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For the loading shown in Figure 1.2b. the frame will deform as indicated by the
dashed line (drawn to a greatly exaggerated scale). The mdividual members of the
frame can be classified according to the type of behavior represented by this deformed
shape. The horizontal members 4B and BC are subjected primarily to bending, or
flexure_ and are called beams. The vertical member BD 1s subjected to couples trans-
ferred from each beam. but for the symmetrical frame shown. they are equal and
opposite, thereby canceling each other. Thus member BD is subjected only to axial
compression arising from the vertical loads. In buildings. vertical compression mem-
bers such as these are referred to as columns. The other two vertical members. 4F and
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STRUCTURAL STEEL

The earliest use of iron. the chief component of steel. was for small tools, in
approxmmately 4000 B.Cc. (Murphy, 1957). This material was in the form of wrought
iron, produced by heating ore mn a charcoal fire. In the latter part of the eighteenth cen-
tury and in the early mineteenth century, cast wron and wrought iron were used in vari-
ous types of bridges. Steel, an alloy of primanly iron and carbon, with fewer impurities
and less carbon than cast iron, was first used in heavy construction in the nineteenth cen-
tury. With the advent of the Bessemer converter in 1855, steel began to displace
wrought iron and cast ron in construction. In the United States, the first structural steel
railroad bridge was the Eads bridge, constructed in 1874 in St Lows, Missouri (Tall,
1964). In 1884, the first building with a steel frame was completed in Chicago.

The characteristics of steel that are of the most interest to structural engineers can
be examined by plotting the results of a tensile test. If a test specimen 1s subjected
to an axial load P, as shown m Figure 1 3a, the stress and strain can be computed as
follows:

f= P and € = AL
A L
where
J = axial tensile stress
A = cross-sectional area
£ = axial strain
L = length of specimen

AL = change 1 length
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TABLE 1.2

FIGURE 1.9

Shape Preferred Steel

Angles A3E
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HF ART2 Grade B0

W A992
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HSS AB00 Grade B (round) or
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2.1

DESIGN PHILOSOPHIES

As discussed earlier, the design of a structural member entails the selection of a cross
section that will safely and economically resist the applied loads. Economy usually
means minimum weight—that 15, the minmmum amount of steel. This amount corre-
sponds to the cross section with the smallest weight per foot, which 1s the one with
the smallest cross-sectional area. Although other considerations, such as ease of con-
struction, may ultimately affect the choice of member size, the process begins with the
selection of the lightest cross-sectional shape that will do the job. Having established
this objective, the engmeer must decide how to do 1t safely, which i1s where different
approaches to design come mto play. The fundamental requirement of structural design
15 that the required strength not exceed the available strength; that 1s,

Required strength = available strength

In allowable sirength design (ASD), a member 1s selected that has cross-sectional
properties such as area and moment of inertia that are large enough to prevent the max-
imum applied axial force, shear, or bending moment from exceeding an allowable, or
permissible, value. This allowable value 1s obtained by dividing the nominal, or theo-
retical, strength by a factor of safety. This can be expressed as

Required strength < allowable strength o
where
Allowable strength = nominal strength

safety factor

Strength can be an axal force strength (as in tension or compression members), a
flexural strength (moment strength), or a shear strength.

If stresses are used mstead of forces or moments, the relationship of Equation 2.1
becomes

Maxmmum applied stress = allowable stress (2.2)

21
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This approach 15 called allowabls sres: dezien. The allowabla stress will be m the alas-
tic range of the matenal (see Figure 1.3). Thiz approach to design 15 also called elasnic
design or working stress design. Workmg stresses are those resulting from the working
loads, which are the apphed loads. Workmg loads are also known as zervice loads.

Plastic design 15 based on 2 consideration of fahire condihons rather than working
load condiions. A member 1= selected by using the critenon that the stucture will £a1l
at a load substantally lugher than the werdang load. Faihore i this context means evther
collapse or extremaly large deformations. The terms plasric 1z uzed becanze, at falure,
parts of the member will be subjected to verv large shnimﬁhrgemuughmmie
member mto the plaste range (see Figure 1 3b). When the entive cross sechon becomes
plastic at enough locations, *plastc hingﬁiwﬂl form at those locations, creating a col-
lapse mechanizm. As the actal loads will be less than the farlure loads by a factor of
safety known as the load factor, members designed this way are not unsafe, despite
bemg desizned based on what happens at farlure. Thiz design procedure 15 roughly as
follows.

1. Bultiply the working loads (zervice loads) by the load factor to obtain the fail-
ure loads.

2. Determme the cross-sectional properties needed to resist farlure under thesa
loads. (A member with these properfies 15 said to have sufficient strength and
would be at the verge of failure when subjected to the factored loads.)

3. Select the hghtest cross-sectional shape that has theze properties.

Members desizned by plastic theory would reach the pomt of faillure under the fac-
tored loads but are zafe under actual working loads.

Load and resiziance factor design (LEFD) 15 smular to plashe design m that
stremgth, or the failure condinon, 1= considered. Load factors are apphed to the service
loads, and a member 15 selected that will have enough strength to resist the factored loads.
In addion, the theoreteal strenpth of the member 15 reduced by the appheation of a
resistance factor. The critenon that must be satisfled i the selection of 2 member 15

Factored load < factored strenzth 2.3}

In this expression, the factored load 1= aciually the sum of all service loads to be
rasisted by the member, each multiphed by 1ts own load factor. For exampla, dead
loads will have load factors that are different from those for live loads. The factored
strength 1= the theorefical strength multiplied by a resistance factor. Equation 2.3 can
therefore be wiitten as

Zﬂm # load factors) £ resistance * resistance factor (2.4}

The factored load 15 a farlure load greater than the total actual service load, so the load
factors are wsnally greater than untty. However, the factored strength 1= a reduced,
usable strength, and the resistance factor 15 nenally less than wmty. The factored loads
are the loads that bring the shucture or member to its linat. In terms of zafety, thas lmis
state can be fracture, vieldmg, or buckhng, and the factored resistance 1= the useful
strength of the member, reduced from the theoretical value by the resistance factor. The
lirmit state can also be one of sericeability, such as a maxmmum acceptable deflection.



2.3

LOAD FACTORS, RESISTANCE FACTORS,
AND LOAD COMEINATIONS FOR LRFD

Equation 2.4 can be wnitten more precisely as

L30, < ¢k, @3)
where
@ = a load effect (a force or a2 moment)
¥ =a load factor

R, = the nominal resistance, or strength, of the component under consideration

it = resistance factor

The factored resistance @i, 1s called the design stremgth. The summation on the
left side of Equation 2.5 15 over the total pumber of load effects (including, but not
limated to, dead load and live load), where each load effect can be associated with
a different load factor. Mot only can each load effect have a different load factor
but al=o the value of the load factor for a particular load effect will depend on the
combination of loads under consideration. Equation 2.3 can also be written in the
form

R, = 2.6)
where

R, = required strength = sum of factored load effects (forces or moments)

Secthon B2 of the ATSC Specification savs to use the load factors and load com-
binztions presenbed by the govermng bmlding code. If the building code does not
give them, then ASCE 7 {ASCE, 20100 should be used. The load factors and load
combmations m this standard are based on extensive statistical studies and are pre-
sertbed by most building codes.

ASCE 7 prezents the basic load combinatons in the following form:

Combination 1: 1.4D

Combination 2: 1.2D + 1.6L + 0.5(L, or § or )
Combination 3: 12D+ 16(L, orSor ) + (L or 0.3
Combmation 4: 12D+ 10W+L+035(L.or SorR)
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Combination 5: 1.2D+10E+L+ 025
Combination 6: (.90 + 1.0W
Combination 7:  0.9D + 1.OE

where

I = dead load

L = hwe load due to cccupancy
L, =roof live load

5 = snow load

R =rain or ice load"

W =wind load

E = earthguake (sersmic load)

In combinations 3, 4. and 3, the load factor on L can be reduced te 0.3 1f L 1= no
greater than 100 pounds per sguare foot, except for garages or places of public
assembly. In combmations wath wind or earthquake loads, vou should use a direchon
that produces the worst effects.

The ASCE 7 basic load combinations are also given m Part 2 of the AISC Steel
Construction Manual (AISC 201 12), whach wall be discussed in Section 2.6 of thas
chapter. They are presented m a slightly different form as follows:

Combination 1: 14D

Combination 2: 1.2+ 1.6L + 0.5(L, or 5 or K}
Combination 3: 1.20 + 1.6(L, or 5 or K) + (031 or 0.57)
Combination 4 12D +1.0W + 050 + 0.5(L, or 5 or K}
Combination 3: 12D+ 10E+ 050 +0.25

Combinations & and 7:  0.90 £ (1.0 or 1.0E)

Here, the load factor on L in combnations 3, 4, and 5 15 grven as 0.5, which should
be increased to 1.0 if L 15 greater than 100 pounds per square foot or for garages or
places of public assembly. ASCE 7 combinations 6 and 7 anse from the expression
shown by considering combination & to use 1.0 and combination 7 to use 1 0E. In
other words,

Combination & 09D+ 1.0F
Combinzton 7: 09D+ 1.0E

Combinations & and 7 account for the possibality of dead load and wind or earthquake
load counteracting each other; for example, the net load effect could be the difference
betwean (.90 and 1.0 or between .90 and 1 0E. (Wimnd or earthquake load may
tend to overtun a stucture, but the dead load will have a stabilizing effect.)

Az previously mentoped. the load factor for a particular load effect 15 not the
same m all load combmations. For example, in combination 2 the load factor for the
live load L 15 1.6, whereas in combmation 3, 1t 15 0.3, The reason 15 that the live load

“Thiz load does not mclude pomding, a phenomenon that we discuss in Chapter 5.



2.4

SAFETY FACTORS AND LOAD
COMBINATIONS FOR ASD

For allowable strength design. the relationship between loads and strength (Equation 2.1
can be expressed as
R,
w2
R L 2.7
where
E_ =required strength
R, = pomina) strength (same as for LEFIN)
0} = safety factor
R_/} = allowable strength

The requred strength E; 15 the sum of the service loads or load effects. As with
LEFD. specific combinations of loads must be considered. Load combinations for
ASD are also given m ASCE 7. These combinations, as presented in the ATSC Stesl
Construction Manwal (AISC 2011a), are

Combination 1: D

Combination 2: D+

Combination 3: D+i{Ll,or5or )

Combination 4 D+ 0. T75L +0.75(L, or 5 or K}

Combination 3: D £ (0.6W or0.7TE)

Combination fa: D+ 075 +0.73(0.6W) + 0.73(L, or 5 or K}
Combination 6h: D+0 753 £0.75(0.7E) + 0.755

Combinations 7 and 8: 06D £(0.6W or 0.7TE)

The factors shown in these combinations are not load factors. The 0.75 factor in
some of the combinations accounts for the unlhikelhhood that all loads in the com-
bination will be at their hfetime maximum values simultanecusly. The 0.7 factor
apphed to the seismic load effect E 15 used becaunse ASCE 7 uses a strength
approach (1.2, LEFD)) for computing seismic loads, and the factor 1s an attempt to
equalize the effect for ASD.

Comespondmg to the two most common values of resistance factors in LEFD are
the following values of the safety factor £ m ASTY: For mit states invelving vieldng



EXAMPLE 2.

SOLUTION
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or compression buckling, £ =1.67." For limit states invelving rupture, {2 =2.00. The
relationship between resistance factors and safety factors 15 grven by

1.5

For reasons that will be discussed later, this relationship will produce simalar designs
for LEFD) and ASD, under certain loading conditions.

Ifboth sides of Equation 2.7 are divided by area (1n the case of axal load) or sec-
tion modubus {in the case of bending moment), then the relatonship becomes

f=F
whers

F= applied stress
F = allowable stress

This formulation 15 called aflowable stress design.

A column (compression member) m the upper story of a bulding 1= subject to the
following loads:

Dead load: 109 kips compression

Floor Irve load: 46 kips compression

Eoofhve load: 19 kips compression

Snow: 20 kips compression

a. Determine the controlling load combination for LEFD and the comrezpond-
g factored load

b. If the resistance factor ¢ is 0.90, what 15 the required nominal strength?

c. Determiine the controlling load combmaton for ASD and the corresponding
required service load strength.

d. If the safety factor £3 1= 1.67, what 1= the required nominal strength bazed on

the required service load strength?

Even though a load may not be acting directly on a member, 1t can still cause a load
effect in the member. This 1= true of both snow and roof live load in thiz exampla.
Although this bmlding 15 subjected to wind, the resulting forces on the stucture are
resisted by members other than this parhenlar column.

a. The confrolling load combination 15 the one that produces the largest factored
load. We evaluate each expression that inmvolves dead load, I, hive load result-
g from occupancy, L; roof bive load, L,; and snow, 5.

“The walee of [2 1= actually 134 = 5,3 but has been rounded o 1.67 m the ATSC specification.
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ANSWER

ANSWER

Combination 1: 14D =14(109) =152.6 kips
Combination 2: 1.2D + 1.6L +0.5(L, or S or R). Because S 15 larger
than L, and R = 0. we need to evaluate this combina-
tion only once, using 5.
12D +1.6L +0.55=1.2(109) + 1.6(46) + 0.5(20)
=2144 kips
Combination 3: 12D+ 1.6(L, or Sor R) + (0.5L or 0.5). In this combs-
nation, we use S mstead of L. and both R and 77" are zero.
12D +1.65+ 0.5L=1.2(109) + 1.6(20) + 0.5(46)
= 1858 kips
Combination 4: 12D +10W +0.5L +0.5(L, or S or R). This expression
reduces to 1.2D + 0.5L + 0.55, and by inspection. we can
see that 1t produces a smaller result than combination 3.

Combination 5: 12D+ 10E+05L +0.25. As E=0, this expression
reduces to 1.2D + 0.5L + 0.25. which produces a
smaller rezult than combination 4.

Combinations 6 and 7: 09D £ (1.0 or 1 .0E). These combinations do not
apply m this example, because there are no wind or
earthquake loads to counteract the dead load.

Combination 2 controls, and the factored load 15 214 4 kips.

b. If the factored load obtamned in part (z) 15 substituted into the fundamental LRFD
relationship. Equation 2.6, we obtain

R,< 4R,
214.4 <0.90R,

R,2238 kips

The required nominal strength 15 238 kips.

c. As with the combmatons for LRFD, we will evaluate the expressions involving
D.L. L, and S for ASD.

Combination 1: D =109 kips. (Obviously this case will never control
when Irve load 15 present.)

Combination 2: D+L=109+46=155kips

Combination 3: D+ (L,orSorR). Since S1s largerthan L, and R =0,
this combmation reduces to D + 5 =109 + 20 =129 kips

Combination 4: D +0.75L +0.75(L, or S or R). This expression reduces
to D+0.75L+0.755=109 +0.75(46) + 0.75(20)

= 158.5 kips
Combimation 3: D = (0.6W or 0.7E). Because W and E are zero, this

expression reduces to combination 1.



Combinafion 6a:

Combination 6b:

Combinations 7 and 8:

D+ 0.75L +0.15(U.6W) +0.75(L, or 5 or K).
Because I and E are zero. this expression reduces
to combination 4.

D +0.75L £0.75(0.7E) + 0.755. This combination
also grves the same result as combination 4.

0.6D £ (0.6 or 0.7E). These combinations do not
apply in this example. because there are no wind or
earthquake loads to counteract the dead load.

ANSWER  Combination 4 controls, and the required service load strength 15 158.5 kips.
d. From the ASD relationship. Equation 2.7,

R,
Rasa

1585< X
167

R, 2265 kips

ANSWER  The required nominal strength 15 265 kips.

Example 2.1 illustrates that the controlling load combination for LRFD may not con-

trol for ASD.

When LRFD was mtroduced mto the AISC Specification in 1986, the load fac-
tors were determined 1n such a way as to give the same results for LRFD and ASD
when the loads consisted of dead load and z live load equal to three fimes the dead
load The resulting relationship between the resistance factor ¢ and the safety factor €2,
as expressed in Equation 2 8. can be denived as follows. Let R, from Equations 2.6

and 2.7 be the same when L = 3D. That 15,

£ _
s =R

12D+16L

or

12D+1.6(3D) _

9

o 1.5

]

=(D+L)Q

(D+3D)Q2
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CHAPTER«

Tension Members

INTRODUCTION

Tension members are structural elements that are subjected to axial tensile forces. They
are used 1n various types of structures and include truss members, bracing for buildings
and bridges. cables m suspended roof systems. and cables m suspension and cable-stayed
bnidges. Any cross-sectional confizuration may be used, because for any ziven mater-
1al, the only determinant of the strength of a tension member 1= the cross-sectional area.
Circular rods and rolled angle shapes are frequently used Built-up shapes, either from
plates, rolled shapes, or a combination of plates and rolled shapes, are sometimes used
when large loads must be resisted. The most common built-up configuration 15 proba-
bly the double-angle section, shown in Fizure 3.1, along with other typical cross sec-
tions. Because the use of this section 15 s0 widespread, tables of properties of various
combinations of angles are included in the AISC Steel Construction Manual.
The stress m an axially loaded tension member 15 given by

P

|

where P i the magnitude of the load and A 15 the cross-zectional area (the area nor-
mal to the load). The stress as given by this equation 1s exact, provided that the cross
section under consideration 15 not adjacent to the pomt of application of the load,
where the dismbution of stress 15 not uniform.

If the cross-zectional area of 2 tension member varnes along its length, the stress
1z a function of the particular section under consideration. The presence of holez in a
member will influence the stress at a cross section through the hole or holes. At these
locations. the cross-sectional area will be reduced by an amount equal to the area
removed by the holes. Tension members are frequently connected at their ends with
bolts. as illustrated in Figure 3.2. The tension member shown. a 2 x 8 plate, 1z con-
nected to a gusset plate, which 15 a connection element whose purpose 15 to transfer
the load from the member to a support or to another member. The area of the bar at
section a—a 15 (/2)(8) =4 1n *, but the area at section b—b 1s only 4 — 2)(*2)(4)=3.13m.?

41
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FIGURE 3.1

FIGURE 3.2
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and will be more hghly strezsed. This reduced area 15 referred to as the mer area, or
net section, and the nnrednced area 1s the gross area.

The typical design problem 1= to select 2 member with sufficient cross-sectional
area to resist the loads. A closely related problem 15 that of analysiz, or review, of a
gziven member, where mn the strength 15 computed and compared with the load. In gen-
eral, analysis 15 2 direct procedure, but design 15 an iterative process and may require
zome trial and error.

Tension members are covered mn Chapter D) of the Specification. Requrements
that are common with other types of members are covered m Chapter B, “Dlezign

Requrements.”

TENSILE STRENGTH

A tension member can fail by reaching one of twro limat states: excessive deforma-
tion or fracture. To prevent excessive deformation, mmitiated by vielding, the load
on the zross section must be small enough that the stress on the gross section 15 less
than the yield stress F, To prevent fracture, the stress on the net section mmust be
less than the tensile sirength F,. In each case, the stress P/4 must be less than a lim-
iting stress F or

E-:F
A



S lenshe strangtn o3

Thus, the load P must be less than FA_ or
P<FA

The nominal strength in vielding 15

P =FA,
and the nomanal strength m fracture 1z
P =FA,

where 4, is the gffective net area, which may be equal to exther the net area or, in some
cases, a smaller avrea. We diseuss effective net area 1n Section 3 3.

Although vieldmg will first occur on the net cross section, the deformation withim
the lenzth of the connection will zenerally be smaller than the deformation m the
remzinder of the tension member. The reason is that the net section exists over a rela-
tively zmall length of the member, and the total elongation 1= a product of the length
and the strain {(a function of the stress). Most of the member will have an unreduced
cross section, so attainment of the vield stress on the gross area will result n larger
total elongation. It 15 this larzer deformation. ot the first vield, that 15 the limit state.

LEFD: In load and resistance factor design, the factored tensile load 15 compared
to the design strength. The design strength 1= the resistance factor imes the nominal
strength. Equation 2.6,

R, = ¢R,

can be wniten for tension members as

P, = g,
where P, 15 the goverming combmation of factored loads. The resistance factor gy 1s
smaller for fracture than for vielding, reflecting the more senous natwre of frachwe.

Forvielding, ¢ = 0.90
For fracture, ¢ =073

Because there are two hmat states, both of the following condihons must be sathsfied:
P = CI.EI'ELF‘_JS
P =075F A4,

The smaller of these 15 the design strength of the membear.
ASD: In allowable strength desizn, the total service load 15 compared to the
allowable strength (allowable load):

B>
L3,
where P, is the required strength (applied load), and P, [}, is the allowable strength.
The subsenpt “a" indicates that the required strength 15 for “allowable strength
design ™ but vou can think of 1t as standing for “applied”™ load.
Forvielding of the gross section, the safety factor {3, 15 1.67, and the allowabla
load 15

P, FA
—n - E_(§F

= A
Q, 167 e



EXAMPLE 3.1

FIGURE 3.3

SOLUTION

A x 5 plate of A36 steel 15 used as a tension member. It is connected to a gusset
plate with four ¥s-inch-diameter bolts as shown in Figure 3.3. Assume that the
effective net area 4, equals the actual net area 4, (we cover computation of effective
net area in Section 3.3).

a. What 15 the design strength for LRFD?

b. What 15 the allowable strength for ASD?

94-in -diameter bolts

For yielding of the zross section,
4,=5(1/2)=25m?
and the nomunal strength 15
P,=F,4,=36(2.5)=90.0 kips
For fracture of the net section.
A4,=4,-4,,,=25- (¥2)(¥s) x 2 holes
=25-075=175m?

A, =A4,=1751n? (This 15 true for this example. but .4, does not always
equal 4, )

The nominal strength 15
P,=F A,=58(1.75)=101.5 kips

a. The desizn strength based on vielding 15
¢P,=0.50(90) =81.0 kips

The design strength based on fracture is
&P, =0.75(101.5) = 76.1 kips



ANSWER  The design strength for LRFD 15 the smaller value: ¢P, = 76.1 kips.

b. The allowable strength bazed on yielding 15

P, 9 _ .
oo

4

The allowable strength based on fracture 15

P, 1015 :
== =50.8 ki
Q. 200 <

ANSWER  The allowable service load 15 the smaller value = 50.8 kips.
Alternative Solution Using Allowable Stress: For yielding,
F,=06F,=06(36)=21.6ksi
and the allowable load 15
F4,=216(2.5)=540kps

(The shight difference between this value and the one based on allowable strength
15 because the value of {2 in the allowable strength approach has been rounded from
5/3 to 1.67; the value based on the allowable stress 15 the more accurate one.)

For fracture.

F,=0.5F,=0.5(58) =29.0 ksi
and the allowable load is
F,A4,=29.0(1.75) = 50.8 kips

ANSWER  The allowable service load is the smaller value = 50.8 kips.




EXAMPLE 3.2

FIGURE 3.4

SOLUTION

A single-angle tension member, an L3 % 34 X %, 15 connected to a gusset plate with
"4-mch-diameter bolts as shown m Figure 3.4. A36 steel is used. The service loads are
35 kips dead load and 15 kips Iive load Investigate this member for comphiance with
the AISC Specification. Assume that the effective net area 15 85% of the computed net

a. Use LRFD.
b. Use ASD.
L3Vax3Vaxs
Section
First, compute the nonminal strengths.
Gross section:

A4,=250m* (from Part 1 of the Manual)
i =Fydg =36(2.50) =90 kips
Net section:

3\(7 .1
= —=ll=+=]=2125in?
Ax =2.50 (8)(8 3 2.125m.

A, =0854, =085(2125)=1.806 m’> (m this example)
B, =F 4, = 58(1.806) =104.7 kips
a. The desizn strength based on yielding 15
¢.P, = 0.90(90) = 81 kips
The design strength based on fracture 15
¢.P, =0.75(104.7) = 78.5 kips
The design strength 15 the smaller value: ¢P, =78.5 kips
Factored load:

Wkhen only dead load and hive load are present. the only load combmations with a
chance of controlling are combinations 1 and 2.
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ANSWER

ANSWER

ANSWER

Combination 1: 14D =1.4(35) =49 kips
Combination 2: 12D +16L=12(35)+1.6(15)=66kips
The second combination controls; P, = 66 kips.

(When only dead load and hive load are present. combmation 2 will always control
when the dead load 15 less than eight times the live load. In future examples. we wnll
not check combination 1 [1.4D] when 1t obviously does not control )

Smce P, < ¢P,. (66 kips < 78.5 kips), the member is satisfactory.
b. For the gross section. The allowable strength 15
B, 9

E:m:53.9klp5

For the net section, the allowable strength 1=
B, 1047

Q200

The smazller value controls; the allowable strength 1z 52 4 kips. When the only loads
are dead load and live load, ASD load combination 2 will always control:

P,=D+L=35+15=50 kips

=524 kips

Smce 50 kips < 52.4 kips, the member 15 satisfactory.

Alternative Solution Using Allowable Stress
For the gross area, the apphed stress 1s

and the allowable stress 15
= 0.61'; =06(36)=216ka

For this it state_ f, < F, (OK)
For the net section,
y 50 .
=== =277 ka1
% 4, 1806

F=05F, =0.5(58)=290ks1>27.7kaa (OK)

Smce f; < F, for both Immit states, the member 15 satisfactory.




EXAMPLE 3.3

FIGURE 35

SOLUTION

A double-angle shape 15 shown 1n Figure 3.5. The steel 15 A36. and the holes are for
l5-inch-diameter bolts. Assume that 4, =0.754,,.
a. Determine the design tensile strength for LRFD.

b. Determune the allowable strength for ASD.

T
® o TEa

Section 2L5x3 x%sLLBB

Figure 3.5 illustrates the notation for unequal-leg double-angle shapes. The notation
LLBB means “long-legs back-to-back.” and SLBB mdicates “short-legs back-to-
back.”

When a double-shape section 15 used, two approaches are possible: (1) consider
a smngle shape and double everything, or (2) consider two shapes from the outset.
(Properties of the double-angle shape are given in Part 1 of the Manual) In this
example, we consider one angle and double the result. For one angle, the nominal
strength based on the zross area1s

P, =F, A4, =36(2.41) =86.76 kips

There are two holes in each angle, 5o the net area of one angle 15

A= 2.41—(1)(—1-+l)x 2=2019m°
1612 8

The effective net area 15
4, =0752.019)=1514m?
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ANSWER

ANSWER

The nominal strength based on the net area 15
B, =F A =5801.514)=8781 kips
a. The design strength baszed on yielding of the gross area1s
P =0.90(86.76) = 78.08 kips
The design strength based on fracture of the net area 15
¢.B, =0.75(87.81) = 65.86 kips
Because 65.86 kips < 78.08 kips, fracture of the net section controls. and the dezign
strength for the two angles 15 2 X 65.86 = 132 kips.
b. The allowable stress approach will be used. For the gross section,
F, =0.6F,=0.6(36)=21.6 ksi
The comresponding allowable load 15
F,A‘ =21.6(2.41) =52.06 kips
For the net section,
F=05F, =0.5(58)=29 ka1

The corresponding allowable load 15
FA ,=29(1.514)=43.91 kips

Because 43 91 kips < 52.06 kips. fracture of the net section controls, and the allow-
able strength for the two angles 15 2 x 43 91 = 87.8 kips.
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FIGURE 3.7
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FIGURE 2.8
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The Commentary of the ATSC Specification further illustrates ¥ and £ Fig-
ure C-D3.2 shows some special cases for x, meluding channels and I-shaped mem-
bers connected throwgh thewr webz. To compute x for these cases, the Commentary
uszes the concept of the plastc peutral axis to explan the procedure. Since this con-
cept 15 not coversed until Chapter 5 of this book, we will use ¥ for channels as shown
in Case 2 of Specification Table D3 .1 and m Figure 3.7k of this book. For I-shaped
members and tees connected through the web, we can use Caze 2 or Caze 7 of Spec-
ification Table D31

1. Plates
In general, IV = 1.0 for plates, since the cross secton bas only one element and 1t 15
connacted. There 15 one exception for welded plates, however. If the member 15 con-
pected with longitudinal welds on each side with no transverse weld (as 1n Figure 3.9},
the following values apply:

¢ For{ z2w U=1.0

# Forliw={<2w, U=087

¢ Forw={ <15 U=073

3. Bound HSS with £ = 1.3 (zee Fizure 3.7e):
Ur=1.0
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FIGURE 3.9

EXAMPLE 3.

SOLUTION

— T
]
1
W ! —
I
T ]
———— BRI L {e]
| ‘
- e

4. Alternatives to Equation 3.1 for Single and Double Angles:

The following values may be used m hien of Equation 3.1.

® For four or more fasteners in the direction of loading, IV =0.80.
o For three fasteners in the direction of loading, L7 = 0.60.

5. Alternatives to Equation 3.1 for W, AL 5, HP, or Tees Cut from These Shapes:

If the following condifions are safisfied, the comresponding values mav be used 1in hen
of Equation 3.1.
¢ Connected through the flange with three or more fasteners in the direction of
loading, with a width at least ¥ of the depth: I/ = 0.90.
# Coonected through the flange wath three or more fasteners in the direction of
loading, with a width lass tham 3% of the depth: I7 = 0 85,
* Copnected through the web with four or more fasteners 1n the direchion of
loading: U7 =10.70.
Figure 3.10 illuztrates the alternatrve values of U7 for vanons connectons.
If a tenziom member 1= connected with only transverse welds, U= 1.0, and 4, 15
the area of the connected element. Fizure 3.11 illustrates the difference between trans-
verse and longhtudinal welds. Connections by transverse welds alone are not common.
There are some hmiting values for the effective area:
® For bolted splice plates, 4, = 4, < 0.854, This lmit is given in 2 user note
and 15 from a requirement m Chapter J of the Specification “Design of
Connechons.”

¢ For open cross-sectional shapes (such as W, M, 5 C, HP, WT, and 5T} and
(anglez), the value of L7 need not be less than the ratio of the connected ala-
ment gross area to the total gross area.

Determme the effective net area for the tension member shown 1 Figure 3.12.

A, =4 — A

=5.77—i(5+l)(23 =502in°’
2l 8

Omnly ope element (one leg) of the cross sechon 15 connected., so the net area mmst
be reduced. From the properties tables m Part | of the Manual, the distance from
the centroid to the outside face of the leg of an L6 % 6 x Y215

¥=167in
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FIGURE 3.12
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The length of the connection 13
£=34+3=6m

X 1.67
~U=1-|—= =1—{—]= 07217
(-t'] &

A, =AJ =5.02(0.721T)=3.623 in.”

The alternative valne of [V conld alzo be nzed. Becanse this angle has three bolts m
the direction of the load, the reduction factor [7 can be taken as 0,60, and

A, =A4,U=502(0.60)=3.012 in*

Either I7value 1= acceptable, and the Specification permats the larger one to be used.
However, the valuwe obtained from Equation 3.1 15 more accurate. The alternative val-
ues of I can be useful durng preliminary design, when actual section properties and
comnnection details are mot knowm

EXAMPLE 3.

5

SOLUTION

ANSWER

If the tension member of Example 3.4 15 welded as shown in Figure 313, determmine
the effective area

Az m Example 3 4, only part of the cross section 15 connected and a reduced effec-

tive area mmst be used.

U=1_(5]=1_[£]=n_5954
i 55

4,=4 U=5T10.6964)=4.02 m?
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3.4 STAGGERED FASTENERS

FIGURE 3.14

If 2 tension member connechion 15 made with bolis, the net area will be maxmuzed 1f
the fasteners are placed in a single ine. Sometmes space lmitations, such as a hmit on
dmension g m Figure 3.14a, necessitate using more than one hine. If so, the reduchon
in eross-sectonal ares 15 minemized if the fasteners are arranged in 3 stagzered pattern,
as shown. Sometimes stagzered fasteners are required by the geometry of a connection,
such as the one shown m Figure 3. 14b. In erther case, anv cross section passmg through
holes will pass through fewer holes than if the fasteners are not staggered.

b} ich
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If the amount of stagger 15 small enough, the influence of an offset hole may be
felt by a pearby cross sechon, and fracture along an inchned path such as abed m
Figure 3.14¢ 15 possible. In such a case, the relationship f= P/ 4 does not apply. and
stresses on the inclined porfion b—¢ are a combination of tensile and shearing
stresses. Several approximate methods have been proposed to account for the effects
of staggered holes. Cochrane (1922) proposed that when deducting the area corre-
sponding to a staggered hole, use a reduced diameter, given by

7

g 5 5

d'=d - (3.2)
where 4 15 the hole diameter, 5 15 the stagger. or putch, of the bolts (spacing 1o the
direction of the load), and g 1= the gage (fransverse spacing). This means thatm a fail-
ure pattern consisting of both staggered and unstazgered holes, use d for holas at the
end of a transverse line between holes (z = () and use d" for holes at the end of an
inclined line between holes.

The AISC Specification, in Section B4.3b, uses this approach, but 1n 2 medified
form. If the net area 15 treated as the product of a thickness fimes a net width, and the
diameter from Equation 3.2 1s used for all holes (since d° =  when the stagger 5 = 0,
the pet width in a failure line consisting of both stazgzered and unstaggered holes 1=

H',,:H'E—Ed’
52
—w,—r|d——
‘ [ 45]
—w, —Td+T
w, P

where wy, is the net width and wyis the zress width. The second term is the sum of all
hole diameters, and the third term 1= the sum of 5*/4g for all inclimed lines in the fail-
ure pattermn.

When more than one fallure pattern 15 conceivable, all possibilihes should be
investigated, and the one correspondimg to the smallest load capacity should be used.
Mote that thus metheod will pot accommeodate failure patterns with lines parallel to the
applied load.

EXAMPLE 3.6
Compute the smallest net area for the plate shown 1n Figure 3.15. The holes are
for l-ainch-diameter bolis.
SOLUTION The effective bole diameteris 1 + %= 14 in. For line abde,

w,=16-2(1.125)=13.75 in.



FIGURE 3.15

ANSWER

3%
4 o o oj ah
5
] o = = e
Iz
o o o of o
1
hole e Loy
vl |||
For line abede,

23

= 16 — 3(1.125) + = 1352 in
Wiy (1.125) 15 n

The second condibion will give the smallest net area:

A=, =0.75(1352)=10.1 m?

Equation 3.2 can be used directly when staggered holes are present. In the com-
putation of the net area for line abeds m Example 3.6,

A, = A, -Frx(d ord’)

37
4(5)

- G_Tﬁl:lﬁj—ﬂ.?iﬂl.lES}—ﬂ_TS[l_IES— ]x 2=101in°

As each fastener resists an equal share of the load (an assumption used in the
design of simple connections; see Chapter 7}, different potenfial failure ines may be
subjected to different loads. For example, line abede in Figure 3.1 5 mmst resist the full
load, whareas ijfl will be subjected to %11 of the applied load. The reason 1s that 311 of
the load wall have been transferred from the member before i recerves any load.

When lines of bolts are present in more than one element of the cross section of
arolled shape, and the bolts in thesze lines are stagzered with respect to one another,
the use of areas and Equation 3.2 15 preferzble to the net-width approach of the AISC
Specification. If the shape 15 an angle, it can be visualized as a plate formed by
“unfolding™ the legs to more clearly 1dentify the pitch and gage distances. AISC
B4.3b specifies that any gage hne crossing the heel of the angle be reduced by an
amount that equals the angle thickness. Thus, the distance g in Figure 3.16, to be used
m the s%'4g term. would be 3 + 2 — ¥ = 4% inches.
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FIGURE 3.16 3%
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EXAMPLE 3.7

An angle with staggered fasteners m each leg 12 shown in Figure 3.17. A36 steel 1=
used. and holes are for 74-inch-diameter bolts.

a. Determme the desizn strength for LRFD.

b. Determine the allowable strength for ASD.

SOLUTION From the dimensions and properties tables, the gross area is 4, = 6.80 2. The
effective hole diameteris 4+ Y4 =1 1n.
For line abdf. the net area 15

4, =4,-Yt,%x(d ord")
=680-051.0)x2=580in"

For line abceg,

A, =680-0.51.0)- 0.5[1.0 _%s_)s’_)_]_ 0.51.0)=5413n?

Because Y10 of the load has been transferred from the member by the fastener
at d, this potential failure line must resist only %o of the load. Therefore, the net area

FIGURE 3.17 —=
204" 24T 4@1%" - o o ob
A
N il A
3,.L 9 o— I I I TN ] plmiedede )l bt e —ip P
E—-—- o o o Y o o od
3 3. [
1 o o ! o o€
|

LEx6x¥2



ANSWER

ANSWER

of 5.413 mn? should be multiplied by 'Y to obtain 2 net area that can be compared
with those lines that resist the full load. Use 4, = 5.413("%s) = 6.014 1 * For line
abcdeg,

g4 =34+225-05=475in.

on < _(1-5)’]_ _(1-_5)’]_ [ _(1-5)’]
4, =680-050.0)~05{ 10225 -05| 10— 05| 10—~

=5065m*

The last case controls; use
A,=5065m?

Both legs of the angle are connected. so
A,=4,=5065mn?

The nominal strength based on fracture 15
P,=F 4,=58(5.065) =293.8 kips

The nominal strength based on yielding 1=
P,=FA,=36(6.80) =244.8 kips

a. The design strength based on fracture 15
&P, =0.75(293.8) = 220 kips

The design strength based on yieldmng 15
&P = 0.90(244.8) = 220 kaps

Desizn strength = 220 kips.
b. For the limit state of fracture, the allowable stress 1
F,=0.5F, =0.5(58)=29.0k=a
and the allowable strength 15
FA,=29.0(5.065) = 147 kips
For yielding,
F,=0.6F,=0.6(36)=21.6 k=
FoA,=21.6(6.80) = 147 kips

Allowable strength = 147 kips.




EXAMPLE 3.8

Deternune the smallest net area for the Amencan Standard Channel shown in Fig-
ure 3.18. The holes are for *4-mch-diameter bolts.

SOLUTION A, =4, -1, x(d ord’)

Line abe:

A=At = 3.82—0.437(%):3.49 in?

Line abed:
Ay = 4; —1.(d forhole at b) —t,(d’ for hole at ¢)

E 3.32-0.437(%)- o.437[%_%] =331in?

ANSWER  Smallestnetarea=3311in?

FIGURE 3.18 4@2”
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EXAMPLE 3.9

Find the available strength of the 5-shape shown m Figure 3 20, The holes are for
Ye-mch-diameter bolts. Use A36 steel.

SOLUTION Compute the net area:
Ay = Ay — 3 1% (d ord’)

Effective hole diameter = !

+—=
B

£ |
| -

For hne ad,
T 9
Ay =147 - {E}D.ﬁlﬁ} =1252m"-

For line abed. the gage distance for use in the % /4g term is
35 0.550

g Iy -:. ;

= ——=—1275—=4225

TR T T 2 =
FIGURE320 4. Mol

815 = 50
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Starting at @ and treating the holes at b and d as the staggered holes zives
Ao =4, -Ytx(d ord)

i 7 7 (1-5)2
=14.7- 2(0.622)(5) = (°-55°)[§" 4(4_225)]

- (0.550)(1) - 2(0.622)[1 __O_SX_] =1173in?
8 8 4(4.225

Line abed controls. As all elements of the cross section are connected,

A4,=4,=11.73m?
For the net section, the nominal strength 15

P,=F, A4.,=58(11.73) = 680.3 kips
For the gross section,

P,=F,4;,=36(14.7) =529.2 kips

LR EDNE i vipn strengih basad ou fractms is
SOLUTION B, =0.75(680.3) = 510 kips
Ui e i akcusanth based ra'yiekding i
P, = 0.90(529.2) = 476 kips
Yielding of the gross section controls.

ANSWER  Design strength =476 kips.

ASD  The allowable stress based on fracture is
SOLUTION F,=0.5F, = 0.5(58) =29.0 k=i
and the corresponding allowable strength 15 F 4, =29.0(11.73) = 340 kips.
The allowable stress based on yielding 15
F;=0.6F,=0.6(36)=21.6ks1
and the comresponding zllowable strength 15 F,‘lg =21.6(14.7) = 318 kips.
Yielding of the gross section controls.

ANSWER  Allowable strength =318 kips.

Read Page 64 Block Shear and Example 3.10



3.6

DESIGN OF TENSION MEMEERS

The desizn of a tension member mvolves findmeg a member with adequate gross and
net areas. If the member has a bolted connection, the selection of a smtable cross sec-
fion requires an accounfng for the area lost because of holes. For a member with a
rectanzular cross sechon, the caleulatons are relatively straightforwrard. If a rolled
shape 1= to be used. however, the area to be deducted cannot be predicted in advance
because the memberss thickness at the location of the holes 15 not known.

A secondary considerzfion m the design of tension members 15 slenderness, If a
structural member has a small cross section m relation to 1ts length. 1t 15 sad to be slan-
der. A more precise measure 15 the slendemess ratio, Ly, where L 15 the member length
and r1s the mumimum radmes of gyvraton of the crozs-sechonal area. The manminm radiws



of gyration 1s the one comresponding to the munor prneipal ax1s of the cross section. Ths
vahue 15 tabulated for all rolled shapes m the properties tables 1 Part 1 of the Manual.

Although slenderness 15 crifical to the strength of a compression member, 1t 15
inconsequential for a tension member. In many stuations, however, 1t 15 good practice
to lumit the slenderness of tension members. If the axial load ina slender tension mem-
ber 15 removed and small transverse loads are apphed, undeswable vibrations or
deflections maght occur. These condibons could ocour, for example, 1o a slack bracmg
rod subjected to wind loads. For thes reason, the user note m AISC D suggests a max-
mwnum slenderness ratio of 300, It 15 only a recommended value because slenderness
has mo structwral sigmificance for tension members, and the oot may be exceedad
when special circumstances warrant 1t. This limit does not apply to cables, and the user
note explicitly exchides rods.

The central problem of all member design, including tension member design, 15 to
find a cross secton for whech the requred strength does not exceed the available strength.
For tension members designed by LEFD, the requiremnent 15

PB=aP, or P, =P,
where P, 15 the sum of the factored loads. To prevent vieldmg,

P
090F, 4, =P, or 4, z2—"

N 0.90F,

To avoud fracture,
0T3R4, 2P, or A '-_-"P—f
0.7T5F,

For allowable strength desizn. if we use the allowable srrezs form. the requirement
comesponding to vielding 15

F,=F 4,
and the required gross area 15

..-!g Ei or A,
F, ':l.l.‘rf'?.

For the lumat state of fracture. the requured effective area 1s

B . B
A, =—= A =
dzpoer A=ns
The slenderness ratic lmrtation will be satisfied of
. L
300

where r 15 the minimum radius of gyvration of the cross section and L 15 the member

length.



EXAMPLE 3.11

LRFD
SOLUTION

ANSWER

ASD
SOLUTION

A tension member with a length of 5 feet 9 mches must resist a service dead load
of 18 kips and a service Iive load of 52 kips. Select a member wath a rectangular cross
section. Use A36 steel and assume a connection with one line of 74-inch-diameter bolts.

P,=12D+16L=12(08+16(52=104%8 kips
P, 104.8

P ;
1 =t = =3235m°
Required 4, aF, 3235m.

0.90F, 0.90(36)

B, _ B _ 1048
¢.F, 0.75F,  0.75(58)

Required 4, =
Tryt=11in.

R.eqnitedwzz =3235m

required 4, 3235
t 1
Try a 1 x 3% cross section.

.4.311,,:4‘—1‘.*

=( x3.5)-(%+ -})(1) =25in?>2409m?

Check the slendemess ratio:
1__35(1)3 =02917in*

A=1(3.5)=35in?
From I = 4r’, we obtam

r_.-J ‘102951 =0.2887 m.

M 57502)_239 300 (OK)
02887

UseaPL 1 x3%

P,=D+L=18+52=70.0kips
For yielding, F, = 0.6F, = 0.6(36) = 21.6 ksi, and

=2409m’

(OK)



ANSWER

For fracture, F,=0.5F, = 0.5(58) =29.0 k=1, and

{The rest of the dezign procedure 15 the same as for LRFD. The numerical results
may be different)

Tryt=11in

requied 4, 3241
t 1
Try a1 %3 % cross section.

A, =A. ="4‘-"4bk

Required w, = 3241 m.

=@ x 3.5)-(% + %)(1) =25m?>2414m? (OK)

Check the slendemess ratio:

3.5Q)° - 4
= =0.2917 m.
Lo B 02917 m

A=1(35)=35m?

From I = A4r?, we obtamn

12917
| :"IA :"ﬁ =0.2887 m?
A 35

um £ =3702) _ 539300  (OK)
y 02887
UseaPL1x3%




FIGURE 2.24
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EXAMPLE 3.12

Select an unequal-leg angle tension member 15 feet long to resist a service dead
load of 35 kaps and a service hive load of 70 kips. Use A36 steel. The connechon 15

shown m Figure 3.235.

FIGURE 2.25 X
o
//’;i,irrl.:nclur balis

D=35
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LRFD
SOLUTION

The factored load 1s
P, =1.2D +1.6L =1.2(35)+1.6(70) =154 kips
P, 154
Requied 4, =—*~=————=475m’
.43 oF, ~ 0.9036) Sm.
. P, 154 2
Requued 4 =——=———=354
“ T oF, 07508 7

The radius of gyration should be at least

L1502

300 300

To find the hightest shape that satisfies these cntenia. we search the dimensions and
properties table for the unequal-leg angle that has the smallest acceptable gross arez and
then check the effective net area. The radius of gyration can be checked by inspection.
There are two lines of bolts, so the connected leg must be at least 5 mches long (see the
usuzl gages for angles in Figure 3.24). Starting at either end of the table, we find that
the shape with the smallest area that1s at leastequalto 4. 75 m? 1san L6 x 4 x 12 with
an area of 4.75 in * and a mmimum radius of gyration of 0.864 in.

TryL6 x4 x V4.
3 1)1 29
A=Ay — Ay, =4.75-2(Z+E)(;)=3.875 in.

Because the length of the connection 15 not known, Equation 3.1 cannot be used to
compute the shear lag factor U. Since there are four bolts in the direction of the load.
we will use the alternative value of U= 0.80.

A, =4,U=3875(080)=3.10m*<3.54m? WN.G)*
Try the next larger shape from the dimensions and properties tables.
TryL5x 3% x % (4,=4.93 in” and 7, =0.746 in.)

e 2(%+%)(§) =3.836in>
A =AU =3836(080)=307m’*<354in° (N.G)
(Note that this shape has shghtly more gross area than that produced by the previous

tmal shape. but because of the greater leg thickness, slightly more area 15 deducted for
the holes.) Passing over the next faw heavier shapes,

TryL8x 4 x % (4,=5.80in? and r,,,, = 0.863 in.)
AN iy
A=Ay — Ay, =580-2 I+-§ = =4925m°

A, =AU=4925080)=3%m’>354m> (OK)

*The notation N.G. means “No Good.”



ANSWER  This shape satisfies all requirements, sousean L8 x 4 x 4.
ASD  The total service load is

SOLUTION _
P, =D+L =35+ 70=105kips

: P,_ P _ 105 =
Requed 4, == =——= =486m°
*"F 06F, 0636

Tryl8x4x ' (4,=580m°andr,, =0.863 m.). For a shear lag factor U of 0.80,

Ay = Ag — Aoy =580 -2 3—+% (%):4.925 n’

A =AU =4925(080)=394m’>362in* (OK)

ANSWER  This shape satisfies all requirements, so use an L8 x 4 x }4.

Tables for the Design of Tension Members

Part 5 of the Manual contains tables to assist i the design of ten=ion members of var-
1ous cross-zectional shapes, including Table 5-2 for angles. The use of thesa tables
will be illustrated m the following example.

EXAMPLE 2.12

Design the tension member of Example 3.12 with the aid of the tables mn Part 5 of

the Aanual.
LRFD  From Example 3.12,
SOLUTION
P, =154 kips

r.. 20600 in



Ll Llidpiagr o

ANSWER

ASD
SOLUTION

TEHDIVUI WIHInuwi s

The tables for design of tension members zive values of 4, and 4, for vanous
shapes based on the assumption that 4, = 0‘75‘4t In addition, the comesponding
available strengths based on yielding and rupture (fracture) are given. All values
available for angles are for A36 steel. Staring with the lighter shapes (the ones with
the smaller gross area), we find that an L6 X 4 x V2, with ¢ P, = 154 kips based on the
gross section and @.P, = 155 kips based on the net section, 15 2 possibility. From the
dimensions and properties tables in Part 1 of the Manual r,,, =0.864 1n. To check
this selection, we must compute the actual net area. If we assume that U = 0.80,

An = Ay — Ancies =4.75-2(%+-;-)(-,1;-)= 3875m’

A, =AU=3875(080)=3.10in°

&b =@ Fd. =075(58)3.10) =135 kips <154 kips (N.G.)
This shape did not work because the ratio of actual effective net area 4, to gross area
A, 15 not equal to 0.75. The ratio is closer to

310 6506

475
This comresponds to a required ¢, P, (based on rupture) of

0.75 0.75
—X P, =
actual ratio 0.6526

(154) = 177 kips

Try an L8 x 4 x "2, with ¢.P, = 188 kips (based on yielding) and ¢, P, = 189 Kips
(based on rupture strength. with 4, = 0.754, = 4.31 in ?). From the dimensions
and properties tables 1n Part 1 of the Manual, », = 0.863 in. The actual effec-
tive net area and rupture strength are computed as follows:

3 1)1 iy
A" = A! —Aw =580- 2(2‘1’5 (5) =4925m.
A =AU =4925(080)=394in’
&P = ¢ F, A4, =0.75(58)(3.94) =171>154 kips (OK)
Use an L8 x 4 x 4, connected through the 8-inch leg.

From Example 3.12,
P, =105 kps
Required 7, =0.600 m.
From Manual Table 5-2, try an L5 x 3% % % wath P, /€), = 106 kips bazed on yield-

ing of the gross section and P, /), = 107 kips based on rupture of the net section.
From the dimensions and properties tables in Part 1 of the Manual, r,, =0.746 1n.



ANSWER

Using a shear lag factor U of 0.80. the actual effective net area 15 computed as
follows:

A=Ay — Ay, =493 2(% + %)(%) =3.836in’
A = AU =3.836(0.80) = 3.069 in *

and the allowable strenzth based on rupture of the net section 15
B _FA4, 58(3.069)
Q Q @ 200
This shape did not work because the ratio of actual effective net area A, to gross area
4, 15 not equal to 0.75. The ratio is closer to

m =0.6225
493
This corresponds to a required P, /Q), (based on rupture), for purposes of using
Table 5-2. of

0.75
0.6225
Using this as a gwde. try L6 x 4 x %, with P, /€, = 126 kips based on yielding of
the gross section and P, /() = 128 kips based on rupture of the net section. From the
dimensions and properties tables in Part 1 of the Manual, r,, =0839 m.

=890 kips <105kips (N.G)

(105) =127 kips

3 1\(5 .,
i — =586-2|—+—=||-|=4. .~

A =AU =4766(080)=381m’
B. _FA. 583381

R 1 1lkips =105k OK
0. .00 kips kips  (OK)

Use an L6 x 4 x %, connected through the 6-inch leg.



3.8

TENSION MEMBERS IN ROOF TRUSSES

Many of the tension members that structural engineers design are components of
trusses. For this reason, some general discussion of roof trusses 15 1n order. A more
COn s1ve treatment of the subject 15 given by Lothars (1972).

When trusses are used m bwldmgs, they usually function as the main supportimg
elements of roof systenys where long spans are required. They are used when the cost and
weight of a beam would be prohibative. (A truss may be thought of as a deep beam with
much of the web removed.) Foof trusses are often used in industnal or mull buldings,
although construction of ths tvpe has largely mven way to nzmd frames. Typical roof
construction with trusses supported by load-beanng walls 1= llustrated m Figure 3.28. In
this type of construction, one end of the connection of the fruss to the walls usually can
be considered as pmned and the other as roller-supported. Thas the truss can be analyzed
as an externally statically defermimate strachure. The supporing walls can be reinforced
concrefe, concrete block, brnick, or a combination of these matenals.

Foof tusses normally are spaced uniformly along the length of the building and
are fied together by longitudinal beams called purling and by X-bracing. The promary
function of the purhins 15 to transfer loads to the top chord of the truss, but they can
also act as part of the bracing svstem. Bracing 15 usually provided m the planes of both
the top and bottom chords, but 1t 15 not required in every bay because lateral forces
can be transferred from one braced bay to the other through the purlins.

Tdeally, purlins are located at the fruss joints so that the truss can be treated as a
pin-connected structure loaded only at the joints. Sometimes, however, the roof deck
cannot span the distance betweesn jomts, and mtermediate purins may be needed. In
such cases, top chord members will be subjected to sipmificant bending as well as
axial compression and must be designed as beam—cohimns (Chapter 6).

Sag rods are tension members used to provide lateral suppert for the purkns. Most
of the loads applied fo the purlins are verfical, so there will be a component parallel to a
slopmg roof, which wall canse the purlin to bend (sag) m that dwection (Figure 3.29).

Sag rods can be located at the midpomt, the third points, or at more frequent
intervals along the purhins, depending on the amount of support needsd. The intarval
15 a function of the truss spacing, the slope of the top chord, the resistance of the purlin
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FIGURE 2.28

FIGURE 3.29
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to this type of bending (most shapes nsed for purhins are very weak in this respect),
and the amount of support furnished by the roofing. If a metal deck 15 used, it wall usu-
ally be n@dly attached to the purlins, and sag rods may not be peeded. Sometimes,
however, the weizht of the purlin 1tself 1z enougzh to cause problems, and sag rods may
be needed to provide support dunng construction before the deck 15 m place.

If zag rods= are used, thev are designed to support the component of roof loads
parallel to the roof Each segment between purlins 15 assumed to support everything
balow if; thus the top rod 1= designed for the load on the roof area mbutary to the rod,
from the heel of the truss to the peak. as shown in Figure 3.30. Although the force wall
be different in each segment of rod, the usual practice 1= to use one size throughout.



FIGURE 3.30

FIGURE 3.31

EXAMPLE 3.

SOLUTION

3.8 Tension Members in Roof Trusses g1

I Tributary arca for

= designof rod ab

5 E:i L7 | BE:
i I

The extra amount of material in question 15 insignificant, and the use of the same size
for each segment elimmates the possibility of a mix-up dunng construchion.

A poszible freatment at the peak or ndge 15 shown 1 Figure 3.31a. The tie rod
between ndge purlins must resist the load from all of the sag rods on erther side. Tha
tenzile foree m this horzontal member has as one of s components the force m the
upper sag-rod segment. A free-body diagram of one ndge purln 1llustrates this effect,
as shown n Figure 3 31b.

T,
T] ) ﬂ
-?"‘ I_i'rm R
Benl rowd
R
(al i

15

Fink trusses spaced at 20 feet on centers support W6 * 12 purlins, as shown n
Figure 3.32a. The purhns are supported at their mudpoints by sag rods. Use A36
steel and design the sag rods and the tis rod at the ndge for the following service
loads.

Bletal deck: 2 psf
Bult-up roof: 5 psf
Snow: 18 p=f of honzontal projection of the roof surface

Purlin weight: 12 pounds per foot (Ib,/ft) of length
Calculate loads.

Trbutary width for each sag red =20,/2 = 10 ft

Trnbutary area for deck and built-up roof = 10(46.6) = 466 ft*
Dead load (deck and roof) = (2 + 5)(466) = 3262 Ib

Total purlin weaght = 12{10)(%) = 1030 Ib

Total dead load = 3262 + 1080 = 4342 Ib

Trnbutary area for snow load = 1043 =450 £

Total smow load = 18{(450) = 8100 b



FIGURE 3.32
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LRFD Check load combinations.
SOLUTION Combmation2: 12D +0.55=12(4342) +0.5(8100) =9260 Ib
Combination 3:

12D +1.65=1.2(4342) +1.6(8100) = 18,170 Ib

Combmation 3 controls. (By inspection. the remaming combinations will not govern.)
For the component parzllel to the roof (Figure 3.32b),

12 :
T=(Q8.17)—= = 4679
810165 s

T 4679 -
Required 4s = = =0.1434 i’
= #(0.75R)  0.75(0.75X58) -

ANSWER  Usea %-inch-diameter threaded rod (4; = 0.3068 in ?).
Tie rod at fhe ridge (Figare 3.32¢):

P= (4.679)%: 4845 kips

: . 4845 _ 2
Required A4, —-—___0.75(0.75)(58) =0.1485 m.



ANSWER

ASD
SOLUTION

ANSWER

ANSWER

Use 2 %-mch-diameter threaded rod (4; = 0.3068 in ?).

By inspection, load combination 3 will control.
D+5=4342 +8100=124401b
The component parallel to the roof1s

12 :
T=12. 46.6)_3'203]“1’5

The allowable tensile stress 1s F, = 0.375F, =0.375(58) =21.75 k=

: T 3203 :
Requed 4, =—=——-=0.1473m?
A= FE= 07 o

Use a %-inch-diameter threaded rod (4, = 0.3068 in.?) for the sag rods.
Tie rod at the ndge:

P=320 %):3_3171@3

3317 _

Raqmred 4 — =0.1525 in?
4= i

Use a %4-inch-diameter threaded rod (4, = 0.3068 1n.?) for the tie rod at the ndge.




SOLUTION Calculate loads:

LRFD
SOLUTION

Snow = 20(40)(20) = 16,000 Ib

Dead load (exclusive of purlins) = Deck 2 psf
Roof B
Insnlation 3
Total 9 psf

Total dead load = 9(40)(20) = 7200 Ib
Total purlin weight = 6.5(20)(9) = 1170 Ib
Estimate the truss weight as 10% of the other loads:
0.10(16,000 + 7200 +1170)=2437 b
Loads at an intenor joint are

p=1290 237 | ¢ s00)=1335 b

(-

At an extenor joint, the trbutary roof area i1s half of that at an intenor joint. The cor-
responding loads are

=200 2437 | ¢ s00)=7323 Db

T2®)  28)
16.000
A 2®) =1000 Ib

Load combination 3 will control:
P,=12D+16§
At an intenor jomt,
P,=1.2(1.335) + 1.6(2.0) =4.802 kips
At an extenior jomt.
P,=1.2(0.7323) + 1.6(1.0) =2.479 kips

The loaded truss 15 shown in Figure 3.35a.

The bottom chord 15 desizned by determuning the force in each member of the
bottom chord and selecting a cross section to resist the largest force. In this exam-
ple. the force in member IJ will control. For the free body left of section a—a shown

in Figure 3.35b,

ZME =19.29(20) - 2.479(20) - 4.802(15+10+5)-4F;, =0
F,, =48.04 kips
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For the gross section.
- Fyy 48.04 S
Required = = = 1.07 .
%€ = Ts0F, ~ 05060) G
For the net sechon,

: Fy _ 4804 o
Required 4, = = =0985m."*
A = 0aSE, - 07565) il

Try an MT5 x 3.75:
4,=111m?*>107m? (OK)
Compute the shear lag factor U from Equation 3.1.

v=1-(3)= u(ﬁ) = 08322
‘ B

A= 4U=111(0.8322)=0924 m* <0985in° (NG)
Try an MT6 x 5:

4;,=148m°>107m’ (OK)

X 1.86
=1-|—|=1-1—]=07
U=1 (f) 1 ( 3 ) 0.7933

4, =A4,U=148(0.7933)=1.17in* >0.985in”  (OK)



If we assume that the bottom chord 15 braced at the panel pomts,

L_502)
=25y =101<300 (0K

ANSWER UseanMT6x5.

ASD  Load combination 3 will control. At an interior jomnt,

SOLUTION P,=D+5=1335+20=3.335kips
At an exterior jomt.
P,=07323+10=1.732 kips
The loaded truss 15 shown in Figure 3.36a.
— ) ™ - - - - e -
a
. C | | yE r
& B D
J"l t
G H 7 e b
a
13.40* 13.40*
(a)
— (ag} Lag} ”
9
C
‘4! A d "’E
B D,’
F 4
I B
a
13.40*
(®)

Member IJ 15 the bottom chord member with the largest force. For the free body
shown in Figure 3.36b,

ZME =13.40(20) -1.732(20)-3.335(15+10+5)-4F, =0

F; =3333 kips
For the gross section, F, = 0.6Fy: 0.6(36)=21.6ka
F 3
Required 4 O se?



For the net section, F, =0.5F, = 0.5(58) =29.0 kax

: Fy. 3333 .
Required 4 = """ —-115m?
* F 290

Try an MT6 x5.4:

4,=159m*>154im” (OK)
U =1-%=1-186_07033
7 9

A = AU =159(0.7933)=126 in.* >1.15mn? (OK)

Assuming that the bottom chord 15 braced at the panel points, we get

L_5a2) _
r_o.m-los':soo (OK)

ANSWER UseanMT6x54.




4.1

CHAPTER

INTRODUCTION

Compression members are structural elements that are subjected only to axial com-
pressive forces: that 15, the loads are applied along a longitudinal axis through the cen-
troid of the member cross section, and the stress can be taken as f= P/4, where f1s
considered to be umiform over the entire cross section. This 1deal state 15 never
achieved i reahty. however, because some eccentnicity of the load 15 inevitable.
Bending will rezult, but 1t usually can be regarded as secondary. As we shall see. the
AISC Specification equations for compression member strength account for this
accidental eccentricity.

The most common type of compression member occwring 1n buldings and
bndges 15 the column, a vertical member whose pnimary function 15 to support verti-
cal loads. In many instances. these members are also subjected to bendmg. and mn
these cases, the member 15 a beam—column. We cover this topic in Chapter 6. Com-
pression members are also used in frusses and as components of bracing systems.
Smaller compression members not classified as columns are sometimes referred to as
struts.

In many small structures, column axial forces can be easily computed from the
reactions of the beams that they support or computed directly from floor or roof
loads. This 15 possible if the member connections do not transfer moment; mn other
words, if the column 15 not part of a nzid frame. For columns in ngzid frames, there
are calculable bending moments as well as axial forces, and a frame analysis is nec-
essary. The AISC Specification provides for three methods of analysis to obtain the
axial forces and bending moments in members of a ngid frame:

1. Direct analysis method
2. Effective length method
3. Fust-order analysis method
Except in very simple cases, computer software 15 used for the analvsis. While the
detalls of these three methods are beyond the scope of the present chapter, more will
be said about them m Chapter 6 “Beam—Columns”. It is important to recognize,
109



4.2

FGURE 4.1

COLUMN THEORY

Consider the long, slender compression member shown in Figure 4. 1a. If the amal load
P 15 slowly applied, 1t will ultimately become large enough to cause the member to
become unstable and assume the shape indicated by the dazhed hne. The member 15
zaid to have buckled. and the corresponding load 15 called the crifical buckiing load.
If the member 1= stockier, as shown mm Figure 4.15b, a larger load will be required to
bring the member to the pomt of instababity. For extremely stocky members, fartlure may
ocour by compressive vielding rather than buckhng. Prior to failure, the compressive
stress P/ 4 will ba uniform over the cross section at any pomnt along the length, whether
the failure 15 by velding or by buckling. The load at whick bucklng oceurs 15 a func-
tion of slenderness, and for very slender members this load could be quite small.

If the member 1s so slender (we give a precise definifion of slenderness shortly)
that the stress just before buckling 15 below the proportional limat—that 15, the mem-
ber 15 stll elashe—the cntical buckling load 15 grven by

i
Fe= T 4.1)

where E 15 the moduhus of elasticity of the matenial, I 15 the moment of inertia of the
cross-sectional area with respect to the miner prncipal axis, and L 1s the length of
the member between points of support. For Equation 4.1 to be valid, the member must
be elastic, and 1ts ends must be free to rotate but not translate laterally. Thas end
condifion 15 satisfied by hinges or pmns, as shown in Figure 4.2, This remarkable

F FIGURE 4.2

e

P P
i@l (b}



relationship was first formulated by Swiss mathematician Leonhard Euler and pubhizhed
in 1739 The entical load 15 sometimes referred to as the Euler load or the Exler buck-
ling load. The vahdity of Equation 4.1 has been demomnstrated convineingly by
numerous tests. Its denvation 15 grven here to 1llustrate the importance of the end
condifions.

For convemence, mn the following denvathon, the member will be onented with
its longitudmal axis along the x-axis of the coordinate system given 1n Figure 4.3, The
roller support 15 to be interpreted as restraiming the member from translating either up
or down. An axial compressive load 15 applied and gradually mereased. If a tempo-
rary transverse load 15 apphed so as to deflect the member into the shape mdicated by
the dazhed lme, the member wall return to 1ts onzinal posihon when this temporary
load 15 removed if the axial load 15 less than the entical buckling load. The eritical
bucklng load, P... 1= defined as the load that 15 just large enough to maintain the
deflected shape when the temporary transverse load 15 removed.

The differental equation gring the deflected shape of an elazhe member subjected
to bending 15

.
d-y M

_—r = -— 42
= ET (4.3

where x locates a point along the longitudinal axis of the member, y 15 the deflachon
of the axis at that point, and M 15 the bending moment at the point. E and I were pre-
viously defined and here the moment of mertia I 15 with respect to the axs of bend-
ing (buckling). This equation was denved by Jacob Bernoulh and independently by
Euler, who specialized 1t for the colummn buckhing problem (Timoshenko, 1933). If we
begin at the pomnt of buckling, then from Figure 4.3 the bending moment 1s P_y.
Equation 4.2 can then be wntten as

P

where the prime denotes differentiation wath respect to x. Thas 15 a second-order, ln-
ear, ordinary differential equation with constant coefficients and has the solution

¥ = A cos{ex) + B sin{ex)
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FIGURE 4.4

where

and .4 and B are constants. These constants are evaluated by applying the following
boundary condifions:

Atx=0,y=0: 0=4 cos(0}+ B sl A=0

Atx=L y=0: 0=0Fsmicl)

This last condition requres that sin(cl) be zero if B 1= not to be zero (the trrvial
solution, comesponding to P = 0). For sm{cL) = 0,

el=0,% 28 38 ... =ni n=01,23 ..
From
‘B,
= _—
YV EI
we obiain
(p P nmEl
el=|,-= |L=nrx., ==I'=n'r" d P =
[H:r I

The vanous values of n correspond to different buckling modes; n = | represents the
first mode, n = 2 the second, and so on. A value of zere gives the trivial case of no
load. These buckhng modes are illustrated in Figure 4. 4. Values of n larger than 1 are
not possible unless the compression member 15 physically restrained from deflecting
at the pomnts where the reversal of curvature would occour.
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EXAMPLE

4.

42 Column Theory 113

The solufion to the differentizl equation 15 therefore

. niTx
- B )
¥ SID[ I

and the coefficient B 12 mdetermminate. This result 15 a consequence of approximations
made mn formulating the differental equation; a linear representation of a ponlimear
phenomenon was wsed.

For the usual case of a compression member with no supports between 1ts ends
n =1 and the Euler equahion 1= written as

2
a EI
E, =?_ 4.3)

It 15 conventent to rewnte Equaton 4.3 as

P _®'El _w'Edr’ x'Ed
=T r s

where { 15 the cross-sectional area and r 15 the radius of gyration with respect to the
axis of buckling. The ratio L /7 is the slenderness ratio and is the measure of a mem-
ber's slendemess, with large values comrespondmg to slender members.

If the entical load 1= divided by the cross-sectional area, the entical bucklmg
stress 15 obtzined:

P xlF
=—= 44
'F...r _"I |:I.l|'rr:|2 {: :l

At this compressmre stress, buckhing will ocour about the axis comesponding to r.
Bucklng will take place as soon as the load reaches the value ziven by Equation 4.3,
and the column will become unstable about the pnncipal axis comresponding to the
largest slendemess ratie. This axis usually 15 the axis with the smaller moment of
inertia (we examine sxcepions to this condinon later). Thus the minimum moment
of inerfia and radms of gyvration of the cross secton should erdinanly be used
Equations 4.2 and 4 4.

AWI12 % 5015 used as a column fo support an axial compressive load of 145 kips.
The length 1= 20 feet, and the ends are pinned. Without regard to load or resistance
factors, mvestigate this member for stability. (The grade of steel need not be known:
The cnfical buckling load 15 a funchon of the modulus of elasticity, not the vield
stress or ulimate tensile strength.)
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SOLUTION

ANSWER

Compression Membars

For a W12 x 50,
AMmirmwm » =r, =1.96 m.
L_200y
1.96
_ m'E4 _ x'(29,000)14.6)
Ty ana?

I ammom

=1224

— 2789 kips

Because the applied load of 145 kips 15 less than P, the column remams stable and
has an overall factor of safety against buckling of 278.9/145 = 1.92.

FIGURE 4.5

Early researchers soon found that Euler’s equation did not grve reliable results for
stocky, or less slender, compression members. The reason 15 that the small slendemess
ratio for members of this tvpe causes a large buckling stress (from Equation 4.4). If
the stress at which buckling oceurs 15 greater than the proportional It of the mate-
nal, the relation between stress and sirain 15 not lnear, and the modulus of elasheoity
E can no longer be used. (In Example 4.1, the stress atbuckling 1= P_/4 =278.9/146=
18.10 k=1, whach 1s well below the proportional limut for any grade of structural steel.)
Thas difficulty was imhally resobved by Friednich Engesszer, who proposed i 1839 the
uze of a vanable tangent modulus, E;, mm Equaton 4.3. For a matenal with a
stress—strain curve like the one chown in Figure 4.5, E 15 not a constant for stresses
greater than the proportional limitFln.. The tangent modulus E, 1= defined as the slope
of the tangent to the stress—strain curve for values of fbetween Fyyand F. If the com-
pressive stress at buckling, P, /4. is in this region, it can be shown that

2
B, = “f—;? @5)

Equation 4.5 15 1dentical to the Euler equation, except that £, 1s substituted for E.

P




FIGURE 4.6

The stress—strain curve shown 1 Figure 4.5 15 different from those shown earlier
for duchle steel (m Fizures 1.3 and 1.4) because it has a pronounced region of nonhn-
eanity. This curve 1s typical of a compression test of a short length of W-shape called
a sk columm, rather than the result of 3 tensile test. The nonlhneanty 15 primanly because
of the presence of residual stresses in the W-shape. When a hot-rolled shape cools after
rolling, all elements of the cross section do not cool at the same rate. The fips of the
flanges, for example, cool faster than the junction of the flange and the web. This un-
even cooling induces stresses that remain permanently. Ciher factors, such as welding
and cold-bending to create curvature m a beam, can contribute to the residual stress,
but the cooling process 15 its chuef source.

MNote that E, is smaller than E and for the same L /r corresponds to a smaller critical
load, P Because of the vanability of E,, computanon of P, i the inelastic range by the
use of Equaton 4.5 1= difficult. In general 2 tial-and-emor approach must be wsed, and
3 compressive stress—strain curve such as the one shown m Figure 4.5 mmst be used to
determine E, for tnal values of P, For this reason, most desizn specifications, inchidmg
the AISC Specification, contain empinical formulas for mnelaste columns.

Engesser’s tangent modulus theory had its detracters, who pointed out several
inconsistencies. Engesser was convinced by thewr arguments, and in 18935 he refined
hiz theory to incorporate a reduced modulus, which has a value between F and E,.
Test results, however, always agreed more closely with the tangent modulus theory.
Shanlev (1947) resclved the apparent inconsistencies 1o the ongmal theory, and
today the tangent modulus formula, Equatnon 4.3, 15 accepted as the comrect one for
inelastic buckling. Although the load predicted by thas equation 15 actually a lower
bound on the true value of the entical lead, the difference 15 slight (Bleich, 1952},

For any material, the entical buckling stress can be plotted as a function of slen-
derness, as shown i Figure 4.6, The tangent modulus curve 15 tangent to the Euler curve
at the point comesponding to the proporfional lomit of the maternial The composite
curve, called a column strength curve, completely descnbes the strength of any column
of a grven matenal. Other than F,. E, and E,. which are properties of the material, the
strength 1z a funchon only of the slendermess ratio.

F,
i _ * Curves are tangent
i / iﬁ%’
E,
i
B Inelastic e Elastic
buckling ' buckling
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Effective Length

Both the Euler and tangent modulus equations are based on the followmg assumphons:
1. The colummn 15 perfectly siraight, with no mmtal crookedness.
2. The load 15 axial, with no eccentmelty.
3. The colummn 15 pinned at both ends.

The first two condifions mean that there 15 no bendmg moment in the member before
buckhing. As mentoned previously, some accidentzl moment will be present, but
most cases it can be 1znored. The requirement for pmned ends, however, 15 a senous
limitation, and provisions must be made for other suppert conditions. The pinned-end
condifion requires that the member be restrained from lateral franslation. but not
rotation, at the ends. Constructing a fnchionless pmn connechon 15 virtually impossi-
ble, s0 even this support condition can only be closely approxmmated at best. Obra-
ously, all columns must be free to deform axially.

(ther end conditions can be accounted for m the derivation of Equation 4.3. In gen-
eral, the bending moment will be a funchion of x, resuling m 3 nonhomogensous dif-
ferential equation. The boundary condifions will be different from those m the onginal
dervation, but the overall procedure will be the same The form of the resulting squa-
tion for P will also be the same. For example, consider a compression member pizmed
at one end and fixed agamst rotation and translation at the other, as shown in Figure 4.7,
The Euler equation for this case, denved n the same manner as Equaton 4.3, 15

_ 205x°El
fr == —
ar
_2057°E4  m°Ed
“TO(LM? (D.T0LSrY
FIGURE 4.7 F,
.
!
¥
!




4.3

4.3 AISC Requirements 117

Thus this compression member has the same load capacity as a colummn that 15 pinned
at both ends and 15 only 70% as long as the given column. Simmilar expressions can be
found for columns with other end conditions.

The column buckling problem can also be formulated in terms of a fourth-order
differential equation instead of Equation 4.2. This proves to be convement when
dealing with boundary copditions other than pinned ends.

For convemence, the equations for enttical buckling load will be wnitten as

S EE, p o TEA 4.6a/4.6b
- = (EL/r) o= (EL/rP (4.6a/4.6b)
where ET 15 the gffective length, and K 1= the gffective lengih factor. The effective
length factor for the fixed-pinned compression member 1z 0.70. For the most faveor-
able condifion of both ends fixed against rotathon and translation, K= 0.5. Values of
I for these and other cases can be determined with the aid of Table C-A-7.]1 i the
Commentary to AISC Specification Appendix 7. The three condihons mentioned
thus far are included, as well as some for which end translation 15 possible. Two val-
ues of K are grven: a theoretical value and a recommended design value to be used
when the ideal end condition 15 approxmated. Hence, unless a “fixed” end 1= perfactly
fixed the more conservative design values are to be used Only under the mest
extracrdinary circumstances would the use of the theoretical values be justified MNote,
however, that the theoretical and recommended design values are the same for
condiions {d) and (f) in Commentary Table C-A-7.1. The reason 15 that any devia-
tion from a perfectly frictionless hinge or pin introduces rotational restraunt and
tends to reduce K. Therefore, use of the theorstical values in thesze two cazes 13
conservative.

The use of the effective length KT in place of the actual length I m no way alters
any of the relationships discussed so far. The column strength cwrve shown mm Figure 4.6
is unchanged except for renammg the abscissa EL/r. The critical buckling stress
corresponding to a given length. actual or effective, remains the same.

AISC REQUIREMENTS
The basic requirements for compression members are covered in Chapter E of the
AISC Specification. The nominzal compressive = 15

Py=F,4, (AISC Equation E3-1)
For LEFD,

P, =P,
where
F, = sum of the factored loads
i, = resistance factor for compression = 0.90
P, = design compressive strength
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For ASD,

p <t

£,
where
P, = sum of the service loads
£}, = safety factor for compression = 1.67
P/}, = allowable compressive strength

If an allowable stress formmlafion 15 used,

fasF,

where
f, = computed axial compressive stress = F, .-":Ig
F,= allowable axial compressive stress

Fr

=T = =0.6F, .
. 167 : @7

In order to present the AISC expreszions for the entical stress F,, we first define the
Euler load as

P miEd
T (ELfr)

Thaz 15 the crhical buckhng load according to the Euler equation. The Euler stress 15

F _B_®mE _
Ll _—{ﬂ,."rf (AISC Equation E3-4)

With a shght modification, this expression will be used for the cntical stress in the elas-

tic range. To obtain the cntical stress for elastic columns, the Euler stress 1s reduced
as follows to account for the effects of minal crookedness:

F,.=087TF, 4.8

For melastic columns, the tangent modulus equation, Equation 4.6b, 15 replaced by the
exponental equation

LY

0.658%

E.= F, (4.9)

With Equation 4.9, 2 direct solubon for melaste columns can be obtzined, avoadmg
the tnal-and-emor approach inherent 1n the use of the tangent modulus equation. At the



boundary between melastic and elastic columns, Equations 4.8 and 4.9 zive the same
value of F,,. This ocowrs when KL /7 is approxmately
r
471 |£
F,

¥

To summanze,

when M <471 (£ F = (06587%F, (4.10)
r \F :
. e

When 2L 5 471 |F£, F_ =08T7F, (4.11)
r

i

The AISC Specification provides for separating melastic and elastic behavior based on
either the value of KL /r (a5 m equations 4.10 and 4.11) or the value of the ratio F /F,.
The limiting value of F,/F, can be derived as follows. From AISC Equation E3-4,

\m’E

VE

EL

r

EL | E
F — =471 | —.
o r 'llll'_,'

The complete AISC Specificaton for compressive strength 15 as follows:

(E F,
"EF.-"J:uEl:LE =471 |£ or =L <225
r \F, F:
F, = (0.658%")F, {AISC Equation E3-2)
'E F,
When 2L s a1 |5 o 2 235,
v \F Fe
F., = 0877F, (AISC Equation E3-3)

In this book, we will usually use the limit on EL,r, as expressed in Equations 4.10
and 4.11. These requrements are represented graphically in Fizure 4.8,
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FIGURE 4.8

EXAMPLE 4.

Compression Members

—— For = (D658FUFoF,
o

Curves are
approximately tangent

o For = OKTTF,

KL
471 E
W F,

ATSC Equatons E3-2 and E3-3 are a condensed version of five equations that
cover five ranges of EL/r (Galambos, 1988). These equations are based on experi-
mental and theoretical studies that account for the effecis of residual stresses and an
initial out-of-straightness of L/1500, where L is the member length. & complate
denvation of these equations 15 grven by Tide (2001

Although AISC does not require an upper limit on the slendemess ratio KL /v, an
upper limit of 200 15 recommended (see user note 1o AISC E2). This 15 a practical
upper limt, becausze compression members that are any more slender will have hitle
strength and will not be economucal

2

SOLUTION

A W14 = 74 of A992 steel has a length of 20 feet and pmned ends. Compute the
design compressive strength for LEFD and the allowable compressive strength for
ASD.

Slendermess ratio:
EL KL _10{20x12)

Maximum — = —=——"_—-=9677<200 (0K)

r r, 2

471 [ 2471 22000 _ 15
F, 30

Smee 96.77 « 113, use ATSC Equation E3-2.

_ ®E _ ®%(29,000)
C@®Lf T @677
F, = 0.658"*F, = 0.658""*%)(50) = 2521 ksi

=30.56 k=1

[



The nommal strength 15

P,=F,A,=2521(21.8) = 549.6 kips

The design strength 15

@.P, = 0.90(549.6) =495 kips

ASD  From Equation 4.7. the allowable stress 15

SOLUTION

F,=06F,=0.6(2521)=15.13ka

The allowable strength 1=

F,4,=15.13(21.8) = 330 kips

ANSWER  Desizn compressive strength = 495 kips. Allowable compressive
strength = 330 kips.

4.6

EXAMPLE 4.

DESIGN

The selection of an economical rolled shape fo resist a grven compressive load 1s
smmple with the aid of the column load tables. Enter the table with the effective length
and move honzontally unfil vou find the desired available strength (or somethmg
shghtly larger). In some cases, you must continue the search to be certain that you
bkave found the hghtest shape. Usually the category of shape (W, WT, ete.) will have
been decided upon in advance. Often the overall nominal dimensions will also be
known because of architectural or other requrements. A= pounted out earher, all tab-
ulated values comespond to a slenderness ratio of 200 or less. The tabulated unsym-
metrical shapes—ithe structural tees and the single and double angles—require special
consideration and are covered in Section 4.3

6

LRFD
SOLUTION

ANSWER

ASD
SOLUTION

A compression member 15 subjected to serice loads of 165 kips dead load and
535 kips lve load. The member 15 26 feet long and pinned at each end. Use
A997 steel and select 2 W14 shape.
Caleulate the factored load:
F, =120+ 1.6L=12(165)+ 1.6(535) = 1054 kips
;. Required design strength g F, = 1054 kaps.

From the colummn load tables for KT = 1.026) = 26 fi, a W4 = 145 has a design
strength of 1230 kips.

Use a W4 x 1435,

Caleulate the total applied load:
B =D+L=165+535=T00 kups

. P
. Required allowable strength ﬂ—“ = T00 kips



From the column load tables for KT = 1.0026) = 26 ft, a W14 = 132 has an allow-
able strength of 702 kips.

ANSWER Usea W4 x 132,
EXAMPLE 4.7
Select the hightest W-shape that can resist a serice dead load of 62.5 kips and
a service live load of 125 kips. The effective length 15 24 feet. Usze ASTM
AT9D sfeal
SOLUTION The appropriate sirategy here is to find the lightest shape for each nonunal depth mn
the column load tables and then choose the hghtest overall.
LRFD The factored load 1=
SOLUTION
P =12D+16L=12{625)+16{(125) =275 kaps
From the colummn load tzbles, the choices are as follows:
W8: There are no W8s with ¢_F, = 273 kips.
WIi0: Wilh=54, ¢ P =282kips
WI1X: W12x58, B =292kips
Wid: Wildx6l, gf=293kps
HNote that the strength 15 not proportional to the weight (which 15 a funchion of the
cross-sectonal area).
ANSWER  Usea W10 x 54
ASD  The total apphied load is
SOLUTION

P,=D+L=625+125=188 kips
From the colomn load tables, the choices are as follows:
W3: There are no WBs with P, /1), = 188 kips.

WIL0: W0 =54, % =188 kips

e
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W12 WI2x58 B _jo4 i
[

Wi4: Wi4x6l, B _jo5pp.
0.

Mote that the strength 15 not proportional to the weight (which 15 a function of the

cross-sectional area).

ANSWER Use a W10 x 54.




EXAMPLE 4.8

Select 3 W18 zhape of A992 steel that can resist a service dead load of 100 kips
and a service live load of 300 kips. The effective length KL 15 26 feet.

LRFD  P,=12D+1.6L =12(100)+1.6(300) = 600 kips
SOLUTION  Try F, = 33 ksi (an arbitrary choice of two-thirds F}):

P
Required 4, = ¢¢}o = 0.96333) =202m?
TryaWI8x 71:
4,=209m*>202in* (OK)
% = 2?_’7‘;2 -1835<200 (OK)

_ ®E _®*(29,000)
(&L T (833)

2
471 £=4.71"‘9’°°° ~113
F 50

Smce %)4.71‘[};, AISC Equation E3-3 applies.
y

=85ka

F,

F,, =0.877F, =0.877(8.5) = 7.455 ksi
$.B, = 9. F,, 4, =0.90(7.455)(20.9) =140 kips <600 kips  (N.G)

Because the mmfial estimate of F,, was so far off assume a value about halfway
between 33 and 7.455 ksi. Try F, =20 ks1.

e L B R
t T 3.F.  090(20)

Trya W18 x 119:
4,=351mm*>333m? (OK)

B _26X12 1160<200 (OK)
269

T
m’E _ x°(29,000)

F= == =2127 ksi
(EL/ry*  (16.0)°




ANSWER

ASD
SOLUTION

Smee g > 4.71\/—§- =113, AISC Equation E3-3 apphes.
r ¥
F,=0877F, =0.877(21.27) =18.65 ka1
&P, = QF‘,A‘ =0.90(18.65)(35.1) = 589 kips < 600 kips N.G)

This 15 very close. so try the next larger size.
Try a W18 x 130:

4;=383m’
KL 26x12
—_— = 2
=370 1156<200 (OK)
x’E _ ®*(29,000)

=@y aner

=2142kxa

Since 2L 5471 /% =113, AISC Equation E3-3 applies
r
¥

Fr =0.877F, = 0.877(21.42) = 18.79 ksi
0P, =9.F, 4, =090(18.79)(383) = 648 kips > 600 kips  (OK)

This shape 15 not slender (there 15 no foomote 1n the dimensions and properties table
to mdicate that it 15). so local buckling does not have to be investigated.

Usea W18 x130.

The ASD solution procedure is essentially the same as for LRFD. and the same tnal
values of F, will be used here.

P,=D+L =100+ 300 =400 kips

Try F,, =33 ksi (an arbitrary choice of two-thirds F):

Required 4 - E s R
*~06F. 0633

Trya Wi8x 71:

4;,=209n?>202in®  (OK)

KL _ 2‘15 ’7‘;2 ~1835<200 (OK)

Vi



2 2
__mE 5 (29,0020) S
&L/ry’ (83.3)

2
471 (B =471 22000 115
JF,. 50

F,

. 4.71‘[}?-, ATSC Equation E3-3 apples.
r
y

F, =0877F, =0877(8.5) = 7455 ks
?1;:_: 0.6F, 4, =0.6(7.455)(20.9) =93 Skips <400 kips ~ (N.G)

Because the initial estimate of F, was so far off, assume a value about halfway between
33and 7455ks. Try F, =20 ka1

0.6F, 0.6(20)

TryaWiI8x119:

4,=351in*>333* (OK)

p) 2
K _26x12_1160<200 (OK)

Yuwr | 2.69
F = m°E _ x*(29,000)
© @/ 160y

=21.27ka

Since EI’—) 4-71\[% =113, AISC Equation E3-3 apphes.
A

r

F, =0877F, =0.877(2127) =18.65 ksi
0.6F, 4, =06(18.65)(35.1) =393 kips <400 kips ~ (N.G)

This 15 very close. so try the next larger size.



Trya W18 x 130:

4;=383in’

KL _26x12
Toin 270

=1156<200 (OK)

F= x’E =;r1(29,000)
* &L/ Q1sed)

=2142ka

Smce E > 4.'71‘11__E =113, AISC Equation E3-3 apphes.
Z ¥

Fy =0877F, =0.877(21.42) =18.79 k=1
0.6F, 4, =06(18.79)(38.3) =432 kips <400 kips ~ (OK)

This shape 15 not slender (there 1s no foomote mn the dimensions and properties table
to mdicate that it 15). so local buckling does not have to be investizated.

ANSWER Usea WIS x130.

Read Page 140 Ex 4.9 to 4.18



5.1

INTRODUCTION

Beams are structural members that support transverse loads and are therefore subjected
primanly to flexure. or bending. If a substannial amount of axial load 15 also present, the
member 15 referred to as a beam—column (beam—columns are considered m Chapter 6).
Although some dezree of axial load will be present in any structural member, in many
practical situations this effect 15 neghgzible and the member can be treated as a beam.
Beams are usually thought of as being onented honzontally and subjected to vertical
loads. but that 15 not necessanly the case. A structural member 1s considered to be a
beam 1f 1t 15 loaded so as to cause bendmng.

Commenly used cross-sectional shapes include the W, S, and M shapes. Channel
shapes are sometimes used, as are beams built up from plates, i the form of I or box
shapes. For reasons to be discussed later, doubly symmetnic shapes such as the stan-
dard rolled W, M, and S shapes are the most efficient.

Coverage of beams in the AISC Specification 15 spread over two chapters:
Chapter F, “Desizn of Members for Flexure ” and Chapter G, “Design of Members for
Shear.” Several categones of beams are covered in the Specification: in this book, we
cover the most common cases in the present chapter, and we cover a special case, plate
girders, in Chapter 10.

Figure 5.1 zhows two types of beam cross sections: a hot-rolled doubly-symmetnc
Ishape and a welded doubly-symmetric built-up I shape. The hot-rolled I shape 15 the
one most commonly used for beams. Welded shapes usually fall into the category
classified as plate zirders.

For flexure (shear will be covered later), the required and available strengths are
moments. For load and resistance factor design (LRFD). Equation 2.6 can be written as

M, < oM, (5.1)
where
M, = required moment strength = maximum moment caused by the controlling
load combination from ASCE 7

@, = resistance factor for bending (flexure) = 0.90
189
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FIGURE51 — —
)
fr i
e fu | | [
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M, = nomunzl moment strength
The nght-hand side of Equation 5.1 1= the design strength. sometmes called the dasien

momeant.
For allowable strength design (ASD). Equation 2.7 can be written as

M
M =—

oo (5.2)

where
M, = required moment strength = maximwn moment corresponding to the
confrolling load combinaton from ASCE 7
L1, = safety factor for bending = 1.67

Equation 5.2 can also be wnitten as

M
" — 0.6M,

M, =
T 167

Divnding both sides by the elastic section modulus 5 (which wall be reviewed in the
next sechon), we get an equation for allowable stress desien:

M, y 0.6A;
hY W]
or
HEF,
where

Sy = mammun computed bending stress
F, = allowable bending stress



FIGURE 5.2 ¢

I EEERERENER

i

-

(b}

of the beam (Shear 15 considered separately in Section 5.3.) From elementary me-
chamics of materials, the stress at any poant can be found from the flexure formmla:
My
I.

fi= (5.3)
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FIGURE 5.4

FIGURE 55

=T
4.F =4AF,
A,=4
Thus the plastic newtral axis divides the cross sechion into two equal areas. For shapes
that are symmetncal about the axs of bending, the elashic and plastic peutral axes are
the zame. The plastic moment, MP‘ 15 the resisting couple formed by the tero equal and
opposite forces, or

i

¥ |
My =F(4:)a=Fy,(4d)a=F, [T)ﬂ =FRZ

M

=~ Plastic hinge
F,
s,
- = AF,
Plastic I »
meuiral gxis | T AF
AF,
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where

A = total cross-sectional area
a = distanee between the centroids of the two halfareas

Z= [% ].::r = plastic section modulus

EXAMPLE 5.1

For the bmlt-up shape shown in Figure 5.6, determune (3) the elastic section modu-
hus & and the weldm-:rmentﬂr!; and (b) the plashc sechon modulns £ and the plashe
moment M, Bending 15 about the x-axis, and the steel 15 A572 Grade 50.

FIGURE 5.6 ’._3_,.|
4
| 1
1.
'IFII
10" — x
—IF= Ir"l”
4
| 1
1.
llil'
SOLUTION a. Because of ssmmetry, the elastic neufral axis (the x-axis) 15 located at mad-

depth of the cross sechion (the locaton of the centroad). The moment of m-
erfia of the cross section can be found by usmg the parallel axs theorem, and
the results of the caleulations are summanzed in Tabla 5.1

TABLES5.1  Component i A d i+ Ad?
Flange 05667 B 6.5 3387
Flange 05667 B 6.5 3387
Wab 72 — — 20
Sy 7494

The elastic section modulus 15

Rt B ]
e 1+ (12/2) 7
and the yield moment 15

M, =F,5=50107) = 3350 n.-kips = 446 fi-kips



ANSWER  5=107in? and M, = 446 f-kips.

b. Because this shape 15 symmetnical about the x-axis, this axs divides the cross
section nto equal areas and is therefore the plastic neutral axis. The centroid
of the top half-area can be found by the pninciple of moments. Taking mo-
ments about the x-ax15 (the neutral axis of the entire cross section) and tzabu-
lating the computations in Table 5.2, we get

=Y Ay 61 3
= —— = — = 5545
T TN 2
TABLE 52 Component A ¥ Ay
Flange 8 65 52
Web 3 3 2
Sum 11 Bl
FIGURE 5.7 - F—
7 Centroid of =
hy half-area y
— S
b
¥
e oK b
fe— F. —>

Figzure 5.7 shows that the moment arm of the mternal rezisting couple 15
a=2y=2(5545)=11.09m.
and that the plastic section modulus 15

(é)a = 11Q1.09) = 122 in?

The plastic moment 15
M, =F,Z =50(122) = 6100 m.-kips = 508 f-kips

ANSWER Z=122 in ? and M, = 508 ft-kips.




EXAMPLE 5.2

SOLUTION

FIGURE 5.8

ANSWER

Compute the plashe moment, MF, for a W10 = 60 of A%92 steal.

From the dimensions and properties tables in Part 1 of the Manual,

A=177in"

£=_IT.T =885m°
2 2

The centrord of the half-area can be found m the tables for WT shapes, which are
cut from W shapes. The relevant shape here 1= the W3 x 30, and the distance from
the outside face of the flange to the centroid 15 0.884 mech, as shown in Figure 5 8.

¥
384" '

—u d=102"

a=d-2(0884)=102—-2(0.834) =8432 in
Z= {%]a =3 8%843)=7462in°?

This result, when rounded to three sigmficant figures. 15 the same as the value given
in the dimensions and properties tables.

M, = F,Z = 50(74.62) = 3731 in -kips = 311 fi-kips.

5.3

STABILITY

If a beam can be counted on to remam stable up to the fully plastic condition, the nom-
inal moment strength can be taken as the plastic moment capacity; that 15,

M,=M,

Ortherwise, M, will be less than ..’rfp.

Aswith 2 compression member, mstability can be n an overall zense or 1t can be
local. Crverall bucklmg 1= tllustrated in Fipure 5.%a. When a beam bends, the com-
pression region (above the neutral axiz) 15 analogous to 2 column, and In 3 manner
similar to 2 column, 1t will buckle if the member 15 slender encugh. Unhke a colwmn,



FIGURE 5.9 i
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Cross frame

(c)

Chiaphrazm
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FIGURE 5.10

5.4

Load

Flese | = N T

vield A junnnnn]

i deflection

Cwrve 1 15 the load-deflection curve of a beam that becomes unstable (in any way)
and loses its lead-canving capacity before first vield (zee Figure 5.3b) 15 attained.
Curves 2 and 3 cormrespond to beams that can be loadad past first vield but not far
encugh for the formation of a plastic hinge and the resulfing plastic collapse. If plas-
tic collapse can be reached, the load-deflection cuwrve will have the appearance of
erther curve 4 or curve 5. Cwrve 4 15 for the case of umiform moment over the full
length of the beam, and curve 5 15 for a beam with 2 vanable bending moment
(moment gradient). 5afe designs can be achieved with beams comesponding to amy
of these curves, but curves 1 and 2 represent inefficient use of materal.

CLASSIFICATION OF SHAPES

ATSC clazsifies cross-sectional shapes as compact, noncompact, or slender, depend-
ing on the values of the width-to-thickness ratios. For I shapes, the ratio for the pro-
jecting flange (an imsiiffened element) 13 b;;"? tr, and the ratio for the web (a srffensd
element) is h/t,. The classification of shapes 15 fourd in Section B4 of the Specifica-
tion, “Member Properties,” m Tabla B4.1b (Tzable B4.1a 15 for compression myen-
bers). It can be summanzed as follows. Let

A = width-to-thickness ratio
"—1? = upper lmmit for compact catezory
A, = upper lmmit for noncompact category

Then

if A = A, and the flange i continuously connected to the web, the shape 1s compact;
if 4, < A =4, the shape is noncompact; and
if A = A, the shape 15 slender.

The category 1= based on the worst width-to-thickness ratio of the cross section. For
example, if the web 1z compact and the flange 15 noncompact, the shape 15 classified
as noncompact. Table 5.3 has been extracted from AISC Table B4.1b and 15 special-
1zad for bot-rolled I-shaped cross sections.

Tahble 5.3 also applies to channels, except that A for the flange 15 bjf’z:ir_



TABLE 5.3
Width-to-
Thickness
Parameters®

5.5

Elament F Ay A,

Flange b 0.38 |I£ 1o LE
2ty By \F,
h (F | E

Wab — 176 ||£ 570 IF
t \F, ¥y

*For hotrollad | shepes in flaos.

BENDING STRENGTH OF COMPACT SHAPES

A beam can fail by reaching M, and becomung fully plastie, or it can fail by

1. lateral-torsional buckling (L.TE). sither elastically or melasteally;
2. flange local buckling (FLB), elastically or melastically; or
3. web local buckhng (WLEB), elastically or inelastically.

If the maxim bending stress 1s less than the proporbional limit when buckling oc-
curs, the faihure 15 =a1d to be slasic. Otherwize, it 15 inelasfic. (See the related dis-
cussion I Section 4.2, “Column Theory.™)

For convemence, we first categonze beams as compact, noncompact, or slender,
and then determine the moment resistance based on the degree of lateral support. The
discussion 1n this section apphes to two types of beams: (1) hot-rolled I shapes bent
about the strong axis and loaded in the plane of the weak axs, and (2} channels bent
about the strong axis and erther loaded through the shear center or restrained against
twisting. [ The shear center 1= the point on the cross sechon through which 2 transverse
lpad mmst pass if the beam 1= to bend without fnsting.) Emphaszis will be on I shapes.
C-shapes are different only m that the width-to-thickness ratio of the flange 15 Er;;.'rrf
rather than bﬁ'?:_‘ir.

We begin with compacr zhapes, defined as those whose webs are continuously
connected to the flanzes and that safisfy the following wadth-to-thickness rato re-
quirements for the flanze and the weh:

b | f
—*'ED.E-SIE and izi.?ﬁli

e, VF, 1, F,
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if the unbraced length 15 very short, the nominal moment strength, A, . 15 the full plas-
tic moment capacity of the shape, Jrfp. For members with inadequate lateral support,
the moment resistance 15 hmited by the lateral-forsional buckhng strength, esther
inelastic or elashe.

The first category, laterally supported compact beams, 15 quite commeon and 15

the simplest case. For a doubly-symmetne, compact I- or C-shaped section bent about
vtz major axiz, AISC F2. 1 gives the nommal strength as

M, =M, (ATSC Equation F2-1)
where

M=FZ,

EXAMPLE 5.3

FIGURE 5.11

SOLUTION

The beam shown in Figure 511152 W16 x 31 of A992 steal It supports a reinforced
concrete floor slab that provides comtmuons lateral support of the comprassion
flange. The service dead load is 450 Ih/ft. This load is superimposed on the beam;
it does not include the weight of the beam itsalf The service live load is 550 Ib/ft.
Does thas beam have adequate moment strength”?

W, = 450 byt
#i_i_i_i_t_i_i_;_ W, = 550 Ib/ft

L 3ﬂl‘ ._|

Fir=t, determine the mominal flexwral strength. Chack for compactmess.

B
E.-L =628  (from Part ] of the Mawual)
f
.
0.38 £ =038 & =815>628 .. The flange is compact.
F, V0

i < 376 fFE 2. The web 15 compact.
¥

Fe

(The web is compact for all shapes in the Manual for F, < 65 kai)

This shape can also be 1denfified as compact because there 15 no footnote 1n the
dimensions and properties tables to indicate otherwise. Because the beam 1= com-

pact and laterally supported, the nominal flexural strength 1=
M, =M, =F2Z =50(54.00 = 2700 m kips = 225.0 ft kips.
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ANSWER
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Compute the maximum bending moment. The total service dead load, including the
weight of the beam. 15

w, =450 +31 =481 b/ft

For a simply supported. umformly loaded beam. the maximum bending moment oc-
curs at muidspan and 15 equal to

M _ = —l- wI?
8

EtY
where w 15 the load in units of force per unit length. and L is the span length. Then
M, Z%WDLI =%(0.481)(30)2 =54.11 fikps

M, =-;—(0.550)(3O)2 = 61.88 fi-kips
The dead load 15 less than 8 imes the live load, so load combination 2 controls:
M, =12M,+1.6M; =1.2(534.11) + 1.6(61.88) = 164 ft-kips.
Alternatively. the loads can be factored at the outset:
w, = 12wy, +1.6w; =1.2(0.481) +1.6(0.550) =1.457 kips/ft
M, = %W,L’ =%(1.457)(30)2 =164 fi-kips
The dezign strength 15
dM, = 0.90(225.0) = 203 fi-kips > 164 ft-kips (OK)
The design moment 15 greater than the factored-load moment, so the W16 x 31 15
satisfactory.
ASD load combination 2 controls.
M,=M,+M, =54.11 +61.88 =116.0 fi-kips
Alternatively, the loads can be added before the moment 15 computed:
w, =wy +w, =0.481+0.550 =1.031 kips/ft
M, = %w,Lz =%(1.03l)(30)2 =116.0 fi-kips

The allowzable moment 15

M, M,

s =0.60,=0.6(225.0) =135 fi-kips =116 fi-kips  (OK)
Q, 1.67
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ANSWER

Allowable stress solofion:
The apphed stress 15
=M _L60AD 55,0
= 472
The allowable stress 15
_06M, 0.6(225.0)12)
- 5 472

X

F =343 ksi

Since fi < F,, the beam has enough strength

The W16 = 3] is satisfactory.




5.7 SUMMARY OF MOMENT STRENGTH

The procedure for computation of nomumal moment strength for I and C-shaped sections
bent about the x axas will pow be summanzed. All terms m the following equations have
been previously defined. and ATSC equation numbers will ot be shown. Thas sumamary
15 for compact and noncompact shapes (noncompact flanges) only (no slender shapes).
1. Determine whether the shape 15 compact.
2. If the shape 15 compact, check for lateral-torsional buckhng as follows.
IfL, <L, thereis no LTB. and M, =M,
If.[;_h <L, <L , there is melastic LTB, and

L,-1L,
M, =G| My - (M, —0TFS)| T | |< M,

If L, =L, there 15 elastic LTB, and
M, =F,5<M,

whers

1+0.078

F - 5
T (L Syhy

_ GrE | Je [ E]:

Fi

3. Ifthe shape 15 noncompact because of the flange, the nominal strength will be
the smaller of the strengths comesponding to flange local buckling and laterzl-
torsional buckling.

a. Flange local buckling:
If A< 4, there 1s no FLB
If,:I.P <A< A the flange is noncompact, and

A1,
M, =M, —(M,- u.?r,slj{m]

b. Lateral-torsional buckhng:
IfL, <L, there 15 no LTB
If LP <L, =L _ thereis melashic LTB, and

L -L
M =G, [Mp — (M, - n.?r,sx}{h-”—]] <M,
T g
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If L, = L, thereis elaste LTE, and
M -F,5=M,
where

=— —_ N+0.078
Tadal N Sy

2 |
- Cr’E Je [L_t, ]’

¥y

5.8 SHEAR STRENGTH

Beam shear strength 15 covered in Chapter G of the ATSC Spectfication, “Design of
Members for Shear ™ Both hot-rolled shapes and welded bmlt-up shapes are covered.
We discuss hot-rolled shapes o the present chapter of this book and bult-up shapes
iz Chapter 10, “Plate Gorders.” The AISC prowvisions for hot-rolled shapes are cov-
ered m Section G2.1.

Before covenng the ATSC provisions for shear strength we will first review some
basic concepts from mechanies of matenials. Consider the simple beam of Figure 5.17.
At a distance x from the left end and af the neutral axis of the cross section, the state
of stress 15 as showm in Figure 5.174. Becanze this element 15 located at the newtral

QS S N




FIGURE 5.18

axis, 1t 15 not subjected to flexural stress. From elementary mechames of matenals,
the sheanng stress 1s

£ = % (.7
where

S =vertical and honzontzl sheanng stress at the point of mnterest

¥ = vertical shear force at the sechon under consideration

{ = first moment, about the neutral axis, of the area of the cross section

between the point of mterest and the top or bottom of the cross section

I = moment of inertia about the neutral axis

& = wadth of the cross section at the point of mterest

Equation 5.7 15 based on the assumption that the stress 1s constant across the width
b, and 1t 15 therefore accurate only for small values of &. For a rectangular cross section
of depth o and width b, the error for d/5 =2 1= approxmmately 3%. For d/b = 1, the emor
is 12% and for d/b = V4, it is 100% (Higdon, Ohlsen, and Stiles, 1960). For this rea-
son., Equation 5.7 cannot be applied fo the flange of 3 W-shape m the same manner
as for the web.

Figure 5.18 shows the sheanng stress dismbufion for a W shape. Supenmposed
on the actual distribution is the average stress in the web, F/4,. which does not dif-
fer much from the mammum web stress. Clearly, the web will completely vield long
before the flanges begm to vield. Because of this, vielding of the web represents one
of the shear linut states. Taking the shear vield stress as 60% of the tensile vield stress,
we can wnte the equation for the stress mn the web at farlure as

V
i =A_H= 0.6F,

where 4 = area of the web. The nominal strength comresponding to this imit state is
therefore

Fa=06Fd, (5.8)

and will be the nominal strensth in shear provided that there 15 po shear bucklng of
the web. Whether that ocours will depend on b/t the width-to-thickness ratio of the

—— 1

ViA, fi
-



AISC Specification Requirements for Shear
For LEFD, the relationship between required and available strength 15

¥, < gF,

where
F, = maximumy shear based on the controlling combination of factored loads
i, = resistance factor for shear

For ASD, the relationship 1=
A
L1,
where
F, = maximum shear based on the controlling combination of service loads
L}, = safety factor for shear

Az we will see, the valies of the resistance factor and safety factor will depend on the
web width-to-thickness ratio.

Section (32.]1 of the ATSC Specification covers both beams with stiffened webs and
beams with unstiffened webs. In most cases, bot-rolled beams wall not have sh =, and
we will defer treatment of shffened webs unhl Chapter 10, The basic strength equation 1=

V,=0.6FA4,C, (AISC Equation G2-1)

where
A, = area of the web = dr,
d = overall depth of the beam
C, = ratio of enfical web stress to shear vield stress

The value of O, depends on whether the limit state 15 web vielding, web imelastic
buckling, or web elastic buckling.

Case 1: For hot-rolled [ shapes with

|
LYy

., \F,
The lmut state 15 shear yielding, and
C.=1.10 (AISC Equation G2-2)
|;!|.r = 1.00
=150
Most W shapes withfj.l = 30 k=i fall into this category (see User Mote in ATSC G2 1[a]).
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Caze X: For all other doubly and singly symmetrie shapes,

g, =090
.=1.67
and C, 15 deternuned as follows:
—
For Ll <1.10 |E_ there 15 no web mnstabbity, and
f VF o
C.=1.0 (ATSC Equation G2-3)

(Thas comesponds to Equation 5.8 for shear vielding )

TE TE
For1.10 IhE < i£1.3'-' |IE, melastic web buckling can occur, and
VE o \ 5
1.10 5L
C, = h_}'TJ: (AISC Equation G2-4)
L

h E
For —~1137 I_*‘E, the limit state 15 elastic web bucklhng, and
T

o ¥
151k E )
c,=— (AISC Equation G2-3)
(h/t,)'F,
where
k=3

This value of k, is for unstaffened webs with b /7, < 260. Although section G2.1 of the
Specification does not give h/r, = 260 as an upper mit, no value of k, is given when
hft, = 260. In addition, AISC F13.2, “Proportioning Limats for I-Shaped Members_ ™
states that h /¢, in unstiffened girders shall not exceed 260.

AISC Equation 2-5 15 based on elastic stability theory, and AISC Equation G2-4
15 an empical equation for the melashe remion, providing a transiton befween the linmt
states of web yvelding and elaste web buckhng.

The relatonship between shear strength and the web width-to-thickness ratio 15
analogous to that between flexural strength and the wndth-to-thickness ratio (for FLB)
and between flexxural strength and the unbraced length (for LTB). This relationship 15
tllustrated 1 Figure 5.19.

Allowable Stress Formulation
The allowable strength relation

T
¥, <

L&

¥
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FIGURE 5.19

Boams

F

0.6F, 4,

ﬂ.lSFl_A"[ 110y BE/F, ]
: ki,

W)

— ] Rit

1.10yEEF, \\ 137y EE/F,

can also be written m terms of stress as

f=F,
where
F )
i - — applied shear stress
4,
0.6F.4,C, /02
F, = FalCY, — v W/, = allowrzble shear stress
A, A,

For the most commen case of hot-rolled I shapes with h/ft, < 2.24 Effr:,

3 06F 4, (1.00/1.50
4,
Shear 15 rarely a problem i rolled steel beams; the wsual practice 15 to design a
beam for flexure and then to check it for shear.

=0.4F,

E

EXAMPLE 5.7

SOLUTION

Check the beam in Example 5.6 for shear.

From the dimen=ions and properfies tables m Part 1 of the Manual the web width-to-
thickness ratio of a Wl4 x 90 is

h
—=239

L



-
Om
=0

Oow
20

SOLUTI

and the web area1s 4, =dr, = 14.0(0.440) = 6.160 n.?

=
224 [E _294 [29:000 549
F, 50

Since

-’-'- <224 J—E
1, F,

the strength 15 govemed by shear yielding of the web and C, = 1.0. (As pointed out in
the Specification User Note, this will be the case for most W shapes with F < 50 ksi.)
The nominal shear strength 15

¥, = 0.6F,4,C, = 0.6(50)(6.160)(1.0) = 1848 kips

Determine the resistance factor ¢,.

Since LTy KE
t, F,

¢, =1.00
and the design shear strength 15

¢V, =1.00(184.8) = 185 kips

From Example 5.6. w, = 2.080 kips/ft and L =45 f. For a simply supported. uni-
formly loaded beam, the maximum shear occurs at the support and 1s equal to the
reaction.

V- w,L  2.080(45)
= 2 — 2

=468 kips <185 kips (OK)

Determine the safety factor ().

Since i <224 £,
t, JFy

Q. =150
and the allowable shear strength 15

S Db

0, 150
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From Example 5.6, the total service load 15
wy,=wp+w; =0400 +1.000 =14 kips/ft

The 1 shearis
7, =“’T=1'4§—45)=31.5 kips <123 kips (OK)

Alternately. a solution in terms of stress can be done. Since shear yielding controls
(C,=1.0) and Q,=1.50, the allowable shear stress iz

F,=04F,=04(50)=20ks1
The required shear strength (stress) 15

v, 315 : :
:_:—:s_llk (20k o
fe=4. " 5160 = Edlkn 05

ANSWER The wed shear strength 15 less than the available shear strength, so the beam is
satisfactory.

Read Page 222 Block Shear

FIGURE 5.22 W
BRREER +|'Jr£
T e
i gl PN, A
T |
|_ ' R

. - ~3R4 FI
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EXAMPLE 5.

FIGURE 523

SOLUTION

ANSWER

2.10

Boams

9

Compute the dead load and lrve load deflections for the beam shown i Figure 5.23.
If the maximum permissible live load deflection 15 L /360, is the beam satisfactoryT

W = 3001kt
W = 550 1b/ 1t

'R R
WIE = 35
| E1 |

= 1

It 15 more conventent to express the deflection in mches than in feet, so umis of
inches are nsed in the deflection formmla. The dead load deflaction 15

5 wpl® 5 (0.500/12)30%12)*

Ap= =0.6l6 m
384 ET 384 29, 000(510)
The lve load deflection 15
4 ¥ ud
_ 3wl i (05501230 =12) — 0678 in

Y7384 Er 384  29.000(510)
The maximum permmizsible live load deflachion 15

L _3002) _

— =———==10imn > 067T8m. (OK)
350 360

The beam satnsfies the deflection eriterion.

Ponding 15 one deflection problem that does affect the zafety of a structure. It 15
a potential hazard for flat roof svstems that can trap rammwater. If dramms becomes
clogged during a storm, the weight of the water will cansze the roof to deflect, thus pro-
viding a reservorr for still more water. If this process procesds unabated, collapse can
ocour. The AISC specification requires that the roof system have sufficient shffness
to prevent ponding, and it prescribes limits on stuffness parameters in Appendix 2,
“Dezign for Ponding. ™

DESIGN

Beam desipm entails the selection of a cross-sectional shape that will have encugh
strength and that will meet serviceabality requrements. As far as strength 15 concerned,
flexure 15 almost always more critical than shear, so the wsual practice 15 to design for
flexure and then check shear. The design process can be outhned as follows.
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1. Compute the required moment strength (L&, the factored load moment 3 for
LEFD or the unfactored moment M, for ASD). The weight of the beam 15 part
of the dead load but 1s unknown at this pomt. A value may be assumed and ver-
ified after a shape 15 selected, or the weight may be 1znored mufially and checked
after a shape has been selected. Because the beam weight 15 usually a small part
of the totzl load, of if 15 1znored at the beginning of a design problem, the selected
shape will usually be sansfactory when the moment 15 recomputed.

2. Select a shape that satisfies thas strength requirement. This can be done in one
of two ways.

a. Assume a shape, compute the available strength, and compare 1t with the
required strength. Revize if necessary. The trnal shape can be sasily selected
1n only a limated number of stuations (a5 1n Example 5. 10},
b. Use the beam design charts in Part 3 of the Mawual This method 15 pre-
ferred, and we explam 1t following Example 5.10.
3. Check the shear strength.
4. Check the deflechion.

EXAMPLE 5.10

Select a standard hot-rolled shape of A%92 stee] for the beam shown m Figure 5.24.
The beam has contimuous lateral support and st support a2 umform service Live
load of 4.5 kips,/ft. The maximum permissible live load deflection is L /240

FIGURE 524 4 5V five load

BERREEREREE
e p

3

— —

Ignore the beam weight mtially then check for its effect after a selection 15 made.

)
=E
=20

S50LU
w, = 12w, + 16w, = 1.2(0) + 1.6(4.5) =72 kips /i
Fequred moment strength M, ==%WHL1 = %{7.2}[3 0)* =810.0 f-kips
= requred g0,

Assume that the shape wall be compact. For a compact shape with full lateral
suppont.

M,=M,=FZ,



From ¢, M =M,

OFZ, 2 M,
3

Z oo SI000D) 500
&F, 0.90(50)

The Z, table lists hot-rolled shapes normally used as beams i order of decreasing
plastic section modulus. Furthermore, they are grouped zo that the shape at the top
of each group (in bold type) is the Lightest one that has enough section modulus to
satisfy a required section modulus that falls within the group. In this example, the
shape that comes closest fo meeting the section modulus requirement 1s a W21 x 93,
with Z = 221 in 3, but the hightest one 15 a W24 x 84, wath Z =224 in’. Because
section modulus 15 not directly proportional to area, 1t 1s possible to have more sec-
tion modulus with less area. and hence less weight.

Try a W24 x 84, This shape 15 compact, as assumed (noncompact shapes are
marked as such in the table); therefore M, = 3, as assumed.

Account for the beam weight
w,=12wp+ 1.6w, = 1.2(0.084) + 1.6(4.5) = 7.301 kips/ft

Required moment strength = M, :—;-w_l.: = %(7.30 1X30)° =821.4 fikips

The required section modulus 15

M, 821402 _

Z, =—%= =219m?< 224m* (OK)
&F,  0.90(50)

In lieu of bazing the search on the required section modulus, the design strength
@M, could be used. because 1t 15 directly proportional to Z, and 15 also tabulated.
Next. check the shear:

K= w.z,L 9, 7.3021(30) = 110 kips

From the Z_ table,
¢V,=340kips > 110kips  (OK)

Finally. check the deflection. The maximum permissible live load deflection 15
L /240 =(30 x 12)/240 = 1.5 mch.

_ 5 wI' 5 (4512)30x12)°
“T384 EIL " 384 29,000(2370)

=1.19m. <15m (OK)



ANSWER

ASD
SOLUTION

Read Page 231 to 277

Usea W24 x 84.

Iznore the beam weight initially. then check for its effect after a selection 15 made.
w,=wp+w, =0+45=45kips/f

Required moment strength = M, =%waL2 = %(-‘4.5)(30)2 =506.3 fi-kips
M,

Q,

= required

Assume that the shape will be compact. For a compact shape with full lateral
support.

M,=M,=FZ,

M
From ——=M_,
Q,

FZ,
iy
] 2
7 QM, _167(5063x12)

F 50

y

=203m?

The Z, table lists hot-rolled shapes normally used as beams in order of decreasing
plastic section modulus. They are arranged in groups, with the lightest shape in each
group at the top of that group. For the current case, the shape with a section modu-
lus closest to 203 in.? is a W18 x 97, but the lightest shape with sufficient section
modulus is a W24 % 84 with Z, =224 m ?

Try a W24 x 84, This shape 15 compact. as assumed (if it were noncompact,
there would be 2 footnote in the Z, table). Therefore, M, = M, as assumed. Account
for the beam weight:

w, =wp+wy =0.084+45=4584 kips/ft
1 1 » :
M= ;w‘,Lz =g (4-389)B0)° =515.7 fdips
The required plastic section modulus 15

7 M, 167(515.7x12)
T 50

y

=207m’<224m? (OK)

Instead of searching for the required section modulus, the search could be based on
the required value of MP/Q,, which 15 also tabulated. Because M, /(), is propor-
tional to Z,, the results will be the same.
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DEFINITION

While many structural members can be treated as axially loaded columns or 25 beams
with only flexural loading, most beams and columns are subjected to some degree of
both bending and axial load. This 15 especially true of statically indetermmate struc-
tures. Even the roller support of a simple beam can expenence friction that restrains
the beam longitudinally, inducing axial tension when transverse loads are applied. In
this particular case, however, the secondary effects are usually small and can be
neglected. Many columns can be treated as pure compression members with neghizi-
ble error. If the column 15 a one-story member and can be treated as pinned at both
ends. the only bending will result from minor accidental eccentmcity of the load.

For many structural members, however, there will be a significant amount of
both effects, and such < are called beam—columms. Consider the nz;d frame in
Figure 6.1. For the ziven loading condition. the horizontal member 4B must not only
support the vertical uniform load but must also aszist the vertical members in resist-
ing the concentrated lateral load P,. Member CD 15 a more critical case, because 1t
must resist the load P, + P, without any assistance from the vertical members. The
reason 15 that the X-bracing, indicated by dashed lines, prevents sidesway mn the lower
story. For the direction of P, shown, member ED will be in tension and member CF
will be slack. provided that the bracing elements have been dezigned to resist only ten-
sion. For this condition to occur, however, member CD must transmuit the load P, + P,
from Cto D.

The vertical members of this frame must also be treated as beam—columns. In the
upper story, members .4C and BD will bend under the mfluence of P,. In addition, at
A and B, bending moments are transmitted from the honzontal member through the
nzid jomts. This transmission of moments zlso takes place at Cand D and 15 true in
any ngid frame. although these moments are usually smaller than thoze resulting from
lateral loads. Most columns m ngid frames are actually beam—columns, and the effects
of bending should not be 1znored. However, many 1s0lated one-story columns can be
realistically treated as axially loaded compression members.

Beam-Columns

-

MI‘I e
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FIGURE 6.1

6.2
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Another example of beam—columns can sometmes be found in roof trusses.
Although the top chord 15 nommally treated as an axially loaded compression member,
if purline: are placed between the jounts, their reactions will cause bending, whech st
be accounted for. We diseuss methods for handhng this problem later in this chapter.

INTERACTION FORMULAS
The relanionship between required and available strengths may be expressed as

requiredstrength _, (6.1)
available strangth

For compression members, the strengths are amal forces. For example, for LEFD,

B <10
aF

and for ASD,
F

=10

fa,

P

-

These expressions can be written in the general form

iEl.lfl-

[5

where
P, = required axial strength
P, = awvailable axial strength

If more than one type of resistance 15 involved, Equaton 6.1 can be used to form the
basis of an mterachon formula. As we discussed in Chapter 5 in conjunchon with
bamal bending, the sum of the load-fo-resistance ratios must be hoated to umty. For
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example, if both bending and axal compression are acting, the mteraction formmla
would be

B M

+—L <10
P M,

where

M, = required moment strength
=M, for LEFD
=M, for ASD

M, = available moment strength
= gy, for LRFD

M
= —= for ASD
Q,

For biamal bendmg, there will be two moment ratios:

M, M
B My My ]51_121 (6.2)
FE \M, M,

where the x and v subscnpts refer to bendmg about the x and ¥ axes.

Equation 6.2 15 the basis for the AISC formmulas for members subject to bending
plus axmal compressive load. Two formulas are given 1n the Specificaton: one for
small ax1al load and one for larze axial load. If the axal load 15 small, the axial load
term 15 reduced. For large axial load, the bending term 15 shghily reduced. The AISC
requirements are given in Chapter H, “Design of Members for Combined Forces and
Torsion,” and are summanzed as follows:

For —=0.2,

B

B[ M, M,

—t— +— |=1.0 . )

E 9{_:,,-{m _a,,{t._'} (AISC Equation H1-1a)
For ﬂ-:':'.?

B

B M, M .

-+ —+—= |=1.0 I5C Equation H1-1b

2P +{Mﬁ +M¢ (A quation )

These requirements mayv be exprezsed m erther LEFD or ASD form.,
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LEFD Interaction Equations

For B =02,
i -I-E{ M +—= ]El.ﬂ (6.3)
"iﬁe-!::r ] 'Iﬁ.'nn-lllfh.t ﬁ.'J-HH_y
For i-\:ﬂl.l
B
M
A -I-[ M + ]El_ﬂ' (6.4)
2'ﬂ-!:.':r ':'h-Mn.t ﬁ--l"f.uy
ASD Interaction Equations
F
F 2 =02,
ar B/, .
L +E[ Mo, Mo ]ﬂl.ﬂl (6.5
Rja. 9l M, /Q, M,/ O
For Lo <02,
Bj,
E +{ Mo | M, ]El.ﬂ (6.6)
mfﬂ - n.tJ'llﬂ.':- —Hnyu"lﬂ.'r

Example 6.1 illustrates the applhication of Equations 6.3-6.6.

EXAMPLE 6.1

The beam—cohumn shown in Figure 6.2 15 pinned at both ends and 15 subjected to the
leads shown. Bending 15 about the strong axis. Determine whether this member sat-
1sfies the appropnate AISC Specification interaction equation.

LRFD  From the column load tables, the amal compressive design strength of a W10 x 49
SOLUTION  with F, = 50 ksi and an effective length of £,L = 1.0 % 17 = 17 feet s

@.P, = 405 kips

Since bending is about the strong axis, the desien moment, gy, for C, = 1.0 can
be obtaired from the beam design charts m Part 3 of the Manual.



FIGURE 6.2 Pp = 35k
Py =90k

|

v

¢
8.8

W0 x 49
A2 stec)

Qn"sk
Q=124

-

l?’ - —

8.5

T

A r——

For an unbraced length L; = 17 ft,
@M, = 197 f-kips
For the end condifions and loading of this problem, C'; = 1.32 (see Fizure 5.15¢).
For Cy = 1.32. the design strength 15
@M, = Cy x 197 = 1.32(197) = 260 ft-kips
This moment 15 larger than ¢, M, = 226.5 ft-kips (also obtained from the beam design
charts), so the design moment must be limited to @M, Therefore,
P M, = 226.5 fi-kips

Factored loads:

P,=12P;+16P; =12(35)+ 1.6(99) = 200.4 kips
0,=120,+1.60,=12(5)+1.6(12)=252 kips

The maximum bending moment occurs at midheight. so

25.2Q17)
=

M, =107.1 f-kips

Determine which mteraction equation controls:

B, 2004
—=——=04948>02 .. U tion 6.3 (AISC Eq. Hl-1a).
&P 405 =e Equation 6.3 ( Eq a)
B 8( M, M, )_200.448[107.1

+= + = + 2 s
0P I\ uMa M) 405 912265

0]=0915<1.0 (OK)

ANSWER  This member satisfies the AISC Specification.



304 Chapter6 Beam-Columns

ASD
SOLUTION

ANSWER

From the column load tables, the allowable compressive strength of a W10 x 49 with
Fy=50ksiand KL =10x17=17 feetis

P, .

—=270kips

Q.

From the dezsign charts in Part 3 of the Manual for L, =17 fiand C, = 1.0,
M,

=2 =131 ks
Q, kips

From Fagure 5.15¢, C, =1.32. For C, = 1.32,

%:c, x131=1.320131) =172.9 fkips

This is larger than M, /€, = 151 ft-kips, so the allowable moment must be limited to
M,/Q, Therefore,

M, :
o= 151 fkips

»
The total ax1al compressive load 13
P,=Pp+P; =35+99=134 kips
The total ransverse load 15
0,=0,+0,=5+12=17kips
The maximum bending moment 15 at midheight

M, =@= 72.25 fikips

Determine which mteraction equation controls:

B__134
B/Q. 270

=04963>0.2 - Use Equation 6.5 (AISC Equation Hl-1a).

22
P, +s( My M, ]-134 3(7~~~5+o)=0_922<1.0 (OK)

= =
R/Q. 9\M,/Q, M,/Q,) 270 9\ 151

This member satisfies the AISC Specification.




6.6

FIGURE 6.6

In additvon to the required moment strength the regmred amal strength must
account for second-order effects. The required axial stremgth 15 affected by the
displaced geometry of the stucture duwrmg loading. This 15 not an 1s5ue with member
displacement (), but it is with joint displacement (A). The required axial compres-
sive strength 1= given by

P =P, +BE,P, (AISC Equaton A-3-2)

where
P.. = axial load comesponding to the braced condition
P, = axzal load comesponding to the sidesway condition

We cover the evaluation of B, and B, 1o the following sectons.

MEMBERS IN BRACED FRAMES

The amphification factor given by Expression 6.7 was denived for 2 member braced
against sidesway—ithat 15, one whose ends cannot translate with respect to each
other. Figure & 6 shows a member of this tyvpe subjected to equal end moments pro-
ducing single-curvarure bending (bending that produces tension or compression on

P
IHD
a\ My ‘ PS

g | -

’ J

My .
p My + PB




FIGURE 6.7

=~




factor given by Expression 6.7 was derved for the worst case, so C, will never be
greater than 1.0. The final form of the amphfication factor s

C .
B=——=2__ =1 (ATSC Equaton A-3-3)
" 1-(aP./Py)
where
P, = required wmamplified axmal compreszive strength (P, + Py
=P, for LEFD
=P, for ASD)

o =1.00 for LEFD
=1.60 for ASD

_mEr (AISC Equation A-3-5)
(E\LY

el

ET = flexural ngidity
In the direct analysis method, EI” is a reduced stiffness obtained as
ETI' =0.815,ET (6.8)
where

T, = a stiffness reduction factor

=1.0 when ek =05 (AISC Equation C2-2a)

¥

P B P .
- 4[5.?]{1 _a.f_?*] when —=" = 0.5 (ATSC Equation C2-2b)
¥



FIGURE 6.8

Evaluation of C,,,

The factor O, applies only to the braced condihon. There are two categones of mem-
bers: thoze with transverse loads applied between the ends and those with no transverse
loads. Figure 6.8b and ¢ 1llustrate these two cases (member 4E 15 the beam—column
under consideration).

1. If there are no transverse loads achng on the member,

M,
C, =06-04 (—'] {AISC Equation A-8-4)

=K3

M, /M, 15 a ratio of the bending moments at the ends of the membar. M| 15 the
end moment that 15 smaller in abselute value, M, 15 the larger, and the ratio 1= pos-
ive for members bent m reverse curvature and negative for single-curvanre
bending (Figure 6.9). Reverse curvature (3 positive rafio) ocours when M, and
M, are both clockwise or both counterclockwise.

. Fortransversely loaded members, ', can be taken as 1.0. A more refined pro-

cedure for transversely loaded members 1z provided in the Commentary to
Appendix & of the Specification. The factor O, 1= given as

C“:1+'*I"[EEF’]

el

(AISC Equation C-4-8-2)

The factor ¥ has been evaluated for several commeon situzfions and 15 given
in Commentary Table C-A-8.1.

R

A

(a) Unbraced

o ¥ 4 o 4y

—_— —
——
——
A A
(b} Braced (no (e} Braced (with

tramsyverse lomls) tramsverse lopds)
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EXAMPLE 6.3

The member shown m Figure 6.10 15 part of a braced frame. An analysis consis-
tent with the effective length method was performed; therefore, the flexural ngid-

ity, ET was unreduced. If A572 Grade 50 steel 15 used, 15 this member adeguate?
E=E=10

FIGURE 6.10 Pp="T0F

P, =210k

Mp=111tk
M; =36 fik
—
147 w12 = &5
l -—
Mp=14 fik
M; =41 fik

LRFD The factored loads, computed from load combination 2, are shown in Fiz-
SOLUTION ure §.11. Determuine which mteraction formmla to apply. The required compres-

sive strength 1=

P =P, =P_+B,P,=420+0=420 kaps (B, =10 for a braced frame)



FIGURE 6.11

420*
/Y\ 70-8'“
e 70.8
\ A
35 l
A—1— |—77
r3.5'
14" WI2x65|B-—] 76.6
3.5
c J: 79.5
! r3.5‘
———— <—- 82.'1

82.4™ Moment (ft-k)
420

From the column load tables. for KL = 1.0 x 14 = 14 feet, the axial compressive
strengthof a W12 x 6515

¢.P, = 685 kips
i -ﬂ—06l3l>0" *. Use Equation 6.3 (AISC Equation H1-13)
&P 685 = ’ :
In the plane of bendmg,

p - TE _ mEL, _ x’(29.000)533)
&L (KL @0x14x12)

= 5405 kips

C, = 0.6-0.4(ﬁ]= 0.6— o.4(-2£)= 0.9437
M 824

C e 0.9437

B =1@B /B, 1-Q00R By  1-(220/5405)

=1.023

From the Beam Dezign Charts in Part 3 of the Manual with C, = 1.0 and L, = 14 feet.
the moment strength 15

M, =345 fi-kips
For the actual value of C,, refer to the moment diagram of Figure 6.11:

i 12.5Mpnax
2.5Mpa +3M 4 +4Mp +3Mc

y 12.5(82.4) o
T 2.5(824)+3(73.7) +4(76.6) +3(79.5)
o M, = Cy(345) =1.060(345) = 366 fi-kips

Ch




b.b  Iembers In Bracea rrames S/

But ¢, M, =356 ft-kips (from the charts) <366 ft-kaps . Use ¢, M, =356 ft-lups.

(Since a W12 X 65 1s noncompact for F, = 50 ks, 356 ft-kips 15 the desizn strength based
on FLB rather than full yielding of the cross section.) The factored load moments are

M, =824fkips M,=0
From AISC Equation A-8-1, the required moment strength 1=

M, =M, =B M+ B:M,=1.023(82.4) + 0=84.30 fi-kups = M,
From Equation 6.3 (AISC Equation H1-1a).

e

+ My =0.6131+§.(84‘_30+0)= 0824<10 (OK)
OMe G, 9\ 356

ANSWER  The memberis satisfactory.

ASD  The service loads, computed from load combination 2, are shown in Figure 6.12.

SOLUTION  Determine which interaction formula to apply. The required compressive
strength 15
P,=P,=P, +B,P,, =280 +0=280kips (B, =0 for a braced frame)
From the column load tables, for KL = 1.0 x 14 = 14 feet, the axial compressive
strengthof a W12 x 6515
B, -
—=456
o kips
il -&-0 6140>02 .. Use Equation 6.5 (AISC Equation H1-13)
PjQ. 456" i XU 5 n 6. !
FIGURE 6.12 2804
Do,
- —_— 7
35
4 * 49
3i5l
14 wizxes | 2 % L
3.5
C * 53
3.5
s | 55
JP S Momen®




ANSWER

In the plane of bendmg,

2 2 2
= T IE-II1 = R El, =1r (29.000)533) = 5405 kips
(KLY (KLY (@0x14x12)?
C,=06-04 (ﬁ-)z 06-04 (—4—7)= 09418
M, 55
= Cg — Cﬂ = 0.9418 =1.027
“1-(aB/P;) 1-(1.60P/P;) 1-(1.60x280/5405)

P

<l

B

Next, from the Beam Desizn Charts with €, = 1.0 and L, = 14 feet. the moment strenzth 15

My _ 230 fkips

L]

For the actual value of Cj, refer to the moment diagram of Figure 6.12:

N 12.5M,,,
T 25M . +3M +4My +3Mp
2
= 12.5(55) ~1.062
2.5(55)+3(49) + 4(51) +3(53)

Cs

% = C,(230) =1.062(230) = 244 3 R-kips

But L—;‘- =237 fi-kips (fom the charts) < 244 3 fi-kips. so use % =237 fi-kips.
b b

(Since a WI2 x 65 15 noncompact for Fj, = 50 ksi, 237 ft-kips 15 the strength based
on FLB rather than full yielding of the cross section ) The unamplified moments are

M, =55ftkips M,=0
From AISC Equation A-8-1, the requured moment strength 15

M =M =BM,_ +BM,=1027(55)+0=5649 fi-kups =M,
From Equation 6.5 (AISC Equation H1-1a),

P 8 M. . M, J_§3+§ 56.49
B/Q. 9\ M./Q. M,/Q ) 456 91 237

¥ 0) =0826<10 (OK)

The member 15 satisfactory.




EXAMPLE 6.4

FIGURE 6.13

LRFD
SOLUTION

The honzontal beam—column shown in Figure 6.13 15 subject to the service
live loads shown. This member 15 laterally braced at its ends. and bending 15 about
the x-axas. Check for compliance with the AISC Specification K, =K =1.0.

a8
‘ W8 x 35
281 e AY2 28‘
e
s |
>~ -
{13
The factored axial load 15

P, =1.6(28) =448 kips
The factored transverse loads and bending moment are

Q.. =1.6(28) =44.8 kups
=1.2(0.035) = 0.042 kips /ft

44, 8(10) 0. 0«‘42(10)2
4

This member 15 braced against sidesway. so M, =0.

Compute the moment amplification factor. For a member braced against side-

sway and transversely loaded. C, can be taken as 1.0. A more accurate value can
be found in the Commentary to AISC Appendix 8:

=112.5 fikps

M, =

&l =l+‘l’(ap'

<l

) (AISC Equation C-A-8-2)

From Commentary Table C-A-8.1. ¥ =-0.2 for the support and loading conditions
of this beam—column. For the axis of bending.

r’El _ ®'El, _ x%(29,000127)
(KLY (K,-L)2 @0 x12)*

c. -1+\v(°’P] 1o o,(loop) 1—0.2(44'8]=0.9965
B, P, 3524

By= = 2524 kips




The amphfication factoris

r c: 0.9965

B = 1(ar/p) " T=@ 0B /Py - 1-@as8/2529)

=1.015

The amplified bending moment 15
M, =B M, +B.M,=1.015(112.5) +0=1142 fi-kaps
From the beam design charts, for L, =10 ftand C, =1,
oM, =123 ft-kips

Because the beam weight 15 very small in relation to the concentrated live load,
C; may be taken from Figure 5.15¢ as 1.32. This value results in a design mo-
ment of

oM, = 1.32(123) = 162.4 ft-kips

This moment is greater than @ M, = 130 ft-kips. so the design strength must be lim-
ited to this value. Therefore,

M, = 130 f-kaps
Check the mteraction formula. From the column load tables, for KL = 10 ft,

¢-P, =358 kips

:;, +% —01251<02 .. Use Equation 6.4 (AISC Equation H1-1b).

P, ( M, M, ) 0.1251 (1142 )

+ + = + +0

m ¢&MB ¢6Mny 2 130
=0941<1.0 (OK)

ANSWER A WS x 3515 adequate.

ASD The applied axial load1s
SOLUTION
P, =28 kips
The applied transverse loads are

©, =28 kips and w, = 0.035 kips/ft



and the maxmmum bending moment is

2
> 2sg0) + 0'032(10) =70.44 fkips

The member 1= braced agamst end translation, so M, =0.

Compute the moment amplification factor. For a member braced agamst sides-
way and transversely loaded. C, can be taken as 1.0. A more accurate value can be
found mn the Commentary to AISC Appendix 8:

Cu=1+ ‘l’(‘;f' ] (AISC Equation C-A-8-2)

¢l

From Commentary Table C-A-8.1. ¥ =-0.2 for the support and loading condifions
of this beam—column. For the axis of bending.

2 2 2 o) 2
_CH _CH 2000 o,
(KL (K.L) (10x12)
2

c. =1+\v(m°'):1-0.2(ﬂ)=1-0.2(M]=0.9965

¢l Prl 2524
e o 0.9965
“1-(aP/P,) 1-(1.60P,/P,) 1-(1.60x28/2524)

M, = B,M,, =1.015(70.44) = 71.50 B-kips

el

B, =1.015

From the Beam Design Charts with C, =1.0 and L, = 10 feet, the moment strength 15

M X
—=82.0 fikaps
Q,

Because the beam weight 15 very small in relation to the concentrated live load, C,
may be taken from Figure 5.15¢ as 1.32. This results in an allowable moment of
M, ;
=1.32(82.0)=108.2 ft-kips
Q,

This result 15 larger than -{ﬁ'-=86.6; therefore, use -&zu—’=86.6 fi-kips.
Qb Qb QA

Compute the axial compressive strength. From the column load tables. for KL =10 ft,

= =238 kips



ANSWER

Read Page 322 to 362

Determine which inferaction formula to use:

P, 28 _ |
=—1{l _ I.-‘ ) ) .
E/O, ™ 238 0.1176<0.2 Use Equation 6.6 (AISC Equation H1-1b)
R [ M, M, ] 01176 (71.50 )
+ + = + +0
= (0.884 < 1.0 (OK)
The WE x 35 is adequate.
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CHAPTER7

INTRODUCTION

Connections of structural steel members are of cntical importance. An inadequate
connection, which can be the “weak link” mn a structure, has been the cause of numer-
ous failures. Faihwre of structural members 15 rare; most structural fatlures are the result
of poorly designed or detailed connections. The problem 15 compounded by the con-
fusion that sometimes exists regarding responsibility for the design of connections.
In many cases, the connections are not designed by the zame engineer who designs
the rest of the structure, but by someone associated with the steel fabnicator who fur-
mishes the matenal for the project. The structural engineer responsible for the pro-
duction of the design drawings. however, 15 responsible for the complete design.
mcluding the connections. It 15 therefore mcumbent upon the engineer to be proficient
m connection design, 1f only for the pwrpose of validating a connection designed by
someone else.

Modem steel structures are connected by welding or bolting (either high-strength
or “common” bolts) or by a combination of both. Until fairly recently. connections
were either welded or nveted. In 1947, the Research Council of Riveted and Bolted
Structural Joints was formed. and its first specification was 1ssued m 1951, This doe-
ument zuthonzed the substitution of high-strength bolts for rivets on a one-for-one
basis. Since that time, high-strength bolting has rapidly gained in populanty, and
today the widespread use of high-strength bolts has rendered the nvet obsolete m c1vil
engineering structures. There are several reasons for this change. Two relatively
unskilled workers can install high-strength bolts, whereas four skilled workers were
required for nvetmg. In addition, the nveting operation was noisy and somewhat dan-
gerous because of the practice of tozsing the heated rivet from the pomt of heating to
the point of installation. Riveted connection desizn 15 no longer covered by the AISC
Specification, but many existing structures contan nveted jomts, and the analysis of
these connections 1s required for the strength evaluation and rehabilitation of older
structures. Section 5.2.6 of AISC Appendix 5. “Evaluation of Existing Structures.”
specifies that ASTM A502 Grade 1 nvets should be assumed unless there 15 evidence

an

’/';

.l TR W
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Chapter7 Simple Connactions

FIGURE 7.1

FIGURE 7.2

to the contrary. Properties of mvets can be found m the ASTM Specification (ASTM,
2010c}. The analysis of nveted connections 15 essenfially the same as for connections
with commeon bolts; only the material properties are differant

Welding has several advantages over bolting. A welded connection 15 often sim-
pler in concept and requires few, if any, holes (sometimes erection bolts may be
required to hold the members mn position for the welding operation). Connections that
are extremely complex with fasteners can become very sumple when welds are used.
A case mn point 15 the plate girder shown in Figure 7.1. Before welding became widely
uzed, thi= type of built-up shape was fabncated by riveting. To attach the flange
plates to the web plate, angle shapes were used to transfer load between the two ele-
ments. If cover plates were added, the fimshed product became even more comph-
cated The welded version, howewver, 15 elegant in 1ts simphicity. On the negative side,
skilled workers are required for weldng, and inspection can be difficult and costly.
This last dizadvantage can be parhally overcome by using shop welding instead of
field welding whenever possible. Qualty welding can be more eazily ensured under
the controlled conditions of a fabricating shop. When a connection 1s made with a
combination of welds and bolts, welding can be done 1n the shop and belting in the
field. In the single-plate beam-to-column connection shown 1o Figure 7.2, the plate
15 shop-welded to the column flange and fisld-bolted to the beam web.

—
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AGURE 7.3




1.2

FIGURE 7.4

BOLTED SHEAR CONNECTIONS:
FAILURE MODES

Before considermng the strength of specific grades of bolts, we need to examine the var-
1ous modes of fallure that are possible in connections with fasteners subjected to shear.
There are two broad categones of farlure: failure of the fastener and failure of the parts
being commected. Consider the lap joint shown mm Figure 7 4a. Failure of the fastensr can
be assumed to occur as shown. The average sheanng stress in this case will be

P
xd*f4

P
===
where P 15 the load acting on an mdividual fastener, 4 15 the cross-sectional area of
the fastener, and 4 15 1fs diameter. The load can then be wnitten as
P=fAd

Although the loading in this case 1= not perfectly concenfric, the eccenimcity 1s
small and can be neglected. The connection mm Figure 7.4b 15 similar, but an analysis

—» P2

-

P ~ i i 1

—%

- P>
F _"E- P2 —rg F

P P

¥
TP PI2—=T_ o,
" )
p—i P pia
= pi2

(o) Single Shear (b} Double Shear

* There is acroally a small ecoentricity in the cormertions of Figure 7_3b and c. but it is usually neglected.



FIGURE 7.5

connectad and fall 1into Two general catezones.

1. Failure resulting from excessive temsion, shear, or bending in the parts

being connected. If a tension member 1s being connected, tension on both the
gross area and effective net area must be investigated. Depending on the con-
fizuration of the connecton, block shear omght also need to be considered.
Block shear must alzo be examined m beam-to-column connections in which
the top flange of the beam 15 coped. (We covered block shear in Chapters 3
and 3, and it 15 desenibed 1 AISC 74 3)) Depending on the tvpe of connechon
and loadmg. connection fithngs such as gusset plates and framing angles may
require an analysis for shear, tension, bending, or block shear. The design of
a tension member connection will usually be done 1n parallel with the design
of the member tzelf becausze the ftwo processes are mterdependent.

. Failure of the connected part becausze of bearing exerted by the fazteners.

If the hole 1z shightly larger than the fastener and the fastener 1= azsumed to be
placed loosely m the hole, contact between the fastener and the connected part
will exist over approximately half the cireumference of the fastensr when a
load 15 applied. This condition 1s illustrated m Figure 7.5. The stress wall vary
from a2 maxmium at 4 to zero at B for simplicity, an average stress, computed
as the applied force divided by the projected area of contact, 15 used.

—
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1.3

BEARING STRENGTH, SPACING, AND
EDGE-DISTANCE REQUIREMENTS

Beanng strength 15 independent of the type of fastener because the stress under con-
sideration 15 on the part being connected rather than on the fastener. For this reason,
beanng strength, as well as spacing and edge-distance requirements, which also are
independent of the type of fastener, will be considered before bolt shear and tensile
strength.

The AISC Specification provisions for bearing strength, as well as all the
requirements for high-strength bolts, are based on the provisions of the specification
of the Research Councl on Stuctural Connections (RCSC, 20097, The following dis-
cussion, which 1s based on the commentary that accompanes the BCSC specification,
explams the basis of the ATSC specification equations for beanng strength.

A possible falure mode resultng from excessive beanng 15 shear tear-out at the
end of 2 connected element, as shown m Figure 7.7a. If the failure suwrface 1= 1deal-
1zed as shown m Fizure 7.7h, the faillure load on one of the two suwrfaces 15 equal to
the shear fracture stress tmes the shear area, or

il =06F. L.t
2
where
0.6F, = shear fracture stress of the connected part
£, = distance from edge of hole to edge of connected part

t = thickness of connected part
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The total strength 15
R,=X06F f{=121F {1 (7.1)

This tear-out can take place at the edgze of 2 connected part, as shown, or between two
holes 1n the direction of the beaning load. To prevent excessive elongation of the hole,
an upper hmit 15 placed on the bearing load given by Equation 7.1. This upper hinut
15 proportional fo the projected beaning area fumes the fracture sfress, or

Ry = C % beanng area x F, = CdtF, (7.2}
where

' = a constant

d = bolt diameter

¢ = thackness of the connected part

The AISC Specification uses Equation 7.1 for beanng strength, subject to an upper
limit given by Equation 7.2, If excessive deformation at service load 15 a concern,
and 1t usually 1z, O 15 taken as 2.4, This value comresponds to a hole elongation of
about "4 meh (RCSC, 2009). In this book, we consider deformation to be a design
consideration. The nominal bearng strength of 2 zingle bolt therefore can be
expressed as

R, =1.24.4F, =2 44tF, (AISC Equation J3-6a)

where
£, = clear distance, in the direction parallel to the apphed load, from the edge of
the bolt bole to the edge of the adjacent hole or to the edze of the matenal
t = thickness of the connected part
F,, = ultimate tensile siress of the connected part (ror the bolt)
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For load and resistance factor design, the resistance factor 1s v =10.753, and the design
strength 15
g, =0.73R,
For allowable strength design the safety factor 15 £ =2 00, and the allowable strength 15
E K

— -

Q 20

Figure 7.8 further illustrates the distance £. When computing the beanng
strength for a bolt, use the distance from that belt to the adjacent bolt or edze 1 the
direction of the beanng load on the connected part. For the case shown, the bearnng
load would be on the left side of each hole. Thus the strength for bolt 1 15 caleulated
with £, measured to the edge of bolt 2, and the strength for bolt 2 15 caleulated wth
{_ measured to the edge of the connected part.

For the edge bolts, use £_= £, — h/2. For other bolts, use £, =z —h,
where

{, = edge-distance to center of the hole

5 = center-to-center spacmmg of holes
h = hole diameter

ATSC Equation J3-6a 15 vahd for standard, oversized, short-slotted and long-slotted
holes with the slot parallel to the load. We use only standard holes mn this book (holes
Vie-inch larger than the bolt diameter). For those cases where deformation 1s not a
design consideration, and for long-zlotted holes with the slot perpendicular to the di-
rection of the load. AISC grves other strength expressions.

When computing the distance £_, use the actual hole diameter (which 15 Yie-mch
larger than the bolt diameter), and do not add the & mmch as required m ATSC B4 .3b for
computing the net area for tension and shear. In other words, use a hole diameter of

1 .
h=d +E m.
not d + Y& inch (although if 4 + ' were used, the slight emror would be on the con-

servative side).



FGURE 7.9 Fe

£ £,
P :‘..{ E _G
3 I :
£e I ~ +_ y;
P C;' k._) (:_,- T > :
Lo L ¥ Ty
) -

Spacing and Edge-Distance Requirements

To maintain clearances between bolt muts and to provide room for wrench sockets,
ATSC J3.3 requires that center-to-center spacing of fasteners (in any direction) be
no less than 2354 and preferably no less than 34, where 4 15 the fastener diameter.
Mimimyum edge distances (in any direction). measured from the center of the hole, are
given in AISC Table I3 4 as a function of bolt size. The spacing and edge distance to
be considered, denoted £ and £, are illustrated 1 Fizure 7.9.

Summary of Bearing Strength, Spacing, and
Edge-Distance Requirements (Standard Holes)
a. Bearmg strength:
R,=1.2{4F, <2 4diF, (AISC Equation J3-6a)

b. Minimyum spacing and edge distance: In any direction, both in the line of force
and transverse to the hine of force,

5 =2 %d (preferably 3d)
£, 2 value from ATSC Table J3.4

For zingle- and double-angle shapes, the usuzal page distances given in Table 1-TA
i Part | of the Manual (see Section 3.6) may be used m hen of these minmms.

EXAMPLE 7.1

Check bolt spacing. edge distances, and beanng for the connection shown 1n
Figure 7.10.

SOLUTION From AISC J3.3, the mimimmm spacmg in any direction is

2%d =2.667 [%] =200

Actual spacing =250 in. = 2.00in. (OK)
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ANSWER

The beanng strength for the tension member 15
R,=2(29.36) +2(52.20) = 163.1 kips
For the guszet plate and the holes nearest the edge of the plate,

=4, —-{;:l.25— 13416

R, =1.2£.4F, <2 4diF,

=08438 m.

1.260F, = 1.2(0.8438)(%)(58) =22.02 kips

Upper hinit =2 44dF, = 2.4(%)(%)(58)

=39.15kips>2202 kips .. Use R, =22.02 kips/bolt.
For the other holes,

£.=s5—h =2.5—£=1.688 m.
16

R, =1.2£.4F, <2.4diF,

124005, =1.2(1 .688)(—:—)(58) =44.06 kaps

Upper himit =2 4dtF, = 39.15 kips <4406 kips .. Use R, =39.15 kips/bolt.
The beanng strength for the gusset plate 15
R,=2(22.02) +2(39.15)=122.3 kips
The gusset plate controls. The nominal beanng strength for the connection 15 therefore
R,=1223 kips
The design strength 15 @R, = 0.75(122.3) =91.7 kips.
The required strength is
R,=12D+16L=12(15)+1.6(45)=900kips <91.7kips  (OK)

oy 1223
The allowable strength 1s o300

=61.2 kips.
The required strength 1=
R,=D+L=15+45=60kips <61.2kips (OK)

Beanng strength. spacing, and edge-distance requirements are satisfied.
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From AISC Table J3.4. the minimum edge distance in any direction 15 1 inch.
Actual edge distance = 1% n>lin (OK)

For computation of the beanng strength. use a hole diameter of

| ) | S .
h—d‘fTa-—Tf-l—g—-l—gm.

Check beanngz on both the tension member and the gusset plate. For the tension mem-

ber and the holes nearest the edge of the member.

_, k 13/16
b=l —7=125-—

2 =0.8438 m.
R, =1.2{4F, <2 4dtF,

126.0F, = 1.2(0.8438)(%)(58) =29.36 kips
Check upper limit:
24diF, = 2.4(-%—](—;—)(58) =52.20 kips

2936kips <5220 kips .. Use R, =29.36 kips/bolt.
(This result means that £, 15 small enough so that 1t must be accounted for.)
For the other holes.
£e =s-h=2.5-£=1.688 m
16
Ry =1.2£.tF, <2 44d:F,
124, = 1.2(1.688)(—,%—)(58) = 58.74 kips

Upper linut (the upper limit 15 independent of £, and 15 the zame for all bolts):

244:F, = 5220 kips < 58.74 kips - Use R,=52.20 kips/bolt.
(This result means that £, 15 large enough so that it does not need to be accounted for.
Hole deformation confrols.)

Read the rest of Chapter 7



8.1

EXAMPLES OF ECCENTRIC CONNECTIONS

An eccentric connection 15 one in which the resultant of the apphed loads does not
pass through the center of gravity of the fasteners or welds. If the connection has a
plane of symmetry, the centroid of the shear area of the fasteners or welds may be
used as the reference pomt, and the perpendicular distance from the line of action of
the load to the centroid 1s called the eccenmricity. Although a majonty of connections
are probably loaded eccentrically. in many cases the eccentnicity 15 small and may be
neglected.

The framed beam connection shown in Figure 8.1a 15 a typical eccentric connec-
tion. This connection, in erther bolted or welded form, 15 commonly used to connect
beams to columns. Although the eccentricities m this type of connection are small and
can sometimes be neglected. they do exist and are used here for illustration. There are
actually two different connections mvolved: the attachment of the beam to the fram-
mg angles and the attachment of the angles to the column. These connections illustrate
the two basic categories of eccentric connections: those causing only shear m the fas-
teners or welds and those causmg both shear and tension.

If the beam and angles are considered separately from the column, as shown in
Fizure 8.1b. 1t 15 clear that the reaction R acts at an eccentncity ¢ from the centrond
of the areas of the fasteners in the beam web. These fasteners are thus subjected to
both a shearmg force and a couple that lies in the plane of the connection and causes
torsional shearing stress.

If the column and the angles are 1solated from the beam. as shown in Figure 8.1c,
1t 15 clear that the fasteners in the column flange are subjected to the reaction R act-
mg at an eccentricity ¢ from the plane of the fasteners, producing the same couple as
before. In this case, however. the load 15 not 1n the plane of the fasteners, so the cou-
ple will tend to put the upper part of the connection 1n tension and compress the lower
part. The fasteners at the top of the connection will therefore be subjected to both
shear and tenszion.

Although we used a bolted connection here for illustration. welded connections
can be simlarly categonzed as either shear only or shear plus tension.

477
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HGURE 8.1
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Available strengths (maximum reaction capacifies) for vanous framed beam con-

nections are given m Tables 10-1 through 10-12 in Part 10 of the Manual “Dlesign of
Simple Shear Connechions.™

L -

M= Re

Edge of shear plane
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8.2 ECCENTRIC BOLTED CONNECTIONS:
SHEAR ONLY

The column bracket connection shown in Figure 8.2 15 an example of a bolted con-
nechon subjected to eccentric shear. Two approaches exist for the seluton of thes prob-
lemi: the tradiional elastic amalysis and the more acowate (but more complex)
ultimate strength analysis. Both will be dlustrated.

FIGURE 82




FIGURE 8.3

Elastic Analysis

In Figure 8 3z, the fastener shear areas and the load are shown separate from the col-
umn and bracket plate. The eccentric load P can be replaced with the same load act-
ing at the centrond plus the couple, M = Pe, where & 15 the eccentnerty. If thas
replacement 12 made, the load will be concentric, and each fastener can be assumed
to resist an equal share of the load, given by p. = P/n, where n is the number of fas-
teners. The fastener forces resultng from the couple can be found by considermg the
shearing stress in the fasteners to be the result of torsion of a eross sechon made up
of the cross-sechional areas of the fasteners. If such an assumphon 15 made, the shear-
ing stress i each fastener can be found from the torsion formula

Md
(i S].
A I (3.1)
where
d = distance from the centrond of the area to the point where the stress 15 being
computed

J = polar moment of inerta of the area about the centroid

and the stress f§, 15 perpendicular to 4. Although the torsion formula 1= applicable only
to night circular eylmders, 1ts use here 15 conservative, vielding stresses that are some-
what larger than the actual stresses.

If the parallel-axs theorem 15 used and the polar moment of mertia of each corenlar
area about 1ts own cenfrond 15 neglected, J for the total area can be approsimated as

J=F Ad* = AT d*

II'.|
/ ’
a o Dg/
She = 45
A "E M=



FIGURE 8.3

Elastic Analysis

In Figure 8.3z, the fastener shear areas and the load are shown separate from the col-
umn and bracket plate. The eccentnie load P can be replaced with the same load act-
ing at the cenfroid plus the couple, M = Pe, where # 15 the eccentnicity. If this
replacement 15 made, the load will be concentric, and each fastener can be assumed
to resist an equal share of the load, given by p,. = P/n, where n is the number of fas-
teners. The fastener forces resulting from the couple can be found by considenng the
sheanng stress in the fasteners to be the result of torsion of a cross sechon made up
of the cross-zectional areas of the fazteners. If such an assumphon 15 made, the shear-
ing stress o each fastener can be found from the torsion formula

Md
=" 5.1
A 7 (8.1)
where
d = distance from the centroed of the area to the point where the stress 15 being
computed

J = polar moment of inertia of the area about the centroid

and the siress f, 1s papendicular to d. Although the torsion formula 1= apphicable only
to night cwreular cylmders, its use here 15 conservative, vielding stresses that are some-
what larger than the actual stresses.

If the parallel-zxas theorem 15 used and the polar moment of mertia of each creular
area about 1ts own cenfrond 15 neglected, J for the total area can be approcumated as

J=F 4d* =A% d*

P
/ P
- °2/~ﬁ
i = ata J
P P M=



EXAMPLE 8.

and the total fastener force 15

p=y(EZp) +(Zp)
where

EP = Px+ P
Ip, =Pyt Puy

If P, the load applied to the connection, 15 a factored load, then force p on the fas-
tener 15 the factored load to be resisted in shear and beaning—that 15, the requred
design strength. If P 1z 3 service load, then p will be the required allowabls strength
of the fastener.

SOLUTION

FAGURE 85

Determine the crfical fastener force in the bracket connection shown in Figure 8.5,

The centroad of the fastener group can be found by wsing a hornzontal 2o through
the lower row and applving the principle of moments:

2000 +2@) +200 _

y= 5
p
|
apt
I
|
5 T
3 y a :I
jul
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The horizontal and vertical components of the load are

2
P =7l§(50) =2236kips ¢ and B, =—-(50) = 44.72 kips |

Referring to Figure 8.6a. we can compute the moment of the load about the
centroid:

M=4472(12 +2.75)-22.36(14 — 6) = 480.7 in.-kips (clockwse)

Figure 8 6b shows the directions of all component bolt forces and the relative mag-
nitudes of the components caused by the couple. Usmmg these directions and relative
magnitudes as a guide and beanng mn mind that forces add by the parallelogram law,
we can conclude that the lower night-hand fastener will have the largest resultant
force.

The honzontal and vertical components of force in each bolt resulting from
the concentnic load are

22, 4472
P =%: 2795 kips < and py =

=5.590 kips 4



For the couple,

B +57) =8(2.75) +20(6) + M) + (2 +(5°1=1925in?
My  480.7(6) _ _
S 1925 - 14.98 kips «
_ M _480.7(2.75) _ _
p” o= Z(xz +"’2) - 1925 =6.867 kxps l«
3 p, =2795+14.98=17.78 kips «

Y p, =5.590+6.867 =12.46 kips |
p=+(17.78)" +(12.46)" =217 kips (see Fizure 8.6¢c)

P =

ANSWER  The cntical fastener force 15 21.7 kips. Inspection of the magnitudes and directions
of the honizontal and vertical components of the forces confirms the earlier conclu-
sion that the fastener selected 15 indeed the cntical one.
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composite Construction

—

INTRODUCTION

Composite construction employs structural members that are composed of two maten-
als: structural steel and remforced concrete. Strictly speaking. any structural member
formed with two or more matenals i1s composite. In buwldings and bridges, however, that
usually means structural steel and remforced concrete. and that usually means com-
posite beams or columns. Composite columns are being used again in some structures
after a period of disuse; we cover them later in this chapter. Our coverage of beams 15
restncted to those that are part of a floor or roof system. Composite construction 15
covered in AISC Specification Chapter I, “Desizn of Composite Members.™

Composite beams can take several forms. The earliest versions consisted of beams
encased in concrete (Figure 9.13). This was a practical alternative when the pnmary
means of fireproofing structural steel was to encase it n concrete; the rationale was
that if the concrete was there, we mught as well account for its contnbution to the
strength of the beam. Cwrrently, ighter and more economical methods of fireproof-
ing are available, and encased composite beams are rarely used. Instead. composzite
behavior 15 achieved by connecting the steel beam to the remnforced concrete slab 1t
supports, causing the two parts to act as a unit. In a floor or roof system. a portion of
the slab acts with each steel beam to form a composite beam consisting of the rolled
steel shape augmented by a concrete flange at the top (Figure 9.1b).

This unified behavior 15 possible only if honzontal slippage between the two
compornents 15 prevented. That can be accomplished if the honzontal shear at the
nterface 15 rezisted by connecting devices known as anchors (sometimes called shear
connectors). These devicesN which can be steel headed studs or short lengths of
smallsteelchannelshapesﬁmweldedtothetop flanze of the steel beam at pre-
senibed intervals and provide the connection mechanically through anchorage in the
hardened concrete (Figure 9.1¢). Studs are the most commonly used type of anchors,
and more than one can be used at each location if the flange 1z wide enough to
accommodate them (which depends on the allowable spacing, which we consider in
Section 9.4). One reason for the populanty of steel headed stud anchors 15 thewr ease

CHAPTER9
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FIGURE 9.2
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Almost all hghway bridges that use steel beams are of composite construction,
and composite beams are frequently the most economical alternative m buldings.
Although smaller, lighter rolled steel beams can be used with composite construction,
this advantage will sometimes be offset by the addifional cost of the studs. Even
50, other advantages may make composite constuchion attractive. Shallower beams
can be used, and deflections will be smaller than with conventional noncomposite
construction.

Elastic Stresses in Composite Beams

Although the available strength of composite beams 15 usually based on conditions at
failure, an understanding of the behavior at servace loads 15 important for several rea-
sons. Deflections are always imvestigated at service loads, and m some cases, the
avallable strength 15 based on the limat state of first yeld.

Flexural and sheanng stresses i beams of homogeneous matenals can be com-
puted from the formulas

Me Fg

A= 7 and  fi= P

A composite beam 15 not homogeneous, however, and these formmlas are not
valid. To be able to use them, an artifice known as the frrangformed zection 15 emploved
to “convert” the concrete mto an amount of steel that has the same effect as the con-
crete. Thas procedure requires the strains in the fictifious steel to be the same as those
in the concrete if replaces. Figure 9.3 shows 2 segment of a composite beam with stress
and stram diagrams supenmposed. If the slab 1= properly attached to the rolled steel
shape, the straims will be as shown, with cross sections that are plane before bending
remaining plane after bending. However, a confinuous hnear stress distmbution as
shown m Part ¢ of the fisure 15 valid only 1f the beam 15 assumed to be homogeneous.
We first requare that the strain mn the concrete at any point be equal to the stram n any
replacement steel at that point:

fe _ &

E. =E, 0T —=—

E. E

and

i —E.ﬂ = nf; (3.1)
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FIGURE 9.3
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(£) (f=E&£ Section
where
E, = modulus of elasheity of concrete
E, .
H= E_ = modular rato

ATSC I2.1b gives the modulus of elasticity of concrete as*
E:=wi o f ksi

where
w, = umt weight of concrete in Ib /ft°. (normal-weight concrete weighs
approximately 145 Ih/ft5)
f." = 28-day compressive strength of concrete (kips/in )

The ATSC Specification alse gives a metrnic version of the equation for E .

Equation 9.1 can be mterpreted as follows: m square mnches of concrete are
required to resist the same force as one square inch of steel. To determine the area of
steel that will resist the same force as the conerete, divide the concrete area by n. That
15, replace 4_ by A4_/n. The result is the rransformed arsa.

Consider the composite section shown 1o Figure 9.4a (determination of the
effective flange width b when the beam 1= part of a floor system 15 discussed presenthy).
To transform the concrete area, 4, we must divide by n. The most convement way fo
do this 15 to divide the width by n and leave the thickness unchanged. Doing so results
in the homogeneous steel section of Figure 9.4b. To compute stresses, we locate the
neutral axis of this composite shape and compute the comesponding moment of ner-
tia. We can then compute bending strasses with the flexure formomla. At the top of the
steal,

— MI‘
I

¥

Ja

*The ACT Building Code (ACT, 2008) gives the value of E, as ' *(33),f". where # is in pounds
per square imch.



FIGURE 9.4
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At the bottom of the steel,

My
I,

Jo =

where
M = applied bending moment
I., = moment of inertia about the neutral axis (same as the centroidal axis for
this homogensous sechon)
¥, = distance from the neutral axis to the top of the steal
¥y = distance from the neutral axis to the bottom of the steel

The stress in the concrete may be computed 1n the same way, but because the
material under consideration 1s stesl, the result myost be drvided by n (see Equa-
tion 9.1} so that
My

-

Maxmum §. =

where 7 15 the distance from the neutral axis to the top of the concrete.
This procedure 15 valid only for 2 positive bending moment, with compression at
the top, because concrete has neghgble tenzila strength.

EXAMPLE 9.1

SOLUTION

A composite beam consists of a W16 x 36 of A992 zteel with 3 5-1nch-thick =
£7-inch-wnde reinforced concrete slab at the top. The strength of the concrete 15
£ =4 ksi1. Determime the maximum stresses m the steel and concrete resulting from

a posiive bending moment of 160 fi-kips.

E =wl =145V = 3492 k=i

E 29000
= _————=83% .. Usenz=8

TE, 3492
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TABLE 9.1

TABLE 92

\ W16 x 36

Since the modulus of elasticity of concrete can only be approximated. the usual
practice of rounding » to the nearest whole number 15 sufficiently accurate. Thus,

-b- = g =1088 mn.

n 8
The transformed section 15 shown in Fizure 9.5. Although the neutral axis 15 shown
below the top of the steel. it 15 not known yet whether it Lies in the steel or the
concrete.

The location of the neutral axis can be found by applying the pnnciple of
moments with the axis of moments at the top of the slab. The computations are sum-
marized in Table 9.1, and the distance from the top of the slab to the centroid 15

\ ’
= 283 oy

"T 5S4 65.00

Since this 15 less than 5 inches (the thickness of the slab) the neutral axis hes within
the slab. Applving the parallel axis theorem and tabulating the computations in
Table 9.2, we obtamn the moment of merha of the transformed section as

I,=1530mn*
Component A ¥ Ay
Concrate 54 40 250 135.0
WIiE =38 106 1295 1373
£5.00 2733
Component A % ] d | +Ad?
Concrete 54 .40 250 1133 1.705 2714
WIE <38 106 12.95 A48 8.745 1259

1630.4




The distance from the neutral axis to the top of the steel 15
Y=¥y—-t=4205-5.000=-0.795m_

where 7 15 the thickness of the slab. The negative sizn means that the top of the steel 15
below the neutral axis and 1= therefore in tension. The stress at the top of the steel 15

= A L (160 x12)(0.793) 0998 ki

tensi
7 1530 (seusicn)

Stress at the bottom of the steel:
yw=t+d-y=5+159-4205=16.70 in.

fo= M _ (160x12X16.70)
Iy 1530

The stress at the top of the concrete 13

_My_ (160x12)4.205) _, (oo
nl, 8(1530)

Ifthe concrete 1 assumed to have no tensile strength the concrete below the neutral axas
should be discounted. The zeometry of the transformed section will then be different
from what was ongmally assumed: to obtain an accurate result, the location of the neu-
tral 2x1s should be recomputed on the basis of this new geometry. Refernng to Fig-
ure 9.6 and Table 9.3, we can compute the new location of the neufral axis as follows:
T4y 54457 +1373

¥4 10887+106

7(10.885 +10.6) = 5445 +137.3
5445 +10.65-1373=0
y=4143m

=21.0ks: (tension)

e

i

The moment of inertia of this revised composite area 1s

I, :%ao.ss)@.m)’ +448+10.6(12.95-4.143)" =1528 n*




TABLE 9.3

ANSWER

Component A y Ay
Concrata 1088f Pr2 5445
WIE = 36 106 12.95 1373
and the stresses are
(60X 12)(5-4.143) . .
Ja= 1538 =108 ka1 (tension)
2 9-414
f‘=(160>(l 5+159-41 3)=71.lksi (ension)
1528
_ (160x12)(4.143) :
fo= S5 - 0.651 kst

The difference between the two analyses 15 neglizible, so the refinement m locat-
ing the neufral axis is not necessary.

The maximum stress in the steel 15 21.1 ka1 tension, and the maximum stress in the
concrete 15 0.651 ks: compression.



10.1

INTRODUCTION

In thiz chapter, we consider large flexural members (girders) that are composed of
plate elements—in particular. those with noncompact or slender webs. In Chapter 3,
“Beams.” we covered hot-rolled shapes. and for all the standard sections m the
Manual, the webs are compact. Some have noncompact flanges. but none have slen-
der flanges. With shapes built up from plates, however, both flanges and webs can be
compact, noncompact. or slender. These built-up shapes usually are used when the
bending moments are larger than standard hot-rolled zhapes can resist, usually
because of a large span. These girders are mvanably very deep, resulting in non-
compact or slender webs.

The AISC Specification covers flexural members with slender webs mn Section
F5, “Doubly Symmetnc and Singly Symmetric I-Shaped Members with Slender
Webs Bent About Their Major Axis.” This 15 the category usually thought of as plate
girders. Flexural members with noncompact webs are covered m Section F4, “Other
I-shaped Members with Compact or Noncompact Webs Bent About Ther Major
Axis.” This section deals with both doubly and singly symmetnc sections. Interest-
ingly,. noncompact webs are more difficult to deal with than slender webs. In a User
Note in Section F4. the Specification permits members coversd by Section F4 to be
desizned by the provisions of Section F3. In this book. we do this and use Section F3
for girders with either noncompact or zlender webs. We refer to both types a: plate
girders. Shear provisions for all flexural members are covered m AISC Chapter G,
“Dezign of Members for Shear.” Other requirements are given in AISC F13, “Pro-
portions of Beams and Girders.”

A plate zirder cross section can take several forms. Figure 10.1 shows some of
the possibilities. The usual configuration 15 a single web with two equal flanges, wath
all parts connected by weldng The box section. which has two webs as well as two
flanges, 15 a torsionally supenor shape and can be used when large unbraced lengths
are necessary. Hybnd girders, in which the steel in the flanges 15 of a higher strength
than that in the web or webs, are sometimes used.
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HGURE 10.2
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If an unshffened web 15 incapable of resisiing the apphed shear, appropnately
spaced stffeners are used to develop tension-field action. Cross-sectional require-
ments for these shffeners, called inrermediare srjfferers, are mimimal because themr
priumary purpese 15 to provide shffness rather than resist directly applied loads.

Additional stffeners mav be required at points of concentrated loads for the pur-
pose of protecting the web from the direct compressive load. These members are
called bearing stiffeners. and they must be proporfioned to resist the apphed loads.
They can also sumultanecusly serve as intermediate stiffeners. Figure 10.3 shows a
beanng stffener consisting of two rectangular plates. one on each side of the zirder
web. The plates are notched, or clipped. at the inside top and bottom comers so as to
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aviold the flange-to-web welds If the shffeners are conservatively assumed to resist
the total appled load P (this assumphon neglects any contnibution by the web), the
beanng stress on the contact swfaces may be wrttten as

P
fo=7—
A

where
'{P*' = projected beanng area
= 2ar (zee Figure 103}
or, expressing the beanng load m terms of the stress,

P=fd, (10.1)

In addifion, the pair of shffeners, together with a short length of web, 15 treated
as a column with an effectrve length less than the web depth and 15 investizated for
compliance with the same Specification prowvisions as any other compression memn-
ber. This cross section 15 llustrated 1n Figure 10.4. The compressive sirenzth should
always be based on the radius of gyvraton about an axis in the plane of the web, as
instability about the other prineipal axis 15 prevented by the web 1tself

Chher it states resuling from the application of concentrated loads to the top
flange are web vielding, web cnpphing (buckhng), and sidesway web buckling Side-
sway web buckling occurs when the compression m the web causes the tension flange
to buckle laterally. This phenomenon can occur if the flanges are not adequately
restrained against movement relative to one another by stffeners or lateral bracing.

The welds for commecting the components of a plate Zirder are designed m much the
same way as for other welded connections. The flange-to-web welds must resist the hor-
izontal shear at the mterface betersen the two components. This apphed shear, called the
shear flow, 15 woually expressed as a force per unit length of girder to be resisted by the
weld. From Chapter 5, the shear flow, based on elastic behawvior, 15 ziven by
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10.3 AISC REQUIREMENTS FOR PROPORTIONS
OF PLATE GIRDERS

Whether a girder web is noncompact or slender depends on h/t,, the width-to-
thickness ratio of the web, where k 1= the depth of the web from m=ide face of flange
to inside face of flange and ¢, 15 the web thickness. From ATSC B4, Table B4 1b, the

web of a doubly symmetnic I-shaped section 15 noncompact 1f

= =
378 IE {i <570 |£
F, VE

and the web 15 slender 1f

n o |E
— =570 |—
W \E

For singly symmetrie I-shaped sections, the web 1= noncompact 1f

r[E
—
B VF ,qk—‘s.s.m'i
(0sad go0) ™ VE
"3 0%)

and 1t 15 slender 1f

h_':' o & T I£
'r'\-l- B ‘Ihl 'FI-
where

k. = twice the distance from the elashe neutral axs (the centroadal axis) to the
inside face of the compression flange. (h,/2? defines the part of the web
that 1= 1n compression for elastic bending. h. = h for girders with equal
flanges). See Figure 10.3.

h, = twice the distance from the plastic neutral axis to the muide face of the
compression flange. (h, /2 defines the part of the web in compression for
the plastic moment. F:J, = h for girders with equal flanges). See Fizure 105,

M, = plashc moment = F,Z,

M, = yield moment = F, 5,
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To prevent verfical buckling of the compression flange into the web, AISC
F13.2 imposes an upper limit on the web slenderness. The imiting value of b/, 1s 2
function of the aspect ratio, a/h. of the girder panels, which is the ratio of intermediate
shffener spacing to web depth (see Fizure 10.6).

a
For —=1.5,

h
[i] =120 [— (ATSC Equation F13-3)
. m— 2 V& quation -

a
For — =135,
or

[i] _DuE (AISC Equation F13-4)
'r'\-l- [T 'FI-

where a 15 the clear distance between stffeners.

In all girders without web stiffeners. ATSC F13.2 requires that i/t be no greater

than 260 and that the ratio of the web area to the compression flange area be no greater
than 10.

—

I
| Section



10.4

For singly symmetnic sections, the proporfions of the cross section must be such

that

I
0.1< ?i <09 (AISC Equation F13-2)

where
I . =moment of inerha of the compression flange zbout the v axs
I, =moment of merha of the entre cross sechon about the y axs

FLEXURAL STRENGTH

The nomunal flexmural strength M, of a plate goder 1s based on one of the limit states
of tension flange vielding, compression flange vielding or local buckhng (FLEBY, or
lateral-torsional bucklhng (LTE).

Tension Flange Yielding

From Chapter 3, the maximum bending stress in a flexmal member bent about its
strong axis 15

M

J*TFS‘

where 5, 15 the elastic section modulus about the strong axis. Expressing the bending
moment as a function of the section modulus and stress gives
M=#5
ATISC F5 mves the nominal flexural strength based on tension flange vielding as
M,=F,5,; {AISC Equation F5-10)

where 5 = elastic section modulus referred to the tension side.

Compression Flange Strength
The compression flange nopunal strength 15 zrven by

M, = RpF 50 (AISC Equation F53-7)
where
R, = bending strength reduchon factor
F., = enfical compressive flange stress, based on erther vielding or local
buckling

&y = elastic section modulus referred to the compression side
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The bending strength reduction factor 1s given by

a [ 'E "|
Rpg=l-rrr— —<£_57)= =10 (ATSC Equation F3-6)
1200 + 3004, | ¢, VF, |
where
a, = hetu =10 (AISC Equation F4-12)
byty

by = width of the compression flange
fe= thickness of the compression flange

(The upper limat of 10 1n Equation F4-12 1= not actually part of the ATSC Equation,
but ATSC F5.2 stipulates that hinuit)

The cntical compression flange stress F,, depends on whether the flange 15
compact, noncompact, or slender. The AISC Specification uses the genenc notation
A :'l?, and 4, to define the flange width-to-thickness ratio and its limits. From ATSC
Table B4.1b,

=

A=

[t

Iy

A

—
E
p =038 I —

Fy
. |[EE

.:'Lp ={ng1|F

k=

but (0.35 £ k. <0.76)
".'I‘I:r."rtu-

Fy =0.7F, for girders with slender webs. (See AISC Table B4.1b
for compact and noncompact webs.)

If A= A, the flange is compact. The limit state of vielding will control, and F,. = F,
resulting m

M,=Rp F, 5. (ATSC Equation F3-1)
If A, < A=A, the flange iz noncompact. Inelastic FLE wll control, and
|r ';I-' - H-'_p 'll
|l. ';I-r - ';I-'_p .-I

If A= A the flange 15 slender, elastic FLB will control, and

Fy = F,-03F, (AISC Equation F3-8)

_ 0.9E,

[nﬁ__. ]:I
Ar
2y

F, (AISC Equation F5-9)
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FGURE 10.7

Lateral-Torsional Buckling

The nominal lateral-torsional bucking strength 1= given by
My=RyyFop 5 (AISC Equation F5-2)

Whether lateral-torsional buckling will occour depends on the amount of lateral
support—ithat 15, the unbraced length L, If the unbraced length 15 small encugh,
vieldmg or flange local buckling will oceur before lateral-torsional buckhng The
length parameters are L, and L,, where

|E
L= 1.1?@1|I|F (AISC Equation F4-T)
v
_ I aticn F5-
L= mrr"'ul 07F, (ATSC Equ F5-3)

r;= radms of gyration about the wezk axi= for a porion of the cross section
consishng of the compression flange and one-third of the compressed part
of the web. For a doubly symmetne pirder, thiz dimension will be one-sixth
of the web depth. (See Figure 10.7.) This defimtion 15 2 conservative
approximation of r, (see the uszer note 1n ATSC F4.2). The exact defimmtion
15 given by AISC Equation F4-11.

IfL, £ L, there is no lateral torsional buckling.
If I’P < L, =L, Failure will be by inelastic LTE, and

(L,-L,)
F,=Cy F,-03F, —F  <F, (AISC Equation F5-3)
\L.-L, )
IfL, = L, failure will be by elastc LTEB, and
Cyn’E
- =GrE g (AISC Equation F5-4)

(3]

15 defined by AISC Equation F1-1 and 15 covered in Chapter 5 of thus book.




10.5 SHEAR STRENGTH

The shear strength of a plate girder 15 a function of the depth-to-thickness ratio of the
web and the spacing of anv intermediate stffeners that mav be present. The shear
capacity has two components: the strength before buckling and the postbuckling
strength. The postbuckling strength relies on tension-field action, which 1= made pos-
sible by the prezence of intermediate stiffeners. If stiffeners are not present or are
spaced too far apart, tension-field action will not be possible, and the shear capacity
will consist only of the strength before buckling. The AISC Specification covers
shear strength m Chapter G, “Design of Members for Shear.™ In that coverage. the
constants k, and C, are used AISC defines &k, which 15 a plate-buckhng coefficient,
in Section (32 as follows:

k=5+—77 (ATSC Equation (+2-5)

a_ 260
ko (ki)

= 5 m unshffened webs wath i < 260
Ty

For C,, which can be defined as the ratio of the critical web shear stress to the web
shear vield stress,

R

|
<110 ."“E,
L} 1" |
Cc,=10 (AISC Equation G2-3)
EE k '
110 oE ot oyag I—"E,
VE & VE
N
1.10,/kE/F,
c, :% (ATSC Equation G2-4)
T E
h k. E
If —=1.37, |2,
Lo UNE”
1.51k,E . _
Co=— AISCE G2-
. :'le f quation 3)

Read the rest in Chapter 10



