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Vibration Concepts and Methods

1.1 Dne-Degre e-of-Freedom Model

The mass—spring—damper model, shown in Figure 1.1, is the starting point
for understanding mechanical vibrations. A thorough understanding of
this most elementary vibration model and its full range of vibration char-
acteristics is absolutely essential to a comprehensive and insightful study
of the rotating machinery vibration field. The fundamental physical law
governing all vibration phenomena is Newton's Second Law, which in its
most commonly used form says that the sum of the forces acting upon an object
is equal to its mass times its acceleration. Both force and acceleration are vec-
tors, so Newton's Second Law, written in its general form, yields a vector
equation. For the one-degree-of-freedom (1-DOF) system, this reduces to
a scalar equation, as follows:

F=ma (1.1)

where F is the sum of forces acting upon the body, m is the mass of the
body, and a is the acceleration of the body.

For the system in Figure 1.1, F = ma yields its differential equation of
motion as follows:

mx + cx + kx = f(t) (1.2)

For the system in Figure 1.1, the forces acting upon the mass include the
externally applied time-dependent force, f (), plus the spring and damper
motion-dependent connection forces, —kx and —cx. Here, the minus signs
account for the spring force resisting displacement (x) in either direction
from the equilibrium position and the damper force resisting velocity (i)
in either direction. The weight (mg) and static deflection force (kdy) that
the weight causes in the spring cancel each other. Equations of motion are
generally written about the static equilibrium position state and then need
not contain weight and weight-balancing spring deflection forces.
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FIGURE 1.1  Ome-DHOF linear spring-mass—damper model.

to) their respective driving parameters, that is, displacement (x) across
the spring and velocity (1) across the damper. These forces are therefore
related to their respective driving parameters by proportonality factors,
stiffness “k” for the spring and “c” for the damper. Linearity is a simplifying
assumption that permeates most vibration analyses because the equations
of motion are then made linsar, even though real systems are never com-
pletely linear. Fortunately, the assumption of linearity leads to adequate
answers in most vibration engineering analyses and simplifies consider-
ably the tasks of making calculations and understanding what is calculated.
Some specialized large-amplitude rotor vibration problems justify treating
nonlinear effects, for example, large rotor unbalance such as from turbine
blade loss, shock and seismic base-motion excitations, rotor rub-impact
phenomena, and instability vibration limit cycles. These topics are treated
in subsequent sections of this book.

1.1.2 Unforced System

The solution for the motion of the unforced 1-DOF system is important
in its own right, but specifically important in laying the groundwork to
study self-excited instability rotor vibrations. If the system is considered to be
unforced, then f(#) = 0 and Equation 1.2 becomes

m¥+ci+hkx=0 (1.3)

This is a second-order homogeneous ordinary differential equation
(ODE). To solve for xit) from Equation 1.3, one needs to specify the two
initial conditions, x(0) and i(0). Assuming that k and c are both positive,
there are three categories of solutions that can result from Equation 1.3:
(1) underdamped, (i) critically damped, and (iii) overdamped. These are just
the traditional labels used to describe the three distinct types of roots and
the corresponding three motion categories that Equation 1.3 can potentially
vield when k and ¢ are both positive. Substituting the known solution form
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{Ce*") into Equation 1.3 and then canceling out the solution form vields the

following quadratic equation for its roots (eigenvalues) and leads to the
equation for the extracted two roots, i, -, as follows:

ML ch4+ k=0 (1.4)

SR Ny

The three categories of root types possible from Equation 1.4 are listed
as follows:

Underdamped: (c/2m)* < (k/m), complex conjugate roots, by » = o £ jwg.
Critically damped: {c/2m)* = (k/m), equal real roots, b;5 = o
Overdamped: (c/2m)* = (k/m), real roots, k12 —a £ 6.

The well-known x(f) Hme signals for these three solution categories are
illustrated in Figure 1.2 along with the undamped system (i.e., c = 0). Inmost
mezchanical systems, the important vibration characteristics are contained
in modes with the so-called underdamped roots, as is certainly the case for

rotor dynamical systems. The general expression for the motion of the
unforced underdamped system is commonly expressed in any one of the
following four forms:

sin{wgt + &) or sin(ogt — ¢, )
x(t) = Xe™ OR (1.5)
cos(wgt + &) or cos(wgt — ¢ )

Critically

Undear damped
Undamped x(t) = K™ coswgt

FIGURE 1.2 Moton types for the unforced 1-D0F system.



1.1.5 Damping

Mechanical vibratory systems typically fall into the underdamped category,
so each individual system mode of importance can thereby be accurately
handled in the modal-coordinate space (Section 1.3 of this chapter) as the
1-DOF model illustrated in Figure 1.1. This is convenient since modern dig-
ital signal processing methods can separate out each mode’s underdamped
exponential decay signal from a total transient (e.g., impact initiated)
time-base vibration test signal. Each mode’'s linear damping coefficient
can then be determined employing the log-decrement method, as outlined
here. Referring to Figures 1.2 and 1.4c, test data for a mode’s under-
damped exponential decay signal can be used to determine the damping
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coefficient as follows:

ENT . I(HT}_ ENT . o &
x(nt) = Xpge™, "I(D\\_E , __u:!rr'[_ln{xn)
1—E}’E|Ep£fltﬂ.‘.|s'[=2—“
g
Recallinga = - ields the damping coefficient ¢ = 2 In X
S8~ o’ PIs T\

(1.8}



Vibration Concepts and Methods 9

coefficient as follows:

x(nT) X
=x ENT . — Nt . =l
x{nt) pet T v, oot n{—xn)

2
l—c}rclepericrds'[=_“
g

. c . . . 2m X
Recallinga = T yields the damping coefficient ¢ = — In (I_u)

(1.8)

Vibration damping means are extremely important in nature as well
as engineered devices. The standard linear model for damping is akin
to a drag force proportional to velocity magnitude. But many impor-
tant damping mechanisms are nonlinear, for example, Coulomb damping,
internal material hysteresis damping. What is typically done to handle
the modeling of nonlinear damping is to approximate it with the lin-
ear model by matching energy dissipated per cycle. This works well
since modest amounts of damping have negligible effect on natural
frequency. Energy/cycle dissipated by damping under single-frequency
harmonic cycling is illustrated in Figure 1.4 for linear and Coulomb friction
damping.

The log-decrement test method for determining damping was previously
shown to utilize the transient decay motion of an initially displaced but
unforced system. In contrast, the half power bandwidth test method utilizes
the steady-state response to a harmonic excitation force. The steady-state
linear response to a single-frequency harmonic excitation force of slowly
varied frequency will correspond to a member of the family displayed
in Figure 1.5a. For the single-DOF linear damped model, the following
equation is applicable for low damped systems:

o= Frequency at peak vibration amplitude 1 (L9)
- iy — iy - E_ -
S peak 1

wy —wy  2g

[La]
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FIGURE1.3 Omne-DOF steady-state response to a sinusoldal force. (a) X /(Fg/k) versus o/,
{b) ¢ versus w/wy, ¢ = 1 at critically damped.

sharpness-of-peak of a measured steady-state plot of vibration amplitude
versus frequency provides a measure of the damping present.

1.1.6 Undamped Natural Frequency: An Accurate Approximation

Because of the modest amounts of damping typical of most mechanical
systems, the undamped model provides good answers for natural frequen-
cies in most situations. Figure 1.5 shows that the natural frequency of the
1-DOF model is the frequency at which an excitation force produces maxi-
mum vibration (i.e., a forced resomance) and is thus important. As shownin a
subsequent topic of this chapter {Modal Decomposition), each natural mode
of an undamped multi-DOF model is exactly equivalent to an undamped
1-DOF model. Therefore, the accurate approximation now shown for the
1-DOF model is usually applicable to the important modes of multi-DOF
models.

The ratio ig) of damping to critical damping (frequently referenced as
a percentage, eg., ¢ =0.1 is “10% damping™) is derivable as follows.
Shown with Equation 1.4, the defined condition for “critically damped”
is (c/2m)* = (k/m), which yields ¢ = 2/km = ., the “critical damping.”
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Therefore, the damping mtio, defined as ¢ =c/c., can be expressed as
follows:
C

5= 2

With Equations 1.4 and 1.5, the following were defined: w, = /E/m
(undamped natural frequency), @ = —c/2m (real part of eigenvalue for an
underdamped system), and wg = /w2 — a® (damped natural frequency).
Using these expressions with Equation 1.10 for the damping ratio (<) leads
directly to the following formula for the damped natural frequency:

(1.10}

_
g =L1.'|,.,.|I|."1 — gt (111}

This well-known important formula clearly shows just how well the
undamped natural frequency approximates the damped natural frequency for
typical applications. For example, a generous damping estimate for most
potentially resonant mechanical system modes is 10-20% of critical damp-
ing (g = 0.1-0.2). Substituting the values ¢ = 0.1 and 0.2 into Equation 1.11
aives @y = 0.995w, for 10% damping and wy = 0.98w, for 20% damping,
that is, 0.5% error and 2% error, respectively. For even smaller damping
ratio values typical of many structures, the approximation just gets bet-
ter. A fundamentally important and powerful dichotomy, applicable to the
important modes of many mechanical and structural vibratory systems,
becomes clear within the context of this accurate approximation: A matural
frequency is only slightly lowered by the damping, but the peak vibration caused
by an excitation force at the natural frequency is overwhelmingly lowered by the
damping. Figure 1.5 clearly shows all this.



FIGURE 1.6 Two examples treated as linear 1-DOF modals: {a) cantilever baam with a
concentrated end mass and (b) simple pendulum.

a 1-DOF model. For small transverse static deflections (xs:) at the free end
of the cantilever beam resulting from a transverse static load (Fy) at its
free end, the equivalent spring stiffness is obtained directly from the can-
tilever beam's static deflection formula. This leads directly to the equivalent
1-DOF undamped system equation of motion, from which its undamped
natural frequency () is extracted, as follows:

3
Xyt = F;EEII' (beam deflection formula) and F. = kxy
g SH
T L3
Then,
. [3E [k [3E
m+(F)I=Dr "EFE:”IE:?II_HJL:* (1.12)

In this example, the primary approximation is that the baam is massless.
The secondary approximation is that the deflections are small enough so
that simple linear beam theory provides a good approximation of beam
deflection.

A second important example is illustrated in Figure 1.6b, the simple pla-
nar pendulum having a mass (m) concentrated at the free end of a rigid
link of negligible mass and length (L). The appropriate form of Newton's
Second Law for motion about the fixed pivot point of this model is M = J§,
where M is the sum of moments about the pivot point “0,” | (equal to
mL? here) is the mass moment-of-inertia about the pivot point, and @ is the
single motion coordinate for this 1-DOF system. The instantaneous sum
of moments about the pivot point “o” consists only of that from the grav-
itational force mg on the concentrated mass, which is shown as follows
(minus sign because M is always opposite 8):

M = —mglLsing, mL*8 4 melsing =0
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Dividing by mL? gives the following motion equation:
- E R
E+{I}5m-EI=L'I (1.13)

This equation of moton is obviously nonlinear. However, for small
motions (8 < 1) sin & = #; hence it can be linearized as an approximation,
as follows:

5 (8 T
e+{zje =0, o= 7 (1.14)
In this last example, the primary approximation is that the motion is small.
The secondary approximation is that the pendulum has all its mass concen-
trated at its free end. Note that the stiffness or the restoring force effect in
this model is not from a spring but from gravity. It is essential to make
simplifying approximations in all vibration models, in order to have fea-
sible engineering analyses. It is, however, also essential to understand the
practical limitations of those approximations, to avoid producing analy-
sis results that are highly inaccurate or, worse, do not even make physical
SETISE,
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FIGURE 1.7 2-DOF model.

engineering answers over a considerably broader range of problems than
the 1-DOF model. Also, first understanding the 2-DOF model is the best
approach to tackling the subject of multd-DOF models. Figure 1.7 shows

a common 2-DOF model. With the aid of the ever-important free body dia-
grams, application of F = ma individually to each mass yields the following

two equations of motion for this model:

i"!l']_.-f] + [{'-I-{']_}ji]_ 4 {k—Fk] 'I'.T] —_ Cil —.['.1'2 =_f-1{!‘::l

. . . (1.15)
ma¥s + (€ + )iz + (K 4+ ko)xp — cdy — kxy = falt)

With two or more DOFs, it is quite useful o write the equations of
motion in matrix form, as follows for Equations 1.15:

m 0] [xn C+c1 —C 1
0 ma | |5 + —C C4+ca| |Xz

k—|—.k1 —k n| f[{f:l
+[ —k t+k1] x1]_ fz{ﬂ] (1.16)

For a muld-DOF system with any number of DOFs, the motion equa-
tions are typically written in the following condensed matrix notation:

[MI[X} + [CHx} + [K]x} = (f(e)) (1.17)

whoro TR ic tho macz madery [T i tho dawraso madeiy and TR ic tho etiffnece



d faT aT  aV .
m (El_l'ﬁ) - El_l]'z+ﬂ_q3 = 1=L1L2,... ., 0poF {113}
The g;'s and §;'s are the generalized coordinates and velocities, respec-
tively, T is the kinetic energy, V is the potential energy, and (i's are the
generalized forces. Generalized coordinates can be either straight-line dis-
placements (e.g., x, v, z) or angular displacements (e.g., #,,8,,8.). Thus,
a generalized force associated with a straight-line displacement will in
fact have units of force, whereas a generalized force associated with an
angular displacement will have units of moment or torque. Here, kinetic
energy can be a funchon of both generalized coordinates and velocities
whereas potential energy is a function of generalized coordinates only, that
is, T = T, q;) and ¥V = Vi{g;). Obtaining the two equations of motion for
the 2-DOF double-compound pendulum (Figure 1.8) is summarized as
follows:

T = 3mot + Imaed (1.19)

FIGURE 1.8 Planar double-compound pendulum with concentrated masses.

16 Rotating Machinery Vibration: From Analysis to Troubleshooting

Here, 7 and v are the speeds of m; and m,, respectively, and their
squares result in the following;:

= L8

5 = L30T + L343 + 213 L8 fip(cos B cos B + sin @) sin é;) (1.20)
V = mygly(1 — costy) 4+ mag[Ly(1 — cos6q) + La(1 — cosé;)]



Here, v; and vy are the speeds of my and m», respectively, and their
squares result in the following:

vy = Li6]
75 = L7687 + L3865 + 2Ly Lath o (cos 81 cos 82 + sin 8; sin d) (1.20)
V' =mygly(1 — cos8y) 4+ mag[L1(1 — cos8) + La(1 — cos6;)]

Substituting the T and V expressions into the Lagrange equations (q1 =
4 and gz = %) leads to the two equations of motion for the double-
compound pendulum model shown in Figure 1.8. These two motion
equations are nonlinear just as shown in Equation 1.13 for the simple
pendulum. Therefore, they can be linearized for small mofions (8 < 1
and & < 1) in the same manner as Equation 1.14 was obtained from
Equation 1.13, to obtain the following:

(my +mz)lT  maliLz |8 + (my 4 ma)gly 0 B[ (O
mzlila mng ) 0 mogla | |82 |O
(1.21)

Since Equations 1.21 are written in matrix form, it is clear from the mass
matrix and the zeros in the stiffness matrix that this model has accelera-
tion {inertia) coupling but not displacement coupling. Also, the stiffnesses
or generalized restoring forces (moments) in this model are not from
springs but from gravity, just like the simple pendulum model illustrated
in Figure 1.6b. Damping was not included in this model. As in the previous
example, the matrices in Equation 1.21 for this example are symmetric, as
they must be.



1.2.2 Matrix Bandwidth and Zeros

The 4-DOF model in Figure 1.9 has a characteristic common for mod-
els of many types of vibratory structures, such as many rotor vibration
models, namely, narrew bandwidth matrices. Specifically, this system's mass
matrix is “diagonal” (i.e., only its disgonal elements are nonzero) and
its stiffness matrix is “tri-diagonal” (i.e, only its central three diagonals
are nonzero), as shown in Figure 1.8. Obviously, a model’s matrices are
essentially its equations of motion. For this model, the dizgonal nature of
the mass matrix reflects that the model has no inertia coupling, in con-
trast to the model in Figure 1.8. For rotors, as shown in Chapter 2, the
lumped-mass approach gives a diagonal mass matrix, in contrast to the so-
called distributed-mass and consistent-mass approaches, which are preferred
over the lumped-mass approach since they yield better model resolution
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FIGURE 1.9 4-DOF lumped-mass modal.



1.2.3 Standard Rotor Vibration Analyses

Achieving good models for rotor vibration analyses of many single-span
two-bearing rotors may require models with as many as 100 DOFs. For a
multispan rotor model of a complete large steam-powered turbo-generator,
models of 200 or 300 DOFs are typically deemed necessary to accurately
characterize the system. Obtaining the important vibration characteristics
of a machine or structure from large DOF models is not nearly as daunting
as one might initially think, because of the following axiom: Rarely is it
mecessary in engineering vibration amalyses to solve the model’s governing equa-
tions of motion in their totality. For example, laferal rotor vibration analyses
generally entail no more than the following three categories:

i. Natural frequencies (damped or undamped) and corresponding

mode shapes.

ii. Self-excited vibration threshold speeds, frequencies, and mode
shapes.

fli. Vibration over full speed range due to specified rotor mass
unbalances.

None of these three categories of analyses actually entails obtaining the
general solution for the model’s coupled differential equations of motion.
That is, the needed computational resulis can be extracted from the model’s
equations of motion without having to obtain their general solution, as later
detailed.

In the next section, basic topics important to these standard vibration anal-
yses are covered. Extraction of natural frequencies and mode shapes as well
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as instability threshold speeds are both embedded in the classic Eigenoalue-
Eigenvector mathematics problem associated with linear vibratory systems.
Specifically, the extraction of natural frequencies and corresponding mode
shapes for muli-DOF models are explained. Standard algorithms used
for these analyses are treated in later chapters. Steady-state rotor unbalance
vibration is simply an extension of the 1-DOF Equation 1.6.



1.3.1 Modal Decomposition

Each natural mode of an undamped model is exactly equivalent to an
undamped 1-DOF model and is mathematically decoupled from the
model’s other natural modes, as observed when the motion equations
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are transformed into what are called the modal coordinates. Such a coordi-
nate transformation is similar and mathematically equivalent to observing
material stress components at a point in the principal coordinafe system,
wherein viewed decoupling appears, that is, all the shear stresses disap-
pear and the normal stresses are the principal stresses. Similarly, when an
undamped mutli-DOF model’s equations of motion are transformed into
their modal coordinates, both the mass and stiffiess matrices become diagonal
matrices, that is, all zeros except for their main diagonal elements. That is,
the equations of motion become decoupled when they are transformed from
the physical space into the modal space, as explained here.

Equations of motion for free (unforced) and undamped multi-DOF mod-
els can be compactly expressed in matrix form as follows, where the g;'s
are the previously defined generalized coordinates (Section 1.2.1):

[MIig} + [K]lq) = {0} (1.22)



M} + [K]ig) = {0} (1.22)

For a specified set of initial conditions, [g(0] and {§(0)}, this set of equa-
Hions is guaranteed a unique solution by virtue of applicable theorems
from differential equation theory, provided both [M] and [K] are positive-
definite matrices. Therefore, if a solution is found by any means, it must
be the solution. Historically, the approach that has guided the successful
solution to many problems in mechanics has been the use of good physical
insight to provide the correct guess of the solution form. Such is the case
for the solution to Equation 1.22.

The vibratory displacement in a multi-DOF model is a function of both
time and location in the model. The correct guess here is that the complete
solution can be comprised of superimposed contributory solutions, each
being expressible as the product of a time function, s(t), multiplied by
a spatial function of the coordinates, [u]. This is the classic Separation of
Viariables method, expressed as follows:

gilt) = wgsit), 1 =1, 2,..., N = Number of DOF {1.23)

Substituting Equation 1.23 into Equation 122 yields the following
equation:

[Mu)E(E) + [K]{u)sit) = {0} (1.24)

Each of these N equations (i =1, 2,..., N) can be expressed as

M M
ZMEij{ i)+ E K;'_[!-!jﬂ{t} =0 {115]

j=1 j=1



rearranged to have a function of time only on one side of the equation and
a function of location only on the other side of the equation, as follows:

Ei(t) - E:i] Kl'j"_l'
s(t) E}il Miju;

Following the usual argument of the separation of variables method,
for a ime-only function to be equal to a location-only function they both
must equal the same constant (say w?), positive in this case. A positive con-
stant gives harmonic motions in time, physically consistent with having
finite energy in a conservative model and contrary to the exponential solu-

tons that a negative constant gives. The following equations are thereby
obtained:

(1.26)

5(f) + wis(t) =0 (1.27)

lh'r
3 (Ki— Mg =0, i=1,2,...N (1.28)
=1

Equation 1.27 has the same form as the equation of motion for an
unforced and undamped 1-DOF model, that is, same as Equation 1.3 with
¢ = 0. Therefore, the solution of Equation 1.27 can be surmised directly
from Equation 1.5, as follows:

sin{mt + ¢ ) or sinfwt — &)

S0 =X stwt + tF) or cos(mt — ;)

(1.29)

Any of the four equation (Equation 1.29) forms can be used to represent
the same harmonic signal. The following form is arbitrarily selected here:

s(t) = X cos(uwt — §) {1.300

Equation 1.30 indicates a harmonic motion with all the coordinates hav-
ing the same frequency and the same phase angle. The information to
determine the specific frequencies at which the model will satisfy such a
harmonic motion is contained in Equation 1.28, which are a set of N lin-
ear homogeneous algebraic equations in the N unknowns, u;. Determining
the values of w? that provide nontrivial solutions to Equation 1.28 is the
classic characteristic value or eigenvalue problem. The trivial solution (all
u;'s = zero) is a static equilibrium state. Equation 1.28 can be compactly
shown in matrix form as follows:

[x - mlm] 1] = [0} (131)



From linear algebra it is known that for a nontrivial solution of
Equation 1.31, the determinant of equation coefficients must be equal to
zero, as follows:

D=|K—wM|=0 (1.32)

Expanding D, the characteristic determinant, yields an Nth-order poly-
nomial equation in w*, usually referred to as the frequency or characteristic
equation, which has N roots (eigenvalues) for w?. These eigenvalues are real
numbers because [M] and [K] are symmetric, and are positive because [M]
and [K] are positive-definite matrices. Virtually any modern text devoted
just to vibration theory will contain an expanded treatment on modal
decomposition and rigorously develop its quite useful properties, which
are summarized here.

The N roots of Equation 1.32 each provide a positive natural fre-
quency, w; (j=1,2,..., N), for one of the model’s N natural modes.
These undamped natural frequencies are typically ordered by relative
magnitude, as follows:



[LI], is formed using each one of the N x 1 modal vectors as one of its
columns:

[qith} = [LT{n(£)] {1.33)

Here it is convenient to scale each of the modal vectors as follows
(“T" denotes franspose):

[} T [M 1) = 1 (1.34)
Then the resulting modal matrix, [LI], will satisfy the following equation:
LT MU = [ (1.35)

Here, [I] is the identity matrix, with 1 on each main diagonal element
and zeros elsewhere. Equation 1.35 is actually a linear transformation of
the mass matrix into modal coordinates, with the modal vectors scaled
(normalized); hence all the modal masses are equal o 1. Applying the
identical transformation on the stiffness matrix also produces a diagonal
matrix, with each main diagonal element equal to one of the eigenvalues
w? as follows:

T KU = [03] (1.36)

Here, the array [m%] is defined similar to the kronecker delta, as follows:

Z ;o
mEE[“J" t=] (1.37)
1= o, i

Substituting the linear transformation of Equation 1.33 into the original

equations of motion Equation 1.22 and then premultiplying the result by
[LI]T yield the following result:

LT IMILINEO] + [UTT KL it} = 0 (1.38)

Utilizing in Equations 1.38, 135, and 1.36, which express the modal
vectors' orthogonality property, shows that the equations of motion are
decoupled in the modal coordinate space. Accordingly, Equation 1.38
becomes

fiic) + [w?] ity =0 (139)

Equation 1.39 clearly shows that each natural mode is equivalent to an
undamped 1-DOF model. Each natural mode’s response to a set of initial



conditions is therefore of the same form as for the undamped 1-DOF model,
shown as follows:

Consequently, utilizing the linear superposition of the contributions from
all the model’s natural modes, the motion of a free undamped mult-

DOF system is expressible as follows, where the Ag's are the single-peak
amplitudes of each of the modes:

N
g1 =3 " Apluy) coslugt — dy)

p=1

This can be expressed in matrix form as follows:

[git)} = [L]{Ap cos{wgt — dy)] (1.41)

1.3.2 Modal Damping

A major role of damping is to dissipate vibration energy that would other-
wise lead to intolerably high vibration amplitudes at forced resonances or
allow self-excited vibration phenomena to occur. As already shown for the
1-DOF model, a natural frequency is only slightly lowered by the damp-
ing, but the peak vibration caused by an excitation force at the natural
frequency is overwhelmingly lowered by the damping. This clearly applies
to multi-DOF models, as shown by the modal damping approach which
follows.



can be incorporated into the model by adding it to each relevant mode in

the modal coordinate system. Accordingly, Equation 1.39 is augmented as
follows:

[0 + 2100} + [0 ] i) = 0 (142)

Here, g;w; is a diagonal array defined similar to the Kronecker delta, as
follows:

;= |5 I=] 1.43)
g'm"‘lﬂ, i£] .

The often used 1-DOF version of Equation 1.42 is obtained by dividing
Equation 1.3 by m and using the definition for ¢ given in Equation 1.10,
yielding ¥ 4 2qu, & + wix = 0.

Mathematically, an N-DOF model has N modes. However, the dis-
crete model (e.g., finite-element model) should have the DOF number, N,
several (like 10, “more or less™) imes the mode number, i, of the actual sys-
tem’s highest frequency mode of importance. This statement assumes usual
mode numbering by ascending frequency, wy < wg = - < @y, < - = Wy
The underlying objective is for the discrete model to adequately charac-
terize the actual continuous media system in the frequency range up to
the maximum modal frequency of importance. It is of fundamental model-
ing importance that af frequencies progressively higher the characteristics of the
discrete model and those of the actual system progressively diverge. The desired
number of important modes will depend on the nature of the problem
analysis. For example, to analyze forced resonances, one hopefully knows
the actual maximum excitation-force frequency ., As a rule, all modal
frequencies within and somewhat above the excitation frequency range
should be included even though some of these modes may be of lesser
importance than others.

Consider an application in which an actual system has been tested, pro-
viding damping ratio data for the lowest frequency n modes. The first
nelements (j=1,2,...,n = N) of the N x N diagonal modal damping
matrix will each contain its own value, g;w;. The modal damping matrix
will otherwise consist of zeros, and thus modified from Equation 1.43 as
follows:

gy, I=j=n
gl = 0, I =_||: = N {1.-'1-41
0,  i#jf
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1-DOF model and relevant modes of a multi-DOF model is thus shown, as
follows:

il + 2wyl + win; =0 (145)

The equations of motion in the physical coordinates are then as follows:
[M1IG] + [Cwmllgh + [K1lg) = [0} (1.465)

The elements 2g;w; form a diagonal matrix in modal coordinates to
incorporate the mode-by-mode damping model. Consequently, the trans-
formation to physical coordinates to obtain [ Cw ] would appear to be simply

the inverse of the transformation that diagonalizes [M] and [K], as shown
in the following equation:

[Co] = [UT]_JIIEHJ;][U]'] (147)



1.3.3 Forced Systems Decoupled in Modal Coordinates

This important topic is shown by adding a system of external time-
dependent forces to either the modally damped model of Equation 1.46 or the
undamped model of Equation 122, [C] = [0], both of which are contained
within the following equation:

[MIG) + [Caullg) + [KNgh = L f (D) (1.48)

Since the modal vectors span the vector space of all possible model dis-
placement states, modal decomposition is applicable to forced systems as
well. Clearly, transformation of Equation 1.48 into the modal coordinate
system provides the following equivalent decoupled set of equations:

(0] + sy WA + [0F | men) = Wi fo) (1.49)

Here, the vector of modal forces is [&(t)] = [U]T[fit)]. This shows that
each modal force &;it) is a linear combination of all the physical forces
fitt). And the contribution of each physical force to &;(t) is in proportion
to the modal matrix element L {(or LI#T}, which is called the participation
factor of the jth physical coordinate for the ith mode.

As an important example, Equation 1.49 shows that a physical har-
monic force having a particular mode’s natural frequency will produce
its maximum resonance vibration effect if applied at the physical coordi-
nate location having that mode’s largest participation factor. Conversely,
if the same harmonic force is applied in a physical coordinate with a
zero-participation factor (called a “nodal point” for that mode), the force’s
contribution to that mode’s vibration will be zero. This is particularly rel-
evant to rotor balancing problems, explaining why both a rotor unbalance
magnitude and its axial location are important.

1.3.4 Harmonic Excitation of Linear Multi-DOF Models

The most frequently performed type of vibration analysis is the sfeady-
stafe response from harmonic excitation forces. Various single-frequency
solutions at different frequencies can be superimposed to obtain a simulta-
neous multifrequency steady-state solution, provided the model is linear.
Also, using the single-frequency case, the frequency can be varied over the
desired range in a given application. Thus, the formulation and solution
for the single-frequency case is the building block for vibration analyses.
The generic governing equation for this case can be expressed as follows,
where [C] is arbitrary and not necessarily modal:

[MI[E] + [CIH8) + [K]{x) = [Fe+9) (1.50)



Here, x is used as the generalized coordinate symbol, and the harmonic
forcing functions have individual magnitudes F; and phase angles §;. Since
they have a common excitation frequency w, it is convenient to represent
each harmonic excitation force as a planar vector rotating counter clockwise
(cow) at w (rad /s) in the complex-plane exponential form. The right-hand
side of Equation 1.50 represents the standard notation for this represen-
tation, i = /—1. The instantaneous projection of each planar vector onto
the real axis of the complex plane is the instantaneous physical value of the
corresponding sinusoidal ime-varying scalar force component.

Equation 1.50 is the multi-DOF version of the 1-DOF model represen-
tation in Equation 1.6 whose steandy-state solution (the so-called particular
solution) is harmonic, Equation 1.7. For the multi-DOF Equation 1.50, the
steady-state solution is also harmonic, and shown as follows using the
exponential complex form:

x; = Xttt (1.51)

Here, X; is the single-peak amplitude of the jth coordinate’s harmonic
motion at frequency @ and phase angle ¢;. Substitution of this known
solution form, Equation 1.51, into the equations of motion, Equation 1.50,
and then dividing through by e, yields the following simultaneous set

of complex algebraic equations:
[w®M + iwC + K][X;e"¥] = |F;e'™) (152)

In this set of equations, the known inputs are the model’s M, C, and
K matrices, the excitation forcing frequency @ and magnitude F;, and the
phase angle &; for each of the excitation forces. The outputs are the single-
peak amplitude X; and the phase angle ¢; for each jth physical motion
coordinate of the model.

1.3.5 Dynamic Instability: The Complex Eigenvalue Problem

Consider the unforced general muld-DOF linear model, expressed as
follows:

[M][X} + [C{] + [K]{x} = {0] (153)



TABLE 1.1
Eigenvalue Categories and Associated Types of Unforced Motion

Eigenvalue Category Mode Motion: §it) = Ae® cosiwé — ¢
la=0w#D Zoro damped, steady-state sinusoidal moton

2@ c0w#ED Underdamped, sinusoidal, exponental decay
da=0w#D Megatively damped, sinusoidal , exponential growth
da=0w=0 Sp-called rigid-body mode, constant momentum
Sa«<0w=0 Owverdamped, noncedilatory, exponential dacay
boax=Dw=0 {1) Megatively damped maore than “critical ™ amount

{11) Seatically un=table nonoscillatory exponential growth

restrictions are made here on [K], [C], or [M]. Solutions of Equation 1.53
hawve the following form:

[x}) = [X)}e¥, wherek =a+im (1.54)

(positively damped) to Category 3 (negatively damped). Exactly on such a
transition boundary, the mode in question is in Category 1 (zero damped).
Equation 1.53 is a set of N second-order ODEs. The usual approach
to formulate the associated eigenvalue problem entails first transform-
ing Equation 1.53 into an equivalent set of 2N frst-order differential
equations. To that end, the following associated vectors are defined,

Lt N 7] I 117
[y} =15}, ~(§)=1% and [b]=[m: __M=I[ﬂ

s0 that Equation 1.53 is transformed into the following:

i R e R 1

Maturally, Equation 1.53 and Equation 1.55 have solutions of the same
form, Equation 1.54 as follows:

Iz} = [Z)e™, whered —a+iw {1.56)

AN w 2N matrix [A] is defined as

_[o I M o)
w=lon @) (o ) L57)

Compact Equation 1.55 is shown as follows:
12} + [Alfz} = (0] {1.58)

Substituting Equation 1.56 into Equation 1.58 and dividing the result by
o* yields the following complex eigenvalue problem:

[A + IW][Z) = (0] {1.59)



Lateral Rotor Vibration Analysis Models

2.1 Introduction

Lateral rotor vibration (LRV) is radial-plane orbital motion of the rotor spin
axis. Transverse rotor vibration is used synonymously with LRV, Figure 2.1
shows the sketch of a complete steam turbine generator rotor (minus tur-
bine blades) and a sample of its computed LRV vibration orbits, shown
erossly enlarged. Actual LRV orbits are typically only a few thousandths
of an inch {a few hundredths of a millimeter) across. LRV is an important
design consideration in many types of rotating machinery, particularly
turbo-electrical machines such as steam and combustion gas turbine gen-
erators sets, coMmpressors, pumps, gas turbine jet engines, turbochargers,
and electric motors. Thus, LRV impacts several major industries.

Usually, but not always, the potential for rotor dynamic beam-bending-
type deflections significantly contributes to the LRV characteristics. The
significance of LRV rotor bending increases with bearing-to-rotor stiffness
ratio and with rotor spin speed. Consequently, in some rotating machines
with low operating speed and/or low bearing-to-rotor stiffness ratio, the
LRV is essentially of a rigid rotor vibrating in flexible bearings/supports.
The opposite case (i.e., a flexible rotor in essentially rigid bearings) is
also possible but rotor dynamically less desirable, because it lacks some
vibratory motion at the bearings which often provide that essential ingredi-
ent, demping, to keep vibration amplitudes at resonance conditions within
tolerable levels.

For the same reason, it is generally undesirable to have journal bear-
ings located at nodal poings of important potentially resonant modes, that
is, the squeeze-film damping capacity of a bearing cannot dissipate vibra-
tion energy without some vibratory motion across it. Figure 2.1 is a case
with significant participation of both rotor bending and relative motion at
the bearings. This is the most interesting and challenging LRV category
to analyze.

A rotor’s flexibility and mass distributions and its bearings’ flexibilities
combined with its maximum spin speed essentially determine whether or
not residual rotor unbalance can produce forced LRV resonance. That is,
these aforementioned factors determine if the rotor-bearing system has
one or more lateral natural frequency modes below the operating speed.



(a)

S
HP-IP turbine LP turbinge Gaenerator exciter

FIGURE 2.1 LEY example; vibraton orbits show rotor dynamic Hexibility: (a) steam turbo-
generator rotor sketch (minus turbine blades) and (b} sample vibration orbits of above
turbo-generator (Isometric view).

If s0, then the rotor must pass through the speed(s) (called “critical speeds™)
where the residual mass unbalances act as once-per-rev (synchronous)
harmonic forces to excite the one or more natural frequencies the rotor
speed traverses when accelerating to operating speed and when coasting
down. Resonant mode shapes at critical speeds are also determined by the
same aforementioned rotor and bearing properties. Many types of modern
rotating machinery are designed to operate above one or more (sometimes
several) crifical speeds, because of demands for compact high-performance
machines.
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dynamic coupling to exist between LEV and TRV characteristics. Conse-
quently, these two types of rotor vibration, while potentially coexisting to
significant degrees in the same rotor, practically do not significantly inter-
act. There are a few exceptions to this, for example, high-speed refrigerant
centrifugal compressors for high-capacity refrigeration and air condition-
ing systems. Such compressor units are typically comprised of two parallel
rofor dynamically flexible shafts coupled by a two-gear single-stage speed
increaser. In that specific type of rotating machinery, the gear teeth forces
provide a potential mechanism for coupling the LEV and TRV character-
istics. Even in that exceptional application, such lateral—forsional coupling
is generally not factored into design analyses. Near the end of Chapter 3,
subsequent to the coverage of applicable first principles for both LRV and
TRV, Table 3.1 is presented to show some quite interesting and important
contrasts between LRV and TRV, which are not frequently articulated and
thus not widely appreciated.




2.2 Simple Linear Models
2.2.1 Point-Mass 2-DOF Model

The simplest LRV model that can encompass radial-plane orbital rotor
motion has 2-DOF, as shown in Figure 2.2, In this model, the rotor point
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FIGURE 2.2 Simplast LEV model that can handle radial-plane orbital motion.

mass (m) is allowed to translate in a radial x—y plane. It is connected
to ground through linear springs and dampers and may be excited by
me-varying radial force components such as the rotating force (mass-
unbalance) shown. The two equations of motion for this model with the

shown rotating excitation force are easily derived from F = ma to obtain
the following:

mi 4+ o, ¥ + k,x = F,, cos wf
. . ) (2.1
mi + o, + kyy = F, sin wf



r = a

5 s b k-l
0 m||i Or Gy | | ¥ Fyit)

As shown in considerably more detail later in this chapter and in
Chapter 5, such 2 = 2 [c;] and [k;] matrices for bearings and seals are
extremely important inputs for many LRV analyses, and have been the
focus of extensive research to improve the accuracy for quantifying their
matrix coefficients. In general, these coefficient matrices for bearings and
seals cannot be simultaneously diagonalized in a single x—y coordinate
system, in contrast to the model shown in Figure 2.2. In fact, as explained
later in this chapter, the bearing and seal stiffness coefficient matrices are
often nonsymmetric and their damping coefficient matrices may also be
nonsymmetric when certain fluid dynamical factors are significant (e.g.,
fluid inertia).

2.2.2 Jeffcott Rotor Model

A centrally mounted disk on a slender flexible uniform shaft comprises
the model emploved by H. H. Jeffcott [Philosophical Magazine 6(37), 1919]
to analyze the lateral vibration of shafts in the neighborhood of the (low-
est) critical speed. Figure 2.3a is a lateral planar view of this model and
Figure 2.3b is its extension to include bearing flexibility. If the concen-
trated midspan disk mass m in these two models is treated strictly as a
point mass, then both of these models fit the 2-DOF model in Figure 2.2
If bearing stiffness is included but bearing damping neglected, bearing

(b}

FIGURE 2.3 Jeffoott rotor modal: (a) Jeficott model and (b) modified Jeffcott model with
bearing Aexdbility.
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2.2.2 Simple Nontrivial 8-DOF Maodel

Even if one understands the underlying physical principles imbedded in
a computationally intensive engineering analysis computer code, it is still
somewhat of a “black box” to all except the individual(s) who wrote the
code. In that vein, the equations of motion for a mult-DOF system are
essentally contained in the elements of the model's [M], [C], and [K]
matrices, which are “constructed and housed inside the computer” during
computation. Therefore, prior to presenting the formulation and develop-
ment of the Rotor Dynamic Analysis (RDA) Finite Element PC software
supplied with this book, the complete equations of motion are here rig-
orously developed for a simple nontrivial 8-DOF LRV model using both
the Lagrange and direct F = ma approaches. This 8-DOF model is illus-
trated in Figure 2.4, and contains the following features of general purpose
multi-DOF LRV models:

a. Bending of the shaft in two mutually perpendicular lateral planes.
b. Two completely general dynamically linear bearings.

42 Rotating Machinery Vitmation: From Analysis to Tronbleshooting
T & DOFs:
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FIGURE 2.4 Simple nontrivial 8-D0OF modal for LRV

c. Three concentrated masses connected by flexible shafting.

d. The central concentrated mass also has transverse and polar
moments of inertia and associated angular coordinates.
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FIGURE 2.5 Rotor beam-deflection modal for an B-DOF system, with all generalized coordi-

nates shown in their respective positive directions: (a) beam deflaction, slope, and curvature
in y—z plane and (b) x—z deflection only, bat slope and curvature similar o {a).

2.2.2.1 Lagrange Approach (i)

Referring back in Section 1.2.1 to the description of the Lagrange equations,
they can be expressed as follows:

d faT 4T av .
E(H)_qu-'_a_qz:Qh f=1r2.----.-“]:HZIF [-2'4.]

where T and V ame the kinetic and potential energy functions, respec-
Hvely; and g; and (; are the generalized coordinates and generalized forces,
respectively. In this derivation, the left-hand side of Equations 2.4 is used to
develop the rotor model mass and stiffness matrices. The bearings” stiffness
and damping components as well as the rotor disk’s gyroscopic moment
are treated as generalized forces and thus brought into the equations of
motion on the right-hand side of Equations 2.4.

For a beam in bending, the potential energy can be derived by integrating
the strain energy over the length of the beam. Linear beam theory is used
here, so the bending strain energy in two planes (x—z and y—z) can be
linearly superimposed as

2L
ML + M,
i}
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shaft is treated.
z=0twL Boundary conditions
y=a2 +bz4c W =x=c
Y =3 4b wWl)=x2 =al® £ BL 4+ 1y
' = 6az x'(L) =8, =3al® 4+ b
o, 8, < 1, o, tané, =8, and tané, =

From the above simultaneous equations with boundary conditions uti-
lized at z = 0 and z = L, the coefficient “a” is determined and results in the
following expression for x—z plane curvature:

3
IN=F{I1—IE+'3}L}3, z=0tL (2.6)

Similarly, the y—z plane curvature over z = 0 to L is determined to be the
following:

3
¥ = F'[ Vi—W2—8Lz z=0tlL (2.7)

For the right half shaft, the same polynomial form is used for beam
deflection as for the left half shaft, except that (2L—z) must be put in place

of z, as follows:

z=Lto2L Boundary conditions
r=a@L —zP + 2L -z} 4¢c 2Ly =x3=c
r=-3a2L —z2 -k 2Ly =13 =al® + BL 4 x5
X" = 62l — z) X(L) =6, = —3al?— b

From these simultaneous equations with boundary conditions utilized
{atz =L and z = 2L), the coefficient “a” is determined and results in the
following expression for x—z plane curvature:

3
= EEIJ —x2 —8,L)(2L —z), z=Lto2L (2.8)



(ie, My = EIx" and M,, = Ely” from linear beam theory). Because of the
curvature discontinuity at z = L, the integral for strain energy must be split
into two pieces, as follows:

[ T ]
-2 LJ{(::"F +PId + [0 + (e (2.10)
1]

: |

There are obvious math steps left out at this point, in the interest of space.
The obtained expression for potential energy is given as follows:

JEI
V= E (‘12 + 111 + 1_31 — 2xyX2 — 2x3X3 + 2xy Byl — 2x38, L + 2:35]_,1
+ yi + 245 + 3 — 2y — 2yays — Dy Bl + sl + ZEIELE}

(2.11)

In this approach, the gyroscopic effect is treated as an external moment
upon the disk, so expressing the kinetic energy is a relatively simple step
since the disk's 5|:|-J'.n velocity is not included in T. Kinetic energies for m
and mj are just iy} and $mao2, respectively. For the disk (mg), kinetic
energy (T ) canb-eexpressedas the sum of its mass center's translational
kinetic energy (T.;) and its rotational kinetic energy (T} about the mass
center. The k.l.n-Eﬂc energy functon is thus given as follows:

T= %[ﬂ‘fl{i‘f + 9D+ ma(E3 + 92 + (B2 4 80 4 ma(E 4+ ﬁj] -

IT = i—i’ﬂ'lﬂz and Ip = %m:Rl

The generalized forces for the bearings are perturbations from static equi-
librium, and are treated as linear displacement and velocity-dependent
forces, expressible for each bearing as follows:

irfn:l _ .5:':"]_1'— kiﬂ]y, [r!:l fi’;]y

l.’:n;l ir:] (m) [r] - im} -
fu — ke Xl W — G & — Oy

where, n is the bearing no. =1, 2.
Treating the gyroscopic effect in this approach simply employs the fol-
lowing embodiment of Newton's Second Law for rotation of a rigid body:

(2.13)

H— (2.14)



{M] upon the rigid body, both I[H} and (M} being referenced to the same base
point (the disk’s center-of-gravity is used). Here, H = il7f, + jI-JrEl]1r + klpw
is the angular momentum, with the spin velocity (w) held constant. To make
the mass moment-of-inertia components time invariant, the (x, ¥, z) unit

base vectors (i, j, k) are defined to precess with the disk’s axis of symmetry
(i.e., spin axis) at an angular velocity £ = if, + fléla.- Since the {f,i,]}j triad
rotates at the precession velocity (), the total inertial ime-rate-of-change
of the rigid body’s angular momentum (H) is expressed as follows:

x H (2.15)

,_.':II.

.F::f=filfn+

Using the chain rule for differentiating a product, Hg = il + jIth,
is the portion of H obtained by differentiating 8, and 8, and 0 x H is
the portion obtained by differentiating the rotating base vectors (i, j, k).
The disk’s angular motion displacements (8, 8, < 1) are assumed to be
very small; therefore, the precessing triad (i, j, k) has virtually the same
orientation as the nonrotating x—y—z coordinate system. Thus, a vector
referenced to the precessing (i, , k) system has virtually the same x—y—=z

scalar components in the nonprecessing (i, j, k) system. Equation 2.14 then
yields the following expressions for the ¥ and v moment components that
must be applied to the disk to make it undergo its x and y angular motions.

My = Trf; + Ipuofly rearranged to My — Ipwlly = It (2.16)
M],r = JITE!.' — Ipinby M-_p 4+ Ipwly = IT'E].r
The It acceleration terms in Equations 2.16 are included via the Lagrange
kinetic energy function (T), Equation 2.12. However, the [p terms are not
included, and these are the gyroscopic inertia components that are rear-
ranged here to the left side of the equations, as shown, to appear as moment
components (fictitious) applied to the disk. The gyroscopic moment com-
ponents that are “applied” to the disk as generalized forces in Equations 2.4
are then as follows:



of motion for the model shown in Figure 2.4 are presented in the matrix
form, as follows:

(1}

mii oo o 0o 0o 0| (&
my il 13 1} 1
thh Or oy 0 0 0 0 0 offh
Mz t2 o 0 00 0 0 0 0f;jh
mzijz o 0 00 0 0 0 0| |
K. [T10 0o 00 0 ILw 0 0f)&
Frily 00 00 -hw 0 0 0l
Mai o 0o 00 0o o & &Nl
mz 00 00 0 0 gr oy lis
n+E5) B 1 0 o L 0
By sk o -1 L o 0
-1 0 > 0 0 0 -1 0
IEI 0 —1 o2 0 0 0 1
il 0 . o 0 2% 0 0 L
L o o0 0 2T L 0
0 -1 0 0 —L (1+Ey B
0 0 —1 0 B a+k)
n
1
Xz
« 12 g (2.18)
A
By
X3
Vs
g _ L o
§ ~ 3F ¥

IR} = vector of Hme-varying forces and moments applied upon the
system.



2.2.3.2 Lagrange Approach iii)

This approach differs from the just completed previous Lagrange approach
only in how the gyroscopic moment is derived; hence only that facet is
shown here. Specifically, the issue is the portion of the disk’s rotational
kinetic energy (T,) due to its spin velocity. Using a coordinate system
with its origin at the disk's mass center and its axes aligned with principal-
inerta axes through the disk’s mass center, the disk's kinetic energy due

to rotation can be expressed as follows:

Trot = $(Ieet? + Iy? + J'Emf:}

« [Initial state (all Euler angles are zero): {i,i, k) aligns with I{f,j, }-{}.
« First Euler angle: Rotate disk 6, about the y-axis (ie, i_,fi about
=

[f,i,f&} moves ko [i',i’,ﬁ’}, where ' =j =]

. Semrrdﬁ Euler angle: Rotate disk @, about the x-axis (ie, f’,fa’
about i,

[i", f’,fi"l moves to (.”,j"',fi”}, where i* = '

s Third Euler amgle: Rotabe the disk ¢ about the z-axis (ie,
i7" about k"),

(i”,i", k") moves to (i,j, k), wherek” =k

The following angular velocity vector for the disk is now specified in
components that are legitimate for use in the Lagrange approach since each
velocity component is the first time derivative of a generalized coordinate:

L-"!'I:|:|I:=|] = 'E].rj + é.‘l:i'. + "-'-"j:- {22':"]

W=

The remaining step is to transform | and i in Equation 2.20 into their
(i,j, k) components to obtain the disk’s angular velocity components
in a principal-inerta x—y—z coordinate system. This is accomplished
simply by using the following associated direcHon-cosine orthogonal
transformations:

i“ [cos@, 0 —sind,] l
i o1 0 |1
K | sing, 0 «cosd, | |K
E.l'n' _-l U U i.l'
i 0 cos@,  sinde |4 (2.21)
Kk |0 —sinf, cosfy | g
i [ cos¢ sing O i"
j —sing cos¢ 0| {j"
K 0 o 1 |ge
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Multiplying these three orthogonal matrices together according to the
proper Euler angle sequence yields an equation of the following form:

i i
j { =[Rsl[Re][Rs, 11 ] (2.22)
k K

Equation 2.22, product of the three orthogonal transformation matrices,
is also an orthogonal matrix, embodying the total orthogonal transforma-
tion from the inital state to the end state orientation following application
of the three Euler angles, and can be expressed as follows:

[R] = [Rg] [Re, ] [Re,] (2.23)

As an orthogonal matrix, [R] has an inverse equal to its transpose. There-
fore, the J unit vector in Equation 2.20 is obtained from the second equation

of the following three
: i
i ] =[RI" 1] (2.24)
K k

to obtain the following expression for J:

j = (sind cos 8, )i + (cos ¢ cosh,)j — (sin )k (2.25)
Since i’ = i”, inverting the 3rd of Equations 2.21 yields the following:
i =icos¢—jsing (2.26)

Substituting Equations 2.25 and 2.26 into Equation 2.20 produces the
following result:

i = (éysind:msﬂ, +é;m5¢ni + (l?lycnﬁq:n:nsﬂ, — é;smmi
+(—f,sing, +wik (2.27)
Equation 2.27 provides the proper components for wy, wy, and w- to

insert into Equation 2.19 for the disk's rotational kinetic energy, Tp, as
follows:

Trot = 3t (0} +0f) + $ro? = Lir( sin ¢ coséx + &z cos ¢)°

+ IT(fy cos ¢ cos ;. — B sin ) + Ip(—fy sin By + w)®]  (2.28)



simplifications utilizing cos 8; = 1, sin 8; = 8, and sin” 8; < sin 8, then
yield the following expression for the disk's rotational kinetic energy:

Tt = §[Ir (8 + ) + Ip (0® — 2080, ) (2.29)

A potential point of confusion is avoided here if one realizes that 8, and
8, are both very small and are applied in the Euler angle sequence ahead
of &, which is not small (¢ = wt). Thus, &, and 4, are directed along axes
that are basically aligned with the nonrotating inertial x—y coordinates, not
those spinning with the disk. As with the Lagrange approach (i), the disk's
total kinetic energy is expressible as the sum of the mass-center kinetic
energy plus the rotational kinetic energy as follows:

Tdisk = Tog + Trot (2.30)

The total system kinetic energy is thus expressible for this Lagrange
approach by the following equation:

T = 3[m (53 +93) + ma (54 8) + 1o (8 +) + 1o (07— 200,
+m3 (5 + ﬁ)] (2.31)

Equation 2.31 differs from its Lagrange approach (i) counterpart,
Equation 2.12, only by its Ip term that contains the disk’s gyroscopic effect.

The potential energy formulation and bearing dynamic force expressions
used here are identical to those in Lagrange approach (i), Equations 2.11 and
2.13, respectively. However, here the gyroscopic effect is contained within
the kinetic energy function in Equation 2.31. Therefore, Equations 2.17 used
in the Lagrange approach (i) for gyroscopic moment components upon the
disk are not applicable here. Implementing the clearly indicated math steps
implicit in Equations 2.4, this approach yields the same eight equations
given by Equations 2.18.

2.2.3.3 Direct F=ma Approach

In this approach, the sum of x-forces and the sum of y-forces on my, ma,
and mi3 equated to their respective mij terms yields six of the eight motion
equations. The sum of x-moments and the sum of y-moments on the disk
equated to their respective I8 terms vields the other two motion equations.
This can be summarized as follows.
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FIGURE 2.6 Beam deflaction formulas.

Bearing forces and gyroscopic moment are taken directly from
Equations 2.13 and 2.17, respectively. Thus, only the beam-deflection reac-
tion forces and moments need developing here, and these can be derived
using superposition of the two cases given in Figure 2.6. All reaction force
and moment components due to x and y translations with 8; and &, both
zero are obtained using the canfilever beam end-loaded case given in Fig-
ure 2.6a. Likewise, all reaction force and moment components due to &, and
8y with x and y translations both zero are obtained using the simply supported
beam with an end moment, that is, case with @ = L in Figure 2.6b. Super-
imposing these two cases provides all the beam reaction force and moment
components due to all eight displacements and these are summarized
as follows:

Beam-Deflaction Reaction Force and Moment Components
3EI 1E1
fix = T_]-.;—.n + x3 — tyl) My = = {y]i'_ N ;.';L)
3EI 1ED 0 1
hy= ittt Birl) My = = {—-TIL — Byl® —1’3?-] (2.37)
3EI 1ED
J@_t:_]_L (1] — 2%+ 13) _I'-;;=—i|_:-|:11—13+'33-1-]
3EI 3EI
fay = =53 — 2wz +13) fay = =5y — i —fl)
L3 L3

The eight equations of motion are constructed from F = ma and M = 18
utilizing Equations 2.13 for bearing forces, Equations 2.17 for gyroscopic



moments, and Equations 232 for beam-bending force and moment reac-
Hons, as follows:

Mm% = fir +f:1;. Iths = May + Mgyrox

?‘Hl;i'] =_ﬁy +_?(;]] IT-Ey = sz + ME}-m.y

mia¥s = for Mz = far +f:£1;I

maifz = foy msifs = o + 7 2.33)

Substituting the appropriate expressions from Equations 2.13, 2.17, and
2.32 into Equations 2.33 yields the 8-DOF model's equations of motion
given in Equations 2.18.

Equations 2.18 have been derived here in three somewhat different
approaches. However, all three approaches are based on Newton's second
law and thus must yvield the same result.

The right-hand side of Equations 2.18, {R}, is strictly for ime-dependent
forcing functions and viewed as being externally applied on the system. No
specific examples of [E} were needed to develop the three derivations of
Equations 2.18, but two important cases are now delineated: (1) eigermalie
extraction and (ii) steady-sfate unbalance response. For eigenvalue extraction,
such as performed in searching for operating zones where dynamic insta-
bility (self-excited vibration) is predicted, [R] = 0 can be used since |R}
does not enter into that mathematical process (see Section 1.3, subhead-
ing “Dyvnamic Instability: The Complex Eigenvalue Problem™). For an
unbalance response example, the combination of so-called static unbalance
and dymamic unbalance are simultaneously applied on the 8-DOF model’s
disk, as shown in Figure 2.7. An unbalance is modeled by its equivalent
centrifugal force.

Here, the static unbalance mass is chosen as the angular reference point
(key phaser) on the rotor and ¢ (90° for illustrated case in Figure 2.7) is the
phase angle between ms and the rotating moment produced by the two 1800
out-of-phase my dynamic unbalance masses. Equations 2.18 then have the

- Tq’h .
R A

FIGURE 2.7 Combination of static and dynamic rotor disk unbalance.
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right-hand side {R] shown in the following equations:

0
0
M, F, C08 iwf
Mg Fy Sin
mgrgl cos(wf 4+ &)
mygryl sinfot + §)
0
0

[M1{g) + [CTEg) + [K)ig) = o” { (2.34)

The four zeros in |R) reflect no unbalances at the two bearing stations.

2.3 Formulations for RDA Software

The vibration fundamentals covered in Chapter 1 and the foregoing sec-
tions of this chapter provide ample background to follow the development
of the governing formulations for the RDA code. RDA is a user-friendly
PC-based user-interactive software package that is structured on the finite-
element method. It was developed in the Rotor Dynamics Laboratory at
Case Western Reserve University to handle the complete complement of
linear LRV amalyses, and it is supplied with this book. In this section, the
focus is on formulation, solution, and computation aspects of the RDA
code. In Part 2 of this book {Chapters 4, 5, and 6), the focus shifts to the use
of RDA in problem solving.

2.3.1 Basic Rotor Fimite Element

Development of the RDA model starts with the basic rotor finite-clement
building block, which is comprised of two disks (or any M, I, Ip) connected
by a beam of uniform circular-cross-section (shaft), as shown in Figure 2.8.

For the rotor finite element shown in Figure 2.8, the following two lists
summarize its elementary parameters.

Shaft element properties:
Mass, M — Yoy — dL
- 43
1 s+ !
Transverse inertia at c.g., I = ﬁM'-‘-"] |:3 (%) + L{|

1. . fd*d?
Polar inertia, J'E.”:EM"](% (2.35a)



Development of the RDA model starts with the basic rotor fimite-element
building block, which is comprised of two disks (or any M, It, Iy) connected
by a beam of uniform circular-cross-section (shaft), as shown in Figure 2.8,

For the rotor finite element shown in Figure 2.8, the following two lists
summarize its elementary parameters.

Shaft element properties:

Mass, M — —?’“[dﬁ — @)L

r 43
1 s+ df
R . (s}
Transverse inertia at c.g., I = ﬁM{"] [3(% + 12
1 o fd:+d?
Polar inertia, 15 = -m® [ =1 35a)
ar inertia, I, 5 7] (2

a6 Eotating Machinery Vibration: From Analysis to Troubleshooting

’3’%7
Drisk-1

w
(2]

FIGURE 2.8 Basic rotor finite-elemant building Block.

o n(d: —d¥)
Area moment of inertia, [ = T’
Modulus of elasticity, E

where d;, is the shaft outside diameter (OD), 4; is the shaft inside diameter
(ID) {optonal concentric hole), L is the shaft length, v, is the shaft weight
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FIGURE 2.8 Basic rotor findte-element building block.

_ midy —df)

Area moment of inertia, [ = =
Modulus of elasticity, E

where d,, is the shaft outside diameter (OD), d; is the shaft inside diameter
(ID) {optional concentric hole), L is the shaft length, v, is the shaft weight
density, and g is the gravity constant.

The formulas for concentrated disk masses are essentally the same as
those for the shaft element, and thus listed here as follows.

Concentrated disk mass properties:
Any axially symmetric mass specified by its M, I, and Ip can be used, for
example, couplings, impellers, gears, and so on

Mass M[d] _ -!"'d“{Dg - DIE}I
r 43
. D2 yp?
Transverse inertia at c.g., I.}d’ - “:_EMH] [3(%) +Fi| (2.35b)

1 D2y p?
Polar inertia, I¥ = Eﬂ..-i*’d] (%)



theorem, shown as follows:

s PED) O] FE e

With the coordinate wvector ordering [x1,v1, 80,81, X2, W2, Bx2, B2}
employed, the shaft element lumped mass matrix is then as follows:

iM® 0 0 0 0 0 0 0
o MT 0o 0o o 00 0
0 0 I, 0 0 00 0
L e AP B e
0 0o 0 0 iM 0 0 0
0 o o0 0o o iM® o0 o
0 0 0 0 0 U S
| 0 0 0 0 0 00 Iy

2.1.3 Shaft Element Distributed Mass Matrix

The underlying assumption for the distributed mass formulation is that the
shaft element’s lateral acceleration varies linearly in the axial direction, a
logical first-order improvement over the axial step-change approximation
implicit in the lumped mass formulation. An axial linear variation of lateral
acceleration requires that the element’s lateral velocity also varies linearly
in the axial direction. The derivation here considers two adjacent mass
stations, as shown in Figure 2.9, to formulate the linear variation of lateral
velocity.
The linear variation of x-velocity is expressed as follows:

. 1 . )
I=x+ L_ (Xip1 — X;)Z (2.38)
i



expressed as follows (similar for y-translation kinetic energy):

M. (=)

TIfIi'
L;

i*dz (2.39)

I"-‘l|l—"

':"—I-.I:"

Substituting Equation 2.38 into Equation 2.39 and integrating yields the
portion of the total system’s kinetic energy function that isneeded to extract
the shaft element's lateral acceleration berms associated with the x; and x;4,
Lagrange equations of motion. This leads to the following two results:

d(ary 1o 1o
Y M!
df[ﬂxz) g Nt My T .40
d dT 1 (s}, 1 Y .
S - S g oMy
dt(ﬂ.‘i’i.,.]) g it gt

Since the beam element transverse rotary inertia effect is secondary to its
lateral mass acceleration effect, the inclusion of shaft element transverse
rotary inertia is included here, as already shown for the lumped mass
formulation, Equations 2.36. That is, beam element transverse moment
of inertia is not “distributed” in the manner just derived for the lat-
eral mass acceleration components. With the coordinate vector ordering
[x1, W1, Bx1, By, X2, Y2, Bpp, By | employed, the shaft element's distributed mass
matrix thus obtained is as follows:

™1 g is] Ly sris 1

M um 00 ZM® u[ 00
1 1 %)

0 M5 0 0 0 MY o0 0

0 0 I 0 0 0 00

0 0 0 I 0 0 0 0

ME =], . LR (2.41)

=M, 0 0 0 M 0 0 0
(5] (=)

0 IMY 0 0 0 IM® 0 0

0 0o 0 0 0 0 I; 0

.0 0o 0 0 0 0 0 Iy




2.3.4 Shaft Element Consistent Mass Matrix

When the spatial distribution of acceleration {and therefore velocity) in a
finite element is formulated with the same shape function as static deflec-
ton, it is referred to as the consistent mass approach. The shaft element
in Figure 2.8 is postulated to be a uniform cross-section beam in bending.
Thus, its static beam deflection can be expressed as cubic functions in the
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x—zand y—z planes, as follows (z referenced to left mass station, as shown
in Figure 2.9):

Wiz)=a 4+ b* oz 4 d (2.42)

A general state of shaft element deflection in a plane (x—z or y—z) can
be expressed as a linear superposition of four cases, each having a unity
displacement for one of the four generalized coordinates in the plane with
zero displacement for the other three coordinates in the plane. These four
cases are specified by the following tabulated sets of boundary conditions.

Correspondence hetmeen W, ﬂl}f mid Rofor Element Coordinades

x—z plane — I iy I3 By
y—z plane — 1 —fn iz —bipy
Case 1: =1 =0 w¢li=0 yl)=0
Case 2- =0 =1 wwly=0 =yL)=0
Case 3: =0 #3=0 9wql)=1 HL)=0

Case 4: g =0 wi=0 wyLi=0 wjli=1




Correspondence betmeen wi;,w} amd Rofor Element Coordinades

x—z plane — x i I3 By
y—z plang — L —fyy iz —Hyz
Case 1: =1 #O=0 wyl=0 @L)=0
Case 2- wpl =0 =1 wl)=0 w4L=0
Case 3: wy =0 @5 =0 wql)=1 wqL)=0
Case 4: g =0 =0 wyl)=0 wjl)=1

Substituting each of the four above boundary condition sets into Equa-
tion 2.42 and solving in each case for the four coefficients in Equation 2.42

vields the following four deflection shape functions:

a2 .3 72 3
iz =1-3(=) +2(=), W™z =z-2—+—
l “ () _. () “ Lt .
¢3{3}=3(i}|1—2(i}3, ¢-4=§(i_1}

The general state of shaft element deflection can be expressed as follows:

x = x1Wniz) 4+ B Wr2iz) + xadaiz) + Byadaiz)
¥ =1 W(z) — B W2 (z) + yals(z) — BeaWylz)

(2.44)

Thus, the general state of shaft element velocity can be expressed as
follows:
= dy U (2) + By Waiz) 4 B Ws(z) + By by(z)

.. ; . ) (2.45)
¥ = wndiz) — B deiz) + yadalz) — Bz



The total shaft element kinetic energy is derived by substituting
Equations 2.45 into the following equation:

L

Mo
% - [(i2+gr2mz (2.46)

:

T|' =

The element consistent mass matrix is obtained by substituting the inte-
grated result from Equation 2.46 into the acceleration portion for each of
the eight Lagrange equations for the shaft element, as follows:

d /Ty . -
E(am)ﬂmm]f{q,}, r=12,...,8 (2.47)

With [§,] = 15&1,;],51[,@1,],31,;1, -Eiﬂ,ﬁl.z}, the shaft element consistent
piass matrix thus obtained is as follows:

156 O 0 22w; 540 0 —13L]
0 156 -22[; O 0 54 13; O
0 -2L; 47 D o 0 0 o0

M= | 21, 0 04 1L, 0 0 312

M = 2
220 | 54 0 0 13L; 15 0 0 —27I,

0 54 0 0 0 156 220, O

0 13 O 0 0 220; 42 0
|13, 0O 0 312 -20, 0 0 417 |

(2.48)

2.3.5 Shaft Element Stiffness Matrix
Borrowing from Equation 2.5, the potential energy for the shaft element in
bending can be expressed as follows:
L
V; = %E,-Iz- [[(f}l + (y")*] dz (2.49)
D



2.31.5 Shait Element Stifiness Matrix

Borrowing from Equation 2.5, the potential energy for the shaft element in
bending can be expressed as follows:

L
V= %E,—Iz- [[(f}z +(y"*] dz (2.49)
D

Substituting Equations 2.44 into Equation 2.49 provides the shaft ole-
ment V; as a function of the element’s eight generalized coordinates,
similar to the detailed development of Equation 2.11 for the 8-DOF “Simple
Nontrivial Model.” The element stiffness matrix is obtained by substi-
tuting the integrated result from Equation 2.49 into the potential energy
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term for each of the eight Lagrange equations for the shaft element, as
follows:

av;
i 8

= [Kelilfsl, r=12,...,8 (2.50)

With [gs] = |x1, ¥1, 80, 81, X2, y2, B2, B2 |, the element stiffness matrix
thus obtained is as follows:

& 0 i 3L, —6 0 0 3L
0 6 -3L; 0 0 -6 -3L; 0
0 -3L; 22 0 0 3; LI 0

_2Ed; | 3L, 0 0 2 -3; 0 0 12

K] = —2 ;

K] 17| -6 ] 0 -3L; & i 0 3L
0 -6 3L 0 0 6 3L 0
0 3L L 0 0 3L 2Ly 0

[ 3; 0 0 12 3 o0 o0 27
{251



2.3.6 Shaft Element Gyroscopic Matrix

Half the shaft element’s polar moment of inertia, J'E[,”, is transferred o
each of its two ends points. Utilizing Equation 2.17, the shaft element’s
gyroscopic matrix is accordingly given by the following:

00 0 0 0 o0 0 i

0 0 N 0 0 0 0 i

0 0 N wlp, 0 0 0 i

. |0 0 —wl 0 0 0 0 i
Cli=1g o I:IP: 0 0 0 0 0 (252)

0 0 0 0 0 o0 0 i

0 0 0 0 0 o0 0 wlp,

0 0 N 0 0 0 —wlp O

2.31.7 Addition of Nonstructural Mass and Inertia to Rotor Element

Nonstructural mass is added mass and inertia, lumped at mass stations,
that does not contribute to element flexibility. The rotor element in
Figure 2.8 shows a concentrated disk at each end. A concentrated disk

Lateral Rotor Vibration Analysis Models 63

(A, IF.d], and Ij[.dll may be added at any rotor mass station. For a purely
concentrated nonstructural point mass, I ﬁ.d] = I.‘;.d] = 0. Since construction of
the complete matrices for the rotor alone (next topic) overlays the ele-
ment matrices at their connection stations, nonstructural mass and inertia
is added to the left mass station of each element prior to that overlay of
element matrices, as reflected in the following equations. The exception is
the far right rotor station, where nonstructure mass is added to the right

station.

Complete element mass matrix = [M]; = [[M]z or [M];.i or |M]:.:]

id)

(M 0 0 0 0 0 0 0
0 M% 0o 0 0000
(d)
0 0 I, 0 0000
=]
0 0 0 L 0 0 00 (2.53)
0 0 0 0 00 00
0 0 0 0 00 0 0
0 0 0 0 00 0 0
L0 0 0 0 0 0 0 0]



2.3.8 Matrices for Complete Free—Free Rotor

The [M], [C], and [K] matrices for the complete free—frer rotor (ie., free of
connections to ground and free of external forces) are assembled by linking
all the corresponding individual rotor-element matrices. The right mass
station of each rotor element is overlaid on to the left mass station of its
immediate right neighbor. Thus, the total number of rotor mass stations
{Nz1) is equal to the total number of rotor elements (N ) plus one. The total
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number of rotor DOFs is 4 times MNar.

Nop = Ngg, + 1
Nrpor = 4Nst 25
Accordingly, the rotor matrices are expressible as follows:
)
[Mlx= T (2.56)
Mg [ M, ]' . 2.56
L]
v
Nznor * Napas
_[5; ] -
g
[Cle= , (2.57)
| Tl
_ o]
NeporF % Nppos
_[K][ ] -
K
[Klg= T4, (2.58)
R [ K ] 5 2,58
L]
| ]

Nepor * Ngpos
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D], Jourmal static equilibrium center
g, Bearing static equilshrium center
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FIGURE 2.10  Forca vactors and rotor-to-bearing vibration orbit at a bearing.

position and velocity components. This assumes that lubricant viscosity
effects are dominant and lubricant fluid inertia effects are negligible; oth-
erwise journal-to-bearing acceleration component effects should also be
included. A continuous function that also has continuous derivatives o
any order can be expanded in a Taylor series. Therefore, relative to the
static equilibrium state, the x and y components of the dynamic-deviation
of bearing force upon the rotor can be expressed as follows (under static
equilibrium, F + W = 0):

Fe+We= r:%n— "-‘;1' T+ 2; I+ %—uﬂhi&h}uﬁ;ftm]
0 (2,600

dF aF, oF,
P f= gt e e Sy oy ¢+1higm)c\ﬁirtm:

it is convenient to put Equations 2.60 into the following matrix form:

E-fe BB Sl e



L I
tfﬂ] 1l im}

L — Wrnoe x NrDoR

Similarly, [C] = [C]z + [Clz, where [Cls = Nrpor x Nepor matrix
containing all the bearing damping coefficients in their proper
locations.

(m} {m) .
oy C i
(i) = [ o ] : (2.63)
un g s ¥
Nepop = NEDop
where n is the bearing no. = 1,2,..., Ng.
[M] = [M]g (2.64)

For this option, the total number of DOFs is Npop = Ngpoe. The 8-
coefficient bearing model does not include any acceleration effects, thus
[M] = [M]g. At least two bearings must have nonzero principle values

for their [ké":'], for the total model stiffness matrix [K] to be nonsing-
ular, which is a requirement fully explained at the beginning of this
subsection.
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Pedestal-expanded [C] and [K] matrices must be formulated to account
for the bearing [k"'] and [e:l.?:'] stiffness and damping coefficients being
driven by the differences between rotor and bearing pedestal displace-
ment and velocity components, respectively. The [2 = 4] and [4 x 2] off-
diagonal coefficient arrays shown within the following two equations
accomplish that

IC] =

[ @ ) 0 o] [ +Chn

e

__I:g:l

—eil
dx }

|_—-r;:',' —c_':,_.}.] 1] IZII-| |_-rg' + C‘fﬂr

1

(1) - -
_L_|I:|

w } 4 = Ngpor

1]

0

1, I
'-‘*g] +E‘ﬁ?-| [u 0o ﬂl
chy + Chiy 0000
D'| }
L]
DJ. [Namx”mm-'} |
(]}



K] = Fkﬂi 0 0 n'l [kﬂ’ﬂ:a}n j.'i-_,‘l.]'l-xl:h-l R
L 0 oo

{NEDI ® 4} {E E] [NRDDF x NI!DEIF]

(2.67)
For this example, [g] = [x;, ¥1, 12, O1y, X812, VB 1y, X2, Y2, B2, B2y, . . .} s the
generalized coordinate vector. Note the additional two coordinates that are
added at the end of station 1 rotor coordinates.
Mﬁ’ﬂ and Mgﬂ, are the nth bearing pedestal’s x and y modal masses,
respectively. [Eﬂ]z x2 and [Ké_"'j:.]hz are the nth bearing pedestal’s damp-
ing and stiffness connection-to-ground coefficients, respectively. The total

number of system CROFs is equal to the rotor DOF (Ngpog) plus 2 times the
number of bearing pedestals (Np) employed in the model, where Np < Ng.

Npor = Nroor + 2Np (2.68)

2.3.10 Completed RDA Model Equations of Motion

The complete RDA Npog equations of motion can now be written in
the compact matrix form introduced in Equation 1.15. All the analysis
optons available within the RDA code have one of two [f(f)] right-
hand sides as follows: [f(#)] = [0} for eigenvalue analyses (e.g., instability
searches), and at rotor stations with unbalance inputs, for steady-state
unbalance response.

o Mt Pk COS(0 4 iz )
I ‘ l""“"'ubf-mcw+¢u,,;. (269)



2.4.2 Isotropic Model

The underlying assumptions for the isotropic model are that (i) the rotat-
ing and nonrotating members forming an annular fluid-filled gap are
concentric; (i) the annular gap has geometric variations, if any, in the axial
direction only; and (iii) the inlet How boundary conditions are rotationally
symmetric. Asa consequence, it is assumed that the rotor orbital vibrations
impose only small dynamic perturbations upon an otherwise rotationally
symmetric primary steady flow field within the annular gap. Rotational
symmetry requires that the ki, i, and my coefficients in Equation 2.70 be
invariant to orthogonal transformation, that is, have the same values in
all orientations of the radial plane x—y coordinate system. It is relevant to
mention here that ky, o, and m;; are coefficients of single-point second-rank
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tensors, just like stress and rigid-body mass moment of inertia, which is not
typically so in the broader class of linear vibration model matrices. Thus,
for the case of rotationally symmetric flow, these tensors are isetropic. This
justifies that Equation 2.70 can be simplified to the following form for the
isofropic model:

AR R | el

v
[ el e
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FIGURE 214 Radial bearing /seal radial and misalignment coordinates.

S |

~

[x, ¥, Bz, By instead of only [x, y]. Consequently, the number of coefficients
would increase by a factor of four, as shown in Equation 2.86 for such
a model. Along practical lines of argument, optimum designs hopefully
have minimal static and dynamic misalignment effects. While the defini-
tive pronouncement on such effects may not have yvet been rendered,
other uncertainties such as from the manufacturing tolerances affecting
journal-bearing clearance are more significant and prevalent {Chapter 5).
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2.5.1 Large Amplitude Vibration Sources that Yield Nonlinear Effects

Well-recognized operating conditions, albeit out of the ordinary, that cause
large rotor-to-bearing vibration orbits include the following:

L

L

Very large rofor unbalance, for example, sudden detachment loss of
large turbine or fan blades at running speed.

Rotor-bearing self-excifed orbital vibration limit cycles.
Explosive detonation (shock) near underwater naval vessels.
Unbalance-driven resonance at an imadeguately damped criti-

cal speed.

Resonance build-up resulting from earthguakes.

When such large vibration-causing phenomena occur, the following
additional rotor dynamic nonlinear phenomenon is likely to be produced
in the process:

+ Rotor-to-stator rub-impacting.
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FIGURE 2.15 Continued

bearings. In both of these cases, it is assumed that one-half of a complete
last-stage turbine blade detaches at 3600 rpm. This is equivalent to a 100,000
pound corotational 3600 cpm rotating load imposed at the last-stage blade
row where the lost blade piece is postulated to separate from the rotor.
As a point of magnitude reference, this LP turbine rotor weighs approx-
imately 85,000 pounds. The Figure 2.17 results show four orbit-like plots
as follows:

« Journal-to-bearing orbit normalized by radial clearance

« Total bearing motion (see bearing pedestal model, Section 2.3.9.2)
Total journal motion

Total fluid-film force transmitted to bearing

FIGURE 2.16 LP rotor portion of a 3600 rpm 700 MW steam turbine



The normalized journal-to-bearing orbit is simply the journal motion
minus the bearing motion divided by the bearing radial clearance. For
the cylindrical journal bearing of the Figure 2.17a results, this clearance
envelope is thus a circle of unity radius. In contrast, for the pivoted four-
pad journal bearing of the Figure 2.17b results, the clearance envelope is a
square of unity side. A prerequisite to presenting a detailed explanation of
these results are the companion steady-state vibration and dynamic force
amplitude results presented in Figure 2.18 for unbalance conditions from
zero w0 100,000 pounds imposed at the same last-stage blade row of the
same nonlinear model.

¥ clearance
armveknps
1
1
a
-1 —30
Journal-to-bearing orbit Tovtal bearing maotiomn
(Max a'C= 0.993) (mils)
50 20, 000
¥
2
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Tovtal jowma | mation Tzl bearing forcs
(mils) {pounds)

FIGURE 2.17  (a) Steady-state periodic response at bearing nearest the unbalance with force
magnitude of 100,000 pounds, rotor supported on two identical fixed-arc journal bearings
modeled after the actual rotor's two journal bearings. Timing marks at each one-half revo-
lution, that is, 3 rev shown. (b} Steady-state periodic response at bearing nearest unbalance
with force magndtude of 100,000 pounds, sotor supported ontwo ldentical four-pad pivoted-
pad bearings with the gravity load directed betwesn the bottom two pads. Bearings have
sama Hlm diameter, length, and clearance as the actual Axed-arc bearings. Timings mark sach
one-half revoluton, that is, 3 rev shown.
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FIGURE 2.17 Continued.
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FIGURE 2.19 Fast Fourier transform of peak-to-peak journal vibration displacement
amplitudes.



FICGURE 2.20 Fowr-pad Hlt#ng-pad bearing with enloaded pads.
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FIGURE 221 Simulation results of unloaded pad self-excited vibration.
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2.5.4 Journal-Bearing Hysteresis Loop

The hysteresis loop associated with the journal bearing caused dynamic
instability self-excited vibration mechanism called oil whip was for a long
time an interesting topic for the academics. But it did not attract the close
scrutiny of rotating machinery development engineers. However, in the
seismically actve region of Japan, a team headed by Professor Y. Hori at
the University of Tokyo brought the practical importance of the journal-
bearing hysteresis loop to the wider engineering community. In the paper
by Hori and Kato (1990), the distinct possibility of an earthquake-initiated
high-amplitude sustained self-excited rotor vibration is addressed. That
work helped initiate subsequent research by the author and his team,
reported in the paper by Adams et al. (1996). A generic illustration of their
journal-bearing hysteresis loop and computational model are shown in
Figure 2.22,

Figure 2.22 encapsulates the imbedding of the classical oil-whip phe-
nomenon within an expanded view that shows two stable vibration
solutions at speeds below the oil-whip threshold speed wy, (Hopf bibur-
cation) and one unstable solution, which is a boundary between the two

+ Stable nonlinear limit cycle
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FIGURE 2.22 Journal-bearing hysteresis-loop and rotor-bearing modal.



2.5.5 Shaft-on-Bearing Impacting

Impacting is a quite nonlinear dynamic phenomenon. In Chapter 9
Section 9.8.3, rotor-stator rub-impacting is treated from the point of view
as a cause of excessive rotor vibration, and its identifying symptoms are
treated. In order to computationally model rotor-bearing impact condi-
tions, there is the need for an impact restifution coefficient, a necessary input
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Doable cantilever
pamallel motion in
both x and ¥

1 & 2 vibrometer heads

3 & 4 proximity probes
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FIGURE 2.23  Test for rotor-bearing restitution coefficient measurement.



3.2 Rotor-Based Spinning Reference Frames

To properly visualize TRV, one must consider that the relatively small
torsion-twisting angular velocities of TRV are superimposed on the consid-
erably larger rotor spin velocity. That is, the TRV angular displacements,
velocities, and accelerations are referenced to a rofating (noninertial)
reference frame that rotates at the spin velocity. However, TRV equations
of motion are generally derived as though the coordinate system is not
rotating. The reason this produces proper motion equations warrants a
fundamental explanation. As developed in Chapter 2, the rate-of-change
of a rigid body's angular momentum vector, prescribed in a coordinate
system rotating at £2, is given by Equation 2.15. The same form of equa-
tion applies to time differentiation of any vector prescribed in a rotating
reference frame. The instantaneous total angular velocity (47) at a rotor

mass station is the sum of the instantaneous TRV velocity (8;) and the
instantaneous rotor spin velocity (&), shown as follows:

':-.";r = |;|=' + @ (3.1)
Thus, the inertial angular acceleration at a rotor station is as follows:

0
8] = 8, + i = i)y + i x  + i (3.2)

"

The spin and TRV velocity vectors are coaxial; thus their cross product
is zero, as indicated in Equation 3.2. Furthermore, for most TRV anal-
ysis purposes, rotor spin acceleration (@) is taken as zero, that is, o =
constant, so d = ;. Inertial angular acceleration vectors for TRV can then
be given as follows:

=

B = (@), (3.3)

That TRV equations of motion are derived as though the rotor is not
spinning about its axis is thus shown to be valid.



Wrist pin
and bearing

FIGURE 2.25 (See color insert following page 262.) Piston and connecting rod of a small
reciprocating compressor.

That the refrigerator compressor failure rate was 4 times that of the
air conditioner compressor mystified the manufacturer’s top compres-
sor engineers, because the wrist pin peak load in the air conditioner was
approximately 25% higher than in the refrigerator. The wrist pin bear-
ing radial load versus crank angle is illustrated for both applications in
Figure 2.26. In an attempt to uncover the root cause for the relatively
large warranty failure rate in the refrigerator application, many different
analyses and tests were conducted, sort of a “fishing expedition.”

A4 250 Ibs (56 N)

air conditioner

\I 150+

{
Window ’{ =
!

Crank angle T W

-50 \ Load reversal

FIGURE 2.26 Wrist pin bearing load () curves versus crank angle.
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FIGURE 3.1 Multielement TRV model for a single-shaft rotor.

3.3.1.1 lumped Mass Malrix

In this approach, it is assumed that for each uniform-diameter shaft ele-
ment, half its polar moment of inertia, I, is lumped at each of the

Torsionally twistible
shaft element

FIGURE 3.2 Rotor torsional fintte-element 2-DOF building blodk.
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element’s two end points (stations). Implicit in this approximation is an
incremental step change in angular acceleration for each shaft element
at its axial midpoint. That is, the continuous axial variation in angular
acceleration is approximated by a series of small discrete step changes. A
concentrated (nonstructural) polar moment of inertia, 'Y, may be option-
ally added at any rotor station as appropriate to model gears, couplings,
impellers, turbine disks, pulleys, flywheels, thrust-bearing collars, nons-
tiffening motor and generator rotor components, and so on. The complete
single-rotor (“sr™) lumped (“1") mass matrix is thus a diagonal matrix, given
as follows:



16 g T
7]-] + i|_ .
2 —
4] e
e T A e
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'\-\.._\__H_\--‘- - . -\--‘--\-‘1._\_\_\-\-
T 1 14 -
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— . —
'\-\.\__\_\_hh - T
e L ]
'\-\.\__\__\_ ) 1 ]'m E o
— Tl tiy

N (3.4)

N = No. of rotor stations = No. of DOFs = No. of elements + 1.
Subscript on I = Element Number, Subscript on = I'?) Station Number.

3.3.1.2 Distributed Mass Matrix

As similarly explained in Section 2.3 for LRV models, the underlying
assumption here is that the angular acceleration of each shaft element
about it axis varies linearly over its own length. Therefore, model reso-
lution accuracy is better with the distributed mass formulation than with
the lumped mass formulation. The better the model resolution accuracy,
the fewer the number of finite elements {or DOFs) needed to accurately
characterize the relevant modes of the actual continuous media system
using a discrete model. Consistent with the assumption that angular accel-
eration varies linearly between rotor stations, the angular velocity then
also must vary linearly between rotor stations. The instantaneous TRV
kinetic energy stored in the ith single shaft element can be formulated
from the integration of kinetic energy distributed over the ith element's
length, similar o Equation 2.39 for LRV radial velocity components,
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as follows:

L

o 1=

T Eﬁ [{94-{.}}1& (3.5)
i}

Substituting a linearly varying & and @ = constant into Equation 3.5 vields
the ith shaft element’s torsional kinetic energy terms associated with the
8 and &+1 Lagrange equations for the ith and (ith + 1) rotor stations. This
yields the following results, consistent with Equation 3.2 (i.e., © = constant,
C.@=0)

d (T w100
E(E) = 30 8 + 51 B
d/_aT 100, 167
= (=) = L% 4+ L™,
dt(ﬂﬁ"j-ﬂ) ol ti+ 5k

The complete single-rotor distributed mass matrix is thus a tridiagonal
matrix, as follows. Note the optional I'Y at each station, just as in
Equation 3.4.

Polar momeni-of-inertia formulas for shaft elements and concentrated disks
are the same as given at the beginning of Section 2.3 for LRV models.

(3.6)

3.3.2 Stiffness Matrix

The TRV stiffness matrix [K]g for a free—free single rotor, such as shown in
Figure 3.1, is quite simple to formulate. It is the torsional equivalent of the
type of translational system shown in Figure 1.8. That is, each rotor mass
station has elastic coupling only to its immediate neighbors. Therefore, the
single-rotor TRV stiffness matrix, shown as follows, is tridiagonal just as
shown for the system in Figure 1.8.

d
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M

(3.7)
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Equations of moton for the undamped single-rotor model are then as
follows:

[M1ac (8] 4+ [Klc[6) = [m(t)} (3.10)

Here, {m(t)} contains any externally applied ime-dependent torque com-
ponents, such as to model synchronous generators of turbo-generators
during severe electrical disturbances like high-spead reclosire (HSR) of
circuit breakers after fault clearing of transmission lines leaving power
stations. Of course, to compute the undamped natural frequencies and
corfesponding mode shapes, only the mass and stiffness matrices are
utilized.

34 Coupled Rotors

The single-rotor mass and stiffness matrices developed in the previous
section form the basic moedel building blocks for TRV coupled-rotor mod-
els. One of the many advantages of assembling the equations of moton
in matrix form is the ease with which modeled substructures can be
joined to assemble the complete equations of motion of a multsubstruc-
ture system.

LT | T e L T i L



» Coupled rotors may have speed ratios other than 1:1.

« Torsional coupling may be either rigid (e.g., gears) or flexible (e.g.,
belt).

« Systemn may be branched instead of unbranched.

An understanding of these complexities can be obtained by following
the formulation details of their TRV model constructions, which are pre-
sented subsequently in this section. The handling of these complexities is
simplified by the fact that correct TRV equations of motion can be derived
as though the rotors are not spinning, as shown in Section 3.2, Equation 3.3,
that is, modeled as though the coupled-rotor machine is not running.

3.4.1 Coaxial Same-Speed Coupled Rotors

This is a quite common configuration category and the most typical case
involves two single rotors joined by a so-called flexible coupling. Assembling
the mass and stiffness matrices for this case is quite simple, as shown by
the following equations. The total mass matrix can be expressed as follows:

_[Mile 0]
[M]—[ o [M;]J (3.11)

Usually, a flexible coupling can be adequately modeled by two concen-
trated polar moment-of-inertias connected by a torsional spring stiffness.
The two concentrated coupling inertias If“] and I;E] are added as concen-
trated inertias to the last diagonal element of [M; ], and the first diagonal
element of [Mz]«, respectively. To assemble the total stiffness matrix, the
equivalent torsional spring stiffness K'= of the coupling is used to join the
respective single-rotor stiffness matrices of the two rotors, as follows:

F:III.I:I O
K. [0l | k] |-k
|K]=|:[[I:|l|]' [H::Lr:|+[x-:]:ﬂ= I [_K|:i- i F:|r]:ﬂ 7 {312]
O E'1|1:|
The complete equations of motion for two coaxially coupled rotors
are then expressible in the same matrix format as Equation 3.10, that is,

[AM][8]) + [K][8) = [M{{)]. For three or more simply connected same-speed
flexible-coupled rotors, the above process is taken to its natural extension.
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FIGURE 3.3 Unbranched three-rotor system with a gear set and a pulley-belt sat.

3.4.2.1 Rigid Connections

The gear set of the system in Figure 3.3 will be assumed to be torsionally
much stiffer than other torsional flexibilities of the system, and thus taken
as perfectly rigid. The TRV angular displacements of the two gears are
then constrained to have the same ratio as the nominal speed ratio of the
two-gear set. Thus, one equation of motion must be eliminated either from
rotor-1 (last station) or rotor-2 (first station). Here the equation of motion
for the first station of rotor-2 is absorbed into the equation of motion for
last station of rotor-1. The concentrated inertia of the rotor-2 gear is thus
transferred to the rotor-1 station with the mating gear. Defining nz; as the
speed ratio of rotor-2 to rotor-1, and #;; as ith angular coordinate of the jth
rotor, the TRV angular coordinate of the rotor-2 gear is expressed in terms
of the rotor-1 gear ‘s coordinate, as follows. Note the opposite positive sense
for 8; 2, Figure 3.3.

':':']'1 = Hm E:.‘r]'_]_ {313-]

where N; = number of stations on rotor-1 = station number rotor-1°s last
station.

The TRV kinetic energy of the two rigidly coupled gears is thus
expressible as follows:

& _ 1 idy ; 1 piddz 1 pidd 2 L diy e
1z =2 H1,]ei'1,] + Ifueﬁ,l = E[IN].l +yl, }EM,I (3.14)
where I'?" = nonstructural concentrated inertia for the ith station of the

ij
jth rotor.
The combined TRV nonstructural inertia of the two gears is thus lumped

in the motion equation for station Ny of rotor-1 as follows:

d {aTy, id) 2 idiyz
—_— - =1 Ml i a1
df( aty, 1 { i1 T 12} h. 1 (3.15)



That is, postulating a linear variation of angular velocity along the shaft
element, and substituting from Equation 3.13 for 8 5, vields the following
equation for the TRV kinetic energy of shaft element-1 of rotor-2.

(s

I
1 - . . .
Tﬂ = ?i{ngleif],l + nz g 1822 + %1} {3.16)

The following equation-of-motion distributed mass inertia contributions of
this shaft element to the stations that bound it are accordingly obtained:

dt | dy, 1

d (917
di | ad;,

d [ 4T . .
( 2 = %"%lrﬂgﬁ.lr] + %rrﬂlfﬂ@g;

(3.17)

) _ %Hllrﬂéﬁhj + %Ifjﬂu

where J'I.[f = structural inertia for the ith shaft element of the jth rotor.

Postulating a rigid conmection between the two gears in Figure 3.3 elimi-
nates one DOF (Le., the first station of rotor-2). The corresponding detailed
formulations needed to merge the rotor-1 and rotor-2 mass matrices are
contained in Equations 3.13 through 3.17. Merging the rotor-1 and rotor-2
stiffness matrices must also incorporate the same elimination of one DOF.
Specifically, shaft element-1 of rotor-2 becomes a direct torsional stiffness
between the last station of rotor-1 and the second station of rotor-2. This
stiffness connection is almost as though these two stations were adjacent
to each other on the same rotor, except for the speed-ratio effect. The eas-
iest way to formulate the details for merging rotor-1 and rotor-2 stiffness
matrices is to use the potential energy term of the Lagrange formulation
for the equations of motion, as follows (see Equation 2.50):

Vio = éxl,ﬂ":"],l — Baa) (3.18)

wherelV;; = TRV potential energy stored in ith shaft element of the jth rotor
and K;; = Torsional stiffness of the ith shaft element of the jth rotor.

Substituting from Equation 3.13 for 81 2 into Equation 3.18 thus leads to
the following terms for merging rotor-1 and rotor-2 stiffness matrices:

= Kl.z["%lghrlrl — nElEIlE}
(3.19)
o Ky 2(—mafw, 1 + G22)



3.4.2.2 Flexible Comnections

The pulley-belt set in Figure 3.3 connecting rotor-2 to rotor-3 is assumed
to be a flexible connection and thus no DOF is eliminated, contrary to the
rigid connection case. A flexible connection does not entail modifications to
the mass matrix of either of the two flexibly connected rotors. Only the
stiffness of the belt must be added to the formulation to model the flexible
connection. It is assumed that both straight spans of the belt connecting
the two pulleys are in tension, and thus both spans are assumed to have
the same tensile stiffness, by, and their TRV stiffness effects are additive
like two springs in parallel. The easiest way o formulate the merging
rotor-2 and rotor-3 stiffness matrices is to use the potential energy term of
the Lagrange formulation, as shown in Equation 2.50. To model gear-set
flexibility, replace 2k, with pitch-line kg and define B; as jth pitch radius,
not jth pulley radius.

Vi = %{ﬁhj(e n, 2Rz — 8 3R3)?

— k(5 ,R2 — 2y 2y 3RaRs + 62 ,RY) (3.20)
avi

ﬂf:",..-b = 2k (8, 2R3 — 8 3R2Ra)
. 1;,2 (3.21)
3015

where R; = pulley radius for the jth rotor, V, = TRV potential energy in
belt and N; = Number of stations on rotor-2 = Station number rotor-2's
last station.

At this point, all components needed to write the equations of moton
for the TRV system in Figure 3.3 are ready for implementation.



Equation 3.8. At this point, constructing the total system mass and stiffness

matrices only entails catenating the single-rotor matrices and implement-
ing the already developed modifications to the matrices dictated by the
rigid and flexible connections. Employing modifications extracted from
Equations 3.15 and 3.17, [M;] is augmented as follows. Superscript “rc”
refers to rigid connection.

[M; 1= [My]+[ ML where [M{] = O ‘ O

All elements in [ M~ ] are .D
mero axcept element (N;, Ny

(3.22)

=N,

Eliminating its first row and first column, [Mz] is reduced to [MJ]. The
complete system mass matrix can be assembled at this point, catenating
[M$], [M3], and [M3], and adding the cross-coupling terms contained in
Equation 3.17, as fnllcm-s

4]
|

Subscript “cc” refers to cross-coupling.

[M] = Mar [M3) (3.23)

[M3]:| NxN

My i+t =Musian = il =M, N=Np+(N2— 1)+ N;

The complete system stiffness matrix [K] is similarly constructed. Employ-
ing modifications extracted from Equation 3.19, [K;] is augmented as
follows:

[K1]= K] + [ K], where [K7] | (3.24)

All elements in [ K7 ] are .rl?..i{]
zero except alament (N, N; b - i YT

Eliminating its first row and first column, [K;] is reduced to [KX], which
is augmented to form [KJ] as follows. Superscript “fc” refers to flexible
conmection.

[K]=[K3]+ IKF‘L“thE[K |=
AllF-JemenﬂmM |are 2!:,,21
zero except element (N3, N3). - [F

(3.25)




Nz=N;-1
[K:] &5 augmentad to form [K; | as follows.

el 0 (3.26)
1831 = [Kz] + [ K], where [K5] =
All elements in [K5 ] are
zero except alement (1,1).

The complete system stiffness matrix can be assembled at this point, cate-
nating [K7],[K3], and [K3], and adding the cross-coupling terms contained
in Equations 3.19 and 3.21, as follows:

Bhhy

KA:J
[K] = K (3.27)
Kgc_'l

- INxn
Kl? = —ny Ky 2; extracted from Equation 3.19

K2 = _2k Ry Ry; extracted from Equation 3.21

The complete TRV equations of motion for the Figure 3.3 system are thus
expressible in the same matrix format as Equation 3.10, that is, [M][8] +
[K][8} = [mit}]. The [M] and [K] matrices here are tridiagonal, which is
consistent with the designation of unbranched. The formulations devel-
oped here are readily applicable to any unbranched TRV system of coupled
rotors.



3.4.3 Branched Systems with Rigid and Flexible Connections

The system shown in Figure 3.4 bears a close similarity to the system in
Figure 3.3, except that its gear set and pulley set are located inboard of
their respective rotor ends, each of these connections thus making it a
branched system. Its [M] and [K] matrices are therefore not tridiagonal, as
now shown.
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FIGURE 3.4 Eranched three-rotor system with a gear set and a pulley-belt sat.

Constructing mass and stiffness matrices for the Figure 3.4 system
follows the same procedures of the previous subsection for unbranched
systems. For the individual rotors, the distributed mass approach is again
used, applying Equation 3.7 for construction of the single-rotor mass matri-
ces, [Mi], [Mz], and [M3]. Also, Equation 3.9 is again used to construct the
single-rotor stiffness matrices [K], [Kz], and [K;], adding any te-ground
flexible connections to the free—frer TRV stiffness matrices from Equa-
tion 3.8. Using the standard substructuring approach previously applied
here to unbranched systems, constructing the [M] and [K] matrices for the
Figure 3.4 system is only slightly more involved than for the Figure 3.3
system.



3.4.3.1 Rigid Connecdtions

The two gears joining rotor-1 to rotor-2 are assumed here to be a per-
fectly rigid torsional connection between the two rotors. Accordingly, the
equation of motion for the rotor-2 gear station (Nz) is absorbed into the
equation of motion for the rotor-1 gear station (Ng; ), with the eliminated
rotor-2 gear DOF (B, 7) expressed by the constant speed ratio (ny) times
the rotor-1 gear coordinate (B, 1), as follows (ny) = wa/wq).

B2 = M BN, 0 (3.28)

Similar to Equation 3.14, the TRV kinetic energy of the two rigidly
coupled gears is thus expressible as follows:

ars ]l 1p0dy 72 1 pidl 2 pidd Y57
Tﬁ = fihfmrlg?'fm«] + iiﬂmﬂﬂwcai = E{Iﬂmrl + g Iﬂmi]gﬂ’m-l
(3.29)
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The combined TRV nonstructural inertia of the two gears is thus lumped
in the motion equation for station N of rotor-1 as follows:

E(ﬁ) = (N1 + Ml 2 )P (3.30)

Using the distributed mass approach, the TRV kinetic energy of the rotor-
2 shaft element just to the left of rotor-2"s station N2 and of the element
just to the right of station N5 are derived to be the following, similar to

Equation 3.16:

(=)
I
Tis) — Nge—l2 (3 52 i ; j
Nm-12 7 g {“Il Nea1 + Mg, 1IN 12 + gir-:—li]

(=)

(3.31)

s}

Nga 2 2 52 ; i 7
N2 = (ﬁﬂﬂﬁﬁ:hl + Mg bz + Eggz)

The following distribufed mass matrix contributions of these two rotor-2
shaft elements are thus obtained, similar to Equation 3.17:



n wawTF
(=)
d Ty 12
: 1 .
= (ﬂﬂvﬂ—u Errllfﬂ_‘_u@uﬂl 1+ 311.;,: I._,EENG.'-._]-I
e
- (3.32)
d 3T 2 . =
df ( 3@'-;1[ rll!m 29N 1 + %"1”5:21-19”51"'1'2
e
s}
d 9T, 2 . "
1 i) 1yis)
i

Equations 3.30 and 3.32 contain all the terms needed to merge rotor-1
and rotor-2 mass matrices.

The following formulation details for merging rotor-1 and rotor-2 stiff-
ness matrices are developed using the potential energy term of the
Lagrange formulation, the same procedure as used to develop Equa-
Hons 3.18 and 3.19.

Vg -12 = $KNg 1200852 — Bng-12)° (333)

Va2 = $Kne 28412 — B 2)’
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Substituting from Equation 3.28 for 8y, - into Equation 3.33 thus leads
to the following terms for merging rotor-1 and rotor-2 stiffness matrices:

Vg -12
iy 1
IWNng-12
1.2

Vg 2
B 1
Wiz
3'3;.;': 2

= Kngz—1.2( 15181 — mBng12)
= Knp—1.2(—N2fng 1 + g —12)
(3.34)

]
= Knea2( 19 1 — ﬂzlE'M:le)

= K'*’cz-lli "1]'3'!-;,_—_1,1 + Ef‘*’ca'l']-l}



1.4.3.2 Aexible Connedlions

As a torsionally flexible connection between rotor-2's station Nps and rotor-
3's station Nps, the pulley—belt set in Figure 3.4 needs no corresponding
modifications to the mass matrix of either of the two rotors. Following the
identical procedure used to develop Equations 3.20 and 3.21, the formu-
lation details for merging the rotor-2 and rotor-3 stiffness matrices are as
follows:

2
Vi = $(2kp) (8w, 2Rz — O,y 3R3)

= ko By 2R3 — 20 200, 3R2 R + B, 2R3 ) (3.35)
d Vg
- zt;,(eﬂn SR Ay JRIRJ}
Horien2 (3.36)
d Vi '
— 2k By 2R R + By 3R
T Ekb( Nen 2R2R3 + wm,sﬁz}

As explained in Equation 3.20, this formulation is applicable to flexible
qear sefs.

At this point, all components needed to write the equations of motion
for the TRV system in Figure 3.4 are ready for implementation.



RDA Code for Lateral Rotor
Vibration Analyses

4.1 Introduction

The RDA Fortran computer code is a general purpose tool for linear rotor
vibration analyses. It is developed on the FE formulations derived in
Chapter 2, Section 2.3. First writken for use on early generation PCs, it was
initally limited to fairly simple rotor-bearing configuration models with
10 or less mass stations (40 DOFs or less) because of the memory limitations
of early PCs. RDA was initially written to simulate rotor-bearing systems
as part of research efforts on active control of rofor vibration in the author’s
group at Case Western Reserve University (CWRU). Validation tests and
other background information for RDA are provided by Maghraoui {1989)
in his PhD dissertation (see Bibliography at the end of this chapter). RDA
has been distributed and used by the author in machinery dynamics courses
and student research projects at CWRU for over 20 years and in professional
short courses in the United States and Europe. The current enlarged version
supplied with this book, RDAS9, has now been exercised by countless users
since being provided free with the 2001 first edition of this book. RDA99
has been successfully used by the author in modeling several large power
plant machinery, in vibration troubleshooting missions (see Part 4 of this
book). It has also been successfully used by the author in troubleshooting
and redesigning a high-speed vertical spin-pit test rig specially configured
for research on aircraft jet engine blade-on-casing tip-rub-induced blade
vibrations and transmitted blade-casing interaction dynamic forces.

The compiled code included here has been dimensioned to accommodate
up to 99 rotor mass stations (3% DOF rotor), making it suitable for virtually
any single-drive-line rotor-bearing system, including large steam turbo-
generator rotors as subsequently demonstrated in Part 4 of this book. The
author and his troubleshooting associates still use this newer RDA%9 as
the primary rotor vibration analysis tool both for troubleshooting work in
plants as well as research.

As demonstrated in this chapter, RDA99 is a user-imteractive code and
thus does not utilize the batch-mode input approach typical of older com-
puter codes written in the era of older mainframe computers. RDA99
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has interactive input and output selecton menus, each with several
options. Not all these options are demonstrated here. Only the ones that
are the most expedient for design or troubleshooting applications are
demonstrated here.

There are many quite useful PC codes that were initially developed to
run in the DOS environment prior to the introducton of Windows. The
RDA executable code (RDA99.exe), supplied with this book, is but one
example. The DOS operating system, developed for first-generation PCs
and the forerunner of Windows, has therefore naturally been retained as
an application within Windows. Earlier versions of Windows are actually
an application within DOS. RDA%.exe will execute successfully on any
PC as a DOS application within Windows.

Within the DOS operation mode, RDASY is accessed simply by entering
the appropriate drive and folder. Execution is then initiated simply by
entering RDA9%9. The monitor then displays the following main menu.

ARRANAE AN AS AN AR AN AR RAR RS ARNSAARRANRR

EOTOR DYMAMICS ANALYSIS
L B R S L LR R L R

MAIN MENU

1. Solve the Undamped Elgenvalue Problem Only

2 Solve for Damped Eigenvalues Only

3. Solve Both Damped and Undamped Egenvalue Problems
4. Perform a Seability Analysis of the System

5. Obtain the Steady-State Unbalance Response

& Active Controd Simulation

7. Data Curve Fitting, By Cubic Spline

8. Exit

Choose Option <1-8= ...

All the MAIN MENU options are covered in Maghraoui (1989). When
accessed by entering its number, each displays the DATA MENU from
which the INPUT OPTIONS menu is accessed. Vibration specialists may
wish to use options 1, 2, and 3 of the MAIN MENU to construct maps of
eigenvalues as functions of rotor spin speed, and these are demonstrated

in Maghraoui (1989). Options 6 and 7 may be ignored. MAIN MENU
optons 4 and 5 are the most important and useful ones. Therefore, the

detailed instructions covered in this chapter are focused exclusively on
optons 4 and 5.
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Bearing and Seal Rotor Dynamics

5.1 Introduction

RDA, the modern FE-based PC code supplied with this book, is presented
from a fundamentals perspective in Chapter 2 and a user's perspective in
Chapter 4. There are a number of commercially available codes with simi-
lar capabilities. Engineering analysis codes in general and rotor dynamics
codes in particular nearly always have one tacit fundamental trait in
common. That trait is as follows:

Those aspects of the problem class that are reasonably well defined and
modeled by first principles are what is “inside™ the computer code.
Whereas, those aspects which are not as well defined and modeled by
first principles show up as some of the “inputs” to the computer code.

With this approach, the typical computer code developer and marketer has
long been quick to tout their code as capable of handling “any " conceivable
problem within the code's intended range of usage, as long as one has all the
“correct” inputs.

For LRV analyses, those important inputs that present the biggest
challenge are the dynamic properties (stiffness, damping, and inertia
coefficients) for the components that dymamically connect the rotor to the
stator (stator = everything that does not rotate). These components include
first and foremost the radial bearings. In many rotating machinery types
(e.g., turbo-machinery) other liquid- and gas-filled internal close-clearance
annular gaps, such as seals, are also of considerable LRV importance.
Furthermore, the confined liquid or gas that surrounds a rotor component
{e.g., centrifugal pump impeller and balancing drum) may also signifi-
cantly contribute to the basic vibration characteristics of a rotating machine,
both in an interactive way much like bearings and seals, and as explicit
time-dependent unsteady-flow forces (e.g., hydraulic instability in cen-
trifugal pumps, rotating stall in turbo-compressors). Motor and generator
electromagnetic forces also contribute. Most modern LRV research has been
devoted to all these rotor—stator effects. One could justifiably devote an
entire book just to this single aspect of LRV. This chapter focuses on bearing
and seal LRV dynamic properties. Small clearances critical to these prop-
erties are of significant uncertainty because of manufacturing tolerances.

183



5.2 Liquid-Lubricated Fluid-Film Journal Bearings
5.2.1 Reynolds Lubrication Equation

The strong urge to rigorously derive the classic Reynolds lubrication equa-
tion (RLE) is here resisted in the interest of space and because the RLE is so
aptly derived in several references {e.g., Szeri, 1998). To facilitate the serious
reader’'s understanding of available derivations of the RLE, the following
perspective is provided. Figure 5.1 provides an elementary illustration of
a journal bearing.

The general starting point for modeling fluid mechanics problems is
encompassed in the three coupled fluid-momentum PDEs [Navier-Stokes
(N-5) equations] plus the single conseroation-of-mass PDE (continuity equa-
Hon). The three scalar N-5 equations (which are nonlinear) are obtained
by applying Newton's Second Law EF = dim#)/d# to an inertial differen-
Hal control volume (CV) of a continuum fow field. Atempting to solve
these equations for 2D and 3D problems has historically been the chal-
lenge to occupy the careers of fluid mechanics theoreticians, because these
equations are nonlinear and coupled. The ingenious contributions of the
precomputer age fluid mechanics “giants” (like Osborne Reynolds) sprang
from the application of their considerable physical insight into specific
problems, leading them to make justifiable simplifying assumptions,
thereby producing important solvable formulations. This was lantamount

EERH—RJ
Re+ K
CeR=—21

T g,

¥

FIGURE 5.1 Ceneric journal bearing configuration and nomenclatura.



5.2.1.1 For a Single RLE Solution Point

1. Specify e= 1|I,n'l[lf'_% +e§:|, b = arctan(ey/ex), €x =X —Xg, &y =
¥1—¥e
With journal-to-bearing axial alignment, h = C — e, cosi{1/R) —
a_f'l.sjnﬁf R) giving (dh/d1) = (e:/R) sin(t/R) — (g,/R) cos(1/R),
h = —&, cos(t/R) — &, sin{1/R)

2. Solve the RLE for the pressure distribution p = p(1,z)

3. Integrate p(1, z) over the journal cylindrical surface to get x and y
forces upon the journal:

LiZ 2nR
Fr=-— [ Jp(t,z}cm[tm]dtdz

—Ly2 0
! (52)
L/2 2nR

F,=— [ Jp(t,z}sh[tfﬂ}d'[dz
—ijz 0

In a numerical finite-difference solution for pi1, z), the pressure is
determined only at the grid points of a 2D rectangular mesh. The
above integrations are then done numerically, such as by using
Simpson's rule.

4. Calculate resultant radial load and its angle:

W= [F+F, 6y =arcan(F,/F) {5.3)

By performing the above steps, 1 through 4, over a suitable range
of values for 0 < ¢/C =< 1 and ¢, enough solution points are generated
to construct design curves similar to those of Raimondi and Boyd. As
stated earlier, the sequence of computations in design analyses is the
reverse of the above sequence. That is, one starts by specifying the bear-
ing load, W, and its angle &w, and uses design curves preassembled from
many RELE solutions to determine the corresponding journal eccentricity, e,
and attitude angle, ¢.



5.2.2 Journal Bearing Stiffness and Damping Formulations

Solutions to the RLE are a nonlinear function of the journal-to-bearing
radial displacement or eccentricity, even though the RLE itself is a linear
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differential equation. Thus, F; and F, given by Equations 52 are nonlin-
ear (but continuous) functions of journal-to-bearing motion. Therefore,
they may each be expanded in a Taylor series about the static equilib-
rium position. For sufficiently “small” motions, the corresponding changes
in the journal fluid-film force components about equilibrium can thus be
linearized for displacement and velocity perturbations, as indicated by
Equations 2.60.

Since solutions for the fluid-film radial force components F, and F, are
usually obtained through numerical integration on p(t, z) as it is obtained
from numerical solution of the RLE, the partial derioatives of F; and F,, that
are the bearing stiffness and damping coefficients must also be numerically
computed. This is shown by the following equations:

dFy _ AF; - Filx + Ax,y, 0,00 — Foix, v, 0,00
ax ~ Ax Ax

aF!l' .'jl..F}.- FE":I + ﬂ.I_,. !l'lr D.rﬂ:l - 'Fl"{'rry.rﬂn oy

==

—kn =

dx Ax
k= dF; ., AF: _ ety + Ay.0,0) — Falx,y,0,0)
dy Ay Ay
iy = aF, AR, Kixy+ Ay 0.0) - Fixy.0,0)
dy Ay Ay
(5.4)
e - aF, ~ AF; _ Fulx,y, Ak, 0) — Fo(x,y,0,0)
T Ak T AR AL
. 9 AR, Ry ALD) - Fxy,0,0
T T Ay T AR AL
gy = AF: | AF: _ R(4y,0,A1) — Fi(x,1,0,0)
dy Ay Ay
dFy ., AFy  Fy(x,y,0, Aj) — Fylx,y,0,0)
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iF,

.

AF,  Foix, w0, A — Fox,y, 0,0)

—C = —_— —
T a o Ay Ay
aF, _ AF, F,(x,y,0, Aj) — Fy(x,y,0,0)
B T Ay

Here, x = e, Y =6, i =&, I = 6.

The definitions contained in Equations 5.4 for the eight stiffness and
damping coefficients are compactly expressed using subscript notation,
as follows:

aF; aF;
i=—— and GG=——r 5.5)

hi=—gy and G=-g (
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It is evident from Equations 5.4 that the journal radial force components
F, and F, are expressible as continuous functions of journal-to-bearing
radial displacement and velocity components, as follows:

FI = I{xr _I:lr.r 'j:.l EI."

(5.6)
Fy =Fylx, v, &, 1)

It is also evident from Equations 5.4 that for each selected static equilib-
rium operating condition (x, y, 0, 0, five solutions of the RLE are required
to compute the eight stiffiess and damping coefficients. These five slightly
different solutions are tabulated as follows:

(x, v, 0,0, Equilibrium condition,

x4+ Ax, y, 0, 0), x—displacement perturbation about equilibrium,
(x, ¥ + Ay, 0, 0), y—displacement perturbation about equilibrium,
(x, y, Ax, 0), x—velocity perturbation about equilibrium,

ix, v, 0, Ai), y—velocity perturbation about equilibrium.
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FIGURE 5.3 Comparison betwesn cylindrical and sldng-pad journal bearings: (a) cylindri-
cal bearing arc and (b} Hlting-pad bearing.

three equally spaced pads, a load passing directly through one of the pivot
points does not cause the bearing to collapse because the three or more
pads at least capture the journal. But even with three or more pads, a load
that is supported mostly by a single pad can produce poor rotor dynamical
characteristics. By restraining a single pad pivot and journal (test setup or
simulation), the load capacity of a single pad is obtained as a function of
journal pivot radial eccentricity as typified by Figure 5.4, where the slope
is pad pivot radial film stiffness.

It is seen that the pad radial film stiffness acts as a nonlinear spring
in compression. Consider the four-pad bearing, illustrated in Figure 5.5
for two loading conditions: (a) load between two pads and (b} load on a

Wp

lournzl radis] eccentricity position
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FIGURE 5.5 Load-direction vibration factors of tlting-pad journal bearings.

5.2.4.1 Tables of Dimensionless Stiffness and Damping Coeffidents

The bearing data files in the directory BearCoef use the standard non-
dimensionalization most frequently employed for journal bearing rotor
dynamic coefficients, as defined by the following dimensionless param-
eters for stiffness (k;) and damping (Ty) as functions of a dimensionless

speed, S:
_ kC cijwC wn RY
l',i = Fr i'.}' = T, 5 ? (E) [-5-.3'1

where C is the radial clearance, W is the static load, 5§ is the Sommerfeld
number, | is the lubricant viscosity, P = W/DL, the unit load, R is the
nominal radius, D = 2R, L is the length, and n (revs/s)=w/2n.
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Equations 5.10 lead to the following complex algebraic equation:

(k; — wimy — wms + icpw)Xe'® = F, (5.11)



x = Xellfren vyl g p D g p il
(5.12)

where £ is the orbital frequency. (Here, & is not necessarily equal to w,
the rotational speed.)

Equations 5.12 are substituted into Equations 5.9 to yield two complex
equations. The basic formula e = cosz + isin z separates real and imagi-
nary parts of the resulting two complex equations, to yield the following
four real equations:

Frcos i = [ (@M — ke ) cOS 0 + cnf2sin g | X
+ [ (22 — ky) cOS by + cxyQsiny | ¥
Fy sin fz — [[ﬂzmz — kxx) sin gz — € msq:,]x
+[(2%may — ko) sin oy, — e @costy | ¥
Fycosty = | (22my; — kye) cos b + cu2sing, | X
+[(2my —ky ) costy + e Qsingy | ¥
Fysinfly = [ (@%my: — kyx ) sin 6 — @ cos | X

+[(22myy — k) sin &, — cuQcosdy | ¥

{5.13)
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FIGURE 5.11 Experimental setup for impact excitation of radial seals: (a} quarter through-
cut schematic illustration of test apparatus and (b) schematic of test measurements and data

processing.
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at selected operating conditions spanning a wide range of journal bearing
Sommerfeld numbers (dimensionless speed). The controlled test parame-
ters are rotational speed, bearing static radial load, lubricant viscosity, and
test bearing mass. As with mechanical impedance approaches, the experi-
ment mentioned here is correlated with a 2-DOF model given by the
following equations:

MY + CxeX + KaxX + Cxylf + kgl =0
M + Cylf + kel + Oyl + KX = 0 (5.15)

Cyy = Oyx
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5.4.2 Ungrooved Annular Seals for Liquids

Three commoenly used versions of ungrooved annular seal geometries are
shown in Figure 5.14, with exaggerated clearances for illustrative purposes,
as done with the journal bearing illustration in Figure 5.1. Although these
ungrooved seals bear some geometric similarity to journal bearings, essen-
tial differences distinguish them. First, in most high-pressure applications
the fluid being sealed is not a viscous oil but a much lower viscosity lig-
uid like water or other process liquids or gases. The flowr within the seal

Cylindrical  Tapered  Cylindrical
bore baora step bore

s 7y

Z R 7%

FIGURE 5.14 Ungrooved annular seals (illustrated clearances exaggerated).
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clearance is thus usually furbulent, in contrast to most oil-film journal bear-
ings that are characterized by the laminar flowr RLE, Equation 5.1. Second,
such seals usually have an axial length much smaller than the diameter
(typically L/D = 0.1).



5.4.2.1 Lomakin Effect

The first person to publish about the influence of ungrooved annular seals
on rotor vibration was Lomakin (1955, 1958). Figure 5.15 illustrates how a

Propection of llustrated
pressure distribation
P @ 9T

P @ I
|l|:_i~9|:l':: Vg I70r - pa W < @ I?D’l

FIGURE 5.15 Lomakin effect pressure distribution in an ungrooved annular seal.
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radial-pressure centering force is produced when the rotor and stator of an
annular seal are eccentric to each other. Ignoring at this point the effects of
shaft rotation and inlet flow preswirl, the entrance pressure loss is highest
where the radial gap and thus the inlet flow velocity are largest. Conversely,
the entrance pressure loss is lowest where the radial gap and thus the inlet
flow velocity are smallest. This effect thus produces a radial centering force
on the rotor, which increases with eccentricity between seal rotor and stator.
That is, the radial displacement causes a skewing of the pressure distribu-
tion, producing a radial stiffress effect that is called the “Lomakin® effect. The
x and y components of the centering force are expressible by directionally
integrating the pressure distribution as shown in Equations 5.2 for journal
bearings. In this simplest embodiment of the Lomakin effect, with shaft
rotation and inlet flow prerotation not included, the centering force vector
() is in line with the eccentricity (¢) and thus its magnitude is expressible
as follows:

In

f=- [p{EI,:»_}R sin Ada dz {5.17)
o

e



In
[ pi#, z)R sin 8de dz (5.17)
o

-a'—.r-

In precisely the same manner described for journal bearings, the cen-
tering force described by Equation 5.17 can be linearized for “small”
eccentricities, thus yielding a radial stiffness coefficient as follows:

{5.18)

where Ap is the pressure drop, R is the seal radius, L is the seal length,
and C is the seal radial clearance.

5.4.2.3 Bulk Flow Model Approach

Consistent with the brief description of the RLE provided in Section 52.1,
the aim here is not to provide all the intricate derivation steps in applying
the BFM to annular seals. Instead, the intent here is to facilitate the serious
reader’s understanding of available derivations of an annular seal BFM,
such as thatdetailed by Childs (1993). To that end, the following perspective
is provided.

The BFM employs standard control volume (CV) formulation as covered
in fluid mechanics courses of undergraduate mechanical engineering pro-
grams. In this application, the C'V isa small arbitrary volume of fluid within
the seal (Figure 5.16), bounded by seal rotor and stator surfaces, and by
infinitesimal differential sides in the axial and circumferential directions.
In fact, this is just how Reynolds set up the development of the RLE, except
that variation of fluid velocities across the clearance gap are of paramount
importance in laminar oil-film bearings and thus are not neglected as they
are in the BFM approach.

Fluid flow mass balance for this CV is satisfied by the continuity (mass
conservation) equation. Application of Newton's Second Law (F = mid) to
this CV leads to two coupled PDEs, one for circumferential momentum bal-
ance and one for axial momentum balance. As Childs (1993) implies, the
continuity equation is satisfied by appropriately substituting it into each
of the two momentum equations, which are in turn considerably simpli-
fied in that derivation step. Employing the coordinate system shown in
Figure 5.16, the following two momentum equations for the BFM are thus
obtained.

5.4.2.4 Circumferential Momentum Equation

hap [} u du au
i — — g
T u,j",+ (u Rm}urfr+ph( Rae+wa--) {5.19)
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5.4.2.5 Axial Momentum Equation

p_r P dw  wiw o Bw
_.FJaL 2wli.d, fa+ I.Lur_j" +p.h( + 250 4@ e ) (5.20)



fele, 2y =—| | Api#, z, e, Q)Rcos8dEdz

(5.21)

fole, 2y =—| | Apid, z, e, Q)Rsinédadz

Since this perturbation force is a function of orbit frequency, it lends itself
to a second-order polynomial curve fit in frequency that directly extracts
the isotropic model coefficients of Equation 5.16. To that end, expressing the
perturbation force by its orthogonal components referenced to the instan-
taneous radial and fangential directions of the circular perturbation orbit
yields the following expressions (refer Figure 2.13):

o —(ky + Dy — Q0me,  fr 2 (kyy — Qc)e (5.27)



5.4.2.6 Comparisons between Ungrooved Annular Seals
and Journal Bearings

The majority of journal bearings operate with their hydrodynamic films
in the laminar flow regime, in which case aligned journal bearings are
characterized by two dimensionless parameters, Sommerfeld number
(dimensionless speed) and L/ D. In some applications, however, the combi-
nation of journal surface speed, lubricant viscosity, and bearing clearance
place journal bearing hydrodynamic lubricating films into the turbulent
regime. Conventional wisdom of the experts is that a quite good approx-
imation for turbulence effects in journal bearings is based on the use of
an apparent viscosity, which is locally made higher than the actual vis-
cosity as a function of the local Reynolds numbers for journal velocity
and localized parameters of pressure gradient and film thickness. This
approach is provided by Elrod and Ng (1967). In the Elrod-Ng approach,
the RLE Equation 5.1 for laminar lubricant films is still employed, albeit
with the local viscosity at each finite-difference grid point modified to its
local apparent viscosity. There is then an additional dimensionless number
(e.g., clearance based Reynolds number) to characterize the journal bear-
ing. The Elrod-Ng approach rests upon a fundamental assumption that
temporal and convective inertia terms of the N-5 equations are negligible
even though it is fluid inertia at the film flow’s fine structure level that
is an essental ingredient of the turbulence. Thus, even with turbulence
effects included, the theory and characterization of hydrodynamic jour-
nal bearings is not appreciably different than for laminar hydrodynamic
lubrication. In stark contrast, ungrooved annular seals are characterized
by several nondimensional parameters, including, but not limited to, the
following list of major ones:

[pi_n —ﬁnut]‘ wy Q
Pl
Q = seal through flow.

Pressure drop:

ncC
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Axial and circumferential Reynolds numbers, respectively:

2ungpC RiwpC
R:= . Ry=
= L




Clearance wncertainty via seal rotor and stator diameter mifg.
tolerances

Variations in fluid miscesity from fluid temperature variations

Seal rotor-to-stator static eccentricity (assumed zero for isotropic
model)

Seal rotor-to-stator Hlt mesalignment
Seal ring distortions from loads, temperature gradients, wear, and
S0 0N

Basic simplifying assumptions leading to the BFM governing
equations

Coefficients for entrance pressure loss and exit pressure recovery
Entrance circumferential velocity (preswirl)
Surface roughness.



5.4.3 Circumferentially Grooved Annular Seals for Liquids

Various fluid-annulus sealing zones, such as those shown in Figure 5.13,
are not always ungrooved designs. Circumferential grooves are used in
many designs to further reduce leakage How between stages, through end
seals and balancing drum (piston). The number of grooves, their axial
spacing, width, and depth are not standardized parameters; different man-
ufacturers have their own variation on the basic idea of circumferentially
grooving to improve leakage reduction. The presence of such grooves
also provides a more rub-forgiving less seizure-prone rotor—stator com-
bination than without grooves. Grooves are employed on either rotor or
stator. Figure 5.17 shows a variety of circumferential groove geometry for
annular seals:

a. Labyrinth seals; groove depth much larger than radial Hp clear-

dnce.

b. Shallow-grooves; groove depth approximately equal to tip clear-
ance.

Published analysis and experimental results are sparse. Those cited by
Childs (1993) suggest some trends. First, grooving significantly reduces
LRV stiffness and damping effects, possibly as much as 80% reduction
with wide deep grooves. Second, having the grooves on the seal stator

L]

FIGURE 517 Examples of circumferentially grooved annular seals: {a) labyrinth seals;
groove depth much larger than radial Hp clearance and (b) shallow grooves; proove depth
approximately equal to Hp dearance.



5.7 Magnetic Bearings

The generic configuration of an active magnetic bearing system is shown
in Figure 5.21, which schematically illustrates the essential components.
The main feature of magnetic bearings which has attracked the attention
of some rotating machinery designers is that they are oil-free bearings. This
means for example that with large pipe line compressor rotors supported
on oil-free bearings, the elimination of oil precludes the eventual coating of
pipeline interior surfaces with lost oil that otherwise must be periodically
cleaned out of the pipeline, at considerable service and downtime costs.
Interestingly, this feature is not uppermost in the minds of magnetic bearing
conceivers, who for the most part are academicians with a particular focus
on control theory. They conceived the modern aclive magnetic bearing as
an electromechanical actuator device that utilizes rotor position feedback
to a controller in order for the magnetic bearing to provide electromagnetic
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Microprocessor
controller

FIGURE 5.21 Active magnetc bearing schematic.



5.8 Compliance Surface Foil Gas Bearings

Gas film bearings of both hydrodynamic and hydrostatic functioning were
already being investigated and used in a few novel applications nearly 50
years ago. However, use of those bearings never achieved wide indus-
trial use, primarily because of quite low load capacity at modest rotational
speeds and rotor dynamical instability problems at speeds sufficiently high
to provide useable static load capacities. Hydrostatic gas bearings utilizing
porous media bearing sleeves were also shown to be feasible in labora-
tory testing and analysis. The foil gas bearing concept achieved success in
the predigital-age high-speed tape deck heads by manufacturers such as
Ampex. The main modern application of the hydrodynamic air bearing,
initially on mainframe computer high-speed flying-head disk readers, has
found its present place in PC hard drives. Quite recently, a major Cleveland-
based manufacturer of MRI medical scanners has successfully developed
and employed hydrostatic air bearings to support the main rotational
positioning barrel, advancing the position resolution in this product.
About 25 years ago the gas foil bearing conceptevolved into a new family
of configuration, namely the compliance surface foil gas bearing (Heshmat
et al., 1982). Figure 5.23 illustrates two typical compliance surface foil gas

FIGURE 5.23 Two types of compliant surface foil gas journal bearings: (a) leat-type fodl
bearing and (b} bump-type foll bearing,



6.1 Centrifugal Pumps

Referring to Figure 6.1a, it is not surprising that static and dynamic
hydraulic forces are imposed on the rotor of a centrifugal pump by
the flow through the pump. These hydraulic rotor forces are dominant
factors in determining the vibration behavior of a centrifugal pump, espe-
cially high-energy pumps such as those required for boiler feed water
service.

6.1.1 Static Radial Hydraulic Impeller Force

A static radial force is imposed on a pump impeller because the steady
portion of the total pressure distribution over the impeller surface is not
of perfect axial symmetry. This static radial hydraulic force is relatively
larger in single-tongue volute-casing pumps, and smaller in mulbtongue
volute-casing and diffusercasing pumps. The combined static radial
impeller force from all the impellers of a high-pressure multiimpeller
pump, such as shown in Figure 5.13, can easily be much larger than the total
weight of the pump rotating element. Thus, the static hydraulic impeller
force can readily be the dominant factor in determining journal bearing
static loads and thus the LRV stiffness and damping characteristics of the
bearings. The static hydraulic radial force on an impeller varies consid-
erably in magnitude and direction with pump flow. Therefore, the rotor
dynamic properties of the journal bearings can vary considerably over the
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p, — K:HD282 (6.1)
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where P, is the static force (pounds), H is the pump head (ft), D; is the
impeller outer diameter (in.), B; is the impeller discharge width including
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FIGURE 6.2 Contribution to steam whird from the “Thomas-Alford” effect: (a) sactional view
ofasingle-flow high-pressure steam turbine and (b) nonuniform torque distribution resulting
from eccentricity.

impeller side plates (in.), and K, is the empirical coefficient that changes
with pump flow approximately as follows:

K, — 036 1_( Q )2 Q = operating pump flow
sl Qser/ |°  Qgep = best efficient point pump flow
(6.2)
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impeller side plates (in.), and K, is the empirical coefficient that changes
with pump flow approximately as follows:

g Q@ \?] Q= operating pump flow
B [1 N ( QBEP) ] " Qarp = best efficient point pump flow
(6.2)



FIGURE &.3 Static radial hydraulic force on volute-pump im pellers: (a) single-volute pump
and (b} double-volute pump, Ps = I — FY.

reporting values for some single-volute pumps as high as 0.6 at shutoff
operation.

The well-known donble-volufe (two tongues) configuration, as shown in
Figure 6.3b, was devised to divide the pump volute into two equal 180°
flow sections, with the intent that each section’s static radial impeller force
cancels the other’s. The double volute does not completely accomplish
that objective, but it does yield a drastic force reduction from that of a
single-tongue volute. The author is familiar with centrifugal pump designs
employing the tri-volufe (three 120°-arc sections) and the quad-volute (four
a0°-arc sections). Of course, if one further increases the number of volute
tongues, the volute then resembles a diffuser.

Guelich et al. (1987) use the following less confusing form of Equa-
tion 6.1, which applies in any consistent system of units and explicitly
shows density:

Ps

" pgHD;B;

where p is the mass density of the pumped liquid and g is the gravitational
constant.

(6.3)
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FIGURE &4 Spectra {rms) of normalized broadband impeller forces.

the BEP flow, the continuous strong increase in force magnitude results
from impeller inlet and exit flow re-circulation (see Figure 6.1a) and flow
separation.

6.1.2.2 Interaction Impeller Forces

The handling of impeller LRV inferaction forces that has evolved over the
last 30 years is to curpe fif experimental data to the same linear isotropic LRV
model used for most annular seal LRV characterizations. The assumption
typically invoked for annular seal LRV coefficient arrays is that the flow
field is rotationally symmetric (Chapter 5), and this assumption leads to the
isotropic model given by Equation 2.85. While this assumption is quite inap-
propriate for journal bearings, it has been justified for annular seals and
yields considerable simplification of both computational and experimental
methods to extract LRV coefficient arrays for annular seals. Conversely, the
flow feld of a centrifugal pump impeller is certainly not rotationally sym-
metric. Nevertheless, to simplify test rigs and minimize associated costs
to extract pump impeller LRV coefficient arrays, initial experiments were
based on the isotropic model given by Equation 2.85, rewritten as

14 R o o R e

(6.5)



a. [Journal bearing operating with a liquid lubricant, an atmospheric
ambient pressure, and thus cavitaton formed slightly down-
stream of the minimum film thickness; pressure field governed
by fluid viscosity (i.e., Reynolds Lubrication Equation).

b. Jourmal bearing operating with very high ambient pressure (e.g.,
pressurized water reactor (PWR) reactor coolant pump lower

(1)

Circumferential
velocity profle
in deceleration

FIGURE 6.6 Circumferential pressure distributions relative to ambéent: (a) journal bearing
operating with atmospheric ambdent pressure (cavitation); (b) journal bearing operating with
high ambient pressure (no cavitaton); ic) and (d) high rotational Reynolds number fuid
annulus with high ambient pressura.

Turbo-Machinery Impeller and Blade Effects 267

bearing; see Figure 12.1) and thus no cavitation; pressure field
also governed by fluid viscosity.

c. High rotational Reynolds number fluid annulus in which the major
inner core of fluid has a nearly “flat” circumferential velocity pro-
file that is joined to the cylindrical boundaries through very thin
boundary layers; pressure field governed by inertia of inner core
of fluid.

d. Aslightly modified version of (c), which is the basis of the author s

own explanation of the labyrinth seal contribution to steam whirl
forces.



h
Circumferential flow /unit axial length, Qg = [V(r,e}dr = constant
i

(6.10)

A high rotational Reynolds number fluid annulus has its pressure field
controlled by the fluid inertia in the inner core of circulating fluid. Thus,
the clearance gap can be thought of as a Venturi meter wrapped around on
itself and operating on the Bernoulli equation principle of conservation of
energy, with maximum pressure occurring at the maximum radial gap and
minimum pressure occurring at the minimum radial gap. With elevation
and density changes discounted, the Bernoulli equation can be stated as
follows:

L"E
p+pT = constant (6.11)
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where p is the pressure, V is the fluid velocity, and p is the fluid mass
density.

If the kinetic energy term is based on the average velocity at each cicum-
ferential location (8), then the pressure distribution in Figure 6.6¢ illustrates
the result, and is based on the minimum possible local kinetic energy term
(per unit of axial length), which is achieved with a perfectly flat velocity
profile (zero thickness boundary layer), and is expressed as follows:

p(Qa /i

KEmin = 3

(6.12)

Part 4 is Self study



