi-1)

¥

ViN-3)

¥il-P) )

yi2-F)

V{i-P)

YN -P) )

In a compact vector notation this matrix equation may be writien as

e=x-Yw

(wo )
W

Wa

Wpy )
(6.3)

(6.4)

where e is the error vector, x is the desired signal vector, ¥ is the input
signal matrix and YW =X is the Wiener filter output signal vector. It is

assumed that the P initial input signal samples [v(—1), . . ., W—P-1)] are
either known or set to zero.

L4 ™

T s Rt R S |

i "
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194 Wiener Filters
&

a A

=3

b Signal - 1.0

< A T i Noise

u —a——  Wiener filter =

= =

o =

= 5

= B

" b

7 =
0.0

Frequency i

Figure 6.5 lllustration of the vanation of Wiener frequency response with signal
apectrum for additive white noise. The Wiener filter response broadly follows the
signal spectrum.

Y(f)=X()+N(f) (6.49)

where X(f) and N(f) are the signal and noise spectra. For a signal observed
in additive random noise, the frequency-domain Wiener filter 1s obtained as

P ()
Wif)= hL .50
D=5+ PaD o

where Pyylf) and Py if) are the signal and noise power specira. Dividing
the numerator and the denominator of Equation (6.50) by the noise power
spectra Py, (f) and substituting the variable SNR(f)=Px( )/ Papdf) yields

A Magnitude Signal

] Magnitwde
— MNoise

Owverapped spectra

Sepamble spactra

M =

{a) Frequency ib) Frequency

Figure 6.6 lllustration of separability: (a) The signal and noise spectra do not
averlap, and the signal can be recovered by a low-pass filter; (b) the signal and
noise spectra overlap, and the noise can be reduced but not completely removed.
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noise mim)

Distorti ualiser
o KL Vim) % x(m)

GE?”___ Hrﬁ_l{\/_\ _""Cb"_-" H'uri'\J\/r |

f J

Figure 6.7 lllustration of a channel model followed by an equaliser.

Py (FYH(f)
Py (COHF) + Py ()

Wif)= (6.62)

nj(m) N
x(m) vi{m) ximi)
—®= hjim) “:E)_.. wilml -

rrgfm}/&\ R
xfm) y2im) xim)
— = fi2im) —--.d_— e w2m)  —
AgElm) N
xim) yE(m) xfm)
hgiml  —=-{—1 wgim) -

Figure 6.8 lllustration of a multichannel system where Wiener filters are used to
time-align the signals from different channels.

P-1
e(m)=y,(m)=> w,y,(m)

h=0 (6.65)

Pl P-]
= [Axim— D)=y w; _run}]+[ > wyn, (m) ]+ n. (m)

k=0 k=0
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Muoisy signal Xir=Yiri-No
“ Moisy signal v e X(f)
@ 1 <pectrum estimator - Wifl= = #
¥ W | Wiener
] coefficient
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o | Detector

I —p| Moise spectrum
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Figure 6.9 Configuration of a system for estimation of frequency Wiener filter.

The Choice of Wiener Filter Order 201
Yifi)y
—=| HPHER)
wl,
_ yim)
]
¥ 1

BPFifa)

Figure 6.10 A filter-bank implementation of a Wiener filter.

Other Filters
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Chapter 7 Adaptive Filter Page 225 to 246

8

LINEAR PREDICTION MODELS

8.1 Linear Prediction Coding

8.2 Forward. Backward and Lattice Predictors

8.3 Shori-term and Long-Term Linear Predictors

8.4 MAP Estimation of Predictor Coefficients

8.5 Sub-Band Linear Prediction

B.6 Signal Restoration Using Linear Prediction Models
B.7T Summary

inear prediction modelling is used in a diverse area of applications,

such as data forecasting, speech coding, video coding, speech

recognition, model-based  spectral  analysis, model-based
interpolation, signal restoration, and impulse/step event detection. In the
statistical literature, linear prediction models are often referred to as
autoregressive (AR) processes. In this chapter, we introduce the theory of
linear prediction modelling and consider efficient methods for the
computation of predictor coefficients. We study the forward, backward and
lattice predictors, and consider vanious methods for the formulation and
calculation of predictor coefficients, including the least square error and
maximum a posteriort methods. For the modelling of signals with a quasi-
periodic structure, such as voiced speech, an extended linear predictor that
simultaneously utilizes the short and long-term correlation structures is
introduced. We study sub-band linear predictors that are particularly useful
for sub-band processing of noisy signals. Finally, the application of linear
prediction 1n enhancement of noisy speech 15 considered. Further
applications of linear prediction models in this book are in Chapter 11 on
the interpolation of a sequence of lost samples, and in Chapters 12 and 13
on the detection and removal of impulsive noise and transient noise pulses.
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(&)
Figure 8.1 The concentration or spread of power in frequency indicates the
predictable or random character of a signal: (a) a predictable signal;
{b) a random signal.
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Linear Prediction Coding 229

Pitch period

'

. -
. o itc | ¥ | Vocal trac
g | G| oy ocarmer ] )

Random | gee model model  —i—
source | Excitation Pyiz) Hiz) Speech

Figure 8.2 A source—filter model of speech production.

The pitch filter models the vibrations of the glottal cords, and generates a
sequence of quasi-periodic excitation pulses for voiced sounds as shown in
Figure 8.2. The pitch filter model is also termed the “long-term predictor”
since it models the correlation of each sample with the samples a pitch
period away. The main source of correlation and power in speech is the
vocal tract. The vocal tract 1s modelled by a linear predictor model, which is
also termed the “short-term predictor”, because it models the correlation of
each sample with the few preceding samples. In this section, we study the
short-term linear prediction model. In Section 8.3, the predictor model is
extended to include long-term pitch period correlations.

A linear predictor model forecasts the amplitude of a signal at time m,
x(m), using a linearly weighted combination of P past samples [x(m-1),
a(m=2), ..., xim—P)] as

P
Xm)= azx(m—k) (8.1)
k=1

where the integer variable m is the discrete time index, X(m) is the
prediction of x(m), and a; are the predictor coefficients. A block-diagram
implementation of the predictor of Equation (8.1) 1s illustrated in Figure 8.3.

The prediction error e(m), defined as the difference between the actual
sample value x{im) and its predicted value x(m), is given by

em) = xim) — x(m)
(8.2)

_FI
= x(m) = agx(m—k)
k=1
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[mpuat x(m} m-1) m-2) xim-F

1
a=Ryre Tt ——%—-———————

Linzar predictor

M

L

P im)
Figure 8.3 Block-diagram illustration of a linear predictor.

For information-bearing signals, the prediction error e{m) may be regarded
as the information, or the innovation, content of the sample xim). From
Equation (8.2) a signal generated, or modelled, by a linear predictor can be
described by the following feedback equation

F
xim) = ¥ axim—k) + e(m) (8.3)
k=1

Figure 8.4 illustrates a linear predictor model of a signal x{m). In this model,
the random input excitation (i.e. the prediction error) is elm)=Gu(m), where
w(m) is a zero-mean, unit-variance random signal, and G, a gain term, is the
square root of the vanance of e(m):

i.'3={'JE|f3Ur:ﬂl}”2 (8.4)

elm) xim)

{:?—p—j G —FC_TH‘ ' >
Wbt f M KFIJHEIM‘L

xim—F) olm-2) aim—1)

Figure 8.4 lllustration of a signal generated by a linear predictive model.



62

8.6.1 Frequency-Domain Signal Restoration Using Prediction
Models

The following algorithm 1s a frequency-domain implementation of the linear
prediction model-based restoration of a signal observed in additive white
noise.

Initialisation: Set the initial signal estimate to noisy signal £;=y,
For iterations i = 0, 1, ...

Step 1 Estimate the predictor parameter vector a.:

-

a.i)=(XT%. ' (%7%,) (8.92)

i I

Step 2 Calculate an estimate of the model gain & using the Parseval's
theorem:
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(:'!2 N-1 . .
—Z 7= Z}"mﬂ—ﬁ-’cr,; (8.03)
Lo |
i
k=1 ~

where a; are the coefficient estimates at iteration i, and N t},zl is the
energy of white noise over N samples.

Step 3 Calculate an estimate of the power spectrum of speech model:

&2

ﬁx;xj- (f)= — (8.04)

_F'
- ] N
k=l

Step 4 Calculate the Wiener filter frequency response:

Py, ()
Py x, ()+Py.p. ()

Wi (f) (8.95)

where Py (f)= @2 is an estimate of the noise power spectrum.

Step 5 Filter the magnitude spectrum of the noisy speech as
Xin(SWNY () (8.96)

Restore the time domain signal X;., by combining X; L) with the
phase of noisy signal and the complex signal to time domain.

Step 6 Goto step | and repeat until convergence, or for a specified number
of iterations.

Figure 8.13 illustrates a block diagram configuration of a Wiener filter using
a linear prediction estimate of the signal spectrum. Figure 8.14 illustrates the
result of an iterative restoration of the spectrum of a noisy speech signal.
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Figure 8.13 lterative signal restoration based on linear prediction model of speech.
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Figure 8.14 lllustration of restoration of a noisy signal with iterative linear prediction
based method.
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Py, (f)
Py (f)

_ gxx  |Ava "-*f“-'|"r
|f"'-:::_ltf\.a"ril|2 3

Weif)=

(8.98)

where Py, (f) and Py, (f) are the power spectra of the clean signal and the

noisy signal for the kP subband respectively. From Equation (8.98) the
square-root Wiener filter 15 given by

] -'""
WU2(f) = SX [Ars ) (8.00)

- |‘41'.k Ur?| gy

The linear prediction Wiener filter of Equation (8.99) can be implemented in
the time domain with a cascade of a linear predictor of the clean signal,
followed by an inverse predictor filter of the noisy signal as expressed by
the following relations (see Figure 8.15):

P

e (m)=Y ay (z fm—i}+i—x}=g () (8.100)
i=l ¥
P
I (m=Y ay (Dzp (m—i) (8.101)

i=0

where X, (m)is the restored estimate of x(m) the clean speech signal and
Zim) is an intermediate signal.

1
A

r
Iy :m'l:E B (g lm —iH ¥ ()
L1

Restorned
signal

A

’
"i"x [m)= oy -:Tl.zt {m—a)
)y

Figure 8.15 A cascade implementation of the LP sguared-root Wisner filter.
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9.1 Power Spectrum and Correlation

The power spectrum of a signal gives the distribution of the signal power
among various frequencies. The power spectrum is the Fourier transform of
the correlation function, and reveals information on the correlation structure
of the signal. The strength of the Fourier transform in signal analysis and
pattern recognition is its ability to reveal spectral structures that may be used
to charactenise a signal. This 15 illustrated in Figure 9.1 for the two extreme
cases of a sine wave and a purely random signal. For a peniodic signal, the
power is concentrated in extremely narrow bands of frequencies, indicating
the existence of structure and the predictable character of the signal. In the
case of a pure sine wave as shown in Figure 9.1(a) the signal power is
concentrated in one frequency. For a purely random signal as shown in
Figure 9.1(b) the signal power is spread equally in the frequency domain,
indicating the lack of structure in the signal.

In general, the more comrelated or predictable a signal, the more
concentrated its power spectrum, and conversely the more random or
unpredictable a signal, the more spread its power spectrum. Therefore the
power spectrum of a signal can be used to deduce the existence of repetitive
structures or correlated patterns in the signal process. Such information is
crucial in detection, decision making and estimation problems, and in
systems analysis.

A xir) Pyl
—] > T >
t f
(a)
A0 T Pyylf)
»
I f
(b)

Figure 9.1 The concentration/spread of power in frequency indicates the
correlated or random character of a signal: (a) a predictable signal, (b) a
random signal.
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Figure 9.2 Fourier basis functions: (a) real and imaginary parts of a complex
sinusoid, (b) vector representation of a complex exponential.

9.2 Fourier Series: Representation of Periodic Signals

The following three sinusoidal functions form the basis functions for the
Fourier analysis:

X, (t)=cosmyt (9.1)
X5 (1) =sinwgt (9.2)

X3 (1) = cosyt + jsinagt = e’ (9.3)
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Associated with the complex exponential function e'® is a set of
harmonically related complex exponentials of the form

[1,e5/000 o*i2000 GEi30h (9.5)

The set of exponential signals in Equation (9.5) are periodic with a
fundamental frequency wy=2n/T =2nF;, where T, 1s the period and F; 1s the

fundamental frequency. These signals form the set of basis functions for the
Fourier analysis. Any linear combination of these signals of the form

Y cpedient (9.6)

k=—r=

is also periodic with a period T),. Conversely any periodic signal x(#) can be
synthesised from a linear combination of harmonically related exponentials.
The Fourier series representation of a periodic signal is given by the
following synthesis and analysis equations:

Fourner Transform: Representation of Aperiodic Signals 267
1) = szfﬂ‘“ﬂ’ k=-+ —1L0L... (synthesis equation) (9.7
k=—on
T2 _
Ck=r- I_rme‘f‘r‘“”‘ dr k=..-10l... (analysis equation) (9.8)

0 w2
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Figure 9.3 (a) A penodic pulse train and its line spectrum. (b) A single pulse from
the penodic train in (a) with an imagined “off” duration of infinity; its spectrum is
the envelope of the spectrum of the perodic signal in (a).

The Founer synthesis and analysis equations for aperiodic signals, the so-
called Fourier transform pair, are given by

x(t) = [ X (f e’ df (9.9)
X(f)= [x(ne > di (9.10)

Note from Equation (9.10), that X (f)may be interpreted as a measure of

the correlation of the signal x(t) and the complex sinusoid e ¥
The condition for existence and computability of the Fourier transform
integral of a signal x(f) 1s that the signal must have finite energy:

[ o) dr < (9.11)
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Figure 9.4 lllustration of the OFT as a parallel-input, parallel-output processor.

9.3.1 Discrete Fourler Transform (DFT)

For a finite-duration, discrete-time signal x(im) of length N samples, the
discrete Fourier transform (DFT) 15 defined as N umformly spaced spectral
samples

-1 . .
X(k)= ¥ x(mye/ZNImk g g N1 (9.12)
m=i)

(see Figure9.4). The inverse discrete Fourier transform (IDFT) is given by

N-1 N
x(m) =%EXHIJE*'““”‘W . m=0,... N-1 (9.13)
k=0

9.2.2 Energy-Spectral Density and Power-Spectral Density

Energy, or power, spectrum analysis i1s concerned with the distribution of
the signal energy or power in the frequency domain. For a deterministic
discrete-time signal, the energy-spectral density 1s defined as

~+

ixtmje ~J2mfm

M=—==

X ()= (9.15)

The energy spectrum of x(m) may be expressed as the Fourier transform of
the autocorrelation function of x(m):

X =X (X (f)

fl=—o=

(9.16)
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Page 293 to 310 Several methods to perform spectral estimation

INTERPOLATION

10.1  Introduction

10.2 Polynomial Interpolation
10.3 Model-Based Interpolation
10.4 Summary

nterpolation is the estimation of the unknown, or the lost, samples of a

signal using a weighted average of a number of known samples at the

neighbourhood points. Interpolators are used in vanous forms in most
signal processing and decision making systems. Applications of
interpolators include conversion of a discrete-time signal to a continuous-
time signal, sampling rate conversion in multirate communication systems,
low-bit-rate speech coding, up-samphng of a signal for improved graphical
representation, and restoration of a sequence of samples irrevocably
distorted by transmission errors, impulsive noise, dropouts, etc. This
chapter begins with a study of the basic concept of ideal interpolation of a
band-limited signal, a simple model for the effects of a number of missing
samples, and the factors that affect the interpolation process. The classical
approach to interpolation 15 to construct a polynomial that passes through
the known samples. In Section 10.2, a general form of polynomal
interpolation and its special forms, Lagrange, Newton, Hermite and cubic
spline interpolators, are considered. Optimal interpolators utilise predictive
and statistical models of the signal process. In Section 10.3, a number of
model-based interpolation methods are considered. These methods include
maximum a posterion interpolation, and least square error interpolation
based on an autoregressive model. Finally, we consider time—{requency
interpolation, and interpolation through searching an adaptive signal
codebook for the best-matching signal.
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10.1.1 Interpolation of a Sampled Signal

A common application of interpolation is the reconstruction of a
continuous-time signal x(f) from a discrete-time signal x{m). The condition
for the recovery of a continuous-time signal from its samples is given by the
Nyquist sampling theorem. The Nyquist theorem states that a band-limited
signal, with a highest frequency content of F. (Hz), can be reconstructed
from its samples if the sampling speed is greater than 2F. samples per
second. Consider a band-limited continuous-time signal x(f), sampled at a
rate of F; samples per second. The discrete-time signal x(m) may be

expressed as the following product:

b sincimf i)

‘.nrj III \II -
Time f
- | | | | — lll

VDUL_I@%TN 7 N

time

P » Low pass filter
XA {Sinc interpolator)

Frequency /K-lﬂ
AW/ \NWAN 1. N

o ] F )2 freq -FJ2 0 Fn freq —F20 FS/1  freq

Figure 10.1 Reconstruction of a continuous-time signal from its samples. In
frequency domain interpolation is equivalent to low-pass filtering.
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Introduction 299
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Figure 10.2 lustration of up-sampling by a factor of 3 using a two-stage process
of zero-insertion and digital low-pass filtering.

xim)=x(t) p(t)= > x(t)&(t—mT,) (10.1)

mM=—e=

where p(1)=E8(t—mT,) is the sampling function and T,=1/F, is the sampling
interval. Taking the Fourser transform of Equation (10.1), it can be shown
that the spectrum of the sampled signal is given by

X (H)=X(f@FP(f)= 3 X(f+4,) (10.2)

k=—t=

where X(f) and P{f) are the spectra of the signal x(f) and the sampling
function p(r) respectively, and * denotes the convolution operation.
Equation (10.2), illustrated in Figure 10.1, states that the spectrum of a
sampled signal 1s composed of the original base-band spectrum Xif) and the
repetitions or images of X{f) spaced uniformly at frequency intervals of
F;=1T;. When the sampling frequency 1s above the Nyquist rate, the base-
band spectrum X(f) is not overlapped by its images Xi{f+kF;), and the
original signal can be recovered by a low-pass filter as shown in Figure
10.1. Hence the ideal interpolator of a band-limited discrete-time signal 1s
an 1deal low-pass filter with a sinc impulse response. The recovery of a
continuous-time signal through sinc interpolation can be expressed as

xt)= 3 x(m)T, . sinclxf, (1 —mT,)] (10.3)

f=—on

In practice, the sampling rate F, should be sufficiently greater than 2F,., say
25F. in order to accommodate the transition bandwidth of the
interpolating low-pass filter.



74

10.1.2 Digital Interpolation by a Factor of /

Applications of digital interpolators include sampling rate conversion in
multirate communication systems and vp-sampling for improved graphical
representation. To change a sampling rate by a factor of V=I/D) (where [ and
D are integers), the signal is first interpolated by a factor of I, and then the
interpolated signal 1s decimated by a factor of .

Consider a band-limited discrete-time signal x{m) with a base-band
spectrum X(f) as shown in Figure 100.2. The sampling rate can be increased
by a factor of I through interpolation of /-1 samples between every two
samples of x(m). In the following it is shown that digital interpolation by a
factor of / can be achieved through a two-stage process of (a) insertion of /-
| zeros in between every two samples and (b) low-pass filtering of the zero-
inserted signal by a filter with a cutoff frequency of F /21, where F, is the
sampling rate. Consider the zero-inserted signal x.(m) obtained by inserting

I-1 zeros between every two samples of xim) and expressed as

A2 m=0xr1zx21..
X, (m)= ! (10.4)

0, otherwise

The spectrum of the zero-inserted signal 15 related to the spectrum of the
original discrete-time signal by

X ()= ¥ x (mye >

M=—eoa

= z x(m)e 2 (10.5)

Hl=—o=

= X(Lf)

Equation (10.5) states that the spectrum of the zero-inserted signal Xf) is a

frequency-scaled version of the spectrum of the original signal Xif). Figure
10.2 shows that the base-band spectrum of the zero-inserted signal is
composed of I repetitions of the based band spectrum of the original signal.
The interpolation of the zero-inserted signal 1s therefore equivalent to
filtering out the repetitions of X(f) in the base band of X:{f), as illustrated in

Figure 10.2. Note that to maintain the real-time duration of the signal the
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10.1.4 The Factors That Affect Interpolation Accuracy

The interpolation accuracy is affected by a number of factors, the most
important of which are as follows:

{a) The predictability, or correlation structure of the signal: as the
correlation of successive samples increases, the predictability of a
sample from the neighbouring samples increases. In general,
interpolation improves with the increasing correlation structure, or
equivalently the decreasing bandwidth, of a signal.

{b) The sampling rate: as the sampling rate increases, adjacent samples
become more correlated, the redundant information increases, and
interpolation improves.

(c) Non-stationary characteristics of the signal: for time-varying signals
the available samples some distance in time away from the missing
samples may not be relevant because the signal characteristics may
have completely changed. This is particularly important in
interpolation of a large sequence of samples.

(d) The length of the missing samples: in general, interpolation quality
decreases with increasing length of the missing samples.

(e) Finally, interpolation depends on the optimal use of the data and the
efficiency of the interpolator.

10.2 Polynomial Interpolation

The classical approach to interpolation is to construct a polynomial
interpolator  that  passes through the known samples. Polynomial
interpolators may be formulated in various forms, such as power series,
Lagrange interpolation and Newton interpolation. These various forms are
mathematically equivalent and can be transformed from one into another.
Suppose the data consists of N+1 samples {x(tg), x(f,), ..., x(fy)}, where
xit,) denotes the amplitude of the signal x(f) at time f,. The polynomial of
order N that passes through the N+1 known samples is unigue (Figure 10.4)
and may be written in power series form as

M) =py ) =ay +aft+a,t* +at® +---+ayt™ (10.13)

where P,if) is a polynomial of order N, and the a; are the polynomial
coefficients. From Equation (10.13), and a set of N+1 known samples, a

4 x(1)

Pit;)=x(1)

e

Figure 10.4 lllustration of an Interpolation curve through a number of samples.
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= 2 3 M
Xty )= ag +ayty+a,iy +asty +-+ayl,

; .
Xty )= Ay + @yl + a1 +ast; ++ayt)

(10.14})
2 3 N
From Equation (10.14). the polynomial coefficients are given by
r ry—l

ag \ (1 t, t5 fn ... tg | [ X))

i | I| I|2 f|3 . I]H -]--':L"‘Iw:I

ay [=|1 t, 15 1 .. 13 x(ty) (10.15)

2 .3 N
Ay J (D 1y Iy 0y e By (X))

Page 327 to 350 Other interpolation methods
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SPECTRAL SUBTRACTION

11.1 Spectral Subtraction

11.2 Processing Distortions

11.3 Mon-Linear Spectral Subtraction

11.4 Implementation of Spectral Subtraction
11.5 Summary

pectral subtraction 15 a method for restoration of the power spectrum

or the magnitude spectrum of a signal observed in additive noise,

through subtraction of an estimate of the average noise spectrum from
the noisy signal spectrum. The noise spectrum is usuvally estimated, and
updated, from the periods when the signal 1s absent and only the noise is
present. The assumption 1s that the noise 1s a stationary or a slowly varying
process, and that the noise spectrum does not change significantly in-
between the update peniods. For restoration of time-domain signals, an
estimate of the instantaneous magnitude spectrum 15 combined with the
phase of the noisy signal, and then transformed via an inverse discrete
Fourier transform to the time domain. In terms of computational
complexity, spectral subtraction 1s relatively inexpensive. However, owing
to random vanations of noise, spectral subtraction can result in negative
estimates of the short-time magmtude or power spectrum. The magnitude
and power spectrum are non-negative variables, and any negative estimates
of these vanables should be mapped into non-negative values. This non-
linear rectification process distorts the distnbution of the restored signal.
The processing distortion becomes more noticeable as the signal-to-noise
ratio decreases. In this chapter, we study spectral subtraction, and the
different methods of reducing and removing the processing distortions.
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11.1 Spectral Subtraction

In applications where, in addition to the noisy signal, the noise is accessible

on a separate channel, 1t may be possible to retrieve the signal by subtracting
an estimate of the noise from the noisy signal. For example, the adaptive
noise canceller of Section 1.3.1 takes as the inputs the noise and the noisy
signal, and outputs an estimate of the clean signal. However, in many
applications, such as at the receiver of a noisy communication channel, the
only signal that is available 15 the noisy signal. In these situations, it 1s not
possible to cancel out the random noise, but it may be possible to reduce the
average effects of the noise on the signal spectrum. The effect of additive
noise on the magnitude spectrum of a signal is to increase the mean and the
variance of the spectrum as illustrated 1n Figure 11.1. The increase in the
variance of the signal spectrum results from the random fluctuations of the
noise, and cannot be cancelled out. The increase in the mean of the signal
spectrum can be removed by subtraction of an estimate of the mean of the
noise spectrum from the noisy signal spectrum. The noisy signal model in
the time domain 18 given by

vim)=x(m)+n(m) (11.1)
] | | |
“-”M llhn'lhpr'W'H%w n” M‘m
m \'lrl'l" I

15k |||||| J 15

| |
4 Lol Wbl
'_j ‘%‘MWIWHWL- j_f' WH' P\ “WN MTW*

50

1 ]

Figure 11.1 lllustrations of the effect of noise on a signal in the time and the
frequency domains.
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processing
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Figure 11.2 A block diagram illustration of spectral subtraction.

in Equation (11.5) controls the amount of noise subtracted from the noisy
signal. For full noise subtraction, =1 and for over-subtraction o=1. The
lime-averaged noise spectrum 1s obtained from the periods when the signal
15 absent and only the noise 1s present as

- K-l
NP ==Y IN, (f)1? (11.6)
Kf:ﬂ'

In Equation (11.6), INAf)l is the spectrum of the /™ noise frame, and it is
assumed that there are K frames in a noise-only period, where K is a
variable. Alternatively, the averaged noise spectrum can be obtained as the
output of a first order digital low-pass filter as

N, (P =pIN (I +(1=p)IN, (f)I” (11.7)
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11.1.1 Power Spectrum Subtraction

The power spectrum subtraction, or squared-magnitude spectrum
subtraction, 15 defined by the following equation:

IX()P=IY (I =IN(fI? (11.11)

where it is assumed that ¢ the subtraction factor in Equation (11.5), is
unity. We denote the power spectrum by [l X(f)1%], the time-averaged

power spectrum by |X (f ]||I and the instantaneous power spectrum by

|X(r ‘.||1. By expanding the instantaneous power spectrum of the noisy

338 Spectral Subtraction

signal |¥ ()| * . and grouping the appropriate terms, Equation (11.11) may be
rewritten as

IR X () +[|~UJF _IN()12 ]+ X (FIN+X (N ()
. E‘mssp;'udum

Mogse variations

(11.12)

Taking the expectations of both sides of Equation (11.12), and assuming
that the signal and the noise are uncorrelated ergodic processes, we have

£l X(F)12]==ll X(f)12] (11.13)
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11.1.3 Spectral Subtraction Filter: Relation to Wiener Filters

The spectral subtraction equation can be expressed as the product of the
noisy signal spectrum and the frequency response of a spectral subtraction
filter as

I X(FIPAY(FIE=IN(F)I?
=H(HIY()HI*

(11.16)

where H(f). the frequency response of the spectral subtraction filter, is
defined as

Hff‘.l=l_—||Tﬁ|:
() (11.17)
Y (PN
1Y (f)I*
& bl
[Mstortion in the form of a Distortions in the form of

sharp trough in signal spectra. Isolated “musical” noise.

Figure 11.3 lllustration of distortions that may result from spectral subtraction.

-

f
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Noise-free signal space Noisy signal space After subtraction of
the noise mean
A fi A Ay
L - . -
() i b} fi i) fi
Noise induced

change in the mean

Figure 11.4 lllustration of the distorting effect of spectral subtraction on the space of
the magnitude spectrum of a signal.

11.2.2 Reducing the Noise Variance

The distortions that result from spectral subtraction are due to the varations
of the noise spectrum. In Section 9.2 we considered the methods of reducing
the varnance of the estimate of a power spectrum. For a white noise process
with variance ¢ 2. it can be shown that the variance of the DFT spectrum of

the noise N{f) is given by
Var[ | N( )P =Py (fi=o 2 (11.20)

and the variance of the runming average of K independent spectral
components 1s

] & (- 1
Var| — YIN, 12 le— P2 ( fle—a? 11.21
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Figure 11.7 Block diagram configuration of a spectral subtraction system.
PSP = post spectral subtraction processing.
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(c) Woise estimate obtained by subiracting (b) from (a).



84

lm 7 - - -
1 O with no noise compensation

= J

E g0 - [0 withspectral subtraction

=

o B0 A

[+

24

g w1

O -

e
Ll T T T T T
-10 ] i} 20

Hignal to Moise Ratio, dB

Figure 11.10 The effect of spectral subtraction in improving speech recognition
(for a spoken digit data base) in the presence of helicopter noise.
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IMPULSIVE NOISE

121 Impulgive Noissa

12.2 Statistical Models for Impulsive Noise

12.3 Median Filters

12.4 Impulsive Noise Removal Using Linear Prediction Modals
12.5 Robust Parameter Estimation

12.6 Restoration of Archived Gramophone Records

127  Summary

mpulsive noise consists of relatively short duration “on/off™ noise

pulses, caused by a vanety of sources, such as switching noise, adverse

channel environments in a communication system, dropouts or surface
degradation of audio recordings, clicks from computer keyboards, etc. An
impulsive noise filter can be used for enhancing the quality and
intelligibility of noisy signals, and for achieving robustness in pattern
recogmtion and adaptive control systems. This chapter begins with a study
of the frequency/time charactenistics of impulsive noise, and then proceeds
o consider several methods for statistical modelling of an impulsive noise
process. The classical method for removal of impulsive noise i1s the median
filter. However, the median filter often results in some signal degradation.
For optimal performance, an impulsive noise removal system should utilise
(a) the distinct features of the noise and the signal in the time and/or
frequency domains, (b) the statistics of the signal and the noise processes,
and (c) a model of the physiology of the signal and noise generation. We
describe a model-based system that detects each impulsive noise, and then
proceeds Lo replace the samples obliterated by an impulse. We also consider
some methods for introducing robusiness to impulsive noise in parameter
estimation.



86

12.1 Impulsive Noise

In this section, first the mathematical concepts of an analog and a digital
impulse are introduced, and then the various forms of real impulsive noise

in communication systems are considered.

The mathematical concept of an analog impulse is illustrated in Figure
12.1. Consider the unit-area pulse pir) shown in Figure 12.1{a). As the pulse
width A tends to zero, the pulse tends to an impulse. The impulse function
shown n Figure 12.1(b) is defined as a pulse with an infinitesimal time

width as

o 114, [f|<4/2
S(t) =limit p(t) =
A= 0, |.[‘|}d|‘r2

The integral of the impulse function is given by

jam di— Ax L _1
A

—n

The Fourier transform of the impulse function 1s obtained as

A(f) = [8(ne T dr=e® =1

—nn

(12.1)

(12.3)

where f 1s the frequency variable. The impulse function is used as a rest
function to obtain the impulse response of a system. This 15 because as

AP a(t) A Alf)
14
AsA 0
———
> | > >
—» 14— t f
(a) (b) (c)

Figure 12.1 (a) A unit-area pulse, (b) The pulse becomes an impulse as 1 — 0,

() The spectrum of the impulse function.
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Figure 12.2 Time and frequency sketches of (a) an ideal impulse, and (b) and (c)
short-duration pulses.

358 Impulsive Noise
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[EY] (b}
Figure 12.3 lllustration of variations of the impulse response of a non-linear

system with increasing amplitude of the impulszs.
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12.2.1 Bernoulli-Gaussian Model of Impulsive Noise

In a Bernoulli-Gaussian model of an impulsive noise process, the random
time of occurrence of the impulses is modelled by a binary Bemoulli
process b{m) and the amplitude of the impulses is modelled by a Gaussian

Amplitude modulated

Binary sequence bjm) binary sequence
mim) bim)

| | | | | | Impulsive noise
\ I I seguence fgm)
g im}
|I I'\ |
X ™
Amplitude modulatin g/ '|.||'

sequence )

Il| [mpulse shaping
filter

Figure 12.4 [llustration of an impulsive noise model as the output of a filter
excited by an amplitude-modulated binary sequence.

12.2.4 Signal to Impulsive Noise Ratio

For impulsive noise the average signal to impulsive noise ratio, averaged
over an entire noise sequence including the time instances when the
impulses are absent, depends on two parameters: (a) the average power of
each impulsive noise, and (b) the rate of occurrence of impulsive noise. Let
Pimpuise denote the average power of each impulse, and Py, the signal
power. We may define a “local” time-varying signal to impulsive noise
ratio as

‘ps:ignal “ﬂj

SINR(im)=——— 22
i(m) P B(m) (12.21)

impalse

The average signal to impulsive noise ratio, assuming that the parameter
 is the fraction of signal samples contaminated by impulsive noise, can be
defined as

P
SINR=—22 (1222)

o 'P:iITIFII.I]St

Note that from Equation (12.22), for a given signal power, there are many
pair of values of aand Py, that can yield the same average SINR.
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Figure 12.7 Input and output of a median filter. Note that in addition to suppressing
the impulsive outlier, the filter alzo distorts some genuine signal components.

12.3 Median Filters

The classical approach to removal of impulsive noise 1s the median filter.
The median of a set of samples {x(m)} 15 a member of the set xpag(m) such
that; half the population of the set are larger than xmed(m) and half are
smaller than xpeq(m). Hence the median of a set of samples is obtained by
sorting the samples in the ascending or descending order, and then selecting
the mid-value. In median filtering, a window of predetermined length slides
sequentially over the signal, and the mid-sample within the window 1s
replaced by the median of all the samples that are inside the window, as
illustrated in Figure 12.7.

The output x(m) of a median filter with input Wm) and a median

window of length 2K+ 1 samples 15 given by

Mm)y=y .q(m)

. (12.23)
=median[vim—K),....v(m),.... vim+ K)]
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Figure 12.8 Configuration of an impulsive noise removal system incorporating a
detector and interpolator subsystems.

(a) The scale of the signal amplitude is reduced to almost that of the
original excitation signal, whereas the scale of the noise amplitude
remains unchanged or increases.

(b) The signal is decorrelated, whereas the impulsive noise i1s smeared
and transformed to a scaled version of the impulse response of the
inverse filter.

Excitation fk(m]:n[m:lm:m}
i - . selection
White noise \\\‘ Speech le:;ﬂ_i;:;icr:{m}
Periodic impulsd . Linear prediction| x(m) an
train filter »
Mixture -—/. ’J Coefficients
“Hidden™ model
control

Figure 12.9 Noisy speech model. The signal is modelled by a linear predictor.
Impulsive noize i modelled as an amplitude-modulated binary-state process.
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12.4.2 Analysis of Improvement in Noise Detectability

In the following, the improvement in nose detectability that results from
inverse filtering 1s analysed. Using Equation (12.25), we can rewrite a noisy
signal model as

vim) = x(m)+mn;(m)

F 12.26
= ag x(m— k)+elm)+n;(m) L :
k=1

where vim), x{im) and n;{m) are the noisy signal, the signal and the noise

respectively. Using an estimate @ of the predictor coefficient vector a, the
noisy signal v(m) can be inverse-filtered and transformed to the noisy
excitation signal v(m) as

P
vimy=y(m)—> & Wm—k)

k=l (12.27)

F
= x(m)+n{m)— Z{n*—ﬁ* Nx(m—k)y+n(m—k)]
k=l

where d; is the error in the estimate of the predictor coefficient. Using
Equation (12.25) Equation (12.27) can be rewritten in the following form:

P P
vim)=e(m) +n(m)+ > @ x(im—k) = anim—k) (12.28)
IE=| ﬁ::l
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The improvement resulting from the inverse filter can be formulated as
follows. The impulsive noise to signal ratio for the noisy signal 1s given by

impulsive noise power _ Fln(m)]
signal power Fx*(m)]

(12.29)

where E[-] 15 the expectation operator. Note that in impulsive noise
detection, the signal of interest is the impulsive noise to be detected from
the accompanying signal. Assuming that the dominant noise term in the
noisy excitation signal wm) is the impulse n{m), the impulsive noise to
excitation signal ratio 15 given by

. . . 2
impulsive noise power  ‘Eln: (m)]

excitation power Ele? (m)] (12.300)

The overall gain in impulsive noise to signal ratio 1s obtained, by dividing
Equations (12.29) and (12.30), as

Flx* (m)] _

> 12.31
Ele-(m)] E :
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12.5 Robust Parameter Estimation

In Figure 12.8, the threshold used for detection of impulsive noise from the
excitation signal is derived from a nonlinear robust estimate of the
excitation power. In this section, we consider robust estimation of a
parameter, such as the signal power, in the presence of impulsive noise.

A robust estimator is one that is not over-sensitive to deviations of the
input signal from the assumed distribution. In a robust estimator, an input
sample with unusually large amplitude has only a limited effect on the
estimation results. Most signal processing algonithms developed for
adaptive filtering, speech recognition, speech coding, etc. are based on the
assumption that the signal and the noise are Gaussian-distributed, and
employ a mean square distance measure as the optimality criterion. The
mean square error criterion is sensitive to non-Gaussian events such as
impulsive noise. A large impulsive noise in a signal can substantially

Lost funcliva LfTuenoe funciiog
§ ) axieiim)
]

Mezan squamed ermor /
-
g /‘ g
4 TS m)] 3

F[ABS (e2(m ] )]
| R~
Mean sbsoluie walue ————
- -
g 2]
| EHvem)]
| Mezan squnmdi l FH & clm}]
| errar : ae
Absolute vahe | | Absahie vake
g a
& E¥(=mI]] A g;ﬁ'ﬂ
Hi-weigth function
8 V o

Figure 12.11 lllustration of a number of cost of emor functions and the
corresponding influence functions.



94

TRANSIENT NOISE PULSES

121 Transient MNoise Waveforms

12.2 Transient MNoise Pulse Models

12.3 Detection of Noise Pulses

13.4 Removal of MNoise Pulse Distortions
13.5 Summary

ransient noise pulses differ from the short-duration impulsive noise

studied in the previous chapter, in that they have a longer duration

and a relatively higher proportion of low-frequency energy content,
and wsually occur less frequently than impulsive noise. The sources of
transient noise pulses are varied, and may be electromagnetic, acoustic or
due to physical defects in the recording mediom. Examples of transient
noise pulses include switching noise in telephony, noise pulses due to
adverse radio transmission environments, noise pulses due to onfoff
switching of nearby electric devices, scraiches and defects on damaged
records, click sounds from a computer keyboard, etc. The noise pulse
removal methods considered in this chapter are based on the observation
that transient noise pulses can be regarded as the response of the
communication channel, or the playback system, to an impulse. In this
chapter, we study the characteristics of transient noise pulses and consider
a template-based method, a linear predictive model and a hidden Markov
model for the modelling and removal of transient noise pulses. The subject
of this chapter closely follows that of Chapter 12 on impulsive noise.
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Figure 13.1 The profile of a transient noise pulse from a scratched gramophone
record.

Figure 13.2 An example of (a) the time-domain waveform and (b) the spectrogram
of transient noise scratch pulses in a damaged gramophone record.



13.2 Transient Noise Pulse Models

To a first approximation, a transient noise pulse n{m) can be modelled as
the impulse response of a linear time-invariant filter model of the channel
as

n(my=>" h Ad(m—k)=Ah,, (13.1)
k

where A is the amplitude of the driving impulse and /; is the channel

impulse response. A burst of overlapping, or closely spaced, noise pulses
can be modelled as the response of a channel to a sequence of impulses as

nim) =Y b Y A8(m=T)-k)=3 Ah, (13.2)
k i i

where it 15 assumed that the /% transient pulse 1s due to an impulse of
amplitude A; at time T;. In practice, a noise model should be able to deal

with the statistical variations of a variety of noise and channel types. In this
section, we consider three methods for modelling the temporal, spectral
and durational characteristics of a transient noise pulse process:

(a) atemplate-based model;

(b) a linear-predictive model;
(c) a hidden Markov model.

nl.!r'l

JL%E_

nl'm'l

alm)

alm)

Vﬁu - | il )

Figure 13.3 A number of prototype transient pulses.
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13.2.2 Autoregressive Model of Transient Noise Pulses

Model-based methods have the advantage over template-based methods
that overlapped noise pulses can be modelled as the response of the model
to a number of closely spaced impulsive inputs. In this section, we consider
an autoregressive (AR) model of transient noise pulses. The AR model for
a single noise pulse n(m) can be described as

P
n(m)="3 cyn(m—k)+Ad(m) (13.3)
k=l

where ¢ are the AR model coefficients, and the excitation 1s an impulse

function &(m) of amplitude A. A number of closely spaced and overlapping
transient noise pulses can be modelled as the response of the AR model to
a sequence of impulses:

F M
nim)="% c,n(m—-k)+¥ A:8(m-T;) (13.4)
k=l J

where it is assumed that T; is the start of the jtb pulse in a burst of M
excitation pulses.

Signal + nowse pulse Signal estimate

vim) = xim) + nm) xjm)
3 ] ‘6_-. Interpolator  ————m

Tl : Moise pulse present

Matched filter 0 : Noise pulse absent
detector
Moise pulse ‘
template

D Dglay [———

Figure 13.6 Transient noise pulse removal system.

nlm)=wi(m— D) (13.18)
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ECHO CANCELLATION

14.1  Introduction: Acoustic and Hybrid Echoes
14.2 Telephone Ling Hybrid Echo

14.3 Hybrid Echo Suppression

14.4 Adaptive Echo Cancellation

14.5 Acoustic Echo

14.6 Sub-band Acoustic Echo Cancellation
14.7 Summary

where the characteristics of the medium through which the wave

propagates changes. Echo is usefully employed in sonar and radar for
detection and exploration purposes. In telecommunication, echo can degrade
the quality of service, and echo cancellation 15 an important part of
communication systems. The development of echo reduction began in the
late 1950s, and continues today as new integrated landline and wireless
cellular networks put additional requirement on the performance of echo
cancellers. There are two types of echo in communication systems: acoustic
echo and telephone line hybrid echo. Acoustic echo results from a feedback
path set up between the speaker and the microphone in a mobile phone,
hands-free phone, teleconference or hearing aid system. Acoustic echo may
be reflected from a multitude of different surfaces, such as walls, ceilings
and floors, and travels through different paths. Telephone line echoes result
from an impedance mismatch at telephone exchange hybrids where the
subscriber's 2-wire line is connected to a 4-wire line. The perceptual effects
of an echo depend on the time delay between the incident and reflected
waves, the strength of the reflected waves, and the number of paths through
which the waves are reflected. Telephone line echoes, and acoustic feedback
echoes in teleconference and heaning aid systems, are undesirable and
annoying and can be disruptive. In this chapter we study some methods for
removing line echo from telephone and data telecommunication systems,
and acoustic feedback echoes from microphone—loudspeaker systems.

l Echa 15 the repetition of a waveform due to reflection from points
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(a) acoustic echo due to acoustic coupling between the speaker and
the microphone in hands-free phones, mobile phones and
teleconference systems;

(b) electrical line echo due to mismatch at the hybnd circuit
connecting a 2-wire subscriber line to a 4-wire truck line in the
public switched telephone network.

In the early days of expansion of telephone networks, the cost of
running a 4-wire line from the local exchange to subscribers’ premises was
considered uneconomical. Hence, at the exchange the 4-wire truck lines are
converted to 2-wire subscribers local lines using a 24-wire hybrid bridge
circuit. At the receiver due to any imbalance between the 4/2-wire bridge
circuit, some of the signal energy of the 4-wire circuit 15 bounced back
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Figure 14.1 lllustration of echo in a mobile to land line system.
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Figure 14.2 lllustration of a telephone call set up by connection of 2-wire
subscriber's via hybrids to 4-wire lines at the exchange.
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Figure 14.3 A 2-wire to 4-wire hybrid circuit.
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14.3 Hybrid Echo Suppression

The development of echo reduction began in the late 1950s with the advent
of echo suppression systems. Echo suppressors were first employed to
manage the echo generated primarily in satellite circuits. An echo suppresser
(Figure 14.4) 1s pnmarily a switch that lets the speech signal through during
the speech-active periods and attenuates the line echo during the speech-
inactive periods. A line echo suppresser is controlled by a speech/echo
detection device. The echo detector monitors the signal levels on the
incoming and outgoing lines, and decides if the signal on a line from, say,
speaker B to speaker A is the speech from the speaker B to the speaker A, or
the echo of speaker A. If the echo detector decides that the signal 1s an echo
then the signal 1s heavily attenuvated. There 15 a similar echo suppression unit
from speaker A to speaker B. The performance of an echo suppresser
depends on the accuracy of the echo/speech classification subsystem. Echo
of speech often has a smaller amplitude level than the speech signal, but
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Figure 14.4 Block diagram illustration of an echo suppression system.
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Figure 14.5 Block diagram illustration of an adaptive echo cancellation system.

Assuming that the signal on the line from speaker B to speaker A,
ve(m), is composed of the speech of speaker B, xgim), plus the echo of

aecho

speaker A, x " (m), we have

Vg (m) = xg(m) + x5 (m) (14.1)

In practice, speech and echo signals are not simultaneously present on a
phone line. This, as pointed out shortly, can be used to simplify the
adaptation process. Assuming that the echo synthesiser 1s an FIR filter, the
filter output estimate of the echo signal can be expressed as

P-]
5 m) = Y wi (m) x4 (m—k) (14.2)
k=0
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CHANNEL EQUALIZATION AND
BLIND DECONVOLUTION

151 Introduction

15.2 Blind-Deconvolution Using Channel Input Power Spectrum
15.3 Equalization Based on Linear Prediction Models

15.4 Bayesian Blind Deconvolution and Equalization

15.5 Blind Equalization for Digital Communication Channels
15.6 Equalization Based on Higher-Order Statistics

15.7 Summary

lind deconvolution is the process of varavelling two unknown

signals that have been convolved. An important apphcation of blind

deconvolution i1s in blind equalization for restoration of a signal
distorted in transmission through a communication channel. Blind
equalization has a wide range of applications, for example in digital
telecommunications for removal of intersymbol interference, in speech
recognition for removal of the effects of microphones and channels, in
deblurring of distorted images, in dereverberation of acoustic recordings, in
seismic data analysis, etc.

In practice, blind equalization 1s only feasible if some useful statistics
of the channel input, and perhaps also of the channel itself, are available.
The success of a blind equalization method depends on how much is known
about the statistics of the channel input, and how useful this knowledge 1s in
the channel identification and equalization process. This chapter begins with
an introduction to the basic ideas of deconvolution and channel equalization.
We study blind equalization based on the channel input power spectrum,
equalization through separation of the input signal and channel response
models, Bayesian equalization, nonlinear adaptive equalization for digital
communication channels, and equalization of maximum-phase channels
using higher-order statistics.
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P
}'um‘;=z B (mx(m—K)+nim) (15.2)
k=l

where hy(m) are the coefficients of a P order linear FIR filter model of the
channel. For a time-invariant channel model, i (m)=h,.

In the frequency domain, Equation (15.2) becomes

Y(fi=X(fIH{f)+N(f) (15.3)
Moise nim)
Distortion Equaliser a
x vim) | i i
@—h-m] Hml/‘\/_\ ' M- [—
f ' ¥

Figure 15.1 [llustration of a channel distortion model followed by an equalizer.

418 Equalization and Deconvolution

where Y(f), X(f), H(f) and N{f) are the frequency spectra of the channel
output, the channel input, the channel response and the additive noise

respectively. Ignonng the noise term and taking the loganthm of Equation
(15.3) yields

n|Y ()| =In| X (f)|+ 1| H(f) (15.4)

From Equation (15.4), in the log-frequency domain the effect of channel
distortion 1s the addition of a “ult™ term InlfH(f)l to the signal spectrum.
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Figure 15.2 A comparative illustration of (a) a conventional equalizer with
access to channel input and output, and (b) a blind equalizer.
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Figure 15.3 lllustration of the invertible and noninvertible regions of a channel.

424 Equalization and Deconvolution

Minimum-phase Maximum-phase

A I

-
NR

Figure 15.4 lllustration of the zero diagram and impulse response of fourth order
maximum-phase and minimum-phase FIR fitters.
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Introduction 425

15.1.5 Wiener Equalizer

In this section, we consider the least squared error Wiener equalization.
Note that, in its conventional form, Wiener equalization is not a form of
blind equalization, because the implementation of a Wiener equalizer
requires the cross-correlation of the channel input and output signals, which
are not available in a blind equalization application. The Wiener filter
estimate of the channel input signal 1s given by

P-1_
Tm)=" ™ vim—k) (15.16)
E=D

where fi,riim is an FIR Wiener filter estimate of the inverse channel impulse
response. The equalization error signal vim) 1s defined as

Pl
vim)=x(m)=> ™ y(m—k) (15.17)
k=0

The Wiener equalizer with input v(m) and desired output xim) is obtained
from Equation (6.10) in Chapter 6 as

. inv -1

™" =Ry, (15.18)
where Ry, is the Px P autocorrelation matrix of the channel output, and r,,
15 the P-dimensional cross-correlation vector of the channel input and output

signals. A more expressive form of Equation (15.18) can be obtained by
writing the nosy channel output signal in vector equation form as

y=Hx+n (4.19)

where y 1s an N-sample channel output vector, x is an N+ P-sample channel
input vector including the P initial samples, H is an Nx(N+P) channel
distortion matrix whose elements are composed of the coefficients of the
channel filter, and n 1s a noise vector. The autocorrelation matrix of the
channel output can be obtained from Equation (15.19) as

R_'F_'l =IE[-”'T]= HR:IHT +R,, (15.20)

Other equalization- Page 450 to 484



