
How They Work

• Central database of source code,

documentation, build tools

• Each file stored only once - all other

versions are diffs of that one copy

• To Make a Change

– Check out the latest version of a file

– Make the changes

– Update the database

What should be in the database

• Source Code

• Documentation

• Build Tools

– Often need old versions of the tools to build

old versions of the software

– Ensures software is rebuilt exactly as the

customer received it

• Test Suites

• Anything else you might want later

Version Control

• Companies ship several products from the

same source base (ie Win NT and

Windows 2000 versions of MS Office)

• When tracking down bugs you want to

examine the code as it was when the

product shipped

Code Sharing

• Multiple people can work on the same

source base without colliding

– (1) Locks individual files so only one

person at a time can modify it *OR*

– (2) Allows multiple people to modify a

source file and the system will

automatically merge the changes (usually)

Locking

• Only one person can work on a file at once

• Works fairly well if developers work on

different areas of the project and don’t

conflict often

• Problem 1: People forget to unlock files

when they are done

• Problem 2: People work around locking by

editing a private copy and checking in when

the file is finally unlocked - easy to goof

and lose changes

Merging

• Several people can work on a file at once

• Before committing changes, each user

merges their copy with the latest copy in the

database

– This is normally done automatically by the

system and usually works, but you should

not blindly accept the result of the merge

Labelling

• Label all the files in the source base that

make up a product at each milestone

• Just before and just after a major change

(eg. changing several interfaces)

• When a new version ships

Version Trees

• Each file in the database has a version tree

• Can branch off the version tree to allow

separate development paths

• Typically a main path (trunk) for the next

major version and branches off of shipped

versions for maintenance

Branching

• When a new version ships, typically create

a branch in the version tree for maintenance

• Double update: fix a defect in the latest

version and then merge the changes (often

by hand) into the maintenance version

• Also create personal versions so you can

make a change against a stable source base

and then merge in the latest version later

