How They Work

« Central database of source code,
documentation, build tools

 Each file stored only once - all other
versions are diffs of that one copy

* To Make a Change

— Check out the latest version of a file
— Make the changes

— Update the database



What should be In the database

e Source Code
 Documentation
e Build Tools

— Often need old versions of the tools to build
old versions of the software

— Ensures software Is rebuilt exactly as the
customer received it

» Test Suites
« Anything else you might want later



Version Control

« Companies ship several products from the
same source base (ile Win NT and
Windows 2000 versions of MS Office)

« \When tracking down bugs you want to
examine the code as It was when the
product shipped



Code Sharing

» Multiple people can work on the same
source base without colliding

— (1) Locks individual files so only one
person at a time can modify it *OR*

— (2) Allows multiple people to modify a
source file and the system will
automatically merge the changes (usually)



Locking

Only one person can work on a file at once

Works fairly well if developers work on
different areas of the project and don’t

conflict often
Problem 1: Peo

nle forget to unlock files

when they are done

Problem 2: Peo

nle work around locking by

editing a private copy and checking in when
the file is finally unlocked - easy to goof
and lose changes



Merging

» Several people can work on a file at once

« Before committing changes, each user
merges their copy with the latest copy In the
database

— This Is normally done automatically by the
system and usually works, but you should
not blindly accept the result of the merge



Labelling

 Label all the files In the source base that
make up a product at each milestone

» Just before and just after a major change
(eg. changing several interfaces)

* \WWhen a new version ships



Version Trees

« Each file in the database has a version tree

e Can branch off the version tree to allow
separate development paths

 Typically a main path (trunk) for the next
major version and branches off of shipped



Branching

« \WWhen a new version ships, typically create
a branch In the version tree for maintenance

* Double update: fix a defect in the latest
version and then merge the changes (often
by hand) into the maintenance version

» Also create personal versions so you can
make a change against a stable source base
and then merge In the latest version later



