
Random Vibration 



Mechanical Vibration and Shock Analysis 
second edition – volume 3 

Random Vibration

Christian Lalanne 



First published in France in 1999 by Hermes Science Publications © Hermes Science Publications, 1999 
First published in English in 2002 by Hermes Penton Ltd © English language edition Hermes Penton Ltd, 2002 
Second edition published in Great Britain and the United States in 2009 by ISTE Ltd and John Wiley  
& Sons, Inc. 

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as 
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, 
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, 
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. 
Enquiries concerning reproduction outside these terms should be sent to the publishers at the 
undermentioned address: 

ISTE Ltd  John Wiley & Sons, Inc.  
27-37 St George’s Road  111 River Street 
London SW19 4EU Hoboken, NJ 07030 
UK USA

www.iste.co.uk  www.wiley.com 

© ISTE Ltd, 2009 

The rights of Christian Lalanne to be identified as the author of this work have been asserted by him in 
accordance with the Copyright, Designs and Patents Act 1988. 

Library of Congress Cataloging-in-Publication Data 

Lalanne, Christian. 
  [Vibrations et chocs mécaniques. English] 
  Mechanical vibration and shock analysis / Christian Lalanne. -- 2nd ed. 
       v. cm. 
  Includes bibliographical references and index. 
  Contents: v. 1. Sinusoidal vibration -- v. 2. Mechanical shock -- v. 3. Random vibration -- v. 4. Fatigue 
damage -- v. 5. Specification development. 
  ISBN 978-1-84821-122-3 (v. 1) -- ISBN 978-1-84821-123-0 (v. 2)  1.  Vibration. 2.  Shock (Mechanics).   
I. Title.  
  TA355.L2313 2002 
  624.1'76--dc22 

                                                            2009013736 

British Library Cataloguing-in-Publication Data 
A CIP record for this book is available from the British Library  
ISBN: 978-1-84821-121-6 (Set of 5 Volumes) 
ISBN: 978-1-84821-124-7 (Volume 3) 

Printed and bound in Great Britain by CPI Antony Rowe, Chippenham and Eastbourne. 

http://www.wiley.com


Table of Contents 

Foreword. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii 

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii 

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix 

Chapter 1. Statistical Properties of a Random Process . . . . . . . . . . . . .  1 

1.1. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 
1.1.1 Random variable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 
1.1.2. Random process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

1.2. Random vibration in real environments . . . . . . . . . . . . . . . . . . .  2 
1.3. Random vibration in laboratory tests . . . . . . . . . . . . . . . . . . . . .  3 
1.4. Methods of random vibration analysis . . . . . . . . . . . . . . . . . . . .  3 
1.5. Distribution of instantaneous values . . . . . . . . . . . . . . . . . . . . .  4 

1.5.1. Probability density . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 
1.5.2. Distribution function . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 

1.6. Gaussian random process. . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 
1.7. Rayleigh distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11 
1.8. Ensemble averages: through the process. . . . . . . . . . . . . . . . . . .  11 

1.8.1. n order average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11 
1.8.2. Centered moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13 
1.8.3. Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13 
1.8.4. Standard deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14 
1.8.5. Autocorrelation function. . . . . . . . . . . . . . . . . . . . . . . . . .  15 
1.8.6. Cross-correlation function. . . . . . . . . . . . . . . . . . . . . . . . .  15 
1.8.7. Autocovariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16 
1.8.8. Covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16 
1.8.9. Stationarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16 

1.9. Temporal averages: along the process . . . . . . . . . . . . . . . . . . . .  21 
1.9.1. Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21 
1.9.2. Quadratic mean – rms value . . . . . . . . . . . . . . . . . . . . . . .  23 



vi     Random Vibration 

1.9.3. Moments of order n. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25 
1.9.4. Variance – standard deviation . . . . . . . . . . . . . . . . . . . . . .  26 
1.9.5. Skewness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27 
1.9.6. Kurtosis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28 
1.9.7. Temporal autocorrelation function. . . . . . . . . . . . . . . . . . . .  29 
1.9.8. Properties of the autocorrelation function . . . . . . . . . . . . . . .  35 
1.9.9. Correlation duration . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37 
1.9.10. Cross-correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42 
1.9.11. Cross-correlation coefficient . . . . . . . . . . . . . . . . . . . . . .  45 
1.9.12. Ergodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46 

1.10. Significance of the statistical analysis (ensemble or temporal) . . . . .  48 
1.11. Stationary and pseudo-stationary signals. . . . . . . . . . . . . . . . . .  48 
1.12. Summary chart of main definitions . . . . . . . . . . . . . . . . . . . . .  49 
1.13. Sliding mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50 
1.14. Identification of shocks and/or signal problems. . . . . . . . . . . . . .  54 
1.15. Breakdown of vibratory signal into “events”: choice of signal 
samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56 
1.16. Interpretation and taking into account of environment variation . . . .  63 

Chapter 2. Random Vibration Properties in the Frequency Domain . . . .  67

2.1. Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67 
2.2. Power spectral density . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69 

2.2.1. Need . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69 
2.2.2. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71 

2.3. Cross-power spectral density . . . . . . . . . . . . . . . . . . . . . . . . .  77 
2.4. Power spectral density of a random process. . . . . . . . . . . . . . . . .  78 
2.5. Cross-power spectral density of two processes . . . . . . . . . . . . . . .  79 
2.6. Relationship between the PSD and correlation function of a 
process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80 
2.7. Quadspectrum – cospectrum. . . . . . . . . . . . . . . . . . . . . . . . . .  81 
2.8. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  82 

2.8.1. Broad band process. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  82 
2.8.2. White noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83 
2.8.3. Band-limited white noise . . . . . . . . . . . . . . . . . . . . . . . . .  84 
2.8.4. Narrow band process . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84 
2.8.5. Pink noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  85 

2.9. Autocorrelation function of white noise . . . . . . . . . . . . . . . . . . .  85 
2.10. Autocorrelation function of band-limited white noise . . . . . . . . . .  87 
2.11. Peak factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89 
2.12. Effects of truncation of peaks of acceleration signal on the PSD . . .  89 
2.13. Standardized PSD/density of probability analogy . . . . . . . . . . . .  93 
2.14. Spectral density as a function of time. . . . . . . . . . . . . . . . . . . .  93 
2.15. Relationship between the PSD of the excitation and the response 
of a linear system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  94 



Contents     vii 

2.16. Relationship between the PSD of the excitation and the cross-
power spectral density of the response of a linear system . . . . . . . . . . .  97 
2.17. Coherence function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  98 
2.18.  Transfer function calculation from random vibration 
measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  100 

2.18.1. Theoretical relations . . . . . . . . . . . . . . . . . . . . . . . . . . .  100 
2.18.2. Presence of noise on the input. . . . . . . . . . . . . . . . . . . . . .  102 
2.18.3. Presence of noise on the response . . . . . . . . . . . . . . . . . . .  104 
2.18.4. Presence of noise on the input and response . . . . . . . . . . . . .  106 
2.18.5. Choice of transfer function . . . . . . . . . . . . . . . . . . . . . . .  107 

Chapter 3. Rms Value of Random Vibration . . . . . . . . . . . . . . . . . . .  113

3.1. Rms value of a signal as a function of its PSD . . . . . . . . . . . . . . .  113 
3.2. Relationships between the PSD of acceleration, velocity and 
displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  116 
3.3. Graphical representation of the PSD . . . . . . . . . . . . . . . . . . . . .  119 
3.4. Practical calculation of acceleration, velocity and displacement 
rms values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  120 

3.4.1. General expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . .  120 
3.4.2. Constant PSD in frequency interval . . . . . . . . . . . . . . . . . . .  121 
3.4.3. PSD comprising several horizontal straight line segments. . . . . .  122 
3.4.4. PSD defined by a linear segment of arbitrary slope . . . . . . . . . .  123 
3.4.5. PSD comprising several segments of arbitrary slopes . . . . . . . .  132 

3.5. Rms value according to the frequency . . . . . . . . . . . . . . . . . . . .  132 
3.6. Case of periodic signals . . . . . . . . . . . . . . . . . . . . . . . . . . . .  134 
3.7. Case of a periodic signal superimposed onto random noise . . . . . . .  136 

Chapter 4. Practical Calculation of the Power Spectral Density . . . . . . .  139

4.1. Sampling of signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  139 
4.2. PSD calculation methods. . . . . . . . . . . . . . . . . . . . . . . . . . . .  143 

4.2.1. Use of the autocorrelation function . . . . . . . . . . . . . . . . . . .  143 
4.2.2. Calculation of the PSD from the rms value of a filtered signal . . .  144 
4.2.3. Calculation of the PSD starting from a Fourier transform . . . . . .  145 

4.3. PSD calculation steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  145 
4.3.1. Maximum frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . .  146 
4.3.2. Extraction of sample of duration T. . . . . . . . . . . . . . . . . . . .  146 
4.3.3. Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  151 
4.3.4. Addition of zeros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  154 

4.4. FFT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  159 
4.5. Particular case of a periodic excitation. . . . . . . . . . . . . . . . . . . .  160 
4.6. Statistical error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  161 

4.6.1. Origin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  161 
4.6.2. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  163 

4.7. Statistical error calculation. . . . . . . . . . . . . . . . . . . . . . . . . . .  164 



viii     Random Vibration 

4.7.1. Distribution of the measured PSD . . . . . . . . . . . . . . . . . . . .  164 
4.7.2. Variance of the measured PSD . . . . . . . . . . . . . . . . . . . . . .  166 
4.7.3. Statistical error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  167 
4.7.4. Relationship between number of degrees of freedom, duration 
and bandwidth of analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  168 
4.7.5. Confidence interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  174 
4.7.6. Expression for statistical error in decibels . . . . . . . . . . . . . . .  186 
4.7.7. Statistical error calculation from digitized signal . . . . . . . . . . .  188 

4.8. Influence of duration and frequency step on the PSD . . . . . . . . . . .  196 
4.8.1. Influence of duration . . . . . . . . . . . . . . . . . . . . . . . . . . . .  196 
4.8.2. Influence of the frequency step . . . . . . . . . . . . . . . . . . . . . .  197 
4.8.3. Influence of duration and of constant statistical error 
frequency step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  198 

4.9. Overlapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  200 
4.9.1. Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  200 
4.9.2. Influence on the number of dofs . . . . . . . . . . . . . . . . . . . . .  201 
4.9.3. Influence on statistical error. . . . . . . . . . . . . . . . . . . . . . . .  202 
4.9.4. Choice of overlapping rate . . . . . . . . . . . . . . . . . . . . . . . .  205 

4.10. Information to provide with a PSD . . . . . . . . . . . . . . . . . . . . .  206 
4.11. Difference between rms values calculated from a signal 
according to time and from its PSD . . . . . . . . . . . . . . . . . . . . . . . .  206 
4.12. Calculation of a PSD from a Fourier transform . . . . . . . . . . . . . .  207 
4.13. Amplitude based on frequency: relationship with the PSD . . . . . . .  211 
4.14. Calculation of the PSD for given statistical error . . . . . . . . . . . . .  212 

4.14.1. Case study: digitization of a signal is to be carried out . . . . . . .  212 
4.14.2. Case study: only one sample of an already digitized signal is 
available . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  213 

4.15. Choice of filter bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . .  215 
4.15.1. Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  215 
4.15.2. Bias error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  217 
4.15.3. Maximum statistical error . . . . . . . . . . . . . . . . . . . . . . . .  222 
4.15.4. Optimum bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . .  224 

4.16. Probability that the measured PSD lies between  one standard 
deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  227 
4.17. Statistical error: other quantities . . . . . . . . . . . . . . . . . . . . . . .  229 
4.18. Peak hold spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  234 
4.19. Generation of random signal of given PSD . . . . . . . . . . . . . . . .  236 

4.19.1. Random phase sinusoid sum method. . . . . . . . . . . . . . . . . .  236 
4.19.2. Inverse Fourier transform method . . . . . . . . . . . . . . . . . . .  239 

4.20. Using a window during the creation of a random signal from a 
PSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  240 



Contents     ix 

Chapter 5. Statistical Properties of Random Vibration  
in the Time Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  243

5.1. Distribution of instantaneous values . . . . . . . . . . . . . . . . . . . . .  243 
5.2. Properties of derivative process . . . . . . . . . . . . . . . . . . . . . . . .  244 
5.3. Number of threshold crossings per unit time . . . . . . . . . . . . . . . .  248 
5.4. Average frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  252 
5.5. Threshold level crossing curves . . . . . . . . . . . . . . . . . . . . . . . .  255 
5.6. Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  262 
5.7. Average frequency of PSD defined by straight line segments . . . . . .  265 

5.7.1. Linear-linear scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  265 
5.7.2. Linear-logarithmic scales . . . . . . . . . . . . . . . . . . . . . . . . .  267 
5.7.3. Logarithmic-linear scales . . . . . . . . . . . . . . . . . . . . . . . . .  268 
5.7.4. Logarithmic-logarithmic scales. . . . . . . . . . . . . . . . . . . . . .  269 

5.8. Fourth moment of PSD defined by straight line segments . . . . . . . .  271 
5.8.1. Linear-linear scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  271 
5.8.2. Linear-logarithmic scales . . . . . . . . . . . . . . . . . . . . . . . . .  272 
5.8.3. Logarithmic-linear scales . . . . . . . . . . . . . . . . . . . . . . . . .  273 
5.8.4. Logarithmic-logarithmic scales. . . . . . . . . . . . . . . . . . . . . .  273 

5.9. Generalization: moment of order n . . . . . . . . . . . . . . . . . . . . . .  274 
5.9.1. Linear-linear scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  275 
5.9.2. Linear-logarithmic scales . . . . . . . . . . . . . . . . . . . . . . . . .  275 
5.9.3. Logarithmic-linear scales . . . . . . . . . . . . . . . . . . . . . . . . .  275 
5.9.4. Logarithmic-logarithmic scales. . . . . . . . . . . . . . . . . . . . . .  275 

Chapter 6. Probability Distribution of Maxima of Random Vibration . . .  277
6.1. Probability density of maxima. . . . . . . . . . . . . . . . . . . . . . . . .  277 
6.2. Expected number of maxima per unit time . . . . . . . . . . . . . . . . .  285 
6.3. Average time interval between two successive maxima. . . . . . . . . .  288 
6.4. Average correlation between two successive maxima. . . . . . . . . . .  289 
6.5. Properties of the irregularity factor . . . . . . . . . . . . . . . . . . . . . .  290 

6.5.1. Variation interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  290 
6.5.2. Calculation of irregularity factor for band-limited white noise . . .  294 
6.5.3. Calculation of irregularity factor for noise of form bG Const . f . . .  297 
6.5.4. Case study: variations of irregularity factor for two narrow 
band signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  301 

6.6. Error related to the use of Rayleigh’s law instead of a complete 
probability density function . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  303 
6.7. Peak distribution function . . . . . . . . . . . . . . . . . . . . . . . . . . .  304 

6.7.1. General case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  304 
6.7.2. Particular case of a narrow band Gaussian process . . . . . . . . . .  306 

6.8. Mean number of maxima greater than the given threshold (by unit 
time). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  309 
6.9. Mean number of maxima above given threshold between two 
times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  313 



x     Random Vibration 

6.10. Mean time interval between two successive maxima . . . . . . . . . .  313 
6.11. Mean number of maxima above given level reached by signal 
excursion above this threshold . . . . . . . . . . . . . . . . . . . . . . . . . . .  314 
6.12. Time during which the signal is above a given value . . . . . . . . . .  317 
6.13. Probability that a maximum is positive or negative . . . . . . . . . . .  318 
6.14. Probability density of the positive maxima . . . . . . . . . . . . . . . .  319 
6.15. Probability that the positive maxima is lower than a given 
threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  319 
6.16. Average number of positive maxima per unit of time . . . . . . . . . .  319 
6.17. Average amplitude jump between two successive extrema . . . . . . .  320 

Chapter 7. Statistics of Extreme Values . . . . . . . . . . . . . . . . . . . . . .  323

7.1. Probability density of maxima greater than a given value . . . . . . . .  323 
7.2. Return period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  324 
7.3. Peak p  expected among pN  peaks . . . . . . . . . . . . . . . . . . . .  324 
7.4. Logarithmic rise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  325 
7.5. Average maximum of pN  peaks . . . . . . . . . . . . . . . . . . . . . . .  325 
7.6. Variance of maximum . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  325 
7.7. Mode (most probable maximum value) . . . . . . . . . . . . . . . . . . .  326 
7.8. Maximum value exceeded with risk . . . . . . . . . . . . . . . . . . . .  326 
7.9. Application to the case of a centered narrow band normal process . . .  326 

7.9.1. Distribution function of largest peaks over duration T . . . . . . . .  326 
7.9.2. Probability that one peak at least exceeds a given threshold. . . . .  329 
7.9.3. Probability density of the largest maxima over duration T. . . . . .  330 
7.9.4. Average of highest peaks . . . . . . . . . . . . . . . . . . . . . . . . .  333 
7.9.5. Mean value probability . . . . . . . . . . . . . . . . . . . . . . . . . .  334 
7.9.6. Standard deviation of highest peaks . . . . . . . . . . . . . . . . . . .  336 
7.9.7. Variation coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . .  338 
7.9.8. Most probable value . . . . . . . . . . . . . . . . . . . . . . . . . . . .  338 
7.9.9. Median . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  339 
7.9.10. Value of density at mode. . . . . . . . . . . . . . . . . . . . . . . . .  341 
7.9.11. Expected maximum. . . . . . . . . . . . . . . . . . . . . . . . . . . .  341 
7.9.12. Average maximum . . . . . . . . . . . . . . . . . . . . . . . . . . . .  342 
7.9.13. Maximum exceeded with given risk . . . . . . . . . . . . . . . . .  342 

7.10. Wide band centered normal process . . . . . . . . . . . . . . . . . . . .  344 
7.10.1. Average of largest peaks . . . . . . . . . . . . . . . . . . . . . . . . .  344 
7.10.2. Variance of the largest peaks . . . . . . . . . . . . . . . . . . . . . .  347 
7.10.3. Variation coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . .  348 

7.11. Asymptotic laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  348 
7.11.1. Gumbel asymptote . . . . . . . . . . . . . . . . . . . . . . . . . . . .  349 
7.11.2. Case study: Rayleigh peak distribution . . . . . . . . . . . . . . . .  350 
7.11.3. Expressions for large values of pN . . . . . . . . . . . . . . . . . .  351 

7.12. Choice of type of analysis . . . . . . . . . . . . . . . . . . . . . . . . . .  352 



Contents     xi 

7.13. Study of the envelope of a narrow band process . . . . . . . . . . . . .  355 
7.13.1. Probability density of the maxima of the envelope . . . . . . . . .  355 
7.13.2. Distribution of maxima of envelope . . . . . . . . . . . . . . . . . .  360 
7.13.3. Average frequency of envelope of narrow band noise . . . . . . .  362 

Chapter 8. Response of a One-Degree-of-Freedom Linear System  
to Random Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  367

8.1. Average value of the response of a linear system . . . . . . . . . . . . .  367 
8.2. Response of perfect bandpass filter to random vibration . . . . . . . . .  368 
8.3. The PSD of the response of a one-dof linear system. . . . . . . . . . . .  370 
8.4. Rms value of response to white noise . . . . . . . . . . . . . . . . . . . .  371 
8.5. Rms value of response of a linear one-dof system subjected to 
bands of random noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  377 

8.5.1. Case where the excitation is a PSD defined by a straight line 
segment in logarithmic scales . . . . . . . . . . . . . . . . . . . . . . . . . .  377 
8.5.2. Case where the vibration has a PSD defined by a straight line 
segment of arbitrary slope in linear scales . . . . . . . . . . . . . . . . . . .  383 
8.5.3. Case where the vibration has a constant PSD between two 
frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  385 
8.5.4. Excitation defined by an absolute displacement . . . . . . . . . . . .  391 
8.5.5. Case where the excitation is defined by PSD comprising n 
straight line segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  393 

8.6. Rms value of the absolute acceleration of the response . . . . . . . . . .  396 
8.7. Transitory response of a dynamic system under stationary random 
excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  397 
8.8. Transitory response of a dynamic system under amplitude 
modulated white noise excitation. . . . . . . . . . . . . . . . . . . . . . . . . .  404 

Chapter 9. Characteristics of the Response of a One-Degree-of-Freedom  
Linear System to Random Vibration . . . . . . . . . . . . . . . . . . . . . . . .  407

9.1. Moments of response of a one-degree-of-freedom linear system:  
irregularity factor of response. . . . . . . . . . . . . . . . . . . . . . . . . . . .  407 

9.1.1. Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  407 
9.1.2. Irregularity factor of response to noise of a constant PSD . . . . . .  411 
9.1.3. Characteristics of irregularity factor of response . . . . . . . . . . .  413 
9.1.4. Case of a band-limited noise . . . . . . . . . . . . . . . . . . . . . . .  424 

9.2. Autocorrelation function of response displacement . . . . . . . . . . . .  425 
9.3. Average numbers of maxima and minima per second . . . . . . . . . . .  426 
9.4. Equivalence between the transfer functions of a bandpass filter 
and a one-dof linear system . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  429 

9.4.1. Equivalence suggested by D.M. Aspinwall. . . . . . . . . . . . . . .  429 
9.4.2. Equivalence suggested by K.W. Smith . . . . . . . . . . . . . . . . .  431 
9.4.3. Rms value of signal filtered by the equivalent bandpass filter . . .  433 



xii     Random Vibration 

Chapter 10. First Passage at a Given Level of Response of a  
One-Degree-of-Freedom Linear System to a Random Vibration . . . . . . .  435

10.1. Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  435 
10.2. Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  439 
10.3. Statistically independent threshold crossings . . . . . . . . . . . . . . .  440 
10.4. Statistically independent response maxima . . . . . . . . . . . . . . . .  448 
10.5. Independent threshold crossings by the envelope of maxima. . . . . .  451 
10.6. Independent envelope peaks . . . . . . . . . . . . . . . . . . . . . . . . .  455 

10.6.1. S.H. Crandall method. . . . . . . . . . . . . . . . . . . . . . . . . . .  455 
10.6.2. D.M. Aspinwall method . . . . . . . . . . . . . . . . . . . . . . . . .  458 

10.7. Markov process assumption . . . . . . . . . . . . . . . . . . . . . . . . .  466 
10.7.1. W.D. Mark assumption. . . . . . . . . . . . . . . . . . . . . . . . . .  466 
10.7.2. J.N. Yang and M. Shinozuka approximation . . . . . . . . . . . . .  473 

10.8. E.H. Vanmarcke model . . . . . . . . . . . . . . . . . . . . . . . . . . . .  474 
10.8.1. Assumption of a two state Markov process . . . . . . . . . . . . . .  474 
10.8.2. Approximation based on the mean clump size . . . . . . . . . . . .  480 

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  491

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  549

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  565

Summary of other Volumes in the Series. . . . . . . . . . . . . . . . . . . . . .  571



Foreword to Series 

In the course of their lifetime, simple items in everyday use such as mobile 
telephones, wristwatches, electronic components in cars or more specific items such 
as satellite equipment or flight systems in aircraft, can be subjected to various 
conditions of temperature and humidity, and more particularly to mechanical shock 
and vibrations, which form the subject of this work. They must therefore be 
designed in such a way that they can withstand the effects of the environmental 
conditions they are exposed to without being damaged. Their design must be 
verified using a prototype or by calculations and/or significant laboratory testing. 

Sizing and testing are performed on the basis of specifications taken from 
national or international standards. The initial standards, drawn up in the 1940s, 
were often extremely stringent, blanket specifications, consisting of a sinusoidal 
vibration, the frequency of which was set to the resonance of the equipment. They 
were essentially designed to demonstrate a certain standard resistance of the 
equipment, with the implicit hypothesis that if the equipment survived the particular 
environment, it would withstand, undamaged, the vibrations to which it would be 
subjected in service. Sometimes with a delay due to a certain conservatism, the 
evolution of these standards followed that of the testing facilities: the possibility of 
producing swept sine tests, the production of narrow-band random vibrations swept 
over a wide range and finally the generation of wide-band random vibrations. At the 
end of the 1970s, it was felt that there was a basic need to reduce the weight and cost 
of on-board equipment and to produce specifications closer to the real conditions of 
use. This evolution was taken into account between 1980 and 1985 concerning 
American standards (MIL-STD 810), French standards (GAM EG 13) and 
international standards (NATO), which all recommended the tailoring of tests.
Current preference is to talk of the tailoring of the product to its environment in 
order to assert more clearly that the environment must be taken into account from 
the very start of the project, rather than to check the behavior of the material a
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posteriori. These concepts, originating with the military, are currently being 
increasingly echoed in the civil field. 

Tailoring is based on an analysis of the life profile of the equipment, on the 
measurement of the environmental conditions associated with each condition of use 
and on the synthesis of all the data into a simple specification, which should be of 
the same severity as the actual environment. 

This approach presupposes a correct understanding of the mechanical systems 
subjected to dynamic loads and knowledge of the most frequent failure modes. 

Generally speaking, a good assessment of the stresses in a system subjected to 
vibration is possible only on the basis of a finite element model and relatively 
complex calculations. Such calculations can only be undertaken at a relatively 
advanced stage of the project once the structure has been sufficiently defined for 
such a model to be established. 

Considerable work on the environment must be performed independently of the 
equipment concerned either at the very beginning of the project, at a time where 
there are no drawings available, or at the qualification stage, in order to define the 
test conditions. 

In the absence of a precise and validated model of the structure, the simplest 
possible mechanical system is frequently used consisting of mass, stiffness and 
damping (a linear system with one degree of freedom), especially for: 

– the comparison of the severity of several shocks (shock response spectrum) or 
of several vibrations (extreme response and fatigue damage spectra); 

– the drafting of specifications: determining a vibration which produces the same 
effects on the model as the real environment, with the underlying hypothesis that the 
equivalent value will remain valid on the real, more complex structure; 

– the calculations for pre-sizing at the start of the project; 

– the establishment of rules for analysis of the vibrations (choice of the number 
of calculation points of a power spectral density) or for the definition of the tests 
(choice of the sweep rate of a swept sine test). 

This explains the importance given to this simple model in this work of five 
volumes on Vibration and Mechanical Shock:

Volume 1 of this series is devoted to sinusoidal vibration. After several 
reminders about the main vibratory environments which can affect materials during 
their working life and also about the methods used to take them into account, 
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following several fundamental mechanical concepts, the responses (relative and 
absolute) of a mechanical one-degree-of-freedom system to an arbitrary excitation 
are considered, and its transfer function in various forms are defined. By placing the 
properties of sinusoidal vibrations in the contexts of the real environment and 
laboratory tests, the transitory and steady state response of a single-degree-of-
freedom system with viscous and then with non-linear damping is evolved. The 
various sinusoidal modes of sweeping with their properties are described, and then, 
starting from the response of a one-degree-of-freedom system, the consequences of 
an unsuitable choice of the sweep rate are shown and a rule for the choice of this rate 
deduced from it. 

Volume 2 deals with mechanical shock. This volume presents the shock response 
spectrum (SRS) with its different definitions, its properties and the precautions to be 
taken in calculating it. The shock shapes most widely used with the usual test 
facilities are presented with their characteristics, with indications how to establish 
test specifications of the same severity as the real, measured environment. A 
demonstration is then given on how these specifications can be produced with 
classic laboratory equipment: shock machines, electrodynamic exciters driven by a 
time signal or by a response spectrum, indicating the limits, advantages and 
disadvantages of each solution. 

Volume 3 examines the analysis of random vibration which encompasses the 
vast majority of the vibrations encountered in the real environment. This volume 
describes the properties of the process, enabling simplification of the analysis, 
before presenting the analysis of the signal in the frequency domain. The definition 
of the power spectral density is reviewed, as well as the precautions to be taken in 
calculating it, together with the processes used to improve results (windowing, 
overlapping). A complementary third approach consists of analyzing the statistical 
properties of the time signal. In particular, this study makes it possible to determine 
the distribution law of the maxima of a random Gaussian signal and to simplify the 
calculations of fatigue damage by avoiding direct counting of the peaks (Volumes 4 
and 5). The relationships that provide the response of a degree of freedom linear
system to a random vibration are established. 

Volume 4 is devoted to the calculation of damage fatigue. It presents the 
hypotheses adopted to describe the behavior of a material subjected to fatigue, the 
laws of damage accumulation and the methods for counting the peaks of the 
response (used to establish a histogram when it is impossible to use the probability 
density of the peaks obtained with a Gaussian signal). The expressions of mean 
damage and of its standard deviation are established. A few cases are then examined 
using other hypotheses (mean not equal to zero, taking account of the fatigue limit, 
non-linear accumulation law, etc.). The main laws governing low cycle fatigue and 
fracture mechanics are also presented. 
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Volume 5 is dedicated to presenting the method of specification development
according to the principle of tailoring. The extreme response and fatigue damage 
spectra are defined for each type of stress (sinusoidal vibrations, swept sine, shocks, 
random vibrations, etc.). The process for establishing a specification from the 
lifecycle profile of the equipment is then detailed taking into account the uncertainty 
factor (uncertainties related to the dispersion of the real environment and of the 
mechanical strength) and the test factor (function of the number of tests performed 
to demonstrate the resistance of the equipment). 

First and foremost, this work is intended for engineers and technicians working 
in design teams responsible for sizing equipment, for project teams given the task of 
writing the various sizing and testing specifications (validation, qualification, 
certification, etc.) and for laboratories in charge of defining the tests and their 
performance following the choice of the most suitable simulation means. 



Introduction 

The vibratory environment found in the majority of vehicles essentially consists 
of random vibrations. Each recording of the same phenomenon results in a signal 
different from the previous ones. The characterization of a random environment 
therefore requires an infinite number of measurements to cover all the possibilities. 
Such vibrations can only be analyzed statistically. 

The first stage consists of defining the properties of the processes comprising all 
the measurements, making it possible to reduce the study to the more realistic 
measurement of single or several short samples. This means evidencing the 
stationary character of the process, making it possible to demonstrate that its 
statistical properties are conserved in time, thus its ergodicity, with each recording 
representative of the entire process. As a result, only a small sample consisting of 
one recording has to be analyzed (Chapter 1). 

The value of this sample gives an overall idea of the severity of the vibration, but 
the vibration has a continuous frequency spectrum that must be determined in order 
to understand its effects on a structure. This frequency analysis is performed using 
the power spectral density (PSD) (Chapter 2) which is the ideal tool for describing 
random vibrations. This spectrum, a basic element for many other treatments, has 
numerous applications, the first being the calculation of the rms (root mean square) 
value of the vibration in a given frequency band (Chapter 3). 

The practical calculation of the PSD, completed on a small signal sample, 
provides only an estimate of its mean value, with a statistical error that must be 
evaluated. Chapter 4 shows how this error can be evaluated according to the analysis 
conditions and how it can be reduced, before providing rules for the determination 
of the PSD. 
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The majority of signals measured in the real environment have a Gaussian 
distribution of instantaneous values. The study of the properties of such a signal is 
extremely rich in content (Chapter 5). For example, knowledge of the PSD alone 
gives access, without having to count the peaks, to the distribution of the maxima of 
a random signal (Chapter 6), and to the law of distribution of the largest peaks, in 
itself useful information for the pre-sizing of a structure (Chapter 7).  

It is also used to determine the response of a system with one degree-of-freedom 
(Chapters 8 and 9), which is necessary to calculate the fatigue damage caused by the 
vibration in question (Volume 4).  

 The study of the first crossing of a given response threshold for a one-degree-of-
freedom system can also be useful in estimating the greatest stress value over a 
given duration. Different methods are presented (Chapter 10). 



List of Symbols 

The list below gives the most frequent definition of the main symbols used in 
this book. Some of the symbols can have another meaning which will be defined in 
the text to avoid any confusion. 

a Threshold value of t  or 
 maximum of t
A Maximum of A t
A t  Envelope of a signal 
b Exponent 
c Viscous damping constant 
e t  Narrow band white noise 
E  Expectation of... 
E1  First definition of error 

function 
E2  Second definition of error 

function 
Erf Error function 
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f Frequency of excitation 

.sampf  Sampling frequency 
fmax Maximum frequency 
f0 Natural frequency 
g Acceleration due to  

gravity 
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spectral density 

G  Power spectral density for 
0 f
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G u  Cross-power spectral density 
h Interval (f f0 ) or f f2 1
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i 1
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 Mean value of t
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(displacement) 
 First derivative of t

t  Second derivative of t
L Given value of t
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unit time 
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or  
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Np  Number of peaks 
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length of time 

N0  Average number of  
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time 

Np  Average number of positive 
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time 

p  Probability density 
pN  Probability density of largest 
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q max  Probability that a maximum 
is negative 

q  Probability density of 
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q  Reduced response 
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r t  Temporal window 
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R(t) Envelope of maxima of u t
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Chapter 1 

Statistical Properties of a Random Process 

1.1. Definitions 

1.1.1. Random variable 

A random variable is a quantity whose instantaneous value cannot be predicted. 
Knowledge of the values of the variable before time t does not make it possible to 
deduce the value at the time t from it. 

Example: the Brownian movement of a particle.

The principal characteristic of a random vibration is to simultaneously excite all 
the frequencies of a structure [TUS 67]. In contrast to sinusoidal functions, random 
vibrations are made up of a continuous range of frequencies, the amplitude of the 
signal and its phase varying with respect to time in a random fashion [TIP 77] 
[TUS 79]. Thus, the random vibrations are also called noise.

Random functions are sometimes defined as a continuous distribution of 
sinusoids of all frequencies whose amplitudes and phases vary randomly with time 
[CUR 64] [CUR 88]. 

1.1.2. Random process 

Let us consider, as an example, the acceleration recorded at a given point on the 
dial of a truck traveling on a good road between two cities A and B. For a journey, 
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the recorded acceleration obeys the definition of a random variable. The vibration 
characterized by this acceleration is said to be random or stochastic.

Complexity of the analysis 

Even in the most simple hypothesis where a vehicle runs at a constant speed on a 
straight road in the same state, each vibration measure i t at one point of the 
vehicle is different from the other. An infinity of measures to completely 
characterize the trip should be completed a priori. 

We define as a random process or stochastic process the ensemble of the time 
functions ti  for t included between  and , this ensemble being able to be 
defined by statistical properties [JAM 47]. 

By their very nature, the study of vibrations would be intensive if we did not 
have the tools to limit the complete process analysis, made up of a large number of 
signals according to time, with a very long duration, to that of a very restricted 
number of samples of reasonable duration. Fortunately, random movements are not 
erratic in the common sense, but instead follow well-defined statistical laws. The 
study of statistical process properties, with averages in particular, will enable the 
simplification of the analysis from two very useful notions for this objective: 
stationarity and ergodicity. 

1.2. Random vibration in real environments 

By its nature, the real vibratory environment is random [BEN 61a]. These 
vibrations are encountered: 

– on road vehicles (irregularities of the roads), 

– on aircraft (noise of the engines, aerodynamic turbulent flow around the wings 
and fuselage, creating non-stationary pressures, etc.) [PRE 56a], 

– on ships (engine, swell, etc.), 

– on missiles. The majority of vibrations encountered by military equipment, and 
in particular by the internal components of guided missiles, are random with respect 
to time and have a continuous spectrum [MOR 55]: the gas jet emitted with a large 
velocity creates important turbulences resulting in acoustic noise which attacks the 
skin of the missile until its velocity exceeds Mach 1 approximately (or until it leaves 
the Earth’s atmosphere) [ELD 61] [RUB 64] [TUS 79], 

– in mechanical assemblies (ball bearings, gears, etc.). 
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1.3. Random vibration in laboratory tests 

Tests using random vibrations first appeared around 1955 as a result of the 
inability of sine tests to correctly excite equipment exhibiting several resonances 
[DUB 59] [TUS 73]. The tendency in standards is thus to replace the old swept sine 
tests which excite resonances one after the other by a random vibration whose 
effects are nearer to those of the real environment. 

Random vibration tests are also used in a much more marginal way: 

– to identify the structures (research of the resonance frequencies and 
measurement of Q factors), their advantage being that of shorter test duration, 

– to simulate the effects of shocks containing high frequencies and which are 
difficult to replace by shocks of simple form. 

1.4. Methods of random vibration analysis 

Taking into account their randomness and their frequency contents, these 
vibrations can be studied only using statistical methods applied to the signals with 
respect to time or using curves plotted in the frequency domain (spectra). 

Figure 1.1. Analysis possibilities for random vibration 
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We can schematically distinguish four ways of approaching the analysis of 
random vibrations [CUR 64] [RAP 69]: 

– analysis of the ensemble statistical properties of the process, 

– methods of correlation, 

– spectral analysis, 

– analysis of statistical properties of the signal with respect to time. 

The block diagram (Figure 1.1) summarizes the main possibilities which will be 
considered in turn in what follows. 

The parameters most frequently used in practice are: 

– the rms (root mean square) value of the signal and, if it is the case, its variation 
as a function of time, 

– the distribution of instantaneous accelerations of the signal with respect to time,  

– the PSD. 

1.5. Distribution of instantaneous values 

1.5.1. Probability density 

One of the objectives of the analysis of a random process is to determine the 
probability of finding extreme or peak values or of determining the percentage of 
time that a random variable (acceleration, displacement, etc.) exceeds a given value 
[RUD 75]. Figure 1.2 shows a sample of a random signal with respect to time 
defined over duration T. 

Figure 1.2. Sample of random signal
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The probability that this function t  is in the interval  (  being equal to 
the percentage of time during which it has values in this interval) is expressed 
mathematically as: 

i

i

T
t

tprob [1.1] 

If this interval  is small, a density function probability p  is defined by: 

ptprob [1.2] 

where: 

it

T
1

p [1.3] 

To precisely define p , it is necessary to consider very small intervals  and 
of very long duration T, so that, mathematically, the probability density function is 
defined by: 

i

T0

t

T
1

limitlimitp [1.4] 

1.5.2. Distribution function 

Owing to the fact that p  was given for the field of values of t , the 
probability that the signal is inside the limits a t b  is obtained by integration 
from [1.2]: 

b

a
dpbtaprob [1.5] 

Since the probability that t  within the limits ,  is equal to 1 (absolutely 
certain event), it follows that 

p d 1 [1.6] 

and the probability that  exceeds a given level L is simply 
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L
d)(p1)t(Lprob [1.7] 

There are electronic equipment and calculation programs that make it possible to 
determine either the distribution function or the probability density function of the 
instantaneous values of a real random signal t .

Among the mathematical laws representing the usual probability densities, we 
distinguish two that are particularly important in the field of random vibrations: 
Gauss’s law (or Normal law) and Rayleigh’s law. 

1.6. Gaussian random process 

A Gaussian random process t  is such that the ensemble of the instantaneous 
values of t  obeys a law of the form: 

p t
s

t m

s

1

2 2

2

2exp [1.8] 

where m and s are constants. The utility of the Gaussian law lies in the central limit 
theorem, which establishes that the sum of independent random variables follows a 
roughly Gaussian distribution whatever the basic distribution. 

This is the case for many physical phenomena, for quantities which result from a 
large number of independent and comparable fluctuating sources, and in particular 
the majority of vibratory random signals encountered in the real environment 
[BAN 78] [CRE 56] [PRE 56a]. 

A Gaussian process is fully determined by knowledge of the mean value m 
(generally zero in the case of vibratory phenomena) and of the standard deviation s. 

Moreover, it is shown that: 

– if the excitation is a Gaussian process, the response of a linear time-invariant 
system is also a Gaussian process [CRA 83] [DER 80], 

– the vibration in part excited at resonance tends to be Gaussian. 

For a strongly resonant system subjected to broad band excitation, the central 
limit theorem makes it possible to establish that the response tends to be Gaussian 
even if the input is not. This applies when the excitation is not a white noise, 
provided that it is a broad band process covering the resonance peak [NEW 75] 
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(provided that the probability density of the instantaneous values of the excitation 
does not have too significant an asymmetry [MAZ 54] and that the structure is not 
very strongly damped [BAN 78] [MOR 55]). 

In many practical cases, we are thus led to conclude that the vibration is 
stationary and Gaussian, which simplifies the problem of calculation of the response 
of a mechanical system (Chapter 9) and, consequently, the simplification of fatigue 
damage calculations, the possibility of simply evaluating the probability of 
exceeding a given value, etc. 

The reduced variable 
(t) m

t
s

 is sometimes used. The distribution function 

makes it possible to calculate the probability for amplitude to be lower than a given 
value. For a Gaussian distribution, it is equal to: 

21 m
L 2 s1

F L P L e d
s 2

[1.9] 

It can also be written as:  

1
1 T

F T 1 E
2 2

[1.10] 

if we say 
L m

T
s

 and if E1 is the error function defined by: 

2L t
1 0

2
E (x) e dt [1.11] 

The interest of the relation between the distribution function and error function 
lies in the calculation possibility from a development in series, thus enabling us to 
avoid making an integration (Appendix A4.1). 

Figure 1.3 provides an image of the way to estimate the probability density and 
distribution function of a signal t . Signal amplitudes are divided into small 
intervals. In each one, we count the number of times the signal is located in each one 
of these intervals for all its duration. This number is transferred to a curve based on 
the average amplitude of interval . The resulting diagram is no more than the 
histogram of instantaneous values of signal. When the amplitude interval becomes 
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very small, this histogram tends toward the probability density of instantaneous 
values, which is generally close to a Gaussian distribution.  

Figure 1.3. Distribution of the instantaneous values of the signal  

Example 1.1.

Let us take a time history vibratory signal having a constant PSD equal to 1 
(m/s2)2/Hz between 0 and 2,000 Hz (Figure 1.4.). 

Figure 1.4. Random vibration signal according to time  
(96,000 points, rms value: 44.72 m/s2)

The histogram of the instantaneaous values, representing the number of values 
counted in a given amplitude class, is close to a Gaussian distribution, the difference 
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being due to statistic dispersion; the result is all the closer as the duration of the 
signal sample analyzed is greater (24 seconds in this case). We verify that the 
skewness (0.005) and kurtosis (3.0) are respectively close to zero and three (Figure 
1.5). 

Figure 1.5. Histogram of instantaneous values of signal  
of Figure 1.4 compared to the density of probability 

of a Gaussian distribution with the same mean and standard deviation 

Most vibrations (stationary phase) measured in the real environment are 
Gaussian. 

NOTE:  

A signal with a varying rms value over time (and thus non stationary) cannot be 
Gaussian. The standard deviation of instantaneous values (or rms value) is then 
seen as a constant in the definition of probability density of a Gaussian distribution. 

Example 1.2.– Signal presenting a transitory phase between two stationary phases 

Consider a random vibration made up of three phases with the same duration 
(8 s), one stationary with an rms value equal to 44.72 m/s2, followed by a transitory 
phase during which the rms value decreases, in a linear way, until it reaches a 
second stationary phase with an rms value of 11.18 m/s2 (Figure 1.6). 
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Figure 1.6. Signal presenting a transitory phase 
between two stationary phases 

The instantaneous values histogram of this signal is traced in Figure 1.7, 
superposed to the probability density of a Gaussian distribution where the standard 
deviation is equal to the rms value of the complete signal (zero mean). This density 
is far from the histogram. 

Figure 1.7. Histogram of instantaneous values of signal 
of Figure 1.6 and Gaussian probability density calculated from 

the global rms value of this same signal (31.62 m/s2)
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1.7. Rayleigh distribution 

Rayleigh distribution, of which the probability has the form 

p
s

e s( ) 2
2

2

2

[1.12] 

0  is also an important law in the field of vibration for the representation of: 

– variations in the instantaneous value of the envelope of a narrow band 
Gaussian random process, 

– peak distribution in a narrow band Gaussian process. 

Because of its very nature, the study of vibration would be very difficult if we 
did not have tools enabling the limitation of analysis of the complete process, which 
comprises a great number of signals varying with time and of very great duration, 
using a very restricted number of samples of reasonable duration. The study of 
statistical properties of the process will make it possible to define two very useful 
concepts with this objective in mind: stationarity and ergodicity. 

1.8. Ensemble averages: through the process 

1.8.1. n order average 

Figure 1.8. “Through the process” study

Let us consider N recordings of a random phenomenon varying with time i t
i N1,  for t varying from 0 to T (Figure 1.8). The ensemble of the curves i t
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constitutes the process i t . A first possibility may consist of studying the 
distribution of the values of  for t t1 given [JAM 47]. 

If we have (N) records of the phenomenon, we can calculate, for a given t1, the 
mean [BEN 62] [BEN 63] [DAV 58] [JEN 68]: 

t
t t t

N

n1
1

2
1 1 [1.13] 

If the values i t  belong to an infinite discrete ensemble, the moment of order n 
is defined by: 

E t
t

N
n

N

i n

i

N

1
1

1

lim [1.14] 

(E  = mathematical expectation). By considering the ensemble of the samples at 

the moment t1, the statistical nature of t1  can be specified by its probability 
density [LEL 73]: 

p t
t

1
0

1lim
Prob

[1.15] 

and by the moments of the distribution: 

E t t p t d tn n
1 1 1 1 [1.16] 

if the density p t1  exists and is continuous (or the distribution function). The 
moment of order 1 is the mean or expected value; the moment of order 2 is the 
quadratic mean.

For two random variables 

The joint probability density is written: 

p t t
t t

1 1 2 2
0
0

1 1 1 1 2 2 2 2

1 21

2

, ; ,
;

lim
Prob

 [1.17] 
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and joint moments: 

E t t t t p t t d t d ti j
1 2 1 2 1 2 1 2,   [1.18] 

1.8.2. Centered moments 

The central moment of order n (with regard to the mean) is the quantity: 

E t m
N

t m
n

N

i n

i

N

1 1
1

1
lim [1.19] 

in the case of a discrete ensemble and, for p continuous: 

E t m t m p t d t
n n

1 1 1 1 [1.20] 

1.8.3. Variance 

The variance is the centered moment of order 2 

s E t m
t1

2
1

2
[1.21] 

By definition: 

s t m p t d t
t1

2
1

2
1 1 [1.22] 

s t p t d t
t1

2 2
1 1 1

2 1 1 1
2

1 1

1

m t p t d t m p t d t

m

s E t m m
t1

2
1

2 2 22

s E t m
t1

2
1

2 2 [1.23] 
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1.8.4. Standard deviation 

The quantity s
t1

 is called the standard deviation. If the mean is zero, 

s E t
t1

2
1

2
[1.24] 

When the mean m is known, an absolutely unbiased estimator of s2  is 
i m

N

2

. When m is unknown, the estimator of s2  is 
i m

N

2

1
 where 

m
N

i1
.

Example 1.3. 

Let us consider 5 samples of a random vibration t  and the values of  at a 
given time t t1 (Figure 1.9). 

Figure 1.9.  Example of a stochastic process 

If the exact mean m is known ( 2.4m  m/s2 for example), the variance is 
estimated from: 
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5
2.472.442.422.452.42

s
22222

2  (m/s2)2

64.3
5

2.18
s2  (m/s2)2

If the mean m is unknown, it can be evaluated from 

m
N

t m si1 2 5 2 4 7

5

20

5
41

2/

50.4
4

18
s2  (m/s2)2

1.8.5. Autocorrelation function 

Given a random process i t , the autocorrelation function is the function 
defined, in the discrete case, by: 

R t t
N

t t
N

i i

i
1 1 1 1

1
, lim [1.25] 

R t t E x t x t1 1 1 1, . [1.26] 

or, for a continuous process, by: 

R x t x t p x t dx t1 1 1 1 [1.27] 

1.8.6. Cross-correlation function 

Given the two processes t  and u t  (for example, the excitation and the 
response of a mechanical system), the cross-correlation function is the function: 

R t t E t u tu 1 1 1 1, . [1.28] 
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or

R
N

t u t
N

i i

i

lim
1

1 1. [1.29] 

The correlation is a number measuring the degree of resemblance or similarity 
between two functions of the same parameter (time generally) [BOD 72]. 

1.8.7. Autocovariance 

Autocovariance is the quantity: 

C t t E t t t t1 1 1 1 1 1, [1.30] 

C t t R t t t t1 1 1 1 1 1, , [1.31] 

C t t R t t1 1 1 1, ,  if the mean values are zero. 

We have in addition: 

R t t R t t1 2 2 1, , [1.32] 

1.8.8. Covariance 

We define covariance as the quantity: 

C E t t u t u tu 1 1 1 1 [1.33] 

1.8.9. Stationarity 

A phenomenon is strictly stationary if every moment of all orders and all the 
correlations are invariable with time t1 [CRA 67] [JAM 47] [MIX 69] [PRE 90] 
[RAP 69] [STE 67]. 
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The phenomenon is wide-sense (or weakly) stationary if only the mean, the mean 
square value and the autocorrelation are independent of time t1 [BEN 58] 
[BEN 61b] [SVE 80]. 

Figure 1.10. Calculation of ensemble averages at different times

Interest of stationarity 

Since statistical process properties do not evolve over time in a stationary 
process, it is not necessary to record the signals for a long period of time. This time, 
however, must be long enough to subsequently enable a significant frequency 
analysis. In Chapter 4, we will see which rule must be respected. 

Figure 1.11. Calculation of ensemble averages on a short duration if the process is stationary 
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Example 1.4. 

The following cases are completely unrealistic and are only illustrated for 
learning purposes. 

Case n°1: process described by 5 measurements of a constant value signal equal 
 to 1. 

Since all averages are equal regardless of moment t used for calculation, the 
process represented in Figure 1.12 is stationary. 

Mean: 1.0 

Rms Value: 1.0 

Standard Deviation: 1.0

Figure 1.12. Example of a stationary process

Case n°2: process described by 5 measurements of signals with different constant 
values

Means are independent of moment t chosen: the process is stationary (Figure 
1.13). 

Mean: 3.0 

Rms Value: 3.317 

Standard Deviation: 1.414 

Figure 1.13. Example of a stationary process 

Case n°3: the process is described by 4 signals with a constant value equal to 1 and 
by a sine curve 

The means in the process in Figure 1.14 vary according to the moment of 
calculation: the process is not stationary. 
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Figure 1.14. Example of a non-stationary process 

If only one recording of the phenomenon t  is available, we sometimes define 
the autostationarity of the signal by studying the stationarity with n samples taken at 
various moments of the recording, by regarding them as samples obtained 
independently during n measurements (Figure 1.15). 

Figure 1.15. Study of autostationarity

We can also define strong autostationarity and weak autostationarity.

For a stationary process, the autocorrelation function is written: 

R E 0

R
NN

i i

i

N
lim

1
0

1

[1.34] 
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NOTES:

Based on this assumption, we have: 

R E 0

R E 0

R R [1.35] 

(R is an even function of ) [PRE 90]. 

2R 0 E 0 0 E t [1.36] 

R 0  is the ensemble mean square value at the arbitrary time t. 

– R 0 R

We have 

2
E 0 0

yielding

2 2E 0 2 E 0 E 0

R 0 2 R R 0 0

and 

R 0 R [1.37] 

As for the cross-correlation function, it becomes, for a stationary process, 

R E
N

u
N

i i

i

N

0

0
1lim [1.38] 
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Properties

1.
R Ru u [1.39] 

Indeed 

R E uu 0

R E uu 0

R E uu 0

R Ru u

2. Whatever 

R R Ru u0 0 [1.40] 

1.9. Temporal averages: along the process 

1.9.1. Mean 

Figure 1.16. Sample of a random signal 

Let us consider a sample t  of duration T of a recording. It can be interesting 
to study the statistical properties of the instantaneous values of the function t . 
The first possibility is to consider the temporal mean of the instantaneous values of 
the recording. 
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We have: 

t
T

t dt
T T

T
lim

1

2
[1.41] 

if this limit exists. This limit may very well not exist for some or all the samples 
and, if it exists, it may depend on the selected sample t ; however, it does not 
depend on time1.

For practical reasons, we in fact calculate the mean value of the signal t  over 
one finite duration T: 

t
T

t dt
T1
0

[1.42] 

The mean value is related to the difference between the positive and negative 
areas ranging between the curve ( )t  and the time axis [GRE 81]. 

The mean m of a centered signal is zero, so this parameter cannot be used by 
itself to correctly evaluate the severity of the excitation. 

Figure 1.17. Random vibration with non-zero mean

The mean value is equal to the absolute value of the parallel shift of the Ot axis 
necessary to cancel out this difference. A signal ( )t  of mean m can be written: 

t m t*( ) [1.43] 

1. We also define tx  from: 
T

0T
dttx

T
1lim  or 

2T

2TT
dttx

T
1lim
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where * t  is a centered signal. This mean value is generally a static component 
which can be due to the weight of the structure, to the maneuverings of an aircraft, 
to the thrust of a missile in phase propulsion, etc. In practice, we often consider this 
mean to be zero. 

1.9.2. Quadratic mean – rms value 

The vibration t  results in general in an oscillation of the mechanical system 
around its equilibrium position, so that the arithmetic mean of the instantaneous 
values can be zero if the positive and negative values are compensated. The 
arithmetic mean represents the signal poorly [RAP 69] [STE 67]. Therefore, it is 
sometimes preferred to calculate the mean value of the absolute value of the signal 

t
T

t dt
T1
0

[1.44] 

and, much more generally, by analogy with the measurement of the rms value of an 
electrical quantity, the quadratic mean (or mean square value) of the instantaneous 
values of the signal of which the square root is the rms value.

The rms value t2
rms  is the simplest statistical characteristic to obtain. It 

is also most significant since it provides an order of magnitude of the intensity of the 
random variable. 

If we can analyze the curve t  by dividing the sample of duration T into N 
intervals of duration ti i N1, , and if i  is the value of the variable during 
the time interval ti , the mean quadratic value is written: 

2 1
2

1
2 2t t t

T
i i N N [1.45] 

with T ti
i

N

1

. If the intervals of time are equal to ( t ) and if N is the number of 

points characterizing the signal, T N t  and:

i

2
irms N

1
[1.46] 
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Figure 1.18. Approximation of the signal

If all ti  tend towards zero and if N , the quadratic mean is defined by 
[BEN 63]: 

2 2
0

1
t

T
t dt

T
[1.47] 

 (or by 
1

2
2

T
t dt

T

T
).

Two signals having very different frequency contents, corresponding to very 
dissimilar temporal forms, can have the same mean quadratic value. In this expression, 
the rms value takes into account the totality of the frequencies of the signal. 

Example 1.5. 

1. Consider a signal is defined by 11 points (Figure 1.19).  

Figure 1.19. Signal of acceleration
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The use of relation [1.46] leads to: 

2 2 2 2 2 2 2 2 2 2 2

rms
0 2 0.8 1.5 ( 1) ( 2.5) 0.5 ( 1.25) 1.8 ( 0.5) 1

x
11

or: rmsx 136 .

2. Let us consider a sinusoid sinx t x tm

x t 0

s x t
xm2 2

2

2

s9.0s22x2tx m

(for a normal distribution, s798.0tx ).

1.9.3. Moments of order n 

As in the preceding section, we also define: 

– moments of an order higher than 2; the moment of order n is expressed: 

E t t
T

t dtn n

T

n
T

T
( ) ( ) lim

1

2
[1.48] 

– centered moments: measured vibratory signals usually have a zero mean value. 
We then call the signal centered. When that is not the case, the rms value is still 
calculated as in section 1.9.2. We can also look at centered moments of order n 
defined by: 

n
n

T

n

T

T
E t t

T
t t dtlim

1

2
[1.49] 

For a signal made up of N points of mean :

n i
n

i

N

N

1

1

[1.50] 
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1.9.4. Variance – standard deviation 

The rms value is calculated from the mean quadratic value of the instantaneous 
values of the signal. The centered moment of order 2 is the variance, denoted by s2 :

s E t t2 2 2 2
[1.51] 

s  is called the standard deviation. This parameter characterizes the dispersion of 
the signal around its mean. 

For a signal defined by N points:  

s
N

i
i

N
2 2

1

1
[1.52] 

If the mean m is zero, the standard deviation s is equal to the rms value of the 
signal ( )t .

NOTE: 
On the assumption of zero mean, we can however note a difference between the 

standard deviation and the rms value when the latter is calculated starting from the 
PSD, which does not necessarily cover all of the frequency contents of the signal, in 
particular beyond 2,000 Hz (a value often selected as the upper limit of the analysis 
band). The rms value is then lower than the standard deviation. The comparison of 
the two values makes it possible to evaluate the importance of the neglected range. 

Example 1.6. 

Using the values of Example 1.5, the mean m value is equal to: 

0 2 0.8 1.5 1 2.5 0.5 1.25 1.8 0.5 1
m

11

m 0.214

The variance is given by: 

2 2 2 2 2(0 0.214) (2 0.214) (0.8 0.214) ( 0.5 0.214) (1 0.214)
V

11
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V 1.813

Standard deviation: s V 1.346

We can verify that 2 2 2
rmsx s m .

1.9.5. Skewness 

The centered moment of order 3, denoted by 3, is sometimes reduced by 

division by s3:

3

3

3

E t t

s
[1.53] 

We can show [GMU 68] that 3 is characteristic of the symmetry of the 
probability density law p  with regard to the mean t ; for this reason, 3 is 
sometimes called skewness.

Figure 1.20. Probability densities with non-zero skewness

For a signal that is made up of N points:

'3

3

1
3

i
i

N

N s
[1.54] 

3 0  characterizes a normal process. 

For 3 0 , the probability density curve presents a peak towards the left and for 
3 0 , the peak of the curve is shifted towards the right. 
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1.9.6. Kurtosis 

The centered moment of order 4, reduced by division by s4 , is also sometimes 
considered, as it makes it possible to estimate the flatness of the probability density 
curve. This is often called kurtosis [GUE 80]. 

4

4

4

E t t

s
[1.55] 

For a signal made up of N points: 

'4

4

1
4

i
i

N

N s
[1.56] 

The kurtosis characterizes the relative importance of the major distribution 
values in relations to the values close to zero: 

'4 3 for a normal process. 

'4 3 characteristic of a truncated signal or existence of a sinusoidal 
component ( 5.1'4  for a pure sine). 

'4 3 presence of peaks of high value (more than in the normal case). 

Figure 1.21. Kurtosis influence on probability density
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Example 1.7. 

With the information from Example 1.5, we obtain: 

As
1

(1.346)3
(0 0.214)3 (2 0.214)3 L ( 0.5 0.214)3 (1 0.214)3

11

4 4 4 4

4
1 (0 0.214) (2 0.214) ( 0.5 0.214) (1 0.214)

Ap
11(1.346)

yielding As  – 0.475 and Ap  – 2.241. 

The advantage of these parameters 

The rms value provides information on the global severity of the vibration. This 
information is useful, but not quite useful enough since it does not indicate the 
energy distribution in the frequency domain and thus potential vibration effects 
based on the natural frequencies of a mechanical structure. 

Since measured vibration averages are mostly zero, the standard deviation is 
generally equal to the rms value. Comparing these two parameters makes it possible 
to verify this condition and to evaluate the value of the average when it is not zero. 

Skewness and kurtosis are two parameters for verifying that the analyzed signal 
has a Gaussian instantaneous value distribution. When that is the case (the most 
common), skewness is theoretically equal to zero and kurtosis to 3. Strong variations 
of these parameters (particularly of kurtosis) calculated from sliding means also 
make it possible to detect the presence of mechanical shocks and signal problems 
(see section 1.15). 

1.9.7. Temporal autocorrelation function 

We define in the time domain the autocorrelation function R  of the 
calculated signal, for a given  delay, of the product t t  [BEA 72] 
[BEN 58] [BEN 63] [BEN 80] [BOD 72] [JAM 47] [MAX 65] [RAC 69] [SVE 80]. 

Figure 1.22. Sample of a random signal 
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R E t t [1.57] 

R
T

t t dt
T T

T
lim

1

2
[1.58] 

The result is independent of the selected signal sample i. The delay  being 
given, we thus create, for each value of t, the product t  and t  and we 
calculate the mean of all the products thus obtained. The function R  indicates 
the influence of the value of  at time t on the value of the function  at time t .
Indeed let us consider the mean square of the variation between t  and t ,

i.e. E t t 2 , equal to: 

E t t E t E t E t t2 2 2 2 .

E t t R R2 2 0 2 [1.59] 

We note that the weaker the autocorrelation R , the greater the mean square 
of the difference t t  and, consequently, the less t  and t
resemble each other. 

Figure 1.23. Examples of autocorrelation functions

The autocorrelation function measures the correlation between two values of 
t  considered at different times t. If R  tends towards zero quickly when 
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becomes large, the random signal probably fluctuates quickly and contains high 
frequency components. 

If R  tends slowly towards zero, the changes in the random function are 
probably very slow [BEN 63] [BEN 80] [RAC 69]. 

R  is thus a measurement of the degree of random fluctuation of a signal. 

Autocovariance 

When the signal studied has a non-zero x  average, we sometimes use the 
autocovariance function defined in an analog way by: 

dtxtxxtx
T2

1
limC

T

TT
x [1.60] 

Autocovariance is connected to autocorrelation by: 

2
xx x)(R)(C [1.61] 

Discrete form 

The autocorrelation function calculated for a sample of signal digitized with N 
points separated by t  is equal, for m t , to [BEA 72]: 

R
N m

i i m
i

N m1

1

. [1.62] 

Catalogs of correlograms exist allowing typological study and facilitating the 
identification of the parameters characteristic of a vibratory phenomenon [VIN 72]. 
Their use makes it possible to analyze, with some care, the composition of a signal 
(white noise, narrow band noise, sinusoids, etc.). 
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Figure 1.24. Examples of autocorrelation functions

Example 1.8. 

Wide band noise autocorrelation 

In the examples that follow, we often use a random vibration defined by a 
signal lasting 1 s (2,600 points), by a 31.6 m/s2 rms value and by constant PSD 
equal to 1 (m/s2)2/Hz between 1 Hz and 1,000 Hz (Figure 1.25).  

Figure 1.25. Wide band random vibration 
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Figure 1.26. Autocorrelation function of wide band noise between 1 Hz and 1,000 Hz, 
calculated from the signal according to time and its PSD

Figure 1.26 illustrates the autocorrelation function of this vibration calculated 
from the signal and its PSD.  

The two curves are very close, the difference being due to the number of 
points used for its line. This number is equal to that of the original signal in the 
first case, whereas it can be greater in the second case, leading to a smoother 
curve.

Autocorrelation shows a peak at origin with an amplitude that is equal to the 
square of the vibration rms value (31.62 = 998.6 (m/s2)2). Since the noise is wide 
band, the curve quickly tends toward zero.

Example 1.9. 

Narrow band noise autocorrelation 

This same time history signal was used to calculate the response of a linear 
one-degree-of-freedom system (f0 = 300 Hz, Q = 10) and its autocorrelation was 
calculated.

The response is a narrow band noise with an rms value equal to 65.55 m/s2.
The autocorrelation of the response does not tend toward zero as quickly as a 
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wide band noise. The peak at origin remains equal to the square of the signal’s 
rms value.  

Figure 1.27. Autocorrelation of the response of a linear 
one-degree-of-freedom system (300 Hz, Q = 10)

Calculation of the autocorrelation function of a sinusoid 

t tm sin [1.63] 

R
T

t t dtm
T1
0

sin sin

R m
2

2
cos [1.64] 

The correlation function of a sinusoid of amplitude m  and angular frequency 

is a cosine of amplitude m
2

2
 and pulsation . The amplitude of the sinusoid can 

thus, conversely, be deduced from the autocorrelation function: 

m R2
max

[1.65] 
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Example 1.10.

Autocorrelation of a sinusoid 

Let us take a sinusoidal vibration with 20 m/s2 amplitude and 300 Hz frequency. 
The autocorrelation of this signal (Figure 1.28) is a 200 (m/s2)2 amplitude and  
300 Hz frequency sinusoid. 

Figure 1.28. Autocorrelation of a sinusoidal vibration

1.9.8. Properties of the autocorrelation function 

1. ttE0R 22  = quadratic mean 

R s0 2 2 [1.66] 

For a centered signal 0 , the ordinate at the origin of the autocorrelation 
function is equal to the variance of the signal. 

2.  The autocorrelation function is even [BEN 63] [BEN 80] [RAC 69]: 

R R [1.67] 

3.

R R 0 [1.68] 
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If the signal is centered, R 0 when . If the signal is not centered, 

R 2  when .

4. It is shown that: 

dR

d
E t t [1.69] 

d R

d
E t t

2

2 [1.70] 

Figure 1.29. Correlation coefficient

NOTES:

1. The autocorrelation function, normalized autocorrelation function [BOD 72] 
or correlation coefficient is sometimes expressed in the reduced form: 

R
R 0

[1.71] 

 varies between –1 and +1, 

1  if the signals are identical (superimposable), 

1  if the signals are identical in absolute value and of opposite sign. 
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2. If the mean m is not zero, the correlation coefficient is given by 

2R m
R 0

[1.72] 

1.9.9. Correlation duration 

Correlation duration of a signal is the term given to the value 0  of  from 
which the reduced autocorrelation function  is always lower, in absolute value, 
than a certain value 

0
.

The correlation duration of: 

– a wide band noise is weak, 

– a narrow band noise is large; in extreme cases, a sinusoidal signal, which is 
thus deterministic, has an infinite correlation duration. 

This last remark is sometimes used to detect in a signal t  a sinusoidal wave 
s t S tsin  embedded in a random noise b t :

t s t b t [1.73] 

The autocorrelation is written: 

R R RS b [1.74] 

If the signal is centered, for sufficiently large , Rb  becomes negligible so 
that: 

R R
S

S

2

2
cos [1.75] 

This calculation makes it possible to detect a sinusoidal wave of low amplitude 
embedded in a very significant noise [SHI 70a]. 

Examples of application of the correlation method are as follows [MAX 69]: 

– determination of the dynamic characteristics of a systems, 

– extraction of a periodic signal embedded in a noise, 
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– detection of periodic vibrations of a vibratory phenomenon, 

– study of transmission of vibrations (cross-correlation between two points of a 
structure),

– study of turbubences, 

– calculation of PSDs [FAU 69], 

– more generally, applications in the field of signal processing, in particular in 
medicine, astrophysics, geophysics, etc. [JEN 68]. 

Example 1.11. 

A sinusoidal vibration with a frequency of 300 Hz and rms value of 10 m/s2 was 
superimposed on the random vibration in Figure 1.25 (rms value 31.6 m/s2).
Because of the low rms value of the sinusoid, drowning in random noise and almost 
undetectable in the global signal (Figure 1.28), the rms value of the composite signal 
is not much different (33.16 m/s2).

Figure 1.30. Sine 300 Hz superimposed to random vibration in Figure 1.25 
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Figure 1.31.  Autocorrelation of the vibration made up of 
 the random wide band vibration and the rms value 10 m/s2

at 300 Hz sinusoid 

The autocorrelation function of this signal (Figure 1.31) clearly highlights the 
presence of this sinusoid and makes it possible to find its frequency and  
amplitude. The highest peak is equal to the square of the global signal rms value 
(random plus sine). 

With this method, we can detect and characterize a low amplitude sinusoidal 
component. The threshold of detection, defined by the ratio of the rms values of the 
sine and of the PSD in the frequency interval between two consecutive points 
(frequency step f), is approximately 4. 

Example 1.12. 

Let us take a PSD with a 1 (m/s2)2/Hz amplitude, calculated with a f = 1.27 Hz 
frequency step. 

The calculation of the autocorrelation function can also be done from this PSD 
on which a 300 Hz frequency line was superimposed 0. The amplitude G of the 

composite PSD at this frequency is such that 
2
rms sinex

G
f

 ( rms sinex  = sinusoid 

rms value, i.e. 10 m/s2) (Figure 1.32). 
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Figure 1.32. PSD of wide band noise with  
300 Hz sinusoidal line 

The sinusoid can be identified if its rms value is higher than approximately 
4 G f 4 1.27 4.5  m/s2.

The resulting autocorrelation function can be superimposed over that in Figure 
1.30. In order for this to occur, the line added to the PSD must be defined in a single 
frequency point. Otherwise, the autocorrelation function is transformed and tends 
toward that of a narrow band noise when this number increases. 

Example 1.13. 

Consider the wide band noise PSD in Figure 1.25 on which a 300 Hz, 20 m/s2

rms value sinusoidal line is superimposed. 

Figures 1.33 to 1.36 illustrate the autocorrelation function obtained when the 
sinusoidal line is defined consecutively by 1, 2, 4 and 9 points. 
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Figure 1.33. Autocorrelation calculated from the wide band noise 
PSD with a sinusoidal line defined by a single point

Figure 1.34. Autocorrelation calculated from the wide band noise 
PSD with a sinusoidal line defined by two points 
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Figure 1.35. Autocorrelation calculated from the wide band noise 
PSD with sinusoidal line defined by four points 

Figure 1.36. Autocorrelation calculated from the wide band noise 
PSD with a sinusoidal line defined by eight points 

1.9.10. Cross-correlation 

Let us consider two random functions t  and u t ; the cross-correlation 
function is defined by:  

R E t u t
T

t u t dtu
T T

T
lim

1

2
  [1.76] 
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The cross-correlation function makes it possible to establish the degree of 
resemblance between two functions of the same variable (time in general). 

Discrete form [BEA 72] 

If N is the number of sampled points and  is a delay such that m t , where 
t  is the temporal step between two successive points, the cross-correlation between 

two signals  and u is given by 

R
N m

uu i
i

N m

i m
1

1

[1.77] 

Covariance

The covariance of vibrations )t(x  and )t(y  is equal to the autocorrelation 

function of these centered signals. If x  and y  are the mean values of )t(x  and 
)t(y , covariance is defined by 

T

TT
yx dtytyxtx

T2
1

limC [1.78] 

It is easy to show that: 

yx)(RC yxyx [1.79] 

If one of the mean values is zero, then the covariance is equal to the 
intercorrelation. 

Example 1.14. 

Consider a wide band random vibration and the response of a one-degree-of-
freedom linear mechanical system with a natural frequency of 300 Hz and a Q factor 
of 10 for this noise. 

Figure 1.37 shows the intercorrelation function between these two vibrations. 
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Figure 1.37. Intercorrelation of wide band random vibration 
response from a linear one-degree-of-freedom system (300 Hz, Q = 10) 

Application: measure of the impulse response of a structure 

If vibrations are stationary with zero mean, we can show that the intercorrelation 
of the vibration and response of a mechanical system is directly linked to the 
impulse response of the system. 

Let h(t) be the impulse response of the system, )t(x  the random “excitation” 
vibration and )t(y  the response. This response can be calculated from the following 
relation:  

t

0
y(t) h( ) x(t ) d [1.80] 

The intercorrelation is equal to:  

xy 0
R ( ) x(t ) y(t) dt [1.81] 

so, by considering [1.80]:  

xy 0 0
R ( ) x(t ) h( ) x(t ) d dt [1.82] 
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xy 0 0
R ( ) h( ) x(t ) x(t ) d dt [1.83] 

The “excitation” noise being wide band:  

)0(R)(h)(R xyx [1.84] 

This method makes it possible to evaluate the impulse response of a system with 
a lower amplitude excitation than by impulsion, thus remaining in the linear domain.

Example 1.15. 

The impulse response of the one-degree-of-freedom system  
(f0 = 300 Hz, Q = 10) of Example 1.14 can be calculated (Figure 1.38) by dividing 
the intercorrelation in Figure 1.37 by )0(Rx , i.e. by the square of the rms value of 
the “excitation” wide band noise (31.6 m/s2). 

Figure 1.38. Impulse response of the one-degree-of-freedom 
 system (300 Hz, Q = 10) calculated from the  

intercorrelation function 

1.9.11. Cross-correlation coefficient 

The cross-correlation coefficient u  or normalized cross-correlation 
function or normalized covariance is the quantity [JEN 68] 
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u
u

u

R

R R0 0
[1.85] 

It is shown that: 

1 1u

If t  is a random signal input of a system and u t  is the signal response at a 
point of this system, u  is characteristic of the degree of linear dependence of 
the signal u with respect to . At the limit, if t  and u t  are independent, 

u 0 .

If the joint probability density of the random variables t  and u t  is equal to 
p u, , we can show that the cross-correlation coefficient ,u  can be written in the 
form: 

u
u

u

E m u m

s s
[1.86] 

where m , mu , s  and su  are respectively the mean values and the standard 
deviations of t  and u t .

1.9.12. Ergodicity 

A process is known as ergodic if all the temporal averages exist and have the 
same value as the corresponding ensemble averages calculated at an arbitrary given 
moment [BEN 58] [CRA 67] [JAM 47] [SVE 80]. 

Example 1.16. 

In section 1.4, example 1.4, the process of case number 1 is ergodic and case 
number 2 is stationary, not ergodic. The question of ergodicity of process number 3 
is irrelevant as it is not stationary.  

A ergodic process is thus necessarily stationary. We dispose in general of only a 
very restricted number of records not permitting experimental evaluation of the 
ensemble averages. In practice, we simply calculate the temporal averages by 
making the assumption that the process is stationary and ergodic [ELD 61]. 
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The concept of ergodicity is thus particularly important. Each particular 
realization of the random function makes it possible to consider the statistical 
properties of the whole ensemble of the particular realizations. 

If a process is ergodic, we can limit ourselves to the frequency analysis of a short 
sample chosen over a single process record. 

NOTE: 

A necessary and sufficient condition such that a stationary random vibration 
t  is ergodic is that its correlation function satisfies the condition [SVE 80] 

T

0T

1
lim 1 R d 0

T T
[1.87] 

where R  is the autocorrelation function calculated from the centered variable 

t m .
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1.10. Significance of the statistical analysis (ensemble or temporal) 

Checking of stationarity and ergodicity should in theory be carried out before 
any analysis of a vibratory mechanical environment, in order to ensure that the 
consideration of only one sample is representative of the whole process. Very often, 
as a result of a lack of experimental data and to save time, we make these 
assumptions without checking (which is regrettable) [MIX 69] [RAC 69] [SVE 80]. 

1.11. Stationary and pseudo-stationary signals 

We saw that the signal is known as stationary if the rms value as well as the 
other statistical properties remain constant over long periods of time. 

In the real environment, this is not the case. The rms value of the load varies in a 
continuous or discrete way and gives the shape of signal known as random pseudo-
stationary. For a road vehicle, for example, variations are due to the changes in road 
roughness, to changes of velocity of the vehicle, to mass transfers during turns, to 
wind effect, etc. 

The temporal random function t  is known as quasi-stationary if it can be 
divided into intervals of duration T that are sufficiently long compared with the 
characteristic correlation time, but sufficiently short to allow treatment in each 
interval as if the signal were stationary. Thus, the quasi-stationary random function 
is a function having characteristics which vary sufficiently slowly [BOL 84]. 

The study of the stationarity and ergodicity is an important stage in the analysis 
of vibration, but it is not generally sufficient by itself; in fact, it does not make it 
possible to answer the most frequently encountered problems, for example the 
estimate of the severity of a vibration or the comparison of several stresses of this 
nature. 
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1.12. Summary chart of main definitions  

T
ab

le
 1

.1
. M

ai
n 

de
fin

iti
on

s

Th
ro

ug
h 

th
e 

pr
oc

es
s (

en
se

m
bl

e 
av

er
ag

es
) 

A
lo

ng
 th

e 
pr

oc
es

s (
te

m
po

ra
l a

ve
ra

ge
s)

 

M
om

en
t  

of
 o

rd
er

 n
 

E
t

N
t

n
i

n

iN

1
1

1

1
lim

E
x

t
t

p
t

d
t

n
n

1
1

1
1

E
t

T
t

dt
n

T

n
T

lim
1

0

C
en

te
re

d 
m

om
en

t 
of

 o
rd

er
 n

 
E

t
t

N
t

t
n

N

i
n

iN

1
1

1
1

1

1
lim

E
t

t
t

p
t

d
t

n
n

1
1

1
1

1

E
t

T
t

dt
n

T

n
T

lim
1

0

V
ar

ia
nc

e 
s

E
t

t
2

1
1

2
s

E
t

2
2

2
2

A
ut

oc
or

re
la

tio
n 

R
t

t
N

t
t

N

i
i

iN

1
1

1
1

1

1
,

lim

R
t

t
p

t
d

t
1

1
1

1

R
T

t
t

dt
T

T
lim

1
0

C
ro

ss
-c

or
re

la
tio

n 
R

t
t

N
t

u
t

u
N

i
i

iN

1
1

1
1

1

1
,

lim

R
t

u
t

p
t

d
t

u
1

1
1

1

R
T

t
u

t
dt

u
T

T
lim

1
0

St
at

io
na

rit
y 

if 
al

l t
he

 a
ve

ra
ge

s 
of

 o
rd

er
 n

 a
re

 
in

de
pe

nd
en

t o
f t

he
 se

le
ct

ed
 ti

m
e 

t 1
.

Er
go

di
ci

ty
 if

 th
e 

te
m

po
ra

l a
ve

ra
ge

s 
ar

e 
eq

ua
l t

o 
th

e 
en

se
m

bl
e 

av
er

ag
es

. 



50     Random Vibration 

T
ab

le
 1

.2
. S

om
e 

te
m

po
ra

l a
ve

ra
ge

s 
w

ith
 th

ei
r 

di
sc

re
te

 fo
rm

1.13. Sliding mean 

Instead of calculating the amplitude average of a signal over all available points, 
we can focus on a small number of consecutive points. This “block” is shifted by 
one point at each calculation (Figure 1.40). Each average thus obtained is attributed 
to the moment corresponding to the middle point in the block. All averages 
determined for the signal then make it possible to draw a curve based on time called 
the sliding mean.
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Figure 1.40.  Calculation process of the sliding mean 

There are several strategies to calculate the averages closer to the extremities. 
For example, we can determine the average of the first n/2 points and attribute it to 
the first point in the sliding mean curve, the average of the first n/2 + 1 points and 
the second point, etc., until we have all n points. The same methodology can be 
applied symmetrically for the extremity of the signal. 

Similarly, this type of calculation can also be applied to the quadratic mean (for 
rms value, standard deviation, etc.) or a higher average (skewness, kurtosis, etc.). 

The calculation speed of all these sliding means can be greatly accelerated with 
the use of the previous point calculation results for each point. 

Example 1.17. 

Figure 1.41 shows the rms value, skewness and kurtosis calculated according to 
time from a Gaussian signal lasting 5 seconds (sliding means over 1,000 points). We 
can verify that skewness and kurtosis are close to 0 and 3 respectively. 
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Figure 1.41. Sliding means on 1,000 points 
from a Gaussian signal of 32,372 points 

Example 1.18. 

Consider the random vibration taken from the platform of a truck (Figure 1.42). 

Figure 1.42. “Truck” vibration 

Figures 1.43, 1.44 and 1.45 show these same sliding means calculated on 100, 
500 and 1,000 points. The rms value, skewness and kurtosis vary with time (non-
stationary vibration). The curves are smoother the higher the number of calculation 
points for each average. 
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Figure 1.43. “Truck” vibration – sliding means on 100 points 

Figure 1.44. “Truck” vibration – sliding means on 500 points 

Figure 1.45. “Truck” vibration – sliding means on 1,000 points 
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1.14. Identification of shocks and/or signal problems 

The analysis of kurtosis according to time, drawn with a sliding mean, enables us 
to easily detect the presence of a local irregularity of the signal, whether it is due to a 
shock that is present in the real environment or to a signal problem that does not 
correspond to any physical mechanical reality (for example, a brief telemetry loss). 

Kurtosis is actually very sensitive to “abnormal” signal values moving away 
from the distribution controlling the points. 

Example 1.19. 

Figure 1.46. Sample of vibratory signal measured on a plane 

In order to show the sensitivity of this parameter, consider the stationary 
vibratory signal measured on a plane, lasting 5 s and defined by 32,372 points 
(Figure 1.46). This Gaussian signal presents a few high peaks whose amplitude can 
be about 5 times the signal rms value in accordance with what is expected with a 
Gaussian distribution. 

Kurtosis according to time, calculated with a sliding mean over 500 points 
(Figure 1.47), remains approximately constant during the measure period. We can 
verify that its value is close to 3 (Gaussian signal). 
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Figure 1.47. Kurtosis versus time of vibration 
of Figure 1.46 

Figure 1.48 shows the signal of Figure 1.46 after multiplication of a single peak 
by a factor equal to 3. 

Figure 1.48. Vibration of Figure 1.46 modified 
(multiplication by 3 of one peak) 
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The effect on kurtosis of this modification is very important. We can observe at 
the peak moment a kurtosis value exceeding 40, which is thus much higher than 3 
and very easily detectable (Figure 1.49). 

Figure 1.49. Kurtosis of the signal modified in Figure 1.48 

If this was a mechanical shock present within the random signal, there would be 
more modified points and kurtosis could reach, depending on the amplitude of the 
shock in relation to the noise, much greater values, by a few hundred for example. 

1.15. Breakdown of vibratory signal into “events”: choice of signal samples 

If we only have a single record, it is sufficient to ensure that it is slightly 
autostationary to be able to characterize it with the help of PSD. If the distribution of 
instantaneous instant values of samples of a slightly autostationary record follows a 
Gaussian distribution, the record is strongly autostationary.
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The mean value is generally zero (it can be brought down to zero if that is not the 
case). If the mean square value is constant in relation to time (the rms value), we can 
reasonably expect that the autocorrelation will be constant. 

It is sufficient to verify that the rms value does not change in relation to time. 

Practical problems 

Each record is made up of several different sequences (also called events). Take 
the example of transportation by place: a record will include the runway haul, take-
off, climb, cruising altitude, changes of direction, air brake phases, etc. to descent 
and landing. The process made up with these types of records is not stationary. 

If we had a large number of records, we would have as many measures of each 
phase and we could imagine studying their stationarity and ergodicity. However, 
only rarely can we have more than a few measures. To reduce the cost of the 
measures campaign, we only carry out some records of the phenomenon in the best 
of cases. The phase studies may also be too short for these statistical tests in 
significant conditions. 

If we carry out several instrumented flights for better environment 
understanding, we will probably not obtain the same rms value for each sequence (if 
only because weather conditions can change). In order for the process to be ergodic, 
all the conditions would have to be strictly the same, which would necessitate the 
characterization of all the processes corresponding to all possible conditions. 

Clearly, it never works that way. Still, a reasonable methodology consists of 
carrying out several measures to be able to use a small statistic for estimating the 
most severe conditions. 

In practice, for each record, we draw the rms value in relation to time, as well as 
the skewness and kurtosis (sliding means on the whole signal). 

The first of these curves locates temporal ranges in which the rms value does not 
change much and which we will consider as stationary. 

Each signal is separated into sections representing a specific phase of the flight, 
generating a vibratory or particular shock environment, with common characteristics 
from one flight to another: shock linked to landing, cruising flight without 
turbulence, etc. 
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Example 1.20. 

Let us take a vibratory environment on an aircraft, represented by acceleration 
as a function of time: 

1. Taxi  7. Maximum velocity at low altitude 
2. Take-off  8. Climbing turn 
3. Climb 9. Deceleration 
4. Cruise at high altitude  10. Landing approach 
5. Maximum velocity at high altitude  11. Touchdown 
6. Cruise at low altitude 

Figure 1.50. Rms acceleration recorded on a aircraft during flight [KAT 65]

Figure 1.51. Rms value of vibrations measured on a satellite during launch
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Figure 1.52. Rms value of vibrations taken 
from a satellite during launch 

Skewness and kurtosis give an indication about the Gaussian character of the 
signal in these time intervals (close to 3 and 0 respectively in this hypothesis). 

A quick and very important variation of the kurtosis generally indicated the 
presence of a shock. However, it is important that we consider the signal according 
to time to make sure it is not a problem with the signal (loss of telemetry, etc.), 
affecting kurtosis in a very similar way. 

Example 1.21. 

The chosen vibratory signal, created for this example, represents a measure that 
could have been carried out on a satellite launcher. It is represented in Figure 1.53. 

Figure 1.53. Acceleration versus time 
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The rms value, skewness and kurtosis according to time, calculated with the  
help of a sliding mean on 500 points, are given respectively in Figures 1.54, 1.55 
and 1.56. 

Figure 1.54 Rms value versus time 
calculated from the signal in Figure 1.53 

Figure 1.54 highlights the presence of several consecutive phases: 

– a shock (to analyze in a more finite way to distinguish it from a signal fault), 

– a stationary phase on the first 20 s (constant rms value),  

– a transitory phase lasting 10 s, 

– a new stationary phase between 30 s and 60 s, 

– a shock (at approximately 60 s), 

– a stationary phase approximately between 60 s and 80 s, 

– a very brief transitory phase,  

– a stationary phase between 80 and 100 s, 

– a very brief transitory phase,  

– a stationary phase between 100 and 120 s approximately, during which the rms 
value shows 2 peaks. 
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Figure 1.55. Skewness versus time 
calculated from the signal in Figure 1.53  

Figure 1.56. Kurtosis versus time 
calculated from the signal in Figure 1.53 

Skewness (Figure 1.55) and kurtosis (Figure 1.56) show that the signal relative 
to stationary phases is Gaussian (skewness equal to 0 and kurtosis equal to 3), 
except between 80 s and 100 s (constant kurtosis lower than 3). 

The shock at 60 s and the 2 peaks observed in the last stationary phase, 
particularly the first peak, appear clearly on the skewness and kurtosis. 
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Figure 1.57. Juxtaposition of acceleration, rms value, 
skewness and kurtosis according to time 

The juxtaposition of these curves (Figure 1.57) and the previous comments help 
us reach some conclusions. The vibratory signal is representative of a succession of 
events which can be described consecutively by (Figure 1.58): 

– a mechanical shock (after analysis of the acceleration signal based on time), 
characterized by its shock response spectrum, 

– a stationary random vibration, characterized by a PSD (Chapter 4), which is 
used to calculate an extreme response spectrum2 (ERS) and a fatigue damage 
spectrum (FDS) (Volume 5), 

– a non-stationary random vibration (we can use it to calculate an ERS and an 
FDS directly from the signal), 

– a stationary random vibration, 

– a shock, 

– a stationary random vibration, 

– between 80 s and 100 s, a periodic vibration to analyze in a more finite way to 
determine its components (kurtosis different from 3, and after analysis of the 
acceleration signal in this zone), 

– a stationary phase in which we observe a signal fault (a very high peak that is 
extremely small and that cannot be linked to a specific phenomenon of the life 
profile), 

– a low amplitude shock. 

2 Also called “maximum response spectrum” (MRS).
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Figure 1.58. Identification and extraction of the different 
events making up the vibratory signal 

If we have several logs, we should analyze each one of them. 

It is very useful to plot the variations of the rms value against time (sliding mean 
on n points) in order to: 

– choose the time intervals over which the rms value varies little: each 
corresponding phase can then be characterized by a PSD, 

– study the very short duration phenomena (non-stationary phenomena). The 
analysis for example measures the number of times that the rms value crosses a 
given threshold with respect to the amplitude of this threshold (rms value of the total 
signal or of the response of a one-degree-of-freedom mechanical system of constant 
Q factor, generally equal to 10, whose natural frequency varies in the useful 
frequency band) [KEL 61]. 

The variation of the rms value with time has also been used as a monitoring tool 
for the correct operation of rotating machinery based on a statistical study of their 
vibratory behavior [ALL 82]. 

1.16. Interpretation and taking into account of environment variation 

Consider a stationary phase in a vibratory environment, for example, the cruising 
phase of air transport. The rms value is often different from one flight to another 
even though it is constant during this phase for each flight (slightly different weather 
conditions, etc.). This actually represents a non-ergodicity of the process. 
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This variation can be considered: 
– by calculating the statistical PSD or, preferably, ERS and FDS (for example, 

average + 3 standard deviations) to describe the event with a crossing risk lower 
than 0.135%, 

– by applying an uncertainty coefficient during the development of 
specifications (use of variation coefficient of environment, standard deviation and 
average ratio). 

Example 1.22. 

Let us assume that vibrations relative to air transport were measured during 6 
different flights. It seems difficult to study the ensemble averages of this process 
with only 6 logs. Instead, each signal is analyzed to detect (from the rms value line 
according to time obtained with with a sliding mean) time intervals during which the 
signal is autostationary (slight variation of rms value). 

Each of these intervals is identified for a specific event (cruising altitude phase for 
example) in the situation involved (“air transport”) and can be characterized by 
calculating a PSD on part of the corresponding signal or on its whole, depending on 
duration. The same procedure is applied to each of the other 6 logs. At the end of these 
analyses, we then have 6 PSDs representative of the cruising phase (Figure 1.59). 

Figure 1.59. Power spectral densities (6) characterizing 
the “cruising phase” random process of air transport 

The rms values of these 6 PSDs are equal to 1.5 m/s2, 1.36 m/s2, 1.71 m/s2,
2.82 m/s2, 3.16 m/s2 and 1.65 m/s2 respectively. 
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If the process was completely ergodic, all these PSDs would be extremely close 
with the same rms value (the differences are due to the short time of the signal 
samples used and the resulting statistical error). 

We can observe that the PSDs are relatively dispersed, mainly in amplitude, 
since the dispersion is caused by the conditions of each flight (turbulences which 
can be important). 

The random process is not really ergodic. In order to treat this general problem, 
we consider, from one flight to another, that the levels are random and we evaluate: 

– an average spectrum (PSD) and a standard deviation spectrum (at each 
frequency, average and standard deviation of PSD values) if the number of available 
spectrums permits it (at least 4 or 5 measures); 

– or, on the contrary, simply a spectrum “envelope” (greatest PSD value at each 
frequency). 

These two spectrums can be used: 

– to determine a PSD with a low probability of being exceeded (for example, 
average + 3 standard deviations), which can possibly be used by an engineering firm 
to size a mechanical part, 

– or, by dividing the standard deviation by the mean at each frequency, to 
calculate the coefficient of variation that will characterize the dispersion of the 
environment involved. 

Figure 1.60. Average PSD plus 3 standard deviations 
calculated from the 6 PSDs in Figure 1.59  
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We will see in Volume 5 that the coefficient of variation is preferably calculated 
from the ERS and FDS determined with PSDs. It will be used in the calculation of 
an uncertainty coefficient during the development of a specification. 



Chapter 2 

Random Vibration Properties 
in the Frequency Domain 

The frequency content of the random signal must produce useful information by 
comparison with the natural frequencies of the mechanical system which undergoes 
the vibration. 

This chapter is concerned with power spectral density (PSD), its properties, an 
estimate of statistical error necessarily introduced by its calculation and means of 
reducing it. The following chapters will show that this spectrum provides a powerful 
tool to enable the description of random vibrations. It also provides basic data for 
many other analyses of signal properties. 

2.1. Fourier transform 

The Fourier transform of a non-periodic t  signal, having a finite total energy, 
is given by the relationship: 

L t e dti t [2.1] 

This expression is complex; it is therefore necessary in order to represent it 
graphically to plot: 

– either the real and the imaginary part versus the angular frequency ,
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– or the amplitude and the phase versus . Very often, we limit ourselves to 
amplitude data. The curve thus obtained is called the Fourier spectrum [BEN 58]. 

The random signals are not of finite energy. We can thus calculate only the 
Fourier transform of a sample of signal of duration T by assuming that this sample is 
representative of the whole phenomenon. It is in addition possible, starting from the 
expression of L , to return to the temporal signal by calculation of the inverse 
transform. 

t L e di t1

2
[2.2] 

We could envisage the comparison of two random vibrations (assumed to be 
ergodic) from their Fourier spectra calculated using samples of duration T. This 
work is difficult, as it assumes the comparison of four curves two by two, each 
transform being made up of a real part and an imaginary part (or amplitude and 
phase). 

We could however limit ourselves to a comparison of the amplitudes of the 
transforms, by neglecting the phases. We will see in the following sections that, for 
reasons related to the randomness of the signal and the miscalculation which results 
from it, it is preferable to proceed with an average of the modules of Fourier 
transforms calculated for several signal samples (or, more exactly, an average of the 
squares of the amplitudes). This is the idea behind the PSD. 

Figure 2.1. Example of Fourier transform
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In an indirect way, the Fourier transform is thus used very often in the analysis 
of random vibrations. 

2.2. Power spectral density 

2.2.1. Need 

The search for a criterion for estimating the severity of a vibration naturally 
results in the examination of the following characteristics: 

– the maximum acceleration of the signal: this parameter neglects the smaller 
amplitudes which can excite the system for a prolonged length of time; 

– the mean value of the signal: this parameter is not very significant as a criterion 
of severity, because negative accelerations are subtractive and the mean value is in 
general zero. If this is not the case, it does not produce information sufficient to 
characterize the severity of the vibration; 

– the rms value: for a long time this was used to characterize the voltages in 
electrical circuits, the rms value being much more interesting data [MOR 55]: 

- if the mean is zero, the rms value is in fact the standard deviation of 
instantaneous acceleration and is thus one of the characteristics of the statistical 
distribution, 

- even if two or several signal samples have very different frequency 
contents, their rms values can be combined by using the square root of the sum of 
their squares. 

This quantity is thus often used as a relative instantaneous severity criterion of 
the vibrations [MAR 58]. However, it has the disadvantage of being global data and 
of not revealing the distribution of levels according to frequency, which is 
nevertheless very important. For this purpose, a solution can be provided by 
[WIE 30]: 

– filtering the signal t  using a series of rectangular filters of central frequency 
f and bandwidth f  (Figure 2.2); 

– calculating the rms value rmsL  of the signal collected at the output of each 
filter.

The curve which would give rmsL  with respect to f would indeed be a 
description of the spectrum of signal t , but the result would be different 
depending on the width f  derived from the filters chosen for the analysis. So, for a 
stationary noise, we filter the supposed broad band signal using a rectangular filter 
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of filter width f , centered around a central frequency fc , the obtained response 
having the aspect of a stable, permanent signal. Its rms value is more or less constant 
over time. If, by preserving its central frequency, we reduce the filter width f ,
maintaining its gain, the output signal will seem unstable, fluctuating greatly over 
time (as well as its rms value), and more especially so if f  is weaker. 

Figure 2.2. Filtering of the random signal

To obtain a characteristic value of the signal, it is thus necessary to calculate the 
mean over a much longer length of time, or to calculate the mean of several rms 
values for various samples of the signal. In addition, we note that the smaller f  is, 
the more the signal response at the filter output has a low rms value [TIP 77]: a filter 
that is twice as wide leads to a greater rms value by a factor that is approximately 
equal to 2 .

To be liberated from the width f , we instead consider the variations of 
f

L2
rms

with f. The rms value is squared by analogy with electrical power. The resulting 
curve has for dimension the square of an acceleration divided by a frequency. It is 
thus expressed in (m/s2)2/Hz or in g2/Hz.



Random Vibration Properties in the Frequency Domain     71 

2.2.2. Definition

2.2.2.1. Reminder: power dissipated in an electrical circuit 

If we consider a tension u t  applied to the terminals of a resistance R 1 ,
passing current i t , the energy dissipated (Joule effect) in the resistance during time 
dt is equal to: 

dE R i t dt i t2 2 [2.3] 

Figure 2.3. Electrical circuit with source of tension and resistance

The instantaneous power of the signal is thus: 

P t
dE

dt
i t2 [2.4] 

and the energy dissipated during time T, between t and t T, is written: 

E i t dtT t

t T 2 [2.5] 

P t  depends on time t (if i varies with t). It is possible to calculate a mean 
power in the interval T using: 

P
T

p t dt
T

Em Tt

t T

T

1 1
[2.6] 

The total energy of the signal is therefore: 

E i t dt2 [2.7] 
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and the total mean power is: 

P
T

i t dtm
T T

T
lim

1 2
2

2
[2.8] 

2.2.2.2. Mechanical vibrations  

By analogy with these calculations, we define [BEN 58] [TUS 72] in vibration 
mechanics the mean power of an excitation t  between T 2 and T 2 by: 

P
T

t dtm
T

TT

T
lim

1 2

2

2
[2.9] 

where 

2Ttfor0

2Ttfort

T

T

Let us suppose that the function T t  has as a Fourier transform L fT .
According to Parseval’s equality, 

T Tdt L f df
2 2

[2.10] 

yielding, since [JAM 47], 

T TT

T
dt t dt

2 2

2

2
[2.11] 

P
T

L f df
T

L f dfm
T

T
T

Tlim lim
1 22 2

0
[2.12] 

This relation gives the mean power contained in t  when all the frequencies 
are considered. Let us find the mean power contained in a frequency band f . In 
order to do this, let us assume that the excitation t  is applied to a linear system 
with constant parameters whose weighting function is h t  and the transfer function 
is H f . The response r tT  is given by the convolution integral 
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r t h t dT T0
[2.13] 

where  is an integration constant. The mean power of the response is written: 

T

0
2
T

Tresponsem dttr
T
2limP [2.14] 

i.e., according to Parseval’s theorem: 

T

0

2
T

Tresponsem dffR
T
2limP [2.15] 

If we take the Fourier transform of the two members of [2.13], we can show that: 

R f H f L fT T [2.16] 

yielding 

0

2
T

2

Tresponsem dffLfH
T
2limP [2.17] 

Examples

1. If H f 1 for any value of f, 

inputm0

2
T

Tresponsem Pdf
T

fL2
limP [2.18] 

a result which a priori is obvious. 

2. If H f 1 for 0
2 2

f
f

f f
f

H f 0 elsewhere 

2ff

2ff

2
T

Tresponsem df
T

fL2
limP [2.19] 
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In this last case, let us set: 

G f
L f

T
T

T2
2

[2.20] 

The mean power corresponding to the record T t , finite length T, in the band 
f  centered on f, is written: 

P f f G f dfT Tf f

f f
,

2

2
[2.21] 

and total mean power through out the record 

P f f G f df
T

Tf f

f f
, lim

2

2
[2.22] 

We call PSD the quantity: 

f
f,fP

limfG
f

[2.23] 

Figure 2.4. Example of PSD (aircraft)
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NOTE: 
By using the angular frequency , we would obtain: 

T
T

P , lim G d [2.24] 

with  

2
T

T
2 L

G
2 T

[2.25] 

Taking into account the above relations, and [2.10] in particular, the PSD G f  
can be written [BEA 72] [BEN 63] [BEN 80]: 

G f
T f

t f dt
f

T

T
T

lim ,
0

2
0

1
[2.26] 

where T t f,  is the part of the signal ranging between the frequencies f f 2
and f f 2. This relation shows that the PSD can be obtained by filtering the 
signal using a narrow band filter of given width, by squaring the response and by 
taking the mean of the results for a given time interval [BEA 72]. This method is 
used for analog calculations. 

Expression [2.26] theoretically defines the PSD. In practice, this relation cannot 
be respected exactly since the calculation of G f  would require an infinite 
integration time and an infinitely narrow bandwidth. 

NOTES:

– The function G f  is positive or zero whatever the value of f. 

– The PSD was defined above for f ranging between 0 and infinity, which 
corresponds to the practical case. In a more general way, we could mathematically 
define S f  between  and , in such a way that 

S( f ) S( f ) [2.27] 

– The pulsation 2 f  is sometimes used as variable instead of f. If 

G  is the corresponding PSD, we have 
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G f 2 G [2.28] 

The relations between these various definitions of the PSD can be easily 
obtained starting from the expression of the rms value: 

dSdGdffGdffS
0 0

2
rms   [2.29] 

We then deduce: 

G f S f2 [2.30] 

G f G2 [2.31] 

G f S4 [2.32] 

NOTE: 

A sample of duration T of a stationary random signal can be represented by a 
Fourier series, the term ia  of the development in an exponential Fourier series 
being equal to: 

T 2
i T 2

2 k t
sin2 Ta t dt

2 k tT
cos

T

[2.33] 

The signal t  can be written in complex form 

t
2 i k

T
k

k

t c e [2.34] 

where k i i
1

c i
2

.

The PSD can also be defined from this development in a Fourier series. It is 
shown that [PRE 54] [RAC 69] [SKO 59] [SVE 80] 

2
i

T

a
G f lim

2 f
[2.35]
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The PSD is a curve frequently used in the analysis of vibrations: 

– either in a direct way, to compare the frequency contents of several vibrations, 
to calculate, in a given frequency band, the rms value of the signal, to transfer a 
vibration from one point in a structure to another, etc., 

– or as intermediate data, to evaluate certain statistical properties of the vibration 
(frequency expected, probability density of the peaks of the signal, number of peaks 
expected per unit time, etc.). 

NOTE: 

The function G f , although called power, does not have its dimension. This 
term is often used because the square of the fluctuating quantity often appears in the 
expression for the power, but it is unsuitable here [LAL 95]. As such, it is often 
preferable to call it “acceleration spectral density” or “acceleration density” 
[BOO 56] or “PSD of acceleration” or “intensity spectrum” [MAR 58]. 

2.3. Cross-power spectral density  

The PSD expression of a signal 1  can be written and, for T infinite, from the 
preceding 

1 1

2
1 1 1

T T

2 L f 2 L f L f
G f lim lim

T T
[2.36] 

The resulting curve 
1 1

G f  is also called the “autospectrum”. 

Similarly, the cross-power spectral density of two vibrations 1(t)  and 2 (t)  is 

defined as the mean f products 1 2L (f ) L (f ) , L1 and L2 being respectively the 
Fourier transforms of 1 t  and 2 t  calculated between 0 and T over K blocks of 
points of the two signals. 

From two samples of random signal records 1 t  and 2 t , the cross-power 
spectrum is thus defined for T infinite by 

G f
L f L f

TT1 2

2 1 2lim [2.37] 

if the limit exists. 
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The cross-power spectral density is a complex quantity that is generally 
represented by its amplitude and phase. 

2.4. Power spectral density of a random process 

The PSD was defined above for only one function of time t . Let us consider 
now the case where the function of time belongs to a random process, where each 
function will be noted i t . A sample of this signal of duration T will be denoted 
byi

T t , and its Fourier transform i
TL f . Its PSD is 

i
T

i
T

G f
L f

T

2
2

[2.38] 

By definition, the PSD of the random process is, over time T, equal to: 

G f

G f

n
T

i
T

i

n

1 [2.39] 

n being the number of functions i t  and, for T infinite, 
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G f G f
T

Tlim [2.40] 

If the process is stationary and ergodic, the PSD of the process can be calculated 
starting from several samples of one recording only. The PSD is a real quantity. 

2.5. Cross-power spectral density of two processes 

As previously, we define the cross-power spectrum between two records of 
duration T, each one taken in one of the processes by: 

i
T

i i

G f
L L

T

2 1 2 [2.41] 

The cross-power spectrum of the two processes is, over T, 

G f

G f

n
T

i
T

i

n

1 [2.42] 

and, for T infinite, 

G f G f
T

Tlim [2.43] 

Example 2.1.

Let us take a vibration sample lasting 50 s, with constant PSD and equal to 2 
(m/s2)2/Hz between 1 Hz and 500 Hz, and then very small up to 650 Hz.  

This vibration was applied to a linear one-degree-of-freedom system with a 
frequency of 200 Hz and an over-tension of 5.  

Figure 2.6 shows autospectrums from the “excitation” vibration and response, 
Figure 2.7 shows the cross-power spectral density of the response and excitation 
superimposed to the excitation autospectrum.  
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Figure 2.6. Autospectrums of the vibration excitation and response 
of a one-degree-of-freedom 200 Hz system, Q = 5 

Figure 2.7. Cross-power spectral density of the response and excitation, 
superimposed to the excitation autospectrum

2.6. Relationship between the PSD and correlation function of a process 

It is shown that, for a stationary process [BEN 58] [BEN 80] [JAM 47] [LEY 65] 
[NEW 75]: 
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deR2fG fi2 [2.44] 

R  being an even function of , we obtain: 

G f R f d4 2
0

cos [2.45] 

If we take the inverse transform of G f  given in [2.43], it becomes: 

dfefG
2
1

R fi2 [2.46] 

i.e., since G f  is an even function of f [LEY 65]: 

R G f f df( ) cos 2
0

[2.47] 

and

2)0 valuerms(df)f(Gt20R [2.48] 

NOTE: 

These relations, called “Wiener-Khinchine relations”, can be expressed in terms 
of the angular frequency  in the form [BEN 58] [KOW 69] [MIX 69]: 

0

2
G R cos d [2.49] 

0
R G cos d [2.50]

2.7. Quadspectrum – cospectrum 

The cross-power spectral density G fu  can be written in the form [BEN 80]: 

fQifCdeR2fG uu
fi2

uu [2.51] 
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where the function 

C f R f du u2 2cos [2.52] 

is the cospectrum or coincident spectral density, and where 

Q f R f du u2 2sin [2.53] 

is the quadspectrum or quadrature spectral density function. 

We obtain: 

0
fi2

u0
fi2

uu dfefG
2
1

dfefG
2
1

R   [2.54] 

R C f f Q f f dfu u ucos sin2 2
0

  [2.55] 

fi
uu uefGfG [2.56] 

G f C Q fu u u
2 2 [2.57] 

u
u

u

f Arc
Q f

C f
tan [2.58] 

2.8. Definitions 

2.8.1. Broad band process  

A broad band process is a random stationary process whose PSD G  has 
significant values in a frequency band or a frequency domain which is rigorously of 
the same order of magnitude as the central frequency of the band [PRE 56a]. 
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Figure 2.8. Wide band process

Such processes appear in pressure fluctuations on the skin of a missile rocket (jet 
noise and turbulence of supersonic boundary layer). 

2.8.2. White noise 

When carrying out analytical studies, it is now usual to idealize the wide band 
process by considering a uniform spectral density G f G0 .

Figure 2.9. White noise

A process having such a spectrum is called white noise by analogy with white 
light which is composed from all the frequencies of the visible spectrum. 

An ideal white noise, which is assumed to have a uniform density at all 
frequencies, is a theoretical concept, physically unrealizable, since the area under the 
curve would be infinite (and therefore so would the rms value). Nevertheless, the 
model ideal white noise is often used to simplify calculations and to obtain suitable 
orders of magnitude of the solution, in particular for the evaluation of the response 
of a one-degree-of-freedom system to wide band noise. This response is indeed 
primarily produced by the values of the PSD in the frequency band ranging between 
the half-power points. If the PSD does not vary too much in this interval, we can 
compare it at a first approximation with that of a white noise of the same amplitude. 
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It should however be ensured that the results of this simplified analysis do indeed 
provide a correct approximation from what would be obtained with physically 
attainable excitation. 

2.8.3. Band-limited white noise 

We also use in the calculations the spectra of band-limited white noises, such as 
that in Figure 2.10, which are correct approximations to many realizable random 
processes on exciters. 

Figure 2.10. Band-limited white noise

2.8.4. Narrow band process 

A narrow band process is a random stationary process whose PSD has significant 
values in one frequency band only or a frequency domain whose width is small 
compared to the value of the central frequency of the band [FUL 62]. 

Figure 2.11. PSD of narrow band noise
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The signal as a function of time t  looks like a sinusoid of angular frequency 
0, with amplitude and phase varying randomly. There is only one peak between 

two zero crossings. 

Figure 2.12. Narrow band noise

It is interesting to consider individual cycles and envelopes, whose significance 
we will note later on. 

If the process is Gaussian, it is possible to calculate from G  the expected 
frequency of the cycles and the probability distribution of the points on the 
envelope. 

These processes relate in particular to the response of low damped mechanical 
systems, when the excitation is a broad band noise. 

2.8.5. Pink noise 

A pink noise is a vibration of which the PSD amplitude is of inverse proportion 
to the frequency. 

2.9. Autocorrelation function of white noise 

Relation [2.47] can be also written, since G f S4  [BEN 58] [CRA 63]: 

deSR i [2.59] 

If S  is constant equal to S0  when  varies, this expression becomes: 

dfeS2R fi2
0 [2.60] 
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where the integral is the Dirac delta function , such that 

0

0
1d

0when0
0when

[2.61] 

yielding 

R S2 0 [2.62] 

NOTE: 

If the PSD is defined by G  in ( 0, ), this expression becomes 

0G
R

2
[2.63] 

whilst, for G f ( 0, ): 

0
1

R G
2

[2.64] 

For 0 , R . Knowing that R 0  is equal to the square of the rms value, 
the property of the white noise is verified (infinite rms value). 

Figure 2.13. Autocorrelation of a white noise

It should be noted in addition that the correlation is zero between two arbitrary 
times.

An ideal white noise thus has an infinite intensity, but has no correlation 
whatever between past and present [CRA 63]. 
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2.10. Autocorrelation function of band-limited white noise 

Figure 2.14. Band-limited white noise Figure 2.15. Autocorrelation of  
band-limited white noise

From definition [2.60], we have, if S S0 [FUL 62], 

0
i

0 deS2R [2.65] 

R S d2 0
1

2 cos [2.66] 

R S2 0
2 1sin sin

[2.67] 

R  can also be written 

R
S4

2 2
0 1 2 2 1cos sin [2.68] 

The rms value, given by [BEN 61a] 

120rms S20R [2.69] 

is finite. If  tends towards zero, R S2 0 2 1  (square of the rms value). 
The correlation between the past and the present is non-zero, at least for small 
intervals. When the bandwidth is widened, the above case is obtained. 
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NOTES:

1. The result obtained for a white noise process is demonstrated in this 
particular case when 1 0  and 2 ; indeed, if 2 0 ,

0 2 2 0
2

4 S 2 S
R cos sin sin

2 2

If 2  [2.62], 

0R 2 S

Conversely, if R  has this value, 

i
0 0

1
S 2 S e d S

2

2. If we set 1 0 2
 and 2 0 2

, R  can be written 

[COU 70]: 

0
0

4 S
R cos sin

2
[2.70] 

If 0 ,

0R 0 2 S

yielding 

0
R 2

cos sin
R 0 2

[2.71] 

3. If, in practice, the noise is defined only for the positive frequencies, 
expressions [2.67] and [2.69] become 

2 1
0

sin sin
R G [2.72] 

rms 0 2 1 0 2 1R 0 G G f f f   [2.73] 
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2.11. Peak factor 

The peak factor, peak ratio or crest factor pF  of a signal can be defined as the 

ratio of its maximum value (positive or negative) to its standard deviation (or to its 
rms value). For a sinusoidal signal, this ratio is equal to 2  ( 414.1 ). For a signal 
made up of periodic rectangular waveforms, it equals 1, while for saw tooth 
waveforms, it is approximately equal to 1.73. 

In the case of a random signal, the probability of finding a peak of given 
amplitude is an increasing function of the duration of the signal. The peak factor is 
thus undefined and extremely large. Such a signal will thus necessarily have peaks 
which will be truncated because of the limitation of the dynamics of the analyzer. 
An error in the PSD calculation will result from this. 

2.12. Effects of truncation of peaks of acceleration signal on the PSD 

Let us consider a random signal t  of rms value rms . If the signal filtered in a 
filter of width f  has its values truncated higher than 0 (or if the signal was 
truncated during measurement), the calculated PSD is equal to 

G f
f

f
f

2

 instead of G f
f

f
f

2

Let us set: 

frms

0
pF [2.74] 

The error will thus be, at frequency f, 

e
G f

G f
100 1 [2.75] 

with 

G f

G f

f f

f f

f

f

f f
2

0
2

2

0
2

/

/
[2.76] 
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It is shown that [PIE 64], for a Gaussian signal, the error varies according to the 
peak factor pF  according to the law 

e 100 1 [2.77] 

where 

p

p

F

F

0 p
2
p xpF2dxxp2dxxpF2 [2.78] 

and

p x
x1

2 2

2

exp [2.79] 

The variations of the error e according to pF  are represented in Figure 2.16. 

Figure 2.16. Error versus peak factor (from [PIE 64])

The calculation of  can be simplified if it is noted that: 

1dxe
2
1

dxe
2
1

dxe
2
1

p

2

p

p

2

p

2

F
2

x
F

F
2

x
F

2
x
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and that the probability density is symmetric about the y-axis: 

p

p

F

0F
dxxp

2
1

dxxp

 is then written: 

pp
F

0

F

0
2
p FpF2dxxp2dxxp

2
1

F2 pp

pp
2
p

F

0
2
p FpF2FdxxpF12 p [2.80] 

The integral pF

0
dxxp  can be calculated using the error function, knowing that 

this function can be defined in the form [LAL 94] (Appendix A4.1.2): 

2

p
xF
22 p 0

1erf F e dx
2

[2.81] 

The influence of a truncation of the peaks of a random acceleration signal on its 
PSD is shown on the following example. 

Acceleration signal selected for study 

The signal considered is a sample of duration 20 seconds of a white noise over a 
bandwidth of 10–2,000 Hz, of rms value rmsx = 44.61 m/s2 (PSD amplitude: 
1 (m/s2)2/Hz). The sampling frequency is chosen equal to 30 kHz, much larger than 
that imposed by Shannon’s theorem, in order to allow later on a correct calculation 
of the extreme response spectra and of the fatigue damage spectra. This signal was 
then truncated with various acceleration values: rmsx5 , rmsx5.4 ..., until 

rmsx5.0 .
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Figure 2.17. Truncated signals (samples of duration 0.1 s)

Power spectral densities obtained 

The spectral densities of these signals were calculated between 10 Hz and 
3,000 Hz. We observe from the PSD (Figure 2.18) that: 

– truncation causes the amplitude of the PSD to decrease uniformly in the 
defined bandwidth (between 10 Hz and 2,000 Hz); 

– this reduction is only sensitive if we clip the peaks below rmsx2
approximately; 

– truncation increases the amplitude of the PSD beyond its specified bandwidth 
(2,000 Hz). This effect is related to the mode of truncation selected (clean cut-off at 
the peaks and no non-linear attenuation, which would smooth out the signal in the 
zone concerned). 
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Figure 2.18. PSD of the truncated signals

2.13. Standardized PSD/density of probability analogy 

Standardized PSD is the term given to the quantity [WAN 45]: 

2
rms

N
G

G [2.82] 

It should be noted that the standardized PSD and the probability density function 
have common properties: 

– they are non-negative functions, 

– they have an unit area under the curve, 

– if we set R G u duN0
, R  increases in a monotonous way from 

zero ( 0) to 1 (for  infinite). R  can thus be regarded as the analog of the 
distribution function of G .

2.14. Spectral density as a function of time 

In practice, the majority of the physical processes are, to a certain degree, non-
stationary, i.e. their statistical properties vary with time. Very often, however, the 
excitation is clearly non-stationary over a long period of time, but, for small 
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intervals, which are still long with respect to the time of response of the dynamic 
system, the excitation can be regarded as stationary. Such a process is known as 
quasi-stationary. It can be analyzed for two aspects [CRA 83]: 

– study of the stationary parts by calculation of the PSD whose parameters are 
functions slowly variable with time, 

– study of the long-term behavior, described for example by a cross-probability 
distribution for the parameters slowly variable with the PSD. 

The non-stationary process can also be of short duration. This is particularly the 
case for a mechanical oscillator at rest suddenly exposed to a stationary random 
excitation; there is a phase of transitory response, therefore it is non-stationary. 
Many studies have been conducted on this subject [CHA 72] [HAM 68] [PRI 67] 
[ROB 71] [SHI 70b]. Various solutions were obtained, among those of T.K. 
Caughey and H.J. Stumpf [CAU 61] (Chapter 8), R.L. Barnoski and J.R. Maurer 
[BAR 69] and Y.K. Lin [LIN 67]. Other definitions were also proposed for the PSD 
of non-stationary phenomena [MAR 70]. 

2.15. Relationship between the PSD of the excitation and the response of a 
linear system 

We can easily show that [BEN 58] [BEN 62] [BEN 63] [BEN 80] [CRA 63]: 

– if the excitation is a random stationary process, the response of a linear system 
is itself stationary, 

– if the excitation is ergodic, the response is also ergodic. 

Let us consider one of the functions i t  of a process (whether stationary or 
not); the response of a linear system can be written: 

i iu t h t d
0

[2.83] 

yielding: 

i i i iu t u t h t d h t d1 2 10 20

i i i iu t u t h h t t d d1 2 1 200
  [2.84] 
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Ensemble average 

R t t E u t u tu 1 2 1 2, [2.85] 

R t t h h R t t d du 1 2 1 200
, ,   [2.86] 

where 

R t t E t t1 2 1 2, [2.87] 

Example of a stationary process 

In this case, 

R t t R t t R t t Ru u u u1 2 2 1 2 10, ,

and

R h h R d du ,
00

[2.88] 

In addition, we have seen that [2.44]: 

deR2fG fi2

The PSD of the response can be calculated from this expression [CRA 63] 
[JEN 68]: 

deR2fG fi2
uu

dddRhhe2fG
0 0

fi2
u

0
fi2

0
fi2

u dehdeh2fG

deR fi2
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G f H f H f G fu

G f H f G fu
2 [2.89] 

Depending on the angular frequency, this expression becomes: 

G H j Gu
2

[2.90] 

NOTE:

This result can be found starting with a Fourier series development of the excitation 
t . Let us set u t  as the response at a point of the system. With each frequency jf ,

the response is equal to jH  times the input ( jH = a real number). Thus, u t  can also 

be expressed in the form of a Fourier series, each term of u t  being equal to the 

corresponding term of t  modified by the factor jH  and phase j :

j j j
j

2 j
u t u H sin t

T
[2.91] 

i.e.

j j j j
j

2 j t 2 j t
u t u H cos sin sin cos

T T
  [2.92] 

The rms value of u t  is equal to 

2 2 2 2 2
rms j j j j

j 1

1 T T
u u H cos sin

T 2 2
[2.93] 

When T ,

2
0

u t G f H f df [2.94] 

Knowing that, if uG f  is the PSD of the response, 2
rms u0

u G f df , it 

becomes



Random Vibration Properties in the Frequency Domain     97 

2
uG f H f G f [2.95] 

This method can be used for the measurement of the transfer function of a 
structure undergoing a pseudo-random vibration (random vibration of finite 
duration, possibly repeated several times). The method consists of applying white 
noise of duration T to the material, in measuring the response at a point and in 
determining the transfer function by term to term calculation of the ratio of the input 
and output coefficients of the Fourier series development. 

2.16. Relationship between the PSD of the excitation and the cross-power 
spectral density of the response of a linear system 

i iu t h t d
0

i i i iu t u t h t t d
0

If the process is stationary, the ensemble average is: 

R h R du 0

and the cross-spectrum: 

ddRhe2fG
0

fi2
u

deR2dehfG fi2fi2
u

G f H f G fu [2.96] 

NOTE: 

If we set: 

i f
uG f A f e

the transfer function H f  can be written, knowing that the PSD G f  is a real 
function 
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A f
H f

G f

f f

[2.97] 

2.17. Coherence function 

The coherence function between two signals t  and u t  is defined by 
[BEN 63] [BEN 78] [BEN 80] [ROT 70]: 

u
u

uu

f
G f

G f G f
2

2

[2.98] 

This function is a measure of the effect of input on response of a system. 

In an ideal case, 

G H f Gu

and

2
u  1 

Example 2.2.

Let us take a wide band random vibration and the response of a one-degree-
of-freedom linear mechanical system with a frequency of 300 Hz and Q factor 10 
for this noise.  

The coherence function of this vibration and response is shown in Figure 
2.19. We can observe that this function is still very close to 1 where the PSD has 
significant amplitude, which makes sense since the response signal is the result of 
a calculation (absence of unwanted noise). 
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Figure 2.19. Coherence function of “input” vibrations 
and response of a one-degree-of-freedom system

u  is in addition zero if the signals t  and u t  are completely uncorrelated. 
In general, u  lies between 0 and 1 for the following reasons: 

– the presence of noise in measurements, 

– the non-linear relationship between t  and u t ,

– the response u t  is due to other inputs than t . 

Presence of noise on the input 

If the noise is present only on the input, we set t s t b t  where s(t) is 
the pure signal and b(t) the noise. We have in the same way, for the PSD, 

ss bbG f G f G f

2
uu ssG f H f G

u ssG f H f G

2
u ssG G [2.99] 
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2 ss bb
u

G G
1

G G
[2.100] 

Presence of noise on the response 

Let us consider the case where noise exists only with the response. Setting Gvv
as the PSD of the response without noise and Gnn  that of the noise alone, it 
becomes: 

G f G Guu vv nn

where 

G f H f G fvv
2

G
G

G
G Gvv

u
u uu

2
2 [2.101] 

yielding 

2 vv uu nn nn
u

uu uu uu

G G G G
1

G G G
[2.102] 

The quantity u uuG2  is called the coherent ouput power spectrum. 

2.18. Transfer function calculation from random vibration measurements 

2.18.1. Theoretical relations 

Consider a stationary random vibration s(t) applied to a linear mechanical system 
and its response v(t). In the absence of noise on the input and on the response, 
measures (t)  and u(t) of these signals are identical to s(t) and v(t) respectively. 
Their Fourier transforms are linked by 

U(f ) H(f ) L(f ) [2.103] 

where H(f) of the transfer function of the system. 

We will square each member of this equation: 
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U (f ) U(f ) H (f ) H(f ) L (f ) L(f ) [2.104] 

or, according to the autospectrum definition, 

2
uuG (f ) H(f ) G (f ) [2.105] 

which is simply expression [2.89] already established. 

Yielding a first expression of the transfer function, which we will call H1(f):  

uu
1

G (f )
H (f )

G (f )
[2.106] 

where H1(f) contains no information on the phase.  

Going back to equation [2.103] and multiplying its two members by the 
conjugate Fourier transform of L(f): 

L (f ) U(f ) H(f ) L (f ) L(f ) [2.107] 

or, according to the PSD definition (autospectrum and cross-power spectral density): 

uG (f ) H(f ) G (f ) [2.108] 

yielding a second expression of the transfer function: 

u
2

G (f )
H (f )

G (f )
[2.109] 

Finally, multiply both sides of relation [2.103] by the conjugate U*(f) of U(f). It 
becomes: 

U (f ) U(f ) H(f ) U (f ) L(f ) [2.110] 

uu ulG (f ) H(f ) G (f ) [2.111] 

Yielding the last expression of H(f):  

uu
3

u

G (f )
H (f )

G (f )
[2.112] 
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These three conditions are theoretically similar as long as: 

– signals (t)  and u(t) have no noise, 

– there is no other vibration source contributing to the response u(t), 

– PSDs are calculated with a very low statistical error. 

From definition [2.98], we can say 

2
u2 u u

uu uu

G (f ) G (f ) G (f )
(f )

G (f ) G (f ) G (f ) G (f )

Transfer functions are therefore linked to the coherence function by: 

2 2

3

H (f )
(f )

H (f )
 [2.113] 

2.18.2. Presence of noise on the input 

This situation can occur in practice during a test on an exciter. With stationary 
random vibration, the mechanical response of the specimen shows peaks at 
resonance frequencies. At these frequencies, the power of the exciter may not be 
sufficient for maintaining the excitation at the desired value. In this case, the level of 
excitation decreases and can be close to the background noise. 

Consider an “input” vibration s(t) producing a response u(t) in the output of a 
mechanical system. We presume here that the input has a noise b(t) that is not 
correlated with s(t). 

(t) s(t) b(t) [2.114] 

The Fourier transform of (t)  is equal to 

L(f ) S(f ) B(f ) [2.115] 

Since the response is noiseless, the measured value u(t) is equal to v(t). Knowing 
that 

U(f ) H(f ) L(f ) [2.116] 
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it comes to 

ss bbG (f ) G (f ) G (f ) [2.117] 

First definition 

The transfer function defined by H1(f) is equal to 

2uu ss
1

ss bb

G (f ) G
H (f ) H (f )

G (f ) G G
[2.118] 

2
1

nn

ss

1
H (f ) H (f )

G
1

G

[2.119] 

H1(f) moves away from the theoretical H(f) value of the transfer function as the 
signal-to-noise ratio becomes greater. The calculated value is lower than the real 
value.  

Second definition 

The response and excitation autospectrums are linked by 

2
uu ssG (f ) H G (f ) [2.120] 

However, 

u su bu suG (f ) G (f ) G (f ) G (f ) [2.121] 

since Gbu = 0. Hence 

2
u su ssG (f ) G (f ) H (f ) G (f ) [2.122] 

and

u ss
2

ss bb

G (f ) G
H (f ) H(f )

G (f ) G G
[2.123] 

2
nn

ss

1
H (f ) H(f )

G
1

G

[2.124] 
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Third definition 

The definition of transfer function H3(f) leads to 

2
uu ss

3
u ss

G (f ) H (f ) G
H (f ) H(f )

G (f ) H (f ) G
[2.125] 

The H3 function is then impervious to the noise present in the input measure. We 
can show that it is the best estimation of function H(f) [BEN 80]. 

Coherence function 

2 2

bb3

ss

H (f ) 1
(f )

G (f )H (f ) 1
G (f )

[2.126] 

Signal over noise ratio 

2
ss

2
bb

G (f ) (f )
R(f )

G (f ) 1 (f )
[2.127] 

2.18.3. Presence of noise on the response 

We now consider a mechanical system experiencing a random vibration s(t) 
without noise. The measured signal (t)  is therefore directly s(t). 

Let v(t) be the response of the system; its measure is carried out in the presence 
of a noise n(t). We have: 

u(t) v(t) n(t) [2.128] 

U(f ) V(f ) N(f ) [2.129] 

First definition 

2
uu vv nn ss nnG (f ) G (f ) G (f ) H(f ) G (f ) G (f ) [2.130] 
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2 uu uu vv nn
1

ss ss

G (f ) G (f ) G (f ) G (f )
H (f )

G (f ) G (f ) G (f )

2
2 ss nn

1
ss

H(f ) G (f ) G (f )
H (f )

G (f )

2 2
1

nn

ss

1
H (f ) H(f )

G (f )
1

G (f )

[2.131] 

Second definition 

u v n v ssG (f ) G (f ) G (f ) G (f ) H(f ) G (f ) H(f ) G (f )   [2.132] 

since nG (f ) 0 .

Hence

u su
2

ss

G (f ) G (f )
H (f ) H(f )

G (f ) G (f )
[2.133] 

This is the best estimation of H(f) in these conditions [HER 84]. 

Third definition 

2
nnuu

3
y

H(f ) G (f ) G (f )G (f )
H (f )

G (f ) H (f ) G (f )
[2.134] 

nn
3

vv

G (f )
H (f ) H(f ) 1

G (f )
[2.135] 

Function H3(f) overestimates the transfer function because of noise. The phase 
that is determined from the cross-power spectral density is correct. 
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Coherence function 

2 2

nn3

vv

H (f ) 1
(f )

G (f )H (f ) 1
G (f )

[2.136] 

Knowing that 

2
u2 vv vv

uu uu uu

G (f ) G (f ) G (f ) G (f )
(f )

G (f ) G (f ) G (f ) G (f ) G (f )
[2.137] 

Relation [2.137] shows that the response can be extracted from the noisy signal 
with the help of 

2
vv uuG (f ) (f ) G (f ) [2.138] 

whereas the noise is given by 

2
nn uuG (f ) 1 (f ) G (f ) [2.139] 

Signal-to-noise-ratio 

2
vv

2
nn

G (f ) (f )
R(f )

G (f ) 1 (f )
[2.140] 

2.18.4. Presence of noise on the input and response 

Finally, we consider the more general case where the input and response are both 
affected by noises that are not correlated between each other: 

(t) s(t) b(t) [2.141] 

u(t) v(t) n(t) [2.142] 

ss bbG (f ) G (f ) G (f ) [2.143] 

2
uu vv nn ss nnG (f ) G (f ) G (f ) H(f ) G (f ) G (f ) [2.144] 
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First definition 

nn

2 2 vv
1

bb

ss

G (f )
1

G (f )
H (f ) H(f )

G (f )
1

G (f )

[2.145] 

Second definition 

2
bb

ss

1
H (f ) H(f )

G (f )
1

G (f )

[2.146] 

Third definition 

nn
3

vv

G (f )
H (f ) H(f ) 1

G (f )
[2.147] 

H2(f) underestimates the transfer function, whereas H3(f) overestimates it. 
Depending on the values of the signal-to-noise-ratios, H1(f) can overestimate or 
underestimate the transfer function. The phases, calculated from the cross-spectrum, 
are correct. 

Coherence function 

2 2

3 bb nn

ss vv

H (f ) 1
(f )

H (f ) G (f ) G (f )
1 1

G (f ) G (f )

[2.148] 

2.18.5. Choice of transfer function 

In the ideal case of a linear system where there is no noise on the excitation and 
response, the coherence function is equal to 1 and the transfer function H(f) is 
equally given by 1H (f ) , 2H (f )  or 3H (f )  [BEN 80] [HER 84]. 
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Input without 
noise/ 

Output with 
noise 

Input with noise/ 
Output without 

noise 

Input with noise/ 
Output with noise 

1H (f ) Overestimates 
H(f) 

Underestimates H(f) 

Over or underestimates 
H(f) according to signal-

to-noise-ratios at input and 
response 

2H (f )
Best

representation of 
H(f) 

Underestimates H(f) Underestimates H(f) 

3H (f ) Overestimates 
H(f) 

Impervious to noise 
on input Overestimates H(f) 

Table 2.1. Comparison of the different transfer functions

In practice, it is preferable to use [HER 84]: 

– H2(f) when the response has noise or when there are many independent 
inputs, 

– H3(f) when there is noise on excitation or in the presence of “leakage” at 
resonance frequency (resolution bias). 

Reality is generally more complex: 

– using H2(f) and H3(f) is often useful according to the frequency range, for 
example H2(f) for anti-resonances, where the noise on the response signal tends to 
dominate, and H3(f) for the peaks, where the noise linked to “leakage” tends to 
occur,

– since the noise is present on input and output, H2(f) and H3(f) can provide the 
lower and higher limits of the transfer function. 

Example 2.3. 

Let us take a random vibration lasting 50 s, defined by a PSD close to 0.1 
(m/s2)2/Hz between 10 Hz and 500 Hz (rms value: 7 m/s2) and the response of a 
one-degree-of-freedom linear system at a frequency of f0 = 250 Hz with an over-
tension Q = 10 (rms value: approximately 20 m/s2).
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Figure 2.20 shows the transfer functions H1, H2 and H3 of the system calculated 
from relations [2.106], [2.109] and [2.112] respectively. We can verify that they 
are identical.  

Figure 2.20. Transfer functions H1, H2 and H3 without noise 

A constant PSD noise between 10 Hz and 500 Hz with the same rms value as 
the excitation was added to the response before calculation of transfer functions. 
Resulting transfer functions are superimposed to Figure 2.21 with the theoretical 
transfer function (function H1 in Figure 2.20). H1 and H3 are higher than H2, which 
is very close to the reference.  

Figure 2.21. Transfer functions H1, H2 and H3 with noise on the response
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This same noise was added to the “input” vibration, since the response is 
presumed to be noiseless here. Function H3 is then the closest to the theoretical 
function, as H1 and H2 are lower (Figure 2.22).  

Figure 2.22. Transfer functions H1, H2 and H3 with noise on input

Finally, the same noise was added to random input and response vibrations. 
The H1 curve, the closest to the reference, is included between H2 (the shortest) and 
H3 (the tallest) curves (Figure 2.23).  

Figure 2.23. Transfer functions H1, H2 and H3 with noise  
on input and response
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Example 2.4. 

Let us take a random vibration lasting 50 s, with a constant PSD equal to 
2 (m/s2)2/Hz between 1 Hz and 500 Hz, and very small up to 650 Hz. This 
vibration (signal according to time) was applied to a one-degree-of-freedom linear 
system with a frequency of 200 Hz and a Q factor of 5.

Figure 2.24 shows the transfer function determined by two methods: from the 
ratio between excitation and response autospectrums, or from the cross-spectrum. 
This example being based on a numerical calculation of the response, the results 
are very similar.  

However, we observe that, in the frequency band greater than 500 Hz where the 
input PSD is very low, the autospectrum ratio leads to a faulty transfer function, 
which is not the case with the cross-spectrum.  

Figure 2.24. Transfer function calculated from 
 autospectrums and cross-spectrum



Chapter 3 

Rms Value of Random Vibration

3.1. Rms value of a signal as a function of its PSD  

We saw that [2.26]: 

G f
T f

t f dt
f

T

T
T

lim ,
0

2
0

1

G f  is the square of the rms value of the signal filtered by a filter f  whose 
width tends towards zero, centered around f. To obtain the total rms value rms  of 
the signal, taking into account all the frequencies, it is thus necessary to calculate 

2
rms 0

G f df [3.1] 

The notation 0  means that integration is carried out in a frequency interval 
covering f 0 , while 0  indicates that the interval does not include the limiting 
case f 0 . In a given frequency band f1, f2 f f2 1 ,

2

1

f
2
rms f

G f df [3.2] 

The square of the rms value of the signal in a limited frequency interval f1, f2 is 
equal to the area under the curve G f  in this interval. In addition: 

Random Vibration: Second Edition - Volume 3 
Christian Lalanne 

Copyright 0 2009, ISTE Ltd. 
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G f df s2
0

[3.3] 

where 
– s2  is the variance of the signal without its continuous component, and 

– s  is the standard deviation of the signal. 

Figure 3.1. Non-zero lower limit of the PSD

In addition: 

G f df ( )2
0

0
[3.4] 

 is the mean value of the signal. We thus have: 

222
rms )(s [3.5] 

Lastly, for f 0 , we have: 

G f df
f

f
0 [3.6] 

A purely random signal does not have a discrete frequency component. 

NOTE:

The mean value  corresponding to the continuous component of the signal can 
originate in: 

– the shift due to the measuring equipment, the mean value of the signal being 
actually zero. This component can be eliminated, either by centering the signal 
before the calculation of its PSD or by calculating the PSD between 1f 0  and 

2f  (  being a positive constant different from zero, arbitrarily small), 
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– the permanent acceleration, constant or slowly variable, corresponding to a 
rigid body movement of the vehicle (for example, static acceleration in phase 
propulsion of a launcher using propellant). We often dissociate this by filtering such 
static acceleration of vibrations which are superimposed on it, the consideration of 
static and dynamic phenomena being carried out separately. It is however important 
to be able to identify and measure these two parameters, in order to be able to study 
the combined effects of them, for example during calculations of fatigue strength, if 
necessary (using the Goodman or Gerber rule, etc. (see Volume 4) or of reaction to 
extreme stress. 

Static and dynamic accelerations are often measured separately by different 
sensors, the vibration measuring equipment not always covering the DC component. 
Except for particular cases, we will always consider in what follows the case of zero 
mean signals. We know that, in this case, the rms value of the signal is equal to its 
standard deviation. 

Obtained by calculation of a mean square value, the PSD is an incomplete 
description of the signal t . There is loss of information on phase. Two signals of 
comparable nature and of different phases will have the same PSD. 

Example 3.1. 

Let us consider a stationary random acceleration x t  having a uniform power 
spectral density given by: 

0025.0fGx  (m/s2)2/Hz

in the frequency domain ranging between f1 10 Hz and 2 1,000f  Hz, and zero 
elsewhere. 

Figure 3.2. PSD of a signal having a continuous component
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Let us suppose in addition that the continuous component of the signal is equal 
to x 2  m/s2. Let us calculate the rms value and the standard deviation of the 
signal. The mean square value of the signal is given by relation [3.5]: 

x x s G f dfx x
2 2 2

0

s G f dfx x
2

0

10002

10
s 0 0025 df.x

475.20025.0101000s2
x (m/s2)2

x2 4 (m/s2)2

yielding the mean square value  

475.6475.24x2  (m/s2)2

and the rms value  

545.2x2  m/s2

while the standard deviation is equal to 573.1sx  m/s2.

The random signals are in general centered before the calculation of the 

spectral density, so that x sx
2 2.

3.2. Relationships between the PSD of acceleration, velocity and displacement  

Let us set as t  a random signal with Fourier transform L f ; by definition, we 
have:

2 i f tL f t e dt [3.7] 

and
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2 i f tt L f e df [3.8] 

yielding 

2 if tdt 2 i f L f e dt
dt

2 i f tt L f e dt [3.9] 

By identification, it becomes: 

fLfi2fL [3.10] 

The conjugate expressions of L f  and of L f  are obtained by replacing i with 
i . If G f  and G f  are respectively the PSD of t  and of t , we thus 

obtain, since these quantities are functions of the products L f L f  and 

L f L f  [LEY 65] [LIN 67], 

G f f G f4 2 2 [3.11] 

yielding 

2
rms 0

G f df [3.12] 

22
rms 0

2 f G f df [3.13] 

and, in the same way, 

42
rms 0

2 f G f df [3.14] 

NOTES:  

1. These relations use an integral with respect to the frequency between 0 and 
. In practice, the PSD is calculated only for one frequency interval ( 1f , 2f ). 

The initial frequency 1f  is a function of the duration of the sample selected; this 
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duration being necessarily limited, 1f  cannot always be taken as low as would be 
desirable.

The limit 2f  is if possible selected to be sufficiently large so that all the 
frequency content is described. It is not always possible for certain phenomena, if 
only because of the measuring equipment. A value often used is, for example, 
2,000 Hz. However, the integral necessary for the evaluation of 2

rms  includes a 

term in 4f  which makes it very sensitive to the high frequencies. 

In the calculation of all the expressions utilizing 2
rms , as will be the case for the 

irregularity parameter r which we will define later, the result could be spoilt, having 
considerable error in the event of an inappropriate choice of the limits 1f  and 2f .

J. Schijve [SCH 63] considers that the high frequency/small amplitude peaks 
have little influence on the fatigue suffered by the materials and propose limiting 
integration to approximately 1,000 Hz (for vibratory aircraft environments). 

2. It is known that the rms value of a sinusoidal acceleration signal is related to 
the corresponding velocity and the displacement by 

22 f 2 f [3.15]

These relationships apply at first approximation to the rms values of a very 
narrow band random signal of central frequency f. 

This makes it possible to differently demonstrate relations [3.13] and [3.14]. The 
The PSD of a signal t  is indeed calculated while filtering t  using a filter of 

width f  whose central frequency varies in the definition interval of the PSD, the 
result being squared and divided by f  for each point of the PSD. We thus obtain 
[CUR 64] [DEE 71] [HIM 59]: 

2G 2 f G [3.16] 

2 4G 2 f G 2 f G [3.17] 

yielding [OSG 69] [OSG 82]: 

2
rms 20

G f
df

2 f
[3.18]
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and 

2
rms 40

G f
df

2 f
[3.19] 

We can deduce from these relations the rms value of the displacement of a very 
narrow band noise [BAN 78] [OSG 69]: 

rms
rms 2 24 f

[3.20] 

3.3. Graphical representation of the PSD 

We will consider here the most frequent case where the vibratory signal to 
analyze is an acceleration. The PSD is the subject of four general presentations: 

– the first with the frequency on the x axis (Hz), the amplitude of the PSD on the 
y axis [(m/s2)2/Hz], the points being regularly distributed by frequency (constant 
filter width f  throughout the whole range of analysis); 

– the second, encountered primarily in acoustics problems, uses an analysis in 

the
1

n
th octave, the filter width being thus variable with the frequency; we find more 

often in this case the ordinates expressed in decibels (dB). The number of decibels is 
then given by: 

n
G

G
dB 10

0

log [3.21] 

where 

- G is the amplitude of the measured PSD, 

- G0  is a reference value, selected equal to 10-12 (m/s2)2/Hz in general, 

or, if we consider the rms value in each band of analysis, by 

n
a

a
dB 20

0

log [3.22] 

where 
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a = rms value of the signal in the selected band of analysis, 

a0 = reference value of (10-6 m/s2);

– sometimes, the analysis in the 
1

n
th octave is carried out by indicating in 

ordinates the rms value obtained in each filter. For a noise whose PSD varies little 
with the frequency (close to white noise), the rms value obtained varies with the 
bandwidth of the filter, 

– relationships [3.17] show that the PSD can also be plotted on a four-coordinate 
nomographic grid on which the PSD value can be directly read for acceleration, 
velocity and displacement [HIM 59]. 

Figure 3.3. Four-coordinate representation [HIM 59]

3.4. Practical calculation of acceleration, velocity and displacement rms values 

3.4.1. General expressions 

The rms values of acceleration, velocity and displacement are more particularly 
useful for evaluation of feasibility of a specified random vibration on a test facility 
(electrodynamic shaker or hydraulic vibration machine). Control in a general way 
being carried out from a PSD of acceleration, we will in this case temporarily 
abandon the generalized coordinates. We saw that the rms value rmsx  of a random 
vibration x t  of PSD G f  is equal to: 
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2
rms 0

x G f df

The rms velocity and displacement corresponding to this signal of acceleration 
are respectively given by: 

2
rms 20

G f
v df

2 f
[3.23] 

and

2
rms 40

G f
x df

2 f
[3.24] 

In the general case where the PSD G f  is not constant, the calculation of these 
three parameters is made by numerical integration between the two limits f1 and f2
of the definition interval of G f . When G f  can be represented by a succession of 
horizontal or arbitrary slope straight line segments, it is possible to obtain analytical 
expressions. 

3.4.2. Constant PSD in frequency interval 

Figure 3.4. Constant PSD between two frequencies

In this very simple case where the PSD is constant between f1 and f2,
G f G0 , yielding: 

120rms ffGx [3.25] 

2

1

f
2 0
rms 2 2f

G dfv
4 f
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21
0rms f

1
f
1

G
2
1

v [3.26] 

3
2

3
1

0
2rms

f

1

f

1
3

G

4

1
x [3.27] 

NOTE:

The rms displacement rmsx  can also be written as a function of rms 
acceleration:

2
rms

rms 2 3 3
2 1 1 2

1 1 x 1 1
x

3 f f4 f f

1
2 2 2rms 1 1 2 2

2 3 3
rms 1 2

x 1 f f f f
x 4 3 f f

[3.28] 

If 1 2f f  [CRE 56] 

rms
rms 2

1 1 2

x
x

4 f 3 f f
[3.29] 

3.4.3. PSD comprising several horizontal straight line segments 

Figure 3.5. PSD comprising horizontal segments

We then have [SAN 63]: 
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i
i1iirms ffGx [3.30] 

i 1ii
irms f

1
f
1

G
2
1

v [3.31] 

i
3

1i
3
i

i
2rms

f

1

f

1
3

G

4

1
x [3.32] 

3.4.4. PSD defined by a linear segment of arbitrary slope 

It is essential in this case to specify in which scales the segment of straight line is 
plotted.

Linear-linear scales 

Between the frequencies f1 and f2, the PSD G f  obeys G f a f b , where a 
and b are constants such that, for f f1, G G1 and for f f2, G G2 , yielding 

a
G G

f f
2 1

2 1

 and b
f G f G

f f
1 2 2 1

1 2

.

2 2

1 1

f f
2
rms f f

x G f df a f b df

2
GGff

x 1212
rms [3.33] 

121

2
2

2
rms f

1
f
1

b
f
f

lna
4

1
v

2

2

1

1

1

2

12

12
rms f

G
f
G

f
f

ln
ff
GG

2
1

v [3.34] 

2

1

f
2
rms 4 4f

1 a f bx df
16 f
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2
221

2
1

2

2

1

1
21

12

21
rms ffff

f
G

f
G

3
1

ff
2

GG
ff²4

1
x   [3.35] 

Linear-logarithmic scales 

Figure 3.6. Segment of straight line in lin-log scales

The PSD can be expressed analytically in the form: 

ln G a f b

where a
G G

f f

ln ln2 1

2 1

 and b
f G f G

f f
1 2 2 1

1 2

ln ln
.

2
2 1

1

bf a f a f2 a f b
rms f

ex e df e e
a

2 1a f f1
rms

G
x e 1

a
[3.36] 

(if a 0, i.e. if G G2 1)

2 2

1 1

a f bf f
2
rms 2 2 2 2f f

1 e e dfv df
4 f 4 f

[3.37] 

Knowing that 
a f a f a f

2

e e edf a df
f ff

, this integral can be calculated 

by a development in series (Appendix A4.2): 
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e

f
df f

a f a f a

n

f

n

a f n n

ln
! ! !1 2 2

2 2

In the same way: 

2

1

b a ff2
rms 4 4f

e ex df
16 f

[3.38] 

The integral is calculated as above, from (Appendix A4.2): 

e

f
df

e

f

a e

f
df

a f a f a f

4 3 33 3

e

f
df

e

f

a e

f

a e

f

a e

f
df

a f a f a f a f a f

4 3 2

2 3

3 6 6 6

Particular case where G G2 1

In this case: 

12112
b

rms ffGffex [3.39] 

21
1rms f

1
f
1

G
2
1

v [3.40] 

3
2

3
1

1
2rms

f

1

f

1
3

G

4

1
x [3.41] 

Logarithmic-linear scales 

In these scales, the segment of straight line has as an analytical expression: 

G a f bln

with a
G G

f f
2 1

2 1ln ln
 and b

G f G f

f f
2 1 1 2

1 2

ln ln

ln ln
.



126     Random Vibration 

2
2 2 1 1 2 1rmsx a f ln f f ln f f f b a [3.42] 

Figure 3.7. Segment of straight line in log-lin scales

2
212

2

1

1
2

2
rms

4

ba
f
1

f
1

f
fln

f
fln

4

a
v [3.43] 

3
1

3
2

43
2

2
3
1

1
4

2
rms

f

1

f

1

144

b3a

f

fln

f

fln

48

a
x [3.44]

Logarithmic-logarithmic scales 

Figure 3.8. Segment of a straight line in logarithmic scales

The PSD is such that: 

ln ln ln lnG f G b f f1 1

hence

G f G
f

f

b

1
1
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The constant b is calculated from the coordinates of the point f2, G2 :

b

G

G
f

f

ln

ln

2

1
2

1

Rms acceleration [PRA 70]: 

2

1

b
f

2
rms 1f

1

fx G df
f

If b 1:

1b
GfGf

x 1122
rms [3.45] 

If b  1: 

2

1

f
2
rms 1 1 f

dfx f G
f

1

2
11rms f

f
lnGfx [3.46] 

2

1

f
2 b 21
rms 2 b f

1

G
v f df

4 f

If b 1 :

1

1

2

2
1b

1

2

1

1
rms f

G
f
G

1b
1

2
1

1
f
f

f1b
G

2
1

v   [3.47] 

If b 1:
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The parameter b can be equal to 1 only if 
G

G

f

f
2

1

2

1

, the commonplace case 

G G1 2 and f f1 2  being excluded. On this assumption, G G
f

f
1

1

 and 

1

2

1

1
rms f

f
ln

f
G

2
1

v [3.48] 

2

1

f

f
b

b
1

1
44

2
rms dff

f

G

f16

1
x

If b 3:

3
1

1
3
2

2
2

3b

1

2
3
1

1
2rms

f

G

f

G
3b

1

4

1
1

f
f

f

G
3b

1

4

1
x   [3.49] 

If b 3:

1

2
3
1

1
2rms f

f
ln

f

G

4

1
x [3.50] 

In logarithmic scales, a straight line segment is sometimes defined by three of 
the four values corresponding to the coordinates of the first and the last point, 
supplemented by the slope of the segment. The slope R, expressed in dB/octave, can 
be calculated as follows: 

– the number N of dB is given by 

N
G

G
10 10

2

1

log [3.51] 

– the number of octaves n between f1 and f2 is, by definition, such that  
f

f
n2

1

2 , yielding: 
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n

f

f
log

log

10
2

1

10 2

and

R
G G

f f
10 210

10 2 1

10 2 1

log
log

log
[3.52] 

b01.3b2log10R 10 [3.53] 

Let us set )2(log10 10 . It becomes, by replacing b with 
R

 in the preceding 

expressions [CUR 71]: 

1122
2
rms GfGf

R
x

If R :

1
f
f

R
Gf

x
1

R

1

2112
rms [3.54] 

This can also be written [SAN 66]: 

R
1

2

122

22

11222
rms f

f
1

1
R

Gf
Gf
Gf

1
1

R
Gf

x [3.55] 

or [OSG 82]: 

R

2

1
12

22
rms f

f
ff

R
G

x [3.56] 
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Reference [SAN 66] gives this expression for an increasing slope and, for a 
decreasing slope, 

R
1

1

2112
rms f

f
1

1
R

Gf
x [3.57] 

if R , or 

1
R

2

1222
rms f

f
1

R
Gf

x [3.58] 

For R :

1

2
22

1

2
11

2
rms f

f
lnGf

f
f

lnGfx [3.59] 

If R :

R

2

1

2

2
2

R

1

2

1

1
2

2
rms f

f
1

f
G

R4
1

f
f

f
G

R4
v

 [3.60] 
For R :

1

2

2
2
2

1

2

1
2
12

rms f
f

ln
f4

G
f
f

ln
f4

G
v [3.61] 

If 3R :

3R

1

2
3
2

4
2

3R

1

2
3
1

4
12

rms f
f

1
3Rf16

G
1

f
f

3Rf16
G

x

 [3.62] 
For 3R :

1

2
3
2

2
4

1

2
3
1

1
4

2
rms f

f
ln

f

G

16

1
f
f

ln
f

G

16

1
x [3.63] 
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Figures 3.9, 3.10 and 3.11 respectively show 
11

2
rms

Gf
x

,
1

2
rms1

G
vf

 and 
1

2
rms

3
1

G
xf

versus 
f

f
2

1

, for different values of R. 

Abacuses of this type can be used to calculate the rms value of x, v or x from a 
spectrum made up of straight line segments on logarithmic scales [HIM 64]. 

Figure 3.9. Reduced rms acceleration versus 2 1f f  and R

Figure 3.10. Reduced rms velocity versus 

2 1f f  and R
Figure 3.11. Reduced rms displacement 

versus 2 1f f  and R
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3.4.5. PSD comprising several segments of arbitrary slopes 

Whatever the scales chosen, the rms value of a PSD made up of several straight 
line segments of arbitrary slope will be such that in [OSG 82] [SAN 63]: 

i
rms

2
irms xx [3.64] 

rms
2
ix  being calculated starting from the relations above. In the same way: 

i
rms

2
irms vv [3.65] 

and

i
rms

2
irms xx [3.66] 

3.5. Rms value according to the frequency 

In order to determine what frequencies contribute the most to the global rms 
value of a random vibration, we can draw a curve that gives the rms value according 
to the frequency with the following relation: 

1

f
rms f

x (f ) G(f ) df [3.67] 

where f1 is the initial frequency of the PSD G(f). 

Example 3.2. 

Let us take the “airplane” vibration defined by the PSD in Figure 3.12. 

Figure 3.13 shows the rms value according to the frequency calculated from 
relation [3.67].  
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Figure 3.12. PSD of an airplane vibration

Figure 3.13. Rms value versus frequency 
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This last curve could be drawn in a reduced form by dividing the rms values by 
the global rms value calculated on the complete frequency domain (ratio 

1

2

1

f

f

f

f

G(f ) df

G(f ) df

, possibly expressed in percent). 

3.6. Case of periodic signals 

It is known that any periodic signal can be represented by a Fourier series in 
accordance with: 

t L L n f tn n
i

n

0 1
1

2sin [3.68] 

The PSD is equal to [2.26]: 

T
2
TT 0

f 0

1G f lim t, f dt
T f

is zero for f fn  (with f n fn 1) and infinite for f fn  since the spectrum of t
is a discrete spectrum, in which each component Ln  has zero width f .

If we wish to standardize the representations and to be able to define the PSD of 

a periodic function, so that the integral G f df
0

 is equal to the mean square 

value of t , we must consider that each component is related to the Dirac delta 
function, the area under the curve of this function being equal to the mean square 
value of the component. With this definition, 

0n
1n

2
rms fnffG [3.69] 

where n
2
rms  is the mean square value of the nth harmonic n t  defined by 

nT
2 2
rmsn n0

n

1 t dt
T

[3.70] 
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T
n f

n
1

1

[3.71] 

(n 1, 2, 3, ...). n t  is the value of the nth component and 

T

0

22
00

2
rms dtt

T
1

where T is arbitrary and  is the mean value of the signal t . The Dirac delta 
function f n f1  at the frequency fn  is such that: 

f f dfnf

f

n

n 1 [3.72] 

and

f fn 0 [3.73] 

for f fn  (  positive constant different from zero, arbitrarily small). The 
definition of the PSD in this particular case of a periodic signal does not require 
taking the limit for infinite T, since the mean square value of a periodic signal can 
be calculated over only one period or a whole number of periods. 

Figure 3.14. PSD of a periodic signal

The chart of the PSD of a periodic signal is that of a discrete spectrum, the 
amplitude of each component being proportional to the area representing its mean 
square value (and not its amplitude). 

We have, with the preceding notations, relationships of the same form as those 
obtained for a random signal: 
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G f df sn
n

2 2 2 2

0
0

[3.74] 

G f df sn
n

2 2

1
0

[3.75] 

G f df
2

0

0
[3.76] 

and, between two frequencies fi  and f j (f i fi 1 , f j fj 1 , i and j integers, 
j i ):

G f df
i f

j f
n

n i

j

1

1 2 2 [3.77] 

Lastly, if for a random signal, we had: 

G f df
f

f
0 [3.78] 

we have here: 

f 2
n 1

f 1

for f = n fG f df =
0 for f n f and f 0

[3.79] 

The area under the PSD at a given frequency is either zero or equal to the mean 
square value of the component if f n f1 (whereas, for a random signal, this area is 
always zero). 

3.7. Case of a periodic signal superimposed onto random noise 

Let us assume that: 

t a t p t [3.80] 

a t = random signal, of PSD G fa  defined in [2.26] 

p t = periodic signal, of PSD G fp  defined in the preceding section. 



Rms Value of Random Vibration     137 

The PSD of t  is equal to: 

G f G f G fa p [3.81] 

G f G f f fa n n
n

2

0

[3.82] 

where 

f n fn 1

n = integer  (0, )

f1= fundamental frequency of the periodic signal 

n
2 = mean square value of the nth component n t  of t

The rms value of this composite signal is, as previously, equal to the square root 
of the area under G f .



Chapter 4 

Practical Calculation of the
Power Spectral Density 

The analysis of a random vibration is carried out most of the time by assuming 
that it is stationary and ergodic. This assumption makes it possible to replace a study 
based on the statistical properties of a great number of signals with that of only one 
sample of finite duration T. Several approaches are possible for the calculation of 
the PSD of such a sample. 

4.1. Sampling of signal 

Sampling consists of transforming a vibratory signal that is continuous at the 
outset by a succession of sample points regularly distributed in time. If t is the time 
interval separating two successive points, the sampling frequency is equal to 

t/1f .samp . In order for the digitized signal to be correctly represented, it is 

necessary that the sampling frequency is sufficiently high compared to the largest 
frequency of the signal to be analyzed. 

A too low sampling frequency can thus lead to an aliasing phenomenon, 
characterized by the appearance of frequency components having no physical 
reality.

Example 4.1.

Figure 4.1 thus shows a component of frequency of 70 Hz artificially created by 
the sampling of 200 points/s of a sinusoidal signal of frequency of 350 Hz. 

Random Vibration: Second Edition - Volume 3 
Christian Lalanne 

Copyright 0 2009, ISTE Ltd. 
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Figure 4.1. Highlighting of the aliasing phenomenon due to under-sampling

Example 4.2

Consider a signal with a 30 s duration, defined in the bandwidth 2 –500 Hz and 
sampled at 4 times its maximum frequency, i.e. at 2 KHz, with 60,416 points. Its 
PSD, calculated with a statistical error of about 13%, is shown in Figure 4.2. This 
signal was then decimated by only retaining one point in 3 (20,138 points). The 
sampling frequency is then equal to 666 Hz, leading to a maximum PSD frequency 
of 333 Hz. 

The PSD of this shows an aliasing between 166 Hz and 333 Hz, a range in which 
the amplitude is doubled (so the rms value is retained). The 166 Hz frequency is 
symmetric by 500 Hz compared to 333 Hz. 

Figure 4.2. PSD of the signal sampled at 2 kHz (60,416 points) and of the signal 
decimated at 20,136 points (sampling frequency: 666 Hz)



Practical Calculation of the PSD     141    

Shannon’s theorem (Volume 1, Chapter 1) indicates that if a function contains no 
frequencies higher than maxf  Hz, it is completely determined by its ordinates at a 
series of points spaced max1 / 2 f  seconds apart [SHA 49]. 

This theorem helps in the determination of the minimum sampling frequency to 
retain all the information present in the signal. It is sufficient to correctly calculate 
the rms value of the signal and its PSD. 

Example 4.3. 

Consider a random vibration with a PSD close to (1 m/s2)2/Hz between 5 and 
500 Hz. 

It was sampled with a frequency respecting Shannon’s theorem: 30,000 points 
over 30 s, i.e. 1,000 points/s, twice as big as the greatest signal frequency (500 Hz). 

This signal is compared (Figure 4.3) with the same signal over-sampled at 
13,000 Hz (“original signal”). 

Figure 4.3. Random sampled vibration with frequency equal to 
1,000 Hz, superimposed to the original signal 

Figure 4.4 shows that PSDs of these three vibrations (calculated with the same 
statistical error) are very close. Digitization respecting Shannon’s theorem does not 
lead to a slightly different PSD from the original PSD. 
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Figure 4.4. PSD of sampled random vibration with frequency equal to 
1,000 Hz, superimposed to the PSD of the original signal 

Figure 4.5 shows the rms value of a vibration calculated from the signal based on 
sampled time with several frequencies.  

Figure 4.5. Variation of rms value based on 
the sampling frequency of the signal

We can verify that this rms value remains constant as long as the sampling 
frequency is highest than twice that of the maximum signal frequency. 
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NOTE:

With Shannon’s sampling frequency, the signal does not generally have the same 
effects on a mechanical system than on the original one. We have seen (Volume 1, 
Chapter 1) that it is possible to reconstruct the original signal. 

Given a signal which we wish to analyze up to the frequency maxf , it is thus 
appropriate to avoid aliasing: 

– to filter it using a low-pass filter in order to eliminate frequencies higher  
than maxf  ( the high frequency part of the spectrum which can have a physical 
reality or noise), 

– to sample it with a frequency at least equal to maxf2  [CUR 87] [GIL 88] 
[PRE 90] [ROT 70]. 

NOTE: 

Nyquist samp.f f / 2  is called Nyquist frequency.

We noted (Volume 1, Chapter 1) that low-pass filters used in practice are not 
perfect and they do not completely break the frequencies that are higher than the 
desired value. Because of this, we often impose a sampling frequency equal to 
approximately 2.6 times the highest frequency of the signal to analyze. 

4.2. PSD calculation methods 

Three methods can mainly be used to calculate a PSD: 

– from the autocorrelation function, 

– by signal filtering with f wide filters and calculation of the rms value of the 
filtered signals, 

– with the help of Fourier transforms. 

The most widely used method is the last one. 

4.2.1. Use of the autocorrelation function 

The calculation of the PSD can also be carried out by using relation [4.1], by 
evaluating the correlation in the time domain and by carrying out a Fourier 
transformation (Wiener-Khintchine method) (correlation analyzers) [MAX 86]: 
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x x0
G ( ) 4 R (f ) cos(2 f ) df [4.1] 

4.2.2. Calculation of the PSD from the rms value of a filtered signal 

Theoretical relation [2.26], which would assume an infinite duration T and a zero 
analysis bandwidth f , is replaced by the approximate relation [KEL 67] (Chapter 2):  

G f
T f

f t dt
f

f
T f1 2
0

2

, [4.2] 

where f
2  is the mean square value of the sample of finite duration T, calculated at 

the output of a filter of central frequency f and non-zero width f  [MOR 56]. 

NOTE: 

Given a random white noise v 

ibration t  and a perfect rectangular filter, the result of filtering is a signal 
having a constant spectrum over the width of the filter, which is zero elsewhere 
[CUR 64]. 

The result can be obtained by multiplying the PSD G0  of the input t  by the 
square of the transmission characteristic of the filter (frequency-response 
characteristic) at each frequency (transfer function, defined as the ratio of the 
amplitude of the filter response to the amplitude of the sinewave excitation as a 
function of the frequency. If this ratio is independent of the excitation amplitude, the 
filter is said to be linear). 

In practice, the filters are not perfectly rectangular. The mean square value of 
the response is equal to 0G  multiplied by the area squared under the transfer 
function of the filter. This surface is defined as the “rms bandwidth of the filter”. 

If the PSD of the signal to be analyzed varies with the frequency, the mean 
square response of a perfect filter divided by the width f  of the filter gives a point 
on the PSD (mean value of the PSD over the width of the filter). With a real filter, 
this approximate value of the PSD is obtained by considering the ratio of the mean 
square value of the response to the rms bandwidth of the filter f , defined by 
[BEN 62], [GOL 53] and [PIE 64]: 



Practical Calculation of the PSD     145    

2

0 max

H f
f dt

H
[4.3] 

where H f  is the frequency response function of the (narrow) band-pass filter 

used and maxH  its maximum value.

4.2.3. Calculation of PSD starting from Fourier transform 

The most used method consists of considering expressions [2.38] and [2.40]: 

G f
T

E L f T
T
lim ,

2 2
[4.4] 

NOTE: 

Knowing that the discrete Fourier transform can be written [KAY 81] 

N 1

j
j 0

T 2 j m
L m, T exp i

N N
[4.5] 

the expression of the PSD can be expressed for calculation in the form [BEN 71] 
[ROT 70]: 

2
N 1

j
j 0

2 2 j m
G m f exp i

N N
[4.6] 

where 0 m M  and j j t .

4.3. PSD calculation steps 

The calculation data are in general the following: 

– the maximum frequency of the spectrum, 

– the number of points of the PSD (or the frequency step f ),

– the maximum statistical error tolerated. 
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4.3.1. Maximum frequency 

Given an already sampled signal (frequency .sampf ) and taking into account the 

elements of section 4.1 and of Volume 1, Chapter 1, the PSD will be correct only for 
frequencies lower than 6.2/ff .sampmax .

4.3.2. Extraction of sample of duration T 

Two approaches are possible for the calculation of the PSD: 

– assuming that the signal is periodic and composed of the repetition of the 
sample of duration T, 

– assuming that the signal has zero values at all the points outside the time 
corresponding to the sample. 

These two approaches are equivalent [BEN 75]. In both cases, we are led to 
isolate by truncation a part of the signal which amounts to applying to it a 
rectangular temporal window r t  of amplitude 1 for 0 t T  and zero elsewhere. 

If t  is the signal to be analyzed, the Fourier transform is thus calculated in 
practice with f t t r t .

Figure 4.6. Application of a temporal window
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This operation has consequences. In the frequency domain, the transform of a 
product is equal to the convolution of the Fourier transforms L  and R  of 
each term: 

F L R d
0

[4.7] 

(  is a variable of integration). 

Figure 4.7. Fourier transform of a square waveform

The Fourier transform of a square temporal window appears as a principal 
central lobe surrounded by small lobes of decreasing amplitude (see Volume 2, 

Chapter 1). The transform cancels out regularly for  a multiple of 
2

T
 (i.e. a 

frequency f multiple of 
1

T
). The effect of the convolution is to widen the peaks of 

the spectrum, the resolution, consequence of the width of the central lobe, not being 

able to better f
T

1
.

Expression [4.7] shows that, for each point of the spectrum of frequency 

(multiple of 
2

T
), the side lobes have a parasitic influence on the calculated value of 

the transform (leakage). To reduce this influence and to improve the precision of 
calculation, their amplitude needs to be reduced. 
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Figure 4.8. The Hanning window

This result can be obtained by considering a modified window which removes 
discontinuities of the beginning and end of the rectangular window in the time 
domain. 

Many shapes of temporal windows are used [BLA 91] [DAS 89] [JEN 68] 
[NUT 81]. 

One of best known and the most frequently used is the Hanning window, which 
is represented by a versed sine function (Figure 4.8): 

r t
t

T

1

2
1

2
cos [4.8] 

Figure 4.9. The Bingham window [BIN 67]

This shape is only sometimes used to constitute the rising and decaying parts of 
the window (the Bingham window, Figure 4.9). 

The weighting coefficient of the window is the term given to the percentage of 
rise time (equal to the decay time) of the total length T of the window. This ratio 



Practical Calculation of the PSD     149    

cannot naturally exceed 0.5, corresponding to the case of the previously defined 
Hanning window. 

Examples of windows 

The advantages of the various windows have been discussed in the literature 
[BIN 67] [NUT 81]. These advantages are related to the nature of the signal to be 
analyzed. Actually, the most important point in the analysis is not the type of 
window, but rather the choice of the bandwidth [JEN 68]. The Hanning window is 
nevertheless recommended. 

The replacement of the square window by a more smoothed shape modifies the 
signal actually treated through attenuation of its ends, which results in a reduction of 
the rms duration of the sample and consequently in a reduction of the resolution, 
depending on the width of the central lobe. 

We should not forget to correct the result of the calculation of the PSD to 
compensate for the difference in area related to the shape of the new window. Given 
a temporal window defined by r t , having R f  for Fourier transform, the area 
intervening in the calculation of the PSD is equal to: 

Q R f df2 [4.9] 

From Parseval’s theorem, this expression can be written in a form utilizing the N 
points of the digitized signal: 

Q
N

ri
i

N1 2

0

1
[4.10] 

The multiplicative compensation factor to apply in order to take account of the 
difference between this area and the unit area of a rectangular window is thus equal 
to 1/Q [DUR 72]. 

The choice of the window is not easy. It is still a compromise between the 
minimization of lateral lobes of the window, precision in amplitude and frequency 
and the increase in the main lobe size. It depends on the application considered and 
the frequency content of the signal involved. 
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Window type Definition Compensation 
factor

Bingham 
(Figure 4.9) 

r t
t T

T

1

2
1

10 9 10
cos

for 0
10

t
T

and
9

10

T
t T

875.01

Hamming T
t2

cos146.008.0tr

for 0 t T
3974.01

Hanning r t
t

T

1

2
1

2
cos

for 0 t T

375.01

Parzen 

r t
t

T

t

T
1 6

2
1 6

2
1

2 3

for 
T

t
T

4

3

4

r t
t

T
2 1

2
1

3

for 0
4

t
T

 and 
3

4

T
t T

269643.01

Flat top 

t
T

2
2cos286.1t

T
2

cos933.11tr

t
T

2
4cos032.0t

T
2

3cos388.0

for 0 t T

7709265.31

Kaiser-Bessel
t

T
2

2cos244.0t
T

2
cos24.11tr

t
T

2
3cos00305.0

for Tt0

798573.11

Table 4.1. The principal windows 
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4.3.3. Averaging 

We attempt in the calculations to obtain the best possible resolution with the data 
at our disposal, which results in trying to plot the PSD with the smallest possible 
frequency step.  

The PSD is defined from the Fourier transform of the random vibration )t(x
sample with T duration studied with the help of the following relation: 

2

T
)f(X

T
2

lim)f(G [4.11] 

In practice, the sample duration is finite and: 

2
)f(X

T
2

)f(G [4.12] 

The Fourier transform gives the highest peak amplitude of the output signal from 
a filter (f, f) during T. It is only one value among all those that could be obtained 
from other similar signal samples. 

It is therefore desirable to carry out a priori an average of several Fourier 
transforms to improve precision. 

We also attempt to obtain the best resolution possible in the calculations with the 
data we have, leading us to try to draw the PSD with the lowest frequency step. 

For a sample of duration T, this step cannot be lower than f = 1 T, but then we 
only calculate the Fourier transform on this single signal sample. With this 
resolution, the precision obtained is unacceptable. Several solutions are possible to 
improve it: 

– carry out several measures of the phenomenon, calculate the PSD of each 
sample lasting T and carry out an average of the resulting spectrums, 

– if we only have one sample with T duration, deliberately limit the resolution by 
accepting a higher f  analysis step than 1 T and carry out averaging [BEN 71]. The 
sample of the random signal to study, duration, is broken down into K parts (blocks) 
lasting T = T/K (we will see that this K number must be higher than 50) and we 
calculate a Fourier transform for each of these blocks (Figure 4.10) with a resolution 
equal to 1 T.



152     Random Vibration 

Figure 4.10. PSD calculation with the help of the Fourier transform

The PSD is evaluated by considering the square mean of the modules of these 
transforms, multiplied by 2/T [BAR 55, MAX 81]: 

i
i

i

2
i fĜ

K
1

)f(X
T
2

K
1

)f(G [4.13] 

)f(Ĝi  being the evaluated PSD of block i. 

Figure 4.11. PSD calculation by the Fourier 
transform of the complete sample 
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Figure 4.12. Averaging process for PSD calculation

Extracting blocks of duration T consists of the implicit application of a 
temporal rectangular window to the signal which has some drawbacks. There are 
other forms of windows that are better suited (see section 4.3.2). 

For a sample of duration T, this step cannot be lower than 1/T. With this 
resolution, the precision obtained is unacceptable. Several solutions are possible: 

– to carry out several measurements of the phenomenon, to calculate the PSD of 
each sample of duration T and to proceed to an average of the obtained spectra, 

– if only one sample of duration T is available, to voluntarily limit the resolution 
by accepting an analysis step f  larger than 1/T and to carry out an averaging 
[BEN 71]: 

- either by calculating the average of several frequency components close to 
the considered spectrum component, separated by intervals 1/T, when the noise to be 
analyzed can be comparable to a white noise. If the average is carried out on K PSD, 
the average obtained is assigned to the central frequency of an interval of width 
equal to K T  (which characterizes the effective resolution of the PSD thus 
calculated),
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- or by dividing up the initial sample of duration T into K subsamples (or 
blocks) of duration T T K which will be used to calculate K spectra of 
resolution 1/ T and their average [BAR 55] [MAX 81]: 

1

K
G fi

i

The results of these two approaches are identical for given duration T and given 
resolution [BEN 75]. It is the last procedure which is the most often used. The 
window, rectangular or not, is applied to each block. 

4.3.4. Addition of zeros 

The smallest interval f  between two points of the PSD is related to the duration 

of the block considered by at least f
T

1
. The calculation of the PSD is carried 

out at M points with distances of f  between 0 and 2f .samp  ( .sampf  = sampling 

frequency of the signal). As long as this condition is observed, it is said that the 
components of the spectrum are statistically independent.

Figure 4.13. Addition of zeros at end of the signal sample

If the available signal sample is characterized by a small number of points, M 
can be small enough and lead to a PSD that is defined by only a few straight line 
segments. 

As in the case of the Fourier transform of a shock, we can still add components 
to the spectrum to obtain a smoother curve by artificially increasing the number of 
points with zeros placed at the end of each block (leading to a new T T'
duration). 
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We can however add components to the spectrum to obtain a more smoothed 
curve by artificially increasing the number of points using zeros placed at the end of 
the block (leading to a new duration T'T ).

Figure 4.14. The addition of zeros increases 
 the number of points of the PSD

Although the components added are no longer statistically independent, the 
validity of each component remains whole. 

The additional points of the PSD thus obtained lie between the original points 
corresponding to the duration T and are on the continuous theoretical curve. 

The resolution and the statistical error are unchanged. All the components have 
an equal validity in the analysis [ENO 69]. We should attach no particular 

importance to the components spaced out at 
1

T
, except that they constitute a range 

independent components. An equivalent unit could be selected by considering the 
points at the frequencies 1 f T, 2 f T, etc., where f  is an increment 
ranging between 0 and 1 [BEN 75]. 

NOTE:

Similarly, we can add zeros to a PSD (at high frequency) to increase the sampling 
frequency of a signal to create from this PSD. 

Overlapping enables us to increase the number of PSD points by retaining the 
statistical error value. The resulting improvement being limited; however, adding 
zeros is mainly used after this operation to obtain smoother PSDs. 
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Example 4.4. 

Let us take a random vibration measured on a truck, characterized by a 3.04 s 
signal sample with 4,096 points. The statistical error is set at 15%. 

– maximum PSD frequency: max
1 n 4 096f 674 Hz

2 t 2 T 2 3.04
;

– the number of PSD points necessary to respect the statistical error: 
2 2n 4096 0.15

46
2 2

, where the closest lower power of 2 M = 32;  

– frequency step: maxf 674
f 21.06 Hz

M 32
;

– number of blocks: 64
322

4096

M2

n
K ;

– number of points per block: N 2 M 2 32 64x ;

– duration of each block: T 3.04T 0.0475 s.
K 64

The PSD will thus only be defined by 32 points separated by 21 Hz (Figure 
4.15).  

Adding 192 zeros to each of the 64 blocks leads to a signal with 16,384 points, 
making it possible to calculate the PSD with 128 points (power of 2 immediately 

lower than 
2 2n 16 384 0.15 184

2 2
). The resulting PSD is smoother  

(Figure 4.16).  
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Figure 4.15. PSD of the truck vibration calculated 
on 32 points (statistical error: 0.15) 

Figure 4.16. PSD of the truck vibration calculated on 128 points 
with addition of zeros at each block (statistical error: 0.15)  

The PSDs calculated above are compared in Figure 4.17. Adding zeros results 
in intermediate points, but does not improve the statistical precision (Figures 4.18 
and 4.19).  
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Figure 4.17. Comparison of truck vibration PSDs calculated 
with 32 points (without additional zeros) and with 128 points (with zeros)

Figure 4.18. PSD peak calculated with 32 points 
(without zeros) and with 128 points (with zeros)  
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Figure 4.19. PSD peak calculated with 32 points 
(without zeros) and with 256 points (with zeros)  

4.4. FFT 

In 1965, J.W. Cooley and J. Tukey [COO 65] developed a method called the 
Fast Fourier Transform or FFT, making it possible to reduce considerably the 
calculation time of the Fourier transforms. 

A FFT analyzer functions with a number of points which is [MAX 86]: 

– a power of 2 for the Cooley-Tukey algorithms and those which derive  
from them, 

– a product of integer powers of prime numbers (Vinograd’s algorithm). 

With the Cooley-Tukey algorithm, the calculation time of the transform of a 
signal defined by N points is proportional to N Nlog2  instead of the theoretically 

necessary value N2.

Calculations of PSD are done today primarily using the FFT, which also has 
applications for the calculation of coherence functions (square of the amplitude) 
[CAR 73] and of convolutions. This algorithm, which is based in practice on the 
discrete Fourier transform, leads to a frequency sampling of the Fourier transform 
and thus of the PSD. 
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Number of 
Points 

Number of points of the 
Fourier transform 

Speed ratio 
N

Nlog2

256 

512 

1,024 

2,048 

4,096 

128 

256 

512 

1,024 

2,048 

32

56.9 

102.4 

186.2 

341.3 

Table 4.2. Speed ratio for FFT calculation 

NOTES: 

1. Whilst in theory equivalent, the FFT and the method using the correlation can 
in practice lead to different results, which can be explained by the non-cognisance 
of the theoretical assumptions due to the difficulties of producing the analyzers 
[MAX 86]. J. Max, M. Diot and R. Bigret showed that a correlation analyzer 
presents a certain number of advantages such as: 

– a greater flexibility in the choice of the frequency sampling step, facilitating 
the analysis of the periodic signals, 

– a choice more adapted to the conditions of analysis of the signal. 

2. When these algorithms are used to calculate the Fourier transform of a shock, 
we should not forget to multiply the result by the duration T of the treated signal.

4.5. Particular case of a periodic excitation 

The PSD of a periodic excitation was defined by [3.69]: 

G f f fn n
n

2

0

[4.14] 

The PSD of such an excitation being characterized by very narrow bands 
centered on the frequencies fn , the calculation of G f'  supposes that t  is 
analyzed in sufficiently narrow filters f . The PSD is approximated by: 
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G f f f
f

n n
n

2

0 2
[4.15] 

n
2  can be obtained either by direct calculation of: 

n n n n
T

T
L f dt L2 2 2 2

0

1
2

1

2
sin [4.16] 

with T
fn

1
 or T

k

fn

, i.e. by calculation of the mean value: 

n n n n
T

T
L f dt L

1
2

2
0

sin [4.17] 

T having the same definition. It should be noted that: 

n
2

2
2

8
[4.18] 

T must be multiple of 
1

fn

. If this is not the case, the error is weaker the larger the 

number of selected periods. For a periodic excitation, the measurment or calculation 
accuracy is only related to the selected width f  of the chosen filter (the signal 
being periodic and thus deterministic, there is no error of statistical origin related to 
the choice of T). 

4.6. Statistical error 

4.6.1. Origin 

Let us consider a stationary random signal whose PSD we wish to calculate. 
Even if the measure duration were to be long (the signal remaining stationary), the 
PSD would only be determined from a signal sample lasting a few dozen seconds 
because of calculation time. The characteristic of such a signal being precisely to 
vary in a random way, the PSD obtained is different according to the moment at 
which it is calculated. 
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The PSD of an acceleration signal characterized by a sample of duration T is 
obtained by calculating the average of Fourier transform modules of K blocks for 
this sample, i.e. the average G  of K PSD values G f  of these blocks [4.13]. 

Because of the stochastic nature of the signal, the PSD value obtained at a given 
frequency varies according to the position over time of the signal sample chosen for 
the calculation. 

Let us consider the PSD G f  evaluated at frequency f starting from a sample of 
duration T chosen successively between the times t0  and t T0 , then t T0  and 
t T0 2  , etc. 

Figure 4.20. Estimates of the PSD at frequency f for various signal samples

The values of G f  thus calculated are all different from each other and different 
also from the exact value G f . We have: 

G f
N

G f E G f
N

i
i

N
lim

1

1

[4.19] 

The true PSD is thus the mean value of the quantities G f  estimated at various 
times, when their number tends towards the infinity. We could also define the 
standard deviation s  of G f . For N values, 

N

1i

2N

1i
i

2
i fĜ

N
1

fĜ
1N

1
ŝ [4.20] 

and, for N

s s
N
lim [4.21] 
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S, being the true standard deviation for a measurement G f , is a description of 
uncertainty of this measure. In practice, we will make only one calculation of G f
at the frequency f and we will try to estimate the error carried out according to the 
conditions of the analysis. 

We can easily understand that the precision of this mean depends on the number 
of blocks. 

This mean is only an estimation of the exact G f  value that would be obtained 
with a very large number of adequately sized blocks, or with a very long sample. 

The true PSD is in theory the mean value of values G f  evaluated at different 
moments when the number leans toward the infinite. 

We should note that for a sample of duration T, when the number of K blocks 
increases, the f = 1/ t step between two consecutive PSD points also increases and 
the resolution decreases. 

In practice, the number K is not infinite and we only have an estimation of the 
PSD at each frequency associated with a standard deviation. We can simply state, 
with a certain level of confidence, that the exact PSD is, for example, located 
between two limits made up of the estimated mean PSD ( G ) ± one standard 
deviation curves. We are then mistaken in the estimation of the PSD which is, a
priori, a function of the length of the chosen sample. 

4.6.2. Definition 

The statistical error or normalized rms error is the quantity defined by the  
ratio: 

s
f

f

2

2
[4.22] 

(variation coefficient) where f
2  is the mean square value of the signal filtered in 

the filter of width f  (quantity proportional to G f ) and s
f

2  is the standard 

deviation of the measurement of f
2  related to the error introduced by taking a 

finite duration T. 



164     Random Vibration 

NOTE: 

We are interested here in the statistical error related to calculation of the PSD. 
An error of comparable nature is also made during the calculation of other 
quantities such as coherence, transfer function, etc. (see section 4.17). 

4.7. Statistical error calculation 

4.7.1. Distribution of the measured PSD 

If the ratio 
s

f

f

2

2
 is small, we can ensure with a high confidence level that a 

measurement of the PSD is close to the true average [NEW 75]. If, on the contrary, 
is large, the confidence level is small. We propose below to calculate the confidence 
level which can be associated with a measurement of the PSD when  is known. The 
analysis is based on an assumption concerning the distribution of the measured 
values of the PSD. 

The measured value of the mean square z2  of the response of a filter f  to a 
random vibration is itself a random variable. It is assumed in what follows that z2

can be expressed as the sum of the squares of a certain number of Gaussian random 
variables statistically independent, zero average and of the same variance: 

z
T

x t dt x t dt x t dt
T n

T n

T n

TT n2 2 22 2
1 10

1
  [4.23] 

We can indeed think that z2  satisfies this assumption, but we cannot prove that 
these terms have an equal weight or that they are statistically independent. However, 
we note in experiments [KOR 66] that the measured values of z2  roughly have the 
distribution which would be obtained if these assumptions were checked, namely a 
chi-square law, of the form: 

2
1
2

2
2

3
2 2

n [4.24] 

If it can be considered that the random signal follows a Gaussian law, it can be 
shown ([BEN 62] [BEN 71] [BLA 58] [GOL 53] [JEN 68] [NEW 75]) that 

measurements G f  of the true PSD G f  are distributed as G f
n
n
2

 where n
2  is 

the chi-square law with n degrees of freedom, mean n and variance 2 n (if the mean 
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value of each independent variable is zero and their variance equal to 1 [BLA 58] 
[PIE 64]). 

Figure 4.21 shows some curves of the probability density of this law for various 
values of n. We notice that, when n grows, the density approaches that of a normal 
law (a consequence of the central limit theorem). 

Figure 4.21. Probability density: the chi-square law

NOTE: 

Some authors [OSG 69] consider that measurements Ĝ f  are distributed more 

like
2
n 1G f

n 1
, basing themselves on the following reasoning. From the values 

1 2 3 nX , X , X , , X  of a normally distributed population, of mean m (unknown 
value) and standard deviation s, we can calculate 

2 2 2 2
1 2 3 n2

2

X X X X X X X X

s
  [4.25] 

where



166     Random Vibration 

iX
X

n
[4.26] 

(mean of the various values taken by variable X by each of the n elements). Let us 
consider the reduced variable 

i
i

X X
U

s
[4.27] 

The variables iU  are no longer independent, since there is a relationship 
between them: according to a property of the arithmetic mean, the algebraic sum of 
the deviations with respect to the mean is zero, therefore iX X 0 , and 

consequently, iX X
0

s
 yielding: 

iU 0

In the sample of size n, only n 1  data are really independent, for if n 1
variations are known, the last variation results from this. If there is n 1
independent data, there are also n 1 degrees of freedom. 

However, the majority of authors agree in considering that it is necessary to use 
a law with n degrees of freedom. This dissention has little incidence in practice, the 
number of degrees of freedom to be taken into account being necessarily higher than 
90 so that the statistical error remains, according to the rulebook, lower than 
approximately 15%. 

4.7.2. Variance of the measured PSD 

The variance of G f  is given by: 

s
G f

nG f
nvar

( )2
2

s
G f

nG f n
( )

var2
2

2 [4.28] 
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However, the variance of a chi-square law is equal to twice the number of 
degrees of freedom: 

Var n2 2 [4.29] 

yielding 

s
G f

n
n

G f

nG f

( ) ( )2
2

2

2

2 2 [4.30] 

The mean of this law is equal to n. 

4.7.3. Statistical error 

Figure 4.22. Statistical error as a function of the number of dofs

G f
G f

n

G f

n
n2

G f G f [4.31] 

The statistical error is thus such that 
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2
2

2
2s

G f n
G f

2

n
[4.32] 

 is also called the standard error.

If this error is small, we can assume with a high level of confidence that the 
measure of the DSP is close to the real average [NEW 75]. If, on the contrary,  is 
large, the result is not satisfactory. 

The statistical error is therefore a quantity that makes it possible to estimate the 
precision with which a DSP has been calculated. It is important to configure its 
value on the traced curves. 

4.7.4. Relationship between number of degrees of freedom, duration and 
bandwidth of analysis 

This relation can be obtained either by using a series expansion of 

E G f G f
2

 or starting from the autocorrelation function. 

4.7.4.1. From a series expansion 

It is shown that [BEN 61b] [BEN 62]: 

bias

2
2

yvariabilit

22
fG

576
f

fT
fG

fGfĜE [4.33] 

Except when the slope of the PSD varies greatly with f , the bias is in general 
negligible. Then 

2

2

2

1E G f G f

G f T f
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This relation is a good approximation as long as  is lower than approximately 
0.2 (i.e. for T f 25).

1

T f
[4.34] 

The error is thus only a function of the duration T of the sample and of the width 
f  of the analysis filter (always assumed to be ideal [BEA 72] [BEN 63] 

[NEW 75]). 

Figure 4.23. Statistical error

Figure 4.23 shows the variations of this quantity with the product T f . The 
number of events n represented by a record of a white noise signal, duration T, 
filtered by a filter of width f , is thus, starting from [4.32]: 

n f T2 [4.35] 

Table 4.3 enables us to compare the approximate value given by [4.34] with the 
exact value for fT2n  between 2 and 65. 
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 Statistical error 

n Exact pproximate n Exact pproximate

2 0.841 1.000 16 0.346 0.354 

3 0.729 0.816 17 0.336 0.343 

4 0.650 0.707 18 0.327 0.333 

5 0.591 0.632 19 0.319 0.324 

6 0.546 0.577 20 0.311 0.316 

7 0.510 0.535 25 0.279 0.283 

8 0.480 0.500 30 0.255 0.258 

9 0.454 0.471 35 0.237 0.239 

10 0.433 0.447 40 0.222 0.224 

11 0.414 0.426 45 0.209 0.211 

12 0.397 0.408 50 0.199 0.200 

13 0.382 0.392 55 0.190 0.191 

14 0.369 0.378 60 0.182 0.183 

15 0.357 0.365 65 0.175 0.175 

Table 4.3. Comparison of the exact statistical error and the statistical error 
calculated from the approximate relation for a level of confidence equal to 68%

Example 4.5. 

In order for  to be lower than 0.1, product T f  must be higher than 100, which 
can be done either with T 1 s and f 100  Hz or with T 100 s and f 1 Hz, 
for example. 

Figure 4.24. Signal sample duration according to the frequency 
step, for a statistical error equal to 0.05, 0.10 and 0.15 
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We will see later the incidence of the choice of these parameters in the PSD 
calculation (see section 4.8). 

Definition

The quantity n f T2  is called the number of degrees of freedom (dofs). 

NOTE :

The expression dof is used differently in several sectors and should be 
clarified.

In the studies on structure behavior during vibration, the number of dofs of a 
system is equal to the number of dimensions required to determine the state of 
this system at each moment. The simplest system, a hardware point, generally has 
three dofs: three coordinates are necessary to define its position in space at each 
moment. For a structure represented by a group of masses that can only be 
moved in one direction, springs and dampers, the number of dofs is equal to the 
number of masses. A solid in space has six dofs: its position is determined by 
three coordinates and three angles. The number of equations to characterize the 
movement of the system must be equal to the number of dofs; 

We also use the expression “number of dofs” in control strategies for random 
vibration exciters to characterize the importance given to the last PSD measure 
of the signal generated in relation to the average of prior measures for correcting 
the control.

4.7.4.2. From the autocorrelation function 

Let us consider t  a vibratory signal response collected at the output of a filter 
of width f . The mean square value of t  is given by [COO 65]: 

f
T

T
t dt2 2

0

1

Setting f
2  the measured value of f

2 , we have, by definition: 

f f

f

2 2
2

1 2

2
[4.36] 
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f f f f

f

f f

f

4 2 2 2
2

2

4 2
2

2

2

However, we can write: 

f f
T T

f
T

u du
T

v dv4 2
2

2
0

2
0

2
21 1

.

f f
T

f
T

T
du u v dv4 2

2

2 0
2 2 2 2

0

1

i.e., while setting t u  and v u v t ,

f f
T

ft

T t

T
dt t t d4 2

2

2 0
2 2 2 21

yielding 

f f
T

ft

T t

T
dt d4 2

2

2 0
2

2
22

where  is the autocorrelation coefficient. Given a narrow band random signal, 
we saw that the coefficient  is symmetric with regard to the axis 0  and that 
decreases when  becomes larger. If T is sufficiently large, as well as the majority 
of the values of t: 

2
4 2

2

2
2 2

2
0

2f f

f

T

T
dt d

yielding the standardized variance 2  [BEN 62]: 

2 2 2
0

2 4

T
d

T
d [4.37] 



Practical Calculation of the PSD     173    

2
1 2

0T
d [4.38] 

Particular cases 

1. Rectangular band-pass filter 

We saw [2.71] that in this case [MOR 58]: 

cos sin2 0f f

f

yielding 

2
2

0
2

2 2 20

4 2

T

f f

f
d

cos sin

2 1

T f

and [BEN 62] [KOR 66] [MOR 63]: 

1

T f
[4.39] 

Example 4.6. 

For  to be lower than 0.1, it is necessary that the product T f  be greater than 
100, which can be achieved, for example, either with T = 1 s and f 100  Hz, or 
with T 100 s and f 1 Hz. We will see, later on, the incidence of these choices 
on the calculation of the PSD. 

2. Resonant circuit 

For a resonant circuit: 

cos 2 0f e f
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yielding 

2 2
0

2
0

4
2

T
f e dfcos

2 2
0

2

T
e df

1

T f
[4.40] 

4.7.5. Confidence interval 

Uncertainty concerning G f  can also be expressed in terms of the confidence 
interval. If the signal t  has a roughly normal probability density function, the 

distribution of 
G f

G f
, for any f, is the same as 

2

n
. Given an estimate G f  obtained 

from a signal sample, for Tf2n  events, the confidence interval in which the 
true PSD G f  is located is, on the confidence level 1 :

n G f
G f

n G f

n n

( )
, ,1 2

2
2

2 [4.41] 

where n, 2
2  and n, 1 2

2  have n dofs.  

Figure 4.25. Confidence intervals of G/Ĝ according to 
the number of dofs [MOO 61]
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Table 4.4 gives some values of n,
2  according to the number of dofs n for 

various values of .

n,
2

N \ 0.995 0.99 0.975 0.95 0.90 0.75 0.50 0.25 0.10 0.05 0.025 0.01 0.005 

1
2
3
4

7.88 
10.6 
12.8 
14.9 

6.63 
9.21 
11.3 
13.3 

5.02 
7.38 
9.35 
11.1 

3.84 
5.99 
7.81 
9.49 

2.71
4.61
6.25
7.78

1.32
2.77
4.11
5.39

0.455 
1.39 
2.37 
3.36 

0.102
0.575
1.21
1.92

0.0158
0.211
0.584
1.06

0.003
9

0.103
0.352
0.711

0.0010
0.0506

0.216
0.484

0.0002 
0.0201 

0.115 
0.297 

0.0000 
0.0100 

0.072 
0.207 

5
6
7
8
9

16.7 
18.5 
20.3 
22.0 
23.6 

15.1 
16.8 
18.5 
20.1 
21.7 

12.8 
14.4 
16.0 
17.5 
19.0 

11.1 
12.6 
14.1 
15.5 
16.9 

9.24
10.6
12.0
13.4
14.7

6.63
7.84
9.04
10.2
11.4

4.35 
5.35 
6.35 
7.34 
8.34 

2.67
3.45
4.25
5.07
5.90

1.61
2.20
2.83
3.49
4.17

1.15
1.64
2.17
2.73
3.33

0.831
1.24
1.69
2.18
2.70

0.554 
0.872 
1.24 
1.65 
2.09 

0.412 
0.676 
0.989 
1.34 
1.73 

10 
11 
12 
13 
14 

25.2 
26.8 
28.3 
29.8 
31.3 

23.2 
24.7 
26.2 
27.7 
29.1 

20.5 
21.9 
23.3 
24.7 
26.1 

18.3 
19.7 
21.0 
22.4 
23.7 

16.0
17.3
18.5
19.8
21.1

12.5
13.7
14.8
16.0
17.1

9.34 
10.3 
11.3 
12.3 
13.3 

6.74
7.58
8.44
9.30
10.2

4.87
5.58
6.30
7.04
7.79

3.94
4.57
5.23
5.89
6.57

3.25
3.82
4.40
5.01
5.63

2.56 
3.05 
3.57 
4.11 
4.66 

2.16 
2.60 
3.07 
3.57 
4.07 

15 
16 
17 
18 
19 

32.8 
34.3 
35.7 
37.2 
38.6 

30.6 
32.0 
33.4 
34.8 
36.2 

27.5 
28.8 
30.2 
31.5 
32.9 

25.0 
26.3 
27.6 
28.9 
30.1 

22.3
23.5
24.8
26.0
27.2

18.2
19.4
20.5
21.6
22.7

14.3 
15.3 
16.3 
17.3 
18.3 

11.0
11.9
12.8
13.7
14.6

8.55
9.31
10.1
10.9
11.7

7.26
7.96
8.67
9.39
10.1

6.26
6.91
7.56
8.23
8.91

5.23 
5.81 
6.41 
7.01 
7.63 

4.60 
5.14 
5.70 
6.26 
6.84 

20 
21 
22 
23 
24 

40.0 
41.4 
42.8 
44.2 
45.6 

37.6 
38.9 
40.3 
41.6 
43.0 

34.2 
35.5 
36.8 
38.1 
39.4 

31.4 
32.7 
33.9 
35.2 
36.4 

28.4
29.6
30.8
32.0
33.2

23.8
24.9
26.0
27.1
28.2

19.3 
20.3 
21.3 
22.3 
23.3 

15.5
16.3
17.2
18.1
19.0

12.4
13.2
14.0
14.8
15.7

10.9
11.6
12.3
13.1
13.8

9.59
10.3
11.0
11.7
12.4

8.26 
8.90 
9.54 
10.2 
10.9 

7.43 
8.03 
8.64 
9.26 
9.89 

25 
26 
27 
28 
29 

46.9 
48.3 
49.6 
51.0 
52.3 

44.3 
45.6 
47.0 
48.3 
49.6 

40.6 
41.9 
43.2 
44.5 
45.7 

37.7 
38.9 
40.1 
41.3 
42.6 

34.4
35.6
36.7
37.9
39.1

29.3
30.4
31.5
32.6
33.7

24.3 
25.3 
26.3 
27.3 
28.3 

19.9
20.8
21.7
22.7
23.6

16.5
17.3
18.1
18.9
19.8

14.6
15.4
16.2
16.9
17.7

13.1
13.8
14.6
15.3
16.0

11.5 
12.2 
12.9 
13.6 
14.3 

10.5 
11.2 
11.8 
12.5 
13.1 

30 
40 
50 
60 

53.7 
66.8 
79.5 
92.0 

50.9 
63.7 
76.2 
88.4 

47.0 
59.3 
71.4 
83.3 

43.8 
55.8 
67.5 
79.1 

40.3
51.8
63.2
74.4

34.8
45.6
56.3
67.0

29.3 
39.3 
49.3 
59.3 

24.5
33.7
42.9
52.3

20.6
29.1
37.7
46.5

18.5
26.5
34.8
43.2

16.8
24.4
32.4
40.5

15.0 
22.2 
29.7 
37.5 

13.8 
20.7 
28.0 
35.5 

70 
80 
90 
00 

104.2 
116.3 
128.3 
140.2 

100.4 
112.3 
124.1 
135.8 

95.0 
106.6 
118.1 
129.6 

90.5 
101.9 
113.1 
124.3 

85.5
96.6

107.6
118.5

77.6
88.1
98.6

109.1

69.3 
79.3 
89.3 
99.3 

61.7
71.1
80.6
90.1

55.3
64.3
73.3
82.4

51.7
60.4
69.1
77.9

48.8
57.2
65.6
74.2

45.4 
53.5 
61.8 
70.1 

43.3 
51.2 
59.2 
67.3 

Table 4.4. Values of 2
n, as a function of the number N of dofs [SPI 74] 
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Figure 4.26. Values of 2
n,  with respect to the number of dofs and of 

Figure 4.26 graphically represents the function 2  with respect to n, 
parameterized by the probability .

Example 4.7. 

99% of the values lie between 0.995 and 0.005. We read from Figure 4.26, for 
n 10, that the limits are 2 = 25.2 and 2.16. 

Figure 4.27. Example of use of the curves 2
n, n
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Example 4.8.

Figure 4.27 shows how in a particular case these curves can be used to 
numerically evaluate the limits of the confidence interval defined by relation 
[4.41]. 

Let us set n 10. We note from this figure that 80% of the values are within 
the interval 4.87 and 15.99 with mean value m 10 . If the true value of the mean 
of the calculated PSD S0 is m, it cannot be determined exactly, but it is known that 

10
99.15

m
S

10
87.4 0

00 S625.0mS05.2

More specific tables or curves were published to directly provide the value of the 
limits [DAR 72] [MOO 61] [PIE 64]. For example, Table 4.5 gives the confidence 
interval defined in [4.41] for three values of 1 –  [PIE 64]. 

NOTE: 

When n 30 , 2
n2  follows a law close to a Gaussian law of mean 2 n 1

and standard deviation 1 (Fisher’s law). Let x be a normal reduced variable and 
a value of the probability such that 

prob x k 1 [4.42] 

where k is a constant function of the probability .

For example: 

 90% 95% 99% 

k 1.645 1.960 2.58 

We have 

2
nprob 2 n 1 k 2 2 n 1 k [4.43] 
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Confidence interval limits relating to a measured PSD G f 1

1 0.68 1 0.90 1 0.95 1 0.99
Degrees 

of

freedom

n

Lower
limit 

Higher
limit 

Lower
limit 

Higher
limit 

Lower
limit 

Higher
limit 

Lower
limit 

Higher
limit 

2

5

10

15

20

25

30

35

40

45

50

60

70

80

90

100

120

140

160

180

200

0.543

0.628

0.698

0.737

0.763

0.782

0.797

0.809

0.818

0.827

0.834

0.846

0.856

0.864

0.871

0.876

0.886

0.893

0.900

0.905

0.909

5.789

2.432

1.760

1.555

1.451

1.387

1.343

1.310

1.285

1.265

1.248

1.222

1.202

1.187

1.174

1.164

1.148

1.135

1.126

1.118

1.111

0.334

0.452

0.546

0.600

0.637

0.664

0.685

0.703

0.717

0.730

0.741

0.759

0.773

0.785

0.795

0.804

0.819

0.30

0.840

0.848

0.855

19.46

4.365

2.538

2.066

1.843

1.711

1.622

1.558

1.509

1.470

1.438

1.389

1.353

1.325

1.302

1.283

1.254

1.232

1.214

1.200

1.189

0.271

0.390

0.488

0.546

0.585

0.615

0.639

0.658

0.674

0.688

0.700

0.720

0.737

0.750

0.762

0.772

0.788

0.802

0.813

0.822

0.830

39.498

6.015

3.080

2.395

2.085

1.906

1.787

1.702

1.637

1.586

1.545

1.482

1.436

1.400

1.371

1.347

1.310

1.283

1.261

1.244

1.229

0.189

0.299

0.397

0.457

0.500

0.533

0.559

0.581

0.599

0.615

0.629

0.653

0.672

0.688

0.701

0.713

0.733

0.749

0.763

0.774

0.784

199.50

8.879

4.639

4.545

2.690

2.377

2.176

2.036

1.932

1.851

1.786

1.689

1.618

1.563

1.520

1.485

1.431

1.391

1.360

1.334

1.314

Multiply the lower and higher limits in the table by the measured value G f  to 
obtain the limits of the confidence interval of the true value G f .

Table 4.5. Confidence limits for the calculation of a PSD [PIE 64]
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yielding the approximate value of the limits of 2
n

2 2

2
n

2 n 1 k 2 n 1 k
prob 1

2 2
  [4.44] 

and that of the confidence interval limits of 
G f

Ĝ f
 (since the probability of 

Ĝ
G

 is 

the same as that of n

n

2

): 

2 2

G f2 n 2 n
prob 1

Ĝ f2 n 1 k 2 n 1 k
  [4.45] 

For large values of n n 120 , i.e. for  small, it is shown that the chi-square 

law tends towards the normal law and that the distribution of the values of Ĝ f

can itself be approximated by a normal law of mean n and standard deviation 2 n
(law of large numbers). In this case, 

2
nprob n k 2 n n k 2 n 1 [4.46] 

yielding 

G fn n
prob 1

Ĝ fn k 2 n n k 2 n
  [4.47] 
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Figure 4.28. Confidence interval for  
P = 0.99

Figure 4.29. Error related to the use of the 
normal or Fisher laws

Figure 4.30. Confidence interval for  
P = 0.90 

Figure 4.31. Error related to the use of the 
normal or Fisher laws 

Figures 4.28 to 4.31 provide, for a confidence level of 99%, and then 90%: 

– variations in the confidence interval limits depending to the number of dofs n, 
obtained using an exact calculation (chi-square law), by considering the Fisher and 
normal assumptions, 

– the error made using each of these simplifying assumptions. 

These curves show that the Fisher assumption constitutes an approximation 
acceptable for n greater than approximately 30 (according to the confidence level), 
with relatively simple analytical expressions for the limits. 
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Figure 4.32. Confidence limits ( ˆG G )

Figure 4.33. Confidence limits ( Ĝ G ) [MOO 61]

The ratio 
G

G
 (or 

G

G
, depending on the case) is plotted in Figures 4.32 and 4.33 

with respect to n, for various values of the confidence level. 



182     Random Vibration 

Example 4.9.

Let us suppose that a PSD level G 2  has been measured with a filter of width 
5.2f  Hz and from a signal sample of duration T 10 s. The number of dofs is 

n T f2 50  (yielding 2.0
fT

1
). Table 4.5 gives, for 90.01 :

Ĝ44.1GĜ741.0

i.e. 88.2G482.1  if G 2 .

This result can also be obtained from the curves in Figure 4.33. For n 50 :

69.0
G
Ĝ

on the confidence level 5%, 

35.1
G
Ĝ

on the confidence level 95%. 

With a confidence level of 90%, we thus have: 

35.1
G
Ĝ

69.0

i.e.
69.0

Ĝ
G

35.1
Ĝ

Ĝ44.1GĜ74.0

88.2G48.1
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For 1.0  [PIE 64], we can see that the relative error between the true PSD 
and the calculated PSD lies between sG with a confidence level of 68% 
(68.2689%), i.e. that during approximately 68% of the time, the exact PSD lies 
between G f sG :

G f G f sG [4.48] 

From this inequality, we can write [PIE 64]: 

G f
G f

G f

1 1
[4.49] 

The confidence limits on the 68% level are plotted in Figure 4.34 for n ranging 
between 2 and 1,000, then ranging between 20 and 200. 

Figure 4.34. Confidence limits at the 68% level

NOTE: 

At confidence level 1 –  = 68%, expressions [4.41] and [4.49] show that 

2
n,1 2

2
n, 2

1 n
1

1 n
1

[4.50] 
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yielding 

2
n,1 2

2
n, 2

1
n

1
n

[4.51] 

where, if 0.2 ,
1

T f
, we deduce: 

2 2
n,1 2 n, 2 2 n [4.52]

This expression is applicable for any n for confidence level 68% and any  when 
n is large. 

Figure 4.35. ˆG / G as a function of frequency of filter and length of analysis [CUR 64]

Figure 4.35 shows the variations of: 

PSDmeasured
)Tlarge(PSDtrue

Ĝ
G

with respect to the central frequency of the filter, for various lengths of analysis, at 

the confidence level of 80% and for a ratio 10
f

frequencycentral
 [CUR 64]. 
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Figure 4.36. ˆG G as a function of frequency of the filter and probability

Figure 4.36 is parameterized, in the same axes, by the probability. 

Figures 4.35 and 4.36 are deduced from Figure 4.34 as follows: for a given f, 

f
f

10
 is calculated, then, for a given T, n f T2 , yielding 

G

G
 and 

G

G
.

Example 4.10. 

We want to calculate a PSD with a statistical error less than 17.5% at a 
confidence level of 95%. At this level, we have 96.1  times the standard error. 
The standard error should thus not exceed: 

%94.8
96.1

5.17

Knowing , the calculation conditions can be chosen from 

.1094.8
fT

1 2

Duration T (s) 60 30 20 10 5 

f (Hz) 2.086 4.171 6.256 12.512 25.02 
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4.7.6. Expression for statistical error in decibels 

While dividing, in [4.44], 2
n  by its mean value by n, we obtain 

1
n2

k1n2
nn2

k1n2
prob

22
n

2

  [4.53] 

The error can be evaluated from 
G

G
, i.e. 

n

2
n , in the form 

n
log10

2
n

10dB [4.54

It is raised, according to n, by 

n2
k1n2

log10
2

10dB

n2
k

n
1n2k

n2
1

1log10
2

10dB [4.55] 

Figure 4.37 shows the variations of dB with the number of dofs n for a 
confidence level of 99%. 

If k 1, there is a 68.27% chance that the measured value is in the interval 
1 sG f  and an 84.13% chance that it is lower than 1 fĜs . Then: 

n
1n2

1log10 10dB

If n is large compared to 1, 

n
2

1log10 10dB
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dB
T f

10 1
1

log [4.56] 

Figure 4.37. Statistical error in dB (confidence level of 99%)

Figure 4.38. Statistical error approximation (confidence level of 68%)

The curves in Figure 4.38 allow comparison of exact relation [4.54] with 
approximate relation [4.56]: the approximation is very good for n 50.
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Example 4.11. 

If it is required that dB5.0 , i.e. that 12.2% , it is necessary, at a 
confidence level of 84%, that 17.67fT , or that the number of dofs is equal to 
n T f2 135.

If f 24  Hz, 8.210
f122.0

1
T 4

2  s. At a confidence level of 90%, 

the variations of the PSD are, in the interval [BAN 78]: 

 n Lower limit (dB) Upper limit (dB)  

 50 

100 

250 

-1.570 

-1.077 

-0.665 

1.329 

0.958 

0.617 

NOTE:

From [4.56], 

dB 10
1 10 1

10 log 1 ln 1
ln(10 )T f T f

and, if 
1

T f
 is small, the decibel error can also be written as 

dB
10 1 4.34

ln(10 ) T f T f

4.7.7. Statistical error calculation from digitized signal 

Let N be the number of sampling points of the signal x t  of duration T, M the 
number of points in frequency of the PSD, .sampf  the sampling frequency of the 
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signal, fmax  the maximum frequency of the PSD, lower than or equal to 
6.2

f .samp

(modified Shannon’s theorem, Volume 1, Chapter 1) and t  the time interval 
between two points. 

We obtain: 

T N t [4.57] 

M2

f
f .samp [4.58] 

NOTE: 

M points separated by an interval f  lead to a maximum frequency 

samp.
max

f
f M f

2
. To fulfill the condition of section 4.3.1, it is necessary to 

limit in practice the useful field of the PSD to samp.
max

f
f

2.6
.

If we need a PSD calculated based on M points, we need at least N M2
points per block. Since the signal is composed of N points, we will cut it up into 

K
N

M2
 blocks of duration T

T

K
.

Knowing that 
t

1
f .samp :

f
M t

1

2

yielding 

1 2

T f

M t

N t
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i.e.    
2 M 1
N K

[4.59] 

Example 4.12. 

32,768N  points  M 512  points T 64 s 

yielding 

2M = 1,024 points per sample 

K
N

M2
32 samples (of 2 s) 

5.0
64
32

T
K

f Hz   samp.
N 32,768

f 512
T 64

 points/s

2 512 0.1768
32,768

x

  Even if Hz256Hz5.0512fM , we must have, in practice, 

Hz197
6.2

512
6.2

f
f .samp
max .

Example 4.3. 

From a signal sample of 5 seconds duration measured on a plane (Figure 4.39), 
several PSDs were calculated to show the influence of statistical error. The signal, 
sampled with a frequency equal to 2.6 times its maximum frequency, was initially 
defined by 32,302 points; zeros were added to each block to obtain a power of two 
(or 32,768 points). 

The PSD in Figure 4.40 was obtained by considering a single block of equal 
duration as the sample, 5 s. The frequency resolution is great (0.2 Hz), but the 
statistical error is maximum. Since the duration of the sample is mandated, the only 
way to decrease the statistical error is to increase step f in frequency (and thus 
decrease resolution) and/or to use overlapping (trick to increase duration in the 
calculation).



Practical Calculation of the PSD     191

Figures 4.41 to 4.46 show the PSDs traced for several f values included 
between 0.39 Hz and 12.62 Hz. The reduction in error leads to a smoother line. The 
curve is only truly “clean” for an error of approximately 13% (Figure 4.46), which 
confirms the rule (error lower than 15%). 

Figure 4.39. Gaussian “airplane” vibration (rms 
value 7.58 m/s2, duration 5 s, 32,302 points) 

Figure 4.40. PSD calculated with a single block (no averaging) 
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Figure 4.41. PSD calculated with an error of approximately 71%  
(2 blocks, f = 0.39 Hz, 8,192 points) 

Figure 4.42. PSD calculated with an error of approximately 50%  
(4 blocks, f = 0.79 Hz, 4,096 points) 
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Figure 4.43. PSD calculated with an error  
of approximately 36%

(8 blocks, f = 1.58 Hz, 2,048 points) 

Figure 4.44. PSD calculated with an error  
of approximately 25%

(16 blocks, f = 3.15 Hz, 1,024 points) 
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Figure 4.45. PSD calculated with an error equal to 18%  
(32 blocks, f = 6.31 Hz, 512 points) 

Figure 4.46. PSD calculated with an error equal to 13%  
(64 blocks, f = 12.62 Hz, 256 points) 

The number of PSD points can be increased to a constant statistical error: 
–  with overlapping that can reach 75%; 
– by adding zeros to the signal before calculation (Figures 4.47 with 1,024 points 

and 4.48 with 512 points). 
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Figure 4.47. PSD calculated with an error equal to 9.4% 
( f = 3.15 Hz, 1,024 points, 75% overlapping with zeros) 

Figure 4.48. PSD calculated with an error equal to 9.4% 
( f = 6.31 Hz, 512 points, 75% overlapping with zeros) 
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4.8. Influence of duration and frequency step on the PSD 

The signal studied below theoretically has a generally constant PSD up to 
1,000 Hz (0.1 (m/s2)2/Hz). To highlight the influence of each parameter studied, the 
PSD traced in the following figures was artificially broken into 3 or 4 frequency 
intervals. Each band shows a part of the PSD calculated with a different value from 
the parameter involved. 

4.8.1. Influence of duration 

PSDs are calculated with a frequency of 512 points, up to 1,000 Hz (a frequency 
step approximately equal to 1.95 Hz, therefore constant resolution). Each part of the 
curve shows the PSD obtained with a signal sample of 100 s, 20 s and 5 s durations 
respectively. With 100 s, the statistical error is low, equal to 7.2%: the PSD remains 
close to 0.1. When duration decreases, the statistical error increases and the curve 
becomes increasingly dispersed around 0.1. 

Figure 4.49. Influence of sample duration on the PSD 

For a given  statistical error, we can say, with a level of confidence equal to 
68%, that the true PSD is included between the calculated PSD divided by 1 +  and 
the calculated PSD divided by 1 – .

Figure 4.50 shows the sector delimited by these two curves in the previous 
calculation hypotheses. The indetermination decreases with the statistical error. 
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Figure 4.50. Influence of duration on the precision of the PSD calculation. 
 Confidence intervals for 3 duration values (at constant f) 

4.8.2. Influence of the frequency step 

We now review the case where we have a signal sample with a given duration 
(20 s) and we examine the influence the f frequency step (i.e. of the number of 
points). 

Figure 4.51. Influence of frequency step on precision d PSD calculation 
Confidence intervals for 4 f values (at constant sample duration) 
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We can observe that when the resolution increases ( f smaller), the statistical 
error increases, the resulting PSD is less smoothed with higher peaks. The greater 
the resolution, the greater the uncertainty. 

To the left of the curve, the statistical error is small, precision is good, but the 
resolution is only of 7.81 Hz. The PSD is smooth. 

4.8.3. Influence of duration and of constant statistical error frequency step 

When duration T of the sample and the frequency step f vary to retain the same 
statistical error value (constant T f product), we obtain a spectral curve that is 
defined with more or less points (since the frequency step varies) and where the 
amplitude of variations around the true value (0,1) remains generally constant 
(linked to the statistical error). 

Example 4.14. 

Figures 4.52 to 4.55 show a PSD calculated with a statistical error equal to 0.16, 
for different values of duration T of the sample (1.25 s to 20 s) and frequency step 
(31.24 Hz to 1.95 Hz). 

The curve is more detailed the smaller the frequency step. 

Figure 4.52. PSD calculated for T = 1.25 s and f = 31.24 Hz (  = 0.16) 
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Figure 4.53. PSD calculated for T = 2.5 s and  
f = 15.62 Hz (  = 0.16) 

Figure 4.54. PSD calculated for T = 5 s and  
f = 7.31 Hz (  = 0.16) 
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Figure 4.55. PSD calculated for T = 20 s and f = 1.95 Hz (  = 0.16) 

4.9. Overlapping 

4.9.1. Utility 

We can carry out an overlapping of blocks for three reasons: 

– to limit the loss of information related to the use of a window on sequential 
blocks, which results in ignorance of a significant part of the signal because of the 
low values of the window at its ends [GAD 87]; 

– to reduce the length of analysis (interesting for real time analyses) [CON 95]; 

– to reduce the statistical error when the duration T of the signal sample cannot 
be increased. We saw that this error is related to the number of blocks taken in the 
sample of duration T. If all the blocks are sequential, the maximum number K of 
blocks of fixed duration T (arising from the frequency resolution desired) is equal 
to the integer part of T T [WEL 67]. An overlapping makes it possible to increase 
this number of blocks whilst preserving their size T .

Overlapping rate 

The overlapping rate R is the ratio of the duration of the block overlapped by the 
following block over the total duration of the block. 
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This rate is in general limited to the interval between 0 and 0.75. 

Figure 4.56. Overlapping of blocks

Overlapping in addition makes it possible to minimize the influence of the side 
lobes of the windows [CAR 80] [NUT 71] [NUT 76]. 

4.9.2. Influence on the number of dofs 

Let N be the number of points of the signal sample, N’ (> N) the number of 
points necessary to respect the desired statistical error with K blocks of size 

N (N K N' ). The difference N N'  must be distributed over K 1 possible 
overlappings [NUT 71]: 

N N K R N' 1

yielding 

R
N N

N K

N N

N N

' '

'1
[4.60] 

For R to be equal to 0.5 for example, it is necessary that N N N' 2 .

Overlapping modifies the number of dofs of the analysis since the blocks can no 
longer be regarded as independent and non-correlated. The estimated value of the 
PSD no longer obeys a single chi-square law. The variance of the PSD measured 
from an overlapping is less than that calculated from contiguous blocks [WEL 67]. 
However, R. Potter and J. Lortscher [POT 78] showed that, when K is sufficiently 
large, the calculation could still be carried out on the assumption of non-
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overlapping, on the condition that the result could still be corrected by a reduction 
factor depending on the type of window and the selected overlapping rate. The 
correlation as a function of overlapping can be estimated using the coefficient: 

c R
r t r t R T dt

r t dt

T

T

1
0

2
0

[4.61] 

Correlation coefficient C Coefficient
Window 

R 25% R 50% R 75% R 50% R 75%

Rectangle 0.25000 0.50000 0.75000 0.66667 0.36364 

Bingham 0.17143 0.45714 0.74286 0.70524 0.38754 

Hamming 0.02685 0.23377 0.70692 0.90147 0.47389 

Hanning 0.00751 0.16667 0.65915 0.94737 0.51958 

Parzen 0.00041 0.04967 0.49296 0.999509 0.67071 

Flat top 0.00051 -0.01539 0.04553 0.99953 0.99540 

Kaiser-Bessel 0.00121 0.07255 0.53823 0.98958 0.62896 

Table 4.6. Reduction factor 

4.9.3. Influence on statistical error 

When the blocks are statistically independent, the number of dofs is equal to 
n K T f2 2  whatever the window. With overlappings of K blocks, the 
effective number of blocks to consider in order to calculate the statistical error is 
given [HAR 78] [WEL 67]: 

– for R = 50% by: 

K
c21

K

K
c2

K
c21

1
K 502

%50
2

2
%50

2
%50

50 [4.62]  

– for R = 75% by: 
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2

2
%25

2
%50

2
%75

2
%25

2
%50

2
%75

%75

K
c3cc

2
K

c2c2c21

1
K

K
K

c c c
K75%

75%
2

50%
2

25%
2 75

1 2 2 2
[4.63]  

(the approximation being acceptable for K 10). Under these conditions, the 
statistical error is no longer equal to 1 K , but to: 

1

K
[4.64] 

The coefficient  being less than 1, the statistical error is, for a given K, all the 
larger as overlapping is greater. However, with an overlapping, the total duration of 
the treated signal is smaller, which makes it possible to carry out more the analyses 
quickly in real time (control of the test facilities). The time saving can be calculated 
from [4.60]: 

R
N N

N N

T T

T T

'

'

'

'

( T duration of a block). To avoid a confusion of notations, we will let OT  be the 
duration of the signal to be treated with an overlapping and T be the duration 
without overlapping. We then have: 

TT
TT

N'N
N'N

R O  [4.65] 

yielding 

TRR1TTO [4.66] 

Since R 1 and T T , we have in general R1TTO . The time saving  

is thus approximately equal to R1
T

TO .
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Example 4.15.  

Consider a PSD calculated from a vibration of duration T 25 s with a 
f 4  Hz frequency step (or K T f 100) leading to a statistical error 

0 0.1 (without overlapping). 

With overlapping rate equal to R 0.75  and a Hann window, the coefficient μ 
is approximately equal to 0.52, yielding 1 0.52 x 25 x 4 0.139 . However, 

this result is obtained with a signal of duration RT 1 0.75 25 6.25  s. 

If we now consider a sample of given duration T, overlapping makes it  
possible to define a greater number of blocks. This K' number can be deducted from 
[4.60]: 

N
N R N

R
'

1

yielding, if N K N' '

K
K R

R
'

1
[4.67] 

The increase in the number of blocks makes it possible to reduce the statistical 
error which becomes equal to: 

1

1

1 1
0K R

R

R

K

R
[4.68] 

Example 4.16. 

With the data of the above example, the statistical error would be equal to 

0693.0693.0
52.0

75.01
00 .
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4.9.4. Choice of overlapping rate 

The calculation of the PSD uses the square of the signal values to be analyzed. In 
this calculation, the square of the function describing the window for each block 
thus intervenes in an indirect way, by taking account of the selected overlapping rate 
R. For a linear average, this leads to an effective weighting function trrms  such 
that [GAD 87]: 

K

1i

22
rms TR1itr

K
1

)R(r [4.69] 

where T is the duration of the window used (duration of the block), i is the number 
of the window in the sum and K is the number of windows at time t. 

Figure 4.57. Ripple on the Hanning window 
(R = 0.58)

Figure 4.58. Hanning window for R = 0.75

Figure 4.59. Ripple amplitude versus 1 – R

With the Hanning window, one of the most frequently used windows, it can be 
observed (Figure 4.57) that there is a ripple on tr2

rms , except when R1  is of the 
form p/1  where p is an integer equal to or higher than 3 (Figure 4.58). The ripple 
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has a negligible amplitude when R1  is small (lower than 3/1 ) [CON 95] 
[GAD 87]. This property can be observed in Figure 4.59, which represents the 
variations of the ratio of the maximum and minimum amplitudes of the ripple (in 
dB) with respect to R1 .

This makes it possible to justify the use, in practice, of an overlapping equal to 
0.75, which guarantees a constant weighting on a broad part of the window (the 
other possible values, 2 3, 3 4, 4 5, etc., are less used, because they do not lead, 
like 3 4, to an integer number of points when the block size is a power of two). 

4.10. Information to provide with a PSD 

A lot of information should be included with the PSD. Imperatively: 

– the PSD rms value, providing a global idea of the severity of the vibration, 

– the statistical error during the PSD calculation, linked to the duration of the 
signal sample and to the frequency step of the PSD. The parameter is very 
important, since it is a characteristic of the validity of the PSD (the rule cited lays 
down that its value be lower than 15%). 

Ideally: 

– the frequency step (or the number of points of PSD calculation), 

– the signal rms value. If the average is zero, the difference between the rms 
value of the PSD and of the signal shows that we have ignored part of the frequency 
content of the signal during the calculation of its PSD, generally of high frequency 
(section 4.11); 

– standard deviation of the signal sample used to calculate the PSD. The rms 
value of the signal and standard deviation enable the calculation of the mean; 

– skewness and kurtosis of the signal, making it possible to determine the 
Gaussian character of signal instantaneous values and in particular to detect the 
presence of faults in the signal (or shock) sample. 

4.11. Difference between rms values calculated from a signal according to time 
and from its PSD 

The rms value of a vibratory signal can be calculated: 
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– directly from the signal itself, by considering the square root of the sum of the 
squares of point amplitudes defining the signal (square root of the quadratic 
average); 

– by integration of the PSD, theoretically between zero and infinite, between two 
frequencies f1 and f2 in practice (square root of the surface under the spectral curve 
between two frequencies). 

In the first case, the rms value r.m.s.x  obtained takes into consideration all the 
points in the signal and thus its frequency content, as well as its mean m if it is not 
zero.

We know that the rms value is linked to the standard deviation s by: 

2 2 2
r.m.s.x s m  [4.70] 

In the second case, we calculate the rms value of the signal in the frequency band 
f1, f2 without taking into consideration the mean (which would correspond to zero 
frequency). 

Both results are identical if the band f1, f2 covers the frequency content of the 
signal (or if f1 is equal to zero and f2 is infinite). 

The data of the rms value of the signal and its standard deviation with the PSD is 
therefore useful, since it allows for the calculation the average value of the signal. 
The comparison of rms values calculated from the signal and PSD makes it possible 
to assess the importance of the part of the spectrum that may be ignored during PSD 
calculation.

4.12. Calculation of a PSD from a Fourier transform 

The PSD can be calculated from a Fourier transform: 

– by raising to the square the amplitude of the Fourier transform and by 
multiplying this square by the f frequency step of the Fourier transform: 

2PSD= TF f  [4.71] 

– or, which leads to the same result, by dividing the square of the Fourier 
transform amplitude by duration T of the original signal (this is the equivalent 
because f is equal t 1/T): 



208     Random Vibration 

2TF
PSD=

T
 [4.72] 

The resulting PSD is obtained with a very small frequency step and thus a 
very large resolution, but with very bad precision on amplitude (see section 3.9). 

The expression of error 
fT

1
 is no longer correct here, since it is only 

valid for 0.2  (see section 3.5). The number of dofs, equal to product 2 T f, is 
equal to 2, which leads to a statistical error of 83% with exact relations. In other 
words, with a level of confidence of 68%, we can simply state that the true PSD 
is between 0.54 and 5.79 times that of the resulting PSD. This result therefore has 
no practical value. 

Example 4.17.  

The acceleration signal studied is that in Figure 4.60. It is an approximate white 
noise of duration 5 s, defined by 5,005 points (rms value: 15.7 m/s2).

Figure 4.60. Acceleration signal according to 
the time studied (rms value: 15.7 m/s2)

The amplitude of its Fourier transform is given in Figure 4.61 and the resulting 
PSD by using relation [4.72] in Figure 4.62. 



Practical Calculation of the PSD     209

Figure 4.61. Amplitude of the Fourier transform of signal in Figure 4.60 

The Fourier transform is calculated on 4,096 points, with a f frequency step 
equal to 0.122 Hz. 

Figure 4.62. PSD deducted from the Fourier transform 

The resulting PSD has the same frequency step. Its rms value is equal to 
12.25 m/s2. This PSD can be compared to PSDs calculated with a statistical error 
equal to 0.114, i.e. with 4,096 points ( f = 0.09 Hz) or 512 points ( f = 0.98 Hz). 
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Figure 4.63. PSD calculated with a statistical error equal to 0.114 (4,096 points) 

Figure 4.64. PSD calculated with a statistical error equal to 0.114 (512 points) 

PSDs calculated with a statistical error of 0.114 can be superimposed, with an 
rms value approximately equal to 13.7 m/s2, and are very different from the PSD 
obtained from the Fourier transform for the complete signal sample, obtained with a 
very high and unacceptable statistical error. 
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4.13. Amplitude based on frequency: relationship with the PSD 

The first vibration test standards established between 1945 and 1965 [FOL 72b] [ 
SCH 65] specified vibrations defined by amplitude based on the frequency, 
established from measures in the real, albeit random, environment. 

The main reason was the lack of power in the test facilities back then, which did 
not allow for random vibrations. The only possibility was sinusoid vibrations, swept 
or otherwise. 

Analyzing vibratory signals, filtering in particular was done in analog ways; the 
results were shown on an oscilloscope. 

Today, it is not always easy to find the exact conditions of reduction of data used 
then. An example is given by R.W. Hager, R.L. Partington and R.J. Leistikow 
[HAG 62], in which the vibratory signal to analyze, available on magnetic tape, was 
consecutively filtered by several narrow band filters made up of a low-pass and a 
high-pass filter such that the output to input ratio was reduced by 6 dB from the 
central frequency and 24 dB from an octave on each side. 

Although it is sometimes clearly indicated [FOL 69, MAG 78], the width of the 
filter, which can vary with its central frequency, is most often not mentioned 
[GRA 62], even though the result greatly depends on it. Because of this, it is not 
certain today that we can compare the severity of several random vibrations from 
this type of curve used in the literature. 

The maximum amplitude of the filtered signal was used on a diagram 
(acceleration 0 – peak) according to the central frequency of the filter represented in 
abscissas. The ordinate axis sometimes indicated the displacement corresponding to 
this acceleration as if the filtered signal was sinusoidal. 

The curves drawn by linking the points of the line spectrum thus obtained 
[HAG 62] were used to carry out severity comparisons [GEN 68] [SCH 65]. 

Specifications were determined by enveloping, with straight line segments, the 
scatter plot resulting from the analysis of a large number of signals collected from 
different points in a single vehicle or different types of vehicles (constant 
displacement, generally peak-to-peak, constant velocity and constant acceleration in 
logarithmic axes) [TOL 63]. 

Some authors presented the results in statistical form, with several curves 
representing the value of the acceleration around P% of accelerations measured by 
the frequency, which comes down to representing the peak value as well as the 
distribution of accelerations below the peak at each frequency [OST 67] [OST 79]. 
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Sometimes, the curves also provided amplitude according to probability of 
occurrence. 

Relationship with the PSD    

The acceleration peak can be calculated from the PSD by choosing, for a given G 
value of the PSD, a 1 Hz bandwidth, leading to an rms value equal to 

rmsx G 1 G  and by taking into consideration the peak value between 3 and 
5 times the rms value for a random signal [OST 79].  

For example, of the PSD has an amplitude of G = 9 (m/s2)2/Hz at 200 Hz, the 
amplitude is equal to G  = 3 m/s2. To obtain the rms value of the whole spectrum, 
we have to integrate the amplitude to the square of this value. We should note that 
this amplitude–frequency spectrum is generally drawn in logarithmic axes and that 
we have to consider it for the integration. 

Another possibility is to use the product of G by frequency step f of the PSD at 
each frequency. However, the result is then a function of the step width. 

4.14. Calculation of the PSD for given statistical error 

4.14.1. Case study: digitization of a signal is to be carried out 

Given a vibration t , we set out to calculate its PSD between 0 and fmax with 
M points (M must be a power of 2), for a statistical error not exceeding a selected 
value . The procedure is summarized in Table 4.7 [BEA 72] [LEL 73] [NUT 80]. 

The signal of total duration T (to be defined) will be cut out in K blocks of unit 
duration T, under the following conditions: 

max.samp f6.2f
Condition to avoid the aliasing phenomenon 
(modified Shannon’s theorem). 

2

f
f .samp

Nyquist Nyquist frequency [PRE 90]. 

f
f

M
Nyquist Interval between two points of the PSD (this 

interval limits the possible precision of the analysis 
starting from the PSD). 

.sampf
1

t Temporal step (time interval between two points of 
the signal), if the preceding condition is observed. 
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N M2 Number of points per block. 

N
M2
2

Minimum number of signal points to analyze in 
order to respect the statistical error. 

T N t Minimum total duration of the sample to be 
treated.

K N
M2 Number of blocks. 

T T
K

M t
f

( )2 1
Duration of one block. 

Calculation of 2fL
T

1
 for 

each point of the PSD, where 
f m f  (0 m M)

Calculation from the FFT of each block. 

K

1i

2
i fL

T
1

K
1 Averaging of the spectra obtained for each of the 

K blocks (stationary and ergodic process). 

Table 4.7. Calculation process of a PSD starting from a  
non-digitized signal

With these conditions, the maximum frequency of the calculated PSD is equal to 
Nyquistmax f'f , but it is preferable to consider the PSD only in the interval (0, maxf ). 

NOTE: 

It is assumed here that the signal has frequency components greater than maxf
and that it was thus filtered by a low-pass filter to avoid aliasing. If it is known that 
the signal has no frequency beyond maxf , this filtering is not necessary and 

max maxf ' f .

4.14.2. Case study: only one sample of an already digitized signal is available 

If the signal sample of duration T has already been digitized with N points, we 
can use the value of the statistical error to calculate the number of points M of the 
PSD (i.e. the frequency interval f ), which is thus no longer to be freely selected 
(but it is nevertheless possible to increase the number of points of the PSD by 
overlapping and/or addition of zeros). 
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Data: the digitized signal, fmax  and .

2

f
'f .samp
max

Theoretical maximum frequency of the PSD (see 
preceding note). 

6.2

f
f .samp
max

Practical maximum frequency. 

.sampf
1

t Temporal step (time interval between two points of the 
signal). 

N T
t

Number of signal points of duration T. 

M
N 2

2

Number of points of the PSD necessary to respect the 
statistical error (we will take the number immediately 
beneath that equal to the power of 2). 

2

f
f .samp

Nyquist Nyquist frequency. 

f
f

M
Nyquist Interval between two points of the PSD. 

N M2 Number of points per block. 

K N
M2

Number of blocks. 

Table 4.8. Calculation process of a PSD starting from an already digitized signal 

If the number of points M of the PSD to be plotted is itself imposed, it would be 
necessary to have a signal defined by N'  points instead of N given points (N N').
We can avoid this difficulty in two complementary ways: 

– either by using an overlapping of the blocks (of 2 M points). We will set the 
overlapping rate R equal to 0.5 and 0.75 while taking smallest of these two values 
(for a Hanning window) which satisfies the inequality: 

1 2R M

N

When it is possible, overlapping chosen in this manner makes it possible to use 

K' blocks with K
N

M
'

'

2
, where [4.60] N

N M R

R
'

2

1
;
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– or, if overlapping does not sufficiently reduce the statistical error, by fixing this 
rate at 0.75 to benefit as much as possible from its effect and then to evaluate the 
size of the blocks which would make it possible, with this rate, to respect the 
statistical error, using: 

1 R N

N

The value N  thus obtained is lower than the number 2 M necessary to obtain 
the desired resolution on the PSD. Under these conditions, the number of items used 
for the calculation of the PSD is equal to: 

75.01
N75.0N

'N

and the numbers of blocks to K N N' ' . We can then add zeros to each block to 
increase the number of calculation points of the PSD and to make it equal to 2 M.

For each block, this number is equal to 
2 M K N

K

' '

'
. This is however only an 

artifice, the information contained in the initial signal not evidently increasing with 
the addition of zeros.

4.15. Choice of filter bandwidth  

4.15.1. Rules 

It is important to recall that the precision of calculation of the PSD depends, for 
given T, on the width f  of the filter used [RUD 75]. The larger the width f  of the 
filter, the smaller the statistical error  and the better the precision of calculation of 
G f . However, this width cannot be increased limitlessly [MOO 61]. The larger 

f , the fewer details on the curve are obtained, which is smoothed. The resolution 
being weaker, the narrow peaks of the spectrum are no longer shown [BEN 63]. A 
compromise must thus be found. 

Figure 4.65 shows as an example three spectral curves obtained starting from the 
same vibratory signal with three widths of filter (3.9 Hz, 15.625 Hz and 31.25 Hz). 
These curves were plotted without the amplitude being divided by f , as is 
normally the case for a PSD. 
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Figure 4.65. Influence of width of filter

We observe in these conditions that the area under the curve calculated for 
625.15f  Hz is approximately half of that obtained for 25.31f  Hz. In the 

case of a true PSD, division by f  gives the same area, whatever the value of f .

We note in addition on these curves that the spectrum obtained for 6.15f  Hz 
is very much smoothed; in particular, the peak observed for 9.3f  Hz has 
disappeared. In order to choose the value of f , it would be necessary to satisfy two 
requirements: 

1) The filter should not be broader than a quarter of the width of the narrowest 
resonance peak expected [BEN 61b] [BEN 63] [FOR 64] [MOO 61] [WAL 81]. 

2) The statistical error should remain small, with a value not exceeding 
approximately 15%. 

If the first condition is observed, the precision of the PSD calculation is 
proportional to the width of the filter. If, on the contrary, resonances are narrower 
than the filter, the precision of the estimated PSD is proportional to the width of the 
resonance of the specimen and not to the width of the filter. To solve this problem, 
C.T. Morrow [MOR 58], and then R.C. Moody [MOO 61] suggested making two 
analyses, by using the narrowest filter first of all to emphasize resonances, then by 
making a second analysis with a broader filter in order to improve the precision of 
the PSD estimate. 
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Other more complicated techniques have been proposed (H. Press and 
J.W. Tukey, for example, [BLA 58] [NEW 75]). 

NOTE. – Additionally, the curves in Figure 4.65 show the interest of dividing the 
mean square value of the response from each filter by its width f. We can verify 
that, in the conditions of this example, the area below the curve calculated for 

f = 15.625 Hz is approximately half of that obtained for f = 31.25 Hz. Dividing 
by f during PSD calculation leads to the same area regardless of f.

4.15.2. Bias error 

Let us consider a random signal t  with a constant PSD (white noise) 
G f G 0 applied to a linear system with transfer function with one dof [PIE 93] 
[WAL 81]: 

H f

f

f

f

Q f

1

1
0

2 2

0

2
[4.73] 

(f0 being the natural frequency and Q the quality factor of the system). The response 
u t  of this system has the following PSD: 

G f H f G fu
2

G f
G f

f

f

f

Q f

u

1
0

2 2

0

2
[4.74] 

Let us analyze this PSD, which presents a peak at f f0, using a rectangular 
filter of width F centered on fc , with transfer function [FOR 64]: 

elsewhere0H
2
F

ff
2
F

ffor1H

A

ccA [4.75] 
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We propose calculating the bias error made over the width between the half-
power points of the peak of the PSD response and on the amplitude of this peak 
when using an analysis filter F of non-zero width. For a given fc , the PSD 
calculated with this filter has a value of: 

G f
F

H G f dfF c A u
1 2

0
[4.76] 

i.e.

G f
F

G

f

f

f

Q f

dfF c f F

f F

c

c1

1

0

0

2 2

0

22

2
[4.77] 

It is known [LAL 94] (Appendix A6) that the integral A
dh

h h Q1 2 2 2 2

is equal to: 

22

22

22

2

1h
tanarc

1h
tanarc

4
1

11h2h

11h2h
ln

18

1
A

Consequently, 

F
G f

G

f h h

h h

F c

h

h

0

0
2

2 2

2 28 1

2 1 1

2 1 1
1

2

ln

2h

h

22 1h
tanarc

1h
tanarc

4
1

[4.78] 

0

0c

0

0c
0

0

cF
f

2
F

ff
Q2tanarc

f
2
F

ff
Q2tanarc

F2
Qf

G
fG

  [4.79] 
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For f fc 0 :

00

0

0

0F

f
F

Qtanarc
f
F

Qtanarc
F2
Qf

G
fG

[4.80] 

i.e.

0

0

0

0F

f
FQ

tanarc
F
Qf

G
fG

[4.81] 

However, by definition, the bandwidth between the half-power points is equal to 

f
f

Q
0 , yielding: 

f
F

tanarc
Ff

f
G

fG 2
0

0

0F [4.82] 

At the half-power points, the calculated spectrum has a value: 

G f G fF c F
1

2
0 [4.83] 

where f f
f

c
F

0
2

. We deduce that: 

f
Ff

tanarc
f

Ff
tanarc

F2
f

Q
G
G FF0

0

F [4.84] 

From [4.82], [4.83] and [4.84], we obtain: 

f
Ff

tanarc
f

Ff
tanarc

f
F

tanarc FF [4.85] 
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Figure 4.66. Width of the peak at half-power versus width 
 of the analysis filter (from [FOR 64])

The curve in Figure 4.66 gives the variations of 
f

f
F  against 

F

f
 after numerical 

resolution. It is noted that the measured value ff  of the width of the peak at half-
power is obtained with an error lower than 10% so long as the width of the analysis 
filter is less than half the true value f .

Setting x
F

f
 and y

f

f
F .

xytanarcxytanarcxtanarc

Knowing that 
ba1

ba
tanarcbtanarcatanarc , we have: 

22 xy1

x2
tanarcxtanarc .

This yields x
x

y x

2

1 2 2  and y x2 2 1, i.e.: 

f

f

F

f
F

2 1 2

1 [4.86] 
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In addition, the peak of the PSD occurs for f f0:

P G Q
f

f
2 0

2

[4.87] 

yielding the relationship between the measured value of the peak and the true value: 

f
F

tanarc
F
f

G

fG
P

0F [4.88] 

Figure 4.67 shows the variations of this ratio versus F f . If F f
1

4
according to the rule previously suggested, 

0308.1
4
1

1
f
f 2

F

and

98.0
4
1

tanarc4
G

G
P

F

Figure 4.67. Amplitude of peak versus filter width 

Under these conditions, the error is about 3% of f  and 2% of the peak. 
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Example 4.18.  

Let us consider a one dof system of natural frequency 100f0  Hz and quality 
factor 10Q , excited by a white noise. The error of measure of the PSD response 
peak is given by the curve in Figure 4.67.  

If 5F  Hz: 

5
100
10

F
f
Q

0

2
1

F
f
Q

0

yielding: 

92.0
G

G
P

F

For f0 50  Hz and Q 10 , we would similarly obtain 
0

Q 10
F 5

f 50
 1 

and 78.0
G

G
P

F .

4.15.3. Maximum statistical error 

When the phenomenon to be analyzed is of short duration, it can be difficult to 
obtain a good resolution (small F) whilst preserving an acceptable statistical error. 

Example 4.19 

Figure 4.68 shows, as an example, the PSDs of the same signal duration of  
22.22 seconds, calculated respectively with F equal to 4.69 Hz; 2.34 Hz and  
1.17 Hz (i.e. with a statistical error equal to 0.098, 0.139 and 0.196). 
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Figure 4.68. Influence of analysis filter 
width for a sample of a given duration

Figure 4.69. Influence of analysis filter 
width for constant statistical error

We observe that, the more detailed the curve ( F small), the larger the 
statistical error. Although the duration of the sample is longer than 20 s, a 
resolution of the order of 1 Hz can be obtained only with an error close  
to 20%. 

A constant statistical error with different durations T and widths F can lead to 
appreciably different results. Figure 4.69 shows three calculated PSDs of the same 
signal all three for 19.6% , with respectively: 

22.22T  s and 17.1F  Hz 

11.11T  s and 34.2F  Hz 

555.5T  s and 69.4F  Hz 

The choice of F must thus be a compromise between the resolution and the 
precision. In practice, we try to comply with the two following rules: F less than a 
quarter of the width of the narrowest peak of the PSD, which limits the width 
measurement error of the peak and its amplitude to less than 3%, and a statistical 
error of less than 15% (which corresponds to a number of dofs n equal to 
approximately 90). Certain applications (calculation of random transfer functions for 
example) can justify a lower value of the statistical error. 

Taking into account the importance of these parameters, the filter width used for 
the analysis and the statistical error should always be specified on the PSD curves. 
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4.15.4. Optimum bandwidth 

A.G. Piersol [PIE 93] defines the optimum bandwidth Fop  as the value of F
minimizing the total mean square error, the sum of the squares of the bias error and 
of the statistical error: 

2
stat

2
bias

2 [4.89] 

The bias error calculated from [4.88] is equal to: 

1
f
F

tanarc
F
f

bias [4.90] 

Figure 4.70. Total mean square error

where f  is the width between the half-power points of the peak. Whence: 

TF
1

1
f
F

tanarc
F
f

2
2 [4.91] 

Figure 4.70 shows the variations of bias error, statistical error and  with F.
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Error  has a minimum at F Fop . The optimum bandwidth Fop  is thus 

obtained by canceling the derivative of 2  with respect to F. This research is 
carried out numerically. 

Figure 4.71. Optimum bandwidth versus peak frequency and duration of the sample

The curves in Figure 4.71 show Fop  versus f0, for 05.0  and for some 
values of duration T. 

If 4.0fF , the bias error can be approximated by: 

2

bias f
F

3
1

[4.92] 

Then, 

2
4

49

1F

f T F
[4.93] 

Whence, by canceling the derivative, 

F
f

T

f

T
op

9

4
2

4 1 5
0

4 5

1 5 [4.94] 

Figure 4.72 shows the error made versus the natural frequency f0, for various 
values of T. 
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Figure 4.72. Comparison of approximate and 
exact relations for calculation of optimum 

bandwidth

Figure 4.73. Comparison of the optimum 
bandwidth with the standard rules

It can be interesting to compare the values resulting from these calculations with 
the standard rules which require four points in the half-power interval (Figure 4.73). 
It should be noted that this rule of four points generally leads to a smaller 
bandwidth. The calculation method of optimum width must be used with prudence, 
for it can lead to a much too large statistical error (Figure 4.74, plotted for 

05.0 ).

To confine this error to the low resonance frequencies, A.G. Piersol [PIE 93] 
suggested limiting the optimum band to 2.5 Hz, which leads to the curves in 
Figure 4.75. 

Figure 4.74. Statistical error obtained using 
the optimum bandwidth

Figure 4.75. Statistical error obtained using 
the optimum bandwidth limited to 2.5 Hz
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By plotting the variations of f Fop , we can also evaluate, with respect to f0,
the number of points in f  which determines this choice of Fop , in order to 
compare this number with the four points of the empirical rule. Figures 4.76 and 
4.77 show the results obtained, for several values of T, with and without limitation 
of the Fop band. 

Figure 4.76. Number of points in f
resulting from choice of optimum bandwidth

Figure 4.77. Number of points in f
resulting from the choice of optimum 

bandwidth limited to 2.5 Hz

4.16. Probability that the measured PSD lies between  one standard deviation 

We saw that the approximate relation 
1

T f
 is acceptable as long as 

20.0 . In this same range, the error on the measured PSD G (or on G G ) has a 
roughly Gaussian distribution [MOO 61] [PRE 56a]. Let us set s sG to simplify 
the notations. The probability that the measured PSD is false by a quantity greater 
than s (error in the positive sense) is [MOR 58]: 

P
s

e da

a

s
s

1

2

2

22 [4.95] 

If we set v
a

s
, P takes the form: 
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P e dvv1

2

2 2

Knowing that: 

x

0
t dte

2
xerf

2
[4.96] 

Figure 4.78. Probability that the measured PSD lies  
between  1 standard deviation

P can be also written, to facilitate its numerical calculation (starting from the 
approximate expressions given in Appendix A4.1): 

2
erf1

2
1

P [4.97] 

The probability of a negative error is identical. The probability of an error 
outside the range s  is thus equal to: 

2
erf1P [4.98] 
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Example 4.20.    

1 P 68.26%

2 P 95%

4.17. Statistical error: other quantities 

The statistical error related to the estimate of the mean and mean square value is, 
according to the case, given by [BEN 80]. 

 Mean 
estimation 

Error Estimate of the 
mean square 

value 

Error

Ensemble 
averages 

1

1N
xi

i

N s

N
x

x

1 2

1N
xi

i

N 2

N

Temporal 
averages 

1
0T

x t dt
T s

T f
x

x 2

1 2
0T

x t dt
T 1

T f

Table 4.9. Statistical error of the mean  
and the mean square value 

Calculations of the quantities defined in this chapter are carried out in practice on 
samples of short duration T, subdivided into K blocks of duration T [BEN 71] 
[BEN 80], by using filters of non-zero width f . These approximations lead to the 
errors in Table 4.10. The expressions of these errors are established in the 
hypothesis of a constant spectrum in interval f.

Contrary to the autospectrum case, the statistical error linked to the 
determination of the cross-spectrum is a function of the frequency. 
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 Quantity Error r

Direct PSD Gxx  or Gyy
1

T f

Cross-PSD G fxy
xy

1
f T f

Coherence 
xy f

2
xy

xy

2 1 f

f T f

PSD of v(t) such that  

y(t) = v(t) + n(t) 

y(t) = measured output 
signal

n(t) = output noise 

G f f G fvv xy yy
2

2
xy

xy

2 f

f T f

H fxy

2
xy

xy

1 f

f 2 T f

Transfer function 

H fxy
2

2
xy

xy

2 1 f

f T f

Table 4.10. Other statistical errors
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Example 4.21.

The statistical error linked to the cross-power spectral density calculation in 
Figure 2.7 slightly increases with the frequency.  

Figure 4.79. Statistical error made during cross-spectrum calculation in Figure 2.7 

The same goes for the error made during the calculation of a crossed transfer function. 

Example 4.22.  

We go back to Example 2.4. Figure 4.80 shows the error made during the 
calculation of the transfer function with the cross-spectrum in the frequency band 
where the PSD has a significant value.  

Figure 4.80. Statistical error in the transfer function calculated  
from the cross-spectrum 
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The expressions of Table 4.10 can be used with an estimated value xy f  of the 

coherence function coefficient instead of xy f  (unknown); we then obtain 

approximate values of r , when r  is small (i.e. 20.0r ), which can be limited at 
the 95% confidence level using: 

Z Z Zr r1 2 1 2

where Z is the true value of the parameter and Z its estimated value. 

Figure 4.81 shows the variations of the error made during the calculation of the 
transfer function H fxy , given by: 

1 22
xy

r
xy

1

2 T f
[4.99] 

for various values of n T fd .

H f
G f

G f
H f exy

x

j f

H f  measured transfer function 

H f = exact function [BEN 63] [GOO 57]. 

Figure 4.81. Statistical error related to the calculation  
of the transfer function
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It is shown that if 

rr ffˆandsin
fH

fHfĤ
probP

n2
xy

2 2
xy

1 f
P 1

1 f cos
[4.100] 

where n is the number of dofs, equal to 2 T f .

2
xy

2 2
xy r

ln 1 P
n

1
ln

1 cos

[4.101] 

Figure 4.82. Number of dofs necessary  
for the statistical error on the transfer 

 function to be lower than 0.10 with 
 probability P

Figure 4.83. Number of dofs necessary for 
 the statistical error on the transfer  
function to be lower than 0.05 with 

probability P

The statistical error resulting from the calculation of the autocorrelation Rx  is 
given by [VIN 72]: 
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x
x

xT f

R

R

1

2
1

02

2

1 2

[4.102] 

A reasonable value of T for the calculation of Rx  is T
f x

1
2 . For the cross-

correlation Rxy :

xy
xy

xyT f

R

R

1

2
1

02

2

1 2

[4.103] 

4.18. Peak hold spectrum 

Figure 4.84. Principle of PSD calculation Figure 4.85. Principle of peak hold 
spectrum calculation.

We go back to the definition of the PSD. This spectrum is obtained from a 
stationary signal by calculating the square mean bof amplitudes from Fourier 
transforms of K blocks from a sample of duration T for this signal (Figure 4.84). 
Using this mean is justified by the necessity of obtaining an acceptable statistical 
error, leading to approximately 50 sub-samples. 

When the vibration is not stationary, the calculation of this mean, and thus the 
PSD, makes no sense (average of a population with no similar statistical properties). 

In order to attempt to characterize this type of environment, we sometimes 
replace the traditional PSD by an envelope of PSDs calculated in each sub-sample K 
(peak hold spectrum) (Figure 4.85). 

This spectrum provides information on the severity of the vibration. It should, 
however, be used very carefully, knowing that: 
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– A PSD calculated in a single sample presents a large statistical error (see 
Example 4.13). The amplitude is calculated with great inaccuracy. The probability 
of these amplitudes is very small, all the more so when the signal is not stationary or 
when there are transitory components. This spectrum is statistically very poor at best 
and at worst of no value. 

– The level of confidence defined for the calculation of the traditional PSD 
(linked to the statistical error) has no value for the peak hold spectrum. No level of 
confidence can be attributed to it. 

– The difference between the traditional PSD and the peak hold spectrum can be 
large, particularly in the case of a non-stationary signal or with transitory 
components. 

Example 4.23.  

Figure 4.86 enables us to compare the PSD of a stationary signal and the peak 
hold spectrum. 

Figure 4.86. Comparison between the PSD and the peak hold spectrum

Despite the stationarity of the signal, we notice a large gap between both 
spectrums and the “broken” appearance of the peak hold spectrum linked to the 
statistical error. 

The combined use of the PSD and the peak hold spectrum can provide an 
indication on the non-stationary or on the transitory condition by comparison of the 
peak and mean spectral values, even though the interpretation of results is not easy. 
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This spectrum sometimes (wrongly) replaces the PSD, but generally, it is used to 
increase it. It is not a PSD and should not be used directly as a test specification, 
because it can lead to very important conservatism, particularly in the specific cases 
discussed. 

If we still want to rely on the peak hold spectrum to define a test specification, 
we must find a PSD producing the same peak hold spectrum as the one in the 
environment measured (2 to 3 times smaller value). However, another problem 
would be to specify a duration for this PSD. 

4.19. Generation of random signal of given PSD 

Several methods are used to obtain a random signal according to with a given 
PSD. We will list two, the first one consisting in a sum of sinusoids with a random 
phase, and the second using the inverse Fourier transform. 

4.19.1. Random phase sinusoid sum method 

4.19.1.1. Principle 

The method of generation of a random signal varying with time of given duration 
T from a PSD of maximum frequency fmax includes the following stages: 

– calculation of the temporal step 
max.samp f6.2

1
f

1
t ,

– choice of the number M of points of definition of the PSD (power of two), 

– calculation of the number of signal points: N
T

t
,

– possibly, modification of N (and thus of the duration) and/or of M in order to 
respect a maximum statistical error 0  (for a future PSD calculation of the generated 

signal), starting from the relation 
M

N
0
2

2
, maintaining M equal to a power of two, 

– calculation of the frequency interval between 2 points of the PSD 
M2

f
f .samp ,
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– for each M points of the PSD, calculation at every time t k t  (k = constant 
integer between 1 and N) of a “sinusoid”: 

- of the form: m m
mx t x f tmax sin 2 ,

- of duration T, 

- of frequency f m dfm  (m integral such that Mm1 ),

- of amplitude 2 G f fm  (where G fm  is the value of the given PSD at 
the frequency fm , the amplitude of a sinusoid being equal to twice its rms value.  

- of random phase m , whose expression is a function of the specified 
distribution law for the instantaneous values of the signal, 

– sum of the M sinusoids at each time. 

4.19.1.2. Expression for phase 

Normal law 

It is shown that we can obtain a normal distribution of the signal’s instantaneous 
values when the phase is equal to [KNU 98] 

21m r2cosrln22 [4.104] 

or

21m r2sinrln22 [4.105] 

In these expressions, r1 and r2  are two random numbers obeying a rectangular 
distribution in the interval [0, 1]. 
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Definition 

A random variable r has an uniform or rectangular distribution in the interval 
[a, b] if its probability density obeys 

brorarfor0

brafor
ab

1
rp                                                  [4.106] 

If a random variable is uniformly distributed about [0, 1], the variable 

y a b a r  is uniformly distributed about [a, b], having a mean of 
a b

2
 and 

standard deviation s
b a

2 3
.

Other laws 

Here we want to create a signal whose instantaneous values obey a given 
distribution law F X . This function not decreasing, the probability that x X is 
equal to [DAH 74]: 

P x X P F x F X  [4.107] 

Let us set F x r  where r is a random variable uniformly distributed about 
[0,1]. It then becomes: 

P F x F X P r F X [4.108] 

From definition of the uniform distribution, P r R R  where R is an 
arbitrary number between 0 and 1, yielding P x X P r F X F X . To 
create a signal of distribution F X , it is thus necessary that: 

F x r [4.109] 

The problem can also be solved by setting: 

F x r1 [4.110] 
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Examples

1. Signal of exponential distribution: the distribution is defined by 
(Appendix A1.3) 

F X e X1 [4.111] 

From [4.110], 

r1e1 x [4.112] 

yielding 

x
rln

[4.113] 

and

m
r

2
ln

[4.114] 

2. Signal with Weibull distribution: from (Appendix A1.7) 

F X

X
X

X

1

0

exp
[4.115] 

it is shown in a similar way that we must have: 

x rln 1 [4.116] 

m r2 1ln [4.117] 

4.19.2. Inverse Fourier transform method 

The PSD of a random signal x(t) is calculated by breaking a sample of this signal 
of duration T into K blocks of duration T and by averaging the PSD Ks of these 
blocks. For a given block, the PSD is given by relation [2.20]: 
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2)f(X
T
2

)f(G

where X(f) is the block’s Fourier transform. 

Conversely, if we give a PSD G(f), it is possible to create a random signal 
respecting this PSD according to the following process: 

– calculation, from the maximum PSD frequency, of sampling frequency 

samp maxf 2 f  and temporal step 
maxf2
1

t  ; 

– calculation from the f frequency step of this same PSD of signal duration  
T (block) which will be obtained from the inverse Fourier transform; 

– multiplication of the PSD G(f) by je , where  is a random phase; 

– calculation of the Fourier transform of a block with the help of relation  
[2.20] by: 

jT
X(f ) G(f ) e

2

– calculation of the X(f) inverse Fourier transform, to obtain a complex temporal 
variable of duration T. Signal x(t) is the real part of this complex quantity; 

– to verify the validity of the signal obtained by comparison of its PSD with the 
original PSD with a given  statistical error, we must generate a signal with a total 

duration of 
f

1
T 2 , or in other words, repeat K times the last three steps (where 

K is the closest integer to 
T

T
).

4.20. Using a window during the creation of a random signal from a PSD 

The signal developed from the method from section 4.19.2 is constituted by 
serializing the real parts of the complex quantity thus calculated, for different values 
of the phase , until the desired duration is reached. 

If the basic signals are simply connected end-to-end without precautions, each 
connection is done with a very high slope straight line segment creating high 
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frequencies in the response and modifies in particular the extreme response 
spectrum (ERS) to greater frequencies than the PSD definition range. 

To avoid this problem, each basic signal can be filtered by a window, a Bingham 
window for example (Figure 4.9), softening the extremities for much smoother 
connection.

Example 4.24.  

Figure 4.87 shows one of the discontinuities present in the signal when it is 
developed by simple end-to-end connection of the real Fourier transform parts. 

Figure 4.87. Discontinuity of connection of 
 two basic signals 

This discontinuity triggers a significant transitory response in systems with a 
frequency that is higher than the maximum frequency of the PSD used to create the 
signal (Figure 4.88). 
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Figure 4.88. Effect of the discontinuity on the response 
of a linear system at 1 ddl (2,000 Hz, Q = 10) 

This leads to an abnormally high extreme response spectrum (ERS) at high 
frequency (Figure 4.89) (see definition of ERS in Volume 5). 

Figure 4.89. ERS of the signal with and without windowing



Chapter 5 

Statistical Properties of Random
Vibration in the Time Domain 

The analysis of the statistical properties of the instantaneous values of a random 
signal ( )t  is based primarily on the work of S.O. Rice [RIC 44] and of 
S.H. Crandall [CRA 63]. We are more particularly interested in the study of the 
probability density of the instantaneous values of the signal and in that of the peaks 
(positive and negative maximum amplitude). 

This study results in considering simultaneously at a given time ( )t  and its 
derivatives t  and t  which respectively represent the value of the signal, its 
slope and its curvature at the time t. These parameters are in particular associated 
with a multidimensional normal probability density function of the form [BEN 58]: 

n

1j,i
jiij

2n2n
n21 M

M2
1

expM2,,,p   [5.1] 

for the research of the distribution law of the peak values. 

5.1. Distribution of instantaneous values 

The distribution of the instantaneous values of the parameter describing the 
random phenomenon can very often be represented by a Gaussian law [MOR 75]. 
There can of course be particular cases where this assumption is not justified, for 
example, for vibrations measured on the axle of a vehicle whose suspension has just 

Random Vibration: Second Edition - Volume 3 
Christian Lalanne 

Copyright 0 2009, ISTE Ltd. 
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compressed an elastic thrust after deflection of the dampers (non-linear behavior in 
compression only). 

5.2. Properties of derivative process 

Let us consider a stationary random vibration ( )t  and its derivative t ,
defined by: 

lim
( )

t
t t t

tt 0
[5.2] 

with the condition that 

lim
( )

t
E

t t t

t
t

0

2

0 [5.3] 

Average value of the derivative process 

This is 

E E
t t t

tt
lim

( )

0
[5.4] 

If the process is stationary, 

tEttE

yielding 

E 0 [5.5] 

NOTE: 

The autocorrelation R  presents an absolute maximum for 0 . We thus 

obtain R 0 0 .

E E t t E t
t t t

tt
lim

( )

0
[5.6] 
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E R 0 [5.7] 

The derivative of the autocorrelation function of a derivable process is: 

– continuous and derivable at any point, 

– even. 

It is thus canceled for 0 , yielding 

E 0 [5.8] 

There is no correlation between a stationary process ( )t  and the derivative 
process t  (whatever the distribution law). 

Mean square of the derivative 

E
t t t

t

R R t

t

( ) ( ) ( ) ( )2

2
2

0

E t R
2

0 [5.9] 

A stationary process ( )t  is thus derivable in the mean square sense if and only if 
its correlation function R  contains a continuous second derivative. 

Correlation function of the process and its derivative 

1. By definition [1.57], R E t t

R E
t t t

t

t t t

tt
t

lim
( )

1

2

0
0

1

1

2

2

R
R t t R t R t R

t tt
t

lim
1

2

0
0

2 1 1 2

1 2

R
R t t R

tt
lim
1 0

1

1
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R
d R

d
R

2

2 [5.10] 

2. R E t t

R E t
t t t

tt
lim

0

R
R t R

tt
lim

0

R
dR

d
R [5.11] 

In the same way: 

R
dR

d
R [5.12] 

In a more general way, if m  and u n  are the mth derivative processes of t
and nth of u t , if the successive derivatives exist, we obtain, 

R
d R

d
m nu

m
m n

u
m n1 [5.13] 

Variance of the derivative process 

E R R2 0 0 [5.14] 

Since E 0, the variance s2  is equal to 

s E E2 2 2
[5.15] 

PSD of the derivative process 

By definition [2.47]: 
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R S e di t

Knowing that: 

R R

R i S e di2
[5.16] 

This yields 

S S2 [5.17] 

E S d S d2 2 [5.18] 

and in the same way [MOR 56] [NEW 75] [SVE 80]: 

E S d S d2 4 [5.19] 

S S4 [5.20] 

R R
d R

d

4

4 [5.21] 

NOTE:

The autocorrelation functions of the derivative processes of t  depend only 

on . The derivatives of a stationary process are stationary functions. However, the 
integral of a stationary function is not necessarily stationary. 

The result obtained shows the existence of a transfer function H  between 

t  and its derivatives: 

2
S H S [5.22] 

4
S H S [5.23] 
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where 

H i

5.3. Number of threshold crossings per unit time 

Let us consider a stationary and ergodic random vibration t , and p , the 
probability density function of the instantaneous values of t . Let us seek to 
determine the number of times per unit time na  the signal crosses a threshold chosen 
a priori with a positive slope. 

Let us set by na  the number of occasions per unit time that the signal crosses the 
interval a, a da with a positive or negative arbitrary slope, da being a very small 
interval corresponding to the time increment dt . We have, on average, 

n
n

a
a

2
[5.24] 

Let us set by n0  the number of occasions per unit time that the signal crosses the 

threshold a 0 with a positive slope (n0  gives an indication of the average 
frequency of the signal). Let us finally set by t  the derivative of the process t
and by b the value of t  when a . Let us suppose that the time interval dt  is 
sufficiently small that the variation of the signals between t and t dt  is linear. To 

cross the threshold a, the process must have a velocity t  greater than 
a t

dt
.

The probability of crossing is related to the joint probability density p ,
between  and . Given a threshold a, the probability that: 

a t a da
and

b t b db( ) [5.25] 

is thus, in a time unit, 

p a b da db P a t a da b t b db( , ) ( ) , ( ) [5.26] 
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Setting ta  the time spent in the interval da:

t
da

b
a [5.27] 

( ta  being a primarily positive quantity). The number of passages per unit time in the 
interval a, a da for t b  is thus: 

p a b da db

t
b p a b da

a

( , )
( , ) [5.28] 

and the average total number of crossings of the threshold a, per unit time, for all the 
possible values of t  is written: 

n b p a b db na a( , ) 2 [5.29] 

where 

n p d da
a

,
0

[5.30] 

This expression is sometimes called the Rice formula. The only assumption 
considered is that of the stationarity. We deduce from [5.30], for a 0 ,

n n b p a b db0 02 ( , ) [5.31] 

and

n

n

n

n

b p a b db

b p b db

a a

0 0 0

( , )

( , )
[5.32] 

These expressions can be simplified since the signals t and t are 
statistically independent: 

p p( , ) ( ) [5.33] 
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Then, 

n p a b b dba ( ) [5.34] 

and

n

n

n

n

p a

p
a a

0 0 0

( )

( )
[5.35] 

Lastly, if  is an even function of b, 

b b

yielding 

n p a b b dba 2
0

( ) [5.36] 

Particular case 

If the function t  has instantaneous values distributed according to a Gaussian 
law, zero mean and variance 2

rms , such that 

2
rms

2

2

rms
e

2
1

[5.37] 

starting from [5.34], it results that: 

dbe
2

b
)a(pn

2
rms

2

2
b

rms
a [5.38] 

or since  is even, 

)a(p
2

2
n rms

a [5.39] 
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If the instantaneous acceleration is itself distributed according to a Gaussian law 
(0, rms ):

2
rms

2

2

rms
e

2
1

)(p [5.40] 

2
rms

2

2
rms

2

2
1

rmsrms
e

2
1

),(p [5.41] 

and [LEY 65] [LIN 67] [NEW 75] [PRE 56a] [THR 64] [VAN 75]: 

2
rms

2

2
a

rms

rms
a e

1
n [5.42] 

rms

rms
0

1
n [5.43] 

2
rms

2

2
a

0a enn [5.44] 

Figure 5.1. Probability density of instantaneous values of a random signal
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Since

0
2
rms )0(Rd)(G [5.45] 

0
222

rms 0R0Rd)(G [5.46] 

0
442

rms 0Rd)(G [5.47] 

this results in [DEE 71] [VAN 75]: 

2
rms

2
2
1

0

0
2

aa
2

a
exp

d)(G

d)(G1
n2n [5.48] 

na  is the mean number of crossings of the threshold a per unit time. 

na  is the mean number of crossings of the threshold a with positive slope and per 
unit time. 

5.4. Average frequency 

Let us set [PAP 65] [PRE 56b]: 

n
G d

G d

R

R
0

2
0

0

1

2 21 1 0

0

( )

( ) ( )
[5.49] 

Depending on f, n0  becomes [BEN 58] [BOL 84] [CRA 63] [FUL 61] [HUS 56] 
[LIN 67] [POW 58] [RIC 64] [SJÖ 61] [SWA 63]: 

n n
f G f df

G f df
0 0

2
0

0

1

2

2 2
( )

( )
[5.50] 
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The quantity n0  (average or expected frequency) can be regarded as the 
frequency at which energy is most concentrated in the spectrum (apparent frequency 
of the spectrum). 

Band-limited white noise 

Figure 5.2. PSD of a band-limited white noise

If the PSD is defined by 

elsewhere0fG
 fffforG)f(G 210 ,

we have 

n
f f

f f
0

2
3

1
3

2 1

1

2

3
[5.51] 

n
f f f f

0
1
2

1 2 2
2

3
[5.52] 

Ideal low-pass filter 

If f1 0,

2
2

0 f577.0
3

f
n [5.53] 
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Case of a narrow band noise 

Figure 5.3. PSD of a narrow band noise

Let us consider a random vibration of constant PSD G G0 in the interval 
, zero elsewhere. We have [COU 70] [NEW 75]: 

0
22

rms d)(Gf2

0
42

rms d)(Gf2

2
000

2
0

2
rms GdG [5.54] 

4
000

4
0

2
rms GdG [5.55] 

Figure 5.4. PSD of a narrow band noise

Let us set f 2 . We have f f1 0  and f f2 0 , yielding 
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n
f f f f

0
0

2
0 0 0

2
1

2

3

and

n f
f

f
f

f
0 0

2

0
2 0

0

2

1
3

1
1

12
[5.56] 

Figure 5.5. Ratio of average frequency/central frequency of a narrow band noise

n0  tends towards f0 when f  tends towards zero. For any value of f0, n0  is 
equal to or higher than f0.

In the case of the response of a linear slightly damped one-dof system, n0  will 
thus generally be close to the natural frequency f0 of the system. 

5.5. Threshold level crossing curves 

Threshold level crossing curves give, depending on the threshold a, the number 
of crossings of this threshold with positive slope. These curves can be plotted: 
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– either from the time history signal by effective counting of the crossings with 
positive slope over a duration T. For a given signal, the result is deterministic, 

– or from the power spectral density of the vibration, by supposing that the 
distribution of the instantaneous values of the signal follows a Gaussian law to zero 
mean. We obtain here the expected value of the number of threshold crossings a 
over the duration T [LEA 69] [RIC 64]: 

2
rms

2

2
a

0aa eTnTnN [5.57] 

with n0 = expected frequency defined in [5.50]: 

n
f G f df

G f df
0

2
2

0

0

( )

( )

The knowledge of G f  makes it possible to calculate n0  and rms , then to plot 

Na  as a function of the threshold value a. In practice, we generally represent a with 

respect to Na , the first value of Na  being higher or equal to 1. For aN  1, 

Tnln2Nln2a 0rms0rms0 [5.58] 

a0  is, on average, the strongest value of the signal observed over a duration T. 

Figure 5.6. Example of threshold level crossing curve for a Gaussian signal
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The curve in Figure 5.6 shows the variations of 
rms

a
 with respect to 

N

N
a

0

,

plotted starting from the expression: 

0

a

rms N

N
2

a

Figure 5.7. Largest peak, on average, over a given duration

The variations of 
rms

0a
 as a function of the product n T0  are represented in 

Figure 5.7: 

Tnln2
a

0
rms

0

It is observed that it is possible to obtain, in very realistic situations, 

combinations of n0  and T such that the ratio 
rms

0a
 is equal to or higher than 5. For 

this, it is necessary that: 

n T e0
25 2

5
0 107.2Tn
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For T 600 s it is necessary that n0 447 Hz 

T = 3,600 s 5.74n0  Hz 

T 4 hours 6.18n0  Hz 

Figure 5.8. Time necessary to obtain, on 
average, a given maximum level, versus the 

average frequency

Figure 5.9. Probability of crossing a given 
threshold, versus the threshold value

Figure 5.8 indicates the duration T necessary to obtain a given ratio rms0a , as 

a function of n0 .

Figure 5.10. Noteworthy points on the threshold level crossings curve
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For a 0,

N N n Ta 0 0

The probability that the signal crosses the level a with a positive slope and that 
a a a  is equal to rms0a NaN .

Figure 5.11. Values of the signal in the interval a, a + da,  
after crossing threshold a with a positive slope

The probability that t  is higher than a is equal to: 

a a
rms0

daN
N

1
P [5.59] 

a
2

a

rms
dae

1
P

2
rms

2

Knowing that the error function can be written: 

u

0
2

u

due
2

2
u

erf

2

[5.60] 

and that: 

e du

u2

2 2
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resulting in, if rmsau ,

P e du

u
u

2

2

2
0

[5.61] 

This yields, after standardization: 

2
a

erf1)
a

u(P
rmsrms

[5.62] 

Figure 5.9 shows the variations of rmsauP  for rmsa  ranging between 0 
and 5. 

Figure 5.12. Example of threshold level crossing curve
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Example 5.1.

Let us consider a random acceleration defined over a duration T = 1 hr by its 
PSD G f : 

1.0G)f(G 1  m2s-4/Hz from 10 Hz to 50 Hz 

2.0G)f(G 2  m2s-4/Hz from 50 Hz to 100 Hz 

G f( ) 0                elsewhere 

142.0)50100(1.0)1050(x2
rms  (m/s2)2

74.3xrms  m/s2

From [5.50]: 

2
rms

33332
0

x3

)50100(2.0)1050(1.0
n  Hz2

8.66n0  Hz 

and [5.57]: 

2 2a a
52 14 28

aN 66.8 3,600 e 2.4 10 e

Figure 5.13. Example of curve threshold level crossings
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The threshold which is only exceeded once on average over the duration T has 
an amplitude 

0a 3.74 2 ln 66.8 3,600 18.62  m/s2

These threshold level crossings curves were used to compare the severity of 
several random vibrations [KAZ 70], to evaluate their damage potential or to reduce 
the test duration. This method can be justified if the treated signal is the stress 
applied to a part of a structure, with just one reserve, which is the non-immediate 
relationship between the number of peaks and the number of threshold level 
crossings; it is not, on the other hand, usable starting from the input signal of 
acceleration. The threshold crossings curve of the excitation x t  is not 
representative of the damage undergone by a part which responds at its natural 
frequency with its Q factor. In random mode, we cannot directly associate a peak of 
the excitation with a peak of the response. 

NOTES:

1. All the relations of the preceding sections can be applied either to the 
vibration input on the specimen or to the response of the specimen. 

2. ONERA proposed, in 1961 [COU 66], a method of calculation of the PSD 
G(f) of a stationary and Gaussian random signal starting from the average number 
of zero level crossings, its derivative and the rms value of the signal. The process 
can be extended to non-Gaussian processes.

5.6. Moments 

Many important statistical properties of the signal considered (excitation or 
response) can be obtained directly from the power spectral density G( ) and in 
particular the moments [VAN 79]. 

Definition

Given a random signal t , the moment of order n (close to the origin) is the 
quantity: 

M E
d t

dt T

d t

dt
dtn

n

n T

n

nT

T
2

2

2 2

2

2
1

2

( )
lim

( )
[5.63] 
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(if the derivative exists). The moment of order zero is none other than the square of 
the rms value rms :

2
rms

T

T
22

T
2

0 tdtt
T2

1
limtEM

M R G d G f df0 00
0( ) ( ) ( )

The moment of order two is equal to: 

M E
d

dt T

d

dt
dt t

T T

T
2

2 2
21

2
lim [5.64] 

However, by definition, 

R E t t

R G d
0

cos [5.65] 

If we set: 

S E t t [5.66] 

S G d
d R

d
2

0

2

2cos [5.67] 

(if R  exists). We have, for 0 ,

S G d2
0

[5.68] 

In the same way, if: 

T t t [5.69] 

T
d R

d
G d

4

4
4

0
cos [5.70] 
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it results that, for 0 ,

T G d( )0 4
0

[5.71] 

yielding [KOW 69]: 

0
2
rms

22
0

2
2 df)f(Gf2dG0RM   [5.72] 

44 4 4 2
4 rms0 0

M R 0 G d 2 f G(f ) df

 [5.73] 

More generally, the nth moment can be defined as [CHA 72] [CHA 85] [DEE 71] 
[PAR 64] [SHE 83] [SWA 63] [VAN 72] [VAN 75] [VAN 79]: 

n
n 0

M G( ) d

or

M f G f dfn
n n2

0
( ) [5.74] 

(n integer) while 

n n2n 2n
2n0

R 0 1 G d 1 M [5.75] 

Mn are the moments of the PSD G  with respect to the vertical axis f 0 .

Application

We deduce from the preceding relations [CRA 68] [CHA 72] [LEY 65] 
[PAP 65] [SHE 83]: 

n
M

M
0

2

0

1

21

2
[5.76] 
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n n ea

a

M
0

2

2

0 [5.77] 

NOTE: 

Some authors [CHA 85] [FUL 61] [KOW 69] [VAN 79] [WIR 73] [WIR 83] 
define nM  by: 

n
n 0

M f G f df [5.78] 

which leads to [BEN 58] [CHA 85]: 

1
22

0
0

M
n

M
[5.79] 

(sometimes noted ) [VAN 79]. 

5.7. Average frequency of PSD defined by straight line segments 

5.7.1. Linear-linear scales 

n
M

M
0

2

0

1

2

with

M G f df
f

f
0

1

2 ( )

where 

G f a f b( )

a
G G

f f
2 1

2 1

 and b
f G f G

f f
2 1 1 2

2 1

M
a

f f b f f0 2
2

1
2

2 1
2

[5.80] 
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M f G f df
f

f
2

2 22
1

2 ( )

M
a

f f
b

f f2
2

2
4

1
4

2
3

1
32

4 3
[5.81] 

Figure 5.14. PSD defined by a straight line segment on linear axes

This yields, after having replaced a and b with their value according to f1, f2, G1
and G2  [BEN 62], 

n
G G

f f f G f G
f f

G G
f f f G f G f f

0
2 2 1

2
4

1
4

2 1 1 2
2
3

1
3

2 1
2
2

1
2

2 1 1 2 2 1

4 3

2

[5.82] 

Particular cases 

G G G1 2 0  constant 

n
f f

f f

f f f f
0

2 2
3

1
3

2 1

1
2

1 2 2
2

3 3
[5.83] 

If f1 0 and if G G0  until f2, it results that: 

n
f

0
2 2

2

3
[5.84] 
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i.e.:

20 f577.0n [5.85] 

If the PSD is a narrow band noise centered around f0, we can set f f1 0
2

 and 

f f1 0
2

 [BEN 62], yielding: 

n f0
2

0

2

12
[5.86] 

If 0 ,

n f0 0

5.7.2. Linear-logarithmic scales 

In this case, the PSD is represented by: 

ln G a f b [5.87] 

M e df
a

ea f b a f b
f

f

f

f
0

1

1

2

1

2 [5.88] 

M f e dfa f b
f

f
2

2 22
1

2

After integration by parts, it results that, if a 0,

M
e

a
a f a f

a f b

2
2

3
2 22 2 2 [5.89] 

yielding 

n
e a f a f e a f a f

a e e

a f b a f b

a f b a f b0
2

2
2
2

2
2

1
2

1
2

2 1

2 1

2 2 2 2
  [5.90] 
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the constants a and b being calculated starting from the coordinates of the points f1,
G1, f2 and G2 .

Particular case 

G G2 1,

 (a 0)

M
G

f f2 2
3

1
32

3
[5.91] 

M G f f0 2 1 [5.92] 

and

n
f f

f f

f f f f
0

2 2
3

1
3

2 1

1
2

1 2 2
2

3 3
[5.93] 

5.7.3. Logarithmic-linear scales 

G f a f b( ) ln [5.94] 

M a f b df
f

f
0

1

2 ln

M a f f f f b af
f

0 2 1
1

2ln [5.95] 

M f a f b df
f

f
2

2 22
1

2 ln

b
3
1

flna
3

f
b

3
1

flna
3

f
2M 1

3
1

2

3
22

2   [5.96] 

abffflnfflnfa

b
3
1

flnafb
3
1

flnaf
n

121122

1
3
12

3
22

0 [5.97] 
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Particular case 

G G G1 2 0  constant 

In this case, a 0 and b G0 , yielding: 

M
G

f f2
2 0

2
3

1
32

3

M G f f0 0 2 1

and

n
f f

f f

f f f f
0

2 2
3

1
3

2 1

1
2

1 2 2
2

3 3
[5.98] 

5.7.4. Logarithmic-logarithmic scales 

b

1
1 f

f
G)f(G [5.99] 

the constant b being such that b
G G

f f

ln

ln
2 1

2 1

.

M G
f

f
df

G

f b
f

b

f

f
b

b
f

f
0 1

1

1

1

1

1

2

1

21

1

 (if 1b ):

M f G f df
G

f

f

bb

b

f

f

f

f
2

2 2 2 1

1

3

2 2
3

1

2

1

2 ( )

(if 3b ). It yields: 

n
b

b

f f

f f

b b

b b0
2 2

3
1

3

2
1

1
1

1

3
[5.100] 
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If b = –1: 

M G f
f

f
0 1 1

2

1

ln

and

M G f
f f

2
2

1 1
2
2

1
2

2
2

n
f f

f f
0

2 2
2

1
2

2 12 ln
[5.101] 

If b 3:

M
G f

f f
0

1 1
3

1
2

2
22

1 1

M G f
f

f
2

2
1 1

3 2

1

2 ln

n f f
f f

f f
0

2
1
2

2
2 2 1

2
2

1
22

2 ln
[5.102] 

NOTE: 

If the PSD is made up of n straight line segments, the average frequency 0n  is 
obtained from: 

n

2i
2 i 1

0 2 n

0 i
i 1

M
1

n
2

M

[5.103] 
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5.8. Fourth moment of PSD defined by straight line segments 

The interest of this parameter lies in its participation, with M0  and M2  already 

studied, in the calculation of np  and r. 

5.8.1. Linear-linear scales 

By definition, 

M f G f df4
4 4

0
2 ( )

G f a( ) f b

yielding: 

M
a

f f
b

f f4
4

2
6

1
6

2
5

1
52

6 5
[5.104] 

where a
G G

f f
2 1

2 1

 and b
f G f G

f f
2 1 1 2

2 1

.

Particular cases 

1. G G G1 2 0 constant, i.e. a 0 and b G0 :

M
G

f f4
4 0

2
5

1
52

5
[5.105] 

2. f1 0

M
a

f
b

f4
4

2
6

2
52

6 5
[5.106] 

3. f1 0 and G0 constant

M
G

f4
4 0

2
52

5
[5.107] 
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5.8.2. Linear-logarithmic scales 

G f eaf b( )

a
G G

f f

ln 2 1

2 1

b
f G f G

f f
2 1 1 2

2 1

ln ln

M f G f df f e df
f

f a f b
f

f
4

4 4 4 42 2
1

2

1

2( ) [5.108] 

After several integrations by parts, we obtain, if a 0,

M
a

e f
f

a

f

a

f

a a
a f b

4

4

2
4 2

3
2
2

2
2

3 4

2 4 12 24 24
2

e f
f

a

f

a

f

a a
a f b1

1
4 1

3
1
2

2
1

3 4

4 12 24 24
[5.109] 

Particular cases 

1. G G G1 2 0  constant. Then, a 0  and b Gln 0

5 5
4 2 1

4 0
f f

M 2 G
5

[5.110] 

2. f1 0 and a 0

M
a

e f
a

f
a

f
a

f
a a

ea f b b
4

4

2
4

2
3

2 2
3

3 2 4 4

2 4 12 24 24 24
2   [5.111] 

and, if G G G1 2 0
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M G
f

4
4

0
2
5

2
5

[5.112] 

5.8.3. Logarithmic-linear scales 

G a f bln

M f a f b df
f

f
4

4 42
1

2 ln

M
f

a f b
f

a f b4
4 2

5

2
1
5

12
5

1

5 5

1

5
ln ln   [5.113] 

where 

a
G G

f f
2 1

2 1ln
 and 

21

2112

flnfln
flnGflnG

b

Particular cases 

G G G1 2 0  constant, i.e. a 0 and b G0 :

M
G

f f4
4 0

2
5

1
52

5
[5.114] 

If f1 0:

M
G

f4
4 0

2
52

5

5.8.4. Logarithmic-logarithmic scales 

G G
f

f

b

1
1

yielding, if b 5,
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M
G

f

f f

bb

b b

4
4 1

1

2
5

1
5

2
5

or

M
b

G f G f4

4

2 2
5

1 1
52

5
[5.115] 

If b 5:

M G f f
df

ff

f
4

4
1

4
1
5

52
1

2

M f G
f

f
4

4
1
5

1
2

1

2 ln [5.116] 

Particular case 

If G G G1 2 0  constant and if b 5

M
b

G f f4

4

0 2
5

1
52

5
[5.117] 

NOTE: 

If the PSD is made up of n horizontal segments, the value of 4M  is obtained by 
calculating the sum: 

i

n

4 4
i 1

M M [5.118] 

5.9. Generalization: moment of order n 

In a more general way, the moment Mn is given, depending on the case, by the 
following relations. 
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5.9.1. Linear-linear scales 

The order n being positive or zero, 

M
a

n
f f

b

n
f fn

n n n n n2
2 1

2
2

1
2

2
1

1
1   [5.119] 

5.9.2. Linear-logarithmic scales 

If a 0

2

n
a f b n n 1 n 2

n 2 2 22 n
2 n n (n 1) n!M e f f f

a a a a

1a f b n n 1 n 2
1 1 12 n

n n (n 1) n!e f f f
a a a

[5.120] 

If a 0

n 1 n 1
n b 2 1

n
f f

M 2 e
n 1

5.9.3. Logarithmic-linear scales 

n 1 n 1
n 2 1

n 2 1
f f1 1M 2 a ln f b a ln f b
n 1 n 1 n 1 n 1

  [5.121] 

(n 0 ) 

5.9.4. Logarithmic-logarithmic scales 

If b n 1 :

M
G f G f

b n

G

f

f G f

b n
n

n
n n

n
b

b n b n

2
1

2
1

2 2
1

1 1
1

1

1

2
1

1 1
1

  [5.122] 
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If b n 1 :

M f G
f

f
n

n n2 1
1

1
2

1

ln [5.123] 



Chapter 6 

Probability Distribution of Maxima 
of Random Vibration

6.1. Probability density of maxima 

It can be useful, in particular for calculations of damage by fatigue, to know a 
vibration’s average number of peaks per unit time, occurring between two close 
levels a and a da, as well as the average total number of peaks per unit time. 

NOTE: 

Here we are interested in the maxima of the curve which can be positive or 
negative (Figure 6.1). 

Figure 6.1. Positive and negative peaks of a random signal

Random Vibration: Second Edition - Volume 3 
Christian Lalanne 

Copyright 0 2009, ISTE Ltd. 



278     Random Vibration 

For a fatigue analysis, it would of course be necessary to also count the minima. 
We can acknowledge that the average number of minima per unit time of a Gaussian 
random signal is equal to the average number the maxima per unit time, the 
distributions of the minima and maxima being symmetric [CAR 68]. 

A maximum occurs when the velocity (derivative of the signal) cancels out with 
negative acceleration (second derivative of signal). 

This remark leads us to think that the joint probability density between the 
processes t , t and t can be used to describe the maxima of t . This 
assumes that t is derivable twice. 

S.O. Rice [RIC 39] [RIC 44] showed that, if p a b c, ,  is the probability density 

so that t , t  and t respectively lie between a and a da, b and b db , c 
and c dc, a maximum being defined by a zero derivative and a negative curvature, 
the average number the maxima located between levels a and a da in the time 
interval t, t dt  (window a, a da, t, t dt ) is: 

a dt da c p a c dc( , , )0
0

[6.1] 

where, for a Gaussian signal as well as for its first and second derivatives [CRA 67] 
[KOW 63]: 

p a c M
a c a c

M
, , exp0 2

2

2
3 2 1 2 11

2
33

2
13  [6.2] 

with

2
rms

2
rms

2
rms

2
rms

2
rms

0
00

0
M  [6.3] 

Let us recall that: 

0
2
rms M0R

2
2
rms M0R
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4
42

rms M0R

The determinant M  is written: 

22
rms

2
rms

2
rms

4
rms

2
rms

2
rms

2
rms r1M  [6.4] 

M M M M r0 2 4
21  [6.5] 

if

0R)0(R

0R
MM

M
r

4

2

40

2

rmsrms

2
rms  [6.6] 

R is an important parameter called the irregularity factor. M  is always positive. 
The cofactors ij are respectively equal to: 

42
2
rms

2
rms11 MM  [6.7] 

2
2

4
rms13 M  [6.8] 

20
2
rms

2
rms33 MM  [6.9] 

yielding 

a da dt
c

M M M r

2

1

3 2

0 2 4
2

0

exp
M M a M M c M a c

M M M r
dc2 4

2
0 2

2
2
2

0 2 4
2

2

2 1
 [6.10] 

a

a

M rda dt

M M M r
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2

1

3 2

0 2 4
2

2 1

2

0
2
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c
M r

c
M a c
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Let us set v

c
M

M
a

M r

2

0

2

4
22 1

 and w v . It results that: 

a
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M va r M rda dt

M M M r
e M r e dv
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1
1
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2
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2 2 1
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M
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After integration [BEN 58] [RIC 64], 

a

a

M rda dt

M M
M M M r e

2
1

3 2

0 2
0 2 4

2 2 1

2

0
2

2
1

2 1

2
3 2

0

2

0
2

2

0r
M

M
e Erf

a r

M r

a

M  [6.11] 

i.e.

a pn q a da dt( )  [6.12] 

where 

n
M

M
p

1

2
4

2

 [6.13] 

(average number of maxima per second). npcan be also written: 

n
R

R
p

1

2

0

0

4

2  [6.14] 

NOTE: 

a  can be written in the form [RIC 64]: 

2 22

a
4

R 0 a a R (0 )
exp a 1 erf

2 R(0 ) 2 k R(0 )2 R(0 ) R (0 ) R(0 )

22

2

R (0 ) a2 k R(0 )
exp

2 k R(0 )R (0 )
[6.15]
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where

24 2k R(0 ) R (0 ) R (0 )  [6.16] 

The probability density of maxima per unit time of a Gaussian signal whose 
amplitude lies between a and a da is thus [BRO 63] [CAR 56] [LEL 73] [LIN 72]: 

2
rms

2
rms

r12
a

rms

2

r12

ra
erf1

2

ar
e

2
r1

)a(q
22

rms

2

 [6.17] 

where de
2

xerf
x

0

2
 (Appendix A4.1). The probability so that a 

maximum taken randomly is, per unit time, contained in the interval a, a da is 

daaq . If we set 
rms

a
u , it becomes: 

rmsrms

a daa
qdu)u(qda)a(q

dt
 [6.18] 

yielding [BER 77] [CHA 85] [COU 70] [KOW 63] [LEL 73] [LIN 67] [RAV 70] 
[SCH 63]: 

2
2

u
r12

u
2

r12

ur
erf1eu

2
r

e
2

r1
)u(q

2

2

2

 [6.19] 

The statistical distribution of the minima follows the same law. The probability 
density q u  is thus the weighted sum of a Gaussian law and Rayleigh’s law, with 
coefficient functions of parameter r. This expression can be written in various more 
or less practical forms according to its application. Since: 

e d e d e d
x

x

2 2 2

2 2
0

where 

x
de

2
1xerf

2
 [6.20] 
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it results that: 

q u
r

e r u e e d

u

r
u

r u

r

( )
1

2
1

12
2 1 2

2 1

2

2

2

2

2

 [6.21] 

Setting 
t

2
in this relation, we obtain [BEN 61b] [BEN 64] [HIL 70] 

[HUS 56] [PER 74]: 

q u
r

e r u e e dt

u

r
u t

r u

r
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1

2
1

1

2

2
2 1 2 2

1

2

2

2 2

2

 [6.22] 

We also find the equivalent expression [BAR 78] [CAR 56] [CLO 75] [CRA 68] 
[DAV 64] [KAC 76] [KOW 69] [KRE 83] [UDW 73]: 

q u
r

e r u e v

u

r
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2 1 2
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 [6.23] 

where 

v e dt

t
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and

v
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e r u

r
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u
r u

r
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2 1
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q u r e
e

v v

u
v

( ) 1
2

2 2
2

2

2

 [6.24] 

or

q u r e
d v

dv
v v

u

( ) 1 2 2

2

q u r e
d v v

dv

u

( ) 1 2 2

2

 [6.25] 

Particular cases 

1. Let us suppose that the parameter r is equal to 1; q u then becomes, starting from 
[6.19], knowing that )(erf  1, 

q u u e

u

( )

2

2  [6.26] 

which is the probability density of Rayleigh’s law of standard deviation equal to 1. 

Since
rms

a
u  and: 

rmsrms

daa
qdu)u(qda)a(q  [6.27] 

it results that 

2
rms

2

2
a

2
rmsrms

e
a)u(q

)a(q  [6.28] 
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2. If r 0,

q u e

u

( )
1

2

2

2  [6.29] 

(probability density of a normal, i.e. Gaussian law). In this (theoretical) case there are 
an infinite number of local maxima between two zero crossings with positive slope. 

We will reconsider these particular cases. 

6.2. Expected number of maxima per unit time 

It was seen that the average number of maxima per second (frequency of 
maxima) can be written [6.13]: 

n
M

M
p

1

2
4

2

Taking into account the preceding definitions, the expected maxima frequency is 
also equal to [CRA 67] [HUS 56] [LIN 67] [PAP 65] [PRE 56a] [RIC 64] [SJÖ 61]: 

rms

rms
2

4

p 2
1

0R

0R
2
1

n  [6.30] 

n
G d

G d

f G f df

f G f df
p

1

2

4

2

1

2 4
0

2
0

1

2( )

( )

( )

( )
 [6.31] 

In the case of a narrow band noise such as that in Figure 5.3, we have: 

2
00

4
00

rms

rms
p G

G
2
1

2
1

n  [6.32] 

i.e.

np
0

2
 [6.33] 
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np  is thus approximately equal to n0 : there is approximately 1 peak per zero 
crossing; the signal resembles a sinusoid with modulated amplitude. 

NOTE: 

Using the definition of expression [5.78], pn  would be written [BEN 58] 

[CHA 85]: 

4
p

2

M
n

M

Starting from the number of maxima a  lying between a and a da in the time 
interval t, t dt , we can calculate, by integration between t1 and t2  for time, and 
between  and  for the levels, the average total number of maxima between t1
and t2 :

a
M

M
q a da dt

1

2
4

2

( )  [6.34] 

Per second, 

n
M

M
q a da

N

dt
p

p1

2
4

2

( )

n
M

M
p

1

2
4

2

and, between t1 and t2 ,

N
M

M
dtp t

t1

2
4

2 1

2

N
M

M
t t n t tp p

1

2
4

2
2 1 2 1  [6.35] 
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Application to the case of a noise with constant PSD between two frequencies 

Let us consider a vibratory signal t  whose PSD is constant and equal to G0
between two frequencies f1 and f2 (and zero elsewhere) [COU 70]. We have: 

M
G

f f4
4 0

2
5

1
52

5

M
G

f f2
2 0

2
3

1
32

3

This yields 

n
f f

f f
p

3

5
2
5

1
5

2
3

1
3

1

2
 [6.36] 

If f1 0,

22p f775.0f
5
3

n  [6.37] 

If f f
f

1 0
2

 and f f
f

2 0
2

 (narrow band noise f  small). 

n
f f

f f

f
f

p
2 0

4
0
2

2 4

0
2

2
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5

5 10
2 2
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n f

f

f

f

f

f
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p
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0
2 0

2

0

4
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2

1 2
2

1

5 2

1
1

3 2

 [6.38] 
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If f 0 ,

n fp 0

Figure 6.2 shows the variations of 
n

f

p

0

 versus 
f

f0

.

Figure 6.2. Average number of maxima per second of a  
narrow band noise versus its width 

6.3. Average time interval between two successive maxima 

This average time is calculated directly starting from np  [COU 70]: 

m
pn

1
 [6.39] 

In the case of a narrow band noise, centered on frequency f0:

m
f

f

f

f

f

f

f

1
1

1

3 2

1 2
2

1

5 2

0

0

2

0

2

0

4

1

2

 [6.40] 
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m
f

1

0

 when f 0 .

Figure 6.3. Average time interval between two successive maxima  
of a narrow band noise versus its width

6.4. Average correlation between two successive maxima  

This correlation coefficient [ m ] is obtained by replacing  with m  in 
equation [2.71] previously established [COU 70]. If we set: 

f

f2 0

it becomes: 

21

4
2

221

4
2

221

2

4
2

5
21

3
1

sin

5
21

3
1

cos

3
1

5
21

2
1  [6.41] 

Figure 6.4 shows the variations of  versus .

The correlation coefficient does not exceed 0.2 when  is greater than 0.4. 

We can thus consider the amplitudes of two successive maxima of a wide band 
process as independent random variables [COU 70]. 
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Figure 6.4. Average correlation between two successive maxima  
of a narrow band noise versus its bandwidth

6.5. Properties of the irregularity factor 

6.5.1. Variation interval  

The irregularity factor: 

0R0R

0R
MM

M
r

4

2

rmsrms

2
rms

40

2

can vary in the interval [0, 1]. Indeed, we obtain [PRE 56b]: 

r
M

M M

G d

G d G d

2

0 4

2
0

0
4

0

 [6.42] 

According to Cauchy-Schwarz’s inequality, 

2
2 2

0 0 0
u(x) v(x) dx u (x) dx v (x) dx )

we obtain 

2
0 0

4
0

G d G d G d
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i.e.

M M M2 0 4  [6.43] 

Since M2 0, it results that: 

1
MM

M
0

40

2  [6.44] 

Another definition 

The irregularity factor r can also be defined like the ratio of the average number 
of zero crossings per unit time with positive slope to the average number of positive 
and negative maxima (or minima) per unit time. Indeed, 

r
M

M M

M

M

M

M

n

n

n

np p

2

0 4

2

0

2

4

0 01

2
2

2
 [6.45] 

Example 6.1. 

Let us consider the sample of acceleration signal as a function of time 
represented in Figure 6.5 (with not many peaks to facilitate calculations). 

Figure 6.5. Example of peaks of a random signal

The number of maxima in the considered time interval t  is equal to 8, the 
number of zero-crossing with positive slope to 4 yielding: 

5.0
8
4

r
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The parameter r is a measure of the width of the noise: 

– for a broad band process, the number of maxima is much higher than the 
number of zeros. This case corresponds to the limiting case where r 0. The 
maxima occur above or below the zero line with an equal probability [CAR 68]. We 
saw that the probability density of the peaks then tends towards that of a Gaussian 
law [6.29]: 

q u e

u
1

2

2

2

– when the number of passages through zero is equal to the number of peaks, r is 
equal to 1 and the signal appears as a sinusoidal wave, of about constant frequency 
and slowly modulated amplitude passing successively through a zero, one peak 
(positive or negative), a zero, etc. We are dealing with what is called a narrow band 
signal, obtained in response to a narrow rectangular filter or in response of a one-dof 
system of a rather high Q factor (higher than 10 for example). 

Figure 6.6. Narrow band signal

All the maxima are positive and the minima negative. For this value of r, q u
tends towards Rayleigh’s law [6.26]: 

q u u e

u2

2

The value of the parameter r depends on the PSD of the noise via n0  and np  (or 
the moments M0 , M2  and M4 ). Figure 6.7 shows the variations of q u  for r 
varying from 0 to 1 per step 15.0r .
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Figure 6.7. Probability density function of peaks for various values of r

Example 6.2. 

The probability that u u u u0 0  is defined by: 

n

n
q u duu

R
u

u u

0

0

where nR  is the total number of occurrences. 

For example, the probability that a peak exceeds the rms value is approximately 
60.65%. The probability of exceeding 3 times the rms value is only approximately 
1.11% [CLY 64].

NOTES: 

1. Some authors prefer to use the parameter k 1 r  [SCH 63] instead of r.
More commonly, others prefer the quantity [CAR 56] [KRE 83]: 

2q 1 r  [6.46] 

(sometimes noted ) whose properties are similar: 

– since r varies between 0 and 1, q lies between 0 and 1,  
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– q is close to 0 for a narrow band process and close to 1 for a wide band 
process,

– q 0  for a pure sinusoid with random phase [UDW 73]. 

We should not confuse this parameter q with the quantity  

rms value of the slope of the envelope of the process
q

rms value of the slope of the process
, often noted using the 

same letter; this spectral parameter also varies between 0 and 1 (according to the 
Schwartz inequality) and is a function of the form of the PSD [VAN 70] [VAN 72] 
[VAN 75] [VAN 79]. It is shown that it is equal to the ratio of the rms value of the 
envelope of the signal to the rms value of the slope of the signal. To avoid any 
confusion, it will hereafter be noted qE (Chapter 10). 

2. The parameter r depends on the form of the PSD and there is only one 
probability density of maxima for a given r. However, the PSD of different forms can 
have the same r. 

3. A measuring instrument for the parameter r (“R meter”) has been developed 
by the Brüel and Kjaer Company [CAR 68]. 

6.5.2. Calculation of irregularity factor for band-limited white noise 

The following definition can be used: 

r
M

M M
2 2

2

0 4

M G f f0 2 1  [6.47] 

M G f df G
f f

f

f
2

2 2 2
2
3

1
3

2 2
31

2  [6.48] 

M G f df G
f f

f

f
4

4 4 4
2
5

1
5

2 2
51

2  [6.49] 

yielding 
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r
f f

f f f f
2 2

3
1
3 2

2 1 2
5

1
5

5

9
 [6.50] 

i.e., if h
f

f
2

1

,

r
h

h h
2

3 2

5

5

9

1

1 1
 [6.51] 

r
h h

h h h h
2

2 2

4 3 2

5

9

1

1

Figure 6.8. Irregularity factor of band-limited white noise with respect to h 

If f f2 1, h 1 and r 1. If f2 , h  and r
5

3
.

When the bandwidth tends towards the infinite, the parameter r tends towards 

7454.0
3
5

. This is also true if f1 0, whatever the value of f2 [PRE 56b]. 

The limiting case r 0 can be obtained only if the number of peaks between two 
zero crossings is very large, infinite at the limit. This is, for example, the case for a 
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composite signal made up of the sum of a harmonic process of low frequency f2 and 
of a band-limited process at very high frequency and of low amplitude compared 
with the harmonic movement. 

L.P. Pook [POO 76] uses as an analogy the rectangular filter – a one-dof 

mechanical filter in which f
f

Q
f0
02  to demonstrate, by considering that the 

band-limited PSD is the response of the system (f0, Q) to a white noise, that: 

r2 2
2

2 4

4

9

15

5 10

This expression is obtained while setting 1 0
ff f

2
 and 2 0

ff f
2

 in 

[6.50]: 

r
1

3

1 2
5

2

2
4

 [6.52] 

Figure 6.9. Irregularity factor of band-limited white noise versus the damping factor

It should be noted that r 1 if 0.
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NOTE: 

The parameter r of a narrow band noise centered on frequency 0f , whose PSD 
has a width f , is written, from the above expressions [COU 70] [RUD 75]: 

2

00
2 4p

0 0

1 f
1

3 2 fn
r

n f 1 f
1 2

2 f 5 2 f

 [6.53] 

6.5.3. Calculation of irregularity factor for noise of form bG Const . f

Figure 6.10. PSD of a noise defined by a straight line segment in logarithmic scales

r
M

M M
2

0 4

The moments are expressed 

1bif
f
f

lnGfM

1bif
1b
ff

f

G
M

1

2
110

1b
1

1b
2

b
1

1
0

 [6.54] 
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3bif
f
f

lnGf2M

3bifff
3bf

G
2M

1

2
11
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3b
1
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12
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 [6.55] 

5bif
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lnGf2M

5bifff
5bf
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4
4
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5b
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1
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 [6.56] 

Case study: b 1, b 3, b 5

Let us set h
f

f
2

1

. Then: 

r
b b

b

h

h h

b

b b
2

2

3 2

1 5

1 5

3

1

1 1
 [6.57] 

The curves of Figures 6.11 and 6.12 show the variations of r h  for various 
values of b (b 0 and b 0).

Figure 6.11. Irregularity factor versus h, for 
various values of the negative exponent b

Figure 6.12. Irregularity factor versus h, for 
various values of the positive exponent b
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For b 0, we note (Figure 6.11) that, when b varies from 0 to 25, the curve, 
always issuing from the point r = 1 for h 1, goes down to b 3, then rises; the 
curves for b 2 and b 4 are thus superimposed, just like those for b 1 and 
b 5. This behavior can be highlighted in a more detailed way while plotting, for 
a given h, the variations of r with respect to b (Figure 6.13) [BRO 63]. 

Figure 6.13. Irregularity factor versus the exponent b

Moreover, we observe that for b 0 , the curve r h  tends, for a large h, towards 

7454.0
3
5

r0 . This is similar to the case where f1 is zero (signal filtered by a 

low-pass filter). 

Case study: 1b

M f G
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M
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M
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42

4

yielding 
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1 ln
 [6.58] 

Case study: b 3

M
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 [6.59] 

This curve gives, for given h, the lowest value of r. 

Case study: b 5

M
f G

f f
0

1
5

1

1
4

2
44

1 1

M
f G

f f
2

2 1
5

1

2
2

1
22

2

1 1

M f G
f

f
4

4
1
5

1
2

1

2 ln

r
h

h h

2

4

1
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 [6.60] 
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6.5.4. Case study: variations of irregularity factor for two narrow band signals  

Let us set f f f2 1 in the case of a single narrow band noise. Expressions 
[6.47], [6.48] and [6.49] can be approximated by assuming that, f  being small, the 

frequencies f1and f2 are close to the central frequency of the band f
f f

0
1 2

2
. We 

then obtain: 

M G f0

M G f f2
2

0
22

and

M G f f4
4

0
42

Now let us apply the same process to two narrow band noises whose central 
frequencies and widths are respectively equal to f0, f0 and f1, f1.

Figure 6.14. Random noise composed of two narrow bands

With the same procedure, the factor r obtained is roughly given by [BRO 63]: 

r
f f G f f G

f G f G f f G f f G
2

4
0 0

2
0 1 1

2
1

2

0 0 1 1
4

0 0
4

0 1 1
4
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 [6.61] 

Figures 6.15 and 6.16 show the variations of r with 
f

f
1

0

 and of 
f G

f G
1 1

0 0

. It is 

observed that if 
f

f
1

0

1, r is equal to 1, whatever the value of 
f G

f G
1 1

0 0

.

Figure 6.15. Irregularity factor of a two 
narrow band noise versus f1 / f0

Figure 6.16. Irregularity factor of a two 
narrow band noise versus G1 f1 / G0 / f0

These results can be useful to interpret the response of a two-dof linear system to 
a white noise, each of the two peaks of the PSD response being able to be compared 
to a rectangle of amplitude equal to Qi

2  times the PSD of the excitation, and of 

width f
f

Q
i

2
0  [BRO 63]. 
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6.6. Error related to the use of Rayleigh’s law instead of a complete probability 
density function 

This error can be evaluated by plotting, for various values of r, variations of the 
ratio [BRO 63]: 

q u

p ur

where q u  is given by [6.19] and where p ur  is the probability density from 
Rayleigh’s law (Figure 6.17): 

p u u er

u2

2

When u becomes large, these curves tend towards a limit equal to r. This result 
can be easily shown from the above ratio, which can be written: 

2

r12
ur

2

r r12

ur
erf1

2
r

u
e

2
r1

up
uq

2

22

 [6.62] 

Figure 6.17. Error related to the approximation of the  
peak distribution by Rayleigh’s law
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It is verified that, when u becomes large, 
q u

p u
r

r

. In addition, we note from 

these curves that: 

– this ratio is closer to 1 the larger r is, 

– the greatest maxima tend to obey a law close to Rayleigh’s law, the difference 
being related to the value of r (which characterizes the number of maxima which 
occur in an alternation between two zero-crossings). 

6.7. Peak distribution function 

6.7.1. General case 

From the probability density q u , we can calculate by integration the 
probability that a peak (maximum) randomly selected among all the maxima of a 
random process is higher than a given value (per unit time) [CAR 56] [LEY 65]: 

Q u q u du P
u

r
r e P

r u

r
p

u

u 1
1

12
2

2

2

 [6.63] 

where 

P x e d
x0

21

2

2

0

P x0  is the probability that the normal random variable x exceeds a given 

threshold x0 . If u , P x0 1 and Q up 0. Figure 6.18 shows the 
variations of Q uP  for r 0; 0.25; 0.5; 0.75 and 1. 
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Figure 6.18. Probability that a peak is higher than a given value u 

NOTES: 

1. The distribution function of the peaks is obtained by calculating 1 pQ u . 

2. The function pQ u  can also be written in several forms. 

Knowing that: 

2 2

0

0

x
2 2

x 0

1 1 1
A e d e d

22 2

A e d Erf
xx1

2

1 1

2
1

2

2
0

0

2 0

it results that [HEA 56] [KOW 63]: 

2u 2
p

2 2

1 u r r u
Q u 1 erf e 1 erf

2 22 1 r 2 1 r
[6.64] 

or [HEA 56]: 
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2u 2
p

2 2

1 u r r u
Q u erfc e 1 erf

2 22 1 r 2 1 r
 [6.65] 

This form is the most convenient to use, the error function erf being able to be 
approximated by a series expansion with very high precision (see Appendix A4.1). 
We also sometimes encounter the following expression: 

2

22 u 2 1 r
p

1 r
Q u 1 e d

2

2 2 2
2 2u2 u 1 r r u 1 r

2 2 2r r
e d e e d

2 2
 [6.66] 

3. For large u [HEA 56], 

2u
2

pQ u r e .

yielding the average amplitude of the maximum (or minimum): 

maxu r
2

 [6.67] 

6.7.2. Particular case of narrow band Gaussian process 

For a narrow band Gaussian process (r = 1), we saw that [6.28]: 

2
rms

2

2
a

2
rms

e
a

aq

The probability so that a maximum is greater than a given threshold a is then: 

2
rms

2

2
a

p eaQ  [6.68] 
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It is observed that, in this case [5.38], 

Q a
n

n

p a

p
p

a

0 0

yielding 

q a
d p a da

p 0
 [6.69] 

These two last relationships assume that the functions t  and t  are 
independent. If this is not the case, in particular if p is not Gaussian, J.S. Bendat 
[BEN 64] notes that these relationships nonetheless give acceptable results in the 
majority of practical cases. 

NOTE: 

Relationship [6.28] can also be established as follows [CRA 63] [FUL 61] 
[POW 58]. We showed that the number of threshold level crossings with positive 
slope, per unit time, an  is, for a Gaussian stationary noise [5.44]: 

2

2
rms

a
2

a 0n n e

where

rms
0

rms

1
n

2

The average number of maxima per unit time between two neighboring levels a 
and a da  must be equal, for a narrow band process, to: 

a
a a da

dn
n n da

da

yielding, by definition of q a ,

a
p

dn
n q a da da

da
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The signal being assumed narrow band, + +
p 0n =n . This yields 

a

0

1 dn
q a

dan

and 

2

2
rms

a
2

2
rms

a
q a e

It is shown that the calculation of the number of peaks from the number of 
threshold crossings using the difference a a dan n  is correct only for one 
perfectly narrow band process [LAL 92]. In general, this method can lead to errors.

Figure 6.19. Threshold crossings
of a narrow band noise

Figure 6.20. Threshold crossings
of a wide band noise

6.7.2.1. Particular case where 1f 0

We saw that, for a band-limited noise, r
5

3
 when f1 0. Figures 6.21 and 

6.22 respectively show the variations of the density q u  and of 

uQ1uaP prms  versus u, for r
5

3
.
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Figure 6.21. Peak probability density  
of a band-limited noise with zero  

initial frequency

Figure 6.22. Peak distribution function  
of a band-limited noise with zero  

initial frequency

6.8. Mean number of maxima greater than the given threshold (by unit time)  

The mean number of maxima which, per unit time, exceeds a given level 
rmsua  is equal to: 

M n Q ua p p ( )  [6.70] 

If a is large and positive, the functions P
u

r1 2
 and P

u r

r1 2
 tend towards 

zero; yielding: 

Q r ep
u2 2 [6.71] 

and

M n r ea p

u 2

2  [6.72] 
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i.e. [RAC 69], since r
n

np

0 ,

M n ea

u

0
2

2

 [6.73] 

This expression gives acceptable results for u 2  [PRE 56b]. For u 2 , it 
results in underestimating the number of maxima. To evaluate this error, we have 

plotted in Figure 6.23 variations of the ratio 
 valueeapproximat
eexact valu

 of Ma :

n Q u

n e

Q u e

r

p p
u

p
u( ) ( )

0
2

2

2

2

with respect to u, for various values of r. This ratio is equal to 1 when r = 1 (narrow 
band process). 

Figure 6.23. Error related to the use of the approximate expression of the average  
number of maxima greater than a given threshold

This yields Q u r ep
u( )

2 2 and M n ea
u

0
22

 (the same result as for large 
a). In these two particular cases, the average number per second of the maxima 
located above a threshold a is thus equal to the average number of times per second 
which t  crosses the threshold a with a positive slope; this is equivalent to saying 
that there is only one maximum between two successive threshold crossings (with 
positive slope). For a narrow band noise, we thus obtain: 
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M n Q aa p p ( )

0

2

2
rms

2

M2
a

0

22
a

2

4
a e

M
M

2
1

e
M
M

2
1

M  [6.74] 

NOTE: 

Expression [5.44] (

2

2
rms

a
2

a 0n n e ) is an asymptotic expression for large a 

[PRE 56b]. The average frequency 

1 2
2

0
0

0

G d1
n

2 G d
 is 

independent of noise intensity and depends only on the form of the PSD. In 
logarithmic scales, [5.44] becomes: 

2

a 0 2
rms

a
ln n ln n

2

aln n  is thus a linear function of 2a , the corresponding straight line having a 

slope 
2
rms

1

2
. We often observe this property in practice. Sometimes, however, 

the curve 2
aln n , a  resembles that in Figure 6.24. This is particularly the case for 

turbulence phenomena. We then carry out a combination of Gaussian processes 
[PRE 56b] when calculating: 

k

i a i
i 1

M( a ) P n ( a )  [6.75] 

where iP  is a coefficient characterizing the contribution brought by the ith

component and a in  is the number of crossings per second for this ith component. If 
it is assumed that the shape of the atmospheric turbulence spectrum is invariant and 
that only the intensity varies, 0n  is constant. A few components then often suffice to 
represent the curve correctly. 
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Figure 6.24. Decomposition of the number of threshold  
crossings into Gaussian components

We can for example proceed according to the following (arbitrary) steps: 

– plot the tangent at the tail of the observed distribution ;

– plot the straight line  starting from the point of the straight line 1 which 
underestimates the distribution observed by a factor 2, and tangent to the higher 
part of the distribution; 

– plot straight line  from  in the same way. 

The sum of these three lines gives a good enough approximation of the initial 
curve. The slopes of these lines allow the calculation of the squares of the rms 
values of each component. The coefficients iP  are obtained from: 

2

2
rms

a
2

i i 0M ( a ) P n e [6.76]

for each component. Each term iM  can be evaluated directly by reading the 
ordinate at the beginning of each line (for a 0 ), yielding 

2

2
rms

i
i a

2
0

M
P

n e

[6.77]
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6.9. Mean number of maxima above given threshold between two times  

If a is the threshold, and t1 and t2  the two times, this number is given by 
[CRA 67] [PAP 65]: 

2
rms

2

2
a

2

4
12a e

M
M

tt
2
1

NaE  [6.78] 

6.10. Mean time interval between two successive maxima 

Let T be the duration of the sample. The average number of positive maxima 
which exceeds the level a in time T is: 

M T n Q a Ta p ( )  [6.79] 

and the average time between positive peaks above a is: 

T
M n Q a

a
a p

1 1

( )
 [6.80] 

For a narrow band noise, 

T
M n Q a n Q a

a
a p p p

1 1 1

0( ) ( )

2
rms

2
2
rms

2

2
a

2

4

2

4

2
a

a e
M
M

2

M
M
e2

T  [6.81] 

or

T
M

M
ea

a

M2 0

2

2

2

0  [6.82] 
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6.11. Mean number of maxima above given level reached by signal excursion 
above this threshold 

The parameter r
n

np

0

2
 makes it possible to compare the number of zero-

crossings and the number of peaks of the signal. Another interesting parameter can 
be the ratio Nm  of the mean number, per unit time, of maxima which occur above a 
level a0  to the mean number, per unit time, of crossings of the same level a0  with a 
positive slope [CRA 68]. 

The mean number, per unit of time, of maxima which occur above a level a0  is 
equal to: 

M n q u dua p u0
0

( )  [6.83] 

where 
rms

0
0

a
u  and q u  are given by [6.19]. The mean number, per unit of time, 

of crossings of the level a0  with a positive slope is [5.44]: 

n n ea

u

0
2

0
2

This yields 

N
M

n
m

a

a

0  [6.84] 

N
r

Q u em

u
1

0
2

0
2

( )  [6.85] 

Figure 6.25 shows the variations of Nm  versus u0 , for various values of r. 

It should be noted that Nm  is large for small u0  and r: there are several peaks of 
amplitude greater than u0  for only one crossing of this u0  threshold. 
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Figure 6.25. Average number of maxima above a given level  
through excursion of the signal above this threshold 

For large u0 , Nm  decreases quickly and tends towards unity whatever the value 
of r. In this case, there is on average only one peak per level crossing. During a time 
interval t t1 0, the average number of maxima which exceed level a is: 

rms
p01001a

a
QttnttM  [6.86] 

Let us replace the rms value rms  with 
1rms  and seek the rms value 2rms  of 

another random vibration which has the same number np  of peaks so that, over time 
t t t t3 2 1 0 , we have [BEN 61b] [BEN 64]: 

21 rms
23p

rms
p01p23a

a
Qttn

a
QttnttM  [6.87] 

It is thus necessary that: 

2

1

rms
p

rms
p

01

23

a
Q

a
Q

tt
tt

 [6.88] 
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If the two vibrations follow each other, applied successively over t t1 0 and 
t t2 1, the equivalent stationary noise of rms value 

eqrms  applied over: 

T t t t t1 0 2 1

which has the same number of maxima np  exceeding the threshold a as the two 
vibrations 

1rms  and 
2rms , is such that: 

M T M t t M t ta a a1 0 2 1

21 rms
p12p

rms
p01pa

a
Qttn

a
QttnTM  [6.89] 

and

eqrms
ppa

a
QTnTM  [6.90] 

This yields 

12

eqrms
p

rms
p

01

eqrms
p

rms
p

tt
a

Q

a
Q

tt
a

Q

a
Q

T 21  [6.91] 

and

21 rms
p

12

rms
p

01

eqrms
p

a
Q

T
tta

Q
T

tta
Q  [6.92] 

This expression makes it possible to calculate the value of eqrms  (for a 0).
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6.12. Time during which the signal is above a given value 

Figure 6.26. Time during which the signal is above a given value

Let a be the selected threshold; the time during which t  is greater than a is a 
random variable [RAC 69]. The problem of research of the statistical distribution of 
this time is not yet solved. 

We can however consider the average value of this time for a stationary random 
process. The average time during which we obtain a t b( )  is equal to: 

de
2

1
T

2
rms

2

2b

a rms
ab  [6.93] 

and, if b , the time for which ( )t a  is given by: 

de
2

1
T

2
rms

2

2
a rms

a  [6.94] 

( rms  = rms value of t ). This result is a consequence of the theorem of 
ergodicity. It should be noted that this average time does not describe in any way 
how time is spent above the selected threshold. For high frequency vibrations, the 
response of the structure can have many excursions above the threshold with a 
relatively small average time between two excursions. For low frequency vibrations, 
having the same probability density p as for the preceding high frequencies, there 
would be fewer excursions above the threshold, but these would be longer, with the 
excursions being more spaced. 
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Proportion of time during which ( t ) a

Given a process t  defined in [0, T] and a threshold a, let us set [CRA 67]: 

elsewhere0)t(
atif1t

 [6.95] 

and

Z t
T

t dt m
T

0 0

1
( )  [6.96] 

the proportion of time during which a)t( , the average of Z0  is: 

m
T

m dt mZ
T1
0

a)t(PmZ

rms
Z

a
1m  [6.97] 

where )0(RM0
2
rms  and  is the Gaussian law. The variance of Z0  is of the 

form 
T

Tln
e

A 2
rm

2a

 when T .

6.13. Probability that a maximum is positive or negative  

These probabilities, respectively maxq  and q max , are obtained directly from the 
expression of Q up ( ). If we set u 0, it results that [CAR 56] [COU 70] [KRE 83]: 

q
r

max
1

2
 [6.98] 

q qmax max1  since, for u equal to , Q up ( ) 1 [POO 76] [POO 78], 
yielding 

2
r1

qmax  [6.99] 
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maxq  is the percentage of positive maxima (number of positive maxima divided 

by the total number of maxima) and maxq is the percentage of negative maxima 
[CAR 56]. These relations can be used to estimate r by simply counting the number 
of positive and negative maxima over a fairly long time. 

For a wide band process, 0r  and 
2
1

qq maxmax .

For a narrow band process, r = 1 and q max 1, q max 0.

6.14. Probability density of the positive maxima 

This density has the expression [BAR 78] [COU 70]: 

q u
r

q u( ) ( )
2

1
 [6.100] 

6.15. Probability that the positive maxima is lower than a given threshold 

Let u be this threshold. This probability is given by [COU 70]: 

)u(Q
r1

2
1uP p  [6.101] 

yielding 

2u
2

2 2

1 u r u r
P u erf 1 e 1 erf

1 r 1 r2 (1 r ) 2 (1 r )
[6.102] 

6.16. Average number of positive maxima per unit of time 

The average number of maxima per unit time is equal to [BAR 78]: 

n p d dp , ,
0

0  [6.103] 
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i.e. [6.13] 

n
M

M
p

1

2
4

2

(the notation + means that it is a maximum, which is not necessarily positive). The 
average number of positive maxima per unit time is written: 

dd,0,pn
0

00p

2

4

0

2
0p M

M
M
M

4
1

n  [6.104] 

6.17. Average amplitude jump between two successive extrema 

Being given a random signal t , the total height swept in a time interval 
( T, T) is [RIC 64]: 

d t

dt
dt

T

T ( )

Let dn t  be the random function which has the value 1 when an extremum 

occurs and 0 at all the other times. The number of extrema in ( T, T) is dn t
T

T
( ) .

Figure 6.27. Amplitude jump between two successive extrema
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The average height hT  between two successive extrema (maximum – minimum) 
in ( T, T) is the total distance divided by the number of extrema: 

h

d

dt
dt

dn t

T

d

dt
dt

T
dn t

T
T

T

T

T
T

T

T

T
( ) ( )

1

2
1

2

 [6.105] 

If the temporal averages are identical to the ensemble averages, the average 
height h is: 

h h T

d

dt
dt

T
dn t

E
d

dt

nT
T

T T

T

T T

T
p

lim
lim

lim ( )

1

2
1

2

 [6.106] 

where pn  is the number of extrema per unit time. 

For a Gaussian process, the average height h of the rises or falls is equal to 
[KOW 69] [LEL 73] [RIC 65] [SWA 68]: 

rmsrms
p

0 r2
n

n
2hhE  [6.107] 

or

4
24

2

rms

rms

M
2

M
0R

2
0R2h  [6.108] 

For a narrow band process, r = 1 and: 

2h rms  [6.109] 

This value constitutes an upper limit when r varies [RIC 64]. 

NOTE: 

The calculation of h  can be also carried out starting from the average number 
of crossings per second of the threshold [KOW 69]. For a Gaussian signal, this 
number is equal to [5.47]: 
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2

a 0 2
rms

a
n n exp

2

The total rise or fall (per second) is written: 
2

2
rms

a
2

a 0 0 rmsR n da n e da 2 n  [6.110] 

This yields the average rise or fall [PAR 62]: 

0
rms rms

p p

2 nR
h 2 r

n n
 [6.111] 

Example 6.3. 

Let us consider a stationary random process defined by [RIC 65]: 

elsewhere0G
10

for
1

G 00
0

2
rms

 [6.112]

J.R. Rice and F.P. Beer [RIC 65] show that: 

3
1

11
10h 3

5
rms

 [6.113]

For 0 (perfect low-pass filter), 

3
10h

rms
 [6.114]

If 1 (narrow band process), 

2
h

rms
 [6.115]



Chapter 7 

Statistics of Extreme Values 

7.1. Probability density of maxima greater than a given value 

Let us consider a signal t  having a distribution of instantaneous values of 
probability density p and distribution function P :

peakprob d p d

dpprobP peak

Let N  be a new random variable such that
ipeak

n,1i
N max . N is the largest 

peak obtained among the Np  peaks of the signal t  over a given duration. The 
distribution function of N  is equal to: 

P P PN N
N p  [7.1] 

and the probability density function to: 

p
dP

d
N

N

p N P pN p
N p 1  [7.2] 
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If the probability Q that a maximum is higher than a given value is used, 

Q P1

we have 

p N Q pN p
N p1 1  [7.3] 

where N Qp
N p1 1 is the probability of having Np 1  peaks less than a 

value  among the Np  peaks. 

7.2. Return period 

The return period T X  is the number of peaks necessary such that, on average, 
there is a peak equal to or higher than X. T X  is a monotonous increasing function 
of X: 

T X
P X

1

1
 [7.4] 

where P X  is related to the distribution of . It becomes: 

T X P X T X x X1 1Prob  [7.5] 

7.3. Peak p  expected among pN  peaks 

p  is the value exceeded once on average in a sample containing Np  peaks. We 
have:

P
N

p
p

1
1

 [7.6] 

and

N P N obp p p p1 Pr

The return period of p  is equal to: 

T Np p  [7.7] 
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7.4. Logarithmic rise 

The logarithmic rise N  characterizes the increase in the expected maximum p
in accordance with the Napierian logarithm of the sample size: 

1

N

p

p

d

d Nln
 [7.8] 

From [7.6], we obtain 

dP
d p d

dN

N

p

p
p p p

p

p
2

yielding 

N p d
dN

N
d Np p p

p

p
pln

and

N p
d N

d
p p

p

p
N

ln

i.e.

N p pN p  [7.9] 

7.5. Average maximum of pN  peaks 

N Np d  [7.10] 

7.6. Variance of maximum 

s x p dn N N
2  [7.11] 
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7.7. Mode (most probable maximum value) 

Let us set M  such that pN M  is maximum. The calculation of 
dp

d
N 0

gives: 

N
p

P

p

p
p

M

M

M

M

1 0  [7.12] 

7.8. Maximum value exceeded with risk 

This value, noted N , is defined by: 

PN N 1  [7.13] 

 is the probability of recording a maximum value higher than N  among Np
peaks.

7.9. Application to the case of a centered narrow band normal process 

7.9.1. Distribution function of largest peaks over duration T 

If it is considered that the maxima are distributed according to a Rayleigh density 
law

p
s s2

2

22
exp

and if it is assumed that the peaks of the narrow band random signal are themselves 
randomly distributed (a broad assumption in a strict sense, because such a signal 
may have a correlation between consecutive peaks), the probability that an arbitrary 
peak peak  is lower than a given value  is equal to: 

0 2

2

2peak d
s2

exp
s

P
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i.e.

P
s

1
2

2

2exp

We obtain, from the above relationships, the distribution function of the largest 
peaks

pN

2

2

ipeakN
s2

exp1PP  [7.14] 

1 i Np . PN is the probability that each of the Np  peaks is lower than , if the 

peaks are independent [KOW 69]. Figure 7.1 shows this probability for some values 
of n T0  (equal to Np  since, for a narrow band noise, n np 0 ), plotted versus 

rms
u .

Figure 7.1. Distribution function of largest peaks of a narrow band noise 

Figure 7.2 presents the variations of the function Q PN N1 , QN  being the 
probability so that the largest peak is higher than a given value U  during a length of 
time T. 
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Figure 7.2. Probability that the largest peak is higher than a given value 

NOTES: 

1. For pN  large (i.e., in practice, for s 0.2 ) [KOW 69], we have 

2 2
pN exp 2 s

NP e  [7.15] 

2. This relation can be written in the form: 

N p2 ln 1 exp ln P / N
s

 [7.16] 

Figure 7.3 shows the variations of s  versus pN , for various values of NP .
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Figure 7.3. Amplitude of the largest peak against number of peaks,  
for a given probability 

7.9.2. Probability that one peak at least exceeds a given threshold 

The probability that one peak at least exceeds the threshold  is equal to: 

P ei
s

N p

1 1

2

22  [7.17] 

where 1 i Np , yielding the probability so that a maximum ipeak  lies between 

 and d :

dPPdP ipeakcipeakipeak

i.e.

p

2

2 N

s2
ipeak e11ddP  [7.18] 
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7.9.3. Probability density of the largest maxima over duration T 

The probability density of the largest maxima is thus 

p N
s s s

N p

N p

1
2 2

2

2

1

2

2

2exp exp  [7.19] 

or, while noting v
s2

2

:

p v N e v eN p
v N vp1

1 1 2  [7.20] 

Over time T, the number of maxima higher than 
rms

u  is 

Q u Np  [7.21] 

where  is such that 0 Np .

p u du N Q u dQN p
N p1

1

p u du N Q u d Q uN p
N p1 1

1

p u du d
N

N
p

N p

1

p u du d e e dN  [7.22] 

For large u, we can accept that Q u  can be approximated by [CAR 56]: 

Q u r e

u2

2  [7.23] 
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(Rayleigh’s law). For large Np , we have, on average, for a given duration T, 

N n Tp p

In addition, we still have N Q up , yielding, since r = 1, 

n T e

u

0
2

2

 [7.24] 

and

2u
0N

2
eTnexpdduup  [7.25] 

From relation [7.25], we can express, by integration, this density in the form: 

p u n T u
u

n T
u

N 0

2

0

2

2 2
exp exp  [7.26] 

Figure 7.4 shows the variations of p uN  for various values of n T0  between 
102 and 108.

Figure 7.4. Probability density of the largest maximum over duration T

Each of these curves gives the distribution law of the largest maximum over 
duration T of n signal samples to be studied (Figure 7.5). 
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Figure 7.5. Largest peak of a sample of given duration

Figure 7.6 shows this same probability density for 4
0 106.3Tn  to 6106.3 ,

superimposed over the probability density curve of the instantaneous values of the 
random signal (Gauss’s law). 

Figure 7.6. Probability densities of peaks and highest maxima
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7.9.4. Average of highest peaks 

u u p u du u e dN0

Relation [7.24] makes it possible to express u according to :

u n T2 20ln ln

On the assumption that ln n T0  is large compared to ln , A.G. Davenport 
[DAV 64] deduces the average value of 0:

E d e s

N p

1 1

2

22
0

 [7.27] 

i.e., after a MacLaurin  series development and an integration by parts [KOW 69] 
[LON 52]: 

u
E

s

N N Np p p
0

2 1 1

1

2 2! !

N N N

N

p p p N

p

p
1 2

3 3
1

11

!
 [7.28] 

For large values of Np , M.S. Longuet-Higgins [KRE 83] [LON 52] shows that 
we can use the asymptotic expression 

u n T
n T

0 0
0

2
2

ln
ln

 [7.29] 

where  is the Euler’s constant equal to  0.57721566490 ... (cf. Appendix A4.3), the 

difference with the whole expression being about ln Np
3 2

 [UDW 73]. 
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Figure 7.7. Comparison of the approximate 
average value of the distribution of the highest 

peaks to the exact value

Figure 7.8. Average of the highest peaks

The approximation is very good [CAR 56], even for small Np  (error less than 
3% for all NP 2 and less than 1% if Np 50 ).

NOTE: 

Let us take the assumption 0ln n T ln .

The ratio 

2
20

0 0 0

u
ln n Tln u2 1

ln n T ln n T 2 ln n T
 [7.30] 

is small with regard to the unit if 2
0u 2 ln n T . Approximation [7.29] is very 

acceptable for a narrow band process, i.e. for r close to 1 [CAR 56] [POO 76]. 

7.9.5. Mean value probability 

By ignoring the second 0 p
p

u 2 ln(N )
2 ln(N )

 term [7.29] when pN  is 

very large, from [7.14], we obtain: 
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pN
p)P 1 exp ln(N  [7.31] 

pN

p

1P 1
N

[7.32] 

Still with the hypothesis where pN  is large,

p p
p

1ln(N ) N ln(1 ) 1
N

. Hence 

1P 0.36787944
e

[7.33] 

The probability of finding a higher peak than the average then is 
1 –  P  0.6329 

This result is based on a simplification of the expression of the average. If we 
consider complete expression [7.29] of the mean value of the law of largest peaks, 

we obtain, by carrying 0 p
p

u 2 ln(N )
2 ln(N )

 into [7.14]: 

pN2
0

0i
u

P(u u ) 1 exp
2

[7.34] 

pN2

p
p

1P 1 exp 2 ln(N )
2 2 ln(N )

[7.35] 

pN2

p
p

P 1 exp ln(N )
4 ln(N )

 [7.35] 

Figure 7.9 shows the variations of probability of mean [7.36] according to the 
pN  variable between 103 and 1011.
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Figure 7.9. Probability of the highest peak mean

When pN is great, 

p p
p p

e eln P N ln 1 N
N N

 [7.37] 

and

P exp( e ) 0.570376...  [7.38] 

The probability of a larger peak than mean [7.29] is approximately 0.43. 

7.9.6. Standard deviation of highest peaks 

On the same assumptions, the standard deviation of the largest peak distribution 
is calculated from 

s u uu0 0
2

0
2

s
n T

u0 6

1

2 0ln
 [7.39] 
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Figure 7.10. Standard deviation of the distribution law of the highest peaks

Figures 7.8 and 7.10 respectively show the average u0  and the standard 

deviation su  as a function of n T0 . We note on these curves that, when n T0
increases, the average increases and the standard deviation decreases very quickly. 

We notice in Figure 7.11 that the slope of the curve P uN  increases with n T0 ,
result in conformity with the decrease of su .

Figure 7.11. Probability density of the largest peaks close to 1 
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7.9.7. Variation coefficient 

The variation coefficient (VC) is equal to the ratio of the standard deviation 
0us

[7.39] and the mean 0u  [7.29]: 

p

p
p

1
6 2 ln(N )

VC
2 ln(N )

2 ln(N )

 [7.40] 

If pN  is large 

p

pp

1
6 2 ln(N ) 1VC

2 ln(N )2 ln(N ) 6
 [7.41] 

7.9.8. Most probable value 

The most probable value of  corresponds to the peak of the probability density 

curve defined by [7.19], i.e. to the mode m  (or to the reduced mode m
s
m ). If 

we let v
s2

2

, it occurs when 

d

dv
e v ev N vp1 0

1 1 2

i.e. when [PRA 70] [UDW 73] 

v N
v

ep
vln ln 1

1

2
1  [7.42] 

If Np  is large 
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v Npln  [7.43] 

yielding the most probable value 

m
s

v Nm
p2 2 ln  [7.44] 

m n T2 0ln  [7.45] 

7.9.9. Median 

The median is defined by mu  such that 
pN2

mu1P 1 exp
2 2

. Thus, 

2
m

p
u

N ln 1 exp ln 2
2

and

m
p

ln 2u 2 ln 1 exp
N

 [7.46] 

For pN  large 

m p
p

ln 2u 2 ln 2 ln(ln 2) ln(N )
N

 [7.47] 

Figures 7.12 and 7.13 show the position of the mode, median and mean of the 
law of highest peaks for pN 100  on the distribution function and on probability 

density.
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Figure 7.12. Distribution function of the largest peaks (Np = 100) 

Figure 7.13. Probability density of largest peaks (Np = 100) 

Median/mean ratio 

The ratio R of median [7.47] and mean [7.29] is equal to 

p

p
p

2 ln(ln 2) ln(N )MedianR
Mean 2 ln(N )

2 ln(N )

 [7.48] 
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When pN  becomes very large, ratio R tends toward 1 very slowly. However, we 

cannot ignore the second term of the mean (
p2 ln(N )

), because its influence is 

still felt for the very large number of cycles pN .

Figure 7.14. Variations of the median/mean ratio according to Np

7.9.10. Value of density at mode 

p
e

n TNm
1

2 0ln  [7.49] 

A typical example of the use of the preceding relations relates to the study of the 
distribution of the wave heights, starting from an empirical relationship of the 
acceleration spectral density [PIE 63]. 

7.9.11. Expected maximum 

The expected maximum p  is such that 

P
N s

p
p

p1
1

1
2

2

2exp  [7.50] 

p ps N2 ln  [7.51] 
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7.9.12. Average maximum 

N p

N

N
s s s

d
p

1
2 2

2

2

1

0 2

2

2exp exp  [7.52] 

7.9.13. Maximum exceeded with given risk 

P
s

N N
N

N p

1 1
2

2

2exp  [7.53] 

N N p
s2

1

1 1 1
ln  [7.54] 

i.e., for 1,

N
ps

N
2 ln  [7.55] 

We find in Table 7.1 the value of the parameters defined above from 
relationships [7.29], [7.39], [7.45] and [7.49] for some values of n T0 .

n T0 u0 su0
s uu 0 0 m pNm

3.6 102

3.6 103

3.6 104

3.6 105

3.6 106

3.5993 
4.1895 
4.7067 
5.1725 
5.5999 

0.3738 
0.3169 
0.2800 
0.2535 
0.2334 

10.386 10-2

7.565 10-2

5.949 10-2

4.901 10-2

4.168 10-2

3.4311 
4.0469 
4.5807 
5.0584 
5.4948 

1.2622 
1.4888 
1.6851 
1.8609 
2.0214 

Table 7.1. Examples of values of parameters from the distribution law of highest peaks  
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It should be noted that s uu 0 0  is always very small and tends to decrease when 

n T0  increases. Table 7.2 gives, with respect to n T0 , the values of Q P1  for 
u u0  and u m.

n T0 u0 Q u0
m Q m

102

103

104

3.6 104

105

3.6 105

106

3.6 106

107

108

3.2250 
3.8722 
4.4264 
4.7067 
4.9188 
5.1725 
5.3663 
5.5999 
5.7794 
6.1648 

0.4239 
0.4258 
0.4267 
0.4271 
0.4273 
0.4275 
0.4277 
0.4279 
0.4280 
0.4282 

3.0349 
3.7169 
4.2919 
4.5807 
4.7985 
5.0584 
5.2565 
5.4948 
5.6777 
6.0697 

0.6321 
0.6321 
0.6321 
0.6321 
0.6321 
0.6321 
0.6321 
0.6321 
0.6321 
0.6321 

Table 7.2. Examples of values of probability Q from the distribution law of highest peaks 

It should be noted that, for any value of n T0 , Q u0  and Q m  are almost 
constant.

In many problems, we can assume that with slight error the highest value is equal 
to the average value u0 . It should also be noted that the average is higher than the 

mode, but the deviation decreases when n T0  increases. 

Over one hour of vibrations and for an average frequency n0  of the signal 
varying between 10 Hz and 1,000 Hz, we note that the average u0  varies between 
4.7 and 5.6 times the rms value rms  (Figure 7.8 and Table 7.2). The amplitude of 
the largest peak therefore remains lower than 5.6 rms .

The amplitude of the probability density to the mode increases with respect to 
n T0  (Figure 7.15). 
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Figure 7.15. Value of density of largest peaks at the mode

7.10. Wide band centered normal process 

7.10.1. Average of largest peaks 

The preceding calculations were carried out on the assumption of a narrow band 
noise r 1 . For a wide band noise (r 1), D.E. Cartwright and M.S. Longuet-
Higgins [CAR 56] showed that the average value of the largest peak in a sample of 
Np  peaks is equal to: 

u r N
r N

p
p

0 2
2

ln
ln

 [7.56] 

( 05772156649.0 = Euler’s constant). We obtain relation [7.29] for r = 1, Np

then being equal to n T0 . Let us set m2  as the rms value of the peak distribution, 
where 

m r2
21  [7.57] 

Figure 7.16 shows the variations of 
u

m
0

2

 with respect to r, for various values 

of Np .
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For large Np ,
u

m
0

2

 is a decreasing function of r. When the spectrum widens, 

the average value of the highest peak decreases. When r 0 (Gaussian case), 
expression [7.56] can no longer be used, the quantity r N p becoming small 
compared to 1. The general expression is complicated and without much interest. 
R.A. Fisher and L.H.C. Tippett [CAR 56] [FIS 28] [TIP 25] propose an asymptotic 
expression of the form: 

u m
m

m
0 21

 [7.58] 

where m is the mode of the distribution of maxima, given in this case by 

m e
N

m
p

2

2

2
 [7.59] 

Figure 7.16. Average value of the highest peak 
of a wide band process versus the irregularity 

factor

Figure 7.17. Average value of the highest 
peak of a wide band process versus the 

number of peaks

Distribution [7.19] is thus centered around this mode for large Np .

From [7.59], it results that: 
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m
N

mp2
2

2

2
ln ln

yielding 

m
N Np pln ln ln

2 2
1 2

2 2

and

u
Np

0 2
2

ln  [7.60] 

We can show that u0  converges only very slowly towards this limit. 

Figure 7.18. Mode of the distribution law of 
the highest peaks of a  

 wide band noise

Figure 7.19. Average value of the highest 
peaks of a wide band noise  

over duration T
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7.10.2. Variance of the largest peaks 

The variance is given by [FIS 28] 

s
m

m

2
2 2

2 26 1
 [7.61] 

The standard deviation is plotted against Np  in Figure 7.20. 

Figure 7.20. Standard deviation of the distribution law of the  
highest peaks of a wide band noise

Table 7.3 makes it possible to compare the values of 
s

E
 calculated from 

[7.28] with those given exactly by L.H.C. Tippet for some values of Np  [TIP 25]. 

Np 10 20 100 200 500 1000 

m 1.43165 1.74393 2.37533 2.61467 2.90799 3.11528 

E

s

Relation [7.28] 

L.H.C. Tippett 

1.70263

1.53875

1.99302

1.86747

2.58173

2.50758

2.80726

2.74604

3.08549

3.03670

3.28326

3.24138

Table 7.3. Comparison of exact and approximate values of 
E

s
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7.10.3. Variation coefficient 

The VC ratio of standard deviation calculated from [7.61] and the mean [7.58] 
of the largest peaks of a wide band noise (for pN  large) is equal to: 

2
mVC

6 1 m
 [7.62] 

Figure 7.21. VC as a function of Np

In both narrow band and wide band hypotheses, the VC of laws of probability of 
largest peaks tends toward zero when pN  tends toward the infinite (Figure 7.21). 

7.11. Asymptotic laws 

The use of exact laws of probability for extreme values, established from the 
initial distribution law of the instantaneous values or from the distribution law of the 
maxima, leads to calculations which quickly become very complicated. 

They can be simplified by treating only the tail of the initial law, but with many 
precautions because, as we can well imagine, several asymptotic laws can be used in 
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this domain. Moreover, the values contained therein, of weak probability, appear 
only occasionally and the real law is not well known. 

7.11.1. Gumbel asymptote

This approximation is used for distribution functions, which tend towards 1 at 
least as quickly as exponential for the great values of the variable [GUM 54]. This 
asymptotic law applies in particular to the normal and lognormal laws. Let us 
consider a distribution function which, for x large, is of the form 

P x a b x1 exp  [7.63] 

The constants a and b are selected according to the law being simulated. If, for 
example, we want to respect the values of the expected maximum xp  and the 
logarithmic increase N :

P x
N

p
p

1
1

 [7.64] 

N p pN p x  [7.65] 

In comparing these expressions with those derived from the P x  law, it 
becomes: 

1

N
a e

p

b xp  [7.66] 

N p
b x

N a b e p  [7.67] 

yielding 

b

a
N

e

N

p

xN p
1

The adjusted distribution function around xp  is thus 
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P x
N

x x
p

N p1
1

exp  [7.68] 

For large Np , we obtain an approximate value of the distribution function of the 
extreme values making use of the relationship 

1
x

N
e

p

N

x
p

which yields 

P x x xN N pexp exp  [7.69] 

7.11.2. Case study: Rayleigh peak distribution 

We have 

x s Np x p2 ln

N
x

p
s

N
1

2 ln

If we set x u sx  and if the reduced variable N px x  is considered, we 

have

2 2ln lnN u Np p  [7.70] 

The distribution function is expressed as 

P xN exp exp  [7.71] 

while the probability density is written: 

p exp exp  [7.72] 
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Figure 7.22. Probability density of extreme 
values for a Rayleigh peak distribution

Figure 7.23. Distribution function of 
extreme values for a Rayleigh peak 

distribution

7.11.3. Expressions for large values of pN

Average maximum 

x xN p
N

p
 [7.73] 

where 57722.0  … (Euler’s constant). 

Standard deviation of maxima 

sN
N6

1
 [7.74] 

Probability of an extreme value less than px

N p
1

P x 0.36788
e

 [7.75] 
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7.12. Choice of type of analysis 

The prime objective is to simplify the analysis by reducing the number and 
duration of the signals studied. The starting datum is in general composed of one or 
more records of an acceleration time history. If there are several records, the first 
step is to carry out a check of the stationarity of the process and, if it is the case, its 
ergodicity. If we only have one record, we check the autostationarity of the signal 
and its ergodicity. These properties make it possible to reduce the analysis of the 
whole of the process to that of only one signal sample of short duration (a few tens 
of seconds for example). 

This procedure is not always followed and we often prefer to plot the rms value 
of the record with respect to time (sliding average on a few tens of points). In a 
complementary way, we can add the time variations of skewness and kurtosis. This 
work makes it possible to identify the various events characteristic of the 
phenomenon, to isolate the shocks, the transitional phases and the time intervals 
when, the rms value varying little, the signal can be analyzed from a sample of short 
duration. It also makes it possible to make sure that the signal is Gaussian. 

The rms value rms  of the signal gives an overall picture of the excitation 
intensity. It can be useful to calculate the average E m . If it differs from zero, 
we can either center the signal, if it is estimated that the physical phenomenon has 
indeed a zero average and that the DC component is due to an imperfection of 
measurement, or calculate the rms value of the total signal and the standard 

deviation 22
rms ms .

In order to have a precise idea of the frequency content of the vibration, it is also 
important to calculate the power spectral density (PSD) of the signal in a sufficiently 
broad range not to truncate its frequency contents. If we have measurements carried 
out at several points of a structure, the PSDs can be used to calculate the transfer 
functions between these various points. The PSDs are in addition very often used as 
source data for other more specific analyses. 

The test facilities are controlled starting from the PSD and it is still from the PSD 
that we can most easily evaluate the test feasibility on a given facility: calculation of 
the rms value of acceleration (on the whole frequency band or a given band), of the 
velocity and displacement, average frequency, etc. 

The autocorrelation function is a rather more specific mode of analysis . We saw 
that this function is the inverse Fourier transform of the PSD. Strictly speaking, there 
is no more information in the autocorrelation than in the PSD. However, these two 
functions underline different properties of the signal. The autocorrelation makes it 
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possible in particular to identify more easily the periodic signals which can be 
superimposed on the random vibration (measurement of the periods of the periodic 
components, measurement of coherence time, etc.) [VIN 72]. 

The identification of the nature of the probability density law of the 
instantaneous values of the signal is seldom carried out, for two essential reasons 
[BEN 61b]: 

– this analysis is very long if we require points representative of the density 
around 3 to 4 times that of the rms value rms  (a recording lasting 18.5 minutes is 
necessary to estimate the probability density to rms4  of a normal law with an error 
of 30%);  

– the tendency is generally, and sometimes wrongly, to consider a priori that the 
signal studied is Gaussian. However, skewness and kurtosis are simple indicators to 
use.

Peak value distribution 

The distribution of the peak values is especially useful to know when we wish to 
make a study of the fatigue damage. The parameter as a function of time to study 
must be, in this case, not acceleration at the input or in a point of the specimen, but 
rather the relative displacement between two given points (or, even better, directly 
strains or stresses in the part). The maxima of this displacement are proportional to 
the maximum stresses in the part on the assumption of linearity. We saw that if the 
signal is Gaussian, the probability density of the distribution of the peak values 
follows a law made up of the sum of a Gaussian law and Rayleigh law. 

Extreme values analysis 

This type of analysis can also be interesting either for studies of fatigue damage 
or for studies of damage due to crossing a threshold stress, while working under the 
same conditions as above. 

It can also be useful to determine these values directly on the acceleration signal 
to anticipate possible disjunctions of the test facility as a result of going beyond its 
possibilities.
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Threshold level crossings 

The study of threshold crossings of a random signal can be of interest in certain 
cases:

– to reduce the test duration by preserving the shape of the PSD and that of the 
threshold level crossings curve (by rotation of this last curve) [HOR 75] [LAL 81]. 
This method is not often used; 
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– to predict collisions between parts of a structure or to choose the dimension of 
the clearance between parts (the signal being a relative displacement); 

– to anticipate disjunctions of the test facility. 

7.13. Study of the envelope of a narrow band process 

7.13.1. Probability density of the maxima of the envelope 

It was previously shown how we can estimate the maxima distribution of a 
random vibration. 

Another method of analysing the properties of the maxima can consist of 
studying the smoothed curve connecting all the peaks of the signal [BEN 58] 
[BEN 64] [CRA 63] [CRA 67] [RIC 44]. 

Figure 7.25. Narrow band vibration and its envelope

Given a random vibration t , we can use a diagram giving t  with respect to 
t . For a sinusoidal movement, we would have: 

t A tsin 0  [7.76] 

cost A t0 0  [7.77] 

and the diagram 
t

0

 according to t  would be a circle of radius A, since: 

2
2

0
2

2t
t

A  [7.78] 
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Figure 7.26. Study of the envelope of a sinusoidal signal and of a narrow band signal

The envelope of this sinusoid is made up of two straight lines: A . In the case 
of a narrow band random signal, envelope A is a time function and can be regarded 
as the amplitude of a function of the form [DEE 71]: 

u t A t t tsin 0  [7.79] 

in which A t  and the phase t  are random functions that are assumed to be 
slowly variable with 0. There are in reality two symmetric curves with respect to 
the time axis which are envelopes of the curve t . 

By analogy with the case of a pure sinusoid, A t  can be considered the radius 
of the image point in the diagram t , t :

A t t
t2 2

2

0
2

A 0 , where 

t A t tsin

cost A t t0
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The probability that the envelope lies between A and A dA  is equal to the 

joint probability that the curves  and 
0

 are located in the hatched field ranging 

between the two circles of radius A and A dA  (Figure 7.27). 

Figure 7.27. Probability that the envelope lies between A and A + dA

Consider the corresponding two dimensional probability density 
0

,p . We 

have:

p dx d p d d, ,
0 0

0
0

ddAAcosA,sinApdd,p 0
00

p d d q A dA d, ,
0 0

 [7.80] 

where 

q A A p A A, sin , cos0  [7.81] 



358     Random Vibration 

The probability density function q A  of the envelope A t  is obtained by 
making the sum of all the angles :

d,Aqq
2

0
 [7.82] 

Let us now assume that the random vibration t  and its derivative t  are 
statistically independent, with zero averages and equal variances 22 ss  ( 2

rms ), 

according to a two-dimensional Gaussian law: 

p
s s s

A

s
, exp exp

0
2

2
2

0
2

2 2

2

2

1

2 2

1

2 2
 [7.83] 

q A
A

s

A

s
, exp

2 22

2

2  [7.84] 

and

q A
A

s

A

s2

2

22
exp  [7.85] 

A 0 . The probability density of the envelope A t  follows Rayleigh’s law. 

Figure 7.28. Probability density of envelope A(t)
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NOTES: 

1. The probability density q A , calculated at a given time t, is independent of t, 
the process being assumed to be stationary. 

We could calculate this density from an arbitrary signal i t . The result would 

be independent of the sample chosen in i t  if the process is ergodic [CRA 63]. 

2. The density q A  has the same form as the probability density q a  of 
maxima [CRA 63]. It is a consequence of the assumption of a Gaussian law for 

t  and t . In the case of a narrow band noise for which this assumption 

would not be observed, or if the system were non-linear, the densities q A  and 

q a  would have different forms [BEN 64] [CRA 61]. 

When the process has only one maximum per cycle, the maxima have the same 
distribution as its envelope (this remark is strictly true when r = 1). 

When the number of maxima per second increases and tends towards infinity, we 
have seen that the distribution of maxima becomes identical to that of the 
instantaneous values of the signal (Gaussian law) [CRA 68]. 

Figure 7.29. Probability that the envelope exceeds a given threshold 0A
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The probability that the envelope exceeds a certain given value A0 is obtained 
by integrating q A  between A0 and infinity: 

0A0 dAAqAEnvelopeP

2

2
0

0
s2

A
expAEnvelopeP

A

s
0

P

0.5 0.8825 
1 0.6065 
2 0.1353 
3 0.0111 

Table 7.4. Examples of probabilities of threshold crossings

7.13.2. Distribution of maxima of envelope 

S.O. Rice [RIC 44] showed that the average number of maxima (per second) of 
the envelope of a white noise between two frequencies fa  and fb  is: 

ab ff64110.0N  [7.86] 

Let us set v
A

s
max . If v is large (greater than 2.5), the probability density q v

can be approximated by: 

2
v

2

2

e1v
64110.0

6vq  [7.87] 

and the corresponding distribution function by: 
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2
v

maxA

2

ev
64110.0

61svAQQ  [7.88] 

QA  is the probability that a maximum of the envelope chosen randomly is lower 
than a given value A v s . The functions q v  and QA  are respectively plotted in 
the general case (arbitrary v) in Figures 7.30 and 7.31. 

Figure 7.30. Probability density of  
envelope maxima

Figure 7.31. Distribution function of 
 envelope maxima

Figure 7.32. Comparison of distribution functions
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Figure 7.32 shows, by way of comparison, the distribution functions of: 

– the instantaneous values of the signal (normal law) (A): 
2

u
erf1

2
1

P ,

– the maxima of signal [6.64] (B), 

– the instantaneous values of the envelope (Rayleigh’s law) (C): P e

u

1

2

2 ,

– the maxima of the envelope (curve given by S.O. Rice [RIC 44]) (D). 

7.13.3. Average frequency of envelope of narrow band noise 

It is shown that [BOL 84]: 

rms

0
2

2
M

dG
 [7.89] 

where 

rms  = rms value of the noise t ,

 average pulsation of the noise 2 0f ,

f0  average frequency of t . 

For a signal t  whose PSD G f  is constant between frequencies f1 and f2 and 
centered on f0, this relationship leads to: 

M
f

f
f f df

f f
2

0
2

2 1

1

2

i.e. to: 

M
f f f f

f f f f1
2

1 2 2
2

0 1 2 0
2

1 2

3
 [7.90] 
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Summary tables of the main results

Parameter Relation Expression 
Number of crossings of 

a threshold a with 
positive slope per unit 

time  

[5.44] 
2
rms

2

2
a

0a enn

Average frequency 
[5.50] 

[5.76] n
f G f df

G f df

M

M
0

2
0

0

1

2
2

0

1

2

( )

( )

Moments [5.74] M f G f dfn
n n2

0
( )

Irregularity factor [6.6] 0R)0(R

0R
MM

M
r

4

2

40

2
2
rms

2
rms

2
rms

Probability density of 
the maxima 

[6.19] 

2
2

2
u

u2
2 1 r 2

2

1 r r r uq(u) e + u e 1+Erf
22 2 1 r

Average number of 
maxima per second 

[6.13] 
[6.31] n

f G f df

f G f df

M

M
p

4
0

2
0

1

2
4

2

1

2

( )

( )

Average time between 
two successive maxima 

(narrow band noise) 
[6.40] m

f

f

f

f

f

f

f

1
1

1

3 2

1 2
2

1

5 2

0

0

2

0

2

0

4

1

2

Average correlation 
between two 

successive maxima 
[6.41] 

1

4
2

221

4
2

221

2

4
2

5
21

3
1

sin

5
21

3
1

cos

3
1

5
21

2
1

Table 7.5(a). Main results
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Parameter Relation Expression 

Distribution function 
of the peaks 

[6.64] 
2u

2
p 2 2

1 u r r uQ u 1-Erf + e 1+Erf
2 22 1 r 2 1 r

Average number of 
maxima greater than 
a threshold a per unit 

time 

[6.74] 0

2

2
rms

2

M2
a

0

22
a

2

4
a e

M
M

2
1

e
M
M

2
1

M

Average number of 
positive maxima per 

second

[6.104] n
M

M

M

M
p

1

4
2

0

4

2

Average time interval 
between the maxima 

[6.80] T
M n Q a

a
a p

1 1

( )

Average time interval 
between the maxima 
(narrow band noise) 

[6.82] T
M

M
ea

a

M2 0

2

2

2

0

Probability so that a 
maximum is positive 

or negative 

[6.98] 
[6.99] 

q
r

max
1

2
q

r
max

1

2

Time during which 
the signal is above a 

given value 
[6.93] de

2
1

T
2
rms

2

2b

a rms
ab

Average amplitude 
jump between two 
successive maxima 

[6.107] 
rmsr2h

Probability density of 
the largest peaks [7.19] 

pN 12 2

N p 2 2 2p N 1- exp - exp -
2 s s 2 s

Table 7.5(b). Main results
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Parameter Relation Expression 

Probability density of 
the largest maximum 

over duration T 

[7.26] 
p u n T u

u
n T

u
N 0

2

0

2

2 2
exp exp

Average for the large 
values of the number of 

peaks
(narrow band noise) 

[7.29] u n T
n T

0 0
0

2
2

ln
ln

Standard deviation 
(narrow band noise) [7.39] s

n T
u 0 6

1

2 0ln

Most probable value 
(mode) 

[7.45] m n T2 0ln

Maximum exceeded 
with a risk 

[7.54] N N p
s2

1

1 1 1ln

Average for the great 
values of the number of 

peaks (wide band 
noise) 

[7.56] u r N
r N

p
p

0 2
2

ln
ln

Standard deviation 
(wide band noise) 

[7.61] s
m

m

2
2 2

2 26 1

Probability density of 
the envelope of a 

narrow band Gaussian 
process 

[7.85] q A
A

s

A

s2

2

22
exp

Distribution of maxima 
of the envelope of a 
narrow band process 

[7.87] 2
v

2

2

e1v
64110.0

6vq

Average frequency of 
the envelope of a 

narrow band noise of a 
constant PSD 

[7.90] M
f f f f

f f f f1
2

1 2 2
2

0 1 2 0
2

1 2

3

Table 7.5(c). Main results



Chapter 8 

Response of a One-Degree-of-Freedom
Linear System to Random Vibration 

8.1. Average value of the response of a linear system 

The response of a linear system to an excitation assumed to be random stationary 
is given by the general relation 

q h d [8.1] 

where 

 is the excitation,  

 is a variable of integration,  

and h  is the impulse response of the system. 

The ensemble average of q  (through the process) is

E q E h d

The operators E and sum being linear, we can, by permuting them, write 

E q E h d

Random Vibration: Second Edition - Volume 3 
Christian Lalanne 

Copyright 0 2009, ISTE Ltd. 



368     Random Vibration 

Since, by assumption, the process  is stationary, the ensemble averages are 
independent of the time at which they are calculated: 

E q E h d

This relation links the average value of the response to that of the excitation. We 
saw that the Fourier transform of h  is equal to: 

dehH i

and

H h d0

E q E H 0 [8.2] 

If the process  is zero average, the response is also zero average [CRA 63]. 

8.2. Response of perfect bandpass filter to random vibration 

Let us consider a perfect bandpass filter defined by: 

H f( ) 0 for 0 f fa

H f H( ) 0 for f f fa b

H f( ) 0 for f fb

Figure 8.1. Bandpass filter 
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The response of this filter to the excitation t  is given by the convolution 
integral

u t h t d h t t
0

* [8.3] 

where h t  is the impulse response of the system. In the frequency domain, we saw 
that, if G f  is the input PSD of the signal t  and G fu  that of the response 
u(t):

G f H f G fu
2 [8.4] 

yielding the rms value rmsu  of the response 

dffGu
0 u

2
rms

dffGfHu
0

22
rms

dffGHu b

a

f

f
2
0

2
rms [8.5] 

If the PSD of the input is a white noise, G f G 0 = constant: 

ab0
2
0

2
rms ffGHu [8.6] 

If the transfer function of the filter is such that H0 1:

ab0rms ffGu [8.7] 

barmsrms f,fu

The rms value of the response signal is equal to the rms value of the input in the 
band fa , fb .

NOTE.– The PSD symbol is modified by an index indicating on which signal it is 
calculated ( t , x t ,...). The symbol G is followed by  or f between brackets to 
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specify the nature of the variable, pulsation or frequency. If the PSD is constant, we 
add the index 0 (e.g. 0G ).

8.3. The PSD of the response of a one-dof linear system 

Consider a mass-spring-damping linear system of natural frequency f0 0 2
and quality factor Q 1 2 . As above, the response u t  of the system to the input 

t  has as a general expression (Volume 1): 

u t h t d h t t
0

* [8.8] 

where the impulse response of the system h t  is equal to 

h t
e

t
t

0 2 0
2

0

1
1sin [8.9] 

For a physical system, h t 0 for t 0 (causal system). In the frequency 
domain, the PSDs are related by 

S H Su
2 [8.10] 

For a relative response, the function H is given by 

H

Q

1

1
0

2 2

0

2
[8.11] 

and for an absolute response by 

H
Q

Q

1
1

1

0

2

0

2 2

0

2
[8.12] 
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In a more general way, we can write the complex transfer in the form 

H i
B i B

A A i A
0 1

0
2

2 1

[8.13] 

where B1 0  or 1 in terms of the case selected. 

8.4. Rms value of response to white noise 

We will initially assume that the PSDs S  are defined in the most general case 
for  between  and . The rms value of the response, rmsu , is given by 

dSu u
2
rms

dSHu 22
rms

Let us examine the theoretical particular case of a white noise where 
S = constant = S 0  from  to . Then 

dHSu 2
0

2
rms

It can be shown [LAL 94] that the integral 

I H i d
B i B

A A i A
d

2 0 1

0
2

2 1

2

has as a value 

I

B

A
A B

A A

0
2

0
2 1

2

1 2
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Assumption n° 1 (relative response) n° 2 (absolute response) 

H
H

Q

1

1
0

2 2

0

2
H

Q

Q

1
1

1

0

2

0

2 2

0

2

B0 1 1 
B1 0 0Q1

A0 1 1 
A1 0Q1 0Q1

A2
2
01 2

01

I Q 0
Q

Q2
01

This yields 

assumption 1 (relative response) 

00rms SQu [8.14] 

assumption 2 (absolute response) 

0
20

rms SQ1
Q

u [8.15] 

Particular cases 

Case 1. t
x t

0
2

S
Sx

0
0

0
4

and [CRA 63] [CRA 66] 

3
0

0x2
rms

2
rms

SQ
zu [8.16] 
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Case 2. The PSD is defined, in terms of , in (0, ) [GAL 57]: 

G S2

0
02

rms G
2

Q
u [8.17] 

Case 3. From case 2, t
x t

0
2  [CRA 68] [CRA 70] [MIL 61]: 

3
0

0x2
rms

2
rms

GQ

2
zu [8.18] 

Case 4. The PSD is defined in terms of f in ( , ).

From [8.14], since S f S0 02

0
02

rms S
2

Q
u [8.19] 

Case 5. From case 4, if t
x t

0
2

0x3
0

2
rms

2
rms S

2

Q
zu [8.20] 

Case 6. The PSD is defined in terms of f in (0, ):

G f S f2

and [8.19] [BEN 61b] [MOR 63] [MOR 75] [PIE 64]: 

0
02

rms G
4

Q
u [8.21] 

Case 7. From case 6, if t
x t

0
2  [BEN 62] [BEN 64] [CRA 63] [PIE 64], 

4
0

0x02
rms

2
rms

fG

4
Q

zu

3
0

0x2
rms

4

GQ
u [8.22] 
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NOTES:

1. We could find, in the same way, the results obtained on assumption 2 while 

replacing, in the relations above, Q with 
21 Q

Q
 or 

2
4
0

1 Q
Q

 (in terms of 

whether it concerns 0G  or x0G ). 

2. The response of a linear one-dof system subjected to a sine wave excitation is 
proportional to Q. It is proportional to Q  if the excitation is random [CRE 56a]. 

Table 8.1 lists various expressions of the rms value in terms of the definition of 
the PSD. If the PSD is defined in (0, ), we now consider various inputs 
(acceleration, velocity, displacement or force). The transfer function of a linear one-
dof system can be written: 

H
1

1 42
0
2 2 2 2

0
2

The rms value of the response is calculated, for an excitation defined by a 
displacement, a velocity or an acceleration, respectively using the following 
integrals: 

H h G h dh G H h dh G2
0 0

2
0 0 04

  [8.23] 

2 2 2 2 3
0 0 00 0

h H h G h dh G h H h dh G
4

  [8.24] 

h H h G h dh G h H h dh G4 2
0 0

4 2
0

2
0
5

04
1 4

 [8.25] 

Table 8.2 lists the rms responses of a linear one-dof system for these excitations 
(of which the PSD is constant) [PIE 64]. 



Response of a One-Degree-of-Freedom Linear System     375 

Summary chart 

Type of transfer function

Definition of 
PSD

H

f

f

f

Q f

1

1
0

2 2

0

2
H

f

Q f

f

f

f

Q f

1

1

0

2

0

2 2

0

2

PSD of the 
reduced variable 
in terms of  in 
( , )

0 0S Q 0

2

0
1 Q

Q
S

PSD of tx  in 
terms of  in 
( , )

Q
Sx

0
3 0

1 2

0 0
Q

Q
Sx

PSD of t  in 
terms of  in 
( ,0 ) 

0
02

Q
G 0

2

02

1 Q

Q
G

PSD of tx  in 
terms of  in
( ,0 )

Q
Gx

2 0
3 0

2

1 2

0 0
Q

Q
Gx

PSD of t  in 
terms of f in  
( , )

0
02

Q
S 0

2

02

1 Q

Q
S

PSD of tx  in 
terms of f in  
( , )

Q
Sx

2 0
3 0

1

2

2

0 0
Q

Q
Sx

PSD of t  in 
terms of f in  
( ,0 )

0

0
3 04

Q
G 0

2

04

1 Q

Q
G

PSD of x t  in 
terms of f in 
( ,0 ) 

Q Gx0

0
34

1

4

2

0 0
Q

Q
Gx

Table 8.1. Expressions of the rms values of the response in terms of the definition of the PSD 
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Excitation Parameter response Rms value 

Absolute 
displacement 
Gx  in ( ,0 )

Absolute displacement 
21

x
2

0
rms 4

G41f
y

Absolute 
velocity Gx Absolute velocity 

21
x

2
0

rms 4
G41f

y

Absolute acceleration 

21
x

2
0

rms 4
G41f

y
Absolute 

acceleration
Gx Relative displacement 

21

3
0

3
x

rms
f64

G
z

Force G
G

k
x

F
2

Relative or absolute 
displacement 

21

2
F0

rmsrms
k4

Gf
zy

Table 8.2. Rms values of the response in terms of the definition of excitation

If the noise is not white, we obtain the relationships by taking the value of G for 
0  and by supposing that the value of G varies little with  between the half-

power points. The approximation is much better when  is smaller 
( 05.0005.0 ). For a weak hysteretic damping, we would set 2  in these 
relations. 

These relations are thus applicable only: 

– if the spectrum has a constant amplitude, 

– if not, with slightly damped systems (for which the transfer function presents a 
narrow peak), with the condition that the PSD varies little around the natural 
frequency of the system. 

In all cases, the natural frequency must be in the frequency range of the PSD. 
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8.5. Rms value of response of a linear one-dof system subjected to bands of 
random noise 

8.5.1. Case where the excitation is a PSD defined by a straight line segment in 
logarithmic scales 

Figure 8.2. PSD defined by a segment of straight line in logarithmic scales

We propose to examine the case of signals whose spectrum can be broken up 
into several bands, each one having a constant or linearly variable amplitude in 
logarithmic scales; the PSD will be defined in a band f1, f2(or 1, 2) by: 

G G
G

h
h

b

b
b

1

1

1 1

[8.26] 

where 0 is the natural pulsation of the one-dof system and b is a constant whose 
value characterizes the slope of the segment defined in logarithmic scales 
(h 0 ).

NOTE.– We saw that the number of octaves n which separate two frequencies 1f
and 2f  is equal to [LAL 82]: 

2

1

f
log

f
n

log 2
[8.27] 

In addition, we define the number of decibels m between two levels of the PSD by 

2
10

1

G
m dB 10 log

G
[8.28] 
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yielding, from 

2
10

1

f
m dB 10 b log

f
[8.29] 

the number of dB per octave, 

2

1

2

1

10 b log
m

N log 2
n log

N 3.01 b [8.30] 

The mean square value of the response is 

dHGu 22
rms

2

1

[8.31] 

where G  is the PSD of the input t , defined from 0 to infinity, and H  is 

the transfer function of the system. With the notation h
0

, the function H can be 

written as follows (Table 8.3). 

In general, 

2

1

1
h

h
2b

b
1

0
2
rms dhHh

h

G
u [8.32] 

As in case 1, 

2

1

1
h

h

2

222

b

b
1

0
2
rms dh

Q
h

h1

h

h

G
u

1b2bb
1

02
rms hIhI

h4

G
u 1 [8.33] 
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where h
f

f
1

1

0

1

0

, h
f

f
2

2

0

2

0

 and 

I h
h

h h
dhb

b4

1 42 2 2 2
[8.34] 

Case Transfer function Excitation and response 

1 H h

h
h

Q

1

1 2 2 2

2

1 2

t
x t

0
2  and u t z t

or  

t
F t

k
 and u t y t z t

2
H h

h

Q

h
h

Q

1

1

2

2

2 2 2

2

1 2

t x t  and u t y t
or

t x t  and u t y t
or

t x t  and u t y t

3 H h
h

h
h

Q

2

2 2 2

2

1 2

1

t
F t

k
 and u t y t

or
t x t  and u t z t

or
t x t  and u t z t

or
t x t  and u t z t

Table 8.3. Transfer functions relating to the various values of the generalized variables

For case 2,  

2

1

1
h

h

2

222

2

2

b
b
1

0
2
rms dh

Q
h

h1

Q
h

1
h

h

G
u
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2

1

1 h
h2bbb

1
0

2
rms hI4hI

h

G

4
u [8.35] 

For case 3, 

2

1

1
h

h

2

222

4
b

b
1

0
2
rms dh

Q
h

h1

h
h

h

G
u

14b24bb
1

0
2
rms hIhI

h

G

4
u 1 [8.36] 

If we set 

2 1 2 2( ) [8.37] 

it is shown (Appendix A6.1) that, for b 3,

I
h

b
I Ib

b

b b
4

3

3

2 4 [8.38] 

and for b 3,

I h I I3 1 1
4

ln [8.39] 

This recurrence formula makes it possible to calculate Ib  for arbitrary b 
[PUL 68]. Table A6.1 in Appendix A6 lists expressions for Ib .

Particular cases

It can be useful to use a series expansion in terms of h around zero to improve 
the precision of the calculation of the rms values for larger values of 0f , or an 
asymptotic development in terms of 1/h for the small values of 0f .

1. For small h, lower than 0.02, a development in limited series shows that, for 
the fifth order, 

I h h h0
2 3 2 4 54 8

3
1 2

4

5
3 16 16   [8.40] 
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222
1 hh211

2
2

tanarc
4

I [8.41] 

 ( 2 1 2 )

I h h2
3 2 54

3

8

5
1 2 [8.42] 

4
3 h

2
tanarc

2
I [8.43] 

2. For large h, greater than 40, we have, for the fifth order, 

I
h h

0 3 5
21

4

3

8

5
1 2 [8.44] 

I
h h

1 2 4
22 2

1 2 [8.45] 

I
h h h

2 3
2

5
2 41

4 8

3
1 2

4

5
3 16 16   [8.46] 

I h
h h

3 2
2

4
2 44 4

1 2 3 16 16ln   [8.47] 

NOTE.– For large values of h (>100) and more particularly with 0I h , it can be 

interesting to directly evaluate 1 1I I h h I h  starting from relationships 

[8.44] to [8.47] when the width 2 1h h h  is small. We then have 

2

0 3 3 5 5
1 11 1

8 1 24 1 1
I 1 1

3 h 5 h1 h h 1 h h
  [8.48] 

2

1 2 2 4 4
1 11 1

2 1 22 1 1
I 1 1

h h1 h h 1 h h
  [8.49] 
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2

2 3 3
1 1 1 1

8 1 24 1 1
I 1 1

h 1 h h 3 h 1 h h

2 4

5 5
1 1

4 3 16 16 1
1

5 h 1 h h
[8.50] 

2

3 2 2
1 1 1

4 1 24 h 1
I ln 1 1

h h 1 h h

2 4

4 4
1 1

3 16 16 1
1

h 1 h h
[8.51] 

where the terms 
n

1

1

1 h h
 can be replaced by series developments. 

On the most current assumption where the excitation is an acceleration 
[ t x t 0

2 ] and the response is relative displacement z t , relation [8.33], 

transformed while replacing G  with G
G Gx x

0
4

0

0
4 , and Gx  with 

G fx

2
, then becomes: 

)h(I)h(I
4h2

fG
z 1b2bb

1
3
0

0x2
rms [8.52] 

Since G f Gz z2 2  and G f Gz z2 2 , the rms velocity rmsz  is given 
in the same way by: 

)h(I)h(I
4h2

fG
z 12b22bb

10

0x2
rms [8.53] 

and rms acceleration by: 
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)h(I)h(I
4h2

fG
z 14b24bb

1

0x02
rms [8.54] 

8.5.2. Case where the vibration has a PSD defined by a straight line segment of 
arbitrary slope in linear scales 

Figure 8.3. PSD defined by a straight line segment in linear scales

Let us suppose that the vibration is characterized by a signal t  of which the 
PSD can be represented by an expression of the form 

G A B( ) [8.55] 

where 

A
G G2 1

2 1

B G
G G

1 1
2 1

2 1

B
G G1 2 2 1

2 1

.

2

1

d)(G)(Hu 22
rms
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In case 1, 

2

1

h

h 2222
0

2
rms dh

h4h1

BA
u

This expression can be written, with the notations of the above sections: 

)h(I)h(I
4
B

)h(I)h(I
4
A

u 1020
0

1121

2
02

rms

i.e., by replacing A and B with their expressions, 

1121
12

1202
rms hIhI

hh
GG

4
u

G h G h

h h
I h I h1 2 2 1

2 1
0 2 0 1 [8.56] 

If the vibration is defined by an acceleration [ t x t 0
2 ] and if the PSD is 

defined in terms of f, we have G
G f

x
x

2
 and 

1121
12

1x2x
3
0

4
2
rms hIhI

hh
GG

f24
z

G h G h

h h
I h I hx x1 2 2 1

2 1
0 2 0 1 [8.57] 

Likewise, it can be shown that 

)h(I)h(I
4
B

)h(I)h(I
4
A

u 1222

3
0

1323

4
02

rms
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1323
12

1x2x

0
2

2
rms hIhI

hh
GG

f24
z

G h G h

h h
I h I hx x1 2 2 1

2 1
2 2 2 1 [8.58] 

and that 

1424

5
0

1525

6
02

rms hIhI
4
B

hIhI
4
A

u

1525
12

1x2x02
rms hIhI

hh
GG

4
f

z

G h G h

h h
I h I hx x1 2 2 1

2 1
4 2 4 1 [8.59] 

The functions I h0  to I h5  are defined by expressions [A6.20] to [A6.25] in 
Appendix A6. 

8.5.3. Case where the vibration has a constant PSD between two frequencies 

8.5.3.1. PSD defined in a frequency interval of arbitrary width 

For a white noise of constant level G 0  between two frequencies 1 and 2,
[CRA 63], by making G G G1 2 0  in [8.56]: 

1020
002

rms hIhI
4

G
u

2

1

h

h
2

2
002

rms 2
h2

tanarc
2
h2

tanarc
1hh
1hh

ln
4
G

u

 [8.60] 
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NOTE: 

If 1h 0 , the term between square brackets tends towards zero. It tends towards 1 
when 2h . This term is thus the corrective factor to apply to the corresponding 
expression of section 8.4 to take account of the limits 1f  and 2f , which are 
respectively non-zero and finite. 

Figure 8.4. Constant PSD between two frequencies

More simply, if the excitation x t  is a noise of constant PSD Gx0 between two 

arbitrary frequencies 1f  and 2f , we have, since t x t 0
2 ,

G Gx 0
4  and G f Gx x2 ,

)h(I)h(I
4f)2(

G
z 10203

0
4
0x2

rms [8.61] 

i.e.

2

1

h

h
2

2

3
0

4
0x2

rms 2
h2

tanarc
2
h2

tanarc
1hh
1hh

ln
f24

fG
z

 [8.62] 

The rms values of the velocity and acceleration have the following expressions: 

)h(I)h(I
4f)2(

G
z 1222

0
2
0x2

rms [8.63] 

)h(I)h(I
4

fGz 242400x
2
rms [8.64] 
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Example 8.1. 

1

2

f 1 Hz
f 2,000 Hz

1G 0x  (m/s2)2/Hz
( 71.44xrms  m/s2)

100f0  Hz 
05.0

Rms values of the response  

4
rms 100036.1z  m 

063.0zrms  m/s 

54.59zrms  m/s2

62.39zrms
2
0  m/s2

Average frequency 

87.99
z
z

2
1

n
rms

rms
0  Hz 

Number of maxima per second 

5.150
z
z

2
1

n
rms

rms
p

Parameter r 

6637.0
n

n
r

p

0

Particular case where 0

In this case 

2

1

d
)h1(

G
z 24

0

0x2
rms

It is assumed here that 0xG  is expressed in terms of . If 0xG  is defined in 
terms of f, we have, as previously, 

2

1

h

h 223
0

0x2
rms

h1

dh

2

G
z
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Let us set 

h th x

dh
ch x

dx
1
2

dxxch
2

G

)xth1(

dx

xch

1

2

G
z 2

1

2

1

x

x
2

3
0

0xx

x 2223
0

0x2
rms

2

1

2

1

x

x
3
0

0xx

x3
0

0x2
rms 2

x2sh
2
1

2
x

2

G
dx

2
x2ch1

2

G
z

11 hthargx

and

)h(tharg2sh
2
1

)h(tharg2sh
2
1

)h(tharg)h(tharg
4

G
z 12123

0

0x2
rms

 [8.65] 

8.5.3.2. Case of a narrow band noise of width 0f f Q

It is assumed that 

f
f

Q
0 [8.66] 

where  is a constant. From [8.61], let us calculate I0  for 

h
f

f

f
2

0

0

2

and

h
f

f

f
1

0

0

2
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Figure 8.5. Narrow band noise of width f =  f0 / Q

If G is the value of the PSD and assuming that Q sufficiently large so that 

4 1 22Q Q ,

tanarc2
1Q16

2
tanarc

Q21
Q21

ln
Q4
1

f22

QG
z 223

0
4

2
rms

i.e., at first approximation 

tanarc
1Q16

Q
Q8f)2(

G
z 223

0
4

2
rms   [8.67] 

and, if 16 Q ,

)tan(arc
f)2(

QG
z 3

0
4

2
rms [8.68] 

Equivalence with white noise 

There will be equivalence (same rms response) with white noise 0xG , if 

)tan(arc
)f2(

fQG

)f2(

QGf

2
z 4

0

0
4

0

0x02
rms
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i.e., if 

)tan(arc

G

2
G 0x [8.69] 

Particular cases 

If 1,

f
f

Q
0 [8.70] 

3
0

4
2
rms

f)2(

QG
4

z [8.71] 

Figure 8.6. Determination of an equivalence with white noise

There is the same rms response if 

3
0

422
0

2
0x02

rms
f)2(

QG
4)f4(

QGf

2
z

i.e., if 

G Gx2 0 [8.72] 

If
2

,
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2
tanarc

G

2
G 0x

2
tanarc

)f2(

fQG
z 4

0

02
rms [8.73] 

Equivalence with a white noise Gx0 exists if 

2
tanarc2

GG 0x [8.74] 

0xG5647.1G

8.5.4. Excitation defined by an absolute displacement 

In this case, the relative displacement rms response is given by: 

0

f

f zz
2
rms

2

1

df)f(Gdf)f(Gz

where 

G f H f G fz xz x( ) ( ) ( )2

In terms of the expressions listed in Table 4.1 of Volume 1: 

H H

h
h

Q

xz xz
2

2

0
2 2 2

2

21( )

2

1

2

1

h

h

2

222

x
4

0f

f

2

2224
0

x
4

2
rms dh

Q
h

h1

)f(Ghf
df

Q
h

h1

)f(G
z



392     Random Vibration 

If the PSD is defined by a straight line segment of arbitrary slope (in linear 
scales), and with the notations of section 8.5.2, 

2

1

h

h

2

222

4
02

rms dh

Q
h

h1

BfAhf
z

yielding 

142415250
02

rms hIhIBhIhIfA
4

f
z

or

1424
12

1221
1525

12

1202
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hh
hGhG

hIhI
hh
GG

4
f

z

 [8.75] 

In the same way, the rms velocity and acceleration are given by: 

2

1

2

1

h

h

2

2
22

x
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3
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f z
222

rms dh
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hh
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 [8.76] 

and
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2
22
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f z
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rms dh
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 [8.77] 
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I6 , I7 , I8 and I9 being respectively given by [A6.26], [A6.27], [A6.28] and [A6.29]. 

If the PSD is constant in the interval (h1, h2 ), the rms values result from the 
above relationships while setting G G Gx1 2 0.

8.5.5. Case where the excitation is defined by PSD comprising n straight line 
segments 

For a PSD made up of n straight line segments, we have 

n

1i
i

2
rms

2
rms zz [8.78] 

each term irmsz  being calculated using the preceding relations: 

– either by using abacuses or curves giving Ib  in terms of h, for various values of 
b [PUL 68],  

– or on a computer, by programming the expression for Ib .

When the number of bands is very large, it can be quicker to directly calculate 
[8.31] using numerical integration than to use these analytical expressions. 

In the usual case where the excitation is an acceleration, we determine rmsz ,

rmsz  and rmsz  starting from relations [8.57], [8.58] and [8.59]. The rms 
displacement is thus equal to 

n

1j
jj3

0
4

2
rms Ga

f24
z [8.79] 

where, for 2 1j n ,

a
I h I

h h

I h I

h h
j

j j
j

j j

j j

j j
j

j j

j j

1
1 1

1
0

1

1
1 1

1
0

1

, , , ,

[8.80] 

with 

i i
p p i p iI I h I h, 1

1 [8.81] 
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and, for j 1 and j n  respectively, 

a
h I I

h h
1

2
12

0
12

1

2 1
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and
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c
I h I

h h

I h I

h h
j

j j
j

j j

j j

j j
j

j j

j j

1
5 1

1
4

1

1
5 1

1
4

1

, , , ,

[8.85] 

Figure 8.7. PSD made up of horizontal straight line segments
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When the PSD is made up only of horizontal straight line segments, these 
relations are simplified in terms of  

n

1j
j41j4jx0

2
rms

n

1j
j21j2jx

0
2

2
rms

n

1j
j01j0jx3
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[8.86] 

For example, 

1i

i

h

h

n
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2

2

3
0

i2
rms 2

h2
tanarc

2
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tanarc
1hh
1hh

ln
4
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 [8.87] 

Particular case where the n levels all have constant width f

On this assumption, the excitation being an acceleration, the rms values rmsz ,

rmsz  and rmsz  can be obtained from: 

10101x3
0

4
2
rms fI

2
f

fIG
4f)2(

1
z

G I f
f

I f
f

G I f I f
f

x j j j
j

n

xn n n0 0
2

1

0 0
2 2 2

 [8.88] 

4f)2(
1

z
0

2rms same term as in [8.88] while replacing I0  with I2

 [8.89] 

4
fz 0rms same term as in [8.88] while replacing I0  with I4   [8.90] 
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8.6. Rms value of the absolute acceleration of the response 

If the excitation is an acceleration x t ,

dffG

f
f

2
f
f

1

f
f

21
y x

f

f 2

0

2

2
0

2

2

02
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[8.91] 

Let us set h
f

f0

. If the PSD is defined by straight line segments of arbitrary 

slope in linear scales, G f A f Bx  and 

dhBhfA
h2h1
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h 222
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 [8.92] 

where I I h I hp p p2 1 . For a noise of constant PSD between 1f  and 2f ,
G G Gx x x1 2 0 = constant, 

12220x010200x0
2
rms hIhIGfhIhIGf

4
y

122210200x0
2
rms hIhIhIhI

4
1

Gfy   [8.93] 

Example 8.2. 

Under the conditions of the example quoted in section 8.5.3.1, we have 
82.39y2

rms  m/s2 (to be compared with 62.39zf4 rms
2
0

2 m/s2).
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8.7. Transitory response of a dynamic system under stationary random excitation 

T.K. Caughey and H.J. Stumpf [CAU 61] analyzed, for applications related to 
the study of structures subjected to earthquakes, the transitory response of a linear 
one-dof mechanical system subjected to a random excitation having the following 
characteristics: 

– stationary, 

– Gaussian, 

– zero mean, 

– of PSD G .

The solution of the differential equation for the movement 

u t u t u t t2 0 0
2 [8.94] 

can be written in the general form 

u t u e t tt
0 0

2
2 0

20 1
1

1cos sin

sin
u

e t h t dt t0

0
2 0

2
0
2

01
10   [8.95] 

The input t  being Gaussian and the system linear, it was seen that the 
response u t  is also Gaussian, with a distribution of the form 

p u
s t

e

u m t

s t1

2

2

22 H

which requires knowledge of the mean and the standard deviation. The mean is 
given by 

m t u t u e t tt
0 0

2
2 0

20 1
1

1cos sin

sin
u

e t h t dt t0

0
2 0

2
0
2

01
10  [8.96] 
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where 0  since t  was defined as a function with zero average, yielding 

m t u e t tt
0 0

2
2 0

20 1
1

1cos sin

sin
u

e tt0

0
2 0

2

1
10 [8.97] 

m t  depends on u0  and u0 . In addition, 

s t E u t m t2 2

s t h t h t d d
tt2

0
4

00

T.K. Caughey and H.J. Stumpf [CAU 61] show that 
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If the function G  is smoothed, presents no acute peak and if  is small, s t2

can approach 

s G e2
0 0

2
2

2
2 2

4
1 1

2

1
1sin

1
2 1

2
2sin [8.100] 

where 0 t . It should be noted that, when  is very large, 

s Q G2
0 0

2
 which is the same as expression [8.17]. 

For 0 , this expression becomes 

s G2
0 0

4
2 2sin [8.101] 

The variance s2  is independent of the initial conditions. Variations of the 

quantity
2 2

0 0

s

G
 in terms of  are represented in Figure 8.8 for several values 

of .

Figure 8.8. Variance of the transitory response of a  
one dof system to a random vibration
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It should be noted that, when  increases, the curve tends more and more quickly 
towards a horizontal asymptote (which is lower because  is larger). This asymptote 
corresponds to the steady state response, which is obtained during some cycles. 

NOTE: 

The results are theoretically exact for a white noise vibration. They constitute a 
good approximation for a system slightly damped subjected to an excitation of which 
the spectral density is slightly variable close to the natural frequency of the system 
[LIN 67]. 

Particular cases 

1. The excitation is an acceleration, t
x t

0
2  and G

Gx

0
4 ; this yields 

s
G

Q ex2 0 0

0
3

2
2

2
2 2

2
1 1

2

1
1sin

1
2 1

2
2sin [8.102] 

and, for 0

s
Gx2 0

0
34

2 2sin [8.103] 

Being a Gaussian distribution, the probability that the response u t  exceeds a 
given value, k s, at the time t is 

P u k s
s

e dz
k s

z1

2
2

2

where z
u m

s 2
 and dz

du

s 2

P e dzz
k s

1 2
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2s
msk

erf1
2
1

P [8.104] 

while the probability that u t k s is 

P u t k s
s

e du
s

e du

u m

s
k s

u m

sk s1

2

1

2

2

2

2

22 2

2s
msk

erf
2s
msk

erf
2
1

1sktuP [8.105] 

2. u u0 0 0  (zero initial conditions).

On this assumption, m 0  and 

2
k

erf1skuP [8.106] 

Figure 8.9 shows the variations of P with k. 

Figure 8.9. Probability that the response exceeds k times  
the standard deviation
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Example 8.3. 

Let us consider a random acceleration having a PSD of constant level 
Gx0 1 (m/s2)2/Hz applied at time t 0  to a simple system having as initial 
conditions

u z0 0
310  m 

02.0u0  m/s 

The simple system is linear, with one dof, natural frequency f0 10  Hz and 
factor quality Q 10 .

The mean m is stabilized to zero after approximately 5.1  s (Figure 8.10). 

The standard deviation s t , which starts from zero at t 0 , tends towards a 
limit equal to the rms value rmsz  (m is then equal to zero) of the stationary 
response z t  of the simple system (Figure 8.11): 

3
3
0

0x
rms 109577.7

2

GQ
z  m 

Figure 8.10. Mean of response versus time Figure 8.11. Standard deviation versus time

The time pattern of probability for z t  higher than 1.5 zrms tends in stationary 
mode towards a constant value P0  approximately equal to 11054.6
(Figure 8.12). 
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Figure 8.13 shows the variations with time of the probability that z t  is higher 
than ts5.1 , a probability which tends towards the same limit P0  for sufficiently 
large t. 

Figures 8.14 and 8.15 show the same functions as in Figures 8.12 and 8.13, 
plotted for k 1, 2, 3 and 4. 

Figure 8.12. Probability that the response is 
higher than 1.5 times its stationary  

rms value

Figure 8.13. Probability that the response 
 is higher than 1.5 times its  

 standard deviation 

Figure 8.14. Probability that the response is 
higher than k times its standard deviation Figure 8.15. Probability that the response 

 is higher than k times its stationary  
rms value
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8.8. Transitory response of a dynamic system under amplitude modulated white 
noise excitation 

Let us consider a non-stationary random acceleration of the form [BAR 68] 

x t t e t [8.107] 

where 

e t  is a wide band white noise, 

t  is a signal of simple shape (rectangular wave, then half-sine wave) intended to 
modulate e t  (envelope function); t  is of the form t t0  with 

elsewhere0t
t0fort 0 or

elsewhere0t

t0fortsint 0

The study of the response of a one-dof linear system to such a signal is mostly 
concerned with mechanical shock (the durations are sufficiently short that we can 
neglect the effects of fatigue). These transients are also used to simulate real 
environments of a similar shape, such as earthquakes, the blast of explosions, 
launching of missiles, etc. 

Modulating the amplitude of the random signal led to a reduction of the energy 
transmitted to the mechanical system for length of time . R.L. Barnoski [BAR 65] 

[NEA 66] proposed using the dimensionless time parameter 
f

Q
0  in which 

intervenes the effective time interval , in which the energy contained in the 
modulated pulse is equal to that of the stationary signal over the duration . This 
parameter  is a function of the time necessary for the amplitude response of a 

simple resonator to decrease to 
1

e
 times its steady state value, namely T

Q

f
0

0

:

*

T0

[8.108] 

1 1

0
2

2
0

0
2 0

2 2
0

t dt t dt

2
0

t dt [8.109] 
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For a square wave,  and for a half-sine wave, 
2

.

From an analog simulation, R.L. Barnoski and R.H. MacNeal plotted the ratio 
of the maximum response to the rms value of the response versus , for values of 
the probability PM  (the probability that all the maxima of the response are lower 
than  times the rms value of the response). The oscillator is assumed to be at rest at 
the initial time. 

Figure 8.16. Reduced maximum response versus the dimensionless time parameter

The curves obtained all have the same characteristic appearance: fast rise of 
from the origin to 1, then slow increase in  in terms of (Figure 8.16). 

The curves plotted in the stationary case constitute an upper limit of the 
transitory case when the duration of the impulse increases. These results can thus 
make it possible to estimate the time necessary to effectively achieve stationarity in 
its response. For 1 (a long impulse duration compared to the natural period of 
the system), the results of the stationary case can constitute a conservative envelope 
of . For large  and a great number of response cycles, the response tends to 
becoming independent of factor Q. 

We can note in addition that, when the duration of the impulse increases and 
becomes long compared with the natural period of the resonator, the response peak 
tends to become independent of the shape of the modulation. 
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Figure 8.17. Reduced maximum response to stationary and pulsed random 
 excitation versus the dimensionless time parameter (rectangular envelope, 

 Q = 20, f0 = 159 Hz) [BAR 65]



Chapter 9 

Characteristics of the Response of a
One-Degree-of-Freedom Linear System

to Random Vibration 

9.1. Moments of response of a one-degree-of-freedom linear system:  
irregularity factor of response 

9.1.1. Moments 

By definition, 

M G dn
n

u0

with 

G
G

u

1 2
2

0
2

2

0

2

Setting h
0

, we can write: 

Random Vibration: Second Edition - Volume 3 
Christian Lalanne 

Copyright 0 2009, ISTE Ltd. 
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M
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dfn
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2

2

0

20
 [9.1] 

For white noise, 

M G
h

h h
dhn

n
n

0 0 2 2 20 1 2

M G I In
n

n n0 0 4
0  [9.2] 

The main contribution to the integral comes from the area around the natural 
frequency 0: the results obtained for white noise are a good approximation to 
actual cases where G  varies little around 0. For noise with a constant PSD 
between two frequencies f1 and f2,

M G I h I hn
n

n n0 0 2 1
4

 [9.3] 

In  being defined in Appendix A6 [LAL 94]. The most useful moments are M0 , M2
and M4 .

Moment of order 0 

2
rms0 222

0 u
h2h1

dh
hGM  [9.4] 
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If the excitation is a white noise, G h =constant, I I0 0 0 1 and 

GQ
2

hGQ
2

uM 0
2
rms0  [9.5] 

If the excitation is an acceleration, t
x t

0
2  and G

Gx

0
4  yielding 

[KRE 83] [LEY 65]: 

3
0

0x2
rms0

2

GQ
zM  [9.6] 

Moment of order 1 

M
h G h

h h
dh1 0 2 2 20 1 2

 [9.7] 

If G h = constant, 

M G h
h

h h
dh1 0 0 2 2 20 1 2

[9.8] 

Knowing [LAL 94] that 
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20 222
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1
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it becomes, in the most usual case (
1

2
) [VAN 72] 
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2
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or

2

2

2

2
rms0

1
21

12
tanarc

1
1

1

u
M [9.10] 

Relationship [9.9] can also be written, since 
2x

1
tanarcxtanarc  [CHA 72], 

2

2

2
00

1
12

21
tanarc

212

QhG
M [9.11] 

2

2

2

2
rms0

1
12

12
tanarc

1
2
1

1

u
M [9.12] 

The ratio 2
rms0

1

u

M
 varies little with  so long as 1.0  and is then close to 1 

(Figure 9.1). 

Figure 9.1. First moment of the response of a one-degree of freedom 
 system versus its damping

Expression [9.12] can be written in the equivalent form [DER 79]: 



Characteristics of the Response to Random Vibration     411 
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M [9.13] 

Moment of order 2 
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 [9.14] 

If G = constant, 
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or

0
2
0

2
rms

2
02 MuM  [9.16] 

We again find the relationship 

n
M

M
0

2

0

1

2

( 0 02 n ).

9.1.2. Irregularity factor of response to noise of a constant PSD 

By definition, 

rmsrms

2
rms

40

2

uu
u

MM
M

r  [9.17] 
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According to [9.3], we have, for noise of a constant PSD, 

r
I

I I

I h I h

I h I h I h I h

2

0 4

2 2 2 1

0 2 0 1 4 2 4 1

 [9.18] 

since

I G h I h I hn
n

n n0 0 2 1
4

 [9.19] 

It was seen in addition that [9.5] 2
rms0 uM  and that [9.16] M M2 0

2
0 ,

yielding 

4

rms2
0

4

02
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40

0
2
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M
u

M
M

MM
M

r  [9.20] 

For white noise, M4  is infinite since its calculation assumes integration between 
zero and infinity of the quantity 

h

h h

4

2 2 21 2
,

which tends towards a constant (equal to 1) when h . Figure 9.2 shows this 
function plotted for 01.0 , 0.05 and 0.1. 

Figure 9.2. Function to be integrated for calculation of fourth moment versus h
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The integral thus does not converge and the parameter r is zero. The ratio h being 
also large, possibly when f0 is small, the parameter r of the response tends in the 
same way towards zero when the natural frequency of the system decreases. 

NOTE: 

The curves 0I h , 2I h  and 4I h  show that [CHA 72]: 

– if  is small, these functions increase very quickly when h is close to 1, 

– 0I  and 2I  tend towards 1 when h becomes large, while 4I  continues to 
increase. 

Thus, ideal white noise can give a good approximation to wide band noise for 
the calculation of rmsz  and rmsz , but it cannot be used to approximate rmsz .

If  is small and if h is large compared to 1, the functions 0I  and 2I  are 
roughly equal to 1. 

Figure 9.3. Integrals I0, I2 and I4
versus h, for  = 0.1

Figure 9.4. Integrals I0, I2 and I4
versus h, for  = 0.01

9.1.3. Characteristics of irregularity factor of response 

If the PSD is constant between two frequencies f1 and f2, the parameter r varies 
with  and f0 (via h). 
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Example 9.1.
Let us again take the example of section 8.5.3.1. The variations of the rms 

values rmsz , rmsz  and rmsz  according to f0 (for 01.0 , 0.05 and 0.1) and 
according to  (for f0 10  Hz, 100 Hz and 1,000 Hz) are shown in Figures 9.5 
to 9.10. 

Figure 9.5. Rms relative displacement of the 
response of a one-dof system versus its 

natural frequency 

Figure 9.6. Rms relative displacement of the 
response of a one-dof system versus its 

damping factor 

Figure 9.7. Rms relative velocity of the 
response of a one-dof system versus its 

natural frequency 

Figure 9.8. Rms relative velocity of the 
response of a one-dof system versus  

its damping 
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Figure 9.9. Rms relative acceleration of the 
response of a one-dof system versus its 

natural frequency 

Figure 9.10. Rms relative acceleration of the 
response of a one-dof system versus its 

damping

Figure 9.11. Rms absolute acceleration of 
the response of a one-dof system versus its 

natural frequency

Figure 9.12. Rms absolute acceleration of 
the response of a one-dof system versus its 

damping
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Figures 9.13 and 9.14 show the variations of the parameter r under the same 
conditions. 

It can be seen in Figure 9.13 that, whatever f0, r 1 when 0. The 
distribution of maxima of the response thus tends, when  tends towards zero, 
towards a Rayleigh distribution. When  increases, r decreases with f0.

Figure 9.14 underlines the existence of a limit independent of  for the 
frequencies f f0 1 and f f0 2 .

Figure 9.13. Irregularity factor of the 
response of a one-dof system versus its 

damping

Figure 9.14. Irregularity factor of the 
response of a one-dof system versus its 

natural frequency

This example shows that: 

– r is closer to 1 when  is smaller and f0 is larger, 

– when f0 becomes large compared to f2, r tends, whatever , towards the same 
limiting value (0.749). When f0 , the PSD input is completely transmitted and 
the signal response has the same characteristics as the input signal (input x,

response z). This result can be shown as follows. We saw that, when h
f

f0

 is small 

(i.e. when f0 is large, Figure 9.15), we have 

I
h

n

h

n

h

n
n

n n n4
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4

1

1 3 1
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Here, n 0 and I h0
4

123
0

0x
123

0

0x2
rms hh

2
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hh

4

2
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4
z

123
00

0x2
rms ff
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and

2
rms120x

2
rms

4
0 xffGz

In the same way, 

rms
2
0 z rms value of the first derivative of x,

rms
2
0 z rms value of the second derivative of x.

Figure 9.15. Natural frequency greater than the upper limit of the noise

It is thus normal that r has as a limit the value 

''
rmsrms

2'
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40

2
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M
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calculated from the PSD of the excitation. From expression [6.50], we obtain 

749.0
ffff

ff
3
5

r
5
1

5
212

3
1

3
2

0

If 1f 10 Hz  and 2f 1,000 Hz , then 0r 0.749 .

In addition, when f0 is small compared to f1 (Figure 9.16), r tends towards a 
constant value r0  equal, whatever , to 0.17234 (for the values of f1 and f2 selected 
in this example). Indeed, for large h, i.e. for small f0, we have 

1

1

1

1
1

1 1

1
12 2

4
2

2 4

2

2
h h

h

h

h

Figure 9.16. Natural frequency lower than the lower limit of the noise

Knowing that 

1 1 2 2 3
2

2
2

x x
x

.
!

it results that 
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h h h

n n

1
1

2 3
2 2 4 2 4
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h

h
dh

h

n

h

n

n n n

1 3
2

52 2

3 5

yielding 
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h

n
n

n n4

3
2

5

3 5

i.e., at first approximation, 

I
h

n
n

n4

3

3

 [9.21] 

n 0 since the excitation is a PSD of constant level G0  between f1 and f2. Thus 

I
h

0
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where rmsx  is the rms displacement of the excitation x t , namely 

3
2

3
1

3
1

3
20x

2rms
ff3

ffG

2

1
x

It could be shown in the same way that rmsrms xz  and rmsrms xz  if rmsx
and rmsx  are the rms velocity and acceleration of the excitation 
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21

120x
rms ff

ffG

2
1

x

120xrms ffGx

yielding, according to the above relationships: 

3
1
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1221

rmsrms

2
rms
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2
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ff

ffff3
xx

x
zz

z
r  [9.22] 

Example 9.2. 

If f1 10 Hz and f2 =1,000 Hz, we obtain r 0.17234.

Figure 9.17 summarizes these results. 

Figure 9.17. Irregularity factor of response of a one dof  
system versus its natural frequency

Particular case where 1

In this case, and for white noise, 

M G h
h

h h
dhn

n
x

n

0 0 2 2 20 1 4
 [9.23] 
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Let us set 

J
h

h h
dh

h

h
dhn

n n

1 4 12 2 2 2 2

J h
h

n
J Jn

n

n n

3

2 4
3

2  [9.24] 

Let us calculate the first terms: 

J
dh

h
0 2 2

1

While setting h tg , we obtain 

J0
1

2

2

2

sin

i.e.

20
h1

h
htanarc
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J  [9.25] 

J
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1 1
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22
h1

h
htanarc

2
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J [9.26] 
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h
hJ 24 [9.27] 
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Example 9.3. 

f1 10 Hz 

2f 1,000  Hz 

Figure 9.18 shows the variations of r with f0 for 1.

Figure 9.18. Irregularity factor of the response of a one dof system  
versus its natural frequency, for a damping factor equal to 1

Particular case where 0  (for a white noise) 

M G h
h

h
dhn

n
x

n

0 0 2 20 1
 [9.28] 

Let us set [LAL 94] 

J
h

h
dhn

n

1 2 2

Appendix A6.2 gives the expressions for J0  and J2 , as well as the formula of 
recurrence which allows J4  to be calculated. 

NOTE: 

Approximate calculation of r for a PSD with several peaks (for example, the case of 
a PSD obtained in the response of a several-dof system).
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Figure 9.19. PSD with several peaks Figure 9.20. Equivalent “box” spectrum

J.T. Broch [BRO 70] transforms this PSD into equivalent boxes (the box 
spectrum containing the same amount of energy centered around the resonance 
frequencies; see section 9.4.1) and shows that r can be approximated by: 

22
n

n
1n2

4
n

n n
1n n

f
1

f
r

f
1 1

f

[9.29] 

where:

1f  frequency of the first resonance 

nf  frequency of nth resonance 

n n
n

1 1

c f
c f

n

1

c
c

 energy ratio of the maximum responses to the resonances  

nf width of peak n at –3 dB.
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9.1.4. Case of a band-limited noise 

If f1 0, relationship [9.18] is written [CHA 72]:  

r
I h

I h I h

2 2

0 2 4 2

 [9.30] 

If  is small and if h2  is large compared to 1, we have I I0 2 1 yielding 

r h
2

2

1

1 4
4  [9.31] 

Figure 9.21. Comparison of the exact and 
approximate expressions of the irregularity 

factor of the response to a narrow band  
noise for a damping ratio equal to 0.01

Figure 9.22. Comparison of the exact and 
approximate expressions of the irregularity 

factor of the response to a narrow band  
noise for a damping ratio equal to 0.1

NOTE: 

Under these conditions, we have 

n
n 0 0 nM Q G h I

2
[9.32] 

where

n n 2 n 1I I h I h

n 1
n 0 0 nM Q G I

2
[9.33] 
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and, if the noise is defined by an acceleration, 

Figure 9.23. Constant PSD between two frequencies

n 3
n 0 x0 nM Q G I

2
[9.34] 

yielding, for [LEY 65]

n 0
2x0

0 0 rms3
0

Q G
M I z

2

n 2
x0

2 2
0

Q G
M I

2

n 4 4 0 x0 4M Q G I
2

with n n 2I I  in this particular case. 

9.2. Autocorrelation function of response displacement 

It is shown that this function is equal to [BAR 68]: 

R
Q G

ez
x

2
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1
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0
3 0

2
2 0

20 cos sin

[9.35]
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For 0 ,

3
0

0x2
rmsz

GQ

2
zR  [9.36] 

The duration (time or correlation interval)  necessary for the envelope of 
Rz  to decrease 1/e times its initial amplitude is given by 

Q

f0 0

1
 [9.37] 

9.3. Average numbers of maxima and minima per second 

If E n a  is the average number per second of crossings of a given threshold a 

with a positive slope, the average number of peaks per second lying between a and 
a da can be approximate using the difference [POW 58]: 

E n a E n a da

Figure 9.24. Minimum with positive amplitude

This method can lead to errors, since it assumes that the average number of 
minima per second (such as M in Figure 9.24) taking place with a positive amplitude 
is negligible compared to the average number of peaks per second [LAL 92]. This is 
the case for narrow band noise. 

To evaluate the validity of this approximation in the case of band-limited noise, 
J.B. Roberts [ROB 66] calculates, using the formulation of S.O. Rice: 

– the average number of peaks per second between a and a da:
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E n a da da c f a c dcp , ,0
0

 [9.38] 

– the average number of minima per second between a and a da:

E n a da da c f a c dcp , ,0
0

 [9.39] 

where c,b,af  is the joint probability density function of the random process. The 
function dcdbdac,b,af  is the probability that, at time t, the signal z t  lies 
between a and a da, its first derivative z t  between b and b db  and its second 
derivative z t  between c and c dc , a maximum being defined by a zero derivative 
(see section 6.1). 

M2
czzcaz2azz

exp
M8

1
c,0,af

22
rms

2
rms

4
rms

22
rms

2
rms

213

 [9.40] 

6
rms

2
rms

2
rms

2
rms zzzzM  [9.41] 

The ratio of the number of minima to the number of peaks is equal to [RIC 39]: 

erf1e1

erf1e1
R 2

2

[9.42] 

Figure 9.25. Ratio of the number of minima to the number of peaks
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where 

2
rms r12z

ra

R is thus a function of the only parameter , which depends on the reduced level 

rmsz
a

 and of parameter r. We note in Figure 9.25 that R decreases when  increases. 

If R is small, the process is within a narrow band. R is thus a measurement of the 
regularity of the oscillations. 

Figure 9.26 shows R varying with r, for 
rmsz
a

 varying from 1 to 5. 

Figure 9.26. Ratio of the number of minima 
to the number of peaks versus the  

irregularity factor

Figure 9.27. Ratio of the number of 
minima to the number of peaks versus the 

threshold a

The ratio R decreases when r increases, and this becomes faster when 
rmsz
a

 is 

larger. This tendency is underlined in another form by the curves 
rmsz
a

R , for 

variable r. 
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9.4. Equivalence between the transfer functions of a bandpass filter and a one-
dof linear system 

There are several types of equivalences based on different criteria. 

9.4.1. Equivalence suggested by D.M. Aspinwall 

The selected assumptions are as follows [ASP 63] [BAR 65] [SMI 64]: 

– the bandpass filter and the linear one-dof system are assumed to let the same 
quantity of power pass in response to white noise excitation: the two responses must 
thus have same rms value, 

– the two filters have same amplification (respectively at the central frequency 
and the natural frequency). 

Figure 9.28. Bandpass filter equivalent to the transfer function  
of a one-dof system

The rms value of the response u(t) to the excitation t  is given by 

dGHu
2

0 u
2
rms ll

For the mechanical system, we have for example 

H
1

1 4
0

2 2

2

0

2
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and for the bandpass filter: 

elsewhere0H
2

,
2

forHH ccc0

The first assumption lays down that WN
2
rmsdof1

2
rms uu , i.e., if G G 0  is 

the PSD of the white noise 

2
0 0 0 0

2Q G G H
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2
0 0

2Q H

and the second 

H Q0
1

2

yielding 

Q
Q0 2

2

2
0

Q
 [9.43] 

or

f
f

Q
f fR

2 2
0

0  [9.44] 

This interval f  is sometimes called the mean square bandwidth of the mode 
[NEW 75]. If the mechanical system has as a transfer function 
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H
Q

Q

1

1

0

2

0

2 2

0

2

we have, with the same assumptions 
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3  [9.45] 

and, if Q is large, 

f
f

Q2
0  [9.46] 

The error is lower than 10% for Q 4.

9.4.2. Equivalence suggested by K.W. Smith 

We look for width B of a rectangular filter centered on f0, of height Q, such that 

the area under the curve H2  is equal to that of the rectangle A Bm
2  (A Qm )

[SMI 64]. 
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Figure 9.29. Bandpass filter equivalent to the transfer function of a  
one-dof system according to K.W. Smith

Knowing that the PSD Gu  of the response is related to that of the excitation by 

G H Gu u
2 , we have, for white noise, 

dHGdGHdGu 2
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and, since we must have A Qm ,

B
Q

0
0

2
 [9.48] 
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9.4.3. Rms value of signal filtered by the equivalent bandpass filter 

This is equal to 

0 0
2
0

2
rms dfGHu

i.e.

fGHu 0
2
0

2
rms

If the vibration is an acceleration, we must replace G 0 with 
Gx0

0
4 . It then 

becomes: 

Q
fQ

2
Gu 0

4
0

2

0x
2
rms

0x0rms
2
0 GQf

2
u  [9.49] 

Example 9.4. 

Let us consider a one-dof linear mechanical filter of natural frequency 
f0 120  Hz and quality factor Q 22 , subjected to a white random noise of 
spectral density of acceleration Gx0 10  (m/s2)2 Hz between 1 Hz and 1,000 Hz 
(rms value: 100xrms  m/s2). The rms value of the response calculated from 
[9.49] is equal to 

6.20310.22.120
2

GQf
2

z 0x0rms
2
0  m/s2

It can be checked that the rms displacement rmsz  obtained from relations 
[8.33] and [8.34] is in conformity with the value extracted from this result (i.e. 

358.0zrms  mm). 



Chapter 10

First Passage at a Given Level of
Response of a One-Degree-of-Freedom
Linear System to a Random Vibration

10.1. Assumptions 

The problem of the definition of the first passage time at a given threshold value 
is important since it can be associated with the probability of failure in a structure 
when exceeding a characteristic stress failure limit, an acceptable deformation or a 
collision between two parts due to excessive displacement response, etc. It is a 
question of determining, for a given probability, how long a random vibration can be 
applied before a critical amplitude of the response is observed [GRA 66] or of 
evaluating the maximum amplitude which can be reached within a given time T. 

Let u t  be the response of a simple mechanical system (a one-dof linear 
system) to a presumed stationary random excitation t . The duration T at the end 
of which u t  reaches a selected level a for the first time is sought. Level a can be 
positive only, negative only or either positive or negative. 

Consider the whole range of samples of responses u t  to the excitations 
(inputs) t  which constitute the random process. 

Each sample reached level a for the first time at the end of timeTi  All of the 
values Ti  obey a statistical law p T  which would be very interesting to ascertain 
but which, unfortunately, could not be found accurately in cases of a general nature 
[GRA 66]. 

Random Vibration: Second Edition - Volume 3 
Christian Lalanne 

Copyright 0 2009, ISTE Ltd. 
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Figure 10.1. First passage through a given threshold in time T

Certain simplifying assumptions must therefore be made to continue with the 
analysis. However, analog and numerical simulations [BAR 65] [CRA 66a] could 
indicate the form of the solution. 

Let p T dT be the probability that the response u t  exceeds the threshold a for 
the first time (since time t 0 ) in the interval T t T dt . Simulations show that 
the probability density of the first crossing, p T , has a form which at first depends 
on the initial conditions, according to whether, at t 0 , the excitation is already 
stationary (Figure 10.2, curve A) or whether, before this moment, it is zero (Figure 
10.2, curve B). 

Figure 10.2. Probability density of first upcrossing  
as a function of initial conditions
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Whatever the case might be, the remainder of the curve indicates exponential 
decay which might be approximated analytically by a relation of the form 

p T A ei i
T

i

i

T 0 . Estimating p T  for T small is not a simple problem. On the other hand, as 
soon as the mean time of the first upcrossing is large enough with respect to the 
duration during which this study is difficult, the expression for p T  may be reduced 
to the approximate form: 

p T A e T [10.1] 

and the distribution function [VAN 75] to 

P A e T [10.2] 

where 

– A is the probability of starting, when t 0 , below the threshold, 

–  is the limiting decay rate of the first crossing density [CRA 70], 

– P T is the probability of no crossing between 0 and T T 0 . 

Numerical simulations also show that, for a sufficiently large threshold a, A 1
(A depends on the state of the system at t 0 , but not on ) [CRA 66a]. On the 
other hand, for low values of a, A is higher than 1 when noise is applied to t 0
(transitory phase) and A is lower than 1 if, at time t 0 , the noise is already 
stationary. 

From work relating to this subject, several classifications may be made: 

– assumptions as to the height of maxima, i.e. as to the independence of 
threshold crossings of the signal or its envelope; 

– assumptions as to the nature of the noise: wide band [DIT 71] [TIP 25] 
[VAN 75] or narrow band [CRA 63] response of a slightly damped one-dof system 
to a Gaussian stationary white noise [BAR 61] [BAR 65] [BAR 68b] [CRA 66a] 
[CRA 68] [CRA 70] [CAU 63] [GRA 65] [GRA 66] [LIN 70] [LUT 73] [LYO 60] 
[MAR 66] [ROB 76] [ROS 62] [VAN 69] [YAN 71]. 
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The study can be carried out: 

– by means of (Figure 10.3), at t 0 , a zero start (response beginning from a 
rest position) and therefore, in the first few instants, a transitional phase [CHA 72] 
[CRA 66a] [GRA 65] [LUT 73] [YAN 72], 

– for, at t 0 , a stationary start, an already established mode [CRA 66a] 
[GRA 66] [LIN 70] [LUT 73] [YAN 71], 

– by considering a short burst of random signal between two times 0 and t 
(research of the extreme response), 

– by employing analytical methods, leading to theoretical results [GRA 65] 
[GRA 66] [LIN 70] [YAN 71], and 

– analog [GRA 66] [LUT 73] or numerical simulations [CRA 66a]. 

Figure 10.3. Zero or stationary start

Several assumptions may be made to determine an approximate value for the 
parameter . Recalling the classification proposed by S.H. Crandall [CRA 70], the 
following cases will be successively examined: 
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1) Threshold level a is sufficiently high and the threshold excursions are so rare 
that they can be regarded as statistically independent. 

2) The maxima of the response can be assumed to be independent. 

3) The threshold upcrossings of the envelope of maxima are independent. 

4) The maxima of the envelope of the peaks are independent. 

5) The amplitudes of the peaks follow a Markov process. 

6) The response peaks are divided into groups for each of which the envelope of 
the peaks varies slowly. 

10.2. Definitions 

Consider a response random signal u t , whose derivative is u t , and let it be 

placed in a diagram 
u t

0

, u t  ( 0 being the natural pulsation of the one-dof 

system subjected to vibration). 

The barriers are classified as follows: 

– type B: a barrier with a limit such that u a (Figure 10.4(1)), 

– type D: a barrier with a symmetric double-passage level such that u a
(Figure 10.4(2)), 

– type E: a barrier with a limit concerning the envelope e t  of the process u t
(but not the process itself), such that  

e u
u2 2

2

0
2

Here the range e < a is a circle (Figure 10.4(3)) of radius a. In this phase plan, the 
trajectory of a response is a clockwise random spiral [CRA 66a]. 
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Figure 10.4. Various types of barriers

10.3. Statistically independent threshold crossings 

When considering high thresholds (higher than 2.5 times the rms value), the 
times at which the signal response crosses threshold a can be regarded as being 
distributed according to Poisson’s law, i.e. of the form [CRA 70] [GRA 66] 
[VAN 69]: 

p T e T [10.3] 

A 1 .
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Figure 10.5. Poisson’s law for threshold crossings

It was seen (Chapter 5) that, for a Gaussian process with zero mean, the number 
of crossings beyond a threshold a with positive slope can be written 

2
rms

2

u2
a

0a enn

where 

– rmsu = rms value of the response signal u t ,

– n0 = mean number of passages through zero with a positive slope, 

n
M

M
0

2

0

1

2

when 2
rms0 uM  and 2

rms2 uM  [MIL 61]. Depending on the case, the parameter 
, independent of its stationary state at t 0 , is equal to [RIC 64]: 

–
2
rms

2

u2
a

0a enn  if the barrier is of type B (u a) [CRA 63] [ROB 76]. 

2
v

0
u2
a

0aB

2

2
rms

2

enenn [10.4] 
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( rmsuav ). This yields the probability of there being no crossing of the threshold 
during the interval (0, T) [MIL 61]: 

P T T n T eB

v

( ) exp exp 0
2

2

[10.5] 

– 2 na  if the barrier is defined by u a  (type D) [GRA 66] [VAN 72]. Then 

D B
vn e2 2 0

22

[10.6] 

and

P T T n T eD

v

( ) exp exp 2 0
2

2

[10.7] 

Returning to the case of the type B barriers, let us estimate the probability 
P u t a that the response u is higher than a given threshold a (the probability of 
exceeding a in the positive direction) [BEN 64] [COL 59]. The probability that u t
crosses the threshold a with a positive slope in the interval of time t, tt  is 

P u t a n ta [10.8] 

if it is assumed that t  is arbitrarily small, sufficiently so for there to be only one 
passage in this interval. Let us also assume that the probability of a passage of the 
threshold during t  can be regarded as independent of time t which t  starts. 

Let P t0  be the probability of threshold a not being exceeded in time 0, t and 
P t t t0 /  as the conditional probability of a not being exceeded in t, t t
knowing that a was not exceeded in (0, t): 

P t t P t t t P t0 0 0/ [10.9] 

However, 

P t t t P u t a P u t a0 1/ [10.10]
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P t t t n ta0 1/ [10.11] 

yielding 

P t t P t n ta0 0 1

or

P t t P t

t
n P ta

0 0
0 [10.12] 

When t 0, this becomes 

dP t

dt
n P ta

0
0

yielding 

P T A e n Ta
0 0 [10.13] 

where A0 is a constant of integration. Knowing that, at t 0 , P0 0 1, we have 
A0 1. The probability of exceeding a in (0, T) (distribution function) is thus 
[LIN 67] [RAC 69] [YAN 71] 

P T P T e n Ta1 10 [10.14] 

The density of probability p T  associated with P T  is 

p T
dP

dt
n ea

n Ta [10.15] 

p T  depends solely on 2
rms0 uM  and n0 , related to M0  and to M2 . Hence: 

– the mean time of the first upcrossing [CRA 63] 

E T T p T dT
na

1
0

[10.16] 

– the variance 
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s T E T p T dTT
2 2

0

s
n

T
a

1
[10.17] 

If it is assumed that the probability of exceeding threshold a is independent of 
the initial time, the mean time between upcrossings compatible with E T  can be 
assumed to be equal to 

T
n

m
a

1
[10.18] 

yielding, starting from [10.13] 

P T e

T

Tm
0 [10.19] 

NOTES:

1. According to Poisson’s law, the probability that the failure occurred at t 0
is assumed to be zero even if this probability is finite, but very small for the large 
thresholds [GRA 66] [YAN 71]. If the probability of passage above the level a at 
t 0  is of interest, it can however be added to the right member of [10.17]. Always 
assuming that the response signal is Gaussian with zero mean, this probability is 
given by 

2

2
rms

u
2 u

arms

1
P u a e du

u 2

Setting 
rms

u
t

u 2

2

rms

t
a

u 2

1
P u a e dt

which following transformation becomes 
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rms

1 a
P u a 1 erf

2 u 2
[10.20] 

It should be noted that all these expressions are independent of the Q factor of 
the system. 

2.  Relation [10.17] is important, because it makes it possible to set limits to 
certain problems when an exact analysis of extreme levels is not possible. The 
quantity an  can either be determined analytically or experimentally. For small 

an T , i.e. small P, we have: 

aP T n T

(since xe 1 x 1 x ), yielding 

2

2
rms

a
2 u

0P T n e

2

2
rms

a
2 u

0

P
T e

n
[10.21] 

G.P. Thrall [THR 64] showed that an T  constitutes an upper limit of the 
probability of crossing a positive (or negative) threshold in time T without using the 
assumption of independence of the upcrossings. 

An arbitrary correlation between successive extrema tends to decrease the 
probability that such peaks exist during a given time period [GRA 66] [THR 64]. 

Figure 10.6 shows the variations of 
rms

a
u

 with 0n T , for various values of P. 

3. J.N. Yang and M. Shinozuka [YAN 71] express the same results in the form 

2

2
rms

a
P N 1 exp N exp

2 u
[10.22] 
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Figure 10.6. Average threshold reached over timespan T, for various probabilities

where P N  is the probability that the first excursion above threshold a takes place 
in the N first half-cycles, corresponding to a duration T: 

a

2 T
N

T

rms
a

rms 0

u 1
T 2

u n
[10.23] 

4. In the case of a Gaussian process with zero mean, M.R. Leadbetter [LEA 69] 
expresses the probability that, over duration T, the maximum of the process u T  is 
larger than a, as shown by: 

P M T a 2 P u T a

yielding, by considering the variance equal to 2
rmsu T ,

2a

20rms rms

2 x
P M T a exp dx

u 2 T 2 u T
  [10.24] 

a 0 .

All these calculations assume the independence of the probability of the 
amplitude of a peak in comparison to those of the preceding peaks. This assumption 
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of peak independence has been criticized. H. Cramer [CRA 66b] rigorously showed 
that the law of distribution of the upcrossings tends asymptotically towards 
Poisson’s law when threshold a tends towards infinity [LEA 69]. For thresholds 
observed in practice, this formulation leads to an error the importance of which 
largely depends on the bandwidth of the process. Numerical simulations show that 
these expressions are correct for large a; 

– there is broad agreement when rmsu2a  for the wide band processes, whose 
PSD is relatively uniform on a broad frequency range, 

– there is agreement with simulation when rmsu3a  for the processes having a 
bandwidth equal to an octave. 

O. Ditlevsen [DIT 71] observes that, for the wide band processes, the error factor 
falls outside of safety and that assuming Poisson’s law, there is no tolerance over the 
time that has actually elapsed above the threshold level. 

For the much narrower band processes, the calculations carried out with these 
relations lead to first upcrossing times that are much shorter than the experimental 
times. S.H. Crandall and W.D. Mark [CRA 63] estimate that, in a narrow band 
noise, the peaks tend to form groups and cannot be regarded as being independent. 
This grouping tends to decrease na  and thus to increase p T . The error is therefore 
safety-orientated [CRA 66a] [GRA 66]. The variations increase when the bandwidth 
decreases and decrease with a. The mean rate na  is asymptotically exact, when 

rmsu
a

, and as such can be used as a reference to compare other estimates 

[MIL 61]. 

It is important in this case to take account of the statistical dependence of the 
occurrences of the upcrossings. Y.K. Lin [LIN 70] establishes approximate first 
passage probabilities by considering that the threshold passages constitute a 
continuous random process and by assuming several models for their distribution. 
J.N. Yang and M. Shinozuka [YAN 71] obtain other approximate relations (upper 
and lower limits) by considering a punctual representation of the process of 
successive maxima and minima (narrow band process). 



448     Random Vibration 

Example 10.1. 

Let us consider a Gaussian narrow band process with zero mean, central 
frequency 200 Hz and rms value rmsu . We want to determine the time T0  for 
which u t  is lower than the level rmsu5.4a  with a probability of 90%. 

2
rms

2

u2
a

0a enn

2
5.4

a

2

e200n

2
5.4

0

2

e
200

9.0ln
T

T s0 13

The probability that rmsu5.4u  at 0t is

2

5.4
erf1

2

1
auP

6104.3auP

(a low value compared to 0.1).

10.4. Statistically independent response maxima 

It is assumed here that the response process tu  is a zero mean, narrow band 
process and that, firstly, we wish to determine the peak distribution of u t
[CRA 63]. The mean number of crossings of the threshold a with positive slope, per 
unit time, for a stationary process, is equal to na . For two close levels, the quantity 

n n
dn

da
daa a da

a  is the mean number of peaks per unit time between a and 

a da (false in a strict sense but, in a narrow band process, the probability of 
positive minima is negligible). For the same reason, the mean number of peaks on a 
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given level per unit time is equal to the mean number of cycles per unit time (r = 1), 
i.e. to n0 . The fraction of the peaks located between a and a da is given by 

p a da
n

dn

da
daa1

0

[10.25] 

where p a  is the probability density of peaks on the level a among all the peaks 
between 0 and the infinite. Yielding 

2
rms

2

u2
a

rms
e

u
1

ap [10.26] 

(Rayleigh’s distribution) and [CRA 63] [YAN 71] 

2
rms

2

u2
a

rms e1uauP [10.27] 

Over a timespan T, there is a mean number N of positive and negative peaks 
(N n T2 0 ). Disregard dispersion relating to N and assume that the amplitudes of 
N peaks are statistically independent.  The probability that all N peaks of u t  are 

smaller than rmsua  is then, when
rmsu
a

v

N
rmsuatuPP

P e v
n T

1
2 02

2
[10.28] 

and the probability that these peaks are higher than rmsua  is Q P1 . The 
probability density associated with this Q factor is: 

p T
dQ

dT

dP

dT

however, 

ln lnP n T e v2 10
22
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dP

P
n e dT

v

2 10
2

2

ln

p
dP

dT
n e Pv2 10

22

ln [10.29] 

where P can be written 

P n T e vexp ln2 10
22

[10.30] 

p T  is thus of the form p e T with 

2 10
2

2

n e

v

ln( ) [10.31] 

It should be noted that  and hence p T  are independent of the Q factor of the 
system. 

Figure 10.7 shows the variations of the ratio 1 of the  values calculated on the 
basis of the first two assumptions [10.4] and [10.31], which has as its expression 

1
0

2

0
2

2 1

2

2

2

n e

n e

v

v

ln( )

1

2

2

1

2

2

ln( )e

e

v

v
[10.32] 

This ratio very quickly tends towards 1. It is almost equal to 1 for v 3. The 
value of  calculated on the basis of assumption 2 thus converges very quickly 
towards the value of  calculated by assuming that the upcrossings follow a Poisson 
law, which as has been shown, is a rigorous law for v when very large. 
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Figure 10.7. Ratio of the  constants calculated on the basis of [10.4] and [10.31]

Assumption 2 can however be criticized. A narrow band noise arises as a quasi-
sinusoidal oscillation whose mean frequency is the natural frequency of the system 
and whose amplitude and phase vary randomly (Figure 10.8). 

Figure 10.8. Narrow band noise

The maxima have an amplitude which does not vary a great deal from one peak 
to another, so much so that the peaks cannot be considered to have independent 
amplitudes, especially when the Q factor is large. 

10.5. Independent threshold crossings by the envelope of maxima 

To take account of the above criticism, response crossings of the threshold u t
are estimated as starting from crossings (with positive slope) of the same threshold 
by the envelope R t  of maxima of u t .
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Figure 10.9. Narrow band noise and its envelope 

The upcrossings of threshold a are regarded here as independent R t a ,
tantamount to a Poisson distribution. 

Let R t  be the process derivative of tR . The joint probability density of the 
envelope R t  and its derivative R t  is [CRA 67] 

2
rms

22
rms

2 R2R

rms

R2R
2
rms

e
R2

1
e

R

R
R,Rp

where rmsR  and rmsR  are respectively the rms values of R t  and of R t . It is 

shown that rmsErms uqR  where rms0rms un2u  (n0  being the mean 

frequency of the response) and q
M

M M
E 1 1

2

0 2

.

Hence  

0

2
120

rms M
MMM

R

(assuming a response with zero mean, so that rmsrms uR ). From this yielding, by 
replacing M0 , M1 and M2  with their expressions established in the case of a 
response to a white noise (relations [10.6], [10.10] and [10.16]), we obtain: 
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gnu2R 0rmsrms

and

E

212

2

2

2 q2
21

12
tanarc

1
1

1

1
12g   [10.33] 

Figure 10.10. Parameter qE as a function of the damping ratio

Example 10.2. 

For 0.05,  we obtain 2456.0qE  and g 0.6156.

It was shown that the mean number by unit time of crossings above a given level 

a by a signal u t  is equal to 
2
rms

2 u2a
0a enn . The mean frequency with which 

the envelope crosses level a is therefore 

2
rms

2 u2a
2
rms

rms
0a e

u

aR
2
1

RdRR,Rpm [10.34] 

or

rms
aa u

a
gnm [10.35] 
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It should be noted here that  depends on damping factor . As above, variations 
in the ratio 2  for the values of  obtained on the basis of assumptions 3 [10.35] and 
1 [10.4] varying with v are plotted, as shown (Figure 10.11), for several values of .

2
v

0

2
v

0

2
v

0

rms
a

2 2

2

2

en2

vgen

en2
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212

2

2

22
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12
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1
1

1

1
12

2
v

g
2
v

212

2

2

22
12

12
tanarc

2
1

14

1
12

2
v

  [10.36] 

Figure 10.11. Coefficients  in assumptions 2 and 3 in relation to  as in assumption 1 

It should be noted that the ratio 2 v  exceeds value 1 when v is sufficiently 
large. 

For high values of v, assumption 3 is less suited than 1 and 2. For weaker v, it is 
on the contrary better suited. 

Relation [10.34] can be also written 
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2
rms

2

u2
a

2
rms

rms
a e

u

a
2

R
m [10.37] 

or, 

2
v

rms

rms
a

2

ev
u
R

2
1

m [10.38] 

Knowing that 
rms

rms
E u

R
q  and that 0

0

2

rms

rms n2
M
M

u
u

, this expression 

becomes 

m q n v e q v na E

v

E a2 20
2

2

[10.39] 

or [DEE 71] [VAN 69] [VAN 75] 

m
v

M

M M M
ea

v

0

0 2 1
2

2

2

2

[10.40] 

yielding another form of the first passage probability of the type E threshold 
[THR 64] [VAN 75]: 

P T q v n TE aexp 2 [10.41] 

and

2 q v nE a [10.42] 

10.6. Independent envelope peaks 

10.6.1. S.H. Crandall method 

If the threshold level a of the response is sufficiently large, we can consider that, 
in a given time, there are as many crossings of this threshold by the envelope R t  
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with positive slope than the maxima of the envelope. This means that the envelope 
does not have any peak below a [CRA 70]. For an arbitrary threshold b a , the 
peak distribution of the envelope, as in assumption 2, is therefore dictated by the 
form 

0

b

m

m
1benvelopeofpeakprobP [10.43] 

where 

– mb  is the mean number by unit time of upcrossings of the threshold b by the 
envelope R t ,

– m0  is the expected frequency of R t .

It was shown that [10.35] 

rms
bb u

b
gnm

To simplify, S.H. Crandall defines m0  as the value of mb  for rmsub  (the 
envelope never intersects the axis u 0; another reference should therefore be 
taken) yielding 

0 n gb

2
1

0
u2

u

00 egngenm
2
rms

2
rms

[10.44] 

Let rmsubv .

m

m

n g v

n e g

n e g v

n e g
v eb b

v

v

0 0
1 2

0
2

0
1 2

1

2
1

2

2

  [10.45] 

P v e
v

1

1

2
12

[10.46] 

The probability density is such that 
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p v
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dv

ln ln1
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12P v v
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1 1
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v v e
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1vife1vvp
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2
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[10.47] 

Over one duration T, the average number of peaks of the envelope is N m T0 .
Amplitudes of maxima supposedly being statistically independent yield the 
probability that the N peaks are lower than threshold b: 

N
N bpeak1PP

P
m

m
N

b
T

1
0

0

[10.48] 

P v eN

v
g

T

e

1

1

2
1 22

0

[10.49] 

PN has the form e T with 

m
m

m
b

0
0

1ln
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0
1

2
1

2
1

2

e
g v e

v
ln [10.50] 

This is a type E barrier. For large v, we have: 

mb [10.51] 

 is then: 

– independent of the level of reference retained to define m0 ,

– identical to the value obtained on the basis of assumption 3, 

– infinite for v 1, a consequence of the assumption that there is no peak below 
the reference level v 1.

The curves in Figures 10.12 and 10.13 show variations of the ratio 3 of the 
values of  given by relationships [10.50] and [10.4]: 

3

1

2
1

2

1

2

2

2

g v e

e e

v

v

ln

[10.52] 

10.6.2. D.M. Aspinwall method 

The distribution over time of the response peaks of a mechanical resonator 
excited by white noise is not known. D.M. Aspinwall [ASP 63] [BAR 65] defined 
an approximate method, making it possible to estimate the probability that the 
response maximum of the envelope of the peaks exceeds a given level in a given 
time. It is based on the average number N of maxima of the envelope per second in 
noise of constant PSD between two frequencies fa  and fb , equal to [7.86] [RIC 44]: 

ab ff64110.0N [10.53] 
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Figure 10.12. Ratio of the constants 
calculated from [10.50] and [10.4]

Figure 10.13. Coefficients  in assumptions 
2, 3 and 4 in relation to  as in assumption 1

This vibration can be regarded as the response of an ideal band pass filter 
(fa , fb ) to white noise input. In order to be able to use this value of N in the case of 
a resonator, D.M. Aspinwall defined an equivalence between a band pass filter and 
mechanical resonator being based on two criteria: 

– the two filters let the same quantity of power pass through them in response to 
white noise excitation (the rms response is therefore the same), 

– they have the same amplification (the central frequency of the band pass filter 
being equal to the natural frequency). 

It was shown in section 9.4 that, on the basis of these assumptions, the 
mechanical filter equivalent to the band pass filter has as a natural frequency f0 the 

central frequency fc  of the band pass filter and for Q factor: Q
f

f2
0 .

D.M. Aspinwall then assumed that: 

– the mean number of maxima of the envelope is a good representation of the 
number of maxima actually observed, 

– the heights of maxima of the envelope are independent random variables in 
time T. 

Following these assumptions, the distribution law of the highest peak amplitude 
of the envelope during a time T follows a law of the form: 

F v F vM E
N T

[10.54] 
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where 

– F vE  is the distribution of the probability law giving the height of a 
maximum of the envelope chosen randomly (the probability that a randomly chosen 
maximum is lower than the reduced threshold v), 

– F vM  is the probability that all N T peaks occurring over the duration T are 
lower than threshold v. 

N is given by [10.53] for a band pass filter (fa , fb ). The equivalent mechanical 
filter is such that: 

f f f
f

Q
b a

2
0

yielding 

Q
f

Q
f

2
641.0N 00

and

N T
f T

Q
0 [10.55] 

The ratio 
f

Q
0  is the mean number of maxima of the envelope in time T [NEA 66]. 

S.O. Rice proposes a curve showing the variations of F vE  according to  as 
well as a way of approaching the relationship for 5.2v  ([7.88]): 

2v
2E

6F v 1 v e
0.64110

[10.56] 
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Figure 10.14. Probability that a randomly chosen  
maximum is lower than threshold v

Therefore, for v 2.5,

Q
Tf

2
v

M

0

2

ev
64110.0

61vF [10.57] 

An analog simulation has shown that this relation gives only approximate results. 
The variations arise when taking an average value for N into account instead of the 
maxima’s real number, from the approximation related to the equivalence of 
mechanical and electric filters and from the assumption of independence of maxima 
of the envelope which is not necessarily justified (N and FE  are undoubtedly 
different). The variations observed are greater for high values of Q. 

R.L. Barnoski [BAR 61] noted, after a complementary study (analog simulation), 
that: 

– for a given value 
f T

Q
0 , the experimental values of v are higher than those 

calculated by D.M. Aspinwall; 

– for very large f T0 , the values of v are lower than those predicted by D.M. 
Aspinwall (for 2 50Q ). For f T0  large, v is almost independent of Q. 
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Figure 10.15. Probability that all peaks over 
a duration T are lower than threshold v

Figure 10.16. Mean number of maxima of 
envelope lower than a threshold v

D.M. Aspinwall proposes a relationship which better harmonizes theoretical and 
experimental results by replacing in [10.57] the parameter Q of the mechanical 
system with 

3Q2.0Q* [10.58] 

3Q2.0
Tf

2
v

M

0

2

ev
64110.0

61vF [10.59] 

For a system having a given factor Q, in Figures 10.17 to 10.20 the value of 

F vM  may be seen after calculation of the exponent 
3Q2.0

Tf0  for v, given f0 and 

T. These curves respectively show: 

– F vM  for several values of 
f T

Q
0

*  (1, 2, 5, 10, 20, 50, 100, 250, 500, 1,000 

and 5,000), 

– FM  as a function of 
f T

Q
0

* , for 5.2v , 3, 3.5, 4, 4.5 and 5, 

–
f T

Q
0

*  as a function of v, for 05.0FM , 0.2, 0.5, 0.8, 0.9 and 0.99, 
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–
f T

Q
0

*  as a function of FM , for 5.2v , 3, 3.5, 4, 4.5 and 5. 

G.P. Thrall [THR 64] proposes a theoretical limit for the product f T0  as a 
function of the probability of exceeding a threshold v in a time T of the form 

f T
F v

eM
v

0
21

2

2

[10.60] 

Figure 10.17. Probability that all the peaks
over duration T are lower than threshold v

Figure 10.18. Probability that all the peaks 
over duration T are lower than threshold v 
versus the mean number of maxima of the 

envelope

Figure 10.19. Corrected mean number of 
maxima of the envelope lower  

than threshold v

Figure 10.20. Corrected mean number of 
maxima of the envelope versus the 
probability that all the peaks over 

duration T are lower than threshold v
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This limit appears to be correct as for when T is large. Figures 10.21 and 10.22 
show the curve defined by this relationship and those resulting from [10.57] for 
Q 5 and Q 50, for 95.0vFM  and MF v 0.99,  respectively. 

The expression obtained by D.M. Aspinwall can be written in the form 

P e T [10.61] 

where 

2
v

0

2

e
64110.0

61ln
Q
f

[10.62] 

Figure 10.21. Mean number of cycles versus threshold, for a probability of 0.95 

Figure 10.22. Mean number of cycles versus threshold, for a probability of 0.99
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(type E barrier). The ratio 4  of this value of  to that obtained on the basis of 
assumption 1 [10.4] is equal to: 

2
v

0

2
v

0

4 2

2

e
2

2

e
64110.0

61lnf2

2
v

2
v

4 2

2

e

e
64110.0

61ln

[10.63] 

Figure 10.23. Ratio of the constants  calculated from [10.62 ] and [10.4]
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Figure 10.24.  coefficients on the basis of assumptions
2, 3, 4 and 5, related to  in assumption 1

10.7. Markov process assumption 

10.7.1. W.D. Mark assumption 

Much of the work in connection with first passage time relates to the response of 
a slightly damped resonator to white noise, which can be characterized by a second 
order Markov process [MAR 66] [WAN 45]. This process was sometimes 
approached by a first order Markov process, in order for solutions to be deduced 
more easily [GRA 65] [MAR 66] [SIE 51] [SLE 61]. 

Definition 

A Markov process is a name given to a process in which the distribution of 
probability at any one time t depends solely on the distribution at any previous time 
[CRA 83] [SVE 80]. The structure of a Markov process is wholly determined for 
each and every future instant by the distribution at a particular initial instant and by 
a probability density function of transition. 

The importance of the Markov process lies in the fact that there is a formal 
technique to obtain a partial differential equation satisfied by the probability density 
function of transition of the process. 

The response of a simple system excited by a random vibration is presented in 
the form of a quasi-sinusoidal frequency signal equal to the natural frequency of the 
system, the amplitude and phase of which vary randomly. The peaks have an 
amplitude modulated by a continuous curve. Assuming that the amplitudes of the 
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peaks constitute a one-dimensional continuous Markov process with a discrete 

parameter (time), then the probability that 
rms

max

u
a

v  [amax = peak value of u t ] is 

lower than a value v0  is given by [BAR 68a] [MAR 66]: 

P v v A e T Q
0 0

0 0 [10.64] 

provided that T cor , where 

– A0 is a constant which depends on the initial conditions. A0 can in general be 
taken as equal to 1, 

– Q is the quality factor of the system, 

– 0 02 f  is its natural pulsation, 

– T is the duration of the considered signal, 

– cor  is the smallest value of T for which the correlation function R Tx  can be 
regarded as negligible for all T cor . In the majority of practical applications, for 
which 5.2v0 , the condition T cor  is always respected, 

– 0 is a parameter function of the Q factor and threshold v0 .

This yields 

P e T [10.65] 

with 0 0 Q . For sufficiently large v0  and for Q
1

2
, W.D. Mark 

[MAR 66] gives: 

212
02

v

0 Q2
th

2
v

erfe
Q2

2
0

[10.66] 

where 

–  = 1 when the threshold is defined by v v0 ,

– 2 when it is defined by v v0 ,
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– erf  is the error function1.

The same law applies to the envelope of u t  with 
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[10.67] 

n 1 . Figures 10.25 to 10.34 show respectively: 

– 0 as a function of Q, for v0 2, 3, 4 and 5 and 1 and 2, 

– 0 as a function of v0 , for Q 5, 10, 20 and 50, 1,

– f T0  as a function of v0 , for Q 5, 10, 20 and 50 and 95.0P0  ( 1),

f T
P

Q
0

0

02

ln
[10.68] 

–
f T

Q
0  as a function of v0 , for Q 5, 10, 20 and 50, 95.0P0  and 1,

f T

Q

P

Q
0 0

2
02

ln
[10.69] 

– 0 as a function of f T0 , for Q 5, 10, 20 and 50 and 95.0P0
[BAR 68a], 

0
0

02

ln P

Q f T
[10.70] 

– 0 as a function of Q, for 1Tf 0 , 10, 102, 103 and 104, 1 and 
95.0P0 .

1 Error function E1 defined in Appendix A4.1.
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Figure 10.25. Constant 0

versus Q factor
Figure 10.26. Constant 0

versus threshold

Figure 10.27. Mean number of  
cycles versus the threshold for  

a probability of 0.95

Figure 10.28. Mean number of  
cycles versus the threshold for 

 a probability of 0.99
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Figure 10.29. Mean number of maxima of the 
envelope lower than threshold v0 for 

probability of 0.95

Figure 10.30. Mean number of maxima of 
the envelope lower than threshold v0 for 

probability of 0.99

Figure 10.31. Constant 0 versus 
 the number of cycles

Figure 10.32. Constant 0 versus f0 T/Q

In addition, the ratio 5 of the values of  calculated in this section [10.66] on 
the basis of assumption 1 [10.4] is given by: 

212
0

5 Q2
tanh

2
v

erf [10.71] 

(knowing that 0 0 Q ). It should be noted that 5 1 when v0
(Figure 10.35). 
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Figure 10.33. Constant 0 versus the Q 
factor, for some values of f0 T

Figure 10.34. Constant 0 versus the Q 
factor, for some values of f0 T / Q

Figure 10.35. Ratio of constants  calculated from [10.66] and [10.4]

Application

We propose evaluating the probability of collision between two one dof linear 
systems fixed on the same support (Figure 10.36) and subjected to stationary broad 
band white noise. 

Let z1 and z2  be the relative response displacement of the masses m1 and m2 .
The parameter of interest here is the sum z z1 2 . Let  

v
z z

sz z
0

1 2

1 2

max [10.72] 

where 
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2
2
rms2rms1rms1

2
ms

2
21

2
zz zzz2zzzEs

21
[10.73] 

and  is the coefficient of correlation. The probability that the maximum value of v 
in the selected time interval T is lower than or equal to v0  is sought. 

Figure 10.36. Two one-dof systems on the same support

The results, obtained by a digital simulation, are presented in the form of curves 
giving the mean value of v0  as a function of the ratio of the natural frequencies 
f f2 1 , for various values of the product f T1  and various Q factors of the resonators 
(Figure 10.37) [BAR 68b]. 

Figure 10.37. Mean distance between masses [BAR 68b]
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10.7.2. J.N. Yang and M. Shinozuka approximation 

J.N. Yang and M. Shinozuka [YAN 71] assume that the process is Markovian, 
i.e. that peak n depends solely on the preceding peak n 1 and is independent of all 
the peaks which occurred before )1n( th peak. For a narrow band noise centered 
around 0, they thus obtain the probability of the first excursion  

P N
q

q

N q

q

N

1 1
1

1
10 0

exp [10.74] 

where N was defined previously 2 0n T

q f x y
T

dx dy
a

a
, , 0

0 2
[10.75] 

2
rms

2

u2
a

0 eq

T0
0

2

2Tk1u
2Tkyx

I
2Tk1u

yx
2
T

,y,xf
0

2
0

2
rms

00
0

0
24

rms

0

2Tk1u2
yx

exp
0

2
0

2
rms

22
[10.76] 

where I0  is the zero-order modified Bessel function of the first kind 

k T T T0 0 0
2

0 0
2

02 2 2 [10.77] 

d
2

T
cosG

u

2
2

T 0
002

rms

0
0 [10.78] 
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d
2
T

sinG
u

2
2
T 0

002
rms

0
0 [10.79] 

When the PSD G  of the narrow band noise is symmetric with respect to 0,

0
0

2
0

T
. This is roughly the same case for the response of a slightly damped 

one-dof system to white noise. 

10.8. E.H. Vanmarcke model 

10.8.1. Assumption of a two state Markov process  

E.H. Vanmarck [VAN 75] considers a two state description of the fluctuations of 
the random variable u t  of a wide band process with respect to the specified level a 
(a being a type B barrier). 

Let T0  and T1 be the successive time intervals of last below a (safe area) and 
above a, respectively. 

The sum of T T0 1 is a time between two successive upcrossings (with positive 
slopes). Let us assume that the precise times of the upcrossings are variables that are 
independent and identically distributed. Then, mean times E T0  and E T1  are such 
that [VAN 75] 

2
v

exp
n
1

u2
a

exp
n
1

n
1

TTE
2

0
2
rms

2

0a
10 [10.80] 

E T

E T T
e d v v

v

v
1

0 1

21

2

2

[10.81] 

v  is the complementary Gauss distribution function. It is connected to the 
error function(2) by 

2 Error function E1 defined in Appendix A4.1.
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2
v

erf1
2
1

v [10.82] 

or, for large v, by: 

v
v

e v v

v
1

2
1 3

2

2 2 4 [10.83] 

Figure 10.38. Ranges of relative response displacement

To simplify, it is assumed that the time intervals T0  have a common exponential 

distribution of mean E T
B

0
1

1
, the probability of not crossing the level a can be 

approached in terms of  

P T A T v
n T e

v
B B

v

exp exp1
0

2

1
1

2

  [10.84] 

where AB, the probability that the signal is lower than the threshold at the start time 
(T 0) under stationary starting conditions, is equal to 
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A
E T

E T E T
vB

0

0 1

1 [10.85] 

The constant 1B is related to the constant B used in the assumption in section 
10.3 (equation [10.4]) and more specifically in the relationship 

1 1

1
B

B v

yielding 

1
0

2

2

1B

v

n e

v
[10.86] 

Figure 10.39. Probability that signal is lower than threshold v  
at the start time for a type B barrier

Figure 10.39 shows how AB and 1B B  tend towards 1 when rmsuav  is 
sufficiently large. 

Type D barrier 

Similarly, in this case,  

P T A TD Dexp 1 [10.87] 

P T v
n T e

v

v

1 2
2

1 2
0

22

exp [10.88] 
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1 12D B . Figure 10.40 shows the variations of AD and of 1D

D

 in relation  

to 
rmsu
a

v .

Figure 10.40. Probability that the signal is lower than threshold v  
at the start time for a type D barrier

Type E barrier 

The reasoning is similar to the above examples. Set R t  as the envelope of the 
signal, 0T  as the time during which the envelope is below the threshold and 1T  as 
the time during which it is above it; the mean time between two crossings is then 
[VAN 75]: 

2v1
0E

a
10

2
envq2

1
TTE [10.89] 

v
2

v
2

v

10

1

22

edvev
TTE

TE
[10.90] 

From these two relations, 

0E
1

nvq2

1
TE [10.91] 
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0E

2v

0
nvq2

1e
TE

2

[10.92] 

We can obtain an approximation of the first passage time distribution by 
assuming that the intervals 0T  are distributed exponentially with a mean equal to 

1E
0

1
TE [10.93] 

Under random starting conditions ( t 0 ), we obtain: 

P T A TE E Eexp 1 [10.94] 

P T e
q v n T

e
E

v
E

v
1

2

1

2

2
2 0

2
exp [10.95] 

the probability of a start (t 0 ) in the safe range (for u < a) being 

2
v

exp1
TTE

TE
A

2

10

0
E [10.96] 

It can be noted [VAN 75] that: 

E
142

E
1

1 qv3v1q
TE
TE

[10.97] 

q E  is approximately equal to the ratio of mean times of the upcrossings of the 
process and of its envelope above the threshold when v is large (for the high 
thresholds). 
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Figure 10.41. Probability that the signal is lower than threshold v  
at the start time for a type E barrier

Figure 10.42. Comparison of mean occurrence rates 

In Figure 10.41, the functions AE and 1E

D

 are plotted as a function of v, 

knowing that 

1
22

1

1
2

E

D
E v

q v
e

[10.98] 
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1
0

2

2

2

1

2

2E
E

v

v

q v n e

e
[10.99] 

Figure 10.42 recapitulates the principal results of the above sections. 

10.8.2. Approximation based on the mean clump size 

This approximation attempts to correct the effects of the assumption of 
independence for threshold upcrossings. It may be noted from Figure 10.42 that D
and E are very different for v small and v large. This result can be explained by 
starting with the following: 

– the process u t  can exceed the selected threshold only if the envelope is 
already higher than the threshold; 

– the number of D-crossings probably occurring during a single excursion of the 
envelope depends on the bandwidth of the process and on the level of the considered 
threshold; 

– for the narrow band processes and the weak thresholds, or when the product 
q vE  is small, the D crossings tend to occur in clumps which immediately follow 
the individual E-crossings. The average time between D-crossings in a group is 
equal to 1 0n2/ .

Mean clump size 

The envelope R t  of the peaks of a narrow band process is a curve which varies 
slowly. Each crossing above a given threshold a is followed by the crossing of this 
threshold by a group of peaks (clump) of u t .

 Clump size refers to the number of crossings of the threshold a by the process 
u t  which immediately follows a crossing of a by tR  (Figure 10.43) [LYO 60]. 

R.H. Lyon defines the mean clump size as the ratio of the number na  of 

threshold crossings u = a (by unit time) and the number ma  of crossings of a by the 

envelope, i.e. 
n

m
a

a

 (if the threshold is defined by u a , the ratio to be considered is 

2
n

m
a

a

).
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Figure 10.43. Clumps of response peaks

Figure 10.44. Case of a high threshold for which the definition  
of the clump size no longer makes sense

For the high thresholds, this definition leads to a result having little or no sense, 
as ma  may be higher than na . R.H. Lyon shows that, under these conditions, the 
mean number of times that the envelope exceeds a threshold a is3 given by 

2
rms

2

rms

2
a

u2
a

exp
u

a
2
b

M [10.100] 

3 This approximate relation is equivalent to [10.35] if g 2 .
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(where R E 0  is the autocorrelation function of the envelope R E  for 0 ) and 
that the mean clump size is 

2

rms0

2

rmsm

ba
2un

b2a
u

cs [10.101] 

m n2 0 = mean pulsation of the narrow band noise. 

For a one-dof system (f0, ), we have 

RE m0 2 [10.102] 

yielding 

a
uQQ

cs rms [10.103] 

The mean clump size varies then in the same way as Q . For Q 50, the 
groups having an amplitude equal to rmsu2  or larger will contain just two cycles on 
average. 

The ratio 2 n ma a  can be interpreted as the mean size of a D-crossing group. 
This concept is particularly useful when the mean 1TE  of the durations 1T  of the 

threshold crossing a by the envelope is several times larger than 1 0n2/ . However, 
it can be seen that the number of E-crossings must always be at least as large as the 
number of D-crossing groups (all the E-crossings are not followed by a D-crossing 
in the following half-cycle). 

For the wide band processes and the high thresholds, i.e. when the product q vE

is large (
20

2
1

rms

rms
E MM

M
1

u
R

q ,
rmsu
a

v ), the number of E-crossings can be 

much larger than the number of D-crossings. Estimation of the fraction D  of E-
crossings which are not immediately followed by a passage in the following half-

cycle is possible [VAN 69]. A D-crossing is assumed to be certain when 
0

1
n2

1
T .
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If
0

1
n2

1
T , the probability of a D-crossing occurring during the time interval 

1T is estimated as equal to 101
0

1 Tn2
n2

T
. Hence, 

0n1

0 1110D TdTfTn21 [10.104] 

an expression in which 1Tf  is the probability density function of 1T . The 

exponential distribution (already used) of mean 
0E

1
nvq2

1
TE  is 

appropriate for calculations yielding 

D
E

E
q v

q v1
1

2
1

2
exp [10.105] 

The difference D1  is the fraction of “validated” E-crossings, i.e. those that 
are immediately followed by at least one D-crossing. Setting 2D  as the mean 
frequency of the validated E-crossings or the mean rate of occurrence of the D-
crossing clumps, this rate can be expressed as: 

2 1 2 1
2D D a a Em n q vexp [10.106] 

where ma  is given by [10.39]. An estimate of the mean number of D-crossings by 
clump (mean clump size) is then 

E N
n

q vD
a

D
E

2
1

22

1

exp [10.107] 

This mean number tends towards 1 when v increases. 

NOTE: 

A similar result for the type B barrier is obtained, when replacing 02 n , a2 n ,

E2 q v  respectively with 0n , an , and E2 q v  in [10.106].
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Figure 10.45. Mean number of D-crossings 
per clump

Figure 10.46. Mean rate of occurrence of 
groups of D-crossing clumps

Figure 10.45 shows the variations of E ND  with the reduced parameter v, for 
various values of q E . If the mean size of the clumps is large, i.e. when the product 
q vE  is small, we have 

E N
q v

D
E

1

2
[10.108] 

The distribution of first passage times for a type D barrier can be approximated 
by assuming that the points corresponding to the D-crossing clumps constitute a 
Poisson process with a mean rate 2D  given by [10.106]. This gives: 

P T T n T q vD D a Eexp exp exp2 2 1
2

  [10.109] 

The decrease rate 2D  approaches the expected asymptotic value (2 na ) when v 
tends towards infinity (Figure 10.46). When v tends towards zero, 

2D am

(i.e. towards E given by [10.42]). The above estimate can be improved (with the 
low thresholds) while being less strictly observed over the real time duration of the 
groups. It is enough to consider a two state process by taking T0  and T1  as mean 
values such that: 
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E T
n

E ND1
0

1

2

E T E T
D

0
2

1
1

E T
n

E N eD
v

0
0

21

2
1

2

The new estimate of the distribution of first passage times for the type D barriers 
depends on the parameters 3D  and 

A
E T

E T T
AD E3

0

0 1

[10.110] 

Figure 10.47. Probability that the response remains below the type D  
barrier in the first half-cycle of the movement

The parameter A AD E3 , plotted in Figure 10.47, must be interpreted as the 
probability that u t  remains below the type D barrier in the first half-cycle of the 
movement. 
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Hence

P T A TD D D3 3exp [10.111] 

P T e n T
e

e
D

v

a

q v

v

E

1 2
1

1

2

2
2

2

2
exp [10.112] 

3 0
2

2

2
2

1

1

2

2D
v

q v

v
n e

e

e

E

[10.113] 

P TD  is the probability of obtaining a level a in the response of a one-degree-
of-freedom system for a length of time T [DEE 71]. As shown in Figure 10.48, 3D

tends towards D an2  when v tends towards infinity. If v tends towards zero, 

3D  tends towards 1E and the ratio 3

1

D

D

 tends towards 2 q E .

Figure 10.48. Mean rate of occurrence of the 
type D groups of passage on the basis of a 

two state process assumption

Figure 10.49. Comparison of the  
mean rates of occurrence

The value of  obtained with this method is definitely better than that deduced 
on the basis of assumption 1 ( na  or na ) [10.4]. Nevertheless, it still arrives at 
values for T that fall short of reality (conservative results) [VAN 72]. 
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Figure 10.50. Ratio of constants  calculated from [10.113] and [10.4]

Figure 10.50 shows the variations as a function of v of the ratio 

6

0
2

0
2 2

2 1
2

2 1

2

2 2

n e q v

n e e

v

E

v v

exp

[10.114] 

for the value of 3D  [10.113] and that which results from assumption 1 [10.4], for 
q E  equal to 0.1, 0.25, 0.5 and 0.75, respectively. 

NOTES:

1. The E passages and the associated D-passage groups have a tendency to 
gather together in groups. When this effect, not taken into account up to now, 
occurs, the true rate of decrease is smaller than 3 D  and [10.113] constitutes a 

conservative estimate of DP t .

2. These studies can be extended to the case of the non-stationary random 
phenomena by considering PSD functions of time G , t , from which the spectral 

moments nM t  can be deduced and a mean rate of upcrossings as a function of 

time t :
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T

0
P T A exp t dt [10.115] 

The above method gives results that agree with results from simulations when it 
is extended to the case of transient signals with [10.115]. 

Summary chart

Assumption Constant Relation 
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Table 10.1. Main results

 Assumption Constant Relation

Markov process 
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0
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th
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v
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2
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1
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[10.86] Two state Markov 

process 
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2E
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[10.99] 

2 1 2 1
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Approximation based 
on the mean size of 
the groups of peaks 
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2
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e
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A1. Laws of probability 

A1.1. Gauss’s law 

This law is also called the Laplace-Gauss or normal law.

Probability 
density 

p x
s

e

x m

s1

2

1

2

2

m = mean 
s = standard deviation 

The law is referred to as reduced centered normal if m 0  and 
s 1.

Distribution 
function F X P x X

s
e dx

x m

sX1

2

1

2

2

Reduced variable: t
x m

s
If E1 is the error function  

F T E
T1

2
1

2
1 where T

X m

s

Mean M

Variance 
(central moment 

of order 2) 
s2
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Central 
moments k

k
k

t

t e dt
2

2

2

k even (k r2 ):

2
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2
r r

rr
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!

!
k odd )1r2k(

2 1 0r

Moment of 
order 3 and 
skewness

0

Kurtosis '4
4
4 3

s
Median and 

mode 0

A1.2. Log-normal law

Probability 
density p x

x s
e

y

x m

s
y

y1

2

1

2

2
ln

my= mean 
sy= standard deviation of the normal random variable y xln

p y dy
s

e dy
y

y m

s
y

y1

2

1

2

2

 The log-normal law is thus obtained from the normal law by the 
change of variable x ey .

Distribution 
function F X P x X

x s
e dx

y

x m

sX
y

y1

2

1

2

0

2
ln

Mean
m E x e

m
s

y
y
2
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Variance 
(central moment 

of order 2) 

s e e m e
m s s sy y y y2 2 2

2 2 2

1 1

s e e
s m

s

y
y

y

2 2

2
2

2

1

s E x v2 2 2

v e
sy
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1

v = variation 
coefficient

m E x
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E x
y ln ln
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2
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2
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s

E x
y
2

2

21ln

m E x s E xy ln ln2 2 21

2
s E x s E xy ln ln2 2 2

Expressions for 
my  and sy

2

with respect to 
E x  and s2

It should be noted that the transformation x ey  applies neither 
to E x  nor to s2 .

m x m vy ln ~ ln ln
1

2
1 2

s vy
2 21ln

v e
sy

2

1

If v is the variation coefficient of x, we also have 

m x v~ 1 2 .

Variation 
coefficient

If two log-normal distributions have the same variation 
coefficient, they have equal values of s y  (and vice versa). 

Moment  
of order j j

j m j s
e

j y
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of order 3 3
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1 2 3e e e m v v
s m s sy

y
y

Skewness 3
3
3

2
3

2 2

1 2 3
s
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s sy y
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Median ~x e
m y

Mode 

M e
m sy y

2

For this value, the probability density has a maximum equal to 

1

2

2

2

s
e

y

m
s

y
y

Log-normal law references: [AIT 81] [CAL 69] [KOZ 64] [PAR 59] [WIR 81] 
[WIR 83]. 

NOTES: 

1. Another definition can be: a random variable x follows a log-normal law if 
and only if y ln x  is normally distributed, with average ym  and variance 2

ys .

2. This law has several names: the Galton, Mc Alister, Kapteyn, Gibrat law or 
the logarithmic-normal or logarithmo-normal law. 

3. The definition of the log-normal law can be given starting from base 10 
logarithms 10( y log x ) :

2

10 y

y

log x m1
2 s

y

1
p x e

x s 2 ln 10
[A1.1] 

With this definition for base 10 logarithms, we have: 

y 10m log x [A1.2] 

2
y 10 y

1
m log s 0.434

2m 10 [A1.3] 

2
ys 0.434v 10 1 [A1.4] 

2
y 10 10

1
m log x log 1 v

2
[A1.5] 
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2 2
y 10s 0.434 log 1 v [A1.6] 

Hereafter, we will consider only the definition based on Napierian logarithms. 

4. Some authors make the variable change defined by y 20 log x , y being 
expressed in decibels. We then have: 

2
ys 75.44v e 1 [A1.7] 

since
2

20
75.44

ln 10
.

5. Depending on the values of the parameters ym  and ys , it can sometimes be 

difficult to imagine a priori which is the law which is best adjusted to a range of 
experimental values. A method making it possible to choose between the normal law 
and the lognormal law consists of calculating: 

– the variation coefficient 
s

v
m

,

– the skewness 3
3s

,

– the kurtosis 4
4s

,

knowing that 

i
i

x

E x m
n

[A1.8]

2
i

2 i

x m

s
n

[A1.9] 

3
i

i
3

x m

n
[A1.10] 

and 
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4
i

i
4

x m

n
[A1.11] 

If the skewness is close to zero and the kurtosis is close to 3, the normal law is 

that which is best adjusted. If v 0.2  and 3 3
v

, the log-normal law is 

preferable.

A1.3. Exponential law 

This law is often used with reliability where it expresses the time expired up to 
failure (or the time interval between two consecutive failures). 

Probability density p x e x

Distribution function F X P x X e X1

Mean m E x1
1

Moments m
n n

mn n n
!

1

Variance (central moment 
of order 2) s2

2

1

Central moments n n
n

1 1

Variation coefficient v 1

Moment of order 3 
(skewness) 3

3
3

3 3
s

Kurtosis 4
4 34 12

A1.4. Poisson’s law 

It is said that a random variable X is a Poisson variable if its possible values are 
countable to infinity x0 , x1, x2 ..., xk ..., the probability that X xk being given by: 
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p P X x e
k

k k

k

!
[A1.12] 

where  is an arbitrary positive number. 

We can also define this in a similar way as a variable able to take all on the 
integer values, a countable infinity, 0, 1, 2, 3..., k..., the value k having the 
probability:

p P X k e
k

k

k

!
[A1.13] 

The random variable is here a number of events (we saw that, with an 
exponential law, the variable is the time interval between two events). 

Distribution function F X P x X e
k

k

k

n
0

0 !
 (n X n 1)

Mean m E x k e
k

k

k
1

0 !

Moment of order 2 m2 1

Variance (central 
moment of order 2) 

s2

Central moments 
3

4
23

Variation coefficient v
1

Skewness 3
1

Kurtosis 4
1 3

The set of possible values n and their probability pk  constitutes the Poisson’s 
law for parameter . This law is a discrete law. It is shown that Poisson’s law is the 
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limit of the binomial distribution when the probability p of this last law is equal to 
k

and when k tends towards infinity. 

NOTES: 

1. Skewness 3  always being positive, the Poisson distribution is dissymmetric, 
more spread out on the right. 

2. If  tends towards infinity, 3  tends towards zero and 4  tends towards 3. 
There is a convergence from Poisson’s law towards the Gaussian law. When  is 
large, the Poisson distribution is very close to a normal distribution. 

A1.5. Chi-square law 

Given  random variables u1, u2 ..., u , assumed to be independent reduced 
normal, i.e. such that: 

f u e dui

u

i

i
1

2

2

2 [A1.14] 

we call a chi-square law with  degrees of freedom (  independent variables) the 
probability law of the variable 2  defined by: 

2
1
2

2
2 2 2

1

u u u ui
i

[A1.15] 

The variables ui  being continuous, the variable 2  is continuous in (0, ).

NOTES: 

1. The variable 2  can also be defined starting from  independent non-
reduced normal random variables ix  whose averages are respectively equal to 

i im E x  and the standard deviations is , while referring back to the  
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preceding definition with the reduced variables i i
i

i

x m
u

s
 and the sum 

2 2
i

i 1

u .

2. The sum of the squares of independent non-reduced normal random variables 
does not follow a chi-square law. 

Probability density 
p e2

2
2 2

1
21

2 2

2

 = number of degrees of freedom 
 = Euler function of the second kind (gamma function) 

Mean E E ui
i

2 2

1

Moment of order 2 m2 2

Standard deviation s 2

Central moments 2 2 3 8 4 12 4

Variation coefficient v
2

Skewness 3 2
2

Kurtosis 4 3
4

Mode M 2

This law is comparable to a normal law when  is greater than approximately 30. 
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A1.6. Rayleigh’s law 

Probability density p x
x

e

x

2
2

2

2

 is a constant 

Distribution function 
F X P x X e

X

1

2

22

Mean m
2

Median 1774.12ln2X

Rms value E x2 2

Variance s m2 2 22
2

4
1

Moment of order k 

If k is odd 
)1r2k( m

r

r
r r

r
2 1

2 12

2 2

!

!

If k is even 
(k r2 )

m rr
r r

2
22 !

Central moments 

0 1

2
22

2

1 0

3
3

2
3

Variation coefficient v
4

1

Skewness 

6311.0

2
2

3
2

a 23

4

2
48

3

4
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Kurtosis 2451.3
4

332
b 2

2

Mode M

Reduced law 

If we set u
x

s
, it results that, knowing that p x

x

s
e

x

2
2

2

2

,

p x
s

x

s
e

s
u e

s
p u

x

s
u

1 1 1
2

2

2

2 2 [A1.16] 

p u du p u d
x

s
s p x

dx

s
p x dx [A1.17] 

X Xx
prob  

1
1.5 
2
2.5 
3
3.5 
4
4.5 
5

0.60653 
0.32465 
0.13534 
4.3937 10-2

1.1109 10-2

2.1875 10-3

3.355 10-4

4.01 10-5

3.7 10-6

Table A1.1. Particular values of the Rayleigh distribution
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A1.7. Weibull distribution 

Probability
density

x0

x
x

exp
x

xp

1

 and  = positive constants 

Distribution 
function 

X0

X
X

exp1
XF

Mean m 1
1

Median X ln 2 1

Variance s2 2 21
2

1
1

Mode M 1
1 1

Weilbull distribution references: [KOZ 64] [PAR 59]. 

NOTE: 

We sometimes use the constant  in the above expressions. 

A1.8. Normal Laplace-Gauss law with n variables 

Let us set x1, x2 ..., xn  n random variables with zero average. The normal law 
with n variable xi  is defined by its probability density: 

p x x x M
M

M x xn
n

ij
i j

n

i j1 2
2 1 22

1

2
, , , exp

,

  [A1.18] 
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where M  is the determinant of the square matrix: 

M

n

n

n n nn

11 12 1

21 22 2

1 2

[A1.19] 

ij i jE x x, moments of order 2 of the random variables 

Mij  cofactor of ij in M .

Examples

1. n 1

p x M
M

M
x1

1 2 1 2 11
1
22

1

2
exp

with

M 11

M 11

M11 1

11 1
2 2E x s

yielding 

p x
s

e

x

s
1

21

2

1
2

2

[A1.20] 

which is the probability density of a one-dimensional normal law as defined 
previously. 

2. n 2

p x x M
M

M x1 2
1 1 2

11 1
22

1

2
, exp
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M x x M x x M x12 1 2 21 2 1 22 2
2 [A1.21] 

with

M
11 12

21 22
M 11 22 12 21

11 1
2

1
2E x s M11 22

12 1 2 2 1 21 1 2E x x E x x s s M M12 21 12 21

22 2
2

2
2E x s M22 11

 is the coefficient of linear correlation between the variables x1 and x2 ,
defined by: 

cov ,x x

s x s x
1 2

1 2

[A1.22] 

where 2x,1xcov  is the covariance between the two variables x1 and x2 :

2121221121 dxdxx,xpXExXExX,Xcov   [A1.23] 

The covariance can be negative, zero or positive. It is zero when x1 and x2  are 
completely independent variables. Conversely, a zero covariance is not a sufficient 
condition for x1 and x2  to be independent. 

It is shown that  is included in the interval 1,1 . 1 is a necessary and 
sufficient condition of linear dependence between x1 and x2 .

This yields 

p x x
s s

x

s

x x

s s

x

s
1 2

1 2
2 2

1

1

2
1 2

1 2

2

2

2
1

2 1

1

2 1
2, exp

 [A1.24] 
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NOTE: 

If the averages were not zero, we would have 

2
1 1

1 2 22 11 2

x E x1 1
p x , x exp

s2 12 s s 1

2
1 1 2 2 2 2

1 2 2

x E x x E x x E x
2

s s s
[A1.25] 

If 0 , we can write p x , x p x p x1 2 1 2  where 

p x
s

e

x

s
1

1

21

2

1
2

1
2

 and p x
s

e

x

s
2

2

21

2

2
2

2
2

. x1 and x2  are independent 

random variables. 

It is easily shown that, by using the reduced centered variables t
x E x

s
1

1 1

1

and t
x E x

s
2

2 2

2

,

p x x dx dx1 2 1 2 1 [A1.26] 

Indeed, with these variables, 

p t t
s s

t t t t1 2
1 2

2 2 1
2

1 2 2
21

2 1

1

2 1
2, exp

 [A1.27] 

and

t t t t t t t1
2

1 2 2
2

1 2
2 2

2
22 1 [A1.28] 
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Let us set u
t t1 2

21
 and calculate 

1

2

2
2
22 2

2e e dt duu t [A1.29] 

i.e.
1

2

1

2

2
2
22 2

2e du e dtu t. [A1.30] 

We thus have 

p u du p t dt2 2 1 [A1.31] 

NOTE: 

It is shown that, if the terms ij  are zero when i j , i.e. if all the correlation 

coefficients of the variables xi  and x j are zero (i j), we have: 

11

nn

0 0
0 0

M
0 0
0 0 0

[A1.32] 

n

ii
i 1

M

ijM 0    if i j

ij
ii

M
M   if i j

and 

n 2
1 2n 2 i

1 2 n
iii 1

1 x
p x , x , , x 2 M exp

2
  [A1.33] 
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n

1 2 n i
i 1

p x , x , x p x [A1.34] 

For normally distributed random variables, it is sufficient that the cross-
correlation functions are zero for these variables to be independent. 

A1.9. Student law 

The Student law with n degrees of freedom of the random variable x whose 
probable value would be zero for probability density: 

p x

n

n
x

n

n

1

2

1

2

2

1
2

1

2
[A1.35] 

A2. 1/nth octave analysis

Some signal processing tools make it possible to express the PSDs calculated in 
dB from an analysis into the third octave. We propose here to give the relations 
which make it possible to go from such a representation to the traditional 
representation. We will place ourselves in the more general case of a distribution of 
the points in the 1/nth octave. 

A2.1. Center frequencies 

A2.1.1. Calculation of the limits in 1/nth octave intervals 

By definition, an octave is the interval between two frequencies f1 and f2 such 

that
f

f
2

1

2 . In the 1/nth octave, we have 

f

f
n2

1

12 [A2.1] 

i.e.

log log
log

f f
n

2 1
2

[A2.2] 
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Example A2.1. 

Analysis in the 1/3 octave between f1 5 Hz and f2 10  Hz. 

7993.0
3

2log
5logflog a

3.6fa  Hz 

8997.0
3

2log
flogflog ab

937.7fb  Hz 

1
3

2log
flogflog bc

f fc 2 10 Hz 

A2.1.2. Width of the interval f  centered around f 

The width of this interval is equal to 

limitlowerlimitupperf

Figure A2.1. Frequency interval 

Let  be a constant characteristic of width f  (Figure A2.1) such that: 

log log log log
log

f f
n

2
[A2.3] 



Appendices     509 

yielding 

21 2n [A2.4] 

We deduce 

f f
f

[A2.5] 

f f
1

[A2.6] 

This value of f  is particularly useful for the calculation of the rms value of a 
vibration defined by a PSD expressed in dB. 

Example A2.2. 

For 3n , it results that 122462.1 and f231563.0f . At 5 Hz, we 
have 15.1f  Hz. 

A2.2. Ordinates 

We propose here to convert the decibels into unit of amplitude [(m/s2)2/Hz]. We 
have, if rmsx  is the rms value of the signal filtered by the filter (f, f ) defined 
above:

ref

rms

x
x

log20dBN [A2.7] 

refx  is a reference value. If the parameter studied is an acceleration, the 
reference value is by convention equal to 1 m/s2 = 10-6 m/s2 (we sometimes find 
10-5 m/s2 in certain publications). 

Table A2.1 lists the reference values quoted by ISO Standard 1683.2. 
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Parameter Formulate (dB) Reference level 

Sound pressure 
level 0p/plog20 20 Pa in air 

1 Pa in other media 

Acceleration level 0x/xlog20 1 m/s2

Velocity 0v/vlog20 1 nm/s 

Force level 0F/Flog20 1 N

Power level 0P/Plog10 1 pW 

Intensity level 0I/Ilog10 1 pW/m2

Energy density 
level 0W/Wlog10 1 pJ/m3

Energy 0E/Elog10 1 pJ 

Table A2.1. Reference values (ISO Standard 1683 [ISO 94])

This yields 

20
N

refrms 10xx [A2.8] 

The amplitude of the corresponding PSD is equal to 

f
10x

f
x

G
10
N

2
ref

2
rms [A2.9] 

f
10x

12

2
G

10
N

2
ref

n1

n21
[A2.10] 

or

ref
n21

n1

x
Gf

2

12
log10N [A2.11] 
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Example A2.3. 

If 5
ref 10x  m/s2

G
f

N

1010
10

and if n 3

G
f

N

2

2 1

101 6

1 3

10
10

G
f

N

10

0 23

10
10

.

If, at 5 Hz, the spectrum gives N 50 dB, 

G
2

2 1

10

5

1 6

1 3

50

10
10

6106369.8G  (m/s2)2/Hz.

A3. Conversion of an acoustic spectrum into a PSD

A3.1. Need 

When the real environment is an acoustic noise, it is possible to evaluate the 
vibratory levels induced by this noise in a structure and the stresses which result 
from it using finite element calculation software. 

At the stage of writing of specifications, we do not normally have such a model 
of the structure. It is nevertheless very important to obtain an evaluation of the 
vibratory levels for the dimensioning of the material. 
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To carry out this estimate, F Spann and P. Patt [SPA 84] proposed an 
approximate method based once again on calculation of the response of a one-dof 
system (Figure A3.1). 

Figure A3.1. Model for the evaluation of the effects of acoustic pressure

Let us set: 

P  acoustic pressure, 

GP  power spectral density of the pressure, 

A  area exposed to the pressure, 

 effectiveness vibroacoustic factor, 

M  mass of the specimen and support unit. 

The method consists of: 

– transforming the spectrum of the pressure expressed into dB into a PSD GP
expressed in (N/m2)2/Hz,

– calculating, in each frequency interval (in general in the third octave), the 
response of an equivalent one-dof system from the value of the PSD pressure, the 
area A exposed to the pressure P and the effective mass M, 

– smoothing the spectrum obtained. 

A3.2. Calculation of the pressure spectral density 

By definition, the number N of dB is given by 

N
P

P
20 10

0

log [A3.1] 

where P0  reference pressure = 2 10-5 N/m2 and P  rms pressure G fP .
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For a 1/nth octave filter centered on the frequency fc , we have 

f fn
n c2

1

2
1 2

1 2 [A3.2] 

yielding 

G
P

f
P

N
0

20 2
10

[A3.3] 

In the particular case of an analysis in the third octave, we would have 

32.4
f

f23.0f
2

1
2f c

cc61
61 [A3.4] 

and

G
P

f
P

N

c

0
20 2

1 6
1 6

10

2
1

2

[A3.5] 

A3.3. Response of an equivalent one-dof system 

Figure A3.2. One-dof system subjected to a force
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Let us consider the one-dof linear system in Figure A3.2, excited by a force F 
applied to mass m. The transfer function of this system is equal to: 

H f
z

F

y

F

h

m h h Q

2

2 2 2 2
1 2

1
[A3.6] 

y and z being respectively the absolute response and the relative response of the 
mass m, and 

h
f

f0

At resonance, h 1 and 

H
Q

m
[A3.7] 

The PSD GF of the transmitted force is given by: 

G A GF P
2 [A3.8] 

 (F A P ) and the PSD of the response y to the force F applied to the one-dof 
system is equal, at resonance, to: 

G H Gy F
2 [A3.9] 

G
Q

m
A Gy P

2

2
2 [A3.10] 

G
A

m
Q

P

f
y

N

n
n c

2
2

2 0
20 2

1 2
1 2

10

2
1

2

[A3.11] 

In the case of the third octave analysis, 
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G
A

m
Q

P

f
y

N

c

2
2

2 0
20 2

1 6
1 6

10

2
1

2

[A3.12] 

F. Spann and P. Patt set 5.4Q  and 5.2 , yielding 

P

2

y G
m
A

6.126G [A3.13] 

A4. Mathematical functions

The object of this appendix is to provide tools facilitating the evaluation of some 
mathematical expressions, primarily integrals, intervening very frequently in 
calculations related to the analysis of random vibrations and their effect on a one-dof 
mechanical system. 

A4.1. Error function 

This function, also called the probability integral, is the subject of two 
definitions. 

A4.1.1. First definition 

The error function is expressed: 

2X t
1 0

2
E (x) e dt [A4.1] 

If x , E x1  tends towards E1  which is equal to 

E1 0

2
1

2

e dtt [A4.2] 

and if x 0 , E1 0 0. If we set t
u

2
, it becomes 
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E1
x

e
dux

u

2

2

20
2

2

E1
x

e du
x

u

2

2
0

2

2

[A4.3] 

Figure A4.1. Error function E1(x)

We can express a series development of xE1  by integrating the series 

development of e t2

 between 0 and x: 

E1

3 5 2 12

1 3 2 5
1

2 1
( )

! !
( )

! ( )
x x

x x x

n n
n

n

[A4.4] 

This series converges for any x. For large x, we can obtain the asymptotic 
development according to ANG 61 CRA 63 :

E1( )
. . .

( )
. . ( )

x
e

x x x x

n

x

x
n

n n1 1
1

2

13

2

135

2
1

135 2 3

2

2

2 2 4 3 6
1

1 2 2

 [A4.5] 
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For sufficiently large x, we have 

E1( )x
e

x

x

1

2

[A4.6] 

If x 1.6, 1E x 0.976,  whilst the value approximated by the expression 
above is 

973.0xE1 .

For x 1.8, 1E x 0.9891  instead of 0.890. 

The ratio of two successive terms, equal to 
2 1

2

n

x
, is close to 1 when n is close 

to x2 . This remark makes it possible to limit the calculation by minimizing the error 
on E x1 .

NOTE: 

E x  is the error function and 1 E x , noted erfc x , is the 

“complementary error function”. 

2t
x

2
erfc(x )= e dt [A4.7] 

Function
2x t

1 0

2
E ( x ) e dt

Approximate calculation of 1E

The error function can be estimated using the following approximate 
relationships [ABR 70] [HAS 55]: 

22 3 4 5 x
1 1 2 3 4 5E (x) 1 (a t a t a t a t a t ) e (x)   [A4.8] 

where 

t
px

x
1

1
0( )

7105.1x
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x E x1 E1 X E x1 E1 x E x1 E1

0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200
0.225
0.250
0.275
0.300
0.325
0.350
0.375
0.400

0.02820
0.05637
0.08447
0.11246
0.14032
0.16800
0.19547
0.22270
0.24967
0.27633
0.30266
0.32863
0.35421
0.37938
0.40412
0.42839

0.02820
0.02817
0.02810
0.02799
0.02786
0.02768
0.02747
0.02723
0.02697
0.02666
0.02633
0.02597
0.02558
0.02517
0.02474
0.02427

0.425
0.450
0.475
0.500
0.525
0.550
0.575
0.600
0.625
0.650
0.675
0.700
0.725
0.750
0.775
0.800

0.45219
0.47548
0.49826

0.520500
0.54219
0.56332
0.58388
0.60386
0.62324
0.64203
0.66022
0.67780
0.69478

0.711156
0.72693
0.74210

0.2380
0.02329
0.02278
0.02224
0.02169
0.02113
0.02056
0.01998
0.01938
0.01879
0.01819
0.01758
0.01698
0.01638
0.01577
0.01517

0.825
0.850
0.875
0.900
0.925
0.950
0.975
1.000
1.025
1.050
1.075
1.100
1.125
1.150
1.175
1.200

0.75668
0.77067
0.78408
0.79691
0.80918
0.82089
0.83206
0.84270
0.85282
0.86244
0.87156
0.88021
0.88839
0.89612
0.90343
0.91031

0.01458
0.01399
0.01341
0.01283
0.01227
0.01171
0.01117
0.01064
0.01012
0.00962
0.00912
0.00865
0.00818
0.00773
0.00731
0.00688

1.225
1.250
1.275
1.300
1.325
1.350
1.375
1.400
1.425
1.450
1.475
1.500
1.525
1.550
1.575
1.600
1.625

0.91680
0.92290
0.929863
0.93401
0.93905
0.094376
0.94817
0.95229
0.95612
0.95970
0.96302
0.96611
0.96897
0.97162
0.97408
0.97635
0.97844

0.00649
0.00610
0.00573
0.00538
0.00504
0.00472
0.00441
0.00412
0.00383
0.00356
0.00332
0.00309
0.00286
0.00265
0.00246
0.00227
0.00209

1.650
1.675
1.700
1.725
1.750
1.775
1.800
1.825
1.850
1.875
1.900
1.925
1.950
1.975
2.000
2.025
2.050

0.98038
0.98215
0.98379
0.98529
0.98667
0.98793

0.989090
0.99015
0.99111
0.99199
0.99279
0.99352
0.99418
0.99478
0.99532
0.99781
0.99626

0.00194
0.00177
0.00164
0.00150
0.00138
0.00126
0.00116
0.00106
0.00096
0.00088
0.00080
0.00073
0.00066
0.00060
0.00054
0.00049
0.00045

2.075
2.100
2.125
2.150
2.175
2.200
2.225
2.250
2.275
2.300
2.325
2.350
2.375
2.400
2.425
2.450
2.475
2.500

0.99666
0.99702
0.99735
0.99764
0.99790
0.99814
0.99835
0.99854
0.99871
0.99886
0.99899
0.99911
0.99922
0.99931
0.99940
0.99947
0.99954
0.99959

0.00040
0.00036
0.00033
0.00029
0.00026
0.00024
0.00021
0.00019
0.00017
0.00015
0.00013
0.00012
0.00011
0.00009
0.00009
0.00007
0.00007
0.00005

Table A4.1. Error function E1(x) 
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p = 0.3275911 a3 = 1.421413741 
a1 = 0.254829592 a4 = -1.453152027 
a2 = -0.284496736 a5 = 1.061495429 

22 3 x
1 1 2 3E (x) 1 (a t a t a t ) e (x) [A4.9] 

5105.2x
xp1

1
t

p = 0.47047 a2 = -0.095879 
a1 = 0.3480242 a3 = 0.7478556 

Other approximate relationships of this type have been proposed [HAS 55] 
[SPA 87], with developments of the 3rd, 4th and 5th order. C. Hastings also suggests 
the expression 

E1
1 2

2
3

3
4

4
5

5
6

6 161
1

1
( )

( )
x

a x a x a x a x a x a x
  [A4.10] 

a1 = 0.0705230784 a4 = 0.0001520143 
a2 = 0.0422820123 a5 = 0.0002765672 
a3 = 0.0092705272 a6 = 0.0000430638 

 (0 x ) 

Derivatives

d E x

dx
e x1 2 2( )

[A4.11] 

d E x

dx
x e x

2
1
2

4 2( )
[A4.12] 
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Approximate formula 

The approximate relationship [DEV 62] 

E x
x

1

2

1
4

( ) exp [A4.13] 

gives results of a sufficient precision for many applications (error lower than some 
thousandths, regardless of the value of x). 

NOTE: 

The probability

2t
x 21

P e dt
2

 (normal distribution) can be calculated 

numerically using the approximate relations of this error function from 

1
1 x

P 1 E
2 2

[A4.14] 

A4.1.2. Second definition 

The error function is often defined by [PAP 65] [PIE 70]: 

E x e dt

t
x

2
2

0

1

2

2

( ) [A4.15] 

With this definition 

E x

E
x

2

1
2

2
( ) [A4.16] 

yielding 

E E1 2( ) ( )x x2 2 [A4.17] 
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Applications

1

2

2

2

1

2 2
2

2
2

1e dx E
x

E
x

x

x

x
( )

[A4.18] 

where  and  are two arbitrary constants PIE 70  and 

e dt

t2

2 2 [A4.19] 

Properties of 2E x

E x2 tends towards 0.5 when x :

5.0dte
2
1

E
0

2
t

2

2

[A4.20] 

E2 0 0

E x E x2 2

Function

2t
x

2
2 0

1
E ( x ) e dt

2

Approximate calculation of 2E ( x )

The function E x2  can be approximated, for x 0, by the expression defined 
as follows [LAM 76] [PAP 65]: 

2
x

5432
2

2

e)tetdtctbta(1
2
1

)x(E [A4.21] 

where 
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1
1 0.2316418

t
x

a = 0.254829592 b = -0.284496736 

c = 1.421413741 d = -1.453152027 e = 1.061405429 

The approximation is very good (at least 5 decimal points). 

NOTE: 

With these notations, the function 2E x  is none other than the integral of the 
Gauss function: 

2x
21

G( x ) e
2

Figure A4.2. Error function E2(x)

Figure A4.3 shows the variations of G x  and of 2E x  for 0 x 3 . We 
thus have: 

2x
120

u x
exp du E

2 22
[A4.22] 



Appendices     523 

x 2E (x) 2E X 2E (x) 2E x 2E (x) 2E

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60
0.65

0.70

0.75

0.80

0.01994

0.03983

0.05962

0.07926

0.09871

0.11791

0.13683

0.15542

0.17364

0.19146

0.20884

0.22575

0.24215

0.25804

0.27337

0.28814

0.01994

0.01989

0.01979

0.01964

0.01945

0.01920

0.01892

0.01859

0.01822

0.01782

0.01738

0.01691

0.01640

0.01589

0.01533

0.01477

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20
1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

0.30234

0.31594

0.32894

0.34134

0.35314

0.36433

0.37493

0.38493

0.39435

0.40320

0.41149

0.41924

0.42647

0.43319

0.43943

0.44520

0.01420

0.01360

0.01300

0.01240

0.01180

0.01119

0.01060

0.01000

0.00942

0.00885

0.00829

0.00775

0.00723

0.00672

0.00624

0.00577

1.65

1.70

1.75

1.80

1.85

1.90

1.95

2.00

2.05

2.10

2.15

2.20

2.25

2.30

2.35

2.40

0.45053

0.45543

0.45994

0.46407

0.46784

0.47128

0.47441

0.47725

0.47982

0.48214

0.48422

0.48610

0.48778

0.48928

0.49061

0.49180

0.00533

0.00490

0.00451

0.00413

0.00377

0.00344

0.00313

0.00284

0.00257

0.00232

0.00208

0.00188

0.00168

0.00150

0.00133

0.00119

2.45

2.50

2.55

2.60

2.65

2.70

2.75

2.80

2.85

2.90

2.95

0.49286

0.49379

0.49461

0.49534

0.49598

0.49653

0.49702

0.49744

0.49781

0.49813

0.49981

0.00106

0.00093

0.00082

0.00072

0.00064

0.00055

0.00049

0.00042

0.00037

0.00032

0.00028

3.00

3.05

3.10

3.15

3.20

3.25

3.30

3.35

3.40

3.45

3.50

0.49865

0.49886

0.49903

0.49918

0.49931

0.49942

0.49952

0.49960

0.49966

0.49972

0.49977

0.00024

0.00021

0.00017

0.00015

0.00013

0.00011

0.00010

0.00008

0.00006

0.00006

0.00005

3.55

3.60

3.65

3.70

3.75

3.80

3.85

3.90

3.95

4.00

0.49841

0.49984

0.49987

0.49989

0.49991

0.49993

0.49994

0.49995

0.049996

0.49997

0.00004

0.00003

0.00003

0.00002

0.00002

0.00002

0.00001

0.00001

0.00001

0.00001

Table A4.2. Error function E2(x) 
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Figure A4.3. Comparison of the error function E2(x) and of G(x)

Calculation of x for 2 0E x E

The method below applies if x is positive and where 5.0E0 0 LAM 80]. 
We calculate successively: 

z E2 1 2 0ln( )

and
x g g z g z g z0 1 2

2
10

10 [A4.23] 

where 
4

0 6.55864 10g 2
6 1.17213 10g

1 0.02069g 3
7g 2.10941 10

2 0.737563g 4
8 2.18541 10g

3 0.207071g 5
9 1.23163 10g

2
4 2.06851 10g 7

10 2.93138 10g

5 0.03444g

For negative values, we will use the property 

E x E x2 2( ) ( )
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NOTE: 

To calculate x from the given 1E  set 1
2

E
E

2
, calculate x, and then 

x
2

.

A4.2. Calculation of the integral a x ne x dx

We have [DWI 66]: 

e

x
dx x

a x a x a x a

n

x

n

a x n n

ln
! ! ! !1 2 2 3 3

2 2 3 3

  [A4.24] 

yielding, since 

e

x
dx

e

n x

a

n

e

x
dx

a x

n

a x

n

a x

n1 11 1 [A4.25] 

e

x
dx

e

n x

a e

n n x

a e

n x

a

n

e

x
dx

ax

n

ax

n

ax

n

n ax n ax

1 1 2 1 11 2

2 1

! !

 [A4.26] 

A4.3. Euler’s constant 

Definition

lim ln
n n

n1
1

2

1
[A4.27] 

0.57721566490 ...

An approximate value is given by [ANG 61]: 

1

2
10 13

i.e.

0.5772173 ...
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Applications

It is shown that [DAV 64]: 

ln e d
0

[A4.28] 

and that 

(ln )2
0

2

6
e d [A4.29] 

A5. Complements to the transfer functions

A5.1. Error related to digitization of transfer function 

The transfer function is defined by a certain number of points. According to this 
number, the peak of this function can be more or less truncated and the measurement 
of the resonance frequency and Q factor distorted [NEU 70]. 

Any complex system with separate modes is comparable in the vicinity of a 
resonance frequency to a one-dof system of quality factor Q. 

Figure A5.1. Transfer function of a one-dof system close to resonance

Let us set y as the value of the quality factor read on the curve, Q being the true 
value.
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Let us set 
y

Q
 and 

frequencyresonancetrue
frequency resonanceread

f
f

0
. When  is different 

from 1, we can set 1 , if  is the relative deviation on the value of the 
resonance frequency. For 0, we have  = 1 and 1. For 0,  is less than 
1. The resolution error is equal to R 1 . The amplitude of the transfer function 
away from resonance is given by y such that: 

y Q

Q

Q

Q

2

2

2

2 2 2

2

2 2

2 2 2 2

1

1 1
[A5.1] 

2
2

2

2

2

2 2 2 2

2

2

2 2 2

1

1

1
1

1

y

Q

Q

Q

Q

Q
[A5.2] 

For large Q, we have 

2
2 2 2 2

1

1Q
[A5.3] 

i.e., replacing  with 1 -  and assuming Q2  to be large compared to 1, 

2
2 2

1

1 2 4 Q
[A5.4] 

and

R
Q

1 1
1

1 2 4 2 2
[A5.5] 
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Figure A5.2. Digitization of n points of the 
transfer function between the 

half-power points
Figure A5.3. Effect of too low a  

sampling rate

If 4 22 2Q , i.e. if Q2 1

2
,

R Q1 1 4 2 2 1 2
[A5.6] 

R Q2 2 2 [A5.7] 

Let us assume that there are n points in the interval f0 between the half-power 
points, i.e. n 1 intervals. We have: 

1 1
0

f

f
[A5.8] 

f f
f

n
0

0

2 1
[A5.9] 

yielding 

f

n f n Q
0

02 1

1

2 1
[A5.10] 

i.e., since R 2 2 2,

R
n

1

2 1 2
[A5.11] 
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Figure A5.4 shows variations of the error R  versus the number of points n in 
f0. To measure the Q factor with an error less than 2%, it is necessary for n to be 

greater than 6 points. 

Figure A5.4. Error of resolution versus number of points in f

NOTE: 

In the case of random vibrations, the frequency increment f  is related to the 
sampling frequency sf  by the relationship 

sf
f

2 M
[A5.12] 

where M is the total number of points representing the spectrum. Ideally, the 
increment f  should be a very small fraction of the bandwidth 0f  around the 
resonance. The number of points M is limited by the memory size of the calculator 
and the frequency sf  should be at least twice as large as the highest frequency of 
the analyzed signal, to avoid aliasing errors (Shannon’s theorem). Too large a f
leads to a small value of n and therefore to an error to the Q factor measurement. 
Decreasing sf  to reduce f  (with M constant) can lead to poor representation of 
the temporal signal and thus to an inaccuracy in the amplitude of the spectrum at 
high frequencies. It is recommended to choose a sampling frequency greater than 6 
times the largest frequency to be analyzed [TAY 75].
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A5.2. Use of a fast swept sine for the measurement of transfer functions 

The measurement of a transfer function starting from a traditional swept sine test 
leads to a test of relatively long duration and in addition requires material having a 
great measurement dynamics. 

Transfer functions can also be measured from random vibration tests  or by using 
shocks, the test duration obviously being in this latter case very short. On this 
assumption, the choice of the form of shock to use is important, because the transfer 
function being calculated from the ratio of the Fourier transforms of the response (in 
a point of the structure) and excitation, it is necessary that this latter transform does 
not present a zero or too small an amplitude in a certain range of frequency. In the 
presence of noise, the low levels in the denominator lead to uncertainties in the 
transfer function [WHI 69]. 

The interest of the fast linear swept sine lies in two points: 

– the Fourier transform of a linear swept sine has a roughly constant amplitude in 
the swept frequency range. W.H. Reed, A.W. Hall, L.E. Barker [REE 60], then 
R.G. White [WHI 72] and R.J. White and R.J. Pinnington [WHI 82] showed that the 
average module of the Fourier transform of a linear swept sine is equal to: 

X
x

b
m

2
[A5.13] 

where mx = amplitude of acceleration defining the swept sine 

b
f f

tb

2 1  sweep rate 

and that, more generally, 

X
x

f
m

2
[A5.14] 

where f  is the sweep rate for an arbitrary law, 
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Example A5.1. 

Linear sweep: 10 Hz to 200 Hz 

Durations: 1 s – 0.5 s – 0.1 s and 10 ms 

xm= 10 ms-2

Depending on the case, relationship [A5.14] gives 0.3627, 0.256, 0.1147 or 
0.03627 (m/s). 

Figure A5.5. Example of fast swept sine

Figure A5.6. Examples of fast swept sine Fourier transforms
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– sweeping being fast (a few seconds or a fraction of a second, depending on the 
studied frequency band), the mechanical system responds as to a shock and does not 
have time to reach the response which it would have in steady state operation or 
with a slow sweep (Q times the excitation). Accordingly, the dynamics of the 
necessary instrumentation is less constraining and measurement is taken in a domain 
where the non-linearities of the structure are less important. 

The Fourier transform of the response must be calculated over the whole 
duration of the response, including the residual signal after the end of sweep. 

A5.3. Error of measurement of transfer function using a shock related to signal 
truncation  

With a transient excitation, of shock type or fast swept sine, the transfer function 
is calculated from the ratio of the Fourier transforms of response and excitation: 

H i
Y i

X i
[A5.15] 

where 

X i x t e dti t [A5.16] 

Y i y t e dti t [A5.17] 

If x t  is an impulse unit applied to the time t 0 , we have X i 1
whatever the value of  and (Volume 1, expression [4.115]): 

H i h t e dti t
0

[A5.18] 

where h t  is the impulse response. For a one-dof system of natural frequency f0
(Volume 1, relationship [4.114]), 

h t e tt0
2

2
0

1
10 sin [A5.19] 

yielding the complex transfer function 
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H i

i

1

1 2
2

0
2

0

[A5.20] 

Relationship [A5.18] could be used in theory to determine H i  from the 
response to an impulse, but, in practice, a truncation of the response is difficult to 
avoid, either because the decreasing signal becomes non-measurable or because the 
time of analysis is limited to a value m [WHI 69]. The effects of truncation have 
been analyzed by B.L. Clarkson and A.C. Mercer [CLA 65], who showed: 

– that the resonance frequency can still be identified from the diagram vector as 

the frequency to which the rate of variation in the length of arc with frequency, 
ds

df
,

is maximum, 

– that the damping measured from such a diagram (established with a truncated 
signal) is larger than the true value. 

These authors established by theoretical analysis that the error (in %) introduced 
by truncation is equal to: 

e
e

e

m

m

m m

m

% 100 1
1 1

1

2
1 1

0

0

0
2

0
2 2

0

  [A5.21] 

Figure A5.7. Error of measured value of  due to truncation of the signal
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It can be seen that if 0 1m , the error of the measured value of  is lower 
than 5%. 

It should be noted that we can obtain a very good precision without needing to 
analyze extremely long records. For example, for f0 100  Hz and 0.005,  a 
duration of 2 s led to an error of less than 5% ( 0 1m ).

A5.4. Error made during measurement of transfer functions in random vibration 

The function of coherence 2 is a measurement of the precision of the calculated 
value of the transfer function H f and is equal to [2.98]: 

2

2
G f

G f G f

xy

x y

[A5.22] 

Figure A5.8. Error of measurement of the 
transfer function in random excitation  

versus , for K = 20

Figure A5.9. Error of measurement of the 
transfer function in random excitation versus 

the probability, for K = 20
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Figure A5.10. Error of measurement of the 
transfer function in random excitation  

versus , for P = 0.90

Figure A5.11. Error of measurement of the 
transfer function in random excitation  

 versus K, for P = 0.90

If the system is linear and if there is no interference, 2 1 and the calculated 
value of H f  is correct. If 2 1, the error in the estimate of H f  is provided 
with a probability P by: 

H f

H f
P K

xy

1 1
1

11
2

1

2
[A5.23] 

where K is the number of spectra (blocks) used to calculate each PSD [WEL 70]. 

Figure A5.12. Error of measurement of the transfer 
function in random excitation versus K, for  = 0.5
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A5.5. Derivative of expression of transfer function of a one-dof linear system 

Let us consider the transfer function: 

H
h i h

( )
1

1 20
2 2 [A5.24] 

where 

h
0

using multiplication of the denominator’s conjugate quantity, we obtain 

H h A i h A( ) 1 22

if we set 

A
h h

1

1 20
2 2 2 2

yielding 

dH

dh
h A i A h

dA

dh
h i

dA

dh
2 2 1 22 [A5.25] 

with

dA

dh

h h

h h

4 1 2

1 2

2 2

0
2 2 2 2

2 [A5.26] 

dH

dh
h i A h h i

dA

dh
2 1 22( ) [A5.27] 
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A6. Calculation of integrals

A6.1. Integral 
bh

I h dhb ( h ) h2 2 2
4

1 4

b 3
2

b 2 b 4
4 h

I (h) 2 (1 2 ) I I if b 3b b 3

2
3 1 1

4
I (h) ln h 2 (1 2 ) I I if b 3   [A6.1] 

A6.1.1. Demonstration 

From [PUL 68]: 

1 4 12 2 2 2 4 2h h h h

if we set 2212 . By division, we obtain 

b b 2 b 4
b 4

4 2 4 2
h h h

h if b 3
h h 1 h h 1

yielding recurrence relation [A6.1]. The use of these expressions requires knowledge 
of I hb  for some values from b, for example, b 0 , 1 and 2. 

A6.1.2. Calculation of I h0  and I h2

The calculation of I h0  and I h2  can be carried out easily by writing the 
functions to be integrated respectively in the forms 

1

1 4

1

4 1

2 1

2 1 1

2 1

2 1 12 2 2 2 2

2

2 2

2

2 2h h

h

h h

h

h h
[A6.2] 

and
h

h h

h

h h

h

h h

2

2 2 2 2 2 2 2 2 21 4

1

4 1 2 1 1 2 1 1
[A6.3] 
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Let us set 

I
h

h h
dh

2 1

2 1 1

2

2 2

I
h

h h
dh

h h
dh

1

2

2 2 1

2 1 1

1

2 1 1

2

2 2

2

2 2

Knowing what 22 1h2h 1 can be put in the form  

2
2

2 1
X

 with X h 1 2

it results that 

22
22 1h

tanarc
1

11h2hln
2
1

I

In the same way, 

J
h

h h
dh

2 1

2 1 1

2

2 2

J
h

h h
dh

h h
dh

1

2

2 2 1

2 1 1

1

2 1 1

2

2 2

2

2 2

With a change of variable such that: 

X h 1 2

h h
X2 2 2

2

22 1 1 1
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we obtain 

22
22 1h

tanarc
1

11h2hln
2
1

J

yielding 

11h2h

11h2h
ln

12
)h(I

22

22

20

2 2h 1 h 11
arc tan arc tan [A6.4] 

NOTES: 

1. Knowing that 

x y
arc tan x arc tan y arc tan

1 x y
[A6.5] 

0I ( h )  can be also written 

2 2

0 22 2 2

h 2 h 1 1 1 2 h
I ( h ) ln arc tan

1 h2 1 h 2 h 1 1
  [A6.6] 

However, expression [A6.6] must be used with caution, [A6.5] being correct 
only under precise conditions. 

Relation [A6.5], established from 

tan a tan b
tan a b

1 tan a tan b

is exact only if 

a k
2
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b k
2

a b k
2

From these first two conditions, if tan a x  and tan b y , it is necessary that 

a
2 2

 and that b
2 2

.

Taking into account these inequalities, a b  can thus vary between and 
(limits not included). The second member in addition lays down that 

a b
2 2

. Let us set a b . If 

arc tan x arc tan y
2

[A6.7] 

we must thus take as the value 
x y

arc tan
1 x y

 of the angle .

If

arc tan x arc tan y
2

[A6.8] 

we consider .

2. It is easy to show that we are in the situation of an inequality [A6.7] as soon 
as we have x y 2 . Indeed, let us search for the minimal value of the sum 

z tan x tan x
2

i.e. of 

2X 1
z

X

While setting X tan x , we find that the derivative 
dz
dx

 is cancelled when 

2X 1 , yielding z 2  (condition [A6.7]) or z 2  (condition [A6.8]).
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Following what precedes, 

dh
11h2h

12h2
2
1

dh
11h2h

h
22

2

22

dh
11h2h

1
1

22
2

22
22

22

1h
tanarc

1
11h2hln

2
1

dh
11h2h

h

and

22
22

22

1h
tanarc

1
11h2hln

2
1

dh
11h2h

h

yielding 

11h2h

11h2h
ln

12
)h(I

22

22

22

22 1h
tanarc

1h
tanarc

1

which can be written, with the same reservations as above, 

222

22

22
h1

h2
tanarc

1

11h2h

11h2h
ln

12
)h(I   [A6.9] 



542     Random Vibration 

NOTE: 

When h , 0I ( h ) 1 and 2I ( h ) 1 .

If h 0 , 0I ( h ) 0  yielding, while setting 
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1 h
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A6.1.3. Calculation of 1I ( h )

I h
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h h
1 2 2 2 2
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1 4
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h h h h h h( )1 4

1

4 1

1

2 1 1

1

2 1 1
2 2 2 2 2 2 2 2 2 2
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21
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tanarc
1

1
)h(I   [A6.11] 

Knowing that 

yx1
yx

tanarcytanarcxtanarc

I h1( ) can be also written (always with the same reservations): 
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h21

12
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1
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)h(I [A6.12] 

Application 

Let us consider the integral 
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The relations below give the expressions of I hb ( ) for some values of b 
[PUL 68]: 
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I h I I1 1 3
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Table A6.1. Integrals bI ( h )  for b ranging between –6 and 9
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A6.1.4. Approximations 

When the resonance frequency is within the frequency range of the excitation 
and when the influence of damping is small, it is possible to neglect the term in 
and to write Ib  in the form [MIL 61]: 

I
h dh

h
b

b4

1 2 2 [A6.30] 

provided that 4 12 2 2 2
h h . The condition is indeed written 

2 1 2h h
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h h
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Figure A6.1. Validity domain of approximation [A6.30]
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yielding 

1 1

1 1

2 2

2 2

h

h

Knowing that h is always positive or zero and that  varies between 0 and 1, 
these conditions become 

h

h

1

1

2

2

For 0.05,  these conditions lead for example to: 

0512.1h
9512.0h

The smaller the damping, the larger the useful range. 

If 2.0

22.1h
82.0h

We increase, for safety, these values by approximately 40%: 

2

2

14.1h

14.1h

For h small and less than 1: 
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22

b
h4h3h21h

h1

h
[A6.31] 
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For h large and higher than 1: 

h
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h

h h h h

b b
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While replacing 
h

h

b

1 2 2  with its expression in Ib  and while integrating, it 

results that 
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as long as no denominator is zero. If one of them is zero, the corresponding term is 
to be replaced by a logarithm. Thus, if b m 0, the term 

m
h

b m

b m1

2

must be written 

m
h

1

2
ln

A6.1.5. Particular cases 
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where h
0

 and H

h
h

Q

2

2
2

2

1

1

.

These results can be deduced directly from [A6.22] and [A6.20] [WAT 62]. 

NOTE: 
More generally, if b 0  [DWI 66]: 

4 20

dx
2 c ka x 2 b x c

[A6.36] 

where k  = 2 (b+ a c )  and a, c and k   0 .

A6.2. Integral 
b

b 22

hJ (h) = dh
1- h
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From the above relations, we deduce 
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The expressions of J hb( ) for the other values of b can be calculated starting 
from these relations using the recurrence formula: 

J h
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